

5508 35th Avenue NE, Suite 108 Seattle, Washington 98105 Phone: (206) 523-3505 Whitenviro@yahoo.com

April 1, 2011

FedEx Freight, Inc. 3405 Victor St. Santa Clara, CA 95054

Attention: Mr. Chong Lee

Subject: Groundwater Monitoring FedEx Freight, Inc. Seattle Area Terminal 18221 E. Valley Highway Kent, Washington

Dear Mr. Lee:

As you requested, Whitman Environmental Sciences (WES) has conducted groundwater sampling from eleven existing monitoring wells at the FedEx Freight terminal in Kent, Washington (Figure 1). This letter is to document the monitoring procedures and report the results of our sampling.

Site Background

The FedEx Freight terminal in Kent was originally constructed and operated by another trucking company in about 1969. Viking Freight, a predecessor company to FedEx, occupied the site beginning in about 1992.

A fueling facility, including underground storage tanks for gasoline and diesel fuel was located near the southern end of the truck shop. The gasoline tanks were removed in about 1988 and a release of petroleum to soil and groundwater was discovered at that time. The release was reported to the Washington Department of Ecology.

Extensive site investigation and cleanup efforts were conducted from about 1988 to 1998. During that time, at least 15 monitoring wells and two groundwater recovery wells were installed on the site and adjoining property to the south. Groundwater was withdrawn using a pump and treat system, and a soil vapor extraction system was operated in the area around the fueling island.

In about 1998, the diesel tank was also removed and replaced with an aboveground tank. The fueling facility and a sump in the adjacent truck wash bay were rebuilt. Additional cleanup and monitoring efforts may have been undertaken, but records are incomplete. The last available record of groundwater monitoring was from a sampling event conducted in June, 1998. At that time, some petroleum impacts to groundwater were documented.

However, since that time, monitoring wells on the property to the south have been permanently abandoned and sealed and one additional monitoring well was installed on-site. Records of these actions were not readily available.

FedEx Freight, Inc. Groundwater Monitoring Results FedEx Freight Seattle Area Terminal Kent, Washington

Locating and Access to Monitoring Wells

To conduct the current groundwater monitoring event, WES initially surveyed the condition and accessibility of the existing monitoring wells on February 28, 2011. The locations of the existing wells were found based on a site plan from the 1998 groundwater monitoring report. Monuments for on-site wells MW-1, MW-2, MW-3, MW-5, MW-6, MW-7, MW-8 and MW-13 were located, as well as one unidentified well (tentatively designated MW-X) and vaults for on-site recovery wells MW-10 and RW-1. Figure 2 shows the locations of the identified wells. A number of other monument covers around the fueling island were identified as control valves and surface exposures of former vapor extraction points. A third vault was also observed that could not be accessed to determine the contents.

On-site monitoring wells MW-4 and MW-15 could not be located, and it appears that construction of the new fuel island and wash bay reconstruction may have destroyed or covered these wells. Also, the former locations for monitoring wells MW-11, MW-12 and MW-14 were identified on the property to the south, but each had been formally abandoned at some time in the past and small rectangular concrete pads were poured in place. Former monitoring well MW-9 had also been on the adjacent property, but could not be located. It is likely this well was also abandoned.

The on-site monitoring well covers were in varying condition, but most show signs of traffic damage or age. As part of this monitoring event, WES opened the monument covers and made minor improvements to the condition of the well exposures. If the wells are to remain in place, some rehabilitation may be necessary to ensure that the wells remain properly sealed to prevent surface water intrusion.

Groundwater Level Measurements

As part of this monitoring event, WES measured the depth to groundwater in all accessible monitoring wells. The measurements were obtained before the wells were purged of standing groundwater. Table 1 summarizes the depth to groundwater, the measured total depth of the wells, the reported top-of-pipe elevation and calculated elevation of groundwater at each well, relative to an on-site assigned datum. For the purpose of this study the well elevations are based on the elevations noted in a prior sampling summary report from 1998. The elevations are relative to an on-site reference point assigned an assumed elevation of 100.00.

