

CLEANUP ACTION REPORT

Former Harbour Point Cleaners Suite B6, Mukilteo Speedway Center 13619 Mukilteo Speedway Lynnwood, Washington 98087 Washington State Department of Ecology Facility ID: 41352598 Washington State Department of Ecology Voluntary Cleanup Program No. NW2902 ATC PROJECT NO. 282 EM 0017 / NPWRI 18001

Submitted to: Glynis A. Carrosino, Project Manager Toxics Cleanup Program Northwest Regional Office Washington State Department of Ecology 3190 160th Avenue S.E. Bellevue, WA 98008-5452

Submitted on behalf of: **Mr. Charles Gurney** Weingarten Realty Investors 2600 Citadel Plaza Drive, Suite 300 Houston, Texas 77008

> Prepared by: ATC Group Services, LLC 6347 Seaview Avenue NW Seattle, Washington 98107 (206) 781-1449

> > October 15, 2018

ATC Group Services LLC Prepared by:

Elwaber Silver

Elisabeth Silver, LG Project Manager ATC Group Services LLC Reviewed by:

Todd Stanford, REHS, CEM Principal Scientist ATC Group Services LLC Reviewed by:

Andrew D. Stuart National Program Director

Table of Contents

ACRON	NYMS A	ND ABBREVIATIONS iii
Execu	itive Su	ımmaryiv
Bac	kgrour	nd iv
Clea	anup A	ction Overviewiv
Cor	nclusior	ns and Recommendationsv
1.0	Introd	uction1
1.1	Pur	pose1
1.2	Pre	vious Studies1
1.3	Reg	gulatory Framework1
2.0	Site D	escription2
2.1	Site	e History2
2	.1.1	Historical Investigation Activities2
2	.1.2	Historical Remediation Activities5
2	.1.3	2018 Dry Cleaning Facility Decommissioning7
2	.1.4	2018 Post-Remediation Confirmation Sampling7
2.2	Hur	nan Health and Environmental Concerns9
2	.2.1	Human Health9
2	.2.2	Environment
2.3	Clea	anup Standards
2	.3.1	Contaminants of Concern10
2	.3.2	Cleanup Levels
3.0	Terres	strial Ecological Evaluation13
4.0	Clean	up Action Alternatives and Analysis14
4.1	Clea	anup Action Alternatives14
4	.1.1	Natural Attenuation with Institutional Controls and Restrictive Covenant14
4	.1.2	Soil Vapor Extraction15
4	.1.3	Soil Removal (by Excavation) and Offsite Disposal15
4.2	Initi	al Screening of Alternatives15
4.3	Det	ailed Evaluation of Alternatives16
5.0	Descr	iption of Selected Remedy17

5.1		Site	Description	17
5.2		Desc	cription of the Cleanup Action	17
5	.2.′	1	Post-Remediation Subslab Vapor Sampling	18
5	.2.2	2	Post-Remediation Indoor Air Sampling	18
5	.2.3	3	Summary of Post-Remediation Conditions	19
5.3		Clea	nup Standards and Point of Compliance	19
5.4		Appl	icable, Relevant and Appropriate Requirements (ARARs)	19
5.5		Pern	nanency of Solution	21
6.0	С	onclu	isions	22
7.0	Re	efere	nces	23

TABLES

Table 1	Summary of Soil Analytical Results
Table 2	Summary of Groundwater Analytical Results
Table 3	Summary of Soil Vapor Analytical Results
Table 4	Summary of Indoor Air Analytical Results
Table 5	Summary of Monthly Subslab Monitoring Results
Table 6	Summary of SSDS Effluent Sampling Results
Table 7	Summary of Subslab Depressurization System VOC Removal Rates
Table 8	Indoor and Outdoor Air and SSDS Effluent Sampling Results – December
	28, 2017
Table 9	Indoor and Outdoor Air and SSDS Effluent Sampling Results – July 6, 2018

FIGURES

Figure 1 Site Location Map Figure 2 Historical Soil, Soil Vapor, and Indoor Air Sample Locations Groundwater Monitoring Well Locations Figure 3 Figure 4 PCE Concentrations in Soil at 1 Foot Below Ground Level Isocontours Figure 5 Indoor Air Quality Sample Locations Figure 6 **Outdoor Air Sample Locations** Figure 7 Select Indoor Air, Subslab Extraction and SSD Sample Locations Figure 8 **Conceptual Site Model**

APPENDICES

Appendix A	Soil Boring Logs
Appendix B	Terrestrial Ecological Evaluation
Appendix C	2018 Analytical Reports

ACRONYMS AND ABBREVIATIONS

- ARAR Applicable or Relevant and Appropriate Requirements
- bgs below ground surface
- BEA Buchanan Environmental Associates
- CAR Cleanup Action Report
- DCE dichloroethene (dichloroethylene)
- COC Contaminant/Chemical of Concern
- CSID Cleanup Site identification number
- CSM Conceptual Site Model
- CUL clean-up levels
- cVOC chlorinated volatile organic compound
- DCA Disproportionate Cost Analysis
- Ecology Washington State Department of Ecology
- FS feasibility study
- FSID Facility Site identification number
- MTCA Model Toxics Control Act
- mg/L milligrams per liter
- mg/kg milligrams per kilogram
- μg/L micrograms per liter
- μg/kg micrograms per kilogram
- µg/m³ micrograms per cubic meter
- O&M operations and maintenance
- PCE tetrachloroethene
- PID Photoionization detector
- PVC polyvinyl chloride
- RCW Revised Code of Washington
- SSD subslab depressurization
- SVE Soil vapor extraction
- TCE trichloroethene
- TEE Terrestrial Ecological Evaluation
- TPH total petroleum hydrocarbon
- VCP Voluntary Cleanup Program
- VOC volatile organic compound
- WAC Washington State Administrative Code

Executive Summary

This document presents the Cleanup Action Report (CAR) for the former Harbour Point Dry Cleaners tenant space Site within the Mukilteo Speedway Center at 13619 Mukilteo Speedway, Lynnwood, Washington (**Figure 1**). This CAR was prepared for the Washington State Department of Ecology (Ecology) on behalf of Weingarten Realty Investors (WRI). This CAR has been prepared to meet the requirements of the Model Toxics Control Cleanup Act (MTCA) administered by Ecology under Chapter 173-340 of the Washington Administrative Code (WAC). This CAR describes the historical environmental assessment activities, associated cleanup actions completed to date, and additional documentation that is intended to demonstrate that the completed cleanup action has attained the site cleanup requirements.

Background

This Cleanup Action Report describes the results of historical soil and groundwater sampling, monthly subslab depressurization (SSD) system operations and maintenance (O&M), quarterly ambient air sampling, indoor space clean-up, and post clean-up confirmation subslab and indoor air sampling at the former Harbour Point Dry Cleaners tenant space (**Figure 2**).

The SSD system was installed in order to remove mass and mitigate the potential for vapor intrusion from residual impacts in subsurface soil and/or soil vapor that were previously identified to be impacted by volatile organic compounds (VOCs), including tetrachloroethene (PCE). PCE was formerly used at the tenant space as a dry cleaning solvent. Installation and operation of the SSD system was intended to mitigate the potential for PCE to migrate through the concrete floor slab and into the building, to reduce the risk to human health and the environment, and to further comply with the Model Toxics Control Act (MTCA) and its implementing regulations, Chapter 70.105D of the Revised Code of Washington (RCW) and Chapter 173- 340 of the Washington Administrative Code (WAC).

Details regarding the selection of the SSD system as the preferred mitigation approach were detailed in ATC's September 17, 2015 *Feasibility Study and Disproportionate Cost Analysis,* the Washington State Department of Ecology's (Ecology) April 4, 2016 Opinion Letter, and a June 28, 2016 meeting between Ecology, WRI, and ATC. A subslab depressurization report was submitted to Ecology dated February 26, 2018. Following review of the report, Ecology requested in a phone meeting that additional subslab sampling be conducted following clean-up of the former dry cleaners space. The space was cleaned on June 28, 2018, and subslab, indoor, and outdoor air sampling was conducted on July 6, 2018.

Cleanup Action Overview

The SSD system consists of an extraction point and associated riser pipe constructed of schedule 40 polyvinyl chloride (PVC). The riser pipe is plumbed vertically from the subslab to a one horsepower regenerative blower mounted to the building roof. The vertical riser pipe is secured against a shared wall between the west-adjacent tenant space and the former Harbour Point Cleaners tenant spaces. Beneath the building slab, the extraction piping consists of 4-inch diameter PVC piping and reduces to 2-inch diameter PVC piping at a height of approximately 3 feet above the building slab. The effluent air removed from the extraction point is discharged from

the blower through a stack constructed of schedule 80 PVC. Operation of the SSD system commenced on January 23, 2017 and continued without interruption through June 30, 2018. During the period of SSD system operations, effluent air samples were collected periodically, generally on a monthly basis, for analysis of VOCs via EPA Method TO-15. In addition, vacuum responses and field measurement of VOC concentrations were obtained from peripheral subslab monitoring points SV-1 through SV-5 in order to evaluate the extent of subslab vacuum influence and transient changes in VOC concentrations in the subslab samples. During the period between March 2017 and July 2018, indoor air samples were obtained over an 8-hour period on a quarterly basis from the interior of the former Harbour Point cleaner space and the adjacent, vacant tenant space to the west. Concurrent outdoor air samples were also collected during select quarterly indoor air sampling events in order to further evaluate the potential contribution of VOCs detected in ambient air to concentrations detected in indoor air.

The Harbour Point dry cleaners space was subsequently vacated in May 2018. Decommissioning of the dry cleaner space included removal of all above-ground features and appurtenances of the dry cleaning operation, including the dry cleaning machine, spot cleaning and pressing tables, containers of spot cleaning agents, dry cleaning solvents, waste filters, and spent solvent wastes. In addition, the interior floor and walls of the former dry cleaning space were professionally cleaned, most of the ventilation system duct work and sections of stained wallboard were removed. Also, all drop ceiling panels were removed, and interior floor drains were flushed. The cleaning and decommissioning activities were completed on June 28, 2018 and the SSD system was shutdown. Following the cleanup of the building interior, subslab, ambient, and indoor air sampling was conducted on July 6, 2018. The laboratory analytical results of the sampling activities performed on July 6, 2018 are intended to represent the current, post-remediation site conditions, absent the influence of the SSD system operation.

Based on data presented in previous reports and summarized in this CAR report, numerous site investigation activities and successful remedial activities have been performed at the site. Historical concentrations of PCE in soil have never exceeded MTCA Method B direct contact cleanup levels and are below MTCA Method A cleanup levels at depths of greater than 3 feet below grade. In addition, historical groundwater monitoring and sampling demonstrate that groundwater has not been impacted by dry cleaning chemicals at concentrations in excess of MTCA Method A cleanup levels. Operation of the SSD remediation system over a period of approximately 17 months resulted in reductions in both the mass and concentration of PCE that remain in the subsurface. The results of post-remediation subslab vapor sampling performed while the SSD system was not in operation, indicate that the current site conditions meet applicable Method B and/or Method C cleanup levels. Similarly, the indoor air sampling results demonstrate that the post-remediation concentrations of PCE and TCE in indoor air are below Method B cleanup levels even without operation of the SSD system.

Conclusions and Recommendations

In consideration of these factors and the results of the post-remediation subslab vapor and indoor air sampling, the current site conditions are not considered to represent a significant vapor intrusion threat under a commercial land use scenario. As such, it is ATC's opinion that continued operation of the SSD system is no longer warranted. **ATC requests Ecology review this CAR report for concurrence that Site Characterization and Cleanup are complete and that an Opinion of NFA is warranted.**

1.0 Introduction

This CAR was prepared to describe the selected cleanup action conducted at the former Harbour Point Dry Cleaners tenant space within the Mukilteo Speedway Center at 13619 Mukilteo Speedway, Lynnwood, Washington.

1.1 Purpose

This document is the Cleanup Action Report (CAR) for the former Harbour Point Dry Cleaners Site located near Mukilteo, Washington. The general location of the Site is shown in **Figure 1** and the Site layout is shown on **Figures 2 and 3**. A CAR is required as part of the site cleanup process under Chapter 173-340 WAC, Model Toxics Control Act (MTCA) Cleanup Regulations. The purpose of the CAR is to describe the selected cleanup action for the Site. More specifically, this report includes details regarding the following:

- General site history and current site details;
- Current site conditions;
- Historical monitoring and sampling performed during the cleanup action process;
- Site-specific cleanup levels and points of compliance for each hazardous substance and medium of concern for the proposed cleanup action;
- Applicable state and federal laws for the selected cleanup action; and
- Summary of the results of post-remedy implementation confirmation sampling.

1.2 Previous Studies

The former Harbour Point Cleaners is located in Building B, in tenant space B6 (**Figure 2**), and operated as a dry cleaning facility at the property from approximately 1992 through May 2018. Between 1992 and 2007 the facility utilized the chlorinated volatile organic compound (cVOC), tetrachloroethene (also known as tetrachloroethylene or perchloroethylene [PCE]) as the dry cleaning solvent. The presence of PCE in the subsurface is regulated in Washington State by Ecology under the MTCA. In 2007, the operators switched from PCE to a petroleum hydrocarbon based cleaning solvent. Numerous investigations have been conducted at the Site from 2006 to the present. A detailed summary of historical site investigation and remediation activities is provided in Section 2.1 of this report.

1.3 Regulatory Framework

The intent of this CAR is to meet the requirements of the Washington State MTCA as implemented in the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC).

2.0 Site Description

The Site is registered with Ecology as Facility/Site (F/S) ID 41352598, as Harbour Point Cleaners Lynnwood, and is also listed as Voluntary Cleanup Program (VCP) ID NW2864. There are five (5) listed active Washington State Cleanup sites located in within 0.5 miles of the Site. The five sites are listed below.

- The WA DOT Parcel site between SR 525 and Lake Road (F/S ID 9583544) and the Bug Haus site at 13515 Lake Road (F/S ID 7565842) are both located less than 0.2 miles to the north of the Site.
- The Progressive Casualty Insurance Co. site (F/S ID 5712210) is located approximately 0.25 miles to the south-southeast of the Site.
- The Lee & S Enterprises Tire Fire site (F/S ID 78849511) is located approximately 0.25 miles to the east of the Site.
- The Fleury Auto & Truck parts site (F/S ID 10248) is located approximately 0.5 miles to the northeast of the Site.

2.1 Site History

The Site is located within the Mukilteo Speedway Center, 13619 Mukilteo Speedway in Lynnwood, Snohomish County, Washington. The Site consists of six irregular-shaped parcels encompassing 7.80 acres of land (**Figure 1**). The Mukilteo Speedway Center was constructed in 1992 and is a retail shopping center located approximately 1.5 miles west of Interstate 5 with Mukilteo Speedway along the west property perimeter, Lincoln Way located along the south property line, and State Highway 99 located along the east property line. The shopping center is improved with four generally rectangular-shaped buildings designated Buildings A though D (Buildings A and B are in the north portion of the property and Buildings C and D are in the south portion of the property).

The former Harbour Point Cleaners is located in Building B, in tenant space B6 (**Figure 2**), and operated as a dry cleaning facility from approximately 1992 until May 2018. Between 1992 and 2007 the facility utilized the chlorinated volatile organic compound (cVOC), tetrachloroethene (also known as tetrachloroethylene or perchloroethylene [PCE]) as the dry cleaning solvent. The presence of PCE in the subsurface is regulated in Washington State by Ecology under MTCA. In 2007, the operators switched from PCE to a petroleum hydrocarbon-based dry cleaning solvent.

2.1.1 Historical Investigation Activities

Environmental assessment activities were initiated at the Site in June 2006 by Buchanan Environmental Associates (BEA). The initial 2006 investigation included the advancement of two soil borings to a maximum depth of 2.75 feet below ground surface (bgs) within the tenant space in the vicinity of the dry cleaning equipment and the installation of one groundwater monitoring well (MW-1) exterior to Building B and to the east of the southeast corner of the building. The assessment activities were initiated to evaluate the potential presence of PCE and any associated degradation compounds such as trichloroethene (trichloroethylene [TCE]), cis-1,2-dichloroethene (cis-1,2-dichloroethylene [cis-DCE]), trans-1,2-dichloroethene (trans1,2-dichloroethylene [trans-DCE]), 1,1-dichloroethene (1,1-dichloroethylene [1,1-DCE]), and vinyl chloride. The locations of the two interior soil borings advanced by BEA were not plotted on any site maps included in the 2006

report. However, these borings were reportedly located "behind the dry cleaner machine". The investigation identified the presence of PCE and TCE in shallow soil within the vicinity of the dry cleaning machine. Soil boring B-1 was only able to be advanced to 1 foot bgs, where a single soil sample was collected from the boring. Soil boring B-2 was advanced to 2.75 feet bgs and three soil samples from three separate depths were collected for analysis. Soil samples from all of the samples contained concentrations of PCE above the MTCA Method A soil cleanup level (0.05 mg/kg). TCE was also detected in soil samples collected from boring B-2, although at concentrations below all associated cleanup levels. Soil boring logs from this and subsequent investigations are included in **Appendix A**. Historical soil analytical data are summarized in **Table 1**.

Between June and August, 2006, BEA installed a total of five groundwater monitoring wells, designated MW-1 through MW-5, to total depths between 15 and 25 feet bgs. The wells were installed outside of the dry cleaning tenant space (**Figure 3**). A groundwater sample collected from groundwater monitoring well MW-1 in June 2006 contained concentrations of several volatile organic compounds (VOCs) which are typically associated with petroleum hydrocarbons, including toluene, ethylbenzene, xylene, and naphthalene, but at concentrations below MTCA regulatory cleanup or risk-based formula values. BEA suggested that the VOCs may be from an offsite source or were inadvertently introduced during well construction. Laboratory analytical results from groundwater samples collected from groundwater monitoring wells MW-1 through MW-3 in July, 2006 identified the presence of VOCs, with only chloroform present in the sample from MW-2 at a concentration (2.0 μ g/L) just above the MTCA Method B cleanup level of 1.41 μ g/L. Laboratory analytical results from groundwater samples collected from groundwater monitoring wells MW-1 through MW-5 in August 2006 did not identify any VOCs above their respective cleanup levels. A summary of historical groundwater analytical results is provided in **Table 2**.

In August, 2006 BEA also advanced a soil boring, B-6, south of the tenant space, to 9 feet bgs in order to assess soil in the vicinity of the subsurface sanity sewer utilized by the dry cleaning facility. No VOCs were detected in soil samples collected from within the backfill of a connecting cleanout pipe (**Table 1**).

Based on the lack of detected concentrations of PCE and any associated degradation compounds in groundwater samples at concentrations above MTCA regulatory cleanup or risk-based values, BEA did not recommend further investigation. However, BEA recommended that the dry cleaning machine be retro-fitted with secondary containment and that the use of PCE as a dry cleaning solvent be discontinued.

EBI Environmental and Engineering (EBI), conducted additional assessment activities in March 2013. During this investigation, two soil boring (B-1 and B-2) were advanced south and north of the tenant space, respectively. Three additional soil borings (B-3 through B-5) were advanced within the tenant space and in the vicinity of the dry cleaning machine (**Figure 2**). Groundwater was not encountered in any of the soil borings, including soil boring B-1, which was advanced to 25 feet bgs to the south of the tenant space. Laboratory analytical results of selected soil samples indicated the presence of PCE in soil boring B-3, but at a concentration below the MTCA Method A soil cleanup level of 0.05 mg/kg (**Table 1**).

EBI also collected soil gas samples from 5 feet bgs in soil borings B-3 through B-5. Laboratory analytical results indicated a concentration of 20 micrograms per cubic meter (μ g/m³) PCE and 7.0

 μ g/m³ TCE detected in the soil gas sample collected from soil boring B-3 and concentrations of 4.8 and 2.4 μ g/m³ PCE detected in the soil gas samples collected from soil borings B-4 and B-5 respectively. TCE was not detected above analytical detection limits in the soil gas samples collected from soil borings B-4 and B-5. The concentration of PCE and TCE in the soil gas sample collected from soil boring B-3 and the concentration of PCE in the soil gas samples collected from soil borings B-4 and B-5. The concentration of PCE in the soil gas samples collected from soil borings B-4 and B-5. The concentration of PCE in the soil gas samples collected from soil borings B-4 and B-5 are below the Draft 2015 MTCA Method B Subslab Soil Gas Screening Level for PCE of 320.5 μ g/m³ and TCE of 12.3 μ g/m³. A summary of historical soil vapor analytical data from this and subsequent investigations is provided in **Table 3**.

In 2014, Weingarten requested that CardnoATC collect shallow soil samples in locations throughout the interior of the tenant space to laterally and vertically delineate the cVOC impacts, previously identified in soil. The scope of work included advancing seven soil borings, designated B-6 through B-12 by direct push drilling technology (**Figure 2**) until drilling refusal was encountered. Free groundwater was not encountered in any of the soil borings, which reached a maximum depth of 10 feet bgs.

Laboratory analytical results indicate that PCE was detected in soil samples collected from shallow soil in borings B-9, B-10, and B-12. Concentrations of PCE above Ecology's MTCA Method A soil cleanup level for unrestricted land use of 0.05 mg/kg, were detected in the soil samples collected from between ground surface and 1 foot bgs in boring B-9 (0.111 mg/kg), in boring B-10 (0.208 mg/kg), and boring B-12 (0.156 mg/kg). Based on these results CardnoATC recommended further assessment to laterally delineate the extent of impacted soil, predominantly to the west and the east. On behalf of Weingarten, CardnoATC submitted the findings from the 2014 assessment work along with the previous assessment reports to Ecology to solicit an opinion from Ecology through the Voluntary Cleanup Program (VCP) on the need for further assessment.

On October 17, 2014, Ecology provided an Opinion Letter which recommended the further characterization of impacts to subsurface at the Site from dry cleaning activities along with an assessment of vapor intrusion pathways at the Site.

On January 29, 2015, CardnoATC contracted Environmental Services Network Northwest (ESN) of Olympia, Washington to advance 11 soil borings (B-13 through B-23) using direct push technology (DPT) in locations that would assist to laterally delineate areas of cVOC impacted soil identified during previous investigations (**Figure 2**). In order to perform a Tier I vapor intrusion assessment, as per Ecology's Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Publication no. 09-09-047, October 2009. CardnoATC used a hand-held power drill to penetrate the building slab and collect samples of subslab soil vapor. Three subslab soil vapor samples (VE-1, VE-2, and VE-3) were collected in the vicinity of the dry cleaning machine (**Figure 5**).

PCE was detected in shallow soil samples collected from soil borings B-13, B-14, and B-16 at depths of 1 foot bgs and in boring B-15 at depths of 1 and 2 feet bgs. Soil samples collected from below the slab to 1 foot bgs in soil borings B-14 and B-15, (soil samples B-14-1 and B-15-1), contained concentrations of PCE above the MTCA Method A cleanup level for unrestricted land use (i.e., 0.05 mg/kg). Soil sample B-14-1 contained a concentration of 0.0696 mg/kg and soil sample B-15-1 contained a concentration of 0.315 mg/kg. All other detected concentrations of PCE were below the MTCA Method A cleanup level for unrestricted land uses. None of the soil samples collected from the 3 to 4 feet bgs interval contained concentrations of PCE or any other cVOC above

laboratory method reporting limits. A summary of laboratory analytical results from historical soil sampling is provided in **Table 1**.

PCE and TCE were detected in temporary subslab vapor samples VE-1, VE-2, and VE-3 at concentrations above the MTCA Method B Subslab Soil Gas Screening Levels. The maximum concentrations of PCE (10,000 µg/m³) and TCE (66.1 µg/m³) were detected in subslab vapor sample VE-1. The analytical laboratory denoted that the subslab concentration of PCE in soil vapor sample VE-1 was above quantitation range. The MTCA Method B Subslab Soil Gas Screening Levels for PCE and TCE based on the cancer endpoint are 320.5 and 12.3 μ g/m³ respectively. Other cVOCs, including 1,1,1-trichloroethane and dichlorodifluoromethane (CFC-12 or Freon 12), were detected in soil vapor samples VE-1, VE-2, and VE-3, but at concentrations below the respective MTCA Method B Subslab Soil Gas Screening Levels. The assessment work performed for Weingarten in response to the Ecology Opinion Letter dated October 17, 2014, demonstrated that PCE-impacted soil vertically attenuated to concentrations below laboratory method reporting limits within the upper 3 feet bgs and was laterally limited to within the former Harbour Point Cleaners tenant space, and to the west where it extended into the adjacent tenant space. Based on this data, CardnoATC recommended to Weingarten the development of a feasibility study that would include additional assessment of Site soil, subslab vapor, and indoor air, an evaluation of preferential pathways, and an inventory of hazardous materials stored at the Site to assess potential sources of indoor air contaminants. A summary of laboratory analytical results for indoor air is provided in **Table 4**.

2.1.2 Historical Remediation Activities

On September 17, 2015 CardnoATC submitted a Feasibility Study (FS) with a Disproportionate Cost Analysis (DCA) on behalf of Weingarten Realty Investors (WRI). The objective of the FS was to present a brief screening of remedial alternatives and select a remedial technology that was reasonable, technically feasible, and cost effective through a DCA.

Based on ATC's FS and DCA, Ecology's April 4, 2016 Opinion Letter, and a June 28, 2016 meeting between Ecology, WRI, and ATC, WRI selected soil vapor extraction through subslab depressurization (SSD) as a viable cleanup alternative to best protect human health from the potential vapor intrusion migration pathway.

In October 2016, ATC conducted a pilot test to evaluate the efficiency of a proposed SSD system. The results of the subslab depressurization pilot test indicated that extraction of subslab vapor from a single extraction point resulted in a radius of influence that extended well beyond the limits of PCE impacted soil and/or soil vapor. The results of this evaluation indicate that extraction from a single point at an applied vacuum of 10 inches WC and flow rate of 22 CFM resulted in a subslab vacuum response in excess of 0.04" WC (10 pascals) at a radial distance of greater than 50 feet. ATC concluded that the pilot test indicates that a SSD system installed with vacuum supplied near the location of former boring SP-1 would likely be an effective means of mitigating vapor intrusion of PCE and recommended that WRI proceed with the design and installation of a SSD system.

The SSD system was subsequently installed in January 2017. The system consisted of schedule 40 polyvinyl chloride (PVC) riser pipe plumbed vertically from the subslab to a one horse power regenerative blower mounted to the building roof. The vertical riser pipe was secured against a shared wall between the west-adjacent tenant space and the former Harbour Point Cleaners

tenant spaces and consisted of 4-inch diameter pipe from the slab to approximately three feet above grade reduced to 2-inch diameter pipe above. The effluent air was discharged from the blower through a stack constructed of schedule 80 PVC. Effluent air samples were collected from an access port installed directly on the stack. The SSD system commenced operation at 15:00 on January 23, 2017. Results of 2017 O&M and sampling were summarized in ATCs SSD Report dated February 26, 2018. Historical O&M data associated with operation of the SSD system are summarized in **Tables 5 through 9**.

During the period following the initial SSD system O&M event, site visits and routine SSD system O&M activities, including collection and analysis of SSD system effluent samples, were performed on a monthly basis. Routine monthly O&M activities performed during each monthly O&M event included the following:

- Recording the vacuum within the SSD system conveyance pipe in negative inches water column (-in. WC);
- Measuring air velocity within the effluent stack in feet per minute (fpm) with a handheld anemometer;
- Measuring VOC concentrations in effluent air using a photoionization detector (PID);
- Calculating an hour reading for blower operation; and
- Collecting a representative sample of SSD system effluent using a Summa canister for analysis of VOCs by EPA Method TO-15.

In addition to routine monthly O&M activities, indoor air sampling was performed within the dry cleaner suite and the vacant suite immediately west on a quarterly basis. During the December 2017 and July 2018 quarterly indoor air sampling events, three ambient air samples were collected at various locations to the west, south, and east of the dry cleaner suite.

The 2017 SSD Report summarized that the SSD system effectively depressurized the area immediately beneath the building slab and mitigated the potential for migration of vapors beneath the building slab to indoor air. In addition, operation of the SSD system over a period of approximately 17 months resulted in reductions in PCE and TCE concentrations in subslab soil vapor and indoor air. During the four previous indoor air sampling events, concentrations of PCE in indoor air remained below the MTCA Method C indoor air screening levels. However, TCE was detected in indoor air at concentrations slightly in excess of the MTCA Method C indoor air screening level. Based on the data collected to date, it appeared that emissions or releases from an offsite source or sources may contribute to the concentrations of SSD effluent and indoor air indicated that the total VOC concentrations in SSD effluent were either consistent with or lower than the concentrations of VOCs detected in indoor air. This observation suggested that the presence of VOCs in indoor air was not related to the vapor intrusion pathway. Indoor and outdoor air sampling data from the December 2017 and July 2018 sampling events are summarized in **Tables 8 and 9**, respectively.

SSD System Operational Summary

The SSD system consisted of schedule 40 polyvinyl chloride (PVC) riser pipe plumbed vertically from the subslab to a blower mounted to the building roof. Operation of the SSD system

commenced at 15:00 on January 23, 2017. Additional details regarding the SSD system are included in ATC's SSD System Report dated February 26, 2018.

Routine SSD system operation and maintenance (O&M) activities were performed from March 2017 through June 28, 2018, when the SSD system was shut down. Activities performed during routine O&M events included collection of system flow and vacuum readings, the collection of effluent air samples from the sample port located on the effluent stack, and field measurement of subslab vacuum response and VOC concentrations in subslab vapor probes SV-1 through SV-5. On a quarterly basis, indoor air samples were obtained from within the former Harbour Point dry cleaning facility and the west-adjacent tenant space over an 8-hour period. Beginning in December 2017, the quarterly outdoor air samples were also obtained from representative locations outside the building. Sample locations are shown on **Figures 6 and 7**.

During the final O&M event, subslab soil vapor samples were collected from the five subslab vapor probes (SV-1 through SV-5) installed within the former Harbour Point dry cleaning tenant space for subsequent laboratory analysis. Laboratory analysis was performed by Fremont Analytical, an Ecology accredited analytical laboratory; each sample was analyzed for select volatile organic compounds (VOCs) by EPA Method TO-15. The air samples were analyzed for those VOCs associated with PCE, which includes degradation compounds, produced through the de-chlorination of PCE: TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride.

The cumulative results of the SSD system O&M events indicated that a total of approximately 0.72 pounds of VOCs were removed from the subsurface soil during its operation. **Table 7** provides a summary of SSD system VOC removal rates during the period of operation.

2.1.3 2018 Dry Cleaning Facility Decommissioning

In May and June 2018, prior to the final O&M event, the former dry cleaners space was vacated, and interior floor and wall surfaces suspected to have been impacted from historical dry cleaning operations were decontaminated and/or removed. Decontamination and cleaning activities were performed by Clean Harbors. Prior to decommissioning, indoor building materials were tested for asbestos containing materials (ACM). The results of this analysis did not identify the presence of ACM in interior building materials.

Decommissioning and cleaning included washing the floor and walls, removal and disposal of ceiling panels, air vent ducting and insulation material, and stained drywall, and flushing of the sewer drains in the dry cleaner space. All removed material was disposed at a licensed facility by Clean Harbors.

2.1.4 2018 Post-Remediation Confirmation Sampling

On July 6, 2018, following decommissioning of the former dry cleaner tenant space, ATC collected confirmation subslab vapor samples from existing subslab vapor points SV-1 through SV-5. In addition, indoor air confirmation samples were obtained within the former dry cleaner suite (IA-1) and the adjacent vacant tenant suite to the west (IA-2). Concurrent outdoor air samples were obtained at three locations outside the building (OA1, OA2, and OA3) in order to evaluate the influence of background concentrations of VOCs on the indoor air sampling results. The indoor

and outdoor air samples were collected over an 8-hour period and neither the SSD system nor HVAC system were in operation during the sampling event. Consequently, the results from this analysis are intended to represent baseline conditions following decommissioning of the dry cleaner facility.

