

Technical Memorandum

- To: Maureen Sanchez, Washington State Department of Ecology
- Copies: Alan Sidell, Seattle Iron & Metals
- From: Lynn Grochala, Floyd | Snider

Date: May 31, 2017

- Project No: SIM-730EDR
 - Re: Whitehead Tyee Site: 730 S. Myrtle Street Shallow Soil Characterization Data Summary

This technical memorandum was prepared at the request of Seattle Iron & Metals (SIM) to document the results of additional surface soil characterization completed on the 730 S. Myrtle Street property of the Whitehead Tyee Site (Site). Soil samples were collected by Floyd|Snider on April 11, 2017, in accordance with the 730 S. Myrtle Street Shallow Soil Characterization Work Plan (Work Plan) dated March 22, 2017 (Floyd|Snider 2017a), which was approved by the Washington State Department of Ecology (Ecology) in email correspondence dated April 4, 2017. The location of the Site is shown on Figure 1.

The Work Plan outlined the collection and analysis of surface soil samples, per Ecology's request, to monitor for the presence of polychlorinated biphenyls (PCBs) and metals in shallow soil prior to beginning construction for the installation of a stormwater conveyance system at the 730 S. Myrtle Street property. Construction will also include the completion of an interim action, which will be conducted pursuant to Agreed Order (AO) No. DE 13458, and is described in detail in an *Interim Action Work Plan* (IAWP; Floyd|Snider 2017b). The IAWP describes the background, approach, and procedures to complete an interim action at the Site concurrent with installation of an on-property stormwater conveyance system. Pursuant to Administrative Order No. 13739, issued by Ecology's Water Quality Program on September 20, 2016, the stormwater treatment system will be installed to bring the property back into compliance with the Industrial Stormwater General Permit. The interim action will address subsurface soils contaminated with pentachlorophenol, Stoddard solvent, and heavy oil-range organics in locations where components of the stormwater treatment system, are shown on Figure 2.

The additional sample collection for PCBs was requested by Ecology as a result of recent detection of PCBs in a stormwater sample collected at the Site in November 2016. PCBs have not

been detected in subsequent stormwater samples. The additional sample collection for metals was requested as a result of Ecology observation of heavy truck traffic and bed sweeping in the main drive aisle to supplement existing data prior to the disturbance of surface soils associated with the installation of the proposed stormwater conveyance system at the Site. Existing shallow soil data collected during previous sampling events did not indicate that either PCBs or metals were present at elevated concentrations in soils on the 730 S. Myrtle Street property.

1.0 SURFACE SOIL SAMPLE COLLECTION

Surface soil samples were collected in accordance with the Work Plan, using hand tools to sample to a depth of 6 inches below ground surface (bgs). Because the shallow soils on the property consist primarily of crushed gravel surfacing, the collected material was homogenized and then passed through a sieve to collect the finer grained material present within the gravel matrix. Samples were logged and processed according to the Work Plan.

Soil sampling stations were located using a handheld global positioning system (GPS) receiver. In some instances, sampling stations were relocated less than 2 feet away from their target locations to avoid large puddles or other obstructions that would inhibit sample collection and sieving. These relocated stations remained within the areas where trenches will be excavated for stormwater system components. Two sampling stations were altered more significantly from those proposed in the Work Plan. These included:

- WT-SS-01, which had a target location within the truck access driveway. This location was not safely accessible at the time of sampling and was relocated 15 feet to the southwest along the stormwater system trench segment.
- WT-SS-03, which was found to be underlain by an asphalt or concrete slab that could not be penetrated by hand tools at approximately 3 inches bgs at the target location. The slab extended to the north below a segment of asphalt driveway, and its limits could not be located to the east, west, or south due to large puddles in those directions. The sample at WT-SS-03 was therefore collected from 0 to 3 inches bgs within 2 feet of its target location.

Surface soil sampling station locations, as well as previous soil boring and monitoring well sampling locations, are shown on Figure 3.

2.0 SOIL SAMPLE ANALYSIS

All eight surface soil samples were analyzed for PCBs by U.S. Environmental Protection Agency (USEPA) Method 8082, and samples from stations WT-SS-01, WT-SS-04, WT-SS-06, and WT-SS-08 were additionally analyzed for the Resource Conservation and Recovery Act (RCRA) list of 8 metals by USEPA Method 6020, as specified in the Work Plan. The RCRA 8 list includes arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The sample from WT-SS-01 was re-analyzed for low-level mercury by USEPA Method 1613E due to matrix interference that

caused this sample to be qualified as estimated at the USEPA Method 6020 reporting limit. Samples were analyzed by Friedman & Bruya, Inc. of Seattle, Washington.

Additional analysis by USEPA Method 7196 to determine whether chromium (VI) was present in samples from stations WT-SS-04 and WT-SS-06 was performed by Fremont Analytical of Seattle, Washington. These samples were analyzed after the holding time specified by the analytical method had lapsed and were therefore qualified as estimated. Copies of analytical reports are included in Attachment 1.

2.1 Data Validation

A Compliance Screening (Stages 1 & 2a) data quality review was performed on select metals and PCBs resulting from laboratory analysis. The analytical data were validated in accordance with the USEPA National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2016a) and USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA 2016b).

A total of eight soil samples were submitted in one sample delivery group (SDG), FB704169, to Freidman & Bruya, Inc. of Seattle, Washington, for chemical analysis by USEPA Methods 6020A, 1631E, and 8082A. Freidman & Bruya, Inc. subsequently submitted two samples to Fremont Analytical of Seattle, Washington, as sample delivery group FA1705149 for chemical analysis by USEPA Method 7196. For all sample delivery groups, the method blanks had no detections. The matrix spike (MS), matrix spike duplicate (MSD), laboratory control sample duplicate relative percent differences (RPDs) all met USEPA requirements.

For the USEPA Method 6020A analysis of sample WT-SS-01-0-6", the laboratory noted that the internal standard failed the acceptance criteria due to matrix interferences. The data were flagged and samples were diluted and reanalyzed. The original results were flagged Do Not Report, or "DNR," in favor of the diluted and reanalyzed samples. The diluted reporting limit for mercury was greater than cleanup criteria; the result was therefore flagged "DNR" in favor of a result for the sample that was analyzed by USEPA Method 1631E.

For USEPA Method 6020A, the laboratory noted that the selenium MS/MSD recoveries and RPD were outside of acceptance criteria. The laboratory control sample passed the acceptance criteria; therefore the laboratory concluded the results were likely due to matrix effect. Per USEPA Guidelines, results were not qualified based on MS/MSD information alone. As the MS/MSD was performed on a batch sample belonging to another client at a 10 times dilution, and the similarity of this sample's matrix to field samples in this SDG cannot be assessed, and the LCS was within control limits, it is with professional judgement that no selenium results were qualified based on this MS/MSD information alone.