The current measurements show that groundwater is at a depth of 4.41 to 8.55 feet below the ground surface, which represent elevations ranging from 90.90 to 93.89 feet, based on site datum. The groundwater elevations were used to calculate the inferred groundwater surface contours, as shown in Figure 2. The contours imply a general trend of groundwater migration toward the west.

Groundwater Sampling

WES obtained groundwater samples from the site monitoring wells on February 28th, March 1st and 2nd, 2011. The samples were obtained with a peristaltic pump using new polyethylene tubing in each well. Each well was purged of at least three volumes of the standing water volume in the well prior to sampling, except RW-1. RW-1 is a six-inch diameter well with a standing water volume of approximately 35 gallons. RW-1 was pumped to remove a volume of 55 gallons, while periodically measuring pH and temperature. Once these parameters had stabilized, the well was considered to be purged for sampling.

FedEx Freight, Inc. Groundwater Monitoring Results FedEx Freight Seattle Area Terminal Kent, Washington

Samples were taken following proper environmental sampling techniques and protocols, placed in laboratory prepared bottles, chilled and held under chain of custody until delivered to the laboratory. The samples were submitted to Friedman & Bruya, Inc., a Washington State accredited laboratory, for testing.

Each sample was analyzed by Washington accepted methods NWTPH-G for total petroleum hydrocarbons (TPH) in the gasoline range, as well as the volatile aromatic compounds benzene, toluene, ethylbenzene and xylenes (BTEX), commonly associated with gasoline. The samples were also tested for total petroleum hydrocarbons in the diesel and oil ranges by Washington accepted method NWTPH-D(x), following a silica gel cleanup to remove organic materials that could bias the testing results. One sample was also analyzed for the total concentration of lead.

Laboratory Analytical Results

The results of laboratory testing and Washington State cleanup criteria are summarized in Table 2. The laboratory reports of the analytical results are attached. All laboratory quality assurance/ quality control criteria were met by the analyses and the laboratory reporting limits are low enough that the data can be compared to appropriate regulatory cleanup levels.

The samples from all wells meet current Washington Model Toxics Control Act (MTCA) Method A groundwater cleanup criteria for all of the analyzed parameters.

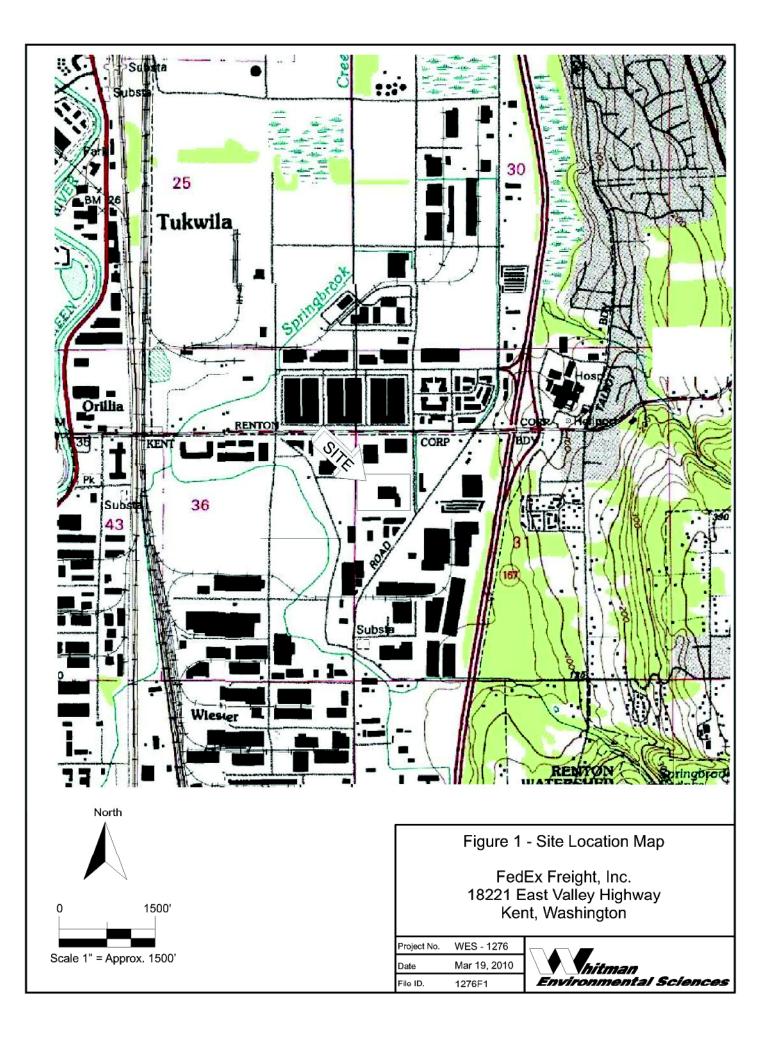
Of the groundwater samples, only the one from monitoring well MW-5 contained detectable concentrations of any of the analyzed petroleum hydrocarbons. The sample contained a low but detectable concentration of 52 ug/l of diesel range hydrocarbons with no other detectable petroleum concentrations. This sample was also analyzed for lead and contained no detectable concentrations.

