

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Bend | Baker City California

Oakland | Folsom | Irvine

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN

3301 SOUTH NORFOLK STREET AND 10100, 10200, AND 10230 EAST MARGINAL WAY SOUTH SEATTLE/TUKWILA, WASHINGTON

Submitted By: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-026

Prepared For: Prologis, Inc. Pier 1, Bay 1 San Francisco, California 94111

January 29, 2019

Prepared by:

Pete Kingston, L.G. Senior Geologist

Reviewed by:

Scott Allin, R.E.P.A. Principal Environmental Scientist

Gary Hokkanen Principal Hydrogeologist

TABLE OF CONTENTS

1.0	INTRODUCTION1-1				
	1.1	PURPOSES AND OBJECTIVE	1-2		
	1.2	CONTACT INFORMATION	1-3		
	1.3	ORGANIZATION	1-4		
2.0	PROPERTY BACKGROUND				
	2.1	PROPERTY DESCRIPTION	2-1		
	2.2	PROPERTY HISTORY	2-2		
	2.3	GEOLOGY AND HYDROLOGY	2-2		
		2.3.1 Geology	2-2		
		2.3.2 Hydrology	2-3		
3.0	REM	EDIAL INVESTIGATION	3-1		
	3.1	PREVIOUS ENVIRONMENTAL INVESTIGATIONS AND			
		CLEANUP ACTIONS	3-1		
		3.1.1 AOC-1: Dry Grocery Warehouse	3-1		
		3.1.2 AOC-2: Perishables Warehouse	3-2		
		3.1.3 AOC-3: Truck Wash, and Former Location of UST F-UST-I	E 3-3		
		3.1.4 AOC-4: Current Fueling Area	3-3		
		3.1.5 AOC-5: Former Trailer Maintenance Shop	3-4		
		3.1.6 AOC-6: Former Truck Repair Shop	3-5		
		3.1.7 AOC-7: Former Automobile Service Stations	3-7		
		3.1.8 AOC-8: Returns Building	3-8		
		3.1.9 AOC-9: Employee Parking Lot	3-8		
		3.1.10 AOC-10: Background Areas	3-8		
		3.1.11 AOC-11: South Maintenance Shop	3-9		
		3.1.12 AOC-12: Former Old Humble Oil Service Station	3-9		
		3.1.13 AOC-13: Northwest Auto Wrecking Property	3-10		
	3.2	SUMMARY OF OUTSTANDING AREAS OF CONCERN	3-12		
4.0	CON	CEPTUAL SITE MODEL	4-1		
	4.1	APPLICABLE OR RELEVANT AND APPROPRIATE			
		REQUIREMENTS	4-1		
	4.2	CONSTITUENTS OF CONCERN	4-2		
	4.3	MEDIA OF CONCERN	4-2		
	4.4	CLEANUP STANDARDS	4-3		
		4.4.1 Soil Cleanup Levels	4-3		
		4.4.2 Groundwater Cleanup Levels	4-3		
		4.4.3 Points of Compliance	4-3		
	4.5	CONTAMINANT FATE AND TRANSPORT	4-4		
		4.5.1 Human Health Risk	4-4		
		4.5.2 Terrestrial Ecological Evaluation	4-4		

5.0	FOCUSED FEASIBILITY STUDY		
	5.1	POTENTIAL CLEANUP ALTERNATIVES	5-2
	5.2	RECOMMENDED CLEANUP ALTERNATIVE	5-3
6.0	CLEANUP ACTION PLAN		
	6.1	OBJECTIVE OF CLEANUP ACTION	6-1
	6.2	ELEMENTS OF CLEANUP ACTION	
	6.3	SITE PREPARATION	
	6.4	EXCAVATION	
	6.5	EXCAVATION DEWATERING	
	6.6	SOIL SEGREGATION AND STOCKPILING	6-3
		6.6.1 Identification of Contaminated Soil	
		6.6.2 Performance and Confirmational Soil Sampling	6-4
		6.6.3 Soil Sample Identification	6-4
		6.6.4 Soil Sample Collection and Handling Procedures	6-5
		6.6.5 Analytical Methods and Turnaround Times	6-5
		6.6.6 Waste Soil Disposal	6-6
		6.6.7 Wastewater Disposal	6-6
		6.6.8 Backfill and Site Restoration	6-6
	6.7	CHEMICAL OXIDATION	6-6
7.0	DOCUMENTATION REQUIREMENTS		
	7.1	FIELD DOCUMENTATION	7-1
	7.2	HEALTH AND SAFETY	
	7.3	CLOSURE REPORT	
	7.4	POST-CLOSURE REPORTING	
8.0	BIBI	LIOGRAPHY	
9.0	LIMITATIONS		
	9.1	GENERAL LIMITATION	
	9.2	LIMITATION ON RELIANCE BY THIRD PARTIES	

ii

FIGURES

Figure 1 Property Vicinity Map

- Figure 2 Property Plan Showing Parcel Boundaries and Parcel Numbers
- Figure 3 Property Plan Showing AOCs and Property Features
- Figure 4 Detail of AOC-2 Perishables Warehouse
- Figure 5 Detail of AOC-4 Current Fueling Area
- Figure 6 Detail of AOC-5 Former Trailer Maintenance Shop and AOC-6 Former Truck Repair Shop
- Figure 7 Detail of AOC-11 South Maintenance Shop

TABLES

- Table 1Summary of Soil Analytical Results for TPH and BTEX
- Table 2Summary of Soil Analytical Results for PAHs
- Table 3
 Summary of Soil Analytical Results for Detected VOCs
- Table 4Summary of Soil Analytical Results for Lead
- Table 5Summary of Groundwater Analytical Results for TPH and BTEX
- Table 6Summary of Groundwater Analytical Results for PAHs
- Table 7
 Summary of Groundwater Analytical Results for Detected VOCs
- Table 8Summary of Groundwater Analytical Results for Arsenic, Lead, and Total Suspended
Solids
- Table 9
 Summary of Soil Gas Analytical Results for Detected VOCs

APPENDICES

- Appendix A Boring Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Terrestrial Ecological Evaluation

ABBREVIATIONS AND ACRONYMS

2016 Phase I ESA the Phase I Environmental Site Assessment conducted by Farallon Consulting, L.L.C. at 3301 South Norfolk Street and 10100, 10200, and 10230 East Marginal Way South in Seattle/Tukwila, Washington in September 2016 2016 Phase II ESA the Phase II Environmental Site Assessment conducted by Farallon at 3301 South Norfolk Street and 10230 East Marginal Way South in Seattle/Tukwila, Washington in October 2016 AOC Area of Concern ARARs applicable or relevant and appropriate requirements below ground surface bgs CAP **Cleanup** Action Plan COCs constituents of concern DRO total petroleum hydrocarbons as diesel-range organics Ecology Washington State Department of Ecology EPA U.S. Environmental Protection Agency Farallon Farallon Consulting, L.L.C. FFS Focused Feasibility Study GRO total petroleum hydrocarbons as gasoline-range organics HASP Health and Safety Plan LCS lead-containing soil LDW Lower Duwamish Waterway milligrams per kilogram mg/kg micrograms per liter $\mu g/l$ MTCA Washington State Model Toxics Control Act Cleanup Regulation

NFA	No Further Action
NWAW	Northwest Auto Wrecking, Inc.
ORO	total petroleum hydrocarbons as oil-range organics
PAHs	polycyclic aromatic hydrocarbons
PID	photoionization detector
Property	the property at 3301 South Norfolk Street and 10230 East Marginal Way South in Seattle/Tukwila, King County, Washington
RCW	Revised Code of Washington
RI	Remedial Investigation
RI/FFS/CAP Report	Draft Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 3301 South Norfolk Street and 10230 East Marginal Way South, Seattle/Tukwila, Washington dated January 29, 2019, prepared by Farallon Consulting, L.L.C. (this report)
Site	the area where constituents of concern have come to be located at concentrations exceeding MTCA cleanup levels
TEE	Terrestrial Ecological Evaluation
Terra	Terra Associates, Inc.
UST	underground storage tank
VCP	Voluntary Cleanup Program
VOCs	volatile organic compounds
WAC	Washington Administrative Code

v

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan (RI/FFS/CAP Report) on behalf of Prologis, Inc. for the property at 3301 South Norfolk Street and 10100, 10200, and 10230 East Marginal Way South in Seattle/Tukwila, Washington (herein referred to as the Property) (Figures 1 and 2). For discussion purposes in this RI/FFS/CAP Report, the properties at 10100 and 10200 East Marginal Way are combined with the property at 3301 South Norfolk Street. This RI/FFS/CAP Report was prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as set forth in Chapter 173-340 of the Washington Administrative Code (WAC 173-340).

This RI/FFS/CAP Report provides sufficient information to support implementation of a cleanup action at the Property that will be conducted in conjunction with Property redevelopment. The Remedial Investigation (RI) and Focused Feasibility Study (FFS) portions of this RI/FFS/CAP Report summarize the results from the remedial investigation conducted at the Property, and present the conclusions from the focused feasibility study conducted to evaluate technically feasible cleanup alternatives for the affected media on the Property; the Cleanup Action Plan (CAP) portion of this RI/FFS/CAP Report presents the scope of work planned for implementing the selected cleanup approach described in the FFS portion.

From the 1950s to the present, there have been two primary uses for the Property:

- The 3301 South Norfolk Street property on the northern, eastern, and southern portions of the Property historically was used for commercial warehousing of food products, and included truck maintenance and repair operations; truck refueling facilities and associated underground storage tanks (USTs); and the use of USTs for storing heating oil, used oil, and Stoddard solvent.
- The 10230 East Marginal Way South property on the western portion of the Property historically was owned and used by Northwest Auto Wrecking, Inc. (NWAW) for automobile wrecking and parts salvaging. This portion of the Property currently is vacant.

Previous environmental investigations conducted at the 3301 South Norfolk Street property identified 12 Areas of Concern (AOCs), designated AOC-1 through AOC-12, primarily related to historical truck maintenance and fueling operations. This property was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) as "Unified Grocers Norfolk" and "Unified Grocers 3301 Norfolk" in July 2007, and was assigned VCP Project No. NW1807. Other Ecology identification numbers applicable to this portion of the Property include: Facility Site No. 73338176 and Cleanup Site No. 6584. Ecology terminated the VCP agreement with this property in October 2015 due to lack of cleanup progress.

The 10230 East Marginal Way South property previously was investigated and cleaned up, receiving a Partial Sufficiency Determination for soil from Ecology as described in Section 3.1, Previous Environmental Investigations and Cleanup Actions. This property was enrolled in the

VCP as "Northwest Auto Wrecking" in August 2007, and was assigned VCP Project No. NW1812. Other Ecology identification numbers applicable to this portion of the Property include: Facility Site No. 2287 and Cleanup Site No. 1877. Ecology terminated the VCP agreement with this property in October 2015 due to lack of cleanup progress.

Farallon subsequently designated AOC-13 as a new area of concern on the Property to represent limited residual groundwater contamination associated with the 10230 East Marginal Way South property, and arsenic groundwater contamination observed on other parts of the Property.

The remedial investigation conducted by Farallon and others at the Property has delineated the "Site," which is defined under MTCA as the area where constituents of concern (COCs) have come to be located at concentrations exceeding MTCA cleanup levels. The boundaries of the Site and AOC locations are shown on Figure 3. A cleanup action for the Site will be conducted during redevelopment of the Property for construction of a complex of new and existing commercial/industrial buildings that includes internal roadways, parking areas, and landscaping that will cover the entire Property. Redevelopment will require extensive reconfiguration of existing surface features at the Property. Therefore, the cleanup action to remove concentrations of residual contaminants in soil and groundwater exceeding MTCA cleanup levels will be implemented concurrently with Property redevelopment.

The cleanup actions presented in the CAP portion of this RI/FFS/CAP Report will be performed in accordance with MTCA under the VCP. The cleanup actions will be substantially equivalent to remedial actions conducted or supervised by Ecology, consistent with WAC 173-340-545(2). The cleanup actions will meet the threshold requirements of WAC 173-340-360, including protection of human health and the environment, compliance with cleanup standards, and compliance with applicable state and federal laws.

1.1 PURPOSES AND OBJECTIVE

The purpose of the RI/FFS/CAP Report is to summarize the results from subsurface investigations conducted at the Property by Farallon and others; evaluate and select cleanup actions under WAC 173-340-350 through WAC 173-340-390; and identify the steps required to implement the cleanup actions. The RI/FFS/CAP Report describes the selected cleanup actions to clean up soil and/or groundwater at 6 of the 13 AOCs on the Property where residual contaminant concentrations exceeding MTCA cleanup levels. No further assessment of the other 7 AOCs is warranted.

The objective of the cleanup action is to meet Ecology requirements for a written determination issued by Ecology stating that no further remedial action is necessary at the Site (i.e., a No Further Action [NFA] determination).

The purpose of the remedial investigation was to collect and evaluate sufficient information to support the development and evaluation of technically feasible cleanup alternatives in accordance with WAC 173-340-360 through 173-340-390. The remedial investigation was based on

subsurface investigations completed by Farallon and others that provided sufficient data for evaluation and selection of technically feasible cleanup actions.

The purpose of the focused feasibility study was to develop and evaluate cleanup action alternatives to facilitate selection of final cleanup actions at the Property in accordance with WAC 173-340-350(8). The focused feasibility study focused on a remediation technology appropriate and applicable for implementation during Property redevelopment in accordance with redevelopment plans and applicable MTCA regulations.

The purpose of the CAP portion of the RI/FFS/CAP Report is to present the scope of work for the selected cleanup actions described in the RI/FFS portion to protect human health and the environment and to meet MTCA requirements for an NFA determination for the Site. The CAP has been prepared in accordance with the requirements of WAC 173-340-380(1).

1.2 CONTACT INFORMATION

Contact information for the individuals designated as project coordinators for the Property is provided below:

• Property Owner Representative:

Ms. Janet Frentzel Vice President, Global Environmental and Engineering Prologis, Inc. Pier 1, Bay 1 San Francisco, California 94111 Phone: (415) 733-9431 Email: jfrentzel@prologis.com

• Ecology Site Manager:

No Ecology Site Manager has been assigned.

• Consultant Contacts:

Mr. Pete Kingston, L.G. Senior Geologist Farallon Consulting, L.L.C. 1809 7th Avenue, Suite 1111 Seattle, Washington 98101 Phone: (425) 394-4146 Email: dlance@farallonconsulting.com

Mr. Scott Allin, R.E.P.A. Principal Environmental Scientist Farallon Consulting, L.L.C. 101 Parkshore Drive Folsom, California 95630 Phone: (916) 616-8113 Email: sallin@farallonconsulting.com

1.3 ORGANIZATION

This RI/FFS/CAP Report includes the following sections:

- Section 2, Property Background, provides a description of the Property location and local land use, a summary of historical Property uses, and a description of the geology and hydrology in the vicinity of the Property.
- Section 3, Remedial Investigation, presents a summary of environmental investigations and interim cleanup actions conducted at the Property, and provides a summary of source areas and the extent of COCs at the Property.
- Section 4, Conceptual Site Model, provides a summary of the conceptual site model derived from the results from the remedial investigation conducted at the Property, including identification of applicable or relevant and appropriate requirements (ARARs), COCs, and media of concern; identification of cleanup standards; and a discussion concerning the fate and transport characteristics of the COCs.
- Section 5, Focused Feasibility Study, provides a summary of the results from the FFS, and identifies the cleanup alternative recommended for implementation at the Property, and the rationale for its selection.
- Section 6, Cleanup Action Plan, presents the CAP for the selected cleanup action, including its object and elements, and a description of the preparation of the Property, soil excavation and dewatering, soil segregation and stockpiling, soil disposal, and soil treatment by in-situ chemical oxidation.
- Section 7, Documentation Requirements, describes the requirements for documentation of field activities and health and safety issues during the cleanup action. Also discussed is the Closure Report, which will be prepared to describe and summarize the cleanup action conducted, and post-closure reporting.
- Section 8, Bibliography, provides a listing of the documents used in preparing this RI/FFS/CAP Report.
- Section 9, Limitations, provides Farallon's standard limitations.

Information supporting this RI/FFS/CAP Report is provided in accompanying Figures 1 through 7, Tables 1 through 9, and Appendices A through C.

2.0 PROPERTY BACKGROUND

This section provides a description of the Property location, land use, and zoning; a summary of historical uses of the Property; and a description of the local geology and hydrology.

2.1 **PROPERTY DESCRIPTION**

The Property is in an industrial area of Seattle/Tukwila, Washington¹ and consists of 29 King County parcels on approximately 63 acres of land (Figure 2). The Property and surrounding vicinity are zoned for industrial and manufacturing uses in both Seattle and Tukwila. The Property currently comprises the primary addresses 3301 South Norfolk Street and 10100, 10200, and 10230 East Marginal Way South (Figure 2). Ten main buildings and several smaller storage structures, all constructed between 1952 and 2012, are present on the Property. The main buildings include (Figure 3):

- An office building on the northern portion of the Property (Office Building).
- A dry grocery warehouse on the eastern portion of the Property (Dry Grocery Warehouse).
- A refrigerated perishables warehouse on the southern portion of the Property (Perishables Warehouse). This building will remain intact as part of redevelopment.
- A returns building on the central portion of the Property (Returns Building).
- A truck-wash building on the south-central portion of the Property (Truck Wash).
- A former trailer maintenance shop on the north-central portion of the Property (Former Trailer Maintenance Shop).
- A former truck repair shop on the north-central portion of the Property (Former Truck Repair Shop).
- A maintenance shop on the southwestern portion of the Property (South Maintenance Shop).
- An office building previously occupied by banking institutions on the northwestern portion of the Property (Former Bank Building).
- A walkup/drive-through cafe building and former Humble Oil service station on the northwestern corner of the Property (Cafe Building/Former Old Humble Oil Service Station).

Most of the buildings were constructed prior to 1985. The Cafe Building is the newest building, constructed in 2012. The 10230 East Marginal Way South portion of the Property contains unpaved surfaces; the remainder of the Property is covered by buildings or asphalt- or

¹ The city limits of both the City of Seattle and the City of Tukwila pass through the central portion of the Property, such that some parcels reside within the City of Seattle and others within the City of Tukwila (Figure 2).

concrete-paved surfaces. Access to the Property is gained from East Marginal Way South through a guarded entrance gate near the western Property boundary.

2.2 **PROPERTY HISTORY**

The following history of Property uses was summarized in the report documenting the Phase I Environmental Site Assessment conducted by Farallon (2016a) at 3301 South Norfolk Street and 10100, 10200, and 10230 East Marginal Way South in Seattle/Tukwila, Washington dated December 14, 2016 (2016 Phase I ESA).

The Property was shown on historical documents reviewed as primarily undeveloped land in the late 1800s, with a railroad spur running through the central portion of the Property in the early 1900s. By the 1930s, a majority of the Property was used for agricultural purposes, and various small commercial-style buildings were present along East Marginal Way South. By 1953, the Dry Grocery Warehouse, the Office Building, and the Former Truck Repair Shop were present on the northern and eastern portions of the Property, and trailer parking was apparent along the western portion of the Property. Automobile wrecking activities associated with the NWAW property was apparent in 1965; hotels and trailer parking were identified on the western portion of the Property in 1966; the Humble Oil service station appeared on the northwestern portion of the Property in 1969; the Dry Grocery Warehouse was expanded southward in 1977; and the Perishables Warehouse and the Former Bank Building were present in 1980. The NWAW property appeared to be cleared of structures and automobiles by 2009 and currently remains undeveloped.

2.3 GEOLOGY AND HYDROLOGY

A summary of the geology and hydrology at the Property is provided below.

2.3.1 Geology

The Puget Sound region is underlain by Quaternary sediments deposited by and during a number of glacial advances and retreats that created the existing subsurface conditions. Regional sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till consisting of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during the glacial retreats. With the exception of the most-recent recessional deposits, the outwash sediments have been over-consolidated by the overriding ice sheets (Galster and Laprade 1991).

Based on descriptions from previous environmental investigations conducted at the Property, the general area consists of fill material extending from the ground surface to a depth of 4 to 10 feet below ground surface (bgs). Underlying the fill are native interbedded silts and sands with clay to depths of 10 to 12 feet bgs overlying fine to medium sand extending to a maximum depth of 55 feet bgs.

2.3.2 Hydrology

Unconfined groundwater, as measured in borings and groundwater monitoring wells on the Property, is present at depths between approximately 5 and 12 feet bgs. Inferred groundwater flow direction is westward, toward the adjacent Lower Duwamish Waterway (LDW) (Figures 1 and 3).

The stormwater conveyance system for the 3301 South Norfolk Street portion of the Property discharges to the City of Seattle stormwater drainage main, which receives stormwater from surrounding properties and discharges directly into the LDW. Stormwater on the 10230 East Marginal Way South portion of the Property infiltrates directly into soil; no stormwater collection or conveyance features are present on that portion.

3.0 REMEDIAL INVESTIGATION

This section summarizes the results from the primary subsurface investigations and interim cleanup actions conducted at the Property, and discusses the sources and extent of the COCs remaining from historical operations on the Property and requiring cleanup.

3.1 PREVIOUS ENVIRONMENTAL INVESTIGATIONS AND CLEANUP ACTIONS

As part of the 2016 Phase I ESA, Farallon reviewed approximately 80 historical documents related to environmental matters at the Property, including reports for subsurface investigations, interim cleanup actions, and groundwater monitoring. The documents reviewed are listed in Section 8.0, Bibliography. The historical documents reviewed for the 3301 South Norfolk Street property identified AOC-1 through AOC-12 as investigated by others and primarily related to truck maintenance and fueling operations on the Property. Based on the findings from the 2016 Phase I ESA, Farallon identified a new AOC designated as AOC-13. Select AOC locations and Property features are shown on Figure 3. AOC-13 covers a large area on the western portion of the Property associated with the NWAW property and is shown on Figure 3 within a dashed outline.

The sections below provide a summary of each AOC as originally described in the 2016 Phase I ESA Report, with revisions made to include findings from the Phase II Environmental Site Assessment conducted at the Property by Farallon (2016b) in October 2016 (2016 Phase II ESA). In summary, Farallon determined that no further action is warranted for AOCs 1, 3, 7, 8, 9, 10, and 12, and further action is warranted for AOCs 2, 4 through 6, 11, and 13.

3.1.1 AOC-1: Dry Grocery Warehouse

AOC-1 is on the eastern portion of the Property (Figure 3), where three heating oil USTs designated F-UST-A through F-UST-C reportedly were formerly present beneath an expanded footprint of the current Dry Grocery Warehouse building. According to original building plans reviewed during an assessment conducted by Terra Associates, Inc. (Terra) (2001b) in 2001, USTs F-UST-A and F-UST-B were removed, and UST F-UST-C was abandoned in-place. The approximate locations of USTs F-UST-A and F-UST-B are shown on Figure 3; the location of UST F-UST-C is unknown, but was assumed to be in the same general area as the other two USTs. A geophysical survey performed at the Property by Terra (2001b) did not identify the presence of an abandoned in-place UST, although the survey was limited by reinforcement steel in the underlying concrete slab, and the presence of thick fill material overlying the UST area. Petroleum hydrocarbon constituents were not detected at concentrations exceeding laboratory reporting limits in reconnaissance groundwater samples collected by Terra (2001b) in 2001 from five borings south and west of the former USTs outside the current building footprint.

No additional information regarding the UST removal or abandonment beyond that provided by Terra (2001b) was identified. The reconnaissance groundwater data collected by Terra indicated there was not a significant release of petroleum hydrocarbon constituents to groundwater. Based on the Terra (2001b) findings, Farallon concluded that the USTs formerly present in this area are considered a de minimis condition in connection with the Property. The potential presence of an

abandoned in-place UST if encountered in the area will be addressed during redevelopment of the Property.

3.1.2 AOC-2: Perishables Warehouse

AOC-2 is on the southern portion of the Property (Figure 3), where a diesel fuel UST designated F-UST-D formerly was present (Figure 4). The UST was removed in 1992. Total petroleum hydrocarbons as diesel-range organics (DRO) were detected at a concentration exceeding the MTCA Method A cleanup level in a soil sample collected proximate to the former UST in 2001 (Terra 2001b). DRO and total petroleum hydrocarbons as gasoline-range organics (GRO) were detected at concentrations exceeding MTCA Method A cleanup levels in a reconnaissance groundwater sample collected proximate to the former UST. DRO, GRO, or volatile petroleum constituents were not detected at concentrations exceeding laboratory reporting limits or MTCA Method A cleanup levels in a groundwater sample collected from monitoring well MW-101 installed down-gradient of the UST. Based on the investigation results, soil excavation activities were implemented, at which time the UST was found to be contained in a concrete vault (Terra 2002b). The soil and water contents of the vault were removed, and the vault was backfilled with controlled-density fill. Subsequent excavating along the exterior sides of the vault removed soil containing residual DRO. DRO or total petroleum hydrocarbons as oil-range organics (ORO) were not detected at concentrations exceeding MTCA Method A cleanup levels in confirmation soil samples collected proximate to the former UST. GRO and volatile petroleum constituents were not analyzed for in soil samples collected during the exterior vault excavation.

The 2016 Phase II ESA included advancing borings F-1 and F-2 adjacent to the vault for collection of soil and reconnaissance groundwater samples for laboratory analysis for COCs (Figure 4). Farallon's assessment also included collection of a groundwater sample from monitoring well MW-101. DRO and total naphthalenes were detected at concentrations exceeding MTCA Method A cleanup levels in one soil sample collected from boring F-1 (Tables 1 and 2). Other analytes were detected in soil samples at concentrations less than MTCA cleanup levels or laboratory reporting limits. DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in the reconnaissance groundwater sample collected from boring F-2 (Table 5). DRO or ORO was not detected at a concentration exceeding MTCA Method A cleanup levels in the groundwater is isolated to the area immediately proximate to the former UST location. The estimated extent of DRO and naphthalenes in soil, and DRO and ORO in groundwater are shown on Figure 4. Logs for borings F-1 and F-2 are provided in Appendix A. The corresponding laboratory analytical report is provided in Appendix B.

Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level in the reconnaissance groundwater samples collected from borings F-1 and F-2, and in the groundwater sample collected from monitoring well MW-101 (Table 8). As discussed in Section 3.1.13, AOC-13: Northwest Auto Wrecking Property, elevated dissolved arsenic concentrations in groundwater appear to be related to subsurface geochemical changes that increase the solubility of naturally occurring arsenic in areas where residual petroleum hydrocarbon constituents are present,

even at low concentrations. Dissolved-arsenic concentrations are expected to decrease over time as cleanup actions and natural degradation processes decrease petroleum hydrocarbon concentrations.

According to the information presented above, additional removal of soil proximate to the former location of UST F-UST-D is needed to meet MTCA soil cleanup levels. Groundwater impact down-gradient of former UST F-UST-D is limited, and will be remedied through soil source removal during Property redevelopment, and groundwater natural attenuation processes.

3.1.3 AOC-3: Truck Wash, and Former Location of UST F-UST-E

AOC-3 is on the southern portion of the Property north of AOC-2 (Figure 3), and consists of the Truck Wash facility, which previously contained a group or cluster of USTs designated UST F-UST-E (Figure 3). The number of USTs previously in the cluster is not known. The USTs reportedly were installed, but were never placed into service. A geophysical survey performed by Terra (2001b) identified an area of disturbed soil in the assumed location of UST F-UST-E. No field-screening evidence of petroleum releases to soil was identified in two borings advanced by Terra (2001b) in the UST F-UST-E area, and petroleum hydrocarbon constituents were not detected at concentrations exceeding laboratory reporting limits in reconnaissance groundwater samples collected from the borings.

Based on the Terra (2001b) soil observations and reconnaissance groundwater analytical results, Farallon concluded that further assessment of UST F-UST-E was not warranted. Farallon also concluded that the potential for releases to soil and groundwater from historical truck washing operations is low, and represents a de minimis condition in connection with the Property.

3.1.4 AOC-4: Current Fueling Area

AOC-4 is on the south-central portion of the Property (Figure 3) and currently is used for fueling trucks. Three 20,000-gallon USTs were installed in 1979: the western UST for gasoline storage; and the central and eastern USTs for diesel fuel storage (Figure 5). In 1998, the USTs were re-lined to meet upgrade requirements (Global Environmental [Global] 1998). At that time, the eastern diesel fuel UST, designated F-UST-F, was found to be compromised, and was removed, along with 67 tons of diesel fuel-impacted soil. A petroleum release also was identified proximate to the fuel dispenser island, where approximately 150 tons of petroleum-impacted soil was removed. GRO, DRO, and related volatile petroleum constituents were detected at concentrations less than MTCA Method A cleanup levels in confirmation soil samples collected proximate to the UST and the dispenser island. One exception was noted where GRO was detected at a concentration exceeding the MTCA Method A cleanup level in the bottom soil sample collected near the southwestern corner of the dispenser island excavation. That petroleum-impacted soil apparently was left in-place. Petroleum hydrocarbon constituents and related volatile components were not detected in a groundwater sample collected from monitoring well MW-2, located near the western side of the UST bed, presumably down-gradient of the USTs. Monitoring well MW-2 was not located during Farallon's reconnaissance of AOC-4 during the 2016 Phase II ESA. No monitoring wells are present down-gradient of the dispenser island release area.

In 2001, petroleum-stained soil was observed in surface soil proximate to the northern edge of the UST cover slab. The staining was the result of rainfall repeatedly washing minor fuel spills off the side of the slab. DRO and ORO were detected at concentrations exceeding the MTCA Method A cleanup up level in soil samples collected at that time (Terra 2001b). In 2002, approximately 2 cubic yards of petroleum-impacted soil was removed (Terra 2002b). Results for confirmation soil samples collected at concentrations exceeding hydrocarbon constituents detected at concentrations exceeding MTCA Method A cleanup levels in soil were removed from the area. Based on the remedial actions performed, no further assessment appears warranted for the petroleum-stained area.

The USTs reportedly were upgraded again in 2004 (Global Diving and Salvage, Inc.). DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in two reconnaissance groundwater samples collected proximate to the USTs and dispenser island in 2007 (Dalton, Olmstead & Fuglevand, Inc. [DOF] 2007). GRO was not detected in the 2007 reconnaissance groundwater samples; the samples were not analyzed for volatile petroleum constituents.

The 2016 Phase II ESA included advancing borings F-5 and F-7 through F-10 proximate to the facilities of the Current Fueling Area for collection of soil and reconnaissance groundwater samples for laboratory analysis (Figure 5). Petroleum hydrocarbon constituents were not detected at concentrations exceeding laboratory reporting limits in soil samples collected from the borings. DRO was detected at concentrations exceeding the MTCA Method A cleanup level in the reconnaissance groundwater samples collected from borings F-7 through F-10; ORO was detected at concentrations exceeding the MTCA Method A cleanup level in the reconnaissance groundwater samples collected from borings F-7 through F-10; ORO was detected at concentrations exceeding the MTCA cleanup level in the reconnaissance groundwater samples collected from borings F-8 and F-10 (Table 5). The highest concentrations of DRO and ORO in groundwater were detected in samples collected from borings F-8 and F-10, located down-gradient of the USTs (Figure 5). Logs for the borings are provided in Appendix A. The corresponding laboratory analytical report is provided in Appendix B.

According to the investigation and soil cleanup results discussed above, petroleum hydrocarbon constituents are present at concentrations exceeding MTCA cleanup levels in groundwater, and possibly in soil, proximate to the Current Fueling Area. Additional removal of source soil will be conducted during Property redevelopment. Groundwater is expected to be remediated by natural attenuation processes following the source removal.

3.1.5 AOC-5: Former Trailer Maintenance Shop

AOC-5 is on the north-central portion of the Property and was used for trailer and refrigeration trailer repair and maintenance (Figure 3). The northern bay of the shop may have been unpaved until 2001 (Terra 2001b). Terra (2001b) advanced five borings around the exterior of the shop in 2001 for collection of soil and reconnaissance groundwater samples for laboratory analysis. Soil samples were analyzed for petroleum hydrocarbon constituents; groundwater samples were analyzed for petroleum hydrocarbon constituents, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). DRO was detected at a concentration slightly less than the MTCA Method A cleanup level in one soil sample collected at a depth of 7 to 9 feet bgs.

Concentrations of analytes detected in groundwater samples were less than the laboratory reporting limits, with the exception of one sample in which methylene chloride and phthalates were detected but attributed to laboratory contamination.

The 2016 Phase II ESA included advancing borings F-11 through F-14 proximate to the Former Trailer Maintenance Shop for collection of soil and reconnaissance groundwater samples for laboratory analysis (Figure 6). COCs were detected at concentrations less than MTCA Method A and B cleanup levels in soil and groundwater samples collected from the borings (Tables 1 through 3 and 5 through 8). None of the COCs were detected at a concentration exceeding laboratory reporting limits, with the exception of dissolved arsenic, which was detected at a concentration exceeding the MTCA Method A cleanup level in the reconnaissance groundwater sample collected from boring F-14 (Figure 6; Table 8). Dissolved arsenic has been detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from various locations on the Property. Logs for borings F-11 through F-14 are provided in Appendix A. The corresponding laboratory analytical report is provided in Appendix B.

As discussed in Section 3.1.13, AOC-13: Northwest Auto Wrecking Property, elevated concentrations of dissolved arsenic detected in groundwater appear to be related to subsurface geochemical changes that increase the solubility of naturally occurring arsenic in areas where residual petroleum hydrocarbon constituents are present, even at low concentrations. Dissolved arsenic concentrations are expected to decrease over time as natural degradation processes continue to decrease petroleum hydrocarbon concentrations in AOC-5.

3.1.6 AOC-6: Former Truck Repair Shop

AOC-6 is on the northern portion of the Property in an area historically used for truck repair and maintenance operations (Figure 3). Four former USTs were used in this area: 10,000-gallon diesel fuel UST F-UST-G; 10,000-gallon gasoline UST F-UST-H; 1,000-gallon gasoline UST F-UST-I; and 500-gallon waste-oil UST F-UST-J (Terra 2001b) (Figure 6). The USTs reportedly were removed in the late 1980s. Numerous soil borings were advanced, and monitoring wells were installed during subsurface investigations in the area in 2001 and 2007 (DOF 2007); petroleum constituents were detected at concentrations exceeding MTCA Method A cleanup levels in soil and groundwater. Free product was observed in several monitoring wells during groundwater sampling.

Approximately 12,200 tons of petroleum-impacted soil and 17,500 gallons of petroleum-impacted groundwater were removed from AOC-6 in July and August 2007 for off-Property disposal (DOF 2009c). An outline indicating the approximate extent of the remedial excavation area is shown on Figure 6. Soil was excavated at depths of 9 to 15 feet bgs. The excavation was backfilled with imported gravelly silty sand (glacial till) mixed with oxygen-release compound to enhance natural degradation of residual petroleum hydrocarbon constituents. Results for confirmation soil samples indicated that soil containing petroleum hydrocarbon constituents at concentrations exceeding

MTCA Method A cleanup levels had been removed from AOC-6, with the following exceptions proximate to the southwestern corner of the north-adjacent Office Building:

- Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in an excavation bottom soil sample collected in the northern portion of the excavation at a depth of approximately 15 feet bgs. Additional contaminated soil could not be removed because the excavator could not reach below a maximum depth of 15 feet bgs, and because utility lines passing through the zone of excavation could not be supported without risk of damage.
- GRO and benzene were detected at concentrations exceeding MTCA Method A cleanup levels in excavation sidewall soil samples collected from the northern portion of the excavation. Additional contaminated soil could not be removed without providing structural support for a portion of the adjacent Office Building.

The estimated extent of the area where concentrations of GRO and/or benzene in soil exceeded MTCA Method A cleanup levels is shown on Figure 6. Following completion of the soil excavation, additional monitoring wells MW-AG1 and MW-AG2 were installed to supplement existing monitoring wells MW-4, MW-203, and MW-207 to provide a network of five monitoring wells around the AOC-6 excavation area (DOF 2009g) (Figure 6). Petroleum hydrocarbon constituents were not detected at concentrations exceeding laboratory reporting limits in samples collected during four monitoring well sampling events performed between November 2009 and March 2011 (DOF 2014b).

In 2011, Ecology (2011a) issued an opinion letter stating that further remedial action was required to receive an NFA determination for AOC-6 based on the residual petroleum impact in the northern portion of the excavation. Ecology suggested preparing a remedial investigation and feasibility study report, including a disproportionate cost analysis. In 2015, Ecology (2015b) terminated the VCP agreement for AOC-6 due to a lack of further cleanup activity.

The 2016 Phase II ESA included advancing borings F-15 through F-18 in AOC-6 for collecting soil gas samples and reconnaissance groundwater samples, and collecting groundwater samples from monitoring wells MW-AG1, MW-AG2, MW-4, MW-203, and MW-207 for laboratory analysis (Figure 6). The soil gas sampling was performed to evaluate the vapor intrusion pathway proximate to the area of residual petroleum impact and the north-adjacent Office Building. The groundwater sampling was performed to evaluate current groundwater conditions and to assess for the potential presence of arsenic in groundwater.

VOC analytes were detected at concentrations less than MTCA screening levels in soil gas samples collected from borings F-15 through F-18 (Ecology 2009c), with the exception of chloroform, which was detected at a concentration exceeding the MTCA screening level in the sample collected from boring F-18 (Table 9). Chloroform was not detected in groundwater samples collected from the nearby monitoring wells. Chloroform is a common product of the chlorine disinfection of drinking water and may indicate the use of treated water for maintaining the landscaping around the Office Building.

Petroleum hydrocarbon constituents were detected at concentrations less than MTCA cleanup levels or were not detected at concentrations exceeding laboratory reporting limits in reconnaissance groundwater samples and samples collected from groundwater monitoring wells (Tables 5 and 6). The only exceptions were DRO, GRO, and benzene, which were detected at concentrations exceeding MTCA Method A cleanup levels in the reconnaissance groundwater sample collected from boring F-17, located down-gradient of the area of known petroleum impact (Figure 6; Table 5). The estimated extent of the area where concentrations of DRO, GRO, and benzene in groundwater exceed MTCA Method A cleanup levels is shown on Figure 6. Dissolved arsenic was detected at concentrations exceeding the MTCA cleanup level in the reconnaissance groundwater sample collected from boring F-18, and in groundwater samples collected from monitoring wells MW-AG2, MW-4, and MW-207 (Table 8). Logs for borings F-15 through F-18 are provided in Appendix A. The corresponding laboratory analytical report is provided in Appendix B.

Based on the information presented above, additional cleanup action will be needed to meet the regulatory requirements for the cleanup of soil and groundwater proximate to the southeastern corner of the Office Building. Because access to residual petroleum hydrocarbon constituents in soil proximate to the Office Building remains limited, future cleanup actions will be performed in conjunction with Property redevelopment activities and after demolition of the Office Building. Following soil source removal, natural attenuation processes are expected to be effective in reducing concentrations of petroleum hydrocarbon constituents in groundwater to less than MTCA Method A cleanup levels. Dissolved arsenic in groundwater is expected to decrease to concentrations less than the MTCA Method A cleanup level following the soil source removal.

3.1.7 AOC-7: Former Automobile Service Stations

AOC-7 is on the western portion of the Property adjacent to East Marginal Way South (Figure 3), where one or more historical automobile service stations may have operated. Historical information reported in the 2016 Phase I ESA Report (Farallon 2016b) included the following:

- A "gas station with shop" constructed in 1925 at 10410 East Marginal Way South, including a 1938 note indicating the presence of two 550-gallon USTs that were not usable because of leaks; and
- A Texaco service station constructed in 1928 at 10422 East Marginal Way South.

In 2001, a geophysical survey was performed in the area. Five borings were advanced to investigate anomalies encountered during the geophysical survey (Terra 2001b). Petroleum constituents were not detected at concentrations exceeding laboratory reporting limits in soil samples collected from two of the borings. GRO and benzene were detected at concentrations exceeding MTCA Method A cleanup levels in one reconnaissance groundwater sample.

Subsequent testing conducted in AOC-7 by DOF (2009a) in 2007 and 2008 as part of investigation activities conducted at adjacent AOC-13 included advancing five borings and five shallow hand-auger borings. DRO, ORO, GRO, and the metals arsenic, cadmium, and lead were detected

at concentrations less than MTCA Method A cleanup levels in soil samples collected from several borings. Benzene, toluene, ethylbenzene, or xylenes were not detected at concentrations exceeding laboratory reporting limits in any of the soil samples analyzed. Petroleum constituents, including GRO and benzene, or the metals cadmium and lead were not detected at concentrations exceeding laboratory reporting limits in three reconnaissance groundwater samples collected from AOC-7 (DOF 2009a).

Based on the results from investigations previously conducted at AOC-7, Farallon concluded that no further assessment was warranted.

3.1.8 AOC-8: Returns Building

AOC-8 is on the central portion of the Property (Figure 3), and was identified during a 2001 investigation by Terra (2001b) as a potential fueling facility based on review of a 1966 Sanborn map. Terra subsequently conducted a geophysical survey over the area, but did not identify evidence of USTs. Terra also advanced three soil borings proximate to reported fueling facility features shown on the Sanborn map. Soil samples collected from the borings did not show field evidence of petroleum hydrocarbons; no samples were submitted for analysis. DRO, ORO, or GRO was not detected at concentrations exceeding laboratory reporting limits in reconnaissance groundwater samples collected from the borings.

Based on these findings, Farallon concluded that no further assessment of AOC-8 was warranted.

3.1.9 AOC-9: Employee Parking Lot

AOC-9 is in the employee parking lot southwest of the Office Building on the northern portion of the Property (Figure 3). During a 2001 investigation by Terra (2001b), a suspected fuel UST was identified on historical drawings. A subsurface geophysical survey conducted by Terra did not identify the presence of a UST in the area. Terra advanced two soil borings proximate to the assumed UST location to assess for the potential presence of petroleum hydrocarbon constituents in soil and groundwater. Soil samples collected from the borings did not show field evidence of petroleum hydrocarbons; no samples were submitted for analysis. DRO, ORO, or GRO was not detected at concentrations exceeding laboratory reporting limits in reconnaissance groundwater samples collected from the borings.

Based on these findings, Farallon concluded that no further assessment of AOC-9 was warranted.

3.1.10 AOC-10: Background Areas

AOC-10 represents potential contaminant sources located up-gradient and off the Property to the east. Terra (2001b) advanced two borings near the eastern Property boundary to screen for potential chemical impact to groundwater. Petroleum hydrocarbon constituents, VOCs, or PAHs were not detected at concentrations exceeding laboratory reporting limits in the reconnaissance groundwater samples collected from the borings.

Based on these findings, Farallon concluded that no further assessment of AOC-10 for potential up-gradient contaminant sources off the Property was warranted.

3.1.11 AOC-11: South Maintenance Shop

AOC-11 is on the southwestern portion of the Property (Figure 3), where two USTs were encountered and removed by a utility contractor in 1995 during installation of a subsurface water line (Global 1996). Archive records reviewed for the 2016 Phase I ESA indicated that the USTs were associated with former dry-cleaning operations conducted on this portion of the Property by Wolff Cleaners. The USTs consisted of 450-gallon vertically installed UST F-UST-L, and 300-gallon horizontally installed UST F-UST-K. Analysis of the UST contents and of soil samples collected adjacent to the USTs suggested that Stoddard solvent was previously stored in the USTs (Global 1996). No chlorinated dry-cleaning solvents such as tetrachloroethene or trichloroethene were detected at concentrations exceeding laboratory reporting limits in the soil samples collected proximate to the former USTs.

The 2016 Phase II ESA included advancing borings F-20 through F-23 at accessible locations to evaluate subsurface conditions proximate to the South Maintenance Shop (Figure 7). Soil and reconnaissance groundwater samples were collected for laboratory analysis. Petroleum hydrocarbon constituents, VOCs, PAHs, and arsenic either were detected at concentrations less than MTCA Method A or B cleanup levels or were not detected at concentrations exceeding laboratory reporting limits in the soil and reconnaissance groundwater samples collected from the borings (Tables 1 through 3 and 5 through 8). An exception was DRO, which was detected at a concentration exceeding the MTCA Method A cleanup level in the reconnaissance groundwater sample collected from boring F-23, located south of the South Maintenance Shop (Figure 7). However, the reconnaissance groundwater sample contained very high turbidity, which may have resulted in a detection of DRO that was biased high.

Based on these findings, additional groundwater characterization proximate to boring F-23 will be evaluated in conjunction with Property redevelopment.

3.1.12 AOC-12: Former Old Humble Oil Service Station

AOC-12 is in the northwestern corner of the Property (Figure 3), and is the former location of an automobile service station known as "Old Humble Oil" at 10056 East Marginal Way South. Five USTs formerly were present at AOC-12: 6,000-gallon gasoline UST F-UST-M; 6,000-gallon diesel fuel UST F-UST-N; 6,000-gallon gasoline UST F-UST-O; 600-gallon heating oil UST F-UST-P; and waste-oil UST F-UST-Q, which later was discovered to be a dry well (Terra 1989). AOC-12 also contained a dispenser island, a septic tank, and an oil-water separator. All features related to Old Humble Oil were removed in 1989.

Petroleum releases were identified at the former service station, primarily associated with a dry well used for disposal of waste oil. In 1991, approximately 510 cubic yards of soil was excavated, and 11,000 gallons of groundwater was removed for disposal off the Property (Terra 1991). Subsequent groundwater extraction from two wells located down-gradient of the identified

releases was performed periodically. Results from additional groundwater monitoring performed until 1993 indicated that concentrations of petroleum constituents in groundwater had decreased over time (Terra 1993). VOCs and dissolved lead were not detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected in February 1993. Additional soil sampling was performed along the northern Property boundary in 1998 to screen an area of previous petroleum-impacted soil using updated analytical methods (Terra 1998). DRO and ORO were not detected at concentrations exceeding MTCA Method A cleanup levels in the soil samples collected from the borings. Based on the cumulative results, Ecology (1998) issued an NFA determination for AOC-12 in December 1998. In 2007, a boring was advanced near the western property line proximate to the former down-gradient monitoring well on AOC-12 to collect reconnaissance groundwater samples to confirm previous groundwater analytical results (DOF 2007). Petroleum hydrocarbon constituents or VOCs were not detected at concentrations exceeding laboratory reporting limits in the reconnaissance groundwater sample collected from the boring. The only exception was detection of the VOC carbon disulfide at a concentration less than the MTCA Method B cleanup level.

Based on the remedial actions and compliance monitoring completed and the NFA determination issued by Ecology, Farallon concluded that no further assessment of AOC-12 was warranted.

3.1.13 AOC-13: Northwest Auto Wrecking Property

AOC-13 is on the western portion of the Property at the 10230 East Marginal Way South address (Figure 3) and is referred to as the NWAW property, which was used for automobile wrecking and parts salvaging from 1958 until approximately 2007 (DOF 2008c). AOC-13 historically was surrounded on the northern, eastern, and southern sides by the 3301 South Norfolk Street property (Figure 2). The western portion of AOC-13 contained several structures and features, including a garage building with hydraulic hoists, aboveground waste-oil storage tanks, a gasoline UST, several stove-oil USTs, a relic UST area, and a parts cleaning and dismantling shop. Asphaltic pavement was present around the buildings and on the extreme northern portion of AOC-13. The remaining portions of AOC-13 were used primarily to store wrecked automobiles and parts on bare ground or other unpaved surfaces. Access roads were paved with concrete. The northeastern portion of AOC-13 contained several soil stockpiles and fill areas, including: a petroleumimpacted soil stockpile totaling approximately 2,800 cubic yards (North Stockpile) that was generated in 1993 from excavation of a petroleum spill on the 3301 South Norfolk Street property; a lead-containing soil stockpile (LCS) totaling approximately 3,000 cubic yards (LCS Stockpile) that was generated in 1993 during excavation of surface soil containing crushed battery casings; and a battery chip fill area (DOF 2008c).

Voluntary remedial actions on AOC-13 began under Ecology oversight in 2007, and were performed in phases through 2010 (Sound Environmental Strategies 2007a; DOF 2008b, 2009a, 2009b, and 2010b). The remedial actions included:

- Testing the North Stockpile for disposal off the Property;
- Scraping surface soil containing battery chips and adding it to the LCS Stockpile;

- Stabilizing the LCS Stockpile, which was considered dangerous waste due to elevated lead concentrations, for disposal off the Property;
- Demolishing existing structures;
- Removing concrete pavement for crushing for use as backfill material on AOC-13;
- Investigating the historical stove-oil USTs on the western portion of AOC-13;
- Removing relic USTs and associated impacted soil for disposal off the Property;
- Removing hydraulic hoists and associated petroleum-impacted soil for disposal off the Property;
- Removing a gasoline UST and associated petroleum-impacted soil for disposal off the Property; and
- Excavating petroleum-impacted soil from a mid-1990s spill from the northeastern portion of AOC-13 for disposal off the Property.

The remedial actions included disposal off the Property of approximately 12,640 tons of petroleum- and metals-impacted soil. In some portions of AOC-13, petroleum-impacted groundwater also was extracted for disposal off the Property. COCs were not detected at concentrations exceeding MTCA Method A cleanup levels in confirmation soil or groundwater samples collected from the cleanup areas in AOC-13. The only exception was dissolved arsenic, which was detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from several monitoring wells in AOC-13.

Subsequent to the completion of remedial actions in AOC-13, Ecology (2011b) provided an opinion letter regarding the actions performed to date based on various documents submitted to Ecology for review. The Ecology opinion letter stated that cleanup standards for AOC-13 had been met for petroleum hydrocarbon constituents, chromium, lead, arsenic, cadmium, and PAHs in soil, but that further action was required to clean up petroleum hydrocarbon constituents, lead, and arsenic in groundwater.

Groundwater monitoring wells DOF-1 through DOF-5 on AOC-13 were sampled six times between November 2009 and August 2014 (DOF 2014c). By the time of the August 2014 groundwater sampling event, dissolved arsenic was the only COC detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from the monitoring wells.

Ecology (2015b) terminated the AOC-13 VCP agreement in 2015 due to a lack of activity.

Farallon sampled groundwater monitoring wells DOF-1 through DOF-4 during the 2016 Phase II ESA to confirm the August 2014 groundwater monitoring data (DOF 2014c), and to assess current groundwater conditions. COCs either were detected at concentrations less than MTCA Method A and B cleanup levels or were not detected at concentrations exceeding laboratory reporting limits

in groundwater samples collected from the monitoring wells. Two exceptions were noted for samples collected from monitoring well DOF-2: ORO and dissolved arsenic were detected at concentrations slightly exceeding MTCA Method A cleanup levels.