For USEPA Method 6020A, the MSD recovery for barium and the MS/MSD recoveries for lead were outside laboratory control limits low, and RPDs for both were also outside the control limits.

The laboratory noted that the results may not be meaningful as the samples were spiked at less than 10 times the original concentration in the sample. Barium was spiked at 50 milligrams per kilogram (mg/kg), with an original sample concentration of 80.4 mg/kg. Lead was spiked at 50 mg/kg, with an original sample concentration of 233 mg/kg. Per USEPA Guidelines, data were not qualified based on MS/MSD information alone. As MS/MSD analysis was performed on a sample belonging to another client at a 10 times dilution, and the similarity of this sample's matrix to field samples in this SDG cannot be assessed, and the LCS was within control limits, it is with professional judgment that no barium or lead results were qualified based on this MS/MSD information alone.

For USEPA Method 7196, the laboratory noted that the samples were analyzed outside of the 30-day holding time for the method and flagged the results "H." The laboratory qualifier was preserved as the final qualifier "UJ" as all results were non-detect and the reporting limit should be considered an estimate due to analysis outside of method holding times.

Based on the data quality review, data were determined to be of acceptable quality for use as reported by the laboratory unless specifically qualified above.

3.0 SOIL DATA SUMMARY

Surface soil sampling results from this investigation, as compared to applicable and relevant Model Toxics Control Act (MTCA) cleanup levels, are discussed in the following sections and are presented in Table 1.

3.1 Selection of Cleanup Levels for Comparison

The cleanup levels selected for the purposes of evaluating the surface soil data were the most stringent cleanup levels provided in MTCA. The most stringent cleanup levels provided in MTCA are Method A cleanup levels developed for protection of groundwater quality at unrestricted use properties. For contaminants for which MTCA Method A cleanup levels have not been established, MTCA Method B cleanup levels developed for the protection of human health due to direct contact are the most stringent cleanup levels available. It should be noted that final cleanup levels will be evaluated as part of the future Remedial Investigation/Feasibility Study and established for PCBs and several of the RCRA 8 metals including arsenic, cadmium, chromium, lead, and mercury. MTCA Method B cleanup levels have been established for the remaining RCRA 8 metals including barium, selenium, and silver.

Two MTCA Method A cleanup levels have been established for chromium's two most common species, including chromium (III) (i.e., trivalent chromium) and chromium (VI) (i.e., hexavalent chromium). Trivalent chromium is a naturally occurring elemental metal that is an essential micronutrient for human metabolism (USEPA 2017); this species of chromium is present in chrome coatings, and chromium metal alloys such as stainless steel. Hexavalent chromium is a human carcinogen that is typically manufactured via a chemical reaction; this species of

chromium is used in electroplating solutions (where it is reduced to trivalent chromium during plating deposition) and in leather tanning and dyeing processes (OSHA 2009).

Given the current usage of the property for scrap metal container storage, trivalent chromium resulting from the corrosion of metal products is the species most likely to be present in surface soil. The property does not have any history of electroplating or leather tanning/dyeing and hexavalent chromium is unlikely to be present. To confirm the species of chromium present on the property, the surface samples with the greatest detected total chromium concentrations (WT-SS-04 and WT-SS-06) were submitted for hexavalent chromium analysis. These samples did not have any detectable hexavalent chromium, confirming that trivalent chromium is the species present in property soils. Therefore, the selected MTCA cleanup level for comparison of total chromium soil data at the property is the MTCA Method A trivalent chromium cleanup level of 2,000 mg/kg.

3.2 Polychlorinated Biphenyls

PCB Aroclors were analyzed in all eight surface soil samples collected during this investigation. PCBs were detected at low-level concentrations in all eight of the surface soil samples analyzed. Aroclor 1254 was detected in all eight samples, Aroclor 1242 was detected in five of the eight samples, Aroclor 1248 was detected in one sample, and other Aroclors were not detected. Total PCB concentrations ranged from 0.051 mg/kg at WT-SS-05 to 0.250 mg/kg at WT-SS-01. These concentrations were all significantly less than the most stringent MTCA Method A unrestricted land use cleanup level of 1.00 mg/kg for PCBs.

These results are consistent with existing property data, which included four surface soil samples collected from 0 to 2 feet bgs. These samples did not have detectable PCBs at their laboratory reporting limits of 0.0990 to 0.117 mg/kg.

PCB results for surface soil samples collected per the work plan are presented in Table 1. All available surface soil total PCB results for property soils are shown on Figure 4.

3.3 Metals

The RCRA list of 8 metals were analyzed in four of the eight surface soil samples per the work plan, at locations WT-SS-01, WT-SS-04, WT-SS-06, and WT-SS-08. Metals concentrations were compared to the most stringent MTCA Method A unrestricted land use cleanup levels, or MTCA Method B cleanup levels if Method A cleanup levels were not available. At least one metal was detected in each sample analyzed, as described below.

• Arsenic concentrations ranged from 4.42 mg/kg at WT-SS-04 to 10.4 mg/kg at WT-SS-06. These concentrations were all less than the MTCA Method A cleanup level of 20.0 mg/kg.

- Barium concentrations ranged from 30.2 mg/kg at WT-SS-08 to 140 mg/kg at WT-SS-04 and were all significantly less than the MTCA Method B cleanup level of 16,000 mg/kg.
- Cadmium concentrations ranged from 0.356 mg/kg at WT-SS-06 to 1.62 mg/kg at WT-SS-01 and were all less than the MTCA Method A cleanup level of 2.00 mg/kg.
- Chromium concentrations ranged from 142 mg/kg at WT-SS-01 to 256 mg/kg at WT-SS-04 and were all significantly less than the MTCA Method A cleanup level of 2,000 for trivalent chromium.
- Lead concentrations ranged from 41.0 mg/kg at WT-SS-04 to 105 mg/kg at WT-SS-01 and were all less than the MTCA Method A cleanup level of 250 mg/kg.
- Mercury was detected at 0.160 mg/kg at WT-SS-01, less than the cleanup level of 2.00 mg/kg. The remaining samples did not have detectable mercury at a laboratory reporting limit of 0.400 mg/kg.
- Selenium was detected at a concentration 0.208 mg/kg at WT-SS-08, significantly less than the MTCA Method B cleanup level of 400 mg/kg. The remaining samples did not have detectable selenium at a laboratory reporting limit of 0.200 mg/kg.
- Silver concentrations ranged from 0.277 mg/kg at WT-SS-06 to 0.470 mg/kg at WT-SS-01 and were all significantly less than the MTCA Method B cleanup level of 400 mg/kg.