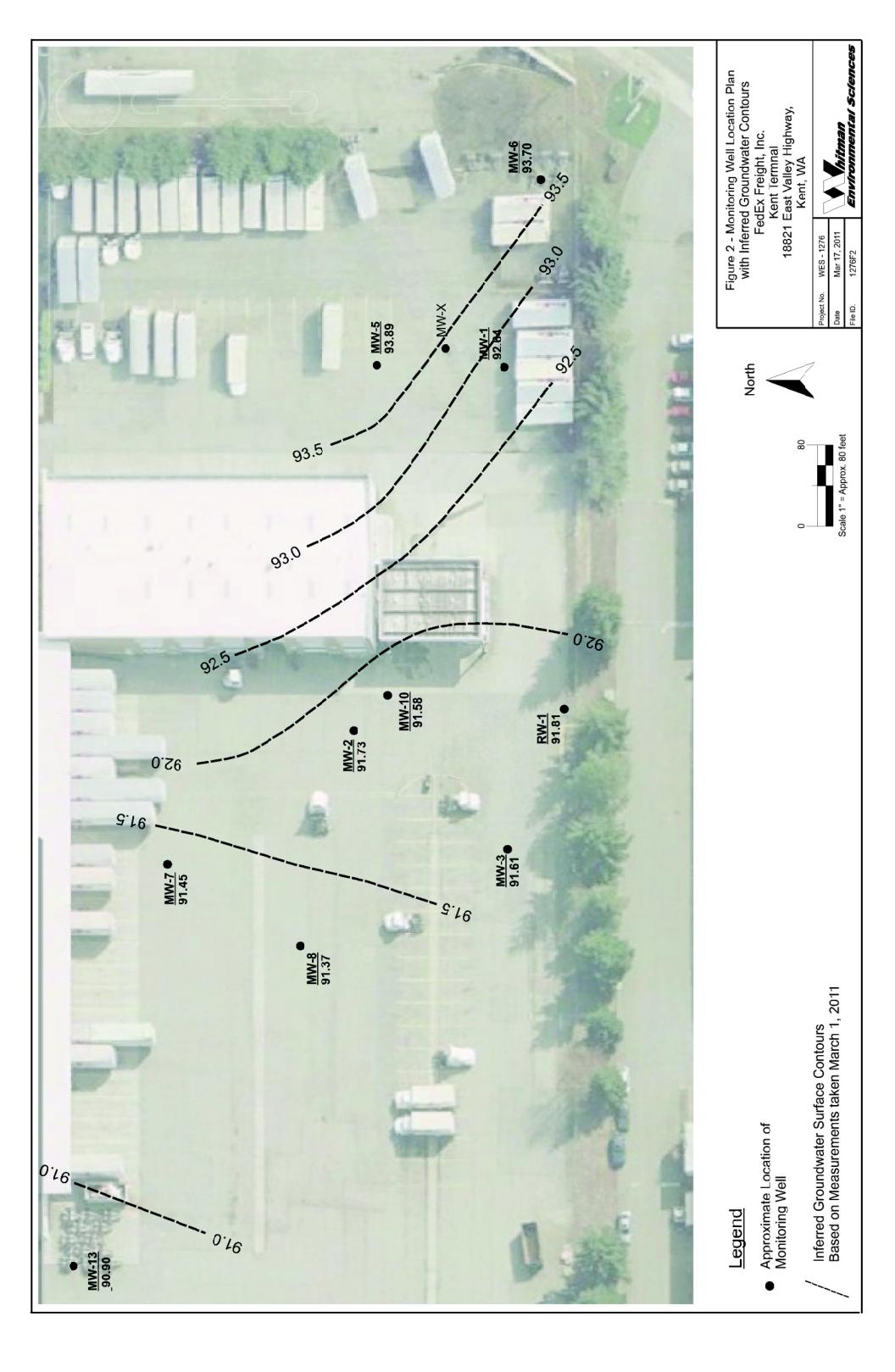
Conclusions

The current groundwater sampling shows no evidence of petroleum impacts exceeding Washington State groundwater cleanup criteria under the Model Toxics Control Act (Chapter 173-340 WAC).

Closure

Thank you for the opportunity to be of service to you in this matter. If you have any questions regarding this letter, or if I may be of any further assistance, please feel free to contact me at your convenience.


Respectfully submitted, *Whitman Environmental Sciences*


Ser and a series of the series

Daniel S. Whitman Principal

Attachments: Figure 1 - Site Location Map
Figure 2 - Groundwater Sample Location Plan, with Inferred Groundwater
Contours
Table 1 - Groundwater Level Measurements
Table 2 - Groundwater Sample Analytical Results
Laboratory Analytical Reports - Friedman & Bruya, Inc.

Page 4

276
WES-1
No. <
Project

Table 1Summary of Groundwater Level DataFebruary 28, 2011FedEx Freight, Inc. Seattle Area TerminalKent, Washington

		5	Nent, washington		
