

MINIT WBE# 1102 Ly NN WOOD UST# 6502

> May 31, 2007 EATS # 570509

Mr. John Bails Northwest Regional Office Washington Department of Ecology 3190 160<sup>th</sup> Avenue SE Bellevue, WA 98008-5452

Re: Site Investigation Report

Aloha Cafe (Former Jiffy Lube)
6808 196<sup>th</sup> Street
Lynnwood, Washington
SAP No. 171152
JLI No. 2069
Incident No. 97605410

Dear Mr. Bails:

Conestoga-Rovers & Associates, Inc. (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent site investigation activities at the above referenced site. CRA acquired the former Cambria Environmental Technology, Inc (Cambria) on April 1, 2007. The majority of work was completed by Cambria and will be referenced as such. The purpose of the investigation was to evaluate soil conditions throughout the property boundary of the subject site.

## **EXECUTIVE SUMMARY**

- Cambria Environmental Technology Inc. supervised the drilling of five monitoring wells
  and one soil boring to evaluate the extent of impacted soils within the property boundary of
  the subject site.
- Soil analytical data indicate concentrations of petroleum-related compounds above the Washington State Model Toxics Control Act (MTCA) Method A cleanup levels are present at the site.
- The impacts are believed to be related to historical use at the property as a service station and the associated former underground storage tanks (USTs).



## SITE DESCRIPTION AND BACKGROUND

The subject site is located on the corner of 196<sup>th</sup> Street and 68<sup>th</sup> Avenue W in Lynnwood, Washington (Figure 1). The property was formerly a Jiffy Lube facility and a former service station. Currently a coffee and espresso shop called the Aloha Café uses the property and building (Figure 2). The groundwater flow direction appears to be toward the west.

## INVESTIGATION RESULTS

**Drilling Dates:** 

November 16 – 17, 2006

Drilling Company:

Boart Longyear

Personnel:

Bryan Palmer of Cambria directed the drilling activities under the supervision of Justin Foslien (Washington State Licensed

Geologist #2540).

Drilling Method:

Hollow-stem auger

Number of Borings:

Six borings, five monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5) and one soil boring (SB1) were completed during the investigation. The boring and well specifications and soil types encountered are described on the boring logs contained in Attachment A. The boring and well locations are shown on

Figure 2.

Boring Depths:

The boring depths were completed to a depth of 27.5 feet below

ground surface (bgs).

Groundwater Depths:

Groundwater ranged from approximately 10 to 20 feet bgs.

Soil Disposal:

Soil generated from drilling was placed into nine 55-gallon drums. The drums were sampled and profiled prior to transport and disposal by Burlington Environmental, Inc. Waste disposal

manifests are included in Attachment B.



### **FINDINGS**

Soil: The soil chemical analytical data are summarized in Table 1. Laboratory analytical reports are presented in Attachment C.

Groundwater: No groundwater samples were collected during the installation of the monitoring wells.

### CONCLUSIONS

The laboratory results indicate soil samples collected from all locations exceed levels above the Washington State Model Toxics Control Act (MTCA) Method A. Benzene and gasoline range hydrocarbons present at the site indicate the impacts are likely related to the property's historical use as a service station.

### RECOMMENDATIONS

Cambria has initiated quarterly groundwater sampling at wells MW-1 through MW-5 and will forward future quarterly monitoring reports to the Washington Department of Ecology. Cambria proposes to install an additional soil borings and wells at the site to define the lateral extent of impacted soil.

### CLOSING

The data collected during this investigation will be used to evaluate corrective action alternatives for this site.

If you have any questions regarding the contents of this document, please call Justin Foslien at (425) 212-5111.

Sincerely,

Conestoga-Rovers & Associates, Inc.

Justin Foslien, LG Project Geologist

Figures:

1 - Vicinity Map

2 - Site Map with Monitoring Well Locations

Justin Francio Foslien





Tables:

1 - Summary of Soil Analytical Data

2 - Summary of Soil Analytical Data3 - Summary of Soil Analytical Data

Attachments:

A - Boring Logs

B - Waste Disposal ManifestsC - Certified Analytical Reports

cc: Carol Campagna, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810 Brian Clark, Heartland Automotive Services, Inc., 11308 Davenport Street, The Atriam Building, Omaha, NB 68154-5645

Bob Cahill, Heartland Automotive Services, Inc., 15007 Woodinville-Redmond Rd. Suite A, Woodinville, WA 98072

I:\Everett.Shell\WA Shell Sites\Uiffy Lube Sites\6808 196th Street SW Lynnwood\Reports\SIR\6808 Site Investigation Report.doc

Conestoga Rovers & Associates. (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.



Jiffy Lube No. 2069

6808 196th Street Southwest Lynnwood, Washington



**Vicinity Map** 



Jiffy Lube No. 2068 6808 196th Street Southwest Lynnwood, Washington



Table 1

# SUMMARY OF SOIL ANALYTICAL RESULTS SAP# 171152 JLI# 2068 6808 196th ST SW Lynnwood, Washington

| Sample Location            |                              | M          | MW-1       | SI         | SB-1       | M          | MW-3                                                                                                         | M          | MW-2       | M          | MW-4       | MW-5       | V-5        |
|----------------------------|------------------------------|------------|------------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|
| Analyte                    | MTCA Method A Cleanup Levels | GW1-27.5   | GW1-17.5   | SB1-12.5   | SB1-7.5    | GW3-7.5    | GW3-17.5                                                                                                     | GW2-12.5   | GW2-17.5   | GW4-7.5    | GW4-17.5   | GW5-7.5    | GW5-17.5   |
| Sample Date                |                              | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006                                                                                                   | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 |
| Sample Depth               |                              | 27.50      | 17.50      | 12.50      | 7.50       | 7.50       | 17.50                                                                                                        | 12.50      | 17.50      | 7.50       | 17.50      | 7.50       | 17.50      |
| TPH-G (mg/kg)              | 100                          | 4.54       | <3.54      | 12.30      | 4.51       | 1820.00    | 8.39                                                                                                         | <3.68      | 9.49       | 1060.00    | 8.57       | 1550.00    | 23.90      |
| TPH-D (mg/kg)              | 2000                         | <10 6      | <10 9      | <11.4      | <10.8      | 63 30      | 11</td <td>&lt;11.0</td> <td>&lt;11.2</td> <td>30.90</td> <td>&lt;11.0</td> <td>62.40</td> <td>&lt;11.0</td> | <11.0      | <11.2      | 30.90      | <11.0      | 62.40      | <11.0      |
| TPH-O (mg/kg)              | 2000                         | <26.4      | <27.2      | <28.6      | <27.1      | <27.9      | <27.8                                                                                                        | <27.4      | <28.1      | <26.8      | <27.5      | <26.9      | <27.5      |
| MTBE (mg/kg)               | 0.1                          | <0.36      | <0.35      | <0.39      | <0.41      | <0.40      | <0.39                                                                                                        | <0.37      | <0.43      | <0.38      | <0.38      | <0.39      | <0.37      |
| Benzene (mg/kg)            | 0.03                         | 0.14       | 97.0       | 0.73       | 0.14       | 8.60       | 0.53                                                                                                         | 0.02       | 0.33       | 0.48       | 0.24       | 0.97       | 0.09       |
| Toluene (mg/kg)            | 7                            | 0.38       | 0.34       | 1.70       | 0.42       | 00.66      | 0.85                                                                                                         | <0.07      | 1.00       | 12.00      | 0.44       | 24.00      | 0.52       |
| Ethylbenzene (mg/kg)       | 6                            | <0.07      | <0.07      | 0.18       | <0.08      | 25.00      | 0.12                                                                                                         | <0.07      | 0.87       | 8.20       | <0.08      | 14.00      | 0.19       |
| Xylenes (mg/kg)            | 9                            | <0.21      | <0.21      | 0.90       | <0.24      | 160.00     | 0.39                                                                                                         | <0.22      | 0.34       | 54.00      | 0.31       | 90.00      | 0.90       |
| 1,2-Dichloroethane (mg/kg) |                              | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      | <0.04                                                                                                        | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      |
| 1,2-Dibromoethane (mg/kg)  | 0.005                        | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      | <0.04                                                                                                        | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      | <0.04      |
| Total Lead (mg/kg)         | 250                          | 0.962      | 1.480      | 2.060      | 1.710      | 6.690      | 1.550                                                                                                        | 1.600      | 1.400      | 2.350      | 1.580      | 4.640      | 1.330      |

TPH-G = gasoline range hydrocarbons (C4-C12)
TPH-D = diesel range hydrocarbons (C10-C28)
TPH-O = oil range hydrocarbons (C16-C36)
MTBE = methyl-tert-butyl-ether
Xylenes = o-xylene + m,p xylene

Shaded concentrations indicate the result exceeds the MTCA Method A cleanup level for that analyte.

Table 2

SUMMARY OF SOIL ANALYTICAL RESULTS
SAP# 171152
JLI# 2068
6808 196th ST SW
Lynnwood, Washington

| Sample Location       | ion                             | I-MIM      | V-1        | SB-1                                  |            | MW-3       | V-3        | Z-MW       | V-Z        | IVI W-4    | V-4        | C-MIM      | N-5        |
|-----------------------|---------------------------------|------------|------------|---------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Analyte               | MTCA Method<br>A Cleanup Levels | GW1-27.5   | GW1-17.5   | SB1-12.5                              | SB1-7.5    | GW3-7.5    | GW3-17.5   | GW2-12.5   | GW2-17.5   | GW4-7.5    | GW4-17.5   | GW5-7.5    | GW5-17.5   |
| Sample Date           |                                 | 11/16/2006 | 11/16/2006 | 11/16/2006                            | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 |
| Sample Depth          |                                 | 27.50      | 17.50      | 12.50                                 | 7.50       | 7.50       | 17.50      | 12.50      | 17.50      | 7.50       | 17.50      | 7.50       | 17.50      |
| VPHs (mg/kg)          |                                 |            |            |                                       |            |            |            |            |            |            |            |            |            |
| C5-C6 Aliphatics      |                                 |            |            |                                       |            | <198       | <3.90      | -          |            | <75.5      | <3.80      | <77.2      | <3.69      |
| C6-C8 Aliphatics      |                                 |            | 1          |                                       |            | <198       | 4.15       |            | -          | 104        | <3.80      | <77.2      | 7.96       |
| C8-C10 Aliphatics     |                                 |            |            |                                       |            | 289.00     | <3.90      |            |            | 147        | <3.80      | <77.2      | <3.69      |
| C8-C10 Aromatics      |                                 |            |            |                                       |            | 227.00     | < 3.90     |            |            | 140        | <3.80      | <77.2      | <3.69      |
| C12-C13 Aromatics     | ,                               |            |            |                                       |            | <198       | <3.90      | ***        |            | <75.5      | <3.80      | <77.2      | <3.69      |
| Total VPH             |                                 |            |            | also also anno                        |            | <1390      | <3.90      |            |            | 699        | <26.6      | <77.2      | <25.9      |
| EPHs (mg/kg)          |                                 |            |            |                                       |            | ,          |            |            |            |            |            |            |            |
| C8-C10 Aliphatics     |                                 |            |            |                                       |            | 30.10      | <5.56      |            |            | <5.35      | <5.52      | <5.41      | <5.54      |
| C10-C12 Aliphatics    |                                 | 1          | -          | 7                                     | 2 - 7      | 29.40      | <5.56      | 1          |            | 11.30      | <5.52      | 14.60      | <5.54      |
| C12-C16 Aliphatics    |                                 | a a        | at at at   | -                                     |            | 7.95       | <5.56      | -          |            | <5.35      | <5.52      | 9.56       | <5.54      |
| C16-C21 Aliphatics    |                                 |            |            | -                                     |            | <5.53      | <5.56      | 1          | -          | <5.35      | <5.52      | <5.41      | <5.54      |
| C21-C34 Aliphatics    |                                 | -          | 1          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | <5.53      | <5.56      |            |            | <5.35      | <5.52      | <5.41      | <5.54      |
| C8-C10 Aromatics      |                                 |            |            | -                                     | 2          | 33.80      | <5.56      |            | 1          | <5.35      | <5.52      | <5.41      | <5.54      |
| C10-C12 Aromatics     |                                 |            | -          |                                       |            | 27.80      | <5.56      | -          |            | 19.40      | <5.52      | 23.50      | <5.54      |
| C12-C16 Aromatics     |                                 |            |            | -                                     |            | 9.73       | <5.56      |            | 1          | 11.10      | <5.52      | 16.20      | <5.54      |
| C16-C21 Aromatics     |                                 |            |            |                                       |            | <5.53      | <5.56      |            | 1          | <5.35      | <5.52      | <5.41      | <5.54      |
| C21-C34 Aromatics     |                                 |            |            |                                       | -          | <5.53      | <55.6      |            | *          | <5.35      | <5.52      | <5.41      | <5.54      |
| Extractable Petroleum |                                 |            |            |                                       |            |            |            |            |            |            |            |            |            |
| Hydrocarbons          |                                 |            |            |                                       |            | 139.00     | <53.5      |            |            | <53.5      | <55.2      | 63.90      | <55.4      |
| PCBs (mg/kg)          |                                 |            |            |                                       |            |            |            |            |            |            |            |            |            |
| Aroclor- 1016         |                                 | <0.0264    | <0.0271    | <0.0288                               | <0.0270    | <0.0280    | <0.0270    | <0.0273    | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1221        |                                 | <0.0529    | <0.0541    | <0.0575                               | <0.0540    | <0.0561    | <0.0554    | <0.0546    | <0.056.3   | <0.0537    | <0.0552    | <0.0537    | <0.0550    |
| Aroclor - 1232        |                                 | <0.0264    | <0.0271    | <0.0288                               | <0.0270    | <0.0280    | < 0.0270   | < 0.0273   | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1242        |                                 | <0.0264    | <0.0271    | <0.0288                               | < 0.0270   | <0.0280    | 109        | <0.0273    | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1248        |                                 | < 0.0264   | <0.0271    | <0.0288                               | < 0.0270   | <0.0280    | <0.0270    | < 0.0273   | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1254        |                                 | <0.0264    | <0.0271    | <0.0288                               | < 0.0270   | <0.0280    | <0.0270    | < 0.0273   | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1260        |                                 | <0.0264    | <0.0271    | <0.0288                               | <0.0270    | <0.0280    | <0.0270    | <0.0273    | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
| Aroclor - 1262        |                                 | <0.0264    | <0.0271    | <0.0288                               | <0.0270    | <0.0280    | <0.0270    | <0.0273    | <0.0282    | <0.0269    | <0.0276    | <0.0269    | < 0.0275   |
| Aroclor - 1268        |                                 | <0.0264    | <0.0271    | <0.0288                               | <0.0270    | <0.0280    | <0.0270    | <0.0273    | <0.0282    | <0.0269    | <0.0276    | <0.0269    | <0.0275    |
|                       |                                 |            |            |                                       |            |            |            |            |            |            |            |            |            |

SUMMARY OF SOIL ANALYTICAL RESULTS
SAP# 171152
JLI# 2068
6808 196th ST SW
Lynnwood, Washington

| Sample Location        | ation                           | NM         | MW-1       | SB-1       | ÷1         | MW-3       | V-3        | M          | MW-2       | MW-4       | <i>V</i> −4 | M          | MW-5       |
|------------------------|---------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|
| Analyte                | MTCA Method<br>A Cleanup Levels | GW1-27.5   | GW1-17.5   | SB1-12.5   | SB1-7.5    | GW3-7.5    | GW3-17.5   | GW2-12.5   | GW2-17.5   | GW4-7.5    | GW4-17.5    | GW5-7.5    | GW5-17.5   |
| Sample Date            |                                 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006  | 11/17/2006 | 11/17/2006 |
| Sample Depth           |                                 | 27.50      | 17.50      | 12.50      | 7.50       | 7.50       | 17.50      | 12.50      | 17.50      | 7.50       | 17.50       | 7.50       | 17.50      |
| cPAHs (mg/kg)          |                                 |            |            |            |            |            |            |            |            |            |             |            |            |
| Acenaphthene           |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | 0.0113     | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Acenaphthylene         |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Anthracene             |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Benzo(a)anthracene     |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Chrysene               |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Benzo(b)fluoranthene   |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Benzo(k)fluoranthene   | -                               | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Benzo(a)pyrene         | 0.1                             | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Indeno(1,2,3-cd)pyrene |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Dibenzo(a,h)anthracene |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Fluoranthene           |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| Flourene               |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | <0.0107    | <0.0110     | <0.0108    | <0.0111    |
| -Methylnaphthalene     |                                 | <0.0106    | <0.0108    | <0.0115    | 0.0177     | 0.671      | <0.0111    | <0.0111    | <0.0113    | 0.611      | <0.0110     | 1.11       | <0.0111    |
| 2-Methylnaphthalene    |                                 | <0.0106    | <0.0108    | <0.0115    | 0.0464     | 1.79       | <0.0111    | <0.0111    | <0.0113    | 1.620      | <0.0110     | 2.77       | 0.0127     |
| Naphthalene            | 5                               | <0.0106    | <0.0108    | 0.0152     | 0.0497     | 3.4        | <0.0111    | <0.0111    | <0.0113    | 1.8700     | <0.0110     | 2.46       | <0.0111    |
| Phenanthrene           |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | <0.0111    | <0.0113    | 0.0120     | <0.0110     | <0.0108    | <0.0111    |
| Pyrene                 |                                 | <0.0106    | <0.0108    | <0.0115    | <0.0108    | <0.0111    | <0.0111    | 1110.0>    | <0.0113    | 0.0121     | <0.0110     | <0.0108    | <0.0111    |

PCBs = polychlorinated biphenols
cPAHs = polycyclic aromatic hydrocarbons identified as known or probable human carcinogens by the US EPA
VPHs = Volatile Petroleum Hydrocarbons

EPHs = Extractable Petroleum Hydrocarbons --- = not analyzed

Shaded concentrations indicate the result exceeds the MTCA Method A cleanup level for that analyte.

## SUMARY OF SOIL ANALYTICAL RESULTS SAP# 171152 JLI# 2068 6808 196th St SW

Lynnwood, Washington

| Sample I ocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | MW_1       | V_1        | 2          |            | MW.3       | W-2        | M          | X-2        | A.W.A      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW.5               | 7.5        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٦                            | A TAT      | 4-1        | T-GC       | -1         | TAI        | 3.5        | TAI        | 7-AA TAI   | A IAI      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAI                | C8         |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MTCA Method A Cleanup Levels | GW1-27.5   | GW1-17.5   | SB1-12.5   | SB1-7.5    | GW3-7.5    | GW3-17.5   | GW2-12.5   | GW2-17.5   | GW4-7.5    | GW4-17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GW5-7.5            | GW5-17.5   |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/16/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/17/2006         | 11/17/2006 |
| Sample Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 27.50      | 17.50      | 12.50      | 7.50       | 7.50       | 17.50      | 12.50      | 17.50      | 7.50       | 17.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.50               | 17.50      |
| PAHs (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |            |            |            |            |            |            |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | 0.0113     | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Flourene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| l-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | < 0.0106   | < 0.0108   | < 0.0115   | 0.0177     | 0.671      | < 0.0111   | < 0.0111   | < 0.0113   | 0.611      | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.11               | < 0.0111   |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | < 0.0106   | < 0.0108   | < 0.0115   | 0.0464     | 1.79       | < 0.0111   | < 0.0III   | < 0.0113   | 1.620      | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.77               | 0.0127     |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .5                           | < 0.0106   | < 0.0108   | 0.0152     | 0.0497     | 3.4        | < 0.0111   | < 0.0111   | < 0.0113   | 1.8700     | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.46               | < 0.0111   |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | 0.0120     | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | 0.0121     | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| cPAHs (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |            |            |            |            | 5          |            |            |            |            | - Constitution of the cons |                    |            |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                          | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | < 0.0106   | < 0.0108   | < 0.0115   | < 0.0108   | < 0.0111   | < 0.0111   | < 0.0111   | < 0.0113   | < 0.0107   | < 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0108           | < 0.0111   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | cPAHs x    | сРАНs x    | cPAHs x    | cPAHs x    | cPAHs x    | cPAHs x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cPAHs x            | cPAHs x    |
| Total cPAHs (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | TEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEF                | TEF        |
| Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mg/kg)            | (mg/kg)    |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 0.00106    | 0.00108    | 0.00115    | 0.00108    | 0.00111    | 0.00111    | 0.00111    | 0.00113    | 0.00107    | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00108            | 0.00111    |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | 0.000106   | 0.000108   | 0.000115   | 0.000108   | 0.000111   | 0.000111   | 0.000111   | 0.000113   | 0.000107   | 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000108           | 0.000111   |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 0.00106    | 0.00108    | 0.00115    | 0.00108    | 0.00111    | 0.00111    | 0.00111    | 0.00113    | 0.00107    | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00108            | 0.00111    |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 0.00106    | 0.00108    | 0.00115    | 0.00108    | 0.00111    | 0.00111    | 0.00111    | 0.00113    | 0.00107    | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00108            | 0.00111    |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                          | 0.0106     | 0.0108     | 0.0115     | 0.0108     | 0.0111     | 0.0111     | 0.0111     | 0.0113     | 0.0107     | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0108             | 0.0111     |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 0.00106    | 0.00108    | 0.00115    | 0.00108    | 0.00111    | 0.00111    | 0.00111    | 0.00113    | 0.00107    | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |            |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 0.00424    |            | 0.00       | 0.00.00    |            |            |            |            | 00100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00108            | 0.00111    |
| The second secon |                              |            | 0.00432    | 0.0046     | 0.00432    | 0.00444    | 0.00444    | 0.00444    | 0.00452    | 0.00428    | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00108<br>0.00432 | 0.00111    |

<sup>\*=</sup> Total cPAHs are calculated using the Toxic Equivalency Factors for cPAHs found on page 21 of WSDOE's publication titled "Cleanup Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulation," Version 3.1, November 2001. Total cPAHs MTCA Method A cleanup level is based on benzo(a)pyrene

PCBs = polychlorinated biphenols

cPAHs = polycyclic aromatic hydrocarbons identified as known or probable human carcinogens by the US EPA

Shaded concentrations indicate the result exceeds the MTCA Method A cleanup level for that analyte.

VPHs = Volatile Petroleum Hydrocarbons EPHs = Extractable Petroleum Hydrocarbons ---= not analyzed

## Attachment A Boring Logs



## **BORING/WELL LOG**

| CLIENT NAME     | Shell Oil Products US           | BORING/WELL NAME MW-1                                |   |
|-----------------|---------------------------------|------------------------------------------------------|---|
| JOB/SITE NAME   | LYNN6808                        | DRILLING STARTED 16-Nov-06                           |   |
| LOCATION        | 6808 196th Street, Lynnwood, WA | DRILLING COMPLETED 16-Nov-06                         |   |
| PROJECT NUMBER  | 248-1739                        | WELL DEVELOPMENT DATE (YIELD) 28-Dec-06 (12/29/2006) |   |
| DRILLER         | Boart Longyear Drilling         | GROUND SURFACE ELEVATION 452 ft above msi            | _ |
| DRILLING METHOD | Hollow-stem auger               | TOP OF CASING ELEVATION 452.00 ft above msl          | 3 |
| BORING DIAMETER | 8" cametity of the an included  | SCREENED INTERVAL 17.5 to 27.5 ft bgs                |   |
| LOGGED BY       | Bryan Palmer                    | DEPTH TO WATER (First Encountered) NA                | Ž |
| REVIEWED BY     | T. Crotwell                     | DEPTH TO WATER (Static) NA                           | V |
| 444             |                                 |                                                      |   |





## **BORING/WELL LOG**

| CLIENT NAME       | Shell Oil Products US                                     | BORING/WELL NAME MW-2                                |
|-------------------|-----------------------------------------------------------|------------------------------------------------------|
| JOB/SITE NAME     | LYNN6808                                                  | DRILLING STARTED 16-Nov-06                           |
| LOCATION          | 6808 196th Street, Lynnwood, WA                           | DRILLING COMPLETED 17-Nov-06                         |
| PROJECT NUMBER    | 248-1739                                                  | WELL DEVELOPMENT DATE (YIELD) 28-Dec-06 (12/29/2006) |
| DRILLER           | Boart Longyear Drilling                                   | GROUND SURFACE ELEVATION 451.04 ft above msl         |
| DRILLING METHOD _ | Hollow-stem auger                                         | TOP OF CASING ELEVATION 451.04 ft above msl          |
| BORING DIAMETER   | 8" ex relie no la sue | SCREENED INTERVAL 7.5 to 17.5 ft bgs                 |
| LOGGED BY         | Bryan Palmer                                              | DEPTH TO WATER (First Encountered) NA                |
| REVIEWED BY       | T. Crotwell                                               | DEPTH TO WATER (Static) NA                           |

REMARKS CONTACT DEPTH (ft bgs) GRAPHIC LOG PID (ppm) BLOW U.S.C.S. EXTENT DEPTH (ft bgs) SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt
Gravelly SAND with trace cobbles (FILL): Dark Brown; dry, non plastic, high permeability. 0.5 Portland Type 1/11 SW Bentonite Seal 5.0 Gravelly SAND with trace cobbles: Gray, moist, high permeability. SW ■ 10/20 Filter Sand 7.5 11 17 21 Clayey SAND with trace gravel: Gray, wet, low placitiy, low permeability. WELL LOG EVERETT C:DOCUMENTS AND SETTINGS!AVANDERPAARDTIDESKTOPI9-3299 SB-1\_MW-1-MW-5.GP.J\_DEFAULT.GDT 0.6 SC 12.5 ■ 2" diameter Sandy CLAY: Gray, wet, medium plasticity, low 21 35 schedule 40 permeability. PVC .010 slot MW2@1 2.5' 0.7 size CL 17.5 27 50 50 Bottom of MW2@1 7.5' Boring @ 18 ft 2.4 PAGE 1 OF



## **BORING/WELL LOG**

| CLIENT NAME     | Shell Oil Products US           | BORING/WELL NAME MW-3                                |
|-----------------|---------------------------------|------------------------------------------------------|
| JOB/SITE NAME   | LYNN6808                        | DRILLING STARTED 16-Nov-06                           |
| LOCATION        | 6808 196th Street, Lynnwood, WA | DRILLING COMPLETED 16-Nov-06                         |
| PROJECT NUMBER  | 248-1739                        | WELL DEVELOPMENT DATE (YIELD) 28-Dec-06 (12/29/2006) |
| DRILLER         | Boart Longyear Drilling         | GROUND SURFACE ELEVATION 452.01 ft above msl         |
| DRILLING METHOD | Hollow-stem auger               | TOP OF CASING ELEVATION 452.01 ft above msl          |
| BORING DIAMETER | 8"1511511121112                 | SCREENED INTERVAL 7.5 to 17.5 ft bgs                 |
| LOGGED BY       | Bryan Palmer                    | DEPTH TO WATER (First Encountered) NA                |
| REVIEWED BY     | T. Crotwell                     | DEPTH TO WATER (Static) NA NA                        |
|                 |                                 |                                                      |





8620 Holly Drive, Suite 210 Everett, WA 98208 Telephone: 425.353.6670 Fax: 425.353.6443

| ental rechnology, Inc.<br>Suite 210 | BORING/WELL LOG |
|-------------------------------------|-----------------|
| 3                                   |                 |

| CLIENT NAME      | Shell Oil Products US           | fa film saving | BORING/WELL NAME       | MW-4          |                        |                |
|------------------|---------------------------------|----------------|------------------------|---------------|------------------------|----------------|
| JOB/SITE NAME    | LYNN6808                        |                | DRILLING STARTED       | 16-Nov-06     |                        |                |
| LOCATION         | 6808 196th Street, Lynnwood, WA | si ne          | DRILLING COMPLETED _   | 16-Nov-06     |                        |                |
| PROJECT NUMBER _ | 248-1739                        |                | WELL DEVELOPMENT DA    | TE (YIELD)    | 28-Dec-06 (12/29/2006) |                |
| DRILLER          | Boart Longyear Drilling         |                | GROUND SURFACE ELEV    | ATION         | 452.28 ft above msl    |                |
| DRILLING METHOD  | Hollow-stem auger               |                | TOP OF CASING ELEVAT   | ION 452.28 ft | above msl              | 11 111_        |
| BORING DIAMETER  | 8"                              |                | SCREENED INTERVAL      | 7.5 to 17     | .5 ft bgs              |                |
| LOGGED BY        | Bryan Palmer                    |                | DEPTH TO WATER (First  | Encountered)  | NA                     | $\bar{\Delta}$ |
| REVIEWED BY      | T. Crotwell                     |                | DEPTH TO WATER (Static | :)            | NA                     | _ ▼            |
| REMARKS          |                                 |                |                        |               |                        | W =            |