As evidenced in the above discussion, detected metals concentrations are ubiquitous at relatively low concentrations, and are less than the MTCA cleanup levels. The minor variations in these concentrations reflect the heterogeneity of the shallow soils at the property, which consist of fill soil to a depth of 6 to 10 feet bgs.

These results are consistent with existing property data, which included four surface soil samples collected from 0 to 2 feet bgs, five composite soil samples collected from 0 to 5 feet bgs, and two composite soil samples collected from 0 to 10 feet bgs. These samples also had RCRA 8 metals concentrations less than their respective MTCA cleanup levels, and metals concentrations were generally consistent across the property without areas of elevated concentrations.

Metals results for surface soil samples collected per the Work Plan are presented in Table 1. All available surface soil metals results for property soils are shown on Figure 5.

4.0 REFERENCES

Floyd|Snider. 2017a. Whitehead Tyee Site: 730 S. Myrtle Street Shallow Soil Characterization Work Plan. Technical memorandum from Lynn Grochala, Floyd|Snider, to Maureen Sanchez, Washington State Department of Ecology. 22 March.

- _____. 2017b. *Whitehead Tyee Site Interim Action Work Plan*. Prepared for Seattle Iron & Metals Corporation. April.
- U.S. Department of Labor Occupational Safety and Health Administration (OSHA). 2009. *Hexavalent Chromium*. Publication No. OSHA 3373-10.
- U.S. Environmental Protection Agency (USEPA). 2017. *Chromium in Drinking Water*. <<u>https://www.epa.gov/dwstandardsregulations/chromium-drinking-water</u>>. 24 April.
- _____. 2016a. National Functional Guidelines for Superfund Organic Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-014-002/OSWER 9355.0-132. August.
- . 2016b. National Functional Guidelines for Inorganic Superfund Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-014-001/OSWER 9355.0-131. August.

ATTACHMENTS

Table 1	Surface Soil Sample Results
Figure 1	Vicinity Map
Figure 2	Pertinent Site Features
Figure 3	Soil Boring and Monitoring Well Locations
Figure 4	PCB Concentrations in Surface Soil
Figure 5	Metals Concentrations in Surface Soil
Attachment 1	Laboratory Analytical Reports

Table

	Table 1												
	Surface Soil Sample Results												
					Location	WT-SS-01	WT-SS-02	WT-SS-03	WT-SS-04	WT-SS-05	WT-SS-06	WT-SS-07	WT-SS-08
					Sample ID	WT-SS-01-0-6"	WT-SS-02-0-6"	WT-SS-03-0-3"	WT-SS-04-0-6"	WT-SS-05-0-6"	WT-SS-06-0-6"	WT-SS-07-0-6"	WT-SS-08-0-6"
					Sample Date	4/11/2017	4/11/2017	4/11/2017	4/11/2017	4/11/2017	4/11/2017	4/11/2017	4/11/2017
					Depth (ft bgs)	0–0.5	0–0.5	0–0.25	0–0.5	0–0.5	0–0.5	0–0.5	0–0.5
		MTCA Method A	MTCA Method A	MTCA Method B	Relevant								
		Industrial	Unrestricted	Cleanup Level,	Comparison								
Analyte	Units	Cleanup Level	Cleanup Level	Noncancer	Criterion								
Polychlorinated Bipheny	ls (PCBs)									_			
PCB Aroclor 1016	mg/kg					0.0200 U							
PCB Aroclor 1221	mg/kg					0.0200 U							
PCB Aroclor 1232	mg/kg					0.0200 U							
PCB Aroclor 1242	mg/kg					0.0200 U	0.0200 U	0.0550	0.0200 U	0.0250	0.0390	0.0790	0.0620
PCB Aroclor 1248	mg/kg					0.0200 U	0.0200 U	0.0200 U	0.027	0.0200 U	0.0200 U	0.0200 U	0.0200 U
PCB Aroclor 1254	mg/kg				66.0	0.250	0.160	0.0590	0.0420	0.0260	0.0200 U	0.0520	0.0700
PCB Aroclor 1260	mg/kg				66.0	0.0200 U	0.044	0.0200 U	0.0200 U				
PCB Aroclor 1262	mg/kg					0.0200 U							
PCB Aroclor 1268	mg/kg					0.0200 U							
PCBs (Total, Aroclors)	mg/kg	1.00	1.00		1.00	0.250	0.160	0.110	0.0690	0.0510	0.0830	0.130	0.130
Metals													
Arsenic	mg/kg	20.0	20.0		20.0	8.85			4.42		10.4		6.20
Barium	mg/kg			16,000	16,000	53.2			140		45.8		30.2
Cadmium	mg/kg	2.00	2.00		2.00	1.62			1.16		0.356		0.797
Chromium	mg/kg	2,000 ¹	2,000 ¹		2,000	142			256		241		145
Lead	mg/kg	250	250		250	105			41.0		42.7		42.1
Mercury	mg/kg	2.00	2.00		2.00	0.160			0.400 U		0.400 U		0.400 U
Selenium	mg/kg			400	400	0.200 U			0.200 U		0.200 U		0.208
Silver	mg/kg			400	400	0.470			0.317		0.277		0.370

Notes:

-- Not applicable or not analyzed.

1 The MTCA cleanup level given is for chromium (III). This species of chromium is most closely associated with metal and metal alloy products and is likely to be present at the property due to current metal recycling operations. Chromium (VI) was not detected in property soils.

Abbreviations:

bgs Below ground surface

ft Feet

mg/kg Milligrams per kilogram

MTCA Model Toxcis Control Act

Qualifier:

U The analyte was not detected at the reporting limit.

Figures

Attachment 1 Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 21, 2017

Lynn Grochala, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Grochala:

Included are the amended results from the testing of material submitted on April 11, 2017 from the SIM-730 EDR, F&BI 704169 project. The sample IDs were corrected. We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures FDS0420R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 20, 2017

Lynn Grochala, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Grochala:

Included are the results from the testing of material submitted on April 11, 2017 from the SIM-730 EDR, F&BI 704169 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

re

Michael Erdahl Project Manager

Enclosures FDS0420R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2017 by Friedman & Bruya, Inc. from the Floyd-Snider SIM-730 EDR, F&BI 704169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
704169 -01	WT-SS-01-0-6"
704169 -02	WT-SS-02-0-6"
704169 -03	WT-SS-03-0-3"
704169 -04	WT-SS-04-0-6"
704169 -05	WT-SS-05-0-6"
704169 -06	WT-SS-06-0-6"
704169 -07	WT-SS-07-0-6"
704169 -08	WT-SS-08-0-6"

A 6020A internal standard failed the acceptance criteria for the metals samples due to matrix interferences. The data were flagged accordingly. The samples were diluted and reanalyzed.