Monitoring Well	Water Level Relative to Top	Total Depth of Well (ft)	Top of Pipe Elevation*	Groundwater Elevation*	
	of Pipe (tt)				Comments
MW-1	-6.04	15.2	98.68	92.64	Monument not bolted
MW-2	7.42	17.0	99.15	91.73	Monument not bolted
MW-3	-7.40	18.5	99.01	91.61	Monument damaged
MW-4	Not	Present	1	ł	
MW-5	-4.44	18.8	98.33	93.89	Monument not bolted
MW-6	-4.00	21.6	97.70	93.70	Monument damaged, no lid
7-WM	-7.55	18.2	00.66	91.45	Monument damaged
MW-8	-6.68	ł	98.05	91.37	Monument damaged
6-WW	Not	Present		-	
MW-10	-6.05	25.6	97.63	91.58	Vault in poor condition
MW-11	Abandoned	1	1	1	
MW-12	Abandoned	1	1	ł	
MW-13	-8.55	19.15	99.45	06.06	Monument not bolted
MW-14	Abandoned	ł	1	ł	
MW-15	Not	Present	1	ł	
MW-X**	-4.41	13.2	Unknown	ł	Monument damaged
RW-1	-6.30	19.6	98.11	91.81	
* Top of Pipe and G	* Top of Pipe and Groundwater Elevations relative to an on-site reference point assigned elevation of 100.00 for the purposes of this study.	elative to an on-site refe	erence point assigned	elevation of 100.00 for th	he purposes of this study.