VOCs that were detected in subslab vapor samples collected during the post-remediation confirmation sampling event included carbon tetrachloride, ethanol, ethylbenzene, 4-ethyltoluene, trichlorofluoromethane, dichlorofluoromethane, 2-propanol, PCE, tetrahydrofuran, toluene, TCE, 1,2,4-trimethylbenzene, 1,1,1-trichloroethane, and xylenes. VOCs that were detected in subslab vapor samples at concentrations in excess of MTCA Method B or Method C Screening Levels are summarized below:

- PCE was detected in subslab vapor samples SV-1 through SV-4 at concentrations ranging from 4.04 µg/m³ (SV-5) to 1,160 µg/m³ (SV-1). MTCA Method B and Method C Screening levels for PCE in subslab soil vapor are 321 and 1,333 µg/m³, respectively. PCE concentrations in all subslab vapor samples were below the MTCA Method C screening level, while only the PCE concentration in subslab vapor probe SV-1 exceeded the MTCA Method B screening level. The average concentration of PCE in confirmation subslab vapor samples (277 µg/m³) is below both the MTCA Method B and C screening levels. Consequently, the post-remediation concentrations of this constituent in subslab vapor are not considered to represent a significant vapor intrusion threat.
- TCE was detected in 3 of 5 subslab vapor samples (SV-1, SV-3, and SV-4) at concentrations ranging from 1.65 µg/m³ (SV-4) to 16.1 µg/m³ (SV-3). MTCA Method B and Method C Screening levels for TCE in subslab soil vapor are 12.3 and 66.7 µg/m³, respectively. TCE concentrations in all subslab vapor samples were below the MTCA Method C screening level, while the TCE concentration in subslab vapor probe SV-3 slightly exceeded the MTCA Method B screening level. The average concentration of TCE in confirmation subslab vapor samples (<8.7 µg/m³) is below both the MTCA Method B and C screening levels. Consequently, the post-remediation concentrations of this constituent in subslab vapor are not considered to represent a significant vapor intrusion threat.

VOCs that were detected in both indoor and outdoor air during the post-remediation confirmation sampling event included acetone. chloromethane. ethanol. trichlorofluoromethane, dichlorofluoromethane, n-hexane, 2-propanol, and toluene. VOCs that were detected only in indoor air samples included 1,4-dichlorobenzene, stvrene. 1.2.4-trimethylbenzene. 1,3,5-trimethylbenzene, and xylenes. Neither PCE nor TCE were detected in any indoor or outdoor air samples obtained during the confirmation sampling event. VOCs that were detected in indoor air at concentrations in excess of MTCA Method B or Method C Screening Levels are summarized below:

1,4-dichlorobenzene was detected in indoor air at concentrations ranging from 1.43 to 2.87 µg/m³. MTCA Method B and Method C Screening levels for 1,4-dichlorobenzene are 0.227 and 2.27 µg/m³, respectively. The average concentration of 1,4-dichlorobenzene detected in indoor air is below the MTCA Method C Screening level. Consequently, the presence of this constituent in indoor air does not appear to represent a significant threat to future building occupants. 1,4-dichlorobenzene was not detected in any confirmation

subslab vapor samples. Therefore, the presence of this constituent in indoor air does not appear to be related to a vapor intrusion source.

1,2,4-trimethylbenzene was detected in one indoor air sample (IA-2) at a concentration of 5.49 µg/m³. MTCA Method B and Method C Screening levels for 1,2,4-trimethylbenzene are 3.2 and 7.0 µg/m³, respectively. The average concentration of 1,2,4-trimethylbenzene in indoor air is below the MTCA Method B and Method C Screening levels. Consequently, the presence of this constituent in indoor air does not appear to represent a significant threat to future building occupants. 1,2,4-trimethylbenzene was detected in 2 of 5 subslab vapor samples at concentrations ranging from 1.05 µg/m³ (SV-2) to 1.85 µg/m³ (SV-5). Given that the subslab concentrations of this constituent are lower than the indoor air concentrations, the presence of this constituent in indoor air does not appear to be related to a vapor intrusion source.

Table 3 provides a summary of historic and confirmation subslab vapor samples obtained during this investigation. Laboratory analytical reports from all 2018 sampling activities are included in **Appendix C**.

2.2 Human Health and Environmental Concerns

A Conceptual Site Model is a summary that describes all of the known or suspected sources of contamination, the exposure pathways, and the current and reasonably likely future human or environmental receptors. Previous environmental assessment activities indicate that PCE above MTCA Method A cleanup levels is limited to the upper three feet of soil beneath the building slab in the vicinity of the former dry cleaning machine and spot cleaning areas. PCE was not detected in any soil samples at concentrations in excess of MTCA Method B direct Contact cleanup levels. In addition, PCE and TCE have historically been detected in subslab soil vapor at concentrations in excess of MTCA Method B Soil Gas Screening Levels. PCE was not detected in groundwater samples obtained from five onsite groundwater monitoring wells. Given the limited vertical extent of PCE impacted soil, the documented subsurface impact does not represent a significant threat to groundwater.

As shown on the Conceptual Site Model on **Figure 8**, no exposure pathway exists for free product, or for surface water and sediment, as these secondary sources are not present at the Site. Potential exposure pathways are possible from the secondary sources of groundwater, indoor air, and shallow soil. As shown on the CSM, some of these potential exposure pathways are complete, but are considered insignificant as described below.

2.2.1 Human Health

The former Harbour Point dry cleaner tenant space is currently vacant and there are no current human receptors. Shallow soil impacts have not impacted groundwater and are below the MTCA Method B direct contact cleanup levels. With the exception of two constituents (i.e., 1,4-dichlorobenzene and 1,2,4-trimethylbenzene), the current concentrations of VOCs in indoor air are below MTCA Method B and C screening levels. The two constituents identified above were not detected in subslab vapor samples, indicating that they are not related to the former dry cleaner release. Consequently, the presence of these constituents in indoor air does not appear to be related to a vapor intrusion source.

Given the absence of the primary constituents of concern (i.e., PCE and TCE) in post-remediation indoor air samples, the current site conditions do not appear to be represent a significant vapor intrusion threat to future building occupants.

2.2.2 Environment

The Site is an urban setting with paved surfaces. Stormwater drainage is routed to the Alderwood Water District (AWD) system. There is no potential environmental exposure pathway to groundwater, so this potential exposure pathway is considered incomplete.

2.3 Cleanup Standards

2.3.1 Contaminants of Concern

Information obtained from previous reports indicates that PCE-containing dry cleaning products were used at the site during the period between 1992 and 2007. Beginning in 2007, PCE was replaced by a hydrocarbon-based dry cleaning solvent. Dry cleaning operations continued through May 2018 when the dry cleaner suite was vacated, associated equipment and appurtenances were removed, and interior surfaces of the former dry cleaning suite were cleaned and/or removed. Historic detections of PCE in soil and soil vapor observed during previous site assessment activities suggest that these impacts likely originated from incidental spills or releases during the period between 1992 and 2007. Representative incidental spills or releases that may have occurred include spills during transfer of spent solvents and releases of from the dry cleaning machine or waste storage containers.

Based on analytical laboratory data for soil samples collected from previous site investigations, PCE is the only contaminant that has been detected in soil at concentrations in excess of MTCA Method A regulatory cleanup levels. Subsurface soil containing PCE at concentrations in excess of the MTCA Method A cleanup level of 0.05 mg/kg was limited to soil samples collected from ground surface to one foot bgs in soil borings B-9, B-10, B-12, B-14, and B-15. These soil borings were located in the vicinity of the dry cleaning machine and near the spot cleaning table. The lateral extent of PCE impacted soil was adequately defined by borings B-25 through B-30 to the west, B-14 and B-23 to the south, B-17 through B-21 to the east, and B-6 through B-8 and B-22 to the north.

The PCE contaminant mass is confined to unsaturated soil immediately beneath the building slab and extends to a depth of less than three feet bgs, as demonstrated by soil samples collected at discrete depth intervals throughout the site (**Table 1**). Given the limited vertical extent of PCE impacted soil and relatively low concentrations detected in shallow soil, PCE has not migrated vertically and does not represent a significant threat to underlying groundwater. Furthermore, the historical groundwater monitoring and sampling results also demonstrate that PCE has not impacted groundwater, as PCE was not detected in any previous groundwater samples obtained from the site.

Based on concentration isocontours and historical soil boring locations, the estimated surface area of PCE impacted soil at concentrations above the MTCA Method A cleanup level was approximately 3,000 square feet. Since soil containing PCE at concentrations above the MTCA Method A cleanup level was generally limited primarily to the upper foot of soil beneath the

building slab, the estimated volume of PCE impacted soil was approximately 3,000 cubic feet or 111 cubic yards. It should be noted that the estimated extent of PCE impacted soil is based on measured soil concentrations collected prior to operation of the SSD system. As such, operation of the SSD system is expected to have resulted in further reductions in the concentration and lateral and vertical extent of PCE in soil. The estimated extent of PCE impacted soil that existed prior to operation of the SSD system is depicted on **Figure 4**.

Concentrations of PCE in soil vapor samples collected beneath the building slab (**Table 3**) support the interpolated geometry of the PCE soil plume, with the highest concentrations detected in soil vapor samples collected in the general vicinity and west of the former dry cleaning machine. Postremediation confirmation subslab vapor samples collected in July 2018 indicate that the average concentration of PCE in subslab soil vapor is below MTCA Method B and Method C Screening levels. Similarly, PCE was not detected in either of the post-remediation confirmation indoor air samples collected in July 2018. This finding is notable as the indoor air samples were collected more than a week after the SSD system was turned off. Collectively, these findings support the conclusion that the residual concentrations of PCE that remain in the subsurface do not represent a significant vapor intrusion threat. Consequently, continued operation of the SSD system does not appear to be warranted to address the potential vapor intrusion condition.

2.3.2 Cleanup Levels

The cleanup standards for the Site, as defined in WAC 173-340-700, consist of establishing cleanup levels as well as the points of compliance at which those cleanup levels are to be attained. The cleanup standards must be protective of human health and the environment, and must comply with applicable laws and regulations.

Soil Cleanup Levels

The target soil cleanup levels for chlorinated VOCs present at the Site, are proposed to be the MTCA Method B cleanup levels for the respective COCs. The MTCA Method B cleanup levels consider potential direct-exposure to PCE and TCE in soil under both a residential and commercial/industrial land use scenario. A summary of the target soil cleanup levels is provided below:

- PCE 476 mg/kg
- TCE 12 mg/kg

Neither PCE nor TCE have historically been detected in any soil samples at concentrations in excess of the target soil cleanup levels. Therefore, the current site conditions meet the target soil cleanup levels and do not warrant additional mitigation.

Indoor Air Cleanup Levels

The target indoor air screening levels for chlorinated VOCs present at the Site, are proposed to be the MTCA Method B and Method C screening levels for the respective COCs. The Method C screening levels are generally considered to be more appropriate for commercial/industrial land uses, such as the subject property, while MTCA Method B levels would be applicable to a

residential or unrestricted land use scenario. A summary of the target indoor air screening levels for PCE and TCE is provided below:

- PCE 9.62 μg/m³ (Method B) / 40 μg/m³ (Method C)
- TCE 0.37 μg/m³ (Method B) / 2.0 μg/m³ (Method C)

The results of confirmation indoor air sampling performed in July 2018 indicates that neither PCE nor TCE were detected in indoor air at concentrations in excess of the laboratory reporting limits of 1.36 and 1.07 μ g/m³, respectively. Therefore, current site conditions meet the MTCA Method B/C target indoor air screening levels.

Groundwater Cleanup Levels

The target groundwater cleanup levels for chlorinated VOCs present at the Site, are proposed to be the MTCA Method A cleanup levels for the respective COCs. These are as follows:

- PCE 5□µg/L
- TCE 5□µg/L

Historical groundwater monitoring and sampling was performed in 2006. Neither PCE nor TCE were detected in groundwater at concentrations in excess of laboratory reporting limits (1 μ g/L). Therefore, groundwater meets the numeric target cleanup level.

3.0 Terrestrial Ecological Evaluation

A completed terrestrial ecological evaluation (TEE) is provided in **Appendix B**. Since there is less than 1.5 contiguous acres of undeveloped land within 500 feet of the Site, the Site qualifies for the undeveloped land exemption under WAC 173-340-7491.

4.0 Cleanup Action Alternatives and Analysis

Remedial action alternatives were screened in ATCs FS based on the RAOs and data obtained during previous site assessments. These included: 1) source (soil) treatment technologies; and 2) source removal technologies. Both of these alternatives would be capable of reducing the concentration of PCE in soil. In addition, the "no action" alternative was evaluated. The "no action" alternative assumes that no remediation activities or monitoring would occur at the site, although this alternative would also consider the limits of the lateral and vertical extent of the contaminant mass in relation to potential human health risks and impacts to groundwater. The suitable remedial action technologies included:

- Natural attenuation (NA) with institutional controls and Restrictive Covenant.
- Soil vapor extraction (SVE).
- Soil removal (by excavation) and offsite disposal.

The remedial action technologies identified above were analyzed in the FS against the minimum screening criteria as outlined in Washington Administrative Code (WAC) 173-340-360(3)(f) which includes consideration of the following factors:

- Protectiveness.
- Permanence.
- Cost.
- Effectiveness over the long term.
- Management of short-term risks.
- Technical and administrative implementability.
- Consideration of public concerns.

In addition to meeting the threshold requirements outlined in WAC 173-340-360(2)(a), the selected remedial action technology is also required to be accomplished within a reasonable restoration time frame.

4.1 Cleanup Action Alternatives

A brief description of each remedial action technology evaluated in ATCs FS/DCA, compared with the minimum screening criteria listed above, is discussed in the following Sections.

4.1.1 Natural Attenuation with Institutional Controls and Restrictive Covenant

Natural attenuation (NA) relies on natural processes (biodegradation, dispersion, sorption, and volatilization) to achieve the RAO. Although this remedial action may require a longer period of time to achieve the RAO, this remedial action remains feasible due to the inaccessibility of impacted soil, limited risk to human health, limited concentrations of the contaminant mass. Furthermore, the results of soil sampling indicate that vertical migration of contamination is limited and groundwater has not been impacted. In order to further comply with MTCA threshold requirements, institutional controls and/or further analysis can be implemented to protect human health from any potential soil vapor intrusion from impacts remaining on property. It should be

noted that if this remedial action were to be implemented, WRI would be required to obtain a Restrictive Covenant from Ecology regarding Site impacts that remain above MTCA Method A cleanup levels.

4.1.2 Soil Vapor Extraction

SVE uses an induced vacuum to remove VOCs from the soil. The extracted vapor phase contaminants are either discharged to the atmosphere or treated using granulated activated carbon or thermal destruction. Utilizing SVE as a remediation alternative would require the installation of additional SVE wells and equipment to treat recovered vapor. The disproportionate carbon footprint and limited accessibility for expansion of the SVE well network make the effectiveness and reliability of SVE unknown over the long term. The time frame to achieve the RAO would likely be several years (estimated to be between two and five years). Furthermore, remediation by SVE has a disproportionate cost-effectiveness (i.e., the costs would not be proportionate to the benefits) as the remaining contaminant mass contains limited concentrations of contaminants of concern and is of limited volume.

4.1.3 Soil Removal (by Excavation) and Offsite Disposal

Soil removal by excavation and offsite disposal involves excavating the PCE impacted soil and transporting it offsite for disposal at a landfill or other suitable disposal facility. Although this remedial technology would be effective in meeting the RAO, remediation by soil removal and offsite disposal has a disproportionate cost-effectiveness as the remaining contaminant mass would require extensive engineering to access due to its location within an area occupied by an active commercial business.

4.2 Initial Screening of Alternatives

Based on the screening process, Natural Attenuation with Institutional Controls and Restrictive Covenant was selected as the best remedial alternative. Based on a comparative evaluation of the ability to attain the RAOs, analysis of the screening criteria, and through a disproportionate cost analysis, Alternative 1 (Natural Attenuation with Institutional Controls and Restrictive Covenant) is selected as the preferred technology. The degree of uncertainty regarding the reliability, combined with anticipated longer time frames to achieve the RAO and disproportionate cost effectiveness make the SVE and soil removal technologies unfavorable.

However, based on ATC's FS/DCA, Ecology's Opinion Letter, and a June 28, 2016 meeting between Ecology, WRI, and ATC, WRI selected soil vapor extraction through SSD as a viable cleanup alternative to best protect human health from the potential vapor intrusion migration pathway.

4.3 Detailed Evaluation of Alternatives

Detailed Evaluation of Remedial Alternatives (as presented in ATCs FS/DCS report):

	Alternative 1: Natural Attenuation with Institutional Controls and Restrictive Covenant	Alternative 2: Soil Vapor Extraction	Alternative 3: Soil Removal (by Excavation) and Offsite Disposal
Description	Since impacted soil is not in contact with groundwater it is kept capped with institutional controls and concentrations are allowed to degrade by natural processes.	Concentrations of PCE in impacted soil are reduced by extracting vapor phase petroleum hydrocarbons	Soil impacted with PCE is removed and then disposed at a permitted facility.
Area of Contamination (sq ft)	3,000	3,000	3,000
Volume of Soil Removal (cubic yards)	0	0	620
Overall Alternative Ranking (see Evaluation Criteria below)	7.9	7.3	7.7

5.0 Description of Selected Remedy

Based on ATC's FS/DCA, Ecology's Opinion Letter, and a June 28, 2016 meeting between Ecology, WRI, and ATC, WRI selected soil vapor extraction through SSD as a viable cleanup alternative to best protect human health from the potential vapor intrusion migration pathway and to remove contaminant mass.

The SSD system consisted of a single subslab extraction point (SP-1) and associated riser pipe constructed of schedule 40 polyvinyl chloride (PVC). The riser pipe was plumbed vertically from the subslab to a one horsepower regenerative blower mounted to the building roof. The vertical riser pipe was secured against a shared wall between the west-adjacent tenant space and the former Harbour Point Cleaners tenant spaces. Beneath the building slab, the extraction piping consisted of 4-inch diameter PVC piping and reduced to 2-inch diameter PVC piping at a height of approximately 3 feet above the building slab. The effluent air removed from the extraction point was discharged from the blower through a stack constructed of schedule 80 PVC. Operation of the SSD system commenced on January 23, 2017 and continued without interruption through June 30, 2018, a period of approximately 17 months.

5.1 Site Description

Based on previous investigations, a release of PCE associated with former facility operations impacted shallow soil below the slab of Building B in the locations shown on **Figures 2 and 4**. The PCE impacted area included shallow soil beneath the former dry cleaner and the adjacent tenant space to the west.

5.2 Description of the Cleanup Action

As was previously discussed, operation of the SSD system commenced on January 23, 2017 and continued without interruption through June 30, 2018. During the period of SSD system operation, effluent air samples were collected periodically, generally on a monthly basis, for analysis of VOCs via EPA Method TO-15. In addition, vacuum responses and field measurement of VOC concentrations were obtained from peripheral subslab monitoring points SV-1 through SV-5 in order to evaluate the extent of subslab vacuum influence and transient changes in VOC concentrations in the subslab samples. Verification monitoring of subslab vapor points SV-1 through SV-5 indicated that vacuum responses in excess of 0.1 inch of water column were maintained in all soil vapor monitoring probes during SSD system operation. The vacuum response induced during operation of the SSD system extended beyond the geographic area where PCE was present in soil at concentrations in excess of MTCA Method A Cleanup levels. During operation of the SSD system, a cumulative mass of approximately 0.72 pounds of VOCs was removed.

During the period between March 2017 and July 2018, indoor air samples were obtained over an 8-hour period on a quarterly basis from the interior of the former Harbour Point cleaner space and the adjacent, vacant tenant space to the west. Concurrent outdoor air samples were also collected during select quarterly indoor air sampling events in order to further evaluate the potential contribution of VOCs detected in ambient air to concentrations detected in indoor air.

The Harbour Point dry cleaners space was subsequently vacated in May 2018. Decommissioning of the dry cleaner space included removal of all above-ground features and appurtenances of the dry cleaning operation, including the dry cleaning machine, spot cleaning and pressing tables, containers of spot cleaning agents, dry cleaning solvents, waste filters, and spent solvent wastes. In addition, the interior floor of the former dry cleaning space was professionally cleaned and sections of stained wallboard were removed. The cleaning and decommissioning activities were completed on June 28, 2018 and the SSD system was subsequently shutdown.

Following the cleanup of the building interior, confirmation subslab, ambient, and indoor air sampling was conducted on July 6, 2018. The laboratory analytical results of the sampling activities performed on July 6, 2018 are intended to represent the current site conditions, absent the influence of the SSD system operation. Additional details regarding the post-remediation subslab vapor and indoor air sampling are provided in the following sections.

5.2.1 Post-Remediation Subslab Vapor Sampling

A summary of the results of the July 6, 2108 post-remediation confirmation sampling of subslab soil vapor probes indicated the following:

- PCE was detected in 1 of 5 subslab vapor probes (SV-1 at 1,160 μg/m³) at a concentration in excess of the MTCA Method B Subslab Soil Gas Screening Level (321 μg/m³). PCE was not detected in any subslab vapor samples at a concentration in excess of the MTCA Method C Subslab Soil Gas Screening Level (1,333 μg/m³).
- TCE was detected in 1 of 5 subslab vapor probes (SV-3 at 16.1 μg/m³) at a concentration in excess of the MTCA Method B Subslab Soil Gas Screening Level (12.3 μg/m³). TCE was not detected in any subslab vapor samples at a concentration in excess of the MTCA Method C Subslab Soil Gas Screening Level (66.7 μg/m³).
- The average concentrations of PCE and TCE detected in subslab soil vapor were 277.8 and 8.7 µg/m³, respectively. The average concentrations of PCE and TCE in subslab soil vapor are below applicable Method B Subslab Soil Gas Screening Levels.
- No other VOCs were detected in any of the subslab vapor probes at concentrations in excess of chemical-specific MTCA Method B or Method C Subslab Soil Gas Screening Levels.
- As compared to the laboratory analytical results of subslab vapor samples obtained in January 2015, prior to initiating remedial operations, post-remediation concentrations of PCE in subslab soil vapor were reduced by more than 88%.

5.2.2 Post-Remediation Indoor Air Sampling

Post-remediation indoor air sampling performed on July 6, 2018 indicated the following:

- Neither PCE nor TCE were detected in indoor air samples at concentrations in excess of MTCA Method B indoor air screening levels. The laboratory reporting limit for TCE (1.07 μg/m³) is slightly higher than the Method B indoor air screening level of 0.37 μg/m³.
- With the exception of 1,4-dichlorobenzene in 1 of 2 indoor air samples, no VOCs were detected in indoor air at concentrations in excess of MTCA Method C Indoor Air Screening Levels. In indoor air sample IA-1, 1,4-dichlorobenzene was detected at a concentration

of 2.87 μ g/m³, slightly in excess of the Method C Indoor Air Screening Level of 2.27 μ g/m³. 1,4-dichlorobenzene was not detected in any confirmation subslab vapor samples. Therefore, the presence of this constituent in indoor air does not appear to be related to a vapor intrusion source.

5.2.3 Summary of Post-Remediation Conditions

As was previously discussed, pre- and post-remediation concentrations of PCE in soil are below MTCA Method B Cleanup Levels for direct contact with soil and do not represent a significant threat to human health under current or anticipated future exposure conditions. Prior to initiating remedial action, the vertical extent of PCE impacted soil was adequately defined and confirmed to be limited to a depth of less than 3 feet bgs. In addition, the results of groundwater sampling performed in 2006 indicated that groundwater was not impacted by PCE or related constituents at concentrations in excess of MTCA Method A cleanup levels. Operation of the SSD system has further reduced the mass and concentration of PCE that remains in the subsurface. In consideration of these factors and the results of the post-remediation subslab vapor and indoor air sampling, the current site conditions are not considered to represent a significant vapor intrusion threat under a commercial land use scenario. As such, it is ATC's opinion that continued operation of the SSD system is no longer warranted.

5.3 Cleanup Standards and Point of Compliance

Points of compliance are defined in WAC 173-340-200 as the locations where the cleanup levels established in accordance with WAC 173-340-720 through 173-340-760 will be attained to meet the requirements of MTCA. At that point in time when the cleanup levels have been reached and maintained at the defined points of compliance, the Site is no longer considered to represent a threat to human health or the environment and can be closed. The points of compliance for the proposed cleanup action for soil, groundwater and indoor air are as follows:

Soil - The proposed points of compliance for soil are defined in WAC 173-340-740(6)(b) as the former Harbor Point cleaners tenant space, and a portion of the adjacent tenant space to the west.

Groundwater - The proposed point of compliance for groundwater is defined groundwater beneath the Site as represented by historic groundwater monitoring wells MW-1 through MW-5.

Indoor Air - The proposed points of compliance for indoor air is defined as being throughout the former Harbor Point cleaners tenant space and the adjacent tenant space to the west.

5.4 Applicable, Relevant and Appropriate Requirements (ARARs)

Under WAC 173-340-350 and 173-340-710, applicable requirements include regulatory cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that specifically address a contaminant, remedial action,

location, or other circumstances at a site. MTCA defines relevant and appropriate requirements as:

"... those cleanup standards, standards of control, and other environmental requirements, criteria or limitations established under state and federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site. WAC 173-340-710 through 173-340-760 identifies several requirements the department shall consider relevant and appropriate for establishing cleanup standards. For other regulatory requirements, the following criteria shall be evaluated, where pertinent, to determine whether such requirements are relevant and appropriate for a particular hazardous substance, remedial action, or site: ..."

The criteria used to make this determination are presented in WAC 173-340-710(4)(a)-(i).

Remedial actions conducted under MTCA must comply with the substantive requirements of the applicable or relevant and appropriate requirements (ARARs), but are exempt from their procedural requirements (WAC 173-340-710[9]). Specifically, this exemption applies to state and local permitting requirements under the Washington State Water Pollution Control Act, Solid Waste Management Act, Hazardous Waste Management Act, Clean Air Act, State Fisheries Code, and Shoreline Management Act.

Screening of ARARs

ARARs were screened in order to assess their applicability to the Site. The following list identifies the ARARs that may be applicable to the Site:

- MTCA (Chapter 70.105 of the Revised Code of Washington [RCW] 70.105)
- State Environmental Policy Act (Chapter 43.21C of the RCW 43.21C)
- The Clean Water Act (33 United States Code [USC] 1251 et seq.)
- The Fish and Wildlife Coordination Act
- Endangered Species Act (16 USC 1531 et seq.; Parts 17, 225, and 402 of Title 50 of the Code of Federal Regulations [50 CFR 17, 225, and 402])
- Native American Graves Protection and Repatriation Act (25 USC 3001 through 3013; 43 CFR 10) and Washington's Indian Graves and Records Law (RCW 27.44)
- Archaeological Resources Protection Act (16 USC 470 aa et seq.; 43 CFR 7)
- Washington Dangerous Waste Regulations (WAC 173-303)
- Solid Waste Management Act (RCW 70.95; WAC 173-304 and 173-351)
- Department of Transportation Hazardous Materials Regulations (49 CFR 100 through 185)
- Washington State Water Well Construction Act (RCW 18.104; WAC 173-160)
- Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (42 USC 9601 et seq. and 40 CFR 300)
- Water Quality Standards for Ground Waters of the State of Washington (RCW 90.48; WAC 173-200)
- Water Quality Standards for Surface Waters of the State of Washington (RCW 90.48 and 90.54; WAC 173-201A)

- Occupational Safety and Health Act and 29 CFR 1910
- Accreditation of Environmental Laboratories (WAC 173-50)
- City of Mukilteo and Snohomish County regulations, codes, and standards

5.5 Permanency of Solution

The preferred remedial options, once they have achieved the target cleanup levels, will have done so permanently. If the target cleanup goals cannot reasonably be achieved through the implementation of these actions within a reasonably acceptable time frame, site-specific MTCA Method B cleanup levels or other risk-based cleanup approaches and/or institutional controls may need to be considered to provide a permanent solution for appropriate areas of the Site.

The results of post-remediation subslab vapor sampling performed while the SSD system was not in operation, indicate that the current site conditions meet applicable MTCA Method B and/or Method C cleanup levels. The average concentrations of PCE and TCE in subslab soil vapor are below applicable Method B screening levels. Similarly, the indoor air sampling results demonstrate that the post-remediation concentrations of PCE and TCE in indoor air are below Method B cleanup levels even without operation of the SSD system. As such, the presence of residual PCE and TCE in subsurface soil and soil vapor does not appear to represent a continued threat of vapor intrusion. Therefore, continued operation of the SSD system is no longer required to mitigate the potential vapor intrusion condition.

6.0 Conclusions

Based on data presented in previous reports and summarized in this CAR report, numerous site investigation activities and successful remedial activities have been performed at the site. Historical concentrations of PCE in soil are below MTCA Method B direct exposure cleanup levels and extend to less than 3 feet below grade. In addition, historical groundwater monitoring and sampling demonstrate that groundwater has not been impacted by dry cleaning chemicals at concentrations in excess of MTCA Method A cleanup levels. Operation of the SSD remediation system resulted in reductions in both the mass and concentrations of PCE that may remain in the subsurface. The results of the post-remediation subslab and indoor air sampling demonstrate that the current site conditions meet MTCA Method B and/or Method C screening levels for both subslab soil vapor and indoor air. In consideration of the factors presented above, there are no other potentially complete exposure pathways at the site that warrant further consideration or mitigation.

ATC requests Ecology review this CAR report for concurrence that Site Characterization and Cleanup are complete and that an Opinion of NFA is warranted.

7.0 References

Buchanan Environmental Associates, Phase I Environmental Site Assessment, Mukilteo Speedway Center13619 Mukilteo Speedway, Lynnwood, WA 98037, September 6, 2006.

Buchanan Environmental Associates, Limited Phase II Environmental Assessment, 13619 Mukilteo Speedway, Lynnwood, WA 98037, May 17, 2006.

EBI Consulting, Phase II Environmental Site Assessment, Speedway Shopping Center, 13632 Highway 99, Lynnwood, WA, March 18, 2013.

Cardno ATC, Limited Subsurface Investigation, Speedway Shopping Center - Harbour Pointe Cleaners, 13619 Mukilteo Speedway, Lynnwood, WA, April 3, 2014.

Washington State Department of Ecology, Opinion Under WAC 173-340-515(5) on Site Environmental Assessments for the Following Hazardous Waste Site: Harbour Pointe Cleaners Lynnwood, Facility No. 41352598 Cleanup Site ID No. 12413 VCP Project No. NW2902, 13619 Mukilteo Speedway, Lynnwood, WA, 98037, October 17, 2014.

Cardno ATC, Additional Soil Assessment and Tier I Vapor Intrusion Assessment, Mukilteo Speedway Center - Harbour Pointe Cleaners, 13619 Mukilteo Speedway, Lynnwood, WA, March 26, 2015.

Cardno ATC, Feasibility Study with Disproportionate Cost Analysis, Harbour Point Cleaners at Mukilteo Speedway Center, 13619 Mukilteo Speedway, Lynnwood, WA, September 17, 2015.

Washington State Department of Ecology, Opinion Under WAC 173-340-515(5) on Feasibility Study with Disproportionate Cost Analysis for the Following Hazardous Waste Site: Harbour Pointe Cleaners Lynnwood, Facility No. 41352598 Cleanup Site ID No. 12413 VCP Project No. NW2902, 13619 Mukilteo Speedway, Lynnwood, WA, 98037, April 4, 2016.

ATC, Sub-Slab Depressurization Pilot Test Report, Harbour Point Cleaners at Mukilteo Speedway Center, 13619 Mukilteo Speedway, Lynnwood, WA, December 7, 2016.

ATC, Sub-Slab Depressurization System Report - January 2017 through December 2017, Harbour Point Cleaners, Suite B6, Mukilteo Speedway Center, 13619 Mukilteo Speedway, Lynnwood, WA, February 26, 2018.