The 6020A selenium matrix spike, matrix spike duplicate and the associated relative percent difference did not pass the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-01-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-01 x0.2
Date Analyzed:	04/18/17	Data File:	704169-01 x0.2.080
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	8.85		
Barium	53.2		
Cadmium	1.62		
Chromium	106 J		
Lead	110 J ve		
Mercury	<0.4 J		
Selenium	<0.2		
Silver	0.470		

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-01-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-01 x2
Date Analyzed:	04/19/17	Data File:	704169-01 x2.033
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
5	0 0 11 /		
Chromium	142		
Lead	105		
Mercury	<4		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-04-0-6" 04/11/17 04/17/17 04/18/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-04 x0.2 704169-04 x0.2.087 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.42		
Barium	140		
Cadmium	1.16		
Chromium	204 J		
Lead	41.0		
Mercury	<0.4		
Selenium	<0.2		
Silver	0.317		

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-04-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-04 x2
Date Analyzed:	04/18/17	Data File:	704169-04 x2.094
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	256		

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-06-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-06 x0.2
Date Analyzed:	04/18/17	Data File:	704169-06.089
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	10.4		
Barium	45.8		
Cadmium	0.356		
Chromium	186 J		
Lead	42.7		
Mercury	<0.4		
Selenium	<0.2		
Silver	0.277		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	WT-SS-06-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-06 x2
Date Analyzed:	04/18/17	Data File:	704169-06 x2.095
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	241		

7

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	WT-SS-08-0-6" 04/11/17 04/17/17	Client: Project: Lab ID:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-08 x0.2
Date Analyzed:	04/18/17	Data File:	704169-08 x0.2.091
Matrix:	5011	Instrument:	ICPMSz
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	6.20		
Barium	30.2		
Cadmium	0.797		
Chromium	114 J		
Lead	42.1		
Mercury	<0.4		
Selenium	0.208		
Silver	0.370		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	WT-SS-08-0-6" 04/11/17 04/17/17 04/18/17 Soil	Client: Project: Lab ID: Data File:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-08 x2 704169-08 x2.096
Matrix:	5011	instrument:	ICPM52
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	145		

9

ENVIRONMENTAL CHEMISTS

Client ID: Data Received:	Method Blank Not Applicable	Client: Project:	Floyd-Snider SIM-730 EDR F&BI 704169
Date Extracted:	04/17/17	Lab ID:	I7-197 mb
Date Analyzed:	04/18/17	Data File:	I7-197 mb.043
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	AP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<0.2		
Cadmium	<0.2		
Chromium	<0.2		
Lead	<0.2		
Mercury	<0.4		
Selenium	<0.2		
Silver	<0.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-01-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-01 1/5 041305.D GC7 VM
Surrogates: TCMX	% Recovery: 70	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-02-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-02 1/5 041306.D GC7 VM
Surrogates: TCMX	% Recovery: 62	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\0.16 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \end{aligned}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-03-0-3" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-03 1/5 041307.D GC7 VM
Surrogates: TCMX	% Recovery: 45	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.055 \\ < 0.02 \\ 0.059 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-04-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-04 1/5 041308.D GC7 VM
Surrogates: TCMX	% Recovery: 44	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\0.027 \\0.042 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \end{aligned}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-05-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-05 1/5 041309.D GC7 VM
Surrogates: TCMX	% Recovery: 72	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\< 0.02 \\< 0.02 \\0.025 \\< 0.02 \\0.026 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \end{aligned}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-06-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-06 1/5 041310.D GC7 VM
Surrogates: TCMX	% Recovery: 69	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 0.039 <0.02 <0.02 <0.02 0.044 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-07-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-07 1/5 041311.D GC7 VM
Surrogates: TCMX	% Recovery: 78	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.079 \\ < 0.02 \\ 0.052 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-08-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-08 1/5 041312.D GC7 VM
Surrogates: TCMX	% Recovery: 76	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.062 \\ < 0.02 \\ 0.070 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		
ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Floyd-Snider
Date Received:	Not Applicable	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/12/17	Lab ID:	07-752 mb2 1/5
Date Analyzed:	04/13/17	Data File:	041304.D
Matrix:	Soil	Instrument:	GC7
Units:	mg/kg (ppm) Dry Weight	Operator:	VM
Surrogates: TCMX	% Recovery: 79	Lower Limit: 29	Upper Limit: 154
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	< 0.02		
Aroclor 1016	< 0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	< 0.02		
Aroclor 1260	< 0.02		
Aroclor 1262	< 0.02		
Aroclor 1268	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 704210-26 x10 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<50	103	99	75-125	4
Barium	mg/kg (ppm)	50	80.4	99 b	72 b	75-125	32 b
Cadmium	mg/kg (ppm)	10	<10	102	98	75-125	4
Chromium	mg/kg (ppm)	50	15.5	101	89	75-125	13
Lead	mg/kg (ppm)	50	233	42 b	0 b	75-125	200 b
Mercury	mg/kg (ppm	5	<10	114	106	75-125	7
Selenium	mg/kg (ppm)	5	<10	137 vo	43 vo	75-125	104 vo
Silver	mg/kg (ppm)	10	<10	94	91	75-125	3

Laboratory Code: Laboratory Control Sample

5	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Arsenic	mg/kg (ppm)	10	103	80-120	
Barium	mg/kg (ppm)	50	104	80-120	
Cadmium	mg/kg (ppm)	10	104	80-120	
Chromium	mg/kg (ppm)	50	101	80-120	
Lead	mg/kg (ppm)	50	98	80-120	
Mercury	mg/kg (ppm)	5	101	80-120	
Selenium	mg/kg (ppm)	5	91	80-120	
Silver	mg/kg (ppm)	10	98	80-120	

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 704167-01 1/50 (Matrix Spike) 1/50 Sample Percent Result Reporting Spike Recovery Control Units Level (Wet Wt) MS Limits Analyte Aroclor 1016 < 0.2 50-150 mg/kg (ppm) 0.8 61 Aroclor 1260 mg/kg (ppm) 0.8 < 0.2 72 50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	72	73	55-130	1
Aroclor 1260	mg/kg (ppm)	0.8	87	91	58-133	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 20, 2017

Lynn Grochala, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Grochala:

Included are the results from the testing of material submitted on April 11, 2017 from the SIM-730 EDR, F&BI 704169 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

re

Michael Erdahl Project Manager

Enclosures FDS0420R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2017 by Friedman & Bruya, Inc. from the Floyd-Snider SIM-730 EDR, F&BI 704169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
704169 -01	WT-SS-01-0-6"
704169 -02	WT-SS-02-0-6"
704169 -03	WT-SS-03-0-6"
704169 -04	WT-SS-04-0-6"
704169 -05	WT-SS-05-0-6"
704169 -06	WT-SS-06-0-6"
704169 -07	WT-SS-07-0-6"
704169 -08	WT-SS-08-0-6"

A 6020A internal standard failed the acceptance criteria for the metals samples due to matrix interferences. The data were flagged accordingly. The samples were diluted and reanalyzed.

