Intended for Mr. Andy Smith Washington State Department of Ecology

Prepared by Ramboll US Corporation

Date December 2018

2018 ANNUAL REPORT CASCADE TIMBER #1 SITE 2502 MARINE VIEW DRIVE TACOMA, WA

Ramboll 400 E. Evergreen Blvd. Suite 302 Vancouver, WA 98660 USA

T +1 360 597 7066 www.ramboll.com

CONTENTS

Execut	tive Summary	1
1.	Site Background and Setting	3
1.1	Site Background	3
1.2	Description of the Site	3
2.	Ground Water Monitoring Activities	4
2.1	Sampling Procedures	4
2.2	Laboratory Analysis	4
2.3	Quality Assurance/Quality control	5
3.	Groundwater Monitoring Results	6
3.1	Groundwater Elevations	6
3.2	Groundwater Analytical Results	6
3.3	Statistical Trend Analysis	6
4.	Operations and Maintenance (O&M) Inspection	8
5.	Conclusions	9
6.	References	10

FIGURES

Figure 1:	Groundwater Elevation Map – July 2018
Figure 2a:	Groundwater Elevation and Metal Concentrations – MCW-1
Figure 2a:	Groundwater Elevation and Metal Concentrations – MCW-2
Figure 2a:	Groundwater Elevation and Metal Concentrations – MCW-3
Figure 2a:	Groundwater Elevation and Metal Concentrations – MCW-4

TABLES

- Table 1:
 Groundwater Elevation Measurements (2011 2018)
- Table 2:
 Summary of Groundwater Analytical Results
- Table 3:Summary of Mann-Kendall Test Results

APPENDICES

Appendix A:	Purge Logs
rippendix rii	i uige Logo

- Appendix B: Laboratory Results
- Appendix C: Field Inspection Notes
- Appendix D: Site Photographs

ACRONYMS AND ABBREVIATIONS

amsl	above mean sea level
DOT	Department of Transportation
Ecology	Washington State Department of Ecology
MCHI	McFarland Holdings Incorporated
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
O&M	Operations and Maintenance
TAI	Test America Incorporated
USEPA	United States Environmental Protection Agency

EXECUTIVE SUMMARY

This 2018 Annual Report describes the July 2018 groundwater monitoring event and site inspection at the Cascade Timber #1 site in Tacoma, Washington (the "Site"). The Site is currently an inactive facility, consisting of a containment cell for impacted soil, slag, and woody debris.

The Site forms the western portion (approximately 0.5 acres) of a larger property (approximately 8acres) that was formerly owned by Cascade Pole Company and leased by the Cascade Timber Company (CTC) from 1977 to 1981. Cascade Timber Company operated the property as a log sort yard. The Site is located along the Hylebos Waterway, and is within the Commencement Bay Nearshore/Tideflats Superfund Site (CBNTSS), which was added to the National Priorities List in 1982. The CBNTSS includes the head of Hylebos Waterway and those upland sites that are believed to contribute contamination to the waterway.

From at least 1977 to 1981, slag from the ore smelting process produced at the ASARCO smelting facility in Tacoma, Washington was placed throughout the CTC property as ballast to keep heavy equipment from sinking into the soft soil. As demonstrated in prior investigations of the log yard property, soil and groundwater impacts attributed to the placement of slag were identified.

In 1986, the property owner (Cascade Pole Company) sold the property to McFarland Holdings, Incorporated (MCHI). Consent Decree No. 932100995 was issued by the State of Washington Department of Ecology (Ecology) in October 1993, identifying the responsible parties as MCHI, Cascade Pole Company, and ASARCO Incorporated. Under the Consent Decree, materials (e.g., wood waste, soil, crushed slag) containing levels of contaminants exceeding the cleanup standards were excavated and consolidated for containment with a double barrier cap system, which was constructed on the Site. Four groundwater monitoring wells were installed, and maintenance of the containment system and monitoring of stormwater runoff from the Site was performed.

ASARCO had been responsible for the Site until December 9, 2009. On that date, the United States Bankruptcy Court for the Southern District of Texas entered an order associated with ASARCO's bankruptcy, Case No. 05-21207, that approved a Settlement Agreement establishing the ASARCO Multi-State Custodial Trust for certain ASARCO owned sites, including the "McFarland Designated Property" (i.e., the Site), approval of the appointment of a Custodial Trust, approval of a Custodial Trust Agreement, and for the conveyance of the Site to the ASARCO Multi-State Custodial Trust.

Ramboll has conducted the required groundwater monitoring and containment cell maintenance activities since 2011 on behalf of the ASARCO Multi-State Custodial Trust (Trust). In July 2018, the four monitoring wells at the Site were purged and sampled using low-flow methods, and the containment cell improvements (e.g., fences, piping, vegetative cover) were inspected to identify necessary maintenance actions. Analytical results for the July 2018 sampling event are similar to the results from Ramboll's previous sampling events conducted from 2011 through 2017. All reported concentrations of primary constituents of concern (i.e., arsenic, copper, lead and zinc) were below Ecology's surface water quality standards (i.e., marine chronic criteria) identified as the cleanup criteria in the 1993 Consent Decree. Based on the 2018 Site inspection, no immediate repair actions were identified.

As noted in the Second Periodic Review Report published by the Washington State Department of Ecology (Ecology) in June 2016, groundwater cannot be used for drinking water purposes due to salinity. Groundwater monitoring conducted by Ramboll since 2011 has not identified any exceedances of

applicable surface water quality standards, and temporal trends do not suggest that concentrations are likely to approach or exceed relevant regulatory criteria specified in the Consent Decree.

The Trust and Ecology have a meeting scheduled for December 12, 2018, to discuss the comprehensive data set collected to date and the regulatory and administrative path forward in consideration of remaining funds in the Trust account.

1. SITE BACKGROUND AND SETTING

1.1 Site Background

The Site consists of a single parcel (0321268000), located adjacent to the Hylebos Waterway, in Tacoma, Pierce County, Washington. The Site is a portion of a larger property (8.1 acres in total) that was formerly operated by the Cascade Timber Company from 1977 to 1981 for use as a log sorting yard. During this time period, slag from the ore smelting process at the ASARCO smelting facility in Tacoma, Washington was placed as base rock/ballast to keep heavy equipment from sinking into soft soil. Over the years, the slag was pulverized from heavy equipment traffic and was mixed with woody debris associated with the log sorting operations, ultimately resulting in soil and groundwater impacts by arsenic, copper, lead, and zinc. The selected remedy consisted of removal of impacted debris from areas across the larger approximately 8-acre site and placement in an on-Site containment cell constructed in 1994-1995.

In 1986, the property owner (Cascade Pole Company) sold the property to McFarland Holdings, Incorporated (MCHI). Consent Decree No. 932100995 was issued by the State of Washington Department of Ecology (Ecology) in October 1993, identifying the responsible parties as MCHI, Cascade Pole Company, and ASARCO Incorporated. Under the Consent Decree, materials (e.g., wood waste, soil, crushed slag) containing levels of contaminants exceeding the cleanup standards were excavated and consolidated for containment with a double barrier cap system, which was constructed on the Site. Four groundwater monitoring wells were installed, and maintenance of the containment system and monitoring of stormwater runoff from the Site was performed.

ASARCO had been responsible for the Site until December 9, 2009. On that date, the United States Bankruptcy Court for the Southern District of Texas entered an order associated with ASARCO's bankruptcy, Case No. 05-21207, that approved a Settlement Agreement establishing the ASARCO Multi-State Custodial Trust for certain ASARCO owned sites, including the "McFarland Designated Property" (i.e., the Site), approval of the appointment of a Custodial Trust, approval of a Custodial Trust Agreement, and for the conveyance of the Site to the ASARCO Multi-State Custodial Trust.

1.2 Description of the Site

The Site covers approximately 0.51 acres in an industrial land use area. The Site is secured with a chainlink fence and is accessed from its northern boundary along Marine View Drive. The Site includes a containment cell (aboveground and partially below-ground), and four shallow perimeter groundwater monitoring wells (MCW-1 through MCW-4). The Hylebos Waterway is located approximately 450 feet south of the Site boundary. The Site is not actively used for any purpose other than the containment cell.

2. GROUND WATER MONITORING ACTIVITIES

2.1 Sampling Procedures

On July 25, 2018, Ramboll conducted groundwater sampling activities. Upon arrival at the Site, Ramboll field personnel removed the well caps to allow the monitoring wells to equilibrate with atmospheric pressure for approximately 30 minutes. Water levels were then measured to the nearest 0.01 feet (relative to the top-of-casing) using an electric water level indicator. Groundwater level measurements and well construction information are summarized in Table 1.

After measuring the water level at each well, groundwater purging and sampling was conducted using a peristaltic pump and new ¼-inch tubing employing "low-flow" techniques. Groundwater was purged at a rate ranging from approximately 0.05 to 0.1 liter per minute (L/min). During purging, the groundwater level was monitored, adjusting the purge rate as necessary to limit the drawdown to less than approximately 0.33 feet. After purging at least one tubing volume, groundwater parameters including temperature, pH, conductivity, turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were monitored using an in-line flow-through cell. Parameter readings were recorded every 3 to 5 minutes on field purge logs, until parameter measurements indicated that groundwater conditions had stabilized. Generally, the criterion for achieving stabilization is three consecutive readings of each parameter described above within 10% of each other. Purge logs are included in Attachment A.

Upon achieving stabilization, groundwater samples were collected into laboratory prepared bottles. After collection, the groundwater samples were labelled, recorded on a chain-of-custody, and stored in a cooler with ice pending delivery to Test America Incorporated (TAI), a Washington-certified analytical laboratory in Fife, Washington. Purged water was contained in Department of Transportation (DOT)-approved 55-gallon steel drums and stored at the Site pending disposal. Based on the analytical results from Ramboll's prior groundwater monitoring events, the purged water stored at the Site can be managed as non-regulated waste.

2.2 Laboratory Analysis

Groundwater samples obtained from wells MCW-1 through MCW-4 were analyzed for the primary constituents of concern, as required by the Consent Decree:

• Total and dissolved metals (i.e., arsenic, copper, lead, and zinc) by United States Environmental Protection Agency (USEPA) Method 200 series.

In addition, the following parameters were analyzed to evaluate potential changes in groundwater geochemistry and for consistency with previous sampling events at the Site:

- Total hardness by USEPA Method SM2340B;
- Total alkalinity, bicarbonate, and carbonate by USEPA Method SM2320B;
- Total chloride and sulfate by USEPA Method 300;
- Total calcium, magnesium, sodium, and potassium by USEPA Method 200 series.

2.3 Quality Assurance/Quality control

One blind duplicate sample (all analyses) was included in the analytical program for this monitoring event (collected from MCW-1). Because the groundwater sampling method did not include the use of any reusable equipment (i.e., only new, disposable sampling equipment was used), equipment rinsate blank samples were not collected as part of the groundwater sampling program.

3. GROUNDWATER MONITORING RESULTS

3.1 Groundwater Elevations

In the July 2018 monitoring event, groundwater depths ranged from approximately 9.12 feet (MCW-2) to 13.62 feet (MCW-4) below the respective top-of-casing (TOC). Based on these measurements and the TOC elevations (surveyed in December 2012), groundwater elevations beneath the Site ranged from approximately 11.53 feet (MCW-4) to 14.12 feet (MCW-3) above mean sea level (amsl; Table 1). The groundwater elevations suggest that shallow groundwater flow beneath the Site is to the southeast (towards the Hylebos Waterway), with a northeasterly component of flow in the vicinity of MCW-1 and is consistent with several monitoring events conducted by Ramboll from 2011 through 2017.

3.2 Groundwater Analytical Results

The results of laboratory analyses are summarized in Table 2, and laboratory analytical reports are included in Attachment B. None of the primary constituents of concern (arsenic, copper, lead and zinc) were reported at concentrations above the Site cleanup levels.

3.3 Statistical Trend Analysis

To evaluate temporal changes in concentrations of primary constituents of concern (i.e., arsenic, copper, lead, and zinc; see Figures 2a through 2d), Ramboll conducted a statistical analysis of the groundwater monitoring results for the past 10 sampling events dating back to 2011 using the temporal trend evaluation module in the Three-Tiered Monitoring Optimization Tool (3TMO) developed by Parsons and Ramboll for the Air Force Center for Engineering and the Environment (now the Air Force Civil Engineer Center). The 3TMO program is designed to facilitate long-term monitoring optimization evaluations at the site level. Specifically, the temporal trend evaluation module within 3TMO applies the Mann-Kendall nonparametric test to calculate the temporal trends in analyte concentrations over time.

The results of the Mann-Kendall test are summarized in Table 3, and indicate that the majority of constituents exhibit a stable trend, or no statistically significant trend at all; exceptions are noted below:

- For MCW-2, total zinc concentrations exhibit a "probably increasing" trend according to the Mann-Kendall analysis. However, inspection of Table 2 demonstrates that total zinc concentrations in MCW-2 have only reported above the laboratory reporting limit during one sampling event (December 2012), and the laboratory reported concentrations and historical reporting limits have been less than the cleanup criteria for zinc specified in the Consent Decree (0.086 mg/L).
- For MCW-3, the Mann-Kendall test indicates a statistically significant increasing trend for dissolved arsenic; however, all detections of dissolved arsenic have been below the cleanup criteria specified in the Consent Decree (0.036 mg/L) and the identified trend is similar to historical fluctuations over time.
- For MCW-4, total and dissolved arsenic concentrations have varied historically and are identified as "probably increasing" by the Mann-Kendall analysis; however, maximum concentrations for

both forms of arsenic (0.0071 mg/L) remain well below the cleanup criteria specified in the Consent Decree (0.036 mg/L).