## **BORING/WELL LOG**

| CLIENT NAME     | Shell Oil Products US           | BORING/WELL NAME MW-5                                |
|-----------------|---------------------------------|------------------------------------------------------|
| JOB/SITE NAME   | LYNN6808                        | DRILLING STARTED 16-Nov-06                           |
| LOCATION        | 6808 196th Street, Lynnwood, WA | DRILLING COMPLETED 17-Nov-06                         |
| PROJECT NUMBER  | 248-1739                        | WELL DEVELOPMENT DATE (YIELD) 28-Dec-06 (12/29/2006) |
| DRILLER         | Boart Longyear Drilling         | GROUND SURFACE ELEVATION 451.85 ft above msi         |
| DRILLING METHOD | Hollow-stem auger               | TOP OF CASING ELEVATION 451.58 ft above msl          |
| BORING DIAMETER | 8"                              | SCREENED INTERVAL 7.5 to 17.5 ft bgs                 |
| LOGGED BY       | Bryan Palmer                    | DEPTH TO WATER (First Encountered) NA                |
| REVIEWED BY     | T. Crotwell                     | DEPTH TO WATER (Static) NA                           |
| REVIEWED BY     | T. Crotwell                     | DEPTH TO WATER (Static) NA X                         |

REMARKS CONTACT DEPTH (ft bgs) SAMPLE ID GRAPHIC LOG PID (ppm) U.S.C.S. BLOW EXTENT DEPTH (ft bgs) LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt
Gravelly SAND with trace cobbles (FILL): Dark Brown; dry, 0.5 Portland Type non plastic, high permeability. SW Bentonite Seal 5.0 Clayey SAND with gravel: Gray, dry, medium permeability. 10/20 Filter SC Sand WELL LOG EVERETT C'IDOCUMENTS AND SETTINGSIAVANDERPAARDTIDESKTOP19-3299 SB-1\_MW+1 - MW+5.GPJ DEFAULT.GDT 3/13/07 7.5 11 17 14 Sandy CLAY: Gray, wet, low plasticity, medium permeability. MW5@7 .5' 2956 CŁ 12.5 2" diameter 11 14 9 Sandy CLAY: Gray, wet, low plasticity, low permeability. schedule 40 PVC .010 slot 499 size CL 17.5 17 32 50 Bottom of MW5@1 7.5' Boring @ 18 ft 72.5



**BORING/WELL LOG** 

| CLIENT NAME     | Shell Oil Products US           | BORING/WELL NAME SB-1                |          |
|-----------------|---------------------------------|--------------------------------------|----------|
| JOB/SITE NAME   | LYNN6808                        | DRILLING STARTED 16-Nov-06           |          |
| LOCATION        | 6808 196th Street, Lynnwood, WA | DRILLING COMPLETED 17-Nov-06         |          |
| PROJECT NUMBER  | 248-1739                        | WELL DEVELOPMENT DATE (YIELD) NA     |          |
| DRILLER         | Boart Longyear Drilling         | GROUND SURFACE ELEVATION Not         | Surveyed |
| DRILLING METHOD | Hollow-stem auger               | TOP OF CASING ELEVATION Not Surveyed | d        |
| BORING DIAMETER | 8"                              | SCREENED INTERVAL NA                 |          |
| LOGGED BY       | Bryan Palmer                    | DEPTH TO WATER (First Encountered)   | ıv ⊼     |
| REVIEWED BY     | T. Crotwell                     | DEPTH TO WATER (Static)              | VA 🕎     |
| DESTABLE        |                                 |                                      |          |

REMARKS CONTACT DEPTH (ft bgs) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW EXTENT U.S.C.S. DEPTH (ft bgs) LITHOLOGIC DESCRIPTION **WELL DIAGRAM** Asphalt
Gravelly SAND with trace cobbles (FILL): Dark Brown; dry, 0.5 0 Portland Type non plastic, high permeability. SW 5.0 Gravelly SAND with trace cobbles: Gray; dry, high permeability. SW WELL LOG EVERETT. C:IDOCUMENTS AND SETTINGS\AVANDERPAARDT\DESKTOP\9-3299 SB-1\_MW-1 - MW-5,GP.) DEFAULT.GDT 3/13/07 7.5 Clayey SAND with trace cobbles: Gray; wet, low plasticity, low permeability. 7.7 ■ Bentonite Seal SC 12.5 Gravelly SAND: Gray; moist, low permeability. SB1@1 2.5' 24.2 SW 17.5 Bottom of SB1@1 7.5' Boring @ 18 ft PAGE 1 OF

## Attachment B Waste Disposal Manifest

24 HOUR EMERGENCY RESPONSE, CALL (800) 567-7455 \*\*\*

## SHIPPING PAPER

Lading Manifest: 57881

| SHIPPER / CUSTOMER SHELL OIL PRODUCTS US 300-F07  ADDRESS  12700 NORTHBOROUGH DR  CITY, STATE, ZIP HOUSTON TX 77067  CARRIER / TRANSPORTER BIRLINGTON ENVIRONMENTAL, INC.  CONSIGNEE / FACILITY BIRLINGTON ENVIRONMENTAL, INC.  ADDRESS 20245 77TH AVENUE SOUTH  CITY, STATE, ZIP KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  A X GASOLINE HIXTORE 3 081203 FGII ERG(128):  2 DM  CONTRACT  CONTRACT  DON WISDOM  (281)874-2238  PHONE # (253)383-3044  (253)383-3044  (253)3872-8030  CONTRACT  TOTAL  QUANTITY  CONTRACT  DON WISDOM  (253)3872-8030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-2238 3-3044 2-8030 ainers Total Quantity UOM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| ADDRESS  12700 NORTHBOROUGH DR  CITY, STATE, ZIP  HOUSTON TX 77067  CARRIER / TRANSPORTER  BURLINGTON ENVIRONMENTAL, INC.  CONSIGNEE / FACILITY  HURLINGTON ENVIRONMENTAL, INC.  ADDRESS  20245 77TH AVENUE SOUTH  CITY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  A GASOLINE HIXTURE 3 UNIXUS FGIT ENG(128)  2 DM  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000 | 4-2238 3-3044 2-8030 ainers Total Quantity UOM |
| 12700 NORTHBOROUGH DR  ITY, STATE, ZIP  HOUSTON TX 77067  ARRIER/TRANSPORTER  BURLINGTON ENVIRONMENTAL, INC.  POINT OF CONTACT  POINT OF CONTACT  PHONE #  (253) 383-3044  POINT OF CONTACT  PHONE #  (253) 872-8030  PHONE #  (253) 872-8030  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLIER HIXTURE 3 UNITS FRIT ERG(128):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-3044  2-8030  ainers Total Quantity UOM      |
| HOUSTON TX 77067  ARRIER / TRANSPORTER  BURLINGTON ENVIRONMENTAL, INC.  DONSIGNEE / FACILITY  BURLINGTON ENVIRONMENTAL, INC.  DORESS  20245 77TH AVENUE SOUTH  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLINK HIXYURK 3 URIZUS FGIT RRG(128):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-3044  2-8030  ainers Total Quantity UOM      |
| HOUSTON TX 77067  ARRIER / TRANSPORTER  BURLINGTON ENVIRONMENTAL, INC.  DISIGNEE / FACILITY  FURLINGTON ENVIRONMENTAL, INC.  DIRESS  20245 77TH AVENUE SOUTH  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLINE HIXTUR 3 061203 FGIT ERG [128].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-8030 ainers Total Quantity UOM               |
| PHONE # (253) 383-3044  PHONE # (253) 383-3044  POINT OF CONTACT  PHIRLINGTON ENVIRONMENTAL, INC.  PHONE # (253) 3872-8030  PHONE # (253) 872-8030  PHONE # (253) 872-8030  PHONE # (253) 872-8030  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLIER HIXTURE 3 081203 FGIT ERG(128):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-8030 ainers Total Quantity UOM               |
| DINSIGNEE / FACILITY HURLINGTON ENVIRONMENTAL, INC.  DIRESS 20245 77TH AVENUE SOUTH  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLINE HIXTUR 3 061203 FGIT ERG [128].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-8030 ainers Total Quantity UOM               |
| PHONE # (253)872-8030  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLIER HIXTURE 3 081203 FGIT ERG(128):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ainers Total UOM                               |
| 20245 77TH AVENUE SOUTH  TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X CASOLIER BIXYURE 3 081203 PGIT ERG(128):  (253)872-8030  Containers No. Type Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ainers Total UOM                               |
| TY, STATE, ZIP  KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  Containers No. Type Quantity  X GASOLIER HIXTURE 3 081203 FGIT ERG [128]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ainers Total UON                               |
| KENT , WA 98032  HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  Containers No. Type Quantity  X GASOLIN HIXTUR 3 081203 FGIT ERG(128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type Quantity UON                              |
| HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  X GASOLIER BIXTURE 3 US1203 FGII ERG(128):  Containers No. Type Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Type Quantity UON                              |
| HM US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)  No. Type Quantity  X GASOLIER HIXTURE 3 081203 FGII ERG(128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type Quantity UON                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DM 110 G                                       |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |



\*\*\*24 HOUR EMERGENCY RESPONSE, CALL (800) 567-7455 \*\*\*

## SHIPPING PAPER

Lading Manifest: 17589-06

| (28<br>DNE#          | L WISD<br>81)874 | 1                           |                           |
|----------------------|------------------|-----------------------------|---------------------------|
| (28<br>DNE #         | 1)874            | 1                           |                           |
| (28<br>DNE #         | = 1111           | -2238                       |                           |
| DNE #                | = 1111           |                             |                           |
| 125                  | 3)383            | -                           |                           |
| (25<br>NT OF CONTACT | 3)383            |                             |                           |
| NT OF CONTACT        |                  | -3044                       | 240                       |
|                      | i.               |                             |                           |
| NE#                  |                  |                             |                           |
| (25                  | 3)872            | -8030                       |                           |
|                      | •                |                             |                           |
| Contai               | ners             | Total                       | Т-                        |
| No.                  | Туре             | Quantity                    | UON                       |
|                      | 9                | DH 540                      |                           |
|                      |                  |                             |                           |
|                      |                  |                             |                           |
|                      | -                |                             |                           |
|                      |                  | 9                           |                           |
| •                    | Ц                |                             |                           |
|                      | Contai<br>No.    | Containers   No.   Type   9 | Containers Total Quantity |

CONSIGNEE

## Attachment C Certified Analytical Reports





December 08, 2006

Justin Foslien Cambria - Seattle 8620 Holly Drive, Suite 210 Everett, WA 98208

RE: Shell - 6808 196th SW, Lynnwood

Enclosed are the results of analyses for samples received by the laboratory on 11/17/06 16:00. The following list is a summary of the Work Orders contained in this report, generated on 12/08/06 18:57.

If you have any questions concerning this report, please feel free to contact me.

| Work Order | <u>Project</u>               | <u>ProjectNumber</u> |
|------------|------------------------------|----------------------|
| BPK0570    | Shell - 6808 196th SW, Lynnw | 248-1739             |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

8620 Holly Drive, Suite 210

Everett, WA 98208

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager:

248-1739 Justin Foslien

Report Created: 12/08/06 18:57

ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| GW1@27.5' | BPK0570-01    | Soil   | 11/16/06 10:30 | 11/17/06 16:00 |
| GW1@17.5' | BPK0570-02    | Soil   | 11/16/06 10:03 | 11/17/06 16:00 |
| SB1@12.5' | BPK0570-03    | Soil   | 11/16/06 13:20 | 11/17/06 16:00 |
| SB1@7.5'  | BPK0570-04    | Soil   | 11/16/06 13:15 | 11/17/06 16:00 |
| GW3@7.5'  | BPK0570-05    | Soil   | 11/16/06 14:35 | 11/17/06 16:00 |
| GW3@17.5' | BPK0570-06    | Soil   | 11/16/06 14:50 | 11/17/06 16:00 |
| GW2@12.5' | BPK0570-07    | Soil   | 11/17/06 08:39 | 11/17/06 16:00 |
| GW2@17.5' | BPK0570-08    | Soil   | 11/17/06 08:50 | 11/17/06 16:00 |
| GW4@7.5'  | BPK0570-09    | Soil   | 11/17/06 10:32 | 11/17/06 16:00 |
| GW4@17.5' | BPK0570-10    | Soil   | 11/17/06 10:45 | 11/17/06 16:00 |
| GW5@7.5'  | BPK0570-11    | Soil   | 11/17/06 12:27 | 11/17/06 16:00 |
| GW5@17.5' | BPK0570-12    | Soil   | 11/17/06 12:45 | 11/17/06 16:00 |





SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

## Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

| Analyte                     | Method   | Result | MDL*  | MRL  | Units      | Dil       | Batch       | Prepared                                | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes |
|-----------------------------|----------|--------|-------|------|------------|-----------|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| BPK0570-01 (GW1@27.5')      |          | Soil   |       |      | Samp       | led: 11/  | 16/06 10:30 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e rën |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 4.54   |       | 3.57 | mg/kg dry  | lx        | 6K29027     | 11/29/06 11:15                          | 11/29/06 19:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          |        | 82.2% |      | 50 - 150 % | п         |             |                                         | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-02 (GW1@17.5')      | - 4 HIII | Soil   |       |      | Sampl      | led: 11/1 | 16/06 10:03 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22    |
| Gasoline Range Hydrocarbons | NWTPH-Gx | ND     | 111   | 3.54 | mg/kg dry  | lx        | 6K29027     | 11/29/06 11:15                          | 11/29/06 19:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17    |
| Surrogate(s): 4-BFB (FID)   |          |        | 84.0% |      | 50 - 150 % |           |             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-03 (SB1@12.5')      |          | Soil   |       | ٠    | Sampl      | led: 11/  | 16/06 13:20 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 12.3   |       | 3,92 | mg/kg dry  | lx        | 6K29027     | 11/29/06 11:15                          | 11/29/06 20:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          | -      | 82.6% |      | 50 - 150 % | "         |             |                                         | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-04 (SB1@7.5')       | 41       | Soil   |       |      | Sampl      | led: 11/1 | 16/06 13:15 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 4.51   |       | 4.05 | mg/kg dry  | lx        | 6K29027     | 11/29/06 11:15                          | 11/29/06 22:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          |        | 83.1% |      | 50 - 150 % | "         |             |                                         | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-05 (GW3@7.5')       |          | Soil   |       |      | Sampl      | led: 11/1 | 16/06 14:35 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 1820   |       | 793  | mg/kg dry  | 200x      | 6K29027     | 11/29/06 11:15                          | 11/29/06 23:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   | 88       |        | 85.3% |      | 50 - 150 % | İx        |             |                                         | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-06 (GW3@17.5')      |          | Soil   |       |      | Sampl      | led: 11/  | 16/06 14:50 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 8.39   |       | 3.90 | mg/kg dry  | lx        | 6K29027     | 11/29/06 11:15                          | 11/29/06 20:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          |        | 85.9% |      | 50 - 150 % | "         |             |                                         | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| BPK0570-07 (GW2@12.5')      |          | Soil   |       |      | Sampl      | led: 11/  | 17/06 08:39 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | ND     |       | 3,68 | mg/kg dry  | lx        | 6K30024     | 11/30/06 10:49                          | 11/30/06 20:27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          |        | 101%  |      | 50 - 150 % | "         |             |                                         | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-08 (GW2@17.5')      |          | Soil   |       |      | Sampl      | led: 11/1 | 17/06 08:50 |                                         | THE STATE OF THE S |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 9.49   |       | 4.26 | mg/kg dry  | lx        | 6K30024     | 11/30/06 10:49                          | 11/30/06 22:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Surrogate(s): 4-BFB (FID)   |          |        | 102%  |      | 50 - 150 % | ıı        |             |                                         | tr .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |

TestAmerica - Seattle, WA





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

| Analyte                     | Method   | Result MDL* | MRL  | Units      | Dil      | Batch      | Prepared       | Analyzed       | Notes |
|-----------------------------|----------|-------------|------|------------|----------|------------|----------------|----------------|-------|
| BPK0570-09 (GW4@7,5')       |          | Soil        |      | Şampl      | eđ: 11/1 | 7/06 10:32 |                | la e           | -49-1 |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 1060        | 189  | mg/kg dry  | 50x      | 6K30024    | 11/30/06 10:49 | 11/30/06 23:30 |       |
| Surrogate(s): 4-BFB (FID)   |          | 111%        |      | 50 - 150 % | lx       |            |                | "              |       |
| BPK0570-10 (GW4@17.5')      |          | Soil        | 401  | Sampl      | ed: 11/1 | 7/06 10:45 |                |                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 8.57        | 3.80 | mg/kg dry  | lx       | 6K30024    | 11/30/06 10:49 | 11/30/06 20:57 |       |
| Surrogate(s): 4-BFB (FID)   |          | 99.1%       |      | 50 - 150 % | "        |            |                | #              |       |
| BPK0570-11 (GW5@7.5')       | -        | Soil        |      | Sampl      | ed: 11/1 | 7/06 12:27 |                |                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 1550        | 193  | mg/kg dry  | 50x      | 6K30024    | 11/30/06 10:49 | 12/01/06 00:01 |       |
| Surrogate(s): 4-BFB (FID)   |          | 99.1%       | 8.1  | 50 - 150 % | lx       |            |                | н              |       |
| BPK0570-12 (GW5@17.5')      |          | Soil        |      | Sampl      | ed: 11/1 | 7/06 12:45 |                |                |       |
| Gasoline Range Hydrocarbons | NWTPH-Gx | 23.9        | 3.69 | mg/kg dry  | lx       | 6K30024    | 11/30/06 10:49 | 11/30/06 19:56 | 0.1   |
| Surrogate(s): 4-BFB (FID)   |          | 99.1%       |      | 50 - 150 % | "        |            |                | н              |       |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method

TestAmerica - Seattle, WA

| Analyte           | II Poorbu   | Method         | Result | MDL*  | MRL  | Units      | Dil       | Batch                                   | Prepared       | Analyzed       | Notes |
|-------------------|-------------|----------------|--------|-------|------|------------|-----------|-----------------------------------------|----------------|----------------|-------|
| BPK0570-05RE2     | (GW3@7.5')  |                | Soil   | 1 160 |      | Sampl      | led: 11/1 | 16/06 14:35                             |                |                | H     |
| C5-C6 Aliphatics  |             | WA<br>MTCA-VPH | ND     | - 4:  | 198  | mg/kg dry  | 50x       | 6L06021                                 | 12/06/06 09;31 | 12/07/06 00:04 |       |
| C6-C8 Aliphatics  |             | 4              | ND     |       | 198  | n          | 17        | *                                       |                | *              | L     |
| C8-C10 Aromatics  |             |                | 289    |       | 198  | *          | ч         | **                                      |                | *              |       |
| C10-C12 Aromatics |             |                | 227    |       | 198  |            |           | *                                       | *              | 19             |       |
| C12-C13 Aromatics |             |                | ND     |       | 198  | *          |           |                                         | н              |                |       |
| Total VPH (TVPH)  |             |                | ND     |       | 1390 |            |           | •                                       |                |                |       |
| Surrogate(s):     | 4-BFB (FID) |                |        | 120%  |      | 60 - 140 % | lx        |                                         |                | н              | 725   |
|                   | 4-BFB (PID) |                |        | 100%  |      | 60 - 140 % | n         |                                         |                | "              |       |
| BPK0570-06RE1     | (GW3@17.5') |                | Soil   |       |      | Sampl      | led: 11/1 | 16/06 14:50                             |                |                |       |
| C5-C6 Aliphatics  |             | WA<br>MTCA-VPH | ND     | _     | 3.90 | mg/kg dry  | lx        | 6K28004                                 | 11/28/06 09:45 | 11/28/06 14:00 |       |
| C6-C8 Aliphatics  |             | *              | 4,15   | ***** | 3,90 | *          | н 5       | •                                       | #              | •              |       |
| C8-C10 Aromatics  |             |                | ND     |       | 3.90 | 11         |           |                                         | *              |                |       |
| C10-C12 Aromatics |             |                | ND     |       | 3.90 | н          |           | tu                                      |                |                |       |
| C12-C13 Aromatics |             | *              | ND     |       | 3.90 | н          | *         | *                                       | н              |                |       |
| Total VPH (TVPH)  |             | "              | ND     |       | 27.3 | н          | н         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | H              | н              |       |
| Surrogate(s):     | 4-BFB (FID) |                |        | 104%  |      | 60 - 140 % | н         |                                         |                | "              |       |
|                   | 4-BFB (PID) |                |        | 96.6% |      | 60 - 140 % | "         |                                         |                | <i>"</i>       |       |
| BPK0570-09RE2     | (GW4@7.5')  |                | Soil   | N N   |      | Sampl      | led: 11/1 | 17/06 10:32                             |                |                | H     |
| C5-C6 Aliphatics  |             | WA<br>MTCA-VPH | ND     |       | 75.5 | mg/kg dry  | 20x       | 6L06021                                 | 12/06/06 09:31 | 12/07/06 00:35 |       |
| C6-C8 Aliphatics  |             | н              | 104    |       | 75.5 | н          |           | *                                       | н              | n              | L     |
| C8-C10 Aromatics  |             |                | 147    |       | 75.5 | #          | #         |                                         | *              | "              |       |
| C10-C12 Aromatics |             |                | 140    |       | 75,5 | u          | м         | u                                       | *              | u              |       |
| C12-C13 Aromatics |             | **             | ND     |       | 75.5 | n          |           | *                                       | н              | "              |       |
| Total VPH (TVPH)  |             | M              | 699    |       | 528  | н          |           | н                                       |                | н              |       |
| Surrogate(s):     | 4-BFB (FID) |                |        | 127%  |      | 60 - 140 % | lx        |                                         |                | "              |       |
|                   | 4-BFB (PID) |                |        | 96.9% |      | 60 - 140 % | H         |                                         |                | и              |       |
| BPK0570-10RE1     | (GW4@17.5') |                | Soil   |       |      | Sampl      | led: 11/1 | 17/06 10:45                             |                |                |       |
| C5-C6 Aliphatics  |             | WA<br>MTCA-VPH | ND     |       | 3.80 | mg/kg dry  | 1x        | 6K28004                                 | 11/28/06 09:45 | 11/28/06 15:41 |       |
| C6-C8 Aliphatics  |             | **             | ND     |       | 3.80 | н          | D         | n                                       | *              | tt             |       |
| C8-C10 Aromatics  |             | **             | ND     |       | 3.80 | *          | н         | "                                       | **             | н              |       |
| C10-C12 Aromatics |             | Ħ              | ND     |       | 3.80 | н          | *         |                                         | я              | н              |       |
| C12-C13 Aromatics |             | н              | ND     |       | 3,80 | н          | *         | *                                       | "              | *              |       |
| Total VPH (TVPH)  |             | н              | ND     |       | 26.6 | H          |           | e                                       | n              | **             |       |

TestAmerica - Seattle, WA

Mal Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739

Report Created:

Justin Foslien

12/08/06 18:57

## Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method

TestAmerica - Seattle, WA

| Analyte           |                            | Method         | Result | MDL*           | MRL  | Units                    | Dil      | Batch      | Prepared       | Analyzed       | Notes |
|-------------------|----------------------------|----------------|--------|----------------|------|--------------------------|----------|------------|----------------|----------------|-------|
| BPK0570-10RE1     | (GW4@17.5')                |                | So     | il             |      | Sampl                    | ed: 11/1 | 7/06 10:45 |                |                |       |
| Surrogate(s):     | 4-BFB (FID)<br>4-BFB (PID) |                |        | 97.4%<br>95.2% | - 1  | 60 - 140 %<br>60 - 140 % | lx<br>"  | 12:        |                | 11/28/06 15;41 |       |
| BPK0570-11RE2     | (GW5@7.5')                 |                | So     | il             |      | Sampl                    | ed: 11/1 | 7/06 12:27 | ů.             |                | н     |
| C5-C6 Aliphatics  |                            | WA<br>MTCA-VPH | ND     |                | 77.2 | mg/kg dry                | 20x      | 6L06021    | 12/06/06 09:31 | 12/07/06 01:05 |       |
| C6-C8 Aliphatics  |                            |                | ND     |                | 77.2 | и —                      |          |            | N              |                | L     |
| C8-C10 Aromatics  |                            | *              | ND     |                | 77.2 | *                        | ч        | н          |                | *              |       |
| C10-C12 Aromatics |                            |                | ND     |                | 77.2 | ıı                       | *        |            | н              | *              |       |
| C12-C13 Aromatics |                            | н              | ND     |                | 77.2 | н                        | 11       | н          | n              | H              |       |
| Total VPH (TVPH)  |                            | н              | ND     |                | 541  | н                        | 5.       | *          | *              |                |       |
| Surrogate(s):     | 4-BFB (FID)                |                |        | 99.6%          |      | 60 - 140 %               | Ix       |            | 80             | "              |       |
|                   | 4-BFB (PID)                |                |        | 100%           |      | 60 - 140 %               | "        |            |                | "              |       |
| BPK0570-12RE1     | (GW5@17.5')                |                | So     | il             |      | Sampl                    | ed: 11/1 | 7/06 12:45 |                |                | 8     |
| C5-C6 Aliphatics  |                            | WA<br>MTCA-VPH | ND     |                | 3.69 | mg/kg dry                | ìx       | 6K28004    | 11/28/06 09:45 | 11/28/06 16:11 |       |
| C6-C8 Aliphatics  |                            | н              | 7.96   |                | 3.69 |                          | и        | и          | **             | н              |       |
| C8-C10 Aromatics  |                            | н              | ND     | *****          | 3.69 | н                        |          | *          | н              |                |       |
| C10-C12 Aromatics |                            |                | ND     |                | 3.69 |                          |          | **         | - "            | 2. * 37        |       |
| C12-C13 Aromatics |                            | **             | ND     |                | 3.69 | M                        | 91       | 10         |                |                |       |
| Total VPH (TVPH)  |                            | 0              | ND     | -              | 25.9 | N                        | *        |            | *              |                |       |
| Surrogate(s):     | 4-BFB (FID)                |                |        | 114%           |      | 60 - 140 %               | "        |            |                | н              |       |
|                   | 4-BFB (PID)                |                |        | 91.9%          |      | 60 - 140 %               | *        |            |                | "              |       |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

| Analyte                                                  | Method   | Result            | MDL*           | MRL          | Units                    | Dil      | Batch       | Prepared       | Analyzed       | Notes |
|----------------------------------------------------------|----------|-------------------|----------------|--------------|--------------------------|----------|-------------|----------------|----------------|-------|
| BPK0570-01 (GW1@27.5')                                   |          | So                | il             | 6            | Sampl                    | ed: 11/1 | 16/06 10:30 |                | H-             | Z=14  |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | ND<br>ND          |                | 10.6<br>26.4 | mg/kg dry                | lx       | 6K27031     | 11/27/06 10:42 | 12/06/06 17:38 |       |
| Surrogate(s): 2-FBP Octacosane                           | === ==== | 4%                | 105%<br>90.2%  |              | 54 - 148 %<br>62 - 142 % | "        |             |                | n<br>H         |       |
| BPK0570-02 (GW1@17.5')                                   |          | So                | il             |              | Sampl                    | ed: 11/1 | 16/06 10:03 |                |                |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | nD ND             |                | 10.9<br>27.2 | mg/kg dry                | lx<br>"  | 6K27031     | 11/27/06 10:42 | 12/06/06 18:04 |       |
| Surrogate(s): 2-FBP Octacosane                           |          | _                 | 95.5%<br>87.4% |              | 54 - 148 %<br>62 - 142 % | "        |             |                | n<br>n         |       |
| BPK0570-03 (SB1@12.5')                                   |          | So                | il             |              | Sampl                    | ed: 11/1 | 16/06 13:20 |                |                |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | ND<br>ND          |                | 11.4<br>28.6 | mg/kg dry                | lх       | 6K27031     | 11/27/06 10:42 | 12/06/06 19:48 |       |
| Surrogate(s): 2-FBP<br>Octacosane                        |          |                   | 97.5%<br>87.8% |              | 54 - 148 %<br>62 - 142 % | n        |             |                | н              | =1-   |
| BPK0570-04 (SB1@7.5')                                    |          | So                | il             |              | Sample                   | ed: 11/1 | 16/06 13:15 |                |                |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | ND<br>ND          |                | 10.8<br>27.1 | mg/kg dry                | lx<br>"  | 6K27031     | 11/27/06 10:42 | 12/06/06 20:14 | +0.2  |
| Surrogate(s): 2-FBP<br>Octacosane                        |          | 8                 | 102%<br>90.0%  |              | 54 - 148 %<br>62 - 142 % | "        |             |                | n              | 1/2   |
| BPK0570-05 (GW3@7.5')                                    |          | So                | il .           |              | Sampl                    | ed: 11/1 | 16/06 14:35 |                |                |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | <b>63.3</b><br>ND |                | 11,2<br>27.9 | mg/kg dry                | lx<br>"  | 6K27031     | 11/27/06 10:42 | 12/06/06 20:40 | Q     |
| Surrogate(s): 2-FBP Octacosane                           |          |                   | 110%<br>96.9%  |              | 54 - 148 %<br>62 - 142 % | "        |             |                | п              |       |
| BPK0570-06 (GW3@17.5')                                   |          | Soi               | il             |              | Sampl                    | ed: 11/  | 16/06 14:50 |                |                |       |
| Diesel Range Hydrocarbons<br>Lube Oil Range Hydrocarbons | NWTPH-Dx | ND<br>ND          |                | 11.1<br>27.8 | mg/kg dry                | lx<br>"  | 6K27031     | 11/27/06 10:42 | 12/06/06 21:06 |       |
| Surrogate(s): 2-FBP Octacosane                           |          | ki                | 104%<br>91.5%  |              | 54 - 148 %<br>62 - 142 % | "        |             |                | 11             |       |

