## Memorandum

| To:      | Sunny Becker, Washington State Department of Ecology |
|----------|------------------------------------------------------|
| Copies:  | Bob Code and Glen Dodge, Cascade Columbia            |
| From:    | Tom Colligan, Floyd Snider                           |
| Date:    | December 31, 2013                                    |
| Project: | Fox Ave-RA, Task 7                                   |
| Re:      | Biopolish Treatment Plan                             |

Full-scale electrical resistance heating (ERH) system operation (thermal), which consisted of power application to five treatment areas at the Fox Avenue Site (Site) in Seattle, Washington (Figure 1), commenced on January 8, 2013, and was completed by May 31, 2013. Per the requirements of the final Engineering Design Report (EDR) dated October 9, 2012, this Biopolish Treatment Plan is being submitted to the Washington State Department of Ecology (Ecology) to provide details of the planned post-thermal enhanced reductive dechlorination (ERD) remedial activities in the thermally treated areas at the Site. As discussed in the EDR, bacterial activity should be greatly accelerated if ERD is applied to the warm soil conditions after thermal treatment. The addition of substrate in these areas will lead to rapid declines in the residual concentrations of chlorinated compounds remaining after thermal treatment.

## POST-THERMAL CONDITIONS

## Soil Quality

Compliance soil samples were collected by Floyd|Snider in two stages, with the first stage occurring midway through the heating process in March 2013 and the second stage occurring in mid-May 2013 after 83 percent of the design energy for the ERH system was applied. During the 10 days of sampling, a total of 134 soil samples from 43 borings were analyzed. Results indicated that the average of the sums of trichloroethene (TCE) and tetrachloroethene (PCE) concentrations (PCE+TCE) in all of the treated areas of the Site had been reduced to much less than the soil remediation level of 10 parts per million (ppm) for average PCE+TCE concentration. Nearly all of the residual soil mass was found to occur in vadose zone soils in the Flammables Shed. These areas were further treated using soil vapor extraction as detailed in the monthly reports. Pre- and post-thermal soil concentrations of PCE+TCE are shown on Figure 2.

## Groundwater Quality

On August 28, 2013, Floyd|Snider personnel collected 10 Geoprobe<sup>™</sup> groundwater samples from seven locations throughout the thermal treatment areas to assess post-thermal groundwater conditions. On November 4 and 5, 2013, they collected an additional 20

Geoprobe<sup>™</sup> groundwater samples from eight locations throughout the thermal treatment areas, one groundwater sample from an existing well (MW-14), and one sample from the 2<sup>nd</sup> Water Bearing Zone (WBZ) in the Loading Dock Area (Note: the 2<sup>nd</sup> WBZ in the Loading Dock Area was not subjected to thermal treatment but underwent ERD injections until the injection well in that area was abandoned before thermal operations began).

Samples were collected at depths ranging from 9 to 20 feet below ground surface (bgs) in the 1<sup>st</sup> WBZ and from depths ranging from 30 to 65 feet bgs in the 2<sup>nd</sup> WBZ. At some locations, multiple samples were collected at varying depths.

Groundwater samples were collected using temporary 4-foot-long stainless steel well screens inserted into the Geoprobe<sup>™</sup> rods at specified depths. The samples were collected by means of a peristaltic pump and disposable polyethylene tubing. The filled sample vials were submitted to Fremont Analytical Laboratories for analysis by U.S. Environmental Protection Agency (USEPA) Method 8260. The results for all detected analytes from both groundwater sampling events are included in Table 1 along with the sample temperatures. The PCE and TCE concentrations, vinyl chloride (VC) and cis-1,2-dichloroethene (DCE) concentrations, and the summed concentrations of all chlorinated volatile organic compounds (CVOC) concentrations are shown on Figures 3 through 5, respectively.

The remediation level for total CVOCs at this Site is 250 micrograms per liter ( $\mu$ g/L), with the point of compliance being along Fox Avenue. Results indicate significant progress in terms of achieving the remediation level, especially for PCE and TCE for which concentrations in excess of the remediation level are now limited primarily to the Loading Dock Area (both 1<sup>st</sup> and 2<sup>nd</sup> WBZ) and one location in the Main Source Area (location GP-PT5, 2<sup>nd</sup> WBZ only). Pre- and post-thermal PCE+TCE concentrations in the Loading Dock Area and the Main Source Area are shown in the following table:

|                                              | Loading Dock,<br>1 <sup>st</sup> WBZ | Main Source<br>Area, 1 <sup>st</sup> WBZ | Main Source<br>Area, 2 <sup>nd</sup> WBZ |
|----------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Prethermal<br>maximum<br>PCE+TCE<br>(µg/L)   | 7,500                                | 64,500                                   | 45,000                                   |
| Post-thermal<br>Maximum<br>PCE+TCE<br>(µg/L) | 1,005                                | 416                                      | 8,312                                    |
| Percent change                               | -87                                  | -99.3                                    | -81                                      |

For DCE and VC, the post-thermal groundwater samples also show large reductions in concentrations, except for samples collected in the 2<sup>nd</sup> WBZ in the Main Source Area near location PT-7, where the maximum combined concentrations were similar to those before thermal treatment began, as shown in the following table:

|                | Loading Dock,<br>1 <sup>st</sup> WBZ | Main Source<br>Area, 1 <sup>st</sup> WBZ | Main Source<br>Area, 2 <sup>nd</sup> WBZ |
|----------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Pre-thermal    | 20,400                               | 27,970                                   | 50,085                                   |
| maximum        |                                      |                                          |                                          |
| DCE+VC (µg/L)  |                                      |                                          |                                          |
| Post-thermal   | 1,840                                | 1,225                                    | 54,900                                   |
| maximum        |                                      |                                          |                                          |
| DCE+VC (µg/L)  |                                      |                                          |                                          |
| Percent change | -91                                  | -96                                      | +10                                      |

Based on current post-thermal groundwater conditions, both the 1<sup>st</sup> and 2<sup>nd</sup> WBZs in the Main Source Area and the Loading Dock Area require biopolish treatment to achieve the groundwater remediation level. Specific areas for treatment have been delineated for subsequent focused substrate injections, as discussed in the section "ERD Treatment Plan."

## Groundwater Temperatures

Two temperature monitoring points (TMPs) and their thermocouples were left on-site by TRS Group (TRS) to monitor underground temperatures: B14 and E18. B14 is located in the West Rail Area and reaches a depth of 17 feet. E18 is located in the Flammables Shed and reaches a depth of 65 feet. Each of these TMPs allows monitoring of subsurface groundwater temperatures at different depth intervals. On December 31, 2013, temperatures measured in B14 ranged from 31 degrees Celsius (°C) at 2 feet to 65°C at 17 feet, and temperatures measured in E18 (in November 2013) were 66.1°C at 15 feet, 57°C at 35 feet, and 61°C at 55 feet. It is generally accepted that bacteria capable of dechlorination (*Dehalococcoides* spp.) cannot thrive at temperatures greater than 50°C. Cooling to that temperature threshold is expected to occur by early 2014 across most of the thermally treated areas, with the exception of the Loading Dock Area, where the temperature is already below that threshold.

## POST-THERMAL BIOPOLISH TREATMENT AREAS

Contours that define the extent of groundwater contamination in excess of the remediation level for total CVOCs (250  $\mu$ g/L) in the thermally treated areas of both the 1<sup>st</sup> and 2<sup>nd</sup> WBZ are shown on Figures 6 and 7. These areas will be targeted for biopolishing, except for the eastern portion of the Flammables Shed where DCE concentrations are marginally greater than the remediation level (locations PT-1 and PT-10). Treatment is not planned for these locations because they are well upgradient of Fox Avenue (the point of compliance), and the DCE concentrations at these locations are expected to gradually diminish with time.