• Although Copper was detected in MCW-1 above the cleanup criteria during one sampling event (i.e., in 2016) it has since returned to below criteria and has been identified as "stable" by the Mann-Kendall analysis.

Collectively, the results suggest that groundwater concentrations are predominantly stable or do not exhibit a statistically significant increasing trend likely to approach or exceed the relevant regulatory criteria specified in the Consent Decree.

4. OPERATIONS AND MAINTENANCE (O&M) INSPECTION

In July 2018, Ramboll personnel visually inspected the containment cell and general Site improvements (monitoring wells, vent pipes, drainage channels, fences, etc.) to evaluate their condition and to identify items requiring repair (e.g., damaged wells, clogged drains, damaged gates or fences). Routine grounds-keeping tasks (e.g., litter pickup, vegetation control, maintaining signage) were also performed as necessary. The O&M inspection was documented by Ramboll personnel on field logs and photographs, as appropriate. Site inspection field notes are included in Attachment C, and select photographs are included in Attachment D.

Vegetation was cleared from the Site (including the top of the cell and ground surface) in December 2017. Ramboll personnel visually inspected the surface of the containment cell in July 2018. Vegetation was observed on the surface, consisting of a variety of grasses and young blackberry plants. During the inspection, Ramboll noted growth of a Scotch broom shrub along the base of the southeastern side of the containment cell that appears to have grown into the side of the containment cell at the ground surface. Ramboll also noted an increase in vegetation growth on top of the containment cell and at the base surrounding the containment cell, particularly along the eastern side. Access to MCW-4 is partially obstructed by the vegetation growth from the southeastern corner, such that MW-4 is more easily accessible from the northeastern corner. This vegetation does not pose an immediate concern, but Ramboll will continue to monitor changes and provide recommendations for vegetation control in the future, as necessary.

During the July 2018 inspection, the monitoring wells were inspected and found to be in good condition. Three wells are completed with aboveground monuments (MCW-1, MCW-3, and MCW-4) and one well (MCW-2) is completed with a flush-mount vault. Each of the wells were locked, contained well caps, and the concrete surrounding the well casings was observed to be in good condition and free of significant cracks. The rubber seal beneath the well cover on MCW-2 was replaced as part of the 2017 O&M activities and was noted to be in good condition during Ramboll's inspection. The locks on the three wells completed with aboveground monuments (MCW-1, MCW-3, and MCW-4) were observed to be significantly rusted. The lock on MCW-3 became stuck and broke when Ramboll personnel attempted to open it. Ramboll subsequently replaced the locks on all three aboveground wells, due to the significant amount of rust on the locks.

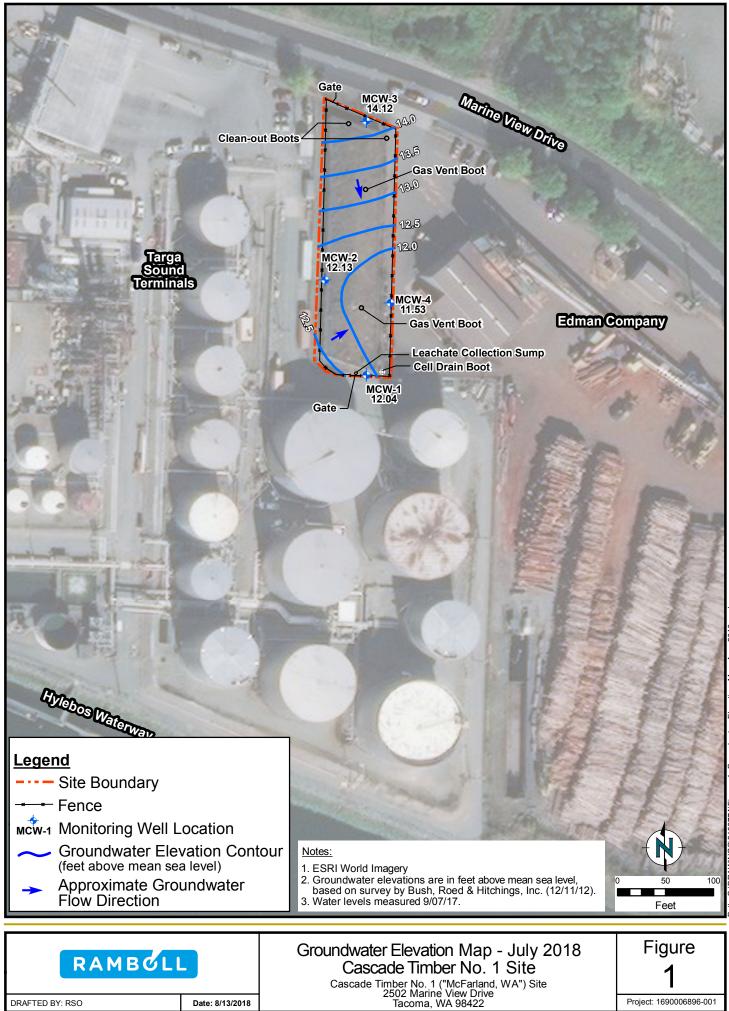
The perimeter fence was inspected in July 2018 and was noted to be in good condition. Appropriate signage was observed in place.

The two "gas vent boots" protruding from the center of the containment cell appeared to be unobstructed, and in good condition. The "cleanout boots" located in the northeastern and northwestern corners of the containment cell were visually inspected and were found to be unobstructed and in good condition. The "cell drain boot" located in the southeast corner of the containment cell was also visually inspected and noted to be in good condition, although the paint coating appeared to be chipping off in some areas.

Based on the above observations, no maintenance actions were identified based on the 2018 inspection.

5. CONCLUSIONS

Based on the results of ten consecutive sampling events conducted by Ramboll from 2011 to 2018, concentrations of the primary constituents of concern in groundwater (i.e., arsenic, copper, lead and zinc) have been below the cleanup criteria specified in the Consent Decree, with one exception (i.e., copper in one sample from MCW-2 during the 2016 event). As noted in the Second Periodic Review Report published by Ecology in June 2016, groundwater cannot be used for drinking water purposes due to salinity. Given the general compliance with the established Site cleanup criteria – and considering that the Site and adjacent properties are currently used for industrial purposes with no current or likely future use of groundwater for drinking water purposes – additional groundwater evaluation is not recommended at this time.

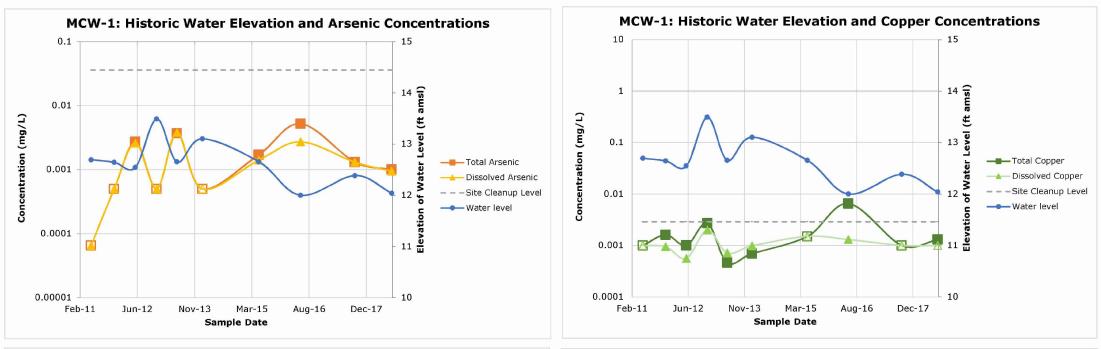

The Trust and Ecology have a meeting scheduled for December 12, 2018, to discuss the comprehensive data set collected to date and the regulatory and administrative path forward in consideration of remaining funds in the Trust account.

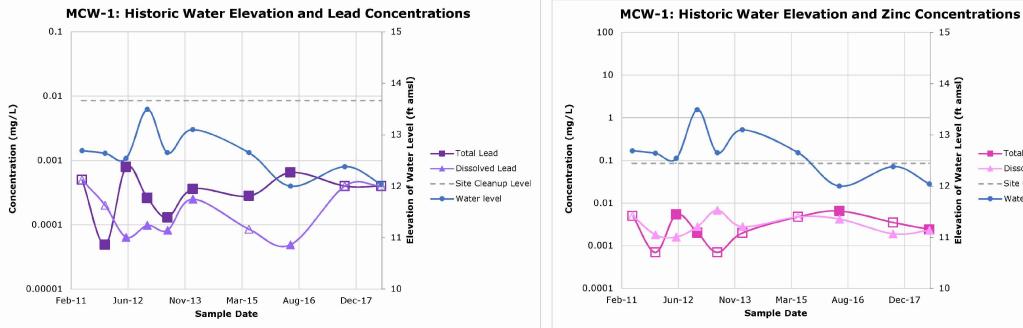
6. **REFERENCES**

- Ecology. 2016. Second Periodic Review Report. Edman Company Side 1 (aka Cascade Timber #1), Facility Site ID#:1204, Cleanup Site ID#: 2662, 2502 Marine View Drive, Tacoma, Washington. June.
- Hydrometrics, Inc. 1993. "Operations and Maintenance Plan, Cascade Timber No. 1 Remediation, Tacoma, Washington." November 1.
- State of Washington Department of Ecology (Ecology). 1993. Ecology v. McFarland Cascade Holdings, Inc.; Cascade Pole Company; and Asarco Incorporated, Consent Decree No. 932100995. October.

2018 Annual Report

FIGURES




Date: 8/13/2018

DRAFTED BY: RSO

ion_Map_Aug_

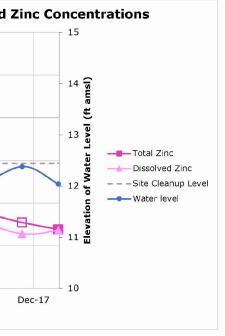
Project: 1690006896-001

Ma	<u>Mann-Kendall Results Summary</u>			Arse	Co	pper	L	ead	Zinc		
Well ID	Start Date	End Date	Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MCW-1	5/18/2011	7/25/2018	10				Stable		ND		Stable
MCW-2	5/18/2011	7/25/2018	10	Stable	Stable				ND	Probably Increasing	
MCW-3	5/18/2011	7/25/2018	10	Stable	Increasing	ND	ND		ND		
MCW-4	5/18/2011	7/25/2018	10	Probably Increasing	Probably Increasing				ND		Stable

*Open symbols indicate samples with no detections, the value shown on the graph is half of the reporting limit mg/L = milligrams per liter

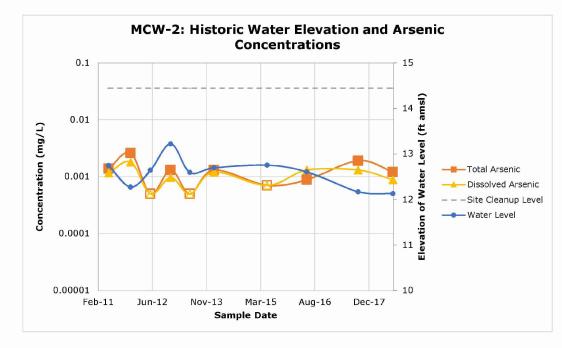
ft amsl = feet above mean sea level

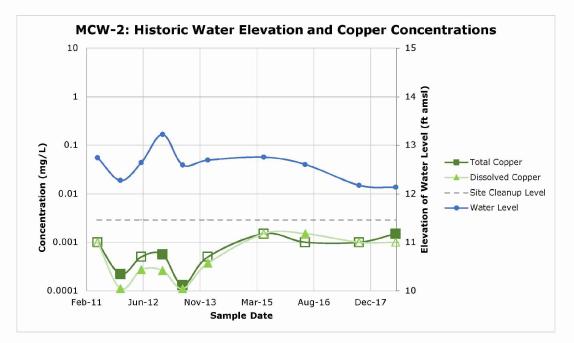
Mann-Kendall Results:

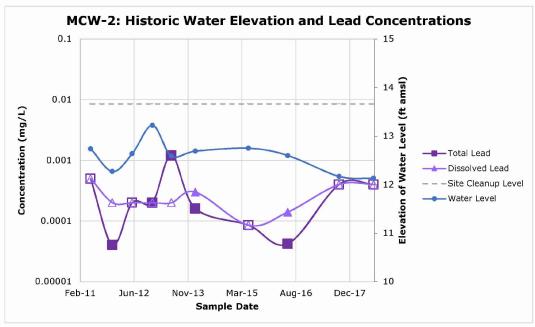

-- = No statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (coefficient of variation [COV]<1)

ND = all sample results are less than the laboratory practical quantitation limit (have a qualifier of "J"), or the results are a mixture of non- detects and results having a "J" qualifier Stable = no statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (COV < 1)