TABLES

Table 1 Summary of Soil Analytical Results - Chlorinated Volatile Organic Compounds Former Harbour Point Cleaners 13619 Mukilteo Speedway Lynnwood, Washington

Boring ID	Sample ID	Sample Depth Interval (feet	Sample Date	Select Chlorinated Volatile Organic Compounds (cVOCs) ¹ in mg/kg								
Bornig ib	Campie 12	below ground surface)		PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chlorid			
MTCA	-Method A Cleanup	Levels for Unrestricted	Land Uses	0.05	0.03	No Data	No Data	No Data	No Data			
MTC	A Method B non-card	cinogen Standard Form	ula Value	476	12	160	1,600	4,000	240			
B-1*	B1-0-1'	0-1	6/12/2006	1.0	<0.010	<0.052	<0.052	<0.010	<0.010			
	B2-0-1'	0-1	6/12/2006	0.30	0.0093	<0.040	<0.040	<0.0079	< 0.0079			
B-2*	B2-1-2'	1-2	6/12/2006	0.30	0.017	<0.042	<0.042	< 0.0084	< 0.0084			
	B2-2.5-2.75'	2.5-2.75	6/12/2006	0.082	0.0059	<0.027	<0.027	<0.0055	<0.0055			
D ot	B6-6.5-7'	6.5-7	8/22/2006	<0.027	<0.017	<0.044	< 0.044	<0.017	<0.017			
B-6*	B6-8.5-9'	8.5-9	8/22/2006	<0.028	<0.018	<0.045	<0.045	<0.018	<0.018			
	B-1(10-12)	10 - 12	3/5/2013	< 0.0036	< 0.0036	< 0.0036			< 0.0036			
B-1	B-1(15-16)	15 - 16	3/5/2013	<0.0038	< 0.0038	< 0.0038			< 0.0038			
	B-2(2.5-5)	2.5 - 5	3/5/2013	< 0.0036	< 0.0036	< 0.0036			< 0.0036			
B-2	B-2(7.5-10)	7.5 - 10	3/5/2013	<0.0036	<0.0036	<0.0036			< 0.0036			
	B-3(3-5)	3 - 5	3/5/2013	0.00063	<0.0037	<0.0037			<0.0037			
B-3	B-3(6 - 6.5)	6 - 6.5	3/5/2013	<0.0040	<0.0037	<0.0040			<0.0037			
	B-4(3-5)	3 - 5	3/5/2013	<0.0038	<0.0038	<0.0038			<0.0038			
B-4	B-4(3-3) B-4(9-11)	6-9	3/5/2013	<0.0038	<0.0038	<0.0038			<0.0038			
	. ,											
B-5	B-5(0-3)	0 - 3	3/5/2013	< 0.0036	< 0.0036	< 0.0036			< 0.0036			
	B-5(6-9)		3/5/2013	<0.0037	<0.0037	<0.0037			<0.0037			
D 0	B-6-0-1	0 - 1	3/12/2014	<0.0189	<0.0189	<0.0189	<0.0189	<0.0472	<0.00189			
B-6	B-6-1-2	1 - 2 3 - 4	3/12/2014	< 0.0199	<0.0199	< 0.0199	<0.0199	<0.0497	< 0.00199			
_	B-6-3-4	-	3/12/2014	<0.0198	<0.198	<0.198	<0.198	<0.0496	<0.00198			
B-7	B-7-0-1	0 - 1	3/12/2014	<0.0414	<0.0414	<0.0414	<0.0414	<0.104	<0.00414			
	B-8-0-1	0 - 1	3/12/2014	<0.0227	<0.0227	<0.0227	<0.0227	<0.0567	<0.00227			
B-8	B-8-1-2	1 - 2	3/12/2014	<0.0177	<0.0177	<0.0177	<0.0177	<0.0442	<0.00177			
	B-8-3-4	3 - 4	3/12/2014	<0.0210	<0.0210	<0.0210	<0.0210	<0.0526	<0.00210			
B-9	B-9-0-1	0 - 1	3/12/2014	0.111	<0.0219	<0.0219	<0.0219	<0.0549	<0.00219			
20	B-9-1-2	1 - 2	3/12/2014	<0.0240	<0.0240	<0.0240	<0.0240	<0.0601	<0.00240			
	B-10-0-1	0 - 1	3/12/2014	0.208	<0.0299	<0.0299	<0.0299	<0.0747	<0.00209			
B-10	B-10-1-2	1 - 2	3/12/2014	<0.0205	<0.0205	<0.0205	<0.0205	<00512	<0.00205			
	B-10-3-4	3 - 4	3/12/2014	<0.0197	<0.0197	<0.0197	<0.0197	<0.0493	<0.00197			
	B-11-0-1	0 - 1	3/12/2014	0.0337	<0.0185	<0.0185	<0.0185	<0.0462	<0.00185			
B-11	B-11-1-2	1 - 2	3/12/2014	<0.0195	<0.0195	<0.0195	<0.0195	<0.0488	<0.00195			
	B-11-3-4	3 - 4	3/12/2014	<0.0199	<0.0199	<0.0199	<0.0199	<0.0497	<0.00199			
	B-6-0-1	0 - 1	3/12/2014	0.156	<0.0211	<0.0211	<0.0211	<0.0527	<0.00211			
B-12	B-6-1-2	1 - 2	3/12/2014	0.0467	<0.0220	<0.0220	<0.0220	<0.0551	<0.00220			
	B-6-3-4	3 - 4	3/12/2014	<0.0205	<0.0205	<0.0205	<0.0205	<00513	<0.00205			
	B-13-1	0 - 1	1/29/2015	0.0348	<0.0192	<0.0192	<0.0192	<0.0481	<0.00192			
B-13	B-13-2	1 - 2	1/29/2015	<0.0216	<0.0216	<0.0216	<0.0216	<0.0539	<0.0216			
	B-13-4	3 - 4	1/29/2015	<0.0219	<0.0219	<0.219	<0.0219	<0.0547	<0.0219			
B-14	B-14-1	0 - 1	1/29/2015	0.0696	<0.0182	<0.0182	<0.0182	<0.0454	<0.0182			
5 17	B-14-4	3 - 4	1/29/2015	<0.0215	<0.0215	<0.0215	<0.0215	<0.0539	<0.0215			
	B-15-1	0 - 1	1/29/2015	0.315	<0.0193	<0.0193	<0.0193	<0.0482	<0.0193			
B-15	B-15-2	1 - 2	1/29/2015	0.0260	<0.0216	<0.0216	<0.0216	<0.0541	<0.0216			
	B-15-4	3 - 4	1/29/2015	<0.0199	<0.0199	<0.0199	<0.0199	<0.0497	<0.0199			
	B-16-1	0 - 1	1/29/2015	0.0243	<0.0194	<0.0194	<0.0194	<0.0567	<0.0194			
B-16	B-16-2	1 - 2	1/29/2015	<0.0205	<0.0205	<0.0205	<0.0205	<0.0513	<0.0205			
	B-16-4	3 - 4	1/29/2015	<0.0220	<0.0220	<0.0220	<0.0220	<0.0549	<0.0220			

Table 1 Summary of Soil Analytical Results - Chlorinated Volatile Organic Compounds Former Harbour Point Cleaners 13619 Mukilteo Speedway Lynnwood, Washington

Boring ID	Sample ID	Sample Depth Interval (feet	Sample Date		Select Chlori	nated Volatile Orgar	nic Compounds (cVO	Cs) ¹ in mg/kg	
Doring iD	oumple ib	below ground surface)	Campie Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride
MTCA	-Method A Cleanup	Levels for Unrestricted	Land Uses	0.05	0.03	No Data	No Data	No Data	No Data
MTC	A Method B non-care	cinogen Standard Form	nula Value	476	12	160	1,600	4,000	240
	B-17-1	0 - 1	1/29/2015	<0.0191	<0.0191	<0.0191	<0.0191	<0.0477	<0.0191
B-17	B-17-2	1 - 2	1/29/2015	<0.0209	<0.0209	<0.0209	<0.0209	<0.0522	<0.0209
	B-17-4	3 - 4	1/29/2015	<0.0142	<0.0142	<0.0142	<0.0142	<0.0355	<0.0142
D 40	B-18-1	0 - 1	1/29/2015	<0.0203	<0.0203	<0.0203	<0.0203	<0.0508	<0.0203
B-18	B-18-4	3 - 4	1/29/2015	<0.0214	<0.0214	<0.0214	<0.0214	<0.0534	<0.0214
D 40	B-19-1	0 - 1	1/29/2015	<0.0231	<0.0231	<0.0231	<0.0231	<0.0578	<0.0231
B-19	B-19-4	3 - 4	1/29/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.0545	<0.0218
	B-20-1	0 - 1	1/29/2015	<0.0198	<0.0198	<0.0198	<0.0198	<0.0494	<0.0198
B-20	B-20-2	1 - 2	1/29/2015	<0.0213	<0.0213	<0.0213	<0.0213	<0.0532	<0.0213
	B-20-4	3 - 4	1/29/2015	<0.0200	<0.0200	<0.0200	<0.0200	< 0.0499	<0.0200
	B-21-1	0 - 1	1/29/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.0545	<0.0218
B-21	B-21-2	1 - 2	1/29/2015	<0.0210	<0.0210	<0.0210	<0.0210	<0.0524	<0.0210
	B-21-4	3 - 4	1/29/2015	<0.0203	<0.0203	<0.0203	<0.0203	<0.0507	<0.0203
	B-22-1	0 - 1	1/29/2015	<0.0283	<0.0283	<0.0283	<0.0283	<0.0708	<0.0283
B-22	B-22-2	1 - 2	1/29/2015	<0.0210	<0.0210	<0.0210	<0.0210	<0.0525	<0.0210
	B-22-4	3 - 4	1/29/2015	<0.0215	<0.0215	<0.0215	<0.0215	<0.0538	<0.0215
	B-23-1	0 - 1	1/29/2015	<0.0237	<0.0237	<0.0237	<0.0237	<0.0592	<0.0237
B-23	B-23-2	1 - 2	1/29/2015	<0.0196	<0.0196	<0.0196	<0.0196	<0.0490	<0.0196
	B-23-4	3 - 4	1/29/2015	<0.0216	<0.0216	<0.0216	<0.0216	<0.0539	<0.0216
B-24	B-24-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
D-24	B-24-4	3 - 4	5/12/2015	<0.0211	<0.0211	<0.0211	<0.0211	<0.527	<0.00211
D 05	B-25-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-25	B-25-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B 00	B-26-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-26	B-26-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
5.07	B-27-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-27	B-27-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
5.00	B-28-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-28	B-28-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B 47	B-29-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-29	B-29-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	< 0.00218
	B-30-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-30	B-30-4	3 - 4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
	B-30-1	0 - 1	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218
B-31	B-30-4	3-4	5/12/2015	<0.0218	<0.0218	<0.0218	<0.0218	<0.546	<0.00218

Notes:

mg/kg = millgram per kilogram

PCE = Tetrachloroethene (Tetrachloroethylene, perchloroethylene)

TCE = Trichloroethene (Trichloroethylene)

cis-DCE = cis-1,2-Dichloroethene (cis-1,2-Dichloroethylene)

trans-DCE = trans-1,2-Dichloroethene (trans-1,2-Dichloroethylene)

1,1-DCE = 1,1-Dichloroethene (1,1-Dichloroethylene)

MTCA - Washington State Department of Ecology Model Toxics Control Act

Bold denotes concentration at or above regulatory cleanup level

* = Sample collected during 2006 BEA investigation

1 = Analytical results by gas chromatography and mass spectrometry by EPA Method 8260

All analytical results reported in milligrams per kilogram (mg/kg) equivalent to parts per million (ppm)

A complete list of VOC data is provided in Appendix B.

Table 2 Summary of Groundwater Analytical Results Former Harbour Point Cleaners 13619 Mukilteo Speedway Lynnwood, Washington

Well ID	Sample Date	Select Chlorinated Volatile Organic Compounds (cVOCs) ¹ in µg/L										
		PCE	TCE	Chloroform	Chloromethane	1,1-DCA	EDC	vc	Naphthalene	Toluene	Ethylbenzene	Total Xylenes
	6/13/2006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	25	7.3	5.0	33
MW-1	7/28/2006	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
	8/23/2006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
MW-2	7/28/2006	<1.0	<1.0	2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
10100-2	8/23/2006	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
MW-3	7/28/2006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
10100-5	8/23/2006	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
MW-4	8/23/2006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
MW-5	8/23/2006	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<3.0
	d A/B* Cleanup vels	5	5	1.41*	No Data	7.68*	5	0.2	160	1000	700	1000

Notes:

 μ g/L = micrograms per liter

PCE = Tetrachloroethene (Tetrachloroethylene, perchloroethylene)

TCE = Trichloroethene

1,1-DCA = 1,1-Dichloroethane

VC = Vinyl chloride

EDC = Ethylene dichloride, also DCE, also 1,2-dichloroethane

1 = Analytical results by EPA Method 8260

All analytical results reported in micrograms per liter (μ g/L) equivalent to parts per billion (ppb) **Bold** denotes concentration at or above MTCA Method A/B Cleanup Level

MTCA - Washington State Department of Ecology Model Toxics Control Act

* = MTCA Method B Cleanup Level

Table 3

Summary of Soil Vapor Sample Analytical Results - Chlorinated Volatile Organic Compounds

Former Harbour Point Cleaners

13619 Mukilteo Speedway

Lynnwood, Washington

Semale ID	Sample Depth Interval (feet	Somala Deta		Leak Detection Compounds						
Sample ID	below ground surface)	Sample Date	PCE	TCE	cis-DCE	trans-DCE	1,1-DCE	Vinyl Chloride	Helium in ppmv ²	% Oxygen ³
	_									
VE-1	0.5 (sub-slab)	1/29/2015	10,000	66.10	<0.793	<0.793	<0.793	<0.511	<254	7.41
VE-2	0.5 (sub-slab)	1/29/2015	4,740	8.42	<0.793	<0.793	<0.793	<0.511	57,600	8.00
VE-3	0.5 (sub-slab)	1/29/2015	3,230	5.12	<0.793	<0.793	<0.793	<0.511	<246	7.68
	-					•				
Slab-1	0.5 (sub-slab)	7/3/2015	1,950	7.73	<0.0793	<0.0238	<0.0357	<0.217	ND	
Slab-2	0.5 (sub-slab)	7/3/2015	632	1.21	<0.0793	<0.0238	<0.0357	<0.217	ND	
Slab-3	0.5 (sub-slab)	7/3/2015	523	0.907	<0.0793	<0.0238	<0.0357	<0.217	ND	
Slab-4	0.5 (sub-slab)	7/3/2015	60.2	0.288	<0.0793	<0.0238	<0.0357	<0.217	ND	
Slab-5	0.5 (sub-slab)	7/3/2015	48.1	<0.0914	<0.0793	<0.0238	<0.0357	<0.217	ND	
							•			
SV-1	2" below slab	7/6/2018	1,160	8.48	<0.793	<0.793	<0.802	<0.511	ND	
SV-2	2" below slab	7/6/2018	108	<1.07	<0.793	<0.793	<0.802	<0.511	ND	
SV-3	2" below slab	7/6/2018	100	16.1	<0.793	<0.793	<0.802	<0.511	ND	
SV-4	2" below slab	7/6/2018	17.1	1.65	<0.793	<0.793	<0.802	<0.511	ND	
SV-5	2" below slab	7/6/2018	4.04	<1.07	<0.793	<0.793	<0.802	<0.511	ND	
2015 MTCA N	Method B Subslab So	reening Level	321	12.3	NA	NA	3,050	9.3	NA	NA
2015 MTCA M	Aethod C Subslab So	reening Level	1,330	66.7	NA	NA	6,670	93.3	NA	NA

Notes:

ug/m3=micrograms per cubic meter

ppmv = parts per million by volume

PCE = Tetrachloroethene (Tetrachloroethylene, perchloroethylene)

TCE = Trichloroethene (Trichloroethylene)

cis-DCE = cis-1,2-Dichloroethene (cis-1,2-Dichloroethylene)

trans-DCE = trans-1,2-Dichloroethene (trans-1,2-Dichloroethylene)

1,1-DCE = 1,1-Dichloroethene (1,1-Dichloroethylene)

MTCA - Washington State Department of Ecology Model Toxics Control Act

Bold denotes concentration at or above MTCA Method B Subslab Soil Gas Screening Level

1 = Analytical results by EPA Method TO-15

2 = Analytical results by EPA Method 3C

3= Analytical resutls by gas chromatography/thermal conductivity detector

All analytical results reported in micrograms per cubic meter (µg/m³)

A complete list of VOC data is provided in Appendix B.

NA= No applicable data

SSDS was shutdown on June 28, 2018, and sampling performed on July 6, 2018 was while the SSDS was NOT operating

Table 4

Summary of Indoor Air Analytical Results - Select Chlorinated Volatile Organic Compounds

Former Harbour Point Cleaners

13619 Mukilteo Speedway

Lynnwood, Washington

			Samula Data	Select Chlorinated Volatile Organic Compounds (cVOCs) ¹ in ug/m ³					
Sample Location	Sample ID	Fill Time	Sample Date	PCE	TCE	1,1-DCE	Vinyl Chloride		
	Vapor-1-Cleaner	8-Hour	5/1/2015	2.24	4.60	<0.0357	<0.217		
	IA-01	8-Hour	7/2/2015	5.46	7.60	<0.0357	<0.217		
	IA-1-031317	8-Hour	3/13/2017	2.20	5.54	<0.793	<0.511		
Location IA-1 in Harbour Point Cleaners tenant	IA1-062917	8-Hour	6/29/2017	<2.03	10.9	<0.793	<0.511		
space	IA-1-3Q17	8-Hour	9/28/2017	22.7	2.20	<1.59	<1.02		
	IA-1	8-Hour	12/28/2017	2.64	6.22	<0.793	<0.511		
	IA-1	8-Hour	3/13/2018	<1.36	6.07	<0.793	<0.511		
	IA1-070618	8-Hour	7/6/2018	<1.36	<1.07	<0.793	<0.511		
	Vapor-2-Salon	8-Hour	5/1/2015	12.50	6.76	<0.0357	<0.217		
	IA-02	8-Hour	7/2/2015	10.9	4.67	<0.0357	<0.217		
	IA-2-031317	8-Hour	3/13/2017	<6.46	<3.41	<2.52	<1.62		
Location IA-2 in tenant	IA2-062917	8-Hour	6/29/2017	<2.03	1.80	<0.793	<0.511		
space B5	IA-2-3Q17	8-Hour	9/28/2017	<2.72	2.52	<1.59	<1.02		
	IA-2	8-Hour	12/28/2017	<1.36	<1.07	<0.793	<0.511		
	IA-2	8-Hour	3/13/2018	<1.36	1.11	<0.793	<0.511		
	IA2-070618	8-Hour	7/6/2018	<1.36	<1.07	<0.793	<0.511		
2	2015 MTCA Method B Inc	door Air Screening Leve	el	9.62	0.37	91.43	0.28		
2	2015 MTCA Method C Inc	door Air Screening Leve	el	40	2.0	200	2.8		

Notes:

ug/m3=micrograms per cubic meter

PCE = Tetrachloroethene (Tetrachloroethylene, perchloroethylene)

TCE = Trichloroethene (Trichloroethylene)

1,1-DCE = 1,1-Dichloroethene (1,1-Dichloroethylene)

MTCA - Washington State Department of Ecology Model Toxics Control Act

Bold denotes concentration at or above 2015 MTCA Method B Indoor Air Screening Level, but below Method C Indoor Air Screening Level

Bold denotes concentration at or above 2015 MTCA Method B and C Indoor Air Screening Levels

¹ = Analytical results by EPA Method TO-15

² = Analytical results by EPA Method 3C

³ = Analytical resutls by gas chromatography/thermal conductivity detector

All analytical results reported in micrograms per cubic meter (µg/m³)

A complete summary of laboratory analytical results for the current sampling event is provided in Appendix C.

SSDS was shutdown on June 28, 2018, and sampling performed on July 6, 2018 was while the SSDS was NOT operating

Table 5 Summary of Monthly Subslab Monitoring Results Harbour Point Cleaners 13619 Mukileteo Speedway Lynnwood, Washington

					S	ubslab Monite	oring Points				
Monitoring Date	Applied Vacuum at Extraction	S	SV-1		SV-2		SV-3		/-4	SV-5	
	Point SP-1 (- in. WC)	Vacuum Response (- in.WC)	PID Measurement (ppmv)	Vacuum Response (- in.WC)	PID Measurement (ppmv)	Vacuum Response (- in.WC)	PID Measurement (ppmv)	Vacuum Response (- in.WC)	PID Measurement (ppmv)	Vacuum Response (- in.WC)	PID Measurement (ppmv)
3/13/2017	22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
5/31/2017	24	0.10	1.7	0.030	0.5	3.0	0.2	2.0	0.2	0.627	0.2
6/29/2017	22	0.10	NM	1.127	NM	>5.00	NM	2.3	NM	0.415	NM
7/31/2017	23	0.372	0.0	0.351	0.0	2.1	0.7	0.3	0.0	0.320	0.0
8/25/2017	22	0.219	0.0	0.301	0.0	3.0	0.0	2.09	0.0	0.457	0.0
9/29/2017	24	>0.25	0.3	>0.25	0.1	>0.25	0.2	>0.25	0.1	>0.25	0.5
10/27/2017	23	0.207	0.3	0.192	0.3	>5.00	0.3	1.738	0.5	0.361	0.5
11/27/2017	0.80 ^a	0.20	0.4	0.20	0.4	3.0	0.7	1.50	0.5	0.40	0.6
12/28/2017	22	0.10	0.0	0.20	0.0	2.6	0.0	1.20	0.0	0.20	0.0
1/18/2018	22	0.20	0.0	0.20	0.0	3.1	0.0	1.50	0.0	0.30	0.0
2/15/2018	22	0.20	0.0	0.20	0.0	3.0	0.0	1.40	0.0	0.40	0.0
3/13/2018	22	0.20	0.0	0.20	0.0	3.1	0.0	1.60	0.0	0.20	0.0
5/31/2018*	21	0.10	0.3	0.10	0.2	3.15	0.2	1.85	0.2	0.2	0.3

Notes:

Subslab depressurization system operation commenced on January 23, 2017

Subslab monitoring points SV-1 through SV-5 installed on May 31, 2017

* Subslab monitoring points SV-1 through SV-5 data were collected immediately prior to shutting down the SSDS

- in. WC = negative inches of water column

NM = Not Measured

Vacuum readings obtained using magnehelic gauges (Dwyer) and digital micro manometer (Infiltec Model DM1)

PID measurements obtained using a Mini RAE 3000 PID calibrated to 100 ppm isobutylene

^a = Measurement not recorded at the correct location, value does not acccurately represent vacuum at extraction point SP-1
Table 6

Summary of SSDS Effluent Sampling Results

Former Harbour Point Cleaners

13619 Mukilteo Speedway

Lynnwood, Washington

All Concentrations Expressed in micrograms per cubic meter (ug/m³)

Sample Date	Methylene Chloride	CFC-12	Acetone	Benzene	1,4-Dichlorobenzene	(MEK) 2-Butanone	CFC-11	1,3-Dichlorobenzene	Propylene	PCE	m,p-Xylene	Chloroform	Chloromethane	Cyclohexane	Ethanol	TCE	Toluene	Tetrahydrofuran	Isopropyl Alcohol	Ethylbenzene	1,3,5-Trimethylbenzene	4-Ethyltoluene	Styrene	o-Xylene	Naphthalene	1,2,4-Trimethylbenzene	Heptane	Hexane	Methyl Methacrylate	Sum of Detected VOCs	Sum of Chlorinated VOCs
Method B Screening Level ^[1]	8,333	1,523	4.73E+05	10.7	7.58	7.63E+04	1.07E+04	NE	NE	321	1,520	3.62	1,370	NE	NE	12.3	7.63E+04	NE	NE	1.52E+04	NE	NE	1.52E+04	1,523	2.45	106.7	NE	1.06E+04	1.06E+04		
Method C Screening Level ^[2]	2.0E+04	3,333	1.00E+06	107	75.8	1.67E+05	2.33E+04	NE	NE	1,333	3,333	36.2	3,000	NE	NE	66.7	1.67E+05	NE	NE	3.33E+04	NE	NE	3.33E+04	3,333	24.5	233	NE	2.33E+04	2.33E+04		
3/13/2017	82.4	<1.48	NA	NA	4.19	NA	1.83	NA	NA	4.57	NA	2.43	<1.03	NA	NA	1.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	96.64	96.64
5/31/2017	<5.21	12.5	11.8	<0.639	14.6	<1.47	7.25	14.9	6.91	<2.03	<0.868	1.49	<1.03	<0.688	NA	<1.07	<0.754	<1.47	3.57	<1.30	<1.47	<1.47	<1.28	<0.868	<1.57	<1.47	<2.01	<0.705	<1.23	73.02	50.74
6/29/2017	<5.21	14.0	12.7	<0.639	5.33	3.86	6.52	<1.80	1.91	4.01	5.33	1.14	<1.03	<0.688	NA	2.51	3.65	<1.47	<2.46	3.13	2.83	2.45	2.27	2.09	2.06	1.96	<2.01	1.18	1.26	80.19	33.51
7/31/2017	35.6	17.8	18.5	<0.639	11.90	3.25	9.85	<1.80	10.70	4.13	2.25	7.98	<1.03	<0.688	NA	2.04	<0.754	<1.47	<2.46	<1.30	1.95	<1.47	<1.28	1.01	1.79	<1.47	<2.01	<0.705	<1.23	128.75	89.30
8/25/2017	8.79	11.5	22.0	<0.639	5.23	<1.47	5.59	<1.80	1.69	2.52	<0.868	1.98	<1.03	<0.688	NA	1.15	1.47	<1.47	9.59	<1.30	<1.47	<1.47	<1.28	<0.868	3.54	<1.47	<2.01	<0.705	<1.23	75.05	36.76
9/29/2017	<0.694	14.4	12.6	<0.639	3.73	<3.69	7.70	<1.20	<0.689	4.78	<1.73	10.0	0.581	<0.689	36.1	3.15	2.43	<0.590	<3.07	<0.867	<0.982	<0.982	<0.851	<0.867	<3.30	<0.982	<0.818	<0.705	<0.819	95.47	44.34
10/27/2017	<0.694	11.2	15.4	0.816	20.0	<3.69	9.66	<1.20	<0.689	2.03	<1.73	1.25	0.838	<0.689	171	4.02	4.29	<0.590	31.2	<0.867	<0.982	<0.982	<0.851	<0.867	<3.30	<0.982	<0.818	<0.705	<0.819	271.70	49.00
11/27/2017	<0.694	10.5	9.94	<0.639	1.28	<3.69	3.77	<1.20	2.63	<1.36	2.41	6.08	0.738	<0.689	118	2.19	2.77	<0.590	<3.07	<0.867	<0.982	<0.982	<0.851	0.916	<3.30	1.09	<0.818	<0.705	<0.819	162.31	24.56
12/28/2017	<0.694	6.31	12.0	0.646	6.23	<3.69	2.64	<1.20	1.06	<1.36	<1.73	<0.973	0.980	<0.689	129	<1.07	1.47	<0.590	<3.07	<0.867	<0.982	<0.982	<0.851	<0.867	<3.30	<0.982	<0.818	<0.705	<0.819	160.34	16.16
1/18/2018	1.52	10.9	14.4	0.899	<mark>13.8</mark>	<3.69	3.38	<1.20	<0.689	<1.36	2.88	<0.973	0.944	<0.689	70.4	2.42	3.56	<0.590	29.8	<0.867	<0.982	1.83	<0.851	1.14	<3.30	2.18	<0.818	<0.705	<0.819	160.05	32.96
2/15/2018	0.854	2.00	38.0	1.08	10.5	4.64	4.49	<1.20	<0.689	1.42	2.43	<0.973	1.09	0.779	168	2.00	6.77	2.87	4.37	<0.867	<0.982	<0.982	<0.851	0.903	<3.30	1.10	0.977	1.390	<0.819	255.66	22.35
3/13/2018	<0.694	6.20	24.7	1.35	2.22	<3.69	3.85	<1.20	2.86	<1.36	6.24	<0.973	0.917	1.97	171	3.99	10.9	<0.590	4.96	1.67	<0.982	<0.982	<0.851	2.15	<3.30	2.00	1.45	1.45	<0.819	249.88	17.18
4/12/2018	<0.694	9.33	63.5	0.905	3.11	<3.69	4.34	<1.20	<0.689	<1.36	13.7	2.74	0.988	0.948	120	3.44	15.9	1.40	11.5	3.29	1.43	4.51	2.69	4.76	<3.30	5.16	1.38	1.21	1.58	277.81	23.95

Notes: Only VOCs that were detected in at least one SSDS effluent sample are presented in this summary. VOCs not specifically included in this summary were not present at concentrations in excess of laboratory reporting limits Sum of detected VOCs represents the cumulative concentration of all detected VOCs, expressed in ug/m³. SSDS effluent samples analyzed for VOCs via EPA Method TO-15 < indicates that analyte was not detected at the specified laboratory reporting limit PCE = Tetrachloroethene (Tetrachloroethylene, perchloroethylene) TCE = Trichloroethene (Trichloroethylene) CFC-11 = Trichloroethylene CFC-12 = Dichlorootfluoromethane MEK = 2 Buttanone

MEK = 2-Butanone

NA = Not Analyzed or otherwise included in laboratory analytical report

NE = Not Established under MTCA

 Internet and Established under MICA

 Bold denotes concentration at or above 2015 MTCA Method B Subslab Soil Gas Screening Level

 Bold denotes concentration at or above 2015 MTCA Method B and C Subslab Soil Gas Screening Level

Table 7

Summary of Subslab Depressurization System VOC Removal Rates

Former Harbour Point Cleaners

13619 Mukilteo Speedway

Lynnwood, Washington

Sample Date	Total System Run Time (hours)	Applied Vacuum at Extraction Point SP-1 (- in. WC)	SSDS Flow Rate (scfm)	Effluent PID (ppmv)	Total VOC Concentration ¹ (ug/m ³)	VOC Recovery Rate (Ibs/day)	VOC Recovered for Period (lbs)	Cumulative VOC Recovered (Ibs)
3/13/2017	1,164	22	170	0.6	96.64	1.48E-03	0.0716	0.072
5/31/2017	3,035	24	82	0.4	73.02	9.61E-04	0.0749	0.147
6/29/2017	3,707	22	75	42.7	80.19	5.41E-04	0.0151	0.162
7/31/2017	4,475	23	76	4.6	128.75	7.09E-04	0.0227	0.184
8/25/2017	5,075	22	76	0.2	75.05	6.97E-04	0.0174	0.202
9/29/2017	5,915	24	84	0.5	95.47	6.13E-04	0.0215	0.223
10/27/2017	6,575	24	89	0.3	271.70	1.43E-03	0.0392	0.263
11/27/2017	7,295	24	95	0.2	162.31	1.79E-03	0.0538	0.316
12/28/2017	8,039	24	104	0.1	160.34	1.44E-03	0.0447	0.361
1/18/2018	8,543	22	85	0.0	160.05	1.36E-03	0.0286	0.390
2/15/2018	9,215	22	75	0.0	255.66	1.49E-03	0.0419	0.432
3/13/2018	9,959	22	79	0.0	249.88	1.75E-03	0.0543	0.486
4/12/2018	10,703	22	79	0.7	277.81	1.87E-03	0.0581	0.544
5/31/2018 ^a	12,143	21	79	0.2	549.62	2.94E-03	0.1763	0.720

Notes:

SSDS System operations commenced on January 23, 2017

¹ = Total VOC concentration based on the sum of detected VOCs based on TO-15 analysis, as presented in Table 3.

- in. WC = negative inches of water column

scfm = cubic feet per minute, adjusted for applied vacuum

ppmv = parts per million by volume

Flow rate as calculated from anemometer probe measurements

PID = Photoionization Detector (Mini RAE 3000 PID calibrated to 100 ppm isobutylene) as measured within the effluent stack.

Total Daily Emissions calculated using the following equation:

$R_{d} = (V \times C \times F1 \times 1/F2 \times 1/F3)$

R_d = VOC Mass Recovery Rate (lb/day)

V = Flow rate as standard cubic feet per minute

Flow rate calculated as average of current and preceding monitoring events.

