

January 15, 2019

Mr. Pui Leung Roystone on Queen Anne, LLC 606 Maynard Avenue South #104 Seattle, Washington 98104

RE: Groundwater Monitoring – 4th Quarter 2018
Proposed Roystone on Queen Anne Redevelopment
631 Queen Anne Avenue North
Seattle, Washington 98109
VCP Project No. NW3197
RGI Project No. 2017-015H

Dear Mr. Leung:

The Riley Group, Inc. (RGI) is pleased to present this 2018 Fourth Quarter Groundwater Monitoring Report (2018-Q4 GWM Report) for the Roystone on Queen Anne property located at 631 Queen Anne Avenue North, Seattle, Washington (herein referred to as the Property). The general location of the Property is depicted on Figure 1. Figure 2 depicts the Property layout with pertinent features.

The Property has been enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) and is identified as the Texaco 211577 project with VCP Project No. NW3197. All previous investigation reports associated with the Property have been submitted to Ecology under the VCP.

Roystone on Queen Anne (hereafter referred to as the Client) retained RGI to perform the groundwater sampling activities documented herein. The scope of work for this project was performed in general accordance with RGI's *Proposal for Services* dated October 19, 2018 by RGI. This scope of work was authorized by the Client on October 25, 2018.

RGI understands that the Client intends to redevelop the Property as a multi-use residential building beginning in mid-2019. Data obtained from this groundwater sampling event will be used to establish baseline groundwater conditions prior to decommissioning of the wells, which will take place prior to redevelopment.

SCOPE OF WORK

The scope of services performed for this project included the following tasks:

- Measured depth to water in 10 groundwater monitoring and remediation wells.
- Collected groundwater samples from groundwater monitoring wells (MW6, MW9, MW10, SSIW1, and SSIW2) and wells associated with previous remediation systems (DPE5, DPE6, DPE7, and VP9). Well MW13 had an insufficient volume of water to obtain a sample.

Corporate Office

- Submitted samples to the laboratory for analyses of contaminants of potential concern (COPCs).
- ➤ Compared groundwater analytical results to cleanup levels that comply with the Model Toxics Control Act (MTCA).
- ➤ Generated groundwater elevation contours and determined groundwater flow direction and hydraulic gradient across the Property.
- Prepared this 2018 Fourth Quarter Groundwater Monitoring Report presenting our findings, observations, conclusions, and recommendations.

2018 FOURTH QUARTER GROUNDWATER SAMPLING EVENT

On November 13 2018, RGI sampled two on-Property groundwater monitoring wells (MW6 and MW9), three off-Property groundwater monitoring wells (MW10, SSIW1, and SSIW2), and four on-Property wells associated with previous remediation systems (DPE5, DPE6, DPE7, and VP9). DPE5 was resampled on November 21, 2018 due to the slow recharge in this location after purging. Details pertaining to this work are discussed below.

Prior to groundwater sampling, the depth to groundwater was measured at 10 on- and off-Property wells from the northernmost point of the top of each well casing using an electronic water level meter.

After collection of groundwater level data, wells were purged using a peristaltic pump and dedicated tubing. Measurements of water quality parameters (temperature, pH, and conductivity) were collected using a Hanna meter and a Horiba with a flow through cell. Purging continued until either water quality parameters had stabilized or three wetted casing volumes of groundwater were purged from each well at which time groundwater samples were collected.

During sample collection, the flow rate of the pump was reduced to less than 100 milliliters per minute (mL/min) in accordance with standard low flow sampling techniques. Groundwater was pumped directly through dedicated tubing into laboratory-supplied containers appropriate for the intended analyses. Samples collected for dissolved lead analysis were filtered in the field using a 0.45 or 0.1 micron filter. A total of nine groundwater samples were submitted for analyses. No groundwater sample was collected from well MW13 due to insufficient volume of water for sampling.

The top of casing (TOC) elevation for wells MW6, MW9, MW13, VP9, MW10, SSIW1, and SSIW2 were surveyed by a licensed surveyor under a contract with the Client in December of 2018. TOC elevation data for these wells is summarized in Table 1. TOC elevations were not obtained from wells DPE5, DPE6, DPE7, and RW4 and RGI does not have any additional information regarding this. Therefore, previous top of casing elevations, which were obtained by others and based on arbitrary datum, are presented in Table 1.

Depth to groundwater measurements for all wells ranged from 9.54 feet to 21.17 feet below well TOC. Corresponding groundwater elevations for the wells that were recently surveyed ranged from 124.38' to 136.91'. Groundwater elevation contours were generated for the recently survey wells and are presented on Figure 3. Groundwater flow direction was to the west-southwest with an approximate hydraulic gradient of 0.08 ft/ft (MW10 to MW6). This is consistent with the flow direction and hydraulic gradient observed during previous groundwater sampling events. Groundwater elevation data obtained from VP9 (a well formerly used for vapor extraction) was not included when generating elevation contours due to the fact that the groundwater elevation

data is based on a much shallower screened interval (compared to most other wells) and was considered anomalous.

Standard Sampling Protocols

All groundwater samples obtained during this project were collected in accordance with RGI's standard operating and decontamination procedures. Samples were placed in preconditioned, sterilized containers provided by an Ecology accredited analytical laboratory. All reusable equipment was decontaminated between sample locations.

All samples were appropriately labeled and stored in an iced cooler and transported to the analytical laboratory using standard chain-of-custody protocols.

Investigation Derived Waste

Investigation derived waste (IDW) consisted of purge water generated during sampling of wells. All purge water was placed in one 55-gallon steel drum, labeled non-hazardous waste, and temporarily stored in fenced area the southwestern portion of the Property.

ANALYTICAL LABORATORY ANALYSES

A total of nine groundwater samples were collected during this project and submitted to Friedman & Bruya Laboratory in Seattle, Washington, for one or more of the following analyses:

- Gasoline-range TPH using Method NWTPH-Gx.
- ➤ Diesel- and oil-range TPH using Method NWTPH-Dx with and without silica gel cleanup.
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8021B.
- Volatile Organic Compounds (VOCs) using EPA Method 8260C.
- Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) using EPA Method 8270 SIM
- Dissolved lead using EPA Method 6020B.

Groundwater analytical results are summarized in Table 1 and displayed graphically on Figure 3. Copies of the analytical laboratory reports and associated sample chain-of-custody forms are included in Appendix A.

Groundwater Analytical Results

Diesel-range TPH was detected at flagged concentrations ranging from 1,000 micrograms/liter (μ g/L) to 4,100 μ g/L in wells MW6, DPE5, DPE6, and DPE7. These concentrations exceed the applicable Model Toxics Control Act (MTCA) groundwater cleanup level of 500 μ g/L.

RGI contacted the laboratory regarding the flagged diesel-range TPH concentrations and the laboratory indicated that the flag may be due to, or partially due to, the presence of naturally occurring biogenic compounds in the sample that can interfere with the diesel-range TPH analysis. Based on this information and authorization from the Client, RGI requested that these samples be analyzed using silica gel cleanup to remove any potential interference from biogenic compounds. After analysis using silica gel cleanup, diesel-range TPH only exceeded the MTCA groundwater cleanup level in well MW6 where diesel-range TPH concentration was 570 μ g/L. MW6 originally had a flagged concentration of 1,000 μ g/L. The sample analyzed using silica gel cleanup was also flagged, but the flag was attributed to overlap from the gasoline-range TPH.

In order for Ecology to accept groundwater data under MTCA Method A using silica gel cleanup it

must be demonstrated that organics (peat, wood etc.) are present in the subsurface on the Property. However, given the fact that silica gel cleanup has proven to reduce diesel-range TPH concentrations significantly, RGI recommends evaluating groundwater using a Method B fractionation approach which has silica gel cleanup built into the Ecology-approved method and is accepted by Ecology.

CONCLUSIONS AND RECOMMENDATIONS

Based on the data obtained during this 2018 fourth quarter groundwater monitoring event, RGI concludes the following:

- ➤ Groundwater flow direction across the Property is to the west-southwest and this flow direction is consistent with previous groundwater sampling events.
- ➤ Groundwater on the central, western, and southwestern portions of the Property is impacted with concentrations of diesel-range TPH that exceed the applicable MTCA groundwater cleanup level. No groundwater data was available for the northeastern portion of the Property. Therefore, it is unknown if groundwater is impacted in this location.

RGI recommends the following:

- Submit this 2018 Fourth Quarter Groundwater Monitoring Report to Ecology under the VCP.
- Evaluate groundwater using a Method B fractionation approach either prior to redevelopment or after cleanup is completed.

LIMITATIONS

This report is the property of RGI, Roystone on Queen Anne and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the Roystone on Queen Anne property located at 631 Queen Anne Avenue North in Seattle, Washington. No other warranty, expressed or implied. Please contact us at (425) 415-0551 if you have any questions or need additional information.

Sincerely,

THE RILEY GROUP, INC.

Jerry Sawetz

Senior Environmental Scientist

aul D. Riley, LG, LHG

Principal

Attachments

Figure 1, Property Vicinity Map

Figure 2, Property Representation Map With Historical Features and Soil

Select Analytical Data

Figure 3, November 13, 2018 Groundwater Elevation Contours With Analytical Data

Table 1, Summary of Groundwater Analytical Laboratory Results

Appendix A, Analytical Laboratory Reports and Chains of Custody

Distribution

Mr. Pui Leung, Roystone on Queen Anne, LLC (1 PDF copy)