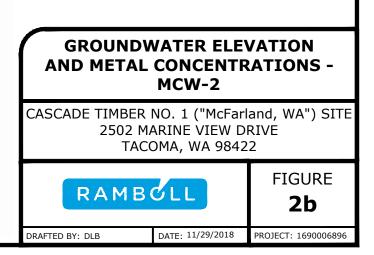
Probably Increasing = statistically significant (90.95% confidence) increasing trend in concentrations

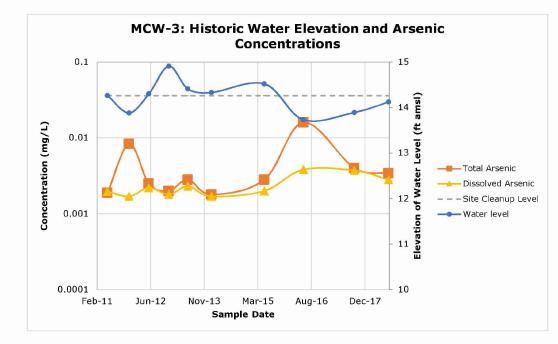

Increasing = statistically significant (>95% confidence) increasing trend in concentrations

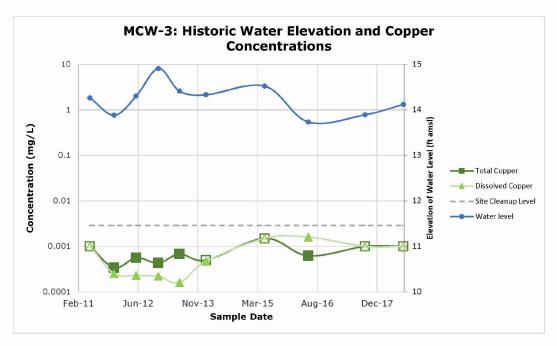

Decreasing = statistically significant (>95% confidence) decreasing trend in concentrations

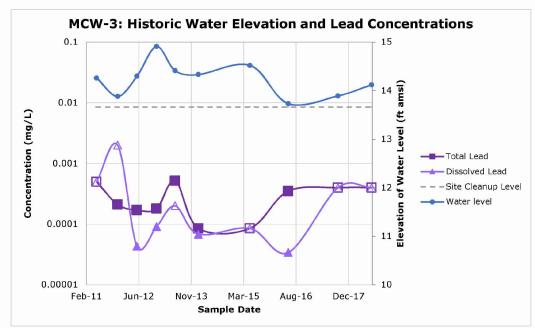


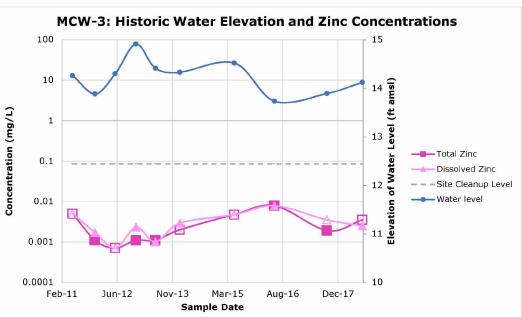
Aug-16

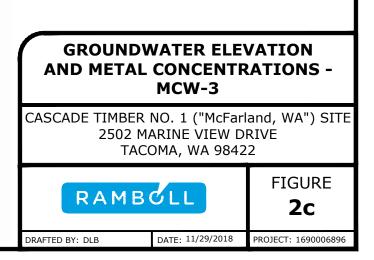

Mar	n-Kendall R	esults Sumr	nary	Arse	Co	oper	Le	ad	Zinc		
Well ID	Start Date	End Date	Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MCW-1	5/18/2011	7/25/2018	10	H-1			Stable		ND		Stable
MCW-2	5/18/2011	7/25/2018	10	Stable	Stable				ND	Probably Increasing	
MCW-3	5/18/2011	7/25/2018	10	Stable	Increasing	ND	ND		ND		
MCW-4	5/18/2011	7/25/2018	10	Probably Increasing	Probably Increasing		-		ND		Stable

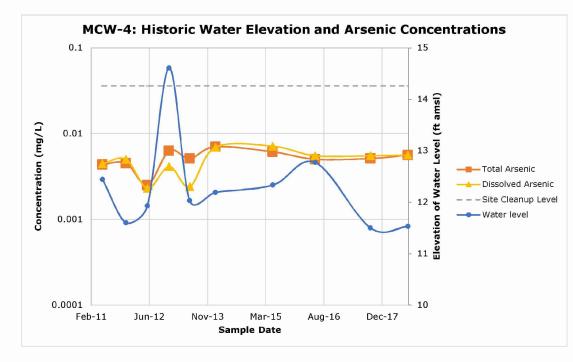

*Open symbols indicate samples with no detections, the value shown on the graph is half of the reporting limit mg/L = milligrams per liter

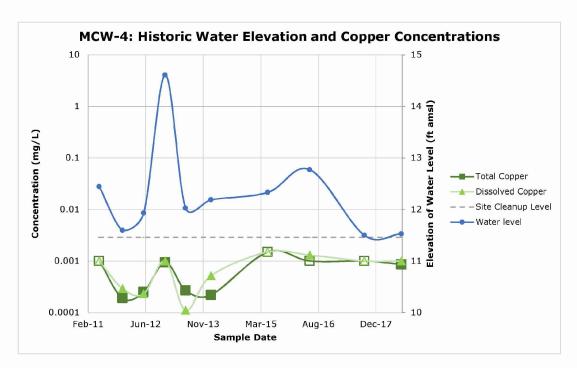

ft amsI = feet above mean sea level

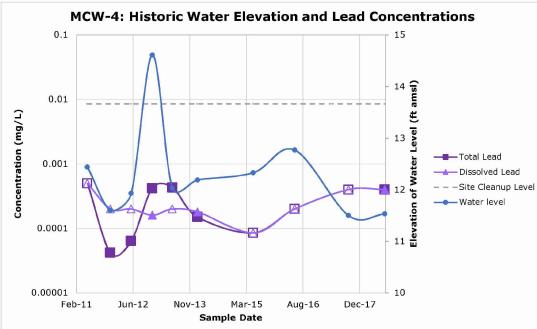

Mann-Kendall Results:

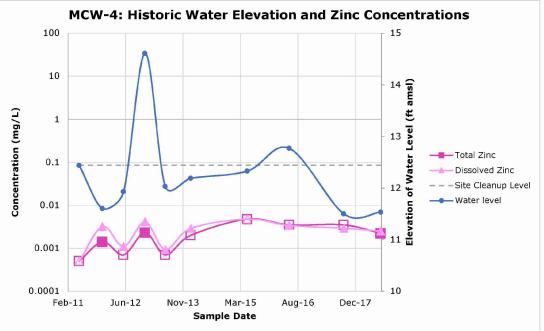

--- = No statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (coefficient of variation [COV]<1) ND = all sample results are less than the laboratory practical quantitation limit (have a qualifier of "J"), or the results are a mixture of non- detects and results having a "J" qualifier Stable = no statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (COV < 1) Probably Increasing = statistically significant (905% confidence) increasing trend in concentrations Increasing = statistically significant (>95% confidence) increasing trend in concentrations Decreasing = statistically significant (>95% confidence) decreasing trend in concentrations


Man	<u>Mann-Kendall Results Summary</u>			Ars	Cop	oper	Le	ad	Zinc		
Well ID	Start Date	End Date	Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MCW-1	5/18/2011	7/25/2018	10				Stable		ND		Stable
MCW-2	5/18/2011	7/25/2018	10	Stable	Stable				ND	Probably Increasing	
MCW-3	5/18/2011	7/25/2018	10	Stable	Increasing	ND	ND		ND		
MCW-4	5/18/2011	7/25/2018	10	Probably Increasing	Probably Increasing				ND		Stable


*Open symbols indicate samples with no detections, the value shown on the graph is half of the reporting limit mg/L = milligrams per liter


ft amsl = feet above mean sea level


Mann-Kendall Results:

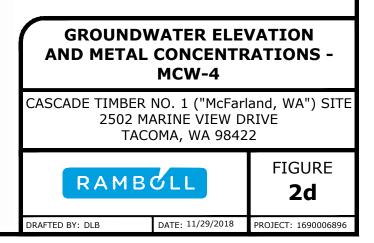

-- = No statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (coefficient of variation [COV]<1) ND = all sample results are less than the laboratory practical quantitation limit (have a qualifier of "J"), or the results are a mixture of non- detects and results having a "J" qualifier Stable = no statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (COV < 1) Probably Increasing = statistically significant (995% confidence) increasing trend in concentrations Increasing = statistically significant (>95% confidence) increasing trend in concentrations Decreasing = statistically significant (>95% confidence) decreasing trend in concentrations

Man	n-Kendall R	esults Sumr	nary	Ars	Cop	oper	Le	ad	Zinc		
Well ID	Start Date	End Date	Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MCW-1	5/18/2011	7/25/2018	10				Stable		ND		Stable
MCW-2	5/18/2011	7/25/2018	10	Stable	Stable				ND	Probably Increasing	
MCW-3	5/18/2011	7/25/2018	10	Stable	Increasing	ND	ND		ND		
MCW-4	5/18/2011	7/25/2018	10	Probably Increasing	Probably Increasing				ND		Stable

*Open symbols indicate samples with no detections, the value shown on the graph is half of the reporting limit mg/L = milligrams per liter ft amsl = feet above mean sea level

Mann-Kendall Results:

-- = No statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (coefficient of variation [COV]<1)


ND = all sample results are less than the laboratory practical quantitation limit (have a qualifier of ")"), or the results are a mixture of or the results having a ")" qualifier

Stable = no statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (COV < 1)

 $\label{eq:probably Increasing = statistically significant (905\% \ confidence) \ increasing \ trend \ in \ concentrations$

Increasing = statistically significant (>95% confidence) increasing trend in concentrations

Decreasing = statistically significant (>95% confidence) decreasing trend in concentrations

TABLES

Table 1: Groundwater Elevation Measurements (2011 - 2018)Cascade Timber No.1 ("McFarland, WA") Site2502 Marine View Drive, Tacoma, Washington

Well Number ¹	Casing Diameter (inches)	Total Depth (feet)	Screen Interval (feet below ground surface)	Top of Casing Elevation ²	Measurement Date	Depth to Water (feet below top of casing)	Elevation (ft)
					5/18/11	12.14	12.69
					12/6/11	12.19	12.64
					6/7/12	12.29	12.54
					12/11/12	11.34	13.49
	2	10	10-15	24.02	6/6/13	12.18	12.65
MCW-1	2	19	10-15	24.83	1/14/14	11.73	13.10
					5/21/15	12.18	12.65
					5/20/16	12.83	12.00
					9/7/17	12.45	12.38
					7/25/18	12.79	12.04
					5/18/11	8.51	12.74
					12/6/11	8.98	12.27
					6/7/12	8.61	12.64
					12/11/12	8.03	13.22
MCW-2	2	16	10-15	21.25	6/6/13	8.66	12.59
MCW-2	2	10	10-15	21.25	1/14/14	8.56	12.69
					5/21/15	8.50	12.75
					5/20/16	8.65	12.60
					9/7/17	9.08	12.17
					7/25/18	9.12	12.13
					5/18/11	10.69	14.26
					12/6/11	11.07	13.88
					6/7/12	10.65	14.30
					12/11/12	10.04	14.91
MCW-3	2	14	9-14	24.95	6/6/13	10.54	14.41
MCW-5	2	14	9-14	24.95	1/14/14	10.62	14.33
					5/21/15	10.43	14.52
					5/20/16	11.22	13.73
					9/7/17	11.06	13.89
					7/25/18	10.83	14.12
					5/18/11	12.71	12.44
					12/6/11	13.55	11.60
					6/7/12	13.22	11.93
					12/11/12	12.57	12.58
MCW-4	2	18	12-17	25.15	6/6/13	13.12	12.03
11CW-4	2	10	12-1/	23.13	1/14/14	12.96	12.19
					5/21/15	12.82	12.33
					5/20/16	12.38	12.77
					9/7/17	13.65	11.50
					7/25/18	13.62	11.53

Notes

^{1.} MCW-1, MCW-2, MCW-3, MCW-4 constructed on August 31, 1994.

 $^{\rm 2}$ Elevations obtained from Bush, Roed and Hitchings (resurveyed on 12/11/12).