C = VOC concentration (ug/m³) calculated as the average of current and preceding sampling events

F1 = minutes per day (24 hours/day x 60 minutes/hour = 1,440 minutes/day)

F2 = Conversion factor of 35.315 cubic feet per cubic meter

F3 = 4.5359E+8 micrograms per pound

VOC Recovery for Period calculated using the following equation:

^a = Sample obtained immediately prior to SSDS System shutdown. $R_p = R_d \times OD$

OD = Operating Duration (days)

R_p = VOC mass Recovery for Period (pounds)

Table 8 Former Harbour Point Cleaners 13619 Mukilteo Speedway Indoor and Outdoor Air and SSDS Effluent Sampling Results Samples obtained on December 28, 2017 Concentrations in micrograms per cubic meter (ug/m³)

Analyte	CAS #	MTCA Method B Screening Level ¹	MTCA Method C Screening Level ²	0A-1	OA-2	OA-3	IA-1	IA-2
Acetone	67-64-1	14,171	31,000	4.07	3.69	4.09	16.7	11.9
Allyl Chloride	107-05-1			ND	ND	ND	ND	ND
Benzene	71-43-2	13.7	30	0.700	0.677	0.697	0.753	1.13
Benzyl Chloride	100-44-7			ND	ND	ND	ND	ND
Bromodichloromethane	75-27-4			ND	ND	ND	ND	ND
Bromoform	75-25-2			ND	ND	ND	ND	ND
Bromomethane	74-83-9			ND	ND	ND	ND	ND
1,3-Butadiene Carbon Disulfide	106-99-0 75-15-0			ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	56-23-5	0.417	4.17	4.61	ND	ND	ND	ND
Chlorobenzene	108-90-7	0.417	4.17	ND	ND	ND	ND	ND
Chloroethane	75-00-3			ND	ND	ND	ND	ND
Chloroform	67-66-3			ND	ND	ND	ND	ND
Chloromethane	74-87-3	41.1	90	1.36	1.23	1.33	1.42	1.39
2-Chlorotoluene	95-49-8			ND	ND	ND	ND	ND
Cyclohexane	110-82-7			ND	ND	ND	ND	ND
Dibromochloromethane	124-48-1			ND	ND	ND	ND	ND
1,2-Dibromoethane	106-93-4			ND	ND	ND	ND	ND
1,2-Dichlorobenzene	95-50-1			ND	ND	ND	ND	ND
1,3-Dichlorobenzene	541-73-1			ND	ND	ND	ND	ND
1,4-Dichlorobenzene	106-46-7	0.227	2.27	ND	ND	ND	6.19	3.11
1,2-Dichloroethane	107-06-2			ND	ND	ND	ND	ND
1,1-Dichloroethane	75-34-3			ND	ND	ND	ND	ND
1,1-Dichloroethene	75-35-4			ND ND	ND ND	ND ND	ND	ND
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	156-59-2 156-60-5			ND	ND	ND	ND ND	ND ND
1,2-Dichloropropane	78-87-5			ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	10061-01-5			ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	10061-02-6			ND	ND	ND	ND	ND
1,4-Dioxane	123-91-1			ND	ND	ND	ND	ND
Ethanol	64-17-5			6.13	3.95	3.77	137	111
Ethylbenzene	100-41-4			ND	ND	ND	ND	ND
4-Ethyltoluene	622-96-8			ND	ND	ND	ND	ND
Trichlorofluoromethane	75-69-4	320	700	1.51	1.39	1.53	3.11	2.4
Dichlorodifluoromethane	75-71-8	45.7	100	1.6	1.36	1.56	1.49	1.46
1,1,2-Trichlorotrifluoroethane	76-13-1			ND	ND	ND	ND	ND
1,2-Dichlorotetrafluoroethane	76-14-2			ND	ND	ND	ND	ND
Heptane	142-82-5			ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	87-68-3	220	700	ND	ND	ND	ND	ND
n-Hexane	110-54-3	320	700	ND	ND	ND	1.28	ND
Isopropylbenzene Methylene Chloride	98-82-8 75-09-2	250	600	ND 1.11	ND ND	ND ND	ND ND	ND ND
Methyl Butyl Ketone	591-78-6	250	600	ND	ND	ND	ND	ND
2-Butanone (MEK)	78-93-3			ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	108-10-1			ND	ND	ND	ND	ND
Methyl Methacrylate	80-62-6			ND	ND	ND	ND	ND
MTBE	1634-04-4			ND	ND	ND	ND	ND
Naphthalene	91-20-3			ND	ND	ND	ND	ND
2-Propanol	67-63-0			ND	ND	ND	ND	ND
Propene	115-07-1			ND	ND	ND	1.54	ND
Styrene	100-42-5			ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5			ND	ND	ND	ND	ND
Tetrachloroethylene	127-18-4	9.62	40	7.41	ND	ND	2.64	ND
Tetrahydrofuran	109-99-9			ND	ND	ND	ND	ND
Toluene	108-88-3	2,289	5,000	1.3	1.52	1.6	2.75	1.95
1,2,4-Trichlorobenzene	120-82-1			ND	ND	ND	ND	ND
1,1,1-Trichloroethane	71-55-6			ND	ND	ND	ND	ND
1,1,2-Trichloroethane	79-00-5 79-01-6	0.27	2.0	ND	ND	ND	ND	ND ND
Trichloroethylene 1,2,4-Trimethylbenzene	79-01-6 95-63-6	0.37 3.2	2.0 7.0	ND ND	ND ND	ND ND	6.22 1.12	ND ND
1,2,4-Trimethylbenzene	95-63-6 108-67-8	5.2	7.0	ND ND	ND ND	ND ND	1.12 ND	ND
2,2,4-Trimethylpentane	540-84-1			ND	ND	ND	ND	ND
Vinyl Chloride	75-01-4			ND	ND	ND	ND	ND
Vinyl Bromide	593-60-2			ND	ND	ND	ND	ND
Vinyl Acetate	108-05-4			ND	ND	ND	ND	ND
m&p-Xylene	1330-20-7			ND	ND	ND	ND	ND
o-Xylene	95-47-6			ND	ND	ND	ND	ND
· ·								

Notes: Samples analyzed for VOCs via EPA Method TO-15

ug/m³=micrograms per cubic meter

MTCA - Washington State Department of Ecology Model Toxics Control Act

^[1] = MTCA 2015 Method B Indoor Air Screening Level

^[2] = MTCA 2015 Method C Indoor Air Screening Level

Bold denotes concentration at or above 2015 MTCA Method B and C Indoor Air Screening Levels

ND = Not detected at or above laboratory reporting limit

Table 9

Former Harbour Point Cleaners

13619 Mukilteo Speedway

Indoor and Outdoor Air and SSDS Effluent Sampling Results

Samples obtained on July 6, 2018

Concentrations in micrograms per cubic meter (ug/m³)

Analyte	CAS #	MTCA Method B Screening Level ¹	MTCA Method C Screening Level ²	0A-1	OA-2	OA-3	IA-1	IA-2
Acetone	67-64-1	14,171	31,000	5.21	6.36	4.66	47.8	39.4
Allyl Chloride	107-05-1			ND	ND	ND	ND	ND
Benzene	71-43-2	13.7	30	ND	ND	ND	ND	3.62
Benzyl Chloride Bromodichloromethane	100-44-7 75-27-4			ND	ND	ND	ND	ND ND
Bromoform	75-27-4			ND ND	ND ND	ND ND	ND ND	ND
Bromomethane	74-83-9			ND	ND	ND	ND	ND
1,3-Butadiene	106-99-0			ND	ND	ND	ND	ND
Carbon Disulfide	75-15-0			ND	ND	ND	ND	ND
Carbon Tetrachloride	56-23-5	0.417	4.17	ND	ND	ND	ND	ND
Chlorobenzene	108-90-7			ND	ND	ND	ND	ND
Chloroethane	75-00-3			ND	ND	ND	ND	ND
Chloroform	67-66-3			ND	ND	ND	ND	ND
Chloromethane	74-87-3	41.1	90	0.946	0.89	0.883	0.981	1.08
2-Chlorotoluene	95-49-8			ND	ND	ND	ND	ND
Cyclohexane	110-82-7			ND	ND	ND	ND	3.53
Dibromochloromethane	124-48-1			ND	ND	ND	ND	ND
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1			ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	541-73-1			ND	ND	ND	ND	ND
1,4-Dichlorobenzene	106-46-7	0.227	2.27	ND	ND	ND	2.87	1.43
1,2-Dichloroethane	107-06-2	0.227	2.27	ND	ND	ND	0.988	ND
1,1-Dichloroethane	75-34-3			ND	ND	ND	ND	ND
1,1-Dichloroethene	75-35-4			ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2			ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	156-60-5			ND	ND	ND	ND	ND
1,2-Dichloropropane	78-87-5			ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	10061-01-5			ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	10061-02-6			ND	ND	ND	ND	ND
1,4-Dioxane	123-91-1			ND	ND	ND	ND	ND
Ethanol	64-17-5			4.83	11.5	7.77	194 E	232 E
Ethylbenzene 4-Ethyltoluene	100-41-4 622-96-8			ND ND	ND ND	ND ND	1.48 ND	5.38 4.93
Trichlorofluoromethane	75-69-4	320	700	1.31	1.25	1.32	26.6	28.6
Dichlorodifluoromethane	75-71-8	45.7	100	1.83	1.59	1.75	2.65	2.81
1,1,2-Trichlorotrifluoroethane	76-13-1		100	ND	ND	ND	ND	ND
1,2-Dichlorotetrafluoroethane	76-14-2			ND	ND	ND	ND	ND
Heptane	142-82-5			ND	ND	ND	ND	4.62
Hexachloro-1,3-butadiene	87-68-3			ND	ND	ND	ND	ND
n-Hexane	110-54-3	320	700	ND	ND	0.832	1.73	7.63
Isopropylbenzene	98-82-8			ND	ND	ND	ND	ND
Methylene Chloride	75-09-2	250	600	0.948	ND	1.49	1.85	ND
Methyl Butyl Ketone	591-78-6			ND	ND	ND	ND	ND
2-Butanone (MEK)	78-93-3			ND	9.05	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	108-10-1			ND	ND	ND	ND	ND
Methyl Methacrylate MTBE	80-62-6 1634-04-4			ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene	91-20-3			ND	ND	ND	ND	ND
2-Propanol	67-63-0			ND	11.8	ND	46.9	22.6
Propene	115-07-1			ND	ND	ND	ND	ND
Styrene	100-42-5			ND	ND	ND	1.25	0.99
1,1,2,2-Tetrachloroethane	79-34-5			ND	ND	ND	ND	ND
Tetrachloroethylene	127-18-4	9.62	40	ND	ND	ND	ND	ND
Tetrahydrofuran	109-99-9			ND	ND	ND	ND	ND
Toluene	108-88-3	2,289	5,000	3.36	1.35	2.53	9.33	35.5
1,2,4-Trichlorobenzene	120-82-1			ND	ND	ND	ND	ND
1,1,1-Trichloroethane	71-55-6			ND	ND	ND	ND	ND
1,1,2-Trichloroethane	79-00-5	0.27	2.0	ND	ND	ND	ND	ND
Trichloroethylene 1,2,4-Trimethylbenzene	79-01-6 95-63-6	0.37 3.2	2.0 7.0	ND ND	ND ND	ND ND	ND ND	ND 5.49
1,3,5-Trimethylbenzene	108-67-8	J.2	7.0	ND	ND	ND	ND	5.49 1.49
2,2,4-Trimethylpentane	540-84-1			ND	ND	ND	ND	1.49 ND
Vinyl Chloride	75-01-4			ND	ND	ND	ND	ND
Vinyl Bromide	593-60-2			ND	ND	ND	ND	ND
Vinyl Acetate	108-05-4			ND	ND	ND	ND	ND
m&p-Xylene	1330-20-7			ND	ND	ND	ND	20.4
	95-47-6		1	ND	ND	ND	ND	6.84

Notes:

Samples analyzed for VOCs via EPA Method TO-15

ug/m³=micrograms per cubic meter

MTCA - Washington State Department of Ecology Model Toxics Control Act

[1] = MTCA 2015 Method B Indoor Air Screening Level

[2] = MTCA 2015 Method C Indoor Air Screening Level

Bold denotes concentration at or above 2015 MTCA Method B and C Indoor Air Screening Levels

ND = Not detected at or above laboratory reporting limit

FIGURES

	€ _{MW4}	€ _{MW5}	
• ^{MW1}			
	PROJECT NUMBER: NPWRI18001	DATE: 9/27/18 FI	FIGURE
GROUNDWALER MONITORING WELL LOCATIONS	APPROVED BY: ES	DRAWN BY: BK	3
FORMER HARBOUR POINT CLEANERS	6347 S	6347 Seaview Avenue NW	e NW
13619 MUKILTEO SPEEDWAY LYNNWOOD, WA	Ph: (206) 781-1449 ***	Seattle, Washington 98107 49 *** Fax: (206) 781-1543	98107 1-1543
LTINNVCOOD, VVA	Pn: (206) / 81-1449		ī

S:\Projects-BST\WEINGARTEN\HARBOUR POINT CLEANERS NPWRI18001\5_IAQSMP.dwg

SOURCE: GOOGLE EARTH PRO, 5/13/18 NOTE: SCALE AND LOCATIONS ARE APPROXIMATE

	PROJECT NUMBER: NPWRI18001 DATE:	DATE: 9/25/18 FIGURE
OUTDOOR AIR SAMPLE LOCATIONS	APPROVED BY: ES DRAWN	DRAWN BY: BK 6
FORMER HARBOUR POINT CLEANERS	6347 Seavier	6347 Seaview Avenue NW
13619 MUKILTEO SPEEDWAY	Seattle, Wasl	Seattle, Washington 98107
LYNNWOOD, WA	Ph: (206) 781-1449 *** Fax: (206) 781-1543	(206) 781-1543

LEGEND

O EXPOSURE PATHWAY EVALUATED, DETERMINED INCOMPLETE

EXPOSURE PATHWAY EVALUATED, DETERMINED INCOMPLETE, BUT CONSIDERED INSIGNIFICANT

EXPOSURE PATHWAY EVALUATED, DETERMINED COMPLETE

SECONDARY SOURCE NON-EXISTANT, THEREFORE, EXPOSURE PATHWAY INCOMPLETE

CONCEPTUAL SITE MODEL

FORMER HARBOR POINT CLEANERS 13619 MUKILTEO SPEEDWAY LYNNWOOD, WA

	TERRESTRIAL		AQUA	ATIC
SOIL BIOTA	PLANTS	ANIMALS	FISH	BENTHIC ORGANISMS
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

PROJECT NUMBER: NPWRI18001	DATE: 9/25/18	FIGURE
APPROVED BY: ES	DRAWN BY: BK	8
	eaview Aven Washington Fax: (206) 7	98107

APPENDIX A SOIL BORING LOGS

RESOURCE PROTECTION WELL REPORT

Washington State Department of Ecology

Original and T" copy - Ecology, 2" Copy - owner, 3" copy - driller

PROPOSED USE: Construction Decommission ORIGINAL INSTALLATION Notice of Intent Number Consulting Firm	Current Notice of Intent No. REOIS9 Type of Well Baresource Protection () Geotech Soil Boring Unique Ecology Well ID Tag No. APP 716						
DRILLINC METHOD Whollow Stem Auger D Air Rotary D Mid Rotary D Dual Rotary Core D Other Borehole Diameter 5	WELL LOCATION Project Name Owner Mark Has Passanies LCC Well Address ISCIS Much Mcs Social Social City Communication County Sachama Location SCD/4 MP/4 Sec Sci Two Ref E or 1	De.					
MONUMENT D Above Ground Riser D 6" x 5' D 8" x 5' Stick up heightft Flush Mount E8" D 12" - D Other Amount of Concrete used SACES	Tax Parcel No. Construction/Decommission Start DateC-C-06 Construction/Decommission Completed DateG- Static Level	ø					
CASING INSTALLED	CONSTRUCTION OR DECOMMISSION PROCEDUR	F					
O PVC Sch 40 O Sch 80 O Inclinometer O Other	Material or Formation From	To					
Thought Diameter from the th	Asphalt	3 44					
Glueid Clueid Clueit Diameter from Ch to Sti Weided Diameter from Ato At		6					
SCREEN IPVC IX Sen 40 D Sch 80 D Other Diameter Slot Size OO from ft to IX Diameter Slot Size OO from ft to IX Diameter of inner screen " x Diameter of outer screen " Slot Size Installed from ft to ft Distaileds Steel " Diameter from ft to ft Other " Diameter from ft to ft	Sandy Sult Brown & 9 Sulty Sand Brown 9 1 Till- Reguest 12	25					
SEAL Type of material used Bentonite Chips Amount D Bentonite Grout Amount D Portland Cement Amount D Other Amount Placed from ft to ft							
SAND/GRAVEL PACK Type of material used & Silica Sund Size O/20 U Pen Gravel O Other Placed from S ft to 15 ft Amount of material used 10 Sucks							

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.

Driller > Traince Name (print) Driller / Traince Signature in An Driller or Trainee License No.

Drilling Company <u>Gregory Drilling, Inc.</u> If Trainee, licensed driller' <u>Lawsung</u> MC Signature and License No. <u>1973</u>

RESOURCE PROTECTION WELL REPORT

Washington State Department of Ecology

Original and 1" copy - Ecology, 2" Copy - owner, 3" copy - driller

PROPOSED USE: Construction Decommission ORIGINAL INSTALLATION Notice of Intent Number Consulting Firm	Current Notice of Intent No. RE015 Type of Well & Resource Protection D Geotech Soil Boring Unique Ecology Well ID Tag No. APP		8 441 (x 10)
DRILLING METHOD B Hollow Stem Auger O Air Rotary Mud Rotary D Dual Rotary Core O Other Borehole Diameter 4	WELL LOCATION Project Name NA Owner Mukites PRoperties Well Address J3019 Mukites Sp City Lyn wood Location SE 1/4 NE1/4 Sec Twn 20	CLC ecd with mahom VB 46	a a a a a a a a a a a a a a a a a a a
MONUMENT D Above Ground Riser D 6" x 5' U 8" x 5' Stick up heightft Flush Mount D 8" D 12" D Other Amount of Concrete used	Tax Parcel No. Construction/Decommission Start Date 7-2 Construction/Decommission Completed Date Static Level	7.27.0	06
CASING INSTALLED	CONSTRUCTION OR DECOMMISSION	PROCED	URE
O PVC Q Sch 40 O Sch 80 O Inclinometer O Other	Material or Formation	From	To
P Threaded Z "Diameter from O tt to 5 ft	Asphalt	0	12
Ohied "Diameter from fi toft	Fill Mer /Course BROWN Sand	7	4
U Welded "Diameter from fi to fi	Cigavels	1.	0
	mod Kourse Brown Sand	-2-	13
SCREEN UPVC P Sch 40 U Sch 80 U Other Diameter 2 Slot Size 070 from 5 A to 15 N Der Pack Type 1PVC II Sch 40 U Sch 80 U Other N Diameter of inner seven "x Diameter of outer screen "x Diameter of outer screen " Stot Size Installed from ft to ft N N Studiess Steel "Diameter from ft to ft U Other "Diameter from ft to ft	Till	12	
SEAL			
Type of inaterial used Bentonite Chips Amount D Bentonite Grout Amount D Portland Cement Amount D Other Placed from _2 ft to _5 ft			
SAND/GRAVEL PACK Type of material used & Silica Sand Size 10/26 Pea Gravel D Other Placed from 5 ft to 15 ft Amount of material used 9 Soc 100		-	

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.

Driller	G	Fraince	Name (prin ture) Cony	m	Jaw	45	-
Driller / 1	Trai	nee Signa	ture C	un port				
Driller or	Tri	ince Lice	anse No.		383	81		

Drilling Company Gregory Drilling, Inc. If Trainee, licensed driller's and the Signature and License No. 1973

RESOURCE PROTECTION WELL REPORT

Washington State Department of Ecology

Original and 1" copy - Ecology, 2" Copy - owner, 3" copy - driller

PROPOSED USE:								
Construction El Decommission ORIGINAL INSTALLATION Notice of Inteni Number Consulting Firm	Current Notice of Intent No. <u>REO1537</u> Type of Well (1 Resource Protection U Geotech Soil Boring Unique Ecology Well ID Tag No. <u>APP 738</u>							
DRILLING METHOD Chollow Steni Auger I Air Rotary U Mad Rotary U Dual Rotary U Core II Other Borehole Diameter S MONUMENT II 8" x 5" Stick up height Above Ground Riser 16" x 5" U 8" x 5" Stick up height Plush Mount \$8" II 12" U Other Amount of Concrete used	WELL LOCATION Project Name NUA Owner Mulc. 14 on Proporties Well Address 13419. Mulc. 140. Spe City Amagened Location SIE 1/4 NJE 1/4 Sec S9 Twn 39 Tax Parcel No. Construction/Decommission Start Date 7 Construction/Decommission Completed Date Static Level	nohou 3RY (Dr W					
CASING INSTALLED U PVC PSch 40 LI Sch 80 D Inclinometer LI Other Diresded Diameter from ft to ft O Glued Diameter from ft to ft D Welded Diameter from ft to ft	CONSTRUCTION OR DECOMMISSION Material or Formation Aspha (+ Gravels + Poanly Graded Sand Fire/mad Braun Sand	PROCED From Q 4	To Y L G					
SCREEN PVC Sch 40 Sch 80 Other Diameter 2 Slot Size 020 from 52 ft Diameter 2 Slot Size 020 from 52 ft ft Diameter 2 Slot Size 020 from 52 ft ft Diameter 01 Sch 40 02 Sch 80 00 Other	Till <u>med / course Brown Sand</u> <u>Till</u>	8 14	8 14 18					
SEAL Type of material used McBentonite Chips Amount 2 CocKS (1) Bentonite Grout Amount 1) Portland Cement Amount 1) Portland Cement Amount 1) Other Amount 1) Other Amount								
SAND/GRAVEL PACK Type of material used \$ Silica Sand Size <u>10/26</u> [] Pea Gravel [] Other Placed from <u>6</u> ft to <u>18</u> ft Amount of material used <u>12</u> Sacles		••••••						

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.

Driller	D Traince	Name (print	Cars	m	James	
Driller / T	raince Signa	ture los	nt	CON		
Driller or	Trainee Lice	ense No.	7 -	94.29	21	

Drilling Company <u>Gregory Drilling, Inc.</u> If Trainee, licensed driller's <u>Jaw um h</u>; Brown Signature and License No. <u>1973</u>

WELL TAG NO. APP-140 RESOURCE PROTECTION WELL REPORT #4 START CARD NO. RE01562 PROJECT NAME: MUKILTED Proprietors LLP. COUNTY: Shahamish WELL IDENTIFICATION NO. Manitoking DRILLING METHOD: Hol LOW Sten Huger LOCATIONSE IN NEW Ses 34 TWO 28, R. 42 STREET ADDRESS OF WELL: 15619 My Kiltes DALLER Cover M. James Readers hymusod. WH, An Engony Drilling inc WATER LEVEL ELEVATION: SIGNATURE Card M amer GROUND SURFACE ELEVATION: _____ CONSULTING FIRM BUChanan Brilinon menter DEVELOPED: Bunhanan Environmental REPRESENTATIVE PAUL BUCHANAN Soll Type Depth (In feet below ground surface) 3--8" Stick-up Height (If applicable) Monument Type 8 fluid monument 2 Cap rephalt "-4" Poonly Graded Grout Type/#Sacks 11/2 St Concrete my And + Gravel Till moterial) - Bentonite Seal/#Sacks 2 & Bentonite Chips '-12' 4' andy SILT Brown Well Casing I.D.: «-Sch 40 PVC Flush Three Type of casing 3'- 20' Type of connection edium Grade SAND - Filter Pack/size/#Sacks 10-20 Silica 23.5ES 10'- 25' ILACIAL TILL Well Screen I.D <-Sch 40 PUC. MALL Quand Type of Screen Slot size SANJ-Medium 020 SILT. - Diameter of borehole 2" cap - Endcap Type 25 Trainee - Conv M Jame 28287 Driller - Lawrence N. Gregary Remarks: 1973

		SOIL BORING	LOG - FIELD F	READINGS									
			oject #1213003										
		Project Name: S											
BORIN	G METHOD:	Direct Push/Combo	-	-									
Sample #	Depth (Ft)	Moisture (S-H-M-L)	PID Reading	Soil Description/Notes									
B-I	0 - 2.5	М	7.0	Light green sandy clay, some gravel/cobbles									
B-1	2.5 - 5	М	7.5	Light green sandy clay, some gravel/cobbles									
B-I	5 - 7.5	М	12.5	Light brown sandy clay, some gravel/cobbles									
B-I	7.5 - 10	М	4.7	Light green sandy clay, some gravel/cobbles									
B-1	10 - 12	М	17.8	Light green sandy clay, some gravel/cobbles									
B-I	12 - 15	М	11.3	Light green sandy clay, some gravel/cobbles									
B-1	15 - 16	М	14.1	Light green sandy clay, some gravel/cobbles									
B-1 16 - 25 No recovery due to switching to hollow stem auger													
	Botto	om of Boring at 25' (Equip	ment refusal), no g	roundwater encountered									
Bottom of Boring at 25' (Equipment refusal), no groundwater encountered B-2 0 - 2.5 M I 0.5 Light green sandy clay, some gravel/cobbles													
B-2	2.5 - 5	М	13.4	Light green sandy clay, some gravel/cobbles									
B-2	5 - 7.5	М	6.3	Light brown sandy clay, some gravel/cobbles									
B-2	7.5 - 10	М	7.5	Light green sandy clay, some gravel/cobbles									
	Botto	om of Boring at 10' (Equip	ment refusal), no g	groundwater encountered									
B-3	0 - 3	М	10.0	Light green sandy clay, some gravel/cobbles									
B-3	3 - 5	М	18.2	Light green sandy clay, some gravel/cobbles									
B-3	5 - 6	М		No recovery									
B-3	6 - 6.5	М	16.5	Light green sandy clay, some gravel/cobbles									
	Botto	om of Boring at 6.5' (Equip	ment refusal), no g	groundwater encountered									
B-4	0 - 3	М	15.4	Light green sandy clay, some gravel/cobbles									
B-4	3 - 5	М	22.6	Light green sandy clay, some gravel/cobbles									
B-4	5 - 6	М		No recovery									
B-4	6 - 9	М	16.1	Light green sandy clay, some gravel/cobbles									
B-4	9 - 11	М	17.2	Light green sandy clay, some gravel/cobbles									
	Botto	om of Boring at II' (Equip	ment refusal), no g	roundwater encountered									
B-5	0 - 3	М	20.0	Light green sandy clay, some gravel/cobbles									
B-5	3 - 5	М	14.5	Light green sandy clay, some gravel/cobbles									
B-5	5 - 6	М		No recovery									
B-5	6 - 9	М	16.5	Light green sandy clay, some gravel/cobbles									
	Bott	om of Boring at 9' (Equipn	nent refusal), no gi	roundwater encountered									

			C	200	Ino			Project Name:	BC	BORING LOG #: B-6 ; Pa Drilling Information			Page 1 of	
)	AT			Cardno	O ATC	Project Name:	HP Cleaners	Drilling Information Drilling Contractor:	ESN			
						Cardno	ATC	Project #:	76.75354.0008	Drilling Method:	Direct	Push		
			Shapin	g the Futu	Jre					Borehole Diameter:	2-inch			
						-		Location:	13619 Mukilteo Spdv	vy Sampler Type:	Macro	core		
									Lynnwood, Wa					
									Event Informatio	n				
				ged by			SP			Well/Boring Designation	nn.	B-6		
			Bori	ng De	oth:		7 feet		-	Surface Elevation:				
				Encountered No ic GW Level:					-	Start Date: End Date:	03/12/			
			Note		Level.				-	Life Date.	03/12/	14		
													_	
				la		sbu	USCS Classification						Well Construction	
	í,	Ê	SIY	Sample Interval	Blow Counts	PID/FID Readings	sifice						lruc	
	÷	ueptn (π)	Recovery	le In	ç	0 Re	lase		Soil Class Descr	sification/ iption			onsi	
	C	Ľ	R	amp	Blov	III-I/O	S			İ			С —	
				s		PIC	nsc						e 🛛	
								Surface: 4 in	abaa aanarata					
	_	-				0.3	SM		ches concrete : light brown fine sa	nd with 20% medium sar	nd:		Β	
		1 -				0.0				t; damp; no product odor			Backfilled	
		- -				0.8							fille	
	_	2 -											d with	
		3 -						<u></u>					ith	
		-				0.9	ML			with 20% fine sand; 20% nduration; damp; no proc			Bentonite	
		4 -	_			0.9		odor	barse sand, strong i	nuuration, uamp, no proc	iuci		ionit	
													ie C	
		5 -											Chips	
	_	6 -											, , , , , , , , , , , , , , , , , , ,	
		-				2.2								
		7 -				2.2		Boring termin	nated at 7 feet below	v surface due to drilling				
		-						refusal		<u> </u>				
		8 -												
		9 -												
		-	_											
		-												
		-												
	_	-												
		_												
╏┝		-												
ſŀ		-	-											
╏╏	_	-												
	_	-												
		_												
╏╎	_	-	-											
╏┝	_	-												
╏╏		-	-											
	_	-												
		-												
▋╿		-												
╏┝	_	-	+											
╏┟		-	-											
1 L	_	_	- I	1	I	I	I	1						

	Candna						BOR	ING LOG #: B-7	; Page	1	of	1	
	AT	g the Futu				Project Name: Project #: Location:	HP Cleaners 76.75354.0008 13619 Mukilteo Spdwy Lynnwood, Wa Event Information	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	ESN Direct Push 2-inch Macrocore				
	Bori GW	ic GW			SP 7 feet No			Well/Boring Designation Surface Elevation: Start Date: End Date:	tion: B-7 03/12/14 03/12/14				
Depth (ft)	Recovery Sample Interval Blow Counts PID/FID Readings USCS Classification				USCS Classification		Soil Classification/ Description						
						SILTY SAND sand; 30% si no recovery 2 SILT with SA medium sand no recovery §	ND: olive-brown silt wi d; moderate induration	n; damp; no product or th 20% fine sand; 10% ; damp; no product od	dor; 6		Backfilled with Bentonite Chips		

		-						BOR	ING LOG #: B-8	; Page	1	of	1
		AT	g the Fut				Project Name: Project #:	HP Cleaners 76.75354.0008	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct F 2-inch	Push		
							Location:	13619 Mukilteo Spdwy Lynnwood, Wa	Sampler Type:	Macroo	ore		_
I								Event Information					
		Bori	ged by ng De Encou	r: pth: untered		SP 10 fee No	t	-	Well/Boring Designation Surface Elevation: Start Date:	on <u>:</u> 03/12/1	B-8 4		
			ic GW	Level:		-		-	End Date:	03/12/1			
Depth (ft)		Recovery Sample Interval Blow Counts PID/FID Readings						Soil Classification/ Description					
	_	1.6 ML 2.3					SILT with SA	ches concrete ND: light brown silt with				Backfilled	
2	_						no product o	nd; 0 to 10% gravel; strong induration; dry; odor					
- 3	_											with E	
- 4	_				2.9		ded, elive bri		cond. 100/ modium			Bentonite	
- 5	_						sand; 5% gra	own; 55% silt; 30% fine avel; strong induration;				ite Chips	
6	_						below 4 feet					ips	
- 7					2.3								
- 8	_							with orange mottling; 60 n sand; strong induratio					
_ 9 _	_				1.8		below 8 feet		···, -·), ··· p······				
— 10 —) _				1.0		Boring termir refusal	nated at 10 feet below s	surface due to drilling				
	_												
	_												
	_												
	_												
	_												
	_												
	_												
	_												
	_												
	_												

	~						BOR	ING LOG #: B-9	; Page	1	of	1
	Ca ATC Shaping	2				Project Name: Project #: Location:	<u>HP Cleaners</u> 76.75354.0008 13619 Mukilteo Spdwy	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	ESN Direct 2-inch Macro	Push		
						Location.	Lynnwood, Wa		Macro			
	Borin GW I	GW	: oth: intered Level:		SP 2 feet No		-	Well/Boring Designation Surface Elevation: Start Date: End Date:	on <u>:</u> 03/12/ 03/12/			
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification			Soil Classification/ Description				
- 1 - - 2 - - 3 -				2.9	ML	Surface: 4-in SILT with SA 15% medium no product of Boring termir refusal; borin	y					
7 7 8												