TestAmerica - Seattle, WA

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

## Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

| Analyte                     | Method   | Result | MDL*  | MRL  | Units      | Dil      | Batch       | Prepared       | Analyzed       | Notes |
|-----------------------------|----------|--------|-------|------|------------|----------|-------------|----------------|----------------|-------|
| BPK0570-07 (GW2@12.5')      |          | Soil   | ٠,,   |      | Sampl      | ed: 11/1 | 17/06 08:39 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | ND     |       | 11.0 | mg/kg dry  | lx       | 6K27031     | 11/27/06 10:42 | 12/06/06 21:32 | _ 14  |
| Lube Oil Range Hydrocarbons |          | ND     |       | 27.4 | <u>"</u>   |          |             |                |                |       |
| Surrogate(s): 2-FBP         |          |        | 106%  |      | 54 - 148 % | **       |             |                | н              |       |
| Octacosane                  |          |        | 90.7% |      | 62 - 142 % | "        |             |                | н              |       |
| BPK0570-08 (GW2@17.5')      |          | Soil   |       |      | Sampl      | ed: 11/1 | 17/06 08:50 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | ND     |       | 11.2 | mg/kg dry  | 1x       | 6K27031     | 11/27/06 10:42 | 12/06/06 21:58 |       |
| Lube Oil Range Hydrocarbons | н        | ND     |       | 28.1 |            |          | #           | н              | "              |       |
| Surrogate(s): 2-FBP         |          |        | 106%  |      | 54 - 148 % | n        |             |                | "              |       |
| Octacosane                  |          |        | 91.9% |      | 62 - 142 % | n        |             |                | "              |       |
| BPK0570-09 (GW4@7.5')       |          | Soil   |       |      | Sampl      | ed: 11/1 | 17/06 10:32 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | 30,9   |       | 10,7 | mg/kg dry  | lx       | 6K27031     | 11/27/06 10:42 | 12/06/06 22:24 | Q     |
| Lube Oil Range Hydrocarbons | н        | ND     |       | 26.8 |            | н        | *           |                | **             |       |
| Surrogate(s): 2-FBP         |          |        | 102%  |      | 54 - 148 % | n        |             |                | н              |       |
| Octacosane                  |          |        | 93.8% |      | 62 - 142 % | n        |             |                | "              |       |
| BPK0570-10 (GW4@17.5')      |          | Soil   |       |      | Sampl      | ed: 11/1 | 17/06 10:45 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | ND     |       | 11.0 | mg/kg dry  | ìx       | 6K27031     | 11/27/06 10:42 | 12/06/06 22:50 |       |
| Lube Oil Range Hydrocarbons | н        | ND     |       | 27.5 | *          | " 7      | н           | ч              | 10             |       |
| Surrogate(s): 2-FBP         |          |        | 101%  |      | 54 - 148 % | "        |             |                | n              |       |
| Octacosane                  |          |        | 89.3% |      | 62 - 142 % | "        |             |                | "              |       |
| BPK0570-11 (GW5@7.5')       |          | Soil   |       |      | Sampl      | ed: 11/1 | 17/06 12:27 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | 62.4   |       | 10.7 | mg/kg dry  | lx       | 6K27031     | 11/27/06 10:42 | 12/06/06 23:15 | Q     |
| Lube Oil Range Hydrocarbons |          | ND     |       | 26.9 | **         | *        | *           | н              | *              |       |
| Surrogate(s): 2-FBP         |          |        | 109%  |      | 54 - 148 % | н        |             |                | n              |       |
| Octacosane                  |          |        | 96.5% |      | 62 - 142 % | "        |             |                | "              |       |
| BPK0570-12 (GW5@17.5')      |          | Soil   |       |      | Sampl      | ed: 11/  | 17/06 12:45 |                |                |       |
| Diesel Range Hydrocarbons   | NWTPH-Dx | ND     |       | 11.0 | mg/kg dry  | l×       | 6K27031     | 11/27/06 10:42 | 12/06/06 23:41 |       |
| Lube Oil Range Hydrocarbons | 11       | ND     |       | 27.5 | u E        |          | *           | u              |                |       |
| Surrogate(s): 2-FBP         |          |        | 103%  |      | 54 - 148 % | "        |             |                | *              |       |
| Octacosane                  |          |        | 91.4% |      | 62 - 142 % | "        |             |                | .,             |       |

ΓestAmerica - Seattle, WA





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210



Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method

TestAmerica - Seattle, WA

| Analyte                               | Method         | Result | MDL*   | MRL  | Units      | Dil      | Batch      | Prepared       | Analyzed       | Notes  |
|---------------------------------------|----------------|--------|--------|------|------------|----------|------------|----------------|----------------|--------|
| BPK0570-05 (GW3@7.5')                 |                | Sọi    | HILDIG |      | Sampl      | ed: 11/1 | 6/06 14:35 |                |                | ци. Ти |
| C8-C10 Aliphatics                     | WA MTCA-EPH    | 30.1   |        | 5,53 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 16:09 |        |
| C10-C12 Aliphatics                    | H              | 29.4   |        | 5.53 | #          | н        | **         | "              |                |        |
| C12-C16 Aliphatics                    | н              | 7.95   |        | 5.53 |            | n        | *          | n              |                |        |
| C16-C21 Aliphatics                    | n .            | ND     |        | 5.53 | н          |          |            | п              | •              |        |
| C21-C34 Aliphatics                    | *              | ND     |        | 5.53 | •          |          |            | **             | H              |        |
| C8-C10 Aromatics                      | и              | 33.8   |        | 5.53 |            | н        | n          | н              | 12/01/06 16:41 |        |
| C10-C12 Aromatics                     |                | 27.8   |        | 5.53 |            | - "      | **         |                |                |        |
| C12-C16 Aromatics                     |                | 9.73   |        | 5.53 |            |          | ,          | п              |                |        |
| C16-C21 Aromatics                     |                | ND     |        | 5.53 |            | я        | H          |                |                |        |
| C21-C34 Aromatics                     |                | ND     |        | 5.53 |            | н        | **         | н              | ×              |        |
| Extractable Petroleum<br>Hydrocarbons | п              | 139    | -      | 55.3 | *          | *        | [CALC]     |                | н              |        |
| Surrogate(s): o-Terphenyl             |                |        | 92.4%  |      | 60 - 140 % | tt       |            |                | н              | VI V   |
| 1-Chlorooctadecane                    |                |        | 98.9%  |      | 60 - 140 % | "        |            |                | 12/01/06 16:09 |        |
| BPK0570-06 (GW3@17.5')                |                | Soi    | 1      |      | Sampl      | ed: 11/1 | 6/06 14:50 |                |                |        |
| C8-C10 Aliphatics                     | WA<br>MTCA-EPH | ND     |        | 5.56 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 19:18 |        |
| C10-C12 Aliphatics                    |                | ND     |        | 5.56 | H          | ×        | н          |                |                |        |
| C12-C16 Aliphatics                    | "              | ND     |        | 5.56 |            | н        |            | ,              |                |        |
| C16-C21 Aliphatics                    | H              | ND     |        | 5.56 |            | н        | н          | **             | ×              |        |
| 21-C34 Aliphatics                     | H              | ND     |        | 5.56 | н          |          | н          | *              |                |        |
| C8-C10 Aromatics                      | P              | ND     |        | 5.56 | н          | н        |            |                | 12/01/06 19:49 |        |
| C10-C12 Aromatics                     | 4              | ND     |        | 5.56 | н          | н        | N          | н              | ,              | 2      |
| C12-C16 Aromatics                     |                | ND     |        | 5.56 | и          | н        | *          |                |                |        |
| C16-C21 Aromatics                     | 95             | ND     | ****   | 5.56 | N          |          | *          | *              | м              |        |
| C21-C34 Aromatics                     | **             | ND     |        | 5.56 |            | н        | v          | *1             | N              |        |
| Extractable Petroleum Hydrocarbons    | *              | ND     |        | 55.6 |            | H        | [CALC]     | n              | *              |        |
| Surrogate(s): o-Terphenyl             |                |        | 91.9%  |      | 60 - 140 % | "        |            |                | H              |        |
| 1-Chlorooctadecane                    |                |        | 103%   |      | 60 - 140 % | "        |            |                | 12/01/06 19:18 |        |
| BPK0570-09 (GW4@7.5')                 |                | Soi    | l      |      | Sampl      | ed: 11/1 | 7/06 10:32 |                |                |        |
| C8-C10 Aliphatics                     | WA<br>MTCA-EPH | ND     |        | 5.35 | mg/kg dry  | 1x       | 6K27029    | 11/27/06 10:39 | 12/01/06 20:21 | 74-    |
| C10-C12 Aliphatics                    | *              | 11.3   |        | 5.35 | н          | *        | н          | H              | н              |        |
| 212-C16 Aliphatics                    | н              | ND     |        | 5.35 | te         | *        | ч          |                |                |        |
| C16-C21 Aliphatics                    |                | ND     |        | 5.35 | 11         | *        | *          |                | н              |        |
| C21-C34 Aliphatics                    | M              | ND     |        | 5.35 | #          | *        | **         | н              |                |        |
| C8-C10 Aromatics                      | n              | ND     |        | 5.35 | *          | n        | 30         |                | 12/01/06 20:53 |        |
| C10-C12 Aromatics                     |                | 19.4   |        | 5.35 | u          |          | n          | tt.            | н              |        |
| C12-C16 Aromatics                     | *              | 11.1   |        | 5.35 | **         |          | ,          | *              |                |        |

TestAmerica - Seattle, WA

Mal Dung

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien

Report Created: 12/08/06 18:57

## Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method

TestAmerica - Seattle, WA

| Analyte                            | Method         | Result | MDL*  | MRL  | Units      | Dil      | Batch      | Prepared       | Analyzed       | Notes                                         |
|------------------------------------|----------------|--------|-------|------|------------|----------|------------|----------------|----------------|-----------------------------------------------|
| BPK0570-09 (GW4@7.5')              |                | Soi    | 1     |      | Sample     | ed: 11/1 | 7/06 10:32 |                |                |                                               |
| C16-C21 Aromatics                  | WA<br>MTCA-EPH | ND     |       | 5.35 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 20:53 | -                                             |
| C21-C34 Aromatics                  |                | ND     | ***** | 5.35 | **         | *        | **         | •              | H              |                                               |
| Extractable Petroleum Hydrocarbons |                | ND     |       | 53.5 | *          | D        | [CALC]     | u              | *              |                                               |
| Surrogate(s): o-Terphenyl          |                |        | 93.3% |      | 60 - 140 % | "        |            |                | n              |                                               |
| 1-Chlorooctadecane                 |                |        | 102%  |      | 60 - 140 % | "        |            |                | 12/01/06 20.21 |                                               |
| 3PK0570-10 (GW4@17.5')             |                | Soi    | 1     |      | Sample     | ed: 11/1 | 7/06 10:45 |                |                |                                               |
| C8-C10 Aliphatics                  | WA<br>MTCA-EPH | ND     |       | 5.52 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 21:24 | . <u>-                                   </u> |
| C10-C12 Aliphatics                 | н              | ND     |       | 5.52 |            | H (2)    | *          |                | н              |                                               |
| C12-C16 Aliphatics                 | #              | ND     |       | 5.52 |            | 10       | **         | *              | t+             |                                               |
| C16-C21 Aliphatics                 | Ħ              | ND     |       | 5.52 | н          | *        | н          |                | *              |                                               |
| C21-C34 Aliphatics                 | **             | ND     |       | 5.52 | *          | "        | *          | н              | _ P =          |                                               |
| C8-C10 Aromatics                   | u              | ND     |       | 5.52 | 4          |          |            | **             | 12/01/06 21:55 |                                               |
| 210-C12 Aromatics                  | п              | ND     |       | 5,52 | *          |          |            | *              | *              |                                               |
| 12-C16 Aromatics                   | н              | ND     |       | 5.52 | "          |          | "          | *              | •              |                                               |
| 216-C21 Aromatics                  |                | ND     |       | 5.52 | 4          |          | •          | *              |                |                                               |
| 21-C34 Aromatics                   | **             | ND     |       | 5.52 | "          |          |            | *              | н              |                                               |
| Extractable Petroleum Hydrocarbons | er             | ND     |       | 55,2 | *1         | *        | [CALC]     | *              | и.             |                                               |
| Surrogate(s): o-Terphenyl          |                |        | 91.8% |      | 60 - 140 % | н        |            |                | н              |                                               |
| 1-Chlorooctadecane                 |                |        | 101%  |      | 60 - 140 % | "        |            |                | 12/01/06 21:24 |                                               |
| SPK0570-11 (GW5@7.5')              |                | Soi    | ı     |      | Sample     | ed: 11/1 | 7/06 12:27 |                |                |                                               |
| 28-C10 Aliphatics                  | WA<br>MTCA-EPH | ND     |       | 5,41 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 22:27 |                                               |
| 10-C12 Aliphatics                  | #              | 14.6   |       | 5.41 |            | n        | IP.        | **             | н              |                                               |
| 12-C16 Aliphatics                  |                | 9.56   |       | 5.41 | . "        | н        | н          | "              | n              |                                               |
| 16-C21 Aliphatics                  | rt .           | ND ·   |       | 5.41 | *          | *        |            | *              | *              |                                               |
| C21-C34 Aliphatics                 | и              | ND     |       | 5.41 | *          | *        | н          | n              | "              |                                               |
| C8-C10 Aromatics                   | н              | ND     |       | 5.41 | *          |          | н          | *              | 12/01/06 22:58 |                                               |
| 110-C12 Aromatics                  | **             | 23.5   | -     | 5.41 | а          | н        | н          | H              | Ħ              |                                               |
| 12-C16 Aromatics                   | н              | 16.2   |       | 5.41 | 49         |          | *          |                | н              |                                               |
| 16-C21 Aromatics                   | н              | ND     | ****  | 5.41 | **         | "        |            | н              | н              |                                               |
| 21-C34 Aromatics                   | u              | ND     |       | 5.41 | "          | н        |            |                | 0              |                                               |
| xtractable Petroleum               | н              | 63,9   |       | 54.1 | н          | *        | [CALC]     | 54             | n              |                                               |
| lydrocarbons                       |                |        |       | _    |            |          |            |                |                |                                               |
| Surrogate(s): o-Terphenyl          |                |        | 96.7% |      | 60 - 140 % | "        |            |                | u              |                                               |
| I-Chlorooctadecane                 |                |        | 104%  |      | 60 - 140 % | **       |            |                | 12/01/06 22:27 |                                               |





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number:

248-1739

Report Created:

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Manager: Justin Foslien

12/08/06 18:57

## Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method

TestAmerica - Seattle, WA

| Analyte                            | Method         | Result | MDL*  | MRL  | Units             | Dil | Batch   | Prepared       | Analyzed       | Notes   |
|------------------------------------|----------------|--------|-------|------|-------------------|-----|---------|----------------|----------------|---------|
| BPK0570-12 (GW5@17.5')             | 300            | Soil   | Soil  |      | Sampled: 11/17/06 |     |         |                | e Italia       |         |
| C8-C10 Aliphatics                  | WA<br>MTCA-EPH | ND     | ***** | 5.54 | mg/kg dry         | lx  | 6K27029 | 11/27/06 10:39 | 12/05/06 17:34 |         |
| C10-C12 Aliphatics                 | м              | ND     |       | 5.54 | N                 | •   |         | *              |                |         |
| C12-C16 Aliphatics                 | #              | ND     |       | 5.54 | •                 | •   |         | n              |                | -1-1-14 |
| C16-C21 Aliphatics                 | *              | ND     |       | 5.54 | **                |     |         | м              | N SE           |         |
| C21-C34 Aliphatics                 |                | ND     |       | 5.54 | *                 |     | **      | 10             |                |         |
| C8-C10 Aromatics                   | n              | ND     |       | 5.54 | **                |     | M       |                | 12/04/06 13:26 |         |
| C10-C12 Aromatics                  | n              | ND     |       | 5.54 | *                 |     | н       | *              |                |         |
| C12-C16 Aromatics                  | *              | ND     |       | 5.54 | -                 | *   |         | **             |                |         |
| C16-C21 Aromatics                  |                | ND     |       | 5.54 |                   | *   | и       | n              | e              |         |
| C21-C34 Aromatics                  |                | ND     |       | 5,54 |                   |     | 61      |                | **             |         |
| Extractable Petroleum Hydrocarbons | •              | ND     |       | 55.4 |                   | e e | [CALC]  | н              | 12/05/06 17:34 |         |
| Surrogate(s): o-Terphenyl          |                |        | 101%  |      | 60 - 140 %        | "   |         |                | 12/04/06 13:26 |         |
| 1-Chlorooctadecane                 |                |        | 87.6% |      | 60 - 140 %        | "   |         |                | 12/05/06 17:34 |         |

TestAmerica - Seattle, WA

Kate Haney, Project Manage





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

| Analyte                |             | Method   | Result | MDL*  | MRL                     | Units                   | Dil         | Batch       | Prepared       | Analyzed       | Notes |  |
|------------------------|-------------|----------|--------|-------|-------------------------|-------------------------|-------------|-------------|----------------|----------------|-------|--|
| BPK0570-01 (GW1@27.5') |             |          | Soil   | Local |                         | Sampled: 11/16/06 10:30 |             |             |                |                |       |  |
| Lead                   | V           | EPA 6020 | 0.962  |       | 0.543                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 11:38 |       |  |
| BPK0570-02             | (GW1@17.5') |          | Soil   |       | Samp                    | led: 11/                | 16/06 10:03 |             | •              |                |       |  |
| Lead                   |             | EPA 6020 | 1.48   | -     | 0.539                   | mg/kg dry               | ]x          | 6K30060     | 11/30/06 17:12 | 12/01/06 12:25 |       |  |
| BPK0570-03             | (SB1@12.5') | 3        | Soil   | 25    |                         | Samp                    | led: 11/    | 16/06 13:20 |                |                |       |  |
| Lead                   | 2           | EPA 6020 | 2.06   |       | 0,550                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 12:31 | -     |  |
| BPK0570-04             | (SB1@7.5')  |          | Soil   |       |                         | Samp                    | led; 11/    | 16/06 13:15 |                |                |       |  |
| Lead                   |             | EPA 6020 | 1.71   | -     | 0.440                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 12 37 |       |  |
| BPK0570-05             | (GW3@7.5')  |          | Soil   |       |                         | Samp                    | led: 11/    | 16/06 14:35 |                |                |       |  |
| Lead                   |             | EPA 6020 | 6.69   |       | 0.431                   | mg/kg dry               | 1x          | 6K30060     | 11/30/06 17:12 | 12/01/06 12:43 |       |  |
| BPK0570-06             | (GW3@17.5') |          | Soil   |       |                         | Samp                    | led: 11/    | 16/06 14:50 |                |                |       |  |
| Lead                   |             | EPA 6020 | 1.55   |       | 0.545                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 12:49 |       |  |
| BPK0570-07             | (GW2@12.5') |          | Soil   |       |                         | Samp                    | led: 11/    | 17/06 08:39 |                |                |       |  |
| ead                    |             | EPA 6020 | 1.60   |       | 0.477                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 12:55 |       |  |
| 3PK0570-08             | (GW2@17.5') |          | Soil   |       |                         | Samp                    | led: 11/    | 17/06 08:50 |                |                |       |  |
| Lead                   |             | EPA 6020 | 1.40   | ***** | 0.569                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 13:42 |       |  |
| BPK0570-09             | (GW4@7.5')  |          | Soil   |       |                         | Samp                    | led: 11/    | 17/06 10:32 |                |                |       |  |
| lead                   |             | EPA 6020 | 2.35   |       | 0,532                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 13:48 |       |  |
| BPK0570-10             | (GW4@17.5') |          | Soil   |       |                         | Samp                    | led: 11/    | 17/06 10:45 |                |                |       |  |
| ead                    |             | EPA 6020 | 1.58   |       | 0.509                   | mg/kg dry               | lx          | 6K30060     | 11/30/06 17:12 | 12/01/06 13:54 |       |  |
| 3PK0570-11             | (GW5@7.5')  |          | Soil   |       | Sampled: 11/17/06 12:27 |                         |             |             |                |                |       |  |
| ead                    |             | EPA 6020 | 4.64   |       | 0.516                   | mg/kg dry               | 1x          | 6K30060     | 11/30/06 17:12 | 12/01/06 14:00 |       |  |

TestAmerica - Seattle, WA

MawDhung

ate Henry Brainst Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

2020 -----

## Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

| Analyte                | Method   | Result | MDL*       | MRL Unit    | ls Dil      | Batch        | Prepared       | Analyzed       | Notes |
|------------------------|----------|--------|------------|-------------|-------------|--------------|----------------|----------------|-------|
| BPK0570-12 (GW5@17.5') |          | Soil   | i ng iliye |             | Sampled: 11 | /17/06 12:45 |                |                |       |
| Lead                   | EPA 6020 | 1.33   |            | 0.477 mg/kg | dry lx      | 6K30060      | 11/30/06 17:12 | 12/01/06 14:05 |       |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX; (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Seattle, WA

| Analyte           |                       | Method   | Result | MDL*                    | MRL  | Units                   | Dil | Batch   | Prepared       | Analyzed       | Notes |
|-------------------|-----------------------|----------|--------|-------------------------|------|-------------------------|-----|---------|----------------|----------------|-------|
| BPK0570-01        | (GW1@27.5')           |          | Soi    | Soil                    |      | Sampled: 11/16/06 10:30 |     |         |                | in the Marine  |       |
| Aroclor 1016 [2C] |                       | EPA 8082 | ND     |                         | 26.4 | ug/kg dry               | lx  | 6K27027 | 11/27/06 10:36 | 11/30/06 00.01 |       |
| Aroclor 1221      |                       |          | ND     | *****                   | 52.9 | н                       | ,   | br .    | н              |                |       |
| Aroclor 1232      |                       | н        | ND     |                         | 26.4 | н                       |     | **      | 64             |                |       |
| Aroclor 1242      |                       | н        | ND     |                         | 26.4 |                         |     | **      | *              | н              |       |
| Aroclor 1248      |                       | н        | ND     |                         | 26.4 | n                       | 11  | 11      | *              |                |       |
| Aroclor 1254      |                       |          | ND     |                         | 26,4 | 41                      | 11  | "       | at             | R              |       |
| Aroclor 1260 [2C] |                       |          | ND     |                         | 26.4 | *                       | н   |         | H              | tr             |       |
| Aroclor 1262      |                       | n        | ND     |                         | 26.4 | н                       | и   |         | п              | н              |       |
| Aroclor 1268      |                       | н        | ND     |                         | 26.4 | n                       | "   | п       | 11             | 94             |       |
| Surrogate(s):     | TCX [2C]              |          |        | 99.0%                   | - 0. | 39 - 139 %              | 11  |         |                | и              |       |
| ***********       | Decachlorobiphenyl [2 | 2C]      |        | 82.0%                   |      | 33 - 163 %              | "   |         |                | **             |       |
| BPK0570-02        | (GW1@17.5')           |          | Soi    | Sampled: 11/16/06 10:03 |      |                         |     |         | LI EL -        |                |       |
| Aroclor 1016 [2C] |                       | EPA 8082 | ND     |                         | 27.1 | ug/kg dry               | lx  | 6K27027 | 11/27/06 10:36 | 11/30/06 00:19 |       |
| Aroclor 1221      |                       | 11       | ND     |                         | 54.1 | **                      | *   | . н     | ,,             |                |       |
| Aroclor 1232      |                       | 16       | ND     |                         | 27.1 |                         | #   | н       | н              | n              |       |
| Aroclor 1242      |                       | я        | ND     | *****                   | 27.1 | n                       | **  | *       |                | и              |       |
| Aroclor 1248      |                       | н        | ND     | and the same            | 27.1 | ii .                    | п   |         | u              | 4              |       |
| Aroclor 1254      |                       | н        | ND     |                         | 27.1 | н                       | **  | н       | *              | **             |       |
| Aroclor 1260 [2C] |                       | *        | ND     |                         | 27.1 | н                       |     | *       | 1,00           | **             |       |
| Aroclor 1262      |                       | ,        | ND     |                         | 27.1 | н                       |     | н       | *              | н              |       |
| Aroclor 1268      |                       |          | ND     |                         | 27.1 |                         |     |         | D.             | *              |       |
| Surrogate(s):     | TCX [2C]              |          |        | 99.0%                   |      | 39 - 139 %              | "   |         |                | n              |       |
| 3 17              | Decachlorobiphenyl [2 | PC]      |        | 90.2%                   |      | 33 - 163 %              | *   |         |                | "              |       |
| BPK0570-03        | (SB1@12.5')           |          | Soi    | 1                       |      | Sampled: 11/16/06 13:20 |     |         |                |                |       |
| roclor 1016 [2C]  |                       | EPA 8082 | ND     |                         | 28.8 | ug/kg dry               | lx  | 6K27027 | 11/27/06 10:36 | 11/30/06 00:37 |       |
| Aroclor 1221      |                       | н        | ND     |                         | 57.5 | 44                      | н   | *       | *              | н              |       |
| Aroclor 1232      |                       |          | ND     |                         | 28.8 | н                       | н   | ч       | H              | 91             |       |
| Aroclor 1242      |                       | n        | ND     | *****                   | 28.8 | **                      |     | н       | *              | n.             |       |
| Aroclor 1248      |                       | н        | ND     |                         | 28.8 |                         |     | 567     | *              | *              |       |
| Arocior 1254      |                       | el       | ND     |                         | 28.8 | "                       | *   | м       | н              | н              |       |
| aroclor 1260 [2C] |                       | **       | ND     |                         | 28.8 |                         | *   | н       | **             | 98             |       |
| Aroclor 1262      |                       | н        | ND     |                         | 28.8 | п                       | 9   | "       | *              | н              |       |
| Aroclor 1268      |                       | н        | ND     | *****                   | 28.8 | ŧ                       | н   | 9.00    | "              | н              |       |
| Surrogate(s):     | TCX [2C]              |          |        | 104%                    |      | 39 - 139 %              | н   |         |                | и              |       |
|                   | Decachlorobiphenyl [2 |          |        | 94.7%                   |      | 33 - 163 %              | "   |         |                |                |       |

TestAmerica - Seattle, WA

Mal Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Seattle, WA

| Analyte           |                         | Method   | Result | MDL*  | MRL                     | Units                   | Dil      | Batch      | Prepared       | Analyzed       | Note |
|-------------------|-------------------------|----------|--------|-------|-------------------------|-------------------------|----------|------------|----------------|----------------|------|
| BPK0570-04        | (SB1@7.5')              |          | Soil   |       |                         | Sampled: 11/16/06 13:15 |          |            |                |                | 1    |
| Aroclor 1016 [2C] |                         | EPA 8082 | ND     |       | 27.0                    | ug/kg dry               | lx       | 6K27027    | 11/27/06 10:36 | 11/30/06 00:56 |      |
| Aroclor 1221      |                         | *        | ND     | ***** | 54.0                    | n                       | 10       | 11         | н              | n              |      |
| Aroclor 1232      |                         | *        | ND     |       | 27.0                    | n                       | *        | *          | n              | *              |      |
| Aroclor 1242      |                         |          | ND     |       | 27.0                    |                         | *        | "          |                | н              |      |
| roclor 1248       |                         | *        | ND     |       | 27.0                    | н                       | *        | н          |                | •              |      |
| croclor 1254      |                         | "        | ND     |       | 27.0                    | н                       | •        | 15         | н              | н              |      |
| roclor 1260 [2C]  |                         | н        | ND     |       | 27.0                    | H                       |          | и          | b              | *              |      |
| roclor 1262       |                         | **       | ND     |       | 27.0                    | *                       | н        | H          | 11             |                |      |
| roclor 1268       |                         |          | ND     |       | 27.0                    | **                      |          | н          | н              |                |      |
| Surrogate(s):     | TCX [2C]                |          |        | 101%  |                         | 39 - 139 %              | н        | 8          |                | "              |      |
|                   | Decachlorobiphenyl [2C  | 1        |        | 93.2% |                         | 33 - 163 %              | #<br>**  |            |                | "              |      |
| PK0570-05         | (GW3@7.5')              | Soil     |        |       |                         | Sample                  | ed: 11/1 | 6/06 14:35 |                |                |      |
| roclor 1016 [2C]  |                         | EPA 8082 | ND     |       | 28.0                    | ug/kg dry               | lx       | 6K27027    | 11/27/06 10:36 | 11/30/06 01:14 | == 1 |
| roclor 1221       |                         | н        | ND     |       | 56.1                    |                         | Ħ        | 41         | н              | и              |      |
| roclor 1232       |                         | et       | ND     |       | 28.0                    | *                       | **       | *          | ti             |                |      |
| roclor 1242       |                         |          | ND     |       | 28.0                    | *                       |          | н          | н              | H              |      |
| roclor 1248       |                         | *        | ND     |       | 28,0                    | *                       | *        | "          | н              | н              |      |
| roclor 1254       |                         |          | ND     |       | 28.0                    |                         | •        | н          | н              | н              |      |
| roclor 1260 [2C]  |                         | n        | ND     |       | 28.0                    |                         | *        | Ħ          | н              | н              |      |
| roclor 1262       |                         | n        | ND     |       | 28.0                    |                         |          | **         | н              |                |      |
| roclor 1268       |                         | н        | ND     | ***** | 28.0                    |                         | п        |            | N              | н              |      |
| Surrogate(s):     | TCX [2C]                |          |        | 91.2% |                         | 39 - 139 %              | **       |            |                | и              |      |
|                   | Decachlorobiphenyl [2C] | 7        |        | 88.0% |                         | 33 - 163 %              | n        |            |                | "              |      |
| PK0570-06         | (GW3@17.5')             |          | Soil   |       | Sampled: 11/16/06 14:50 |                         |          |            |                | -5-5           |      |
| oclor 1016 [2C]   |                         | EPA 8082 | ND     |       | 27.7                    | ug/kg dry               | lx       | 6K27027    | 11/27/06 10:36 | 11/30/06 01:32 |      |
| oclor 1221        |                         |          | ND     |       | 55.4                    |                         | *        | **         | и              | н              |      |
| roclor 1232       |                         | **       | ND     |       | 27.7                    | *                       | *        | tr .       | **             | Ħ              |      |
| roclor 1242 [2C]  |                         | *        | 109    |       | 27.7                    | n                       |          | *          | H              | н              |      |
| oclor 1248        |                         | u        | ND     | ***** | 27.7                    | *                       | "        | u          | н              | н              |      |
| oclor 1254        |                         | <b>H</b> | ND     |       | 27.7                    | a                       | *        | **         | н              | *              |      |
| oclor 1260 [2C]   |                         | н        | ND     |       | 27.7                    | o                       | h        | *          | H              | •              |      |
| roclor 1262       |                         | 19       | ND     |       | 27.7                    | **                      |          | *          | 10             |                |      |
| roclor 1268       |                         | Ħ        | ND     |       | 27.7                    | *                       |          | *          | н              | u u            |      |
| Surrogate(s):     | TCX [2C]                |          |        | 102%  |                         | 39 - 139 %              | "        |            |                | и              |      |
|                   | Decachlorobiphenyl [2C] | ,        |        | 96.5% |                         | 33 - 163 %              | "        |            |                |                |      |

