

6347 Seaview Avenue Northwest Seattle, WA 98107 Telephone 206-781-1449 Fax 206-781-1543 www.atcgroupservices.com

REMEDIATION SYSTEM RESTART REPORT

January 2017 through December 2018

Phillips 66 Facility No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington 98107 Washington State Department of Ecology Facility ID: 46445373 Washington State Department of Ecology Voluntary Cleanup Program No. NW1714 ATC PROJECT NO. Z076000073

> Submitted to: Ms. Jing Song Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98008-5452

> > Submitted on behalf of: Mr. Ed Ralston Phillips 66 Company Remediation Management 76 Broadway Sacramento, California 95818

Prepared by: ATC Group Services, LLC 6347 Seaview Avenue NW Seattle, Washington 98107 (206) 781-1449

May 28, 2019

ATC Group Services LLC Prepared by:

27

Laurence Brown Staff Geologist Laurence.Brown@atcgroupservices.com

ATC Group Services LLC Reviewed by: Elisabeth S. Silver

Elisabeth Silver Senior Project Manager Elisabeth.Silver@atcgroupservices.com

REMEDIATION SYSTEM RESTART REPORT

January 2017 through December 2018

Phillips 66 Facility No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington 98107 Washington State Department of Ecology Facility ID: 46445373 Washington State Department of Ecology Voluntary Cleanup Program No. NW1714 ATC PROJECT NO. Z076000073

1.0 INTRODUCTION AND REMEDIATION HISTORY

ATC Group Services LLC (ATC) has prepared this report on behalf of Phillips 66 Company (P66) to document the results of the soil vapor extraction (SVE) and air-sparge (AS) remediation system repair and re-start activities, operation and maintenance, and winterization activities that occurred at former Phillips 66 Facility No. 255353 (AOC 1396) during 2017 and 2018. The former facility address is 600 Westlake Avenue North, Seattle, Washington. P66 is conducting investigation, cleanup, and monitoring of the former P66 facility (located on the south half of City Block 37) and those properties on or around Block #37 bounded by Westlake Avenue North, Valley Street, Terry Avenue North, and Mercer Street (herein referenced as the Site). P66 is conducting the investigation, cleanup, and monitoring pursuant to a Settlement and Remedial Action Agreement (Settlement Agreement) among ConocoPhillips (now P66), Union Oil Company of California, City Investors XI, LLC (City Investors), and the City of Seattle (City) that was executed in April 2007.

The SVE system consists of two blowers that are capable of extracting soil vapors from a total of 36 vertical wells (19 in Mercer Street, 17 in Terry Avenue) and 16 horizontal wells (7 in Valley Street, 9 in Westlake Avenue). The air sparge (AS) system is capable of supplying compressed air to a total of 62 AS wells (27 in Mercer Street, 14 in Valley Street, 21 in Westlake Avenue). The SVE blowers discharge vapors to an off-gas treatment system that uses granular activated carbon (GAC) to reduce air emissions to permitted levels (under Puget Sound Clean Air Agency [PSSCA] permit Registration No. 29548). Recovered water from the SVE moisture separators is also treated with GAC before discharging to the King County sewer system (under Discharge Authorization No. 4262-02, expiration: 6/18/2019). The SVE/AS system equipment summary and SVE/AS well identification are presented in **Table 1**.

The Site is shown relative to surrounding physical features in **Figure 1**. The current layout of the Site and locations of the SVE and AS wells are shown on **Figure 2**. The current layout of the SVE/AS system is shown on **Figure 3**.

2.0 SYSTEM WINTER MAINTENANCE

Several site visits were conducted between January 1 and August 29, 2017 in order to inspect and maintain system components while the system remained winterized. Previous system winterization was completed on December 16, 2016 and is discussed in ATC's *System Restart Report – Third and Fourth Quarter 2016*. A summary of the winter maintenance site visits is presented below:

March 3, 2017 – ATC performed the following maintenance

- Manually rotated the liquid transfer pumps P-5501, P-501, P-401
- Manually rotated the AS compressor motor C-2201

April 26, 2017 – ATC performed the following maintenance

- Manually rotated the liquid transfer pumps P-5501, P-501, P-401
- Manually rotated the AS compressor motor C-2201
- Reinstalled sump pump in the sump pit at southwest corner of containment pad.