		(BORIN	G LOG #: B-610	; Page	1	of	1
	A	arc TC ing the Fut				Project Name: Project #:	<u>HP Cleaners</u> 76.75354.0008	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch			
						Location	13619 Mukilteo Spdwy Lynnwood, Wa	Sampler Type:	Macroo	core		
							Event Information					1
	Bo	gged by ring De V Enco			SP 10 fee No	t	_	Well/Boring Designation Surface Elevation: Start Date:	on <u>:</u> 03/12/ [,]	B-10 14		
		atic GW tes:	/ Level:				-	End Date:	03/12/	14		
											-	
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classific Descriptic				Well Construction	
	_			2.2	SM	SILTY SAND	ches concrete): medium brown fine sa				Backfilled	
	-			3.4		sand; 0 to 10 no product o	0% gravel; 25% silt; moderate induration; dry					
- 2				5.4								
3	_										with I	
	_			1.8	ML		ND: olive brown silt wit d; 0 to 10% gravel; stro				Bentonite	
- 4	-			1.0		product odor	-	ng madiation, dry, no			onit	
5	_						ith 55% silt; 35% fine s				е С	
	_					trace gravel; 4 feet	moderate induration; d	ry; no product odor be	elow		Chips	
- 6						4 1661						
7												
_ '							vn with 60% silt; 35% fi		at.			
- 8				1.1		sanu, strong	induration; damp; no p		el			
- o	-		-									
_ 3												
— 10	_					Boring termin	nated at 10 feet below s	surface due to drilling				
_						refusal						
	_											
	+	-										
	1											
	+	-										
	+	1	1									
	_											
	+											
	╧											
	_											
	+											
		-	1	I		1						

									BORI	NG LOG #: B-11	; Page	91	of	1	
		A	ТС	r ci he Futu				Project Name: Project #:	<u>HP Cleaners</u> 76.75354.0008 13619 Mukilteo Spdwy	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	ESN Direct 2-inch Macro	Push			
								Location	Lynnwood, Wa	Sampler Type.	Macio	COLE			
									Event Information	_					
Iг				d by:			SP			Well/Pering Designation		D 11			
		B	oring	Dep	oth:		7 feet		-	Well/Boring Designation Surface Elevation:		B-11			
					Intered Level:		No		-	Start Date: End Date:	03/12/ 03/12/				
ΙĻ		N	otes:	<u> </u>											
	Depth (ft)	Davarant	recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classific Descripti		Well Construction				
	- - 1						SM	SILTY SAND	ches concrete): medium brown fine sa				Bac		
	-					2.7		sand; 15% g	ravel; 20% silt; modera	te induration; damp; r	10		ckfille		
	- 2	_											Backfilled with		
	- 3	-					ML	SILT with GF	RAVEL: dark brown silt	with 20% fine sand			th B		
	- - 4					2.5			moderate induration; di				Bentonite		
	-	_											nite		
	- 5	-											Chips		
	- 6												s		
		-													
	- 7								nated at 7 feet below su	Irface due to drilling					
	- 8	+	_				-	refusal							
	- 9														
	- 3	_													
	-	-													
	-														
	-	+	+												
	-	1													
	-	+													
	-	\pm													
	-	1	1		-										
	-	+	+	_											
	-	1													
	-	+	+												
	-	+													
	-	1	1		-										
	-	+	+												
	-	1													
	-														
l															

	0						BORIN	; Page	1	of	1	
	AT	g the Fut				Project Name: Project #:	HP Cleaners 76.75354.0008	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch			
						Location:	13619 Mukilteo Spdwy Lynnwood, Wa Event Information	_Sampler Type:	Macro	core		
	Bori	ged by ng Dej			SP 7 feet No		Event information	Well/Boring Designati Surface Elevation: Start Date:	on <u>:</u> 03/12/	B-12	2	
		ic GW	Level:		NO		-	End Date:	03/12/			
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classific Descriptic				Well Construction	
				6.0	ML	SILT with SA 0-10% grave	ches concrete ND: dark brown silt witl l; 10% medium sand; n		lry		Backfilled	
- 2 - 				7.2		no product o	dor				with	
4 4 5				7.8							Bentonite C	
				40.4							Chips	
- 7 - - 8 -				10.4		Boring termir refusal	nated at 7 feet below su	Irface due to drilling				
9 9												

	Cardno [®] Ca				BORING LOG #: B-13 ; Page							1
	AT	ATC Shaping the Future				Project #:	HP Cleaners 282EM00018	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch Macro	Push	of	
						Location	: 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Sampler Type:	Macro	core		
	Bori GW		r: pth: untered Level:		MN 4 feet No		-	Well/Boring Designatio Surface Elevation: Start Date: End Date:	n: 01/29/ 01/29/	B-13 15 15		
	Notes:					-	2.10 2000	0.120				
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classifi Descript				Well Construction	
				0.9	SM	SILTY SAND and medium	ches concrete w/ grav); brown, 60% fine san gravel; 5 to 10% coar ak induration; No petr	d, 25% silt, 5 to10% sm se sand; dry; slightly	nall			
 3 _				0.8								
- 4 - - 5 -				1.4		Boring termin	oderate induration; dry nated at 4 feet below s ng backfilled with bento	urface due to drilling				
- 8 - - 8 -												
9 -												

Logged t Boring D GW Ence	by: Depth: Countered W Level:	MN 4 feet No	HP Cleaners 282EM00018 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Drilling Method: Borehole Diameter: Sampler Type: Well/Boring Designation: Surface Elevation: Start Date:	ESN Direct Push 2-inch Macrocore : B-14 01/29/15 01/29/15		
Boring D GW Enci Static GV Notes:	Depth: countered GW Level:	4 feet No	-	Surface Elevation: Start Date:	01/29/15		
	Blow Counts	cation					
		USCS Classification	Soil Classific Descriptic			Well Construction	
		0 SP MEDIUM SA silt; 10% sma 6 1 SILTY SAND and medium 7 cohesive; we Boring termin	Inches concrete w/ grave IND; brown, 50% mediu all gravel; dry; loose; NF D; brown, 60% fine sand gravel; 5 to 10% coarse eak induration; NPO. Inated at 4 feet below su ing backfilled with bentor	m sand; 20% fine sand; PO. , 25% silt, 5 to10% sma e sand; dry; slightly rface due to drilling			

	0						BC	DRING LOG #: B-15	; Page	1	of	1
	AT Shapin	g the Futu	ure	Cardno		Project Name: Project #: Location:	HP Cleaners 282EM00018 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	ESN Direct 2-inch Macroo			
	Bori GW	ng Der Encou ic GW	, pth: untered Level:		4 feet No		-	Surface Elevation: Start Date: End Date:	01/29/ 01/29/	15	·	
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classifi Descript				Well Construction	
					SM	SILTY SAND and medium cohesive; we As above; me Boring termir	ches concrete w/ grav ches concrete w/ grav ; brown, 60% fine san gravel; 5 to 10% coar eak induration; No petr oderate induration; dry nated at 4 feet below s ig backfilled with bento	d, 25% silt, 5 to10% si se sand; dry; slightly oleum-like odor /; NPO.	mall			

	1	~						В	ORING LOG #: B-16	; Page	e 1	of	1
	1	ATC Shaping the Future					Project Name: Project #:	HP Cleaners 282EM00018 : 13619 Mukilteo Spdwy	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch Macro	Push		
							Location	Lynnwood, WA Event Information		INIACI C	core		
		Bori GW		pth: untered		MN 4 feet No		-	Well/Boring Designatic Surface Elevation: Start Date:	01/29/	B-16 15	;	
		Stat Note		Level:				_	End Date:	01/29/	15		
Depth (ft)		Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descrip				Well Construction	
1					1.2	SM	SILTY SAND		nd, 25% silt, 5 to10% sn	nall			
2	_				1.3			eak induration; No pet	rse sand; dry; slightly roleum-like odor				
3					1.1				NDO				
4					1.2		Boring termin		surface due to drilling				
5	_						refusal; borir	ng backfilled with bent	onite				
6	_												
7	_												
8	_												
9	_												
	_												
	_												
	_												
	_												
	_												
	_												
	_												
			-	-	-	_	-			-			

	0						В	ORING LOG #: B-17	; Page	1	of	1
	AT	ATC Shaping the Future				Project Name: Project #: Location:	HP Cleaners 282EM00018 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	ESN Direct 2-inch Macro			
							Event Information					
	Bori GW	ic GW	r: pth: untered Level:		MN 4 feet No		-	Well/Boring Designation Surface Elevation: Start Date: End Date:	on <u>:</u> 01/29/ 01/29/	B-17 15 15	,	
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descrip	fication/ tion			Well Construction	
						SILTY SAND and medium cohesive; we As above; m Boring termir	gravel; 5 to 10% coa ak induration; No pet oderate induration; di	nd, 25% silt, 5 to10% sr rse sand; dry; slightly roleum-like odor ry; NPO. surface due to drilling	nall			

A7 Shap	ТС		o ATC Project Name	HP Cleaners 282EM00018	Drilling Information Drilling Contractor: Drilling Method:	ESN		
LO	ATC Shaping the Future			13619 Mukilteo Spdwy Lynnwood, WA Event Information	Borehole Diameter: Sampler Type:	Direct Pus 2-inch Macrocore	Ż	
GV Sta	oring Depth: W Encounte tatic GW Lev	red	MN 4 feet No	- - - -	Well/Boring Designatic Surface Elevation: Start Date: End Date:	on <u>: B-1</u> 01/29/15 01/29/15	δ	
Depth (ft) Recoverv	Sample Interval	BIOW COUNTS PID/FID Readings	USCS Classification	Soil Classific Descripti			Well Construction	
			SM SILTY SAN and mediun cohesive; w As above; n Boring term	nches concrete w/ grave D; brown, 60% fine sand n gravel; 5 to 10% coars eak induration; No petro noderate induration; dry; inated at 4 feet below su ng backfilled with benton	I, 25% silt, 5 to10% sn e sand; dry; slightly leum-like odor NPO. Irface due to drilling	Image:		

	0						В	ORING LOG #: B-19	; Page	1	of	1
	AT Shapin	g the Futu	ire			Project Name: Project #: Location:	HP Cleaners 282EM00018 13619 Mukilteo Spdw Lynnwood, WA Event Information	_	ESN Direct F 2-inch Macroo			
	Bori GW	ng Der Encou ic GW	oth: Intered Level:		4 feet No			Surface Elevation: Start Date: End Date:	01/29/1 01/29/1	5 5		
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descri				Well Construction	
1 1 2				2.0	SM	SILTY SAND and medium		nd, 25% silt, 5 to10% sr rse sand; dry; slightly	nall			
- 3 - 				1.5 2.0			oderate induration; d	ry; NPO. surface due to drilling				
							g backfilled with ben					
- 7 -												
- 8 - - 9 -												

	~						В	ORING LOG #: B-20	; Page	91	of	1
	AT	ATC				Project Name: Project #:	HP Cleaners 282EM00018 : 13619 Mukilteo Spdwy	Drilling Information Drilling Contractor: ESN Drilling Method: Direct Push Borehole Diameter: 2-inch Spdwy Sampler Type: Macrocore				
						Location	Lynnwood, WA Event Information		IVIACIO	COLE		
	Bori GW		r: pth: untered Level:		MN 4 feet No		-	Well/Boring Designatic Surface Elevation: Start Date: End Date:	on: 01/29/ 01/29/	B-20 15)	
	Note		2010				_	2.1.2 20101	0.120			
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descrip				Well Construction	
1	-			1.1	SM	SILTY SAND and medium		nd, 25% silt, 5 to10% sn rse sand; dry; slightly	nall			
2 - 3 -				1.3								
_ 4 _				0.8		Boring termin		surface due to drilling				
- 5 -						refusal; borir	ng backfilled with bent	onite				
— 6 - — - — 7 -												
- 8 -												
9 												

		1	Cardno [®] Cardno AT				BORING LOG #: B-21 ; Page 1 of 1							
		1	AT	arc C g the Fut				Project #:	HP Cleaners 282EM00018	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch	Push		
								Location	: 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Sampler Type:	Macro	core		
			Bori GW		pth: untered		MN 4 feet		-	Well/Boring Designatic Surface Elevation: Start Date:	01/29/	B-21 15		
			Static GW Level:					_	End Date:	01/29/	15			
	Depth (ft)		Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classif Descrip				Well Construction	
									ches concrete w/ grav					
	1					3.0	SM); brown, 60% fine sar gravel; 5 to 10% coai	nd, 25% silt, 5 to10% sn rse sand: dry: slightly	nall			
	2	_				1.5			eak induration; No pet					
		-				0.7								
	3	_												
	4	_				1.1			oderate induration; dr nated at 4 feet below s					
	5	_							ig backfilled with bent					
	0													
	6	_												
	7	_												
	0	-												
	8	_												
_	9	-												
_		-												
		_												
-														
		_												
		_												
		_										-		
		_												
		_												
		-										-	\vdash	
		-										-	$\left - \right $	
	ATC			Cardno ATC Project Name: Drillin						1	of	1		
------------	--	-------------------------------	-------------------	----------------------------------	---------------------	----------------	---	--	----------------------------------	----------	-------------------	---		
	AT	a rc C g the Fut				Project #:	HP Cleaners 282EM00018 13619 Mukilteo Spdwy	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch Macro	Push				
							Lynnwood, WA Event Information							
	Bori	ged by ng De	oth:		MN 4 feet		-	Well/Boring Designation Surface Elevation:		B-22	2			
		ic GW	Intered Level:		No		-	Start Date: End Date:	01/29/ 01/29/	15 15				
Depth (ft)	Recovery Sample Interval Blow Counts			PID/FID Readings	USCS Classification		Soil Classi Descrip				Well Construction			
						Surface: 8-in	ches concrete w/ gra	vellv fill.						
				0.4	SM			nd, 25% silt, 5 to10% sn	nall					
						and medium	gravel; 5 to 10% coa	rse sand; dry; slightly						
- 2 -				0.3		cohesive; we	ak induration; No pet	roleum-like odor						
	_			1.0										
- 3 -				1.0										
		0				As above: m	oderate induration; d	rv: NPO.						
- 4 -								surface due to drilling						
_ 5 -						refusal; borir	oring backfilled with bentonite							
- 6 -														
- 7 -	-													
- 8 -														
_ 9 _ 														
┃┝╴ ╶														
⊢ -														
- −														
- −	-													
⊢ -														
		•												

	0						B	DRING LOG #: B-23	; Page	91	of	1
	AT	a rc C g the Futt				Project Name: Project #:	HP Cleaners 282EM00018	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct 2-inch Macro	Push		
						Location	: 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Sampler Type:	Macro	core		
	Bori GW		r: pth: untered Level:		MN 4 feet No		-	Well/Boring Designatio Surface Elevation: Start Date: End Date:	n: 01/29/ 01/29/	B-23	5	
	Note		Level.				_	Life Date.	01/23/	15		
Depth (ft)	Recovery Sample Interval Blow Counts			PID/FID Readings	USCS Classification		Soil Classif Descrip				Well Construction	
	1			0.8	SM	SILTY SAND and medium	ches concrete w/ grav); brown, 60% fine sar gravel; 5 to 10% coar eak induration; No petr	d, 25% silt, 5 to10% sm se sand; dry; slightly	nall			
	_			1.5								
4 • 5 -				0.7		Boring termin	oderate induration; dr nated at 4 feet below s ng backfilled with bento	surface due to drilling				
8 8												
9 -												

		1	Cardno ATC						В	ORING LOG #: B-24	; Page	1	of	1
		1	ATC Shaping the Future					Project #:	HP Cleaners 282EM00061 : 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Method: Di Borehole Diameter: 2- y Sampler Type: M		ESN Direct Push 2-inch Macrocore		
$ _{\Gamma}$				ged by			MNI		Event Information	Woll/Dering Decignatio		D 24		
			Bori	ng De	r: pth: untered		MN No		-	Well/Boring Designatio Surface Elevation: Start Date:	n:	B-24	/2015	;
				ic GW	Level:		110		-	End Date:		0,12	2010	,
	Depth (ft)		Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classifi Descript	cation/ ion			Well Construction	
								Surface: 4" C						
	1					0.0	SP		brown; 60% fine sand el; dry; slight induration	; 15% coarse sand; 109 o [.] NPO	% silt;		Backfilled with Bentonite	
ΙĿ	2	_						gran	-,,,,	.,			led with	
∣⊢													1 Bento	
	3	_										onite		
	4	_				0.0		As above.	acted at 4 feat bac					
	5							Bonng termin	nated at 4 feet bgs.					
	5	_												
	6													
	7 8													
	0	_												
∣⊢	9	-												
		_												
∣⊢		_												
11														
┨┝		_												
11														
		_												
			-											
1		_												
┨┝		-												
┨┝		-												
11		_												
1		_												
┨┝		-												
1 E														
L														

									BC	RING LOG #: B-25	; Page	1	of	1
		1	ATC Shaping the Future				Project #:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	Direct Push			
			Logg	ged by			MN		Event Information	Well/Boring Designatio	n:	B-25	;	
			GW	ic GW	oth: untered Level:		No		-	Surface Elevation: Start Date: End Date:		5/12	/2015	5
	Depth (ft)		Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classific Descripti	cation/ on		-	Well Construction	
								Surface: 4" C						
	1 2 3					0.0	SP		brown; 60% fine sand el; dry; slight induratior	; 15% coarse sand; 10 ⁴ n; NPO.	% silt;		Backfilled with Bentonite	
	4					0.0		As above.						
_		-						Boring termin	nated at 4 feet bgs.					
	5													
	6 7	-												
┨┝		_												
	8													
	9	_										-		
		_												
┨┝		+												
		1												
┨┝		+												
		1												
		1												
┨┝		+												
		1												
		+										-		
		_												
		4												
LL					I	I	l					L		

	Cardno ATC					BO	RING LOG #: B-26	; Page	1	of	1	
	AT	ATC Shaping the Future				Project #:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	irect Push		
	Bori	ged by ng Dej	pth:		MN		Event Information	Well/Boring Designation Surface Elevation:		B-26		
		ic GW	untered Level:		No		-	Start Date: End Date:		5/12	/2015	>
Depth (ft)	Recovery Sample Interval Blow Counts		PID/FID Readings	USCS Classification		Soil Classific Descripti	cation/ on			Well Construction		
1 1 2 3				Surface: 4" Concrete 0.2 SP FINE SAND with GRAVEL; light brown; 60% fine sand; 15% coarse sand; 10% silt; 10% fine gravel; dry; slight induration;						Backfilled with Bentonite		
4 5 6 7							nated at 4 feet bgs.					
8 8 9 9												

	0-	Cardno ATC					BO	RING LOG #: B-27	; Page	1	of	1
	La ATC Shaping	2				Project #:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	Direct Push		
	Borin GW Statio	c GW	: oth: untered Level:		MN No		Event Information	Well/Boring Designatic Surface Elevation: Start Date: End Date:		B-27 5/12	/2015	5
Depth (ft)	Recovery Sample Interval Blow Counts		PID/FID Readings	USCS Classification		Soil Classific Descripti	cation/ on		Well Construction			
					SP	coarse sand; NPO. As above.	Concrete with GRAVEL; light bro 10% silt; 10% fine gra nated at 4 feet bgs.				Backfilled with Bentonite	

	0						BO	RING LOG #: B-28	; Page	1	of	1
	AT	Iged by: MN					HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA Event Information	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	Direct Push 2-inch Macrocore		
	Bori GW	ng Der Encou	r: pth: untered Level:		MN No		-	Well/Boring Designation Surface Elevation: Start Date: End Date:		B-28 5/12/	2015	6
Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classific Descripti				Well Construction	
1 1 2 3				0.0	SP	coarse sand; NPO.	Concrete with GRAVEL; light bro 10% silt; 10% fine gra ; light brown; 60% fine	vel; dry; slight indurati	ion;		Backfilled with Bentonite	
4 • 4 • 5 -				0.0	SM	20% silt; moo	derate induration; dry' Nated at 4 feet bgs.					
- 6 - - 7 - - 7 - - 8 -												
9 												

	0						BC	RING LOG #: B-29	; Page	1	of	1
	AT	ATC				Project Name: Project #: Location:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	: ESN Direct Push			
	Bori GW		pth: untered		MN No		Event Information	Well/Boring Designatio Surface Elevation: Start Date:		B-29 5/12	/2015	5
	Stati Note		Level:				-	End Date:				
Depth (ft)	Recovery Sample Interval Blow Counts		PID/FID Readings	USCS Classification		Soil Classific Descripti			Well Construction			
1 2 3 3				0.0	SP	coarse sand; NPO. SILTY SAND 20% silt; mod	with GRAVEL; light bro 10% silt; 10% fine gra	wn; 60% fine sand; 15 vel; dry; slight induratio sand; 20% coarse sar NPO.	on;		Backfilled with Bentonite	
5 6 7 7												
- 8 - - 9 - 												
E -												

	0						BO	RING LOG #: B-30	; Page	1	of	1
	AT	g the Futu				Project Name: Project #: Location:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	Direct Push		
	Bori GW Stat	ic GW	r: pth: untered Level:		MN No		Event Information	Well/Boring Designatio Surface Elevation: Start Date: End Date:		B-30 5/12	2015	<u> </u>
Depth (ft)	Recovery Sample Interval Blow Counts		PID/FID Readings	USCS Classification		Soil Classific Descripti	cation/ on		Well Construction			
					SP	coarse sand; NPO.	Concrete with GRAVEL; light bro 10% silt; 10% fine gra nated at 4 feet bgs.				Backfilled with Bentonite	

		1	Cardno ° ATC						BC	ORING LOG #: B-31	; Page	1	of	1
		1	ATC				Project #:	HP Cleaners 282EM00061 13619 Mukilteo Spdwy Lynnwood, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter: Sampler Type:	2-inch	ESN Direct Push 2-inch Macrocore			
									Event Information					
			Logo Bori	ged by ng De	/: pth:		MN		-	Well/Boring Designation	n:	B-31		
			GW	Encou	untered Level:		No		-	Start Date: End Date:		5/12	/2015	5
		_	Note	es:	1			1	-					
	Depth (ft)		Recovery Sample Interval Blow Counts		PID/FID Readings	USCS Classification		Soil Classifi Descript			Well Construction			
								Surface: 6" C						
	1 2	0.1 SP F c			SP			own; 60% fine sand; 15 avel; dry; slight indurati		Backfilled with Bentonite				
	3					0.6				e sand; 20% coarse sa	nd;		nite	
-	4	-				0.0			derate induration; dry' l nated at 4 feet bgs.	NPO.				
	5	_												
	6													
-	7											-		-
F	-	_												
	8													
_	9	_												
		_												
\vdash		-												
\vdash		_												
F		_												
F														
F														
╞		-												
E														
╞		_												
L														

APPENDIX B TERRESTRIAL ECOLOGICAL EVALUATION

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Harbour Pointe	Cheaners Lynnwood
Facility/Site Address: 13619 Mukite	o Speedway, Lynnwood WA 98037
	VCP Project No.: NW2902

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Elisaboth S	Title: Project Manager										
Organization: ATC Group Services											
Mailing address: 6347 Seaview Ave NW											
City: Seattle State: WA Zip code: 98107											
Phone: 206-781-1449	Fax: 206-781-15	ł3	E-mail: elisa	beth.silver@atcgs.com							

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS
A. Exclusion from further evaluation.
1. Does the Site qualify for an exclusion from further evaluation?
X Yes If you answered "YES," then answer Question 2.
No or Unknown If you answered "NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of Compliance: WAC 173-340-7491(1)(a)
All soil contamination is, or will be,* at least 15 feet below the surface.
All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to Exposure: WAC 173-340-7491(1)(b)
All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undeveloped Land: WAC 173-340-7491(1)(c)
 There is less than 0.25 acres of contiguous[#] undeveloped[±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Background Concentrations: WAC 173-340-7491(1)(d)
Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

B	Simplifi	ied eva	luation.
1.	Does th	e Site c	ualify for a simplified evaluation?
		Yes	If you answered "YES," then answer Question 2 below.
	Ur	No or	If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.
2.	Did you	condu	ct a simplified evaluation?
		Yes	If you answered "YES," then answer Question 3 below.
		No	If you answered "NO," then skip to Step 3C of this form.
3.	Was fur	ther ev	aluation necessary?
		Yes	If you answered "YES," then answer Question 4 below.
		No	If you answered "NO," then answer Question 5 below.
4.	If furthe	r evalu	ation was necessary, what did you do?
			ed the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> p 4 of this form.
		Co	nducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no fur to Step 4		aluation was necessary, what was the reason? Check all that apply. Then skip form.
	Exposur	e Analy	vsis: WAC 173-340-7492(2)(a)
		Are	ea of soil contamination at the Site is not more than 350 square feet.
		Cu	rrent or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway	/ Analys	sis: WAC 173-340-7492(2)(b)
		No	potential exposure pathways from soil contamination to ecological receptors.
	Contami	inant Ar	nalysis: WAC 173-340-7492(2)(c)
			contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at ncentrations that exceed the values listed in Table 749-2.
		alte liste	contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or ernative depth if approved by Ecology) at concentrations that exceed the values ed in Table 749-2, and institutional controls are used to manage remaining ntamination.
		cor	contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at ncentrations likely to be toxic or have the potential to bioaccumulate as determined ng Ecology-approved bioassays.
		alte the	contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or ernative depth if approved by Ecology) at concentrations likely to be toxic or have potential to bioaccumulate as determined using Ecology-approved bioassays, and titutional controls are used to manage remaining contamination.

C.	the probler	fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating n, and (2) selecting the methods for addressing the identified problem. Both steps isultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	□ Y	es If you answered "YES," then answer Question 2 below.
	□ N	o <i>If you answered "NO," then identify the reason here and then skip to Question 5 below:</i>
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	you do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to Question 5 below.</i>
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer</i> Questions 3 and 4 below.
3.		ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.		already obtained Ecology's approval of both your problem formulation and esolution steps?
	□ Y	es If so, please identify the Ecology staff who approved those steps:
	🗌 N	0

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Southwest Region: Attn: VCP Coordinator	Eastern Region: Attn: VCP Coordinator
Attn: VCP Coordinator	Attn: VCP Coordinator

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

APPENDIX C

2018 LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

January 24, 2018

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number:

Description:

L964904 01/23/2018 282EM00171 HP Cleaners

Report To:

Simon Payne 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1	Ср
2	Тс

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-011818 L964904-01	5
Qc: Quality Control Summary	7
Volatile Organic Compounds (MS) by Method TO-15	7
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L964904

DATE/TIME: 01/24/18 16:06

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

EFF-011818 L964904-01 Air			Collected by Nicholas Turner	Collected date/time 01/18/18 10:49	Received date/time 01/23/18 08:45	1 (
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		2
Volatile Organic Compounds (MS) by Method TO-15	WG1065339	1	01/23/18 17:25	01/23/18 17:25	AMC	

^³ Ss
⁴Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

*

Ср

Тс

SDG: L964904 DATE/TIME: 01/24/18 16:06

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L964904 DATE/TIME: 01/24/18 16:06

PAGE: 4 of 13

SAMPLE RESULTS - 01

*

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	6.04	14.4		1	WG1065339	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1065339	
Benzene	71-43-2	78.10	0.200	0.639	0.281	0.899		1	WG1065339	
Senzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1065339	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1065339	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1065339	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1065339	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1065339	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1065339	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1065339	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1065339	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1065339	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1065339	
Chloromethane	74-87-3	50.50	0.200	0.413	0.457	0.944		1	WG1065339	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1065339	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1065339	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1065339	
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1065339	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1065339	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1065339	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	2.29	13.8	14	1	WG1065339	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND	<u>J4</u>	1	WG1065339 WG1065339	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1065339	
-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1065339	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1065339	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1065339	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1065339	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1065339	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1065339	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1065339	
hanol	64-17-5	46.10	0.630	1.19	37.3	70.4		1	WG1065339	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1065339	
-Ethyltoluene	622-96-8	120	0.200	0.982	0.374	1.83		1	WG1065339	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.602	3.38		1	WG1065339	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	2.21	10.9		1	WG1065339	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1065339	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1065339	
eptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1065339	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1065339	
Hexane	110-54-3	86.20	0.200	0.705	ND	ND		1	WG1065339	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1065339	
ethylene Chloride	75-09-2	84.90	0.200	0.694	0.437	1.52		1	WG1065339	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1065339	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1065339	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1065339	
ethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1065339	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1065339	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1065339	
Propanol	67-63-0	60.10	1.25	3.07	12.1	29.8		1	WG1065339	
opene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1065339	
	100-42-5	42.10	0.400	0.851	ND	ND		1	WG1065339 WG1065339	
tyrene										
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1065339	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1065339	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1065339	
oluene	108-88-3	92.10	0.200	0.753	0.944	3.56		1	WG1065339	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1065339	

ATC Group Services LLC - Seattle, WA

PROJECT: 282EM00171

L964904

DATE/TIME: 01/24/18 16:06

5 of 13

SAMPLE RESULTS - 01

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
nalyte			ppbv	ug/m3	ppbv	ug/m3			
1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1065339
1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1065339
richloroethylene	79-01-6	131	0.200	1.07	0.452	2.42		1	WG1065339
2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.445	2.18		1	WG1065339
3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1065339
,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1065339
inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1065339
nyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1065339
inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1065339
l&p-Xylene	1330-20-7	106	0.400	1.73	0.664	2.88		1	WG1065339
-Xylene	95-47-6	106	0.200	0.867	0.264	1.14		1	WG1065339
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		93.6				WG1065339

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY L964904-01

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3281374-3 01/23/18	09:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Allyl Chloride	U		0.0546	0.200
Benzene	U		0.0460	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0436	0.200
Bromoform	U		0.0786	0.600
Bromomethane	U		0.0609	0.200
1,3-Butadiene	U		0.0563	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0185	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
1,3-Dichlorobenzene	U		0.0597	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0616	0.200
1,1-Dichloroethane	U		0.0514	0.200
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

PROJECT: 282EM00171

SDG: L964904

DATE/TIME: 01/24/18 16:06

PAGE: 7 of 13 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3281374-3 01/23/18	09:54				-
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	
2-Propanol	0.109	J	0.0882	1.25	
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
(S) 1,4-Bromofluorobenzene	95.9			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

pbv 75	LCS Result ppbv 4.15 4.01	LCSD Result ppbv 4.11	LCS Rec. % 111	LCSD Rec. % 110	Rec. Limits % 52.0-158	LCS Qualifier	LCSD Qualifier	RPD % 0.837	RPD Limits % 25
.75	4.15	4.11	111					70	
				110	52.0-158			0.837	25
.75	4 01	2.00						0.007	20
	1.01	3.90	107	104	54.0-155			2.58	25
.75	4.55	4.44	121	118	69.0-143			2.36	25
.75	4.50	4.32	120	115	70.0-130			4.08	25
.75	4.19	4.09	112	109	70.0-130			2.49	25
.75	i	4.50 4.19	4.50 4.32 4.19 4.09	4.50 4.32 120 4.19 4.09 112	4.50 4.32 120 115 4.19 4.09 112 109	4.50 4.32 120 115 70.0-130 4.19 4.09 112 109 70.0-130	4.50 4.32 120 115 70.0-130 4.19 4.09 112 109 70.0-130	4.50 4.32 120 115 70.0-130 4.19 4.09 112 109 70.0-130	4.50 4.32 120 115 70.0-130 4.08 4.19 4.09 112 109 70.0-130 2.49

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ATC Group Services LLC - Seattle, WA	282EM00171	L964904	01/24/18 16:06	8 of 13

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

GI

A

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3281374-1 01/23/18 08:32 • (LCSD) R3281374-2 01/23/18 09:13