Ms. Jing Song, Washington Department of Ecology

Table 1, Page 1 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

The kiley Gro	up, Inc. Project N	NO. 2017-015F	T				I	-	TEV		Dia I =	0.1.75	Discol Tour	Oil Trii				1					1				
Sample	Sample	TOC Elevation	Depth to Water Below	LNAPL	Groundwater	Gasoline		<u>в</u>	TEX		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Nanh	сВИП	MTDE	EDB	EDC	PCE	TCE	cis-1,2-	Other	Total Pb	Dissolved	Dissolved	Other
Number	Date	(ft)	Well TOC (ft)	IThicknoce (tt)	Elevation (ft)	TPH	В	т	E	х	withou	t silica gel	with sil	ica gel	Naph.	CPARIS	MTBE	בטס	EDC	1	102	DCE	VOCs ⁷	TOTAL PD	Pb	As	Metals
	<u> </u>	<u> </u>	1 ' '	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		On-Propert	y Groundwat	er Monitorir	ng Wells	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	l .			1
MW6 Scre	ened Interval 15-2	29 feet bgs. 2-In	ıch Diameter C	Casing							p - r	, - ,		J•													
	11/13/18	146.05	20.70	0.00	125.35	110	0.89	ND<1	ND<1	ND<3	1,000 x	ND<250	570 x	ND<250	ND<0.8	ND	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND				
	11/11-13/13 ³	146.05	19.87	0.00	126.18	97	3	ND<0.5	0.6	0.5	340	ND<70															
	05/20-22/13 ³	146.05	18.47	0.00	127.58	280	5	ND<0.5	0.5	0.6	600	ND<71															
	11/12-14/12 ³	146.05	19.74	0.00	126.31	370	9	1	2	3	1,600	190															
	05/07-08/12 ³	146.05	18.50	0.00	127.55	250	1	ND<0.5	ND<0.5	ND<0.5	540	ND<70															
	05/10-12/11 ³	146.05	18.32	0.00	127.73	600	12	0.7	1	0.9	12,000	1,500															
	01/17-20/11 ³	146.05	18.24	0.00	127.81	130	4	ND<0.5	ND<0.5	ND<0.5	12,000	4,600															
	04/19-22/10 ³	146.05	18.83	0.00	127.22	650	24	0.9	0.6	1																	
	10/12-15/09³	146.05	20.28	0.00	125.77	1,200	16	1	0.5	2	5,100	ND<660															
	04/13-16/09 ³	146.05	20.18	0.00	125.87	1,100	31	0.8	2	3	26,000	3,000															
	11/10/08³	146.05	20.93	0.00	125.12	ND<50.0	0.6	ND<0.5	ND<0.5	ND<0.5	3,200	ND<660															
	04/28-05/01/08	146.05	22.28	0.00	123.77	360	3	0.7	5	3	8,600	1,200															
	08/09/06	113.32 ⁶	25.85	0.00	87.47	15,000	1,900	1,000	590	1,700	14,000	ND<2,300															
	04/18-21/05	113.32 ⁶	20.31	0.00	93.01	3,600	1,000	120	110	360	7,700	ND<1,000															
	01/24-31/05	113.32 ⁶	20.38	0.00	92.94	5,600	220	60	110	310	11,000	ND<480															
MW6	10/28-11/01/04	113.32 ⁶	20.93	0.00	92.39	24,000	8,600	2,800	690	3,100	9,200	ND<96															
-	7/15-16/04	113.32 ⁶	20.48	0.00	92.84	46,600	9,610	3,190	758	3,060	3,800	ND<500													1.69		
	4/29-30/04	113.32 ⁶	20.22	0.02	93.12	Not sample		ļ <u> </u>		1					ļļ	<u> </u>	ļ	ļ	Į		ļ	<u> </u>	Į	ļ			
	10/01-02/03	113.32 ⁶	23.07	0.03	90.27	Not sample		<u> </u>																			
	06/30-07/01/03	113.32 ⁶	21.41	0.03	91.93	Not sample		•																			
		1				· ·		•																			
	4/23-24/03	113.32 ⁶	20.91	0.03	92.43	Not sample																					
	01/21/03	113.32 ⁶	21.74	0.03	91.60	Not sample																					
	10/17-18/02	113.32 ⁶	20.69	0.05	92.67	Not sample							Т		1		1	1	1				1	1	1	1	
	07/24/02	113.32 ⁶	19.76	0.00	93.56	31,000	8,900	1,600	820	4,200	29,000	ND<10,000													5.1		
	01/1997	113.38 ⁶				54,000	7,290	12,400	2,340	19,800										ND<1,000	ND<1,000				61.9		
	10/1995	113.38 ⁶				62,000	12,000	13,800	920	5,690										1.6	2.3	2.9			33.3		
	07/07/93	113.38 ⁶	22.30	1.60	92.36	Not sample	d due to th	e presence	of LNAPL																		
	03/26-28/91	113.38 ⁶	21.22	0.67	92.70		25,000	29,000	2,500	19,000																	
	09/1990	113.38 ⁶	21.95	0.81	92.08	Not sample	d due to th	e presence	of LNAPL																		
	11/03/86	113.71 ⁶	24.29	2.26	91.23	Not sample	d due to th	e presence	of LNAPL																		
MW9 Scre	ened Interval 14-2				1			-																			
	11/13/18	147.18	21.17	0.00	126.01	ND<100	ND<1	ND<1	ND<1	ND<3	440 x	ND<250	140	ND<250	ND<0.4	ND	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND				
	08/15/17	147.18	19.63	0.00	127.55						1,500 x	490 x															
	04/06/17	147.18	17.93	0.00	129.25	480	ND<1	2.2	1.8	3.4										ND<1	ND<1	ND<1	ND				
	11/11-13/13	147.18	20.21	0.00	126.97	180	ND<0.5	ND<0.5	ND<0.5	ND<0.5	400	ND<71															
	05/20-22/13	147.18	18.19	0.00	128.99	240	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1,400	ND<68															
	11/12-14/12	147.18	20.09	0.00	127.09	190	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2,700	150															
MW9	05/07-08/12	147.18	18.88	0.00	128.30	230	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1,500	ND<67															
	05/10-12/11	147.18	18.68	0.00	128.50	160	ND<0.5	ND<0.5	ND<0.5	ND<0.5		260															
	01/17-20/11	147.18	18.65	0.00	128.53	280	ND<0.5	ND<0.5	ND<0.5	ND<0.5	6,400	1,400															
	04/19-22/10 10/12-15/09	147.18 147.18	19.04 20.67	0.00	128.14 126.51	130	1 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	1,200 960	190 ND<66															
	04/13-16/09	147.18	24.60	0.00	120.51	83 160	0.7	ND<0.5	ND<0.5	ND<0.5	1,100	69															
	11/10/08	147.18	21.29	0.00	125.89	130	0.5	ND<0.5	ND<0.5	ND<0.5	2,000	97															
	12/04-05/07	147.18	23.15	0.00	124.03	ND<50.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2,200	280															
	<u> </u>	•			<u> </u>	<u> </u>																	Analyte				Analyte
	MTCA Metho	od A Cleanup Le	evels for Grour	nd Water		800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	0.1	20	0.01	5	5	5	NVE	Specific	15	15	5	Specific
А	pplicable or Relev	ant and Appro	priate Require	ments (ARARs))2		5	1,000	700	10,000								0.05	5	5	5	70	Analyte Specific	15	15	10	Analyte Specific

Table 1, Page 2 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

•	1	NO. 2017-015H	Depth to					В	ГЕХ		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH													
Sample Number	Sample Date	TOC Elevation (ft)	Water Pelew	LNAPL Thickness (ft)	Groundwater Elevation (ft)	Gasoline TPH	В	Т	E	х	without	silica gel	with sil		Naph.	cPAHs	МТВЕ	EDB	EDC	PCE	TCE	cis-1,2- DCE	Other VOCs ⁷	Total Pb	Dissolved Pb	Dissolved As	Other Metals
	08/09/06	147.18	22.80	0.00	124.38	450	66	1.9	0.8	47	2,700	ND<540															
	04/18-21/05	147.18	20.59	0.00	126.59	480	1.4	ND<1.0	5.7	3.1	14,000	ND<630															
	01/24-31/05	147.18	20.66	0.00	126.52	730	1.7	ND<1.0	2.7	ND<6.0	140,000	ND<5,300															
	7/15-16/04	147.18 147.18	21.22 20.71	0.00	125.96 126.47	300 9,540	1.4 3.84	0.5 10.4	1.9 25.9	ND<3.0 31.6	3,900 2,540	420 ND<500													2.54		
	4/29-30/04	147.18	20.71	0.00	126.47	1,200	2	1.2	10	7.8	92,000	ND<5,000													4.8		
	1/21-23/04	147.18	20.36	0.00	126.82	2,300	7.2	2.4	45	19	100,000	ND<5,000													5.5		
	10/1-02/03	147.18	21.26	0.00	125.92	3,500	110	30	100	ND<100	33,000	ND<5,000													3.9		
	4/23-24/03	147.18	20.04	0.00	127.14	6,760	388	15.9	277	105	3,680	ND<500													1.31		
MW9	10/17-18/02	147.18	20.88	0.00	126.30	6,380	493	13.0	230	107	43,600	671 ⁴													2.66		
	06/14/00	147.18				4,740	786	26.0	274	156	6,070	ND<500												7.86	1.59		
	12/15/99	147.18				4,460	831	22.4	274	138	8,510	ND<500												15	1.03		
	11/1997	147.18				5,000	2,010	80	334	400										ND<1	ND<1	ND<1		3.3			
	07/1997	147.18				2,200 J	2,680	127	460	620 J										ND<200	ND<200	ND<200		8.6 j			
	04/1997	147.18				9,100	2,980	173	413	674										ND<1	ND<1	ND<1		6.8			
	01/01/97	147.18				4,400	2,600	53	310	285														4.6 P			
	10/01/95	147.18	20.44	0.17	04.10	3,400	3,520	70 J	ND<200	312 J										ND 4250	ND 4250				1.02		
MW13 Scr	03/26-28/91 reened Interval 10	114.65 ⁶	20.44	0.17	94.18		1,600	2,900	250	3,100										ND<250	ND<250				1.03		
IVIVVIS SCI	11/13/18	147.88			Insufficient vo	lume of wate	er for samr	nling																			
	08/15/17	147.88	18.04		129.84						60 x	ND<250															
MW13	04/06/17	147.88	16.26		131.62	ND<100	ND<1	ND<1	ND<1	ND<3										ND<1	ND<1	ND<1	ND				
	2002-2013	147.88		0.00	Not Sampled		<u>!</u>		<u>!</u>		<u>!</u>				<u> </u>		<u> </u>		ļ	<u> </u>				<u>!</u>	<u>!</u>		<u> </u>
RW4 Scree	ened Interval 17-3	2 feet bgs, 8-Inc	h Diameter Ca	sing																							
	10/18/06	110.82 ⁶	23.64	0.00	87.18																						
RW4	07/15-16/04	110.82 ⁶	18.20	0.22	92.84	Not sample	d due to th	e presence	of LNAPL																		
(Product	01/21/03	110.82 ⁶	17.88	0.00	92.94	689	0.991	ND<0.500	2.37	7.03	2,830	ND<500													ND<1.00		
Recovery	10/17-18/02	110.82 ⁶	19.29	0.00	91.53	3,160	59.8	2.50	40.4	15.6	8,930	939													1.23		
Well)	07/24/02	110.82 ⁶	18.30	0.00	92.52	990	62	1.3	32	7.0	15,000	ND<2,000			5.0		ND<2		ND<2	ND<1	ND<1	ND<1			3.3	6.1	
	07/07/93	110.82 ⁶	21.65	0.00	89.17	14,000	6,500	2,800	370	2,000														45			
DPE5 Scre	ened Interval 14-2		ch Diameter Ca	asing								l I	ı.						ı								
	11/21/18	113.81 ⁶	17.28	0.00	96.53	ND<100	1.6	ND<1	ND<1	ND<3	1,300 x	420 x	99	ND<250	ND<1		ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND		1.37		
	04/06/17	113.81 ⁶	13.37	0.00	100.44															ND<1	ND<1	ND<1	ND				
	11/11-13/13	113.81 ⁶	16.68	0.00	97.14	5,400	44	20	690	290	150	ND<72															
	05/20-22/13	113.81 ⁶	16.65	0.00	97.17	5,700	41	22	620	550	120	ND<67															
	11/12-14/12	113.81 ⁶	15.35	0.00	98.47	580	5	2	56	46	260	ND<72															
	05/07-08/12	113.81 ⁶	14.08	0.00	99.74	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<29	ND<67															
	05/10-12/11	113.81 ⁶	16.16	0.00	97.66	520	18	4	30	63	1,900	270															
DPE 5 (Dual Phase	01/17-20/11	113.81 ⁶	13.99	0.00	99.83	ND<50	ND<0.5	ND<0.5	2	1	540	230															
Extraction	04/19-22/10	113.81 ⁶	15.92	0.00	97.90	78	2	ND<0.5	ND<0.5	0.5	530	95															
Well)	10/12-15/09	113.81 ⁶	18.60	0.00	95.22	490	22	2	19	10	25,000	ND<1,400															
	04/13-16/09	113.81 113.81 ⁶	14.63	0.00	99.19	110	2	ND<0.5	1	3	690	83															
			22.45		99.19	460		7	4	17		+															
	11/03/08	113.82 ⁶		0.00			77	-	-		12,000	ND<3,500															
	04/29-29/08³	113.82 ⁶	18.93	0.00	94.89	ND<250	32	4	3	22	11,000	ND<2,500															
	12/04-06/07	113.81 ⁶	23.72	0.00	90.09	180	0.6	0.5	0.6	4.3	4,000	ND<470															
1	04/17-19/07	113.81 ⁶	23.78	0.00	90.03	200	17	2.6	1.6	11	4,600	ND<470															
	04/17/06	113.81 ⁶				19,000	1,100	1,400	160	2,900	4,800	ND<190															
	MTCA Metho	od A Cleanup Le	evels for Groun	d Water		800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	0.1	20	0.01	5	5	5	NVE	Analyte Specific	15	15	5	Analyte Specific
	Applicable or Relev	ant and Approp	oriate Requirer	ments (ARARs))2		5	1,000	700	10,000								0.05	5	5	5	70	Analyte Specific	15	15	10	Analyte Specific