The 6020A selenium matrix spike, matrix spike duplicate and the associated relative percent difference did not pass the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were likely due to matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-01-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-01 x0.2
Date Analyzed:	04/18/17	Data File:	704169-01 x0.2.080
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
	Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	8.85		
Barium	53.2		
Cadmium	1.62		
Chromium	106 J		
Lead	110 J ve		
Mercury	<0.4 J		
Selenium	<0.2		
Silver	0.470		

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-01-0-6"	Client:	Floyd-Snider
Date Received: Date Extracted:	04/17/17	Project: Lab ID:	SIM-730 EDR, F&BI 704169 704169-01 x2
Date Analyzed:	04/19/17	Data File:	704169-01 x2.033
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	142		
Lead	105		
Mercury	<4		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	WT-SS-04-0-6" 04/11/17 04/17/17 04/18/17	Client: Project: Lab ID: Data Filo:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-04 x0.2 704169-04 x0 2 087
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	4.42		
Barium	140		
Cadmium	1.16		
Chromium	204 J		
Lead	41.0		
Mercury	<0.4		
Selenium	<0.2		
Silver	0.317		

ENVIRONMENTAL CHEMISTS

Client ID:	WT-SS-04-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-04 x2
Date Analyzed:	04/18/17	Data File:	704169-04 x2.094
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	256		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	WT-SS-06-0-6" 04/11/17 04/17/17 04/18/17 Soil	Client: Project: Lab ID: Data File: Instrument:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-06 x0.2 704169-06.089 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	10.4		
Barium	45.8		
Cadmium	0.356		
Chromium	186 J		
Lead	42.7		
Mercury	< 0.4		
Selenium	< 0.2		
Silver	0.277		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	WT-SS-06-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-06 x2
Date Analyzed:	04/18/17	Data File:	704169-06 x2.095
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	241		

7

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	WT-SS-08-0-6" 04/11/17 04/17/17	Client: Project: Lab ID: Data File:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-08 x0.2
Matrix:	04/16/17 Soil	Data File.	704109-08 X0.2.091 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	6.20		
Barium	30.2		
Cadmium	0.797		
Chromium	114 J		
Lead	42.1		
Mercury	<0.4		
Selenium	0.208		
Silver	0.370		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020A

Client ID:	WT-SS-08-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/17/17	Lab ID:	704169-08 x2
Date Analyzed:	04/18/17	Data File:	704169-08 x2.096
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	145		

9

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted:	Method Blank Not Applicable 04/17/17	Client: Project: Lab ID:	Floyd-Snider SIM-730 EDR, F&BI 704169 I7-197 mb
Date Analyzed:	04/18/17 Soil	Data File:	17-197 mb.043 ICDMS9
Unite:	Suii malka (nnm) Dry Waight	Operator:	
Units.	ing/kg (ppin) Dry Weight	Operator.	Ar
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<0.2		
Cadmium	<0.2		
Chromium	<0.2		
Lead	<0.2		
Mercury	< 0.4		
Selenium	<0.2		
Silver	<0.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	WT-SS-01-0-6"	Client:	Floyd-Snider
Date Received:	04/11/17	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/12/17	Lab ID:	704169-01 1/5
Date Analyzed:	04/13/17	Data File:	041305.D
Matrix:	Soil	Instrument:	GC7
Units:	mg/kg (ppm) Dry Weight	Operator:	VM
Surrogates.	% Recovery:	Lower Limit:	Upper Limit:
TCMX	70 recovery. 70	29	154
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	< 0.02		
Aroclor 1016	< 0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	0.25		
Aroclor 1260	< 0.02		
Aroclor 1262	< 0.02		
Aroclor 1268	< 0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-02-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-02 1/5 041306.D GC7 VM
Surrogates: TCMX	% Recovery: 62	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ 0.16 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-03-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-03 1/5 041307.D GC7 VM
Surrogates: TCMX	% Recovery: 45	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.055 \\ < 0.02 \\ 0.059 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-04-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-04 1/5 041308.D GC7 VM
Surrogates: TCMX	% Recovery: 44	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ 0.027 \\ 0.042 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-05-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-05 1/5 041309.D GC7 VM
Surrogates: TCMX	% Recovery: 72	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\< 0.02 \\< 0.02 \\0.025 \\< 0.02 \\0.026 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \\< 0.02 \end{aligned}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-06-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-06 1/5 041310.D GC7 VM
Surrogates: TCMX	% Recovery: 69	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.039 \\ < 0.02 \\ < 0.02 \\ 0.044 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-07-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-07 1/5 041311.D GC7 VM
Surrogates: TCMX	% Recovery: 78	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ 0.079 \\ < 0.02 \\ 0.052 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WT-SS-08-0-6" 04/11/17 04/12/17 04/13/17 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd-Snider SIM-730 EDR, F&BI 704169 704169-08 1/5 041312.D GC7 VM
Surrogates: TCMX	% Recovery: 76	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 0.062 <0.02 0.070 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Floy d-Snider
Date Received:	Not Applicable	Project:	SIM-730 EDR, F&BI 704169
Date Extracted:	04/12/17	Lab ID:	07-752 mb2 1/5
Date Analyzed:	04/13/17	Data File:	041304.D
Matrix:	Soil	Instrument:	GC7
Units:	mg/kg (ppm) Dry Weight	Operator:	VM
~		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
ТСМХ	79	29	154
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	< 0.02		
Aroclor 1016	< 0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	< 0.02		
Aroclor 1260	< 0.02		
Aroclor 1262	< 0.02		
Aroclor 1268	<0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020A

Laboratory Code: 704210-26 x10 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<50	103	99	75-125	4
Barium	mg/kg (ppm)	50	80.4	99 b	72 b	75-125	32 b
Cadmium	mg/kg (ppm)	10	<10	102	98	75-125	4
Chromium	mg/kg (ppm)	50	15.5	101	89	75-125	13
Lead	mg/kg (ppm)	50	233	42 b	0 b	75-125	200 b
Mercury	mg/kg (ppm	5	<10	114	106	75-125	7
Selenium	mg/kg (ppm)	5	<10	137 vo	43 vo	75-125	104 vo
Silver	mg/kg (ppm)	10	<10	94	91	75-125	3