The dissolved-arsenic exceedance in groundwater at AOC-13, along with that observed at other locations on the Property, appears to coincide with areas of residual petroleum impact, and may be related to changes in geochemistry associated with the presence of petroleum constituents, which can increase the mobility of naturally occurring arsenic. Dissolved-arsenic concentrations detected in groundwater in down-gradient portions of the Property have shown significant decreases from historical high concentrations, suggesting that dissolved-arsenic concentrations in groundwater will decrease to less than the MTCA Method A cleanup level as residual petroleum constituents in groundwater are cleaned up or naturally degrade over time.

3.2 SUMMARY OF OUTSTANDING AREAS OF CONCERN

As discussed in Section 3.1, Previous Environmental Investigations and Cleanup Actions, Farallon identified several AOCs that will require remediation during Property redevelopment. The AOCs requiring remediation or mitigation in conjunction with Property redevelopment are summarized below.

- AOC-2: Perishables Warehouse. Additional soil source removal is needed to clean up residual DRO proximate to former UST F-UST-D to meet the MTCA Method A cleanup level. Natural attenuation processes are expected to remedy limited groundwater impacts following soil source removal. Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level in reconnaissance groundwater samples and groundwater samples collected from monitoring well MW-101 in AOC-2.
- AOC-4: Current Fueling Area. DRO and ORO remain at concentrations exceeding MTCA Method A cleanup levels in groundwater proximate to and down-gradient of the current and former fueling USTs and dispenser island. Although petroleum impact was identified only in groundwater, petroleum impact to soil likely is present in this area. Additional soil removal will be evaluated in conjunction with decommissioning of the USTs during redevelopment of the Property. Natural attenuation processes are expected to be effective in cleaning up groundwater following source soil removal.
- AOC-5: Former Trailer Maintenance Shop. A release of petroleum hydrocarbon constituents in the storage yard proximate to the western side of the shop building has locally affected arsenic concentrations in groundwater. Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level in a reconnaissance groundwater sample collected from boring F-14 in the southern portion of AOC-5.
- AOC-6: Former Truck Repair Shop. Additional soil cleanup is required proximate to the southeastern corner of the north-adjacent Office Building to remove residual GRO and benzene in soil following the 2007 remedial excavation in AOC-6. The sources of residual GRO and benzene are related to releases from former USTs F-UST-H and F-UST-I. The soil will be accessible for removal following demolition of the Office Building during

redevelopment of the Property. The soil source removal is expected to facilitate natural attenuation processes in groundwater to reduce DRO, GRO, and benzene detected at concentrations exceeding MTCA Method A cleanup levels in a reconnaissance groundwater sample collected a short distance down-gradient of the area of residual GRO and benzene soil contamination. Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level in one reconnaissance groundwater sample, and in groundwater samples collected from three monitoring wells in AOC-6.

- AOC-11: South Maintenance Shop. DRO was detected at a concentration slightly exceeding the MTCA Method A cleanup level in a groundwater sample collected in the storage yard area of the South Maintenance Shop. Additional groundwater characterization will be conducted in conjunction with redevelopment of the Property.
- AOC-13: Northwest Auto Wrecking Property. Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from groundwater monitoring well DOF-2 on AOC-13.

The estimated extent of COCs at concentrations exceeding MTCA cleanup levels detected in soil and groundwater in AOC-2, AOC-4, AOC-6, and AOC-11 are shown on Figures 4 through 7. The extent of dissolved arsenic detected at concentrations exceeding the MTCA Method A cleanup level in reconnaissance groundwater samples and samples collected from groundwater monitoring wells at AOC-2, AOC-5, AOC-6, and AOC-13 has not been defined, but appears to coincide with areas of residual petroleum impact. The occurrence of dissolved arsenic in groundwater on the Property likely is related to geochemical transformations in local groundwater caused by low concentrations of residual petroleum hydrocarbon constituents that increase the solubility and mobility of naturally occurring arsenic in soil. The results from long-term groundwater monitoring suggest that arsenic concentrations will continue to decrease as the concentrations of petroleum hydrocarbons in soil are reduced either through cleanup action or natural degradation processes.

The results from the remedial investigation have sufficiently delineated the nature and extent of COCs in soil and groundwater to allow evaluation and selection of cleanup actions for the AOCs under a feasibility study.

4.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived for the Site using the results from the remedial investigation conducted at the Property. Included in this section is a discussion of the ARARs; COCs; media of concern; selected cleanup standards, including cleanup levels and points of compliance; contaminant fate and transport; and the Terrestrial Ecological Evaluation (TEE) for the Property. The conceptual site model is used as a basis for developing technically feasible cleanup alternatives and selecting a final cleanup action in accordance with MTCA regulations.

4.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Cleanup of contaminated soil and groundwater at the Site will be conducted in accordance with MTCA, with the technical assistance of Ecology under the VCP, and in conjunction with redevelopment construction on the Property. Primary ARARs relating to the cleanup action include:

- MTCA, Chapter 70.105D of the Revised Code of Washington (RCW 70.105);
- MTCA Cleanup Regulations, WAC 173-340;
- Dangerous Waste Regulations, WAC 173-303; and
- Guidance for Remediation of Petroleum Contaminated Soils (Ecology 2011c).

These primary ARARs are anticipated to be the most applicable to the cleanup action because they provide the framework for the cleanup action, including applicable and relevant regulatory guidelines, cleanup standards, waste disposal criteria, references for additional ARARs, and standards for documentation of the cleanup action.

Other applicable ARARs and guidance documents for cleanup of the Site may include:

- Guidance for Site Checks and Site Assessments for Underground Storage Tanks (Ecology 1991, revised 2003);
- Minimum Standards for Construction and Maintenance of Wells, Standards for Decommissioning a Well, WAC 173-160-381;
- Occupational Safety and Health Act, Part 1910 of Title 29 of the Code of Federal Regulations;
- Safety Standards for Construction Work, WAC 296-155;
- Washington State Solid Waste Management Laws and Regulations, RCW 70.95, and WAC 173-351 and 173-304;

- Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Ecology 2009c); and
- Accreditation of Environmental Laboratories, WAC 173-50.

4.2 CONSTITUENTS OF CONCERN

The COCs for the Site are the compounds that have been detected at concentrations that exceed or may exceed MTCA Method A cleanup levels in soil and groundwater samples collected at the Site.

The COCs for soil are:

- DRO;
- GRO;
- Benzene; and
- Naphthalenes.

The COCs for groundwater are:

- DRO;
- ORO;
- GRO;
- Benzene; and
- Arsenic.

4.3 MEDIA OF CONCERN

Soil and groundwater were confirmed as the affected media of concern at the Site based on results from the RI. DRO, GRO, benzene, and naphthalenes were detected in soil, and DRO, ORO, GRO, benzene, and arsenic were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels.

Soil vapor was identified as a suspected medium of concern at AOC-6 based on historical concentrations of GRO and benzene in soil and groundwater, and the potential for vapor intrusion into buildings following Property redevelopment. The potential for vapor intrusion at the Site will be mitigated by the excavation and removal of contaminated soil, and by the dewatering and disposal of contaminated groundwater from the Site. Where soil excavation may not be practicable, in-situ oxidation will be implemented to degrade residual COCs and mitigate the potential for vapor intrusion.

Concentrations of benzene and other VOCs detected in groundwater samples collected from monitoring wells and in reconnaissance groundwater samples collected from borings at the Site

did not exceed the updated 2015 groundwater screening levels protective of indoor air, as originally promulgated in the Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remediation* Action dated October 2009, prepared by Ecology (2009c), with only one exception. Vapor intrusion considerations are discussed further in Section 5.2, Recommended Cleanup Alternative.

4.4 CLEANUP STANDARDS

As defined in WAC 173-340-700, cleanup standards consist of cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Site have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

4.4.1 Soil Cleanup Levels

The selected cleanup levels for COCs in soil are the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (Table 740-1 in WAC 173-340-900), as follows:

- DRO: 2,000 milligrams per kilogram (mg/kg);
- GRO: 30 mg/kg;
- Benzene: 0.03 mg/kg; and
- Total naphthalenes: 5 mg/kg.

4.4.2 Groundwater Cleanup Levels

The selected cleanup levels for COCs in groundwater are the MTCA Method A Cleanup Levels for Ground Water (Table 720-1 in WAC 173-340-900), as follows:

- GRO: 800 micrograms per liter $(\mu g/l)$ (due to the presence of benzene);
- DRO: 500 µg/l;
- ORO: 500 µg/l;
- Benzene: $5 \mu g/l$; and
- Arsenic: 5 µg/l.

4.4.3 **Points of Compliance**

Points of compliance are the locations at which cleanup levels for the COCs must be attained to meet the requirements of MTCA. The points of compliance for the Site are as follows:

• In accordance with WAC 173-340-740(6), the point of compliance for soil is defined as all soil at the Site where COCs have been detected at concentrations exceeding MTCA soil cleanup levels.

• In accordance with WAC 173-340-720(8), the point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Site that potentially could be impacted by COCs.

4.5 CONTAMINANT FATE AND TRANSPORT

Two types of exposure risk associated with the presence of COCs in groundwater at the Site are related to human and terrestrial ecological receptors.

4.5.1 Human Health Risk

Potential human exposure pathways for groundwater include the direct contact pathway, which comprises both the dermal contact and ingestion pathways. There are no groundwater-supply wells used for potable water supply in the immediate vicinity of the Site. One or more COCs have been detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring wells or reconnaissance groundwater samples collected from borings in the AOCs. Human exposure pathways for soil include direct contact and soil leaching to groundwater, with subsequent human exposure. The direct contact pathway considers both dermal contact with and ingestion of soil. Sources of COCs in soil are assumed to be present in AOC-2, AOC-4, and AOC-6.

Direct contact with groundwater or soil would occur only during cleanup actions, such as remedial excavation and dewatering activities, or during redevelopment construction that would include various excavations for subsurface utility line installations, building foundation support, and similar undertakings. Affected AOCs currently are covered with impermeable surfaces, including buildings and asphaltic and concrete paving, limiting the potential for soil leaching to groundwater.

Vapor intrusion risk is not associated with residual volatile petroleum compounds at the Site.

4.5.2 Terrestrial Ecological Evaluation

A TEE is required by WAC 173-340-7490 where a release of hazardous substances to soil has occurred. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

According to the criteria presented under WAC 173-340-7491(1), the Site does not qualify for one of the primary exclusions from a TEE. However, the Site does qualify for use of a simplified TEE based on the relationship between potential terrestrial ecological receptors and the existing ecological conditions at the Site and immediately adjacent properties. Consistent with the simplified TEE screening criteria, no further evaluation is required for the Site based on the exposure analysis consideration that planned land use makes wildlife exposure unlikely per WAC 173-340-7492(2)(a), and the pathway analysis consideration that no potential exposure pathways

from soil contamination to ecological receptors exist consistent with WAC 173-340-7492(2)(b). Documentation for the TEE simplified evaluation is provided in Appendix C.

5.0 FOCUSED FEASIBILITY STUDY

The purpose of a feasibility study is to develop and evaluate cleanup action alternatives to facilitate selection of a final cleanup action for a property in accordance with WAC 173-340-350(8). A feasibility study typically includes an extensive development, screening, and evaluation process for numerous remedial alternatives. However, because of Site-specific conditions and plans for Property redevelopment, the current evaluation focused on selected cleanup actions capable of achieving the remediation goals based on consideration of applicable MTCA criteria, Site-specific conditions, and Farallon's professional experience. Therefore, the scope of the feasibility study for the Site was narrowed to an FFS.

This RI and FFS provide sufficient information to enable Ecology and the Property owner to agree on the selection of a final cleanup action specific to the Site. Implementation of the final cleanup action will be documented in the Environmental Media Management Plan to be prepared for the Site, which will be submitted to Ecology for review. The cleanup action will be performed under the VCP, and implemented during Property redevelopment with the goal of obtaining an NFA determination for the Site.

As part of the FFS, Farallon evaluated remediation technologies for the Site with respect to the cleanup requirements set forth in MTCA. The FFS considered the requirements under WAC 173-340-350, Site-specific conditions, and the criteria defined in WAC 173-340-360 for screening potentially feasible remedial alternatives for the Site. A cleanup action must satisfy the following threshold criteria, as specified in WAC 173-340-360(2):

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

These criteria represent the minimum standards for an acceptable cleanup action. In addition to meeting the threshold criteria, cleanup actions under MTCA must:

- Use permanent solutions to the maximum extent practicable; and
- Provide for a reasonable restoration time frame.

Farallon performed a preliminary screening of potential remediation technologies typically applied to sites contaminated with the same or comparable COCs to eliminate technologies that did not meet the minimum requirements for protectiveness, permanence, implementability, and cost. Farallon eliminated a number of remediation technologies during the initial screening process, as set forth in MTCA under WAC 173-340-350(8)(b). Eliminated technologies included but were not limited to: soil flushing and extraction; air sparge and soil vapor extraction; and groundwater pumping and treatment.

5.1 POTENTIAL CLEANUP ALTERNATIVES

Preliminary screening of potential remediation technologies identified the following cleanup alternatives as potentially applicable to the cleanup levels for the Site:

- No remedial action;
- Active in-situ remediation of petroleum hydrocarbon constituents in soil and/or groundwater using a chemical oxidant or bioremediation, and active ex-situ removal of arsenic from groundwater by extraction and treatment; and
- Source removal by excavation of soil and dewatering of groundwater containing concentrations of COCs exceeding MTCA cleanup levels, and natural attenuation of residual COCs that are expected to degrade rapidly following source removal.

Farallon evaluated technologies and alternatives that could be implemented in conjunction with the planned redevelopment of the Property, which includes construction of several large commercial/warehouse buildings. Farallon concluded the following:

- "No remedial action" is not an applicable remedial alternative because COCs are present in soil and groundwater at the Site at concentrations exceeding established MTCA Method A cleanup levels.
- In-situ remediation of soil using biological treatment and ex-situ treatment of arsenic in groundwater was not technically feasible because of the planned redevelopment and the expedited time frame desired for the cleanup. In addition, in-situ biological treatment of soil COCs and ex-situ treatment of arsenic in groundwater would not result in compliance with cleanup standards within a reasonable restoration time frame.

Source removal by excavation of soil and dewatering of groundwater satisfies the threshold requirements for a cleanup action, is a permanent solution, and will achieve the cleanup levels at the points of compliance for soil and groundwater COCs. Source removal would be conducted at AOC-2, AOC-4, AOC-6, and AOC-11, followed by groundwater monitoring. Groundwater monitoring also would be conducted at AOC-5 and AOC-13.

Excavation of soil may be regarded as impracticable in some AOCs due to factors such as excessive excavation depth required to remove the COCs and/or where dewatering requirements may not be feasible. In such circumstances, in-situ chemical oxidation will be implemented to reduce COC concentrations in soil and groundwater to less than MTCA Method A cleanup levels. In-situ chemical oxidation also may be beneficial where soil with COC concentrations less than MTCA Method A cleanup levels is regarded as a source of COCs to groundwater.

A description of the source removal alternative for the cleanup action is provided below.

5.2 RECOMMENDED CLEANUP ALTERNATIVE

Source removal by excavation of soil and dewatering of groundwater, in conjunction with in-situ chemical oxidation, is considered the most-practicable alternative for cleanup of the Site. Therefore, the cleanup action will consist of:

- Refining the extent of soil with COCs exceeding MTCA Method A cleanup levels proximate to the sources identified at AOC-2, AOC-4, AOC-6, and AOC-11;
- Decommissioning USTs and associated piping and fuel dispensers from AOC-4;
- Excavating and removing source soil, as practicable, with COCs exceeding MTCA Method A cleanup levels from AOC-2, AOC-4, AOC-6, and AOC-11;
- Capturing contaminated groundwater generated during excavation dewatering activities for treatment and discharge in accordance with local and state standards;
- Collecting performance soil samples and analysis using a mobile laboratory during the excavations, and collecting and analyzing confirmation soil samples to represent soil conditions at the final limits of the excavations;
- Transporting contaminated soil to an Ecology-approved and permitted facility for treatment and/or disposal;
- Applying an oxygen-release compound at the base of the excavations to enhance aerobic biodegradation of petroleum hydrocarbon COCs in the groundwater plume down-gradient of the former source areas;
- Injecting a chemical oxidant into soil with COCs exceeding MTCA Method A cleanup levels in areas where soil excavation and removal may be considered impracticable; and
- Conducting compliance groundwater monitoring following completion of redevelopment construction to monitor natural attenuation processes.

This alternative satisfies the threshold requirements for a cleanup action under WAC 173-340-360(2), is a permanent solution, and will achieve the cleanup levels at the points of compliance for the COCs. Excavation and in-situ chemical oxidation will protect human health and the environment by permanently reducing the volume of hazardous substances in both soil and shallow groundwater at the Site. The restoration time frame is considered reasonable, and the cleanup will be effective in the long-term. Implemented in combination with redevelopment of the Property, the alternative is cost-effective and highly implementable.

Following completion of redevelopment construction at the Property, monitoring wells will be installed down-gradient of the groundwater plumes for compliance groundwater monitoring. Natural attenuation processes, including enhancement using an oxygen-release compound, will degrade the petroleum hydrocarbon COCs in groundwater once the sources have been removed, although petroleum hydrocarbons may persist in groundwater at concentrations exceeding MTCA Method A cleanup levels in the short term following completion of the soil cleanup action at the

Site. Arsenic detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected at the Site has an apparent historical correlation with the presence of residual petroleum hydrocarbons. Therefore, arsenic in groundwater will be monitored to assess potential reductions in arsenic concentrations associated with degradation of petroleum hydrocarbons over time.

With the exception of concentrations of benzene in the reconnaissance groundwater sample collected from boring F-17, located in AOC-6, concentrations of benzene and other volatile COCs detected in groundwater samples at the Site do not exceed the 2015 groundwater screening levels protective of indoor air (Ecology 2009c; 2015 update to Table B-1). Farallon anticipates that the excavation and/or in-situ chemical oxidation planned for AOC-6 will result in complete removal of COCs in soil and groundwater proximate to boring F-17. Based on the groundwater analytical results for the Site and pending further source mitigation actions, vapor intrusion does not represent a concern to future tenants at the Site.

The selected cleanup action is an aggressive and permanent cleanup action for meeting MTCA requirements, and will rapidly remediate COCs at concentrations exceeding MTCA cleanup levels that are present in soil, groundwater, and soil vapor at the Site by excavating and removing or insitu destruction of the COCs in soil and groundwater.

The following evaluation discusses how the recommended cleanup action meets MTCA threshold and other requirements set forth under WAC 173-340-360(2)(a) and (b):

- **Protection of Human Health and the Environment:** The cleanup action will protect human health and the environment by excavating and disposing of soil with concentrations of COCs exceeding MTCA cleanup levels, by removing the highest concentrations of COCs in groundwater through excavation dewatering, and by implementing in-situ chemical oxidation, as appropriate, to destroy COCs in soil and groundwater. This source removal will allow natural attenuation processes to complete the degradation and reduction of COC concentrations in groundwater to less than MTCA Method A cleanup levels.
- Compliance with Cleanup Standards: The cleanup action will comply with cleanup standards by meeting MTCA cleanup levels for COCs in soil and groundwater at the points of compliance. The points of compliance as defined in WAC 173-340-200 will be the locations where cleanup levels established in accordance with WAC 173-340-720 through WAC 173-340-760 will be attained to meet the requirements of MTCA. Once the cleanup levels have been attained at the defined points of compliance, the Site will no longer be considered to be a threat to human health or the environment.

The point of compliance for soil is defined as all soil at the Site where COCs have been detected at concentrations exceeding MTCA Method A cleanup levels in in-situ soil samples. The point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Site that potentially could be impacted by the COCs.

- **Compliance with Applicable State and Federal Laws:** The recommended cleanup action alternative will comply with the requirements of MTCA and applicable federal laws. The cleanup action will be conducted as an independent cleanup action under the VCP in accordance with MTCA.
- **Provision for Compliance Monitoring:** The cleanup action for soil provides for compliance monitoring during excavation by collection of performance and confirmational soil samples at various depths, and from the bottom and sidewalls at the limits of the excavations. Compliance monitoring following injection of chemical oxidants includes collection of subsurface confirmation soil samples across the treated source areas. The cleanup action for groundwater provides for compliance monitoring after completion of the excavation and in-situ chemical oxidation activities by groundwater sampling at the points of compliance.
- **Permanence:** The cleanup action for soil and groundwater will result in permanent achievement of the cleanup action objective. It is anticipated that soil with concentrations of COCs exceeding MTCA cleanup levels within the excavation limits will be removed from the Site and disposed of at a licensed disposal facility. Excavation dewatering will remove groundwater with the highest concentrations of COCs. In-situ chemical oxidation is anticipated to degrade and destroy COC concentrations to less than MTCA cleanup levels within the treated source areas. Natural attenuation processes are expected to reduce residual COC concentrations to less than MTCA cleanup levels down-gradient of the source areas at the Site.
- **Restoration Time Frame:** The cleanup action will meet threshold requirements and the cleanup action objective in a reasonable restoration time frame. Excavation, removal, and off-Property disposal of soil and/or in-situ chemical oxidation of soil with concentrations of COCs exceeding MTCA cleanup levels will result in immediate achievement of the cleanup action objective for soil. Dewatering during excavation will remove groundwater with the highest concentrations of COCs. Removal of soil containing sources of COCs will allow natural attenuation processes to reduce COC concentrations in groundwater to less than MTCA Method A cleanup levels.
- **Reduction of Toxicity, Mobility, and Volume of Contaminants:** The cleanup action for soil and groundwater will permanently remove concentrations of COCs exceeding MTCA Method A cleanup levels in soil, and will remove and degrade COCs in groundwater at the Site. These results will permanently eliminate or reduce contaminant mass and toxicity.
- Short-Term Risks: The cleanup action involves short-term risks associated with the excavation and handling of soil and/or groundwater with concentrations of COCs exceeding MTCA cleanup levels, and with conducting the injection of chemical oxidants. Potential short-term risks to human health from potential vapors, dust emissions, excavation and injection equipment, and truck traffic may be increased during cleanup field activities. Health and safety measures and monitoring programs will be implemented to effectively minimize these short-term risks.

• **Implementability:** The cleanup action will be implemented at the Site in conjunction with Property redevelopment construction. Excavation and transportation of soil with concentrations of COCs and soil treatment using in-situ chemical oxidation are common practices that have proven successful at many other cleanup sites. Dewatering of groundwater during excavation and subsurface construction activities also is a common practice. Soil and associated groundwater with concentrations of COCs exceeding MTCA cleanup levels can be accessed, dewatered, and removed using standard dewatering and excavating equipment, and can be treated by in-situ chemical oxidation using common injection procedures.

6.0 CLEANUP ACTION PLAN

This section presents the approach for implementation of the cleanup action.

6.1 **OBJECTIVE OF CLEANUP ACTION**

The objective of the cleanup action is to meet Ecology requirements for a written determination issued by Ecology stating that no further remedial action is necessary at the Property. This will be accomplished by permanently remediating COCs at concentrations exceeding MTCA cleanup levels in soil, groundwater, and soil vapor within the limits of the Site. The cleanup action will be protective of human health and the environment, and will result in a permanent cleanup action for the Site.

6.2 ELEMENTS OF CLEANUP ACTION

The cleanup action includes: excavation and/or treatment by chemical oxidation of soil at AOC-2, AOC-4, AOC-6, and AOC-11; dewatering activities associated with the soil excavation; and the following specific tasks:

- Preparing a Site-specific Health and Safety Plan (HASP);
- Collecting pre-construction soil samples to refine the extent of the COC source areas within the AOCs;
- Demolishing the fueling station, including decommissioning by removal of the two 20,000gallon diesel fuel USTs in accordance with Ecology UST Regulations established in WAC 173-360, and the *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991, revised 2003);
- Conducting contingency planning for the decommissioning and removal of unidentified USTs that may be encountered during redevelopment excavation at the Property; and
- Decommissioning of monitoring wells MW-4, MW-101, MW-203, MW-207, MW-AG1, MW-AG2, and DOF-1 through DOF-5 in accordance with WAC 173-160 (Minimum Standards for Construction and Maintenance of Wells).

6.3 SITE PREPARATION

The cleanup action will be conducted in conjunction with demolition and earthwork activities planned for the Property redevelopment. Test pits will be used to collect soil samples in the AOCs containing COCs detected at concentrations exceeding MTCA Method A cleanup levels in soil and groundwater to refine and delineate the extent of remedial soil excavation and/or in-situ chemical oxidation injection.

Other preparation activities to be conducted prior to the start of excavation activities include demolition of the fueling station and decommissioning of the two diesel fuel USTs,

decommissioning of the monitoring wells identified above, installing Site security fencing, and implementing temporary erosion- and traffic-control measures as necessary to meet permit requirements and protect personnel in the work zones.

6.4 EXCAVATION

Prior to the start of excavation in the AOC, the limits of soil with concentrations of one or more COCs exceeding MTCA Method A cleanup levels will be staked in the field. Following the stripping of surface asphalt pavement and concrete, soil containing COCs exceeding MTCA Method A cleanup levels will be removed from the approximate locations shown on Figures 4 through 7, and disposed of as nonhazardous soil at a licensed disposal facility. Additional excavation may take place based on analytical results for soil samples collected prior to the excavations.

The excavation subcontractor will excavate contaminated soil and segregate it from uncontaminated soil under the direction of a Farallon field representative. Soil containing concentrations of one or more COCs exceeding MTCA Method A cleanup levels will be loaded directly into haul trucks, as practicable, for transport off the Site.

Uncontaminated soil will be removed and stockpiled on the Site for re-use as backfill, if suitable for use as structural fill. During excavation, a Farallon field representative will examine uncontaminated soil for evidence of contamination such as visual staining or sheen, petroleum-like odors, or concentrations of measurable organic vapors exceeding measured background levels using a photoionization detector (PID).

Soil with field evidence of COCs will be segregated from observed clean soil, stockpiled separately, and sampled for analysis to assess options for disposal or reuse. The stockpiles of contaminated soil will be placed on plastic sheeting and covered to prevent potential contamination of clean soil. Three soil samples will be collected from contaminated soil stockpiles of up to 100 cubic yards, and five samples will be collected from contaminated soil stockpiles of 101 to 500 cubic yards in accordance with the Ecology (1991) guidance for stockpiled excavated soil. The contaminated soil stockpile samples will be analyzed for the COCs listed in Section 6.6.5, Analytical Methods and Turnaround Times.

6.5 EXCAVATION DEWATERING

The lower limit of the excavations is anticipated to extend below the current water table. Dewatering will be necessary to reach the depth limits of excavation, estimated to be between approximately 8 and 15 feet bgs. Historically, groundwater has been present at depths of between approximately 5 and 12 feet bgs. The dewatering will consist of pumping groundwater from the excavation into aboveground storage tanks. Groundwater samples will be collected from the aboveground storage tanks to assess the concentrations of COCs in groundwater in the excavation, and to determine disposal options for the groundwater.

6.6 SOIL SEGREGATION AND STOCKPILING

The excavation subcontractor will excavate contaminated soil and segregate it from clean soil under the direction of a Farallon field representative to the extent practicable. Soil segregation will be based on soil sample analytical results from the remedial investigation, performance monitoring results, and field-screening results.

Three types of soil are anticipated to be encountered during the excavations:

- Category 1 clean soil, which contains no detectable concentrations of COCs and no other evidence of contamination. Clean soil will be considered for reuse on the Site as structural fill, as appropriate, or will be disposed of off the Site at a facility or location selected by the Property owner or the excavation subcontractor.
- Category 2 petroleum-contaminated soil, which contains petroleum hydrocarbon constituents at concentrations less than MTCA Method A cleanup levels, meets the disposal criteria for the disposal facility for Category 2 petroleum-contaminated soil; and/or exhibits other evidence of contamination such as visual staining, petroleum-like odors, or organic vapors above background levels measurable using a PID. Category 2 petroleum-contaminated soil will be disposed of as nonhazardous waste at a qualifying inert materials landfill and/or a Subtitle D landfill. Alternatively, Category 2 soil may be used on the Site as structural fill at locations above the known seasonal high groundwater level.
- Category 3 petroleum-contaminated soil, which contains one or more COCs at concentrations exceeding MTCA Method A cleanup levels, and/or exceeds the disposal criteria for the project disposal facility for Category 2 petroleum-contaminated soil. Category 3 petroleum-contaminated soil may be treated by thermal desorption at the disposal facility and disposed of as nonhazardous waste, and/or will be transported directly to a Subtitle D landfill.

Where practicable, Category 2 and Category 3 soil will be loaded directly into haul trucks to facilitate the most-efficient handling and transport.

Excavation subcontractor personnel performing the excavation of potentially contaminated soil will be 40-hour health and safety trained as hazardous waste operators in accordance with Part 1910.120 of Title 29 of the Code of Federal Regulations.

6.6.1 Identification of Contaminated Soil

Determination of the extent of contaminated soil at each excavation area will be based on soil sample analytical results from the remedial investigation and from pre-excavation test pits at selected locations to provide supplementary analytical data for refining identification of the extent of COCs in the soil.

Field-screening will be performed during the excavation to further identify and classify the extent of COCs. Field-screening will consist of noting visual or olfactory evidence of contamination such as soil staining, discoloration, and petroleum odors, and use of a PID to screen for the presence of ionizable VOCs. A PID reading exceeding ambient or background concentrations will confirm the presence of VOCs in a sample. Field-screening results will be evaluated to determine whether laboratory analysis of soil samples is needed to further assess for the presence of COCs in the soil.

6.6.2 Performance and Confirmational Soil Sampling

A 20- by 20-foot or comparable-sized sampling grid will be established over each excavation area to guide the excavation process and the collection of performance and confirmational soil samples. As soil is excavated, performance soil samples will be collected from the bottom and outer margins of the sampling grids. At the excavation sidewall limits, grab samples will be collected at a depth corresponding to the historical zone of seasonal groundwater level fluctuation (between approximately 5 and 12 feet bgs) where the highest COC concentrations would be expected. Bottom samples will be collected at the approximate centers of the grids. A licensed and certified mobile laboratory will be set up on the Site to provide rapid turnaround times for sample analysis.

If one or more of the COC concentrations in a soil sample exceed MTCA Method A cleanup levels, the sample will be considered a performance monitoring sample, and excavation will continue in that area, with collection and analysis of additional soil samples as necessary until the sample COC concentrations are reported at less than MTCA Method A cleanup levels. When COC concentrations for a soil sample are less than cleanup levels, the sample will be considered a confirmational sample, and the excavation in that grid will be considered complete. Sample locations will be determined using a global positioning system receiver and/or by measurement relative to surveyed reference markers positioned along the outer boundaries of the excavation areas.

Confirmational sampling will be conducted once performance sampling or field-screening results indicate that contaminated soil has been removed at the limits of excavation, and MTCA cleanup levels likely have been attained. Confirmational monitoring will consist of collecting in-situ soil samples from the bottoms and sidewalls of the excavated areas to verify that COCs in soil at the margins of the excavations are less than MTCA cleanup levels, and that the cleanup objective has been achieved.

6.6.3 Soil Sample Identification

Each performance and confirmational soil sample will be assigned a unique sample number. The sample number will be based on the associated grid number and will include the location within the grid and the depth or elevation of collection. Sample numbers will be written on the sample label and recorded on the Field Report form, the Sample Summary form, and the laboratory Chain of Custody form.

6.6.4 Soil Sample Collection and Handling Procedures

The performance and confirmational soil samples will be collected and handled in accordance with specific procedures, which include the following:

- Collecting discrete grab soil samples directly from the excavation sidewalls and bottom where the excavation is less than 4 feet deep, or from the center of the excavation track hoe bucket if the excavation is greater than 4 feet deep, or under conditions that make sample collection directly from the excavation unsafe or impracticable. Samples will be collected using either stainless steel or plastic sampling tools. Non-disposable sampling tools and equipment will be decontaminated between uses as appropriate, with the exception of the track hoe bucket.
- Logging sampling information in the field notes, including sample depth or elevation, soil description, soil moisture, indications of potential COCs from visual observations, odor indications, and field-screening results using a PID.
- Transferring the collected soil sample into laboratory-supplied sample containers. Soil samples for analysis for VOCs will be collected and prepared in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A sampling protocols. Sample containers will be completely filled to eliminate headspace, and the seals/caps will be firmly secured.
- Labeling the sample container with the date, time sampled, sample identification number, requested analysis, project name, project number, and the sampler's initials.
- Logging the sample on a Chain of Custody form, and placing the soil sample into a chilled cooler for submittal to the mobile laboratory.
- Hand-delivering by Farallon to the mobile analytical laboratory set up adjacent to the excavation areas.
- Discarding disposable sampling tools, supplies, and personal protective equipment as solid waste in an appropriate waste container at the Site.

6.6.5 Analytical Methods and Turnaround Times

Soil samples collected for performance and confirmational monitoring and for waste disposal classification will be analyzed by the mobile laboratory for petroleum hydrocarbons and benzene. Soil samples will be analyzed using one or more of the following analytical methods:

- DRO and ORO by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx; and
- Benzene by EPA Method 8021B.

Same-day sample analytical turnaround times will increase cleanup efficiencies and prevent potential excavation delays.

Additional analysis for total naphthalenes by EPA Method 8270D will be conducted for selected confirmational soil samples. This analysis will be performed at a fixed-base laboratory selected for the project.

Groundwater removed from the excavations during dewatering will be sampled to assess COC concentrations for treatment and/or disposal. Groundwater samples will be analyzed by the mobile laboratory using one or more of the following analytical methods:

- DRO and ORO by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx; and
- Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B.

Farallon will obtain the laboratory analytical results in electronic format. The data will undergo a quality assurance and quality control review at the time of receipt, and will be compiled into the Farallon EQuIS database for data management.

6.6.6 Waste Soil Disposal

Contaminated soil disposal will be tracked using a Waste Inventory form. The analytical results for soil sampling conducted during the remedial investigation and test pit sampling will be used to profile contaminated soil for disposal. Profiling information will be provided to the project disposal facilities to obtain approval for treatment and/or disposal of the Category 2 and Category 3 petroleum-contaminated soil. Documentation of the soil disposal will be maintained in the project file.

6.6.7 Wastewater Disposal

During excavation dewatering at the Site, groundwater will be removed using a temporary drainage sump in each excavation area, and will be pumped into large storage tanks to facilitate solids removal and turbidity reduction. Effluent from the storage tanks will be treated by carbon filtration, if necessary, to reduce COC concentrations to meet the requirements of the temporary discharge authorization that will be obtained from the King County Industrial Waste Program.

6.6.8 Backfill and Site Restoration

Following completion of soil removal at each excavation, the excavation will be backfilled and compacted by the excavation subcontractor to meet the specifications provided by the geotechnical engineer for the redevelopment project. Imported fill material will be certified by the excavation subcontractor as having been provided by a commercial supplier from known and uncontaminated sources.

6.7 CHEMICAL OXIDATION

In-situ chemical oxidation may be used during the cleanup action at the Site in areas where remedial soil excavation and dewatering as described above may not be practicable. Sodium

persulfate $(Na_2S_2O_8)$ is a highly chemically active oxidant effective in oxidizing petroleum hydrocarbons and other common organic environmental contaminants. When completely oxidized, the petroleum hydrocarbons are converted into benign end products such as carbon dioxide and water. The oxidant injection formulation will include calcium peroxide, an oxygen release compound, to stimulate aerobic biodegradation of petroleum hydrocarbon COCs in groundwater down-gradient of the injection area.

Prior to implementing the sodium persulfate treatment, several preparatory activities will be completed, including:

- Applying for and obtaining registration with the Ecology Underground Injection Control Program for injection of the sodium persulfate into subsurface soil and groundwater;
- Coordinating with the City of Tukwila Fire Department to provide notification and to obtain a use permit for the sodium persulfate treatment, as necessary; and
- Conducting a subsurface utility line location survey to accurately locate potential utility lines within or proximate to the injection areas.

Oxidant delivery tooling will be advanced into the subsurface using a direct-push drill rig using injection-points spacings with sufficient radii of influence to effectively distribute the sodium persulfate throughout the affected portion of the treatment area.

7.0 DOCUMENTATION REQUIREMENTS

The elements of the cleanup action will be documented to meet the requirements of MTCA for an NFA determination. A document control system will be implemented to manage data during the cleanup action, including the following documents, as appropriate: Field Report forms, maps, field-screening documentation, sampling documentation, Chain of Custody forms, laboratory analytical reports, photographs, and Waste Inventory forms. Transport tickets and disposal manifests for waste soil will be maintained in the Farallon project documentation files. Upon conclusion of the cleanup action, a report will be prepared summarizing the results from the cleanup action.

7.1 FIELD DOCUMENTATION

Field personnel will be required to keep a daily field log on a Field Report form. Field notes will be as descriptive and inclusive as possible, with the objective of being sufficiently detailed to allow an independent party to reconstruct the events of the cleanup action. Language will be objective, factual, and free of inappropriate terminology. At a minimum, field documentation will include the date, project number, project identification and location, weather conditions, sample collection procedures, field equipment used, and an explanation of any activities performed in a manner other than as specified in the CAP. In addition, when other forms are completed or used (e.g., Chain of Custody forms, maps) they will be referenced in and attached to the Field Report form.

Supplementary documentation forms will be used to augment the Field Report form, including Soil Sampling forms, Waste Inventory forms, and any other forms or documentation developed to document the cleanup action.

A Chain of Custody form or comparable form required by the mobile laboratory will be completed by the Farallon field representative at the time of sample collection. Chain-of-custody protocols are designed to create an accurate written record that can be used to trace the possession and handling of samples from the moment of field collection through laboratory analysis and reporting, and will be followed whenever samples are collected, transferred, stored, analyzed, or destroyed.

Samples submitted to the laboratory will be accompanied by a Chain of Custody or comparable form. This form will be checked for accuracy and completeness by the Farallon field representative. The form will be signed and dated by the Farallon representative when relinquishing samples to the laboratory, and by the laboratory technician or sample custodian to denote sample acceptance by the laboratory. The laboratory will assign each sample a unique sequential laboratory identification number that will be stamped or written on the form.

The Chain of Custody or comparable form will include the following information: project name, sample identification number (assigned by the sampler in the field), sample date, time of collection, sample medium, number of containers, type of analysis required (if any), and any notes or instructions for the laboratory. Whenever the samples are transferred from one party to another,

both parties will sign the form and record the date and time of the transfer. In this manner, sample integrity is ensured from collection through analysis.

Sample labels will be filled out and affixed to appropriate containers during preparations for sample collection. Soil samples collected during the soil cleanup action will be uniquely identified, labeled, and documented in the field at the time of collection. Each sample container will have a label identifying the project number and name, the unique sample identification number, preservatives used (if applicable), required analyses, and the date and time at which the sample was collected.

7.2 HEALTH AND SAFETY

A HASP is required for all field activities (WAC 173-340-810). Farallon will prepare a Sitespecific HASP for use by Farallon personnel working at the Site. The HASP will comply with the requirements of the Occupational Safety and Health Act of 1970 and the Washington Industrial Safety and Health Act (RCW 49.17). Ecology approval of the HASP is not necessary.

7.3 CLOSURE REPORT

Upon completion of the cleanup action, a Closure Report will be prepared and submitted to Ecology, and a request will be made for a Partial Sufficiency Opinion as an intermediate step toward obtaining an NFA determination. The request for a Partial Sufficiency Opinion assumes that MTCA cleanup levels will have been achieved for soil only and that groundwater will require monitoring of natural attenuation processes to document reduction of concentrations of groundwater COCs to less than MTCA Method A cleanup levels. The Closure Report will include a summary of the activities and results from the cleanup action at the Site, and will provide the technical basis to support the Partial Sufficiency Opinion. The Closure Report will include the following reporting and work elements:

- A summary of the subsurface investigations and cleanup actions conducted at the Site;
- Reconciliation of contaminated soil transported, treated, and/or disposed of off the Site, and contaminated groundwater treated and discharged to the sanitary sewer;
- Figures and summary tables presenting soil and groundwater sample analytical results; and
- Conclusions regarding the effectiveness of the cleanup action, and a request for a Partial Sufficiency Opinion from Ecology.

7.4 **POST-CLOSURE REPORTING**

Following completion of redevelopment construction, new groundwater monitoring wells will be installed to assess the degradation of residual COCs in groundwater. The duration of monitoring is expected to vary by AOC, and will be based on initial COC concentrations reported for samples collected from the monitoring wells. Annual to semiannual groundwater monitoring will be

conducted at a minimum. Annual reports will be provided to summarize the results from the groundwater monitoring.

8.0 **BIBLIOGRAPHY**

- Analytical Resources, Incorporated. 2014. Letter Regarding Project: NWAW, SAB-029-00, ARI Job No: ZM59. From Cheronne Oreiro. To Matt Dalton. December 12.
- ———. 2015. Letter Regarding Project: NW AUTO, SAB-027-01, ARI Job No: AHI6. From Cheronne Oreiro. To Matt Dalton. June 19.
- Argus Pacific, Inc. 2008. Regulated Building Materials Assessment Report, Two Buildings at NW Auto Site, Sabey Corporation, Seattle, Washington. Prepared for Dean Sabey, Sabey Corporation, Seattle Washington. June 18.
- Betts Patterson & Mines, P.S. 1996. Letter Regarding Northwest Auto Wrecking. From Bruce H. Hurst. To Thomas A. Sterken, Associated Grocers, Incorporated. February 14.
- Dalton, Olmstead & Fuglevand, Inc. (DOF). 2007. Environmental Assessment Summary, Associated Grocers Site, Seattle/Tukwila, Washington. Prepared for 3301 South Norfolk LLC. March 19.
- ———. 2008a. Letter Regarding Status Update AOC No. 6 Area, Associated Grocers Site, Seattle/Tukwila, Washington. From Matthew G. Dalton, L.G., L.H.G. To Tracy Edgers, Real Estate Group. January 9.
- ———. 2008b. Remedial Progress Report and Additional Site Characterization Work Plan, Northwest Auto Wrecking Site, Seattle/Tukwila, Washington, TCP IC Number NW1812. Prepared for 10230 East Marginal Way LLC. March.
- ———. 2008c. Memorandum Regarding NW Auto Wrecking Site, Seattle, Washington. From Matt Dalton. To Dale Myers, Department of Ecology. April 3.
- ———. 2009a. Remedial Action Report, Northwest Auto Wrecking Site, Seattle/Tukwila, Washington, TCP ID Number NW1812. Prepared for 10230 East Marginal Way LLC. March 31.
- . 2009b. Memorandum Regarding Remedial Action Report, NW Auto Wrecking Site, TCP ID – NW1812. From Matt Dalton. To Dale Myers, Department of Ecology. April 1.
- ———. 2009c. Remedial Action Report, AOC No. 6 Unified Grocers Site (Formerly Associated Grocers), Seattle/Tukwila, Washington. May.

- -. 2009e. Letter Regarding Proposal to Complete Additional Testing, Unified Grocers (AG) and Northwest Auto Wrecking Sites, Seattle/Tukwila, Washington. From Matthew G. Dalton. To Mikel Hanson, Sabey Corporation. July 20.
- —. 2009f. Phase I Environmental Site Assessment for NEBF Real Estate, Unified Grocers Site 3301 South Norfolk Street, Seattle, King Count, Washington 98118. October 27.
- ———. 2009g. Memorandum Regarding Path Forward, Further Action Letter, Unified Grocers Site, Seattle, Washington. From Matt Dalton. To Mikel Hanson, Sabey Corp. November 11.
- ——. 2010a. Technical Memorandum on the Subject Environmental Assessment Summary, Sound Community Bank, Tukwila, Washington. From Matt Dalton. To Clete Casper/Mike Hanson, Sabey Corp. April 13.
- ———. 2010b. Letter Regarding Soil Cleanup, Northwest Auto Wrecking, Facility/Site No.: 2287, VCP No.: NW1812. From Matthew G. Dalton. To Dale Myers, Department of Ecology. November 24.
- ——. 2010c. Letter Regarding Unified Grocers Site, Seattle/Tukwila, Washington, Facility/Site No.: 73338176, VCP No.: NW1807. From Matthew G. Dalton. To Dale Myers – Site Manager, Department of Ecology. November 24.
- ——. 2011a. Environment Assessment Report, 10056 East Marginal Way S., Seattle, Washington. Prepared for 3301 South Norfolk LLC, a Subsidiary of Sabey Corporation. February.
 - —. 2011b. Memorandum Regarding Path Forward No Further Action Letter, Unified Grocers Site, Seattle, Washington. From Matt Dalton. To Mikel Hanson, Sabey Corp. November 11.
- 2014a. Memorandum on the Subject Status Report, NW Auto Wrecking Cleanup, 10230 East Marginal Way South, Tukwila, WA, VCP Project No. NW1812. From Matt Dalton. To Dale Myers, Department of Ecology. August 14.
- 2014b. Memorandum on the Subject Status Report, Unified Grocers UST Cleanup, 3301 South Norfolk Street, Seattle, WA. From Matt Dalton. To Dale Myers, Department of Ecology. From Matt Dalton. August 14.
 - —. 2014c. Memorandum on the Subject Environmental Site Assessment (ESA) Status, Former Northwest Auto Wrecking Site, Seattle, Washington. From Matt Dalton. To Mikel Hansen, Sabey Corp. September 29.

- -. 2016a. Memorandum on the Subject Stormwater Issues, United Grocers Facility, 3301 South Norfolk St., Seattle, WA 98118. From Matt Dalton/Dave Cooper. To Mikel Hansen/Ken Stickley, Sabey. March 8.
- 2016b. Memorandum on the Subject Code Violation Warning, Sabey Parcel #0323049062, 10230 E Marginal Way S, Seattle, Washington. From Dave Cooper. To Eric Autry, City of Seattle. March 18.
- Duoos, Philip H. 2001. Draft Geophysical Investigation Report, Associated Grocers Facility, East Marginal Way South, Seattle, Washington. Prepared for Terra Associates, Inc., Kirkland, Washington. July.
- Eckland Consultants Inc. 2009a. Letter Regarding Property Condition Report, Unified Grocers Site, 3301 South Norfolk Street, Seattle, Washington 98118. From Rodolfo A. Reyes. To Maryellen Dolan, NEBF Real Estate. October 23.
 - ——. 2009b. *Property Condition Report*. Unified Grocers Site, 3301 South Norfolk Street, Seattle, Washington 98118. Prepared for NEBF Real Estate. October 23.
 - 2009c. Letter Regarding Phase I Environmental Site Assessment, Unified Grocers Site, 3301 South Norfolk Street, Seattle, Washington 98118. From Rodolfo A. Reyes, P.E. To Maryellen Dolan, NEBF Real Estate. October 27.
- . 2009d. Phase I Environmental Site Assessment. Unified Grocers Site, 3301 South Norfolk Street, Seattle, King County, Washington 98118. Prepared for NEBF Real Estate. October 27.
- Farallon Consulting, L.L.C. (Farallon). 2016a. Phase II Environmental Site Assessment, 3301 South Norfolk Street and 10230 East Marginal Way South, Seattle/Tukwila, Washington. Prepared for Prologis, Inc., San Francisco, California. November 17.
- ———. 2016b. Phase I Environmental Site Assessment Report, 3301 South Norfolk Street and 10100, 10200, and 10230 East Marginal Way South, Seattle/Tukwila, Washington. Prepared for Prologis, Inc., San Francisco, California. December 14.
- Galster, Richard W. and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists*. 28 (no. 3): 35-302.
- Geotech Consultants, Inc. 1996a. Letter on the Subject Phase 2 Environmental Site Assessment, Credit Union of the Pacific, 10200 East Marginal Way South, Seattle, Washington. From Sean P. O'Brien. To the Attention of Joe Yencich, Ewing and Clark. March 13.
 - ——. 1996b. Phase 2 Environmental Site Assessment, Credit Union of the Pacific, 10200 East Marginal Way South, Seattle, Washington. March 13.

- Global Diving and Salvage, Inc. 2004. Underground Storage Tank Retrofit/Repair Checklist. Prepared on behalf of Associated Grocers, 3301 S. Norfolk, Seattle, WA 98124. July 23.
 - 2007. Letter Regarding Proposal to Provide and Install Environmental Protection Systems, Associated Grocers Facility, 2301 S. Norfolk, Seattle, WA 98118. From Gary Peters. To the Attention of Chuck Bakken, Associated Grocers, Inc. April 3.
- Global Environmental. No date. Associated Grocers, Inc. Closure Documentation. [Date-Stamped Received August 11, 1992.]

——. 1998. Underground Storage Tank Site Assessment. Prepared for Associated Grocers, Seattle, Washington.

- Hart Crowser. 2000. Letter Regarding Phase I Environmental Site Assessment, Associated Grocers Seattle Property, 3301 South Norfolk, Seattle, Washington. From Julie K.W. Wukelic. To Eugene Q. Steffers, Associated Grocers. July 5.
- Norton Corrosion Limited. 2002. Letter on the Subject Annual Cathodic Protection Inspection, Underground Storage Tank System, Associated Grocers. From Eric Shadle. To the Attention of Greg Fladseth, Global Diving. December 10.
- ------. 2006. Letter on the Subject 2006 Cathodic Protection Inspection, Underground Storage Tank, Associated Grocers. From Matt Slosson. To the Attention of Richard Newton, Associated Grocers. October 23.
- Partner Engineering and Science, Inc. 2010. Phase I Environmental Site Assessment Report, Unified Grocers, 3301 South Norfolk Street, Seattle, Washington 98168. Prepared for Wells Fargo Bank, Bloomington, Minnesota. December 14.
- Property Solutions Incorporated. 2001. *Phase I Environmental Assessment of Associated Grocers,* 3301 South Norfolk Street, Seattle, King County, Washington 98118. Prepared for GMAC Commercial Mortgage Corporation, New York, NY. Final October 3.
- Sound Environmental Strategies. 2007a. Subsurface Investigation Report and Remedial Approach for Cleanup. Northwest Auto Wrecking Property, 10230 East Marginal Way South, Tukwila, Washington. Prepared for Benaroya Companies. February 23.