Table 1, Page 3 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

The Kiley Gro	up, Inc. Project N	No. 2017-015H	1 .	1	ı	1	ı		FEV		la	an1		a			1 1		I	1	I	1	I	1		I	
Sample	Sample	TOC Elevation	Depth to Water Below	LNAPL	Groundwater	Gasoline		B1	TEX T		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Naph.	cPAHs	MTBE	EDB	EDC	PCE	TCE	cis-1,2-	Other	Total Pb	Dissolved	Dissolved	Other
Number	Date	(ft)	Well TOC (ft)	Thickness (ft)	Elevation (ft)	TPH	В	Т	E	х	without	: silica gel	with si	ilica gel	wapii.	CPARS	IVITOE	EDD	בטנ	PCE	I CE	DCE	VOCs ⁷	TOTAL PD	Pb	As	Metals
DPE 5	01/23/06	113.81 ⁶	16.75	0.05	96.61	Not sample	d due to th	e presence	of LNAPL			, ,		1					1	1	1		1	T	1	1	I
	11/28/05					36,000				<u> </u>	5,300	ND<1,000					ND<0.5		ND<0.5	ND<0.8	ND<1	ND<0.8					
DPE6 Scree	ened Interval 15.5				T	T	T	T	T	I				T			I I		T	T	l	T	l	T		T	<u> </u>
	11/13/18	113.32 ⁶	20.93	0.00	92.39	ND<100	ND<1	1.1	ND<1	ND<3	3,300 x	610 x	180	ND<250	ND<1		ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND		ND<2		
	04/06/17	113.32 ⁶	17.75	0.00	95.57															ND<1	ND<1	ND<1	ND				
	11/11-13/13	114.14	20.04	0.00	94.10	140	7	ND<0.5	ND<0.5	ND<0.5	1,100	ND<70															
	05/20-22/13	114.146	18.62	0.00	95.52	570	3	2	2	8	170	ND<71															
	11/12-14/12	114.146	19.90	0.00	94.24	220	4	ND<0.5	ND<0.5	1	94	ND<71															
	05/07-08/12	114.14 ⁶	18.80	0.00	95.43	360	9	1	1	4	1,000	ND<66															
DDE C	05/10-12/11	114.14 ⁶	18.44	0.00	95.70	510	16	2	5	14	8,300	1,300															
DPE 6 (Dual Phase	01/17-20/11	114.14 ⁶	18.61	0.00	95.53	520	42	2	4	6	16,000	27,000															
Extraction	04/19-22/10	114.14 ⁶	19.02	0.00	95.12	680	44	3	13	13	10,000	2,000															
Well)	10/12-15/09	114.14 ⁶	20.51	0.00	93.63	490	18	3	8	9	3,600	ND<680															
	04/13-16/09	114.14 ⁶	20.60	0.00	93.54	900	100	6	16	24	16,000	880															
	11/04/08	114.14 ⁶	21.30	0.00	92.84	870	16	12	7	63	11,000	ND<1,300															
	04/28-29/08 ³	114.14 ⁶	22.81	0.00	91.33	460	1	6	2	32	8,500	ND<480															
	12/04-05/07	113.32 ⁶	28.51	0.00	84.81	160	ND<2.0	0.6	ND<2.0	3.8	1,100	ND<190															
	04/17/07	113.32 ⁶	29.83	0.00	83.49	5,400	27	39	35	350	110,000	ND<9,300															
	04/17/06	113.32 ⁶		0.00		38,000	3,000	5,400	690	4,900																	
	11/28/05					280					170	ND<100					ND<0.5		ND<0.5	ND<0.8	ND<1	8					
DPE7 Scree	ened Interval 11-2	9 feet bgs, 4-In	ch Diameter C	asing		•	•	•	•		•			•					•	•	•		•	•	•	•	•
	11/13/18	113.15 ⁶	20.52	0.00	92.63	700	3.3	8.1	2.3	30	4,100 x	850 x	430 x	ND<250	1.3	ND									ND<2		
	04/06/17	113.15 ⁶	17.28	0.00	95.87															ND<1	ND<1	ND<1	ND				
DPE 7	11/03/08	113.15 ⁶	20.96	0.01	92.18	Not sample	d due to th	e presence	of LNAPL	1		, , , , , , , , , , , , , , , , , , ,		1		1			1	1	ı	1	ı	Т	1	1	T
(Dual Phase	04/28-29/08	113.15 ⁶	22.26	0.00	90.87	ND<250	7	2	2	6	6,300	ND<980															
Extraction	12/04-05/07	113.15 ⁶	27.52	0.00	85.63	760	44	1.7	28	15	120,000	ND<9,900															
Well)	04/17/07	113.15 ⁶	27.00	0.00	86.15	3,800	78	40	97	180	22,000	ND<4,700															
	04/17/06	113.15 ⁶				29,000	4,500	1,800	470	4,200	8,600	ND<500															
	11/28/05					17,000					6,200	ND<1,000					ND<0.5		ND<0.5	ND<0.8	ND<1	ND<0.8					
VP9 Scree	ned Interval 4.5-14	4.5 feet bgs, 2-I	1	1	1		1	1	1		1			1		1			1	1	ı	1	ı	Т	1	1	T
	11/13/18	145.22	9.54	0.00	135.68	ND<100	ND<1	ND<1	ND<1	ND<3	ND<250	ND<250															
	01/24-31/05	145.22	10.30	0.00	134.92	100	ND<0.5		ND<0.5		ND<250	ND<250															
	10/28-11/01/04 7/15-16/04	145.22 145.22	9.82 11.15	0.00	135.40 134.07	610 1,270	ND<0.5	ND<0.5 0.699	ND<0.5 2.79	ND<1.5	ND<800 259	ND<1,000 ND<500													ND<1.00		
VP9	4/29-30/04	145.22	9.58	0.00	135.64	750	0.8	ND<0.500		ND<1.5	1,500	ND<1,000													ND<1.00 ND<0.99		
(Soil Vapor	10/01-02/03	145.22	11.72	0.00	133.50	1,600	5.3	1.4	2.3	ND<1.3	5,400	1,300															
Extraction	6/30-07/01/03	145.22	9.74	0.00	135.48	681	1.22	0.735	5.07	3.28	ND<250	ND<500													ND<1.00		
Well)	4/23-24/03	145.22	8.28	0.00	136.94	ND<50.0		ND<0.500		ND<1.00	ND<250	ND<500													ND<1.00		
	10/17-18/02	145.22	11.90	0.00	133.32	1,910	11.3	2.62	8.86	14.7	13,200	786 ⁴													ND<1.00		
	06/14/00	145.22				474	4.97	ND<1.30	55.6	4.48	1,420	ND<1,130												15.2	ND<1.00		
	12/15/99	145.22				118	ND<0.500	ND<0.500	ND<0.500	ND<1.00	ND<250	ND<500												5.72	ND<1.00		
									0	ff-Property	Wells Situ	ated in Close	Proximity t	o Property B	oundary												
SS1-W1 Scre	ened Interval 10-2	20 feet bgs, 1.5	Inch Diameter	Casing	_																						
SS1-W1	11/13/18	148.83	11.92		136.91	ND<100	ND<1	ND<1	ND<1	ND<3	ND<50	ND<250															
JJ1 W1	12/06/17	148.83	10.75		138.08	ND<100	ND<1.0	ND<2.0	ND<1.0	ND<3.0	ND<200	ND<400															
	MTCA Metho	od A Cleanup Le	evels for Grour	nd Water		800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	0.1	20	0.01	5	5	5	NVE	Analyte Specific	15	15	5	Analyte Specific
Α	pplicable or Relev	ant and Appro	priate Require	ments (ARARs))2		5	1,000	700	10,000								0.05	5	5	5	70	Analyte Specific	15	15	10	Analyte Specific