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Vinyl chloride	3.75	4.17	4.04	111	108	70.0-130			3.19	25	
1,3-Butadiene	3.75	4.00	3.88	107	103	70.0-130			3.03	25	
Bromomethane	3.75	4.38	4.26	117	114	70.0-130			2.73	25	
Chloroethane	3.75	4.09	4.11	109	109	70.0-130			0.451	25	
Trichlorofluoromethane	3.75	4.47	4.28	119	114	70.0-130			4.19	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.31	4.22	115	113	70.0-130			2.17	25	
l,1-Dichloroethene	3.75	4.10	4.02	109	107	70.0-130			1.83	25	
l,1-Dichloroethane	3.75	4.03	3.97	108	106	70.0-130			1.66	25	
Acetone	3.75	3.97	3.88	106	103	70.0-130			2.38	25	
2-Propanol	3.75	3.90	3.87	104	103	66.0-150			0.739	25	
Carbon disulfide	3.75	4.10	4.04	109	108	70.0-130			1.36	25	
Methylene Chloride	3.75	3.87	3.74	103	99.9	70.0-130			3.18	25	
MTBE	3.75	4.12	4.07	110	109	70.0-130			1.20	25	
trans-1,2-Dichloroethene	3.75	4.05	3.99	108	106	70.0-130			1.33	25	
n-Hexane	3.75	4.13	4.01	110	107	70.0-130			2.90	25	
/inyl acetate	3.75	3.95	3.93	105	105	70.0-130			0.348	25	
Methyl Ethyl Ketone	3.75	4.15	4.12	111	110	70.0-130			0.700	25	
is-1,2-Dichloroethene	3.75	4.20	4.17	112	111	70.0-130			0.726	25	
Chloroform	3.75	4.18	4.12	111	110	70.0-130			1.54	25	
Cyclohexane	3.75	4.21	4.18	112	111	70.0-130			0.676	25	
1,1,1-Trichloroethane	3.75	4.33	4.26	115	113	70.0-130			1.70	25	
Carbon tetrachloride	3.75	4.38	4.27	117	114	70.0-130			2.65	25	
Benzene	3.75	4.27	4.20	114	112	70.0-130			1.51	25	
,2-Dichloroethane	3.75	4.30	4.22	115	112	70.0-130			1.97	25	
Heptane	3.75	4.19	4.17	112	111	70.0-130			0.493	25	
Frichloroethylene	3.75	4.33	4.33	116	115	70.0-130			0.0948	25	
,2-Dichloropropane	3.75	4.19	4.17	112	111	70.0-130			0.547	25	
,4-Dioxane	3.75	4.30	4.31	115	115	70.0-152			0.232	25	
Bromodichloromethane	3.75	4.37	4.31	116	115	70.0-130			1.28	25	
cis-1,3-Dichloropropene	3.75	4.29	4.31	114	115	70.0-130			0.655	25	
1-Methyl-2-pentanone (MIBK)	3.75	4.15	4.12	111	110	70.0-142			0.845	25	
Toluene	3.75	4.56	4.50	122	120	70.0-130			1.23	25	
rans-1,3-Dichloropropene	3.75	4.43	4.38	118	117	70.0-130			1.25	25	
I,1,2-Trichloroethane	3.75	4.49	4.44	120	118	70.0-130			1.17	25	
letrachloroethylene	3.75	4.66	4.66	124	124	70.0-130			0.0428	25	
Methyl Butyl Ketone	3.75	4.27	4.22	114	113	70.0-150			0.973	25	
Dibromochloromethane	3.75	4.67	4.60	125	123	70.0-130			1.60	25	
,2-Dibromoethane	3.75	4.58	4.50	122	120	70.0-130			1.63	25	
Chlorobenzene	3.75	4.64	4.59	124	122	70.0-130			1.11	25	
Ethylbenzene	3.75	4.59	4.54	122	121	70.0-130			1.03	25	
·											
A	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	PAG
ATC Group Ser	vices LLC - Seatt	le, WA		282	EM00171		L96490)4		01/24/18 16:06	9 of

QUALITY CONTROL SUMMARY L964904-01

Volatile Organic Compounds (MS) by Method TO-15 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory	Control	Sample (LCS) • L	aboratory	Control 5	ample Dupi	ICal

(LCS) R3281374-1 01/23/	18 08:32 • (LCSE	D) R3281374-2	2 01/23/18 09:13	1							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	9.38	9.19	125	122	70.0-130			2.05	25	
o-Xylene	3.75	4.67	4.56	125	122	70.0-130			2.38	25	
Styrene	3.75	4.79	4.72	128	126	70.0-130			1.29	25	
Bromoform	3.75	4.78	4.70	128	125	70.0-130			1.75	25	
I,1,2,2-Tetrachloroethane	3.75	4.45	4.40	119	117	70.0-130			1.18	25	
4-Ethyltoluene	3.75	4.73	4.64	126	124	70.0-130			1.89	25	
1,3,5-Trimethylbenzene	3.75	4.72	4.60	126	123	70.0-130			2.54	25	
1,2,4-Trimethylbenzene	3.75	4.71	4.57	126	122	70.0-130			3.18	25	
l,3-Dichlorobenzene	3.75	4.81	4.70	128	125	70.0-130			2.34	25	
1,4-Dichlorobenzene	3.75	4.91	4.81	131	128	70.0-130	<u>J4</u>		2.09	25	
Benzyl Chloride	3.75	4.73	4.59	126	122	70.0-144			3.01	25	
1,2-Dichlorobenzene	3.75	4.78	4.68	127	125	70.0-130			2.04	25	
1,2,4-Trichlorobenzene	3.75	5.05	4.96	135	132	70.0-155			1.69	25	
Hexachloro-1,3-butadiene	3.75	4.93	4.83	132	129	70.0-145			2.11	25	
Naphthalene	3.75	4.98	4.90	133	131	70.0-155			1.54	25	
Allyl Chloride	3.75	3.86	3.81	103	102	70.0-130			1.15	25	
2-Chlorotoluene	3.75	4.83	4.70	129	125	70.0-130			2.58	25	
Methyl Methacrylate	3.75	4.28	4.23	114	113	70.0-130			1.08	25	
Tetrahydrofuran	3.75	3.84	3.81	102	102	70.0-140			0.861	25	
2,2,4-Trimethylpentane	3.75	4.24	4.18	113	111	70.0-130			1.53	25	
Vinyl Bromide	3.75	4.69	4.28	125	114	70.0-130			9.09	25	
sopropylbenzene	3.75	4.71	4.63	126	124	70.0-130			1.61	25	
(S) 1,4-Bromofluorobenzen	е			99.5	99.6	60.0-140					

SDG: L964904

DATE/TIME: 01/24/18 16:06

PAGE: 10 of 13

GLOSSARY OF TERMS

₩

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the rest reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier Desci	ription
J The ide	ntification of the analyte is acceptable; the reported value is an estimate.
J4 The ass	sociated batch QC was outside the established quality control range for accuracy.

SDG: L964904

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660
Alaska	UST-080
Arizona	AZ0612
Arkansas	88-0469
California	01157CA
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 1	90010
Kentucky ²	16
Louisiana	AI30792
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086
Nebraska	NE-OS-15-05

levada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ²	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	221
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-07-TX
Texas ⁵	LAB0152
Utah	6157585858
Vermont	VT2006
Virginia	109
Washington	C1915
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

ACCOUNT:

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

PROJECT: SDG: DATE/TIME: ATC Group Services LLC - Seattle, WA 282EM00171 L964904 01/24/18 16:06

PAGE:

12 of 13

George	-		Billing Information:					Analysis / Container / Preservative									
ATC Group Services 6347 Seaview Avenue NW Seattle, WA 98107	LLC - Seat	tle, WA	Simon Payne 6347 Seaview Avenue NW Seattle, WA 98107			Pres Chic			An		ntamer /)	reservative		Chain of Cus	ESC		
Report to: Simon Payne			Email To: simon.payne@atcassociates.com										1.5	12065 Lebano			
Project Description: HP Clan	urs			City/State Collected:	4, booking-	A								Mount Juliet, 1 Phone: 615-75 Phone: 800-76 Fax: 615-758-5	8-5858 7-5859		
Phone: 206-781-1449 Fax:	Client Project 282EM001	ject # Lab Project			Contraction of the second second	1								L# 190	,4984 M200		
Collected by (print): Nicholasturus	Site/Facility II	D#		AT IN								Acctnum: A	Contractor Sciences				
Collected by (signature):	Same D	Lab MUST Be I lay Five D lay S Day y 10 Day lay	ay (Rad Only)	Quote # Date ! Shadard	Results Needed	No.	Summa							Template:T Prelogin: P TSR: 110 - B	129188 535219		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Of Cntrs	TO-15							PB: Shipped Via			
2FF-011818	(rando	Air	/	01/18/18	3 1049	1	×			1				Remarks	Sample # (lab only)		
						1									-01		
							152										
						1				13							
					_	1											
Matrix: IS - Soil AIR - Air F - Filter	Remarks:(1)6	iLiter summa	a, (1)200cc	/min manifo	lds, (1)tubing and	d fittings											
W - Groundwater B - Bioassay /W - WasteWater										рН	Tem		COC S1	Sample Receipt al Present/Intac med/Accurate: arrive intact:	t: MP _Y _N		
W - Drinking Water T - Other	Samples return	Samples returned via: UPSFedExCouner1			Tracking # 746 h 1466 188				Flow Other				Suffic:	t bottles used: ient volume sent If Apolica			
Relingoshed by : (Signature)		Date:		^{те:} 1800	Received by: (Signa	ture)	00	1000	Trip	Trip Blank Received:		HCL / MeoH	VOA Ser Preserv	If Applicable VOA Sero Headapacs: Preservation Correct/Checked:			
felinquished by : (Signature)		Date:	Ti	me:	Received by: (Signa	turej			Temp: °C Bottles Received			and the local division of the local division	If preservation required by Login: Date/Time				
Relinquished by : (Signature)		Date:	Tir	ne:	Received for lab by	(Signatu	2	860	Date		Tim	845	Hold:		Condition: NCF / OK		

ANALYTICAL REPORT

February 19, 2018

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number:

L971154 02/17/2018 282EM00171 **HP** Cleaners

Report To:

Description:

Simon Payne 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

2 3

4

5

5

7

7

11

12

13

*	
¹ Cp	
² Tc	
3	

² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT:	
ATC Group Services LLC - Seattle, WA	

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

GI: Glossary of Terms

EFF-021518 L971154-01

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Volatile Organic Compounds (MS) by Method TO-15

SDG: L971154

DA⁻ 02/19 PAGE: 2 of 13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

EFF-021518 L971154-01 Air			Collected by Nicholas Turner	Collected date/time 02/15/18 10:34	Received date/time 02/17/18 08:45	¹ Cp
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		2 Tc
Volatile Organic Compounds (MS) by Method TO-15	WG1074712	1	02/17/18 19:40	02/17/18 19:40	MBF	

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

*

ACCOUNT: ATC Group Services LLC - Seattle, WA PROJECT: 282EM00171

SDG: L971154 DATE/TIME: 02/19/18 14:43 PAGE: 3 of 13

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L971154 DATE/TIME: 02/19/18 14:43 PAGE: 4 of 13

SAMPLE RESULTS - 01

*

Volatile Organic Compounds (MS) by Method TO-15

Analista	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte	67.64.4	F0.40	ppbv	ug/m3	ppbv	ug/m3			1110407 1710	
Acetone	67-64-1	58.10	1.25	2.97	16.0	38.0		1	WG1074712	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1074712	
Benzene	71-43-2	78.10	0.200	0.639	0.339	1.08		1	WG1074712	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1074712	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1074712	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1074712	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1074712	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1074712	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1074712	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1074712	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1074712	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1074712	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1074712	
Chloromethane	74-87-3	50.50	0.200	0.413	0.528	1.09		1	WG1074712	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1074712	
Cyclohexane	110-82-7	84.20	0.200	0.689	0.226	0.779		1	WG1074712	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1074712	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1074712	
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1074712	
I,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1074712	
I,4-Dichlorobenzene	106-46-7	147	0.200	1.20	1.74	10.5		1	WG1074712	
I,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1074712 WG1074712	
I,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1074712 WG1074712	
I,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1		
									WG1074712	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1074712	
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1074712	
I,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1074712	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1074712	
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1074712	
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1074712	
Ethanol	64-17-5	46.10	0.630	1.19	88.9	168	E	1	WG1074712	
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1074712	
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1074712	
Frichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.799	4.49		1	WG1074712	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.405	2.00		1	WG1074712	
I,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1074712	
l,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1074712	
Heptane	142-82-5	100	0.200	0.818	0.239	0.977		1	WG1074712	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1074712	
n-Hexane	110-54-3	86.20	0.200	0.705	0.394	1.39		1	WG1074712	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1074712	
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.246	0.854		1	WG1074712	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1074712	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.57	4.64		1	WG1074712	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1074712	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1074712	
ATBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1074712	
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1074712	
P-Propanol	67-63-0	60.10	1.25	3.07	1.78	4.37		1	WG1074712 WG1074712	
ropene	115-07-1	42.10	0.400	0.689	ND	4.37 ND		1	WG1074712 WG1074712	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1074712	
I,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1074712	
Tetrachloroethylene	127-18-4	166	0.200	1.36	0.209	1.42		1	WG1074712	
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	0.973	2.87		1	WG1074712	
Toluene	108-88-3	92.10	0.200	0.753	1.80	6.77		1	WG1074712	
I,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1074712	

ATC Group Services LLC - Seattle, WA

PROJECT: 282EM00171

L971154

02/19/18 14:43

5 of 13

SAMPLE RESULTS - 01

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1074712
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1074712
Trichloroethylene	79-01-6	131	0.200	1.07	0.374	2.00		1	WG1074712
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.225	1.10		1	WG1074712
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1074712
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1074712
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1074712
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1074712
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND	<u>J4</u>	1	WG1074712
m&p-Xylene	1330-20-7	106	0.400	1.73	0.560	2.43		1	WG1074712
o-Xylene	95-47-6	106	0.200	0.867	0.208	0.903		1	WG1074712
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.6				WG1074712

SDG: L971154
U

U

U

U

U

U

0.210

QUALITY CONTROL SUMMARY

L971154-01

Method Blank (MB)

Allyl Chloride

Benzyl Chloride

Bromomethane

1,3-Butadiene

Bromoform

Bromodichloromethane

Benzene

(MB) R3287253-1 02/17/18	08:42	
	MB Result	MB Qualifier
Analyte	ppbv	
Acetone	U	

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
[°] Al

Sc

i,o butaaiciic	0.210	<u> </u>	0.0000	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0185	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
1,3-Dichlorobenzene	U		0.0597	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0616	0.200
1,1-Dichloroethane	U		0.0514	0.200
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

MB RDL

ppbv

1.25

0.200

0.200

0.200

0.200

0.600

0.200

2.00

MB MDL ppbv

0.0569

0.0546

0.0460

0.0598

0.0436

0.0786

0.0609

0.0563

ACCOUNT: ATC Group Services LLC - Seattle, WA

PROJECT: 282EM00171

SDG: L971154

DATE/TIME: 02/19/18 14:43

PAGE: 7 of 13

QUALITY CONTROL SUMMARY L971154-01

MB RDL

MB MDL

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ AI
⁹ Sc

Method Blank (MB)

(MB) R3287253-1 02/	17/18 08:42	
	MB Result	MB Qualifier
Analita	ppby	

			== =	== =
Analyte	ppbv		ppbv	ppbv
Methylene Chloride	U		0.0465	0.200
Methyl Butyl Ketone	U		0.0682	1.25
2-Butanone (MEK)	U		0.0493	1.25
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25
Methyl Methacrylate	U		0.0773	0.200
MTBE	U		0.0505	0.200
Naphthalene	0.216	J	0.154	0.630
2-Propanol	U		0.0882	1.25
Propene	U		0.0932	0.400
Styrene	U		0.0465	0.200
1,1,2,2-Tetrachloroethane	U		0.0576	0.200
Tetrachloroethylene	U		0.0497	0.200
Tetrahydrofuran	U		0.0508	0.200
Toluene	U		0.0499	0.200
1,2,4-Trichlorobenzene	U		0.148	0.630
1,1,1-Trichloroethane	U		0.0665	0.200
1,1,2-Trichloroethane	U		0.0287	0.200
Trichloroethylene	U		0.0545	0.200
1,2,4-Trimethylbenzene	U		0.0483	0.200
1,3,5-Trimethylbenzene	U		0.0631	0.200
2,2,4-Trimethylpentane	U		0.0456	0.200
Vinyl chloride	U		0.0457	0.200
Vinyl Bromide	U		0.0727	0.200
Vinyl acetate	U		0.0639	0.200
m&p-Xylene	U		0.0946	0.400
o-Xylene	U		0.0633	0.200
Ethanol	U		0.0832	0.630
(S) 1,4-Bromofluorobenzene	102			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

		LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
thanol	3.75	3.85	4.24	103	113	52.0-158			9.66	25	
Propene	3.75	3.82	3.78	102	101	54.0-155			1.12	25	
Dichlorodifluoromethane	3.75	3.86	3.85	103	103	69.0-143			0.325	25	
,2-Dichlorotetrafluoroethane	3.75	4.19	4.08	112	109	70.0-130			2.56	25	
Chloromethane	3.75	4.43	4.27	118	114	70.0-130			3.66	25	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ATC Group Services LLC - Seattle, WA	282EM00171	L971154	02/19/18 14:43	8 of 13

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3287253-2 02/17/18 09:26 • (LCSD) R3287253-3 02/17/18 10:09

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Vinyl chloride	3.75	4.22	4.17	113	111	70.0-130			1.27	25	
1,3-Butadiene	3.75	4.19	4.04	112	108	70.0-130			3.62	25	
Bromomethane	3.75	4.23	4.18	113	112	70.0-130			1.05	25	
Chloroethane	3.75	4.31	4.28	115	114	70.0-130			0.873	25	
Trichlorofluoromethane	3.75	4.39	4.34	117	116	70.0-130			1.14	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.40	4.31	117	115	70.0-130			2.06	25	
1,1-Dichloroethene	3.75	4.40	4.29	117	115	70.0-130			2.35	25	
1,1-Dichloroethane	3.75	4.34	4.31	116	115	70.0-130			0.676	25	
Acetone	3.75	4.51	4.34	120	116	70.0-130			3.63	25	
2-Propanol	3.75	4.64	4.45	124	119	66.0-150			4.22	25	
Carbon disulfide	3.75	4.19	4.11	112	110	70.0-130			1.95	25	
Methylene Chloride	3.75	4.20	4.15	112	111	70.0-130			1.07	25	
MTBE	3.75	4.40	4.34	117	116	70.0-130			1.42	25	
trans-1,2-Dichloroethene	3.75	4.47	4.35	119	116	70.0-130			2.59	25	
n-Hexane	3.75	4.49	4.38	120	117	70.0-130			2.41	25	
Vinyl acetate	3.75	5.14	4.89	137	131	70.0-130	<u>J4</u>	<u>J4</u>	4.84	25	
Methyl Ethyl Ketone	3.75	4.77	4.63	127	123	70.0-130	_		3.00	25	
cis-1,2-Dichloroethene	3.75	4.41	4.40	118	117	70.0-130			0.239	25	
Chloroform	3.75	4.41	4.30	118	115	70.0-130			2.50	25	
Cyclohexane	3.75	4.49	4.36	120	116	70.0-130			2.84	25	
1,1,1-Trichloroethane	3.75	4.45	4.36	119	116	70.0-130			2.04	25	
Carbon tetrachloride	3.75	4.48	4.37	119	117	70.0-130			2.46	25	
Benzene	3.75	4.41	4.30	118	115	70.0-130			2.44	25	
1,2-Dichloroethane	3.75	4.40	4.15	117	111	70.0-130			5.99	25	
Heptane	3.75	4.48	4.31	119	115	70.0-130			3.96	25	
Trichloroethylene	3.75	4.42	4.29	118	114	70.0-130			2.95	25	
1,2-Dichloropropane	3.75	4.40	4.33	117	115	70.0-130			1.74	25	
1,4-Dioxane	3.75	4.50	4.40	120	117	70.0-152			2.04	25	
Bromodichloromethane	3.75	4.41	4.31	118	115	70.0-130			2.23	25	
cis-1,3-Dichloropropene	3.75	4.56	4.54	121	121	70.0-130			0.324	25	
4-Methyl-2-pentanone (MIBK)	3.75	4.54	4.45	121	119	70.0-142			2.08	25	
Toluene	3.75	4.43	4.33	118	116	70.0-130			2.00	25	
trans-1,3-Dichloropropene	3.75	4.37	4.38	116	117	70.0-130			0.255	25	
1,1,2-Trichloroethane	3.75	4.26	4.08	114	109	70.0-130			4.30	25	
Tetrachloroethylene	3.75	4.26	4.20	114	105	70.0-130			1.45	25	
Methyl Butyl Ketone	3.75	4.39	4.20	117	112	70.0-150			4.22	25	
Dibromochloromethane	3.75	4.39	4.21	117	112	70.0-130			4.22	25	
1,2-Dibromoethane	3.75	4.27	4.20	114	112	70.0-130			1.72	25	
Chlorobenzene	3.75	4.23	4.18	113	109	70.0-130			3.53	25	
	3.75	4.24 4.57	4.09	113	109	70.0-130			3.53	25	
Ethylbenzene	3.75	4.37	4.43	IZZ	110	70.0-130			3.00	20	
۵	CCOUNT:			PF	ROJECT:		SDG:			DATE/TIME:	PAGE:
	vices LLC - Seattl	ρ WΔ			2EM00171		L97115			02/19/18 14:43	9 of 13

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

QUALITY CONTROL SUMMARY

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3287253-2	02/17/18 09:26 • (LCSE) R3287253-3	02/17/18 10:09

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	F
nalyte	ppbv	ppbv	ppbv	%	%	%			%	%	
&p-Xylene	7.50	9.23	8.89	123	119	70.0-130			3.73	25	1
-Xylene	3.75	4.45	4.34	119	116	70.0-130			2.53	25	
tyrene	3.75	4.65	4.51	124	120	70.0-130			3.01	25	
romoform	3.75	4.64	4.56	124	122	70.0-130			1.88	25	- F
1,2,2-Tetrachloroethane	3.75	4.47	4.38	119	117	70.0-130			2.18	25	
-Ethyltoluene	3.75	4.55	4.41	121	118	70.0-130			3.15	25	
3,5-Trimethylbenzene	3.75	4.50	4.46	120	119	70.0-130			0.813	25	
2,4-Trimethylbenzene	3.75	4.44	4.47	119	119	70.0-130			0.646	25	
3-Dichlorobenzene	3.75	4.47	4.55	119	121	70.0-130			1.84	25	
4-Dichlorobenzene	3.75	4.42	4.47	118	119	70.0-130			1.25	25	ч
enzyl Chloride	3.75	4.76	4.76	127	127	70.0-144			0.180	25	
2-Dichlorobenzene	3.75	4.50	4.46	120	119	70.0-130			0.956	25	
2,4-Trichlorobenzene	3.75	4.68	4.82	125	129	70.0-155			3.00	25	
exachloro-1,3-butadiene	3.75	4.30	4.33	115	115	70.0-145			0.695	25	- 1
aphthalene	3.75	4.26	4.62	114	123	70.0-155			8.09	25	
llyl Chloride	3.75	4.49	4.40	120	117	70.0-130			2.17	25	L
-Chlorotoluene	3.75	4.50	4.44	120	119	70.0-130			1.34	25	
lethyl Methacrylate	3.75	4.42	4.35	118	116	70.0-130			1.56	25	
etrahydrofuran	3.75	4.57	4.41	122	118	70.0-140			3.47	25	
,2,4-Trimethylpentane	3.75	4.45	4.36	119	116	70.0-130			2.14	25	
inyl Bromide	3.75	4.42	4.34	118	116	70.0-130			1.98	25	
opropylbenzene	3.75	4.53	4.40	121	117	70.0-130			2.92	25	
(S) 1,4-Bromofluorobenzene				102	98.4	60.0-140					

SDG: L971154 DATE/TIME: 02/19/18 14:43 PAGE: 10 of 13

GLOSSARY OF TERMS

₩

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.

SDG: L971154

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	
Alaska	UST-080	
Arizona	AZ0612	
Arkansas	88-0469	
California	01157CA	
Colorado	TN00003	
Connecticut	PH-0197	
Florida	E87487	
Georgia	NELAP	
Georgia ¹	923	
Idaho	TN00003	
Illinois	200008	
Indiana	C-TN-01	
lowa	364	
Kansas	E-10277	
Kentucky 1	90010	
Kentucky ²	16	
Louisiana	Al30792	
Maine	TN0002	
Maryland	324	
Massachusetts	M-TN003	
Michigan	9958	
Minnesota	047-999-395	
Mississippi	TN00003	
Missouri	340	
Montana	CERT0086	
Nebraska	NE-OS-15-05	

Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ²	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Dregon	TN200002
Pennsylvania	68-02979
Rhode Island	221
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-07-TX
Texas ⁵	LAB0152
Utah	6157585858
Vermont	VT2006
Virginia	109
Washington	C1915
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold n/a Accreditation not applicable

Our Locations

ATC Group Services LLC - Seattle, WA

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

 PROJECT:
 SDG:
 DATE/TIME:

 282EM00171
 L971154
 02/19/18 14:43

PAGE:

12 of 13

			Billing Info	ormation:		100	2	dist.	Analysis /	Contain	er / Prese	rvative		Chain of Custody	Pageof
ATC Group Services Ll 6347 Seaview Avenue NW Seattle, WA 98107	.C - Seatt	le, WA	100000000000000000000000000000000000000	Payne aview Avenue WA 98107	NW	Pres Chk									ESC
Report to: Simon Payne			Email To:	simon.payne@at	cassociates.com									12065 Lebanon Rd Mount Juliet, TN 33	
Project Description: HP Clan	ners			City/State Collected:		1				TO AL				Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5859	
hone: 206-781-1449 ax:	Client Project # 282EM0017			Lab Project # ATCSWA-28	2EM00171			NOVARIA INC.			1			1# 197	1159 149
ollected by (print): Nitholastura	Site/Facility ID	#		P.O. #	1.0.5	1	N.C.							Acctnum: ATC	
chected by (signature):	Same Day	ab MUST Be y Five C	Day	Quote #	1 Section		ma							Template:T12 Prelogin: P63	
nmediately acked on Ice N 🗹 Y		5 Day 10 Da			sults Needed	NG. of	5 Summa				1			TSR: 110 - Bria PB:	n Ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	and in second line					hue.		Shipped Via: Remarks	Sample # (lab only)
EFE-021518	6-	Air	1	02/15/18	1034	1	x								-01
						11									
	-					S.						22			Carlos -
															1000
						-	120			-		4 Y-1			1.
												1			
				1		+	Sale Sale				1				
				1		12	153								
						1							198		
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay IW - WasteWater W - Drinking Water	Remarks:(1)6	5144	ganan sa	-478	ds, (1)tubing and				pH Flow		TempOther		COC Sea COC Sig Bottles Correct	Sample Receipt C 1 Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent:	
T - Other	UPS/Fec	dExCou	rier		racking # 4191	and the second se	259	3789	0		1	E.D.S.S	VOA Zer	If Applicat o Headspace:	le _Y_N
elinquished by : (Signature)		02/16	e 1 e	Time: 1030	leceived by: (Signa	sture)			Trip Blan		TE	CL / MeoH	Preserv	ation Correct/Ch	ecked: _Y _N
telinquished by : (Signature)		Date:		Time: F	eceived by: (Signa	iturė)	_		Temp: Aml	-	C ^{Bottles}		If preserv	vation required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:		Time:	leceived for lab by	: (Signa	iture)	660	Date: 2/17/	118	Time:	45	Hold:		Condition NCF / OK

. .

ANALYTICAL REPORT

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number: L977692 03/15/2018 NPWR1 18001 HP Cleaners 1Q18

Report To:

Description:

Simon Payne 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

DE.	*
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
OA-1 L977692-01	5
OA-2 L977692-02	7
OA-3 L977692-03	9
IA-1 L977692-04	11
IA-2 L977692-05	13
EFF-031318 L977692-06	15
Qc: Quality Control Summary	17
Volatile Organic Compounds (MS) by Method TO-15	17
GI: Glossary of Terms	21
Al: Accreditations & Locations	22
Sc: Sample Chain of Custody	23

SDG: L977692

DATE/TIME: 03/21/18 16:30 PAGE: 2 of 24

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	0, 111 22 00		、 1		
			Collected by	Collected date/time	Received date/time
OA-1 L977692-01 Air			Nicholas Turner	03/13/18 17:03	03/15/18 08:45
fethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	, ,
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 05:04	03/16/18 05:04	MBF
			Collected by	Collected date/time	Received date/time
DA-2 L977692-02 Air			Nicholas Turner	03/13/18 17:10	03/15/18 08:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 05:51	03/16/18 05:51	MBF
			Collected by	Collected date/time	Received date/time
DA-3 L977692-03 Air			Nicholas Turner	03/13/18 17:15	03/15/18 08:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 06:41	03/16/18 06:41	MBF
			Collected by	Collected date/time	Received date/time
A-1 L977692-04 Air			Nicholas Turner	03/13/18 17:33	03/15/18 08:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 07:29	03/16/18 07:29	MBF
			Collected by	Collected date/time	Received date/time
A-2 L977692-05 Air			Nicholas Turner	03/13/18 17:24	03/15/18 08:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 08:15	03/16/18 08:15	MBF
			Collected by	Collected date/time	Received date/time
FF-031318 L977692-06 Air			Nicholas Turner	03/13/18 16:36	03/15/18 08:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
olatile Organic Compounds (MS) by Method TO-15	WG1085091	1	03/16/18 09:00	03/16/18 09:00	MBF

SDG: L977692 DATE/TIME: 03/21/18 16:30

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

DATE/TIME: 03/21/18 16:30

¥

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	10.1	23.9		1	WG1085091	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1085091	
enzene	71-43-2	78.10	0.200	0.639	0.224	0.717		1	WG1085091	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1085091	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1085091	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
hloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
hloromethane	74-87-3	50.50	0.200	0.413	0.543	1.12		1	WG1085091	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
yclohexane	110-82-7	84.20	0.200	0.689	0.722	2.48		1	WG1085091	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1085091	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1085091	
B-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
I-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1085091	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1085091	
-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1085091	
-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
ins-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1085091	
ns-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1085091	
Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
anol	64-17-5	46.10	0.630	1.19	29.0	54.7		1	WG1085091	
nylbenzene	100-41-4	106	0.200	0.867	0.722	3.13		1	WG1085091	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
ichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.206	1.16		1	WG1085091	
chlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.308	1.53		1	WG1085091	
,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
eptane	142-82-5	100	0.200	0.818	1.24	5.06		1	WG1085091	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
Hexane	110-54-3	86.20	0.200	0.705	3.80	13.4		1	WG1085091	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
ethylene Chloride	75-09-2	84.90	0.200	0.694	0.552	1.92		1	WG1085091	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.78	5.24		1	WG1085091	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
ethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG1085091	
TBE	1634-04-4	88.10	0.200	0.819	ND	ND		1	WG1085091	
phthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
Propanol	67-63-0	60.10	1.25	3.07	11.0 ND	27.1		1	WG1085091	
opene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1085091	
yrene	100-42-5	104	0.200	0.851	0.605	2.57		1	WG1085091	
,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1085091	
oluene	108-88-3	92.10	0.200	0.753	9.99	37.6		1	WG1085091	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1085091	

ATC Group Services LLC - Seattle, WA

NPWR1 18001

L977692

DATE/TIME: 03/21/18 16:30 **PAGE**: 5 of 24

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
nalyte			ppbv	ug/m3	ppbv	ug/m3			
Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
Frichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
loroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1085091
-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1085091
Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
Kylene	1330-20-7	106	0.400	1.73	1.65	7.13		1	WG1085091
ene	95-47-6	106	0.200	0.867	0.655	2.84		1	WG1085091
1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.6				WG1085091

¥

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
analyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	1.91	4.53		1	WG1085091	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1085091	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1085091	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1085091	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1085091	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
hloromethane	74-87-3	50.50	0.200	0.413	0.511	1.06		1	WG1085091	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
yclohexane	110-82-7	84.20	0.200	0.689	0.210	0.725		1	WG1085091	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1085091	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
2-Dichlorobenzene	95-50-1	147	0.200	1.34	ND	ND		1	WG1085091	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
	106-46-7	147						1		
4-Dichlorobenzene	106-46-7	99	0.200	1.20 0.810	ND ND	ND ND		1	WG1085091	
2-Dichloroethane			0.200						WG1085091	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1085091	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1085091	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1085091	
1-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
hanol	64-17-5	46.10	0.630	1.19	3.14	5.92		1	WG1085091	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1085091	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.202	1.14		1	WG1085091	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.288	1.42		1	WG1085091	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
eptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1085091	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
-Hexane	110-54-3	86.20	0.200	0.705	0.214	0.754		1	WG1085091	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1085091	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1085091	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
lethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG1085091	
ITBE	80-82-8 1634-04-4	88.10						1		
			0.200	0.721	ND	ND			WG1085091	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1085091	
ropene	115-07-1	42.10	0.400	0.689	0.511	0.880		1	WG1085091	
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1085091	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1085091	
oluene	108-88-3	92.10	0.200	0.753	0.509	1.92		1	<u>WG1085091</u>	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1085091	

ATC Group Services LLC - Seattle, WA

NPWR1 18001

L977692

03/21/18 16:30

₩

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
richloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1085091
,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1085091
3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
nyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
nyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
nyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1085091
Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1085091
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG1085091