- Summit Envirosolutions. 1998. Corrective Action Report, 10930 East Marginal Way, Seattle, Washington. Prepared for Hiawatha Transport, Limited, Winona, Minnesota. April 13.
- Terra Associates, Inc. (Terra). 1989. Letter on the Subject Preliminary Hydrocarbon Study, 10056 East Marginal Way South, Seattle, Washington. From Charles R. Lie and Anil Butail. To Dean Tibbot, Supermarket Development Corporation. March 30.
- . 1991. Letter on the Subject Site Remediation, Old "Humble Oil" Service Station, 10056
 E. Marginal Way South, Tukwila, Washington. From Charles R. Lie and Anil Butail. To Jim Troxel, Supermarket Development Corporation. April 22.
- ——. 1993. Letter on the Subject Ongoing Groundwater Sampling, Old "Humble Oil" Service Station, 10065 E. Marginal Way, Tukwila, Washington. From Anil Butail. To Jim Troxel, Supermarket Development Corporation. April 14.
- ———. 2001a. Memo on the Subject Environmental Conditions, East Marginal Way South Warehouse Facility, Seattle, Washington. From Anil Butail/Chuck Lie. To Dale Chandler, Associated Grocers. August 22.
- ——. 2001b. Level II Environmental Assessment, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for CII – A GMAC Commercial Mortgage Corporation, New York, New York. September 6.
- ——. 2002a. Supplemental Site Sampling Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. March 15.
 - —. 2002b. Level III Environmental Assessment (Remediation) Areas of Concern 2 and 4, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. May 22.
 - -. 2002c. Quarterly Sampling Summary, Spring Quarter 2002, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. June 21.
 - -. 2002d. Quarterly Sampling Summary, Summer Quarter 2002, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. October 25.

- -. 2003a. Quarterly Sampling Summary, Spring Quarter 2003, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. June 13.
- —. 2003b. Quarterly Sampling Summary, Summer Quarter 2003, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. September 19.
- ———. 2004a. Quarterly Sampling Summary, Fall Quarter 2003, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. January 16.
- - —. 2005a. Semi-Annual Sampling Summary, Winter 2004/2005, Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. March 23.
- - —. 2006a. Semi-Annual Sampling Summary, Winter 2005/2006 Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. March 17.
 - —. 2006b. Semi-Annual Sampling Summary, Spring 2006 Data Summary Report, Former Truck Shop Facility, Associated Grocers Seattle Warehouse, East Marginal Way and South Norfolk Street, Seattle, Washington. Prepared for Associated Grocers, Seattle, Washington. September 18.
 - ——. 2007. Memo on the Subject Environmental Conditions Overview, East Marginal Way South Warehouse Facility, Seattle, Washington. From Chuck Lie. To Dale Chandler, Associated Grocers. January 5.

- Unified Grocers. 2014a. Stormwater Compliance Program, Unified Grocers, Inc, Seattle Distribution Center, 3301 South Norfolk Street, Seattle, WA. Revised December.
 - 2014b. Letter Regarding Response to Warning Letter Noncompliance with Industrial Stormwater General Permit No. WAR002040, Terms and Conditions. From Alex Milley. To Robert Wright, Department of Ecology Northwest Regional Office. December 22.
- ———. 2015. Letter Regarding Revised SWPPP and Sample Point Update Form. From Alex Garcia. To Robert Wright, Department of Ecology Water Quality Program Industrial Stormwater. January 15.
- U.S. Environmental Protection Agency. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA Groundwater Issue /540/S-95/504. April.
- U.S. Environmental Protection Agency Region II. 1997. U.S. Environmental Protection Agency, Region II, Groundwater Sampling Procedure Low Stress Purging and Sampling. Draft Final. October 1.
- U.S. Geological Survey. 1983. U.S. Geological Survey Topographic Map, Quadrangle Seattle South, Washington, 7.5-Minute Series.
- . 2005. The Geologic Map of Seattle a Progress Report. Open File Report 2005-1252.
- Washington State Department of Ecology (Ecology). 1991. Guidance for Site Checks and Site Assessments for Underground Storage Tanks. Publication No. 90-52. Revised April 2003. February.
- . 1998. Letter Regarding Independent Remedial Action, Old "Humble Oil" Service Station, 10056 E. Marginal Way South, Tukwila, WA. From Joanne Polayes. To Dale Chandler, Supermarket Development Corporation. December 29.
 - ——. 2001. Letter Regarding Early Notice Letter Site #73338176, Associated Grocers Inc Seattle, 3301 S Norfolk St, Seattle, Washington. From Richard Thomas. To Dale Chander [*sic*], Supermarket Development Corp. November 26.
 - ——. 2004. *Underground Storage Tank Retrofit/Repair Checklist*. Completed by Chris Stokes, Global Diving & Salvage Inc. Environmental Division, Seattle Washington. August 5.
- ———. 2005. Letter Regarding Associated Grocers Incorporated, 3301 South Norfolk Street, Ecology UST #5765. From Carrie Pederson. To Dale Chandler, Associated Grocers, Seattle, Washington. November 26.
- ——. 2009a. Letter Regarding Opinion Pursuant to WAC 173-340-515(5) on Remedial Action for the Following Hazardous Waste Site: Northwest Auto Wrecking, 10230 E Marginal

Way South, Tukwila, Facility/Site No.: 2287, VCP No.: NW1812. From Dale R. Myers. To Matthew Dalton, Dalton Olmsted & Fuglevand Inc. May 20.

- 2009b. Letter Regarding Opinion Pursuant to WAC 173-340-515(5) on Proposed Remedial Action for the Following Hazardous Waste Site: Unified Grocers 3301 Norfolk, 3301 South Norfolk St., Seattle, Facility/Site No.: 73338176, VCP No.: NW1807. From Dale Myers. To Matthew Dalton, Dalton Olmsted & Fuglevand Inc. June 30.
 - —. 2009c. Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action.* Publication No. 09-09-047. Screening Levels Revised 2015. October.
- ———. 2009d. *Industrial Stormwater General Permit*. Effective January 1, 2010. Expiration Date: January 1, 2015. October 21.
- 2011a. Letter Regarding Further Action at the Following Site: Unified Grocers 3301 Norfolk, 3301 South Norfolk St, Seattle, Facility/Site No.: 73338176, VCP No.: NW1807. From Dale R. Myers. To Matthew Dalton, Dalton Olmsted & Fuglevand Inc. January 24.
 - 2011b. Letter Regarding Partial Sufficiency and Further Action at the Following Site: Northwest Auto Wrecking, 10230 E Marginal Way South, Tukwila, Facility/Site No.: 2287, VCP No.: NW1812. From Dale Myers. To Matthew Dalton, Dalton Olmsted & Fuglevand. January 24.
- ———. 2011c. *Guidance for Remediation of Petroleum Contaminated Soils*. (Revised.) Publication No. 10-09-057. September.
 - —. 2014a. Letter Regarding Request for Information on Status of VCP Project for the following Site: Northwest Auto Wrecking, 10230 East Marginal Way S, Tukwila, WA 98168, Facility/Site No.: 2287, Cleanup Site No: 1877, VCP Project No.: NW1812. From Dale Myers. To Mathew [*sic*] Dalton, Dalton, Olmsted, and [*sic*] Fugelvand, Inc. July 21.
- 2014b. Letter Regarding Request for Information on Status of VCP Project for the following Site: Unified Grocers 3301 Norfolk, 3301 South Norfolk Street, Seattle, WA 98118, Facility/Site No.: 73338176, Cleanup Site No: 6584, VCP Project No.: NW1807. From Dale Myers. To Mathew [*sic*] Dalton; Dalton, Olmsted, and [*sic*] Fugelvand, Inc. July 21.
 - -. 2014c. Letter Regarding Warning Letter Noncompliance with Industrial Stormwater General Permit No. WAR002040, Terms and Conditions. From Robert Wright. To Steve Johnson. November 18.
- -----. 2014d. Letter Regarding Reissuance of Coverage under the Industrial Stormwater General Permit. From Bill Moore. To Terry Bodwin, Unified Grocers, Inc. December 3.

-. 2015a. Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels and Risk Calculations (CLARC). <<u>https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx</u>>. (July 2015.)

- —. 2015b. Letter Regarding Termination of VCP Agreement for the Following Site: Northwest Auto Wrecking, 10230 East Marginal Way S, Tukwila, WA 98168, Facility/Site No.: 2287, Cleanup Site No.: 1877, VCP Project No.: NW1812. From Louise Bardy. To Mathew [*sic*] Dalton; Dalton, Olmsted, and [*sic*] Fugelvand, Inc. October 13.
- 2015c. Letter Regarding Termination of VCP Agreement for the Following Site: Unified Grocers 3301 Norfolk, 3301 South Norfolk Street, Seattle, WA 98118, Facility/Site No.: 73338176, Cleanup Site No.: 6584, VCP Project No.: NW1807. From Louise Bardy. To Mathew [*sic*] Dalton; Dalton, Olmsted, and [*sic*] Fugelvand, Inc. October 13.
- —. 2016. Well Logs. Washington State Well Report Viewer, Well Log Imaging Internet. <<u>https://fortress.wa.gov/ecy/wellconstruction/Map/WCLSWebMap/default.aspx</u>>. (October 2016.)

9.0 LIMITATIONS

9.1 GENERAL LIMITATION

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- **Reconnaissance and/or Characterization.** Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and Prologis, Inc., and currently accepted industry standards. No other warranties, representations, or certifications are made.

9.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of Prologis, Inc. to address the unique needs of Prologis, Inc. at the Site at a specific point in time.

This is not a general grant of reliance. No one other than Prologis, Inc. may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

FIGURES

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington

Farallon PN: 1071-026

		Washington	FIGURE 2
PROPERTY BOUNDARY		issaquan Beilingham Sealle	PROPERTY PLAN SHOWING PARCEL
PARCEL BOUNDARY (WITH PARCEL		Oregon Portland Bend Baker Citv	BOUNDARIES AND PARCEL NUMBERS
	EADALLONI		3301 SOUTH NORFOLK STREET AND
10230 EAST MARGINAL WAY SOUTH	FARALLON	California	10100, 10200, AND 10230
	CONSULTING	Oakland Folsom Irvine	EAST MARGINAL WAY SOUTH
3301 300 THNORPOLK STREET	Quality Service for Environmental	Solutions farallonconsulting.com	SEATTLE/TUKWILA, WASHINGTON
0 200			FARALLON PN: 1071-026
Fact	Drawn By: jjones	Checked By: DL	Date: 1/3/2018 Disc Reference:
Feet		Docume	nt Path: Q:\Projects\1071 Prologis\026_EMarginalWay_SouthNorfolk\Figure-2_PropertyBoundary.mxd

LEGEND

•	MONITORING WELL					
	FORMER UNDERGROUND STORAGE TANK (UST)		Washington Issaguah Bellingham Seattle		FIGURE 3	
	APPROXIMATE AREA OF CONCERN (AOC)		Oregon	40	PROPERTY PLAN SHOWING	
	AOC-13 BOUNDARY		Portland Bend Baker City	10	EMERALD GATEWAY	
	PROPERTY BOUNDARY	FARALLOIN	California Oakland Folsom Irvine	3301	SOUTH NORFOLK STREET AN 10100. 10200. AND 10230	D
	APPROXIMATE SITE BOUNDARY		al Recellence and the second	E	AST MARGINAL WAY SOUTH	
AST =	ABOVEGROUND STORAGE TANK	Quality Service for Environmental S	olutions faralionconsulting.com	SEA	ATTLE/TUKWILA, WASHINGTON FARALLON PN: 1071-026	
		Drawn By: jjones	Checked By: PK	Date: 1/29/2019		Disc Reference:

Document Path: Q:\Projects\1071 Prologis\026_EMarginalWay_SouthNorfolk\Figure-3_Site Map_v2.mxd

- MONITORING WELL (TERRA 2001)
- FORMER UNDERGROUND STORAGE TANK (UST)
- BORING (FARALLON 2016)

AREA OF CONCERN

ESTIMATED EXTENT OF PETROLEUM HYDROCARBONS IN SOIL EXCEEDING MTCA METHOD A CLEANUP LEVELS SAMPLE DEPTH INDICATED IN FEET BELOW GROUND SURFACE SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg) GROUNDWATER (GW) ANALYTICAL RESULTS IN MICROGRAMS PER LITER (μg/l)

	Washington Issaquah Bellingham Seattle	FIGURE 4 DETAIL OF AOC-2
	Oregon Portland Bend Baker City	PERISHABLES WAREHOUSE 3301 SOUTH NORFOLK STREET AND
FARALLON CONSULTING	California Oakland Sacramento Irvine	10100, 10200, AND 10230 EAST MARGINAL WAY SOUTH
Quality Service for Environmental	Solutions farallonconsulting.com	FARALLON PN: 1071-026
Drawn By: jjones	Checked By: SA	Date: 1/3/2018 Disc Reference:
	Document Path:	Q:\Projects\1071 Prologis\026_EMarginalWay_SouthNorfolk\Figure-4_AOC-2_v2.mxc

TABLES

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington

Farallon PN: 1071-026

Table 1 Summary of Soil Analytical Results for TPH and BTEX 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

				Analytical Results (milligrams per kilogram)												
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴						
F-1	F-1-5.7	5.7	10/20/2016	5,900	< 280	< 28	< 0.022	< 0.11	0.16	0.25						
F-2	F-2-7.0	7.0	10/20/2016	< 28	< 56	< 5.7	< 0.020	< 0.057	< 0.057	< 0.114						
F-5	F-5-6.0	6.0	10/26/2016	< 34	< 68	< 7.3	< 0.020	< 0.073	< 0.073	< 0.146						
F-7	F-7-7.0	7.0	10/26/2016	< 38	< 76	< 9.1	< 0.020	< 0.091	< 0.091	< 0.182						
F-9	F-9-8.0	8.0	10/26/2016	< 36	< 72	< 8.1	< 0.020	< 0.081	< 0.081	< 0.162						
F-11	F-11-8.0	8.0	10/18/2016	< 31	< 63	< 5.8	< 0.0011	< 0.0055	< 0.0011	< 0.0033						
F-12	F-12-6.7	6.7	10/17/2016	< 29	< 58	< 7.3	< 0.0016	< 0.0081	< 0.0016	< 0.0049						
F-13	F-13-2.5	2.5	10/18/2016	< 26	< 52	< 5.9	< 0.0011	< 0.0055	< 0.0011	< 0.0033						
F-14	F-14-6.0	6.0	10/18/2016	< 28	< 56	< 5.4	< 0.00093	< 0.0046	< 0.00093	< 0.0028						
F-20	F-20-7.0	7.0	10/18/2016	< 34	< 68	< 8.8	< 0.0015	< 0.0074	< 0.0015	< 0.0045						
F-22	F-22-7.0	7.0	10/19/2016	< 32	< 63	< 6.6	< 0.0010	< 0.0050	< 0.0010	< 0.0030						
MTCA Method A	Cleanup Levels for Soil ⁵			2,000	2,000	30/100⁶	0.03	7	6	9						

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B or 8260C.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of

Chapter 173-340 of the Washington Administrative Code, as revised 2013. ⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

Table 2 Summary of Soil Analytical Results for PAHs 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

					Analytical Results (milligrams per kilogram) ²													2								
					Non-Carcinogenic PAHs														Carcinog	enic PAHs						
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Vaphthalene ³	-Methylnaphthalene	-Methylnaphthalene	Fotal Naphthalenes ⁴	Acenaphthene	Acenaphthylene	Anthracene	3enzo(g,h,i)Perylene	i uoranthene	7 uorene	Phenanthrene	yrene	3enzo(a)pyrene	3enzo(a)anthracene	3enzo(b)fluoranthene	3enzo(j,k)Fluoranthene	Chrysene)ibenzo(a,h)Anthracene	ndeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{5,6}			
F-1	F-1-5.7	5.7	10/20/2016	2.0	9.5	9.1	20.6	0.50	0.37	0.44	< 0.0076	0.11	3.2	5.4	0.53	< 0.0076	0.0080	< 0.0076	< 0.0076	0.046	< 0.0076	< 0.0076	0.007			
F-9	F-9-8.0	8.0	10/26/2016	< 0.0096	< 0.0096	< 0.0096	< 0.0288	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072			
F-11	F-11-8.0	8.0	10/18/2016	< 0.0011	< 0.0084	< 0.0084	< 0.0179	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	0.0063			
F-12	F-12-6.7	6.7	10/17/2016	< 0.0081			< 0.0081																			
F-13	F-13-2.5	2.5	10/18/2016	< 0.0011			< 0.0011																			
F-14	F-14-6.0	6.0	10/18/2016	< 0.056			< 0.056																			
F-20	F-20-7.0	7.0	10/18/2016	< 0.0015	< 0.0091	< 0.0091	< 0.0197	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	0.0069			
F-22	F-22-7.0	7.0	10/19/2016	< 0.0010			< 0.0010																			
MTCA Method A Cle	eanup Level for Soil ⁷						5	4,800 ⁸	NE	24,000 ⁸	NE	3,200 ⁸	3,200 ⁸	NE	2,400 ⁸								0.1			
MTCA Method B Lev Groundwater Vadose	vels for Soil Protective of at 25 Degrees Celsius ⁹			4.46	NE	NE	NE	97.9	NE	2,270	NE	631	101	NE	655											
MTCA Method B Lev Groundwater Vadose	vels for Soil Protective of at 13 Degrees Celsius ⁹			4.45	NE	NE	NE	97.9	NE	NE	NE	NE	101	NE	655											
NOTES.																-										

NOTES: Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM, unless otherwise noted.

³Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM or 8260C.

⁴Sum of naphthalenes, 1-methylnaphthalene, and 2-methylnaphthalene.

⁵Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of

Chapter 173-340 of the Washington Administrative Code.

⁶For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁷Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁸Washington State Department of Ecology Cleanup Levels and Risk Calculations (CLARC), under the Washington State Model Toxics Control Act Cleanup

Regulation (MTCA) Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway,

https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

⁹Washington State Cleanup Levels and Risk Calculations under the Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet updated September 2015, https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

Table 3Summary of Soil Analytical Results for Detected VOCs3301 South Norfolk Street and 10230 East Marginal Way SouthSeattle/Tukwila, WashingtonFarallon PN: 1071-026

				Ana	alytical Results (mi	illigrams per kilogra	$(m)^2$
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	2-Butanone (MEK)	Acetone	Carbon Disulfide	РСЕ
F-11	F-11-8.0	8.0	10/18/2016	< 0.0069	< 0.017	< 0.0011	0.0011
F-12	F-12-6.7	6.7	10/17/2016	0.017	0.050	< 0.0016	< 0.0016
F-13	F-13-2.5	2.5	10/18/2016	< 0.0069	< 0.017	< 0.0011	< 0.0011
F-14	F-14-6.0	6.0	10/18/2016	0.038 Y	0.10 Y	0.0015	< 0.00093
F-20	F-20-7.0	7.0	10/18/2016	0.058 Y	0.13 Y	0.0020	< 0.0015
F-22	F-22-7.0	7.0	10/19/2016	< 0.0050	< 0.0050	< 0.0010	< 0.0010
MTCA Method A Cle	anup Levels for Soil ³			48,000 ⁴	72,000 ⁴	8,000 ⁴	0.05
MTCA Method B Lev Groundwater Vadose	rels for Soil Protective of at 25 Degrees Celsius ⁵			NE	28.9	5.65	0.053
MTCA Method B Lev Groundwater Vadose	rels for Soil Protective of at 13 Degrees Celsius ⁵		NE	28.9	5.04	0.0499	

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under the Washington State Model Toxics Control Act Cleanup Regulation, Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

⁵Washington State Cleanup Levels and Risk Calculations under the Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet updated September 2015, https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

MEK = methyl ethyl ketone NE = not established

PCE = tetrachloroethene

VOCs = volatile organic compounds

Y = calibration verification for this analyte exceeded the limit and value is an estimate

Table 4Summary of Soil Analytical Results for Lead3301 South Norfolk Street and 10230 East Marginal Way SouthSeattle/Tukwila, WashingtonFarallon PN: 1071-026

				Analytical Results (milligrams per kilogram) ²
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Lead
F-1	F-1-5.7	5.7	10/20/2016	< 5.7
F-9	F-9-8.0	8.0	10/26/2016	< 7.2
MTCA Cleanup Lev	rels for Soil ³			20

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for

Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as

revised 2013.

Table 5 Summary of Groundwater Analytical Results for TPH and BTEX 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

				Analytical Results (micrograms per liter)												
Sample Location	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³							
			Reconnais	sance Groundv	vater Samples											
F-1	10/20/2016	F-1-GW	< 270	480	< 100	< 0.40	< 2.0	< 0.40	< 1.2							
F-2	10/20/2016	F-2-GW	610	580	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-5	10/26/2016	F-5-GW	< 250	< 400	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-7	10/26/2016	F-7-GW	640	490	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-8	10/26/2016	F-8-GW	1,200	710	< 100	< 0.20	< 1.0	< 0.20	0.86							
F-9	10/26/2016	F-9-GW	600	440	< 100	< 1.0	< 1.0	< 1.0	1.0							
F-10	10/26/2016	F-10-GW	810	1,100	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-11	10/18/2016	F-11-GW	< 260	< 420	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
F-12	10/17/2016	F-12-GW	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
F-13	10/18/2016	F-13-GW			< 100	< 0.20	< 1.0	< 0.20	< 0.60							
F-14	10/18/2016	F-14-GW	< 270	< 430	< 100	< 0.40	< 2.0	< 0.40	< 1.2							
F-16	10/17/2016	F-16-GW	< 260	< 410	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-17	10/17/2016	F-17-GW	850 M	< 420	1,300	90	< 4.0	140	20							
F-18	10/17/2016	F-18-GW	< 260	< 420	< 100	< 1.0	< 1.0	< 1.0	< 2.0							
F-20	10/18/2016	F-20-GW	< 270	< 440	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
F-21	10/19/2016	F-21-GW	< 270	< 440	< 100	0.21	< 1.0	< 0.20	< 0.60							
F-22	10/19/2016	F-22-GW			< 100	< 0.20	< 1.0	< 0.20	< 0.60							
F-23	10/19/2016	F-23-GW	840	500	150	< 0.20	< 1.0	< 0.20	< 0.60							
			Monitorin	g Well Ground	water Samples											
DOF-1	10/19/2016	DOF-1-101916	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
DOF-2	10/24/2016	DOF-2-102416	380	560	180	0.27	< 1.0	0.31	< 0.60							
DOF-3	10/21/2016	DOF-3-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
DOF-4	10/24/2016	DOF-4-102416	< 260	450	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
MW-4	10/21/2016	MW-4-102116	< 260	< 410	< 400	< 0.20	< 1.0	< 0.20	< 0.60							
MW-101	10/19/2016	MW-101-101916	290	< 410	< 100	< 0.40	< 2.0	< 0.40	< 1.2							
MW-203	10/21/2016	MW-203-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
MW-207	10/21/2016	MW-207-102116	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
MW-AG1	10/21/2016	MW-AG1-102116	< 260	< 420	< 400	< 0.20	< 1.0	< 0.20	< 0.60							
MW-AG2	10/19/2016	MW-AG2-101916	< 250	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60							
MTCA Method A	Cleanup Level for	Groundwater ⁴	500	500	800/1.000 ⁵	5	1.000	700	1.000							

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B or 8260C.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

M = hydrocarbons in the gasoline-range are impacting the DRO result

ORO = TPH as oil-range organics

Table 6 Summary of Groundwater Analytical Results for PAHs 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

			Analytical Results (micrograms per liter) ¹																			
								Non-Carcin	ogenic PAH	S								Carcinog	genic PAHs			
Sample Location	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)Fluoranthen e	Chrysene	Dibenzo(a,h)Anthracen e	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
Reconnaissance Groundwater Samples															T							
F-1	10/20/2016	F-1-GW	< 0.19	1.9	1.6	3.5	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	0.23	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	0.014
F-11	10/18/2016	F-11-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
F-12	10/17/2016	F-12-GW	< 0.096	< 0.096	< 0.096	< 0.288	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072
F-14	10/18/2016	F-14-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
F-16	10/17/2016	F-16-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	0.016	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.014	0.014	0.009
F-17	10/17/2016	F-17-GW	42	14	23	79	0.20	< 0.096	< 0.096	< 0.0096	< 0.096	0.37	0.38	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072
F-18	10/17/2016	F-18-GW	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
F-20	10/18/2016	F-20-GW	< 0.11	< 0.11	< 0.11	< 0.33	< 0.11	< 0.11	< 0.11	< 0.011	< 0.11	< 0.11	< 0.11	< 0.11	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	0.008
F-21	10/19/2016	F-21-GW	< 0.096	< 0.096	< 0.096	< 0.288	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072
F-23	10/19/2016	F-23-GW	< 0.096	< 0.096	< 0.096	< 0.288	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072
	E	1		1	[I		Monit	toring Well	Groundwate	er Samples	1	1	1	r		r	r	r	r	r	T
DOF-1	10/19/2016	DOF-1-101916	< 0.094	< 0.094	< 0.094	< 0.282	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	0.0071
DOF-2	10/24/2016	DOF-2-102416	0.64	1.8	< 0.19	2.4	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	< 0.19	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	0.014
DOF-3	10/21/2016	DOF-3-102116	< 0.094	< 0.094	< 0.094	< 0.282	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	0.0071
DOF-4	10/24/2016	DOF-4-102416	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
MW-4	10/21/2016	MW-4-102116	< 0.19	< 0.19	< 0.19	< 0.57	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	< 0.19	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	0.014
MW-101	10/19/2016	MW-101-101916	0.10	3.0	0.43	3.5	0.20	< 0.094	< 0.094	< 0.0094	< 0.094	0.16	0.17	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	0.0071
MW-203	10/21/2016	MW-203-102116	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
MW-207	10/21/2016	MW-207-102116	< 0.095	< 0.095	< 0.095	< 0.285	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	< 0.0095	0.0072
MW-AG1	10/21/2016	MW-AG1-102116	< 0.19	< 0.19	< 0.19	< 0.57	< 0.19	< 0.19	< 0.19	< 0.019	< 0.19	< 0.19	< 0.19	< 0.19	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	< 0.019	0.014
MW-AG2	10/19/2016	MW-AG2-101916	< 0.094	< 0.094	< 0.094	< 0.282	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	0.0071
MTCA Method A Cle	eanup Level for Gro	undwater				160	960°	NE	4,800 ⁶	NE	640 ⁶	640 ⁶	NE	480 ⁶						0.1		

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

²Sum of naphthalenes, 1-methylnaphthalene, and 2-methylnaphthalene.

³Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative

Code, as revised 2013, unless otherwise noted.

⁶Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons NE = not established PAHs = polycyclic aromatic hydrocarbons TEC = toxic equivalent concentration
Table 7 Summary of Groundwater Analytical Results for Detected VOCs 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

				Analytical Results (micrograms per liter) ¹												
Sample Location	Sample Date	Sample Identification	1,2,4-T rimethy lbenzene	1,2-Dichloropropane	Acetone	Carbon Disulfide	cis-1,2-Dichloroethene	Dichlorodifluoromethane	lsopropylbenzen e	Methyl Tertiary Butyl Ether	n-Butylbenzene	n-Propylbenzene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene (PCE)	Trichlorofluoromethane
				-		Reconnaissa	nce Ground	water Samp	es		-		-	-		
F-1	10/20/2016	F-1-GW	< 0.40	< 0.40	< 10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
F-8	10/26/2016	F-8-GW	0.24	< 0.20	< 8.0	< 0.20	< 0.20	< 0.28	< 0.20	4.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20
F-11	10/18/2016	F-11-GW	< 0.20	< 0.20	< 5.0	0.36	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.22	< 0.20
F-12	10/17/2016	F-12-GW	< 0.20	< 0.20	< 5.0	0.22	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-13	10/18/2016	F-13-GW	< 0.20	< 0.20	7.1	0.52	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-14	10/18/2016	F-14-GW	< 0.40	< 0.40	< 10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
F-20	10/18/2016	F-20-GW	0.25	< 0.20	5.7	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-21	10/19/2016	F-21-GW	< 0.20	< 0.20	< 5.0	0.81	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-22	10/19/2016	F-22-GW	< 0.20	< 0.20	< 5.0	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F-23	10/19/2016	F-23-GW	< 0.20	0.39	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.40	< 0.20	< 0.20
]	Monitoring	Well Ground	water Samp	les	r		r				
DOF-1	10/19/2016	DOF-1-101916	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
DOF-2	10/24/2016	DOF-2-102416	0.33	< 0.20	< 7.4	< 0.20	< 0.20	< 0.27	6.1	< 0.20	1.2	1.5	1.7	0.67	< 0.20	0.33
DOF-3	10/21/2016	DOF-3-102116	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
DOF-4	10/24/2016	DOF-4-102416	< 0.20	< 0.20	< 7.4	< 0.20	< 0.20	< 0.27	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-4	10/21/2016	MW-4-102116	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-101	10/19/2016	MW-101-101916	< 0.40	< 0.40	< 10	< 0.40	< 0.40	2.7	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
MW-203	10/21/2016	MW-203-102116	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-207	10/21/2016	MW-207-102116	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-AG1	10/21/2016	MW-AG1-102116	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MW-AG2	10/19/2016	MW-AG2-101916	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
MTCA Cleanup	Devels for Groundwa	ter ²	NE	1.22	7,200	800	16	1,600	NE	20 ³	NE	800	NE	NE	5 ³	2,400

NOTES: < denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260C.

NE = not established VOCs = volatile organic compounds.

²⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://fortess.wa.gov/ccy/clarc/CLARCHome.aspx, unless otherwise noted.

³MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Table 8Summary of Groundwater Analytical Results for Arsenic, Lead, and Total Suspended Solids3301 South Norfolk Street and 10230 East Marginal Way SouthSeattle/Tukwila, WashingtonFarallon PN: 1071-026

			Analytica (microgram	al Results as per liter) ¹	Analytical Results (milligrams per liter) ²							
Sample Location	Sample Date	Sample Identification	Dissolved Arsenic	Dissolved Lead	Total Suspended Solids							
		Reconnais	sance Groundwater Sam	ance Groundwater Samples								
F-1	10/20/2016	F-1-GW	11		4.0							
F-2	10/20/2016	F-2-GW	9.6		33							
F-11	10/18/2016	F-11-GW	3.1		< 4.0							
F-12	10/17/2016	F-12-GW	< 3.0		< 4.0							
F-14	10/18/2016	F-14-GW	9.9		< 4.0							
F-16	10/17/2016	F-16-GW	< 3.0	<1.0	16							
F-17	10/17/2016	F-17-GW	3.2	<1.0	< 4.0							
F-18	10/17/2016	F-18-GW	24	<1.0	< 4.0							
F-21	10/19/2016	F-21-GW	< 3.0		< 4.0							
F-23	10/19/2016	F-23-GW	< 3.0		< 4.0							
		Monitoring	g Well Groundwater San	ıples								
DOF-1	10/19/2016	DOF-1-101916	< 3.0	<1.0	< 4.0							
DOF-2	10/24/2016	DOF-2-102416	6.1	<1.0	< 4.0							
DOF-3	10/21/2016	DOF-3-102116	< 3.0	<1.0	< 4.0							
DOF-4	10/24/2016	DOF-4-102416	< 3.0	<1.0	< 4.0							
MW-4	10/21/2016	MW-4-102116	38		< 4.0							
MW-101	10/19/2016	MW-101-101916	48	<1.0	23							
MW-203	10/21/2016	MW-203-102116	< 3.0		< 4.0							
MW-207	10/21/2016	MW-207-102116	27		< 4.0							
MW-AG1	10/21/2016	MW-AG1-102116	4.8		< 4.0							
MW-AG2	10/19/2016	MW-AG2-101916	5.8		< 4.0							
MTCA Cleanup	Levels for Grou	ndwater ³	5	15	NA							

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

NA = not applicable

< denotes analyte not detected at or exceeding the reporting limit listed.

— denotes sample not analyzed.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8/6010 Series.

²Analyzed by Standard Method 2540D.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

Table 9 Summary of Soil Gas Analytical Results for Detected VOCs 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington Farallon PN: 1071-026

					Analytical Results (micrograms per cubic meter) ²																
Sample Location	Sample Date	Sample Identification	Sample Depth (feet) ¹	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2,4-Trimethylbenzene	1,2-Dichloroethane	Benzene	Carbon tetrachloride	Chloroethane	Chloroform	Ethylbenzene	Hexane	Methylene Chloride	Naphthalene	Tetrachloroethene (PCE)	Toluene	Trichloroethene (TCE)	m,p-Xylenes	o-Xylene
F-15	10/19/2014	SG-F15-101916	5.0	< 0.0273	< 0.109	< 0.0324	1.43	< 0.0809	2.36	0.126	< 0.259	0.293	1.74	2.26	0.556 B	< 1.57	46.7	9.95	< 0.0914	5.38	2.00
F-16	10/19/2014	SG-F16-101916	5.0	0.109	< 0.109	< 0.0324	0.393	< 0.0809	0.447	< 0.126	< 0.259	1.07	0.304	0.529	0.556 B	< 1.57	14.2	1.21	< 0.0914	0.825	0.347
F-17	10/19/2014	SG-F17-101916	5.0	< 0.0273	0.164	1.01	10.3	0.364	21.5	< 0.126	< 0.259	0.342	9.94	349	0.486 B	6.34	0.882	2.45	0.269	3.56	1.82
F-18	10/19/2014	SG-F18-101916	5.0	0.655	< 0.109	< 0.0324	2.75	0.405	1.57	0.189	0.607	20.3	3.17	3.28	1.08 B	< 1.57	1.15	20.0	< 0.0914	4.99	2.34
MTCA Method B E	Deep Soil Gas Scr	eening Level ³		229,000	15.6	156	320	9.62	32.1	41.7	457,000	10.9	45,700	32,000	25,000	7.35	962	229,000	37.0	4,570 ⁴	4,570

NOTES:

Results in **bold** denote concentrations exceeding applicable screening levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method TO-15/SIM.

³Washington State Model Toxics Control Act (MTCA) Cleanup Regulation Method B Deep Soil Gas Screening Levels, Table B-1 of Appendix B of the Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Revised February 2016.

⁴m,p-Xylene screening level based on m-xylene screening level.

APPENDIX A BORING LOGS

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington

Farallon PN: 1071-026

USCS Classification and Graphic Legend

Coarse-	GRAVEL	CLEAN GRAVEL (Little		GW	Well graded GRAVEL, well graded GRAVEL with sand
Soil (More	GRAVELLY	or no nnes)	····· · · · · · ⊠ · [·] ·⊠ · ·	GP	Poorly graded GRAVEL, GRAVEL with sand
of material	than 50% of	GRAVEL WITH FINES		GP-GM	Poorly graded GRAVEL - GRAVEL with sand and silt
than No. 200 sieve	fraction retained on	fines)		GM	Silty GRAVEL
size)	No. 4 sieve)			GC	Clayey GRAVEL
	SAND AND	CLEAN SAND (Little or		SW	Well graded SAND
	SOIL (More than 50% of			SP	Poorly graded SAND
	coarse	SAND WITH FINES	.	SP-SM	Poorly graded SAND - silty SAND
	passed through No.	fines)		SM	Silty SAND
	4 sieve)			SC	Clayey SAND
				SM-ML	SILT - Silty SAND
Fine- Grained	SILT AND			ML	SILT
Soil (More than 50%	limit less than 50)		<u>H</u> F	CL	CLAY
of material is smaller				OL	Organic SILT
than No. 200 sieve	SILT AND CLAY (Liquid			MH	Inorganic SILT
size)	limit greater than 50)			СН	Inorganic CLAY
			$\sim\sim$	ОН	Organic CLAY
		Highly Organic Soil	⊥⊥	PT	Peat
OTHER MATERIALS	PAVEMENT			AC	Asphalt concrete
				CO	Concrete
	OTHER			RK	Bedrock
				WD	Wood Debris
				DB	Debris (Miscellaneous)
				PC	Portland cement

E:\Forms\Boilerplates\LogPlot\Lithology\Coverpage

Logs for Borings F-1 to F-23

Farallon Consulting, LLC October 2016

		FARALLON CONSULTING	I	j: F-1	Page 1 of 1							
Clic Pro	ent ojeo cat	Prologis : East Marginal & South Norfolk ion: Seattle/Tukwila, Washington	Date/Time Started: Date/Time Complete Equipment: Drilling Company:	10/20 10/20 Powe Holoo)/16)/16 erPro	@ 1335 @ 1450 bbe 950	5 S 0 C 0 C T	Sampler Type: 4' Drive Hammer (Ibs. Depth of Water ATE Total Boring Depth	Macrocore Auto D (ft bgs): 4.0 (ft bgs): 16.0			
Fai	alle	on PN: 1071-014	Drilling Foreman: Drilling Method:		Mitch Direc	i Mc0	Carley sh	T	otal Well Depth (ft	s):	NA	
Lo	gge	ed By: Ryan Ostrom										
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_												
-		0.0-0.5': Concrete - Cored. 0.5-2.0': Control Density Fill (CDF), gray, moist, con	crete odor.	CO FILL								Concrete
-		2.0-2.7': Silty SAND with gravel (60% sand, 30% silt to medium sand, fine gravel, gray, moist, mild petrol	, 10% gravel), fine eum-like odor.	SM		55		1.7	F-1-2.5			
-	$ \rangle$	2.7-4.0': No recovery.										×
5-		4.0-5.7': Silty SAND with gravel (50% sand, 30% silt to coarse sand, fine gravel, gray, wet, petroleum-like	:, 20% gravel), fine e odor.	SM								Water Level
-		5.7-8.0': No recovery.				43		145	F-1-5.7	x		
-		8.0-9.5': Silty SAND (60% sand, 40% silt), fine to me wet, petroleum-like odor.	edium sand, gray,	SM				338	F-1-8.0			
10 -		9.5-12.0': No recovery.				38			F-1-GW	x		
-		12.0-13.5': Silty SAND (60% sand, 40% silt), fine to gray, wet, petroleum-like odor.	medium sand,	SM				35.7	Soil Screen @ 12.0'			Bentonite
- 15 –		13.5-16.0': Poorly graded SAND (95% sand, 5% silt sand, gray, wet, mild petroleum-like odor.), fine to medium	SP		100						
-		Recon Groundwater Turbidity Readings Time: 1411 1411 1412 NTU: 207 193 174										

		Well Construc	tion Information	Ground Surface Flowation (ft):	ΝΑ
Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite	Y : NA	

		FARALLON CONSULTING	Log of Boring: F-2									Page 1 of 1		
Clie Pro Loc Far	ent ojec cati callo gge	Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/20/16 @ 0925Sampler Type: 4' Macrocore10/20/16 @ 1045Drive Hammer (Ibs.):AutoPowerProbe 9500Depth of Water ATD (ft bgs):8.5HoloceneTotal Boring Depth (ft bgs):16.0Mitch McCarleyTotal Well Depth (ft bgs):NA									
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ring/Well struction Details		
0_ 		0.0-2.0': Hand auger to clear utilities. Refusal at 2.0 c density fill (CDF).	lue to controlled	FILL	$\mathcal{D}\mathcal{O}\mathcal{O}$							Concrete		
- - 5-		2.0-3.5': Controlled density fill (CDF), gray, concrete of 3.5-4.0': No recovery. 4.0-8.0': Controlled density fill (CDF), gray, concrete of	odor.	FILL		75		0.3	Soil Screen @ 3.5'					
-	\wedge				000	100		0.3	F-2-7.0	x				
- 10 –		8.0-8.5': Controlled density fill (CDF), gray, concrete of 8.5-10.0': Silty SAND (60% sand, 30% silt, 10% grave medium sand, fine gravel, gray, wet, petroleum-like of 10.0-10.8': Silty SAND (80% sand, 20% silt), fine san	odor. el), fine to dor. d, gray, wet,	FILL SM SM		70		53.7	F-2-8.5 F-2-GW	x		Water Level ▼		
-		10.8-12.0': No recovery. 12.0-16.0': Poorly graded SAND (95% sand, 5% silt), sand, dark gray, wet, no odor.	fine to medium	SP				0.7	Soil Screen @ 12.0'			Bentonite		
- 15 –	\mathbb{N}					100								
-		Recon Groundwater Turbidity Readings Time: 0955 0955 0956 NTU: 190 172 186												

Manual T		Well Construct	tion Information	Ground Surface Flove	tion (ft):	NΔ
Casing Diameter (inches):	3/4	Filter Pack: Surface Seal:	NA Concrete	Top of Casing Elevation	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING	G Log of Boring: F-5									
Clic Pro Loc	ent ojec cati	Prologis Ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington	Date/Time Started: Date/Time Complet Equipment: Drilling Company:	ted:	10/26 10/26 Powe Holoo	6/16 (6/16 (erPro cene	@ 1020 @ 1120 be 950) S D D O D T	ampler Type: 4' Prive Hammer (Ibs. Pepth of Water ATI Total Boring Depth Total Well Depth (fi	Macr): D (ft b (ft b	ocore bgs): gs):	Auto 5.0 16.0
Lo	gge	ed By: Ryan Ostrom	Drilling Method:		Direc	t Pus	sh	•			,-	
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_	1 1										888	
	-	0.0-5.0': Air Knife to clear utilities. Silty SAND with gravel (40% sand, 30% gravel, 30% si medium sand, fine to coarse gravel, gray, moist, no od	ilt), fine to lor.	SM				0.0	Soil Screen @ 2.5'			Asphalt
5-		5.0-6.0': SILT with sand (85% silt, 15% sand), fine sand (possibly from rain water), no odor. 6.0-8.0': No recovery.	d, gray, wet	ML		33		0.6	F-5-6.0	x		Water Level
- 10		8.0-10.6': SILT with sand (85% silt, 15% sand), fine sau no odor.		ML		65						
		10.6-12.0': No recovery.						0.0	Soil Screen @ 10.5'			
		12.0-13.0': Silty SAND with gravel (50% sand, 30% silt fine to coarse sand, fine gravel, gray, wet, no odor. 13.0-16.0': No recovery.	t, 20% gravel),	SM		25			F-5-GW	x		Bentonite
		Encountered very slow recovery while collecting recon Turbidity was not measured. The well went dry 4 times water samples.	groundwater. while collecting									

Well Construction Information												
Monument Type: NA Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevation	on (ft):	NA						
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA							
Screened Interval (ft bgs):	8-13 (Temp)	Boring Abandonment:	Bentonite		Y: NA							

		FARALLON	Log of Boring: F-7									Page 1 of 1			
Clic Pro Loc Far	ent ojeo cat rallo	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/26 10/26 Powe Holoo Mitch Direc	5/16 5/16 erPro cene n Mc(ct Pu:	@ 1125 @ 1230 obe 950 Carley sh	5 S 0 C 0 C T T	Gampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth Total Well Depth (fi	Maci): D (ft (ft b bgs	bgs): bgs): bgs): bj:	Auto 5.0 16.0 NA			
	gge	ed By: Ryan Ostrom	-				8/8			p					
Depth (feet bgs	Sample Interva	Lithologic Descriptio	'n	nscs	USCS Graphic	% Recovery	Blow Counts 8/	PID (ppm)	Sample ID	Sample Analyze	Boi Con [ring/Well estruction Details			
0_	_														
-	-	0.0-5.0': Air Knife to clear utilities. Sandy SILT (70% silt, 20% sand, 10% gravel), fine to fine gravel, gray, moist, no odor.	medium sand,	ML				0.4	Soil Screen @ 2.5'			Asphalt			
		5.0-5.7': Sandy SILT (50% silt, 40% sand, 10% gravel gravel, gray, wet, no odor. 5.7-7.5': SILT (90% silt, 10% sand), fine sand, gray, w	I), fine sand and /et, no odor.	ML ML		83		0.4	F-7-7 0	×		Water Level			
	$ \rangle$	7.5-8.0': No recovery.			╶ <mark>╶╵┘</mark> ┶╵			0.4	1-1-1.0						
10 -		8.0-9.5': SILT (90% silt, 10% sand), fine sand, gray, w		ML		38		0.1	Soil Screen @ 9.5'						
- - 15 -		12.0-13.2': SILT (90% silt, 10% sand), fine sand, gray, 13.2-14.7': Silty SAND (85% sand, 15% silt), fine to m gray, wet, very mild petroleum-like odor. 14.7-16.0': No recovery.	, wet, no odor.	ML SM		68		0.3	F-7-GW	×		Bentonite			
-		Turbidity was not measured. The well went dry 4 times water samples.	s while collecting												

		Well Construct	tion Information	Ground Surface Flove	tion (ft):	ΝΑ
Monument Type: NA		Filter Pack:	NA			
Casing Diameter (inches):	3/4	Surface Seal:	Asphalt	Top of Casing Elevation	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	9-14 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING		Lo	g o	of I	Bori	ing	J: F-8	Page 1 of 1			
Clic Pro Loc Far	ent ojeo cat rallo ggo	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	10/26/16 @ 13 10/26/16 @ 14 PowerProbe 9 Holocene Mitch McCarle Direct Push			1310Sampler Type: 4' M1410Drive Hammer (Ibs.)9500Depth of Water ATDTotal Boring DepthHeyTotal Well Depth (ft			rocore bgs): ogs): ;):	Auto 8.0 16.0 NA	
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boi Con [ring/Well struction Details	
0_	1	0.0-5.0'. Air Knife to clear utilities		MI								Asphalt	
-	-	Sandy SILT (80% sand, 20% silt), fine to medium sand gray, moist, no odor.	d, fine gravel,	WIL .				0.4	Soil Screen @ 2.5'			Aspirat	
5-		5.0-6.0': SILT with sand (85% silt, 15% sand), fine san no odor. 6.0-8.0': No recovery.	ıd, gray, moist,	ML		33		0.4	F-8-6.0	x			
-		8.0-9.9': SILT (100% silt), gray, wet, no odor.		ML								Water Level	
10 -		9.9-12.0': No recovery.				48		0.1	Soil Screen @ 9.9'				
-		12.0-14.9': SILT (100% silt), gray, wet, no odor.		ML		100			F-8-GW	x		Bentonite	
15 -	$ \rangle \rangle$	14.9-16.0': Poorly graded SAND (95% sand, 5% silt), f sand, gray, wet, very mild-petroleum like odor.	fine to medium	SP				0.8	Soil Screen @ 15.0'				
-		Encountered very slow recovery while collecting recon Turbidity was not measured. The well went dry 6 times water samples.	groundwater. s while collecting										

		Well Construct	tion Information	Cround Surface Flour	tion (ft)	ΝΑ
Monument Type: NA		Filter Pack:	NA	Ground Surface Eleva	ation (it).	NA
Casing Diameter (inches):	3/4	Surface Seal:	Asphalt	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	gc	of I	Bori	ing	I: F-9		Pa	age 1 of 1
Clic Pro Loc Fai	ent ojeo cat rallo ggo	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/20 10/20 Powe Holoo Mitch Direc	6/16 6/16 erPro cene n Mc0 ct Pu	@ 1455 @ 1530 obe 950 Carley sh	5 S 0 C 0 T T	ampler Type: 4' Prive Hammer (Ibs. Depth of Water ATI otal Boring Depth otal Well Depth (fi	Macr): D (ft (ft b bgs	ocore bgs): gs):):	Auto 8.0 16.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boi Con [ring/Well struction Details
0_	1	0.0.5.0': Air Knife to clear utilities										Acabalt
	-	Sandy SILT (80% silt, 20% sand), fine to medium san no odor.	nd, gray, moist,	ML				0.5	Soil Screen @ 2.5'			Aspnait
-		5.0-8.0': No recovery. Soil was lost during extraction	of the macrocore.			0						-
10 -		8.0-11.1': SILT (95% silt, 5% sand), fine sand, gray, minor wood debris at 11.0'.	wet, no odor,	ML		78		0.4	F-9-8.0	X		Water Level
	$\left \right\rangle$	11.1-12.0': No recovery.										
-		12.0-14.5': SILT (95% silt, 5% sand), fine sand, gray, minor wood debris at 11.0'.	, wet, no odor,	ML		100		0.0	F-9-GW	×		Bentonite
15 -		14.5-16.0': Silty SAND (85% sand, 15 silt), fine sand, odor.	, gray, wet, no	SM				0.3	Soli Screen @ 14.5'			
-	<u>v</u> \ 	Encountered very slow recovery while collecting record Turbidity was not measured. The well went dry 10 tin collecting water samples.	on groundwater. nes while									

		Well Construc	tion Information	Cround Surface Flour	tion (ft).	ΝΑ
Monument Type: NA	3/4	Filter Pack:	NA	Top of Casing Flevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal: Annular Seal:	Asphalt NA	Surveyed Location:	X :NA	
Screened Interval (ft bgs):	8-13 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING	Lo	bg	0	f E	Bor	inę	g: F-10		Pa	ge 1 of 1
Cli Pro Lo	ent ojec cat	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington	Date/Time Started: Date/Time Completed: Equipment: Drilling Company:	10 10 Pc Hc	/26/ /26/ wei	/16 (/16 (rPro ene	@ 170(@ 175(be 950) () 0 -	Sampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Fotal Boring Depth	Mac):) (ft (ft k	bgs):	Auto 8.0 16.0
Fa	rallo	on PN: 1071-014	Drilling Foreman: Drilling Method:	Mi Di	tch rect	Mc0 Pus	Carley sh		Гotal Well Depth (ft	bgs	5):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	n ss	liefe Granhio		% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con: D	ing/Well struction vetails
0_		0.0-5.0': Air Knife to clear utilities. Silty SAND (70% sand, 20% silt, 10% gravel), fine to n fine gravel, gray, moist, no odor. 5.0-6.4': SILT with sand (85% silt, 15% sand), fine san no odor. 6.4-8.0': No recovery. 8.0-12.0': No recovery. Soil was lost during extraction of macrocore. 12.0-16.0': No recovery. Soil was lost during extraction macrocore. Encountered very slow recovery while collecting recon Turbidity was not measured. The well went dry 3 times water samples.	nedium sand, Id, gray, moist, of the n of the n of the n groundwater. s while collecting			47 0 0		0.4	Soil Screen @ 2.5' Soil Screen @ 6.4'	x		Asphalt Water Level Bentonite

		Well Construct	tion Information	Cround Surface Flour	tion (ft)	ΝΑ
Monument Type: NA		Filter Pack:	NA	Giouna Sunace Eleva	ation (it).	
Casing Diameter (inches):	3/4	Surface Seal:	Asphalt	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	5-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g o	of E	Bori	ng	j: F-11		P	age 1 of 1
Cli Pro Lo	ent oje cat	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington	Date/Time Started Date/Time Comple Equipment: Drilling Company:	: eted:	10/18 10/18 AMS Holoo	3/16 3/16 9100 cene	@ 0845 @ 1025 0 P	S D T	Gampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth	Macr): D (ft (ft b	ocore bgs):	Auto 9.0 16.0
Fa	rall	on PN: 1071-014	Drilling Foreman: Drilling Method:		Mitch Direc	n Mc0 t Pu	Carley sh	Т	otal Well Depth (ft	bgs):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con [ring/Well struction Details
0_	-	0.0-5.0': Hand auger to clear utilities. Poorly graded SAND with silt (90% sand, 10% silt), fir sand, brown, moist, no odor.	ne to medium	SM				0.0	Soil Screen @ 2.5'			Concrete
5-		5.0-7.6': No recovery due to loose sand. 7.6-8.0': Silty SAND (60% sand, 30% silt, 10% gravel sand, fine gravel, brown, moist, no odor. 8.0-12.0': No recovery. Driller states they were pushir very loose sand. Drillers indicate water at 9.0'.), fine to medium	/ /		13		0.1	F-11-8.0	x		¥ ₩ater Level
10 -						0		0.4	F-11-GW	x		Bentonite
15 -		12.0-14.4': SILT with sand (80% silt, 20% sand), fine no odor. 14.4-16.0': No recovery.	sand, gray, wet,	ML		60		5.7	1 11-12.0			
		Recon Groundwater Turbidity Readings Time: 0946 0946 0947 NTU: 2813 2677 2492										

Manual Trans. NA		Well Construc	tion Information	Ground Surface Flovat	ion (ft):	NΔ
Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevatio	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	5-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING	I	Lo	g o	of E	Bori	ng	ı: F-12		Pa	ge 1 of 1
Clic Pro Loc Fai	ent ojeo cat rallo ggo	 Prologis East Marginal & South Norfolk Seattle/Tukwila, Washington PN: 1071-014 By: Ryan Ostrom 	Date/Time Started: Date/Time Complete Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ed:	10/17 10/17 Powe Holoo Mitch Direc	7/16 (7/16 (erPro cene McC t Pus	@ 1315 @ 1540 be 9500 Carley sh	S D D T T	Campler Type: 4' Prive Hammer (Ibs Depth of Water ATI Total Boring Depth Total Well Depth (fi	Macı):) (ft (ft b bgs	bgs): bgs): bgs):	Auto 8.3 16.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Cons D	ing/Well struction etails
0_	-	0.0-5.0': Hand auger to clear utilities. Silty SAND (80% sand, 20% silt), fine sand, gray, m	oist, no odor.	SM				0.4	Soil Screen @ 2.5'			Concrete
-		5.0-6.7': Poorly graded SAND with silt (90% sand, 1 medium sand, gray, moist, no odor. 	0% silt), fine to S	P-SM		57		0.6	F-12-6.7	x		
- - 10		8.0-8.3': Poorly graded SAND with silt (90% sand, 1 medium sand, gray, moist, no odor. 8.3-9.7': SILT (90% silt, 10% sand), fine sand, gray, 9.7-12.0': No recovery.	0% silt), fine to	P-SM SM		43		0.9	Soil Screen @ 8.0' F-12-GW	x		Water Level
		12.0-16.0': Silty SAND (85% sand, 15% silt), fine to gray, wet, no odor.	medium sand,	SM		100		0.4	Soil Screen @ 12.0'			Bentonite
-		Recon Groundwater Turbidity Readings Time: 1420 1420 1421 NTU: 220 197 192										

Manual T		Well Construct	tion Information	Ground Surface Flove	tion (ft):	NΔ
Casing Diameter (inches):	3/4	Filter Pack: Surface Seal:	NA Concrete	Top of Casing Elevation	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON	I	Lo	g o	of I	Bori	ing	j: F-13		Pa	ige 1 of 1
Clic Pro Loc Fai	ent ojec cati rallo	Prologis ct: East Marginal & South Norfolk on: Seattle/Tukwila, Washington on PN: 1071-014	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman:	ed:	10/18 10/18 AMS Holoo Mitch	8/16 8/16 910 cene Mc0	@ 1035 @ 1140 0 P Carley	5 5 0 [1 1	Sampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Fotal Boring Depth Fotal Well Depth (ft	Macı):) (ft (ft b bgs	rocore bgs): pgs): ;):	Auto 10.8 16.0 NA
Lo	gge	ed By: Ryan Ostrom	Drilling Method:		Direc	t Pu	sh					
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_	1 [
		0.0-5.0 [°] : Hand auger to clear utilities. Poorly graded SAND with silt (90% sand, 10% silt), f sand, brown, moist, no odor. 5.0-8.0 [°] : No recovery. Drillers indicate that there is lik shoe.	ine to medium	SM				0.0	F-13-2.5	x		Concrete
-		8.0-12.0': No recovery. Drillers think they are pushing	g a rock.			0						Bentonite
10 -		12.0-16.0': No recovery. Drillers think they are pushin	ng a rock.			0			F-13-GW	x		Water Level
- 15 -						0						
-		Encountered very slow recovery while collecting record Turbidity was not measured.	on groundwater.									