## POST-THERMAL BIOPOLISH TREATMENT PLAN

## Loading Dock Area

Biopolishing has already been started in the Loading Dock Area. It began in late October 2013 when CALIBRE Systems, Inc. (CALIBRE) installed two new injection wells (CALIBRE 2013) to take advantage of the more rapid cooling that was found in this area. The two injection wells (R1-IW16 and R1-IW21) were installed at the upgradient edge of the loading dock plume. After

well development, food-grade waste sugars were injected into the thermally treated area, followed by bioaugmentation. Bioaugmentation was accomplished by the injection of a limited amount of Site groundwater from nearby well RI-IW-7. Prior bacterial census data for groundwater from this well indicated a strong population of dechlorinating bacteria. The introduction of these bacteria into the injection wells in the Loading Dock Area inoculated the thermally treated groundwater with the correct bacteria needed for dechlorination.

Therefore, no additional wells are necessary for the thermally treated portion of the plume in the 1<sup>st</sup> WBZ in the Loading Dock Area. However, the deeper plume in the 2<sup>nd</sup> WBZ was not thermally treated and needs additional treatment by ERD. There are currently no injection wells in the 2<sup>nd</sup> WBZ in that area. Three additional injection wells will be installed, as shown on Figure 8. These wells will be installed in the warehouse, slightly upgradient of the loading dock plume to ensure that the full extent of the 2<sup>nd</sup> WBZ plume is treated. Biopolishing will involve the regular addition of soluble sugar substrate in accordance with the Fox Avenue ERD Interim Action Work Plan (FloydSnider and CALIBRE 2008).

## Main Source Area

Given the relatively higher residual concentrations of CVOCs in the Main Source Area, the approach for biopolishing will involve the injection of a suitable electron donor (carbohydrate substrate) such as emulsified vegetable oil (EVO) or waste sugars in a series new injection wells aligned in three rows transverse to the axis of the plume. These new wells will form three "biobarriers," as shown on Figure 8. If EVO is used, it will provide a much longer acting substrate that will lessen the need for more frequent injections as compared to soluble sugar substrates. However, the cost for EVO is significant higher compared to that of waste sugars. A combination of EVO and soluble sugars may also be used, with EVO injected into areas of higher CVOC concentrations and soluble sugars injected into areas in which the concentrations are marginally above the remediation level. The selected substrate will be injected in 14 new injection wells constructed of 2-inch-diameter polyvinyl chloride (PVC). The wells will be spaced approximate 30 feet apart, based upon a presumed radius of influence of 15 feet for the sandy aguifer conditions at the Site. Each injection well will target either the 1<sup>st</sup> or 2<sup>nd</sup> WBZ or both. Wells in the 2<sup>nd</sup> WBZ will be screened to treat the most contaminated zone that is generally between 40 and 65 feet bgs. In locations requiring treatment in both the 1<sup>st</sup> and 2<sup>nd</sup> WBZ, two wells will be constructed in the same injection well borehole, under an approved well variance from Ecology.

EVO or waste sugars need to be diluted prior to injection to allow for greater downgradient transport in the aquifer. Dilution will be accomplished by using aquifer water until the substrate is between 5 and 10 percent strength. Nutrients or other amendments or buffers may be added as necessary to promote growth and control pH. The aquifer will also be bioaugmented with cultured bacteria (KB-1 or equivalent) to replace the bacteria killed by the thermal heating as quickly as possible. Prior to injection, Underground Injection Control permits/registration will be obtained from Ecology.

## ENHANCED REDUCTIVE DECHLORINATION TREATMENT PLAN

#### Downgradient Plume and Northwest Corner

The last ERD injection event occurred in 2013 and included the injection of soluble sugar in wells in the Northwest (NW) Corner, along Fox Avenue, within the property boundary of Seattle Boiler Works, and in Myrtle Street. It is likely that only one more event is necessary in mid-2014. Given that the source of the plume has been significantly reduced in mass, permanent reductions in contaminant concentrations to less than the remediation level are expected in some areas. It is, therefore, possible that only limited areas of the Downgradient Plume and the NW Corner will need additional substrate. A groundwater sampling event of all monitoring wells in the Downgradient Plume and NW Corner will occur in March 2014. Data from this event will be used to identify areas needing additional ERD injections in 2014. These injections will consist of soluble sugars, consistent with those that have been performed since 2009.

#### Seep Area

Currently, contaminant concentrations in three of the four seeps are in compliance with the final cleanup levels. Resampling of the seeps is proposed in early April 2014 to evaluate whether contaminant concentrations in all of the seeps have achieved the cleanup levels. If not, installation of additional injection wells upgradient of the seeps will be considered, and a plan for seep treatment will be proposed to Ecology at that time.

#### MONITORING

Two new monitoring wells will be installed on the west side of Fox Avenue directly downgradient of the loading dock plume to measure compliance and performance (Figure 8). One well will monitor the 1<sup>st</sup> WBZ and the other will monitor the 2<sup>nd</sup> WBZ, similar to the existing well pairs along Fox Avenue. To measure performance of ERD in the Main Source Area, a total of three new well pairs will be installed at the locations shown on Figure 8. Each well pair will monitor both the 1<sup>st</sup> and 2<sup>nd</sup> WBZ. Baseline samples will be collected prior to injections, as well as quarterly to semi-annually during the first year after the injections, to monitor performance. Samples will be analyzed for the same suite of analytes as those previously reported to Ecology (e.g., VOCs, total organic carbon, ethene, ethane, methane, etc).

#### REPORTING

The activities described in this plan will be reported to Ecology in a comprehensive report summarizing all ERD activities conducted in 2014. This report will be prepared in the 1<sup>st</sup> quarter of 2015. Recommendations will be made for continued ERD activities as necessary.

#### REFERENCES

CALIBRE Systems, Inc. (CALIBRE). 2013. *Technical Memorandum ERD Expansion within the Loading Dock of the Fox Avenue Site*. 9 October.

FloydSnider and CALIBRE Systems, Inc. (CALIBRE). 2008. Fox Avenue Site Interim Action Enhanced Reductive Dechlorination for Groundwater Work Plan. Prepared for Fox Avenue Building LLC. 5 September.