*

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch	
Acetone	67-64-1	58.10	1.25	2.97	1.32	3.13		1	WG1085091	
Allyl chloride	107-04-1	76.53	0.200	0.626	ND	ND		1	WG1085091	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1085091	
	100-44-7	127	0.200	1.04	ND	ND		1		
Benzyl Chloride Bromodichloromethane	75-27-4	127	0.200	1.04	ND	ND			WG1085091	
								1	WG1085091	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
Chloromethane	74-87-3	50.50	0.200	0.413	0.514	1.06		1	WG1085091	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1085091	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	<u>WG1085091</u>	
I,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
I,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1085091	
l,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
l,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1085091	
l,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1085091	
l,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1085091	
l,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1085091	
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1085091	
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
Ethanol	64-17-5	46.10	0.630	1.19	2.78	5.25		1	WG1085091	
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1085091	
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
Frichlorofluoromethane	75-69-4	137.40	0.200		0.212	1.19		1		
				1.12					WG1085091	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.311	1.54		1	WG1085091	
I,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
l,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1085091	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
n-Hexane	110-54-3	86.20	0.200	0.705	ND	ND		1	WG1085091	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1085091	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1085091	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1085091	
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1085091	
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1085091	
Propene	115-07-1	42.10	0.400	0.689	0.515	0.887		1	WG1085091	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1085091	
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
Fetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
Fetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1085091	
Toluene	108-88-3	92.10	0.200	0.390	0.394	1.49		1	WG1085091	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	0.394 ND	ND		1	WG1085091	
, z , T IIICHIOIODEHZEHE	120-02-1	101	0.050	4.00	ND	ND			W01003091	

ATC Group Services LLC - Seattle, WA

PROJECT: NPWR1 18001 SDG: L977692

DATE/TIME: 03/21/18 16:30

PAGE: 9 of 24

SAMPLE RESULTS - 03 L977692

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1085091
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1085091
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1085091
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1085091
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG1085091

¥

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	14.6	34.6		1	WG1085091	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1085091	
enzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1085091	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1085091	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1085091	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
hloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
hloromethane	74-87-3	50.50	0.200	0.413	0.517	1.07		1	WG1085091	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
yclohexane	110-82-7	84.20	0.200	0.689	0.346	1.19		1	WG1085091	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1085091	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1085091	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.389	2.34		1	WG1085091	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1085091	
	75-34-3	99 98		0.802	ND	ND				
1-Dichloroethane			0.200					1	WG1085091	
I-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1085091	
ns-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1085091	
-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
hanol	64-17-5	46.10	0.630	1.19	127	239	E	1	WG1085091	
hylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1085091	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	1.04	5.83		1	WG1085091	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.354	1.75		1	WG1085091	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
eptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1085091	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
Hexane	110-54-3	86.20	0.200	0.705	0.271	0.955		1	WG1085091	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
ethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1085091	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1085091	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
ethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG1085091	
rBE	80-62-6 1634-04-4	88.10	0.200	0.819	ND	ND		1	WG1085091	
phthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1085091	
opene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1085091	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1085091	
,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1085091	
oluene	108-88-3	92.10	0.200	0.753	1.42	5.36		1	WG1085091	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1085091	

ATC Group Services LLC - Seattle, WA

NPWR1 18001

L977692

DATE/TIME: 03/21/18 16:30

11 of 24

SAMPLE RESULTS - 04 L977692

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
Trichloroethylene	79-01-6	131	0.200	1.07	1.13	6.07		1	WG1085091
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.248	1.22		1	WG1085091
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1085091
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1085091
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG1085091

¥

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
etone	67-64-1	58.10	1.25	2.97	10.2	24.2		1	<u>WG1085091</u>	
yl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	<u>WG1085091</u>	
enzene	71-43-2	78.10	0.200	0.639	ND	ND		1	<u>WG1085091</u>	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1085091	
omodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1085091	
omoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
omomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
B-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
rbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
lorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
lloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
loroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
loromethane	74-87-3	50.50	0.200	0.413	0.505	1.04		1	WG1085091	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
vclohexane	110-82-7	84.20	0.200	0.689	0.783	2.70		1	WG1085091	
promochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1085091	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1085091	
-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
-Dichlorobenzene	106-46-7	147	0.200	1.20	0.201	1.21		1	WG1085091	
-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1085091	
Dichloroethane	75-34-3	99 98	0.200	0.810	ND	ND		1	WG1085091 WG1085091	
Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
ns-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	<u>WG1085091</u>	
s-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	<u>WG1085091</u>	
Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
anol	64-17-5	46.10	0.630	1.19	75.3	142	E	1	WG1085091	
lylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1085091	
thyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
chlorofluoromethane	75-69-4	137.40	0.200	1.12	0.816	4.59		1	WG1085091	
hlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.311	1.54		1	WG1085091	
2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
otane	142-82-5	100	0.200	0.818	ND	ND		1	WG1085091	
kachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
lexane	110-54-3	86.20	0.200	0.705	0.216	0.761		1	WG1085091	
propylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
hylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1085091	
thyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
utanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1085091	
lethyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
thyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1085091	
BE	1634-04-4	88.10	0.200	0.819	ND	ND		1	WG1085091	
hthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
	91-20-3 67-63-0	60.10		3.30	ND	ND		1		
ropanol			1.25						WG1085091	
pene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1085091	
rene	100-42-5	104	0.200	0.851	ND	ND		1	WG1085091	
2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
trachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
trahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	<u>WG1085091</u>	
uene	108-88-3	92.10	0.200	0.753	0.644	2.42		1	<u>WG1085091</u>	
4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1085091	

ATC Group Services LLC - Seattle, WA

NPWR1 18001

L977692

DATE/TIME: 03/21/18 16:30

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

1,1,1-Trichloroethane 71-55-6 133 0.200 1.09 ND ND 1 WG1085091 1,1,2-Trichloroethane 79-00-5 133 0.200 1.09 ND ND 1 WG1085091 1,1,2-Trichloroethane 79-01-6 131 0.200 1.07 0.206 1.11 1 WG1085091 1,2,4-Trimethylbenzene 95-63-6 120 0.200 0.982 ND ND 1 WG1085091 1,3,5-Trimethylbenzene 108-67-8 120 0.200 0.982 ND ND 1 WG1085091		CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
1,1,2-Trichloroethane79-00-51330.2001.09NDND1WG1085091Trichloroethylene79-01-61310.2001.070.2061.111WG10850911,2,4-Trimethylbenzene95-63-61200.2000.982NDND1WG10850911,3,5-Trimethylbenzene108-67-81200.2000.982NDND1WG1085091	Analyte			ppbv	ug/m3	ppbv	ug/m3			
Trichloroethylene 79-01-6 131 0.200 1.07 0.206 1.11 1 WG1085091 1,2,4-Trimethylbenzene 95-63-6 120 0.200 0.982 ND ND 1 WG1085091 1,3,5-Trimethylbenzene 108-67-8 120 0.200 0.982 ND ND 1 WG1085091	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
1,2,4-Trimethylbenzene 95-63-6 120 0.200 0.982 ND ND 1 WG1085091 1,3,5-Trimethylbenzene 108-67-8 120 0.200 0.982 ND ND 1 WG1085091	1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
1,3,5-Trimethylbenzene 108-67-8 120 0.200 0.982 ND ND 1 WG1085091	Trichloroethylene	79-01-6	131	0.200	1.07	0.206	1.11		1	WG1085091
	1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1085091
2.2.4 Trimethylepeters F40.04.1 114.22 0.200 0.024 ND ND 1 WC100F001	1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
z,z,4-mmetrypentane 540-84-1 114.22 0.200 0.934 ND ND 1 WG1085091	2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
Vinyl chloride 75-01-4 62.50 0.200 0.511 ND ND 1 <u>WG1085091</u>	Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
Vinyl Bromide 593-60-2 106.95 0.200 0.875 ND ND 1 <u>WG1085091</u>	Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
Vinyl acetate 108-05-4 86.10 0.200 0.704 ND ND 1 <u>WG1085091</u>	Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
m&p-Xylene 1330-20-7 106 0.400 1.73 ND ND 1 <u>WG1085091</u>	m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1085091
o-Xylene 95-47-6 106 0.200 0.867 ND ND 1 <u>WG1085091</u>	o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1085091
(S) 1,4-Bromofluorobenzene 460-00-4 175 60.0-140 94.3 <u>WG1085091</u>	(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		94.3				WG1085091

*

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	10.4	24.7		1	WG1085091	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1085091	
enzene	71-43-2	78.10	0.200	0.639	0.422	1.35		1	WG1085091	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1085091	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1085091	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1085091	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1085091	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1085091	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1085091	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1085091	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1085091	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1085091	
hloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1085091	
hloromethane	74-87-3	50.50	0.200	0.413	0.444	0.917		1	WG1085091	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1085091	
yclohexane	110-82-7	84.20	0.200	0.689	0.573	1.97		1	WG1085091	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1085091	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1085091	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1085091	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1085091	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.368	2.22		1	WG1085091	
2-Dichloroethane	106-46-7	99	0.200	0.810	0.368 ND	ND		1	WG1085091 WG1085091	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1085091	
-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1085091	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1085091	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1085091	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1085091	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1085091	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1085091	
1-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1085091	
hanol	64-17-5	46.10	0.630	1.19	90.9	171	E	1	WG1085091	
thylbenzene	100-41-4	106	0.200	0.867	0.384	1.67		1	WG1085091	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1085091	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.685	3.85		1	WG1085091	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	1.25	6.20		1	WG1085091	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1085091	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1085091	
eptane	142-82-5	100	0.200	0.818	0.355	1.45		1	WG1085091	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1085091	
Hexane	110-54-3	86.20	0.200	0.705	0.410	1.45		1	WG1085091	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1085091	
ethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1085091	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1085091	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1085091	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1085091	
ethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1085091	
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1085091	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1085091	
Propanol	91-20-3 67-63-0	60.10	1.25	3.30	2.02	4.96		1	WG1085091	
	67-63-0 115-07-1	42.10	0.400	0.689	1.66	4.96 2.86				
opene								1	WG1085091	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1085091	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1085091	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1085091	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1085091	
oluene	108-88-3	92.10	0.200	0.753	2.90	10.9		1	WG1085091	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1085091	

ATC Group Services LLC - Seattle, WA

PROJECT: NPWR1 18001 SDG: L977692 DATE/TIME: 03/21/18 16:30

PAGE: 15 of 24

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
nalyte			ppbv	ug/m3	ppbv	ug/m3			
1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1085091
1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1085091
richloroethylene	79-01-6	131	0.200	1.07	0.744	3.99		1	WG1085091
2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.408	2.00		1	WG1085091
3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1085091
,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1085091
inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1085091
inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1085091
inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1085091
n&p-Xylene	1330-20-7	106	0.400	1.73	1.44	6.24		1	WG1085091
-Xylene	95-47-6	106	0.200	0.867	0.497	2.15		1	WG1085091
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		94.3				WG1085091

QUALITY CONTROL SUMMARY L977692-01,02,03,04,05,06

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3293850-3 03/16/1	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ppbv		ppbv	ppbv			
Acetone	U		0.0569	1.25			
Allyl Chloride	U		0.0546	0.200			
Benzene	U		0.0460	0.200			
Benzyl Chloride	U		0.0598	0.200			
Bromodichloromethane	U		0.0436	0.200			
Bromoform	U		0.0786	0.600			
Bromomethane	U		0.0609	0.200			
1,3-Butadiene	U		0.0563	2.00			
Carbon disulfide	U		0.0544	0.200			
Carbon tetrachloride	U		0.0585	0.200			
Chlorobenzene	U		0.0601	0.200			
Chloroethane	U		0.0489	0.200			
Chloroform	U		0.0574	0.200			
Chloromethane	U		0.0544	0.200			
2-Chlorotoluene	U		0.0605	0.200			
Cyclohexane	U		0.0534	0.200			
Dibromochloromethane	U		0.0494	0.200			
,2-Dibromoethane	U		0.0185	0.200			
,2-Dichlorobenzene	U		0.0603	0.200			
I,3-Dichlorobenzene	U		0.0597	0.200			
,4-Dichlorobenzene	U		0.0557	0.200			
I,2-Dichloroethane	U		0.0616	0.200			
I,1-Dichloroethane	U		0.0514	0.200			
I,1-Dichloroethene	U		0.0490	0.200			
cis-1,2-Dichloroethene	U		0.0389	0.200			
trans-1,2-Dichloroethene	U		0.0464	0.200			
1,2-Dichloropropane	U		0.0599	0.200			
cis-1,3-Dichloropropene	U		0.0588	0.200			
trans-1,3-Dichloropropene	U		0.0435	0.200			
1,4-Dioxane	U		0.0554	0.200			
Ethylbenzene	U		0.0506	0.200			
4-Ethyltoluene	U		0.0666	0.200			
Trichlorofluoromethane	U		0.0673	0.200			
Dichlorodifluoromethane	U		0.0601	0.200			
,1,2-Trichlorotrifluoroethane	U		0.0687	0.200			
l,2-Dichlorotetrafluoroethane	U		0.0458	0.200			
Heptane	U		0.0626	0.200			
Hexachloro-1,3-butadiene	U		0.0656	0.630			
n-Hexane	U		0.0457	0.200			
Isopropylbenzene	U		0.0563	0.200			

ACCOUNT: ATC Group Services LLC - Seattle, WA

PROJECT: NPWR1 18001

SDG: L977692

DATE/TIME: 03/21/18 16:30

PAGE: 17 of 24

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3293850-3 03/16/18	8 00:49				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	Tc
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	³ Ss
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	4
Methyl Methacrylate	U		0.0773	0.200	Cr
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	⁵ Sr
2-Propanol	U		0.0882	1.25	
Propene	U		0.0932	0.400	6
Styrene	U		0.0465	0.200	ଁ Q (
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	⁷ Gl
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	8
1,2,4-Trichlorobenzene	U		0.148	0.630	A
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	⁹ Sc
Trichloroethylene	U		0.0545	0.200	
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
(S) 1,4-Bromofluorobenzene	93.8			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3293850-1 03/15/1	8 23:25 • (LCSI	D) R3293850	-2 03/16/18 00:	09							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	3.18	3.17	84.8	84.5	52.0-158			0.388	25	
Propene	3.75	2.83	3.08	75.5	82.3	54.0-155			8.63	25	
Dichlorodifluoromethane	3.75	3.07	3.17	81.8	84.4	69.0-143			3.23	25	
1,2-Dichlorotetrafluoroethane	3.75	3.54	3.55	94.3	94.7	70.0-130			0.353	25	
Chloromethane	3.75	3.54	3.61	94.4	96.2	70.0-130			1.93	25	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 ATC Group Services LLC - Seattle, WA
 NPWR1 18001
 L977692
 03/21/18 16:30
 18 of 24

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
/inyl chloride	3.75	3.65	3.71	97.3	98.9	70.0-130			1.60	25
,3-Butadiene	3.75	3.65	3.78	97.2	101	70.0-130			3.54	25
Bromomethane	3.75	3.67	3.55	97.8	94.7	70.0-130			3.16	25
Chloroethane	3.75	3.78	3.66	101	97.7	70.0-130			3.10	25
Trichlorofluoromethane	3.75	3.70	3.71	98.8	99.0	70.0-130			0.192	25
,1,2-Trichlorotrifluoroethane	3.75	3.76	3.73	100	99.4	70.0-130			0.807	25
l,1-Dichloroethene	3.75	3.77	3.70	100	98.8	70.0-130			1.66	25
I,1-Dichloroethane	3.75	3.74	3.78	99.7	101	70.0-130			0.978	25
Acetone	3.75	3.65	3.64	97.2	97.1	70.0-130			0.0959	25
2-Propanol	3.75	3.75	3.49	100	93.0	66.0-150			7.34	25
Carbon disulfide	3.75	3.59	3.58	95.7	95.5	70.0-130			0.174	25
Methylene Chloride	3.75	3.62	3.54	96.6	94.4	70.0-130			2.33	25
MTBE	3.75	3.81	3.80	102	101	70.0-130			0.328	25
rans-1,2-Dichloroethene	3.75	3.79	3.75	101	99.9	70.0-130			1.09	25
n-Hexane	3.75	3.78	3.75	101	100	70.0-130			0.578	25
/inyl acetate	3.75	3.99	3.84	106	102	70.0-130			3.88	25
Methyl Ethyl Ketone	3.75	3.91	4.08	104	109	70.0-130			4.18	25
cis-1,2-Dichloroethene	3.75	3.81	3.84	102	102	70.0-130			0.785	25
Chloroform	3.75	3.77	3.76	100	100	70.0-130			0.244	25
Cyclohexane	3.75	3.83	3.86	102	103	70.0-130			0.830	25
,1,1-Trichloroethane	3.75	3.77	3.78	101	101	70.0-130			0.356	25
Carbon tetrachloride	3.75	3.72	3.69	99.3	98.5	70.0-130			0.826	25
Benzene	3.75	3.76	3.70	100	98.7	70.0-130			1.55	25
I,2-Dichloroethane	3.75	3.86	3.83	103	102	70.0-130			0.749	25
Heptane	3.75	3.83	3.76	102	100	70.0-130			1.82	25
Frichloroethylene	3.75	3.76	3.72	100	99.1	70.0-130			1.28	25
1,2-Dichloropropane	3.75	3.86	3.78	103	101	70.0-130			2.24	25
I,4-Dioxane	3.75	3.89	3.75	104	100	70.0-152			3.64	25
Bromodichloromethane	3.75	3.79	3.76	101	100	70.0-130			0.904	25
cis-1,3-Dichloropropene	3.75	3.94	3.78	105	101	70.0-130			3.98	25
4-Methyl-2-pentanone (MIBK)	3.75	3.87	3.74	103	99.9	70.0-142			3.20	25
Foluene	3.75	3.76	3.71	100	98.8	70.0-130			1.44	25
rans-1,3-Dichloropropene	3.75	3.73	3.81	99.5	101	70.0-130			2.03	25
,1,2-Trichloroethane	3.75	3.70	3.61	98.6	96.3	70.0-130			2.36	25
etrachloroethylene	3.75	3.90	3.76	104	100	70.0-130			3.87	25
Nethyl Butyl Ketone	3.75	4.06	3.92	108	105	70.0-150			3.59	25
Dibromochloromethane	3.75	3.84	3.75	102	100	70.0-130			2.37	25
,2-Dibromoethane	3.75	3.91	3.77	104	100	70.0-130			3.66	25
Chlorobenzene	3.75	3.83	3.77	102	101	70.0-130			1.49	25
Ethylbenzene	3.75	3.68	3.81	98.1	101	70.0-130			3.35	25

Sc

ACCOUNT: ATC Group Services LLC - Seattle, WA PROJECT: NPWR1 18001 SDG: L977692

F 19

DATE/TIME:

03/21/18 16:30

PAGE: 19 of 24

QUALITY CONTROL SUMMARY L977692-01,02,03,04,05,06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	7.49	7.59	99.8	101	70.0-130			1.34	25	
o-Xylene	3.75	3.78	3.85	101	103	70.0-130			1.72	25	
Styrene	3.75	3.84	3.91	103	104	70.0-130			1.81	25	
Bromoform	3.75	3.97	3.97	106	106	70.0-130			0.0549	25	
1,1,2,2-Tetrachloroethane	3.75	3.74	3.80	99.8	101	70.0-130			1.55	25	
4-Ethyltoluene	3.75	3.86	3.97	103	106	70.0-130			2.79	25	
1,3,5-Trimethylbenzene	3.75	3.81	3.89	102	104	70.0-130			2.22	25	
1,2,4-Trimethylbenzene	3.75	3.84	3.88	102	104	70.0-130			1.15	25	
1,3-Dichlorobenzene	3.75	3.91	3.95	104	105	70.0-130			0.873	25	
1,4-Dichlorobenzene	3.75	3.94	4.07	105	108	70.0-130			3.08	25	
Benzyl Chloride	3.75	4.11	4.06	110	108	70.0-144			1.23	25	
1,2-Dichlorobenzene	3.75	3.77	3.85	100	103	70.0-130			2.08	25	
1,2,4-Trichlorobenzene	3.75	4.51	4.62	120	123	70.0-155			2.20	25	
Hexachloro-1,3-butadiene	3.75	4.02	4.01	107	107	70.0-145			0.246	25	
Naphthalene	3.75	4.34	4.40	116	117	70.0-155			1.41	25	
Allyl Chloride	3.75	3.72	3.77	99.1	101	70.0-130			1.51	25	
2-Chlorotoluene	3.75	3.77	3.87	101	103	70.0-130			2.60	25	
Methyl Methacrylate	3.75	3.85	3.80	103	101	70.0-130			1.24	25	
Tetrahydrofuran	3.75	3.85	3.84	103	102	70.0-140			0.438	25	
2,2,4-Trimethylpentane	3.75	3.82	3.76	102	100	70.0-130			1.82	25	
Vinyl Bromide	3.75	3.72	3.77	99.2	100	70.0-130			1.28	25	
Isopropylbenzene	3.75	3.78	3.81	101	102	70.0-130			0.733	25	
(S) 1,4-Bromofluorobenzene	ç			99.2	101	60.0-140					

SDG: L977692

DATE/TIME: 03/21/18 16:30

PAGE: 20 of 24

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	
ND	Method Detection Limit.
RDL	Not detected at the Reporting Limit (or MDL where applicable).
	Reported Detection Limit.
Rec.	Recovery. Relative Percent Difference.
RPD	
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Guamer	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

SDG: L977692

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELA
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ATC Group Services LLC - Seattle, WA

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

NPWR1 18001

L977692

PAGE: 22 of 24

03/21/18 16:30

Τс Ss Cn Sr Qc Gl AI Sc

ompany Name/A	ddress:	11 11 11 11 11 11 11 11 11 11 11 11 11	Service Service	Billing Info				Analy	rsis Chain of Custody Page of
ATC C	Frosp Se	wites LLC		634	7 Scewicu	Aunoc	NW		
B347 Seaview Avenue NW Seattle, Washington, 98107 Dort to: Simon Payne Diect Scription: HP Cleaners 1218				50	Scattle, Washington, 98107				
Seattle	eattle, Washington, 98107 Dirt to: Simon Payme ect cription: HP Cleaners 1218 ne: 2067811449 Client Project # NPWR118001 ected by (print): Site/Facility ID # icholas Turner ected by (signature): Rush? (Lab MUST Be No 								12065 Lebanon Rd
100 Jan 200		the second s		Email To:	non. payar	a atcas.	iem	The state	Mount Juliet, TN 37122
one: 2067811449 Cleaners 1Q18 K: K:									Fax: 615-758-5859
			0	Lab Proje				5	M092
ione: 20C 7	TL Group Services LLC SH7 Seaview Avenue NW Earthle, Washington, 98107 Itio: Simon Payme Itio: Simon Pay						A State	- www	Table
Contraction of the second second	Group Services LLC Serviced Avenue NW le, Washington, 9807 Dimon Payne HP Cleaners 1018 78:1449 Client Project # NPWRI 18001 Drint): Site/Facility ID # Cast Jurner Rush? (Lab MUST Be Notified) 	102	P.O. #				Sum	Acctnum: ATCSWA	
		Rush? (Lab MUST	Be Notified)		Stander	e Results Needed		0	Template: 1128297 Preiogin: P64543
0	2	Same Day		Er	nail? _No Xres	Canister P	ressure/Vacuum		TSR: British Ford PB: BF 3/115
m	4			F/	X? XNo Yes	1	1	10	shipped Via: 600md
Sample ID	Sam	ple Description	Can #	Da	te Time	Initial	Final	T	Rem /Contaminant Sample # (lab only
0A-1	OUTDO	- Air (Shr)	006140	03/13	the second se	20	0	X	-0/
A-2	outdo	or Air (Shr)	007190			29	7		-03
A-3	outdo	r Air (Bhr)	006085				7	×	-04
TA-1	the second se	A STATE OF A	006137			30	5	×	15
IA-2			00 8891		1/18 1724	30	7	×	16
EFF-031318	EFFIJ	unt hir	00 6406	o silo	1000			12 10 10	
					10/2 × 1/2				
-	1.00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					-		
			10		1.1				
SUS INTER	1				15	100 1			
Remarks:				427	6 0143 584	5			Hold # Condition: (lab use only)
Roknquished b	(Signature)		Ilia Tim	125	Received by: (Signature)	A	Samples returned		Condition: (lab use only)
Bellinguished b	v : (Signature)	No. of the local division of the local divis	1/170 0- Tim		Received by: (Signature)	Contraction of the second	Temp: "(and the second second second	
Actinguished D	(. (all record)		Server 1	14		A	AmB Date:	D Time:	COC Seal Intact: Y N NA pH Checked: NCF:
Relinquished b	y : (Signature)	Date:	Tin	ne:	Received for Jab by: (Sig	1 Sto	3/15/19	845	

SCIENCES		
ceipt Form		
SDG#		-3275
Temperature:	AmB	
See the second	11 1	
	Constant of	
NP	Yes	No
		1117
and the state of the second second second	1	
	1	
and the second second second	1/	Sec. 11
	17	
	Content of	alle les
	Markey and	Anse
	Temperature:	SDG# Temperature: AmB NP Yes

ANALYTICAL REPORT

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number: L985783 04/14/2018 NPWRI18001 HP Cleaners

Report To:

Description:

Simon Payne 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

*	
¹ Cp	
² Tc	

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
EFF-041218 L985783-01	5	
Qc: Quality Control Summary	7	
Volatile Organic Compounds (MS) by Method TO-15	7	
GI: Glossary of Terms	11	
Al: Accreditations & Locations	12	
Sc: Sample Chain of Custody	13	

Cp: Cover Page

PROJECT: NPWRI18001 SDG: L985783

DATE/TIME: 04/17/18 14:51

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

EFF-041218 L985783-01 Air			Collected by Nicholas Turner	Collected date/time 04/12/18 14:15	Received date/time 04/14/18 09:00	¹ Cp
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		2 Tc
Volatile Organic Compounds (MS) by Method TO-15	WG1098766	1	04/16/18 16:51	04/16/18 16:51	MBF	

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

*

ACCOUNT: ATC Group Services LLC - Seattle, WA PROJECT: NPWRI18001 SDG: L985783 DATE/TIME: 04/17/18 14:51

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L985783 DATE/TIME: 04/17/18 14:51

*

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	26.7	63.5		1	WG1098766	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1098766	
lenzene	71-43-2	78.10	0.200	0.639	0.283	0.905		1	WG1098766	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1098766	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1098766	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1098766	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1098766	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1098766	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1098766	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1098766	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1098766	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1098766	
Chloroform	67-66-3	119	0.200	0.973	0.563	2.74		1	WG1098766	
Chloromethane	74-87-3	50.50	0.200	0.413	0.478	0.988		1	WG1098766	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1098766	
cyclohexane	110-82-7	84.20	0.200	0.689	0.275	0.948		1	WG1098766	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1098766	
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1098766	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1098766	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1098766	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.517	3.11		1	WG1098766	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1098766	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1098766	
I-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1098766	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1098766	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1098766	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1098766	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1098766	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1098766	
1-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1098766	
hanol	64-17-5	46.10	0.630	1.19	63.8	120	E	1	WG1098766	
thylbenzene	100-41-4	106	0.200	0.867	0.759	3.29		1	WG1098766	
-Ethyltoluene	622-96-8	120	0.200	0.982	0.919	4.51		1	WG1098766	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.772	4.34		1	WG1098766	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	1.89	9.33		1	WG1098766	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1098766	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1098766	
eptane	142-82-5	100	0.200	0.818	0.336	1.38		1	WG1098766	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1098766	
Hexane	110-54-3	86.20	0.200	0.705	0.342	1.21		1	WG1098766	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1098766	
ethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1098766	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1098766	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1098766	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1098766	
ethyl methacrylate	80-62-6	100.12	0.200	0.819	0.385	1.58		1	WG1098766	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1098766	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1098766	
Propanol	67-63-0	60.10	1.25	3.07	4.69	11.5		1	WG1098766	
opene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1098766	
yrene	100-42-5	104	0.400	0.851	0.631	2.69		1	WG1098766	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1098766	
	79-34-5 127-18-4	168	0.200	1.37	ND	ND				
etrachloroethylene								1	WG1098766	
etrahydrofuran	109-99-9	72.10	0.200	0.590	0.475	1.40 15 0		1	WG1098766	
oluene	108-88-3	92.10	0.200	0.753	4.23	15.9		1	WG1098766	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1098766	

ATC Group Services LLC - Seattle, WA

PROJECT: NPWRI18001 SDG: L985783 DATE/TIME: 04/17/18 14:51

PAGE: 5 of 13
*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
richloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1098766
Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1098766
hloroethylene	79-01-6	131	0.200	1.07	0.642	3.44		1	WG1098766
4-Trimethylbenzene	95-63-6	120	0.200	0.982	1.05	5.16		1	WG1098766
5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.291	1.43		1	WG1098766
,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1098766
yl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1098766
yl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1098766
/l acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1098766
p-Xylene	1330-20-7	106	0.400	1.73	3.15	13.7		1	WG1098766
/lene	95-47-6	106	0.200	0.867	1.10	4.76		1	WG1098766
S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.3				WG1098766

SDG: L985783 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3302355-3 04/16/18	3 10:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Allyl Chloride	U		0.0546	0.200
Benzene	U		0.0460	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0436	0.200
Bromoform	U		0.0786	0.600
Bromomethane	U		0.0609	0.200
1,3-Butadiene	U		0.0563	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0185	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
1,3-Dichlorobenzene	U		0.0597	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0616	0.200
1,1-Dichloroethane	U		0.0514	0.200
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

ACCOUNT: ATC Group Services LLC - Seattle, WA PROJECT: NPWRI18001 SDG: L985783 DATE/TIME: 04/17/18 14:51 **PAGE**: 7 of 13 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3302355-3 04/16/18	10:37				-
	MB Result	MB Qualifier	MB MDL	MB RDL	Ī
Analyte	ppbv		ppbv	pbv	
Methylene Chloride	U		0.0465	0.200	- <u></u>
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	ſ
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	Ļ
Naphthalene	U		0.154	0.630	
2-Propanol	U		0.0882	1.25	
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	1
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	ļ
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	l
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
(S) 1,4-Bromofluorobenzene	93.2			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
thanol	3.75	3.91	3.89	104	104	52.0-158			0.402	25	
Propene	3.75	4.08	4.14	109	110	54.0-155			1.32	25	
Dichlorodifluoromethane	3.75	4.01	4.05	107	108	69.0-143			1.18	25	
,2-Dichlorotetrafluoroethane	3.75	4.09	4.10	109	109	70.0-130			0.323	25	
Chloromethane	3.75	4.18	4.18	111	111	70.0-130			0.00426	25	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 ATC Group Services LLC - Seattle, WA
 NPWRI18001
 L985783
 04/17/18 14:51

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Śr

[´]Qc

GI

AI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3302355-1 04/16/18 09:15 • (LCSD) R3302355-2 04/16/18 09:55