		Well Construct	tion Information	Ground Surface Flour	tion (ft)	ΝΑ
Monument Type: NA		Filter Pack:	NA			
Casing Diameter (inches):	3/4	Surface Seal:	Concrete	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	5-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g o	of E	Bori	ing	I: F-14		Pa	ige 1 of 1
Clic Pro Loc Fai	ent ojec cati rallo gge	Prologis Ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/18 10/18 Powe Holoo Mitch Direc	3/16 (3/16 (erPro cene McC t Pus	@ 1145 @ 1420 be 9500 Carley sh	5 S 0 C 0 T T	ampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth Total Well Depth (fi	Macı):) (ft (ft b bgs	rocore bgs): ogs): ;):	Auto 12.0 16.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_	-	0.0-5.0': Hand auger to clear utilities. Poorly graded SAND with silt (90% sand, 10% silt), f sand, brown, moist, no odor.	ine to medium	SP-SN				0.0	Soil Screen @ 2.5'			Asphalt
5-		5.0-5.6': Poorly graded SAND with silt (90% sand, 10 medium sand, gray, moist, no odor. 5.6-6.0': SILT (90% silt, 10% sand), fine sand, gray, 6.0-8.0': No recovery.	0% silt), fine to	SP-SM		33		0.2	F-14-6.0	x		
- - 10 -		8.0-9.6': Sandy SILT (60% silt, 40% sand), fine to me moist, no odor. 9.6-12.0': No recovery.	edium sand, gray,	ML		40		0.3	F-14-9.0 F-14-GW	x		Bentonite
- - 15 -		12.0-16.0': Poorly graded SAND with silt (90% sand, medium sand, gray, wet, no odor.	, 10% silt), fine to	SP-SM		100		0.0	Soil Screen @ 12.0'			Water Level
-	-	Recon Groundwater Turbidity Readings Time: 1338 1339 1339 NTU: 444 373 470			(./							

Manual T		Well Construct	tion Information	Ground Surface Elevati	ion (ft):	ΝΔ
Casing Diameter (inches):	3/4	Filter Pack: Surface Seal:	NA Asphalt	Top of Casing Elevation	n (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X :NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite	Y	Y: NA	

		FARALLON CONSULTING		Lo	g o	of E	Bori	ing	j: F-16		Pa	ige 1 of 1
Clie Pro Loc Far	ent oje cat all	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/17 10/17 Powe Holoo Mitch	7/16 7/16 erPro cene n Mc(@ 1140 @ 1300 bbe 9500 Carley) S) C 0 C T T	Gampler Type: 4' Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth Total Well Depth (fi	Macı): D (ft (ft b bgs	rocore bgs): ogs): ;):	Auto 8.0 16.0 NA
Lo	gg	ed By: Ryan Ostrom	Drining Method.				511		1			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_			· · · · · · · · · · · · · · · · · · ·								2012	
-		0.0-5.0': Hand auger to clear utilities. Poorly graded SAND (95% sand, 5% silt), fine to me moist, no odor.	edium sand, gray,	SP				0.1	Soil Screen @ 2.5'			Asphalt
- 5		5.0-6.4': Poorly graded SAND with silt (90% sand, 1 medium sand, gray, moist, no odor. 6.4-8.0': No recovery.	0% silt), fine to	SP-SN		47		1.2	Soil Screen @ 6.4'			_
- 10 -		8.0-8.5': Silty SAND (70% sand, 30% silt), fine to me wet, no odor. 8.5-9.7': SILT (90% silt, 10% sand), fine sand, gray, 9.7-12.0': No recovery.	edium sand, gray, wet, no odor.	SM ML		43		0.4	Soil Screen @ 9.7'			Water Level
- - - 15 - -		12.0-13.0': Sandy SILT (70% silt, 30% sand), fine sa odor. 13.0-15.4': Silty SAND (80% sand, 20% silt), fine to gray, wet, no odor. 15.4-16.0': No recovery. Recon Groundwater Turbidity Readings	and, gray, wet, no medium sand,	ML SM		85		0.3	F-16-GW Soil Screen @ 15.0'	×		Bentonite
-		NTU: 273 187 130										

		Well Construc	tion Information	Ground Surface Flowation (ft):	NA
Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite	Y: NA	

		FARALLON CONSULTING		Lo	g o	of E	Bori	ing	I: F-17		Pa	age 1 of 1
Clic Pro Loc Fai	ent ojec cat rallo	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	10/17 10/17 Powe Holoo Mitch Direo	7/16 (7/16 (erPro cene McC t Pus	@ 1020 @ 1230 be 9500 Carley) S 0 D 0 T T	Gampler Type: 4' Drive Hammer (Ibs Depth of Water AT Total Boring Depth Total Well Depth (f	Maci .): D (ft (ft b t bgs	rocore bgs): ogs): ;):	Auto 12.5 16.0 NA
Lo	gge	ed By: Ryan Ostrom			1			1				
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boi Con [ring/Well struction Details
0_	_											
-	-	0.0-5.0': Hand auger to clear utilities. Poorly graded SAND with silt and gravel (70% sand silt), fine to medium sand, fine to coarse gravel, brow	, 20% gravel, 10% wn, moist, no odor.	SP-SM				0.3	Soil Screen @ 2.5'			Asphalt
-		5.0-7.8': Poorly graded SAND (95% sand, 5% silt), f sand, brown, moist, no odor.	ine to medium	SP		93		0.3	Soil Screen @			
	\mathbb{N}	7.8-8.0': No recovery. 8.0-9.7': SILT (90% silt 10% sand) fine sand grav.	moist netroleum	ML				126	Soil Screen @ 8.0'			Bentonite
10 -		9.7-12.0': No recovery.				43		378	F-17-9.7 F-17-GW	x x		
-		12.0-12.5': Poorly graded SAND (95% sand, 5% silt sand, brown, moist, petroleum-like odor.), fine to medium	SP SM				209	Soil Screen @ 12.0'			▼ Water Level
15 -		12.5-15.3': Silty SAND (70% sand, 30% silt), fine sa petroleum-like odor.	nd, gray, wet,			83						
-	$ \rangle$	15.3-16.0': No recovery.										
-	-	Recon Groundwater Turbidity Readings Time: 1110 1110 1111 NTU: 975 792 660										

Monument Type: NA Casing Diameter (inches): Screen Slot Size (inches):	3/4 0.010	Well Construc Filter Pack: Surface Seal: Annular Seal:	tion Information NA Asphalt NA	Ground Surface Eleva Top of Casing Elevati Surveyed Location:	tion (ft): on (ft): X:NA	NA NA
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g o	of E	Bori	ng	j: F-18		Pa	age 1 of 1
Clie Pro Loc Far	ent ojec cati callo gge	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: ited:	10/17 10/17 Powe Holoo Mitch Direc	7/16 (7/16 (erPro cene n McC ct Pus	@ 0835 @ 1015 be 9500 Carley sh	5 S 5 C 0 C T T	Gampler Type: 4' Drive Hammer (Ibs Depth of Water ATI Total Boring Depth Total Well Depth (fr	Macr .): D (ft I (ft b t bgs	bgs): gs):):	Auto 8.0 16.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boi Con [ring/Well struction Details
0_					$\left[2, 2 \right]$						888	
-		0.0-5.0': Hand auger to clear utilities. Poorly graded SAND with silt (80% sand, 10% grave medium sand, fine gravel, brown, moist, no odor.	I, 10% silt), fine to	SP-SM				0.0	Soil Screen @ 2.5'		222	Asphalt
-		5.0-7.0': Poorly graded SAND with silt (90% sand, 10 medium sand, brown, moist, no odor. 7.0-7.2': Silty SAND (70% Sand, 30% silt), fine sand,	0% silt), fine to	SP-SM		73		0.6	Soil Screen @ 7.0'			
-		7.2-8.0': No recovery.	از ا	SM /				17.4	F-18-8.0	x		Water Level
-	\bigvee	8.0-8.3': Silty SAND (70% Sand, 30% silt), fine sand, organic odor.	, gray, wet, mild	ML								
10 -	Å	8.3-10.0': SILT (95% silt, 5% sand), fine sand, gray, petroleum-like odor.	wet, mild	SM /		58		7.5	Soil Screen @ 9.8'			
-	$ \rangle$	10.0-10.3': Silty SAND (70% Sand, 30% silt), fine sau petroleum-like odor.	nd, gray, wet, mild ¦						E 40 014			
		10.3-12.0': No recovery. 12.0-12.8': Silty SAND (70% Sand, 30% silt), fine san petroleum-like odor. 12.8-16.0': SILT (95% silt, 5% sand), fine sand, gray petroleum-like odor.	nd, gray, wet, mild	SM		100			F-18-GW	×		Bentonite
-		Recon Groundwater Turbidity Readings Time: 0935 0935 0936 NTU: 865 723 644						1.3	Soil Screen @ 16.0'			

		Well Construc	tion Information	Ground Surface Flove	tion (ft)	ΝΑ
Casing Diameter (inches):	3/4	Filter Pack: Surface Seal:	NA Asphalt	Top of Casing Elevation	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING		Lo	g o	of E	Bori	ing	j: F-20		Pa	age 1 of 1
Cli Pro Lo Fa	ent ojeo cat rallo	: Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman:	ted:	10/18 10/19 AMS Holoo Mitch	3/16 (9/16 (910(cene 1 Mc(@ 1520 @ 1245) P Carley) S 5 D 7 7 7	ampler Type: 4' Drive Hammer (Ibs Depth of Water AT Fotal Boring Depth Fotal Well Depth (f	Mac .): D (ft n (ft k t bgs	rocore bgs): ogs): s):	Auto 5.0 12.0 NA
Lo	gg	ed By: Ryan Ostrom	Drilling Method:		Direc	t Pus	sn		1			
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	n	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0_	1				iiiii							0
5-	-	0.0-5.0": Hand auger to clear utilities. Silty SAND (70% sand, 20% silt, 10% gravel), fine to fine to coarse gravel, brown, moist, no odor. 5.0-6.6': Silty SAND (80% sand, 20% silt), fine to med	medium sand,	SM				0.0	F-20-2.5			Concrete ▼ Water Level
		orangish-gray, wet, no odor. 6.6-7.5': Sandy SILT (70% silt, 30% sand), fine sand, odor, minor wood debris at 7.0'.	gray, wet, no	ML		83		0.1	F-20-7.0	x		
10 -		7.5-8.0': No recovery. 8.0-11.2': SILT (95% silt, 5% sand), fine sand, gray, w	 vet, no odor.	ML		80			F-20-GW	x		Bentonite
15 -	-	11.2-12.0': No recovery. Refusal @ 12.0'. Encountered very slow recovery while collecting recor Turbidity was not measured. The well went dry 3 time water samples.	n groundwater. s while collecting									

		Well Construct	tion Information	Ground Surface Flove	tion (ft):	NA
Monument Type: NA	2/4	Filter Pack:	NA	Top of Cooing Elevation	(11).	
Casing Diameter (inches):	3/4	Surface Seal:	Concrete	Surveyed Location:	, iii).	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location.	X:NA	
Screened Interval (ft bgs):	7-12 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING		Lo	g c	of E	Bori	ing	I: F-21		Pa	age 1 of 1
Clic Pro Loc Fai	ent ojeo cat rallo	 Prologis East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman:	: eted:	10/19 10/19 Powe Holo Mitch	9/16 9/16 erPro cene n Mc0	@ 0910 @ 1035 be 950 Carley) S 5 C 0 C T T	ampler Type: 4' Drive Hammer (Ibs Depth of Water ATI Total Boring Depth Total Well Depth (fi	Mac): D (ft (ft b t bgs	rocore bgs): igs): s):	Auto 8.0 16.0 NA
Lo	gg	ed By: Ryan Ostrom	Drilling Method:		Direc	t Pu	sh					
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con [ring/Well struction Details
0_	1			· · · · ·								
-	-	0.0-5.0': Hand auger to clear utilities. Silty SAND (70% sand, 20% silt, 10% gravel), fine to fine to coarse gravel, brown, moist, no odor.	o medium sand,	SM				0.0	Soil Screen @ 2.5'		<u>~</u>	Top Soil
		5.0-6.7': Silty SAND (80% sand, 20% silt), fine to me brown, moist, no odor. 6.7-8.0': No recovery.	edium sand,	SM		57		0.0	F-21-6.7			
		8.0-9.1': Silty SAND (80% sand, 20% silt), fine to m brown, wet, no odor.	edium sand,	SM								Water Level
10 -		9.1-11.1': SILT (95% silt, 5% sand), fine sand, gray,	wet, no odor.	ML		78			F-21-GW	x		
	$ \rangle$	11.0-12.0': No recovery.										
		12.0-14.2': SILT (95% silt, 5% sand), fine sand, gray	y, wet, no odor.	ML		55		0.2	Soil Screen @ 12.0'			Bentonite
		Recon Groundwater Turbidity Readings Time: 1022 1022 1023 NTU: 134 138 130										

		Well Construc	tion Information	Ground Surface Flove	tion (ft):	ΝΑ
Casing Diameter (inches):	3/4	Filter Pack: Surface Seal:	NA Top Soil	Top of Casing Elevation	on (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	5-15 (Temp)	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g c	of E	Bori	ing	j: F-22		P	age 1 of 1
Clic Pro Loc Fai	ent ojeo cat rallo ggo	Prologis Ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 ed By: Ryan Ostrom	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	: eted:	10/19 10/19 Powe Holoo Mitch Direc	9/16 (9/16 (erPro cene n McC ct Pus	@ 1115 @ 1240 be 9500 Carley sh	5 S 0 C 0 T T	Gampler Type: 4' Drive Hammer (Ibs Depth of Water AT Total Boring Depth Total Well Depth (f	Mac .): D (ft I (ft k t bgs	rocore bgs): ogs): s):	Auto 5.0 16.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bo Cor I	ring/Well struction Details
0_	-	0.0-5.0': Hand auger to clear utilities. Silty SAND (85% sand, 15% silt), fine to medium san no odor.	ıd, brown, moist,	SM				0.1	Soil Screen @ 2.5'			Concrete
5-		 5.0-6.3': Silty SAND (70% sand, 30% silt), fine sand, odor. 6.3-7.0': Poorly graded SAND with silt (90% sand, 10 medium sand, gray, wet, no odor, minor wood debris 7.0-8.0': No recovery. 	brown, wet, no	SM SP-SN		66		0.1	F-22-7.0	x		Water Level
- 10 -		 8.0-8.7': Sity SAND (70% sand, 30% silt), fine sand, sodor, minor wood debris. 8.7-10.2': SILT (95% silt, 5% sand), fine sand, brown odor. 10.2-12.0': No recovery. 	gray, wet, no ish-gray, wet, no	SM ML		55			F-22-GW	x		
		12.0-14.3': SILT (95% silt, 5% sand), fine sand, brow odor, minor wood debris. 14.3-14.7': Poorly graded SAND (95% sand, 5% silt), wet, no odor.	nish-gray, wet, no	ML SP		68		0.2	Soil Screen @ 12.0'			Bentonite
		14.7-16.0': No recovery. Encountered very slow recovery while collecting reco Turbidity was not measured. The well went dry 3 time water samples.	on groundwater. es while collecting			-						

		Well Construc	tion Information	Ground Surface Elevation (
Monument Type: NA Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevation (ff)	n. NA
Screen Slot Size (inches):	0.010	Surface Seal: Annular Seal:	Concrete	Surveyed Location: X:N	Α
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite	Y : N	A

		FARALLON CONSULTING		Lo	g o	of E	Bori	ing	j: F-23		Pa	ige 1 of 1
Cli Pr Lo Fa	ent oje cat rall	 Prologis ct: East Marginal & South Norfolk ion: Seattle/Tukwila, Washington on PN: 1071-014 	Date/Time Started Date/Time Compl Equipment: Drilling Company Drilling Foreman:	d: eted: r:	10/19/16 @ 1045 Sampler Type: 4' Macrocore ad: 10/19/16 @ 1150 Drive Hammer (Ibs.): Auto PowerProbe 9500 Depth of Water ATD (ft bgs): 8.0 Holocene Total Boring Depth (ft bgs): 16.0 Mitch McCarley Total Well Depth (ft bgs): NA							Auto 8.0 16.0 NA
Lc	ogg	ed By: Ryan Ostrom	Drilling Method:		Direc	t Pus	sh					
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Bor Con E	ing/Well struction Details
0	-	0.0-5.0': Hand auger to clear utilities. Poorly graded SAND (95% sand, 5% silt), fine to me brown, moist, no odor.	edium sand,	SP				0.0	Soil Screen @ 2.5'			Concrete
5		5.0-6.7': Poorly graded SAND with silt (90% sand, 1 medium sand, brown, moist, no odor. , 6.7-7.1': Silty SAND (60% sand, 40% silt), fine sand	0% silt), fine to , gray, moist, no	SP-SM		70		0.8	Soil Screen @ 7.0'			
10 ·		7.1-8.0': No recovery. 8.0-8.3': Silty SAND (60% sand, 40% silt), fine sand odor. 8.3-10.6': SILT (95% silt, 5% sand), fine sand, gray	, gray, wet, no	ML		65						Water Level
		12.0-14.6': SILT (95% silt, 5% sand), fine sand, gray	/ ,wet, no odor.	ML		70			F-23-GW	x		Bentonite
15 -		14.6-14.8': Poorly graded SAND with silt (90% sand medium sand, brown, wet, no odor.14.8-16.0': No recovery.Recon Groundwater Turbidity Readings Time: 1110 1110 1111 NTU: >1000 >1000 >1000	, 10% silt), fine to	\$P-SM	<i>[</i>							

		Well Construc	tion Information	Ground Surface Flowation (ft):	ΝΑ
Casing Diameter (inches):	3/4	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Annular Seal:	NA	Surveyed Location: X:NA	
Screened Interval (ft bgs):	10-15 (Temp)	Boring Abandonment:	Bentonite	Y : NA	

Logs for Monitoring Wells MW-AG1 and MW-AG2

Dalton, Olmsted & Fuglevand, Inc. October 2009

Environmental Consultants

Monitor Well MW-AG1 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: D	Cooper		Location:	See Plan	MONITOR WELL MW-AG1
Drilling Co.: (Cascade Testin	g	Elevation		
Driller: Jaym	en		Date Com	pleted: 09/0	1/2009
Drill Type: Cl	ME 75		Weather: 0	Cloudy	
Size/Type Ca	asing: 4-inch Ho	ollow Stem Auger	r		
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description
		From - To	inches		
					No Soil Samples Taken -
					Log based on adjacent Probe P-DOF-6.4

SUMMARY LOG (Based on Probe P-DOF-6.4)

NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

Monitor Well MW-AG1 Installation Diagram

-0.3' to top of PVC/TOC

Seal: Hydrated bentonite chip

(top/bot) 1.5/7 Monument: 10" dia. Flush mount

Environmental Consultants

Monitor Well MW-AG2 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: D	Cooper		Location:	See Plan		MONITOR WELL MW-AG2			
Drilling Co.: (Cascade Testin	g	Elevation						
Driller: Curtis			Date Com	pleted: 10/0	2/2009				
Drill Type: Cl	ME 75		Weather: 0	Cloudy					
Size/Type Ca	asing: 4-inch Ho	ollow Stem Auger	r						
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description				
		From - To	inches						
					No Soil Samples Taken -				
					Log based on adjacent Probe P-DOF-6.1				

SUMMARY LOG (Based on Probe P-DOF-6.4)

NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

Monitor Well MW-AG1 Installation Diagram

-0.3' to top of PVC/TOC

Seal: Hydrated bentonite chip

(top/bot) 1.5/7 Monument: 10" dia. Flush mount

Logs for Borings UNI–P1 to UNI-P3

Dalton, Olmsted & Fuglevand, Inc. August 2009

Environmental Consultants

UG-NWAW

UNI - P1

BORING - DESCRI	PTION OF SAMPLE	S & DATA				UNI - P1		
Field Rep: DG Coo Drilling Co.: Cascade Driller: C. Goble Drill Type: Geoprope	oper e		Location: South of Lean-to Elevation (Ft.): AG grade Date Completed: 8/31/09			Ground Surface: Asphalt Concrete		
Size/Type Casing: 1.5" Rod			Hammer Type:	Direct push		Sampler Type: 2" Macro w/ acrylic liner		
Spl.No.	Type sample saved	Drill Action	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description		
		Smooth	0-5	60		2" AC, 4" crushed rock pavement section		
UNI-P1-4	Grab				0820	0.5-1.0 Moist, bwn, gravelly, SAND		
						1-5 Moist, bwn F-M SAND, ns no		
	3.5-4.5'							
			5-10	60		5-8 As above		
UNI-P1-9	Grab				0825	8-10 Wet, gry, silty, F SAND, w/scattered organics, ns, no		
	8.5-9.5'							
			10-15	36		10-14 Wet, gry, F sandy, SILT, ns, no		
UNI-P1-14	Grab				0830	14-15 Sat, gry, F SAND, ns, no		
	13.5-14.5							
			15-20	60		15-20 Sat, gry, F-M SAND, ns, no		
UNI-P1-19	Grab			Piston	0835			
	18.5-19.5							

Completed boring backfilled with granular bentonite ns - No sheen; no - No odor; F - Fine; F_M - Fine to medium

Environmental Consultants

UG-NWAW

UNI - P2

BORING - DESCRI	PTION OF SAMPLES	UNI - P2				
Field Rep: DG Coo	per		Location: Cente	r		
Drilling Co.: Cascade	е		Elevation (Ft.): AG grade			Ground Surface: Asphalt Concrete
Driller: C. Goble			Date Completed	8/31/09		
Drill Type: Geoprobe 6600			Weather: Cloud	y 65F		
Size/Type Casing: 1	Size/Type Casing: 1.5" Rod			Direct push		Sampler Type: 2" Macro w/ acrylic liner
Spl.No.	Type sample saved	Drill Action	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description
		Smooth	0-5	60		2" AC, 4" crushed rock pavement section
UNI-P2-4	Grab				0850	0.5-2 Moist, bwn, silty, F_M SAND
						2-5 Moist, bwn, F-M SAND, ns, no
	3.5-4.5'					
			5-10	48		5-8 As above
UNI-P2-9	Grab				0855	8-10 Wet, gry, silty, F SAND, w/scattered organics, ns, no
	8.5-9.5'					
			10-15	48		10-12 Wet, gry, F sandy, SILT, ns, no
UNI-P2-14	Grab				0900	12-15 Sat, gry, F SAND, ns, no
	13.5-14.5					
			15-20	60		15-20 Sat, gry, F-M SAND, ns, no
UNI-P2-19	Grab			Piston	0905	
	18.5-19.5					

Completed boring backfilled with granular bentonite ns - No sheen; no - No odor; F - Fine; F_M - Fine to medium

Environmental Consultants

UG-NWAW

UNI - P3

BORING - DESCRI	PTION OF SAMPLE	S & DATA				UNI - P3		
Field Rep: DG Coo	per		Location: North	of Lean-to				
Drilling Co.: Cascade	e		Elevation (Ft.): AG grade			Ground Surface: Asphalt Concrete		
Driller: C. Goble			Date Completed	: 8/31/09				
Drill Type: Geoprobe 6600			Weather: Cloud	y 65F				
Size/Type Casing: 1	1.5" Rod		Hammer Type:	Direct push		Sampler Type: 2" Macro w/ acrylic liner		
Spl.No.	Туре	Drill	Spl Depth (Ft.)	Spl length	Time	Sample Description		
	sample saved	Action	From - To	inches				
		Smooth	0-5	60		2" AC, 4" crushed rock pavement section		
UNI-P3-4	Grab				0920	0.5-1.5 Moist, bwn, silty, F_M SAND		
						1.5-5 Moist, bwn, F-M SAND, ns, no		
	3.5-4.5'							
			5-10	48		5-9 As above		
UNI-P3-9	Grab				0925	9-10 Wet, gry, silty, F SAND, w/scattered organics, ns, no		
	8.5-9.5'							
			10-15	48		10-11 Wet, gry, F sandy, SILT, ns, no		
UNI-P3-14	Grab				0930	11-15 Sat, gry, F SAND, ns, no		
	13.5-14.5							
			15-20	60		15-20 Sat, gry, F-M SAND, ns, no		
UNI-P3-19	Grab			Piston	0935			
	18.5-19.5							

Completed boring backfilled with granular bentonite ns - No sheen; no - No odor; F - Fine; F_M - Fine to medium

Logs for Borings NWAW-P1 to NWAW-P16

Dalton, Olmsted & Fuglevand, Inc. October 2008

Probe Designation	Date Position Recorded	Time Position Recorded	Northing (ft)	Easting (ft)	Latitude	Longitude
P-1	11/5/2008	03:34:29pm	190107.6	1280119.2	47.51181348	-122.2913255
P-2	11/5/2008	03:46:26pm	190052.2	1280222.3	47.51166705	-122.2909044
P-3	11/5/2008	03:40:54pm	189960.4	1280106.1	47.51140949	-122.2913675
P-4	11/5/2008	03:25:34pm	189641.4	1280237.8	47.51054179	-122.2908101
P-5	11/5/2008	03:16:38pm	189740.0	1280113.3	47.51080572	-122.2913214
P-6	11/5/2008	03:21:34pm	189577.8	1280121.3	47.51036141	-122.2912766
P-7	11/5/2008	02:56:42pm	190066.2	1279724.3	47.51167951	-122.2929201
P-8	11/5/2008	02:44:50pm	189756.5	1279824.3	47.51083592	-122.2924916
P-9	11/5/2008	03:53:35pm	189678.7	1279855.6	47.51062438	-122.2923593
P-10	11/5/2008	04:02:04pm	189648.0	1279977.6	47.51054638	-122.2918631
P-11	11/5/2008	03:58:39pm	189591.1	1279891.4	47.51038609	-122.2922077
P-12	11/5/2008	03:03:13pm	190065.4	1279982.8	47.51169084	-122.2918742
P-13	11/5/2008	03:07:16pm	189809.2	1279994.9	47.5109893	-122.2918056
P-14	11/5/2008	02:49:33pm	189886.0	1279777.5	47.51118855	-122.2926912
P-15	11/5/2008	03:30:22pm	189929.8	1280219.7	47.51133141	-122.2909053
P-16	11/5/2008	02:53:06pm	189990.6	1279791.4	47.51147591	-122.292643

Horizontal Coordinates in U.S. State Plane 1983, Washington North 4601, NAD 1983 (Conus)

Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P1 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Oimsted		Location:	See Plan						
Drilling Co.: C	ascade Testing	9	Elevation PROBE N							
Driller: Frank	Scott		Date Comp	Completed: 10/27/2008						
Drill Type: AN	AS 9630 Direct	Push Probe	Weather: C	Weather: Clear and Cool						
Size/Type Ca	sing: E-Rod									
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description					
	Direct Push	0-4	36	0815	0-1.5' Red and brown, silty, fine to coarse sandy GRAVEL - brick and concrete fragments					
	Direct Death			0020	1.5-4' Gray, tine sandy, clayey SIL1					
	Direct Push	4-8	30	0630	5-8' Gray, silty, fine to medium SAND - Wet					
	Direct Push	8-12	36	0835	8-12' As above					
NWAW-P1	WATER	screen 8-12	-	0915	Analysis: NWTPH-G/BTEX; NWTPH-D extended; Metals Pb, Ag, Cd					

Depth(ft.) SUMMARY LOG

0	
1.5	Red and brown, silty, fine to coarse sandy GRAVEL (brick and concrete fragments)
	Gray, fine sandy, clayey SILT
5	
	Gray, very silty to silty, fine to medium SAND wet below about 6 feet
12	

NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P2 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted			Location:	See Plan		
Drilling Co.: Cascade Testing			Elevation		PROBE NWAW-P2	
Driller: Frank Scott			Date Comp	leted: 10/27/2008		
Drill Type: AMS 9630 Direct Push Probe			Weather: Clear and Cool			
Size/Type Ca	sing: E-Rod					
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description	
		From - To	inches			
	Direct Push	0-4	36	0950	0-3' Red and brown, silty, fine to coarse sandy GRAVEL - brick and	
					concrete fragments	
					3-4' Gray, fine sandy, clayey SILT	
	Direct Push	4-8	36	0955	4-7' As above	
					7-8' Gray, silty, fine SAND - Wet	
	Direct Push	8-12	36	1000	8-12' As above	
NWAW-P2	WATER	screen 8-12	-	1015	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd	

Depth(ft.) SU

SUMMARY LOG

	Red and brown, silty, fine to coarse sandy GRAVEL (brick and concrete fragments)
3	
	Gray, fine sandy, clayey SILT
7	
	Gray, silty, fine to medium SAND wet below about 6 feet
2	(Bottom of Broba)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

PROBE NWAW-P3

DIRECT PUSH PROBE NO. NWAW-P3 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Olmsted		Location:	See Plan	
Drilling Co.: Cascade Testing Driller: Frank Scott			Elevation		PROBE NWA
			Date Com	pleted: 10/27/20	008
Drill Type: AN Size/Type Ca	IS 9630 Direct sing: E-Rod	Push Probe	Weather: (Clear and Cool	
Spl.No.	Туре	Spl Depth (Ft. From - To	Spl length inches	Time	Sample Description
	Direct Push	0-4	48	1040	0-2' Red and brown, silty, fine to coarse sandy GRAVEL - brick and concrete fragments 2-3' Gray, brown, silty, fine SAND 3-4' Gray, fine sandy, clayey SILT
		t	1		

Direct Push 1045 1-7' As above 4-8 48 7-8' Gray, silty, fine SAND - Wet Direct Push 8-12 48 1055 8-12' As above WATER screen 8-12 1115 Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.)

NWAW-P3

SUMMARY LOG

0	
	Red and brown, sitty, fine to coarse sandy GRAVEL (brick and concrete fragments)
2	
3	Gray, brown, silty, fine SAND
	Gray, fine sandy, clayey SILT
7	
	Gray, silty, fine to medium SAND wet below about 6 feet
12	

NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristattic pump

(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.
Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P4 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Oimsted		Location:	See Plan	
Drilling Co.: Cascade Testing Driller: Frank Scott			Elevation		PROBE NWAW-P4
			Date Com	pleted: 10/27/2008	
Drill Type: AMS 9630 Direct Push Probe		Weather: (Clear and Cool		
Size/Type Ca	sing: E-Rod				
Spl.No.	Туре	Spl Depth (Ft.) Spl length	Time	Sample Description
		From - To	inches		
	Direct Push	0-4	48	1140	0-3' Red and brown, silty, fine to coarse sandy GRAVEL - brick and
					3-4' Dark brown, fine sandy SILT with some decayed grass
	Direct Push	4-8	36	1145	4-7' Gray, silty, very fine SAND/fine sandy, SILT - Wet
					7-8' Gray, silty, very fine SAND with fine sandy SILT layers - Wet
	Direct Push	8-12	48	1200	8-12' As above
NWAW-P4	WATER	screen 8-12	•	1215	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.)

SUMMARY LOG

0	
	Red and brown, silty, fine to coarse sandy GRAVEL
	(brick and concrete fragments)
3	
	Dark brown, fine sandy SILT with some decayed grass
4	
1	
	Gray, silty, very fine SAND/fine sandy SILT - Wet
7	

Gray, silty, very fine SAND with fine sandy SILT layers -Wet

12

(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

PROBE NWAW-P5

DIRECT PUSH PROBE NO. NWAW-P5 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Olmsted		Location: See Plan			
Drilling Co.: 0	Cascade Testin	Elevation				
Driller: Frank	Scott		Date Completed: 10/27/2008			
Drill Type: Al	AS 9630 Direct	Push Probe	Weather: (Clear and C	ool	
Size/Type Ca	ising: E-Rod					
Sol No	Type	Sol Deoth (Et.)	Snl length	Time		

	- -				
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description
		From - To	inches		
	Direct Push	0-4	36	1245	0-3' Gray and brown, silty, fine to coarse SAND with brick and
					concrete fragments
					3-4' Brown, sitty, fine SAND
	Direct Push	4-8	48	1250	4-7' Gray, fine sandy, clayey SILT
					7-8' Gray, silty, fine SAND - Wet
	Direct Push	8-12	48	1300	8-12' Gray layered silty very fine SAND and fine sandy SILT
	Direct Push	12-16	6	1305	12-16' disturbed - wet sturry of silty SAND
NWAW-P5	WATER	screen 12-16	-	1315	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.) SUMMARY LOG

0	
Gray and brown, silty, fine to coarse SAND	
(brick and concrete fragments)	
3 Brown siitht fing SAND	
A DIOWN, SINKY, THE SAND	
4	
Grav, fine sandy, clavey SILT	
7	
Gray, layered, silty fine SAND and fine sandy SILT	
Wet	
16	
104	

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

PROBE NWAW-P6

DIRECT PUSH PROBE NO. NWAW-P6 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted
Drilling Co.: Cascade Testing
Driller: Frank Scott
Drill Type: AMS 9630 Direct Push Probe
Size/Type Casing: E-Rod

Location: See Plan Elevation Date Completed: 10/27/2008 Weather: Clear and Cool

on i jpor a					
Size/Type Ca	asing: E-Rod				
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description
		From - To	inches		
	Direct Push	0-4	36	1350	0-1' Brown and red, fine to coarse sandy GRAVEL with brick and concrete fragments
					1-4' Gray-brown, silty, fine to medium SAND with red fragments
	Direct Push	4-8	48	1355	4-5' Same as above
					5-8' Gray brown, fine sandy, clayey SILT - moist
	Direct Push	8-12	48	1400	8-10' Gray clayey SILT
			1 1		10-12' Dark gray, fine to medium SAND, wet
	Direct Push	12-16	48	1405	12-16' Same as above
NWAW-P6	WATER	screen 12-16	-	1415	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.) SUMMARY LOG

Gray and brown, silty, fine to coarse SAND (brick and concrete fragments) Brown, silty, fine SAND Gray, fine sandy, clayey SILT Gray, layered, silty fine SAND and fine sandy SILT Wet
(brick and concrete fragments) 3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
3 Brown, siilty, fine SAND 4 Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
Brown, siilty, fine SAND Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, fine sandy, clayey SILT
Gray, fine sandy, clayey SILT Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, fine sandy, clayey SILT 7 Gray, layered, silty fine SAND and fine sandy SILT Wet
7 Gray, layered, silty fine SAND and fine sandy SILT Wet
7 Gray, layered, silty fine SAND and fine sandy SILT Wet
7 Gray, layered, silty fine SAND and fine sandy SILT Wet
7 Gray, layered, silty fine SAND and fine sandy SILT Wet
7 Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, layered, silty fine SAND and fine sandy SILT Wet
Gray, layered, silty fine SAND and fine sandy SILT Wet
Wet
6
*

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

3/11/2009

Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P7 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

DIRECT PU	SH PROBE NO). NWAW-P1 - D	ESCRIPTIO	IN OF SAL	MPLES, TESTS, AND INSTALLATION		
Field Rep: T	. Olmsted		Location: See Plan				
Drilling Co.: Cascade Testing			Elevation	PROBE NWAW-P7			
Driller: Frank Scott		Date Completed: 10/27/2008					
Drill Type: A	MS 9630 Direc	t Push Probe	Weather: C	Clear and C	Cool		
Size/Type C	asing: E-Rod						
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description		
	Direct Push	0-4	36	1450	0-1' Red and brown, silty fine to coarse SAND with gravel - brick and concrete fragments 1-4' Dark gray, very silty fine SAND with organic fragments		
	Direct Push	4-8	48	1455	4-8' Gray fine sandy to clayey SILT - upper 1- wet		
	Direct Push	8-12	48	1500	8-11' Same as above except wet 11-12' Dark gray, sitty, fine to medium SAND wet		
	Direct Push	12-16	48	1505	12-16' Same as above		
NWAW-P7	WATER	screen 12-16	-	1515	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd		

Depth(ft.) SUMMARY LOG

0		
	Red and brown, silty, fine to coarse SAND with gravel	
1	(brick and concrete tragments)	
	Dark gray, very silty, fine SAND with organic fragments	5
4		
	Gray, fine sandy to clayey SILT wet 4 to 5' and below t	3.
11		
	Dark gray, fine to medium SAND - wet	
16		
((Bottom of Probe)	

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P8 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted Drilling Co.: Cascade Testing			Location:	See Plan	
			Elevation		PROBE NWAW-P
Driller: Frank	Scott		Date Com	pleted: 10/27	/2008
Drill Type: Al	MS 9630 Direc	t Push Probe	Weather:	Clear and Co	ol
Size/Type Ca	asing: E-Rod	_			
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description
	Direct Push	0-4	36	1545	0-4' Gray and brown, silty fine to coarse SAND with gravel - brick and concrete fragments
	Direct Push	4-8	36	1550	4-6' Same as above with pea gravel 6-8' Gray, fine sandy clayey SILT
	Direct Push	8-12	48	1555	8-12' Same as above except grading to sandier and wet below 10'
	Direct Push	12-16	48	1600	12-16' Dakr gray, fine to medium SAND
NWAW-P8	WATER	screen 12-16	-	1615	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.) SUMMARY LOG

0

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Dalton, Olmsted & Fuglevand, Inc. Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P9 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Olmsted		Location:	See Plan	
Drilling Co.: Cascade Testing			Elevation		PROBE NWAW-P9
Driller: Frank	Scott	•	Date Comp	leted: 10/2	8/2008
Drill Type: Al	MS 9630 Direct	Push Probe	Weather: F	oggy and (Cool
Size/Type Ca	asing: E-Rod				
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl tength inches	Time	Sample Description
	Direct Push	0-4	48	1200	0-0.4' Asphalt 0.4-0.8' Pea Gravel 0.8-1.5' Gravelly silty fine to coarse SAND 1.5-4' Brown, Silty, fine to medium SAND
	Direct Push	4-8	48	1205	4-6' As above 6-8' Gray, clayey SILT with organics
	Direct Push	8-12	48	1210	8-12' As above becoming sandy
	Direct Push	12-16	48	1215	12-16' Dark gray, silty, fine to medium SAND - wet
NWAW-P9	WATER	screen 12-16	•	1230	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.) SUMMARY LOG 0

	5" Asphalt
0.8	5" Pea Gravel
1.5	Gravelly fine to coarse silty SAND
6	Brown, silty, fine to medium SAND
	Gray, clayey SILT becoming sandy below about 10 feet
12	
	Dark gray, silty fine to medium SAND, wet
16	

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

(Bottom of Probe)

Dalton, Olmsted & Fuglevand, Inc. **Environmental Consultants**

Field Rep: T. Olmsted		Location:				
Drilling Co.: C	Cascade Testir	g	Elevation		PROBE NWAW-P1	
Driller: Frank	Scott		Date Comp	pleted: 10/2	28/2008	
Drill Type: AMS 9630 Direct Push Probe Size/Type Casing: E-Rod		Weather: Clear and Cool				
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description	
	Direct Push	0-4	36	1330	0-0.4' Asphatt 0.4-2.5' Gravelly sitty fine to coarse SAND 2.5-4' Gray-brown, silty, fine to medium SAND	
	Direct Push	4-8	48	1335	4-5' As above 5-8' Gray and brown, clayey SILT wet	
	Direct Push	8-12	48	1340	8-12' As above becoming sandy - wet	
	Direct Push	12-16	48	1345	12-16' Gray, silty to slightly silty, fine SAND - wet	
NWAW-P10	WATER	screen 12-16	-	1400	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd	

Depth(ft.) SUMMARY LOG

-	
	5" Asphalt
	Gray, silty, gravelly, fine to coarse SAND
2.5	
	Gray-brown, silty, fine to medium SAND
5	
,	
	Desure and serve almost Oll Theoremics conducted
	Brown and gray, clayey SIL1 becoming sandy below about 10 feet
12	
	Gray, silty to slightly silty, fine SAND - wet
16	

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

(Bottom of Probe)

DIRECT PUSH PROBE NO. NWAW-P11 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted	
Drilling Co.: Cascade Testing	
Driller: Frank Scott	
Drill Type: AMS 9630 Direct Push Probe	
Size/Type Casing: E-Rod	

Location: See Plan Elevation Date Completed: 10/28/2008 Weather: Clear and Cool

PROBE NWAW-P11

Size/Type Ca	Size/Type Casing: E-Rod						
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description		
		From - To	inches				
	Direct Push	0-4	36	1420	0-0.4' Asphait		
					0.4-2.5' Gray, gravelly silty fine to coarse SAND		
					2.5-4' Brown, silty, fine to medium SAND		
	Direct Push	4-8	48	1425	4-5.5' As above		
					5.5-8' Gray-brown, clayey SILT wet		
	Direct Push	8-12	48	1430	8-12' As above		
	Direct Push	12-16	48	1435	12-16' Dark gray, silty, fine SAND - wet		
NWAW-P11	WATER	screen 12-16	-	1450	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd		

Depth(ft.) SUMMARY LOG

U	
	5" Asphalt
	Gray, gravelly, silty, fine to coarse SAND
7 E	
2.3	
	Gray-brown silty fine to medium SAND
5.5	
	Gray-brown, clayey SILT - wet
12	
	Dark gray, silty, fine SAND - wet
16	

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

(Bottom of Probe)

Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P12 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted			Location:	See Plan		
Drilling Co.: Cascade Testing		Elevation PROBE				
Driller: Frank Scott Drill Type: AMS 9630 Direct Push Probe Size/Type Casing: E-Rod			Date Completed: 10/27/2008 Weather: Clear and Cool			
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description	
	Direct Push	0-4	36	1630	0-1.5' Red and brown, silty, fine to coarse sandy GRAVEL - brick and concrete fragments 1.5-4' Gray-brown, fine sandy, clayey SILT	
	Direct Push	4-8	48	1635	4-7' As above 7-8' Gray, silty, fine SAND - Wet	
	Direct Push	8-12	36	1640	8-12' As above	
NWAW-P12	WATER	screen 8-12	-	1645	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd	

Depth(ft.) SUMMARY LOG

0
Red and brown, silty, fine to coarse sandy GRAVEL
(brick and concrete fragments)
1.5
Gray-brown fine sandy, clayey SILT - wet
Gray, silty, fine to medium SAND - wet
(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Dalton, Olmsted & Fuglevand, Inc. Environmental Consultants

PROBE NWAW-P13

DIRECT PUSH PROBE NO. NWAW-P13 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T. Olmsted						
Drilling Co.: Cascade Testing						
Driller: Frank Scott						
Drill Type: AMS 9630 Direct Push Probe						
Size/Type Casing: E-Rod						
Spl.No.	Туре	Spl Depth (Ft.)	Sp			
		From - To	i			

Location: See Plan Elevation Date Completed: 10/28/2008 Weather: Foggy and Cool

Size/Type Ca	ize/Type Casing: E-Rod						
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description		
	Direct Push	0-4	48	0800	0-1' Red and gray, silty fine to coarse SAND with brick and concrete fragments 1-3' Brown, silty, fine to medium SAND 3-4' Brown, clayey SILIT		
	Direct Push	4-8	6	0805	4-8' As above		
i	Direct Push	8-12	48	0810	8-12' As above		
	Direct Push	12-16	48	0815	12-14' As above 14-16' Dark gray, fine to medium SAND		
NWAW-P13	WATER	screen 12-16	-	0830	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd		

Depth(ft.) SUMMARY LOG

υ.	
	Red and gray, silty, fine to coarse SAND
1	(Drick and concrete tragments)
2	Brown, silty, fine to medium SAND
3	
	Brown and gray, fine sandy, clayey SILT
14	
	Dark gray, fine to medium SAND, wet
16	
.9	(Pottern of Braha)
	(Dottom of Probe)

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

PROBE NWAW-P14

DIRECT PUSH PROBE NO. NWAW-P14 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION Field Rep: T. Olmsted Location: See Plan

Field Rep: T. Olmsted
Drilling Co.: Cascade Testing
Driller: Frank Scott
Drill Type: AMS 9630 Direct Push Probe
Size/Type Casing: E-Rod

Elevation Date Completed: 10/28/2008 Weather: Foggy and Cool

Size/Type Ca	ising: E-Rod				
Spl.No.	Туре	Spl Depth (Ft.)	Spl length	Time	Sample Description
		From - To	inches		
	Direct Push	0-4	48	0900	0-1' Red and gray, silty fine to coarse SAND with brick and concrete fragments
					1-4' Brown, silty, fine to medium SAND
	Direct Push	4-8	48	0905	4-5' As above
					5-8' Gray, clayey SILT
	Direct Push	8-12	48	0910	8-12' As above grading to fine sandy SILT
	Direct Push	12-16	48	0915	12-13' As above
					13-16' Dark gray, silty, fine to medium SAND - wet
NWAW-P14	WATER	screen 12-16	-	0930	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd

Depth(ft.) SUMMARY LOG

NOTE: 4-foot temporary stainless screen set @ 16 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristaltic pump

Environmental Consultants

PROBE NWAW-P15

DIRECT PUSH PROBE NO. NWAW-P15 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION Field Rep: T. Olmsted Location: See Plan

Field Rep: T. C	Imsted		Locatio
Drilling Co.: Ca	scade Testi	ng	Elevatio
Driller: Frank S	cott		Date Co
Drill Type: AMS	5 9630 Direc	t Push Probe	Weathe
Size/Type Casi	ing: E-Rod		
Spl.No.	Туре	Spl Depth (Fi	.) Spl leng

Elevation Date Completed: 10/28/2008 e Weather: Foggy and Cool

Drill Type: AM	S 9630 Direct	Push Probe	weather: Foggy and Cool									
Size/Type Cas	ing: E-Rod	_										
Spi.No.	Туре	Spl Depth (Ft.)	Spi length	Time	Sample Description							
		From - To	inches									
	Direct Push	0-4	36	1000	0-1' Red and brown, silty, fine to coarse sandy GRAVEL - brick and							
					concrete fragments							
					1-3' Brown, silty, fine to medium SAND							
					3-4' Gray clayey SILT							
	Direct Push	4-8	48	1005	4-6.5' As above							
					6.5-8' Dark gray, silty, fine to medium SAND							
	Direct Push	8-12	48	1010	8-12' As above							
NWAW-P15	WATER	screen 8-12	-	1020	Analysis: NWTPH-G/BTEX; NWTPH-D ext.; Dissolved metals Pb, Ag, Cd							

Depth(ft.)