TestAmerica - Seattle, WA

MawDung

Cate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Seattle, WA

|                   |                         |          | Т      | estAmeric | a - Seatt | le, WA     | 3       |             |                |                |       |
|-------------------|-------------------------|----------|--------|-----------|-----------|------------|---------|-------------|----------------|----------------|-------|
| Analyte           | i lower                 | Method   | Result | MDL*      | MRL       | Units      | Dil     | Batch       | Prepared       | Analyzed       | Notes |
| BPK0570-07        | (GW2@12.5')             |          | Soil   |           |           | Sampl      | ed: 11/ | 17/06 08:39 | 9              |                | GI Z  |
| Aroclor 1016 [2C] | - I I I                 | EPA 8082 | ND     |           | 27,3      | ug/kg dry  | lx      | 6K27027     | 11/27/06 10:36 | 11/30/06 01:50 |       |
| Aroclor 1221      |                         | *        | ND     |           | 54.6      | и          | 41      | 4           | *              | и              |       |
| Aroclor 1232      |                         | **       | ND     |           | 27.3      | н          | 4       |             |                | и              |       |
| Aroclor 1242      |                         | м        | ND     |           | 27.3      |            | *       |             | н              | 11             |       |
| Aroclor 1248      |                         |          | ND     |           | 27.3      |            | н       |             |                |                |       |
| Aroclor 1254      |                         | н        | ND     |           | 27,3      | н          | Ħ       |             |                | *              |       |
| Aroclor 1260 [2C] |                         | . 28     | ND     |           | 27.3      |            | H       | - "         |                | N              |       |
| Aroclor 1262      |                         |          | ND     |           | 27.3      | Ħ          | n       | *           | "              |                |       |
| Aroclor 1268      |                         | п        | ND     |           | 27.3      | 4          | *       | н           | 91             |                |       |
| Surrogate(s):     | TCX [2C]                |          |        | 98.5%     |           | 39 - 139 % | 11      |             |                | "              |       |
|                   | Decachlorobiphenyl [2C] | 7        |        | 98.2%     |           | 33 - 163 % | "       |             |                | "              |       |
| BPK0570-08        | (GW2@17.5')             |          | Soil   |           |           | Sample     | ed: 11/ | 17/06 08:50 |                |                | 54    |
| roclor 1016 [2C]  |                         | EPA 8082 | ND     |           | 28.2      | ug/kg dry  | lx      | 6K27027     | 11/27/06 10:36 | 11/30/06 02:08 |       |
| roclor 1221       |                         | n        | ND     |           | 56.3      |            | 12      |             | п              | *              |       |
| roclor 1232       |                         | *        | ND     |           | 28.2      | *          | 4       |             | *              | m              |       |
| roclor 1242       |                         | #        | ND     | *****     | 28.2      | #1         |         | **          | ×              | *              |       |
| roclor 1248       |                         | e        | ND     |           | 28.2      | er         | *       | **          | ,              | n              |       |
| roclor 1254       |                         |          | ND     |           | 28.2      | ti         | *       | н           | *              |                |       |
| Aroclor 1260 [2C] |                         | n        | ND     |           | 28.2      | #          | n       | u           | *              | **             |       |
| Aroclor 1262      |                         | н        | ND     |           | 28.2      | **         | *       | *           | *              | ÿ.             |       |
| croclor 1268      |                         | м        | ND     |           | 28.2      | p.         | *       | H           | †1             | 94             |       |
| Surrogate(s):     | TCX [2C]                |          |        | 97.2%     |           | 39 - 139 % | н       |             |                | н 🖫            |       |
|                   | Decachlorobiphenyl [2C] | 1        | 2      | 97.5%     |           | 33 - 163 % | "       |             |                | "              |       |
| PK0570-09         | (GW4@7.5')              |          | Soil   | 71.       |           | Sampl      | ed: 11/ | 17/06 10:32 |                |                |       |
| roclor 1016 [2C]  |                         | EPA 8082 | ND     |           | 26,9      | ug/kg dry  | lx      | 6K27027     | 11/27/06 10:36 | 11/30/06 02:27 |       |
| roclor 1221       |                         | н        | ND     |           | 53.7      | **         | •       | N           | 44             | 9              |       |
| roclor 1232       |                         | 19       | ND     |           | 26.9      | н          | *       | IP.         | н              | μ              |       |
| roclor 1242       |                         |          | ND     |           | 26.9      | *          | ж       | n           | 10             | 44             |       |
| roclor 1248       |                         | ч        | ND     |           | 26.9      |            | 10      |             | N              | **             |       |
| roclor 1254       |                         | н        | ND     |           | 26.9      | *          |         |             | 4              | н              |       |
| roclor 1260 [2C]  |                         | н        | ND     |           | 26.9      | H          |         | H           | *              | n              |       |
| roclor 1262       |                         | п        | ND     |           | 26.9      | н          |         | п           | sy.            | н              |       |
| Aroclor 1268      |                         |          | ND     |           | 26.9      | н          |         |             | н              | 19             |       |
| Surrogate(s):     | TCX [2C]                |          |        | 95.3%     |           | 39 - 139 % | -       |             |                | "              |       |
| 3 17              | Decachlorobiphenyl [2C] |          |        | 96.5%     |           | 33 - 163 % | "       |             |                | *              |       |

TestAmerica - Seattle, WA

Mal Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Seattle, WA

| Analyte           |                    | Method   | Result | MDL* MR | L Units     | Dil       | Batch       | Prepared       | Analyzed       | Notes  |
|-------------------|--------------------|----------|--------|---------|-------------|-----------|-------------|----------------|----------------|--------|
| BPK0570-10        | (GW4@17.5')        | 74-      | Soil   |         | Samp        | led: 11/1 | 7/06 10:45  |                | 10/34 = 3      | -      |
| Aroclor 1016 [2C] |                    | EPA 8082 | ND     | 27      | 6 ug/kg dry | lx        | 6K27027     | 11/27/06 10:36 | 11/30/06 02:45 | 0 / II |
| Aroclor 1221      |                    |          | ND     | 55      | 2 "         |           | H           | u              | *              |        |
| Aroclor 1232      |                    | и        | ND     | 27      | 6 "         |           |             |                | н              |        |
| Aroclor 1242      |                    |          | ND     | 27      | 6 "         | н         | *           | н              | н              |        |
| Aroclor 1248      |                    | *        | ND     | 27      | 6 "         | н         |             | u u            | я              |        |
| Aroclor 1254      |                    | п        | ND     | 27      | 6 "         | *         | <u> </u>    | н              | н              |        |
| Aroclor 1260 [2C] |                    | и        | ND     | 27      | 6 "         | n         | п           | n              | н              |        |
| Aroclor 1262      |                    |          | ND     | 27      | 6 "         | "         | *           | 11             | н              |        |
| Aroclor 1268      |                    |          | ND     | 27      | 6 "         |           |             | н              |                |        |
| Surrogate(s):     | TCX [2C]           |          |        | 98.8%   | 39 - 139 %  | "         |             |                | "              |        |
|                   | Decachlorobiphenyl | [2C]     |        | 99.3%   | 33 - 163 %  | "         |             |                | "              |        |
| BPK0570-11        | (GW5@7.5')         |          | Soil   | and .   | Samp        | led: 11/1 | 7/06 12:27  |                |                |        |
| Aroclor 1016 [2C] |                    | EPA 8082 | ND     | 26      | 9 ug/kg dry | 1×        | 6K27027     | 11/27/06 10:36 | 11/30/06 03:03 |        |
| Aroclor 1221      |                    | ,        | ND     | 53.     |             |           |             |                | н              |        |
| Aroclor 1232      |                    | 'n       | ND     | 26      | 9 "         | *         |             |                | н              |        |
| Aroclor 1242      |                    | п        | ND     | 26      | 9 "         | *         | н           |                | "              |        |
| Aroclor 1248      |                    |          | ND     | 26.     | 9 "         | *         | н           | п              | м              |        |
| Aroclor 1254      |                    | н        | ND     | 26      | 9 "         | **        | **          |                | •              |        |
| Aroclor 1260 [2C] |                    |          | ND     | 26      | 9 "         | *         | *           | *              | **             |        |
| Aroclor 1262      |                    | n        | ND     | 26      | 9 "         |           | **          | n              | H              |        |
| Aroclor 1268      |                    | ,        | ND     | 26      | 9 "         | •         | **          | li .           |                |        |
| Surrogate(s):     | TCX [2C]           |          |        | 86.8%   | 39 - 139 %  | n         |             |                |                |        |
|                   | Decachlorobiphenyl | [2C]     | **     | 90.5%   | 33 - 163 %  | "         |             |                | n              |        |
| BPK0570-12        | (GW5@17.5')        |          | Soil   |         | Samp        | led: 11/1 | 17/06 12:45 |                |                |        |
| roclor 1016 [2C]  |                    | EPA 8082 | ND     | 27      | 5 ug/kg dry | lx        | 6K27027     | 11/27/06 10:36 | 11/30/06 03:21 |        |
| roclor 1221       |                    | н        | ND     | 55      | 0 "         | *         | n           | *              |                |        |
| Aroclor 1232      |                    | Ħ        | ND     | 27      | 5 "         | и         | n           | H              | и              |        |
| Aroclor 1242      |                    | n        | ND     | 27      | 5 "         | *         | 10          |                | π              |        |
| roclor 1248       |                    | *        | ND     | 27      | 5 "         |           | *           | н              | *              |        |
| roclor 1254       |                    | H        | ND     | 27      | 5 "         | H         | • 0         | *              | n              |        |
| roclor 1260 [2C]  |                    | n        | ND     | 27      | 5 "         | н         | **          | u              | N              |        |
| Aroclor 1262      |                    |          | ND     | 27      | 5 "         | "         | **          | *              | н              |        |
| Aroclor 1268      |                    | п        | ND     | 27      | 5 "         | н         | "           |                |                |        |
| Surrogate(s):     | TCX [2C]           |          |        | 98.1%   | 39 - 139 %  | "         |             | <u>*</u>       | n              |        |
|                   | Decachlorobiphenyl | [2C]     | .0     | 96.2%   | 33 - 163 %  | "         |             |                | "              |        |

TestAmerica - Seattle, WA

Nawskuy

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

Report Created: 12/08/06 18:57

# Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                  | Method    | Result | MDL*  | MRL    | Units     | Dil      | Batch       | Prepared       | Analyzed       | Notes |
|--------------------------|-----------|--------|-------|--------|-----------|----------|-------------|----------------|----------------|-------|
| BPK0570-01 (GW1@27.5')   |           | Soi    | 1     |        | Samp      | led: 11/ | 16/06 10:30 |                |                |       |
| Acenaphthene             | 8270C-SIM | ND     |       | 0.0106 | mg/kg dry | lx       | 6K27029     | 11/27/06 10:39 | 12/01/06 19:33 |       |
| Acenaphthylene           |           | ND     |       | 0.0106 | н         | и        |             | и              | n              |       |
| Anthracene               | 5 H       | ND     |       | 0.0106 | tr.       | n        | 8           | н              | н              |       |
| Benzo (a) anthracene     | н         | ND     |       | 0.0106 | н         | **       | п           |                | 11             |       |
| Benzo (a) pyrene         | n         | ND     |       | 0.0106 | n         |          | v           | **             | н              |       |
| Benzo (b) fluoranthene   | *         | ND     |       | 0.0106 | *         | **       | , n         | *              | H              |       |
| Benzo (k) fluoranthene   | и         | ND     |       | 0.0106 | **        | **       | *           | *              | n              |       |
| Benzo (ghi) perylene     | н         | ND     |       | 0.0106 | **        |          |             |                |                |       |
| Chrysene                 | •         | ND     |       | 0.0106 | *         | **       | n           | *              | **             |       |
| Dibenz (a,h) anthracene  | п         | ND     |       | 0.0106 |           |          | **          |                | *              |       |
| Fluoranthene             |           | ND     |       | 0.0106 | N         |          | **          | *              | w =            |       |
| Fluorene                 | р         | ND     | ***** | 0.0106 | *         | **       | **          | *              |                |       |
| Indeno (1,2,3-cd) pyrene | u = 11    | ND     |       | 0.0106 | *         | *        | *           | *              | n              |       |
| 1-Methylnaphthalene      | *         | ND     |       | 0.0106 | H         | *        | н           |                | 11             |       |
| 2-Methylnaphthalene      | n         | ND     |       | 0.0106 |           | *        |             | H              | и              |       |
| Naphthalene              | n         | ND     |       | 0.0106 | н         | *        |             |                | e              |       |
| Phenanthrene             |           | ND     |       | 0.0106 | и =       | *        | H .         | ы              | *              |       |
| Pyrene                   |           | ND     |       | 0.0106 |           | *        | н           |                | *              |       |

Surrogate(s): p-Terphenyl-d14

99.1%

50 - 147 %

| BPK0570-02 (GW1@17.5')        |           | <br>Soil |       |        | Sampl      | ed: 11/1 | 6/06 10:03 |                |                |      |
|-------------------------------|-----------|----------|-------|--------|------------|----------|------------|----------------|----------------|------|
| Acenaphthene                  | 8270C-SIM | ND       |       | 0.0108 | mg/kg dry  | lx       | 6K27029    | 11/27/06 10:39 | 12/01/06 19:59 | <br> |
| Acenaphthylene                | ×         | ND       |       | 0.0108 | н          |          | *          |                | *              |      |
| Anthracene                    | •         | ND       |       | 0.0108 | w          | н        |            | и              |                |      |
| Benzo (a) anthracene          | *         | ND       | ***** | 0.0108 | H          |          |            | Ħ              |                |      |
| Benzo (a) pyrene              | *         | ND       |       | 0.0108 |            | *        |            | 41             | - "            |      |
| Benzo (b) fluoranthene        | *         | ND       |       | 0,0108 | (2) M      | *        |            | н              | n              |      |
| Benzo (k) fluoranthene        |           | ND       |       | 0.0108 | H          | *        | *          | W              | *              |      |
| Benzo (ghi) perylene          |           | ND       |       | 0.0108 | *          | н        | 79         |                | H              |      |
| Chrysene                      |           | ND       |       | 0.0108 | *          | 41       | *          | n              | и              |      |
| Dibenz (a,h) anthracene       | *         | ND       |       | 0.0108 | #          |          | #          | и 🚉            |                |      |
| Fluoranthene                  | н         | ND       |       | 0.0108 | 77         | n        | Ħ          | V #2           | м              |      |
| Fluorene                      | 47        | ND       |       | 0.0108 | #          | и        | "          | п              | м              |      |
| Indeno (1,2,3-cd) pyrene      | a         | ND       |       | 0.0108 | n          | н        | n          | n              | н              |      |
| 1-Methylnaphthalene           |           | ND       |       | 0.0108 | n          | н        |            | н              |                |      |
| 2-Methylnaphthalene           | *         | ND       |       | 0.0108 |            |          | "          | *              | .000           |      |
| Naphthalene                   | Nr.       | ND       |       | 0.0108 | н          | *        |            |                | "              |      |
| Phenanthrene                  | 4         | ND       |       | 0.0108 |            | •        | *          | м              |                |      |
| Pyrene                        | *         | ND       |       | 0.0108 | ıı         | n        | •          | н              | 84             |      |
| Surrogate(s): p-Terphenyl-d14 |           | 9        | 99.1% |        | 50 - 147 % | n        |            |                | "              | <br> |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica - Seattle, WA

Page 18 of 49



Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                       | Method    | Result | MDL*  | MRL    | Units      | Dil       | Batch       | Prepared       | Analyzed       | Notes |
|-------------------------------|-----------|--------|-------|--------|------------|-----------|-------------|----------------|----------------|-------|
| BPK0570-03 (SB1@12.5')        |           | Soi    |       |        | Samp       | oled: 11/ | 16/06 13:20 |                |                | 100   |
| Acenaphthene                  | 8270C-SIM | ND     |       | 0.0115 | mg/kg dry  | lx        | 6K27029     | 11/27/06 10:39 | 12/01/06 20:24 |       |
| Acenaphthylene                | W         | ND     |       | 0.0115 |            | *         |             | **             | #              |       |
| Anthracene                    |           | ND     |       | 0.0115 |            |           | *           | н "            | *              |       |
| Benzo (a) anthracene          | u         | ND     |       | 0.0115 | n n        | *         | н           | н              | *              |       |
| Benzo (a) pyrene              | n         | ND     |       | 0.0115 |            |           | н           | *              | н              |       |
| Benzo (b) fluoranthene        | *         | ND     |       | 0.0115 | 11         | *         | u           | н              | w w            |       |
| Benzo (k) fluoranthene        |           | ND =   |       | 0.0115 | н          | н         | н           | н              | *              |       |
| Benzo (ghi) perylene          | e         | ND     |       | 0.0115 | 41         |           |             |                | tf .           |       |
| Chrysene                      | ĸ         | ND     |       | 0.0115 | *1         |           | н           |                | м.             |       |
| Dibenz (a,h) anthracene       | H         | ND     |       | 0.0115 |            | *         | н           | *              | п              |       |
| Fluoranthene                  | "         | ND     | ***** | 0.0115 | *          |           |             | *              | *              |       |
| Fluorene                      | *         | ND     |       | 0.0115 | •          |           | *           |                | *              |       |
| Indeno (1,2,3-cd) pyrene      | N         | ND     |       | 0.0115 | H .        |           |             | *              | 11             |       |
| 1-Methylnaphthalene           | *         | ND     |       | 0.0115 | ıı         | н         | 111         | н              | Ħ              |       |
| 2-Methylnaphthalene           | *         | ND     |       | 0.0115 | *          |           |             | "              | E n            |       |
| Naphthalene                   | N         | 0.0152 |       | 0.0115 | н          | *         | н           | н              | 11             | *     |
| Phenanthrene                  |           | ND     |       | 0.0115 |            | *         |             |                | *              |       |
| Pyrene                        | н         | ND     |       | 0.0115 | **         | н         | *           | ii             | el .           |       |
| Surrogate(s): p-Terphenyl-d14 | 1         | IAD    | 101%  | 0.0113 | 50 - 147 % |           | ăi .        |                | и              |       |

| BPK0570-04 (SB1@7.5')       |    |           | Soil   | 1,724 |        | Samp       | led: 11/1 | 6/06 13:15 |                |                |  |
|-----------------------------|----|-----------|--------|-------|--------|------------|-----------|------------|----------------|----------------|--|
| Acenaphthene                |    | 8270C-SIM | ND     |       | 0,0108 | mg/kg dry  | 1x        | 6K27029    | 11/27/06 10:39 | 12/01/06 20:49 |  |
| Acenaphthylene              |    | н         | ND     |       | 8010,0 | **         |           |            | *              | N              |  |
| Anthracene                  |    |           | ND     |       | 0.0108 | *          | н         | Я н        | *              | et             |  |
| Benzo (a) anthracene        |    | "         | ND     |       | 0.0108 | н          |           |            | *              | N              |  |
| Benzo (a) pyrene            |    |           | ND     |       | 0.0108 | H 5        | *         |            | *              |                |  |
| Benzo (b) fluoranthene      |    |           | ND     |       | 0.0108 |            | *         |            | *              | a              |  |
| Benzo (k) fluoranthene      |    |           | ND     |       | 0.0108 | H          |           |            | Р              | P              |  |
| Benzo (ghi) perylene        |    | n         | ND     |       | 0.0108 | 61         | *         |            | H              | т п            |  |
| Chrysene                    |    | *         | ND     |       | 0.0108 | H          | *         | "          |                | u              |  |
| Dibenz (a,h) anthracene     |    |           | ND     |       | 0.0108 | H          | *         | **         | *              | <b>m</b>       |  |
| Fluoranthene                |    | n         | ND     |       | 0.0108 | *          | *         | "          | *              |                |  |
| Fluorene                    |    | n         | ND     |       | 0.0108 |            |           |            | *              | 60             |  |
| Indeno (1,2,3-cd) pyrene    |    | 19        | ND     |       | 0.0108 |            | *         | 11         | 16             | 46             |  |
| 1-Methylnaphthalene         |    | #         | 0.0177 |       | 0.0108 | "          | 11        | "          | **             | 44             |  |
| 2-Methylnaphthalene         |    | u         | 0.0464 |       | 0.0108 | n          |           | Ħ          | *              | n              |  |
| Naphthalene                 |    | п         | 0.0497 |       | 0.0108 | н          | **        | d          | H              |                |  |
| Phenanthrene                |    | ü         | ND     |       | 0.0108 |            | H         |            | **             |                |  |
| Pyrene                      |    | п         | ND     |       | 0.0108 |            | "         |            | н              | n              |  |
| Surrogate(s): p-Terphenyl-d | 14 |           |        | 102%  |        | 50 - 147 % |           |            |                | n              |  |

TestAmerica - Seattle, WA





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                       | Method    | Result | MDL*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MRL    | Units      | Dil      | Batch       | Prepared       | Analyzed       | Notes |
|-------------------------------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|-------------|----------------|----------------|-------|
| BPK0570-05 (GW3@7.5')         |           | Soi    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Sampl      | ed: 11/1 | 6/06 14:35  |                | 11 .           | 5 B   |
| Acenaphthene                  | 8270C-SIM | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | mg/kg dry  | lx       | 6K27029     | 11/27/06 10:39 | 12/01/06 21:15 |       |
| Acenaphthylene                | **        | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | **       | *           | **             | н              |       |
| Anthracene                    | q         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          |          | *           | *              | п              |       |
| Benzo (a) anthracene          |           | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            |          | *           | н              | н              |       |
| Benzo (a) pyrene              | *         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          | Ħ        | н .         | *              | •              |       |
| Benzo (b) fluoranthene        |           | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | и          |          |             | н              | 66             |       |
| Benzo (k) fluoranthene        | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          |          | "           | н              | н              |       |
| Benzo (ghi) perylene          | 51        | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | *          | **       |             |                | U              |       |
| Chrysene                      | •         | ND     | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0111 | H          | *        | p           |                | н              |       |
| Dibenz (a,h) anthracene       |           | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | *        |             | н              |                |       |
| Fluoranthene                  | и         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | **       |             | er er          | н              |       |
| Fluorene                      | n         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | *        | *           | n              | а              |       |
| Indeno (1,2,3-cd) pyrene      | *         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          | ir       | н           |                | *              |       |
| 1-Methylnaphthalene           | п         | 0.671  | State of the last | 0.0111 | н ,        | n        | Ħ           | н              | н              |       |
| Phenanthrene                  | и         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            |          |             | 10             | ir             |       |
| Pyrene                        | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | *          |          |             |                | H              |       |
| Surrogate(s): p-Terphenyl-d14 |           |        | 97.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 50 - 147 % | ır       |             |                | i              |       |
| BPK0570-05RE1 (GW3@7.5')      |           | Soi    | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Sampl      | ed: 11/1 | 6/06 14:35  |                |                |       |
| 2-Methylnaphthalene           | 8270C-SIM | 1.79   | trabadra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,111  | mg/kg dry  | 10x      | 6K27029     | 11/27/06 10:39 | 12/02/06 13:27 |       |
| Naphthalene                   | н         | 3,40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.111  | **         |          |             | n              |                |       |
| Surrogate(s): p-Terphenyl-d14 |           |        | 93.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 50 - 147 % | "        |             |                | "              |       |
| BPK0570-06 (GW3@17.5')        |           | Soi    | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Sampl      | ed: 11/1 | 16/06 14:50 |                |                |       |
| Acenaphthene                  | 8270C-SIM | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | mg/kg dry  | lx       | 6K27029     | 11/27/06 10:39 | 12/01/06 21:40 |       |
| Acenaphthylene                | н .       | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          |          |             |                | n              |       |
| Anthracene                    | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | u          |          | N           | н              | н              |       |
| Benzo (a) anthracene          | п         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | *          | ts       | н           | M              | n in           |       |
| Benzo (a) pyrene              | n         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            |          | *           | #              | н              |       |
| Benzo (b) fluoranthene        |           | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | 19       | *           | *              |                |       |
| Benzo (k) fluoranthene        | w         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | *        |             |                | н              |       |
| Benzo (ghi) perylene          | 11        | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0111 |            |          |             | **             | r              |       |
| Chrysene                      | и         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | *          |          | *           | ж              | м              |       |
| Dibenz (a,h) anthracene       |           | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | н          |          | н           | В              | n              |       |
| Fluoranthene                  | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | **         |          | **          |                | и              |       |
| Fluorene                      | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | п          |          |             | *              | 70             |       |
| Indeno (1,2,3-cd) pyrene      | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | = 0        | μ        |             | *              | n              |       |
| 1-Methylnaphthalene           | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | 9          |          | *           | н              | н              |       |
| 2-Methylnaphthalene           | н         | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,0111 | п          | н        | H           | *              |                |       |
| • •                           | 11        | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 | **         |          | п           |                | 11             |       |
| Naphthalene<br>Phenanthrene   | II .      | ND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0111 |            | *        |             | 4              | н              |       |
| I Hendithin elle              |           | 140    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |            |          |             |                |                |       |

TestAmerica - Seattle, WA

Jan Lynn

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                       | Method R  | esult | MDL* | MRL    | Units      | Dil      | Batch      | Prepared       | Analyzed       | Notes |
|-------------------------------|-----------|-------|------|--------|------------|----------|------------|----------------|----------------|-------|
| BPK0570-06 (GW3@17.5')        |           | Soil  |      |        | Sample     | ed: 11/1 | 6/06 14:50 |                |                |       |
| Pyrene                        | 8270C-SIM | ND    |      | 0.0111 | mg/kg dry  | 1x       | 6K27029    | 11/27/06 10:39 | 12/01/06 21:40 |       |
| Surrogate(s): p-Terphenyl-d14 |           |       | 104% |        | 50 - 147 % | н        | × -        |                | "              |       |
| BPK0570-07 (GW2@12.5')        |           | Soil  |      | - 5    | Sample     | ed: 11/1 | 7/06 08:39 |                |                |       |
| Acenaphthene                  | 8270C-SIM | ND    |      | 0.0111 | mg/kg dry  | l×       | 6K27029    | 11/27/06 10:39 | 12/01/06 22:05 |       |
| Acenaphthylene                | н         | ND    |      | 0.0111 | 67         | n        |            | н              | #              |       |
| Anthracene                    | et e      | ND    |      | 0.0111 | *          | 29       | H          | *              | p              |       |
| Benzo (a) anthracene          | •         | ND    |      | 0.0111 | н          | *        |            | н              | н              |       |
| Benzo (a) pyrene              |           | ND    |      | 0.0111 | *          |          |            | н              | н              |       |
| Benzo (b) fluoranthene        | M         | ND    |      | 0.0111 | н          | *        |            | *              | *              |       |
| Benzo (k) fluoranthene        | •         | ND    |      | 0.0111 | te         |          | *          | *              | u              |       |
| Benzo (ghi) perylene          | н         | ND    |      | 0.0111 |            |          | *          | *              | Ħ              |       |
| Chrysene                      |           | ND    |      | 0.0111 | Ħ          | ,        | **         | Ħ              | e e            |       |
| Dibenz (a,h) anthracene       | H         | ND    |      | 0.0111 | H          | •        | н 🔻        | *              | n              |       |
| Fluoranthene                  | 4         | ND    |      | 0.0111 | M          | 11       | **         | *              | n              |       |
| Fluorene                      | •         | ND    |      | 0.0111 | н          | **       | H          |                | e e            |       |
| ndeno (1,2,3-cd) pyrene       | r r       | ND    |      | 0.0111 | н          | 11       | 48         | н              | H              |       |
| l-Methylnaphthalene           | 16        | ND    |      | 0.0111 | *          | 11       | **         |                | H              |       |
| 2-Methylnaphthalene           | H         | ND    |      | 0.0111 | н          |          | h          |                | 50 m = =""     |       |
| Naphthalene                   |           | ND    |      | 0.0111 | н          | н        | u u        |                | н              |       |
| Phenanthrene                  | N         | ND    |      | 0.0111 | н          | н        |            | н              | **             |       |
| Pyrene                        |           | ND    |      | 0.0111 | н          |          |            | **             |                |       |

| BPK0570-08 (GW2@17.5')   |           | Soil | 1-0   |        | Samp      | led: 11/1 | 7/06 08:50 |                |                |  |
|--------------------------|-----------|------|-------|--------|-----------|-----------|------------|----------------|----------------|--|
| Acenaphthene             | 8270C-SIM | ND   |       | 0.0113 | mg/kg dry | lx        | 6K27029    | 11/27/06 10:39 | 12/01/06 22:30 |  |
| Acenaphthylene           |           | ND   |       | 0.0113 | n         | **        | *          | *              | н              |  |
| Anthracene               | "         | ND   |       | 0.0113 | n         | и         | *          |                | *              |  |
| Benzo (a) anthracene     | "         | ND   | ***** | 0.0113 | 40        |           | n          | H              | #              |  |
| Benzo (a) pyrene         | *         | ND   | ***** | 0.0113 | *         |           | h          | M              | Ħ              |  |
| Benzo (b) fluoranthene   | п         | ND   |       | 0.0113 |           |           |            | 11             | н              |  |
| Benzo (k) fluoranthene   | u         | ND   |       | 0.0113 |           | "         | *          | m              |                |  |
| Benzo (ghi) perylene     | N         | ND   |       | 0.0113 |           | "         | **         | н              | и              |  |
| Chrysene                 | н         | ND   |       | 0.0113 |           |           |            |                | 14             |  |
| Dibenz (a,h) anthracene  | р         | ND   |       | 0.0113 |           | *         | *          | н              | *              |  |
| Fluoranthene             |           | ND   |       | 0.0113 |           | *         |            | •              |                |  |
| Fluorene                 | *         | ND   | ****  | 0.0113 | . "       | н         | W          |                | и              |  |
| Indeno (1,2,3-cd) pyrene |           | ND   |       | 0.0113 | er .      | н         | н          | и              | 49             |  |
| 1-Methylnaphthalene      | n         | ND   |       | 0.0113 | 44        | **        | n          |                | 41             |  |
| 2-Methylnaphthalene      | F. e      | ND   |       | 0.0113 | **        | n         | •          |                |                |  |
| Naphthalene              | M         | ND   |       | 0.0113 | **        | *         | #          | **             | n              |  |

TestAmerica - Seattle, WA

nawexuu

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full. without the written approval of the laboratory.





Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                             | Method         | Result | MDL*  | MRL    | Units      | Dil      | Batch       | Prepared       | Analyzed       | Note |
|-------------------------------------|----------------|--------|-------|--------|------------|----------|-------------|----------------|----------------|------|
| BPK0570-08 (GW2@17.5')              |                | Soi    |       |        | Sampl      | ed: 11/1 | 17/06 08:50 |                | 1              |      |
| Phenanthrene                        | 8270C-SIM      | ND     |       | 0.0113 | mg/kg dry  | lx       | 6K27029     | 11/27/06 10:39 | 12/01/06 22:30 |      |
| Pyrene                              | #              | ND     |       | 0.0113 |            | *        | **          |                | •              |      |
| Surrogate(s): p-Terphenyl-d14       | l <sub>1</sub> |        | 101%  |        | 50 - 147 % | п        | 34          |                | ıı             |      |
| BPK0570-09 (GW4@7.5')               |                | Soil   | ı     |        | Sampl      | ed: 11/1 | 17/06 10:32 |                |                |      |
| Acenaphthene                        | 8270C-SIM      | ND     |       | 0.0107 | mg/kg dry  | lx       | 6K27029     | 11/27/06 10:39 | 12/01/06 22:56 |      |
| Acenaphthylene                      |                | ND     |       | 0.0107 |            |          |             |                | 4              |      |
| Anthracene                          |                | ND     |       | 0.0107 | ,          | **       |             | M              |                |      |
| Benzo (a) anthracene                | •              | ND     |       | 0.0107 | *          |          |             | n              | 0              |      |
| Benzo (a) pyrene                    | u              | ND     |       | 0.0107 | *          |          | н           |                |                |      |
| Benzo (b) fluoranthene              | *              | ND     |       | 0.0107 | "          | *        | "           |                | *              |      |
| Benzo (k) fluoranthene              |                | ND     |       | 0.0107 | я          | ,,       |             | 10             | w              |      |
| Benzo (ghi) perylene                | 44             | ND     |       | 0.0107 | 47         | *        |             | и              |                |      |
| Chrysene                            | н              | ND     |       | 0.0107 | **         | *        |             | н              |                |      |
| Dibenz (a,h) anthracene             |                | ND     |       | 0.0107 | *          | 3i       |             | п              | н              |      |
| Fluoranthene                        | 9              | ND     |       | 0.0107 |            | *        | 44          | u              | n              |      |
| Fluorene                            | н              | ND     |       | 0.0107 |            |          |             | *              | *              |      |
| ndeno (1,2,3-cd) pyrene             | *              | ND     | ***** | 0.0107 |            |          | ч           |                |                |      |
| -Methylnaphthalene                  |                | 0.611  | ***** | 0.0107 |            |          |             | 4              | N              |      |
| • •                                 | н              | 0.011  |       | 0.0107 | **         |          | n           | н              | ,              | 197  |
| Phenanthrene                        | n              |        |       | 0.0107 | er         |          |             | ,,             |                |      |
| Pyrene                              | <del></del>    | 0.0121 |       | 0.0107 |            |          |             |                |                |      |
| Surrogate(s): p-Terphenyl-d14       |                |        | 102%  |        | 50 - 147 % | "        |             |                | н              |      |
| 3PK0570-09RE1 (GW4@7.5')            |                | Soil   | I     |        | Sampl      | ed: 11/1 | 17/06 10:32 |                |                |      |
| -Methylnaphthalene                  | 8270C-SIM      | 1.62   |       | 0.0535 | mg/kg dry  | 5x       | 6K27029     | 11/27/06 10:39 | 12/02/06 13:53 |      |
| daphthalene                         | h              | 1.87   |       | 0.0535 |            |          | н           | н              |                |      |
| Surrogate(s): p-Terphenyl-d14       |                |        | 101%  |        | 50 - 147 % | 11       |             |                | u              |      |
| 3PK0570-10 (GW4@17.5')              |                | Soil   | l     |        | Sampl      | ed: 11/1 | 17/06 10:45 |                |                |      |
| Acenaphthene                        | 8270C-SIM      | ND     | l     | 0.0110 | mg/kg dry  | 1x       | 6K27029     | 11/27/06 10:39 | 12/02/06 12:11 |      |
| Acenaphthylene                      | *              | ND     |       | 0.0110 | н          | n        | n           | н              | II.            |      |
| Anthracene                          | #              | ND     |       | 0.0110 | 19         | *        |             |                |                |      |
| Benzo (a) anthracene                | *,,            | ND     |       | 0.0110 |            | •        | w           | и,             |                |      |
| Benzo (a) pyrene                    | U              | ND     |       | 0.0110 |            | н        | и           |                | и              |      |
| Benzo (b) fluoranthene              | e              | ND     |       | 0.0110 | н          | 41       | н           |                | н              |      |
| Benzo (k) fluoranthene              | n              | ND     |       | 0.0110 | **         | ,,       | н           | н              | n              |      |
| Benzo (ghi) perylene                | н              | ND     |       | 0.0110 | *          | *        |             |                | D              |      |
| series (Biri) her krous             |                | ND     |       | 0.0110 | "          |          | n           | ,              | н              |      |
| harcene                             |                |        |       |        |            |          |             |                |                |      |
| Chrysene<br>Dibenz (a,h) anthracene | н              | ND     |       | 0.0110 | 11         | в        |             |                |                |      |

TestAmerica - Seattle, WA

7 100





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                       | Method    | Result | MDL*  | MRL    | Units      | Dil     | Batch       | Prepared       | Analyzed       | Notes |
|-------------------------------|-----------|--------|-------|--------|------------|---------|-------------|----------------|----------------|-------|
| BPK0570-10 (GW4@17.5')        |           | Soi    |       |        | Sampl      | ed: 11/ | 17/06 10:45 |                |                |       |
| Fluorene                      | 8270C-SIM | ND     |       | 0.0110 | mg/kg dry  | lx      | 6K27029     | 11/27/06 10:39 | 12/02/06 12:11 |       |
| Indeno (1,2,3-cd) pyrene      |           | ND     |       | 0.0110 | н          | u       | *           |                | н              |       |
| I-Methylnaphthalene           | H         | ND     | ***** | 0.0110 | н          |         | u           |                | м —            |       |
| 2-Methylnaphthalene           | н         | ND     |       | 0.0110 | н          |         | ,           |                | 11             |       |
| Naphthalene                   |           | ND     |       | 0.0110 | н          | *       | 11          | tr             | Ħ              |       |
| Phenanthrene                  |           | ND     | 23 11 | 0.0110 | h          | *       | þ           |                |                |       |
| Pyrene                        | a         | ND     |       | 0.0110 | н          | *       | H           |                | h              |       |
| Surrogate(s): p-Terphenyl-d14 |           |        | 80.1% |        | 50 - 147 % | н       |             |                | er             |       |
| BPK0570-11 (GW5@7.5')         |           | Soi    | ı     |        | Sampl      | ed: 11/ | 17/06 12:27 |                |                |       |
| Acenaphthene                  | 8270C-ŠIM | ND     |       | 0.0108 | mg/kg dry  | lx      | 6K27029     | 11/27/06 10:39 | 12/02/06 12:36 | 27    |
| Acenaphthylene                |           | ND     |       | 0.0108 |            |         |             | н              | H              |       |
| Anthracene                    | n         | ND     |       | 0.0108 | **         | "       |             | н              | н              |       |
| Benzo (a) anthracene          | н         | ND     |       | 0.0108 | Ħ          | *       |             | *              | н              |       |
| Benzo (a) pyrene              |           | ND     |       | 0.0108 | m          |         |             | н              |                |       |
| Benzo (b) fluoranthene        |           | ND     |       | 0.0108 | "          |         |             | н              | #              |       |
| Benzo (k) fluoranthene        | ii ii     | ND     |       | 8010.0 | н          | *       |             | н              | н              |       |
| Benzo (ghi) perylene          | n         | ND     |       | 0,0108 | *          | н       |             | н              | *              |       |
| Chrysene                      | ,         | ND     |       | 0.0108 |            | *       | *           | н              | H              |       |
| Dibenz (a,h) anthracene       |           | ND     |       | 0.0108 | *          |         | **          | н              |                |       |
| luoranthene                   | W         | ND     |       | 0.0108 |            |         | н           | Ħ              | н              |       |
| luorene                       | H         | ND     |       | 0.0108 | 4          |         | *           | n              | н              |       |
| ndeno (1,2,3-cd) pyrene       | м         | ND     |       | 0.0108 | Ħ          | e       | *           |                | H              |       |
| -Methylnaphthalene            | ii .      | 1,11   |       | 0.0108 | •          |         | 9           |                |                |       |
| henanthrene                   |           | ND     |       | 0.0108 | *          | u       | #           | н              | *              |       |
| Pyrene                        | и         | ND     |       | 0.0108 | *          | "       | ir .        |                | "              |       |
| Surrogate(s): p-Terphenyl-d14 |           |        | 106%  |        | 50 - 147 % | н       |             |                | "              |       |
| BPK0570-11RE1 (GW5@7.5')      |           | Soil   | !     |        | Sampl      | ed: 11/ | 17/06 12:27 |                |                |       |

0.108

0.108

mg/kg dry

50 - 147 %

10x

6K27029

TestAmerica - Seattle, WA

2-Methylnaphthalene

Surrogate(s): p-Terphenyl-d14

Naphthalene

8270C-SIM

2.77

2.46

95.4%

Kate Haney Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

11/27/06 10:39

12/02/06 14:18





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

Report Created: 12/08/06 18:57

#### Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

TestAmerica - Seattle, WA

| Analyte                  | Method    | Result   | MDL*  | MRL    | Units     | Dil      | Batch      | Prepared       | Analyzed       | Notes |
|--------------------------|-----------|----------|-------|--------|-----------|----------|------------|----------------|----------------|-------|
| BPK0570-12 (GW5@17.5')   |           | Soi      |       |        | Sampl     | ed: 11/1 | 7/06 12:45 | 7              | 17             | 111   |
| Acenaphthene             | 8270C-SIM | I W W ND |       | 0.0111 | mg/kg dry | lx       | 6K27029    | 11/27/06 10:39 | 12/02/06 13:02 |       |
| Acenaphthylene           |           | ND       |       | 0.0111 | "         |          | н          | **             | И              |       |
| Anthracene               | *         | ND       |       | 0.0111 | *         |          | *          | н              | н              |       |
| Benzo (a) anthracene     | H         | ND       |       | 0.0111 |           |          | 'n         | u              | и Года         |       |
| Benzo (a) pyrene         | н н       | ND       | -     | 0.0111 |           | H 7      | **         |                | н              |       |
| Benzo (b) fluoranthene   | 10        | ND       |       | 0.0111 | **        | н        | *          |                | н              |       |
| Benzo (k) fluoranthene   | н         | ND       |       | 0.0111 | **        |          | H          |                |                |       |
| Benzo (ghi) perylene     | u         | ND       |       | 0.0111 | *         |          | *          | H              |                |       |
| Chrysene                 |           | ND       |       | 0.0111 |           |          |            | N .            |                |       |
| Dibenz (a,h) anthracene  | #         | ND       |       | 0.0111 |           | *        | **         | 14             | 4              |       |
| Fluoranthene             | п         | ND       | ***** | 0.0111 | *         |          | *          | н              | le .           |       |
| Fluorene                 | H         | ND       |       | 0.0111 | **        | •        | *          | п              | н              |       |
| Indeno (1,2,3-cd) pyrene |           | ND       |       | 0.0111 | В         | 9.       |            | n              | a              |       |
| l-Methylnaphthalene      | #         | ND       |       | 0.0111 | u         |          |            | а              | *              |       |
| 2-Methylnaphthalene      | н         | 0.0127   | ***** | 0.0111 |           |          |            | *              | n              |       |
| Naphthalene              | н         | ND       |       | 0.0111 | **        |          |            |                |                |       |
| Phenanthrene             | h         | ND       |       | 0.0111 |           |          |            |                |                |       |
| Pyrene                   | H         | ND       |       | 0.0111 | н         |          | N N        | *              | н              |       |

TestAmerica - Seattle, WA





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Physical Parameters by APHA/ASTM/EPA Methods

TestAmerica - Seattle, WA

| Analyte    |             | Method            | Result | MDL*                 | MRL  | Units | Dil        | Batch       | Prepared       | Analyzed       | Notes |
|------------|-------------|-------------------|--------|----------------------|------|-------|------------|-------------|----------------|----------------|-------|
| BPK0570-01 | (GW1@27.5') |                   | Soil   | , e4e                |      | Samp  | oled: 11/1 | 16/06 10:30 | :              |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 93.9   |                      | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00:00 |       |
| BPK0570-02 | (GW1@17.5') |                   | Soil   |                      |      | Samp  | oled: 11/1 | 16/06 10:03 |                |                |       |
| Dry Weight | 20000       | BSOPSPL003R0<br>8 | 91.8   | *****                | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00:00 | 1-174 |
| BPK0570-03 | (SB1@12.5') |                   | Soil   |                      |      | Samp  | oled: 11/1 | 16/06 13:20 |                |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 86.6   | 1                    | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00:00 | uto ( |
| BPK0570-04 | (SB1@7.5')  |                   | Soil   |                      |      | Samp  | oled: 11/  | 16/06 13:15 |                |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 92.3   |                      | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00:00 |       |
| BPK0570-05 | (GW3@7.5')  |                   | Soil   |                      |      | Samı  | oled: 11/1 | 16/06 14:35 | 0.00           |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 89.2   | 3 <u></u> 3          | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00:00 |       |
| BPK0570-06 | (GW3@17.5') |                   | Soil   |                      |      | Samj  | oled: 11/  | 16/06 14:50 |                |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 89.9   |                      | 1.00 | %     | lx         | 6K30051     | 11/30/06 15 18 | 12/01/06 00:00 |       |
| BPK0570-07 | (GW2@12.5') |                   | Soil   |                      |      | Sami  | oled: 11/  | 17/06 08:39 |                |                | Ŋ     |
| Dry Weight |             | BSOPSPL003R0<br>8 | 90.4   |                      | 1.00 | %     | lx         | 6K30051     | 11/30/06 15:18 | 12/01/06 00 00 | 20    |
| BPK0570-08 | (GW2@17.5') |                   | Soil   |                      |      | Samı  | oled: 11/  | 17/06 08:50 |                |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 88.8   |                      | 1.00 | %     | lx         | 6K30050     | 11/30/06 15:17 | 12/01/06 00:00 |       |
| BPK0570-09 | (GW4@7.5')  |                   | Soil   |                      |      | Samj  | pled: 11/  | 17/06 10:32 |                |                |       |
| Dry Weight | 14          | BSOPSPL003R0<br>8 | 93.1   | (2004)               | 1.00 | %     | lx         | 6K30050     | 11/30/06 15:17 | 12/01/06 00:00 |       |
| BPK0570-10 | (GW4@17.5') |                   | Soil   |                      |      | Sam   | oled: 11/  | 17/06 10:45 |                |                |       |
| Dry Weight |             | BSOPSPL003R0<br>8 | 90.2   | ( <del>)      </del> | 1.00 | 9/6   | lx         | 6K30050     | 11/30/06 15:17 | 12/01/06 00:00 |       |
| BPK0570-11 | (GW5@7.5')  |                   | Soil   |                      |      | Sam   | pled: 11/  | 17/06 12:27 |                |                |       |

TestAmerica - Seattle, WA

Jaw Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

Physical Parameters by APHA/ASTM/EPA Methods

TestAmerica - Seattle, WA

| Analyte    |             | Method            | Result | MDL* | MRL  | Units | Dil        | Batch      | Prepared       | Analyzed       | Notes |
|------------|-------------|-------------------|--------|------|------|-------|------------|------------|----------------|----------------|-------|
| BPK0570-11 | (GW5@7.5')  |                   | Soil   | 1.2  |      | Samp  | oled: 11/1 | 7/06 12:27 |                | H ==           |       |
| Dry Weight | 14 1        | BSOPSPL003R0<br>8 | 91,5   |      | 1.00 | %     | lx         | 6K30050    | 11/30/06 15:17 | 12/01/06 00:00 | 1,2   |
| BPK0570-12 | (GW5@17.5') | A 10.00           | Soil   |      |      | Samp  | oled: 11/1 | 7/06 12:45 |                |                |       |
| Dry Weight |             | BSOPSPL003R0      | 90.3   |      | 1.00 | %     | lx         | 6K30050    | 11/30/06 15 17 | 12/01/06 00:00 | -     |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

п

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

#### Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte                                                                                                                                                                                                                                                                        | Method                   | Result                                         | MDL*          | MRL                                                                                 | Units                                              | Dil      | Batch                  | Prepared                             | Analyzed       | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|---------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------|------------------------|--------------------------------------|----------------|-------|
| BPK0570-01 (GW1@27.5')                                                                                                                                                                                                                                                         |                          | Soi                                            |               |                                                                                     | Sampl                                              | ed: 11/  | 16/06 10:30            |                                      |                | 11    |
| tert-Amyl Methyl Ether                                                                                                                                                                                                                                                         | EPA 8260B                | ND                                             |               | 0.36 m                                                                              | ng/kg dry                                          | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21:10 |       |
| Benzene                                                                                                                                                                                                                                                                        | <b>H</b>                 | 0.14                                           | *****         | 0.01                                                                                | n                                                  |          | n                      |                                      |                |       |
| tert-Butyl Alcohol                                                                                                                                                                                                                                                             | "                        | ND                                             |               | 3.6                                                                                 | r                                                  |          |                        | •                                    |                |       |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                        | н                        | ND                                             | ****          | 0.04                                                                                |                                                    | н        |                        | P P                                  | н              |       |
| 1,2-Dichloroethane (EDC)                                                                                                                                                                                                                                                       | н                        | ND                                             |               | 0.04                                                                                |                                                    |          |                        |                                      | 4              |       |
| Diisopropyl ether                                                                                                                                                                                                                                                              | **                       | ND                                             |               | 0.36                                                                                | *                                                  | *        | m m                    |                                      |                |       |
| Ethyl tert-butyl ether                                                                                                                                                                                                                                                         | *                        | ND                                             |               | 0.36                                                                                | pt.                                                |          | "                      | и                                    | м              |       |
| Ethanol                                                                                                                                                                                                                                                                        | H                        | ND                                             |               | 14                                                                                  | Ħ                                                  |          |                        |                                      | н              |       |
| Ethylbenzene                                                                                                                                                                                                                                                                   | *                        | ND                                             |               | 0.07                                                                                | 0                                                  | "        | P .                    | н                                    | и —            |       |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                        | M                        | ND                                             |               | 0.36                                                                                | n                                                  | *        | 4:1                    |                                      | н              |       |
| Toluene                                                                                                                                                                                                                                                                        |                          | 0.38                                           |               | 0.07                                                                                | н                                                  |          | n                      |                                      | *              |       |
| o-Xylene                                                                                                                                                                                                                                                                       | н                        | ND                                             |               | 0.07                                                                                |                                                    |          | н                      | н                                    | 16             |       |
| m,p-Xylene                                                                                                                                                                                                                                                                     | н                        | ND                                             |               | 0.14                                                                                | н                                                  |          |                        | н                                    | n              |       |
| Xylenes (total)                                                                                                                                                                                                                                                                | 89                       | ND                                             |               | 0.21                                                                                | *                                                  |          | "                      | 888                                  | H              |       |
| Surrogate(s): 1,2-DCA-d4                                                                                                                                                                                                                                                       |                          |                                                | 93.0%         |                                                                                     | 75 - 125 %                                         | "        |                        |                                      | и              |       |
| Surrogale(s): 1,2-DCA-44                                                                                                                                                                                                                                                       |                          |                                                |               |                                                                                     | ac 10000                                           | "        |                        |                                      | "              |       |
| Surrogate(s): 1,2-DCA-d4  Toluene-d8                                                                                                                                                                                                                                           |                          |                                                | 101%          |                                                                                     | 75 - 125 %                                         |          |                        |                                      |                |       |
| • 17                                                                                                                                                                                                                                                                           |                          |                                                | 101%<br>98.6% |                                                                                     | 75 - 125 %<br>75 - 125 %                           | **       |                        |                                      | "              |       |
| Toluene-d8                                                                                                                                                                                                                                                                     |                          |                                                | 98.6%         |                                                                                     | 75 - 125 %                                         |          |                        |                                      | n .            |       |
| Toluene-d8                                                                                                                                                                                                                                                                     |                          | Soil                                           | 98.6%         |                                                                                     | 75 - 125 %                                         |          | 16/06 10:03            | , i                                  | "              |       |
| Toluene-d8<br>4-BFB                                                                                                                                                                                                                                                            | EPA 8260B                | <b>Soi</b> l<br>ND                             | 98.6%         |                                                                                     | 75 - 125 %                                         |          | 16/06 10:03<br>6K27048 | 11/27/06 13/30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB BPK0570-02 (GW1@17.5')                                                                                                                                                                                                                                        | EPA 8260B                |                                                | 98.6%         |                                                                                     | 75 - 125 %<br>Sample                               | ed: 11/  |                        | 11/27/06 13/30                       | 11/27/06 21:49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether                                                                                                                                                                                                               | EPA 8260B<br>"           | ND                                             | 98.6%         | 0.35 m                                                                              | 75 - 125 %<br>Sample                               | ed: 11/1 |                        | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether  Benzene                                                                                                                                                                                                      | EPA 8260B<br>"<br>"      | ND<br>0.16                                     | 98.6%         | 0.35 m<br>0.01                                                                      | 75 - 125 %<br>Sample                               | ed: 11/1 |                        | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether  Benzene tert-Butyl Alcohol                                                                                                                                                                                   | EPA 8260B<br>"<br>"<br>" | ND<br><b>0.16</b><br>ND                        | 98.6%         | 0.35 m<br>0.01<br>3.5                                                               | 75 - 125 %  Sample  ng/kg dry  "                   | ed: 11/1 |                        | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB)                                                                                                                                                            | EPA 8260B " " " "        | ND<br><b>0.16</b><br>ND<br>ND                  | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04                                                       | 75 - 125 %  Sample  ng/kg dry  """                 | lx<br>"  |                        | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC)                                                                                                                                   | EPA 8260B " " " " "      | ND<br><b>0.16</b><br>ND<br>ND<br>ND            | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04                                               | 75 - 125 %  Sample  sig/kg dry  """  """  """      | lx<br>"  | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether                                                                                                                 | EPA 8260B " " " " " "    | ND 0.16 ND ND ND ND                            | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35                                       | 75 - 125 %  Sample  rg/kg dry  " " "               | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether                                                                                          | EPA 8260B                | ND 0.16 ND ND ND ND ND ND                      | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35                               | 75 - 125 %  Sample  ng/kg dry  """  """  """  """  | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol                                                                                  | EPA 8260B                | ND 0.16 ND ND ND ND ND ND ND                   | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35                               | 75 - 125 %  Sample  ng/kg dry  " " "               | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene  tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene                                                                    | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35<br>14                         | 75 - 125 %  Sample  ng/kg dry  " " " "             | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene  tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ether Toluene                                    | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35<br>14<br>0.07                 | 75 - 125 %  Sample  ng/kg dry  " " " " "           | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether  Benzene  tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ether Toluene o-Xylene                          | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35<br>14<br>0.07<br>0.35<br>0.07 | 75 - 125 %  Sample  ng/kg dry  " " " " " " "       | ed: 11/1 | 6K27048                | 11/27/06 13:30 " " " " " " " " " " " | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene  tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethyl tert-butyl ether Ethylbenzene Methyl tert-butyl ether Toluene D-Xylene n,p-Xylene | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m<br>0.01<br>3.5<br>0.04<br>0.04<br>0.35<br>0.35<br>14<br>0.07<br>0.35<br>0.07 | 75 - 125 %  Sample  ng/kg dry  " " " " " " " "     | lx       | 6K27048                | 11/27/06 13:30                       | 11/27/06 21:49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether Benzene tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ether Toluene o-Xylene m,p-Xylene Xylenes (total) | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m 0.01 3.5 0.04 0.04 0.35 0.35 14 0.07 0.35 0.07 0.07                          | 75 - 125 %  Sample  ng/kg dry  " " " " " " " " " " | lx       | 6K27048                |                                      | 11/27/06 21.49 |       |
| Toluene-d8 4-BFB  BPK0570-02 (GW1@17.5')  tert-Amyl Methyl Ether  Benzene  tert-Butyl Alcohol 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ether Toluene                                   | EPA 8260B                | ND 0.16 ND | 98.6%         | 0.35 m 0.01 3.5 0.04 0.04 0.35 0.35 14 0.07 0.35 0.07 0.07                          | 75 - 125 %  Sample  ng/kg dry                      | ed: 11/1 | 6K27048                |                                      | 11/27/06 21.49 |       |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

#### Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

|                                                                                                                                                                                                                                             |                           | Method         | Result                                         | MDL*  | MRL                                                                       | Units            | Dil                                 | Batch                 | Prepared                                   | Analyzed       | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|------------------------------------------------|-------|---------------------------------------------------------------------------|------------------|-------------------------------------|-----------------------|--------------------------------------------|----------------|-------|
| BPK0570-03 (                                                                                                                                                                                                                                | (SB1@12.5')               |                | Soi                                            | 1     |                                                                           | Sampl            | ed: 11/1                            | 6/06 13:20            |                                            |                |       |
| tert-Amyl Methyl Et                                                                                                                                                                                                                         | ther                      | EPA 8260B      | ND                                             |       | 0.39                                                                      | mg/kg dry        | lx                                  | 6K27048               | 11/27/06 13:30                             | 11/27/06 22:19 |       |
| Benzene                                                                                                                                                                                                                                     |                           | tı             | 0.73                                           |       | 0.02                                                                      | 0                | *                                   | 10                    | **                                         | и              |       |
| tert-Butyl Alcohol                                                                                                                                                                                                                          |                           | **             | ND                                             |       | 3.9                                                                       |                  |                                     | н                     | η                                          |                |       |
| 1,2-Dibromoethane (                                                                                                                                                                                                                         | (EDB)                     | 28             | ND                                             |       | 0.04                                                                      |                  |                                     | н                     | # <b>#</b>                                 | и              |       |
| 1,2-Dichloroethane (                                                                                                                                                                                                                        | (EDC)                     | *              | ND                                             |       | 0.04                                                                      |                  |                                     |                       | **                                         | н              |       |
| Diisopropyl ether                                                                                                                                                                                                                           |                           | *              | ND                                             |       | 0.39                                                                      |                  | а                                   | 4                     | н                                          | н              |       |
| Ethyl tert-butyl ether                                                                                                                                                                                                                      | r                         | н              | ND                                             |       | 0.39                                                                      | 10               |                                     | н                     | H                                          |                |       |
| Ethanol                                                                                                                                                                                                                                     |                           | ri             | ND                                             |       | 16                                                                        | •                |                                     |                       | **                                         | u u            |       |
| Ethylbenzene                                                                                                                                                                                                                                |                           | 10             | 0.18                                           | ***** | 0.08                                                                      | #                | п                                   | н                     | 11                                         |                |       |
| Methyl tert-butyl ethe                                                                                                                                                                                                                      | er                        |                | ND                                             |       | 0.39                                                                      | н                |                                     | *                     | **                                         | и              |       |
| Toluene                                                                                                                                                                                                                                     |                           | **             | 1.7                                            |       | 0.08                                                                      |                  |                                     |                       | **                                         |                |       |
| o-Xylene                                                                                                                                                                                                                                    |                           | м              | 0.18                                           |       | 0.08                                                                      | n                |                                     |                       | н                                          | 11             |       |
| m,p-Xylene                                                                                                                                                                                                                                  |                           | H 25           | 0.72                                           |       | 0.16                                                                      | п                | н                                   | n                     | *                                          | н              |       |
| Xylenes (total)                                                                                                                                                                                                                             |                           |                | 0.90                                           |       | 0.23                                                                      | п                | - us                                |                       | **                                         | vi             |       |
| Surrogate(s):                                                                                                                                                                                                                               | 1,2-DCA-d4                |                |                                                | 93.6% |                                                                           | 75 - 125 %       | "                                   |                       |                                            | "              |       |
|                                                                                                                                                                                                                                             | Toluene-d8                |                |                                                | 103%  |                                                                           | 75 - 125 %       |                                     |                       |                                            | # ==           |       |
|                                                                                                                                                                                                                                             |                           |                |                                                |       |                                                                           |                  |                                     |                       |                                            |                |       |
|                                                                                                                                                                                                                                             | 4-BFB                     |                |                                                | 97.4% |                                                                           | 75 - 125 %       | н                                   |                       |                                            | "              |       |
| s                                                                                                                                                                                                                                           |                           |                |                                                |       |                                                                           |                  |                                     | ell                   |                                            | и              |       |
| BPK0570-04 (S                                                                                                                                                                                                                               | 4-BFB<br>SB1@7.5')        |                | Soi                                            |       |                                                                           |                  |                                     | 6/06 13:15            |                                            |                |       |
|                                                                                                                                                                                                                                             | SB1@7.5')                 | EPA 8260B      | <b>Soi</b><br>ND                               |       | 0.41                                                                      |                  |                                     | 6/06 13:15<br>6K29036 | 11/29/06 12:33                             | 11/29/06 19:11 |       |
| BPK0570-04 (Stert-Amyl Methyl Eth                                                                                                                                                                                                           | SB1@7.5')                 | EPA 8260B      |                                                | 1     | 0.41                                                                      | Sample           | ed: 11/1                            |                       | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth                                                                                                                                                                                                                        | SB1@7.5')                 | EPA 8260B<br>" | ND                                             | 1     |                                                                           | Sample           | ed: 11/1                            |                       | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth                                                                                                                                                                                                                        | SB1@7.5')<br>her          | EPA 8260B      | ND<br>0.14                                     |       | 0.02                                                                      | Sample           | ed: 11/1                            | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (l                                                                                                                                                               | SB1@7.5')<br>her<br>EDB)  | EPA 8260B      | ND<br>0.14<br>ND                               |       | 0.02<br>4.1                                                               | Sample           | ed: 11/1                            | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I                                                                                                                                      | SB1@7.5')<br>her<br>EDB)  | EPA 8260B      | ND<br>0.14<br>ND<br>ND                         |       | 0.02<br>4.1<br>0.04                                                       | Sample           | ed: 11/1                            | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I                                                                                                                                      | SB1@7.5') her  EDB) EDC)  | EPA 8260B      | ND<br>0.14<br>ND<br>ND<br>ND                   |       | 0.02<br>4.1<br>0.04<br>0.04                                               | Sample           | ed: 11/1                            | 6K29036               | 11/29/06 12:33<br>" " " " "                |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether                                                                                                                 | SB1@7.5') her  EDB) EDC)  | EPA 8260B      | ND 0.14 ND ND ND                               |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41                                       | Sample           | ed: 11/1                            | 6K29036               | 11/29/06 12:33 " " " " " " " "             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether<br>Ethyl tert-butyl ether<br>Ethanol                                                                            | SB1@7.5') her  EDB) EDC)  | EPA 8260B      | ND 0.14 ND ND ND ND ND ND ND                   |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41                               | Sample           | ed: 11/1 1x " " " " " " "           | 6K29036               | 11/29/06 12:33 " " " " " " " " "           |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether<br>Ethyl tert-butyl ether<br>Ethanol<br>Ethylbenzene                                                            | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND          |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41                               | Sample           | ed: 11/1 1x " " " " " " "           | 6K29036               | 11/29/06 12:33 " " " " " " " " " " "       |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether<br>Ethyl tert-butyl ether<br>Ethanol<br>Ethylbenzene<br>Methyl tert-butyl ether                                 | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41<br>16<br>0.08                 | Sample           | ed: 11/1 1x " " " " " " "           | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether<br>Ethyl tert-butyl ether<br>Ethanol<br>Ethylbenzene<br>Methyl tert-butyl ether<br>Toluene                      | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41<br>16<br>0.08<br>0.41         | Sample mg/kg dry | ed: 11/1 1x " " " " " " "           | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth<br>Benzene<br>tert-Butyl Alcohol<br>1,2-Dibromoethane (I<br>1,2-Dichloroethane (I<br>Diisopropyl ether<br>Ethyl tert-butyl ether<br>Ethanol<br>Ethylbenzene<br>Methyl tert-butyl ether<br>Toluene<br>o-Xylene          | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41<br>16<br>0.08<br>0.41         | Sample mg/kg dry | ed: 11/1 1x " " " " " "             | 6K29036               | 11/29/06 12:33                             |                |       |
| tert-Amyl Methyl Eth Benzene tert-Butyl Alcohol 1,2-Dibromoethane (I 1,2-Dichloroethane (I Diisopropyl ether Ethyl tert-butyl ether Ethyl tert-butyl ether Ethylbenzene Methyl tert-butyl ethe Toluene o-Xylene m,p-Xylene                  | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>0.41<br>16<br>0.08<br>0.41<br>0.08 | Sample mg/kg dry | ed: 11/1  lx  " " " " " " " " " " " | 6K29036               | 11/29/06 12:33 " " " " " " " " " " " " " " |                |       |
| tert-Amyl Methyl Eth Benzene tert-Butyl Alcohol 1,2-Dibromoethane (I 1,2-Dichloroethane (I Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ethe Toluene o-Xylene m,p-Xylene Xylenes (total)                 | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND | 93.8% | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>16<br>0.08<br>0.41<br>0.08<br>0.08 | Sample mg/kg dry | ed: 11/1                            | 6K29036               |                                            |                |       |
| tert-Amyl Methyl Eth Benzene tert-Butyl Alcohol 1,2-Dibromoethane (I 1,2-Dichloroethane (I Diisopropyl ether Ethyl tert-butyl ether Ethanol Ethylbenzene Methyl tert-butyl ether Toluene o-Xylene m,p-Xylene Xylenes (total)  Surrogate(s): | SB1@7.5') ther  EDB) EDC) | EPA 8260B      | ND 0.14 ND |       | 0.02<br>4.1<br>0.04<br>0.04<br>0.41<br>16<br>0.08<br>0.41<br>0.08<br>0.08 | Sample           | ed: 11/1                            | 6K29036               |                                            | 11/29/06 19:11 |       |

TestAmerica - Seattle, WA

nawexung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number:

248-1739

Report Created: 12/08/06 18:57

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Manager: Justin Foslien

Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte                  | Method                                | Result   | MDL*  | MRL  | Units      | Dil      | Batch      | Prepared       | Analyzed       | Notes  |
|--------------------------|---------------------------------------|----------|-------|------|------------|----------|------------|----------------|----------------|--------|
| BPK0570-05 (GW3@7.5')    | AT 1                                  | Soi      | il m  |      | Sampl      | ed: 11/1 | 6/06 14:35 |                |                |        |
| tert-Amyl Methyl Ether   | EPA 8260B                             | ND       |       | 0.40 | mg/kg dry  | lx       | 6K29036    | 11/29/06 12:33 | 11/29/06 19:41 | Dia ne |
| tert-Butyl Alcohol       | *                                     | ND -     |       | 4.0  | *          |          |            | н              | н              |        |
| 1,2-Dibromoethane (EDB)  | • .,                                  | ND       | - 10  | 0.04 | **         | *        |            | *              | *              |        |
| 1,2-Dichloroethane (EDC) | **                                    | ND       |       | 0.04 | *          |          | *          | н              | ń              |        |
| Diisopropyl ether        | *                                     | ND       |       | 0.40 |            |          | *          | n              | н              |        |
| Ethyl tert-butyl ether   | *                                     | ND       |       | 0.40 | *          | n        |            | н              | *              |        |
| Ethanol                  | *                                     | ND       |       | 16   | •          | *        | te         | н              | **             |        |
| Methyl tert-butyl ether  | н                                     | ND       |       | 0.40 | n          | н        |            |                | u              |        |
| Surrogate(s): 1,2-DCA-d4 |                                       |          | 109%  |      | 75 - 125 % | "        |            |                | #              |        |
| Toluene-d8               |                                       |          | 106%  |      | 75 - 125 % | "        |            |                | **             |        |
| 4-BFB                    |                                       |          | 100%  |      | 75 - 125 % | "        |            |                | **             |        |
| BPK0570-05RE1 (GW3@7.5') |                                       | Soi      | 1     |      | Sampl      | ed: 11/1 | 6/06 14:35 |                |                |        |
| Benzene                  | EPA 8260B                             | 8,6      |       | 0.79 | mg/kg dry  | 50x      | 6K30039    | 11/30/06 11:22 | 11/30/06 14:11 |        |
| Ethylbenzene             | N                                     | 25       |       | 4.0  | н          |          |            |                | н              |        |
| oluene                   | 11                                    | 99       |       | 4.0  | н          |          | и          | 11             | н              |        |
| -Xylene                  | *                                     | 44       |       | 4.0  |            | **       | н          | n              |                |        |
| n,p-Xylene               |                                       | 120      |       | 7.9  | я          |          | n          |                | н              |        |
| (ylenes (total)          | п                                     | 160      | -     | 12   | м          | **       | н          | н              | н              |        |
| Surrogate(s): 1,2-DCA-d4 | · · · · · · · · · · · · · · · · · · · |          | 91.8% |      | 75 - 125 % | lx       |            | -              | "              |        |
| Toluene-d8               |                                       |          | 102%  |      | 75 - 125 % | "        |            |                | ,,             |        |
| 4-BFB                    |                                       |          | 97.5% |      | 75 - 125 % | "        |            |                | н              |        |
| BPK0570-06 (GW3@17.5')   |                                       | Soi      | 1     |      | Sampl      | ed: 11/1 | 6/06 14:50 |                |                |        |
| ert-Amyl Methyl Ether    | EPA 8260B                             | ND       |       | 0.39 | mg/kg dry  | lx       | 6K30039    | 11/30/06 11:22 | 11/30/06 14:40 |        |
| enzene                   | u                                     | 0.53     |       | 0.02 |            | "        | Ħ          | n              |                |        |
| ert-Butyl Alcohol        | н                                     | ND       |       | 3.9  | н          | н        | *          | н              | н              |        |
| ,2-Dibromoethane (EDB)   |                                       | ND       |       | 0.04 | 41         | "        | *          |                | и              |        |
| ,2-Dichloroethane (EDC)  | *                                     | ND       |       | 0.04 | **         |          | #          | ,              | 84             |        |
| Disopropyl ether         | 11                                    | ND       |       | 0.39 | n          |          |            | n              | n              |        |
| thyl tert-butyl ether    |                                       | ND       |       | 0.39 | **         | н        | *          | er             | N              |        |
| thanol                   | n                                     | ND       | -     | 16   | и          |          | ы          | "              | n              |        |
| thylbenzene              | н                                     | 0.12     |       | 0.08 |            | ù        | n          | n              | н              |        |
| fethyl tert-butyl ether  | *                                     | ND       | 10    | 0.39 |            | н        | п          |                | н              |        |
| oluene                   | и                                     | 0.85     |       | 0,08 |            | *        | *          |                | (*)            |        |
| -Xylene                  | н                                     | 0.08     |       | 0.08 | н          | **       | н          | ш              | (M.)           |        |
| ı,p-Xylene               | н                                     | 0.30     |       | 0.16 | н          | **       | **         | н              | *              |        |
| (ylenes (total)          | r                                     | 0.39     |       | 0.23 |            | 11       |            | ,              | *              |        |
| Surrogate(s): 1,2-DCA-d4 |                                       | <u> </u> | 91.7% |      | 75 - 125 % | "        | 2140       | <del></del>    | и              |        |
| Toluene-d8               |                                       |          | 101%  |      | 75 - 125 % | н        | 597        |                | и              |        |

TestAmerica - Seattle, WA





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte                              |             | Method    | Result | MDL*    | MRL  | Units      | Di)      | Batch      | Prepared       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes |
|--------------------------------------|-------------|-----------|--------|---------|------|------------|----------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| BPK0570-06                           | (GW3@17.5') |           | Soi    | le on a |      | Sampl      | ed: 11/1 | 6/06 14:50 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     |
|                                      | 4-BFB       |           |        | 95.5%   |      | 75 - 125 % | lx       |            |                | 11/30/06 14:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31 =  |
| BPK0570-07                           | (GW2@12.5') |           | Soi    | i       |      | Sampl      | ed: 11/1 | 7/06 08:39 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| tert-Amyl Methyl B                   | ther        | EPA 8260B | ND     |         | 0,37 | mg/kg dry  | lx       | 6K30039    | 11/30/06 11:22 | 11/30/06 15:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Benzene                              |             | P         | 0.02   |         | 0.01 | **         |          |            | *              | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| tert-Butyl Alcohol                   |             | н         | ND     | ******  | 3.7  | 4          | •        | н          |                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 1,2-Dibromoethane                    | (EDB)       | n .       | ND     |         | 0.04 | H          |          |            | *              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 1,2-Dichloroethane                   | (EDC)       | н         | ND     |         | 0.04 | n          | *        |            | ú              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Diisopropyl ether                    | . ,         | n         | ND     |         | 0.37 |            | **       |            | *              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Ethyl tert-butyl ethe                | er          | н 🗵       | ND     |         | 0.37 | *          |          | *          | 99             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Ethanol                              |             | *         | ND     |         | 15   | H.         | **       | **         | **             | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Ethylbenzene                         |             | 17        | ND     | ****    | 0.07 |            | *        | н          | n              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Methyl tert-butyl et                 | her         | **        | ND     |         | 0.37 |            | H        | и          | н              | THE STATE OF THE S |       |
| Foluene                              |             | u         | ND     |         | 0.07 | и          | *        | **         | н              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| -Xylene                              |             | и         | ND     |         | 0.07 | и          | = •      | *          | н —            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| n,p-Xylene                           |             |           | ND     |         | 0.15 | н          | п        |            | н              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Kylenes (total)                      |             | н         | ND     |         | 0.22 | *          | н        | н          |                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Surrogate(s):                        | 1,2-DCA-d4  |           |        | 92.5%   |      | 75 - 125 % | Ħ        |            |                | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 0 .,                                 | Toluene-d8  |           |        | 101%    |      | 75 - 125 % | n        |            |                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|                                      | 4-BFB       |           |        | 97.3%   |      | 75 - 125 % | n        |            |                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BPK0570-08                           | (GW2@17.5') |           | Soi    | ı       |      | Sampl      | ed: 11/1 | 7/06 08:50 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| ert-Amyl Methyl E                    |             | EPA 8260B | ND     |         | 0.43 | mg/kg dry  | - lx     | 6K29036    | 11/29/06 12:33 | 11/29/06 21:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Benzene                              |             | H         | 0.33   |         | 0.02 | •          |          | *          | н              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| ert-Butyl Alcohol                    |             | n         | ND     |         | 4.3  |            |          |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| ,2-Dibromoethane                     | (EDB)       | н         | ND     |         | 0.04 |            | **       | н          | н              | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| ,2-Dichloroethane                    |             | n         | ND     |         | 0.04 |            |          |            | **             | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Diisopropyl ether                    | /           | н         | ND     |         | 0.43 |            |          | н          | 11             | т.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Sthyl tert-butyl ethe                | т           | м         | ND     |         | 0.43 |            | W        |            | a              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Ethanol                              | -           |           | ND     |         | 17   |            | **       |            | tr.            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| thylbenzene                          |             | н         | 0.87   |         | 0.09 | а          | *        |            | н              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Anyibenzene<br>Aethyl tert-butyl eth | her         | н         | ND     |         | 0.43 | 14         | ,        | *          |                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| ioluene                              | 101         | π         | 1.0    |         | 0.09 | **         | 19       |            | н              | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|                                      |             | *         | ND     |         | 0.09 |            | н        |            | н              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| -Xylene                              |             | N         |        |         |      | н          | н        |            | e e            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| n,p-Xylene                           |             |           | 0.28   |         | 0.17 |            |          | ·          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| (ylenes (total)                      |             |           | 0.34   |         | 0.26 |            |          |            | NE.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                      | 1,2-DCA-d4  |           |        | 91.8%   |      | 75 - 125 % | "        |            |                | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Surrogate(s):                        |             |           |        |         |      |            | "        |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Surrogate(s):                        | Toluene-d8  |           |        | 101%    |      | 75 - 125 % |          |            |                | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |

TestAmerica - Seattle, WA

Kato Dung

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

#### Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte                                             |            | Method    | Result   | MDL*          | MRL  | Units                    | Dil      | Batch      | Prepared       | Analyzed                                | Notes |
|-----------------------------------------------------|------------|-----------|----------|---------------|------|--------------------------|----------|------------|----------------|-----------------------------------------|-------|
| BPK0570-09 (                                        | GW4@7.5')  |           | Soi      | il III.       |      | Sampl                    | ed: 11/1 | 7/06 10:32 |                |                                         |       |
| tert-Amyl Methyl Etl                                | her        | EPA 8260B | ND       |               | 0.38 | mg/kg dry                | lx       | 6K29036    | 11/29/06 12:33 | 11/29/06 21:55                          |       |
| Benzene                                             |            | at .      | 0.48     | ti-man        | 0.02 | t t                      | 4        | u          | н              |                                         | 70    |
| tert-Butyl Alcohol                                  |            | и         | ND       |               | 3.8  | H                        | "        | **         | п              | н                                       |       |
| 1,2-Dibromoethane (                                 | EDB)       | *         | ND       |               | 0.04 | N                        | *        | н          | н              | н                                       |       |
| 1,2-Dichloroethane (                                | EDC)       | н         | ND       |               | 0.04 |                          | 6        |            |                |                                         |       |
| Diisopropyl ether                                   |            | н         | ND       |               | 0.38 | я                        | н        |            |                |                                         |       |
| Ethyl tert-butyl ether                              |            | tr        | ND       |               | 0.38 | н                        |          | н          | н              |                                         |       |
| Ethanol                                             |            | . "       | ND       |               | 15   | #                        | *        |            | н              |                                         |       |
| Methyl tert-butyl ethe                              | er         | н         | ND       |               | 0.38 | n                        |          | *          | н              | н                                       |       |
| Surrogate(s):                                       | 1,2-DCA-d4 |           |          | 105%          |      | 75 - 125 %               | "        |            |                | "                                       |       |
|                                                     | Toluene-d8 |           |          | 106%          |      | 75 - 125 %               | "        |            |                | "                                       |       |
|                                                     | 4-BFB      |           |          | 100%          |      | 75 - 125 %               | H        |            |                | и                                       |       |
| BPK0570-09RE1                                       | (GW4@7.5') |           | Soi      | il            |      | Sampl                    | ed: 11/1 | 7/06 10:32 |                |                                         |       |
| Ethylbenzene                                        |            | EPA 8260B | 8.2      |               | 0.75 | mg/kg dry                | 10x      | 6K30039    | 11/30/06 11:22 | 11/30/06 15:37                          |       |
| Coluene                                             |            | *         | 12       |               | 0.75 | "                        | H        |            |                | #                                       |       |
| -Xylene                                             |            |           | 15       |               | 0,75 |                          |          |            | *              | *                                       |       |
| -                                                   |            |           | 40       |               | 1.5  | n                        |          |            | P              | 11                                      |       |
| n,p-Xylene<br>(ylenes (total)                       |            | ń         | 40<br>54 | *****         | 2.3  |                          |          |            | Ħ              |                                         |       |
|                                                     |            |           |          | 03.404        | - Fi |                          |          |            |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |
|                                                     | 1,2-DCA-d4 |           |          | 93.4%<br>101% |      | 75 - 125 %<br>75 - 125 % | lx<br>"  |            |                | "                                       |       |
|                                                     | Toluene-d8 |           |          | 97.4%         |      | 75 - 125 %<br>75 - 125 % | ,,       |            |                |                                         |       |
|                                                     | 4-BFB      |           |          | 97.470        |      | 73 - 123 %               |          |            |                |                                         |       |
| 3PK0570-10 (C                                       | GW4@17.5') |           | Soi      | 1             |      | Sampl                    | ed: 11/1 | 7/06 10:45 |                |                                         |       |
| ert-Amyl Methyl Eth                                 | ier        | EPA 8260B | ND       |               | 0.38 | mg/kg dry                | lx       | 6K30039    | 11/30/06 11:22 | 11/30/06 16:06                          |       |
| enzene                                              |            | *         | 0.24     |               | 0.02 | 4                        | *        | *          | н              | *                                       |       |
| art-Butyl Alcohol                                   |            | M         | ND       |               | 3.8  | *                        |          | H          |                | Ħ                                       |       |
| ,2-Dibromoethane (E                                 | EDB)       | Ħ         | ND       |               | 0.04 | *                        |          | #          | н              | н                                       |       |
| ,2-Dichloroethane (E                                | EDC)       |           | ND       |               | 0.04 | 4                        |          | *          | *              | к                                       |       |
| Diisopropyl ether                                   |            | н         | ND       |               | 0.38 | P                        | n        | *          |                | n                                       |       |
| Ethyl tert-butyl ether                              |            | н         | ND       |               | 0.38 | н                        | н        | *          |                | н                                       |       |
| thanol                                              |            | н         | ND       |               | 15   | 4                        | н        | ĸ          | **             | H                                       |       |
| Ethylbenzene                                        |            | и         | ND       |               | 0.08 | ч                        | *        | •          | *              |                                         |       |
| Methyl tert-butyl ethe                              | er         |           | ND       |               | 0.38 | **                       | *        | H          |                | *                                       |       |
| oluene                                              |            | *         | 0.44     | *****         | 0.08 | 4                        | n        | "          | P              | *                                       |       |
|                                                     |            | н         | ND       |               | 0.08 | н                        |          | n          | 19             | н                                       |       |
| -Xylene                                             |            |           | 0.24     |               | 0.15 | *                        |          | н. П       | is             | 4                                       |       |
| •                                                   |            |           | 0.24     |               |      |                          |          |            |                |                                         |       |
| 1,p-Xylene                                          |            | я         | 0.31     |               | 0.23 | н                        | н        |            | 11             | н                                       |       |
| o-Xylene n,p-Xylene  Kylenes (total)  Surrogate(s): | 1,2-DCA-d4 | n         |          | 94.1%         | 0.23 | 75 - 125 %               | H H      |            | 1)             | н                                       |       |

TestAmerica - Seattle, WA

Xate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

## Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte                  | Method    | Result | MDL*   | MRL  | Units       | Dil      | Batch        | Prepared       | Analyzed       | Notes |
|--------------------------|-----------|--------|--------|------|-------------|----------|--------------|----------------|----------------|-------|
| BPK0570-10 (GW4@17.5')   |           | So     | i — E  |      | Sampl       | ed: 11/1 | 7/06 10:45   |                |                | 11    |
| 4-BFB                    |           |        | 98.0%  |      | 75 - 125 %  | lx       |              | 1 =            | 11/30/06 16:06 |       |
| BPK0570-11 (GW5@7.5')    |           | So     | il     |      | Sampl       | ed: 11/1 | 7/06 12:27   |                |                |       |
| tert-Amyl Methyl Ether   | EPA 8260B | ND     |        | 0.39 | mg/kg dry   | lx       | 6K29036      | 11/29/06 12:33 | 11/29/06 22:54 |       |
| Benzene                  | R         | 0.97   |        | 0.02 | 4           | 400      | *            | ч              | **             |       |
| tert-Butyl Alcohol       | n         | ND     |        | 3.9  | 11          | 44       | *            |                |                |       |
| 1,2-Dibromoethane (EDB)  | н         | ND     |        | 0.04 | 44          | •        | *            | 0              | es             |       |
| 1,2-Dichloroethane (EDC) |           | ND     |        | 0.04 |             | *        | # 2          | 69             | •              |       |
| Diisopropyl ether        | *         | ND     |        | 0,39 |             |          | **           | "              | 19             |       |
| Ethyl tert-butyl ether   | н         | ND     | *****  | 0.39 |             |          |              | **             | и              |       |
| Ethanol                  |           | ND     |        | 15   | н           | н        | 11           | н              | н              |       |
| Methyl tert-butyl ether  | nt.       | ND     |        | 0.39 | H           |          | *            | b              | n              |       |
| Surrogate(s): 1,2-DCA-d4 |           |        | 110%   |      | 75 - 125 %  | "        |              |                | #              |       |
| Toluene-d8               |           |        | 108%   |      | 75 - 125 %  | #        |              |                | n              |       |
| 4-BFB                    |           |        | 98.1%  |      | 75 - 125 %  | "        |              |                | "              |       |
| BPK0570-11RE1 (GW5@7.5') |           | Soi    | 1      |      | Sampl       | ed: 11/1 | 7/06 12:27   |                |                |       |
| thylbenzene              | EPA 8260B | 14     |        | 0.77 | mg/kg dry   | 10x      | 6K30039      | 11/30/06 11:22 | 11/30/06 16:40 |       |
| oluene                   | N         | 24     | ****** | 0.77 | н           |          | *            |                | #              |       |
| -Xylene                  |           | 24     |        | 0.77 | н           | ,        | u            | н              | м              |       |
| n,p-Xylene               |           | 67     |        | 1.5  |             |          |              | **             | *              |       |
| Tylenes (total)          | н         | 90     |        | 2.3  |             | и        |              |                | н              |       |
| Surrogate(s): 1,2-DCA-d4 |           |        | 93.5%  |      | 75 - 125 %  | lx       |              |                | н              |       |
| Toluene-d8               |           |        | 103%   |      | 75 - 125 %  | ,,,      |              |                | "              |       |
| 4-BFB                    |           |        | 96.8%  |      | 75 - 125 %  | н        |              |                | н              |       |
|                          |           | 6      |        |      | S1          | . 3. 446 | E/0 / 12 / F |                |                |       |
| BPK0570-12 (GW5@17.5')   |           | Soi    |        |      | <del></del> |          | 7/06 12:45   | ·              |                |       |
| ert-Amyl Methyl Ether    | EPA 8260B | ND     |        | 0.37 | mg/kg dry   | lx<br>"  | 6K30039      | 11/30/06 11:22 | 11/30/06 17:24 |       |
| enzene                   | •         | 0.09   |        | 0.03 |             | •        | "            | "              | *              |       |
| ert-Butyl Alcohol        |           | ND     |        | 3.7  |             |          | и            | *              | 41             |       |
| ,2-Dibromoethane (EDB)   | *         | ND     |        | 0.04 | "           |          | н            | u              | н              |       |
| ,2-Dichloroethane (EDC)  | -         | ND     |        | 0.04 | я.          | H        | "            | 20             | *              |       |
| iisopropyl ether         |           | ND     |        | 0.37 | н           | rt       | н            | "              |                |       |
| thyl tert-butyl ether    |           | ND     |        | 0.37 | н           | "        | 10000        | <b>H</b>       | "              |       |
| thanol                   | н         | ND     |        | 15   | n           | "        |              | ir             | lt             |       |
| thylbenzene              | н         | 0.19   |        | 0.07 | ĮI.         | н        | **           | "              | μ              |       |
| fethyl tert-butyl ether  | n E       | ND     |        | 0.37 | n           | *        | н            | н              | н              |       |
| oluene                   | н         | 0.52   |        | 0.07 | 19          | 4        | и            | **             | H              |       |
| -Xylene                  | n         | 0.27   |        | 0.07 |             | **       | *            | . 11           | *              |       |
|                          |           | 0.90   |        | 0.15 |             |          |              |                |                |       |