## ATTACHMENTS

- Table 1August 2013 Geoprobe™ Groundwater Results
- Figure 1 Site Location
- Figure 2 Comparison of Pre- and Post-thermal PCE+TCE Concentrations in Soil
- Figure 3 Post-thermal PCE and TCE Concentrations in Groundwater
- Figure 4 Post-thermal cis-Dichloroethene and Vinyl Chloride Concentrations in Groundwater
- Figure 5 Post-Thermal Total CVOC Concentrations in Groundwater
- Figure 6 Comparison of Post-thermal PCE and TCE and CVOC Concentrations in Groundwater in 1<sup>st</sup> Water Bearing Zone
- Figure 7 Comparison of Post-thermal PCE and TCE and CVOC Concentrations in Groundwater in 2<sup>nd</sup> Water Bearing Zone
- Figure 8 Post-thermal Biopolish Areas

Fox Avenue Site

# **Biopolish Treatment Plan**

Table

## Table 1 August 2013 Geoprobe<sup>™</sup> Groundwater Results

|                             | Location GP-PT1               |              |              | GP-PT3       | GP-PT4        | GP-PT5        | GP            | -PT6          |               | GP-PT7        |               | GP-PT8        |                |
|-----------------------------|-------------------------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
|                             | Sample ID <sup>1</sup>        | GP-PT1(9-13) | GP-PT2(9-13) | GP-PT3(9-13) | GP-PT4(10-14) | GP-PT5(50-54) | GP-PT6(11-15) | GP-PT6(41-45) | GP-PT7(11-15) | GP-PT7(51-55) | GP-PT7(61-65) | GP-PT8 (9-13) | GP-PT8 (50-54) |
|                             | Sample Date                   | 8/28/2013    | 8/28/2013    | 8/28/2013    | 8/28/2013     | 8/28/2013     | 8/28/2013     | 8/28/2013     | 8/28/2013     | 8/28/2013     | 8/28/2013     | 11/4/2013     | 11/4/2013      |
| Sa                          | mple Temperature <sup>2</sup> | 57.7°C       | 62.2°C       | 61.1°C       | 44.4°C        | 40°C          | 62.2°C        | 53.3°C        | 66.7°C        | 48.9°C        | 41.1°C        | 37.7°C        | 34.7°C         |
| Analyte                     | Units                         |              |              |              |               |               |               |               |               |               |               |               |                |
| Chlorinated Volatile Organi | c Compounds                   |              |              |              |               |               |               |               |               |               |               |               |                |
| 1,1-Dichloroethane          | µg/L                          | 1 U          | 1 U          | 1 U          | 4.93          | 1 U           | 1 U           | 1 U           | 1 U           | 2.76          | 35.9          | 1 U           | 1 U            |
| 1,1-Dichloroethene          | µg/L                          | 1 U          | 1 U          | 1 U          | 16.1          | 23.2          | 6.6           | 4.79          | 1 U           | 8.34          | 105           | 3.03          | 1 U            |
| 1,2-Dichlorobenzene         | µg/L                          | 1 U          | 1.95         | 3.4          | 2.44          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| 1,2-Dichloroethane          | µg/L                          | 1 U          | 1 U          | 1 U          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| 1,2-Dichloropropane         | µg/L                          | 1 U          | 1 U          | 1 U          | 1.35          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| 1,4-Dichlorobenzene         | µg/L                          | 1 U          | 1 U          | 1.23         | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| Chlorobenzene               | µg/L                          | 1 U          | 1 U          | 1 U          | 1.53          | 1 U           | 1 U           | 1 U           | 1 U           | 2.81          | 1 U           | 1 U           | 1 U            |
| Chloromethane               | µg/L                          | 1 U          | 1 U          | 3.69         | 1 U           | 1 U           | 1.13          | 1 U           | 1 U           | 1 U           | 1 U           | 1.07          | 1 U            |
| Methylene chloride          | µg/L                          | 1 U          | 1 U          | 1 U          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 5.96          | 1 U            |
| cis-1,2-Dichloroethene      | µg/L                          | 323          | 1,150        | 557          | 1,780         | 3,480         | 904           | 1,720         | 530           | 1,810         | 20,900        | 555           | 23.3           |
| Tetrachloroethene           | µg/L                          | 24.8         | 29.6         | 19.8         | 126           | 193           | 53            | 1 U           | 7.45          | 1.46          | 1 U           | 5.96          | 1 U            |
| trans-1,2-Dichloroethene    | µg/L                          | 2.39         | 7.63         | 4            | 101           | 131           | 5.06          | 57.2          | 2.53          | 48.3          | 462           | 11.3          | `U             |
| Trichloroethene             | µg/L                          | 36.4         | 26.9         | 17.1         | 558           | 8120          | 343           | 8.44          | 21.4          | 1.96          | 2.08          | 70.5          | 1 U            |
| Vinyl chloride              | µg/L                          | 5.32         | 75.5         | 46.4         | 69            | 35.8          | 13.3          | 384           | 11.1          | 2,880         | 34,000        | 20.6          | 94.6           |
| Total CVOCs <sup>3</sup>    | µg/L                          | 392          | 1,290        | 653          | 2,660         | 12,000        | 1,330         | 2,170         | 572           | 4,760         | 55,500        | 667           | 118            |
| Other Volatile Organic Com  | pounds                        |              |              |              |               | •             |               | •             |               |               |               | •             |                |
| Benzene                     | µg/L                          | 14.7         | 4.02         | 6.93         | 11.9          | 1 U           | 3.61          | 2.24          | 2.62          | 3.44          | 8.61          | 6.97          | 3.68           |
| Ethylbenzene                | µg/L                          | 1 U          | 9.8          | 11.5         | 1.03          | 1.45          | 1.66          | 1.88          | 1.92          | 44.7          | 11.8          | 2.52          | 1 U            |
| Toluene                     | µg/L                          | 15.6         | 21.9         | 24.2         | 7.86          | 9.73          | 9.01          | 6.68          | 5.54          | 42            | 261           | 27.5          | 1.3            |
| Xylene (meta & para)        | µg/L                          | 2.37         | 6.92         | 8.95         | 6.94          | 2.12          | 2.26          | 1.26          | 1.59          | 7.98          | 6.89          | 3.88          | 1 U            |
| Xylene (ortho)              | µg/L                          | 1 U          | 2.75         | 3.59         | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1.34          | 5.3           | 2.17          | 1 U            |
| 1,2,4-Trimethylbenzene      | µg/L                          | 1.16         | 2.41         | 2.14         | 4.6           | 3.74          | 1.25          | 1 U           | 1 U           | 3.45          | 1 U           | 1.5           | 1 U            |
| 1,3,5-Trimethylbenzene      | µg/L                          | 1 U          | 1 U          | 1 U          | 1.92          | 1.76          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| iso-Propylbenzene           | µg/L                          | 1 U          | 1 U          | 1 U          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1.14          | 1 U           | 1 U           | 1 U            |
| n-Propylbenzene             | µg/L                          | 1 U          | 1 U          | 1 U          | 1 U           | 1.01          | 1 U           | 1 U           | 1 U           | 1.1           | 1 U           | 1 U           | 1 U            |
| 2-Hexanone                  | µg/L                          | 7.9          | 4.94         | 1 U          | 1 U           | 1 U           | 4.61          | 1 U           | 4.03          | 1 U           | 1 U           | 8.69          | 1 U            |
| Acetone                     | µg/L                          | 2,020        | 2,090        | 896          | 5 U           | 5 U           | 1,990         | 85.5          | 588           | 5 U           | 5 U           | 1,710         | 5 U            |
| Cymene                      | μg/L                          | 1.17         | 1 U          | 1.41         | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| Naphthalene                 | µg/L                          | 4.78         | 1 U          | 1 U          | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U           | 1 U            |
| Methyl iso butyl ketone     | µg/L                          | 58.6         | 47.6         | 22.4         | 5 U           | 5 U           | 15.9          | 5 U           | 13.7          | 5 U           | 5 U           | 16.1          | 10.6           |
| Methyl ethyl ketone         | µg/L                          | 520          | 435          | 240          | 1 U           | 100           | 368           | 1 U           | 55.5          | 1 U           | 1 U           | 373           | 1 U            |

Notes:

1 Sample collection depth (below ground surface) is noted in parentheses in the sample ID.

2 Temperature was measured ex-situ with a digital thermometer prior to sample collection.

3 Total CVOC value is the sum of detected values only and rounded to three significant figures.

Abbreviations:

CVOC Chlorinated volatile organic compound

°C Degrees Celsius

µg/L Micrograms per liter

Qualifier:

U Undetected at the specified concentration

#### Table 1 August 2013 Geoprobe<sup>™</sup> Groundwater Results

|                                 | Location                 | cation GP-PT9  |                |                |                 | GP-PT10         |                 |                 | GP-F            | PT12            | GP-PT13         |                 |                 |
|---------------------------------|--------------------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                 | Sample ID <sup>1</sup>   | GP-PT9 (11-15) | GP-PT9 (30-34) | GP-PT9 (61-65) | GP-PT10 (11-15) | GP-PT10 (30-34) | GP-PT10 (61-65) | GP-PT11 (50-54) | GP-PT12 (16-20) | GP-PT12 (50-54) | GP-PT13 (11-15) | GP-PT13 (30-34) | GP-PT13 (61-65) |
|                                 | Sample Date              | 11/4/2013      | 11/4/2013      | 11/4/2013      | 11/4/2013       | 11/4/2013       | 11/4/2013       | 11/4/2013       | 11/4/2013       | 11/4/2013       | 11/5/2013       | 11/5/2013       | 11/5/2013       |
| Sample                          | Temperature <sup>2</sup> | 35.1°C         | 34.7°C         | 34.7°C         | 47.4°C          | 45.2°C          | 37.3°C          | 31.1°C          | 45°C            | 32.9°C          | 41.9°C          | 39.5°C          | 39.4°C          |
| Analyte                         | Units                    |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Chlorinated Volatile Organic Co | mpounds                  |                |                | •              | •               |                 |                 |                 |                 |                 | •               | • • •           |                 |
| 1,1-Dichloroethane              | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,1-Dichloroethene              | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,2-Dichlorobenzene             | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,2-Dichloroethane              | µg/L                     | 1.79           | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,2-Dichloropropane             | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,4-Dichlorobenzene             | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| Chlorobenzene                   | µg/L                     | 1 U            | 1 U            | 1 U            | 1.47            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1.71            | 1 U             | 1 U             |
| Chloromethane                   | µg/L                     | 2.34           | 1 U            | 1 U            | 1.38            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1.34            | 1 U             | 1 U             |
| Methylene chloride              | µg/L                     | 1 U            | 1 U            | 1.21           | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| cis-1,2-Dichloroethene          | µg/L                     | 217            | 6.12           | 1 U            | 332             | 17.9            | 1 U             | 83.7            | 281             | 1.28            | 194             | 187             | 1 U             |
| Tetrachloroethene               | µg/L                     | 1 U            | 1 U            | 1.21           | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| trans-1,2-Dichloroethene        | µg/L                     | 3.59           | 1 U            | 1 U            | 9.95            | 1.46            | 1 U             | 1 U             | 2.33            | 1 U             | 5.31            | 1.81            | 1 U             |
| Trichloroethene                 | µg/L                     | 6.85           | 1 U            | 1 U            | 5.78            | 1 U             | 1 U             | 1.82            | 1 U             | 1 U             | 7.16            | 1.8             | 1 U             |
| Vinyl chloride                  | µg/L                     | 5.18           | 0.58           | 0.2 U          | 6.15            | 3.01            | 0.2 U           | 0.2 U           | 3.96            | 1.12            | 2.73            | 4.62            | 0.2 U           |
| Total CVOCs <sup>3</sup>        | µg/L                     | 237            | 6.7            | 1.21           | 357             | 22.4            | 1 U             | 85.5            | 287             | 2.4             | 212             | 195             | 1 U             |
| Other Volatile Organic Compou   | nds                      |                |                |                | •               |                 |                 |                 |                 |                 | •               |                 |                 |
| Benzene                         | µg/L                     | 6.11           | 1 U            | 2.21           | 11.6            | 1 U             | 2.9             | 3.06            | 4.13            | 1 U             | 4.19            | 4.65            | 1 U             |
| Ethylbenzene                    | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 2.6             | 1 U             | 1 U             | 1 U             | 1 U             |
| Toluene                         | µg/L                     | 10.9           | 1 U            | 1 U            | 4.01            | 1 U             | 1 U             | 1 U             | 3.79            | 1 U             | 4.39            | 4.46            | 1 U             |
| Xylene (meta & para)            | µg/L                     | 1.46           | 1 U            | 1 U            | 1.62            | 1 U             | 1 U             | 1 U             | 2.1             | 1 U             | 1.28            | 1 U             | 1 U             |
| Xylene (ortho)                  | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,2,4-Trimethylbenzene          | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 2.77            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 1,3,5-Trimethylbenzene          | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 2.42            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| iso-Propylbenzene               | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| n-Propylbenzene                 | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1.23            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| 2-Hexanone                      | µg/L                     | 1 U            | 1 U            | 1 U            | 2.21            | 1 U             | 1 U             | 1 U             | 2.67            | 1 U             | 10.7            | 1.01            | 1 U             |
| Acetone                         | µg/L                     | 7.34           | 5 U            | 5 U            | 1,490           | 5 U             | 15.7            | 5 U             | 455             | 5 U             | 2,660           | 10.2            | 5 U             |
| Cymene                          | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| Naphthalene                     | µg/L                     | 1 U            | 1 U            | 1 U            | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             |
| Methyl iso butyl ketone         | µg/L                     | 5 U            | 5 U            | 5 U            | 20.6            | 5 U             | 5 U             | 5 U             | 5 U             | 5 U             | 17.8            | 5 U             | 5 U             |
| Methyl ethyl ketone             | µg/L                     | 1 U            | 1 U            | 1 U            | 276             | 1 U             | 1 U             | 1 U             | 85.6            | 1 U             | 625             | 10.5            | 1.32            |

Notes:

1 Sample collection depth (below ground surface) is noted in parentheses in the sample ID.

2 Temperature was measured ex-situ with a digital thermometer prior to sample collection.

3 Total CVOC value is the sum of detected values only and rounded to three significant figures.

Abbreviations:

CVOC Chlorinated volatile organic compound

°C Degrees Celsius

µg/L Micrograms per liter

Qualifier:

U Undetected at the specified concentration

## FLOYDISNIDER

## Table 1 August 2013 Geoprobe<sup>™</sup> Groundwater Results

|                                  | Location               |                 | GP-PT14         |                 | GP-F            | PT15            | GP-PT16         | MW-14        |
|----------------------------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|
|                                  | Sample ID <sup>1</sup> | GP-PT14 (11-15) | GP-PT14 (30-34) | GP-PT14 (61-65) | GP-PT15 (11-15) | GP-PT15 (50-54) | GP-PT16 (50-54) | MW-14-110513 |
|                                  | Sample Date            |                 | 11/5/2013       | 11/5/2013       | 11/5/2013       | 11/5/2013       | 11/5/2013       | 11/5/2013    |
| Sample Temperature <sup>2</sup>  |                        | 48°C            | 43.3°C          | 40.1°C          | 44.7°C          | 36°C            | 24.2°C          | 38.4°C       |
| Analyte                          | Units                  |                 |                 |                 |                 |                 |                 |              |
| Chlorinated Volatile Organic Con | npounds                | ł               | ł               | ł               | •               | ł               | <u>.</u>        |              |
| 1,1-Dichloroethane               | μg/L                   | 1 U             | 1 U             | 1.61            | 1 U             | 1 U             | 1 U             | 1 U          |
| 1,1-Dichloroethene               | µg/L                   | 1 U             | 1 U             | 19.6            | 1 U             | 1 U             | 1 U             | 1 U          |
| 1,2-Dichlorobenzene              | µg/L                   | 1.6             | 1 U             | 1 U             | 2.51            | 1 U             | 1 U             | 1 U          |
| 1,2-Dichloroethane               | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1.54            | 1 U          |
| 1,2-Dichloropropane              | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 2.24         |
| 1,4-Dichlorobenzene              | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| Chlorobenzene                    | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| Chloromethane                    | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| Methylene chloride               | µg/L                   | 1               | 1 U             | 1 U             | 1 U             | 1 U             | 1,000           | 1 U          |
| cis-1,2-Dichloroethene           | µg/L                   | 128             | 79              | 9,080           | 132             | 4.05            | 7.14            | 48.6         |
| Tetrachloroethene                | µg/L                   | 1               | 1 U             | 1 U             | 1 U             | 1 U             | 1,000           | 1 U          |
| trans-1,2-Dichloroethene         | µg/L                   | 20              | 3.23            | 207             | 6.5             | 1 U             | 1 U             | 1 U          |
| Trichloroethene                  | μg/L                   | 57.1            | 2.13            | 4.35            | 26              | 1 U             | 4.62            | 1 U          |
| Vinyl chloride                   | µg/L                   | 1.82            | 25.2            | 1,050           | 1.9             | 1.69            | 0.2 U           | 235          |
| Total CVOCs <sup>3</sup>         | µg/L                   | 210             | 109             | 10,400          | 169             | 5.74            | 1,010           | 287          |
| Other Volatile Organic Compoun   | ds                     |                 |                 |                 | •               |                 |                 |              |
| Benzene                          | µg/L                   | 3.09            | 1 U             | 5.42            | 2.15            | 1 U             | 1 U             | 41.2         |
| Ethylbenzene                     | µg/L                   | 4.04            | 1 U             | 21              | 1.96            | 1 U             | 1 U             | 5.7          |
| Toluene                          | µg/L                   | 9.32            | 1.19            | 11.9            | 5.22            | 1 U             | 1 U             | 11.2         |
| Xylene (meta & para)             | µg/L                   | 4.46            | 1 U             | 15.4            | 1.92            | 1 U             | 1 U             | 3.14         |
| Xylene (ortho)                   | µg/L                   | 1.62            | 1 U             | 4.88            | 1 U             | 1 U             | 1 U             | 1.11         |
| 1,2,4-Trimethylbenzene           | µg/L                   | 1.43            | 1 U             | 4.51            | 1 U             | 1 U             | 1 U             | 1.03         |
| 1,3,5-Trimethylbenzene           | µg/L                   | 1 U             | 1 U             | 1.44            | 1 U             | 1 U             | 1 U             | 1 U          |
| iso-Propylbenzene                | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| n-Propylbenzene                  | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| 2-Hexanone                       | µg/L                   | 8.89            | 1 U             | 1.5             | 5.79            | 1 U             | 1 U             | 1.53         |
| Acetone                          | µg/L                   | 5,370           | 9.07            | 209             | 2,430           | 5.37            | 164             | 5 U          |
| Cymene                           | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| Naphthalene                      | µg/L                   | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U             | 1 U          |
| Methyl iso butyl ketone          | µg/L                   | 44.6            | 5 U             | 5 U             | 27              | 5 U             | 5 U             | 7.64         |
| Methyl ethyl ketone              | µg/L                   | 817             | 4.69            | 388             | 441             | 1.18            | 292             | 4.16         |

Notes:

1 Sample collection depth (below ground surface) is noted in parentheses in the sample ID.

2 Temperature was measured ex-situ with a digital thermometer prior to sample collection.

3 Total CVOC value is the sum of detected values only and rounded to three significant figures.

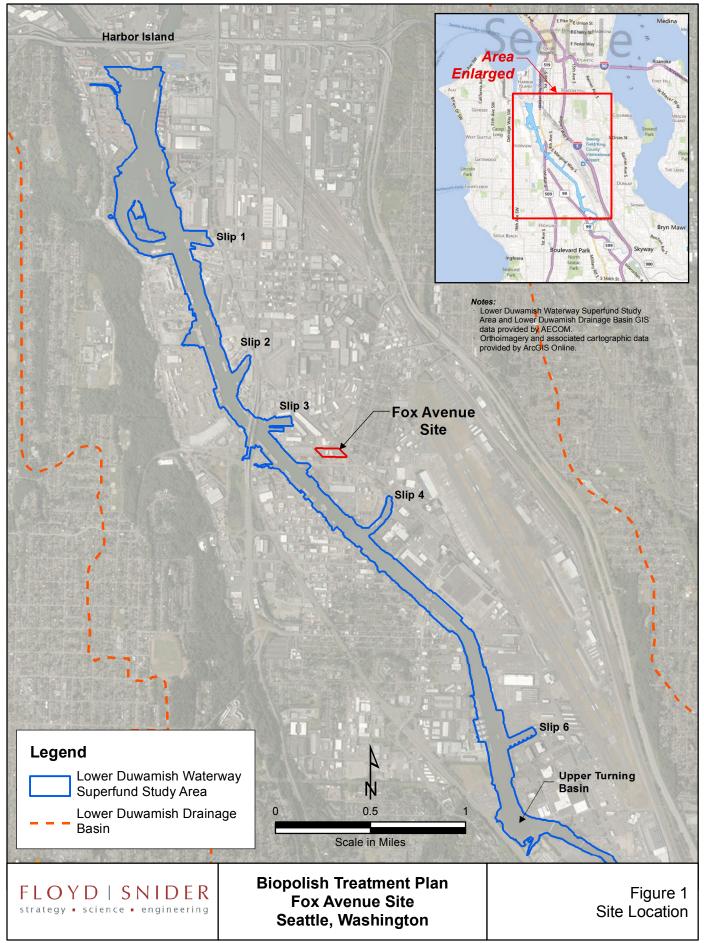
Abbreviations:

CVOC Chlorinated volatile organic compound

°C Degrees Celsius

µg/L Micrograms per liter

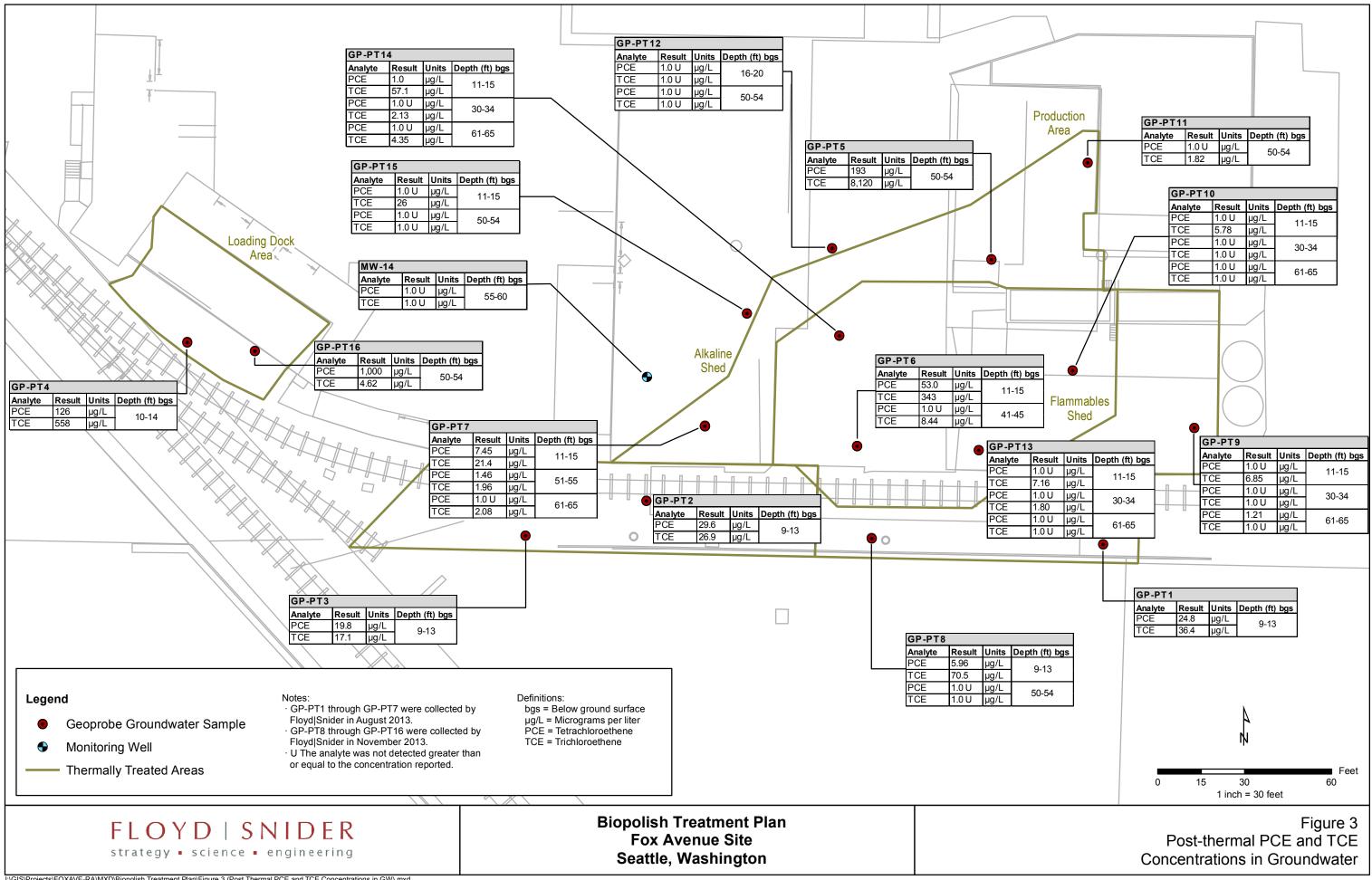
Qualifier:


U Undetected at the specified concentration

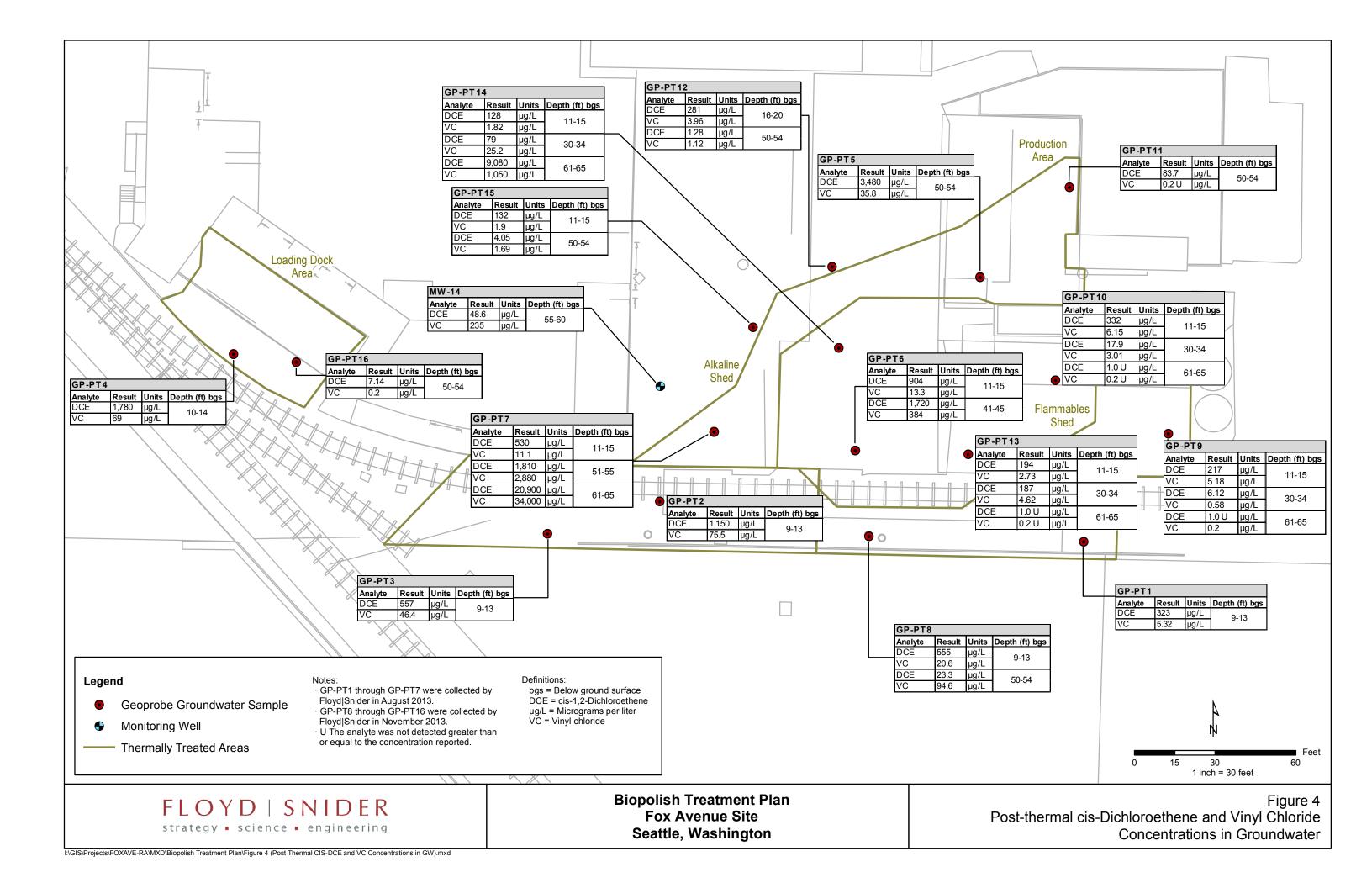
#### Fox Avenue Site

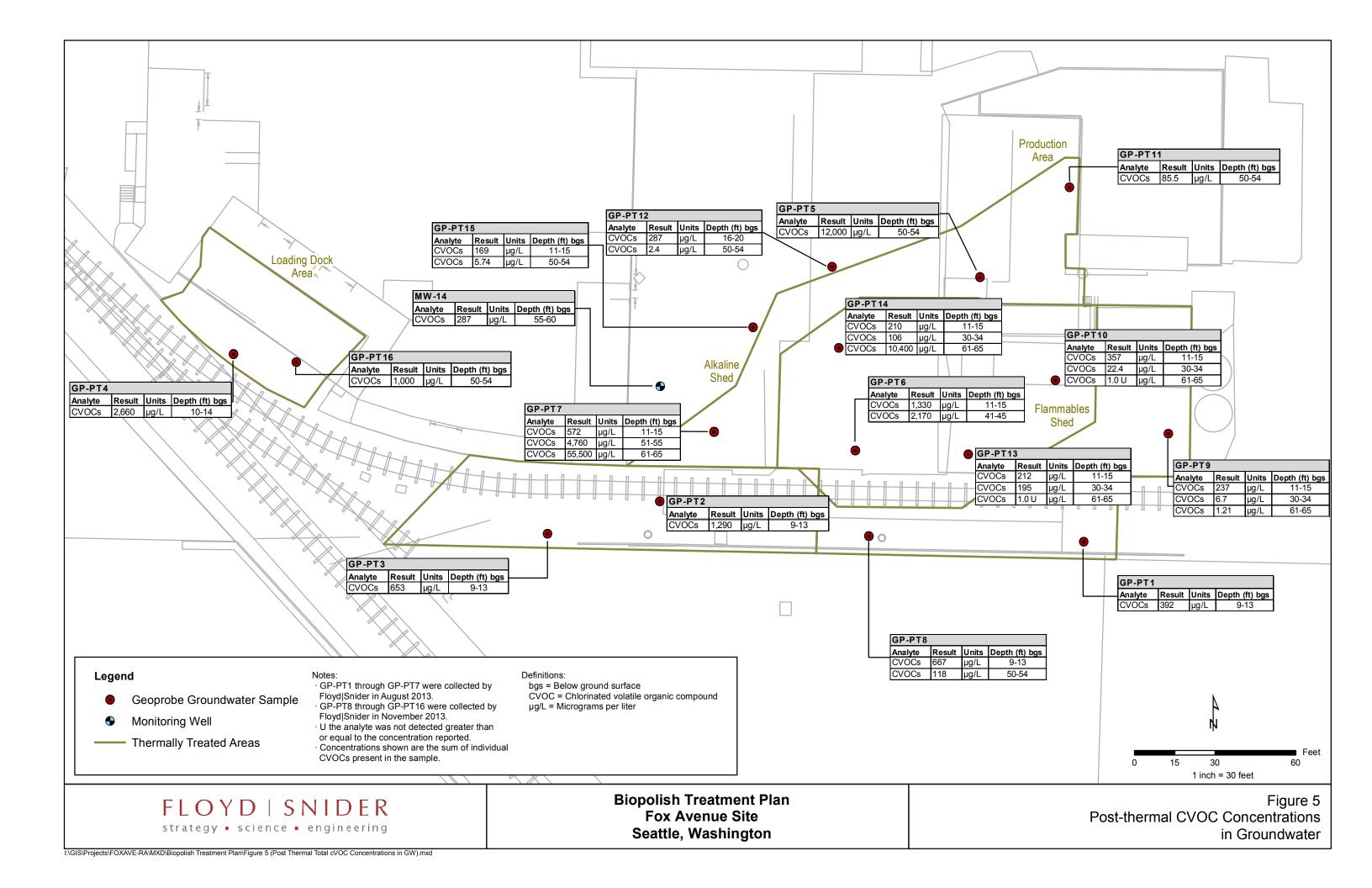

Fox Avenue Site

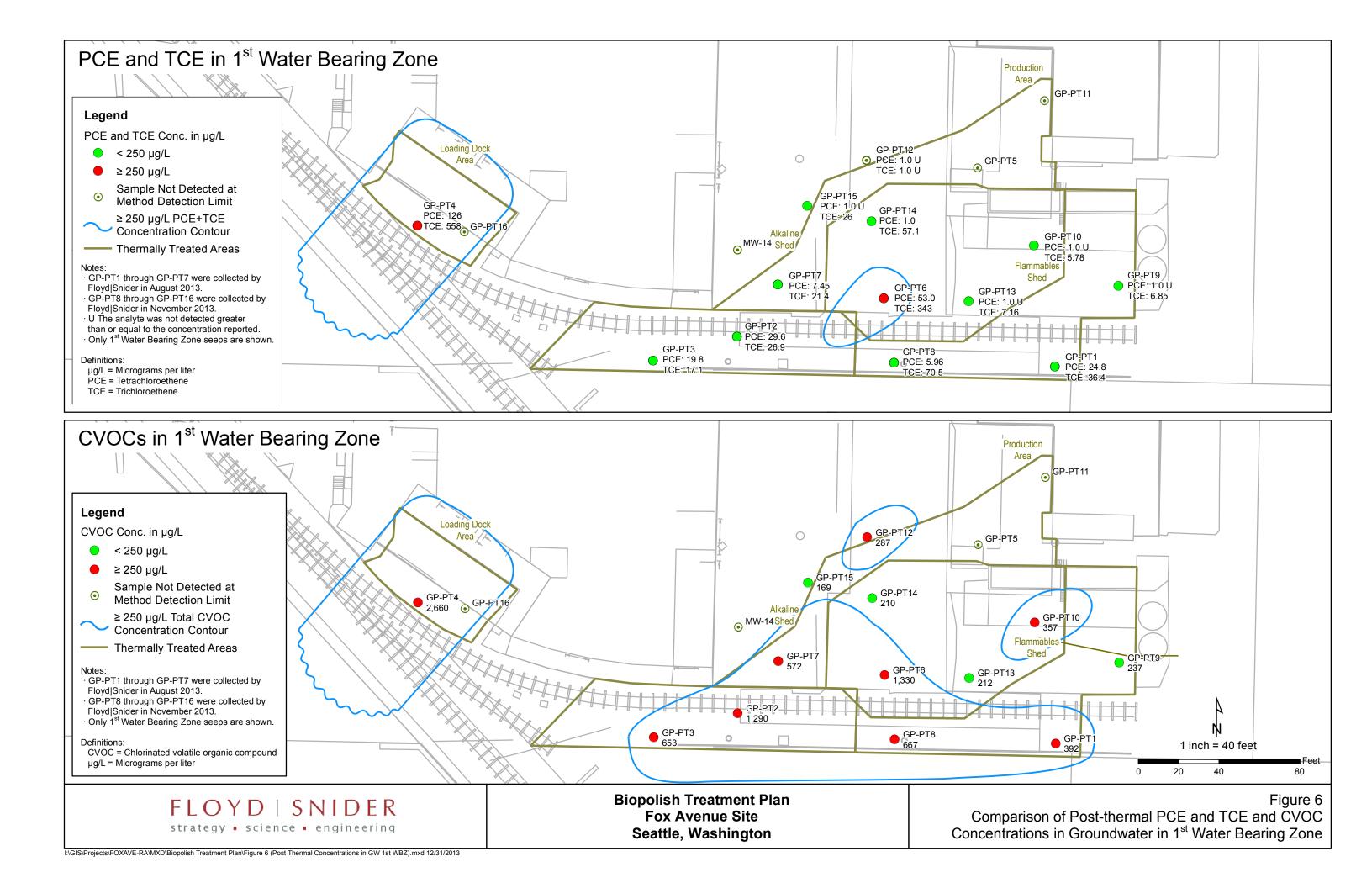
# **Biopolish Treatment Plan**

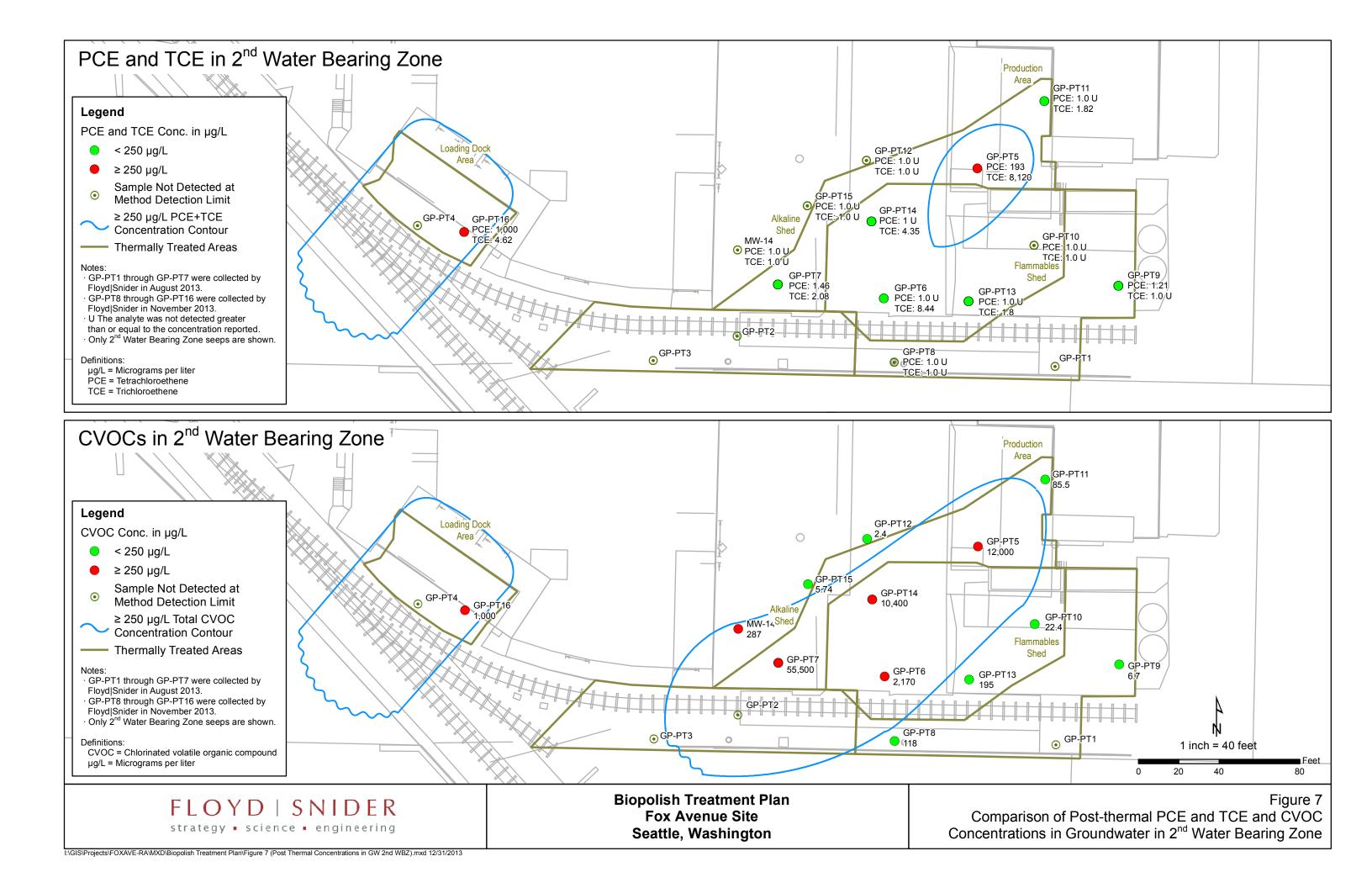

**Figures** 

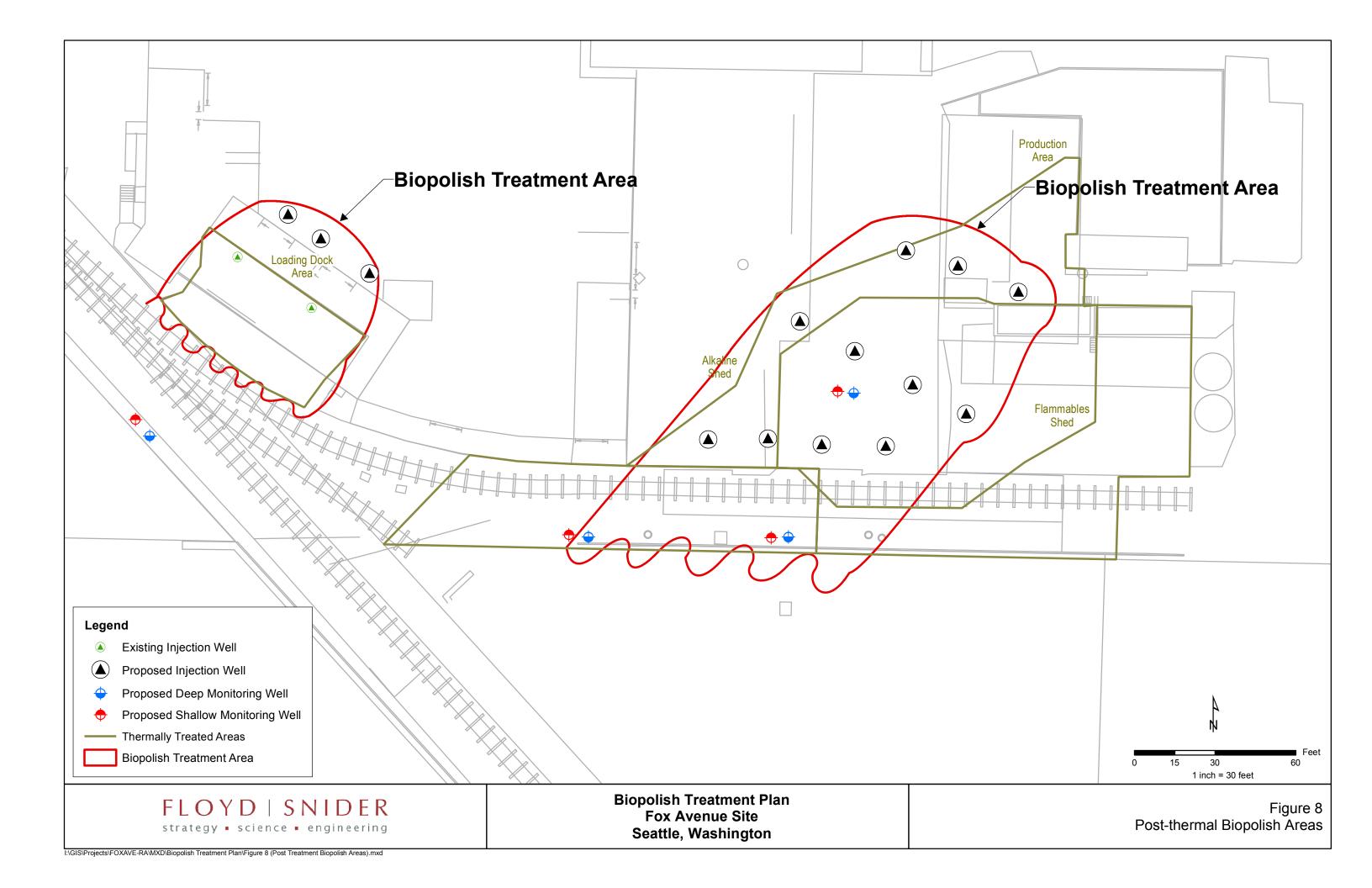



Path: I:\GIS\Projects\FOXAVE-RA\MXD\Biopolish Treatment Plan\Figure 1 (Site Location).mxd 12/27/2013





L\GIS\Projects\FOXAVE-RA\MXD\Biopolish Treatment Plan\Figure 2 (Comparison of Pre- and Post-thermal PCE+TCE Concentrations in Soil).mxd 12/27/2013





I:\GIS\Projects\FOXAVE-RA\MXD\Biopolish Treatment Plan\Figure 3 (Post Thermal PCE and TCE Concentrations in GW).mxd