) SUMMARY LOG

U	
1	Red and brown, silty, fine to coarse sandy GRAVEL (brick and concrete fragments)
'	
	Brown, silty, fine to medium SAND
3	
	Gray clayey SILT
<u>م</u> م	
0.5	
	Dark gray, silty, fine to medium SAND - wet
12	
	(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 12 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristattic pump

Dalton, Olmsted & Fuglevand, Inc. Environmental Consultants

DIRECT PUSH PROBE NO. NWAW-P16 - DESCRIPTION OF SAMPLES, TESTS, AND INSTALLATION

Field Rep: T.	Dimsted		Location:	See Plan
Drilling Co.: C	ascade Testi	ng	Elevation	
Driller: Frank \$	Scott		Date Com	pleted: 10/28/2008
Drill Type: AM	S 9630 Direc	t Push Probe	Weather:	Foggy and Cool
Size/Type Cas	sing: E-Rod			
Sol No.	Tuno	Sol Dooth (Et	Sol length	Time

PROBE NWAW-P16

rill Type: AM ize/Type Cas	S 9630 Direct sing: E-Rod	Push Probe	Weather: Fo	ggy and Cool	
Spl.No.	Туре	Spl Depth (Ft.) From - To	Spl length inches	Time	Sample Description
	Direct Push	0-4	36	1050	0-3' Gray, silty, gravelly fine to coarse SAND - brick and conc. frags 3-4' Gray, silty SAND
	Direct Push	4-8	48	1055	4-8' Gray clayey SILT - wet
	Direct Push	8-12	48	1100	8-10' as above 10-12' Gray, silty fine SAND - wet
WAW-P16	WATER	screen 8-12	· · ·	1120	Analysis: NWTPH-G/BTEX: NWTPH-D ext.: Dissolved metals Pb, Ag, Cd

Depth(ft.)

SUMMARY LOG

Red and brown, silty,gravelly, fine to coarse SAND (brick and concrete fragments)

Gray, silty, fine to medium SAND

Gray clayey SILT - wet

10

3

Gray, silty, fine SAND - wet

12

(Bottom of Probe)

Completed probe backfilled with granular bentonite NOTE: The summary log is an interpretation based on samples, probe action, and interpolation. Variations between what is shown and actual conditions should be anticipated. NOTE: 4-foot temporary stainless screen set @ 13 feet below ground surface following drilling. Water collected through 1/4" diameter polyethylene tubing using a peristattic pump

Logs for Borings P-DOF-2 and EM1

Dalton, Olmsted & Fuglevand, Inc. February and April 2007 Probe Log P-DOF-2 Dalton, Olmsted Fuglevand, Inc.

_

BORING - DESI	CRIPTION OF SAM	PLES & DATA			Locati	on P-DOF-2					
ield Rep: DG	Cooper		Location: SW of v	vrecking yard							
Drilling Co.: Cas	cade		Elevation (FL):			Ground Surface: Asphalt					
Driller; Kasey			Date Completed:	2/27/07							
Drill Type: Dedri	dh D-25		Weather: Cloudy	50+							
Size/Type Casin	g: E-rod		Hammer Type: D	inect push	Sampler Type: 4' long x 1-1/4" dia. Core retained in an acrylic sleeve						
Spi.No.	Type	Drill	Spi Depth (Ft.)	Spi lengin	1 ime	Sample Description					
	sample saved	Action	From - 10	inches							
			0-4	48		4" asphar concrete					
						0.2-2.0' M dense, damp, mot gry-bwn, sandy, GRAVEL, w/ some sit					
						2.0-4' Loose, damp bwn, F SAND, w/ trace sitt					
P-DOF-2-8	grab		4-8	48	0920	4-5° as above					
	7.5-8.0			1		6-8' Soft, wet, bwn, SILT, w/ trace organics					
			B-12	48		8-11' as above					
			i i	1		11-12 Loose, sat, gry, F-M SAND					
			12-16	48		12-16' as above					
			ł			•					
				1		·					
			l.	1							
				1							
			<u>}</u>	i							

LABORATORY SAMPLES:

Water: P-DOF-2 for HCID, VOCs

0	SUMMARY LOG
	4" asphalt concrete
2	M dense, damp, mot gry-bwn, sandy, GRAVEL, w/ some silt
	Loose, damp bwn, F SAND, w/ trace sitt
6	
	Soft, wet, bwn, SiLT, w/ trace organics
11	
16	Loose, sat, gry, F-M SAND
	(Bottom of Boring)

NOTE: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated. Notes: Temporary Screen set @ 16' below ground surface consisting of 3/4" diameter PVC following drilling. Water sample collected using peristatic pump through 1/4" diameter polyethylene tubing with intake @ 12 bgs.

. .

.

Completed boring backfilled with granular bentonite and patched with asphalt cold-patch.

•

Environmental Consultants

BORING - DESCR	IPTION OF SAMPLES	& DATA			Location	EM1
Field Rep; DG Co	0095		Location: 15' eas	t of property lis	ne @ E Ma	arginal Way, 20' south of 60" storm sewer
villing Co.: Casce	de		Elevation (Ft.):			Ground Surface: Asphak
niller: Kasey			Date Completed:	4/16/07		
hill Type: Dedrich	D-25		Weather: Cloudy	/ 50F		
ize/Type Casing:	E-rod		Hammer Type: [Direct push	Sampler	Type: 4' long x 1-1/4" dia. Core retained in an acrylic sleeve
Spl.No.	Type sample saved	Drill Action	Spi Depth (FL) From - To	Spillength inches	Time	Sample Description
			04	36		3" asphalt concrete
						0.4-3.0" Dense, damp, mot gry-bwn, sandy, GRAVEL, w/ some sitt
						3.0-4.0' Loose, moist, bwn, F-M SAND
			4-8	48		4-5.5" as above
						5-8.0" M Stiff, mot bwn, SILT, w/ F sand interbeds
EM1-10	grab		8-12	48	0900	8-12.0° as above
	10-11'					Saturated @ 10'
• • • •			12-16	48		12-13' as above
						13-16' soft, wet, gry organic, SILT, grding to silty, F Sand

LABORATORY SAMPLES:

Water: EM1 for NWTPH-G/BTEX, NWTPH-DX Soil:

EM1-10 for NWTPH-G/BTEX, NWTPH-DX

Depth(ft.)

Notes: 4' hydropunch screen set @ 16' below ground surface following drilling. Water sample collected using peristalitic pump through 1/4" diameter polyethylene tubing with intake @ 12' bgs.

Completed boring backfilled with granular bentonite and patched with asphalt cold-patch.

FIGURE 3

Logs for Borings P01 to P09 and Monitoring Wells MW01 to MW05

Sound Environmental Strategies, Inc. January 2007

Log	of	Expl	ora	tory	Boring:		-			·····	Drilling Co./Dri Drilling Method	iller: 1:	ESN N Geopr	W /	Marty
			 ,.						<u> </u>		Location: Ta	ink cavity			
Mois	ture V = 1		tent:	amo	Met = Moist	Wat	= \Ma	ł	<u>Wate</u>	Levels	Surface Condi	tion:	Asoha		
ر الل مستحد	y - 1	hon		n N	$\Omega = n \sigma od \sigma r$		- 440	faint ador	▼ Aft	er Completion	Total Depth:		10		
Wan W	<u>oca</u> 0 = 1	weak	odor,	<u>с</u> N МО	= moderate (odor,	= very SO = s	strong odor	¥ Du	ring Drilling	First GW Depl	th:	7		, <u></u>
Depth (feet)	Blow Count	DId	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descriptio	'n			Moisture Content	Well Detai
		0.0	56		P01-04		SM	Asphait Moist, fine- coarse subr (Fill)	to coarse ounded t	⊢grained sitty Sano o subangular gravi	l, olive-brown, w el. No odor, no c	rith fine to liscoloration	n.	Mst	
		0.0	63		P01-07		GM	Moist to wet (pea-gravel) pea-gravel). - Drove the	; (at 7 fee), gray, w No odor pre-pack	it bgs), fine, suban ith fine- to coarse , no discoloration. ed screen to 10 fee	gular to angular grained sand (ta et bgs.	silty Grave nk cavity		Wet Z	
								Boring termi install the w Groundwate Boring was installed as Monitoring v Flushmount	inated at ell on 1/1 r was en complete illustrate vell scree surface	8 feet, drilled to 10 0/2007. countared at 7 feet d 1-inch diarmeter d above-right. aned from 5 feet to completion.) feet bgs withou t bgs during drill monitoring well 10 feet bgs.	nt sampling ing. MW01	to		
		OUNI)	PA 17		orthwe	est Au	to Wrecking		Date Started: 1 Date Finished:	1/10/2007 1/10/2007		BORIN	GLO	G
4	Sound	INV IK TRAT i Senviro	UN/ EGIE:	iEN1/ S rtal.co	AL 10230) East Tukw	l Marg ila, Wi	inal Way So ashington	uth	Chik By: AlS Chik By: AlS SES Project No. File ID.:	.: 0563-001-01		P01/M Page	1W01	1

--.

Log	of	Expl	lora	tory	Boring:						Drilling Co./Dri	lier: ESN	NW /	Marty
Notes		-			•						Drilling Method	: Geo	probe	
	•										Location: Be	hind the buildin	g	
				·	·····				1		4			
Mois	ture		tent:	1am-	Mot a Main	14/	- 141-	*	Wate	r Levels	Surface Condition			<u> </u>
الن النوالية	y - L	han	<u>7 - 1</u>	veriik veriik			VV8		¥ AI	fter Completion	Total Dooth	4017: ASP		
nyar W	<u>oca</u> 0 = 1	week	odor	<u>n</u> Mo	U = ∏0 0000, = moderate /	vr0: ndor (= very 50 = 4	strong odor	Į D	uring Drilling	First GW Door	14		
Depth (feet)	Blow Count	Old	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descriptic	วก		Maisture Content	Weil Detail
							SM	Asphalt Moist, fine- gravel (Fill).	to coars	e-grained silty San	d, brown, some fi	ine to coarse	1	
_			73	1	·		SP	Moist, fine-	to media	um-grained (uniform	n) Sand, brown. N	No odor, no		
		0.0			P02-04		SM	Moist, fine-g	rained s	silty Sand, occasion	nal medium-grain	ed sand,	/ Mst	
			71				ML	<u>dive-brown</u> Moist, soft S interbeds, F plasticy. No	FeO2 Silt, gray eO2 sta sheen,	<u>staining.</u> -brown, with clay, o ining (decayed fine no odor, no discolo	iccasional fine sit organics), mottl ration.	ty sand ing, low		
		0.0			P02-08			Moist fine-					Mst	
\neg					P02-09		SM	interbeds (< discoloration	1" thick)), FO2 staining. No	sheen, no odor,	no	Wet	
							:						₽	
°− ∙−			94				SP	Wet, fine- to no discolora	coarse tion.	-grained Sand, dark		en, no odor,		
,		0.0			P02-12					·			Wet	
+								Boring termi encounterec Backfilled w Borehole ab	nated at at 9.5 i th fine t andone	t 12 feet bgs on 1/1 leet bgs during drilli bentonite chips. d flush to match sur	0/2007. Groundw ng. rrounding grade.	vater was		
;]					:									
	- [
·														
<u> </u>													<u> </u>	
	S H I	OUNE NVIR Trati) ONM Egies	ENT/	AL 10230	orthwe) East Tukwi	ost Au Marg ila, W	to Wrecking inal Way So ashington	uth	Date Started: Date Finished: Logged By: Al Chk By: AlS SES Project No	1/10/2007 1/10/2007 S .: 0563-001-01	BOR	ING LC P02	G

دعب ۲۰

,

Log	of	Expl	ога	tory	Boring:						Drilling Co./Drill	er. ESI	NW/	Marty
Notes											Uniting Method:	Geo	prope	
									· · · · ·		Location:			
<u>Mois</u>	ture		tent:	Jamn	Met = Moiet	Wat	= We	ŧ	Water	Levels	Surface Cooditi	on: Asc	halt	
	<u>y - 1</u>	Jiy, U	<u>0</u>				- 110	fatat adaa	🗶 Aft	er Completion	Total Deoth:	10		
Hyan W	<u>oca</u> 0 ≖ 1	weak	odor.	E ™ MO	= no odor, = moderate (vru : odor, S	= very SO = s	strong odor	🖵 Du	ring Drilling	First GW Depth	. 8.5		
			Ç.		······································								tent	
(feet)	Count		le Reco	le Interv		raphy	Class						ure Con	Well Detail
Depth	Blow (QId	Samp	Samp	Sample ID	Lithog	nsca			Description	אא		Moist	
					· · · ·			Asphalt			<u> </u>		+	
							SP	Moist, fine-	to mediu	n-graind (uniform)	Sand, brown.			
		0.0	73		P03-04			<u>- FeO2 stai</u> Moist, fine-	ning at 3 to mediu	feet bgs	nd, brown, FeO2	staining. No	Mst	
	:						SM							
			83				ML.	Moist, soft s organics), k	Silt, gray-l ow plastic	brown, with clay, F y.	eO2 staining (fin	e decayed		
		0.0			P03-08			Moist to we staining (on	, fine-gra ganics), n	ined silty Sand, of pottling. No sheer	ive-gray, some cl a, no odor, no dise	ay, FeO2 coloration.	- Mst	
		0.0		Å	P03-09		SP	Wet, fine-to lamination (o coarse-; ∼ 1"), mi	grained Sand, dar caceous. No she	k-brown, light-bro en, no odor no dis	wn silt scoloration.	Wet	
1 — 1 — 2 — 3 —								Boring term encountere Boring was illustrated a Monitoring v Flushmouni	inated at d at 8 fee complete bove-righ well scree surface	10 feet bgs on 1/1 t bgs during drillin d as 1-inch diarne t. ned from 5 feet to completion.	0/2007. Grounds g. ter monitoring we 10 feet bgs.	water was HI MW02 as		
7 — — B —														
9 — 9 —														
		oun NV1R	l D Iona	AENT	AL 1023	orthw 0 Eas	est Au t Març	ito Wrecking inal Way Sc	outh	Date Started: Date Finished: Logged By: A Chk By: AlS	1/10/2007 1/10/2007 IS	BOF P0	IING LO	 OG 12
	sour	TRAT	EGIE	S ntaLc	om	Tukw	/ila, W	ashington		SES Project No File ID.: Pass on	D.: 0563-001-01	Pa	ge 1 of	1

Log	of	Expl	ora	tory	Boring:						Drilling Co./Dr Drilling Metho	riller: ES d: Ge	N NW /	Marty	
Notes											Location: W	/ithin the chain-	linked ca	ir yard	
<u>Mois</u> Dr Hydr W(<u>ture</u> y = [ocai	Dry, D rbon	p = C Odo	Damp r: No MO	, Mst = Moist D = no odor, = moderate (t, Wet VFO :	= Wel = very SO = s	t faint odor strong odor	<u>Water</u> ¥ After ∑ Du	Levels er Completion ring Drilling	Surface Cond Total Depth: First GW Dep	lition: As 10 th: 8.t	phalt		
Depth (feet)	Blow Count	DIA	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descriptio	Dn		Moisture Content	Weil Detail	
2 1 2 3 4 5		0.0	69		P04-04		SM ML SP	Asphalt Moist, fine- No odor, no Moist Silt, g odor, no dis Moist, fine- coarse grain Moist, fine-	to coarse discolori ray-brow coloratio to mediu red sand to mediu	grained silty San ation. n, some fine-grain n-grained (uniform <u>FeO2 staining (d</u> m-grained silty Sa	d, brown to olive ed sand, FeO2 n) Sand, dark-b ecayed fine org nd, olive-brown	e-brown (Fill). staining. No rown, some anics).	Mst		
		0.0 0.0	71		P04-08 P04-8.5		ML QL SM	Moist Silt, g sheen, no o <u>Soft, dark-b</u> Moist, fine- no odor, no - Becomes	ray-brow dor, no d rown dec to mediu discolora wet at 8.	n, FeO2 staining (iscoloration. aved organics with m-grained silty Sa tion. 5 feet bgs.	decayed fine organics). No <u>In clay, low plasticy, mottling</u> Ind, FeO2 staining. No sheen,				
2 2 3 4 5			95					Boring term encountere Backfilled w Borehole at	inated at d at 8 fee ith fine b bandoned	10 feet bgs on 1/ t bgs during drillin entonite chips. I flush to match su	10/2007. Groun g. mounding grade	dwater was e.			
6 7 8 19 20															
		OUN NVII TRAT	D RON/ EGII	AENI S	AL 1023	lorthw 30 Eas Tukv	vest Au st Marg vila, W	Date Started: 1/10/2007 Date Started: 1/10/2007 Date Finished: 1/10/2007 Logged By: AIS Chk By: AIS SES Project No:: 0563-001-01 File ID:: reterementation				D1 F	BORING LOG P04 Page 1 of 1		

Log	of	Exp	olora	ator	y Boring:					Drilling Co./D Drilling Metho	vriller: ES xd: Ge	N NW /	Marty
	•							•		Location:	and driveway fro	, m mair	entrance
Mois Dr Hydr	y =	Dry, [rbon	Dp =	Damı Damı	p, Mst = Mois IO = no odor,	t, We VFO	t = We = very	et y faint odor	Water Levels ▼ After Complet ▼ During Drilling	ion Surface Cond Total Depth:	dition: Co 10	ncrete	
<u>w</u>	WO = weak odor, MO = moderate odor, SO = strong odor									First GW Dep	oth: 10		
Depth (feet)	Blow Count	DIA	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class		Des	cription		Moisture Content	Well Detail
• _								Concrete			· · · · · · · · · · · · · · · · · · ·		
1							SP	Moist, fine- t	o medium-grained Sa	and, dark-brown.			
3 -		0.0	63		P05-04		SМ	Moist, fine-g FeO2 stainin discoloration	rained silty Sand, bro g (decayed organics)	wn to olive-brown, or). No sheen, no odor	casional clay, , no	Mst	
5			100				CL	Moist, soft C Moist, soft S olive-brown,	<u>lay, gray, low plastici</u> ilt with < 1° thick silty FeO2 staining. No s	sand to sand interbe heen, no odor, no dis	ds, coloration.		
7		0.0			P05-08		ML					Mst	
" "		0.0	100		D05 40		SM	No sheen, no Moist to wet, sand with gra	Mst to Wet				
					P05-10			Boring termine Boring termine encountered Backfilled wit Borehole aba	nated at 10 feet bgs o at 10 feet bgs during h fine bentonite chips indoned flush to matc	ed. No sheen, no od n 1/10/2007. Ground drilling. s. sh surrounding grade.	water was	¥	
4							-						
6													
8													
9													
	SES)UND IVIR(Rate) DN/Al GIES	ENTA	L 10230	rthwe East Fukwii	st Aut Margi Ia, Wa	o Wrecking nal Way Sout shington	h Date Starte Date Finish Logged By: Chk By: A SES Projec	d: 1/10/2007 ed: 1/10/2007 AIS IS t No.: 0563-001-01	BORI	NG LO 205	3

LOG	of	Exp	lora	itor	y Boring:					Drilling Co./D	ril ler. ES	N NW /	Marty	
<u>Notes</u>										Drilling Metho	d: Ge	oprobe		
	_									Location:				
<u>Moist</u> Dry	<u>ure</u> = D	Con Dry, D	p = [<u>:</u> Damp), Mst = Mois	t, Wei	t = We	t	Water Levels	Surface Cond	lition: As			
Hydro	car	bon	Odo	or: N	O = no odor.	VFO		faint odor	After Completion	Total Depth:	<u>8</u>	-		
WO) = y	veak	odor	, MO	= moderate	odor,	SO = :	strong odor	L During Drilling	First GW Den	th· 7			
	T		<u>ح ا</u>	r		T	T							
Depth (feet)	Blow Count	DId	Sample Recover	Sample Interval	Sample iD	Lithography	USCS Class		Descriptic	'n		Moisture Content	W(Det	
			65	·····			SM	l, brown, occasi	onal fine					
		0.0			P06-04		ML.	Moist Silt, gra odor, no disco	y, with clay, FeO2 staining ploration.	g, low plasticity.	No sheen, no	Mst		
		0.0	75		P06-07		Moist to wet, fine-grained silty Sand, gray, black decayed organic (wood), FeO2 staining. No sheen, no odor, no discoloration. SM - Becomes wet at 7 feet.							
								Boring termina encountered a Backfilled with Borehole abar	ated at 8 feet bgs on 1/10/ tt 7 feet bgs during dritting, fine bentonite chips. Idoned flush to match sum	2007. Groundw ounding grade.	ater was			
									Date Started: 1/	10/2007				

Moisture Contant: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Water Levels Sufface Condition: Asphalt Hydrocarbon Odor: WO = weak door, MO = mo odor, VFO = very faint odor WO = weak door, MO = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = moderate odor, SO = strong odor Image: Sufface Condition: Asphalt Image: Sufface Condition: No = strong odor Image: Sufface Condition: No = strong odor Image: Sufface Condition: No = strong odor Image: Sufface Condition: No = strong odor Image: Sufface Condition: No = str		<u>s</u>				y boning:					Drilling Co Drilling Me Location:	/Driller: E thod: G Burnt building	SN NV	/ / Marty e
Hydrocarbon Odor, NO = no dor, VFO = very fain door Y After Completion States Condition: Asphalt Asphalt WO = weak odor, MO = moderate odor, SO = strong odor Y After Completion Initial Depth: 12 Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor Image: Strong odor <th><u>Moi</u>t D</th> <th>sture (</th> <th>ont</th> <th>ent:</th> <th>amr</th> <th></th> <th>et W</th> <th></th> <th></th> <th>Water Levels</th> <th> </th> <th></th> <th></th> <th></th>	<u>Moi</u> t D	sture (ont	ent:	amr		et W			Water Levels	 			
WO = weak odor, MO = moderate odor, SO = strong odor Image: Description Image: Description Image: Description Image: Description	Hyd	rocarb	on (<u>. </u>	: N	O = no odor			Cu faint adar	After Completion	▼ After Completion Surface Condition: Ar			
Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human Open Human O	W	/0 = we	ako	odor,	MO	= moderate	odor	, SO =	strong odor	↓ 又 During Drilling	First GW D	enth: 8	<u></u> 5	
81 Asphait 0.0 P07-04 81 Moist, fine-grained silty Sand, brown, with fine to coarse subangular gravel (Fill). 0.0 P07-04 5M Moist, fine-grained silty Sand, olive-brown. Moist, fine-grained silty Sand, olive-brown. Moist Silt, olive-gray, some fine- to coarse-grained sand, some day, some organics, FeO2 staining, low plasticity, No sheen, no odor, no discoloration. 75 MIL 75 P07-08 76 P07-08 907-08.5 SM Wet, fine- to medium-grained sand, olive-brown. No sheen, no odor, no discoloration. 0.0 P07-08.5 SM Wet, fine- to coarse-grained Sand, olive-brown. No sheen, no odor, no discoloration. 0.0 P07-08.5 SM Wet, fine- to coarse-grained Sand, olive-brown. No sheen, no odor, no discoloration. 0.0 P07-08.5 SP Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration. 0.0 P07-12 Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration. 0.0 P07-12 Boring terminated at 12 feet bgs on 1/11/2007. Groundwater was enco	Depth (feet)	Blow Count	ULA L	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class		Descriptio	n		Moisture Content	We Det
0.0 P07-04 SM Moist, fine-grained silty Sand, olive-brown. Mst 0.0 P07-04 Moist, fine-grained silty Sand, olive-brown. Mst 75 Moist Silt, olive-gray, some fine- to coarse-grained sand, some day, some organics, FeO2 staining, low plasticity. No sheen, no odor, no discoloration. Mst 0.0 P07-08 - Sand increases, becomes with fine-grained sand. Mst 0.0 P07-08.5 SM Wet, fine- to medium-grained silty Sand, olive-brown. No sheen, no odor, no discoloration. Wet 0.0 P07-08.5 SM Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1* thick). No sheen, no odor, no discoloration.			81						Asphait Moist, fine- t subangular g	o coarse-grained silty Sand gravel (Fill).	, brown, with	fine to coarse	.1	8
0.0 P07-04 Moist Silt, olive-gray, some fine- to coarse-grained sand, some day, some organics, FeO2 staining, low plasticity, No sheen, no odor, no discoloration. Mst 75 0.0 P07-08 - Sand increases, becomes with fine-grained sand. Mst 0.0 P07-08.5 SM Wet, fine- to medium-grained silty Sand, olive-brown. No sheen, no odor, no odor, no discoloration. Mst 0.0 P07-08.5 SM Wet, fine- to coarse-grained sand, olive-brown. No sheen, no odor, no discoloration. Wet 0.0 P07-08.5 SM Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration.								SM	Moist, fine-g	ained silty Sand, olive-brow	- - m.			
0.0 P07-08 - Sand increases, becomes with fine-grained sand. Mst 0.0 P07-08.5 SM Wet, fine- to medium-grained sitty Sand, olive-brown. No sheen, no odor, no discoloration. V 100 P07-08.5 SM Wet, fine- to coarse-grained Sand, dark-brown, some sitt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration.			-	75				ML	Moist Silt, oli some organic discoloration.	ve-gray, some fine- to coars s, FeO2 staining, low plast	e-grained se icity, No she	ind, some clay, en, no odor, no	- Mst	
0.0 P07-08.5 SM Wet, fine- to medium-grained silty Sand, olive-brown. No sheen, no odor, no discoloration. Wet 100 100 P07-08.5 SM Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration.		0.0				P07-08			- Sand increa	ases, becomes with fine-gra	ined sand.		Mst	
100 P07-12 Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration.		0.0				P07-08.5	07-08.5 SM Wet, fine- to medium-grained silty Sand, olive-brown. No sheen, no							
Boring terminated at 12 feet bgs on 1/11/2007. Groundwater was encountered at 8 feet bgs during drilling. Boring was completed as 1-inch diameter monitoring well MW-3 as illustrated above-right. Monitoring well screened from 7 feet to 12 feet bgs. Flushmount surface completion.		0.0	10	0		P07-12		SP	Wet, fine- to coarse-grained Sand, dark-brown, some silt, some organics (fine roots < 1" thick). No sheen, no odor, no discoloration.					
									Boring termina encountered a Boring was cou illustrated abov Monitoring wet Flushmount su	ited at 12 feet bgs on 1/11/2 t 8 feet bgs during drilling, mpleted as 1-inch diameter re-right. I screened from 7 feet to 12 rface completion.	2007. Groun monitoring w feet bgs.	dwater was rell MW-3 as		<u> </u>
Sound Date Started: 1/11/2007		Soun	L D	<u> </u>	<u> </u>					Date Started: 1/11	/2007			

Note	ıب. s		μισι	aiU	y boring:	i				Drilling Co.	/Oniller: (ESN NM	/ / Marty		
1010	2									Unling Me		Seoprob	e		
	··	·····							_	Location:					
Mois	stur	e Co	nten	<u>t:</u>					Water Levels						
<u> </u>	<u>ry –</u>	Dry, i	- <u>up</u>	Uam	p, Mst = Moi:	st, Wei	t = We	<u>et</u>	X After Completion	Surface Co	ndition: C	Concrete	•		
Hyu W	<u>roca</u> /0 =			or: P	NO = no odor	, VFO	= veŋ	/ faint odor		Total Depth					
		T		<i>n</i> , wr.		odor,	<u> 50 =</u>	strong odor	First GW Depth: 6						
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class		Descriptio	n		Aoisture Content	Wei Deta		
			┦─	+		238									
							SM	<u>3" Concrete.</u> Moist, fine- tr gravel (Fill).	Concrete. ist, fine- to coarse-grained silty Sand, brown, with subangular vel (Fili).						
		0.0	69		P08-04		SP	Moist, fine-tr sheen, no od							
-1				μÌ		同日	_ <u>SM</u>								
							м	Moist, soft Sil brown organi	It, olive-gray, some fine-gra	uined sand, so	xme clay, with	-1			
		34.5			P08-06		IVIL	•		, no odoi, ne	CISCORDIZION.	Wet			
\neg			1			P.K.L	GM	Wet fine to o				- ‡ "			
			58				ML	<u>grey-brown, y</u> Wet, fin <u>e- to</u> Wet, soft Silt, no discoloratio							
		172+	63		P08-12		SM	Wet, fine-grain thick). No she	Wet						
								Boring termina encountered ai Boring was co illustrated aboy Monitoring well Flushmount su	ted at 12 feet bgs on 1/11/ 8 feet bgs during drilling. mpleted as 1-inch diarneter re-right. I screened from 7 feet to 12 rface completion.	2007. Groun monitoring w 2 feet bgs.	dwater was reli MW04 as				
_															
-															
								•							
4															
				ļ											
	S O E N S TH	UND Viroi Rateg	NME IES	NTAL	Nori 10230 I Ti	thwest East M ukwila,	Auto largina Wasl	Wrecking al Way South hington	Date Started: 1/1 Date Finished: 1/1 Logged By: AIS Chk By: AIS SES Project No.:	1/2007 11/2007 0563-001-01	BORI P08	NG LOG MW04	6		

•

00	of	Exnl	ora	ton	Borina:		•			···· = ·	Drilling Co./Drille	er: ES	in <mark>NW</mark> /	Marty
Jug			vid	u	bonny.						Drilling Method:	Ge	oprobe	
lotes											Location:			
lois	ture	Con	tent:					<u>.</u>	Water	Levels	-			
Dr	y = (Dry, D	p = [Damp	, Mst = Moist	, Wet	= We	t	▼ Aft	er Completion	Surface Condition	эл: Со	increte	
lydr	oca	rbon	Odo	<u>rr:</u> N	0 = no odor,	VFO	= very	faint odor		ring Drilling	Total Depth:	12		
W	0 =	weak	odor	, МО	= moderate (odor,	SO = s	trong odor			First GW Depth:	8		·····-
Depth (feet)	Blow Count	Qid	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	oń		Maisture Content	Weil Detai
								10" Concret	te				_	
							SM.	Moist, fine-	Moist, fine- to coarse-grained silty Sand, brown, with gravel (Fill).					
			58				SP	Moist, fine-ç	prained S	iand, brown, with o	organics.			
		0.0			P09-04		зм	SM Moist, fine-grained silty Sand, brown. No sheen, no odor, no						
							ML .	Moist, soft S	Silt, gray.					
_							SM	Moist, fine-	to coarse	-grained silty San	d, oive-brown.			10 1 0
		0 .0	77		P09-08	Moist Silt, gray-brown to olive-gray, with clay, low plasticity. No sheen, no odor, no discoloration.						Mst		
		0.0	100		P09-09		SP	Wet, fine- to coarse-grained (uniform) Sand, dark-brown. No sheen, no odor, no discoloration.						
_		0.0			P09-12								Wet	
								Boring term encountere Boring was installed as Monitoring v Flushmount	inated at d at 8 fee complete illustrate well scree t surface	12 feet bgs on 1/1 t bgs during drillin ad as 1-inch diame d above-right. ened from 7 feet to completion.	11/2007. Groundw g ster monitoring wel o 12 feet bgs.	vater was I MW05		
_														
_														
<u>الم</u>	<u>ک</u> ار	<u>n</u> uni	<u> </u> N			<u> </u>	<u> </u>			Date Started:	1/11/2007		<u> </u>	<u></u>
	Í	NVIR		N e nt K	ΔL 1023	orthw 0 Eas Tukw	est Au t Marg /ila, W	to Wrecking inal Way So ashington	uth	Logged By: A Chk By: AlS	IS 0563-001-01	BO	RING LO 09/MWO	0G 15
4		l IVAI: demin	CUIE	.) ntai.ea	me					File ID.: *******	J. UJG3-UU1-U1 WK02079090-6091	Pa	age 1 of	1

Logs for Monitoring Wells MW-1 to MW-9, MW-101, and MW-201 to MW-207

Dalton, Olmsted & Fuglevand, Inc. December 2001

Logs for Monitoring Wells MW-1 to MW-3

GeoEngineers, Inc. January 1996

FIGURE A-3

APPENDIX B LABORATORY ANALYTICAL REPORTS

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington

Farallon PN: 1071-026

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 26, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-186

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 18, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 17, 2016 and received by the laboratory on October 18, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-186-01					
Client ID:	F-18-GW					
Arsenic	24	3.0	200.8		10-20-16	
Lab ID:	10-186-02					
Client ID:	F-17-GW					
Arsenic	3.2	3.0	200.8		10-20-16	
Lab ID:	10-186-03					
Client ID:	F-16-GW					
Arsenic	ND	3.0	200.8		10-20-16	
Lab ID:	10-186-04					
Client ID:	F-12-GW					
Arsenic	ND	3.0	200.8		10-20-16	

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-20-16

Matrix: Water Units: ug/L (ppb)

Lab ID: MB1020D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-20-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-20-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	213	106	209	105	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished typen astran	Signature		120		4 F-12-GW	3 F-16-61W	2 F-17-GW	1 F-18-GW	Lab ID Sample Identification	Sampled by: Sampled by: Campade Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Company: Tavallow Project Number: 1071 - 014 Project Name: Suff Allin Sampled by: Raw Octow
Reviewed/Date					CORE	Farallon	Company				1430 11-1	1230 1	1 1115 1 1	1 M 0946 W	Date Time Sampled Sampled Matrix N	Chain of C Turnaround Request (in working days) (Check One) Same Day Check One) Check One) 2 Days 3 Days (TPH analysis 5 Days) (other)
					10/13/16 1300	10/17/16 1700	Date Time								NWTP NWTP NWTP NWTP Volatil Haloge	YH-HCID Image: Constraint of the system Image: Constraint of the sys
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗍 Level IV 🗌			1. 1. 2.17 N	N/ Id Lilter	- Laced	Comments/Special Instructions								Semiv (with II PAHS PCBs Organ Organ Organ Chlori Total II Total II TCLP HEM (V 552	rolatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level) 8082A nochlorine Pesticides 8081B ophosphorus Pesticides 8270D/SIM nated Acid Herbicides 8151A RCRA Metals Metals Metals (oil and grease) 1664A dved Arsenic (aco)/Tam Services

October 27, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-187

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 18, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 17, 2016 and received by the laboratory on October 18, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260C (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-18-GW					
Laboratory ID:	10-187-02					
Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
o-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				
Client ID:	F-17-GW					
Laboratory ID:	10-187-04					
Benzene	90	4.0	EPA 8021B	10-24-16	10-24-16	
Toluene	ND	4.0	EPA 8021B	10-24-16	10-24-16	
Ethyl Benzene	140	4.0	EPA 8021B	10-24-16	10-24-16	
m,p-Xylene	20	4.0	EPA 8021B	10-24-16	10-24-16	
o-Xylene	ND	4.0	EPA 8021B	10-24-16	10-24-16	
Gasoline	1300	400	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Client ID:	F-16-GW					
Laboratory ID:	10-187-05					
Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
o-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	61-118				
Client ID:	F-12-GW					
Laboratory ID:	10-187-07					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-118				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024W2					
Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
o-Xylene	ND	1.0	EPA 8021B	10-24-16	10-24-16	
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	61-118				

					Source	Pe	rcent	Recovery		RPD	
Analyte	yte Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-2	17-06									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						77	83	61-118			
MATRIX SPIKES											
Laboratory ID:	10-2	17-06									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	46.0	45.7	50.0	50.0	ND	92	91	80-120	1	13	
Toluene	45.7	45.1	50.0	50.0	ND	91	90	81-115	1	14	
Ethyl Benzene	46.4	46.3	50.0	50.0	ND	93	93	81-114	0	12	
m,p-Xylene	43.7	43.3	50.0	50.0	ND	87	87	81-114	1	13	
o-Xylene	45.0	44.9	50.0	50.0	ND	90	90	81-113	0	11	
Surrogate:											
Fluorobenzene						93	95	61-118			

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-6.7					
Laboratory ID:	10-187-06					
Gasoline	ND	7.3	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024S2					
Gasoline	ND	5.0	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	63-124				
		5	ource Dercen	t Recovery	RDI	ו

AnalyteResultSpike LevelResultRecoveryLimitsRPDLimitFlagsDUPLICATELaboratory ID:10-220-01ORIGDUPGasolineNDNANANANA30Surrogate:Fluorobenzene848863-124						000100		00111	110001019			
DUPLICATE Laboratory ID: 10-220-01 ORIG DUP Gasoline ND NA NA NA NA 30 Surrogate: 84 88 63-124 63-124 63-124	Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
Laboratory ID: 10-220-01 ORIG DUP Gasoline ND NA NA NA NA 30 Surrogate: 84 88 63-124 63-124 63-124	DUPLICATE											
ORIGDUPGasolineNDNANANANA30Surrogate:Fluorobenzene848863-124	Laboratory ID:	10-22	20-01									
GasolineNDNANANANA30Surrogate:Fluorobenzene848484		ORIG	DUP									
Surrogate: Fluorobenzene 84 88 63-124	Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Fluorobenzene 84 88 63-124	Surrogate:											
	Fluorobenzene						84	88	63-124			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-18-GW					
Laboratory ID:	10-187-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-19-16	10-19-16	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-19-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	F-17-GW					
Laboratory ID:	10-187-04					
Diesel Range Organics	0.85	0.26	NWTPH-Dx	10-19-16	10-19-16	М
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-19-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	F-16-GW					
Laboratory ID:	10-187-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-19-16	10-19-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-19-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Olivert ID:	F 10 CW					
	F-12-GW					
Laboratory ID:	10-187-07			10.10.10	40.40.46	
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-19-16	10-19-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-19-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
MB1019W1					
ND	0.25	NWTPH-Dx	10-19-16	10-19-16	
ND	0.40	NWTPH-Dx	10-19-16	10-19-16	
Percent Recovery 102	Control Limits 50-150				
	Result MB1019W1 ND ND Percent Recovery 102	Result PQL MB1019W1 0.25 ND 0.40 Percent Recovery Control Limits 102 50-150	Result PQL Method MB1019W1	Date Result PQL Method Prepared MB1019W1	Result PQL Method Prepared Analyzed MB1019W1

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-13	38-01								
	ORIG	DUP								
Diesel Range Organics	0.268	0.219	NA	NA		NA	NA	20	NA	Ν
Lube Oil	1.03	0.577	NA	NA		NA	NA	56	NA	
Surrogate:										
o-Terphenyl						103 101	50-150			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

3 3 (1)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-6.7					
Laboratory ID:	10-187-06					
Diesel Range Organics	ND	29	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	58	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•		
Laboratory ID:	MB1026S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-18	37-06									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						90	90	50-150			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-GW					
Laboratory ID:	10-187-07					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloromethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromomethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloroethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Acetone	ND	5.0	EPA 8260C	10-19-16	10-19-16	
lodomethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Carbon Disulfide	0.22	0.20	EPA 8260C	10-19-16	10-19-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-19-16	10-19-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-19-16	10-19-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Butanone	ND	5.0	EPA 8260C	10-19-16	10-19-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloroform	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Benzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Trichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Dibromomethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Chloroethyl Vinyl Ether	ND	1.6	EPA 8260C	10-19-16	10-19-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-19-16	10-19-16	
Toluene	ND	1.0	EPA 8260C	10-19-16	10-19-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-GW					
Laboratory ID:	10-187-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Hexanone	ND	2.0	EPA 8260C	10-19-16	10-19-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-19-16	10-19-16	
o-Xylene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Styrene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromoform	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Naphthalene	ND	1.0	EPA 8260C	10-19-16	10-19-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	77-129				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	95	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1019W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloromethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromomethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloroethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Acetone	ND	5.0	EPA 8260C	10-19-16	10-19-16	
lodomethane	ND	1.0	EPA 8260C	10-19-16	10-19-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-19-16	10-19-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-19-16	10-19-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Butanone	ND	5.0	EPA 8260C	10-19-16	10-19-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Chloroform	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Benzene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Trichloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Dibromomethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16	
2-Chloroethyl Vinyl Ether	ND	1.6	EPA 8260C	10-19-16	10-19-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-19-16	10-19-16	
Toluene	ND	1.0	EPA 8260C	10-19-16	10-19-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-19-16	10-19-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID.							
Laboratory ID:	MB1019W1	0.00		10 10 10	10 10 10		
I, I, 2- I richloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
letrachloroethene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
2-Hexanone	ND	2.0	EPA 8260C	10-19-16	10-19-16		
Dibromochloromethane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Chlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Ethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
m,p-Xylene	ND	0.40	EPA 8260C	10-19-16	10-19-16		
o-Xylene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Styrene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Bromoform	ND	1.0	EPA 8260C	10-19-16	10-19-16		
Isopropylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Bromobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-19-16	10-19-16		
n-Propylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
2-Chlorotoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
4-Chlorotoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
tert-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
sec-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
p-lsopropyltoluene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
n-Butylbenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-19-16	10-19-16		
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Naphthalene	ND	1.0	EPA 8260C	10-19-16	10-19-16		
1.2.3-Trichlorobenzene	ND	0.20	EPA 8260C	10-19-16	10-19-16		
Surrogate:	Percent Recoverv	Control Limits					
Dibromofluoromethane	106	77-129					
Toluene-d8	101	80-127					
4-Bromofluorobenzene	96	80-125					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

14

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

	Result				Percent		Recovery		RPD	
Analyte			Spike	Spike Level		Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB1019W1									
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.1	9.11	10.0	10.0	101	91	63-127	10	17	
Benzene	9.81	9.61	10.0	10.0	98	96	76-121	2	12	
Trichloroethene	8.68	8.44	10.0	10.0	87	84	64-114	3	15	
Toluene	9.10	8.96	10.0	10.0	91	90	82-115	2	13	
Chlorobenzene	9.02	8.97	10.0	10.0	90	90	80-115	1	14	
Surrogate:										
Dibromofluoromethane					103	107	77-129			
Toluene-d8					101	102	80-127			
4-Bromofluorobenzene					97	97	80-125			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-6.7					
Laboratory ID:	10-187-06					
Dichlorodifluoromethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Acetone	0.050	0.0081	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
2-Butanone	0.017	0.0081	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	

16

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-6.7					
Laboratory ID:	10-187-06					
1,1,2-Trichloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,3-Dichloropropane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromoethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1,1,2-Tetrachloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Ethylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
m,p-Xylene	ND	0.0033	EPA 8260C	10-20-16	10-20-16	
o-Xylene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,1,2,2-Tetrachloroethane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichloropropane	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
p-lsopropyltoluene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	0.0081	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.0016	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	73-134				
Toluene-d8	102	81-124				

VOLATILES EPA 8260C page 2 of 2

4-Bromofluorobenzene

80-131

103

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1020S3					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Acetone	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB102053					
1 1 2-Trichloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1 3-Dichloropropane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1 2-Dibromoethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1.1.1.2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Fthylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
m p-Xylene	ND	0.0020	EPA 8260C	10-20-16	10-20-16	
o-Xvlene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1.1.2.2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1.2.3-Trichloropropane	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
p-lsopropyltoluene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	0.0050	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	105	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

19

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	20S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0422	0.0429	0.0500	0.0500	84	86	66-127	2	15	
Benzene	0.0451	0.0462	0.0500	0.0500	90	92	76-122	2	15	
Trichloroethene	0.0464	0.0465	0.0500	0.0500	93	93	78-120	0	15	
Toluene	0.0473	0.0478	0.0500	0.0500	95	96	83-120	1	15	
Chlorobenzene	0.0456	0.0470	0.0500	0.0500	91	94	81-120	3	15	
Surrogate:										
Dibromofluoromethane					97	100	73-134			
Toluene-d8					98	102	81-124			
4-Bromofluorobenzene					99	104	80-131			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-18-GW					
Laboratory ID:	10-187-02					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-18-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	30 - 124				
Pyrene-d10	81	40 - 143				
Terphenyl-d14	75	27 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-17-GW					
Laboratory ID:	10-187-04					
Naphthalene	42	1.9	EPA 8270D/SIM	10-18-16	10-20-16	
2-Methylnaphthalene	23	1.9	EPA 8270D/SIM	10-18-16	10-20-16	
1-Methylnaphthalene	14	1.9	EPA 8270D/SIM	10-18-16	10-20-16	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Acenaphthene	0.20	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Fluorene	0.37	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Phenanthrene	0.38	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Anthracene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Fluoranthene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Pyrene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Chrysene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	30 - 124				
Pyrene-d10	86	40 - 143				
Terphenyl-d14	82	27 - 127				

22

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-16-GW					
Laboratory ID:	10-187-05					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	0.014	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	0.014	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	0.016	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	30 - 124				
Pyrene-d10	79	40 - 143				
Terphenyl-d14	75	27 - 127				

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-12-GW					
Laboratory ID:	10-187-07					
Naphthalene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Acenaphthene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Fluorene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Phenanthrene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Anthracene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Fluoranthene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Pyrene	ND	0.096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Chrysene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	10-18-16	10-19-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	30 - 124				
Pyrene-d10	81	40 - 143				
Terphenyl-d14	78	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-18-16	10-18-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-18-16	10-18-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	30 - 124				
Pyrene-d10	91	40 - 143				
Terphenyl-d14	92	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1020W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	30 - 124				
Pyrene-d10	75	40 - 143				
Terphenyl-d14	73	27 - 127				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					F	Perce	ent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	R	ecov	/ery	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	18W1									
	SB	SBD	SB	SBD	S	В	SBD				
Naphthalene	0.372	0.328	0.500	0.500	7	4	66	29 - 101	13	47	
Acenaphthylene	0.199	0.179	0.500	0.500	4	0	36	20 - 117	11	50	
Acenaphthene	0.417	0.374	0.500	0.500	8	3	75	37 - 109	11	43	
Fluorene	0.451	0.422	0.500	0.500	9	0	84	47 - 108	7	34	
Phenanthrene	0.462	0.460	0.500	0.500	9	2	92	49 - 109	0	28	
Anthracene	0.497	0.532	0.500	0.500	9	9	106	34 - 140	7	32	
Fluoranthene	0.513	0.517	0.500	0.500	10)3	103	45 - 120	1	39	
Pyrene	0.570	0.536	0.500	0.500	11	4	107	42 - 133	6	39	
Benzo[a]anthracene	0.474	0.488	0.500	0.500	9	5	98	71 - 117	3	28	
Chrysene	0.463	0.459	0.500	0.500	9	3	92	53 - 110	1	25	
Benzo[b]fluoranthene	0.540	0.568	0.500	0.500	10	8	114	53 - 123	5	37	
Benzo(j,k)fluoranthene	0.488	0.490	0.500	0.500	9	8	98	52 - 119	0	41	
Benzo[a]pyrene	0.312	0.383	0.500	0.500	6	2	77	37 - 129	20	33	
Indeno(1,2,3-c,d)pyrene	0.500	0.500	0.500	0.500	10	00	100	45 - 128	0	31	
Dibenz[a,h]anthracene	0.520	0.526	0.500	0.500	10)4	105	54 - 120	1	30	
Benzo[g,h,i]perylene	0.484	0.477	0.500	0.500	9	7	95	49 - 117	1	29	
Surrogate:											
2-Fluorobiphenyl					8	2	66	30 - 124			
Pyrene-d10					9	3	95	40 - 143			
Terphenyl-d14					9	2	92	27 - 127			

27

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

				P	ercent	Recovery		RPD	
Re	sult	Spike	Level	Re	ecovery	/ Limits	RPD	Limit	Flags
SB10	20W1								
SB	SBD	SB	SBD	SI	B SBI	D			
0.320	0.242	0.500	0.500	64	48	29 - 101	28	47	
0.271	0.248	0.500	0.500	54	4 50	20 - 117	9	50	
0.339	0.278	0.500	0.500	68	3 56	37 - 109	20	43	
0.380	0.340	0.500	0.500	76	68 68	47 - 108	11	34	
0.376	0.339	0.500	0.500	75	5 68	49 - 109	10	28	
0.490	0.466	0.500	0.500	98	3 93	34 - 140	5	32	
0.458	0.422	0.500	0.500	92	2 84	45 - 120	8	39	
0.455	0.422	0.500	0.500	9	84	42 - 133	8	39	
0.417	0.374	0.500	0.500	83	3 75	71 - 117	11	28	
0.433	0.408	0.500	0.500	87	7 82	53 - 110	6	25	
0.465	0.412	0.500	0.500	93	3 82	53 - 123	12	37	
0.456	0.416	0.500	0.500	9	83	52 - 119	9	41	
0.431	0.418	0.500	0.500	86	6 84	37 - 129	3	33	
0.417	0.382	0.500	0.500	83	3 76	45 - 128	9	31	
0.429	0.399	0.500	0.500	86	6 80	54 - 120	7	30	
0.407	0.368	0.500	0.500	8	74	49 - 117	10	29	
				53	3 44	30 - 124			
				84	4 79	40 - 143			
				83	3 77	27 - 127			
	Re: SB10 SB 0.320 0.271 0.339 0.380 0.376 0.490 0.458 0.455 0.417 0.433 0.465 0.456 0.431 0.417 0.429 0.407	Result SB1020W1 SB SBD 0.320 0.242 0.271 0.248 0.339 0.278 0.339 0.278 0.339 0.340 0.376 0.339 0.490 0.466 0.455 0.422 0.417 0.374 0.433 0.408 0.465 0.412 0.436 0.418 0.456 0.418 0.417 0.382 0.429 0.399 0.407 0.368	Result Spike SB1020W1 SB SB SBD SB 0.320 0.242 0.500 0.320 0.242 0.500 0.320 0.242 0.500 0.339 0.278 0.500 0.380 0.340 0.500 0.376 0.339 0.500 0.490 0.466 0.500 0.455 0.422 0.500 0.455 0.422 0.500 0.417 0.374 0.500 0.433 0.408 0.500 0.431 0.416 0.500 0.431 0.418 0.500 0.417 0.382 0.500 0.417 0.382 0.500 0.417 0.368 0.500 0.417 0.368 0.500	Result Spike Level SB102000 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 0.320 0.242 0.500 0.500 0.339 0.278 0.500 0.500 0.380 0.340 0.500 0.500 0.376 0.339 0.500 0.500 0.490 0.466 0.500 0.500 0.455 0.422 0.500 0.500 0.455 0.422 0.500 0.500 0.417 0.374 0.500 0.500 0.417 0.374 0.500 0.500 0.433 0.408 0.500 0.500 0.4456 0.412 0.500 0.500 0.431 0.418 0.500 0.500 0.429 0.399 0.500 0.500 0.407 0.368 0.500 0.500	Result Spike Level Result SB SBD SB SBD SB 0.320 0.242 0.500 0.500 64 0.271 0.248 0.500 0.500 64 0.339 0.278 0.500 0.500 64 0.376 0.339 0.500 0.500 64 0.376 0.339 0.500 0.500 76 0.490 0.466 0.500 0.500 76 0.490 0.466 0.500 0.500 96 0.455 0.422 0.500 0.500 97 0.417 0.374 0.500 0.500 93 0.433 0.408 0.500 0.500 93 0.4456 0.412 0.500 0.500 93 0.431 0.418 0.500 0.500 83 0.429 0.399 0.500 0.500 83 0.407 0.368 0.500 0.500 83	Percent Result Spike Level Recovery SB SBD SB SBD SB SB 0.320 0.242 0.500 0.500 64 48 0.271 0.248 0.500 0.500 68 56 0.339 0.278 0.500 0.500 68 56 0.380 0.340 0.500 0.500 76 68 0.376 0.339 0.500 0.500 75 68 0.490 0.466 0.500 0.500 92 84 0.455 0.422 0.500 0.500 91 84 0.417 0.374 0.500 0.500 93 82 0.465 0.412 0.500 0.500 93 82 0.431 0.418 0.500 0.500 93 82 0.432 0.500 0.500 86 84 0.417 0.382 0.500 0.500 <	Result Spike Level Percent Recovery Limits SB1020W1 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 64 48 29 - 101 0.271 0.248 0.500 0.500 64 48 29 - 101 0.370 0.248 0.500 0.500 64 48 29 - 101 0.371 0.248 0.500 0.500 64 48 29 - 101 0.376 0.339 0.500 0.500 68 56 37 - 109 0.490 0.466 0.500 0.500 75 68 49 - 109 0.453 0.422 0.500 0.500 98 93 34 - 140 0.454 0.422 0.500 0.500 91 84 42 - 133 0.417 0.374 0.500 0.500 83 75 71 - 117 0.433 0.408 0.500 0.500 91 83	Percent Recovery Limits RPD SB1020W1 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 64 48 29 - 101 28 0.320 0.242 0.500 0.500 64 48 29 - 101 28 0.271 0.248 0.500 0.500 64 48 29 - 101 28 0.339 0.278 0.500 0.500 64 48 29 - 101 28 0.339 0.278 0.500 0.500 68 56 37 - 109 20 0.380 0.340 0.500 0.500 76 68 47 - 108 11 0.376 0.339 0.500 0.500 98 93 34 - 140 5 0.455 0.422 0.500 0.500 91 84 42 - 133 8 0.417 0.374 0.500 0.500 83 75 71 - 117 11	Percent Recovery Limits RPD Limit SB SBD SB SB SBD SB SBD SB SB

DISSOLVED LEAD EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-187-02					
Client ID:	F-18-GW					
Lead	ND	1.0	200.8		10-20-16	
Lab ID:	10-187-04					
Client ID:	F-17-GW					
Lead	ND	1.0	200.8		10-20-16	
Lab ID:	10-187-05					
Client ID:	F-16-GW					
Lead	ND	1.0	200.8		10-20-16	

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-20-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1020D1		
Analyte	Method	Result	PQL
Lead	200.8	ND	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-20-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-20-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	200	187	94	188	94	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-18-GW					
Laboratory ID:	10-187-02					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	F-17-GW					
Laboratory ID:	10-187-04					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	F-16-GW					
Laboratory ID:	10-187-05					
Total Suspended Solids	16	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	F-12-GW					
Laboratory ID:	10-187-07					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1020W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-18	37-02							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	20W1							
	S	В	SB		SB				
Total Suspended Solids	89	9.0	100	NA	89	78-113	NA	NA	

% MOISTURE

Date Analyzed: 10-20-16

Client ID	Lab ID	% Moisture

F-12-6.7

10-187-06

13

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Chain of Curstoy normality NUMPH-IACM Matthe S280C Numphe Numphe <th>Reviewed/Date</th> <th>Received</th> <th>Received Relinquished</th> <th>Relinquished</th> <th>Received</th> <th>Relinquished lyn Estour</th> <th>Signature</th> <th>140</th> <th>7 F-12- GW</th> <th>6 F-12-6.7</th> <th>5 F-16-GW</th> <th>4 F-17-GW</th> <th>3 F-17-9.7</th> <th>2 F-18-CW</th> <th>1 7-18-8.0</th> <th>Lab ID Sample Identification</th> <th>Sampled by: Sampled by: Sample</th>	Reviewed/Date	Received	Received Relinquished	Relinquished	Received	Relinquished lyn Estour	Signature	140	7 F-12- GW	6 F-12-6.7	5 F-16-GW	4 F-17-GW	3 F-17-9.7	2 F-18-CW	1 7-18-8.0	Lab ID Sample Identification	Sampled by: Sampled by: Sample
of Custody of Custody Number: 10 - 18 7 12 NWTPH-GX/BTEX NWTPH-GX/BTEX NWTPH-GX/BTEX NUMDecols and Colse NWTPH-GX/BTEX NUMDecolse Data Backage: Saminolatiles 8200C Labor Comments/Special Instructions X X Facial TL/LA/Stable Saminolatiles 8270D/SIM X Comments/Special Instructions X X Colsease Hold Scill Goal Collorinated Acid Herbicides 8151A Data Package: Collorinated Acid Herbicides 8151A Collorinated Acid Herbicides 8151A Data Package: Collorinated Acid Herbicides 8151A Collorinated Acid Herbicides 8151A Data Package: Collorinated Acid Herbicides 8151A	Reviewed/Date				0	tanala	Company		Y 1430 W	1355 S	1230 W	1115 W	1050 S	onuc W	10/17/16 0910 S	Date Time Sampled Sampled Matri	Chain Turnaround Request (in working days) Check One) (Check One) Same Day 1 Day 2 Days 3 Days X Standard (7 Days) (TPH analysis 5 Days) (other)
Comments/Special Instructions Viewel III Very Viewel V Page Organochlorine Pesticides 8081B Organochlorine Pesticides 8151A Total RCRA Metals Total MTCA Metals <					006119111911 312	10/17/16 1700	Date Time		XXX P	5 QQX		12 X X	<u></u>	X X ZI		NWTF NWTF NWTF NWTF NWTF Volatil Halog	PH-GX PH-DX (Acid / SG Clean-up) les 8260C enated Volatiles 8260C
	Chromatograms with final report 🗌 Electronic Data Deliverables (EDD	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍	(& Added 10/20/16. DB (STA)	* Field Filtered.		Please Hold Soil Samples	Comments/Special Instructions		X NOM					XX		EDB E Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I TCLP HEM (EPA 8011 (Waters Only) volatiles 8270D/SIM low-level PAHs) 8270D/SIM (low-level) 8082A nochlorine Pesticides 8081B nophosphorus Pesticides 8270D/SIM inated Acid Herbicides 8151A RCRA Metals MTCA Metals Metals (oil and grease) 1664A SSOLUED X (oil and grease) 1664A SSOLUED X

October 28, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-198

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 19, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 18, 2016 and received by the laboratory on October 19, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C (water) Analysis

Some MTCA Method A cleanup levels are non-achievable for sample F-14-GW due to sample matrix effects.