Table 2: Summary of Groundwater Analytical Results Cascade Timber No.1 ("McFarland, WA") Site 2502 Marine View Drive, Tacoma, Washington

		1	Ars	enic	Co	pper	Le	ad	Z	linc	Calcium	Magnesium	Potassium	Sodium	Hardness	Hydroxide	Carbonate	Bicarbonate	Chloride	Sulfate	TPH-Gx	TPH-Dx	TPH-Oil
			Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Alkalinity Total	Alkalinity Total	Alkalinity Total	Total	Total			
Site C	leanup Standard ¹	Units	0.0			029		085		086											1	0.5	0.5
	05/18/2011		< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.001	< 0.01	< 0.01	11.4	3.19	2.28	15.2	41.5	< 5.0	< 5.0	60.2	1.8	6.67	NA	NA	NA
	12/06/2011		<0.001	<0.001	0.00094 J	0.0016	0.00005 J	<0.0004	<0.0014	0.0018	18	5.3	2.9 J	18 B	71	<5.0	<5.0	66	1.8	11	< 0.094	< 0.24	< 0.47
-	06/07/ 2012		0.0027	0.0026	0.001	0.00056 J	0.00079	0.000064 J	0.0054	0.0016	14	4.6	1.9 J	14	52	<5.0	<5.0	70	3.6	6.5	NA	NA	NA
	12/11/2012		<0.001 0.0037	<0.001 0.0038	0.0027	0.0020 0.00071 J	0.00026 J 0.00013 J	0.000098 J 0.000082 J	0.0020	0.0028	14 B	4.1 5.0	2.4 J	14 14	49	<5.0 <5.0	<5.0 <5.0	61 89	2.01 1.5 B	11.3	NA NA	NA	NA NA
MCW-1	6/6/2013 1/14/2014	mg/l	<0.0037	<0.0038	0.00046 0.00069 J	0.00071 J 0.00098 J	0.00013 J 0.00036 J	0.000082 J 0.00025 J	< 0.0014	0.0068 0.0028 J	15 B 17	5.0 5.1 J	2.0 J 2.5 J	14	69 68	<5.0	<5.0	89	1.5 B 1.7	5.3 8.8	NA	NA NA	NA
INICAA-1	5/21/2015	ilig/i	0.0017 J	0.0014 J	< 0.0030	< 0.0030	0.00038 J	< 0.00025 J	< 0.004	< 0.0028 J	12	< 15	2.5 J 1.9 J	13	39	< 5.0	< 5.0	69	0.78 J	3.9	NA	NA	NA
	5/20/2016		0.0017 3	0.0014 3	0.0065	0.0013 J B	0.00028 3	0.000049 J	< 0.0095 0.0065 J	< 0.0095 0.0042 J	8.6	3.1 J	1.9 J	14	70	< 5.0	< 5.0	65	1.3	3.9	NA	NA	NA
	9/7/2017		0.0002	0.0013	< 0.0020	<0.0020	<0.00080	<0.00080	<0.0070	0.0019J	13	4.4	2.3 J	15	62	<5.0	<5.0	94	0.48J	1.1J	NA	NA	NA
	7/25/2018		0.0010	0.00094 J	0.0013 J	<0.0020	<0.00080	<0.00080	0.0024 J	0.0023 J	14	4.8	2.4 J	15	60	<5.0	<5.0	83	0.87 J	2.2 B	NA	NA	NA
	7/25/2018 (dup)		0.00093 J	0.00092 J	< 0.0020	0.0013 J	< 0.00080	< 0.00080	< 0.0070	0.0031 J	14	4.8	2.3 J	14	55	<5.0	<5.0	77	0.76 J	2.1 B	NA	NA	NA
	05/18/2011		0.00138	0.00116	< 0.002	< 0.002	< 0.001	< 0.001	< 0.01	< 0.01	24.4	10.1	4.43	10.5	103	< 5.0	< 5.0	128	5.52	< 1.0	NA	NA	NA
	05/18/2011 (dup)		< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.001	< 0.01	0.0101	25.6	10.6	4.84	11	107	<5.0	<5.0	127	5.49	<1.0	NA	NA	NA
	12/06/2011		0.0026	0.0018	0.00022 J	0.00011 J	0.00004 J	< 0.0004	0.0013 J	0.0014	26	13	4	12 B	140	<5.0	<5.0	140	9.6	<1.2	< 0.094	< 0.24	< 0.47
	12/6/2011 (dup)		0.0019	0.0017	0.0021 J	0.0032 J	0.00004 J	< 0.0004	0.0013 J	0.0015	26	13	4.2	12 B	150	<5.0	<5.0	140	8.7	<1.2	< 0.094	< 0.24	< 0.47
	6/7/2012		<0.001	<0.001	< 0.001	0.00027 J	< 0.0004	< 0.0004	0.00092 J	< 0.0014	26	10	4.8	11	130	<5.0	<5.0	130	6	<1.2	NA	NA	NA
	6/7/2012 (dup)		<0.001	<0.001	0.0003 J	0.00018 J	0.000052 J	<0.0004	<0.0014	0.00091 J	26	10	4.8	11	130	<5.0	<5.0	130	6.1	<1.2	NA	NA	NA
	12/11/2012		0.0013	0.00096 J	0.00056 J	0.00026 J	0.00020 J	<0.00040	0.0015	<0.0014	30 B	12	6.2	12	150	<5.0	<5.0	140	9.06	0.77	NA	NA	NA
	12/11/2012 (dup)		0.0014	<0.0010	0.00052 J	0.00070 J	0.00016 J	0.000073 J	0.0019	0.0030	28 B	12	5.7	11	150	<5.0	<5.0	140	8.77	<0.5	NA	NA	NA
MCW-2	6/6/2013	mg/l	<0.001	<0.001	0.00013 J	0.00011 J	0.0012	<0.0004	<0.0014	0.0015	26 B	10	5.4	12	110 B	<5.0	<5.0	140	7.0 B	<1.0	NA	NA	NA
	6/6/2013 (dup)		<0.001	<0.001	< 0.001	<0.001	0.000057 J	<0.0004	< 0.0014	<0.0014	25 B	10	5.2	11	110 B	<5.0	<5.0	140	8.1 B	<1.0	NA	NA	NA
	1/14/2014		0.0013	0.0012	< 0.001	0.00037 J	0.00016 J	0.00030 J	< 0.004	< 0.004	27	12	4.9	11	120	<5.0	<5.0	140	6.4	<1.2	NA	NA	NA
	5/21/2015 5/20/2016		< 0.0014	< 0.0014	< 0.0030	< 0.0030	< 0.00017	< 0.00017	< 0.0095	< 0.0095	29	< 15	5.1	12	120	< 5.0	< 5.0 <4.0	140	6.0	< 0.40	NA	NA	NA
-	5/20/2016 (dup)		0.00088 J 0.00084 J	0.0013	<0.0020 <0.0020	0.0021 B 0.0015 J B	0.000058 J 0.000042 J	0.00011 J 0.00014 J	0.0019 J <0.0070	0.0033 J 0.0023 J	24 25	11 10	5.0 5.1	11 11	120 150	<4.0 <4.0	<4.0	130 130	5.9 5.8	<0.50	NA NA	NA NA	NA
	9/7/2016 (dup)		0.00084 J	0.0015	<0.0020	<0.0015 J B	<0.00042 J <0.00080	<0.00014 J <0.00080	<0.0070	<0.0023 J	25	10	5.1 4.1	10	120	<4.0	<4.0	130	7.3	<1.2	NA	NA	NA
	9/7/2017 (dup)		0.0013	0.0013	<0.0020	<0.0020	<0.000000 0.00023J	<0.00080	0.0022J	<0.0070	23	10	4.9	10	110	<5.0	<5.0	130	6.7	<1.2	NA	NA	NA
	7/25/2018		0.0012	0.00088 J	0.0015 J	<0.0020	<0.000200	<0.00080	0.0022J	<0.0070	27	10	5.3	11	120	<5.0	<5.0	130	8.2	0.66 JB	NA	NA	NA
	5/18/2011		0.00189	0.00197	< 0.002	< 0.002	< 0.001	< 0.001	< 0.01	< 0.01	24.1	15.8	2.08	11.0	125	< 5.0	< 5.0	135	14.6	< 1.0	NA	NA	NA
	12/6/2011		0.0083	0.0017	0.00034 J	0.00025 J	0.00021 J	< 0.004	0.0011 J	0.0017	24	16	2.4 J	12 B	140	<5.0	<5.0	140	7.5	<1.2	< 0.094	< 0.24	< 0.47
	6/7/2012		0.0025	0.0022	0.00056 J	0.00023 J	0.00017 J	0.000043 J	< 0.0014	< 0.0014	20	12	1.9 J	9.7	120	<5.0	<5.0	120	9.2	<1.2	NA	NA	NA
	12/11/2012		0.0020	0.0018	0.00043 J	0.00022 J	0.00018 J	0.000091 J	0.0011 J	0.0023	22 B	14	2.3 J	11	120	<5.0	<5.0	130	7.9	<0.5	NA	NA	NA
	6/6/2013		0.0028	0.0023	0.00068 J	0.00016 J	0.00052	< 0.0004	0.0011 J	0.0010 J	17 B	11	2.1 J	8.9	89 B	<5.0	<5.0	110	8.1 B	<1.0	NA	NA	NA
MCW-3	1/14/2014	mg/l	0.0018	0.0017	<0.001	0.00047 J	0.000068 J	0.00008 J	<0.004	0.0029J	20	13	1.9 J	9.4	110	<5.0	<5.0	120	7.4	<1.2	NA	NA	NA
	1/14/2014 (dup)		0.0017	0.0017	<0.001	<0.001	0.000085 J	0.000065 J	<0.004	<0.004	21	13	1.9 J	9.5	130	<5.0	<5.0	120	7.4	<1.2	NA	NA	NA
	5/21/2015		0.0028 J	0.0020 J	< 0.0030	< 0.0030	< 0.00017	< 0.00017	< 0.0095	< 0.0095	22	< 15	2.0 J	9.3	110	<5.0	<5.0	120	6.5	< 0.40	NA	NA	NA
	5/20/2016		0.016	0.0038	0.00062 J	0.0016 JB	0.00035 J	0.000034 J	0.0079	0.0078	23	13	2.1 J	8.7	200	<4.0	<4.0	130	7.2	<0.50	NA	NA	NA
	9/7/2017		0.0040	0.0037	<0.0020	<0.0020	<0.00080	<0.00080	0.0019J	<0.0070	20	12	2.3 J	9.8	120	<5.0	<5.0	130	6.2	<1.2	NA	NA	NA
	7/25/2018		0.0034	0.0028	<0.0020	< 0.0020	<0.00080	<0.00080	< 0.0070	0.0025 J	22	14	2.3 J	9.9	110	<5.0	<5.0	130	5.5	0.66 J B	NA	NA	NA
	5/18/2011 12/6/2011		0.00435	0.00444 0.0050	< 0.002 0.00019 J	< 0.002	< 0.001 0.00004 J	< 0.001 < 0.0004	< 0.01	< 0.01	31.5	15.1	3.57	13.5	141	< 5.0	< 5.0	176	7.82	0	NA < 0.094	NA	NA
-	6/7/2012		0.0045	0.0050	0.00019 J	0.00029 J 0.00023 J	0.00004 J	<0.0004	0.0014	0.0032 0.0011 J	35 28	14 12	4.8 4.4	14 B 14	180 150	<5.0 <5.0	<5.0 <5.0	170 150	10 8.6	<1.2 <1.2	< 0.094 NA	< 0.24 NA	< 0.47 NA
	12/11/2012		0.0025	0.0023	0.00025 J 0.00094 J	0.00023 J	0.000064 J	<0.0004 0.00016 J	0.0023	0.00113	28 36 B	12	4.4	14	160	<5.0	<5.0	150	8.6	< 1.2	NA	NA	NA
	6/6/2013		0.0063	0.0041	0.00094 J	0.001	0.00042	<0.0004	<0.0023	0.00041 0.00093 J	28 B	14	4.4	14	120 B	<5.0	<5.0	140	9.6 B	<0.5 0.25 J	NA	NA	NA
MCW-4	1/14/2014	mg/l	0.0051	0.0024	0.00027 J	0.00052 J	0.00043 0.00015 J	<0.0004 0.00018 J	< 0.0014	0.00093 J	30	14	3.6	14	320	<5.0	<5.0	140	9.0 B	<1.2	NA	NA	NA
	5/21/2015		0.0071	0.0064	< 0.0030	< 0.0030	< 0.00017	< 0.00010 0	< 0.0095	< 0.0095	29	< 15	3.5	11	130	<5.0	<5.0	140	6.9	< 0.40	NA	NA	NA
	5/21/2015		0.0061	0.0071	< 0.0030	< 0.0030	< 0.00017	< 0.00017	< 0.0095	< 0.0095	29	< 15	3.7	11	130	<5.0	<5.0	140	6.8	< 0.40	NA	NA	NA
	5/20/2016	016	0.0050	0.0055	< 0.0020	0.0013 J B	< 0.00040	< 0.00040	< 0.0070	0.0034 J	27	12	3.6	11	120	<4.0	<4.0	150	7.2	<0.50	NA	NA	NA
	9/7/2017		0.0051	0.0055	< 0.0020	< 0.0020	<0.00080	<0.00080	< 0.0070	0.0029J	27	11	3.8	12	130	<5.0	<5.0	140	6.9	<1.2	NA	NA	NA
	7/25/2018		0.0056	0.0056	0.00086 J	< 0.0020	<0.00080	<0.00080	0.0022 J	0.0025 J	27	12	3.3	10	130	<5.0	<5.0	140	6.4	0.66 J B	NA	NA	NA

Notes
1. Marine Chronic Surface Water Standard

mg/l milligrams per liter

dup duplicate

criteria not established

-- criteria not established TPH-Gx gasoline range petroleum hydrocarbons

TPH-Dx diesel range petroleum hydrocarbons (>C12-C24) TPH-Oil motor oil range petroleum hydrocarbons

Bold values and cells shaded grey represent an exceedance of the MTCA Method A/B criteria.