TestAmerica - Seattle, WA

1 hun xam





SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number:

248-1739

Report Created:

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Manager: Justin Foslien 12/08/06 18:57

#### Oxygenates by EPA Method 8260B

TestAmerica - Seattle, WA

| Analyte         |             | Method                                | Result | MDL*  | MRL Units      | Dil       | Batch        | Prepared       | Analyzed       | Notes |
|-----------------|-------------|---------------------------------------|--------|-------|----------------|-----------|--------------|----------------|----------------|-------|
| BPK0570-12      | (GW5@17.5') | · · · · · · · · · · · · · · · · · · · | Soil   | J     | Sai            | npled: 11 | /17/06 12:45 | 84             |                |       |
| Xylenes (total) |             | EPA 8260B                             | 1.2    |       | 0.22 mg/kg dry | 1x        | 6K30039      | 11/30/06 11:22 | 11/30/06 17:24 |       |
| Surrogate(s):   | 1,2-DCA-d4  |                                       | 2      | 91.9% | 75 - 125       | % "       |              |                | n              | -     |
| Darroguic(s).   | Toluene-d8  |                                       |        | 102%  | 75 - 125       | 96 "      |              |                | "              |       |
|                 | 4-BFB       |                                       |        | 99.3% | 75 - 125       | % "       |              |                | н              |       |

TestAmerica - Seattle, WA





Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

Report Created: 12/08/06 18:57

|                             | Volatile 1 | Petroleum   | Produc  | des le |            | I-Gx - La<br>- Seattle, W |     | ory Qual         | ity Cor      | ntrol .  | Results     |          |          |                |          |
|-----------------------------|------------|-------------|---------|--------|------------|---------------------------|-----|------------------|--------------|----------|-------------|----------|----------|----------------|----------|
| QC Batch: 6K29027           | Soil Pr    | eparation N | Aethod: | EPA    | 5030B (    | МеОН)                     |     |                  |              |          |             |          |          |                |          |
| Analyte                     | Method     | Result      | 1       | MDL*   | MRL        | Units                     | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes    |
| Blank (6K29027-BLK1)        |            |             |         |        |            |                           |     |                  | Extr         | acted:   | 11/29/06 11 | :15      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | ND          |         |        | 5.00       | mg/kg wet                 | lx  |                  |              | -        |             |          |          | 11/29/06 12:30 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 82.7%   |        | Li         | mits: 50-150%             | "   |                  |              |          |             |          |          | 11/29/06 12:30 |          |
| LCS (6K29027-BS1)           |            |             |         |        |            |                           |     |                  | Extr         | acted:   | 11/29/06 11 | :15      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | 46.4        |         |        | 5.00       | mg/kg wet                 | lx  |                  | 50.0         | 92.8%    | (75-125)    |          |          | 11/29/06 13:04 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 90.7%   |        | Li         | mits 50-150%              | "   | ě.               |              |          |             |          |          | 11/29/06 13:04 |          |
| Duplicate (6K29027-DUP1)    |            |             |         |        | QC Source  | : BPK0700-01              |     |                  | Extr         | acted:   | 11/29/06 11 | :15      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | ND          |         |        | 12.5       | mg/kg dry                 | lx  | ND               |              |          |             | 22.5%    | (40)     | 11/29/06 16:14 |          |
| Surrogate(s): 4-BFB (FID)   | ¥          | Recovery.   | 82.7%   | -      | Li         | mits: 50-150%             | "   |                  |              |          |             |          |          | 11/29/06 16:14 |          |
| Duplicate (6K29027-DUP2)    |            |             |         |        | QC Source  | : BPK0642-01              | RÉI |                  | Extr         | acted:   | 11/29/06 11 | :15      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | 3.30        | 570     |        | 2,53       | mg/kg wet                 | lx  | 3,39             |              |          |             | 2.69%    | (40)     | 11/29/06 21:41 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 82.9%   |        | Li         | mits: 50-150%             | ,,  |                  |              |          |             |          |          | 11/29/06 21:41 |          |
| Matrix Spike (6K29027-MS1)  |            |             |         |        | QC Source  | : BPK0700-01              |     |                  | Extr         | acted:   | 11/29/06 11 | :15      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | EE 131      |         |        | 12,5       | mg/kg dry                 | lx  | 2.67             | 125          | 103%     | (42-125)    |          |          | 11/29/06 17:14 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 95.2%   |        | Li         | mits: 50-150%             | н   |                  |              |          |             |          |          | 11/29/06 17:14 |          |
| QC Batch: 6K30024           | Soil Pro   | eparation M | lethod: | EPA    | . 5030B (1 | МеОН)                     |     |                  |              |          |             |          |          |                |          |
| nalyte                      | Method     | Result      | N       | /IDL*  | MRL        | Units                     | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes    |
| Blank (6K30024-BLK1)        |            |             |         |        |            |                           |     |                  | Extr         | acted:   | 11/30/06 10 | :49      |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | ND          |         |        | 5.00       | mg/kg wet                 | lx  |                  |              |          | -           |          |          | 11/30/06 16:34 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 94.7%   |        | Li         | mits: 50-150%             | n   |                  |              |          |             |          |          | 11/30/06 16:34 |          |
| CS (6K30024-BS1)            |            |             |         |        |            |                           |     |                  | Extr         | acted:   | 11/30/06 16 | ):49     |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | 51.6        |         |        | 5.00       | mg/kg wet                 | lx  |                  | 50.0         | 103%     | (75-125)    |          |          | 11/30/06 17:23 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 117%    |        | Li         | mits: 50-150%             | "   |                  |              |          |             |          |          | 11/30/06 17:23 |          |
| Ouplicate (6K30024-DUP1)    |            |             |         |        | QC Source  | : BPK0570-10              |     |                  | Extr         | acted:   | 11/30/06 10 | ):49     |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | 13.9        | -       |        | 3.80       | mg/kg dry                 | 1x  | 8.57             |              |          | -           | 47.4%    | (40)     | 11/30/06 19:25 | RP-3, A- |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 101%    |        | Li         | mits: 50-150%             | п   |                  |              |          |             |          |          | 11/30/06 19:25 |          |
| Matrix Spike (6K30024-MS1)  |            |             |         |        | QC Source  | : BPK0570-10              |     |                  | Extr         | acted:   | 11/30/06 10 | 0:49     |          |                |          |
| Gasoline Range Hydrocarbons | NWTPH-Gx   | 45.8        |         |        | 3.80       | mg/kg dry                 | lx  | 8.57             | 38.0         | 98.0%    | (42-125)    |          |          | 11/30/06 21:28 |          |
| Surrogate(s): 4-BFB (FID)   |            | Recovery:   | 98.7%   |        |            | mits: 50-150%             |     |                  |              |          |             |          |          | 11/30/06 21:28 |          |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739

Report Created: 12/08/06 18:57

Justin Foslien

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

TestAmerica - Seattle, WA

TestAmerica - Seattle, WA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

40.0 98.8%

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager:

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Laboratory Quality Control Results

248-1739 Justin Foslien Report Created: 12/08/06 18:57

TestAmerica - Seattle, WA QC Batch: 6K28004 Soil Preparation Method: EPA 5030B (MeOH) Spike %
Amt REC (Limits) % RPD Analyte MDL\* MRL Method Result Units Dil (Limits) Analyzed Notes Result Blank (6K28004-BLK1) Extracted: 11/28/06 09:45 C5-C6 Aliphatics WA ND 11/28/06 12:58 5,00 mg/kg wet lx MTCA-VPH C6-C8 Aliphatics ND 5.00 C10-C12 Aliphatics ND 5.00 C8-C10 Aromatics ND 5,00 C10-C12 Aromatics ND 5.00 C12-C13 Aromatics ND 5.00 Total VPH (TVPH) ND 35.0 4-BFB (FID) 96.7% Limits: 60-140% Surrogate(s): Recovery: 11/28/06 12:58 4-BFB (PID) 100% 60-140% LCS (6K28004-BS2) Extracted: 11/28/06 09:45 C5-C6 Aliphatics 4.99 5.00 mg/kg wet 5.00 99.8% (70-130) 11/28/06 14:39 MTCA-VPH C6-C8 Aliphatics 2.25 5.00 2.50 90.0% C10-C12 Aliphatics 3 65 5.00 146% C8-C10 Aromatics 11.1 5.00 10.0 111% 2.81 C10-C12 Aromatics 5.00 2.50 112% C12-C13 Aromatics 4.91 5.00 5.00 98 2%

| Duplicate (6K28    | 004-DUP1) |                | QC Source | : BPK0570-0 | 6RE1     |                | Ext | racted: | 11/28/06 ( | 9:45 |  |            |                |      |
|--------------------|-----------|----------------|-----------|-------------|----------|----------------|-----|---------|------------|------|--|------------|----------------|------|
| C5-C6 Aliphatics   |           | WA<br>MTCA-VPH | ND        |             | <br>3.90 | mg/kg dry      | lx  | ND      |            | -    |  | 5.62% (25) | 11/28/06 15:10 |      |
| C6-C8 Aliphatics   |           | **             | 4.18      |             | <br>3.90 | *              | Ħ   | 4,15    |            |      |  | 0.720% "   | *              |      |
| C10-C12 Aliphatics |           | n              | ND        |             | <br>3.90 |                | **  | ND      |            |      |  | 18.6% "    |                | BS-1 |
| C8-C10 Aromatics   |           | *              | ND        |             | <br>3,90 | *              | п   | ND      |            |      |  | 1.58% "    |                |      |
| C10-C12 Aromatics  |           |                | ND        |             | <br>3.90 |                | *   | ND      |            |      |  | 2.11% "    | н              |      |
| C12-C13 Aromatics  |           | n              | ND        |             | <br>3.90 |                | tr  | ND      |            |      |  | 3.24% "    | н              |      |
| Total VPH (TVPH)   |           |                | ND        |             | <br>27.3 | *              | "   | ND      |            |      |  | 0.805% *   | 1¢             |      |
| Surrogate(s): 4-   | BFB (FID) |                | Recovery: | 104%        | L        | imits: 60-140% | , " |         |            |      |  |            | 11/28/06 15:10 |      |
| 4-                 | BFB (PID) |                |           | 96.2%       |          | 60-140%        | 6 " |         |            |      |  |            | "              |      |

Limits: 60-140%

60-140%

35.0

39.5

92.3%

104%

Recovery:

TestAmerica - Seattle, WA

Total VPH (TVPH)

Surrogate(s):

4-BFB (FID)

4-BFB (PID)

Nawyaung

ate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.



11/28/06 14 39



Cambria - Seattle

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

## Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Laboratory Quality Control Results

TestAmerica - Seattle, WA

| QC Batch: 6K280          | 004 Soil Pre   | paration M | fethod: El | PA 5030B ( | MeOH)          | ell II | x 2              | nge-         |          |             | ×        |          |                |            |
|--------------------------|----------------|------------|------------|------------|----------------|--------|------------------|--------------|----------|-------------|----------|----------|----------------|------------|
| Analyte                  | Method         | Result     | MDL        | * MRL      | Units          | Dil    | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | ) Analyzed     | Notes      |
| Matrix Spike (6K28004-   | -MS1)          |            |            | QC Sourc   | e: BPK0570-12  | RE1    | = 47             | Ext          | racted:  | 11/28/06 09 | :45      |          |                |            |
| C5-C6 Aliphatics         | WA<br>MTCA-VPH | 7.26       |            | 3.69       | mg/kg dry      | lx     | 2,25             | 3.69         | 136%     | (70-130)    | ••       |          | 11/28/06 16:42 | MS-        |
| C6-C8 Aliphatics         |                | 10.5       |            | 3.69       | н              | **     | 7.96             | 1.85         | 137%     | "           |          |          |                | MS-3       |
| C10-C12 Aliphatics       | и              | 5.07       |            | 3.69       |                | н      | 2.62             | *            | 132%     |             | ŭ        |          |                | MS-3, BS-5 |
| C8-C10 Aromatics         | *              | 11.1       |            | 3.69       | *              | *      | 2.74             | 7.39         | 113%     |             |          |          |                |            |
| C10-C12 Aromatics        | н              | 4.24       |            | 3.69       | н              | н      | 2.09             | 1.85         | 116%     | **          |          |          | u              |            |
| C12-C13 Aromatics        | н              | 3,93       |            | 3.69       | n              |        | 0.668            | 3.69         | 88.4%    |             | ••       |          |                |            |
| Total VPH (TVPH)         | h              | 54.6       |            | 25.9       | #              |        | 21.4             | 29.6         | 112%     | н           |          |          |                |            |
| Surrogate(s): 4-BFB (FID | )              | Recovery:  | 112%       | L          | imits: 60-140% | "      |                  |              |          |             |          |          | 11/28/06 16:4  | 2          |
| 4-BFB (PID               | y .            |            | 91.0%      |            | 60-140%        | "      |                  |              |          |             |          |          | "              |            |

| Analyte            |                            | Method         | Result    | MDL*          | MRL  | Units                     | Dil | Source<br>Result | Spike<br>Amt | REC     | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes |
|--------------------|----------------------------|----------------|-----------|---------------|------|---------------------------|-----|------------------|--------------|---------|-------------|----------|----------|----------------|-------|
| Blank (6L060       | 21-BLK1)                   |                |           |               |      |                           |     |                  | Ext          | racted: | 12/06/06 09 | :31      |          |                |       |
| C5-C6 Aliphatics   |                            | WA<br>MTCA-VPH | ND        |               | 5.00 | mg/kg wet                 | lx  |                  | **           | ••      |             |          |          | 12/06/06 16:31 | -     |
| C6-C8 Aliphatics   |                            |                | ND        |               | 5.00 | n                         |     |                  |              |         |             |          |          |                |       |
| C8-C10 Aliphatics  |                            | и              | ND        |               | 5.00 |                           |     |                  |              | ••      |             |          | -        |                |       |
| C10-C12 Aliphatics |                            | п              | ND        |               | 5.00 |                           | н   | -                | -            |         |             |          |          |                |       |
| C8-C10 Aromatics   |                            | ."             | ND        | ****          | 5.00 | м .                       |     | **               |              |         |             |          |          | н              |       |
| C10-C12 Aromatics  |                            | Ж. и           | ND        |               | 5.00 |                           |     |                  |              |         |             |          |          | "              |       |
| C12-C13 Aromatics  |                            |                | ND        |               | 5.00 | н                         | *   |                  |              |         |             |          |          | *              |       |
| Total VPH (TVPH)   |                            | 58             | ND        | ***           | 35.0 | н                         |     |                  |              |         |             |          | •-       | *              |       |
| Surrogate(s):      | 4-BFB (FID)<br>4-BFB (PID) |                | Recovery: | 99.0%<br>101% | L    | imits: 60-140%<br>60-140% | - " |                  |              |         |             |          |          | 12/06/06 16:31 |       |
| LCS (6L06021       | 1-BS2)                     |                |           |               |      |                           |     |                  | Ext          | racted: | 12/06/06 09 | :31      | 36       |                |       |
| C5-C6 Aliphatics   |                            | WA<br>MTCA-VPH | 7.06      |               | 5.00 | mg/kg wet                 | lx  |                  | 8.00         | 88.2%   | (70-130)    |          | ••       | 12/07/06 08:38 |       |
| C6-C8 Aliphatics   |                            | **             | 6.08      |               | 5.00 | "                         | *   |                  | 4.00         | 152%    | **          |          |          | *              |       |
| C8-C10 Aliphatics  |                            | *              | 9.79      |               | 5.00 | to to                     | *   | **               | 8.00         | 122%    |             |          |          | n              |       |
| C10-C12 Aliphatics |                            | ,4             | 5.26      |               | 5.00 |                           | 8   |                  | 4.00         | 132%    | н           |          |          | w              |       |
| C8-C10 Aromatics   |                            | H .            | 16.9      |               | 5.00 | и                         | н   |                  | 16.0         | 106%    |             |          |          |                |       |
| C10-C12 Aromatics  |                            | "              | 4.55      |               | 5.00 | н                         |     |                  | 4.00         | 114%    | н           |          |          |                |       |
| C12-C13 Aromatics  |                            | <b>\$1</b>     | 6.92      |               | 5.00 | n                         | н   | 79               | 8.00         | 86.5%   | н           |          |          | *              |       |
| Total VPH (TVPH)   |                            | n              | 73.1      |               | 35.0 | p.                        | и   |                  | 64.0         | 114%    | *           |          |          | *              |       |
| Surrogate(s):      | 4-BFB (FID)<br>4-BFB (PID) |                | Recovery: | 113%<br>100%  | L    | imits: 60-140%<br>60-140% | "   |                  |              |         |             |          |          | 12/07/06 08 38 |       |





Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

Report Created: 12/08/06 18:57

# Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Laboratory Quality Control Results

| QC Batc            | h: 6L06021   | Soil Pre       | paration M | lethod: EPA | 5030B (   | МеОН)         | 32 (0.00) |                  |              |          |             |          |          |                |       |
|--------------------|--------------|----------------|------------|-------------|-----------|---------------|-----------|------------------|--------------|----------|-------------|----------|----------|----------------|-------|
| Analyte            | ш. Тр. же    | Method         | Result     | MDL*        | MRL       | Units         | Dil       | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes |
| Duplicate (6L)     | 06021-DUP1)  |                |            |             | QC Source | e: BPK0455-06 | RE3       |                  | Extr         | acted:   | 12/06/06 09 | :31      |          |                |       |
| C5-C6 Aliphatics   |              | WA<br>MTCA-VPH | ND         |             | 4.46      | mg/kg dry     | lx        | ND               | ••           |          |             | 2.34%    | (25)     | 12/06/06 18:57 |       |
| C6-C8 Aliphatics   |              | H              | 22.6       |             | 4.46      | 11            | *         | 21.1             | -            |          |             | 6.86%    | н        | •              | L     |
| C8-C10 Aliphatics  |              | н              | 29.8       |             | 4.46      | 11            | *         | 24.2             | -            |          |             | 20.7%    |          | •              |       |
| C10-C12 Aliphatics |              | **             | 45.6       |             | 4.46      | н             | ۳.        | 34.6             |              | T        |             | 27.4%    | "        | •              | R3, L |
| C8-C10 Aromatics   |              | n .            | 14.1       |             | 4.46      | 11            |           | 14.2             | -            |          |             | 0.707%   | . "      | •              |       |
| C10-C12 Aromatics  |              |                | 30.5       |             | 4.46      | н             | н         | 30.1             |              |          |             | 1.32%    |          |                |       |
| C12-C13 Aromatics  |              | *              | 15.9       |             | 4.46      |               | н         | 13.7             |              |          |             | 14.9%    | и        |                |       |
| Total VPH (TVPH)   |              | *              | 160        | ***         | 31.2      | ×             | *         | 140              |              |          |             | 13.3%    |          |                |       |
| Surrogate(s):      | .4-BFB (FID) | 21             | Recovery:  | 171%        | Li        | mits: 60-140% | n         |                  |              |          |             |          |          | 12/06/06 18:57 |       |
|                    | 4-BFB (PID)  |                |            | 89.2%       |           | 60-140%       | ti        |                  |              |          |             |          |          | "              |       |
| Matrix Spike (     | 6L06021-MS1) |                |            |             | QC Source | e: BPK0455-06 | RE3       |                  | Extr         | acted:   | 12/06/06 09 | :31      |          |                |       |
| C5-C6 Aliphatics   |              | WA<br>MTCA-VPH | 5.28       | 200         | 4.46      | mg/kg dry     | lx        | 0.928            | 7.14         | 61.0%    | (70-130)    |          |          | 12/07/06 03:09 | M     |
| C6-C8 Aliphatics   |              | 11             | 27.3       |             | 4.46      | *             | *         | 21.1             | 3.57         | 174%     | *           |          |          |                | M1, L |
| C8-C10 Aliphatics  |              | н              | 38.4       |             | 4.46      | H             | *         | 24.2             | 7.14         | 199%     |             |          |          |                | M     |
| C10-C12 Aliphatics |              | н              | 48.8       |             | 4.46      | *             | H         | 34.6             | 3.57         | 398%     | н           | •••      |          | •              | MI, L |
| C8-C10 Aromatics   |              | n              | 21.8       |             | 4.46      | ч             | п         | 14.2             | 14.3         | 53.1%    | *           | -        |          |                | M     |
| C10-C12 Aromatics  |              | *              | 30.9       | ***         | 4.46      | 11            | **        | 30.1             | 3.57         | 22.4%    | *           |          | -        | 14             | M:    |
| C12-C13 Aromatics  |              | N              | 17.3       |             | 4.46      | *             | **        | 13.7             | 7.14         | 50.4%    | 98          |          |          | н              | M     |
| Total VPH (TVPH)   |              |                | 200        |             | 31.2      | **            | **        | 140              | 57.1         | 105%     | р           |          |          | *              |       |





NWTPH-Dx

67.0

114%

90.9%

Recovery:

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Everett, WA 98208

8620 Holly Drive, Suite 210

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739 Justin Foslien Report Created:

12/08/06 18:57

#### Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results TestAmerica - Seattle, WA EPA 3550B QC Batch: 6K27031 Soil Preparation Method: Spike % (Limits) % (Limits) Analyzed Source Analyte Method Result MDL\* MRL Units Result Blank (6K27031-BLK1) Extracted: 11/27/06 10:42 Diesel Range Hydrocarbons NWTPH-Dx ND 10.0 mg/kg wet 12/06/06 14:08 Lube Oil Range Hydrocarbons ND 25.0 Surrogate(s): 2-FBP 106% Limits: 54-148% Recovery: 12/06/06 14:08 Octaco sane LCS (6K27031-BS1) Extracted: 11/27/06 10:42 NWTPH-Dx 61.7 66.7 92.5% (78-129) Diesel Range Hydrocarbons 10.0 mg/kg wet 12/06/06 14:35 lx Limits: 54-148% Surrogate(s): Recovery: 101% 12/06/06 14:35 Octacosane 87.6% 62-142% QC Source: BPK0570-01 Duplicate (6K27031-DUP1) Extracted: 11/27/06 10:42 Diesel Range Hydrocarbons NWTPH-Dx ND 10.6 mg/kg dry 12/06/06 15:01 Lube Oil Range Hydrocarbons ND 26.5 ND NR Limits: 54-148% Surrogate(s): 2-FBP 101% 12/06/06 15:01 Octacosane 86.8% 62-142% Duplicate (6K27031-DUP2) QC Source: BPK0569-10 Extracted: 11/27/06 10:42 NWTPH-Dx Diesel Range Hydrocarbons 164 10.7 mg/kg dry 12.3 28.6% (50) 12/06/06 15:27 26.8 103 Lube Oil Range Hydrocarbons \*\*\* 84.3 20.0% Surrogate(s): 2-FBP Limits: 54-148% 89.5% 12/06/06 15:27 Recovery: 92.7% 62-142% Octacosane Matrix Spike (6K27031-MS1) QC Source: BPK0570-01 Extracted: 11/27/06 10:42

10.6 mg/kg dry

Limits: 54-148%

62-142%

TestAmerica - Seattle, WA

Diesel Range Hydrocarbons

2-FBP

Octacosane

Surrogate(s):

Kate Haney, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

94.4% (46-155)



12/06/06 15:53

12/06/06 15:53



Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager:

248-1739 Justin Foslien Report Created:

12/08/06 18:57

# Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Laboratory Quality Control Results

TestAmerica - Seattle, WA

| QC Bate            | h: 6K27029                        | Soil Pro       | paration l | Method: EP.    | A 3545    |                           |                |                  | mat "        |          |                | 190      |          |                                  |       |
|--------------------|-----------------------------------|----------------|------------|----------------|-----------|---------------------------|----------------|------------------|--------------|----------|----------------|----------|----------|----------------------------------|-------|
| Analyte            |                                   | Method         | Result     | MDL*           | MRL       | Units                     | Dil            | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)       | %<br>RPD | (Limits) | Analyzed                         | Notes |
| Blank (6K270       | 29-BLK1)                          |                |            |                |           |                           |                |                  | Extr         | acted:   | 11/27/06 10    | :39      | = % 0    | u Tuliu y                        | y     |
| C8-C10 Aliphatics  | - 1 - 1                           | WA             | ND         |                | 5.00      | mg/kg wet                 | lx             |                  |              |          |                |          |          | 12/01/06 11:57                   |       |
| C10-C12 Aliphatics |                                   | MTCA-EPH       | ND         | ***            | 5.00      | H                         |                |                  |              |          | -              |          | _        | н                                |       |
| C12-C16 Aliphatics |                                   |                | ND         |                | 5.00      | н                         | н              |                  |              |          |                |          |          |                                  |       |
| C16-C21 Aliphatics |                                   | 0              | ND         |                | 5.00      |                           |                |                  |              |          | 30-            | _        |          | = ====                           |       |
| C21-C34 Aliphatics |                                   | w <sub>e</sub> | ND         |                | 5.00      | 11                        | н              |                  |              |          |                |          |          | *                                |       |
| C8-C10 Aromatics   |                                   | às às          | ND         |                | 5.00      |                           | l <sub>µ</sub> |                  |              |          |                |          |          | 12/01/06 12:28                   |       |
| C10-C12 Aromatics  |                                   | H              | ND         |                | 5.00      | •                         | *              |                  |              | -        |                |          |          | н                                |       |
| C12-C16 Aromatics  |                                   | 11             | ND         |                | 5.00      | н                         | •              |                  |              |          |                |          |          |                                  |       |
| C16-C21 Aromatics  |                                   | 0              | ND         |                | 5.00      |                           | **             |                  |              |          |                |          |          |                                  |       |
| C21-C34 Aromatics  |                                   | tr             | ND         |                | 5.00      | н                         |                |                  |              |          |                |          |          |                                  |       |
| Surrogate(s):      | o-Terphenyl<br>I-Chlorooctadecane |                | Recovery:  | 88.0%<br>95.8% | L         | imits: 60-140%<br>60-140% | "              |                  | -            |          |                |          |          | 12/01/06 12:28<br>12/01/06 11:57 |       |
| LCS (6K27029       | P-BS1)                            |                |            |                |           |                           |                |                  | Extr         | acted:   | 11/27/06 10    | :39      |          |                                  |       |
| C8-C10 Aliphatics  |                                   | WA<br>MTCA-EPH | 7.77       | ***            | 5.00      | mg/kg wet                 | lx             |                  | 10.0         | 77.7%    | (50-150)       |          | ±.       | 12/01/06 13:00                   |       |
| C10-C12 Aliphatics |                                   | "              | 2.93       | ***            | 5.00      | и                         |                |                  | 3.33         | 88.0%    | (70-130)       |          |          | н                                |       |
| C12-C16 Aliphatics |                                   | н              | 6.25       |                | 5.00      | sa .                      |                |                  | 6.67         | 93.7%    | н              |          | _        |                                  |       |
| C16-C21 Aliphatics |                                   | н              | 9.36       |                | 5.00      | н                         | **             |                  | 10.0         | 93.6%    |                |          |          |                                  |       |
| C21-C34 Aliphatics |                                   | "              | 18.1       |                | 5.00      |                           | Tr .           |                  | 20.0         | 90.5%    | н              |          |          |                                  |       |
| C8-C10 Aromatics   |                                   |                | 3.01       |                | 5.00      | 11                        | #              |                  | 3.33         | 90.4%    | (50-150)       |          |          | 12/01/06 13:31                   |       |
| C10-C12 Aromatics  |                                   |                | 3.27       | _              | 5.00      | м                         | "              |                  | w            | 98.2%    | (70-130)       |          |          | *                                |       |
| C12-C16 Aromatics  |                                   | н              | 9.34       |                | 5.00      | n                         | *              |                  | 10.0         | 93.4%    | 11             |          |          | *                                |       |
| C16-C21 Aromatics  |                                   | n              | 16.6       |                | 5.00      | 11                        | *              |                  | 16.7         | 99.4%    | 11             |          |          | *                                |       |
| C21-C34 Aromatics  |                                   | e              | 28.9       |                | 5.00      | 11                        | *              |                  | 26.7         | 108%     | **             |          | **       | et                               |       |
| Surrogate(s):      | o-Terphenyl<br>I-Chlorooctadecane |                | Recovery:  | 92.8%<br>95.8% | L         | imits: 60-140%<br>60-140% | "              |                  |              |          |                |          |          | 12/01/06 13:31<br>12/01/06 13:00 |       |
| Matrix Spike (     | 6K27029-MS1)                      | 29             |            | 22.            | QC Source | : BPK0570-05              |                |                  | Extr         | acted:   | 11/27/06 10    | 39       |          |                                  |       |
| C8-C10 Aliphatics  |                                   | WA<br>MTCA-EPH | 17.6       |                | 5,51      | mg/kg dry                 | ix             | 30.1             | 11.0         | -114%    | (50-150)       |          |          | 12/01/06 14:03                   | MS    |
| C10-C12 Aliphatics |                                   | n              | 15.8       |                | 5.51      | н                         | ,              | 29.4             | 3,68         | -370%    | (70-130)       |          |          | n                                | MS    |
| C12-C16 Aliphatics |                                   | **             | 10.2       |                | 5.51      | h                         |                | 7.95             | 7.35         | 30.6%    | G <sub>h</sub> |          |          |                                  | MS    |
| C16-C21 Aliphatics |                                   | u              | 10.2       |                | 5.51      | H                         |                | ND               | 11.0         | 92.7%    | *              |          |          |                                  |       |
| C21-C34 Aliphatics |                                   |                | 20.0       |                | 5.51      | Ħ                         |                | ND               | 22.1         | 90.5%    | *              |          |          | ч                                |       |
| C8-C10 Aromatics   |                                   | "              | 23.3       |                | 5.51      | н                         |                | 33.8             | 3,68         | -285%    | (50-150)       |          |          | 12/01/06 14:34                   | MS    |
| C10-C12 Aromatics  |                                   | н              | 19.1       |                | 5.51      | *                         | "              | 27.8             | **           | -236%    | (70-130)       |          |          | ."                               | MS    |
| C12-C16 Aromatics  |                                   | н              | 14.5       |                | 5.51      | н                         | "              | 9.73             | 11.0         | 43.4%    |                | -        |          | *                                | MS    |
| C16-C21 Aromatics  |                                   | H              | 16.8       |                | 5.51      | H                         | "              | ND               | 18.4         | 91.3%    | **             |          |          |                                  |       |
| C21-C34 Aromatics  |                                   | и              | 29.0       |                | 5.51      | **                        | "              | ND               | 29.4         | 98.6%    | **             |          |          |                                  |       |