Total Suspended Solids SM 2540D Analysis

Samples received were field filtered.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-8.0					
Laboratory ID:	10-198-01					
Gasoline	ND	5.8	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	63-124				
Client ID:	F-13-2.5					
Laboratory ID:	10-198-04					
Gasoline	ND	5.9	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	63-124				
Client ID:	F-14-6.0					
Laboratory ID:	10-198-06					
Gasoline	ND	5.4	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	F-20-7.0					
Laboratory ID:	10-198-10					
Gasoline	ND	8.8	NWTPH-Gx	10-24-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024S2					
Gasoline	ND	5.0	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	63-124				
		S	ource Percer	nt Recoverv	RPI	כ

					000.00						
Analyte	Result		Spike Level		Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-22	20-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						84	88	63-124			

4

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	61-118				
Client ID:	F-13-GW					
Laboratory ID:	10-198-05					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Client ID:	F-20-GW					
Laboratory ID:	10-198-11					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	72	61-118				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024W1					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	61-118				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-19	98-11									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						72	81	61-118			

6

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-8.0					
Laboratory ID:	10-198-01					
Diesel Range Organics	ND	31	NWTPH-Dx	10-24-16	10-25-16	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-24-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	F-13-2.5					
Laboratory ID:	10-198-04					
Diesel Range Organics	ND	26	NWTPH-Dx	10-24-16	10-25-16	
Lube Oil Range Organics	ND	52	NWTPH-Dx	10-24-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	F-14-6 0					
Laboratory ID:	10-198-06					
Diesel Bange Organics	ND	28	NWTPH-Dx	10-24-16	10-25-16	
Lube Oil Range Organics	ND	56	NWTPH-Dx	10-24-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	F-20-7.0					
Laboratory ID:	10-198-10					
Diesel Range Organics	ND	34	NWTPH-Dx	10-24-16	10-25-16	
Lube Oil Range Organics	ND	68	NWTPH-Dx	10-24-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

7

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB1024S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-24-16	10-25-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-24-16	10-25-16	
Surrogate: o-Terphenyl	Percent Recovery 111	Control Limits 50-150				

					Source	Perce	nt Recovery	/	RPD	
Analyte	Result		Spike Level		Result	Recove	ery Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-18	31-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil	276	245	NA	NA		NA	NA	12	NA	
Surrogate:										
o-Terphenyl						101	116 50-150			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

3· (FF /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
Diesel Range Organics	ND	0.27	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				

o-Terphenyl 91 50-150

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

A	Desult	DOI		Date	Date	Flows
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1025W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-21	17-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						104 91	50-150			

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-8.0					
Laboratory ID:	10-198-01					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloromethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Vinyl Chloride	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromomethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloroethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Acetone	ND	0.017	EPA 8260C	10-26-16	10-26-16	
lodomethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Carbon Disulfide	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methylene Chloride	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Vinyl Acetate	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Butanone	ND	0.0069	EPA 8260C	10-26-16	10-26-16	
Bromochloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloroform	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Benzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Trichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Dibromomethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromodichloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Toluene	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-8.0					
Laboratory ID:	10-198-01					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Tetrachloroethene	0.0011	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Hexanone	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Dibromochloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Ethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
m,p-Xylene	ND	0.0022	EPA 8260C	10-26-16	10-26-16	
o-Xylene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Styrene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromoform	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Isopropylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
n-Propylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Chlorotoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
4-Chlorotoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
tert-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
sec-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
p-Isopropyltoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
n-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromo-3-chloropropane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Hexachlorobutadiene	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Naphthalene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	73-134				
Toluene-d8	103	81-124				
4-Bromofluorobenzene	96	80-131				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-13-2.5					
Laboratory ID:	10-198-04					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloromethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Vinyl Chloride	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromomethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloroethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Acetone	ND	0.017	EPA 8260C	10-26-16	10-26-16	
lodomethane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Carbon Disulfide	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methylene Chloride	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Vinyl Acetate	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Butanone	ND	0.0069	EPA 8260C	10-26-16	10-26-16	
Bromochloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chloroform	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Benzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Trichloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Dibromomethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromodichloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Toluene	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-13-2.5					
Laboratory ID:	10-198-04					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Tetrachloroethene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Hexanone	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Dibromochloromethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Chlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Ethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
m,p-Xylene	ND	0.0022	EPA 8260C	10-26-16	10-26-16	
o-Xylene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Styrene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromoform	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Isopropylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Bromobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
n-Propylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
2-Chlorotoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
4-Chlorotoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
tert-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
sec-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
p-Isopropyltoluene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
n-Butylbenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromo-3-chloropropane	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Hexachlorobutadiene	ND	0.0055	EPA 8260C	10-26-16	10-26-16	
Naphthalene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	73-134				

VOLATILES EPA 8260C page 2 of 2

4-Bromofluorobenzene

Toluene-d8

81-124

80-131

110

103
VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-14-6.0					
Laboratory ID:	10-198-06					
Dichlorodifluoromethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Chloromethane	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
Vinyl Chloride	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Bromomethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Chloroethane	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
Trichlorofluoromethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Acetone	0.10	0.014	EPA 8260C	10-26-16	10-26-16	Y
lodomethane	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
Carbon Disulfide	0.0015	0.00093	EPA 8260C	10-26-16	10-26-16	
Methylene Chloride	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Methyl t-Butyl Ether	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Vinyl Acetate	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
2,2-Dichloropropane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
2-Butanone	0.038	0.0058	EPA 8260C	10-26-16	10-26-16	Y
Bromochloromethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Chloroform	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,1,1-Trichloroethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Carbon Tetrachloride	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloropropene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Benzene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloroethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Trichloroethene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloropropane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Dibromomethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Bromodichloromethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
2-Chloroethyl Vinyl Ether	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
(cis) 1,3-Dichloropropene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Methyl Isobutyl Ketone	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
Toluene	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
(trans) 1,3-Dichloropropene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	

Analista	Desult	BOI	Madhaal	Date	Date	F lama
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-14-6.0					
Laboratory ID:	10-198-06					
1,1,2-Trichloroethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Tetrachloroethene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,3-Dichloropropane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
2-Hexanone	ND	0.0046	EPA 8260C	10-26-16	10-26-16	
Dibromochloromethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromoethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Chlorobenzene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
1,1,1,2-Tetrachloroethane	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Ethylbenzene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
m,p-Xylene	ND	0.0019	EPA 8260C	10-26-16	10-26-16	
o-Xylene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Styrene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Bromoform	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Isopropylbenzene	ND	0.00093	EPA 8260C	10-26-16	10-26-16	
Bromobenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,1,2,2-Tetrachloroethane	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichloropropane	ND	0.056	EPA 8260C	10-26-16	10-26-16	
n-Propylbenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
2-Chlorotoluene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
4-Chlorotoluene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,3,5-Trimethylbenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
tert-Butylbenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trimethylbenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
sec-Butylbenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,3-Dichlorobenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
p-lsopropyltoluene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1.4-Dichlorobenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	
1,2-Dichlorobenzene	ND	0.056	EPA 8260C	10-26-16	10-26-16	

VOLATILES EPA 8260C page 2 of 2

n-Butylbenzene

Naphthalene

Surrogate:

Toluene-d8

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Dibromofluoromethane

4-Bromofluorobenzene

Hexachlorobutadiene

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

0.056

0.28

0.056

0.28

0.056

0.056

Control Limits

73-134

81-124

80-131

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

10-26-16

ND

ND

ND

ND

ND

ND

Percent Recovery

114

107

93

VOLATILES EPA 8260C page 1 of 2

paye

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-7.0					
Laboratory ID:	10-198-10					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Chloromethane	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Vinyl Chloride	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Bromomethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Chloroethane	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Acetone	0.13	0.022	EPA 8260C	10-26-16	10-26-16	Y
lodomethane	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Carbon Disulfide	0.0020	0.0015	EPA 8260C	10-26-16	10-26-16	
Methylene Chloride	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Methyl t-Butyl Ether	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Vinyl Acetate	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
2-Butanone	0.058	0.0094	EPA 8260C	10-26-16	10-26-16	Y
Bromochloromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Chloroform	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Benzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Trichloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Dibromomethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Bromodichloromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
2-Chloroethyl Vinyl Ether	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Methyl Isobutyl Ketone	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Toluene	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	

		1 0			
Analyte	Result	PQL	Method	Date Prepared	Date Analyzed
Client ID:	F-20-7.0				
Laboratory ID:	10-198-10				
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16
Tetrachloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16
1,3-Dichloropropane	ND	0.0015	EPA 8260C	10-26-16	10-26-16
2-Hexanone	ND	0.0074	EPA 8260C	10-26-16	10-26-16
Dibromochloromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16
1,2-Dibromoethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16
Chlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16
Ethylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16

VOLATILES EPA 8260C page 2 of 2

1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Tetrachloroethene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
2-Hexanone	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Dibromochloromethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Chlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Ethylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
m,p-Xylene	ND	0.0030	EPA 8260C	10-26-16	10-26-16	
o-Xylene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Styrene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Bromoform	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Isopropylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Bromobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
n-Propylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
2-Chlorotoluene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
4-Chlorotoluene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,3,5-Trimethylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
tert-Butylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trimethylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
sec-Butylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
p-Isopropyltoluene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
n-Butylbenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2-Dibromo-3-chloropropane	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Hexachlorobutadiene	ND	0.0074	EPA 8260C	10-26-16	10-26-16	
Naphthalene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	96	80-131				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Flags

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1026S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Chloromethane	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
Vinyl Chloride	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Bromomethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Chloroethane	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Acetone	ND	0.0077	EPA 8260C	10-26-16	10-26-16	
lodomethane	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
Carbon Disulfide	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Methylene Chloride	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Vinyl Acetate	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
2-Butanone	ND	0.0063	EPA 8260C	10-26-16	10-26-16	
Bromochloromethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Chloroform	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Benzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Trichloroethene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Dibromomethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Bromodichloromethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
Toluene	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	

Date of Report: October 28, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-198 Project: 1071-014

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MR1026S1					
1 1 2-Trichloroothane		0.0010	EPA 8260C	10-26-16	10-26-16	
		0.0010		10.20-10	10.20-10	
		0.0010		10-20-10	10-20-10	
		0.0010		10.20-10	10.20-10	
2-nexalible		0.0050		10.20-10	10.20-10	
		0.0010		10-20-10	10-20-10	
I,2-Dibromoethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Chlorobenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Ethylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
m,p-Xylene	ND	0.0020	EPA 8260C	10-26-16	10-26-16	
o-Xylene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Styrene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Bromoform	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Isopropylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
Bromobenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
n-Propylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
2-Chlorotoluene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
4-Chlorotoluene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
tert-Butylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1.2.4-Trimethylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
sec-Butvlbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1.3-Dichlorobenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
p-lsopropyltoluene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1 4-Dichlorobenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1 2-Dichlorobenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
n-Butylbenzene	ND	0.0010	EPA 8260C	10-26-16	10-26-16	
1 2-Dibromo-3-chloropropage	ND	0.0050	EPA 8260C	10-26-16	10-26-16	
1.2.4-Trichlorobenzene	ND	0.0000	EPA 8260C	10-26-16	10-26-16	
Heyachlorobutadiene		0.0010	EPA 8260C	10-26-16	10-26-16	
Naphthalana		0.0030		10.26.16	10.26.16	
		0.0010		10.20-10	10.20-10	
	Dereent Deservery	Control Limite		10-20-10	10-20-10	
Dibromofluoromothen						
	111	13-134				
i oluene-av	116	81-124				
4-Bromofluorobenzene	110	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

20

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	26S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0546	0.0546	0.0500	0.0500	109	109	66-127	0	15	
Benzene	0.0541	0.0548	0.0500	0.0500	108	110	76-122	1	15	
Trichloroethene	0.0505	0.0524	0.0500	0.0500	101	105	78-120	4	15	
Toluene	0.0500	0.0504	0.0500	0.0500	100	101	83-120	1	15	
Chlorobenzene	0.0515	0.0515	0.0500	0.0500	103	103	81-120	0	15	
Surrogate:										
Dibromofluoromethane					98	97	73-134			
Toluene-d8					99	101	81-124			
4-Bromofluorobenzene					95	97	80-131			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Acetone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	0.36	0.20	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	1.8	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	0.22	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
o-Xylene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	77-129				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	96	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-13-GW					
Laboratory ID:	10-198-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Acetone	7.1	5.0	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	0.52	0.20	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	1.8	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-13-GW					
Laboratory ID:	10-198-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
o-Xylene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	77-129				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	97	80-125				

VOLATILES EPA 8260C page 1 of 2

VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
Dichlorodifluoromethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Acetone	ND	10	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	2.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	2.0	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	10	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	3.6	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	2.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-20-16	10-20-16	

26

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
1,1,2-Trichloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,3-Dichloropropane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	4.0	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromoethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Ethylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
m,p-Xylene	ND	0.80	EPA 8260C	10-20-16	10-20-16	
o-Xylene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichloropropane	ND	0.40	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
p-Isopropyltoluene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	2.0	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	77-129				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	89	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 2 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-GW					
Laboratory ID:	10-198-11					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Acetone	5.7	5.0	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	1.8	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-GW					
Laboratory ID:	10-198-11					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Hexanone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-20-16	10-20-16	
o-Xylene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Styrene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromoform	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trimethylbenzene	0.25	0.20	EPA 8260C	10-20-16	10-20-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Naphthalene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	77-129				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	96	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1020W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloromethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Acetone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
lodomethane	ND	1.0	EPA 8260C	10-20-16	10-20-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-20-16	10-20-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Butanone	ND	5.0	EPA 8260C	10-20-16	10-20-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Chloroform	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Benzene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Trichloroethene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Dibromomethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-20-16	10-20-16	
2-Chloroethyl Vinyl Ether	ND	1.8	EPA 8260C	10-20-16	10-20-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-20-16	10-20-16	
Toluene	ND	1.0	EPA 8260C	10-20-16	10-20-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-20-16	10-20-16	

Date of Report: October 28, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-198 Project: 1071-014

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1020W1		554 22220			
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	2.0	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.40	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	1.0	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	1.0	FPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
ND	1.0	EPA 8260C	10-20-16	10-20-16	
ND	0.20	EPA 8260C	10-20-16	10-20-16	
Percent Recovery	Control Limite		10 20 10	10 20 10	
106	77-129				
101	80-127				
gg	80-125				
	Result MB1020W1 ND ND	ResultPQLMB1020W1ND0.20ND0.20ND0.20ND2.0ND0.20 </td <td>Result PQL Method MB1020W1 </td> <td>Date Date Result PQL Method Prepared MB1020W1 0.20 EPA 8260C 10-20-16 ND 0.20 EPA 8260C 10-20-16 ND</td> <td>Result PQL Method Prepared Analyzed MB1020W1 </td>	Result PQL Method MB1020W1	Date Date Result PQL Method Prepared MB1020W1 0.20 EPA 8260C 10-20-16 ND 0.20 EPA 8260C 10-20-16 ND	Result PQL Method Prepared Analyzed MB1020W1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

31

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	rte Result Spike Level Recover		overy	Limits	RPD	Limit	Flags			
SPIKE BLANKS										
Laboratory ID:	SB10	20W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.58	9.85	10.0	10.0	96	99	63-127	3	17	
Benzene	9.40	9.60	10.0	10.0	94	96	76-121	2	12	
Trichloroethene	8.44	8.34	10.0	10.0	84	83	64-114	1	15	
Toluene	8.79	8.66	10.0	10.0	88	87	82-115	1	13	
Chlorobenzene	8.55	8.65	10.0	10.0	86	87	80-115	1	14	
Surrogate:										
Dibromofluoromethane					102	105	77-129			
Toluene-d8					98	101	80-127			
4-Bromofluorobenzene					93	95	80-125			

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-8.0					
Laboratory ID:	10-198-01					
Naphthalene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
2-Methylnaphthalene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
1-Methylnaphthalene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthylene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Fluorene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Phenanthrene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Anthracene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Fluoranthene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Pyrene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]anthracene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Chrysene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]pyrene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0084	EPA 8270D/SIM	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	55	32 - 122				
Pyrene-d10	68	33 - 125				
Terphenyl-d14	67	36 - 118				

33

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-7.0					
Laboratory ID:	10-198-10					
Naphthalene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
2-Methylnaphthalene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
1-Methylnaphthalene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthylene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Fluorene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Phenanthrene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Anthracene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Fluoranthene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Pyrene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]anthracene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Chrysene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]pyrene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0091	EPA 8270D/SIM	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	32 - 122				
Pyrene-d10	73	33 - 125				
Terphenyl-d14	71	36 - 118				

Date of Report: October 28, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-198 Project: 1071-014

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1026S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Fluorene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Chrysene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	32 - 122				
Pyrene-d10	87	33 - 125				
Terphenyl-d14	86	36 - 118				

35

PAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-19	98-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0592	0.0538	0.0833	0.0833	ND	71	65	39 - 112	10	27	
Acenaphthylene	0.0563	0.0509	0.0833	0.0833	ND	68	61	40 - 121	10	34	
Acenaphthene	0.0578	0.0536	0.0833	0.0833	ND	69	64	44 - 113	8	28	
Fluorene	0.0644	0.0576	0.0833	0.0833	ND	77	69	43 - 119	11	27	
Phenanthrene	0.0585	0.0547	0.0833	0.0833	ND	70	66	35 - 124	7	30	
Anthracene	0.0898	0.0835	0.0833	0.0833	ND	108	100	30 - 140	7	26	
Fluoranthene	0.0644	0.0613	0.0833	0.0833	ND	77	74	29 - 136	5	32	
Pyrene	0.0620	0.0597	0.0833	0.0833	ND	74	72	35 - 128	4	33	
Benzo[a]anthracene	0.0648	0.0609	0.0833	0.0833	ND	78	73	30 - 143	6	31	
Chrysene	0.0671	0.0641	0.0833	0.0833	ND	81	77	32 - 129	5	33	
Benzo[b]fluoranthene	0.0614	0.0581	0.0833	0.0833	ND	74	70	23 - 140	6	29	
Benzo(j,k)fluoranthene	0.0671	0.0633	0.0833	0.0833	ND	81	76	32 - 119	6	30	
Benzo[a]pyrene	0.0657	0.0619	0.0833	0.0833	ND	79	74	31 - 131	6	32	
Indeno(1,2,3-c,d)pyrene	0.0589	0.0537	0.0833	0.0833	ND	71	64	31 - 130	9	28	
Dibenz[a,h]anthracene	0.0603	0.0591	0.0833	0.0833	ND	72	71	40 - 119	2	27	
Benzo[g,h,i]perylene	0.0603	0.0567	0.0833	0.0833	ND	72	68	39 - 119	6	29	
Surrogate:											
2-Fluorobiphenyl						60	54	32 - 122			
Pyrene-d10						73	70	33 - 125			
Terphenyl-d14						72	68	36 - 118			

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	30 - 124				
Pyrene-d10	89	40 - 143				
Terphenyl-d14	85	27 - 127				

37

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	30 - 124				
Pyrene-d10	63	40 - 143				
Terphenyl-d14	70	27 - 127				

Date of Report: October 28, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-198 Project: 1071-014

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1020W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	30 - 124				
Pyrene-d10	75	40 - 143				
Terphenyl-d14	73	27 - 127				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Pei	rcent	Recovery		RPD	
Analyte	Result		Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	20W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.320	0.242	0.500	0.500	64	48	29 - 101	28	47	
Acenaphthylene	0.271	0.248	0.500	0.500	54	50	20 - 117	9	50	
Acenaphthene	0.339	0.278	0.500	0.500	68	56	37 - 109	20	43	
Fluorene	0.380	0.340	0.500	0.500	76	68	47 - 108	11	34	
Phenanthrene	0.376	0.339	0.500	0.500	75	68	49 - 109	10	28	
Anthracene	0.490	0.466	0.500	0.500	98	93	34 - 140	5	32	
Fluoranthene	0.458	0.422	0.500	0.500	92	84	45 - 120	8	39	
Pyrene	0.455	0.422	0.500	0.500	91	84	42 - 133	8	39	
Benzo[a]anthracene	0.417	0.374	0.500	0.500	83	75	71 - 117	11	28	
Chrysene	0.433	0.408	0.500	0.500	87	82	53 - 110	6	25	
Benzo[b]fluoranthene	0.465	0.412	0.500	0.500	93	82	53 - 123	12	37	
Benzo(j,k)fluoranthene	0.456	0.416	0.500	0.500	91	83	52 - 119	9	41	
Benzo[a]pyrene	0.431	0.418	0.500	0.500	86	84	37 - 129	3	33	
Indeno(1,2,3-c,d)pyrene	0.417	0.382	0.500	0.500	83	76	45 - 128	9	31	
Dibenz[a,h]anthracene	0.429	0.399	0.500	0.500	86	80	54 - 120	7	30	
Benzo[g,h,i]perylene	0.407	0.368	0.500	0.500	81	74	49 - 117	10	29	
Surrogate:										
2-Fluorobiphenyl					53	44	30 - 124			
Pyrene-d10					84	79	40 - 143			
Terphenyl-d14					83	77	27 - 127			

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-11-GW					
Laboratory ID:	10-198-03					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	F-14-GW					
Laboratory ID:	10-198-08					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1020W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-18	37-02							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	20W1							
	S	В	SB		SB				
Total Suspended Solids	89).0	100	NA	89	78-113	NA	NA	

Date of Report: October 28, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-198 Project: 1071-014

% MOISTURE

Date Analyzed: 10-26-16

Client ID	Lab ID	% Moisture
F-11-8.0	10-198-01	20
F-13-2.5	10-198-04	5
F-14-6.0	10-198-06	11
F-20-7.0	10-198-10	26

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Majduy Ustrom	Signature	10 F-20-7.0	9 F-20-2.5	8 F-14- GW	7 F-14-9,0	6 F-14-6.0	5 F-13-GW	4 F-13-2.5	3 F-11-GW	2 F-11-12,0	1 F-11-8,0	Lab ID Sample Identification	Sampled by: Ryan Atram	Project Name: South Nortolk Street & East Marginal why Project Manager: Scott Allin	1071-014	Company: Fund llow	Analytical Laboratory lesting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.	OnSite
Reviewed/Date				6	A COL	Farallon	Company	V 1630 5 5	1600 S 5	1340 W 11	1220 S 5	1210 S 5	1135 W 6	1120 5 5	0950 W 11	0925 S 5	10/18/16 OGIO S 5	Date Time E Sampled Sampled Matrix N	(other)	TPH analysis 5 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)		Chain of (
					10/19/16 1200	10/15/16 1900	Date Time	XXX		XXX		(R) (R) (R) (R) (R) (R) (R) (R) (R) (R)	XXXXX	(XXX)	XXX		XXX	NWTP NWTP NWTP NWTP Volatile Haloge	H-HCIE H-Gx/E H-Gx H-Dx ([enated]	D TEX Acid / SG Clu C Volatiles 8260C	ean-up)	Laboratory Number	Cuciony	Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard Level III Level IV		(X) Added 10/20/16. BZ (STA)	- Please Hold Seil Samples,	Field filtered	TSS water Damples have been	Comments/Special Instructions								X			PAHs a PAHs a PCBs Organo Organo Chlorin Total F Total N TCLP HEM (0	PA 801 olatiles ow-leve 3270D/3 8082A ochlorir ophosp nated A ICRA M ITCA M Metals bil and	1 (Waters Only) 8270D/SIM I PAHs) SIM (Iow-level) ne Pesticides 80 horus Pesticides cid Herbicides letals letals grease) 1664A	081B 95 8270 8151A	DD/SIM	10-198	Page of	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Lynn Ostron	Signature		T			11 F-20-GW	Lab ID Sample Identification	Sampleo by: Ryan Ostran	South Nortolk Street & East Marging Way Project Manager: Scott Allin	Project Name: 1071-014	Designed Mumbran Mon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					1 600	Faralla	Company					10/18/16 1650	Date Time Sampled Sampled N	(other)	 X Standard (7 Days) (TPH analysis 5 Days) 	2 Days 3	Same Day 1	Turnaround Request (in working days) (Check One)	Chai
					R					.9.1		E 6	NWTP	er of C	ontainers	Days	Day		n of Cu
					0/19/16/	1/18/16	Date Ti					×	NWTP NWTP NWTP	H-Gx/E H-Gx H-Dx (BTEX	ean-up))	boratory N	stody
C	D				20	900	me O						Volatil Haloge EDB E Semiv	es 8260 enated PA 801 olatiles	OC Volatiles 82600 1 (Waters Only 8270D/SIM)		lumber:	
hromatograms wi	ata Package: Sta						Comments/Special						(with le PAHs PCBs Organ	bw-leve 8270D/ 8082A ochlorii	el PAHs) SIM (low-level) ne Pesticides 8	081B		10-19	
th final report	andard 🗌 Level						Instructions						Organ Chlorii Total F	ophosp nated A RCRA N	horus Pesticid .cid Herbicides 1etals	es 8270 8151A	D/SIM	8	
Electronic Data Deliv													Total M TCLP HEM (Metals	fletals grease) 1664A				Page 2 of
erables (EDDs)													% Moi	sture					N

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 26, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-199

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 19, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 26, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-199 Project: 1071-014

Case Narrative

Samples were collected on October 18, 2016 and received by the laboratory on October 19, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-199-01					
Client ID:	F-11-GW					
Arsenic	3.1	3.0	200.8		10-20-16	
Lab ID:	10-199-02					
Client ID:	F-14-GW					
Arsenic	9.9	3.0	200.8		10-20-16	

Date of Report: October 26, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-199 Project: 1071-014

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-20-16

Matrix: Water Units: ug/L (ppb)

Lab ID: MB1020D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
Date of Report: October 26, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-199 Project: 1071-014

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-20-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 26, 2016 Samples Submitted: October 19, 2016 Laboratory Reference: 1610-199 Project: 1071-014

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-20-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-189-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	213	106	209	105	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Igm Ostroun	Signature			20		/	2 F-14-GW	1 F-11-GW	Lab ID Sample Identification	Sampled by: Ryan Ostrow	Project Manager: Project Manager: Scott Allin	07 - 0 4	Company: Farallen	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Re					U	ti	Com						~	IONE/IC O	Date Sampled		TPH ar	2 Days	Same D	Turna (in v	
eviewed/Date					Q	mallou	pany						1340	20150	Time Sampled	(other)	rd (7 Days) nalysis 5 Days)ay	vorking days	Cha
					17								3	3	Matrix		÷	3 Days	1 Day))	in o
														-	Numb	er of C	ontainers				Ť
															NWTP	H-HCIE)			5	C
					0	10/	Date								NWTP	H-Gx/E	BTEX			abo	N.
					19	1/18									NWTP	H-Gx				rat	0
					lile	.0									NWTP	H-Dx (Acid / SG CI	ean-up)	Vio	dy
					61	191	Time								Volatil	es 8260	C			Nu	
					3	8									Haloge	enated	Volatiles 82600)		du	
					0										EDB E	PA 801	1 (Waters Only)		en	
Chr	Data					8	Cor								Semiv (with le	olatiles ow-leve	8270D/SIM I PAHs)				
omati	a Pac					emp	nmer								PAHs	8270D/	SIM (low-level)			-0	
ograr	skage					les	its/Sp								PCBs	8082A					
ns wi	9: Sta					he	ecial								Organ	ochlorir	ne Pesticides 8	081B		0	
th fina	andar					ve	Instri								Organ	ophosp	horus Pesticid	es 8270	D/SIM	0	
al rep	d					T	uction								Chlori	nated A	cid Herbicides	8151A			
ort	Lev					en	SI								Total F	RCRA N	letals				
Пe	/el III					11									Total N	ITCA N	letals				P
ctroni						eld									TCLP	Metals					age
ic Dat	Leve					17									HEM (oil and	grease) 1664A				-
a Deliverabl						Itered							\times	X	D1550	ived t	trsenic 60	200/7	loco Ser	<u>nie</u> s	of
les (El											-										-
DDs) [
															% Moi	sture					

.

October 28, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-217

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 20, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 28, 2016 Samples Submitted: October 20, 2016 Laboratory Reference: 1610-217 Project: 1071-014

Case Narrative

Samples were collected on October 19, 2016 and received by the laboratory on October 20, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C (water) Analysis

Some MTCA Method A cleanup levels are non-achievable for sample MW-101-101916 due to sample matrix effects.

Total Suspended Solids SM 2540D Analysis

Samples received were field filtered.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-21-GW					
Laboratory ID:	10-217-03					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-118				
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	61-118				
Client ID:	F-22-GW					
Laboratory ID:	10-217-07					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-118				
Client ID:	F-23-GW					
Laboratory ID:	10-217-08					
Gasoline	150	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Client ID:	MW-AG2-101916					
Laboratory ID:	10-217-09					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1024W2					
Gasoline	ND	100	NWTPH-Gx	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	61-118				

					Source	Perc	cent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-21	7-06									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						77	83	61-118			

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-22-7.0					
Laboratory ID:	10-217-05					
Gasoline	ND	6.6	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1026S1					
Gasoline	ND	5.0	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	63-124				

Analyte	Ro	sult	Sniko		Source	Pero	cent	Recovery	חספ	RPD Limit	Flage
DUPLICATE	nea	Suit	Эріке	Levei	nesuit	necc	JVEIY	Linits	nru	Linin	Tiags
Laboratory ID:	10-24	46-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate: Fluorobenzene						88	90	63-124			

6

NWTPH-Dx

Matrix:	Water
Units:	mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-GW					
Laboratory ID:	10-217-01					
Diesel Range Organics	ND	0.27	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	F-21-GW					
Laboratory ID:	10-217-03					
Diesel Range Organics	ND	0.27	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
Diesel Range Organics	0.29	0.26	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
	F 66 614					
Client ID:	F-23-GW					
Laboratory ID:	10-217-08			40.05.40	40.05.40	
Diesel Range Organics	0.84	0.26	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	0.50	0.42	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	97	50-150				
Client ID:	MW_AG2 101016					
	10 217 00					
	10-217-09	0.05		10.05.10	10.05.10	
Luba Oil Dance Organics		0.25		10-25-16	10-25-16	
		U.41	INWIPH-DX	10-25-16	10-25-16	
Surrogale:	Percent Recovery	Control Limits				
o-rerprienyi	98	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB1025W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-21	7-04								
	ORIG	DUP								
Diesel Range Organics	0.290	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						104 91	50-150			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

3 3 () (Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-22-7.0					
Laboratory ID:	10-217-05					
Diesel Range Organics	ND	32	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	63	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1026S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-18	37-06								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						90 90	50-150			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-21-GW					
Laboratory ID:	10-217-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	0.81	0.20	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Benzene	0.21	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-21-GW					
Laboratory ID:	10-217-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	77-129				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	96	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
Dichlorodifluoromethane	2.7	0.40	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	10	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	2.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	2.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	10	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	11	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	2.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
1,1,2-Trichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	4.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.80	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	2.6	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	2.6	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	77-129				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	93	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	77-129				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	80-125				

VOLATILES EPA 8260C page 2 of 2

4-Bromofluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

80-125

16

This report pertains to the samples analyzed in accordance with the chain of custody,
and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	F-22-GW						
Laboratory ID:	10-217-07						
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16		
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16		
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
(cis) 1,2-Dichloroethene	0.24	0.20	EPA 8260C	10-24-16	10-24-16		
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16		
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16		
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		

17

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	F-22-GW						
Laboratory ID:	10-217-07						
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16		
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16		
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16		
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16		
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	99	77-129					
Toluene-d8	101	80-127					
4-Bromofluorobenzene	93	80-125					

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	F-23-GW						
Laboratory ID:	10-217-08						
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16		
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16		
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16		
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16		
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
1,2-Dichloropropane	0.39	0.20	EPA 8260C	10-24-16	10-24-16		
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16		
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16		
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16		

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-23-GW					
Laboratory ID:	10-217-08					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	0.40	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	77-129				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	96	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG2-101916					
Laboratory ID:	10-217-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	10-24-16	10-24-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG2-101916					
Laboratory ID:	10-217-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	77-129				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	94	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1024W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	

Date of Report: October 28, 2016 Samples Submitted: October 20, 2016 Laboratory Reference: 1610-217 Project: 1071-014

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1024W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	77-129				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	94	80-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

24

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	24W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.1	9.29	10.0	10.0	101	93	63-127	8	17	
Benzene	9.75	10.1	10.0	10.0	98	101	76-121	4	12	
Trichloroethene	8.70	8.51	10.0	10.0	87	85	64-114	2	15	
Toluene	9.13	9.03	10.0	10.0	91	90	82-115	1	13	
Chlorobenzene	9.02	8.82	10.0	10.0	90	88	80-115	2	14	
Surrogate:										
Dibromofluoromethane					82	87	77-129			
Toluene-d8					101	103	80-127			
4-Bromofluorobenzene					94	94	80-125			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-22-7.0					
Laboratory ID:	10-217-05					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	

Analyte	Bosult	POI	Method	Date Prepared	Date Analyzed	Flage
Client ID:	F-22-7 0	I QL	Wethou	Tiepareu	Analyzeu	Tiags
Laboratory ID.	10-217-05					
1.1.2-Trichloroethane	ND	0.0010	FPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1.3-Dichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.0020	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	

VOLATILES EPA 8260C page 2 of 2

n-Butylbenzene

Naphthalene

Surrogate:

Toluene-d8

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Dibromofluoromethane

4-Bromofluorobenzene

Hexachlorobutadiene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

0.0010

0.0050

0.0010

0.0050

0.0010

0.0010

Control Limits

73-134

81-124

80-131

ND

ND

ND

ND

ND

ND

Percent Recovery

105

103

101

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

10-25-16

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

27

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	

Date of Report: October 28, 2016 Samples Submitted: October 20, 2016 Laboratory Reference: 1610-217 Project: 1071-014

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025S1					
1 1 2-Trichloroothane		0.0010	EPA 8260C	10-25-16	10-25-16	
		0.0010		10.25-10	10.25-10	
		0.0010		10-25-16	10.25-16	
		0.0010		10.25-16	10.25-16	
2-nexalible		0.0050		10-25-16	10.25-16	
		0.0010		10-25-16	10-25-16	
	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.0020	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
p-lsopropyltoluene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1.4-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1.2-Dichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
n-Butvlbenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1 2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
1 2 4-Trichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	10-25-16	10-25-16	
Nanhthalene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
1.2.3-Trichlorobenzene	ND	0.0010	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limite		10-20-10	10-20-10	
Dibromofluoromothene	111	72_121				
Toluono-d8	105	81_104				
	105	01-124				
4-bromotiuorobenzene	105	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0619	0.0547	0.0500	0.0500	124	109	66-127	12	15	
Benzene	0.0511	0.0495	0.0500	0.0500	102	99	76-122	3	15	
Trichloroethene	0.0499	0.0522	0.0500	0.0500	100	104	78-120	5	15	
Toluene	0.0493	0.0516	0.0500	0.0500	99	103	83-120	5	15	
Chlorobenzene	0.0492	0.0512	0.0500	0.0500	98	102	81-120	4	15	
Surrogate:										
Dibromofluoromethane					104	104	73-134			
Toluene-d8					99	101	81-124			
4-Bromofluorobenzene					97	100	80-131			

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-20-GW					
Laboratory ID:	10-217-01					
Naphthalene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
2-Methylnaphthalene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
1-Methylnaphthalene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Acenaphthylene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Acenaphthene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Fluorene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Phenanthrene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Anthracene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Fluoranthene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Pyrene	ND	0.11	EPA 8270D/SIM	10-20-16	10-24-16	
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Chrysene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Benzo[g,h,i]perylene	ND	0.011	EPA 8270D/SIM	10-20-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	30 - 124				
Pyrene-d10	99	40 - 143				
Terphenyl-d14	99	27 - 127				

31

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-21-GW					
Laboratory ID:	10-217-03					
Naphthalene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.096	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	30 - 124				
Pyrene-d10	78	40 - 143				
Terphenyl-d14	79	27 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
Naphthalene	0.10	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
2-Methylnaphthalene	0.43	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
1-Methylnaphthalene	3.0	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthene	0.20	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluorene	0.16	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Phenanthrene	0.17	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Anthracene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluoranthene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Pyrene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Chrysene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	30 - 124				
Pyrene-d10	104	40 - 143				
Terphenyl-d14	94	27 - 127				

33

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
Naphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
2-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
1-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluorene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Phenanthrene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Anthracene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluoranthene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Pyrene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Chrysene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	30 - 124				
Pyrene-d10	87	40 - 143				
Terphenyl-d14	83	27 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-23-GW					
Laboratory ID:	10-217-08					
Naphthalene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Fluorene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Phenanthrene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Anthracene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Fluoranthene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Pyrene	ND	0.096	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Chrysene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	10-20-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	30 - 124				
Pyrene-d10	102	40 - 143				
Terphenyl-d14	111	27 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG2-101916					
Laboratory ID:	10-217-09					
Naphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
2-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
1-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Acenaphthene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluorene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Phenanthrene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Anthracene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Fluoranthene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Pyrene	ND	0.094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Chrysene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	10-20-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	44	30 - 124				
Pyrene-d10	57	40 - 143				
Terphenyl-d14	61	27 - 127				

Date

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1020W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-20-16	10-20-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	47	30 - 124				
Pyrene-d10	75	40 - 143				
Terphenyl-d14	73	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	30 - 124				
Pyrene-d10	80	40 - 143				
Terphenyl-d14	81	27 - 127				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

				P	ercent	Recovery		RPD	
Re	sult	Spike	Level	Re	ecovery	/ Limits	RPD	Limit	Flags
SB10	20W1								
SB	SBD	SB	SBD	SI	B SBI	D			
0.320	0.242	0.500	0.500	64	48	29 - 101	28	47	
0.271	0.248	0.500	0.500	54	4 50	20 - 117	9	50	
0.339	0.278	0.500	0.500	68	3 56	37 - 109	20	43	
0.380	0.340	0.500	0.500	76	68 68	47 - 108	11	34	
0.376	0.339	0.500	0.500	75	5 68	49 - 109	10	28	
0.490	0.466	0.500	0.500	98	3 93	34 - 140	5	32	
0.458	0.422	0.500	0.500	92	2 84	45 - 120	8	39	
0.455	0.422	0.500	0.500	9	84	42 - 133	8	39	
0.417	0.374	0.500	0.500	83	3 75	71 - 117	11	28	
0.433	0.408	0.500	0.500	87	7 82	53 - 110	6	25	
0.465	0.412	0.500	0.500	93	3 82	53 - 123	12	37	
0.456	0.416	0.500	0.500	9	83	52 - 119	9	41	
0.431	0.418	0.500	0.500	86	6 84	37 - 129	3	33	
0.417	0.382	0.500	0.500	83	3 76	45 - 128	9	31	
0.429	0.399	0.500	0.500	86	6 80	54 - 120	7	30	
0.407	0.368	0.500	0.500	8	1 74	49 - 117	10	29	
				53	3 44	30 - 124			
				84	4 79	40 - 143			
				83	3 77	27 - 127			
	Re: SB10 SB 0.320 0.271 0.339 0.380 0.376 0.490 0.458 0.455 0.417 0.433 0.465 0.456 0.431 0.417 0.429 0.407	SB10200000000000000000000000000000000000	Result Spike SB1020W1 SB SB SBD SB 0.320 0.242 0.500 0.320 0.242 0.500 0.320 0.242 0.500 0.339 0.278 0.500 0.380 0.340 0.500 0.376 0.339 0.500 0.490 0.466 0.500 0.455 0.422 0.500 0.455 0.422 0.500 0.417 0.374 0.500 0.433 0.408 0.500 0.431 0.416 0.500 0.431 0.418 0.500 0.417 0.382 0.500 0.417 0.382 0.500 0.417 0.368 0.500 0.417 0.368 0.500	Result Spike Level SB102000 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 0.320 0.242 0.500 0.500 0.339 0.278 0.500 0.500 0.380 0.340 0.500 0.500 0.376 0.339 0.500 0.500 0.490 0.466 0.500 0.500 0.455 0.422 0.500 0.500 0.455 0.422 0.500 0.500 0.417 0.374 0.500 0.500 0.417 0.374 0.500 0.500 0.433 0.408 0.500 0.500 0.4456 0.412 0.500 0.500 0.431 0.418 0.500 0.500 0.429 0.399 0.500 0.500 0.407 0.368 0.500 0.500	Result Spike Level Result SB SBD SB SBD SB 0.320 0.242 0.500 0.500 64 0.271 0.248 0.500 0.500 64 0.339 0.278 0.500 0.500 64 0.376 0.339 0.500 0.500 64 0.376 0.339 0.500 0.500 76 0.490 0.466 0.500 0.500 76 0.490 0.466 0.500 0.500 96 0.455 0.422 0.500 0.500 97 0.417 0.374 0.500 0.500 93 0.433 0.408 0.500 0.500 93 0.4456 0.412 0.500 0.500 93 0.431 0.418 0.500 0.500 83 0.429 0.399 0.500 0.500 83 0.407 0.368 0.500 0.500 83	Percent Result Spike Level Recovery SB SBD SB SBD SB SB 0.320 0.242 0.500 0.500 64 48 0.271 0.248 0.500 0.500 68 56 0.339 0.278 0.500 0.500 68 56 0.380 0.340 0.500 0.500 76 68 0.376 0.339 0.500 0.500 75 68 0.490 0.466 0.500 0.500 92 84 0.455 0.422 0.500 0.500 91 84 0.417 0.374 0.500 0.500 93 82 0.465 0.412 0.500 0.500 93 82 0.431 0.418 0.500 0.500 93 82 0.432 0.500 0.500 86 84 0.417 0.382 0.500 0.500 <	Result Spike Level Percent Recovery Limits SB1020W1 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 64 48 29 - 101 0.271 0.248 0.500 0.500 64 48 29 - 101 0.370 0.248 0.500 0.500 64 48 29 - 101 0.371 0.248 0.500 0.500 64 48 29 - 101 0.376 0.339 0.500 0.500 68 56 37 - 109 0.490 0.466 0.500 0.500 75 68 49 - 109 0.453 0.422 0.500 0.500 98 93 34 - 140 0.455 0.422 0.500 0.500 91 84 42 - 133 0.417 0.374 0.500 0.500 83 75 71 - 117 0.433 0.408 0.500 0.500 91 83	Percent Recovery Limits RPD SB1020W1 SB SBD SB SBD SB SBD 0.320 0.242 0.500 0.500 64 48 29 - 101 28 0.320 0.242 0.500 0.500 64 48 29 - 101 28 0.271 0.248 0.500 0.500 64 48 29 - 101 28 0.339 0.278 0.500 0.500 64 48 29 - 101 28 0.339 0.278 0.500 0.500 68 56 37 - 109 20 0.380 0.340 0.500 0.500 76 68 47 - 108 11 0.376 0.339 0.500 0.500 98 93 34 - 140 5 0.455 0.422 0.500 0.500 91 84 42 - 133 8 0.417 0.374 0.500 0.500 83 75 71 - 117 11	Percent Recovery Limits RPD Limit SB SBD SB SB SBD SB SBD SB SB

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	1.90	1.74	2.50	2.50	76	70	29 - 101	9	47	
Acenaphthylene	1.89	1.81	2.50	2.50	76	72	20 - 117	4	50	
Acenaphthene	2.00	1.93	2.50	2.50	80	77	37 - 109	4	43	
Fluorene	2.13	2.02	2.50	2.50	85	81	47 - 108	5	34	
Phenanthrene	2.06	2.05	2.50	2.50	82	82	49 - 109	0	28	
Anthracene	2.81	2.89	2.50	2.50	112	116	34 - 140	3	32	
Fluoranthene	2.16	2.22	2.50	2.50	86	89	45 - 120	3	39	
Pyrene	2.21	2.27	2.50	2.50	88	91	42 - 133	3	39	
Benzo[a]anthracene	2.31	2.39	2.50	2.50	92	96	71 - 117	3	28	
Chrysene	2.15	2.21	2.50	2.50	86	88	53 - 110	3	25	
Benzo[b]fluoranthene	2.20	2.32	2.50	2.50	88	93	53 - 123	5	37	
Benzo(j,k)fluoranthene	2.26	2.30	2.50	2.50	90	92	52 - 119	2	41	
Benzo[a]pyrene	2.24	2.34	2.50	2.50	90	94	37 - 129	4	33	
Indeno(1,2,3-c,d)pyrene	2.29	2.39	2.50	2.50	92	96	45 - 128	4	31	
Dibenz[a,h]anthracene	2.36	2.45	2.50	2.50	94	98	54 - 120	4	30	
Benzo[g,h,i]perylene	2.28	2.38	2.50	2.50	91	95	49 - 117	4	29	
Surrogate:										
2-Fluorobiphenyl					63	62	30 - 124			
Pyrene-d10					84	85	40 - 143			
Terphenyl-d14					80	82	27 - 127			