ົ ** Monitoring well I.D. and top-of-pipe elevation unknown. WES-1276

Current Groundwater Sample Analytical Results FedEx Freight, Inc., Seattle Area Terminal Table 2

Sample I.D.	Sample		Laborato	Laboratory Analytical Results in ug/l (ppb)	I Kesults in I	(add) I/bn		
	Date	Diesel and Oil	Gasoline	Benzene	Toluene	Ethyl-	Total	Total
		Range TPH NWTPH-D(x)	Range TPH NWTPH-G			benzene	Xylenes	Lead
MW-1	3/1/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-2	2/28/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-3	2/28/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-5	3/1/2011	Diesel - 52 Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	ND (<1)
MW-6	3/2/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
7-WM	2/28/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-8	2/28/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-10	2/28/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
MW-13	3/1/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
WW-X	3/2/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
RW-1	3/1/2011	Diesel - ND(<50) Oil - ND(<250)	ND (<100)	ND (<1)	ND (<1)	ND (<1)	ND (<3)	N/A
Model Toxics Control Act Method A Ground- water Cleanup Level	Control Ground- Level	2,000	1,000*	5	1,000	700	1,000	15
Table 2 Notes:			T T T T T T T T T T T T T T T T T T T	ע חמד/אווא ה				

Diesel and Oil Range total petroleum hydrocarbons conducted by Washington Method NWTPH-D(x). Gasoline range total petroleum hydrocarbons by Northwest Method NWTPH-G for petroleum in the gasoline range. BTEX Compounds by EPA Method 8021B. ND (<X.XXX) - Not Detected by Analysis at levels above the noted detection reporting limit. N/A - Not analyzed for the listed parameter.

*MTCA Method A cleanup level for gasoline range petroleum hydrocarbons, when benzene is not present. If benzene is present, Method A cleanup level is 800 ug/l.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 11, 2011

Dan Whitman, Project Manager Whitman Environmental Sciences 5508 35th Ave. NE Seattle, WA 98105

Dear Mr. Whitman:

Included are the results from the testing of material submitted on March 1, 2011 from the Fedex Kent WES-1276A, F&BI 103005 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures WES0311R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 1, 2011 by Friedman & Bruya, Inc. from the Whitman Environmental Sciences Fedex Kent WES-1276A, F&BI 103005 project. Samples were logged in under the laboratory ID's listed below.

Whitman Environmental Sciences
MW-7
MW-8
MW-3
MW-2
MW-10

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/11 Date Received: 03/01/11 Project: Fedex Kent WES-1276A, F&BI 103005 Date Extracted: 03/02/11 Date Analyzed: 03/03/11

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-7 103005-01	<1	<1	<1	<3	<100	67
MW-8 103005-02	<1	<1	<1	<3	<100	75
MW-3 103005-03	<1	<1	<1	<3	<100	77
MW-2 103005-04	<1	<1	<1	<3	<100	81
MW-10 103005-05	<1	<1	<1	<3	<100	82
Method Blank 01-0363 MB	<1	<1	<1	<3	<100	81

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/11 Date Received: 03/01/11 Project: Fedex Kent WES-1276A, F&BI 103005 Date Extracted: 03/01/11 Date Analyzed: 03/09/11

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-7 103005-01	<50	<250	82
MW-8 103005-02	<50	<250	87
MW-3 103005-03	<50	<250	84
MW-2 103005-04	<50	<250	85
MW-10 103005-05	<50	<250	91
Method Blank 01-0350 MB2	<50	<250	88

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/11 Date Received: 03/01/11 Project: Fedex Kent WES-1276A, F&BI 103005

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 103007-01 (Duplicate)

Laboratory Code.	coscor or (Dupin	cate)		
Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	99	72-122
Ethylbenzene	ug/L (ppb)	50	100	73-126
Xylenes	ug/L (ppb)	150	101	74-118
Gasoline	ug/L (ppb)	1,000	98	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 03/11/11 Date Received: 03/01/11 Project: Fedex Kent WES-1276A, F&BI 103005