NA not analyzed

Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration J is an approximate value.

Compound was found in the blank and sample Concentration was below reporting limit В

<

Table 3: Summary of Mann-Kendall Test Results Cascade Timber No.1 ("McFarland, WA") Site 2502 Marine View Drive, Tacoma, Washington

<u>Man</u>	n-Kendall R	esults Sumi	<u>mary</u>	Arso	enic	C	Copper		Lead	Zinc	
Well ID	Start Date	End Date	Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
MCW-1	5/18/2011	7/25/2018	10				Stable		ND		Stable
MCW-2	5/18/2011	7/25/2018	10	Stable	Stable				ND	Probably Increasing	
MCW-3	5/18/2011	7/25/2018	10	Stable	Increasing	ND	ND		ND		
MCW-4	5/18/2011	7/25/2018	10	Probably Increasing	Probably Increasing				ND		Stable

Notes:

-- = No statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (coefficient of variation [COV]<1)

ND = all sample results are less than the laboratory practical quantitation limit (have a qualifier of "J"), or the results are a mixture of non- detects and results having a "J" qualifier

Stable = no statistically significant temporal trend (<90% confidence) in concentrations; low variability of results (COV < 1)

Probably Increasing = statistically significant (90-95% confidence) increasing trend in concentrations

Increasing = statistically significant (>95% confidence) increasing trend in concentrations

Decreasing = statistically significant (>95% confidence) decreasing trend in concentrations

ATTACHMENT A

PURGE LOGS

WATER PURGING AND SAMPLING LOG

PROJECT NAME: McFau			FIELD PERSON: S, Leick									
	pre 896		PROJECT MANAGER: D. ROWR									
	Onla, W		DATE: 7-25-18									
PURGING/SAMPLING METHO	D: Dul- Alo	5 A J	WELL NUMBER: MCW-1									
			CASING RADIUS: (in.									
EQUIPMENT CLEANING METH	10D: N/A-	eavipment	TOTAL DEPTH (TD):S.S.(ft.)DEPTH TO WATER (DTW):2.79(ft.)									
PURGE WATER DISPOSAL: (CASING VOLUME: 0.93 (ga									
GALLONS PURGED:	drum CASING VOL		(TE	D-DTW) (CR) ² (.	163)=							
v2			WE	ELL VOLUMES		1		(gal.)				
DUDGE STA	RT TIME: 10	117			PURGE	PATE (C	DM).					
			ГҮ	TURBIDITY	D.O.	TEMP	ORP					
TIME/GALLONS PURGED	рН	(µmnos/cm)		(NTU)	(mg/L)	(°C)	(mv)	COMMENTS				
10:15	6.20	0.145			3.102	18.33	- 359	Blackt				
10:18	6.07	0.147		012:46	0.42	17.05	-64.1	sedmont in tubing				
10:21	6.07	0.144			0.25	18.03	6.80-	during Start of				
10:24	6.07	0.144			0.24	18.13	-69.8	Protten				
10:27	Ce.06	0.143			0.24	18.49	-71.2	egg sinell				
10:30	6.06	0.144			0.24	18.69	-72.3					
10:35	6.07	0.146			0.26	17.57	-75.1					
10:40	6.08	0:140			0.22	17.53	-76.0					
			alaan ku uu uu uu uu									
								est				
PURGE STOP TIME: (050	5			FINAL DTW:	13-101	3.9@	80%	-				
LAB NAME:				SAMPLE ID:	MCIN	-1-71	NICIST	25@10.45				
		OBSERVATION	ons/comments: Duplicate Saumple									
				(mcw	-99-2	20182	725@10:59				
				PUMP SET	AT = ∼(5		FEET				

WATER PURGING AND SAMPLING LOG

PROJECT NAME: McFarland			FIELD PERSON: S. Wick						
PROJECT NUMBER: 16900	010896		PROJECT MANAGER: D. Raue						
PROJECT LOCATION: Tac		A	DATE: 7-26-18						
PURGING/SAMPLING METHO	D: LOW-FI	SW	WELL NUMBER: MCW-2						
EQUIPMENT CLEANING MET		direct 1-10		ING RADIUS	: 2	2		(in.)	
EQUIPMENT CLEANING MET		aviement		AL DEPTH (T TH TO WATE	ER (DTW)	5-1	2	(ft.) (ft.)	
PURGE WATER DISPOSAL:	on-site 5		CAS	ING VOLUMI DTW) (CR) ² (.	E: 0	.98		(gal.)	
GALLONS PURGED:	CASING VOL			D I WY (OIV) (.	100)-				
~2	NZ		WEL	L VOLUMES	B.			(gal.)	
PURGE ST/	ART TIME: 9	:02			PURGE	RATE (G	PM):		
TIME/GALLONS PURGED	рН	CONDUCTIVI (µmnos/cm		TURBIDITY (NTU)	D.O. (mg/L)	TEMP (°C)	ORP (mv)	COMMENTS	
9.04	6.27	0.290.2		N/H	4.16	15:38	t	N	
9.07	6.26	0.278	R		0.81		-86.0		
9:10	6.28	0.273			0.50	14.90			
9.13	4.30	0.271			0.46	14.58	-86	.7	
9:16	6.31	0.209			0.43	14.53	-85.9	DTW=9.35	
9.21	6.33	0.269			0,40	14.48	-85-	4	
9:210	6.34	0.269			0.35	14.43.	-85.1		
9:21	6.35	0-269			0.30	14.37	-84.6		
9:36	6.31	0.270		J J	0.26	14.30	-83;L	e DTW=9.35	
					-				
а 				191 - Marine Marine Marine Marine M Marine Marine M					
								est	
PURGE STOP TIME: 01,5	2	<u>I</u>		FINAL DTW:	9.35	@	80%		
LAB NAME: TEST AMO	hica			SAMPLE ID:	maw-	2-2018	20725	@9:40	
		OBSERVATION	IS/CO	MMENTS:					
				PUMP SET	AT = [3'		FEET	

PAGE 2 of 4

-

WATER PURGING AND SAMPLING LOG

··· .				PUMP SET	AT = 🗠	12		FEET	
		OBOLIVATION		WINIE 1419.					
LAB NAME:		OBSERVATION	19/00	SAMPLE ID:	mcw-	3-201	8072	5 @ 13:10	
PURGE STOP TIME:		<u>I</u>		FINAL DTW:	11.10	@	80%	=	
								Cre	
13.09	4:00	0,250		**************************************	0.22	1+.16	82,3		
12:59	6.50	0.235		<u> </u>	0.26	17.68			
12:54	6.48	0.235				17.72			
12:51	6.48	0.235			0.30		77.6		
12:48	6.48	0,235			-	18.18	74,5		
12:45	6.42	0.236			0.32		68.4		
12:42	6.28	0.235			0.44	18.54	54.7		
12:39	6.34	0.237		NA	0.55	18.86	55.9		
TIME/GALLONS PURGED	рН	CONDUCTIVI (µmnos/cm)		TURBIDITY (NTU)	D.O. (mg/L)	TEMP (°C)	ORP (mv)	COMMENTS	
PURGE ST	ART TIME: 12				PURGE	RATE (G	PM):		
GALLONS PURGED: № 2-		UWES:	WEL	L VOLUMES	•			(gal.)	
	CASING VOLI	ms		ING VOLUMI DTW) (CR) ² (.				(gal.)	
PURGE WATER DISPOSAL:			DEP	AL DEPTH (T TH TO WATE	R (DTW):	8.01	3	(ft.) (ft.)	
PURGING/SAMPLING METH					e 5			(in.)	
**************************************			PROJECT MANAGER: D.K.D.W. DATE: 7-25-18 WELL NUMBER: MCW-3						
<u>PROJECT NUMBER: \७९७</u> PROJECT LOCATION: र्र्वे									
PROJECT NAME: Mc Farland PROJECT NUMBER: 1000000 894				FIELD PERSON: S. Leick PROJECT MANAGER: D. ROWE					

FIELD PERSON: S. Leick

PROJECT NAME: MCFa	rland		FIELD PERSON: S. Leick					
PROJECT NUMBER: 1690	006896		PROJECT MANAGER: D. ROWR					
PROJECT LOCATION: Taco	mawn	·····	DATE: 7-25-18					
PURGING/SAMPLING METHO	D: LOW-F	-10W	WELL NUMBER: MOW - H					
EQUIPMENT CLEANING METH	10D: N/A -	disposable	TOT	TAL DEPTH (T		89.6		(ft.)
PURGE WATER DISPOSAL: ()	n-5:10 E	S-acillon	DEF	PTH TO WATE SING VOLUME	<u>R (DTW):</u> ::	13.6	2	(ft.) (gal.)
	CASING VOLI	ms	(TD	-DTW) (CR) ² (.*	and the second sec			(9)
GALLONS PURGED:		JMES:	WE					(gal.)
	V V Les					(gai.)		
PURGE STA	RT TIME: 14	-30 11:4	5			RATE (GI		
TIME/GALLONS PURGED	рН	CONDUCTIVI (µmnos/cm)		TURBIDITY (NTU)	D.O. (mg/L)	TEMP (°C)	ORP (mv)	COMMENTS
11:48	5.85	0.278		~	0.50	16.61		
11:51	5.61	0.278		S.	0.29	16.27	-51.2	
11:54	6.12	0.27 Le			0,22	15.92	-71.8	3
11:57	6.22	0.275			0.21	15:96	-78.3	>
12:00	6:23	0,276			0.24	15.87	- 80	0
12:05	10.24	0.276			0.30	15.8Z	-81.3	<u> </u>
12:10	6.28	0,275			0.27	15.79	-83.3	
						c		
								e sl
PURGE STOP TIME: 1220				FINAL DTW:	13.70) @	80%	2
LAB NAME:				SAMPLE ID: γ			0180	725Q
		OBSERVATION	S/CC	OMMENTS:	12	5	and the second	
					~	15'		
				PUMP SET /	AT = ''			FEET

ATTACHMENT B

LABORATORY RESULTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-79100-1 Client Project/Site: Tacoma, WA

For:

Ramboll US Corporation 8440 SE Sunnybrook Blvd Suite 204 Clackamas, Oregon 97015

Attn: Devon Rowe

Shind crup

Authorized for release by: 7/31/2018 3:38:10 PM Sheri Cruz, Project Manager I (253)922-2310 sheri.cruz@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	10
Chronicle	14
Certification Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

Job ID: 580-79100-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-79100-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 7/25/2018 2:29 PM; the samples arrived in good condition. The temperature of the cooler at receipt was 11.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Limit of Quantitation (DoD/DOE)

Decision Level Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Relative Percent Difference, a measure of the relative difference between two points

Qualifiers

Dil Fac DL

DLC

EDL

LOD

LOQ

MDA

MDC

MDL

ML

NC

ND PQL

QC RER

RL

RPD

TEF

TEQ

Quaimers		
Metals		Δ
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
General Ch	emistry	
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		8
Abbreviation		
Abbieviation	These commonly used abbreviations may or may not be present in this report.	0
	These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis	9
		9
¤ %R	Listed under the "D" column to designate that the result is reported on a dry weight basis	9 10
¤ %R CFL	Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery	9 10
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid	9 10 11

RL

1.1

3.3

2.0

1.1

RL

0.0010

0.0020

0.00080

0.0070

MDL Unit

0.16 mg/L

0.41 mg/L

0.33 mg/L

0.13 mg/L

MDL Unit

0.00020 mg/L

0.00060 mg/L

0.00020 mg/L

0.0019 mg/L

D

D

Prepared

Prepared

Result Qualifier

Result Qualifier

27

5.3

11

12

0.0012

0.0015 J

ND

0.0022 J

Date Collected: 07/25/18 09:40

Date Received: 07/25/18 14:29

Analyte

Calcium

Sodium

Analyte

Arsenic

Copper

Lead

Zinc

Potassium

Magnesium

Client Sample ID: MCW-2-20180725

Method: 200.7 Rev 4.4 - Metals (ICP)

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: 580-79100-1

07/26/18 10:36 07/27/18 17:55

07/26/18 10:36 07/27/18 17:55

07/26/18 10:36 07/27/18 17:55

07/26/18 10:36 07/27/18 17:55

07/26/18 10:36 07/27/18 17:19

07/26/18 10:36 07/27/18 17:19

07/26/18 10:36 07/27/18 17:19

07/26/18 10:36 07/27/18 17:19

Analyzed

Analyzed

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

Dil Fac

. 8 9

10

					-				
Method: 200.8 - Metals (IC	P/MS) - Dissolv	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00088	J	0.0010	0.00020	mg/L		07/27/18 09:55	07/27/18 23:04	1
Lead	ND		0.00080	0.00020	mg/L		07/27/18 09:55	07/27/18 23:04	1
Copper	ND		0.0020	0.00060	mg/L		07/27/18 09:55	07/27/18 23:04	1
Zinc	ND		0.0070	0.0019	mg/L		07/27/18 09:55	07/27/18 23:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.2		0.90	0.14	mg/L			07/29/18 00:00	1