Table 1, Page 4 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

The Riley Gro	up, Inc. Project N	lo. 2017-015H																									
Sample	Sample	TOC Elevation	Depth to	LNAPL	Groundwater	Gasoline		B	ΓEX		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH								cis-1,2-	Other		Dissolved	Dissolved	Other
Number	Date	(ft)	Water Below		Elevation (ft)		В	т	E	х	without	silica gel	with si	lica gel	Naph.	cPAHs	MTBE	EDB	EDC	PCE	TCE	DCE	VOCs ⁷	Total Pb	Pb	As	Metals
			Well TOC (ft)																								
SS1-W2 Scre	ened Interval 12-2				T	T			1		1	T	1	ı	1	ı				1			1		1		
SS1-W2	11/13/18	146.93	14.54		132.39	ND<100	ND<1	ND<1	ND<1	ND<3	ND<50	ND<250															
MW10 Sc	12/06/17 reened Interval 10-	146.93	13.65		133.28	ND<100	ND<1.0	ND<2.0	ND<1.0	ND<3.0	ND<200	ND<400															
1010010 30	11/13/18	148.16	13.33	0.00	134.83	ND<100	ND<1	ND<1	ND<1	ND<3	ND<50	ND<250															
	04/06/17	148.16	11.43	0.00	136.73	ND<100	ND<1	ND<1	ND<1	ND<3										ND<1	ND<1	ND<1	ND				
	11/11-13/13	148.16	12.54	0.00	135.62	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<31	ND<73															
	05/20-22/13	148.16	12.35	0.00	135.81	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<29	ND<68															
	11/12-14/12	148.16	12.28	0.00	135.88	180	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<30	230															
	05/07-08/12	148.16	11.92	0.00	136.24	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<30	ND<70															
	05/10-12/11	148.16	12.02	0.00	136.14	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<30	ND<69															
	01/17-20/11	148.16	10.62	0.00	137.54	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<59 ¹⁹	250 ⁵															
	04/19-22/10	148.16	11.93	0.00	136.23	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<31	ND<73															
	10/12-15/09	148.16	12.23	0.00	135.93	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<29	ND<67															
	04/13-16/09	148.16	12.11	0.00	136.05	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<29	ND<67															
	11/10/08	148.16	12.66	0.00	135.50	ND<50	0.7	ND<0.5	ND<0.5	ND<0.5	ND<30	ND<69														1	
	04/28-05/01/08 12/04-05/07	148.16 148.16	12.71 ⁵	0.00	135.45 133.83	ND<50 150	0.8 2.0	ND<0.5 ND<2.0	ND<0.5 0.9	ND<0.5 ND<5.0	ND<77 ND<78	ND<97 ND<98															
	04/17-19/07	148.16	13.05	0.00	135.83	100	1.4	ND<2.0	ND<0.5	ND<5.0	ND<78 ND<75	ND<98															
	01/24-31/05	148.16	12.36	0.00	135.80	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<250	ND<250															
	10/21-11/01/04	148.16	13.31	0.00	134.85	210	4.1	ND<0.5	1.2	2.1	ND<82	ND<00															
MW10	07/15-16/04	148.16	13.44	0.00	134.72	362	2.75	ND<0.500	0.549	3.45	ND<250	ND<500													ND<1.00		
	04/29-30/04	148.16	13.23	0.00	134.93	ND<50	1.5	ND<0.5	ND<0.5	ND<1.5	ND<250	ND<250													ND<0.99		
	01/21-23/04	148.16	11.99	0.00	136.17	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<250	ND<250													ND<1.2		
	10/01-02/03	148.16	13.68	0.00	134.48	190	2.6	ND<0.5	0.5	ND<3.0	ND<250	ND<250													ND<1.2		
	06/30-07/01/03	148.16	12.91	0.00	135.25	255	2.01	ND<0.500		2.53	ND<250	ND<500													ND<1.00		
	04/23-24/03 01/21/03	148.16 148.16	11.76 12.46	0.00	136.40 135.70	ND<50.0 416	ND<0.500 3.44	ND<0.500 0.55	0.519	ND<1.00	ND<250	ND<500													ND<1.00 ND<1.00		
	10/17-18/02	148.16	13.59	0.00	134.57	490	3.42	ND<0.500		5.00	667	ND<500													ND<1.00		
	7/24/02³	148.16	13.14	0.00	135.02	240	2.5	ND<0.500		ND<1.5	320	600			ND<2		ND<2		ND<2	ND<1	ND<1	15			1.3	4.1	
	06/14/00	148.16				99.2	1.56	ND	ND	ND	ND<250	ND<500												ND	ND		
	12/15/99	148.16				618	7.02	ND<0.910	ND<0.850	ND<4.22	353	ND<500												ND<1	ND<1.00		
	11/1997	148.16				1,000	4.2	2	4.8	2.2 J														4.9			
	07/1997	148.16				1,100	10	2.1	2.4	4.34 J														1.2 j			
	04/1997	148.16				420	5.1	1	ND<1	2.0 J														ND<1			
	01/1997	148.16				180	1.5	ND<1	ND<1	ND<2										ND 41	0.7	ND 41		ND 41			
	10/1995	148.16 115.75 ⁶	13.81	0.00	101.94	780	1.8	2.9 ND<5.0	0.82 J	5.6 24										ND<1	0.7	ND<1		ND<1			
	07/07/93		13.81	0.00	101.94	380	13		11 ND 45									ND <0.01	ND < E	ND<5.0	ND < F 0				12:	21	DCI
MM24 So	03/26-28/91 ³ reened Interval 4.2	115.75 ⁶			102.61		ND<5	ND<5	ND<5	ND<5								ND<0.01	ל>טאו	ND<5.0	ND<5.0				12 j	21	BSL
MW24 Sci	01/24-31/05	107.95 ⁶	5.58	0.00	102.37	ND<50	ND<0.5	0.6	ND<0.5	1.6	ND<250	ND<250															
MW24	<u> </u>		3.30				-						†				ND<0.5				ND<1		†				
	10/26-27/04 ened Interval Unkn	107.95 ⁶	ameter Casina			500					ND<800	ND<1,000					0.5טאטאו	ND<0.5	0.5עויו	ND<0.8	IND<1	ND<0.8					
RVVZ SCIE	1			0.00	92.27	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<31	ND<73															
	11/11-13/13	106.63 ⁶	14.36			1	2		-		+																
RW2	5/20-22/13	106.63 ⁶	12.57	0.00	94.06	ND<50	1	ND<0.5	ND<0.5	ND<0.5	ND<30	ND<69															
(Product	11/12-14/12	106.63 ⁶	13.50	0.00	93.13	87 NB :50	5	ND<0.5	ND<0.5	0.9	ND<29	ND<67															
Recovery Well)	05/07-08/12	106.63 ⁶	11.40	0.00	95.23	ND<50	ND<0.5	ND<0.5	2	3	ND<30	ND<69															
	05/10-12/11	106.63 ⁶	11.96	0.00	94.67	ND<50	ND<0.5		ND<0.5	ND<0.5	230	91															
	01/17-20/11	106.63 ⁶	9.70	0.00	96.93	150	ND<0.5	ND<0.5	8	16	270	190															
	MTCA Metho	od A Cleanup Le	evels for Groun	d Water		800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	0.1	20	0.01	5	5	5	NVE	Analyte Specific	15	15	5	Analyte Specific
Į.	Applicable or Relev	ant and Approp	oriate Requiren	nents (ARARs	s) ²		5	1,000	700	10,000								0.05	5	5	5	70	Analyte Specific	15	15	10	Analyte Specific

Table 1, Page 5 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

The Riley Group, Inc. Project No. 2017-015H

Camania	Cample	TOC Flavortian	Depth to	LNIADI	Cua datau	Casalina		В	ГЕХ		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH								ain 1 3	Othor		Dissalus	Discolused	Other
Sample Number	Sample Date	TOC Elevation (ft)	Water Below Well TOC (ft)	LNAPL Thickness (ft)	Groundwater Elevation (ft)	Gasoline TPH	В	Т	E	х	without	silica gel	with si	lica gel	Naph.	cPAHs	MTBE	EDB	EDC	PCE	TCE	cis-1,2- DCE	Other VOCs ⁷	Total Pb	Dissolved Pb	Dissolved As	Other Metals
	04/19-22/10	106.63 ⁶	12.56	0.00	94.07	160	9	0.7	ND<0.5	ND<0.5	430	240															
	10/12-15/09	106.63 ⁶	14.75	0.00	91.88	1,100	35	4	7	11	4,300	ND<680															
	4/13-16/09	106.63 ⁶	13.80	0.00	92.83	340	21	0.9	1	1	840	ND<65															
	11/04/08	106.63 ⁶	15.66	0.00	90.97	890	82	9	14	6	1,000	ND<66															
	04/28-29/08	106.63 ⁶	15.84	0.00	90.79	190	12	1	0.9	2	890	ND<95															
	12/04-06/07	106.63 ⁶	15.21	0.00	91.42	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	400	ND<100															
	04/17-18/07	106.63 ⁶	17.12	0.00	89.51	650	54	12	10	35	15,000	ND<1,900															
	04/18-21/05	106.63 ⁶	9.18	0.00	97.45	130	0.8	ND<0.5	2.3	6.1	260	ND<250															
	01/24-31/05	106.63 ⁶	11.57	0.00	95.06	94	ND<0.5	ND<0.5	ND<2.0	2.5	ND<250	ND<250															
	10/28-11/01/04	106.63 ⁶	14.68	0.00	91.95	26,000	410	63	470	950	280,000	ND<40,000															
RW2	07/15-16/04	106.63 ⁶	14.41	0.00	92.22	634	25.7	2.39	6.18	3.55	ND<250	ND<500													ND<1.00		
(Product	04/29-30/04	106.63 ⁶	13.31	0.00	93.32	81	11	0.9	2.0	1.9	270	ND<250													ND<0.99		
Recovery	01/21-23/04	106.63 ⁶	10.22	0.00	96.41	53	1.2	0.7	1.3	8.9	ND<250	ND<250													ND<1.2		
Well)	10/01-02/03	106.63 ⁶	15.05	0.00	91.58	2,300	75	7.3	29	33	1,400	ND<250													4.9		
	06/30-07/01/03	106.63 ⁶	13.72	0.00	92.91	2,380	53.5	8.72	39.8	43.2	505	ND<500													1.43		
	04/23-24/03	106.63 ⁶	10.30	0.00	96.33	55.7	ND<0.500	ND<0.500	0.642	2.64	ND<250	ND<500													ND<1.00		
	01/21/03	106.63 ⁶	10.61	0.00	96.02	126	33.5	0.859	1.28	4.11	ND<250	ND<500													ND<1.00		
	10/17-18/02	106.63 ⁶	14.44	0.00	92.19	1,380	90.5	8.05	29.2	31.5	988	ND<500													2.23		
	11/1997	104.54 ⁶				4,400	3,140	1,200	338	2,265										ND<1	ND<1	ND<1			15.4		
	07/1997	104.54 ⁶				24,000	4,230	2,490	398	2,732										ND<25	ND<25	ND<50			47.2		
	04/1997	104.54 ⁶				11,000	189	243	99	743										ND<1	ND<1	ND<1			18.2		
	01/1997	104.54 ⁶				390	31	14	6	49										ND<1	ND<1	ND<1			11		
	3/26-28/91	104.54 ⁶	10.21	0.08	94.39		19,000	46,000	2,500	120,000																	
	09/1990	104.54 ⁶	12.72	0.04	91.85	Not sample	d due to th	e presence	of LNAPL	•	•		•		•		•	•		•	•	•	•	•	•		
										•	Gro	undwater G	rab Samples											•			
P1-W	05/22/17		13.00			7,100	ND<5	12	5.4	27	110,000ve	3,800 x															
P2-W	05/22/17		14.00			ND<100	ND<1	ND<1	ND<1	ND<3	ND<60	ND<300															
P3-W	05/22/17		13.00			1,200	ND<5	9.7	8.2	19	1,400	ND<300	 ater Grab S														
SS1-P1	12/02/17					ND<100	ND<1.0	ND<2.0	ND<1.0	ND<2.0	ND<200	ND<400															
SS1-P2	12/02/17					ND<100	ND<1.0	ND<2.0	ND<1.0	ND<2.0	ND<200	ND<400															
		od A Cleanup Le	evels for Groun	d Water		800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	0.1	20	0.01	5	5	5	NVE	Analyte Specific	15	15	5	Analyte Specific
	Applicable or Relev	ant and Approp	oriate Requiren	nents (ARARs)2		5	1,000	700	10,000								0.05	5	5	5	70	Analyte Specific	15	15	10	Analyte Specific