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	Laboratory Cont	rol Samp	le Silica Ge	l Filtered		
•	·	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	95	61-133	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

 $\mathrm{d} v$ - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\ensuremath{\mathsf{pr}}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Par (2005) 263-5044	MA. (206) 285-2022	C TON AUGUNE TRUE	Friedman & Bruya, Inc.				10-10	10-2	M1-3	S-CM	110-7	Sample ID		Phome #< </th <th>City, State, ZIP Str</th> <th>Address Str</th> <th>Company AMIMAD</th> <th>Send Report To</th> <th>00000</th>	City, State, ZIP Str	Address Str	Company AMIMAD	Send Report To	00000
	W. Z.						QE N JO	OY A-D	03 A-C	02 A-C	OIA-C	Lab ID		-572-3805 Pax #		3501	no Eur		
•	Impa		GANAGI				V			-	8.28				N.N.	lie .	S	621M	
	and						5:30	5:00	3:30	2:30	5.15	Time			2015	UE	LIGUES .	C	
	· · · ·	4					2				CMBR C	Sample Type		2	SIL	LE L	PROJECT	SAMPLERS (signature)	
	Nhan						e				Ś	e censtaine # of		Xip	11 62-	X XZC	PROJECT NAMEANO.	S (signatur	
0	Phan		NVNNS				X C				XX	2 TPH-Diesel(× TPH-Gasoline	5			5007		2	
	-		and a state of the state of the				U			11	\times	DTEX by SOCIE YOCK by SEED		ENSE	(sup				
	Fe	A.										SVOCa by SED HFS			200	1212 11 STA	8		110
5	BT	S S	COMPANY	inconsection of the section of the s								- -		, the two is not	U	63	*		
2		V	ANN										GENER	0	50			7	
	3//11	3-1-11	DATE									an the second	0	D Will call with instructions	Dispose after 30 days	Bush charges authorized by:	Standard (2 Wooks) RUSH	TURNAROUND THAT	
	ogn	0925	TIME									Notes		tructions	days	straod by:	ks)		HOH

¢

12

. ۲

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 14, 2011

Dan Whitman, Project Manager Whitman Environmental Sciences 5508 35th Ave. NE Seattle, WA 98105

Dear Mr. Whitman:

Included are the results from the testing of material submitted on March 2, 2011 from the FedEx Kent WES 1276A, F&BI 103029 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures WES0314R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 2, 2011 by Friedman & Bruya, Inc. from the Whitman Environmental Sciences FedEx Kent WES 1276A, F&BI 103029 project. Samples were logged in under the laboratory ID's listed below.

Whitman Environmental Sciences
MW-5
MW-6
MW-13
MW-1
MW-X
RW-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/11 Date Received: 03/02/11 Project: FedEx Kent WES 1276A, F&BI 103029 Date Extracted: 03/04/11 Date Analyzed: 03/05/11

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-5 103029-01	<1	<1	<1	<3	<100	80
MW-6 103029-02	<1	<1	<1	<3	<100	69
MW-13 103029-03	<1	<1	<1	<3	<100	80
MW-1 103029-04	<1	<1	<1	<3	<100	75
MW-X 103029-05	<1	<1	<1	<3	<100	70
RW-1 103029-06	<1	<1	<1	<3	<100	80
Method Blank 01-0373 MB	<1	<1	<1	<3	<100	67

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/11 Date Received: 03/02/11 Project: FedEx Kent WES 1276A, F&BI 103029 Date Extracted: 03/04/11 Date Analyzed: 03/10/11