Sulfate 0.66 J B 1.2 0.26 mg/L 07/29/18 00:00	1
Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Fa	ac
Alkalinity 130 5.0 5.0 mg/L 07/30/18 12:32	1
Bicarbonate Alkalinity as CaCO3 130 5.0 5.0 mg/L 07/30/18 12:32	1
Carbonate Alkalinity as CaCO3 ND 5.0 5.0 mg/L 07/30/18 12:32	1
Hydroxide Alkalinity as CaCO3 ND 5.0 5.0 mg/L 07/30/18 12:32	1
Hardness as calcium carbonate 120 10 10 mg/L 07/28/18 09:31	1

Analyte

Calcium

Sodium

Analyte

Arsenic

Copper

Lead

Zinc

Analyte

Arsenic

Lead

Zinc

Copper

Analyte

Sulfate

Analyte

Alkalinity

Chloride

General Chemistry

Bicarbonate Alkalinity as CaCO3

Hardness as calcium carbonate

Carbonate Alkalinity as CaCO3

Hydroxide Alkalinity as CaCO3

Potassium

Magnesium

Analyzed

07/27/18 17:59

Analyzed

Analyzed

Analyzed

07/29/18 00:12

07/29/18 00:12

Analyzed

07/30/18 12:32

07/30/18 12:32

07/30/18 12:32

07/30/18 12:32

07/28/18 09:31

07/26/18 10:36 07/27/18 17:59

07/26/18 10:36 07/27/18 17:59

07/26/18 10:36 07/27/18 17:59

07/26/18 10:36 07/27/18 17:22

07/26/18 10:36 07/27/18 17:22

07/26/18 10:36 07/27/18 17:22

07/26/18 10:36 07/27/18 17:22

07/27/18 09:55 07/27/18 23:42

07/27/18 09:55 07/27/18 23:42

07/27/18 09:55 07/27/18 23:42

07/27/18 09:55 07/27/18 23:42

5

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

1

1	
Dil Fac	
1	

1

1

1

1

1

1

1

1

1

1

Dil Fac

Dil Fac

Client Sample ID: MCW-1-20180725	Lab Sample ID: 580-79100-2
Date Collected: 07/25/18 10:45	Matrix: Water

RL

1.1

3.3

2.0

1.1

RL

0.0010

0.0020

0.00080

0.0070

0.0010

0.00080

0.0020

0.0070

RL

0.90

1.2

RL

5.0

5.0

5.0

5.0

4.0

RL

MDL Unit

0.16 mg/L

0.41 mg/L

0.33 mg/L

0.13 mg/L

MDL Unit

0.00020 mg/L

0.00060 mg/L

0.00020 mg/L

0.0019 mg/L

MDL Unit

0.00020 mg/L

0.00020 mg/L

0.00060 mg/L

0.0019 mg/L

MDL Unit

0.14 mg/L

0.26 mg/L

RL Unit

5.0 mg/L

5.0 mg/L

5.0 mg/L

5.0 mg/L

4.0 mg/L

D

D

D

D

D

Prepared

07/26/18 10:36

Prepared

Prepared

Prepared

Prepared

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

0.87 J

2.2 В

83

83

ND

ND

60

14

15

4.8

0.0010

0.0013 J

ND

0.0024 J

0.00094 J

ND

ND

0.0023 J

2.4 J

Date	Collected:	07/25/18 10:45	
Date	Received:	07/25/18 14:29	

Method: 200.7 Rev 4.4 - Metals (ICP)

Method: 200.8 - Metals (ICP/MS)

Method: 200.8 - Metals (ICP/MS) - Dissolved

RL

1.1

3.3

2.0

1.1

RL

0.0010

0.0020

0.0070

RL

0.0010

0.00080

0.0020

0.0070

0.00080

MDL Unit

0.16 mg/L

0.41 mg/L

0.33 mg/L

0.13 mg/L

MDL Unit

0.00020 mg/L

0.00060 mg/L

0.00020 mg/L

0.0019 mg/L

MDL Unit

0.00020 mg/L

0.00020 mg/L

0.00060 mg/L

0.0019 mg/L

D

Prepared

Result Qualifier

Result Qualifier

093 J ND

Result Qualifier

14

14

4.8

0.00093

ND

ND

0.00092 J

ND

0.0013 J

0.0031 J

2.3 J

Date Collected: 07/25/18 10:50

Date Received: 07/25/18 14:29

Analyte

Calcium

Sodium

Analyte

Arsenic

Copper Lead

Analyte

Arsenic

Copper

Lead

Zinc

Zinc

Potassium

Magnesium

Client Sample ID: MCW-99-20180725

Method: 200.7 Rev 4.4 - Metals (ICP)

Method: 200.8 - Metals (ICP/MS)

Method: 200.8 - Metals (ICP/MS) - Dissolved

Lab Sample ID: 580-79100-3

07/26/18 10:36 07/27/18 18:02

07/26/18 10:36 07/27/18 18:02

07/26/18 10:36 07/27/18 18:02

07/26/18 10:36 07/27/18 18:02

Analyzed

Matrix: Water

Dil Fac

1

1

1

1

2 3 4 5 6

8

D	Prepared	Analyzed	Dil Fac	0	
 _	07/26/18 10:36	07/27/18 17:26	1	0	
	07/26/18 10:36	07/27/18 17:26	1	3	
	07/26/18 10:36	07/27/18 17:26	1	40	
	07/26/18 10:36	07/27/18 17:26	1	10	
				11	
D	Prepared	Analyzed	Dil Fac		
_	07/27/18 09:55	07/27/18 23:46	1		
	07/27/18 09:55	07/27/18 23:46	1		
	07/27/18 09:55	07/27/18 23:46	1		
	07/27/18 09:55	07/27/18 23:46	1		

_									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.76	J	0.90	0.14	mg/L			07/29/18 00:24	1
Sulfate	2.1	В	1.2	0.26	mg/L			07/29/18 00:24	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	77		5.0	5.0	mg/L			07/30/18 12:32	1
Bicarbonate Alkalinity as CaCO3	77		5.0	5.0	mg/L			07/30/18 12:32	1
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hardness as calcium carbonate	55		10	10	mg/L			07/28/18 09:31	1

Date Collected: 07/25/18 12:15

Client Sample ID: MCW-4-20180725

Lab Sample ID: 580-79100-4

Matrix: Water

5

Dil Fac	8
1	Q
1	
1	
1	

Date Received: 07/25/18 14:2	9								
Method: 200.7 Rev 4.4 - Met	als (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	27		1.1	0.16	mg/L		07/26/18 10:36	07/27/18 18:05	· · · ·
Potassium	3.3		3.3	0.41	mg/L		07/26/18 10:36	07/27/18 18:05	
Sodium	10		2.0	0.33	mg/L		07/26/18 10:36	07/27/18 18:05	
Magnesium	12		1.1	0.13	mg/L		07/26/18 10:36	07/27/18 18:05	1
Method: 200.8 - Metals (ICP)	MS)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0056		0.0010	0.00020	mg/L		07/26/18 10:36	07/27/18 17:29	
Copper	0.00086	J	0.0020	0.00060	mg/L		07/26/18 10:36	07/27/18 17:29	
Lead	ND		0.00080	0.00020	mg/L		07/26/18 10:36	07/27/18 17:29	
Zinc	0.0022	J	0.0070	0.0019	mg/L		07/26/18 10:36	07/27/18 17:29	1
Method: 200.8 - Metals (ICP)	MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0056		0.0010	0.00020	mg/L		07/27/18 09:55	07/27/18 23:49	1
Lead	ND		0.00080	0.00020	mg/L		07/27/18 09:55	07/27/18 23:49	1
Copper	ND		0.0020	0.00060	mg/L		07/27/18 09:55	07/27/18 23:49	
Zinc	0.0025	J	0.0070	0.0019	mg/L		07/27/18 09:55	07/27/18 23:49	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.4		0.90	0.14	mg/L			07/29/18 00:36	1
Sulfate	0.66	JB	1.2	0.26	mg/L			07/29/18 00:36	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	140		5.0	5.0	mg/L			07/30/18 12:32	1
Bicarbonate Alkalinity as CaCO3	140		5.0	5.0	mg/L			07/30/18 12:32	1
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hardness as calcium carbonate	130		4.0	4.0	mg/L			07/28/18 09:31	1

RL

1.1

3.3

2.0

1.1

RL

0.0010

0.0020

0.00080

0.0070

MDL Unit

0.16 mg/L

0.41 mg/L

0.33 mg/L

0.13 mg/L

MDL Unit

0.00020 mg/L

0.00060 mg/L

0.00020 mg/L

0.0019 mg/L

D

D

Prepared

Prepared

Result Qualifier

Result Qualifier

22

9.9

14

0.0034

ND

ND

ND

2.3 J

Date Collected: 07/25/18 13:10

Date Received: 07/25/18 14:29

Analyte

Calcium

Sodium

Analyte

Arsenic

Copper

Lead

Zinc

Potassium

Magnesium

Client Sample ID: MCW-3-20180725

Method: 200.7 Rev 4.4 - Metals (ICP)

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: 580-79100-5

07/26/18 10:36 07/27/18 18:09

07/26/18 10:36 07/27/18 18:09

07/26/18 10:36 07/27/18 18:09

07/26/18 10:36 07/27/18 18:09

07/26/18 10:36 07/27/18 17:33

07/26/18 10:36 07/27/18 17:33

07/26/18 10:36 07/27/18 17:33

07/26/18 10:36 07/27/18 17:33

Analyzed

Analyzed

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

	5
	0

1	
1	
1	

Method: 200.8 - Metals	(ICP/MS) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0028	0.0010	0.00020	mg/L		07/27/18 09:55	07/27/18 23:53	1
Lead	ND	0.00080	0.00020	mg/L		07/27/18 09:55	07/27/18 23:53	1
Copper	ND	0.0020	0.00060	mg/L		07/27/18 09:55	07/27/18 23:53	1
Zinc	0.0025 J	0.0070	0.0019	mg/L		07/27/18 09:55	07/27/18 23:53	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.5		0.90	0.14	mg/L			07/29/18 00:47	1
Sulfate	0.66	JB	1.2	0.26	mg/L			07/29/18 00:47	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	130		5.0	5.0	mg/L			07/30/18 12:32	1
Bicarbonate Alkalinity as CaCO3	130		5.0	5.0	mg/L			07/30/18 12:32	1
Carbonate Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hydroxide Alkalinity as CaCO3	ND		5.0	5.0	mg/L			07/30/18 12:32	1
Hardness as calcium carbonate	110		4.0	4.0	mg/L			07/28/18 09:31	1

MB MB

ND

ND

ND

ND

Result Qualifier

Analysis Batch: 280350

Matrix: Water

Analyte

Calcium

Sodium

Potassium

Magnesium

6

Prepared Analyzed 07/26/18 10:36 07/27/18 17:20 1 07/26/18 10:36 07/27/18 17:20 1 07/26/18 10:36 07/27/18 17:20

Prep Type: Total/NA

07/26/18 10:36 07/27/18 17:20

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 580-280098/11-A Matrix: Water 200250

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 580-280098/10-A

Analysis Batch: 280350	Spike	LCS	LCS				Prep Bate %Rec.	ch: 280098
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	10.0	10.8		mg/L		108	85 - 115	
Potassium	10.0	10.6		mg/L		106	85 - 115	
Sodium	10.0	10.4		mg/L		104	85 - 115	
Magnesium	10.0	10.7		mg/L		107	85 - 115	

RL

1.1

3.3

2.0

1.1

MDL Unit

0.16 mg/L

0.41 mg/L

0.33 mg/L

0.13 mg/L

D

Lab Sample ID: LCSD 580-280098/12-A **Matrix: Water** Analysis Batch: 280350

Analysis Batch: 280350							Prep Batch: 280098			
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Calcium	10.0	10.8		mg/L		108	85 - 115	0	20	
Potassium	10.0	10.7		mg/L		107	85 - 115	1	20	
Sodium	10.0	10.6		mg/L		106	85 - 115	1	20	
Magnesium	10.0	10.8		mg/L		108	85 - 115	1	20	

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 580-2800 Matrix: Water Analysis Batch: 280413	98/10-A MB	МВ					i i	le ID: Methoc Prep Type: To Prep Batch: 3	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0010	0.00020	mg/L		07/26/18 10:36	07/30/18 11:35	1
Copper	ND		0.0020	0.00060	mg/L		07/26/18 10:36	07/30/18 11:35	1
Lead	ND		0.00080	0.00020	mg/L		07/26/18 10:36	07/30/18 11:35	1
Zinc	ND		0.0070	0.0019	mg/L		07/26/18 10:36	07/30/18 11:35	1

Lab Sample ID: LCS 580-280098/11-A **Matrix: Water** Analysis Batch: 280413

Analysis Batch: 280413	Spike	LCS	LCS				Prep Bat %Rec.	ch: 280098
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.100	0.101		mg/L		101	85 - 115	
Copper	0.100	0.0979		mg/L		98	85 ₋ 115	
Lead	0.100	0.0977		mg/L		98	85 ₋ 115	
Zinc	0.100	0.0974		mg/L		97	85 - 115	

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Dissolved

Prep Batch: 280209

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-280098/12-A Matrix: Water Analysis Batch: 280413		Client Sample ID: Lab Control Sam Prep Type: T Prep Batch:							
	Spike	LCSD LCSD			%Rec.		RPD		
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit		
Arsenic	0.100	0.0997	mg/L	100	85 - 115	1	20		
Copper	0.100	0.0974	mg/L	97	85 - 115	1	20		
Lead	0.100	0.0977	mg/L	98	85 - 115	0	20		
Zinc	0.100	0.0966	mg/L	97	85 - 115	1	20		