Laboratory Code: Laboratory Control Sample

5	5	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	103	80-120
Barium	mg/kg (ppm)	50	104	80-120
Cadmium	mg/kg (ppm)	10	104	80-120
Chromium	mg/kg (ppm)	50	101	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	101	80-120
Selenium	mg/kg (ppm)	5	91	80-120
Silver	mg/kg (ppm)	10	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/20/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 704167-01 1/50 (Matrix Spike) 1/50 Sample Percent Result Reporting Spike Recovery Control Units Level (Wet Wt) MS Limits Analyte Aroclor 1016 < 0.2 50-150 mg/kg (ppm) 0.8 61 Aroclor 1260 mg/kg (ppm) 0.8 < 0.2 72 50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	72	73	55-130	1
Aroclor 1260	mg/kg (ppm)	0.8	87	91	58-133	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 20, 2017

INVOICE # 17FDS0420-1

Accounts Payable Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

RE: Project SIM-730 EDR, F&BI 704169 - Results of testing requested by Lynn Grochala for material submitted on April 11, 2017.

8 samples analyzed for PCBs as Aroclors by Method 8082 @ \$95 per sample	\$ 5 760.00
4 samples analyzed for RCRA 8 Metals by Method 6020A @ \$125 per sample	500.00
Amount Due	\$ 1,260.00

FEDERAL TAX ID #91-1287838

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. 3012 16th Avenue West Yelena Aravkina, M.S. Seattle, WA 98119-2029 Michael Erdahl, B.S. (206) 285-8282 Arina Podnozova, B.S. fbi@isomedia.com Eric Young, B.S. www.friedmanandbruya.com " 1260.00","17FDS0420-1","Floyd-Snider","SIM-730 EDR, F&BI 704169 ","April 21, 2017"," 1260.00","","","","",""

704169	SAMPLE CHAIN OF CUSTODY	Jun	ME 04-11-17, BI3
Send Report To Lynn Grochala	PROJECT NAME/NO	Lu A	Page # of TURNAROUND TIME TStandard Turnaround
Company Floyd Snider Address (201 Union St., Swite (200	Sim - 730 EDR	100	RUSH Rush charges authorized by:
City, State, ZIP Seattle, WA 98101	PROJECT ADDRESS		SAMPLE DISPOSAL • Dispose after 30 days • Return samples
Phone # <u>2014 - 292 - 2078</u> Fax #	ELECTRONIC DATA REQUESTED		Will call with instructions Samples Received at °C
Email Address Lynn. Grochala @ Ploydsnider.co.	v, L		

											ANA	LYS	ES F	EQU	EST	ED			
Sample ID	Lab ID	Date	Time	Samp	le Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	PCBI EPH BOB2	RCRA 8 metaly EPA 6020				1	Votes
WT-55-01-0-6"	OIAB	4/11/17	1245	Ś)	2							Х	X				report	results
WT-35-02-0-6"	02		1220			1							Х					to law	& PL for
WT-SS-03-0-3"	03		1205 +155 P.O.			l							Χ					metho	d
WT-SS-04-0-6"	OY A B		1115			2							Х	Х					
WT-SS-05-0-6"	05		1135			١							Х						
WT-SS-06-0-6"	06 AB	(1100		f	2							Х	Х					
WT-SS-07-0-6'	07		1030			1							X						
WT-SS-08-0-6	OXAB	\checkmark	1015	4	/	2							X	\times					
Friedman & Bruya, Inc.		SIGNATU	RE			PRINT	NA	ME					CC	OMPA	١NY			DATE	TIME
3012 16th Avenue West	Relinquished by		2			Koshn	tre	ser	Sa	ι		Ý	-5				4	11/17	1326
Seattle, WA 98119-2029	Received by:	mm	w		10hai	~ Phá	آ م					Ŧ	B	L	~		4	11/17	1326
Ph. (206) 285-8282	Relinquished by	· 1				ŧ	•												
Fax (206) 283-5044	Received by:			2									Sa	amole	es re	ceiv	ed at	4	°C

FORMS\COC\COC.DOC

£

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 28, 2017

Lynn Grochala, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Grochala:

Included are the additional results from the testing of material submitted on April 11, 2017 from the SIM-730 EDR, F&BI 704169 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Chell Black FDS0428R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2017 by Friedman & Bruya, Inc. from the Floyd-Snider SIM-730 EDR, F&BI 704169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
704169 -01	WT-SS-01-0-6"
704169 -02	WT-SS-02-0-6"
704169 -03	WT-SS-03-0-6"
704169 -04	WT-SS-04-0-6"
704169 -05	WT-SS-05-0-6"
704169 -06	WT-SS-06-0-6"
704169 -07	WT-SS-07-0-6"
704169 -08	WT-SS-08-0-6"

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/28/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169 Date Extracted: 04/24/17 Date Analyzed: 04/24/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	
Laboratory ID	

Total Mercury

WT-SS-01-0-6" 704169-01 0.16

Method Blank

< 0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/28/17 Date Received: 04/11/17 Project: SIM-730 EDR, F&BI 704169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code	: 704169-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting Units	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte		Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	0.14	90	99	71-125	10
·							
Laboratory Code	e: Laboratory Contr	ol Sampl	e				
			Percent				
	Reporting Units	Spike	Recovery	Accept	tance		
Analyte		Level	LCS	Crite	eria		
Mercury	mg/kg (ppm)	0.125	100	68-1	125		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mbox{ca} - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
704169	SAMPLE CHAIN OF CUSTODY	2m	ME 04-11-17 BE
Send Report To Lynn Grochala	SAMPLERS (signature)	UNT.	Page #of TURNAROUND TIME
Company Floyd Snider	- SIM - 730 EDR	PO#	- RUSH Rush charges authorized by:
Address UDI WINON ST, Suite UDU City, State, ZIP Seattle, WA 98101	PROJECT ADDRESS	L	SAMPLE DISPOSAL Dispose after 30 days
Phone # 2010 - 292 - 2078 Fax #			 Return samples Will call with instructions
Email Address Lynn. Grochala @ Ploydsnider.co	ELECTRONIC DATA REQUESTED		Samples Received at °C
F	· · · ·	ANALYSES REQU	ESTED