Notes:

Samples collected in 2017 by RGI field staff using a peristaltic pump under low-flow conditions. Groundwater samples collected prior to 2017 were obtained by others.

Unless otherwise noted, all analytical results are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

TOC = Top of casing

Gasoline-range TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Gx.

Diesel- and Oil-range TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Dx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B.

Naph. (naphthalene), MTBE (methyl tert-butyl ethere), EDB (1,2-dibromoethane), EDC (1,2-dichloroethane), PCE (tetrachloroethene), cis-1,2-DCE (cis-1,2-dichloroethene), and other VOCs (volatile organic compounds) determined using EPA Test Method 8260. LNAPL = Light non-aqueous phase liquid.

Pb (lead), As (arsenic) and other metals determined using EPA 6000/7000 Series Methods.

ve = The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

j = The analyte was positively identified. The reported value is an estimate.

P = The analyte was detected above the instrument detection limit, but below the established minimum quantitation limit.

ND = Not detected above the noted analytical detection limit.

Table 1, Page 6 of 6. Summary of Groundwater Analytical Laboratory Results for the Property

Roystone on Queen Anne

631 Queen Anne Avenue North, Seattle, Washington 98109

The Riley Group, Inc. Project No. 2017-015H

Notes continued:

NVE = No value established

---- = Not analyzed or not applicable.

Silica gel = Samle extract passed through a silica gel column prior to analysis. The silica gel column removes naturally occuring biogenic material that can interfere with TPH results when present.

Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Cleanup Levels for Ground Water (WAC 173-340-900, Table 720-1). Federal and State ARARs obtained from Ecology's Cleanup Level and Risk Calculation (CLARC) database.

ARAR = Applicable or Relevant and Appropriate Requirement. ARARs for the Property are the Federal and State Primary Maximum Contaminant Levels (MCLs) as established under the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations.

¹ The higher cleanup level is applicable if no benzene is detected in groundwater.

² No MTCA Method A Cleanup Level has been established. Therefore, the Federal and State ARAR is referenced.

Indicates a duplicate sample was collected. The highest concentration for each analyte was reported.

Laboratory report indicates heavy range organics are due to hydrocarbons primarily in the diesel range.

⁵ The reporting limits were raised due to interference in the sample matrix.

⁶ Top of casing elevation and groundwater elevation based on arbitrary datum. Not actual elevations.

Only VOCs not factored into the MTCA Method A TPH cleanup levels are reported.

Top of casing elevations for wells MW6, MW9, MW13, VP9, SSI-W1, SSI-W2, and MW10 were surveyed using actual elevation data in December 2018. Reports prepared prior to this time present top of casing elevations based on arbitrary datum.

Bold results indicated concentrations above laboratory detection limits or LNAPL detected in well.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable groundwater screening level.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 28, 2018

Tait Russell, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Russell:

Included are the results from the testing of material submitted on November 15, 2018 from the Roystone 2017-015H, F&BI 811268 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures c: Jerry Sawetz TRG1128R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 15, 2018 by Friedman & Bruya, Inc. from the The Riley Group Roystone 2017-015H, F&BI 811268 project. Samples were logged in under the laboratory ID's listed below.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

Date Extracted: 11/16/18 Date Analyzed: 11/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
DPE6 811268-02	<1	1.1	<1	<3	<100	85
DPE7 811268-03	3.3	8.1	2.3	30	700	88
SS1-W1 811268-04	<1	<1	<1	<3	<100	85
SS1-W2 811268-05	<1	<1	<1	<3	<100	85
VP9 811268-06	<1	<1	<1	<3	<100	85
MW6 811268-07	<1	<1	<1	<3	110	84
MW9 811268-08	<1	<1	<1	<3	<100	85
MW10 811268-09	<1	<1	<1	<3	<100	85
Method Blank 08-2516 MB	<1	<1	<1	<3	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

Date Extracted: 11/16/18 Date Analyzed: 11/16/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
DPE6 811268-02	3,300 x	610 x	98
DPE7 811268-03	4,100 x	850 x	107
SS1-W1 811268-04	< 50	<250	102
SS1-W2 811268-05	< 50	<250	96
VP9 811268-06	< 50	<250	108
MW6 811268-07	1,000 x	<250	110
MW9 811268-08	440 x	<250	105
MW10 811268-09	<50	<250	98
Method Blank 08-2621 MB	< 50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: DPE6 Client: The Riley Group

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268

 Date Extracted:
 11/21/18
 Lab ID:
 811268-02 x2

 Date Analyzed:
 11/21/18
 Data File:
 811268-02 x2.062

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <2

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: DPE7 Client: The Riley Group

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268

 Date Extracted:
 11/21/18
 Lab ID:
 811268-03 x2

 Date Analyzed:
 11/21/18
 Data File:
 811268-03 x2.063

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <2

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group

Date Received: NA Project: Roystone 2017-015H, F&BI 811268

Date Extracted: 11/21/18 Lab ID: I8-803 mb
Date Analyzed: 11/21/18 Data File: I8-803 mb.046
Motorius Woton Instrument: ICPMS2

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	DPE7	Client:	The Riley Group
-------------------	------	---------	-----------------

 Date Received:
 11/15/18
 Project:
 Roystone 2017-015H, F&BI 811269

 Date Extracted:
 11/20/18
 Lab ID:
 811269-01 1/4

Date Extracted. 11/20/16 Lab ID: 811209-01 1/
Date Analyzed: 11/20/18 Data File: 112007.D

Matrix: Water Instrument: GCMS6
Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 107 31 160 Benzo(a)anthracene-d12 114 25 165

Concentration Compounds: ug/L (ppb) Naphthalene 1.3 2-Methylnaphthalene < 0.8 1-Methylnaphthalene < 0.8 Benz(a)anthracene < 0.08 Chrysene < 0.08 Benzo(a)pyrene < 0.08 Benzo(b)fluoranthene < 0.08 Benzo(k)fluoranthene < 0.08 Indeno(1,2,3-cd)pyrene < 0.08 Dibenz(a,h)anthracene < 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW6	Client:	The Riley Group
-------------------	-----	---------	-----------------

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268 Lab ID: Date Extracted: 11/16/18 811268-07 1/4 Date Analyzed: 11/16/18 Data File: 111614.D Instrument: Matrix: Water GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 103 31 160 Benzo(a)anthracene-d12 93 25 165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.8 2-Methylnaphthalene < 0.8 1-Methylnaphthalene < 0.8 Benz(a)anthracene < 0.08 Chrysene < 0.08 Benzo(a)pyrene < 0.08 Benzo(b)fluoranthene < 0.08 Benzo(k)fluoranthene < 0.08 Indeno(1,2,3-cd)pyrene < 0.08 Dibenz(a,h)anthracene < 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	MW9	Client:	The Riley Group)

Date Received: Project: Roystone 2017-015H, F&BI 811268 11/15/18 Lab ID: Date Extracted: 11/16/18 811268-08 1/2 Date Analyzed: 11/16/18 Data File: 111615.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 99 31 160 Benzo(a)anthracene-d12 91 25 165

Concentration Compounds: ug/L (ppb) < 0.4 Naphthalene 2-Methylnaphthalene < 0.4 1-Methylnaphthalene < 0.4 Benz(a)anthracene < 0.04 Chrysene < 0.04 Benzo(a)pyrene < 0.04 Benzo(b)fluoranthene < 0.04 Benzo(k)fluoranthene < 0.04 Indeno(1,2,3-cd)pyrene < 0.04 Dibenz(a,h)anthracene < 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	The Riley Group
Date Received:	Not Applicable	Project:	Roystone 2017-01

Not Applicable Project: Roystone 2017-015H, F&BI 811268 11/16/18 Lab ID: Date Extracted: 08-2620 mb Date Analyzed: 11/16/18 Data File: 111606.D Matrix: Water Instrument: GCMS6 Units: ug/L (ppb) Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 106 31 160 Benzo(a)anthracene-d12 105 25 165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	The Riley Group
-------------------	--------------	---------	-----------------

Date Received: Not Applicable Project: Roystone 2017-015H, F&BI 811269
Date Extracted: 11/20/18 Lab ID: 08-2645 mb

Date Extracted:11/20/18Lab ID:08-2645 mlDate Analyzed:11/20/18Data File:112006.DMatrix:WaterInstrument:GCMS6Units:ug/L (ppb)Operator:VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	106	31	160
Benzo(a)anthracene-d12	113	25	165