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
/inyl chloride	3.75	4.14	4.22	111	113	70.0-130			1.78	25	
,3-Butadiene	3.75	4.15	4.19	111	112	70.0-130			1.10	25	
Bromomethane	3.75	4.10	3.81	109	102	70.0-130			7.37	25	
Chloroethane	3.75	4.16	3.83	111	102	70.0-130			8.30	25	
Trichlorofluoromethane	3.75	4.11	3.86	110	103	70.0-130			6.32	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.00	4.04	107	108	70.0-130			1.20	25	
I,1-Dichloroethene	3.75	4.04	4.13	108	110	70.0-130			2.25	25	
I,1-Dichloroethane	3.75	4.04	4.11	108	110	70.0-130			1.71	25	
Acetone	3.75	4.09	4.13	109	110	70.0-130			1.07	25	
2-Propanol	3.75	4.13	4.08	110	109	66.0-150			1.22	25	
Carbon disulfide	3.75	4.05	4.14	108	110	70.0-130			2.12	25	
Methylene Chloride	3.75	4.01	4.02	107	107	70.0-130			0.0845	25	
MTBE	3.75	3.99	3.98	106	106	70.0-130			0.144	25	
trans-1,2-Dichloroethene	3.75	4.08	4.12	109	110	70.0-130			1.03	25	
n-Hexane	3.75	4.15	4.14	111	110	70.0-130			0.129	25	
Vinyl acetate	3.75	4.19	4.24	112	113	70.0-130			1.36	25	
Methyl Ethyl Ketone	3.75	4.12	4.09	110	109	70.0-130			0.724	25	
cis-1,2-Dichloroethene	3.75	4.02	4.04	107	108	70.0-130			0.455	25	
Chloroform	3.75	3.99	3.99	106	107	70.0-130			0.116	25	
Cyclohexane	3.75	4.12	4.09	110	109	70.0-130			0.814	25	
1,1,1-Trichloroethane	3.75	4.00	4.01	107	107	70.0-130			0.126	25	
Carbon tetrachloride	3.75	3.95	3.97	105	106	70.0-130			0.450	25	
Benzene	3.75	4.07	4.11	108	110	70.0-130			1.14	25	
1,2-Dichloroethane	3.75	3.93	4.02	105	107	70.0-130			2.33	25	
Heptane	3.75	4.24	4.24	113	113	70.0-130			0.122	25	
Trichloroethylene	3.75	3.99	4.01	106	107	70.0-130			0.332	25	
1,2-Dichloropropane	3.75	4.11	4.16	110	111	70.0-130			1.06	25	
1,4-Dioxane	3.75	4.14	4.05	110	108	70.0-152			2.07	25	
Bromodichloromethane	3.75	4.04	4.05	108	108	70.0-130			0.110	25	
cis-1,3-Dichloropropene	3.75	4.04	4.07	108	109	70.0-130			0.874	25	
4-Methyl-2-pentanone (MIBK)	3.75	4.29	4.23	115	113	70.0-142			1.41	25	
Toluene	3.75	4.09	4.08	109	109	70.0-130			0.233	25	
trans-1,3-Dichloropropene	3.75	4.08	4.04	109	108	70.0-130			1.07	25	
1,1,2-Trichloroethane	3.75	4.04	4.04	108	108	70.0-130			0.0385	25	
Tetrachloroethylene	3.75	4.13	4.11	110	110	70.0-130			0.531	25	
Methyl Butyl Ketone	3.75	4.41	4.27	118	114	70.0-150			3.43	25	
Dibromochloromethane	3.75	4.10	4.07	109	108	70.0-130			0.869	25	
l,2-Dibromoethane	3.75	4.08	4.06	109	108	70.0-130			0.590	25	
Chlorobenzene	3.75	4.06	4.03	108	108	70.0-130			0.638	25	
Ethylbenzene	3.75	4.06	4.09	108	109	70.0-130			0.949	25	
A	CCOUNT:			PI	ROJECT:		SDG:			DATE/TIME:	PAG
ATC Group Ser	vices LLC - Seatt	le, WA		NP	WRI18001		L98578	33		04/17/18 14:51	9 of

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 10002000 1 04/10	/18 09:15 • (LCSL) R3302355-	2 04/16/18 09:5	5							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ſ
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	8.16	8.17	109	109	70.0-130			0.211	25	
o-Xylene	3.75	4.09	4.08	109	109	70.0-130			0.245	25	
Styrene	3.75	4.16	4.15	111	111	70.0-130			0.175	25	
Bromoform	3.75	4.21	4.16	112	111	70.0-130			1.03	25	1
1,1,2,2-Tetrachloroethane	3.75	3.92	3.86	105	103	70.0-130			1.64	25	
4-Ethyltoluene	3.75	3.97	3.93	106	105	70.0-130			1.04	25	
1,3,5-Trimethylbenzene	3.75	4.07	3.97	109	106	70.0-130			2.61	25	
1,2,4-Trimethylbenzene	3.75	4.04	3.97	108	106	70.0-130			1.73	25	
1,3-Dichlorobenzene	3.75	4.18	4.10	112	109	70.0-130			1.91	25	
1,4-Dichlorobenzene	3.75	4.40	4.29	117	114	70.0-130			2.55	25	
Benzyl Chloride	3.75	3.99	3.89	106	104	70.0-144			2.50	25	
1,2-Dichlorobenzene	3.75	4.24	4.16	113	111	70.0-130			1.96	25	
1,2,4-Trichlorobenzene	3.75	4.58	4.50	122	120	70.0-155			1.85	25	
Hexachloro-1,3-butadiene	3.75	4.32	4.34	115	116	70.0-145			0.255	25	1
Naphthalene	3.75	4.21	4.12	112	110	70.0-155			2.24	25	
Allyl Chloride	3.75	4.25	4.24	113	113	70.0-130			0.302	25	
2-Chlorotoluene	3.75	4.00	3.99	107	107	70.0-130			0.0128	25	
Methyl Methacrylate	3.75	4.14	4.09	110	109	70.0-130			1.08	25	
Tetrahydrofuran	3.75	4.13	4.08	110	109	70.0-140			1.36	25	
2,2,4-Trimethylpentane	3.75	4.16	4.14	111	110	70.0-130			0.371	25	
Vinyl Bromide	3.75	4.13	3.80	110	101	70.0-130			8.34	25	
lsopropylbenzene	3.75	4.09	4.04	109	108	70.0-130			1.41	25	
(S) 1,4-Bromofluorobenzen	e			96.5	95.1	60.0-140					

DATE/TIME: 04/17/18 14:51 PAGE: 10 of 13

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	
ND	Method Detection Limit.
RDL	Not detected at the Reporting Limit (or MDL where applicable).
	Reported Detection Limit.
Rec.	Recovery. Relative Percent Difference.
RPD	
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

adame	
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

SDG: L985783

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ATC Group Services LLC - Seattle, WA

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

NPWRI18001

E:			
51			

04/17/18 14:

L985783

PAGE:

12 of 13

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

			Billing Inform	mation:		TT	1		Ar	alysis / Conta	liner / Pre	servative	-	Cha	in of Custody	Page _ of _	
ATC Group Services Ll 347 Seaview Avenue NW eattle, WA 98107	.C - Seattl	e, WA	100 C C C	iyne view Avenue NA 98107	NW	Pres Chk									RF	SC	
eport to:			Email To: si		1 H						1000	Mo	165 Lebanon Rd unit Juliet, TN 371 one: 615-758-5851				
imon Payne roject bescription: H.P. (Ital	nur S			City/State Ly	ya								Fax	ane: 800-767-5859 0 615-758-5859	elserta		
hone: 206-781-1449	206-781-1449 Client Project # 282EM00171 NPWRI 1800				2EM00171									LA	M1		
ax: oliected by (print):	NPWR Site/Facility ID	#		P.O. #	1.	-4						Theory -		1000	ctnum: ATC		
Nicholas Junkr follected by (signature):	Same Day	ab MUST Be y Five		- Al	ma							Pr	relogin: P64 SR: 110 - Brian	8169			
mmediately Packed on Ice N 📈 Y	5 Day 10 D	y (Rad Only) ay (Rad Only)	Standard	ults Needed	No. of	S Sum	10	10							PE		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	10-1					210			Remarks	Sample # (lab only)	
FF-041218 G Air		/	04/12/18	1415	1	X									-d		
-											2				-		
17. 19.																	
							10								100		
1997 - C.																	
															Baccint	becklist	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Samples returned via:					lds, (1)tubing a	ind fittir	ngs			pH Flow		ther	COC S Bottl Corre	Signed/A les arri sct bott	e Receipt (sent/Intac ccurate: ve intact les used: olume sent	111	
DW - Drinking Water OT - Other	ourier	and the second se	Tracking #	f196	325	4 31	71	Trip Blank F	laramad	Yes Chip	Una :	Zero Hea	If Applica dapace: Correct/C	ble y			
Relipquished by : (Signature) Date: 04/13/1			5/12	Time: 0830	Received by: (Sig		tion in					HCL/ MeoH TBR Rottles Received				ogin: Date/Time	
Belinquished by : (Signature)		Date:		Time:	Received by: (Sig	gnature)				Amb	}	1		1.84		Condition:	
Relinquished by : (Signature) Date:				Time:	Received for lab	by: (Sigr	mature	880	1-6	Date; 4141	18	Time: 900	Hold			NCF / K	

ANALYTICAL REPORT

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number: Description: L1008985 07/10/2018 NPWRL18001 Harbour Pointe Cleaners

Report To:

Elisabeth Silver 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

*
¹ Cp
² Ta

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SV-1-070618 L1008985-01	5
SV-2-070618 L1008985-02	6
SV-3-070618 L1008985-03	7
SV-4-070618 L1008985-04	8
SV-5-070618 L1008985-05	9
Qc: Quality Control Summary	10
Volatile Organic Compounds (GC) by Method ASTM 1946	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

Cp: Cover Page

SDG: L1008985

PAGE: 2 of 14

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	••••••=••	• • • • • • •			
SV-1-070618 L1008985-01 Air			Collected by B. Goulet	Collected date/time 07/06/18 11:17	Received date/time 07/10/18 08:45
	Detek	Dilution	Duanantian	Australia	Arrahust
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method ASTM 1946	WG1137476	1	07/13/18 13:33	07/13/18 13:33	MEL
			Collected by	Collected date/time	Received date/time
SV-2-070618 L1008985-02 Air			B. Goulet	07/06/18 12:28	07/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method ASTM 1946	WG1137476	1	07/13/18 13:36	07/13/18 13:36	MEL
			Collected by	Collected date/time	Received date/time
SV-3-070618 L1008985-03 Air			B. Goulet	07/06/18 13:09	07/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method ASTM 1946	WG1137476	1	07/13/18 13:42	07/13/18 13:42	MEL
			Collected by	Collected date/time	Received date/time
SV-4-070618 L1008985-04 Air			B. Goulet	07/06/18 13:44	07/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method ASTM 1946	WG1137476	1	07/13/18 13:45	07/13/18 13:45	MEL
			Collected by	Collected date/time	Received date/time
SV-5-070618 L1008985-05 Air			B. Goulet	07/06/18 14:24	07/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method ASTM 1946	WG1137476	1	07/13/18 13:48	07/13/18 13:48	MEL

SDG: L1008985 DATE/TIME: 07/16/18 15:54

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1008985 DATE/TIME: 07/16/18 15:54 PAGE:

4 of 14

SAMPLE RESULTS - 01 L1008985

Volatile Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	Ср
Analyte			%	%				2
Helium	7440-59-7		0.100	ND		1	WG1137476	Tc

³ Ss
⁴Cn
⁵Sr
⁶ Qc
⁷ Gl
[°] Al
⁹ Sc

SAMPLE RESULTS - 02 L1008985

Volatile Organic Compounds (GC) by Method ASTM 1946

	<u> </u>		· / /						1 Cm	
		CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	Cp	
Analyte				%	%				2	ī
Helium		7440-59-7		0.100	ND		1	<u>WG1137476</u>	⁻Tc	

SDG: L1008985 PAGE: 6 of 14

Volatile Organic Compounds (GC) by Method ASTM 1946

	<u> </u>		· / /						1 Cm	
		CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	Cp	
Analyte				%	%				2	ī
Helium		7440-59-7		0.100	ND		1	<u>WG1137476</u>	⁻Tc	

SDG: L1008985

Volatile Organic Compounds (GC) by Method ASTM 1946

											Cn	н
	CA	S #	Mol. Wt.	RDL	Re	sult	Q	ualifier	Dilution	Batch	Cp	l
Analyte				%	%						2	ī
Helium	744	0-59-7		0.100	NE)			1	WG1137476	⁻Tc	

Volatile Organic Compounds (GC) by Method ASTM 1946

	<u> </u>		· / /						1 Cm	
		CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	Cp	
Analyte				%	%				2	ī
Helium		7440-59-7		0.100	ND		1	<u>WG1137476</u>	⁻Tc	

SDG: L1008985 DATE/TIME: 07/16/18 15:54 **PAGE**: 9 of 14

WG1137476

Volatile Organic Compounds (GC) by Method ASTM 1946

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3325387-3 07/13/18 11:00											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	%		%	%							
Helium	U		0.0259	0.100							

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325387-1 07/13/18 10:53 • (LCSD) R3325387-2 07/13/18 10:57											
		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
	Analyte	%	%	%	%	%	%			%	%
	Helium	2.50	2.73	2.64	109	106	70.0-130			3.54	25

DATE/TIME: 07/16/18 15:54 PAGE: 10 of 14

GLOSSARY OF TERMS

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
	The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1008985

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampsh
Arkansas	88-0469	New Jersey-
California	2932	New Mexico
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolir
Florida	E87487	North Carolir
Georgia	NELAP	North Carolir
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolin
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ATC Group Services LLC - Seattle, WA

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

NPWRL18001

L1008985

07/16/18 15:54 12 of 14

PAGE:

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

mpany Name/A	ddress:	100 10 10 10 10 10 10 10 10 10 10 10 10	1512 MA		ing information	0,			Analysis	Chain of Custody	Page_of_
ATC (Group Se	Ave. NW 18107			same					*	ESC
EI	isabeth	Silver					er@atcgs	.com		12005 Lokamon Rd Mount Juliet, TN 37 Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5858	
	Harbour	Pointe Cle				nwood,	WA			LH JAD	1929
ome: (206)	781-1449	Client Broject # NPI	WR/18001	1.0	b Project #		La series			Table	M126
llected by (pri-	and the second second	Site/Facility ID #	and the second second	P.	O. #					Incom	AND A CONTRACT
B. Gou		Rush? (Lab M Same Day Same Day Twit Day Twit Day Twite Day	UST Be Notified) 200% 100% 50% 23%				Canister Pres	T Issure/Vacuum		Prelogin: TSA: 881	138003
Sample ID	Sem	ple Description	Can #		Date	Time	Initial	Final		Shipped Via Ann. Contaminat	et Sample # (Jak only)
	outdoor air		9320	0	7-06-18	OBIB	-29.5"	-12.25*		61	
17-07+616	outdoor air	, 2	6900		1.5	0821	-30.0"			-1	the second se
13-070610	outdoor ai	1.3	527	1		0824	-29.0"	-11.25*		3	Contraction of the local division of the
	indoor air,		513	7		0843	-30.0"				Contraction of the local division of the loc
12-070616	indoor air	.2	662	-1	13 16.	0837	-28.5"	-6.0"		1 A	and the second se
- 1-090418	5V-1	in e sellen	9146			11:17	-29.0"	-6.0 "		4	
1-2-070618	51-2		730		2. 1988	12:28	-29.5"	-8.0"		4	
w-3-070616	54-3	Mr. Martin	6901			13:09	-29.5"	- 5.5"		1	T OV
w-4-07-68	51-4		8883	5	-	13:44	-29.25"	- 8.0 "		7	1
5-5-070612	SY-5		8746		Y	14:24	-29.0"		100 E		
			1	, 4	9.42	6214 51	7 3: 5184	1		Hold #	
Relinquished	by: (Signature)	in return s	er v	Time: 1055	Received	by: (Signature)	1	Samples returned via:	□	Condition: (A	ib use only)
Relinquisted	by ((Signature)	Dat		Time:		by: (Signature)	< .	And la		of the local division of the subscription of the local division of	NA
Relinguished	by (Signature)	Dat	e:	Time:	Received	Torma pyt (Signa	Lore)	Date: Turn 7/10/14	0845	Preserved. In	

Andy Vann

From: Sent: To: Subject:

Login; Sample Storage; Brian Ford; Air; Heidi Ferrell; Chris Johnson; Matt B. Ferrell Friday, July 13, 2018 10:00 AM L1007777 *ATCSWA* re-log Brian Ford

L10077777-06 through -10. Please re-log for Helium as R5 due 07/20.

Air,

Please make sure these are not cleaned prior to re-log/re-analysis.

Thanks, Brian Ford Project Manager

Pace Analytical National Center for Testing & Innovation 12065 Lebanon Road | Mt. Juliet, TN 37122 615.773.9772

bford@pacenational.com | pacenational.com

ESC Lab Sciences is now Pace Analytical National Center for Testing & Innovation! Please make note of my new email address and website.

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT

ATC Group Services LLC - Seattle, WA

Sample Delivery Group: Samples Received: Project Number: L998635 06/02/2018 282EM00171 Harbour Pointe

Report To:

Description:

Elisabeth Silver 6347 Seaview Avenue NW Seattle, WA 98107

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

₩	
¹ Cp	
² Tc	

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
EFF-053118 L998635-01	5
Qc: Quality Control Summary	7
Volatile Organic Compounds (MS) by Method TO-15	7
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L998635

DATE/TIME: 06/06/18 18:35 PAGE: 2 of 13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

EFF-053118 L998635-01 Air			Collected by B. Goulet	Collected date/time 05/31/18 10:52	Received date/time 06/02/18 08:45	[
Method	Batch	Dilution	Preparation	Analysis	Analyst	L
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1119944	1	06/05/18 20:13	06/05/18 20:13	AMC	

³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

*

Ср

Тс

SDG: L998635 DATE/TIME: 06/06/18 18:35

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L998635 DATE/TIME: 06/06/18 18:35 PAGE: 4 of 13

SAMPLE RESULTS - 01 L998635

¥

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch	
Acetone	67-64-1	58.10	1.25	2.97	18.3	43.4		1	WG1119944	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1119944	
Benzene	71-43-2	78.10	0.200	0.639	0.391	1.25		1	WG1119944	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1119944	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1119944	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1119944	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1119944	
I,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1119944	
Carbon disulfide	75-15-0	76.10	0.200	0.622	0.221	0.689		1	WG1119944	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1119944	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1119944	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1119944	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1119944	
Chloromethane	74-87-3	50.50	0.200	0.413	0.556	1.15		1	WG1119944	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1119944	
Cyclohexane	110-82-7	84.20	0.200	0.689	0.238	0.820		1	WG1119944	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1119944	
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1119944	
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1119944	
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1119944	
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.347	2.09		1	WG1119944	
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1119944	
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1119944	
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1119944	
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1119944	
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1119944	
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1119944	
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1119944	
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1119944	
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1119944	
thanol	64-17-5	46.10	0.630	1.19	83.2	157	E	1	WG1119944	
thylbenzene	100-41-4	106	0.200	0.867	0.546	2.37		1	WG1119944	
-Ethyltoluene	622-96-8	120	0.200	0.982	0.562	2.76		1	WG1119944	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	2.25	12.6		1	WG1119944	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.547	2.71		1	WG1119944	
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1119944	
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1119944	
leptane	142-82-5	100	0.200	0.818	0.319	1.31		1	WG1119944	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1119944	
-Hexane	110-54-3	86.20	0.200	0.705	0.547	1.93		1	WG1119944	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1119944	
Nethylene Chloride	75-09-2	84.90	0.200	0.694	0.633	2.20		1	WG1119944	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1119944	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1119944	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1119944	
Nethyl methacrylate	80-62-6	100.12	0.200	0.819	0.677	2.77		1	WG1119944	
1TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1119944	
laphthalene	91-20-3	128	0.630	3.30	ND	ND	_	1	WG1119944	
-Propanol	67-63-0	60.10	1.25	3.07	115	283	E	1	WG1119944	
ropene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1119944	
Styrene	100-42-5	104	0.200	0.851	0.323	1.38		1	WG1119944	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1119944	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG1119944	
letrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1119944	
Foluene	108-88-3	92.10	0.200	0.753	3.69	13.9		1	WG1119944	
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1119944	

ACCOUNT: ATC Group Services LLC - Seattle, WA

PROJECT: 282EM00171

SDG: L998635

DATE/TIME: 06/06/18 18:35 PAGE:

5 of 13

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1119944
,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1119944
richloroethylene	79-01-6	131	0.200	1.07	0.385	2.06		1	WG1119944
I,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.637	3.12		1	WG1119944
,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1119944
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	0.416	1.94		1	WG1119944
'inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1119944
/inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1119944
/inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1119944
n&p-Xylene	1330-20-7	106	0.400	1.73	1.95	8.45		1	WG1119944
-Xylene	95-47-6	106	0.200	0.867	0.774	3.35		1	WG1119944
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG1119944

SDG: L998635 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

L998635-01

Ср

Method Blank (MB)

(MB) R3315435-3 06/05/1	8 10:22				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.0569	1.25	
Allyl Chloride	U		0.0546	0.200	
Benzene	U		0.0460	0.200	
Benzyl Chloride	U		0.0598	0.200	
Bromodichloromethane	U		0.0436	0.200	
Bromoform	U		0.0786	0.600	
Bromomethane	U		0.0609	0.200	
1,3-Butadiene	U		0.0563	2.00	
Carbon disulfide	U		0.0544	0.200	
Carbon tetrachloride	U		0.0585	0.200	
Chlorobenzene	U		0.0601	0.200	
Chloroethane	U		0.0489	0.200	
Chloroform	U		0.0574	0.200	
Chloromethane	U		0.0544	0.200	
2-Chlorotoluene	U		0.0605	0.200	
Cyclohexane	U		0.0534	0.200	
Dibromochloromethane	U		0.0494	0.200	
,2-Dibromoethane	U		0.0185	0.200	
l,2-Dichlorobenzene	U		0.0603	0.200	
,3-Dichlorobenzene	U		0.0597	0.200	
,4-Dichlorobenzene	U		0.0557	0.200	
l,2-Dichloroethane	U		0.0616	0.200	
l,1-Dichloroethane	U		0.0514	0.200	
I,1-Dichloroethene	U		0.0490	0.200	
cis-1,2-Dichloroethene	U		0.0389	0.200	
rans-1,2-Dichloroethene	U		0.0464	0.200	
1,2-Dichloropropane	U		0.0599	0.200	
cis-1,3-Dichloropropene	U		0.0588	0.200	
rans-1,3-Dichloropropene	U		0.0435	0.200	
I,4-Dioxane	U		0.0554	0.200	
Ethylbenzene	U		0.0506	0.200	
1-Ethyltoluene	U		0.0666	0.200	
Frichlorofluoromethane	U		0.0673	0.200	
Dichlorodifluoromethane	U		0.0601	0.200	
,1,2-Trichlorotrifluoroethane	U		0.0687	0.200	
	U		0.0458	0.200	
Heptane	U		0.0626	0.200	
Hexachloro-1,3-butadiene	U		0.0656	0.630	
n-Hexane	U		0.0457	0.200	
Isopropylbenzene	U		0.0563	0.200	

PROJECT: 282EM00171

SDG: L998635

DATE/TIME: 06/06/18 18:35

PAGE: 7 of 13 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

L998635-01

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

PAGE:

8 of 13

Method Blank (MB)

(MB) R3315435-3 06/05/18	8 10:22				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	
Naphthalene	U		0.154	0.630	
2-Propanol	U		0.0882	1.25	
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	
Toluene	U		0.0499	0.200	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
(S) 1,4-Bromofluorobenzene	98.9			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Ethanol	3.75	3.80	3.78	101	101	52.0-158			0.393	25
Propene	3.75	4.09	4.07	109	109	54.0-155			0.473	25
Dichlorodifluoromethane	3.75	4.29	4.27	115	114	69.0-143			0.661	25
2-Dichlorotetrafluoroethane	3.75	4.13	4.10	110	109	70.0-130			0.756	25
Chloromethane	3.75	4.15	4.09	111	109	70.0-130			1.54	25

ACCOUNT: DATE/TIME: PROJECT: SDG: ATC Group Services LLC - Seattle, WA 282EM00171 L998635 06/06/18 18:35

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3315435-1 06/05/18 08:50 • (LCSD) R3315435-2 06/05/18 09:35

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
nalyte	ppbv	ppbv	ppbv	%	%	%			%	%	
nyl chloride	3.75	4.03	4.13	107	110	70.0-130			2.58	25	
3-Butadiene	3.75	4.06	4.10	108	109	70.0-130			1.01	25	
romomethane	3.75	4.22	4.06	112	108	70.0-130			3.87	25	
hloroethane	3.75	4.10	4.06	109	108	70.0-130			0.871	25	
richlorofluoromethane	3.75	4.28	4.22	114	112	70.0-130			1.55	25	
,1,2-Trichlorotrifluoroethane	3.75	4.07	4.01	109	107	70.0-130			1.45	25	
1-Dichloroethene	3.75	4.27	4.18	114	111	70.0-130			2.18	25	
1-Dichloroethane	3.75	4.15	4.10	111	109	70.0-130			1.33	25	
cetone	3.75	4.38	4.33	117	115	70.0-130			1.09	25	
-Propanol	3.75	4.22	4.16	112	111	66.0-150			1.37	25	
arbon disulfide	3.75	4.01	3.97	107	106	70.0-130			1.05	25	
lethylene Chloride	3.75	4.14	4.11	111	109	70.0-130			0.953	25	
1TBE	3.75	4.17	4.09	111	109	70.0-130			1.90	25	
rans-1,2-Dichloroethene	3.75	4.19	4.12	112	110	70.0-130			1.66	25	
-Hexane	3.75	4.07	4.03	108	107	70.0-130			1.02	25	
inyl acetate	3.75	4.58	4.52	122	121	70.0-130			1.26	25	
lethyl Ethyl Ketone	3.75	4.12	4.05	110	108	70.0-130			1.83	25	
s-1,2-Dichloroethene	3.75	4.19	4.13	112	110	70.0-130			1.45	25	
hloroform	3.75	4.14	4.07	110	109	70.0-130			1.72	25	
yclohexane	3.75	3.98	3.92	106	105	70.0-130			1.54	25	
1,1-Trichloroethane	3.75	4.21	4.14	112	110	70.0-130			1.69	25	
arbon tetrachloride	3.75	4.16	4.13	111	110	70.0-130			0.813	25	
enzene	3.75	3.96	3.90	106	104	70.0-130			1.71	25	
2-Dichloroethane	3.75	4.53	4.45	121	119	70.0-130			1.78	25	
leptane	3.75	4.22	4.19	113	112	70.0-130			0.827	25	
richloroethylene	3.75	4.02	3.96	107	105	70.0-130			1.61	25	
2-Dichloropropane	3.75	4.06	4.01	108	107	70.0-130			1.37	25	
4-Dioxane	3.75	3.93	3.85	105	103	70.0-152			2.05	25	
romodichloromethane	3.75	4.24	4.16	113	111	70.0-130			1.91	25	
is-1,3-Dichloropropene	3.75	4.13	4.08	110	109	70.0-130			1.31	25	
-Methyl-2-pentanone (MIBK)	3.75	4.43	4.39	118	117	70.0-142			0.994	25	
oluene	3.75	3.98	3.91	106	104	70.0-130			1.59	25	
rans-1,3-Dichloropropene	3.75	4.22	4.17	113	111	70.0-130			1.26	25	
1,2-Trichloroethane	3.75	3.97	3.90	106	104	70.0-130			1.92	25	
etrachloroethylene	3.75	3.91	3.84	104	102	70.0-130			1.86	25	
lethyl Butyl Ketone	3.75	4.75	4.67	127	124	70.0-150			1.68	25	
ibromochloromethane	3.75	4.32	4.25	115	113	70.0-130			1.66	25	
2-Dibromoethane	3.75	4.32	4.24	115	113	70.0-130			1.96	25	
hlorobenzene	3.75	4.21	4.17	112	111	70.0-130			0.946	25	
thylbenzene	3.75	4.12	4.04	110	108	70.0-130			2.04	25	
A	CCOUNT:			PF	ROJECT:		SDG:			DATE/TIME:	PA
ATC Group Ser	vices LLC - Seatt	le, WA		282	2EM00171		L99863	35		06/06/18 18:35	9 0

QUALITY CONTROL SUMMARY

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3315435-1	06/05/18 08:50 •	(LCSD) R3315435-2	06/05/18 09:35

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	8.23	8.08	110	108	70.0-130			1.82	25	
o-Xylene	3.75	4.13	4.02	110	107	70.0-130			2.60	25	
Styrene	3.75	4.15	4.06	111	108	70.0-130			2.08	25	
Bromoform	3.75	4.14	4.08	111	109	70.0-130			1.58	25	
1,1,2,2-Tetrachloroethane	3.75	4.21	4.13	112	110	70.0-130			1.95	25	
4-Ethyltoluene	3.75	4.19	4.09	112	109	70.0-130			2.48	25	
1,3,5-Trimethylbenzene	3.75	4.21	4.11	112	110	70.0-130			2.27	25	
1,2,4-Trimethylbenzene	3.75	4.17	4.07	111	109	70.0-130			2.43	25	
1,3-Dichlorobenzene	3.75	4.18	4.09	112	109	70.0-130			2.23	25	
1,4-Dichlorobenzene	3.75	4.31	4.22	115	112	70.0-130			2.17	25	
Benzyl Chloride	3.75	4.62	4.52	123	121	70.0-144			2.01	25	
1,2-Dichlorobenzene	3.75	4.11	4.02	109	107	70.0-130			2.00	25	
1,2,4-Trichlorobenzene	3.75	3.92	3.84	105	102	70.0-155			2.17	25	
Hexachloro-1,3-butadiene	3.75	3.92	3.84	104	102	70.0-145			1.96	25	
Naphthalene	3.75	3.94	3.87	105	103	70.0-155			1.76	25	
Allyl Chloride	3.75	4.17	4.14	111	111	70.0-130			0.731	25	
2-Chlorotoluene	3.75	4.26	4.17	114	111	70.0-130			2.03	25	
Methyl Methacrylate	3.75	4.48	4.43	119	118	70.0-130			1.10	25	
Tetrahydrofuran	3.75	4.27	4.22	114	113	70.0-140			0.997	25	
2,2,4-Trimethylpentane	3.75	4.01	3.96	107	105	70.0-130			1.37	25	
Vinyl Bromide	3.75	3.97	3.93	106	105	70.0-130			1.06	25	
Isopropylbenzene	3.75	4.12	4.03	110	107	70.0-130			2.19	25	
(S) 1,4-Bromofluorobenzen	e			105	105	60.0-140					

SDG: L998635 DATE/TIME: 06/06/18 18:35 PAGE: 10 of 13

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Abbieviations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

SDG: L998635

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ATC Group Services LLC - Seattle, WA

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

282EM00171

L998635

PAGE: 12 of 13

06/06/18 18:35

Τс Ss Cn Sr Qc Gl AI

Sc

	2002.5 BUT 1995		Billing Info	ormation:		1-		Sec	An	alysis / Contai	ner / Presen	vative		Chain of Custod	ly Page of					
ATC Group Services I 6347 Seaview Avenue NW Seattle, WA 98107	LLC - Seatt	le, WA	6347 Se	Elisabeth Silver 6347 Seaview Avenue NW Seattle, WA 98107											ESC					
Report to: Elisabeth Silver		Email To: elisabeth.silver@atcgs.com								12065 Lebanon Ro Mount Juliet, TN 3 Phone: 615, 708,6										
Project Description: Harbour	r Pointe City/State Collected: Seattle, WA									Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859										
Phone: 206-781-1449 Fax:	Client Project 282EM001			Lab Project # ATCSWA-282EM00171			1000					35		1# 99.80	M026					
Collected by (print): B. Goulet	Site/Facility ID # P.O. # Rush? (Lab MUST Be Notified) Quote # Same DayFive Day			P.O. #		0.#			Carl Carl										Table # Acctnum: AT	1001
Collected by (signature):				Quote #								1		Template: T1 Prelogin: P6 !	NE STATE					
immediately Packed on Ice N Y	Next Day Two Day Three Day		(Rad Only) y (Rad Only)	ad Only) Date Results Needed			Date Results Needed		No. of	5 Summa				A COLOR			TSR: 110 - Bri PB:	an Ford		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotre							34	Shipped Via:	Sample # (lab only)					
EFF-053118	Grab	Air		05-31-1	8 1052	1	X								-01					
			-																	
1. 194 2. 194																				
						-						1								
						11														
						1	125													
					-						129		120							
Matrix: S - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay VW - WasteWater	Remarks:(1)6Liter summa, (1)200cc/min manifolds, (1)tubing and fitt						gs			pH	_ Temp _		COC Second Secon	Sample Receipt C al Present/Intac gned/Accurate: s arrive intact: bottles used:	Checklint L: M Y N J N J N N N					
OW - Drinking Water OT - Other	Samples retur	ned via: dExCou	rier		Tracking #	30	1	693	2:	2592		in State	Suffic	ient volume sent If Apolica						
Relinquished by: (Signature) R. Jeult		Date: 06-01	Time: Received by: (Signature)							Trip Blank Received: Yes / No HCL / MeoH TBR			VOA Zero Headspace:YN Preservation Correct/Checked:YN							
telinquished by (Signature)		Date:		Time:	Received by: (Sign	ature)			- D1	emp: • Amb	C Bottles F	Received:	If preser	vation required by L	ogin: Date/Time					
Relinquished by : (Signature)	Date: Time:			Time:	Received for lab by: (Signature)					Date: Time:			Hold:		Condition: NCF / OK					