Sample ID	Lab ID	Date	Time	Sam	ole Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	PCBI CAR2	RCRA 8 wetals	Hq [1, 1631E	>		(X) -pv1	LL 1/24/17 lotes m
WT-55-01-0-6"	OIAB	4/11/17	1245	<	ò	2			****				X	X	\oslash			revort 1	results
WT-SS-02-0-6"	02		1220		\	1							Х					to lairs	t RL for
WT-SS-03-0-3"	03		1205			ł							Х					methor	ł.
WT-53-04-0-6"	OY A B		1115			2							Х	Х					
WT-55-05-0-6"	05		1135			١							Х						
WT-SS-06-0-6"	06 AB		1100		i	2							Х	Х					
WT-SS-07-0-6	07		1030			}							Х						
WT-55-08-0-6	OKAB	\checkmark	1015	4	1	2							Х	\times					
						ан сайта. Ал													
Friedman & Bruya, Inc.	\$	SIGNATIJ	RE			PRINT	NA	ME		******			C	OMP.	ANY			DATE	TIME
3012 16th Avenue West	Relinquished by					Losha	tre	ter.	34	٤		ĩ	-5				4	(1 12)	1326
Seatile, WA 98119-2029	Received by:	MW	w		10har	> Phá	η.					FIBT				4	11/17	1326	
Ph. (206) 285-8282	Refinquished by	1	· .			······································													
Fax (206) 283-5044	Received by:			3							Samples received at 4 pc								
FORMS\COC\COC.DOC	****			******							l			*					<u> </u>

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 22, 2017

Lynn Grochala, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Ms Grochala:

Included are the additional results from the testing of material submitted on April 11, 2017 from the SIM-730 EDR, F&BI 704169 project. There is 1 page included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures FDS0522R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2017 by Friedman & Bruya, Inc. from the Floyd-Snider SIM-730 EDR, F&BI 704169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
704169 -01	WT-SS-01-0-6"
704169 -02	WT-SS-02-0-6"
704169 -03	WT-SS-03-0-6"
704169 -04	WT-SS-04-0-6"
704169 -05	WT-SS-05-0-6"
704169 -06	WT-SS-06-0-6"
704169 -07	WT-SS-07-0-6"
704169 -08	WT-SS-08-0-6"

The samples were sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 704169 Work Order Number: 1705149

May 17, 2017

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 5/12/2017 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

C. Ked

Mike Ridgeway Laboratory Director

DcD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Friedman & Bruya 704169 1705149	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1705149-001	WT-SS-04-0-6"	04/11/2017 11:15 AM	05/12/2017 12:52 PM
1705149-002	WT-SS-06-0-6"	04/11/2017 11:00 AM	05/12/2017 12:52 PM

Case Narrative

WO#: **1705149** Date: **5/17/2017**

CLIENT:Friedman & BruyaProject:704169

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1705149 Date Reported: 5/17/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD - Relative Percent Difference** SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1705149

 Date Reported:
 5/17/2017

CLIENT: Frie	dman & Bruya							
Project: 704	169					-		
Lab ID: 1705	149-001				Collection	Date:	4/11/2017 11:15:00 A	M
Client Sample	D: WT-SS-04-0-6"				Matrix: S	ioil		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	
Sample Moistu	re (Percent Moisture	e)			Batch	n ID: R3(6134 Analyst: BB	
Percent Moisture		13.7	0.500		wt%	1	5/15/2017 12:03:59 PM	
Hexavalent Ch	romium by EPA Met	<u>hod 7196</u>			Batch	n ID: 170	068 Analyst: KT	
Chromium, Hexav	alent	ND	0.571	н	mg/Kg-dry	1	5/17/2017 8:49:00 AM	

Lab ID: 1705149-002	Collection Date: 4/11/2017 11:00:00 AM							
Client Sample ID: WT-SS-06-0	-6"		Matrix: S	ioil				
Analyses	Result	RL Qual	Date A	Date Analyzed				
Sample Moisture (Percent Mois	<u>ture)</u>		Batch	n ID:	R36134	Analyst: BB		
Percent Moisture	6.92	0.500	wt%	1	5/15/201	17 12:03:59 PM		
Hexavalent Chromium by EPA I	<u>Method 7196</u>		Batch	n ID:	17068	Analyst: KT		
Chromium, Hexavalent	ND	0.531 H	mg/Kg-dry	1	5/17/20 ⁻	17 9:01:00 AM		

Work Order:	1705149									QC				
CLIENT:	Friedman & I	Bruya							Union	Joint Chiro				
Project:	704169								пехача					
Sample ID MB-170	68	SampType	MBLK			Units: mg/Kg		Prep Date: 5/16/2017						
Client ID: MBLKS		Batch ID:	17068					Analysis Dat	e: 5/17/20)17				
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val				
Chromium, Hexaval	ent		ND	0.500										
Sample ID LCS-17	068	SampType	LCS			Units: mg/Kg	1	Prep Dat	e: 5/16/20)17				
Client ID: LCSS		Batch ID:	17068					Analysis Dat	e: 5/17/2)17				
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val				
Chromium, Hexaval	ent		2.46	0.500	2.500	0	98.5	65	135					
Sample ID 170512	1-001ADUP	SampType	DUP			Units: mg/Kg	g-dry	Prep Dat	e: 5/16/2	017				
Client ID: BATCH	l	Batch ID: 17068						Analysis Dal	te: 5/17/2	017				
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val				
Chromium, Hexava	lent		ND	0.625		····				0				
Sample ID 170512	1-001AMS	SampType	: MS			Units: mg/Kg	g-dry	Prep Dat	te: 5/16/2	017				
Client ID: BATCH	I	Batch ID:	17068					Analysis Da	te: 5/17/2	017				
Analyte		f	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val				
Chromium, Hexava	lent		2.81	0.625	3.123	0	89.8	65	135					
Sample ID 170512	1-001AMSD	SampType	: MSD			Units: mg/K	g-dry	Prep Da	te: 5/16/2	017				
Client ID: BATCH	1	Batch ID:	17068					Analysis Da	te: 5/17/2	017				
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val				
Chromium, Hexava	lent		3.04	0.631	3.154	0	96.4	65	135	2.805				

Original

Work Order:	1705149	· · · · · · · · · · · · · · · · · · ·				20
CLIENT:	Friedman & Bi	ruya				
Project:	704169					Sample N
Sample ID 1705143	-001ADUP	SampType: DUP			Units: wt%	Prep Date: 5/15/2017
Client ID: BATCH		Batch ID: R36134				Analysis Date: 5/15/2017
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val
Percent Moisture		11.3	0.500		. , , , , , , , , , , , , , , , , , , ,	10.82
Sample ID 1705150	-004ADUP	SampType: DUP			Units: wt%	Prep Date: 5/15/2017
Client ID: BATCH		Batch ID: R36134				Analysis Date: 5/15/2017
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val
Percent Moisture		15.5	0.500			15.53