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water						
Units: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-21-GW			•	•	
Laboratory ID:	10-217-03					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	MW-101-101916					
Laboratory ID:	10-217-04					
Total Suspended Solids	23	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	DOF-1-101916					
Laboratory ID:	10-217-06					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	F-23-GW					
Laboratory ID:	10-217-08					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	
Client ID:	MW-AG2-101916					
Laboratory ID:	10-217-09					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1020W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-20-16	10-21-16	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-18	37-02							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	20W1							
	S	В	SB		SB				
Total Suspended Solids	89	9.0	100	NA	89	78-113	NA	NA	

DISSOLVED LEAD EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-217-04					
Client ID:	MW-101-101916					
Lead	ND	1.0	200.8		10-20-16	
Lab ID:	10-217-06					
Client ID:	DOF-1-101916					
Lead	ND	1.0	200.8		10-20-16	

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-20-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1020D2		
Analyta	Method	Decult	
Analyle	Method	Result	PQL
Lead	200.8	ND	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-20-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-218-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-20-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-218-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	200	183	91	186	93	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Anal	yzed:	10-21-16
-----------	-------	----------

Client ID	Lab ID	% Moisture
F-22-7.0	10-217-05	21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Hyper Children	Signature	/ Ro	9 MW-AGZ-101916	8 F-23-GW	7 F-22-GW	6 DOF-1-101916	5 F-22-7.0	4 MW-101-101916	3 F-21-GW	2 F-21-6.7	1 F-20-GW	/ Lab ID Sample Identification	Sampled by: Ryan Ostrowy	Project Number: 1071-014 Project Name: South Morfolk Strept & East Marginal way Project Manager: Scott Allin		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Re less					R	t	Comp							-	10	0	10/19/16 C	Date Sampled S		Same Di 2 Days (TPH and 2 Days	(c	Turnar (in w	
viewed/Date					2 Nrs	inallow	oany		330 1	115	210	50	140	20	8	940	20105	Time Sampled I	(other)	ay 1 1	heck One)	ound Request orking days)	Chai
					A	١			3	3	3	3	S S	3	3	() ()	S	Natrix Number	er of Co	Days			n of
					10	-	0		00			144			12		10	NWTPH	I-HCID			La	Cu
					N	0/19/	Jate		X	X			X	X	X			NWTPH	I-Gx/B	TEX		borat	sto
ata Dalis					lucol	6	1		X	X	RO	\ge	×	X	X		\ge	NWTPH	1-Dx	6		ory N	dy
problee (F					15	1630	ime		\wedge	Þ,	X		X	\mid	\times			Haloge	nated V	olatiles 8260C	_	Jumb	
					0	~												Semivo (with lo	latiles & w-level	3270D/SIM PAHs)		er:	
Chroma				1/10	2 2	*	Comme		X	\times		\times		\times	\times			PCBs 8	082A				
togram				ese	10 10	12	nts/Spo											Organo	chlorin	e Pesticides 8081B			
is with				S	ーた	Ter	cial Ins											Organo	phospho	orus Pesticides 8270D/SIM			
final re				8 B	red	- 57	structio											Total R	CRA M	etals	_		
port					-	5	INS											Total M	ТСА М	etals		10	
				dime	•	Date												TCLP N	/letals	16644		2	Pag
				es		ר ני			\times	\times		\times			$\overline{\mathbf{X}}$			TC					e
						ounples	9					$\stackrel{\text{\tiny}}{\succ}$		X				Disso	Ived	Lend 6000/7000	Serte	K	of
						were															_		
						1.							X					% Mois	sture		_		

October 28, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-218

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 20, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 19, 2016 and received by the laboratory on October 20, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-218-01					
Client ID:	F-21-GW					
Arsenic	ND	3.0	200.8		10-20-16	
Lab ID: Client ID:	10-218-02 MW-101-101916					
Arsenic	48	3.0	200.8		10-20-16	
Lab ID: Client ID:	10-218-03 F-23-GW					
Arsenic	ND	3.0	200.8		10-20-16	
Lab ID: Client ID:	10-218-04					
Arsenic	ND	3.0	200.8		10-20-16	
Lab ID:	10-218-05					
Client ID:	MW-AG2-101916					
Arsenic	5.8	3.0	200.8		10-20-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-20-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1020D2		
Analyte	Method	Result	PQI
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-20-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-218-01

Analyte	Sample Besult	Duplicate Besult	RPD	POI	Flags
Arsenic	ND	ND	NA	3.0	i lugo

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed: 10-20-1

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-218-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	208	104	205	103	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Maynes Children	Signature			120	5 MW-AG2-101916	4 DOF-1-101916	3 F-23-GW	2 MW-101-101916	1 F-21-GW	/ Lab ID Sample Identification	Kyan Ostram	Scott Allin	South Norfolk Sheet & East Marginal Way	$\frac{ 07 -014}{ 07 -014}$	Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Andard Level III Level IV					Jar yes	taralan	Company		-		上 1330 上	1150	1115	lois	10/19/16 1000 W	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
Electronic Data Deliverables (EDI					E 10/19/10/115	12/19/16 1630	Date Time									Numb NWTP NWTP NWTP NWTP Volatile Haloge	er of C H-HCII H-Gx/E H-Gx H-Dx es 8260 enated	ontain D BTEX DC Volatil	es 82600				Laboratory Number	f Custody
Chromatograms with final report					V	Samples were field filtered	Comments/Special Instructions									(with lc PAHs I PCBs I Organo Organo Chlorir Total F Total N TCLP HEM (8082A 8082A 90chlorii 90phospi	I PAH I PAH I SIM (I ne Pes horus I norus I Acid H Metals greas	e) 1664A	081B 8270D/ 8151A	SIM			Page of
																% Mo	isture							

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 31, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-244

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 21, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 21, 2016 and received by the laboratory on October 21, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)			_	_	
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-244-01					
Client ID:	MW-203-102116					
Arsenic	ND	3.0	200.8		10-27-16	
Lob ID:	10 244 02					
Client ID:	MW-4-102116					
Arsenic	38	3.0	200.8		10-27-16	
Lab ID:	10-244-03					
Client ID:	MW-AG1-102116					
Arsenic	4.8	3.0	200.8		10-27-16	
Lab ID:	10-244-04					
Client ID:	MW-207-102116					
Arsenic	27	3.0	200.8		10-27-16	
Lab ID:	10-244-05					
Client ID:	DOF-3-102116					
Arsenic	ND	3.0	200.8		10-27-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-27-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1025F1		
Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-27-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-27-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	219	109	205	102	7	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Myan Ostrow	Signature	/	ACC		5 DOF-3-102116	4 MW-207-102/16	3 MW-AG1-102116	2 MW-4-102116	1 MW-203-102116	Lab ID Sample Identification	Sampled by: Ryan Ostron	South Nortalk Street & East Narginal way Project Manager: Scott Allin	1071-014	Company: Tarallou	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date					EUN	Farallan	Company				× 1457 × 1	1348	1203	1059	10/21/16 0958 W 1	Date Time Sampled Sampled Matrix	(other)	TPH analysis 5 Days)	2 Days 3 Days	Same Day	Turnaround Request (in working days)	Chain of
					10/21/16/1635	10/21/16 1635	Date Time									NWTP NWTP NWTP NWTP Volatil Haloge	PH-HCIE PH-Gx/B PH-Gx PH-Dx ([es 8260 enated \ EPA 801) TEX Acid / SG C C Volatiles 8260	lean-up; C)	Laboratory Number	Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDD:	Data Package: Standard Level III Level IV					Samples were field filtered	Comments/Special Instructions									Semiv (with I PAHs PCBs Organ Organ Chlorin Total F Total N TCLP HEM (volatiles ow-leve 8270D/S 8082A ochlorin ophospi nated Ar RCRA M MTCA M Metals oil and g	Arsenic Arsenic	0 3081B des 8270 38151A	0D/SIM 97/7000	10-244	Page of

November 1, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-245

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 21, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 21, 2016 and received by the laboratory on October 21, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Suspended Solids SM 2540D Analysis

Samples received were field filtered

PAHs EPA 8270D/SIM Analysis

Sample DOF-3-102116 had two surrogates outside of control limits. The sample was re-extracted and re-analyzed with similar results, indicating matrix effects.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Client ID:	MW-4-102116					
Laboratory ID:	10-245-02					
Gasoline	ND	400	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	61-118				
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
Gasoline	ND	400	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	61-118				
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-118				
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	•	
Analyte		Result		PQL	Ме	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1025W2									
Gasoline		ND		100	NWT	PH-G	х	10-25-16	10-25-	16	
Surrogate:	Pe	rcent Recovery	Сс	ontrol Limit	s						
Fluorobenzene		85		61-118							
Laboratory ID:		MB1026W1									
Gasoline		ND		100	NWT	PH-G	х	10-26-16	10-26-	16	
Surrogate:	Pe	rcent Recovery	Co	ontrol Limit	S						
Fluorobenzene		81		61-118							
					Source	Per	cent	Recoverv		RPD	
Analyte	Res	sult	Spik	e Level	Result	Reco	overv	Limits	RPD	Limit	Flags
DUPLICATE											Ŭ.
Laboratory ID:	10-24	45-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	84	61-118			
Laboratory ID:	10-27	74-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						85	82	61-118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	MW-4-102116					
Laboratory ID:	10-245-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	52	50-150				
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				

5

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•		
Laboratory ID:	MB1027W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-27-16	10-27-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-23	31-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						117 110	50-150			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-lsopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	77-129				
Toluene-d8	103	80-127				

VOLATILES EPA 8260C page 2 of 2

4-Bromofluorobenzene

80-125

97

VOLATILES EPA 8260C page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-102116					
Laboratory ID:	10-245-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-102116					
Laboratory ID:	10-245-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	77-129				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	89	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	e ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	77-129				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	90	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	77-129				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	97	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	77-129				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	93	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloromethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroethane	ND	1.0	EPA 8260C	10-25-16	10-25-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Acetone	ND	5.0	EPA 8260C	10-25-16	10-25-16	
lodomethane	ND	1.5	EPA 8260C	10-25-16	10-25-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-25-16	10-25-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Butanone	ND	7.0	EPA 8260C	10-25-16	10-25-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chloroform	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Benzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Trichloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Dibromomethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chloroethyl Vinyl Ether	ND	13	EPA 8260C	10-25-16	10-25-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8260C	10-25-16	10-25-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-25-16	10-25-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1		554 22220		40.05.40	
1,1,2-Irichloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Hexanone	ND	2.6	EPA 8260C	10-25-16	10-25-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-25-16	10-25-16	
o-Xylene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Styrene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromoform	ND	1.3	EPA 8260C	10-25-16	10-25-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Bromobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	10-25-16	10-25-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-25-16	10-25-16	
Naphthalene	ND	1.3	EPA 8260C	10-25-16	10-25-16	
1,2,3-Trichlorobenzene	ND	0.27	EPA 8260C	10-25-16	10-25-16	
Surrogate:	Percent Recoverv	Control Limits	· · · ·			
Dibromofluoromethane	97	77-129				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	95	80-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

18

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.0	10.5	10.0	10.0	100	105	63-127	5	17	
Benzene	10.1	10.6	10.0	10.0	101	106	76-121	5	12	
Trichloroethene	7.94	8.40	10.0	10.0	79	84	64-114	6	15	
Toluene	8.74	9.43	10.0	10.0	87	94	82-115	8	13	
Chlorobenzene	8.68	9.10	10.0	10.0	87	91	80-115	5	14	
Surrogate:										
Dibromofluoromethane					95	95	77-129			
Toluene-d8					102	103	80-127			
4-Bromofluorobenzene					97	96	80-125			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	30 - 124				
Pyrene-d10	78	40 - 143				
Terphenyl-d14	83	27 - 127				

20

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-102116					
Laboratory ID:	10-245-02					
Naphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
2-Methylnaphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
1-Methylnaphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthylene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluorene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Phenanthrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Anthracene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluoranthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Pyrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Chrysene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[b]fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	43	30 - 124				
Pyrene-d10	52	40 - 143				
Terphenyl-d14	59	27 - 127				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
Naphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
2-Methylnaphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
1-Methylnaphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthylene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluorene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Phenanthrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Anthracene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluoranthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Pyrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Chrysene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[b]fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	55	30 - 124				
Pyrene-d10	68	40 - 143				
Terphenyl-d14	78	27 - 127				

22

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	30 - 124				
Pyrene-d10	77	40 - 143				
Terphenyl-d14	81	27 - 127				

23

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
Naphthalene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.094	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	24	30 - 124				Q
Pyrene-d10	29	40 - 143				Q
Terphenyl-d14	29	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	<i>30 - 124</i>				
Pyrene-d10	80	40 - 143				
Terphenyl-d14	81	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1028W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	48	30 - 124				
Pyrene-d10	71	40 - 143				
Terphenyl-d14	72	27 - 127				

26

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery			
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	1.90	1.74	2.50	2.50	76	70	29 - 101	9	47	
Acenaphthylene	1.89	1.81	2.50	2.50	76	72	20 - 117	4	50	
Acenaphthene	2.00	1.93	2.50	2.50	80	77	37 - 109	4	43	
Fluorene	2.13	2.02	2.50	2.50	85	81	47 - 108	5	34	
Phenanthrene	2.06	2.05	2.50	2.50	82	82	49 - 109	0	28	
Anthracene	2.81	2.89	2.50	2.50	112	116	34 - 140	3	32	
Fluoranthene	2.16	2.22	2.50	2.50	86	89	45 - 120	3	39	
Pyrene	2.21	2.27	2.50	2.50	88	91	42 - 133	3	39	
Benzo[a]anthracene	2.31	2.39	2.50	2.50	92	96	71 - 117	3	28	
Chrysene	2.15	2.21	2.50	2.50	86	88	53 - 110	3	25	
Benzo[b]fluoranthene	2.20	2.32	2.50	2.50	88	93	53 - 123	5	37	
Benzo(j,k)fluoranthene	2.26	2.30	2.50	2.50	90	92	52 - 119	2	41	
Benzo[a]pyrene	2.24	2.34	2.50	2.50	90	94	37 - 129	4	33	
Indeno(1,2,3-c,d)pyrene	2.29	2.39	2.50	2.50	92	96	45 - 128	4	31	
Dibenz[a,h]anthracene	2.36	2.45	2.50	2.50	94	98	54 - 120	4	30	
Benzo[g,h,i]perylene	2.28	2.38	2.50	2.50	91	95	49 - 117	4	29	
Surrogate:										
2-Fluorobiphenyl					63	62	30 - 124			
Pyrene-d10					84	85	40 - 143			
Terphenyl-d14					80	82	27 - 127			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	F	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	28W1									
	SB	SBD	SB	SBD	S	SB	SBD				
Naphthalene	0.337	0.329	0.500	0.500	(67	66	29 - 101	2	47	
Acenaphthylene	0.336	0.282	0.500	0.500	(67	56	20 - 117	17	50	
Acenaphthene	0.352	0.353	0.500	0.500	-	70	71	37 - 109	0	43	
Fluorene	0.379	0.382	0.500	0.500	-	76	76	47 - 108	1	34	
Phenanthrene	0.360	0.372	0.500	0.500	-	72	74	49 - 109	3	28	
Anthracene	0.510	0.497	0.500	0.500	1	02	99	34 - 140	3	32	
Fluoranthene	0.388	0.399	0.500	0.500	-	78	80	45 - 120	3	39	
Pyrene	0.387	0.402	0.500	0.500	-	77	80	42 - 133	4	39	
Benzo[a]anthracene	0.408	0.426	0.500	0.500	8	82	85	71 - 117	4	28	
Chrysene	0.413	0.430	0.500	0.500	8	83	86	53 - 110	4	25	
Benzo[b]fluoranthene	0.424	0.443	0.500	0.500	8	85	89	53 - 123	4	37	
Benzo(j,k)fluoranthene	0.441	0.452	0.500	0.500	8	88	90	52 - 119	2	41	
Benzo[a]pyrene	0.389	0.358	0.500	0.500	-	78	72	37 - 129	8	33	
Indeno(1,2,3-c,d)pyrene	0.378	0.406	0.500	0.500	-	76	81	45 - 128	7	31	
Dibenz[a,h]anthracene	0.375	0.397	0.500	0.500	-	75	79	54 - 120	6	30	
Benzo[g,h,i]perylene	0.351	0.370	0.500	0.500	-	70	74	49 - 117	5	29	
Surrogate:											
2-Fluorobiphenyl						53	54	30 - 124			
Pyrene-d10						79	80	40 - 143			
Terphenyl-d14						78	81	27 - 127			
Indeno(1,2,3-c,d)pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene Surrogate: 2-Fluorobiphenyl Pyrene-d10 Terphenyl-d14	0.378 0.375 <u>0.351</u>	0.406 0.397 0.370	0.500 0.500 0.500	0.500 0.500 0.500		76 75 70 53 79 78	81 79 74 54 80 81	45 - 128 54 - 120 49 - 117 30 - 124 40 - 143 27 - 127	7 6 5	31 30 29	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water						
Units: mg/L						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-203-102116					
Laboratory ID:	10-245-01					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	
	MW 4 100116					
Laboratory ID:	10-245-02					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	
Client ID:	MW-AG1-102116					
Laboratory ID:	10-245-03					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	
Client ID:	MW-207-102116					
Laboratory ID:	10-245-04					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	
Client ID:	DOF-3-102116					
Laboratory ID:	10-245-05					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1025W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	

				Source	Percent	Recovery		RPD	
Analyte DUPLICATE Laboratory ID: Total Suspended Solids	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-24	45-01							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	25W1							
	S	В	SB		SB				
Total Suspended Solids	92	2.0	100	NA	92	78-113	NA	NA	

DISSOLVED LEAD EPA 200.8

Matrix: Units:	Water ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-245-05					
Client ID:	DOF-3-102116					
Lead	ND	1.0	200.8		10-27-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-27-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1025F1		
Analyte	Method	Result	PQI
Lead	200.8	ND	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-27-16

Matrix: Water Units: ug/L (ppb)

Lab ID: 10-269-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-27-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	200	190	95	186	93	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Myrun Strown	Signature		0		5 DOF-3-102116	4 MW-207-102116	3 MW-AG1-102116	2 MW-4-102116	1 MW-203-102116	Lab ID Sample Identification	Sampled by un Ostan	South Abodalk Sheret & East Marginal way Project Manager: Scott Allin	1071-014	Company: Faallon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Rev					0	tat	Compa				× 12	1.1	12	ic	10/21/16 0	Date Sampled S		(TPH ana	2 Days	Same Da	Turnari (in wo	
iewed/Date					086	allow	any				157 1	3H8	203	959	958 U	Time ampled Matr	(other)	l (7 Days) Ilysis 5 Days)	🗌 3 Day	ty 🗌 1 Day	ound Request orking days) neck One)	Chain
											12	=	=	N		Numb	er of C	ontainers	S/			of
																NWTP	H-HCI	2				S
					01	10/2	Date									NWTP	'H-Gx/E	BTEX			abo	S
					2	VIL					X	X	X	\times	X	NWTP	H-Gx				rat	lo
					16						X	X	X	X	X	NWTP	H-Dx (Acid / SG CI	ean-up))	Vio	dy
					16	16	Time				X	X	X	X	X	Volatil	es 8260)C			Z	
					دى	3									-	Haloge	enated	Volatiles 8260C	;		dm	
					R											EDB E	PA 801	1 (Waters Only)			- er:	
Chr	Dat				+1	-1	Co									Semiv	olatiles	8270D/SIM				
omati	a Pac				C	SS	nmer				X	X	X	X	\times	PAHs	8270D/	SIM (low-level)			0	
ograr	kage				0	PO	its/Sp									PCBs	8082A					
ns wi	: Sta				切	r	ecial									Organ	ochlori	ne Pesticides 8	081B		4	
th fina	andar				to	ea	Instr									Organ	ophosp	horus Pesticide	es 8270	D/SIM	UN	
al rep	d D				R	5	uction									Chlorii	nated A	cid Herbicides	8151A			
ort	Lev					g	SL									Total F	RCRA M	letals				
Шe	/el III					in										Total N	ITCA N	letals				τ.
ctroni						S										TCLP	Metals					age
c Data	Level															HEM (oil and	grease) 1664A				
1 Deliv						ee					X	\times	\times	\times	×	43	55					of
erable	_					50					\times					D:590	lved.	Lead 60	00/70	neo Se	ries	
s (ED						I.									. 5.							
Ds)																						
																% Mois	sture					

November 1, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-247

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 21, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 20, 2016 and received by the laboratory on October 21, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C Analysis

Some MTCA Method A cleanup levels are non-achievable for sample F-1-GW due to sample matrix effects.

PAHs EPA 8270D/SIM (water) Analysis

Sample F-1-GW required dilution due to interference caused by the sample matrix, resulting in raised PQLs.

Total Suspended Solids SM 2540D Analysis

Samples received were field filtered.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-2-7.0					
Laboratory ID:	10-247-01					
Benzene	ND	0.020	EPA 8021B	10-26-16	10-26-16	
Toluene	ND	0.057	EPA 8021B	10-26-16	10-26-16	
Ethyl Benzene	ND	0.057	EPA 8021B	10-26-16	10-26-16	
m,p-Xylene	ND	0.057	EPA 8021B	10-26-16	10-26-16	
o-Xylene	ND	0.057	EPA 8021B	10-26-16	10-26-16	
Gasoline	ND	5.7	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	63-124				
Client ID:	F-1-5.7					
Laboratory ID:	10-247-05					
Benzene	ND	0.022	EPA 8021B	10-26-16	10-28-16	
Toluene	ND	0.11	EPA 8021B	10-26-16	10-28-16	
Ethyl Benzene	0.16	0.11	EPA 8021B	10-26-16	10-28-16	
m,p-Xylene	0.25	0.11	EPA 8021B	10-26-16	10-28-16	
o-Xylene	ND	0.11	EPA 8021B	10-26-16	10-28-16	
Gasoline	ND	28	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1026S1					
Benzene	ND	0.020	EPA 8021B	10-26-16	10-26-16	
Toluene	ND	0.050	EPA 8021B	10-26-16	10-26-16	
Ethyl Benzene	ND	0.050	EPA 8021B	10-26-16	10-26-16	
m,p-Xylene	ND	0.050	EPA 8021B	10-26-16	10-26-16	
o-Xylene	ND	0.050	EPA 8021B	10-26-16	10-26-16	
Gasoline	ND	5.0	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	63-124				

					Source	Ре	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-24	46-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	90	63-124			
SPIKE BLANKS											
Laboratory ID:	SB10	26S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.913	0.922	1.00	1.00		91	92	70-124	1	12	
Toluene	0.915	0.929	1.00	1.00		92	93	73-119	2	12	
Ethyl Benzene	0.931	0.946	1.00	1.00		93	95	74-117	2	12	
m,p-Xylene	0.886	0.935	1.00	1.00		89	94	75-117	5	13	
o-Xylene	0.909	0.916	1.00	1.00		91	92	75-116	1	12	
Surrogate:											
Fluorobenzene						93	89	63-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-2-GW					
Laboratory ID:	10-247-03					
Benzene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
o-Xylene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				
Client ID:	F-1-GW					
Laboratory ID:	10-247-07					
Gasoline	ND	100	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	61-118				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1025W1					
Benzene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Toluene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
o-Xylene	ND	1.0	EPA 8021B	10-25-16	10-25-16	
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-118				
Laboratory ID:	MB1026W1					
Gasoline	ND	100	NWTPH-Gx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	61-118				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-26	64-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						85	89	61-118			
Laboratory ID:	10-27	74-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						85	82	61-118			
SPIKE BLANKS											
Laboratory ID:	SB10	25W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	44.4	45.1	50.0	50.0		89	90	79-120	2	11	
Toluene	45.1	45.7	50.0	50.0		90	91	79-118	1	12	
Ethyl Benzene	45.1	45.7	50.0	50.0		90	91	80-117	1	12	
m,p-Xylene	44.5	45.2	50.0	50.0		89	90	80-117	2	12	
o-Xylene	43.9	44.5	50.0	50.0		88	89	80-116	1	11	
Surrogate:											
Fluorobenzene						87	87	61-118			

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

3 3 (FF)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-2-7.0					
Laboratory ID:	10-247-01					
Diesel Range Organics	ND	28	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	56	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	F-1-5.7					
Laboratory ID:	10-247-05					
Diesel Fuel #2	5900	140	NWTPH-Dx	10-26-16	10-27-16	
Lube Oil Range Organics	ND	280	NWTPH-Dx	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analvte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK						- J -
Laboratory ID:	MB1026S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-18	37-06									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						90	90	50-150			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

3· (FP)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-2-GW					
Laboratory ID:	10-247-03					
Diesel Range Organics	0.61	0.26	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	0.58	0.42	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	F-1-GW					
Laboratory ID:	10-247-07					
Diesel Range Organics	ND	0.27	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	0.48	0.43	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•		
Laboratory ID:	MB1025W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-25-16	10-25-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-21	17-03								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						104 91	50-150			

VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-1-GW					
Laboratory ID:	10-247-07					
Dichlorodifluoromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	10	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	2.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	2.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	10	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	11	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	2.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260C	10-24-16	10-24-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-1-GW					
Laboratory ID:	10-247-07					
1,1,2-Trichloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	4.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.80	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	2.6	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.40	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	2.6	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	77-129				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	99	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1024W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloromethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Acetone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
lodomethane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-24-16	10-24-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Butanone	ND	5.0	EPA 8260C	10-24-16	10-24-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chloroform	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Benzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Trichloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Dibromomethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chloroethyl Vinyl Ether	ND	5.5	EPA 8260C	10-24-16	10-24-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Toluene	ND	1.0	EPA 8260C	10-24-16	10-24-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-24-16	10-24-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1024W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Hexanone	ND	2.0	EPA 8260C	10-24-16	10-24-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-24-16	10-24-16	
o-Xylene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Styrene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromoform	ND	1.3	EPA 8260C	10-24-16	10-24-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Bromobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-24-16	10-24-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Naphthalene	ND	1.3	EPA 8260C	10-24-16	10-24-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-24-16	10-24-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	77-129				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	94	80-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

14

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	24W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.1	9.29	10.0	10.0	101	93	63-127	8	17	
Benzene	9.75	10.1	10.0	10.0	98	101	76-121	4	12	
Trichloroethene	8.70	8.51	10.0	10.0	87	85	64-114	2	15	
Toluene	9.13	9.03	10.0	10.0	91	90	82-115	1	13	
Chlorobenzene	9.02	8.82	10.0	10.0	90	88	80-115	2	14	
Surrogate:										
Dibromofluoromethane					82	87	77-129			
Toluene-d8					101	103	80-127			
4-Bromofluorobenzene					94	94	80-125			

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-1-5.7					
Laboratory ID:	10-247-05					
Naphthalene	2.0	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
2-Methylnaphthalene	9.1	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
1-Methylnaphthalene	9.5	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Acenaphthylene	0.37	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Acenaphthene	0.50	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Fluorene	3.2	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Phenanthrene	5.4	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Anthracene	0.44	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Fluoranthene	0.11	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Pyrene	0.53	0.076	EPA 8270D/SIM	10-26-16	10-28-16	
Benzo[a]anthracene	0.0080	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Chrysene	0.046	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]pyrene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0076	EPA 8270D/SIM	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	32 - 122				
Pyrene-d10	87	<i>33 - 125</i>				
Terphenyl-d14	69	36 - 118				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1026S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Fluorene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Chrysene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	10-26-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	32 - 122				
Pyrene-d10	87	33 - 125				
Terphenyl-d14	86	36 - 118				

PAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-19	98-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0592	0.0538	0.0833	0.0833	ND	71	65	39 - 112	10	27	
Acenaphthylene	0.0563	0.0509	0.0833	0.0833	ND	68	61	40 - 121	10	34	
Acenaphthene	0.0578	0.0536	0.0833	0.0833	ND	69	64	44 - 113	8	28	
Fluorene	0.0644	0.0576	0.0833	0.0833	ND	77	69	43 - 119	11	27	
Phenanthrene	0.0585	0.0547	0.0833	0.0833	ND	70	66	35 - 124	7	30	
Anthracene	0.0898	0.0835	0.0833	0.0833	ND	108	100	30 - 140	7	26	
Fluoranthene	0.0644	0.0613	0.0833	0.0833	ND	77	74	29 - 136	5	32	
Pyrene	0.0620	0.0597	0.0833	0.0833	ND	74	72	35 - 128	4	33	
Benzo[a]anthracene	0.0648	0.0609	0.0833	0.0833	ND	78	73	30 - 143	6	31	
Chrysene	0.0671	0.0641	0.0833	0.0833	ND	81	77	32 - 129	5	33	
Benzo[b]fluoranthene	0.0614	0.0581	0.0833	0.0833	ND	74	70	23 - 140	6	29	
Benzo(j,k)fluoranthene	0.0671	0.0633	0.0833	0.0833	ND	81	76	32 - 119	6	30	
Benzo[a]pyrene	0.0657	0.0619	0.0833	0.0833	ND	79	74	31 - 131	6	32	
Indeno(1,2,3-c,d)pyrene	0.0589	0.0537	0.0833	0.0833	ND	71	64	31 - 130	9	28	
Dibenz[a,h]anthracene	0.0603	0.0591	0.0833	0.0833	ND	72	71	40 - 119	2	27	
Benzo[g,h,i]perylene	0.0603	0.0567	0.0833	0.0833	ND	72	68	39 - 119	6	29	
Surrogate:											
2-Fluorobiphenyl						60	54	32 - 122			
Pyrene-d10						73	70	33 - 125			
Terphenyl-d14						72	68	36 - 118			

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-1-GW					
Laboratory ID:	10-247-07					
Naphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
2-Methylnaphthalene	1.6	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
1-Methylnaphthalene	1.9	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthylene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluorene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Phenanthrene	0.23	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Anthracene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluoranthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Pyrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Chrysene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[b]fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	30 - 124				
Pyrene-d10	70	40 - 143				
Terphenyl-d14	75	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	30 - 124				
Pyrene-d10	80	40 - 143				
Terphenyl-d14	81	27 - 127				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

0					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	1.90	1.74	2.50	2.50	76	70	29 - 101	9	47	
Acenaphthylene	1.89	1.81	2.50	2.50	76	72	20 - 117	4	50	
Acenaphthene	2.00	1.93	2.50	2.50	80	77	37 - 109	4	43	
Fluorene	2.13	2.02	2.50	2.50	85	81	47 - 108	5	34	
Phenanthrene	2.06	2.05	2.50	2.50	82	82	49 - 109	0	28	
Anthracene	2.81	2.89	2.50	2.50	112	116	34 - 140	3	32	
Fluoranthene	2.16	2.22	2.50	2.50	86	89	45 - 120	3	39	
Pyrene	2.21	2.27	2.50	2.50	88	91	42 - 133	3	39	
Benzo[a]anthracene	2.31	2.39	2.50	2.50	92	96	71 - 117	3	28	
Chrysene	2.15	2.21	2.50	2.50	86	88	53 - 110	3	25	
Benzo[b]fluoranthene	2.20	2.32	2.50	2.50	88	93	53 - 123	5	37	
Benzo(j,k)fluoranthene	2.26	2.30	2.50	2.50	90	92	52 - 119	2	41	
Benzo[a]pyrene	2.24	2.34	2.50	2.50	90	94	37 - 129	4	33	
Indeno(1,2,3-c,d)pyrene	2.29	2.39	2.50	2.50	92	96	45 - 128	4	31	
Dibenz[a,h]anthracene	2.36	2.45	2.50	2.50	94	98	54 - 120	4	30	
Benzo[g,h,i]perylene	2.28	2.38	2.50	2.50	91	95	49 - 117	4	29	
Surrogate:										
2-Fluorobiphenyl					63	62	30 - 124			
Pyrene-d10					84	85	40 - 143			
Terphenyl-d14					80	82	27 - 127			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-2-GW					
Laboratory ID:	10-247-03					
Total Suspended Solids	33	4.0	SM 2540D	10-25-26	10-26-16	
	E 1 OW					
Client ID:	F-I-GW					
Laboratory ID:	10-247-07					
Total Suspended Solids	4.0	4.0	SM 2540D	10-25-26	10-26-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1025W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	10-24	45-01							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	25W1							
	S	В	SB		SB				
Total Suspended Solids	92	2.0	100	NA	92	78-113	NA	NA	

TOTAL LEAD EPA 6010C

Matrix:	Soil					
Units:	mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-247-05					
Client ID:	F-1-5.7					
Lead	ND	5.7	6010C	10-25-16	10-25-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	10-25-16
Date Analyzed:	10-25-16

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB1025SM2

Analyte	Method	Result	PQL
Lead	6010C	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	10-25-16
Date Analyzed:	10-25-16

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-233-03

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	38.6	43.6	12	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	10-25-16
Date Analyzed:	10-25-16

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-233-03

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	287	100	293	102	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed:	10-25-16		
Client ID		Lab ID	% Moisture
F-2-7.0		10-247-01	10
F-1-5.7		10-247-05	12

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquisted Myn Oston	Signature	-	(Tel)	7 F-I-GW	6 F-1-8.0	SF-1-6,7	4 5-1-2.5	3 F-2-GW	2 F-2-8.5	1 8-2-7.0	Lab ID Sample Identification	Sampinger , Ostron/A.Burys	Company: Farallon Project Number: 1871 - 014 Project Name: 1871 - 014 Project Name: Scott Allin	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date				l	- OSTE Idailue I	F2-2/1000 10/20/16	Company Date Ti			 V 14:15 Water XXX	14:10 4 4	14:05 X X	14:00 So; 15	10:00 Water 11 XXXX	9:40 44	10-20-169:35 Sail, 5 X X	Sampled Sampled Matrix Number NWTF	eer of C PH-HCIE PH-Gx/E PH-Gx (]	Check Check Same Day Same Day Standard (7 Days) Standard (7 Days) Standard (7 Days) Standard (7 Days) Acid / SG Clean-up) C	(in working days) Laboratory N	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🗌 Level III 🗌 Level IV 🗌				1740	1700 TSS Samples wore field fithered.	ime Comments/Special Instructions										Volatil Halog EDB E Semiv (with I PAHs PCBs Organ Organ Organ Chlorii Total F Total N TCLP HEM (T3	es 8260 enated 1 PA 801 olatiles ow-leve 8270D/3 8082A ochlorir ophosp nated A RCRA M Metals oil and g	IC Volatiles 8260C 1 (Waters Only) 8270D/SIM I PAHs) SIM (low-level) Ine Pesticides 8081B horus Pesticides 8270D/SIM cid Herbicides 8151A letals letals grease) 1664A <i>Comol Taxo Serves</i>	Number: 10-247	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 31, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-248

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 21, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 20, 2016 and received by the laboratory on October 21, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-248-01					
Client ID:	F-2-GW					
Arsenic	9.6	3.0	200.8		10-27-16	
Lab ID:	10-248-02					
Client ID:	F-1-GW					
Arsenic	11	3.0	200.8		10-27-16	

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-27-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1025F1		
Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-27-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-27-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	219	109	205	102	7	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Wighen Ostrown	Signature		1		6		2F-1-GW	1 F-2-GW	Lab ID Sample Identification	Sampled by K. Ostron / A. Burns	S Nortolk St. + E Margina Project Manager: Scott Allin	Project Name: 011-014	Project Number	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					1 CARE	Crollerez	Company		/	/			× 14:15 × ×	10-20-16 10:00 Water 1	Date Time Sampled Sampled Matrix Z	(other)	TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Chain of (
					12/21/14/1740	10120116 1700	Date Time								NWTF NWTF NWTF Volati Halog	PH-HCID PH-Gx/B PH-Gx PH-Dx ([les 8260 genated \ EPA 8011	TEX Acid / SG C C /olatiles 8260	C)	Laboratory Number:	Sustody
Chromatograms with final report 🔲 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍					- Samples where field filtered	Comments/Special Instructions								Semir (with PAHs PCBs Orgar Orgar Chlor Total Total TCLP HEM	volatiles i low-level 8270D/S 8082A nochlorin nophosph inated Ad RCRA M MTCA M MTCA M MTCA M MTCA M i Metals (oil and g dved /	e Pesticides i borus Pesticides etals etals etals) 3081B des 827(s 8151A		: 10-248	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 31, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-263

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 24, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 24, 2016 and received by the laboratory on October 24, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-263-01					
Client ID:	DOF-4-102416					
Arsenic	ND	3.0	200.8		10-27-16	
Lab ID:	10-263-02					
Client ID:	DOF-2-102416					
Arsenic	6.1	3.0	200.8		10-27-16	

DISSOLVED ARSENIC EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-27-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1025F1		
Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-27-16

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED ARSENIC EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-27-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	200	219	109	205	102	7	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date Data Package: S	Received	Relinquished	Received	Relinquished	Received	Relinquished Jyny Ustrown	Signature		20	120		C NOL-7-107416	914201-4-1021	Lab ID Sample Identification		Sampled by: Bran Peters	Project Manager: H Allin	14(0-1/20)	Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.	
Reviewed/Date Standard Level III Level IV Electronic Data					S CORE lideull	Farallon 10/24/1	Company Date					1 1259 4 1	10/24/16 1146 W 1	Sampled Sampled Matrix Z Z Z Z	Date Time 	(other) of Con HCID Gx/BT	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days) Laborato	Chain of Custod	
ta Deliverables (EDDs)					16 160	ng 1600 Samples were Field Filtered	Time Comments/Special Instructions							NVV Vo Ha See (wi PA PC Or; Or; Or; Or; To To To To To TC HE HE	WTPH- olatiles alogena emivolalogena emivolalogena emivolalogena Second ganoph tal NT tal NT tal NT tal MT EM (oil EM (oil Second Secon	Dx 8260C ated Vi atiles 8 -level 70D/S 82A hilorine nosphc red Ac CA Ma CA Ma CA Ma and g	olatiles 8260C 270D/SIM PAHs) IM (low-level) a Pesticides 80 orus Pesticides 8 orus Pesticides 8 id Herbicides 8 etals etals etals	81B 3270D/S 33151A	SIM		ory Number: 10 - 263	dy Page 1 of 1	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 31, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-264

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 24, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 24, 2016 and received by the laboratory on October 24, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample DOF-2-102416 required dilution due to interference caused by the sample matrix, resulting in raised PQLs.

Total Suspended Solids SM 2540D Analysis

Samples received were field filtered.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
Gasoline	ND	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
Gasoline	180	100	NWTPH-Gx	10-25-16	10-25-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Date	Date	•	
Analyte	Result	PQL	Ме	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB1025W1							
Gasoline	ND	100	NWT	FPH-Gx	10-25-16	10-25-	16	
Surrogate:	Percent Recovery	Control Limit	s					
Fluorobenzene	83	61-118						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								

Laboratory ID:	10-2	64-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA	١	A	NA	NA	30	
Surrogate:										
Fluorobenzene					85	89	61-118			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Surrogate:

o-Terphenyl

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	0.45	0.41	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
Diesel Range Organics	0.38	0.26	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	0.56	0.41	NWTPH-Dx	10-26-16	10-26-16	

Control Limits

50-150

Percent Recovery

99

M	

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-	-	
Laboratory ID:	MB1026W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-26-16	10-26-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-26-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-26	64-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range Organics	0.446	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						104 102	50-150			

VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
Dichlorodifluoromethane	ND	0.27	EPA 8260C	10-27-16	10-27-16	
Chloromethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Acetone	ND	7.4	EPA 8260C	10-27-16	10-27-16	
lodomethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-27-16	10-27-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Butanone	ND	6.5	EPA 8260C	10-27-16	10-27-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroform	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Benzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Trichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Dibromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Toluene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Hexanone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-27-16	10-27-16	
o-Xylene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Styrene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromoform	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Naphthalene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	77-129				
Toluene-d8	99	80-127				

VOLATILES EPA 8260C page 2 of 2

4-Bromofluorobenzene

80-125

97

VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
Dichlorodifluoromethane	ND	0.27	EPA 8260C	10-27-16	10-27-16	
Chloromethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Trichlorofluoromethane	0.33	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Acetone	ND	7.4	EPA 8260C	10-27-16	10-27-16	
lodomethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-27-16	10-27-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Butanone	ND	6.5	EPA 8260C	10-27-16	10-27-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroform	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Benzene	0.27	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Trichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Dibromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Toluene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Hexanone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Ethylbenzene	0.31	0.20	EPA 8260C	10-27-16	10-27-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-27-16	10-27-16	
o-Xylene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Styrene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromoform	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Isopropylbenzene	6.1	0.20	EPA 8260C	10-27-16	10-27-16	
Bromobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Propylbenzene	1.5	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
tert-Butylbenzene	0.67	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trimethylbenzene	0.33	0.20	EPA 8260C	10-27-16	10-27-16	
sec-Butylbenzene	1.7	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Butylbenzene	1.2	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Naphthalene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	77-129				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	101	80-125				

VOLATILES EPA 8260C page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1027W1					
Dichlorodifluoromethane	ND	0.27	EPA 8260C	10-27-16	10-27-16	
Chloromethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Acetone	ND	7.4	EPA 8260C	10-27-16	10-27-16	
lodomethane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-27-16	10-27-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Butanone	ND	6.5	EPA 8260C	10-27-16	10-27-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chloroform	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Benzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Trichloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Dibromomethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Toluene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-27-16	10-27-16	

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1027W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Tetrachloroethene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Hexanone	ND	2.0	EPA 8260C	10-27-16	10-27-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-27-16	10-27-16	
o-Xylene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Styrene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromoform	ND	1.0	EPA 8260C	10-27-16	10-27-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Bromobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Naphthalene	ND	1.0	EPA 8260C	10-27-16	10-27-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-27-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	77-129				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	97	80-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.9	10.6	10.0	10.0	109	106	63-127	3	17	
Benzene	10.7	10.5	10.0	10.0	107	105	76-121	2	12	
Trichloroethene	9.57	9.21	10.0	10.0	96	92	64-114	4	15	
Toluene	10.9	10.5	10.0	10.0	109	105	82-115	4	13	
Chlorobenzene	10.8	10.4	10.0	10.0	108	104	80-115	4	14	
Surrogate:										
Dibromofluoromethane					98	99	77-129			
Toluene-d8					101	99	80-127			
4-Bromofluorobenzene					98	98	80-125			

13

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
Naphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Fluorene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Phenanthrene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Anthracene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Fluoranthene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Pyrene	ND	0.095	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Chrysene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	10-25-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	30 - 124				
Pyrene-d10	77	40 - 143				
Terphenyl-d14	97	27 - 127				

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
Naphthalene	0.64	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
2-Methylnaphthalene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
1-Methylnaphthalene	1.8	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthylene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Acenaphthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluorene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Phenanthrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Anthracene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Fluoranthene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Pyrene	ND	0.19	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Chrysene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[b]fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo(j,k)fluoranthene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[a]pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Indeno(1,2,3-c,d)pyrene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Dibenz[a,h]anthracene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Benzo[g,h,i]perylene	ND	0.019	EPA 8270D/SIM	10-25-16	10-27-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	30 - 124				
Pyrene-d10	75	40 - 143				
Terphenyl-d14	88	27 - 127				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

Ū				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Acenaphthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluorene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Phenanthrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Anthracene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Fluoranthene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Pyrene	ND	0.10	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Chrysene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	10-25-16	10-26-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	30 - 124				
Pyrene-d10	80	40 - 143				
Terphenyl-d14	81	27 - 127				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

Ū					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	1.90	1.74	2.50	2.50	76	70	29 - 101	9	47	
Acenaphthylene	1.89	1.81	2.50	2.50	76	72	20 - 117	4	50	
Acenaphthene	2.00	1.93	2.50	2.50	80	77	37 - 109	4	43	
Fluorene	2.13	2.02	2.50	2.50	85	81	47 - 108	5	34	
Phenanthrene	2.06	2.05	2.50	2.50	82	82	49 - 109	0	28	
Anthracene	2.81	2.89	2.50	2.50	112	116	34 - 140	3	32	
Fluoranthene	2.16	2.22	2.50	2.50	86	89	45 - 120	3	39	
Pyrene	2.21	2.27	2.50	2.50	88	91	42 - 133	3	39	
Benzo[a]anthracene	2.31	2.39	2.50	2.50	92	96	71 - 117	3	28	
Chrysene	2.15	2.21	2.50	2.50	86	88	53 - 110	3	25	
Benzo[b]fluoranthene	2.20	2.32	2.50	2.50	88	93	53 - 123	5	37	
Benzo(j,k)fluoranthene	2.26	2.30	2.50	2.50	90	92	52 - 119	2	41	
Benzo[a]pyrene	2.24	2.34	2.50	2.50	90	94	37 - 129	4	33	
Indeno(1,2,3-c,d)pyrene	2.29	2.39	2.50	2.50	92	96	45 - 128	4	31	
Dibenz[a,h]anthracene	2.36	2.45	2.50	2.50	94	98	54 - 120	4	30	
Benzo[g,h,i]perylene	2.28	2.38	2.50	2.50	91	95	49 - 117	4	29	
Surrogate:										
2-Fluorobiphenyl					63	62	30 - 124			
Pyrene-d10					84	85	40 - 143			
Terphenyl-d14					80	82	27 - 127			

17

TOTAL SUSPENDED SOLIDS SM 2540D

Matrix: Water Units: mg/L

				Date	Date	
Analyte Client ID: Laboratory ID:	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DOF-4-102416					
Laboratory ID:	10-264-01					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	
Client ID:	DOF-2-102416					
Laboratory ID:	10-264-02					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	

TOTAL SUSPENDED SOLIDS SM 2540D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1025W1					
Total Suspended Solids	ND	4.0	SM 2540D	10-25-26	10-26-16	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
_aboratory ID:	10-24	45-01							
	ORIG	DUP							
Total Suspended Solids	ND	ND	NA	NA	NA	NA	NA	20	
SPIKE BLANK									
Laboratory ID:	SB10	25W1							
	SB		SB		SB				
Total Suspended Solids	92	2.0	100	NA	92	78-113	NA	NA	

DISSOLVED LEAD EPA 200.8

Matrix:	Water					
Units:	ug/L (ppb)					
				Date	Date	
Matrix: Units: Analyte Lab ID: Client ID: Lead Lab ID: Client ID:	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-264-01					
Client ID:	DOF-4-102416					
Lead	ND	1.0	200.8		10-27-16	
Lab ID:	10-264-02					
Client ID:	DOF-2-102416					
Lead	ND	1.0	200.8		10-27-16	

20

DISSOLVED LEAD EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	10-27-16		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB1025F1		
Analyte	Method	Result	PQL
Lead	200.8	ND	1.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

21

DISSOLVED LEAD EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 10-27-16

Matrix: Water Units: ug/L (ppb)

Lab ID: 10-269-06

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	1.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED LEAD EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed:	10-27-16
----------------	----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 10-269-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	200	190	95	186	03	2	
Leau	200	130	30	100	30	2	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Jerna Utour	Signature						2 DOF-2-102416	1 DOF-4-102416	Lab ID Sample Identification	Sampled by Ryan Ostrow	Project Name: Swith Nortalk Street & East Magheal way Project Manager: Scott Allin	1071-014	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.	
Reviewed/Date					N Can	tacellon	Company						1 1259 1	10/24/16 1146 W	Date Time Sampled Sampled Matrix	(other)	TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o	2
													(-	12	Numb	er of (Containers					T	2
						~			 	 					NWTP	PH-HCI	D				La	Ü	
					R	0124)ate			 -					NWTP	PH-Gx/	BTEX				bor	Sto	
					4lla	116						 	\bigtriangleup	\diamond	NWTP	PH-Gx					ato	DO	
-					01		T		 	 			\bigcirc	\bigcirc	NWTP	PH-Dx (Acid / SG CI	ean-u	p)	_	N V	Y	
					S	160	ime		 	 		 	\wedge	\wedge	Volatil	es 826	00			_	lun		
					0	8			 			 			Halog	enated	Volatiles 82600				ıbe		
	_									 		 			EDB E	PA 80	11 (Waters Only 8270D/SIM)		_	ה		
hrom)ata F				ie	SS	Comn		 	 		 			(with I	ow-lev	el PAHs)			-	-		
natog	acka				P	DO	nents		 	 		 	\wedge	X	PAHs	8270D	/SIM (low-level)			_	0		
rams	ige:				tip	Le	/Spec		 			 			PCBs	8082A					5		
with :	Stand				20	ad	ial In:		 	 		 			Organ	lochior	ne Pesticides 8	0818		4	ת		
inal r	lard				R	2	struct		 	 	-	 			Chlori	natod	Acid Harbiaidaa	9151	UD/SIM	1			
eport						m	ions		 	 		 			Total			0151/	4				
	evel					es			 			 			Total					_			
Electro						3			 	 		 			TCLP	Metals	vietais			_		Page	
onic D	Lev					Jen				 					HEM	oil and	grease) 16644			_		_	
ata De	vel IV					6							X	X	Te	<	3.5436, 1004A			_			
livera										 		 	X	$\widehat{\mathbf{x}}$	Dur	5	1 / / -	1-	-	-		of	
bles (E									 			/	\sim	~	130	AVEC.	reac will	170	o re	Nes		-	
DDs)																						I	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 4, 2016

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-014 Laboratory Reference No. 1610-315