Lab Sample ID: LCS 580-280209/15-A Matrix: Water

Analysis Batch: 28035

Analysis Batch: 280358							Prep Batch: 28020	9
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.100	0.103		mg/L		103	85 - 115	_
Copper	0.100	0.0978		mg/L		98	85 - 115	
Lead	0.100	0.104		mg/L		104	85 - 115	
Zinc	0.100	0.0995		mg/L		99	85 - 115	

Lab Sample ID: LCSD 580-280209/16-A Matrix: Water Analysis Batch: 280358

Analysis Batch: 280358								Prep Ba	tch: 28	0209
	S	pike	LCSD	LCSD				%Rec.		RPD
Analyte	A	dded F	Result	Qualifier	Unit	D %	Rec	Limits	RPD	Limit
Arsenic		0.100	0.102		mg/L		102	85 - 115	0	20
Copper	().100 C	0.0979		mg/L		98	85 - 115	0	20
Lead	(0.100	0.104		mg/L		104	85 - 115	0	20
Zinc	().100 C	0.0994		mg/L		99	85 - 115	0	20

Lab Sample ID: MB 580-280043/6-B Matrix: Water Analysis Batch: 280358

,									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0010	0.00020	mg/L		07/27/18 09:55	07/27/18 23:00	1
Copper	ND		0.0020	0.00060	mg/L		07/27/18 09:55	07/27/18 23:00	1
Lead	ND		0.00080	0.00020	mg/L		07/27/18 09:55	07/27/18 23:00	1
Zinc	ND		0.0070	0.0019	mg/L		07/27/18 09:55	07/27/18 23:00	1

Lab Sample ID: 580-79100-1 MS Matrix: Water Analysis Batch: 280358

Client Sample ID: MCW-2-20180725

Client Sample ID: Method Blank

Prep Type: Dissolved Prep Batch: 280209

Analysis Datch. 200300	Sample	Sample	Spike	MS	MS				%Rec.	203
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.00088	J	0.100	0.0967		mg/L		96	70 - 130	
Copper	ND		0.100	0.0895		mg/L		90	70 - 130	
Lead	ND		0.100	0.0985		mg/L		99	70 - 130	
Zinc	ND		0.100	0.0933		mg/L		93	70 - 130	

2 3 4 5 6

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-79100- Matrix: Water	1 MSD					(Client \$		ID: MCW Prep Type	e: Diss	olved
Analysis Batch: 280358	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	itch: 28	80209 RPD
Analyte	•	Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.00088	J	0.100	0.102		mg/L		101	70 - 130	6	20
Copper	ND		0.100	0.0941		mg/L		94	70 - 130	5	20
Lead	ND		0.100	0.101		mg/L		101	70 - 130	2	20
Zinc	ND		0.100	0.0971		mg/L		97	70 - 130	4	20
Lab Sample ID: 580-79100- Matrix: Water Analysis Batch: 280358	1 DU					(Client		ID: MCW Prep Type Prep Ba	e: Diss	olved

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	0.00088	J	0.000884	J	mg/L		0.1	20
Copper	ND		ND		mg/L		NC	20
Lead	ND		ND		mg/L		NC	20
Zinc	ND		ND		mg/L		NC	20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 580-280366/3 Matrix: Water Analysis Batch: 280366	3					(ple ID: Method Prep Type: To	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.90	0.14	mg/L			07/28/18 21:05	1
Sulfate	0.383	J	1.2	0.26	mg/L			07/28/18 21:05	1

Lab Sample ID: LCS 580-280366/4 Matrix: Water

Analysi	is Batch:	280366

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	50.8		mg/L		102	90 - 110	
Sulfate	50.0	50.3		mg/L		101	90 - 110	

Lab Sample ID: LCSD 580-280366/5 Matrix: Water

Analysis Batch: 280366									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	51.6		mg/L		103	90 - 110	2	15
Sulfate	50.0	51.0		mg/L		102	90 - 110	1	15

Method: SM 2320B - Alkalinity

Lab Sample ID: LCS 580-280397/2 Matrix: Water Analysis Batch: 280397				Clier	nt Sample ID:	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Alkalinity	100	102		mg/L	102	85 - 115

TestAmerica Seattle

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 580-280284/1 Matrix: Water Analysis Batch: 280284									CI	lient S		e ID: Metho rep Type: T		
	МВ	MB												
Analyte	Result	Qualifier		RL		RL	Unit		D	Prepare	əd	Analyzed	D	il Fac
Hardness as calcium carbonate	ND	<u> </u>		2.0		2.0	mg/L				(07/28/18 09:31		1
Lab Sample ID: LCS 580-280284/2								Cli	ent S	ample	ID: L	ab Control	Sar	nple
Matrix: Water												rep Type: T		
Analysis Batch: 280284														
			Spike		LCS	LCS					%	Rec.		
Analyte			Added	R	esult	Qua	lifier	Unit	[D %Re	c L	imits		
Hardness as calcium carbonate			1000		1050			mg/L		10	5 9	0 - 110		
Lab Sample ID: 580-79100-1 DU									Clien	t Samı	ple ID	: MCW-2-20)18	0725
Matrix: Water												rep Type: T		
Analysis Batch: 280284														
	nple Sa	mple			DU	DU								RPD
Analyte Re	sult Qu	alifier		R	esult	Qua	lifier	Unit	0	C		RP	D	Limit
Hardness as calcium carbonate	120				125			mg/L					8	20

Lab Sample ID: 580-79100-1 Matrix: Water

Client Sample ID: MCW-2-20180725 Date Collected: 07/25/18 09:40 Date Received: 07/25/18 14:29

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.7 Rev 4.4		1	280350	07/27/18 17:55	SPP	TAL SEA
Dissolved	Filtration	FILTRATION			280043	07/25/18 15:22	CJB	TAL SEA
Dissolved	Prep	200.8			280209	07/27/18 09:55	CJB	TAL SEA
Dissolved	Analysis	200.8		1	280358	07/27/18 23:04	FCW	TAL SEA
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.8		1	280358	07/27/18 17:19	FCW	TAL SEA
Total/NA	Analysis	300.0		1	280366	07/29/18 00:00	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	280397	07/30/18 12:32	EMM	TAL SEA
Total/NA	Analysis	SM 2340C		1	280284	07/28/18 09:31	R1K	TAL SEA

Client Sample ID: MCW-1-20180725 Date Collected: 07/25/18 10:45 Date Received: 07/25/18 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.7 Rev 4.4		1	280350	07/27/18 17:59	SPP	TAL SEA
Dissolved	Filtration	FILTRATION			280043	07/25/18 15:22	CJB	TAL SEA
Dissolved	Prep	200.8			280209	07/27/18 09:55	CJB	TAL SEA
Dissolved	Analysis	200.8		1	280358	07/27/18 23:42	FCW	TAL SEA
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.8		1	280358	07/27/18 17:22	FCW	TAL SEA
Total/NA	Analysis	300.0		1	280366	07/29/18 00:12	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	280397	07/30/18 12:32	EMM	TAL SEA
Total/NA	Analysis	SM 2340C		1	280284	07/28/18 09:31	R1K	TAL SEA

Client Sample ID: MCW-99-20180725 Date Collected: 07/25/18 10:50 Date Received: 07/25/18 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.7 Rev 4.4		1	280350	07/27/18 18:02	SPP	TAL SEA
Dissolved	Filtration	FILTRATION			280043	07/25/18 15:22	CJB	TAL SEA
Dissolved	Prep	200.8			280209	07/27/18 09:55	CJB	TAL SEA
Dissolved	Analysis	200.8		1	280358	07/27/18 23:46	FCW	TAL SEA
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.8		1	280358	07/27/18 17:26	FCW	TAL SEA
Total/NA	Analysis	300.0		1	280366	07/29/18 00:24	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	280397	07/30/18 12:32	EMM	TAL SEA
Total/NA	Analysis	SM 2340C		1	280284	07/28/18 09:31	R1K	TAL SEA

Lab Sample ID: 580-79100-3 Matrix: Water

Lab Sample ID: 580-79100-2

Matrix: Water

TestAmerica Seattle

Lab Sample ID: 580-79100-4 Matrix: Water

Client Sample ID: MCW-4-20180725 Date Collected: 07/25/18 12:15 Date Received: 07/25/18 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.7 Rev 4.4		1	280350	07/27/18 18:05	SPP	TAL SEA
Dissolved	Filtration	FILTRATION			280043	07/25/18 15:22	CJB	TAL SEA
Dissolved	Prep	200.8			280209	07/27/18 09:55	CJB	TAL SEA
Dissolved	Analysis	200.8		1	280358	07/27/18 23:49	FCW	TAL SEA
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.8		1	280358	07/27/18 17:29	FCW	TAL SEA
Total/NA	Analysis	300.0		1	280366	07/29/18 00:36	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	280397	07/30/18 12:32	EMM	TAL SEA
Total/NA	Analysis	SM 2340C		1	280284	07/28/18 09:31	R1K	TAL SEA

Client Sample ID: MCW-3-20180725 Date Collected: 07/25/18 13:10 Date Received: 07/25/18 14:29

Lab Sample ID: 580-79100-5 Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.7 Rev 4.4		1	280350	07/27/18 18:09	SPP	TAL SEA
Dissolved	Filtration	FILTRATION			280043	07/25/18 15:22	CJB	TAL SEA
Dissolved	Prep	200.8			280209	07/27/18 09:55	CJB	TAL SEA
Dissolved	Analysis	200.8		1	280358	07/27/18 23:53	FCW	TAL SEA
Total/NA	Prep	200.8			280098	07/26/18 10:36	CJB	TAL SEA
Total/NA	Analysis	200.8		1	280358	07/27/18 17:33	FCW	TAL SEA
Total/NA	Analysis	300.0		1	280366	07/29/18 00:47	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	280397	07/30/18 12:32	EMM	TAL SEA
Total/NA	Analysis	SM 2340C		1	280284	07/28/18 09:31	R1K	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Client: Ramboll US Corporation Project/Site: Tacoma, WA

Laboratory: TestAmerica Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date	
Washington	State Prog	State Program		C553	02-17-19	
The following analyte	s are included in this repor	t, but accreditation/	certification is not off	ered by the governing auth	ority:	
0,	•			, , ,	ority:	
The following analyte Analysis Method SM 2320B	s are included in this repor	t, but accreditation/ Matrix Water	Analyt	, , ,	ority:	

Sample Summary

Client: Ramboll US Corporation Project/Site: Tacoma, WA

TestAmerica Job ID: 580-79100-1

ab Sample ID.	Client Sample ID	Matrix	Collected Receive	d
80-79100-1	MCW-2-20180725	Water	07/25/18 09:40 07/25/18 14	:29
80-79100-2	MCW-1-20180725	Water	07/25/18 10:45 07/25/18 14	:29
80-79100-3	MCW-99-20180725	Water	07/25/18 10:50 07/25/18 14	:29
80-79100-4	MCW-4-20180725	Water	07/25/18 12:15 07/25/18 14	:29
80-79100-5	MCW-3-20180725	Water	07/25/18 13:10 07/25/18 14	r:29

TestAmerica	575 Tao	tAmerica Seat 55 8th Street coma, WA 984 . 253-922-231	E. 424			Rush	Hold	Chain of Custody F	Pecord	1
THE LEADER IN ENVIRONMENTAL TESTING		k 253-922-504 /w.testamerik			I			-	iecoru	
Ramboll		Client Contact	RONLA 19	sameick	DROU	ve@Ramba	Date 7-25-18	Chain of Custo	^{dy Number} 37470	
400 F. Everaveen Blu	rd. 57.202	Telephone Numl	ber (Area Code)/Fa Or 597-	ax Number			Lab Number	Page	of	4
city State Z	p Code 186000	Siler Sileic	K S	ab Contact Sheri Cruz		Š mo	alysis (Attach list if re space is needed)		Loc: 580	5
Project Name and Location (State)		Billing Contact				the south	metal		79100	
Contract/Purchase Order/Quote No.			Matrix	Containers & Preservatives	-	Chloridet Su Mardness Fotal Metal	Disselvee metal	(pt	
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date	Time Variation States	Sed. Soil	H2S04 H2S04 HN03 HCI Na0H	NaOH		र्थ्य			8
MCW-2-20180725	7-25-18 9:	40 X	1	22					iot have field	9 ک
MCW-1-20180725	7-25-18 10	v						San	rs-no nples have	10
MCW-99-20180725	7-25-18 10	<u>)'.50 X</u>							filtered.	
MCW-4-20180725	7-25-18 12	(15 X						0,550	ected in	11
MCW-3-20180725	7-25-18 13	ED X		4				unpre	served contains	ìr
										or the local data and a state of the local data and a state of the local data and a state of the local data and
					T <u>2</u> I	. 111./				4 maaa maada ka
				Coole	n. ID: <u>4) .</u> r Dsc: <u>Ly</u> ng:	Red Fee	• Unc: <u>11-3 •</u>			symoothing by the part of the
	580-79100	Chain of Custo	it in	1	seal: Yes_	LIP UP				
		1 1		e P	acks/Dry I		her: <u>C P</u>			
Cooler Possible H	lazard Identification azard	le 🗌 Skin Irr	ritant 🗌 Pois	ion B 🗌 Unknow		•	Disposal By Lab Archive For		e assessed if samples longer than 1 month)	
Turn Around Time Required (business days)				QC Requirements (Specify)				<u></u>	s a f a star de la star
□ 24 Hours □ 48 Hours □ 5 Days 💢 10 Da 1. Relinquished By Sign/Print		Other Date	, Time	L Received By Si	Al Print	A		Date	Time	at poer through the
Sam Lendo / Samantha	Leick !	7-25-18	14:29	L Beceived By Si	427	hen Ho	ibbs	Date 7.25.1	8 429	shaning the
2. Relinquished By Sign/Print		Date	Time	2. Received By Si	gn/Print			Date	Time	and the second descents of
3. Relinquished By Sign/Print		Date	Time	3. Received By Si	gn/Print			Date	Time	ere verkenistinist
Comments 🗶	1							l		Manudanikka