		10	work Order Num	iber: 1705149		
Lo	gged by:	Chelsea Ward	Date Received:	5/12/2017	12:52:00 PM	
Chai	in of Custo	<u>ody</u>			·····	
1.	Is Chain of Cu	ustody complete?	Yes 🗹	No 🗌	Not Present	
2.	How was the	sample delivered?	FedEx			
Loq	In					
3.	Coolers are p	resent?	Yes 🗌	No 🗹		
		Samples rec	ceived at appropr	iate temperatur	ę	
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗹	No 🗌		
5.	Custody Seal: (Refer to com	s present on shipping container/cooler? ments for Custody Seals not intact)	Yes 🗌	No 🗹	Not Required	
6.	Was an atterr	pt made to cool the samples?	Yes 🖌	No 🗌	NA 🗍	
7. '	Were all items	s received at a temperature of >0°C to 10.0°C*	Yes 🗹	No 🗌		
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗌		
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples (properly preserved?	Yes 🗹	No 🗌		
11. '	Was preserva	tive added to bottles?	Yes 🗌	No 🗹	NA 🗌	
12.	Is there heads	space in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	ls it clear wha	t analyses were requested?	Yes 🗹	No 🗌		
17.	Were all holdi	ing times able to be met?	Yes 🗌	No 🗹		
Spec	cial Handli	ng (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🔽	
	Person 1 By Who Regardin	Notified: Date m: Via: ng:	eMail P	hone 🗌 Fax 🏾] In Person	
		suucions:	-		····	

Item Information

Item #	Temp °C
Sample	2.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Fax (206) 283-5044	Seatue, WA 98119-2029 Ph. (206) 285-8282	3012 10th Avenue West	Friedman & Bruya, Inc.							a de la constante de la constan	for a financial second s	1. 2-0-90 - 55-1 M	\$-0-ho-55-1M	Sample ID		Phone # (206) 285-828	City, State, ZIP <u>Seattl</u>	Address 3012	Company <u>Fried</u>	Send Report <u>To Mich</u>	
NOCS VOR	Relinquish	a suburian												Lab ID		2Fax#	e. WA 981	16th Ave W	nan and B	ael Erdahl	
$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $	w.	D D Walk	VNDIS						and a second			×	4/2/7	Date Sampled		(206) 283	19	1. A service of the Control of	ruva, Inc.	and a second	S
دە كەرىپەر بىرىغان بىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى	Maddaganighted and the state		TURE		-				nandalanda ya afa afa afa afa afa afa afa afa afa			0.0	888.8 	Time Sampled		5044	New York Water Book And Water Book And	n a chu		rannya katang atawa na manggi ya dan kata na nangana Matang	UBCONTR
ne (A). A sub-result and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	and the second	Mi										kom	202	Matrix			REMAR		PROJE	SUBCO	ACT S/
one of the second se	10 Car	chael E									*****			jar # ars of	_	Please	SM		CT NAN	NTRA	MMPL
		rdahl	PRIN											Dioxins/Furans		Email		-7D	ME/NO	Mark	HO H
مها، دار بازدازید در مارد. یک آن در مارد	2027 F		NVN J		-									EPH		Result			1	2 12 14 14	IAIN
siy 11 e oʻr dhëjodda dha kwa kao	K		Ē											VPH	A		~ ^?			a dian	OF (
ananaan ah a salaan ah														Nitrate	NALY	1		a topological and the second s			rsnc
		Fri								 	 			Sulfate	SES			Ś	PO #		COD
na (na 'n Grazilla an Anna an Anna	All and	edmai	S						-		 			Alkalinity	REQU			Ģ			
1.4/)	(Constanting of the second	1 and	MPA									\sim	$\overline{\checkmark}$	TOC-9060M	ESTE	L	l	******			
WALKARD THE PARTY IS A FI		Bruya	3L					•			 		- <u>_</u>	Cor Xulia		C Rete	Disp	Rush c	Star	moor, Californi, Kaliforni, Angeler	genericities a
											 					urn san call w	SAMI ose afi	harge	idard (Page #	O A
an the second		2 22	DATE				-	+								aples ith inst	VLE DI	s autho	2 Week	AROU	- Andrewski - A Andrewski - Andrewski - Andre Andrewski - Andrewski - Andr
	194 _{thal} er	4		******		an a								Not		ruction	SPOSA	rized b	e V	NT ON	service 2
41/26 (************************************	No 2	MAN	TIME											29. 29.		<u>3</u>		Sector Contraction	р. 757	E -	

FORMS\COC\COC.DOC WT-35-02-0-6" Ph. (206) 285-8282 3012 16th Avenue West Fax (206) 283-5044 Seattle, WA 98119-2029 Friedman & Bruya, Inc. NT-55-08-0-6" OX A BN WT-SS-03-0-3" WT-55-01-0-6". Phone # 2010 - 272 - 2078 Fax # NT-SS-06-0-6" NT-SS-05-0-6" NT - 53 - 04-0-6" Email Address Lynn. Grachala @ Abydshider.com City, State, ZIP Seattle, WA Address (101 Winon St Company Elnyd Syndar Send Report To____ 17-55-07-0-6 691hat Sample ID ANN ANN Received by: AM Relinquished by: Relinguished by: Received by: 0648 40 ou A 03 (Junour) 05 3 OFAD Lab ID Son zims 6 SIGNATURE 7 1 1 H 98101 ₹ Date - 25 CM 11205 1245 00 11 ন জ 220 135 1030 1015 Time SAMPLE CHAIN OF CUSTODY . SAMPLERS (signature) PROJECT ADDRESS PROJECT NAME/NO Sample Type SIM - 730 EDR ELECTRONIC DATA REQUESTED Ę $\cdot D$ MAN LUShn trolerson containe N P N # 않 PRINT NAME 2 Mr. TPH-Diesel **TPH-Gasoline** BTEX by 8021B VOCs by 8260 SVOCs by 8270 NALYSES FUR I HFS PO# IT, PCBs EPA 8082 RLRA 8 metals EPA 6020 × \succ >COMPANY Samples received at REQUESTED \times × \times \bigotimes Hz Ly 1631E Co VI. Samples Received at Return samples
 Will call with instructions Rush charges authorized by: Standard Turnaround SAMPLE DISPOSAL Dispose after 30 days R ЧE Paget TURNAROUND TIME 4/11/12 El 11/14 DATE 41-11-40 methory Kluezy tradits -11md- 8 B-28-16 to loved the for 5 6 W/24/17 112/17 പ് 1326 1326 9 M. 4. , TIME BE

-83-