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene < 0.02 Benzo(b)fluoranthene < 0.02 Benzo(k)fluoranthene < 0.02 Indeno(1,2,3-cd)pyrene < 0.02 Dibenz(a,h)anthracene < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: DPE6 Client: The Riley Group

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268

Lab ID: Date Extracted: 811268-02 11/15/18 Date Analyzed: 11/15/18 Data File: 111535.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW6 Client: The Riley Group

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268

Lab ID: Date Extracted: 811268-07 11/15/18 Date Analyzed: 11/15/18 Data File: 111536.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: MS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	1.6
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichlorœthane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	0.89	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW9 Client: The Riley Group

Date Received: 11/15/18 Project: Roystone 2017-015H, F&BI 811268

Lab ID: Date Extracted: 811268-08 11/15/18 Date Analyzed: 11/15/18 Data File: 111537.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: MS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	99	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichlorœthene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: The Riley Group

Date Received: Not Applicable Project: Roystone 2017-015H, F&BI 811268

Lab ID: Date Extracted: 11/15/18 08-2575 mb Date Analyzed: 11/15/18 Data File: 111511.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	105	63	127
4-Bromofluorobenzene	98	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 811265-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent			
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	105	65-118
Toluene	ug/L (ppb)	50	103	72-122
Ethylbenzene	ug/L (ppb)	50	107	73-126
Xylenes	ug/L (ppb)	150	97	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	103	95	79-144	8

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 811238-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	95	96	75-125	1

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Lead	ug/L (ppb)	10	102	80-120			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	1	91	91	67-116	0
ug/L (ppb)	1	96	95	63-122	1
ug/L (ppb)	1	94	93	65-122	1
ug/L (ppb)	1	94	95	60-118	1
ug/L (ppb)	1	96	99	66-125	3
ug/L (ppb)	1	99	102	55-135	3
ug/L (ppb)	1	99	96	62-125	3
ug/L (ppb)	1	95	97	58-127	2
ug/L (ppb)	1	98	102	36-142	4
ug/L (ppb)	1	90	96	37-133	6
	Units ug/L (ppb)	Units Level ug/L (ppb) 1 ug/L (ppb) 1	Reporting Spike Level Recovery LCS ug/L (ppb) 1 91 ug/L (ppb) 1 96 ug/L (ppb) 1 94 ug/L (ppb) 1 94 ug/L (ppb) 1 96 ug/L (ppb) 1 99 ug/L (ppb) 1 99 ug/L (ppb) 1 95 ug/L (ppb) 1 98	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 1 91 91 ug/L (ppb) 1 96 95 ug/L (ppb) 1 94 93 ug/L (ppb) 1 94 95 ug/L (ppb) 1 96 99 ug/L (ppb) 1 99 102 ug/L (ppb) 1 99 96 ug/L (ppb) 1 95 97 ug/L (ppb) 1 98 102	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 1 91 91 67-116 ug/L (ppb) 1 96 95 63-122 ug/L (ppb) 1 94 93 65-122 ug/L (ppb) 1 94 95 60-118 ug/L (ppb) 1 96 99 66-125 ug/L (ppb) 1 99 102 55-135 ug/L (ppb) 1 99 96 62-125 ug/L (ppb) 1 95 97 58-127 ug/L (ppb) 1 98 102 36-142

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	93	93	67-116	0
2-Methylnaphthalene	ug/L (ppb)	1	97	97	63-122	0
1-Methylnaphthalene	ug/L (ppb)	1	96	95	65-122	1
Benz(a)anthracene	ug/L (ppb)	1	94	94	60-118	0
Chrysene	ug/L (ppb)	1	94	96	66-125	2
Benzo(b)fluoranthene	ug/L (ppb)	1	105	102	55-135	3
Benzo(k)fluoranthene	ug/L (ppb)	1	103	98	62-125	5
Benzo(a)pyrene	ug/L (ppb)	1	96	96	58-127	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	83	93	36-142	11
Dibenz(a,h)anthracene	ug/L (ppb)	1	78	81	37-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 811234-01 (Matrix Spike)

Laboratory Code. 811234-01 (M	atrix Spike)			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	107	10-172
Chloromethane	ug/L (ppb)	50 50	<10	103	25-166
Vinyl chloride	ug/L (ppb)	50	17	107 b	36-166
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	117 118	47-169 46-160
Trichlorofluoromethane	ug/L (ppb)	50 50	<1	112	44-165
Acetone	ug/L (ppb)	250	<50	129	10-182
1,1-Dichloroethene	ug/L (ppb)	50	<1	124	60-136
Hexane	ug/L (ppb)	50	<1	89	52-150
Methylene chloride	ug/L (ppb)	50	< 5	108	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	107	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	114	72-129
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	101 105	70-128 36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50 50	8.8	101	71-127
Chloroform	ug/L (ppb)	50	<1	100	65-132
2-Butanone (MEK)	ug/L (ppb)	250	<10	103	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	98	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	107	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	98	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	107	56-152
Benzene	ug/L (ppb)	50 50	< 0.35	97	76-125
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	100 101	66-135 78-125
Bromodichloromethane	ug/L (ppb)	50	<1	101	61-150
Dibromomethane	ug/L (ppb)	50	<1	102	66-141
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	104	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	104	72-132
Toluene	ug/L (ppb)	50	<1	95	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	103	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	103	68-131
2-Hexanone 1,3-Dichloropropane	ug/L (ppb)	250 50	<10 <1	103 100	10-185 71-128
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	<1	100	10-226
Dibromochloromethane	ug/L (ppb)	50 50	<1	100	70-139
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	100	69-134
Chlorobenzene	ug/L (ppb)	50	<1	96	77-122
Ethylbenzene	ug/L (ppb)	50	<1	97	69-135
1,1,1,2-Tetr achloroethane	ug/L (ppb)	50	<1	110	73-137
m,p-Xylene	ug/L (ppb)	100	<2	98	69-135
o-Xylene Styrene	ug/L (ppb)	50 50	<1 <1	97 103	60-140 71-133
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	103	65-142
Bromoform	ug/L (ppb)	50	<1	117	65-142
n-Propyl benzene	ug/L (ppb)	50	<1	99	58-144
Bromobenzene	ug/L (ppb)	50	<1	99	75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	98	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	107	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	103	53-150
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb)	50 50	<1 <1	98 98	66-127 65-130
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	98	65-137
1,2,4Trimethylbenzene	ug/L (ppb)	50 50	<1	97	59-146
sec-Butylbenzene	ug/L (ppb)	50	<1	97	64-140
p-Isopropyltoluene	ug/L (ppb)	50	<1	96	65-141
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	98	72-123
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	95	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	98	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50 50	<10	106	32-164
1,2,4 Trichlorobenzene Hexachlorobutadiene	ug/L (ppb)	50 50	<1 <1	100 94	66-136 60-143
Naphthalene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	94 104	60-143 44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50 50	<1	102	69-148
	-0 (FF-)		•=		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/28/18 Date Received: 11/15/18

Project: Roystone 2017-015H, F&BI 811268

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	100	95	25-158	5
Chloromethane	ug/L (ppb)	50	99	106	45-156	7
Vinyl chloride	ug/L (ppb)	50	117	112	50-154	4
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	106 104	94 92	55-143 58-146	12 12
Trichlorofluoromethane	ug/L (ppb)	250	116	100	50-150	15
Acetone	ug/L (ppb)	250	117	114	53-131	3
1,1-Dichloroethene	ug/L (ppb)	50	120	121	67-136	1
Hexane	ug/L (ppb)	50	95	93	57-137	2
Methylene chloride	ug/L (ppb)	50	99	98	39-148	1
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	99 109	98 106	64-147 68-128	1 3
1.1-Dichloroethane	ug/L (ppb)	50	106	103	79-121	3
2,2-Dichloropropane	ug/L (ppb)	50	116	110	55-143	5
cis-1,2-Dichloroethene	ug/L (ppb)	50	106	104	80-123	2
Chloroform	ug/L (ppb)	50	104	102	80-121	2
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb)	250 50	109 102	109 100	57-149 73-132	0 2
1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	110	107	83-130	3
1,1-Dichloropropene	ug/L (ppb)	50	103	101	77-129	2
Carbon tetrachloride	ug/L (ppb)	50	111	108	75-158	3
Benzene	ug/L (ppb)	50	99	98	69-134	1
Trichloroethene	ug/L (ppb)	50 50	103 105	101 104	80-120 77-123	2 1
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	50 50	112	110	81-133	2
Dibromomethane	ug/L (ppb) ug/L (ppb)	50 50	104	103	82-125	1
4-Methyl-2-pentanone	ug/L (ppb)	250	106	105	65-138	1
cis-1,3-Dichloropropene	ug/L (ppb)	50	109	107	82-132	2
Toluene	ug/L (ppb)	50	98	97	72-122	1
trans-1,3-Dichloropropene	ug/L (ppb)	50 50	109 107	107 107	80-136 75-124	2
1,1,2-Trichloroethane 2-Hexanone	ug/L (ppb) ug/L (ppb)	250	107	107	60-136	1
1,3-Dichloropropane	ug/L (ppb)	50	103	102	76-126	i
Tetrachloroethene	ug/L (ppb)	50	104	102	76-121	2
Dibromochloromethane	ug/L (ppb)	50	115	112	84-133	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	104	103	82-125	1 2
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	98 99	96 98	83-114 77-124	2 1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	114	111	84-127	3
m,p-Xylene	ug/L (ppb)	100	99	98	83-125	1
o-Xylene	ug/L (ppb)	50	96	94	81-121	2
Styrene	ug/L (ppb)	50	103	101	84-119	2
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	50 50	100 122	99 118	85-117 74-136	1 3
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	104	101	74-136	3
Bromobenzene	ug/L (ppb)	50	103	100	80-121	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50	103	100	78-123	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	112	109	66-126	3
1,2,3-Trichloropropane 2-Chlorotoluene	ug/L (ppb)	50 50	109 102	106 100	67-124 77-127	3 2
4-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	102	100	78-128	4
tert-Butylbenzene	ug/L (ppb)	50	101	98	80-123	3
1,2,4-Trimethylbenzene	ug/L (ppb)	50	102	99	79-122	3
sec-Butylbenzene	ug/L (ppb)	50	101	99	80-125	2
p-Isopropyltoluene	ug/L (ppb)	50	101	98	81-123	3
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	102 99	99 96	85-116 84-121	3 3
1.2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	101	98	85-116	3
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	116	110	57-141	5
1,2,4-Trichlorobenzene	ug/L (ppb)	50	103	99	72-130	4
Hexachlorobutadiene	ug/L (ppb)	50	100	98	53-141	2
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb)	50 50	108 104	104 100	64-133 65-136	4
1,2,5-11 ICHIOI ODEHZENE	ug/L (ppb)	30	104	100	00-130	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Operator
                                                Page Number : 1
Vial Number : 29
                 : TL
Instrument
                 : GC1
Sample Name
                : 811268-02
                                                Injection Number : 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 16 Nov 18
                                                Instrument Method: DX.MTH
                              03:25 PM
Report Created on: 19 Nov 18
                              07:03 AM
                                                Analysis Method : DX.MTH
```


Data File Name Operator : TL Page Number Instrument Vial Number : GC1 : 30 Sample Name Injection Number : 1 : 811268-03 Run Time Bar Code: Sequence Line : 5 Acquired on : 16 Nov 18 Instrument Method: DX.MTH 03:36 PM

Report Created on: 19 Nov 18 07:03 AM Analysis Method : DX.MTH