Cruz, Sheri

From:	Samantha Leick <sleick@ramboll.com></sleick@ramboll.com>
Sent:	Tuesday, July 17, 2018 2:00 PM
To:	Cruz, Sheri
Cc:	Devon M Rowe
Subject:	Bottle order
Follow Up Flag:	Follow up
Flag Status:	Flagged

-External Email-

Hi Sheri,

I'm hoping to order some sample bottles for a project coming up in Tacoma. Our site is super close to your Tacoma location so I'm hoping to pick the bottles and a cooler up the morning of July 25th. We're going to be collecting 5 groundwater samples for the following analytes:

- Total hardness USEPA SM2340C
- Total and dissolved metals USEPA 200.8- arsenic, copper, lead, and zinc
- Total alkalinity, bicarbonate, and carbonate USEPA SM2320B
- Total Chloride and sulfate USEPA 300
- Total Calcium, magnesium, sodium, and potassium USEPA 200

We'd like to report to the MDL. The PO number for this will be 1690006896-001 and you can include Devon and I on the project communication. Please let me know if you have any questions. I can be reached via cell: 262-358-0557.

Thanks! Sam

Samantha Leick

Consultant 2 1692735 - Seattle

D +1 (360) 5977070 M +1 (262) 3580557 sleick@ramboll.com

Client: Ramboll US Corporation

Login Number: 79100 List Number: 1 Creator: Hobbs, Kenneth F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Seattle

ATTACHMENT C

FIELD INSPECTION NOTES

Site Inspection Field Notes -7/25/18

System Component	Notes/Actions Taken or Needed
1.0 - Signs	Signs are present + readable on perimeter fence.
1.1 - Fence	Perimeter fence is functional w/ locked gates. Gate in sw corner has been repaired + is functional.
1.2 - Gate	Gater lock are functional.
1.3 - Manhole	Manhole is in place + functional.
2.0 - Open Ditches	There are no open ditches on site.
3.0 - Pipes and Culverts	NO damage observed is pipes or vents, and they appear functional. *
5.1 - Pipes and Culverts	Vegetation is not obstructing flow to pipes.
 3.2 - Pipes and Culverts 	Protective coating is present on pipes. Coating wear noted in 2015,2016,+2017 visits: still present in similar condition
3.3 - Pipes and Culverts	No visible damage to vent pipes. No culverts present.
6.4 - Pipes and Culverts	All pipes + vents appear functional from perimeter vantage point.
5 - Pipes and Culverts	No misalignment of pipes or vents observed.
6 - Pipes and Culverts	No erosion or blockage of pipest vents.
.0 - Vegetative over	NO lack of vegetation, as viewed from cell perimeter, vegetation had been cleaned since 2017 visit, but new growth has started.
 .1 - Vegetative over 	No disturbance of earth (erosions, cracks, mounds) observed from cell perimeter.
2 - Vegetative over	Vegetation had been cleared since 2017. Wew Vegetation growth since vegetation was cleared in December 2017-dry at time of 2018 visit
- .1 - Cover liner	Liner is not visible from cell perimeter due to rock covering + grass + vegetation on top of cell.
2 - Cover liner	No bulging observed from perimeter.
*) Due	to safety constraints, Ramboll was not able valk on top of the cell, observations were

to walk on top of the cell, observations were made from a ladder along the perimeter of the cell. ATTACHMENT D

SITE PHOTOGRAPHS

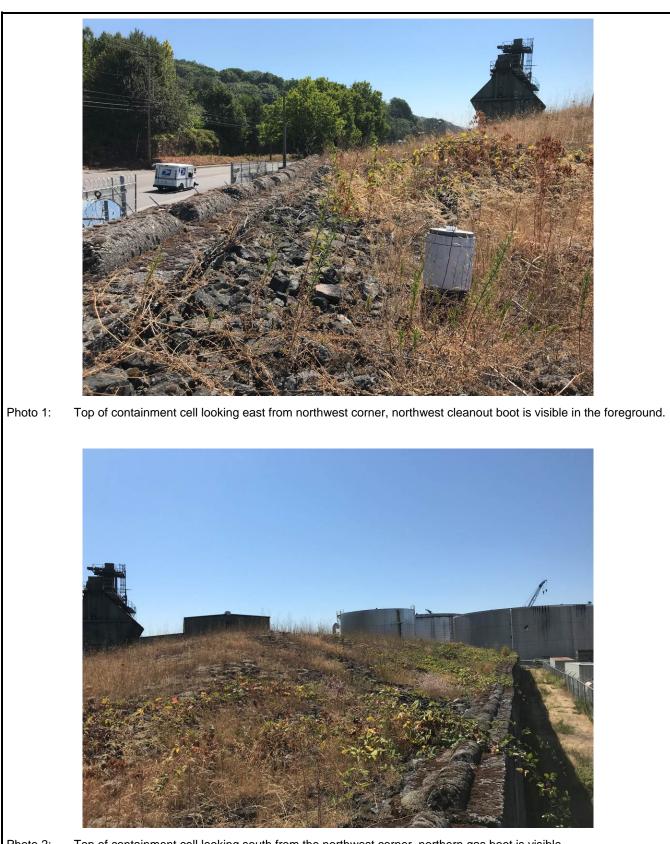
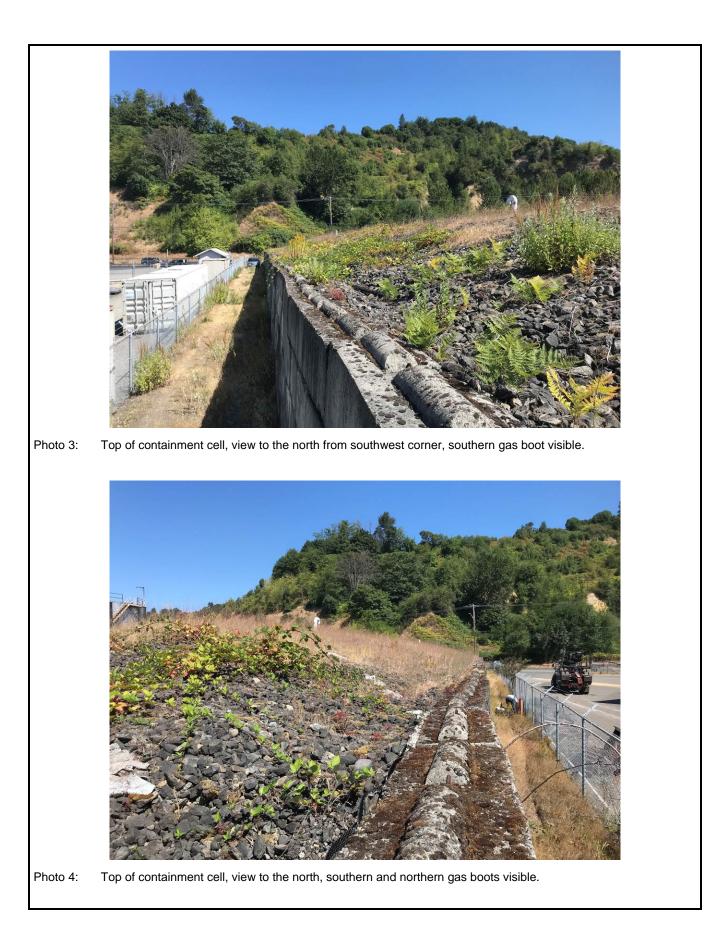
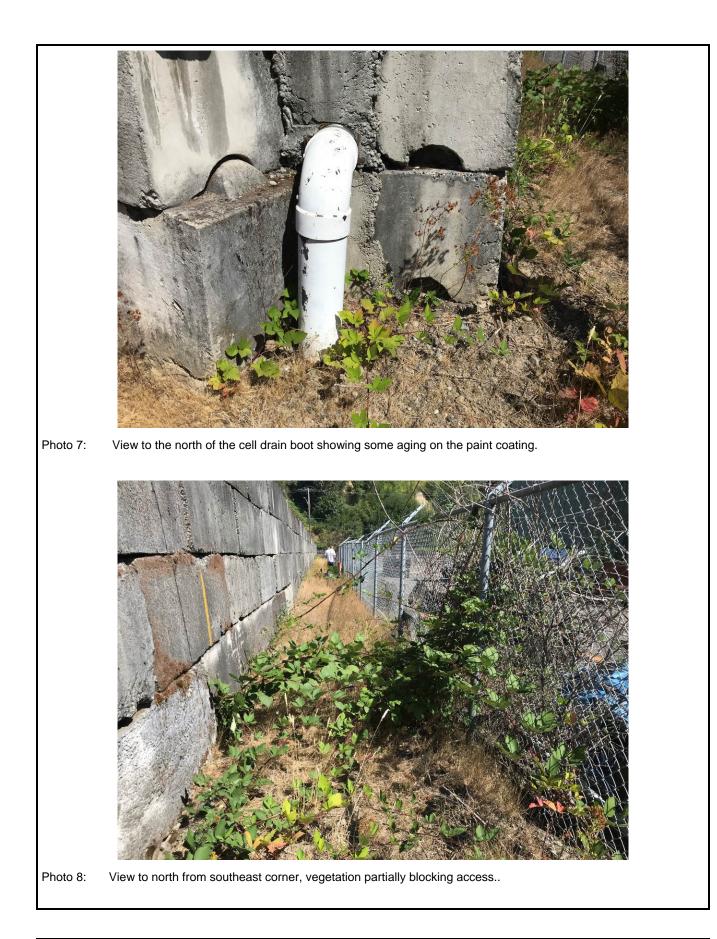



Photo 2: Top of containment cell looking south from the northwest corner, northern gas boot is visible.



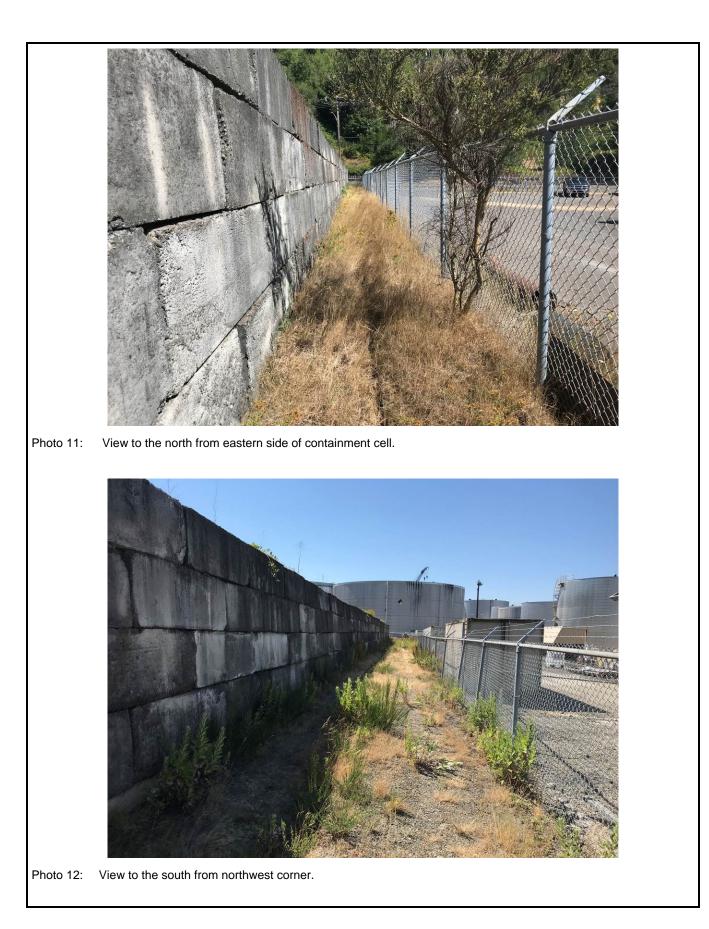
Site Photographs Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington July 2018


Site Photographs Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington July 2018

Site Photographs Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington

July 2018

Site Photographs Cascade Timber #1 ("McFarland, WA")


Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington July 2018

Site Photographs Cascade Timber #1 ("McFarland, WA")

Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington July 2018

Cascade Timber #1 ("McFarland, WA") 2502 Marine View Drive, Tacoma, Washington July 2018