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-5 103029-01	52 x	<250	82
MW-6 103029-02	<50	<250	79
MW-13 103029-03	<50	<250	88
MW-1 103029-04	<50	<250	86
MW-X 103029-05	<50	<250	94
RW-1 103029-06	<50	<250	93
Method Blank 01-0372 MB	<50	<250	87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5 03/02/11 03/08/11 03/08/11 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Whitman Environmental Sciences FedEx Kent WES 1276A, F&BI 103029 103029-01 103029-01.061 ICPMS1 AP
Internal Standard: Holmium		% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:		Concentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/08/11 03/08/11 Water ug/L (ppb)	ζ	Client: Project: Lab ID: Data File: Instrument: Operator:	Whitman Environmental Sciences FedEx Kent WES 1276A, F&BI 103029 I1-162 mb I1-162 mb.068 ICPMS1 AP
Internal Standard: Holmium	9	% Recovery: 97	Lower Limit: 60	Upper Limit: 125
Analyte:	_	oncentration ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/11 Date Received: 03/02/11 Project: FedEx Kent WES 1276A, F&BI 103029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 103021-02 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent							
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
Benzene	ug/L (ppb)	50	97	65-118					
Toluene	ug/L (ppb)	50	96	72-122					
Ethylbenzene	ug/L (ppb)	50	97	73-126					
Xylenes	ug/L (ppb)	150	98	74-118					
Gasoline	ug/L (ppb)	1,000	96	69-134					

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/11 Date Received: 03/02/11 Project: FedEx Kent WES 1276A, F&BI 103029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	81	86	61-133	6

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/11 Date Received: 03/02/11 Project: FedEx Kent WES 1276A, F&BI 103029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Cod	le: 103058-05	(Matrix S	Spike)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Lead	ug/L (ppb)	10	<1	91	96	76-125	5

Laboratory Code: Laboratory Control Sample

	Percent								
	Reporting	Reporting Spike Recovery							
Analyte	Units	Level	LCS	Criteria					
Lead	ug/L (ppb)	10	95	67-135					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

 ${\rm b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

 $\rm ip$ - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\rm pr$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Reimq	Seattle, WA 98119-2029 Received by:	3012 16th Avenue West Reling			1-00	05 X - CM	h0 /- CM/	116-13 03	Marc 02	110-5 01	Sample ID		Phone # 226-523-3805 Fax #	City, State, ZIP		Send Report To	103029
	ed by:	Relinquished by:	ed by:	Relinquished by:	SIGN		06 A.D 3-1-1	05 A.E 3-,	OH A.E 3-	03 A-C 3-	02 A-E 3-	A-T 3	Lab ID I		ax #		En la		
		X	Ø,		SIGNATURE	 	-11	2-11	1-11	1-11	2-11		Date			R	No.		
		Ý	8		E								Time			20/05	lew for	۰.	SAN
			HONG	₽ 			E	-				WATER	Sample Type			REMARKS	PROJECT NAME/NO	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
			57 12 12	J	PRINT NAME		X	4	Л	Ŵ	S	Ø	# of containers				K K	signature	IN OF (
Sa			4		NAME			•				K	TPH-Diesel					U	TSD
mple		010										X	TPH-Gasoline BTEX by 8021B						AGO
srece			7			 							VOCs by 8260	A					Z
Samples received at		- -		$\left \right $									SVOCs by 8270 HFS	ANALYSES REQUESTED			N S PO	A 4 LT TRACT	ME
2			P P	5	CON	 		 				X	TOPAL Lago	ES RI			17 17 PO #		031
D. 11		h	-)	Y.	COMPANY	 								QUES					1201
~4														TED	C Retu	Disp	Rush o	_	/ 11
-			2/2	5	Ð				ļ						Return samples Will call with in	SAMPLE	ndard (SH	Page #	•
			1	11.2	DATE	2	for	B		YET	W.	B			aples th inst	SAMPLE DISPON	Standard (2 Weeks) RUSHush charges authoriz	ROUN	V2/+
			16120	ペート	TIME	SE1283	for rough	24845	to FOR	1	REFERVE	& Contre	Notes		Return samples Will call with instructions	DISPOSAL 30 days	Standard (2 Weeks)	TIRNAROUND TIME	AIZ/AM

tć.