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 27, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 26, 2016 and received by the laboratory on October 27, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-5-6.0					
Laboratory ID:	10-315-01					
Benzene	ND	0.020	EPA 8021B	10-31-16	10-31-16	
Toluene	ND	0.073	EPA 8021B	10-31-16	10-31-16	
Ethyl Benzene	ND	0.073	EPA 8021B	10-31-16	10-31-16	
m,p-Xylene	ND	0.073	EPA 8021B	10-31-16	10-31-16	
o-Xylene	ND	0.073	EPA 8021B	10-31-16	10-31-16	
Gasoline	ND	7.3	NWTPH-Gx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	63-124				
Client ID:	F-7-7.0					
Laboratory ID:	10-315-03					
Benzene	ND	0.020	EPA 8021B	10-31-16	10-31-16	
Toluene	ND	0.091	EPA 8021B	10-31-16	10-31-16	
Ethyl Benzene	ND	0.091	EPA 8021B	10-31-16	10-31-16	
m,p-Xylene	ND	0.091	EPA 8021B	10-31-16	10-31-16	
o-Xylene	ND	0.091	EPA 8021B	10-31-16	10-31-16	
Gasoline	ND	9.1	NWTPH-Gx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	F-9-8.0					
Laboratory ID:	10-315-07					
Benzene	ND	0.020	EPA 8021B	10-31-16	10-31-16	
Toluene	ND	0.081	EPA 8021B	10-31-16	10-31-16	
Ethyl Benzene	ND	0.081	EPA 8021B	10-31-16	10-31-16	
m,p-Xylene	ND	0.081	EPA 8021B	10-31-16	10-31-16	
o-Xylene	ND	0.081	EPA 8021B	10-31-16	10-31-16	
Gasoline	ND	8.1	NWTPH-Gx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	63-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1031S1					
Benzene	ND	0.020	EPA 8021B	10-31-16	10-31-16	
Toluene	ND	0.050	EPA 8021B	10-31-16	10-31-16	
Ethyl Benzene	ND	0.050	EPA 8021B	10-31-16	10-31-16	
m,p-Xylene	ND	0.050	EPA 8021B	10-31-16	10-31-16	
o-Xylene	ND	0.050	EPA 8021B	10-31-16	10-31-16	
Gasoline	ND	5.0	NWTPH-Gx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	63-124				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-3 <i>′</i>	15-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						100	100	63-124			
SPIKE BLANKS											
Laboratory ID:	SB10	SB1031S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.921	0.939	1.00	1.00		92	94	70-124	2	12	
Toluene	0.919	0.945	1.00	1.00		92	95	73-119	3	12	
Ethyl Benzene	0.936	0.959	1.00	1.00		94	96	74-117	2	12	
m,p-Xylene	0.887	0.916	1.00	1.00		89	92	75-117	3	13	
o-Xylene	0.935	0.940	1.00	1.00		94	94	75-116	1	12	
Surrogate:											
Fluorobenzene						92	92	63-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-5-GW					
Laboratory ID:	10-315-02					
Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
o-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-118				
Client ID:	F-7-GW					
Laboratory ID:	10-315-04					
Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
o-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-118				
Client ID:	F-8-GW					
Laboratory ID:	10-315-06					
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	67	61-118				
Client ID:	F-9-GW					
Laboratory ID:	10-315-08					
Benzene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Toluene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Ethyl Benzene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
m,p-Xylene	1.0	1.0	EPA 8021B	11-1-16	11-1-16	
o-Xylene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-118				

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-10-GW					
Laboratory ID:	10-315-09					
Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
o-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	61-118				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1028W1					
Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Ethyl Benzene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
m,p-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
o-Xylene	ND	1.0	EPA 8021B	10-28-16	10-28-16	
Gasoline	ND	100	NWTPH-Gx	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	67	61-118				
Laboratory ID:	MB1101W2					
Benzene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Toluene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Ethyl Benzene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
m,p-Xylene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
o-Xylene	ND	1.0	EPA 8021B	11-1-16	11-1-16	
Gasoline	ND	100	NWTPH-Gx	11-1-16	11-1-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-118				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-31	15-06									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	٨A	NA	NA	30	
m,p-Xylene	1.37	1.37	NA	NA		Ν	٨	NA	0	30	
o-Xylene	ND	ND	NA	NA		Ν	٨	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	٨	NA	NA	30	
Surrogate:											
Fluorobenzene						67	79	61-118			
Laboratory ID:	10-33	39-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						84	79	61-118			
MATRIX SPIKES											
Laboratory ID:	10-31	15-06									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	43.4	43.9	50.0	50.0	ND	87	88	80-120	1	13	
Toluene	44.3	44.7	50.0	50.0	ND	89	89	81-115	1	14	
Ethyl Benzene	45.3	45.7	50.0	50.0	ND	91	91	81-114	1	12	
m,p-Xylene	44.1	44.1	50.0	50.0	1.37	85	85	81-114	0	13	
o-Xylene	44.9	45.1	50.0	50.0	ND	90	90	81-113	0	11	
Surrogate:											
Fluorobenzene						91	89	61-118			
Laboratory ID:	10-33	39-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	43.4	43.9	50.0	50.0	ND	87	88	80-120	1	13	
Toluene	43.6	44.2	50.0	50.0	ND	87	88	81-115	1	14	
Ethyl Benzene	45.1	45.7	50.0	50.0	ND	90	91	81-114	1	12	
m,p-Xylene	42.2	42.8	50.0	50.0	ND	84	86	81-114	1	13	
o-Xylene	43.8	44.4	50.0	50.0	ND	88	89	81-113	1	11	
Surrogate:						-		-			
Fluorobenzene						92	95	61-118			
						52	00	0, 110			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-5-6.0					
Laboratory ID:	10-315-01					
Diesel Range Organics	ND	34	NWTPH-Dx	11-2-16	11-2-16	
Lube Oil Range Organics	ND	68	NWTPH-Dx	11-2-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	F-7-7.0					
Laboratory ID:	10-315-03					
Diesel Range Organics	ND	38	NWTPH-Dx	11-2-16	11-2-16	
Lube Oil Range Organics	ND	76	NWTPH-Dx	11-2-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	F-9-8.0					
Laboratory ID:	10-315-07					
Diesel Range Organics	ND	36	NWTPH-Dx	11-2-16	11-2-16	
Lube Oil Range Organics	ND	72	NWTPH-Dx	11-2-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1102S1					
Diesel Range Organics	ND	25	NWTPH-Dx	11-2-16	11-2-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	11-2-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	123	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-29	92-06								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						114 108	50-150			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-5-GW					
Laboratory ID:	10-315-02					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-31-16	10-31-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	F-7-GW					
Laboratory ID:	10-315-04					
Diesel Range Organics	0.64	0.25	NWTPH-Dx	10-31-16	10-31-16	
Lube Oil Range Organics	0.49	0.40	NWTPH-Dx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
	F-8-GW					
Laboratory ID.	10-315-00	0.00		40.04.40	40.04.40	
Diesel Range Organics	1.2	0.26		10-31-16	10-31-16	
Lube Oil Range Organics	U./ I	0.42	NVVIPH-DX	10-31-10	10-31-16	
o Torphopyl	percent Recovery	50 150				
0-Telphenyi	02	50-150				
Client ID:	F-9-GW					
Laboratory ID:	10-315-08					
Diesel Range Organics	0.60	0.25	NWTPH-Dx	10-31-16	10-31-16	
Lube Oil Range Organics	0.44	0.40	NWTPH-Dx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	F-10-GW					
Laboratory ID:	10-315-09					
Diesel Range Organics	0.81	0.25	NWTPH-Dx	10-31-16	10-31-16	
Lube Oil Range Organics	1.1	0.40	NWTPH-Dx	10-31-16	10-31-16	
Surrogate:	Percent Recoverv	Control Limits		-	-	
o-Terphenyl	78	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1031W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-31-16	10-31-16	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-31-16	10-31-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-27	74-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						84	87	50-150			

VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-8-GW					
Laboratory ID:	10-315-06					
Dichlorodifluoromethane	ND	0.28	EPA 8260C	10-28-16	10-28-16	
Chloromethane	ND	1.4	EPA 8260C	10-28-16	10-28-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromomethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chloroethane	ND	1.0	EPA 8260C	10-28-16	10-28-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Acetone	ND	8.0	EPA 8260C	10-28-16	10-28-16	
lodomethane	ND	1.3	EPA 8260C	10-28-16	10-28-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-28-16	10-28-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methyl t-Butyl Ether	4.5	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-28-16	10-28-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Butanone	ND	6.5	EPA 8260C	10-28-16	10-28-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chloroform	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Benzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Trichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Dibromomethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Chloroethyl Vinyl Ether	ND	1.3	EPA 8260C	10-28-16	10-28-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8260C	10-28-16	10-28-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-8-GW					
Laboratory ID:	10-315-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Tetrachloroethene	ND	0.40	EPA 8260C	10-28-16	10-28-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Hexanone	ND	2.6	EPA 8260C	10-28-16	10-28-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
m,p-Xylene	0.58	0.40	EPA 8260C	10-28-16	10-28-16	
o-Xylene	0.28	0.20	EPA 8260C	10-28-16	10-28-16	
Styrene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromoform	ND	1.0	EPA 8260C	10-28-16	10-28-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2,4-Trimethylbenzene	0.24	0.20	EPA 8260C	10-28-16	10-28-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dibromo-3-chloropropane	ND	1.3	EPA 8260C	10-28-16	10-28-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Naphthalene	ND	1.0	EPA 8260C	10-28-16	10-28-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	77-129				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	95	80-125				

VOLATILES EPA 8260C page 2 of 2

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1028W1					
Dichlorodifluoromethane	ND	0.28	EPA 8260C	10-28-16	10-28-16	
Chloromethane	ND	1.4	EPA 8260C	10-28-16	10-28-16	
Vinyl Chloride	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromomethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chloroethane	ND	1.0	EPA 8260C	10-28-16	10-28-16	
Trichlorofluoromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Acetone	ND	8.0	EPA 8260C	10-28-16	10-28-16	
lodomethane	ND	1.3	EPA 8260C	10-28-16	10-28-16	
Carbon Disulfide	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methylene Chloride	ND	1.0	EPA 8260C	10-28-16	10-28-16	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Vinyl Acetate	ND	1.0	EPA 8260C	10-28-16	10-28-16	
2,2-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Butanone	ND	6.5	EPA 8260C	10-28-16	10-28-16	
Bromochloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chloroform	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Carbon Tetrachloride	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Benzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Trichloroethene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Dibromomethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromodichloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Chloroethyl Vinyl Ether	ND	1.3	EPA 8260C	10-28-16	10-28-16	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	10-28-16	10-28-16	
Toluene	ND	1.0	EPA 8260C	10-28-16	10-28-16	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	10-28-16	10-28-16	

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1028W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Tetrachloroethene	ND	0.40	EPA 8260C	10-28-16	10-28-16	
1,3-Dichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Hexanone	ND	2.6	EPA 8260C	10-28-16	10-28-16	
Dibromochloromethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dibromoethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Chlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Ethylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
m,p-Xylene	ND	0.40	EPA 8260C	10-28-16	10-28-16	
o-Xylene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Styrene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromoform	ND	1.0	EPA 8260C	10-28-16	10-28-16	
Isopropylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Bromobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	10-28-16	10-28-16	
n-Propylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
2-Chlorotoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
4-Chlorotoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
tert-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
sec-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
p-Isopropyltoluene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
n-Butylbenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
1,2-Dibromo-3-chloropropane	ND	1.3	EPA 8260C	10-28-16	10-28-16	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Hexachlorobutadiene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Naphthalene	ND	1.0	EPA 8260C	10-28-16	10-28-16	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	10-28-16	10-28-16	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	77-129				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	96	80-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	28W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.4	10.7	10.0	10.0	104	107	63-127	3	17	
Benzene	10.4	10.6	10.0	10.0	104	106	76-121	2	12	
Trichloroethene	9.18	9.20	10.0	10.0	92	92	64-114	0	15	
Toluene	10.4	10.6	10.0	10.0	104	106	82-115	2	13	
Chlorobenzene	10.0	10.4	10.0	10.0	100	104	80-115	4	14	
Surrogate:										
Dibromofluoromethane					103	102	77-129			
Toluene-d8					102	100	80-127			
4-Bromofluorobenzene					97	98	80-125			

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F-9-8.0					
Laboratory ID:	10-315-07					
Naphthalene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
2-Methylnaphthalene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
1-Methylnaphthalene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Acenaphthylene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Acenaphthene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Fluorene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Phenanthrene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Anthracene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Fluoranthene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Pyrene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Chrysene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	11-1-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	32 - 122				
Pyrene-d10	73	33 - 125				
Terphenyl-d14	69	36 - 118				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1101S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Fluorene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Anthracene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Pyrene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Chrysene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	11-1-16	11-2-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	32 - 122				
Pyrene-d10	86	33 - 125				
Terphenyl-d14	81	36 - 118				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

						Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	I	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB11	01S1									
	SB	SBD	SB	SBD	Ş	SB	SBD				
Naphthalene	0.0635	0.0679	0.0833	0.0833		76	82	58 - 114	7	18	
Acenaphthylene	0.0652	0.0701	0.0833	0.0833		78	84	54 - 127	7	15	
Acenaphthene	0.0646	0.0708	0.0833	0.0833		78	85	58 - 119	9	15	
Fluorene	0.0682	0.0739	0.0833	0.0833	1	82	89	60 - 123	8	15	
Phenanthrene	0.0657	0.0697	0.0833	0.0833		79	84	54 - 120	6	15	
Anthracene	0.0933	0.101	0.0833	0.0833	1	112	121	55 - 152	8	15	
Fluoranthene	0.0676	0.0721	0.0833	0.0833	1	81	87	56 - 129	6	15	
Pyrene	0.0687	0.0728	0.0833	0.0833	1	82	87	60 - 126	6	15	
Benzo[a]anthracene	0.0724	0.0775	0.0833	0.0833	1	87	93	56 - 137	7	15	
Chrysene	0.0765	0.0814	0.0833	0.0833	9	92	98	59 - 122	6	15	
Benzo[b]fluoranthene	0.0662	0.0717	0.0833	0.0833		79	86	46 - 133	8	21	
Benzo(j,k)fluoranthene	0.0747	0.0787	0.0833	0.0833	9	90	94	47 - 129	5	21	
Benzo[a]pyrene	0.0675	0.0724	0.0833	0.0833	i	81	87	54 - 132	7	15	
Indeno(1,2,3-c,d)pyrene	0.0652	0.0649	0.0833	0.0833		78	78	54 - 129	0	15	
Dibenz[a,h]anthracene	0.0680	0.0701	0.0833	0.0833		82	84	59 - 122	3	15	
Benzo[g,h,i]perylene	0.0738	0.0759	0.0833	0.0833		89	91	57 - 125	3	16	
Surrogate:											
2-Fluorobiphenyl						71	78	32 - 122			
Pyrene-d10						84	89	33 - 125			
Terphenyl-d14						78	82	36 - 118			

TOTAL LEAD EPA 6010C

Matrix: Units:	Soil mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-315-07					
Client ID:	F-9-8.0					
Lead	ND	7.2	6010C	11-1-16	11-1-16	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	11-1-16		
Date Analyzed:	11-1-16		
Matrix:	Soil		
Units:	mg/kg (ppm)		
Lab ID:	MB1101SM1		
Analyte	Method	Result	PQL
	22422		
Lead	6010C	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

22

TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:11-1-16Date Analyzed:11-1-16

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-287-05

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	12.1	11.7	4	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	11-1-16
Date Analyzed:	11-1-16

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-287-05

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	246	94	247	94	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 10-31-16

Client ID	Lab ID	% Moisture
F-5-6.0	10-315-01	26
F-7-7.0	10-315-03	34
F-9-8.0	10-315-07	30

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Rom Ustram	Signature	Ro	9 F-10-GW	8 F-9-GW	2 E-9-8.0	6 F-8-GW	5 F-8-6.0	4 F-7-GW	3 F-7-7.0	2 F-5-GW	1 F-5-6.0	Lab ID Sample Identification	Sampled by: Ryan Ostrow	Project Name: South Wortalk Street & East Marginal Way Project Manager: Scott Allin	1071-014	Priori Number	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite
Reviewed/D				(hual	Company		+ 1730	1520	1505	1405	1320	1200	1130	1050	10126/16 1025	Date Time Sampled Sampled	(other	TPH analysis 5 C	2 Days	Same Day	(in working d (Check One	Turnaround Re	Ch
ate					ARE	low			E	3	S	3	Сл UT	26	S S	E	сл UT	Matrix Numb	er of C	ontainers	3 Days	🗌 1 Day	ays)	quest	ain of C
					Much	10/27/14	Date		X	X	X	X	12	X	X	X	X	NWTF NWTF NWTF	PH-HCIE PH-Gx/E PH-Gx PH-Dx () BTEX	ean-up)			ustody
	-				1455	1400	Time					\times						Volatil Halog EDB E	es 8260 enated EPA 801	OC Volatiles 82600 1 (Waters Only 8270D/SIM)			Nimahan	
Chromatograms v	Data Package: S						Comments/Specia				\times							(with I PAHs PCBs	8270D/ 8082A	SIM (low-level)	081B			2-01	
vith final report	standard 🗌 Lev						al Instructions											Organ Organ Chlori Total F	ophosp nated A RCRA N	horus Pesticides cid Herbicides letals	es 827(8151A	D/SIM		->	
Electronic Data D	vel III 🗌 Level IV										X							Total I TCLP HEM (MTCA M Metals	Aetals grease) 1664A					Page
eliverables (EDDs)												1						% Moi	sture	Laco/4	ar S	202	<u>></u>		of

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting Eric Buer 975 5th Ave NW Issaquah, WA 98027

RE: Prologis 3301 S. Norfolk Work Order Number: 1610331

October 27, 2016

Attention Eric Buer:

Fremont Analytical, Inc. received 4 sample(s) on 10/20/2016 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mohal C. Redy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Farallon Consulting Prologis 3301 S. Norfolk 1610331	Work Order S	ample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1610331-001	SG-F15-101916	10/19/2016 1:42 PM	10/20/2016 2:21 PM
1610331-002	SG-F18-101916	10/19/2016 12:49 PM	10/20/2016 2:21 PM
1610331-003	SG-F17-101916	10/19/2016 9:52 AM	10/20/2016 2:21 PM
1610331-004	SG-F16-101916	10/19/2016 9:03 AM	10/20/2016 2:21 PM

Case Narrative

WO#: **1610331** Date: **10/27/2016**

CLIENT:Farallon ConsultingProject:Prologis 3301 S. Norfolk

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: 1610331 Date Reported: 10/27/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client:Farallon ConsultingWorkOrder:1610331Project:Prologis 3301 S. NorfolkClient Sample ID:SG-F15-101916Lab ID:1610331-001ASample Type:Summa Canister

 Date Sampled:
 10/19/2016

 Date Received:
 10/20/2016

Analyte	Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds-E	PA Method TO-15	5 (SIM)						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.00500	<0.0273	0.00500	0.0273		EPA-TO-15SIM	10/25/2016	BC
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	10/25/2016	BC
1,1,2-Trichloroethane (TCA)	<0.0200	<0.109	0.0200	0.109		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethane	<0.00800	<0.0324	0.00800	0.0324		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trichlorobenzene	<0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trimethylbenzene	0.290	1.43	0.0730	0.359		EPA-TO-15SIM	10/25/2016	BC
1,2-Dibromoethane (EDB)	<0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	10/25/2016	BC
1,2-Dichloroethane	<0.0200	<0.0809	0.0200	0.0809		EPA-TO-15SIM	10/25/2016	BC
Benzene	0.740	2.36	0.0400	0.128		EPA-TO-15SIM	10/25/2016	BC
Carbon tetrachloride	0.0200	0.126	0.0200	0.126		EPA-TO-15SIM	10/25/2016	BC
Chlorobenzene	<0.0700	<0.322	0.0700	0.322		EPA-TO-15SIM	10/25/2016	BC
Chloroethane	<0.0980	<0.259	0.0980	0.259		EPA-TO-15SIM	10/25/2016	BC
Chloroform	0.0600	0.293	0.0200	0.0977		EPA-TO-15SIM	10/25/2016	BC
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	10/25/2016	BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	10/25/2016	BC
Ethylbenzene	0.400	1.74	0.0500	0.217		EPA-TO-15SIM	10/25/2016	BC
Hexachlorobutadiene	<0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	10/25/2016	BC
m,p-Xylene	1.24	5.38	0.0600	0.261		EPA-TO-15SIM	10/25/2016	BC
Methylene chloride	0.160	0.556	0.0600	0.208	В	EPA-TO-15SIM	10/25/2016	BC
Naphthalene	<0.300	<1.57	0.300	1.57		EPA-TO-15SIM	10/25/2016	BC
Hexane	0.640	2.26	0.0700	0.247		EPA-TO-15SIM	10/25/2016	BC
o-Xylene	0.460	2.00	0.0400	0.174		EPA-TO-15SIM	10/25/2016	BC
Methyl tert-butyl ether (MTBE)	<0.00900	<0.0324	0.00900	0.0324		EPA-TO-15SIM	10/25/2016	BC
Tetrachloroethene (PCE)	6.88	46.7	0.800	5.43		EPA-TO-15SIM	10/25/2016	BC
Toluene	2.64	9.95	0.0500	0.188		EPA-TO-15SIM	10/25/2016	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	10/25/2016	BC
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		EPA-TO-15SIM	10/25/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	10/25/2016	BC
Surr: 4-Bromofluorobenzene	105 %Rec		70-130			EPA-TO-15SIM	10/25/2016	BC

Client:	Farallo	on Consulting							
workOrder:	101033								
Project:	Prologi	s 3301 S. Norfolk	(
Client Sample	D:	SG-F15-101916					Date Sa	mpled: 10/1	9/2016
Lab ID:		1610331-001A					Date Re	ceived: 10/2	20/2016
Sample Type:		Summa Canister							
Analyte			Concer	tration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Organ	nic Com	pounds-EPA Meth	od TO-1	<u>5 (SIM)</u>					
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			

NOTES:

Methylene Chloride is a common laboratory solvent.

Client:	Farallo	n Consulting
WorkOrder:	161033	1
Project:	Prologis	s 3301 S. Norfolk
Client Sample	D:	SG-F18-101916
Lab ID:		1610331-002A
Sample Type:		Summa Canister

 Date Sampled:
 10/19/2016

 Date Received:
 10/20/2016

Analyte	Concen	tration	Reportir	ng Limit	Qual	Method	Date/Analy	vst
Volatile Organic Compounds-E	PA Method TO-15	<u>5 (SIM)</u>						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	0.120	0.655	0.00500	0.0273		EPA-TO-15SIM	10/25/2016	BC
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	10/25/2016	BC
1,1,2-Trichloroethane (TCA)	<0.0200	<0.109	0.0200	0.109		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethane	<0.00800	<0.0324	0.00800	0.0324		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trichlorobenzene	<0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trimethylbenzene	0.560	2.75	0.0730	0.359		EPA-TO-15SIM	10/25/2016	BC
1,2-Dibromoethane (EDB)	<0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	10/25/2016	BC
1,2-Dichloroethane	0.100	0.405	0.0200	0.0809		EPA-TO-15SIM	10/25/2016	BC
Benzene	0.490	1.57	0.0400	0.128		EPA-TO-15SIM	10/25/2016	BC
Carbon tetrachloride	0.0300	0.189	0.0200	0.126		EPA-TO-15SIM	10/25/2016	BC
Chlorobenzene	<0.0700	< 0.322	0.0700	0.322		EPA-TO-15SIM	10/25/2016	BC
Chloroethane	0.230	0.607	0.0980	0.259		EPA-TO-15SIM	10/25/2016	BC
Chloroform	4.15	20.3	0.0200	0.0977		EPA-TO-15SIM	10/25/2016	BC
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	10/25/2016	BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	10/25/2016	BC
Ethylbenzene	0.730	3.17	0.0500	0.217		EPA-TO-15SIM	10/25/2016	BC
Hexachlorobutadiene	<0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	10/25/2016	BC
m,p-Xylene	1.15	4.99	0.0600	0.261		EPA-TO-15SIM	10/25/2016	BC
Methylene chloride	0.310	1.08	0.0600	0.208	В	EPA-TO-15SIM	10/25/2016	BC
Naphthalene	<0.300	<1.57	0.300	1.57		EPA-TO-15SIM	10/25/2016	BC
Hexane	0.930	3.28	0.0700	0.247		EPA-TO-15SIM	10/25/2016	BC
o-Xylene	0.540	2.34	0.0400	0.174		EPA-TO-15SIM	10/25/2016	BC
Methyl tert-butyl ether (MTBE)	<0.00900	<0.0324	0.00900	0.0324		EPA-TO-15SIM	10/25/2016	BC
Tetrachloroethene (PCE)	0.170	1.15	0.0500	0.339		EPA-TO-15SIM	10/25/2016	BC
Toluene	5.30	20.0	0.0500	0.188		EPA-TO-15SIM	10/25/2016	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	10/25/2016	BC
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		EPA-TO-15SIM	10/25/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	10/25/2016	BC
Surr: 4-Bromofluorobenzene	117 %Rec		70-130			EPA-TO-15SIM	10/25/2016	BC

Client:	Farallo	on Consulting							
WorkOrder:	161033	31							
Project:	Prologi	s 3301 S. Norfolk							
Client Sample	D:	SG-F18-101916					Date Sa	mpled: 10/1	9/2016
Lab ID:		1610331-002A					Date Re	ceived: 10/2	0/2016
Sample Type:		Summa Canister							
Analyte			Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Organ	nic Com	pounds-EPA Meth	od TO-15	<u>5 (SIM)</u>					
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			

NOTES:

Methylene Chloride is a common laboratory solvent.

Client:Farallon ConsultingWorkOrder:1610331Project:Prologis 3301 S. NorfolkClient Sample ID:SG-F17-101916Lab ID:1610331-003ASample Type:Summa Canister

 Date Sampled:
 10/19/2016

 Date Received:
 10/20/2016

Analyte	Concen	tration	Reporting Limit		Qual	Method	Date/Analy	rst
Volatile Organic Compounds-E	PA Method TO-15	5 (SIM)						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.00500	<0.0273	0.00500	0.0273		EPA-TO-15SIM	10/25/2016	BC
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	10/25/2016	BC
1,1,2-Trichloroethane (TCA)	0.0300	0.164	0.0200	0.109		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethane	0.250	1.01	0.00800	0.0324		EPA-TO-15SIM	10/25/2016	BC
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trichlorobenzene	<0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	10/25/2016	BC
1,2,4-Trimethylbenzene	2.09	10.3	0.0730	0.359		EPA-TO-15SIM	10/25/2016	BC
1,2-Dibromoethane (EDB)	<0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	10/25/2016	BC
1,2-Dichloroethane	0.0900	0.364	0.0200	0.0809		EPA-TO-15SIM	10/25/2016	BC
Benzene	6.72	21.5	0.640	2.04		EPA-TO-15SIM	10/25/2016	BC
Carbon tetrachloride	<0.0200	<0.126	0.0200	0.126		EPA-TO-15SIM	10/25/2016	BC
Chlorobenzene	<0.0700	<0.322	0.0700	0.322		EPA-TO-15SIM	10/25/2016	BC
Chloroethane	<0.0980	<0.259	0.0980	0.259		EPA-TO-15SIM	10/25/2016	BC
Chloroform	0.0700	0.342	0.0200	0.0977		EPA-TO-15SIM	10/25/2016	BC
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	10/25/2016	BC
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	10/25/2016	BC
Ethylbenzene	2.29	9.94	0.0500	0.217		EPA-TO-15SIM	10/25/2016	BC
Hexachlorobutadiene	<0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	10/25/2016	BC
m,p-Xylene	0.820	3.56	0.0600	0.261		EPA-TO-15SIM	10/25/2016	BC
Methylene chloride	0.140	0.486	0.0600	0.208	В	EPA-TO-15SIM	10/25/2016	BC
Naphthalene	1.21	6.34	0.300	1.57		EPA-TO-15SIM	10/25/2016	BC
Hexane	98.9	349	1.12	3.95		EPA-TO-15SIM	10/25/2016	BC
o-Xylene	0.420	1.82	0.0400	0.174		EPA-TO-15SIM	10/25/2016	BC
Methyl tert-butyl ether (MTBE)	<0.00900	<0.0324	0.00900	0.0324		EPA-TO-15SIM	10/25/2016	BC
Tetrachloroethene (PCE)	0.130	0.882	0.0500	0.339		EPA-TO-15SIM	10/25/2016	BC
Toluene	0.650	2.45	0.0500	0.188		EPA-TO-15SIM	10/25/2016	BC
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	10/25/2016	BC
Trichloroethene (TCE)	0.0500	0.269	0.0170	0.0914		EPA-TO-15SIM	10/25/2016	BC
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	10/25/2016	BC
Surr: 4-Bromofluorobenzene	118 %Rec		70-130			EPA-TO-15SIM	10/25/2016	BC

Client:	Farallo	on Consulting							
WorkOrder:	161033	31							
Project:	Prologi	s 3301 S. Norfolk							
Client Sample	e ID:	SG-F17-101916					Date Sa	mpled: 10/1	9/2016
Lab ID:		1610331-003A					Date Re	ceived: 10/2	20/2016
Sample Type:		Summa Canister							
Analyte			Concer	ntration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Organ	nic Com	pounds-EPA Meth	od TO-1	5 <u>(SIM)</u>					
		((ppbv)	(ug/m³)	(ppbv)	(ug/m³)			

NOTES:

Methylene Chloride is a common laboratory solvent.

Client:	Farallon Consulting						
WorkOrder:	1610331						
Project:	Prologis 3301 S. Norfolk						
Client Sample ID:		SG-F16-101916					
Lab ID:		1610331-004A					
Sample Type:		Summa Canister					

Date Sampled:	10/19/2016
Date Received:	10/20/2016

Analyte	Concen	Concentration		Reporting Limit		Method	Date/Analyst		
Volatile Organic Compounds-EPA Method TO-15 (SIM)									
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)					
1,1,1-Trichloroethane	0.0200	0.109	0.00500	0.0273		EPA-TO-15SIM	10/25/2016	BC	
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	10/25/2016	BC	
1,1,2-Trichloroethane (TCA)	<0.0200	<0.109	0.0200	0.109		EPA-TO-15SIM	10/25/2016	BC	
1,1-Dichloroethane	<0.00800	<0.0324	0.00800	0.0324		EPA-TO-15SIM	10/25/2016	BC	
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	10/25/2016	BC	
1,2,4-Trichlorobenzene	<0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	10/25/2016	BC	
1,2,4-Trimethylbenzene	0.0800	0.393	0.0730	0.359		EPA-TO-15SIM	10/25/2016	BC	
1,2-Dibromoethane (EDB)	<0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	10/25/2016	BC	
1,2-Dichloroethane	<0.0200	<0.0809	0.0200	0.0809		EPA-TO-15SIM	10/25/2016	BC	
Benzene	0.140	0.447	0.0400	0.128		EPA-TO-15SIM	10/25/2016	BC	
Carbon tetrachloride	<0.0200	<0.126	0.0200	0.126		EPA-TO-15SIM	10/25/2016	BC	
Chlorobenzene	<0.0700	<0.322	0.0700	0.322		EPA-TO-15SIM	10/25/2016	BC	
Chloroethane	<0.0980	<0.259	0.0980	0.259		EPA-TO-15SIM	10/25/2016	BC	
Chloroform	0.220	1.07	0.0200	0.0977		EPA-TO-15SIM	10/25/2016	BC	
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	10/25/2016	BC	
cis-1,2-Dichloroethene	<0.0200	<0.0793	0.0200	0.0793		EPA-TO-15SIM	10/25/2016	BC	
Ethylbenzene	0.0700	0.304	0.0500	0.217		EPA-TO-15SIM	10/25/2016	BC	
Hexachlorobutadiene	<0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	10/25/2016	BC	
m,p-Xylene	0.190	0.825	0.0600	0.261		EPA-TO-15SIM	10/25/2016	BC	
Methylene chloride	0.160	0.556	0.0600	0.208	В	EPA-TO-15SIM	10/25/2016	BC	
Naphthalene	<0.300	<1.57	0.300	1.57		EPA-TO-15SIM	10/25/2016	BC	
Hexane	0.150	0.529	0.0700	0.247		EPA-TO-15SIM	10/25/2016	BC	
o-Xylene	0.0800	0.347	0.0400	0.174		EPA-TO-15SIM	10/25/2016	BC	
Methyl tert-butyl ether (MTBE)	<0.00900	<0.0324	0.00900	0.0324		EPA-TO-15SIM	10/25/2016	BC	
Tetrachloroethene (PCE)	2.10	14.2	0.0500	0.339		EPA-TO-15SIM	10/25/2016	BC	
Toluene	0.320	1.21	0.0500	0.188		EPA-TO-15SIM	10/25/2016	BC	
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	10/25/2016	BC	
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		EPA-TO-15SIM	10/25/2016	BC	
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	10/25/2016	BC	
Surr: 4-Bromofluorobenzene	95.2 %Rec		70-130			EPA-TO-15SIM	10/25/2016	BC	

Client:	Farallon Consulting											
WorkOrder:	161033	31										
Project:	Prologi	is 3301 S. Norfolk										
Client Sample	D:	SG-F16-101916					Date Sa	mpled: 10/1	9/2016			
Lab ID:		1610331-004A					Date Re	ceived: 10/2	20/2016			
Sample Type:		Summa Canister										
Analyte			Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analyst			
Volatile Orgar	nic Com	pounds-EPA Meth	od TO-15	<u>5 (SIM)</u>								
			(ppbv)	(ug/m³)	(ppbv)	(ug/m³)						

NOTES:

Methylene Chloride is a common laboratory solvent.

Work Order: 1610331

CLIENT: Farallon Consulting

Project:

Prologis 3301 S. Norfolk

QC SUMMARY REPORT

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID LCS-R32519	SampType: LCS		Units: ppbv		Prep Date	e: 10/25/2	016	RunNo: 32519			
Client ID: LCSW	Batch ID: R32519					Analysis Date: 10/25/2016		016	SeqNo: 615676		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	4.84	0.400	5.000	0	96.8	70	130				
Vinyl chloride	4.83	0.0850	5.000	0	96.6	70	130				
Chloroethane	4.77	0.0980	5.000	0	95.4	70	130				
1,1-Dichloroethene (DCE)	4.71	0.00900	5.000	0	94.2	70	130				
Methylene chloride	4.56	0.0600	5.000	0	91.2	70	130				В
trans-1,2-Dichloroethene	4.79	0.00600	5.000	0	95.8	70	130				
Methyl tert-butyl ether (MTBE)	4.98	0.00900	5.000	0	99.6	70	130				
Hexane	4.61	0.0700	5.000	0	92.2	70	130				
1,1-Dichloroethane	4.82	0.00800	5.000	0	96.4	70	130				
cis-1,2-Dichloroethene	4.92	0.0200	5.000	0	98.4	70	130				
Chloroform	4.94	0.0200	5.000	0	98.8	70	130				
1,1,1-Trichloroethane	4.81	0.00500	5.000	0	96.2	70	130				
Carbon tetrachloride	4.80	0.0200	5.000	0	96.0	70	130				
1,2-Dichloroethane	4.77	0.0200	5.000	0	95.4	70	130				
Benzene	5.00	0.0400	5.000	0	100	70	130				
Trichloroethene (TCE)	4.72	0.0170	5.000	0	94.4	70	130				
Toluene	4.79	0.0500	5.000	0	95.8	70	130				
1,1,2-Trichloroethane (TCA)	4.80	0.0200	5.000	0	96.0	70	130				
Tetrachloroethene (PCE)	4.84	0.0500	5.000	0	96.8	70	130				
1,2-Dibromoethane (EDB)	4.81	0.0200	5.000	0	96.2	70	130				
Chlorobenzene	4.23	0.0700	5.000	0	84.6	70	130				
Ethylbenzene	4.99	0.0500	5.000	0	99.8	70	130				
m,p-Xylene	9.49	0.0600	10.00	0	94.9	70	130				
o-Xylene	4.80	0.0400	5.000	0	96.0	70	130				
1,1,2,2-Tetrachloroethane	4.74	0.00620	5.000	0	94.8	70	130				
1,2,4-Trimethylbenzene	4.77	0.0730	5.000	0	95.4	70	130				
1,2,4-Trichlorobenzene	4.81	0.0500	5.000	0	96.2	70	130				
Hexachlorobutadiene	4.56	0.0166	5.000	0	91.2	70	130				
Naphthalene	4.78	0.300	5.000	0	95.6	70	130				
Surr: 4-Bromofluorobenzene	10.1		10.00		101	70	130				
Fremont											

Analytical											

Work Order:	1610331									00 9			
CLIENT:	Farallon Co	nsulting											
Project:	Prologis 33	01 S. Norfol	k				V	/olatile O	rganic C	Compounds	S-EPA Met	hod TO-1	5 (SIM
Sample ID MB-R3	32519	SampType	: MBLK			Units: ppbv		Prep Da	ite: 10/25/2	2016	RunNo: 32	519	
Client ID: MBLK	W	Batch ID:	R32519					Analysis Da	ite: 10/25/2	2016	SeqNo: 61	5677	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane			ND	0.400									
Vinyl chloride			ND	0.0850									
Chloroethane			ND	0.0980									
1,1-Dichloroethene	e (DCE)		ND	0.00900									
Methylene chloride)		0.700	0.0600									
trans-1,2-Dichloroe	ethene		ND	0.00600									
Methyl tert-butyl et	her (MTBE)		ND	0.00900									
Hexane			ND	0.0700									
1,1-Dichloroethane	9		ND	0.00800									
cis-1,2-Dichloroeth	iene		ND	0.0200									
Chloroform			ND	0.0200									
1,1,1-Trichloroetha	ane		ND	0.00500									
Carbon tetrachloric	de		ND	0.0200									
1,2-Dichloroethane	9		ND	0.0200									
Benzene			ND	0.0400									
Trichloroethene (T	CE)		ND	0.0170									
Toluene			ND	0.0500									
1,1,2-Trichloroetha	ane (TCA)		ND	0.0200									
Tetrachloroethene	(PCE)		ND	0.0500									
1,2-Dibromoethane	e (EDB)		ND	0.0200									
Chlorobenzene			ND	0.0700									
Ethylbenzene			ND	0.0500									
m,p-Xylene			ND	0.0600									
o-Xylene			ND	0.0400									
1,1,2,2-Tetrachloro	pethane		ND	0.00620									
1,2,4-Trimethylben	izene		ND	0.0730									
1,2,4-Trichlorobena	zene		ND	0.0500									
Hexachlorobutadie	ene		ND	0.0166									
Naphthalene			ND	0.300									
Surr: 4-Bromoflu	uorobenzene		9.45		10.00		94.5	70	130				

1610331 Work Order:

CLIENT: Farallon Consulting Project:

Prologis 3301 S. Norfolk

QC SUMMARY REPORT

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID 1610331-001AREP	SampType: REP			Units: ppbv		Prep Dat	e: 10/25/2	2016	RunNo: 325	519	
Client ID: SG-F15-101916	Batch ID: R32519					Analysis Dat	e: 10/25/ 2	2016	SeqNo: 615	5667	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.400						0		30	
Vinyl chloride	ND	0.0850						0		30	
Chloroethane	ND	0.0980						0		30	
1,1-Dichloroethene (DCE)	ND	0.00900						0		30	
Methylene chloride	0.160	0.0600						0.1600	0	30	В
trans-1,2-Dichloroethene	ND	0.00600						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.00900						0		30	
Hexane	0.650	0.0700						0.6400	1.55	30	
1,1-Dichloroethane	ND	0.00800						0		30	
cis-1,2-Dichloroethene	ND	0.0200						0		30	
Chloroform	0.0600	0.0200						0.06000	0	30	
1,1,1-Trichloroethane	ND	0.00500						0		30	
Carbon tetrachloride	0.0200	0.0200						0.02000	0	30	
1,2-Dichloroethane	ND	0.0200						0		30	
Benzene	0.750	0.0400						0.7400	1.34	30	
Trichloroethene (TCE)	ND	0.0170						0		30	
Toluene	2.50	0.0500						2.640	5.45	30	
1,1,2-Trichloroethane (TCA)	ND	0.0200						0		30	
Tetrachloroethene (PCE)	6.53	0.0500						6.780	3.76	30	Е
1,2-Dibromoethane (EDB)	ND	0.0200						0		30	
Chlorobenzene	ND	0.0700						0		30	
Ethylbenzene	0.390	0.0500						0.4000	2.53	30	
m,p-Xylene	1.21	0.0600						1.240	2.45	30	
o-Xylene	0.450	0.0400						0.4600	2.20	30	
1,1,2,2-Tetrachloroethane	ND	0.00620						0		30	
1,2,4-Trimethylbenzene	0.340	0.0730						0.2900	15.9	30	
1,2,4-Trichlorobenzene	ND	0.0500						0		30	
Hexachlorobutadiene	ND	0.0166						0		30	
Naphthalene	ND	0.300						0		30	
Surr: 4-Bromofluorobenzene	11.1		10.00		111	70	130		0		

Work Order:	1610331					OC SUMMARY REPORT
CLIENT:	Farallon Cons	sulting				
Project:	Prologis 3301	S. Norfolk				Volatile Organic Compounds-EPA Method 10-15 (SIM
Sample ID 16103	31-001AREP	SampType: REP			Units: ppbv	Prep Date: 10/25/2016 RunNo: 32519
Client ID: SG-F1	5-101916	Batch ID: R32519				Analysis Date: 10/25/2016 SeqNo: 615667
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument. Methylene Chloride is a common laboratory solvent.

Sample Log-In Check List

С	lient Name:	FARA	Work Order Numb	per: 1610331		
Lo	ogged by:	Clare Griggs	Date Received:	10/20/201	6 2:21:00 PM	
<u>Cha</u>	nin of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present	
2.	How was the	sample delivered?	<u>Client</u>			
Log	<u>. In</u>					
3.	Coolers are p	present?	Yes 🗌	No 🖌		
			Air Samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🔽	No 🗌		
5.	Custody Sea (Refer to com	ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗸	
7.	Were all item	is received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🗹	
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?	Yes 🖌	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌	
12.	Is there head	lspace in the VOA vials?	Yes	No 🗌	NA 🗸	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🗹	No 🗌		
<u>Spe</u>	cial Handl	ing (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗸	
	Person	Notified: Date				
	By Who	m: Via:	eMail 🗌 Ph	one 🗌 Fax 🏾	In Person	
	Regardi	ing:				
	Client Ir	nstructions:				
19.	Additional rer	marks:			I	

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

		rAT> STD Rush (specify)				Date/ Inte										×
				142	16	Date/Time	\	N	Received		0	116 170	10/19	Date	Inquished	Reli
			ave	e, that Į h	ned above	Client nar	half of the	ical on be preement.	t Analyt f this Ag	1 Fremon ackside o	ment with ont and b	this Agree ns on the fr	to enter into	agreement to ea	rified Client's	I Ve R⊨
•		Special Remarks:	gin on the	00pm will be	eived after 4:	r samples recu y.	ng business da	Tum-a followir		/A	× z z	Seals Intact:				- 6
			Time	Time	Regulator	Date/Time	Date					Time	Elow Reg		ndition:	2
			Pressure	Pressure	Container	Pressina	Pressure					Date	Canister			
	1010		925	Sob	Regulator	Date/Time	Date		-		5	ges Time	Flow Reg.	:		5
F	1000-1	Ł	H.O Pressure	30,0 Pressure	Container	Pressure	10 mTorr Pressure	Summa	6L	200mL/	ĸ	14/14/14	17234 Canister	1916	54-F16-10	10
-	infor -		10 14 Time	952	Regulator	Date/Time	Dale				1	952 me	Flow Reg		3	4
-	intro		S.o	Pressure	Container	Pressure	10 mTorr Pressure	Summa	6L	200mL/	\langle	10/19/10	15900 Canister	101915	-717-22	0
F	MA		1314 Ime	1245	Regulator	Date/Time	Date				1	hus Time	Flow Reg	- 101112	11 10	4
1	SC M		Pressure	JO Pressure	Container	Pressure	10 mTorr Pressure	Summa	6L	200mL/	~	10/19/15	17647	101911	SC-FIG	
-	145	71347	18104		Regulator	Date/Time	Date				204	1347-1000	Flow Reg		5	4
-	12/20	10-15 SIM	Pressure	Fressure	Container	Pressure	10 mTorr Pressure	Summa	6L	200mL/	Ń	10/10/1	17240 Canster	-1019/6	SK-FIS	,
-inal ssure 'Hg)	Receipt Pro	Analysis Requested	Sample Pressure (" Hg)	Sample Pressure (" Hg)	Equipment Certificaton Code	Pressure at Time of Pick- up (" Hg)	Evacuation Pressure (mtorr)	Container Type **	Sample Volume	Anticipated Fill Time	Gas Matrix Code *	Sample Date & Time	Canister / Flow Reg Serial #	Name	Sample	-
	Internal		Field Final	Field Initial		Internal		-								
				Jar	ass Headspace	nder HJ = Gla	gh Pressure Cyli	an HP = Hig	Liter Minic	Vac MC = 1	1 Liter Bottle	dlar Bag BV =	Summa) TB = Tec	6L = Six Liter Canister (Container Codes:	:
						ent Services)	EED (Consult Cli	luality L = L	= Fuel Gas C	lapping Q	M = Plume N	SG = Soil Gas	ab L = Landfill	I = Indoor SS = Subs	Gas Matrix Codes:	•
	ices	ALL CAN CONSULTING , C	PAR	VER K	EB	Email (PM):		prize	2950	ers)	Fax: (4		0800	(425) 295	Telephone:	
			Bende	2ic	PM):	Reports To (75	680	JA	4 6	155 AQUA	City, State, Zip:	-
		A I		ATT	SA	Location:						e	A WA I	975 5	Address:	
Page	4	collected by: 20L	FU	H - 0	те Т_О	Project Nan Project No:					96	Consultir	Farallon (Client:	
e 18 of		114/14 Page: 1 of	Date: 16	2.1.1	0								Tel: 206-352-3790 Fax: 206-352-7178	ž	3600 Fremont Ave Seattle, WA 98103	
18		Project No (Internal): 10035	Laboratory)										alytical	An		
ent	lgreem	aboratory Services A	rd & I	Reco	tody	of Cus	Chain (Air					ont	rem		

APPENDIX C TERRESTRIAL ECOLOGICAL EVALUATION

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 3301 South Norfolk Street and 10230 East Marginal Way South Seattle/Tukwila, Washington

Farallon PN: 1071-026

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name:

Facility/Site Address:

Facility/Sit	te No:
r aunity/On	

VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:				Title:
Organization:				
Mailing address:				
City:			te:	Zip code:
Phone:	Fax:		E-mail:	

Step 3: DOO	CUMENT EVALUATION TYPE AND RESULTS
A. Exclusior	n from further evaluation.
1. Does the	Site qualify for an exclusion from further evaluation?
	fes If you answered "YES," then answer Question 2.
Unkı	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is th	ne basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of C	ompliance: WAC 173-340-7491(1)(a)
	All soil contamination is, or will be,* at least 15 feet below the surface.
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to	Exposure: WAC 173-340-7491(1)(b)
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undevelop	ped Land: WAC 173-340-7491(1)(c)
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
* An exclusion acceptable to E "Undevelope prevent wildlife "Contiguous" highways, exte by wildlife.	based on future land use must have a completion date for future development that is Ecology. d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area

В.	. Simplified evaluation.						
1.	Does the S	Site qualify for a simplified evaluation?					
	□ Y	es If you answered "YES," then answer Question 2 below.					
	🗌 N Unkn	lo or or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.					
2.	Did you co	onduct a simplified evaluation?					
	🗌 Y	es If you answered "YES," then answer Question 3 below.					
	🗌 N	lo If you answered " NO, " then skip to Step 3C of this form.					
3.	Was furthe	er evaluation necessary?					
	□ Y	es If you answered "YES," then answer Question 4 below.					
	🗌 N	lo If you answered " NO, " then answer Question 5 below.					
4.	lf further e	valuation was necessary, what did you do?					
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.					
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.					
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.					
	Exposure /	Analysis: WAC 173-340-7492(2)(a)					
		Area of soil contamination at the Site is not more than 350 square feet.					
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.					
	Pathway A	nalysis: WAC 173-340-7492(2)(b)					
		No potential exposure pathways from soil contamination to ecological receptors.					
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.					
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.					

C.	. Site-specify the problem require con	fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating n, and (2) selecting the methods for addressing the identified problem. Both steps isultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	Y	es If you answered "YES," then answer Question 2 below.
	□ N	If you answered "NO," then identify the reason here and then skip to Question 5 below:
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.	If you cond Check all th	ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.	Have you problem re	already obtained Ecology's approval of both your problem formulation and esolution steps?
	□ Y	es If so, please identify the Ecology staff who approved those steps:
	□ N	0

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160 th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
P.O. Box 47775	N. 4601 Monroe
Olympia, WA 98504-7775	Spokane WA 99205-1295

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Table 749-1

Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) undeveloped land on the site or within 500 feet of any area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre). 1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right. Points Area (acres) 0.25 or less 4 5 0.5 1.0 6 7 1.5 8 8 2.0 2.5 9 3.0 10 3.5 11 4.0 or more 12 2) Is this an industrial or commercial property? If yes, enter a score of 3. If no, enter 3 a score of 1 $3)^{a}$ Enter a score in the box to the right for the habitat quality of the site, using the 3 following rating system^b. High=1, Intermediate=2, Low=3 4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the 2 box to the right. If no, enter a score of $2^{\underline{c}}$ 5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, 4 pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4. 6) Add the numbers in the boxes on lines 2-5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified 12 evaluation may be ended.

Notes for Table 749-1

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

Terrestrial Ecological Evaluation Process- Simplified Evaluation

Documentation Form

Criteria # (Concern) Criteria		Response (Circle One)	
1 (exposure)	Is the total area of soil contamination at the site less than or equal to 350 square feet	Yes (End TEE) No	
2 (exposure)	Does land use at the site and surrounding area make substantial wildlife exposure unlikely based on completion of <u>Table 749-1</u> ?	Yes (End TEE) No	
3 (pathway)	Is there a potential exposure pathway from soil contamination to soil biota, plants, or wildlife?	Yes /No (End TEE)	
4 (contaminant)	Are the hazardous substances at your site listed in <u>Table 749-2</u> and is (or will) their location in the soil at your site be at a depth not exceeding the point of compliance, and at concentrations that do not exceed the values provided in <u>Table 749-2</u> .	Yes (End TEE) / No Note: You must perform bioassays for contaminants at your site if no table value is provided.	
5 (contaminant)	Will hazardous substances listed in <u>Table 749-2</u> be present in the soil at your site within 6 feet of the ground surface at concentrations likely to be toxic, or with the potential to bioaccumulate, based on bioassays using methods approved by the department.	Yes / No (End TEE)	

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

LEGEND

500-FOOT PROPERTY RADIUS BOUNDARY		Washington	500-EOOT PROPER	
PARCEL BOUNDARY (WITH PARCEL		Issaquah Bellingham Seattle	BOUNDARY FOR TERRESTRIAL	
NUMBER)		Oregon		
10230 EAST MARGINAL WAY SOUTH		Portland Bend Baker Čity	ECOLOGICAL EVA	LUATION
N	FARALLON		3301 SOUTH NORFOLK ST	REET AND 10230
3301 SOUTH NORFOLK STREET	TAKALLOIN	California	EAST MARGINAL WAY SO	OUTH SEATTLE/
	CONSULTING	Oakland Sacramento Irvine	TUKWILA, WASH	INGTON
	Quality Service for Environmenta	Solutions farallonconsulting.com		
0 300			FARALLON PN: 10	71-026
	Drawn By: jjones	Checked By: DML	Date: 11/1/2017	Disc Reference:
Feet Document Path: Q:\Projects\1071 Prologis\026_EMarginalWay_SouthNorfolk\Figure-2X_PropertyBoundary-w-Buf				