```
Data File Name
                  : C:\HPCHEM\1\DATA\11-16-18\034F0501.D
Operator
                  : TL
                                                  Page Number
                                                  Vial Number
Instrument
                  : GC1
                                                                    : 34
Sample Name
                                                  Injection Number : 1
Sequence Line : 5
                 : 811268-07
Run Time Bar Code:
Acquired on : 16 Nov 18 04:21 PM
                                                  Instrument Method: DX.MTH
Report Created on: 19 Nov 18
                                                  Analysis Method : DX.MTH
                              07:04 AM
```


Data File Name :	C:\HPCHEM\1\DATA\11-16-18\03	5F0501.D
	TL	Page Number : 1
Instrument :	GC1	Vial Number : 35
Sample Name :	811268-08	Injection Number: 1
Run Time Bar Code:		Sequence Line : 5
Acquired on :	16 Nov 18 04:33 PM	Instrument Method: DX.MTH
Report Created on:	19 Nov 18 07:04 AM	Analysis Method : DX.MTH

17522 Bothell Way NE Bothell, WA 98011 www.riley-group.com

Tait Russell, GIT, Staff Geologist 811268

t: 425.415.0551 m: 425.780.0615 f: 425.415.0311 trussell@riley-group.com

SAMPLE CHAIN OF CUSTODY	, ME	11-15-18,
SAMPLERS (signature)		TURNAROUND TIME
PROJECT NAME Roystone	2017-015H	D Standard Turnaround RUSH Rush charges authorized by:
REMARKS CC: Sawetzerileyzogran	INVOICE TO	SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other

									£	ANA	LYSI	SR.	EQUI	CSTE	D		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	#of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Pistal Led	CPATE WINAPh			Notes
DPE5	O A-F	11/13	1545	Water	6					٠					· X	-	Hold
0886	02 A-E	.	1615		5		X	X		X		•	X				
DPES DPEG OPET	03A-F	.	1230		6		X	X	X			,	X				PD poly latter
551-W/	64 A-D	de la constante de la constant	1415		H		X	X	X								
551-W2	05	13	1230		14		×	Х	X								
VP9:	06		1340		4		X	×	X							Ì	
· · · · · · · · · · · · · · · · · · ·	07 A-6	- The state of the	1100		5		X	X		X				X		·	4
MW9 MW10	08 A-E		1130		5		X	X		X				X			
MWIO	09 A-D	·	1345	V	4		X	X	X								
																<u> </u>	AND THE PARTY OF T

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
 Relinquished by:	Tait Russell =	-12GI	11/14	600
Received by: C. D. G.	Carlos Boggs "	Fed EX	11/15	11:20
Relinquished by:	· Lit Musper-Bur	F?BI	11/15	1200
Received by		Samples r	eceived at	17°C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 4, 2018

Jerry Sawetz, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Sawetz:

Included are the results from the testing of material submitted on November 21, 2018 from the Roystone 2017-015H, F&BI 811377 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures TRG1204R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 21, 2018 by Friedman & Bruya, Inc. from the The Riley Group Roystone 2017-015H, F&BI 811377 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>The Riley Group</u>

811377 -01 DPE-5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

Date Extracted: 11/21/18 Date Analyzed: 11/21/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
DPE-5 811377-01	<100	104
Method Blank 08-2519 MB	<100	118

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

Date Extracted: 11/26/18 Date Analyzed: 11/26/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 47-140)
DPE-5 811377-01	1,300 x	420 x	90
Method Blank 08-2657 MB	<50	<250	103

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: DPE-5 Client: The Riley Group

Date Received: 11/21/18 Project: Roystone 2017-015H, F&BI 811377

Date Extracted: 11/29/18 Lab ID: 811377-01
Date Analyzed: 11/29/18 Data File: 811377-01.038
Matrix: Water Instrument: ICPMS2

Matrix: Water Instrument: ICPMS: Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead 1.37

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group

Date Received: NA Project: Roystone 2017-015H, F&BI 811377

Date Extracted: 11/29/18 Lab ID: I8-815 mb
Date Analyzed: 11/29/18 Data File: I8-815 mb.036
Matrix: Water Instrument: ICPMS2

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	DPE-5	Client:	The Riley Group
-------------------	-------	---------	-----------------

Date Received: 11/21/18 Project: Roystone 2017-015H, F&BI 811377

Lab ID: Date Extracted: 811377-01 11/29/18 Date Analyzed: 11/29/18 Data File: 112915.D Matrix: Instrument: Water GCMS9 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluor obenzene	99	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	1.6	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: The Riley Group

Date Received: Not Applicable Project: Roystone 2017-015H, F&BI 811377

Lab ID: Date Extracted: 11/29/18 08-2676 mb Date Analyzed: 11/29/18 Data File: 112913.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 811333-07 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	96	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	88	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 811377-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	1.37	94	105	75-125	11

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	108	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 811377-01 (Matrix Spike)

Laboratory Code. 811377-01 (Ma	iti ix Spike)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	114	55-137
Chloromethane	ug/L (ppb)	50	<10	96	61-120
Vinyl chloride	ug/L (ppb)	50	< 0.2	96	61-139
Bromomethane	ug/L (ppb)	50	<1	98	20-265
Chloroethane Trichlorofluoromethane	ug/L (ppb)	50 50	<1 <1	103 99	55-149 71-128
Acetone	ug/L (ppb) ug/L (ppb)	250	< 1 < 50	99 87	48-149
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	50	<1	94	71-123
Hexane	ug/L (ppb)	50	<1	100	44-139
Methylene chloride	ug/L (ppb)	50	< 5	89	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	97	68-125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	94	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	94	79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	100	48-157
cis-1,2-Dichloroethene Chloroform	ug/L (ppb)	50 50	<1 <1	91 91	63-126 77-117
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	250	<1 <10	91	77-117 70-135
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50	<10	96	70-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	91	75-121
1,1-Dichloropropene	ug/L (ppb)	50	<1	98	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	92	70-132
Benzene	ug/L (ppb)	50	1.6	92	75-114
Trichloroethene	ug/L (ppb)	50	<1	96	73-122
1,2-Dichloropropane	ug/L (ppb)	50	<1	101	80-111
Bromodichloromethane Dibromomethane	ug/L (ppb)	50 50	<1 <1	95 91	78-117 73-125
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	250	<10	109	73-125 79-140
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50	<1	101	76-120
Toluene	ug/L (ppb)	50	<1	90	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	98	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	91	81-116
2-Hexanone	ug/L (ppb)	250	<10	100	74-127
1,3-Dichloropropane	ug/L (ppb)	50	<1	97	80-113
Tetrachloroethene	ug/L (ppb)	50	<1	92	72-113
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1 <1	95 96	69-129 79-120
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	91	75-120 75-115
Ethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	95	66-124
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	90	76-130
m,p-Xylene	ug/L (ppb)	100	<2	96	63-128
o-Xylene	ug/L (ppb)	50	<1	102	64-129
Styrene	ug/L (ppb)	50	<1	101	56-142
Isopropylbenzene	ug/L (ppb)	50	<1	100	74-122
Bromoform n-Propylbenzene	ug/L (ppb)	50 50	<1 <1	95 97	49-138 65-129
n-Propylbenzene Bromobenzene	ug/L (ppb)	50 50	<1 <1	94	70-121
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	102	60-138
1.1.2.2-Tetrachloroethane	ug/L (ppb)	50	<1	95	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	93	62-125
2-Chlorotoluene	ug/L (ppb)	50	<1	97	40-159
4-Chlorotoluene	ug/L (ppb)	50	<1	95	76-122
tert-Butylbenzene	ug/L (ppb)	50	<1	102	74-125
1,2,4Trimethylbenzene	ug/L (ppb)	50 50	<1	99	59-136
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb)	50 50	<1 <1	100 102	69-127 64-132
p-isopropyitoiuene 1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	102 94	64-132 77-113
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	88	75-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	92	70-120
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	99	69-129
1,2,4 Trichlorobenzene	ug/L (ppb)	50	<1	101	66-123
Hexachlorobutadiene	ug/L (ppb)	50	<1	97	53-136
Naphthalene	ug/L (ppb)	50	<1	103	60-145
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	96	59-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/04/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

	ier or Sampre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	123	118	50-157	4
Chloromethane Vinyl chloride	ug/L (ppb) ug/L (ppb)	50 50	103 102	95 95	62-130 70-128	8 7
Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	99	90 90	62-188	10
Chloroethane	ug/L (ppb) ug/L (ppb)	50	110	99	66-149	11
Trichlorofluoromethane	ug/L (ppb)	50	109	96	70-132	13
Acetone	ug/L (ppb)	250	82	86	44-145	5
1,1-Dichloroethene	ug/L (ppb)	50	103	98	75-119	5
Hexane	ug/L (ppb)	50	98 96	101	51-153	3 8
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50 50	96 101	89 97	63-132 70-122	8 4
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	97	76-118	5