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

C16-C21 Aliphatics

C21-C34 Aliphatics

C8-C10 Aromatics

C10-C12 Aromatics

C12-C16 Aromatics

C16-C21 Aromatics

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

ND

33.8

27.8

ND

ND

22.4 96.4%

18.7

29.9

21.4%

88.1%

100%

109%

7.69% "

39.0% "

49.0% "

29.9% "

10.7% "

12.0% "

Report Created:

12/08/06 18:57

|                    | Extracta                          | ble Petroleun  | 1 Hydroca  | rbons b        | CALL |           | H Policy M<br>- Seattle, W |     | d - Labo         | oratory      | Qua      | lity Con    | trol R   | esults   |                                  |           |
|--------------------|-----------------------------------|----------------|------------|----------------|------|-----------|----------------------------|-----|------------------|--------------|----------|-------------|----------|----------|----------------------------------|-----------|
| QC Bate            | h: 6K27029                        | Soil Pro       | paration M | lethod:        | EPA  | 3545      |                            |     |                  |              | , 1      |             | H2-      | 4        |                                  | 78-11-5   |
| Analyte            |                                   | Method         | Result     | M              | IDL* | MRL       | Units                      | Đil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed                         | Notes     |
| Matrix Spike       | (6K27029-MS1)                     |                |            |                |      | QC Source | : BPK0570-05               |     |                  | Extr         | acted:   | 11/27/06 10 | :39      |          | X #-                             | X=1       |
| Surrogate(s):      | o-Terphenyi<br>1-Chloroociadecane |                | Recovery:  | 85.3%<br>95.1% |      | Li        | mits: 60-140%<br>60-140%   |     |                  |              |          |             |          |          | 12/01/06 14:3-<br>12/01/06 14:0. |           |
| Matrix Spike I     | Oup (6K27029-MS                   | (D1)           |            |                |      | QC Source | : BPK0570-05               |     |                  | Extr         | acted:   | 11/27/06 10 | :39      |          |                                  |           |
| C8-C10 Aliphatics  |                                   | WA<br>MTCA-EPH | 31.0       | -              |      | 5,61      | mg/kg dry                  | lx  | 30.1             | 11.2         | 8.04%    | (50-150)    | 55.1%    | 6 (25)   | 12/01/06 15 06                   | MS-2, RP- |
| C10-C12 Aliphatics |                                   | ir             | 33.4       | -              |      | 5.61      | н                          | **  | 29,4             | 3.74         | 107%     | (70-130)    | 71.5%    | 6 "      |                                  | RP-       |
| C12-C16 Aliphatics |                                   | H              | 15.3       | ٠.             |      | 5.61      |                            | н   | 7.95             | 7.47         | 98.4%    | u           | 40.0%    | 6 "      |                                  | RP-       |
| C16-C21 Aliphatics |                                   | •              | 11.2       |                | - 25 | 5.61      | *                          | H   | ND               | 11.2         | 100%     | •           | 9.35%    | 6 "      | *                                |           |

5.61

5.61

5.61

5,61

5.61

C21-C34 Aromatics 32,7 5.61 Surrogate(s): o-Terphenyl Recovery: 93.0% Limits: 60-140% 100% I-Chloroociadecane 60-140%

21.6

34.6

31.5

19.6

18.7

12/01/06 15:38

12/01/06 15:38

MS-2, RP-1

RP-1

RP-1

12/01/06 15:06

TestAmerica - Seattle, WA





Cambria - Seattle

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Name: Project Number: Project Manager:

248-1739 Justin Foslien

Report Created: 12/08/06 18:57

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

|                            |          |               | Tes      | tAmerica  | - Seattle, V | VA. |                  |                    |            |                  |           |                |                      |
|----------------------------|----------|---------------|----------|-----------|--------------|-----|------------------|--------------------|------------|------------------|-----------|----------------|----------------------|
| QC Batch: 6K30060          | Soil Pre | paration Metl | hod: EPA | 3050B     |              |     | عليه             |                    | semi]      | 1.8              |           | 1 6116         | AL E                 |
| Analyte                    | Method   | Result        | MDL*     | MRL       | Units        | Dil | Source<br>Result | Spike %<br>Amt REC | (Limits)   | %<br>RPD         | (Limits)  | Analyzed       | Notes                |
| Blank (6K30060-BLK1)       | - ' -    |               |          |           |              |     |                  | Extracted:         | 11/30/06 1 | 7:12             |           | district.      | =0.11                |
| Lead                       | EPA 6020 | ND            |          | 0.500     | mg/kg wet    | lx  |                  |                    |            | 169 <del>-</del> | -         | 12/01/06 12:01 | II RL <sup>®</sup> V |
| LCS (6K30060-BS1)          |          |               |          |           |              |     |                  | Extracted:         | 11/30/06 1 | 7:12             |           | 51             |                      |
| Lead                       | EPA 6020 | 42.5          | _        | 0.500     | mg/kg wet    | 1x  |                  | 40.0 106%          | (80-120)   | -                |           | 12/01/06 11:14 |                      |
| Duplicate (6K30060-DUP1)   |          |               |          | QC Source | : BPK0570-   | 01  |                  | Extracted:         | 11/30/06 1 | 7:12             |           |                |                      |
| Lead                       | EPA 6020 | 1.29          |          | 0.532     | mg/kg dry    | lx  | 0.962            |                    |            | 29.1%            | (30)      | 12/01/06 11:32 |                      |
| Matrix Spike (6K30060-MS1) |          |               |          | QC Source | : BPK0570-   | D1  |                  | Extracted:         | 11/30/06 1 | 7:12             |           |                |                      |
| Lead =                     | EPA 6020 | 45.0          | ***      | 0.543     | mg/kg dry    | lx  | 0.962            | 43.5 101%          | (29-166)   | -                |           | 12/01/06 11:26 |                      |
| Post Spike (6K30060-PS1)   |          |               |          | QC Source | : BPK0570-   | 01  |                  | Extracted:         | 11/30/06 1 | 7:12             |           |                |                      |
| Lead                       | EPA 6020 | 0.0988        |          |           | ug/ml        | lx  | 0.00181          | 0.0995 97.5%       | (75-125)   |                  | + <u></u> | 12/01/06 11:20 |                      |





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210

Project Number:

248-1739

Report Created:

Everett, WA 98208

Project Manager: Justin Foslien

12/08/06 18:57

|                   |                         | Polychlorin | ated Biphe  |          | PA Methorica |               |     | atory Qu         | ality Co     | ontro    | l Result    | S        |          |                |       |
|-------------------|-------------------------|-------------|-------------|----------|--------------|---------------|-----|------------------|--------------|----------|-------------|----------|----------|----------------|-------|
| QC Batc           | h: 6K27027              | Soil Pr     | eparation M | ethod: E | PA 3550B     |               | F 8 |                  | Hill         |          | nage i      |          | ¥E       |                |       |
| Analyte           |                         | Method      | Result      | MDL      | * MRL        | Units         | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes |
| Blank (6K270      | 27-BLK1)                | = 11        |             |          |              |               |     |                  | Extra        | cted:    | 11/27/06 10 | ):36     |          |                | 4 E W |
| Aroclor 1016 [2C] |                         | EPA 8082    | ND          |          | 25.0         | ug/kg wet     | 1x  |                  |              |          |             | -        |          | 11/29/06 18:33 |       |
| Aroclor 1221      |                         |             | ND          |          | 50.0         |               |     |                  |              | -        |             |          |          | и              |       |
| Aroclor 1232      |                         | * 10        | ND          | •••      | 25.0         | n             | - " |                  |              |          | -           |          |          | н              |       |
| Aroclor 1242      |                         | и           | ND          | 4 -      | 25.0         |               | n   |                  |              |          |             |          |          | н              |       |
| Aroclor 1248      |                         | n           | ND          |          | 25.0         |               | **  |                  |              |          |             |          |          |                |       |
| Aroclor 1254      |                         | н           | ND          |          | 25.0         |               | н   | -                |              |          |             |          |          |                |       |
| Aroclor 1260 [2C] |                         | u           | ND          | ***      | 25.0         |               | н   |                  |              |          |             |          |          | *              |       |
| Aroclor 1262      |                         | *           | ND          |          | 25.0         |               |     |                  | _            |          |             |          |          |                |       |
| Aroclor 1268      |                         | R           | ND          |          | 25.0         |               |     |                  |              |          |             |          |          |                |       |
| Surrogate(s):     | TCX [2C]                |             | Recovery:   | 102%     | Li           | mits: 39-139% |     |                  |              |          |             |          |          | 11/29/06 18:33 |       |
|                   | Decachlorobiphenyl [2C] |             |             | 106%     |              | 33-1639       | 6 " |                  |              |          |             |          |          | n              |       |
| LCS (6K2702       | 7-BS1)                  |             |             |          |              |               |     |                  | Extra        | cted:    | 11/27/06 10 | ):36     |          |                | MNF   |

| DOS (SEES, SE     | . 2021                  |          |           |       |      |                |     | <br>     |       |          |       |                |  |
|-------------------|-------------------------|----------|-----------|-------|------|----------------|-----|----------|-------|----------|-------|----------------|--|
| Aroclor 1016 [2C] |                         | EPA 8082 | 78.0      |       | 25.0 | ug/kg wet      | lx  | <br>83.3 | 93.6% | (54-125) | <br>  | 11/29/06 18:51 |  |
| Aroclor 1260 [2C] |                         | **       | 80.2      |       | 25.0 | n              | *   | <br>*    | 96.3% | (58-128) | <br>- |                |  |
| Surrogate(s):     | TCX [2C]                |          | Recovery: | 99.1% | L    | imits: 39-139% | 6 " |          |       |          | <br>  | 11/29/06 18:51 |  |
|                   | Decachlorobiphenyl [2C] |          |           | 101%  |      | 33-1639        | 6 " |          |       |          |       | er .           |  |

TestAmerica - Seattle, WA

Kate Haney, Project Manage







Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica - Seattle, WA

| Method    |        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
|-----------|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------|----------------------------------|----------------------|
| Memod     | Result | MDL*                                    | MRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                      | Dil                                                                                                                                                                                                                                                                                     | Source<br>Result                                                                                                                                                                                                                                                                                                                                | Spike<br>Amt                                                                                                                                                                                                                                                                                                                                                                                                                          | %<br>REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Limits)                         | %<br>RPD                          | (Limits)        | ) Analyzed                       | Notes                |
|           |        | 13                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | Extr                                                                                                                                                                                                                                                                                                                                                                                                                                  | acted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/27/06 10                      | :39                               |                 | 7.2                              |                      |
| 8270C-SIM | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg wet                                                                                                                                                                                                                                                                                                  | lx                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | -                                 |                 | 12/01/06 17:01                   |                      |
| 4         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   | ••              |                                  |                      |
|           | ND     | •••                                     | 0,0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | *                                |                      |
| н         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
| н         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                          | "                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                |                                   |                 | ,                                |                      |
| н         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
| **        | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
| п         | ND     |                                         | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | •                                |                      |
|           | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••                               |                                   |                 |                                  |                      |
| н         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••                               | -                                 |                 | н                                |                      |
| H         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | *                                |                      |
| n         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W                                                                                                                                                                                                                                                                                                          | н                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | *                                |                      |
| н         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a                                                                                                                                                                                                                                                                                                          | и                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | *                                |                      |
| *         | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | п                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | ,                                |                      |
| *         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            | и                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | b .                              |                      |
| H         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
| ч         | ND     | 8                                       | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                          | н                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
| и         | ND     | ***                                     | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 |                                  |                      |
|           | ND     |                                         | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                          | и                                                                                                                                                                                                                                                                                       | ••                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                   |                 | *                                |                      |
|           |        | " ND | ND     ND | " NID 0.0100 | " ND 0.0100 " | " ND 0.0100 " " | " ND 0.0100 " " " | 8270C-SIM ND 0.0100 mg/kg wet 1x  " ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " "  ND 0.0100 " " | 8270C-SIM ND 0.0100 mg/kg wet 1x | 8270C-SIM NID 0.0100 mg/kg wet 1x | " ND 0.0100 " " | 8270C-SIM ND 0.0100 mg/kg wet 1x | 8270C-SIM         ND |

| LCS (6K27029-BS2)        |           |       |            |           |      |    | Ext   | racted: | 11/27/06 10:3 | 39 | 4                                          |       |
|--------------------------|-----------|-------|------------|-----------|------|----|-------|---------|---------------|----|--------------------------------------------|-------|
| Acenaphthene             | 8270C-SIM | 0.595 | <br>0.0100 | mg/kg wet | 1x   | ** | 0.667 | 89.2%   | (70-125)      |    | <br>12/01/06 17:26                         | 190 2 |
| Acenaphthylene           |           | 0.634 | <br>0.0100 | 44        | **   |    | н     | 95.1%   | (70-133)      |    | <br>**                                     |       |
| Anthracene               | н         | 0.681 | <br>0.0100 | H         | н    |    | ,     | 102%    | (70-152)      |    | <br>e ==================================== |       |
| Benzo (a) anthracene     | н         | 0.524 | <br>0.0100 | 41        |      |    | *     | 78.6%   | (60-125)      |    | <br>H                                      |       |
| Benzo (a) pyrene         | H         | 0.649 | <br>0.0100 | #         | *    |    | *     | 97.3%   | (64-134)      | •• | <br>н                                      |       |
| Benzo (b) fluoranthene   | н         | 0.624 | <br>0.0100 | н         | н    | -  |       | 93.6%   | (62-147)      |    | <br>н                                      |       |
| Benzo (k) fluoranthene   | H         | 0 619 | <br>0.0100 | 11        | н    | ** | и     | 92.8%   | (60-144)      |    | <br>#                                      |       |
| Benzo (ghi) perylene     | н         | 0.590 | <br>0.0100 |           |      |    | и     | 88.5%   | (57-137)      |    | <br>и                                      |       |
| Chrysene                 | H         | 0.628 | <br>0.0100 | n         | **   |    | 11    | 94.2%   | (70-139)      |    | <br>4                                      |       |
| Dibenz (a,h) anthracene  | a a       | 0,636 | <br>0.0100 | ,         | n    |    | *     | 95.4%   | (56-140)      |    | <br>u                                      |       |
| Fluoranthene             | tr .      | 0.632 | <br>0.0100 |           | 19   | •• |       | 94.8%   | (70-141)      | •• |                                            |       |
| Fluorene                 | ď         | 0.670 | <br>0.0100 |           | l h  |    |       | 100%    | (76-132)      |    | <br>19                                     |       |
| Indeno (1,2,3-cd) pyrene | н         | 0.617 | <br>0.0100 |           | 3.81 |    |       | 92.5%   | (55-138)      |    |                                            |       |
| 1-Methylnaphthalene      |           | 0.612 | <br>0.0100 | W         | н Ч  |    | **    | 91.8%   | (46-128)      |    | <br>н                                      |       |
| 2-Methylnaphthalene      | n         | 0.636 | <br>0.0100 | н         | и    |    | н     | 95.4%   | (41-125)      |    | <br>н                                      |       |
| Naphthalene              | н         | 0.607 | <br>0.0100 | 11        | pf   |    | н     | 91.0%   | (43-125)      |    | <br>и                                      |       |
| Phenanthrene             | *         | 0,580 | <br>0.0100 | 11.5      | *1   |    | ,     | 87.0%   | (73-125)      |    |                                            |       |
|                          |           |       |            |           |      |    |       |         |               |    |                                            |       |





Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager: 248-1739 Justin Foslien

ND

87.9% (51-172)

Report Created: 12/08/06 18:57

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica - Seattle, WA

| QC Batch: 6K27029             | Soil Pro  | paration M | lethod: EPA | 3545      |                | Ĩ., | - 1              |              |          |             |          |          | HE TO I        |       |
|-------------------------------|-----------|------------|-------------|-----------|----------------|-----|------------------|--------------|----------|-------------|----------|----------|----------------|-------|
| Analyte                       | Method    | Result     | MDL*        | MRL       | Units          | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | Analyzed       | Notes |
| LCS (6K27029-BS2)             |           |            |             |           |                | 20  |                  | Extr         | acted:   | 11/27/06 10 | :39      |          | X 112-11       |       |
| Pyrene                        | 8270C-SIM | 0.602      | ***         | 0.0100    | mg/kg wet      | lx  |                  | 0.667        | 90.3%    | (68-140)    |          | -        | 12/01/06 17:26 |       |
| Surrogate(s): p-Terphenyl-d14 |           | Recovery:  | 94.1%       | L         | imits: 50-147% | **  |                  |              |          |             |          |          | 12/01/06 17:26 |       |
| Matrix Spike (6K27029-MS2)    |           |            |             | QC Source | e: BPK0570-06  |     |                  | Extr         | acted:   | 11/27/06 10 | :39      |          | 7              |       |
| Acenaphthene                  | 8270C-SIM | 0.599      |             | 0.0110    | mg/kg dry      | lx  | ND               | 0,737        | 81.3%    | (67-132)    |          |          | 12/01/06 17:52 |       |
| Acenaphthylene                | n         | 0,644      | ***         | 0,0110    |                | и   | ND               | 8            | 87.4%    | (65-142)    |          |          |                |       |
| Anthracene                    | *         | 0.761      | •••         | 0.0110    | U              |     | ND               | a            | 103%     | (66-158)    |          |          | •              |       |
| Benzo (a) anthracene          | и         | 0.569      |             | 0.0110    |                | H   | ND               | a            | 77.2%    | (41-156)    |          |          |                |       |
| Benzo (a) pyrene              | н         | 0.689      |             | 0.0110    | *              |     | ND               | *            | 93.5%    | (52-148)    | ٠        |          |                |       |
| Benzo (b) fluoranthene        | u         | 0.707      |             | 0.0110    | н              |     | ND               | #1           | 95,9%    | (53-151)    |          |          |                |       |
| Benzo (k) fluoranthene        | II .      | 0.604      |             | 0.0110    | h              | *   | ND               | **           | 82.0%    | (46-161)    |          |          |                |       |
| Benzo (ghi) perylene          | н         | 0.630      |             | 0.0110    | п              | e   | ND               | *1           | 85.5%    | (26-154)    |          |          | н              |       |
| Chrysene                      | <b>19</b> | 0.674      | •••         | 0.0110    | н              |     | ND               | 17           | 91.5%    | (55-155)    |          |          | н              |       |
| Dibenz (a,h) anthracene       | 41        | 0.669      |             | 0.0110    |                |     | ND               |              | 90.8%    | (27-157)    |          |          | ь              |       |
| Fluoranthene                  | м         | 0.694      |             | 0.0110    | *              | "   | ND               | *            | 94.2%    | (46-172)    |          |          |                |       |
| Fluorene                      |           | 0.687      |             | 0.0110    |                | "   | ND               | **           | 93.2%    | (66-143)    |          |          |                |       |
| Indeno (1,2,3-cd) pyrene      | n         | 0,655      |             | 0.0110    |                |     | ND               | "            | 88.9%    | (24-159)    |          | ••       | *              |       |
| 1-Methylnaphthalene           |           | 0.594      |             | 0.0110    |                | **  | ND               | н            | 80.6%    | (39-140)    |          |          |                |       |
| 2-Methylnaphthalene           | я         | 0.624      | ***         | 0.0110    |                | •   | ND               | 11           | 84.7%    | (32-139)    |          | -2       |                |       |
| Naphthalene                   |           | 0.592      |             | 0.0110    |                |     | 0.00193          | н            | 80.1%    | (38-134)    |          | **       |                |       |
| Phenanthrene                  | - "       | 0,624      |             | 0.0110    | и              | *   | ND               |              | 84.7%    | (63-139)    |          |          | *              |       |

| Matrix Spike Dup         | (6K27029-MSD2) |       |   | QC Source: | BPK0570-0 | 6  |    | Ext   | racted: | 11/27/06 10 | :39         |                |  |
|--------------------------|----------------|-------|---|------------|-----------|----|----|-------|---------|-------------|-------------|----------------|--|
| Acenaphthene             | 8270C-SIM      | 0.597 |   | 0.0111     | mg/kg dry | lx | ND | 0.742 | 80.5%   | (67-132)    | 0.334% (50) | 12/01/06 19:08 |  |
| Acenaphthylene           | D              | 0.631 | - | 0.0111     | *         | ** | ND |       | 85.0%   | (65-142)    | 2.04% "     |                |  |
| Anthracene               | 4              | 0.746 |   | 0.0111     | н         | ** | ND | *     | 101%    | (66-158)    | 1.99% "     | н              |  |
| Benzo (a) anthracene     | и              | 0.581 |   | 0.0111     |           | ** | ND | 11    | 78.3%   | (41-156)    | 2.09% *     | *              |  |
| Benzo (a) pyrene         | •              | 0.687 |   | 0.0111     | *         | н  | ND |       | 92.6%   | (52-148)    | 0.291% "    | w              |  |
| Benzo (b) fluoranthene   |                | 0.698 |   | 0.0111     | *         |    | ND |       | 94.1%   | (53-151)    | 1.28% "     | *              |  |
| Benzo (k) fluoranthene   | "              | 0.580 |   | 0.0111     | 4         |    | ND | "     | 78,2%   | (46-161)    | 4.05% "     | •              |  |
| Benzo (ghi) perylene     | н              | 0.623 |   | 0.0111     | *         | *  | ND | *     | 84.0%   | (26-154)    | 1.12% "     | **             |  |
| Chrysene                 | #              | 0.672 |   | 0.0111     | п         | *  | ND | н     | 90.6%   | (55-155)    | 0.297% (44) | н              |  |
| Dibenz (a,h) anthracene  | и              | 0.655 |   | 0.0111     |           | н  | ND | *     | 88.3%   | (27-157)    | 2.11% (50)  | 19             |  |
| Fluoranthene             | "              | 0.683 |   | 0.0111     | **        | o  | ND |       | 92.0%   | (46-172)    | 1.60% "     |                |  |
| Fluorene                 | я              | 0.687 |   | 0.0111     | *         | μ  | ND | \$1   | 92.6%   | (66-143)    | 0.00% (52)  | n              |  |
| Indeno (1,2,3-cd) pyrene | n              | 0.656 |   | 0.0111     | 44        |    | ND | n     | 88.4%   | (24-159)    | 0.153% (43) |                |  |
| 1-Methylnaphthalene      | tt .           | 0.599 |   | 0.0111     | •         | e  | ND |       | 80,7%   | (39-140)    | 0.838% (50) | u              |  |

Limits: 50-147%

0.0110

0.648

Recovery:

p-Terphenyl-d14

Surrogate(s):

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory



12/01/06 17:52



Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208

Project Number: Project Manager:

248-1739 Justin Foslien Report Created:

12/08/06 18:57

# Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results

TestAmerica - Seattle, WA

| Analyte                    | Method    | Result | MDL* | MRL       | Units       | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)    | %<br>RPD | (Limits) | ) Analyzed     | Notes |
|----------------------------|-----------|--------|------|-----------|-------------|-----|------------------|--------------|----------|-------------|----------|----------|----------------|-------|
| Matrix Spike Dup (6K27029- | MSD2)     |        |      | QC Source | : BPK0570-0 | 6   |                  | Ext          | acted:   | 11/27/06 10 | :39      |          | 1111111        |       |
| 2-Methylnaphthalene        | 8270C-SIM | 0.613  |      | 0.0111    | mg/kg dry   | lx  | ND               | 0.742        | 82.6%    | (32-139)    | 1.78%    | (50)     | 12/01/06 19:08 |       |
| Naphthalene                |           | 0.573  |      | 0.0111    | *           |     | 0.00193          | и            | 77.0%    | (38-134)    | 3.26%    | , ,      | н              |       |
| Phenanthrene               | и         | 0.621  |      | 0.0111    | "           | *   | ND               | н            | 83.7%    | (63-139)    | 0.482%   | , "      |                |       |
| Pyrene                     | н         | 0.657  |      | 0.0111    | 11          |     | ND               | *            | 88.5%    | (51-172)    | 1.38%    | н        | P              |       |

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210

Project Number:

248-1739

Report Created:

Everett, WA 98208

Project Manager:

Justin Foslien

12/08/06 18:57

|                      | Physical Parai                      | neters by A  |            |        | <b>1ethods</b><br>Seattle, V |     | oratory (        | Quality (    | Cont     | roi Res    | ults     |          |                |       |
|----------------------|-------------------------------------|--------------|------------|--------|------------------------------|-----|------------------|--------------|----------|------------|----------|----------|----------------|-------|
| QC Batch: 6K30050    | Soil Preparation Method: Dry Weight |              |            |        |                              |     |                  |              |          |            |          |          |                |       |
|                      | Method                              | Result       | MDL*       | MRL    | Units                        | Dil | Source<br>Result | Spike<br>Amt | %<br>REC | (Limits)   | %<br>RPD | (Limits) | Analyzed       | Notes |
| Blank (6K30050-BLK1) |                                     |              |            |        | 0.5                          |     |                  | Extra        | cted:    | 11/30/06 1 | 5:17     | 1 2001   | went h         |       |
| Dry Weight           | BSOPSPL00<br>3R08                   | 100          |            | 1.00   | %                            | lx  |                  | -            |          |            |          |          | 12/01/06 00:00 | A.W.  |
| QC Batch: 6K30051    | Soil Prep                           | paration Met | hod: Dry \ | Weight |                              |     |                  |              |          |            |          |          |                |       |
| Analyte              | Method                              | Result       | MDL*       | MRL    | Units                        | Dil | Source<br>Result |              | %<br>REC | (Limits)   | %<br>RPD | (Limits) | Analyzed       | Notes |
| Blank (6K30051-BLK1) |                                     |              |            |        |                              |     |                  | Extrac       | cted:    | 11/30/06 1 | 5:18     |          |                |       |
| Dry Weight           | BSOPSPL00<br>3R08                   | 99.8         |            | 1.00   | %                            | lx  | _                | -            |          |            |          |          | 12/01/06 00:00 |       |

TestAmerica - Seattle, WA

Kate Haney, Project Manager





11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

8620 Holly Drive, Suite 210

Everett, WA 98208

Project Name:

Shell - 6808 196th SW, Lynnwood

Project Number: Project Manager: 248-1739

Justin Foslien

Report Created:

12/08/06 18:57

#### **Notes and Definitions**

#### Report Specific Notes:

- A-01 Sample contains carryover from previous sample.
- BS-1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.
- BS-5 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the laboratory control limits. A high bias to sample results is indicated.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MNR No results were reported for the MS/MSD. The sample used for the MS/MSD required dilution due to the sample matrix. Because of this, the spike compounds were diluted below the detection limit.
- MS-2 The Matrix Spike and/or Matrix Spike Duplicate were below the acceptance limits due to sample matrix interference. See Laboratory Control Sample.
- MS-3 The Matrix Spike and/or Matrix Spike Duplicate were above the acceptance limits due to sample matrix interference. See Laboratory Control Sample.
- Q5 Results in the diesel organics range are primarily due to overlap from a gasoline range product.
- R3 The RPD exceeded the acceptance limit due to sample matrix effects.
- RP-1 The RPD exceeded the laboratory control limit due to sample matrix interference. The individual analyte QA/QC recoveries, however, were within laboratory control limits.
- RP-3 The RPD exceeded the laboratory control limit due to sample matrix effects.
- ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

#### **Laboratory Reporting Conventions:**

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA \_ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL\* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. \*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

TestAmerica - Seattle, WA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full without the written approval of the laboratory





11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Cambria - Seattle

Project Name:

Shell - 6808 196th SW, Lynnwood

8620 Holly Drive, Suite 210 Everett, WA 98208 Project Number: Project Manager: 248-1739 Justin Foslien Report Created: 12/08/06 18:57

Reporting -Limits Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

percent solids, where applicable.

Electronic Signature - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Kate Haney, Project Manager