1,1-Dichloroethane	ug/L (ppb)	50	98	95	77-119	3
2,2-Dichloropropane	ug/L (ppb)	50	110	98	62-141	12
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	91	76-119	5
Chloroform	ug/L (ppb)	50	95	93	78-117	2
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	250 50	79 95	90 97	49-147 78-114	13 2
1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50	96	91	80-116	5
1,1-Dichloropropene	ug/L (ppb)	50	97	99	78-119	2
Carbon tetrachloride	ug/L (ppb)	50	96	92	72-128	4
Benzene	ug/L (ppb)	50	92	93	75-116	1
Trichloroethene	ug/L (ppb)	50	93	94	72-119	1
1,2-Dichloropropane	ug/L (ppb)	50	96	102	79-121	6
Bromodichloromethane Dibromomethane	ug/L (ppb) ug/L (ppb)	50 50	93 88	96 91	76-120 79-121	3 3
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	250	88 94	106	79-121 54-153	3 12
cis-1,3-Dichloropropene	ug/L (ppb)	50	93	100	76-128	7
Toluene	ug/L (ppb)	50	91	93	79-115	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	91	100	76-128	9
1,1,2-Trichloroethane	ug/L (ppb)	50	86	93	78-120	8
2-Hexanone	ug/L (ppb)	250	82	100	49-147	20
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	50 50	89 93	98 94	81-115 78-109	10 1
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	93 92	97	63-140	5
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	89	99	82-118	11
Chlorobenzene	ug/L (ppb)	50	91	93	80-113	2
Ethylbenzene	ug/L (ppb)	50	96	97	83-111	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	95	92	76-125	3
m,p-Xylene	ug/L (ppb)	100	97	98	84-112	1
o-Xylene Styrene	ug/L (ppb) ug/L (ppb)	50 50	105 99	103 103	81-117 83-121	2 4
Isopropylbenzene	ug/L (ppb)	50	103	100	81-122	3
Bromoform	ug/L (ppb)	50	91	94	40-161	3
n-Propylbenzene	ug/L (ppb)	50	97	101	81-115	4
Bromobenzene	ug/L (ppb)	50	91	97	80-113	6
1,3,5-Trimethylbenzene	ug/L (ppb)	50	104	103	83-117	1
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	91 86	98 97	79-118 74-116	7 12
2-Chlorotoluene	ug/L (ppb) ug/L (ppb)	50 50	97	101	79-112	4
4-Chlorotoluene	ug/L (ppb)	50	93	99	80-116	6
tert-Butylbenzene	ug/L (ppb)	50	105	103	81-119	2
1,2,4 Trimethylbenzene	ug/L (ppb)	50	101	102	81-121	1
sec-Butylbenzene	ug/L (ppb)	50	102	101	83-123	1
p-Isopropyltoluene	ug/L (ppb)	50	104	103	81-122	1 4
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	93 87	97 91	80-115 77-112	4
1,4-Diction oberizene 1.2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	93	95	77-112	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	98	100	62-133	2
1,2,4 Trichlorobenzene	ug/L (ppb)	50	104	103	75-119	1
Hexachlorobutadiene	ug/L (ppb)	50	101	97	70-116	4
Naphthalene	ug/L (ppb)	50	103	103	72-131	0
1,2,3-Trichlorobenzene	ug/L (ppb)	50	96	96	74-122	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

811377			SAMPL	E CHAI	V OF	CU	STO	DDZ	7	ME	11	<u> </u>	21-	18		Ai	2/03	/VW2
Report To Section S	anetz		1	ERS (sign	ature)	//	/	ſ		<u> </u>				ſ	·	rage	<u> </u>	or
Company Rile (group Inc Bethell W	az Nŧ	PROJE Roy	CT NAME) store	m					مو	P(0# ©(\$	1			andar ISH_	NAROUND d Turnaroun ges authoriz	ad
Company Riles (Address 1752) City, State, ZIP Solve Phone (25-415-551)	ell, WA, co Comail Samete	lgbU Crilez-ga	REMAI	RKS						IN	100I	CE	ТО		□ Dis □ Arc □ Otl	pose chive	IPLE DISPO after 30 days Samples	
	<u> </u>		1						1	ANA				EST	ED	-	:	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHs 8270D SIM	Dissolved Lead					: otes
DPE-5	01 4.2	4/21/18	11:00	water	9		\times	\times	,	\times	1		×	*		1.	2 x 0.5 L	
1.			· Andrews		,													
							1								1			
,				-														
										-				amı	loc	*****	tend at	4 °C
							1							anı	1108	* AC6	ved at	<u>4_∘c</u>
Friedman & Bruya, Inc.	S' Relinquished by:	IGNATURE			PRIN		AME						:ОМ	PAN	Y		DATE lı/2//g	TIME
3012 16 th Avenue West	Received by:	A D in	<u> </u>	1.0	gn W) #	?									
Seattle, WA 98119-2029	Relinquished by:	NO.W.	21	12		40	cr	- L	7	-			3	21			1/21/18	1200
Ph. (206) 285-8282	Received by:			<u> </u>														

DRAFT

Date of Report: 12/10/18 Date Received: 11/15/18

Project: Roystone 2018-015H, F&BI 811268

Date Extracted: 11/16/18 Date Analyzed: 12/05/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
DPE6 811268-02	180	<250	98
DPE7 811268-03	430 x	<250	ip
MW6 811268-07	570 x	<250	ip
MW9 811268-08	140	<250	ip
Method Blank 08-2621 MB	<50	<250	103

		17522 Bothell W	ay NE	SAMPLI			CUS?	OD:	Ÿ	<u></u>	1	ME	_ 1				. 1 00	
-		Bothell, WA 9 www.riley-group	.com	_	ERS (signo	itu <u>re)</u>	Too			//		-	T		ur.	VAROUND	ME AT	7
	Tait Russell, GIT, Staff 6	Geologist 811268			CT NAME	,			ľ		PO#		l Ir	≹Stan I RUS		Turnaroun	d W	
		t: 425.415.	0551	For	stone	/			.	بولر	17-0	45H	¥	łush c	harg	es authoriz		
		m: 425.780. f: 425.415.	0311	REMAR						IN	VOICE	TO				PLB DISPO		1
		trussell@riley-group	com	cc:	sawet	201	רציוו	May	ar		ī		1 1	Arch	ave S	amples	•	
				**************************************				·		ANAI	YSES							
,	Sample ID	LabID	Date Sampled	Time Sampled	Sample Type	#of Jars	прн-нагр	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	Yan Sa	Path Wheek	-5S/~ 1		No	tes	
,	DPE5	614-E	11/13	1545	wester	6		1	F		92 - 9	4 1		,	•	itold		
:	0886	62 A-E	1	1615	Ì	5	×	1x		X				(v)				
	OPET	03 A-F		1230		6	x		×			·X		ক		BE	Ty Jalle	<
. :	551-W1	64 A-D		1415		И		$\sqrt{\mathbf{x}}$	X									
	551-WQ	05		1230		4	1	×						Ø	اليون اليون	(8) mer	JS 12/5	18
	VP9:	06		1340		4	×		×	,					,	, ,	N.E.	
`	NW6	07 A-6		1100		5	\ \	V		X			Ż	•		\$ 75021		
-	muq:	58 A-E		1130		5	k	X		×			X	図	~~~~~	12/12		AH21100A24A10
	MW10.	09 A-D	· W	1345	V	4	K	X	X								ME.	
		eneronamentalis energia en		h P. P. Carrante de Carrante de la carracte de la c	and the second section of the sect											w		•
	But adverse & Miller T	SIG	NATURE			PRIN	T NAI	Æ				COM	PAN	7		DATE	TIME	
	Friedman & Bruya, Inc.	Relinauished by:	ورح			J.	<u> </u>	تحكي	<u> </u>			~=				1/14	500	
	8012 16th Avenue West	Received by:	مذمرا		Paul	an Th		,		7	Ea	1 2				11/15	11:22	

8012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinavished by:			11/1/11	1
	tait Kussell "		77.74	1000
Received by: C. Diggs	Carlos Boggs "	Fed Ex	11/18	11:20
Relinquished by D.W.B.	· Lit Number - Bar	F?B,	10/15	1200
Received by				170c
		Samples r	ecdived at	F

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 10, 2018

Jerry Sawetz, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Sawetz:

Included are the additional results from the testing of material submitted on November 21, 2018 from the Roystone 2017-015H, F&BI 811377 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures TRG1210R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 21, 2018 by Friedman & Bruya, Inc. from the The Riley Group Roystone 2017-015H, F&BI 811377 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>The Riley Group</u>

811377 -01 DPE-5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/10/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

Date Extracted: 11/26/18 Date Analyzed: 12/05/18

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
DPE-5 811377-01	99	<250	101
Method Blank 08-2657 MB2	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 12/10/18 Date Received: 11/21/18

Project: Roystone 2017-015H, F&BI 811377

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	100	63-142	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- ${
 m jl}$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

811377					E CHAI	Annual Control of the Control	2.00	ST) D)	X.	ME	Value of the last	2.3	21-	-18		Aj	2/	103	1/1/2		
Report To Jerry Squetz				SAMPI	SAMPLERS (signature)												Page#of					
Company Riller Group Inc PRI					PROJECT NAME								PO# PO17-015H				TURNAROUND TIME Standard Turnaround RUSH					
Address 17516 Bothell Was NE					0)>,0.4											Rush charges authorized by:						
The second secon					EMARKS						INVOICE TO					SAMPLE DISPOSAL						
Phone (25-415-055) Email ; sawet- Criter-gap.con																☐ Dispose after 30 days ☐ Archive Samples ☐ Other						
							ANA	LYSE	SR	EQT	TEST	ED	*		**************************************							
Sample ID		Lab ID	Date Sampled	Time Sampled	Sample Type	#of Jars	TPH-HCID	TPH.Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260C	SVOCs by 8270D	PAHS 8270D SIM	Displiked Lead	A company of the	N.S. King Cal			No	; otes		
DPE-5		01 4-1	u/21/18	11:00	water	g		X	V		X			$\overline{\times}$	1	反				arbs		
				1											**	127 139		00	oa, 1	Pela		
			;					-				9		2		10	Ħα	1				
		,										1	l	**************************************				!				
1 1				* 85%		<u> </u>	1	1	_	\dashv	-	-	\dashv		<u> </u>	<u> </u>		 				
							-			1			-		<u> </u>				***************************************	*.		
.72					,			1		1	1											
3	-									-	1											
											1			S	anır	les	ece	ved	at	¥ •c		
							`		***************************************										-			
Editada a O 7		Sic		PRINT NAME							COMPANY							re [TIME			
Friedman & Bruya, Inc.	Relinquished by:				Logan Chinn								RGI					1/21/	7	11100		
3012 16th Avenue West Received by: Seattle, WA 98119-2029 Relinquisher by:				B	Lit weber By FiB										······································	1						
Seattle, WA 98119-2029 Relinquisher by:			11	1								······································	1 8	21			** t21	168	1200			
Ph. (206) 285-8282	Receiv	ed by:	**************************************								1			····		·····	-		-			
	1			1							-1						-		- [