3.0 SYSTEM RE-START AND OPERATION SUMMARY

Several site visits were conducted that included preparing the system for re-start, monitoring and optimizing its performance, and performing routine system operation and maintenance. A summary of the site visits conducted from August 28, 2017 to December 7, 2019, is presented below:

System Inspection, Repairs and Re-Start Activities (August 28, 2017 through November 29, 2017)

Multiple visits were made to the site in order to perform the necessary repairs and maintenance to the SVE/AS system in preparation for system re-start. The following visits and tasks were completed during the period from August 28, 2017 through November 19, 2017.

August 28, 2017 – ATC performed the following system restart preparation activities:

- Filled the liquid carbon vessels with H20
- Reconnected carbon vessels to system hoses.
- Performed review of system components

August 29, 2017 – ATC performed the following system restart preparation activities:

- Attempted to manually rotate B-701 and B-801 blowers, but blowers were seized
- Dismantled blowers B-701 and B-801 in order to have the blowers serviced
- Performed temporary (bump) operation of the AS system. Found that the compressor will not run in auto mode but will run in manual mode.
- Inspected solenoid valve conditions on the AS manifold.

August 30, 2017 – ATC performed the following system maintenance and restart preparation activities:

- Cleaned out separation tank (scrubbed interior and vacuumed out solids/liquids).
- Dismantled dilution air filter assembly of blowers B-701 and B-801 and lubricated blower lobes (seized) with oil
- Attempted manual rotation of blowers but was unsuccessful
- Changed gear oil of AS compressor

November 14, 2017 – ATC subcontracted Beckwith and Kuffel to performed the following system repair activities

- Removed the seized blowers B-701 and B-801 and replaced them with new units
- Reinstalled threaded interfaces between new blowers and system components
- Filled gear boxes of new blowers with oil

November 28, 2017 – ATC performed the following system repairs and restart preparation activities

- Reinstalled unistrut stands of B-701 and B-801 SVE skids
- Reconnected piping to B-701 and B-801 blowers
- Reinstalled auto lubricators on B-701 and B-801 blowers

November 29, 2017 – ATC performed the following system repairs and restart activities

- Installed motor sheaves on B-701 and B-801 blowers
- Aligned blowers with motors and installed belts on B-701 and B-801 blowers
- Reconnected electrical components on B-701 and B-801 blowers
- Restarted system:
 - SVE system running properly.
 - AS compressor operating but requires troubleshooting maintenance (oil discharged from pressure relief valve on AS skid)
- Performed system monitoring (see below)
- SVE system on at departure from site / AS off at departure from site.
- O&M:

A partial O&M event was conducted during the November 29, 2017 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system; collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); and collection of vacuum, velocity and vapor data from well headers of the SVE system manifold.

November 30, 2017 – ATC performed the following system repairs and restart activities:

- Troubleshooting AS compressor operation.
- Refilled liquid phase carbon vessel B with tap water and closed discharge piping valve (vessel had lost water through syphoning to sewer discharge point).

December 6, 2017 – ATC performed system repairs and restart activities as well as limited operation and maintenance activities as follows:

- SVE system on upon arrival to site/ AS system off upon arrival to site.
- Cleaned out storm sewer catch basin inside remediation system compound (obscured with weeds/soil/debris).
- Performed system monitoring (see below).
- Performed oil change on the AS compressor.
- Attempting to troubleshoot operation of AS system. (AS cooling fan operations but the compressor will not turn on).
- SVE system on at departure from site / AS off at departure from site.
- O&M:

A partial O&M event was conducted during the December 6, 2017 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and

flowrate vapor data from the vapor phase treatment system; collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); and collection of vacuum, velocity and vapor data from well headers of the SVE system manifold (Note: vapor data collected from select wells).

December 14, 2017 – ATC performed the following system repairs and restart activities.

- SVE system on upon arrival to site/ AS system off upon arrival to site.
- System shut down and locked-out/tagged-out.
- Replaced internal components of rotameter for well W1 on AS manifold
- Determined that system logic programming may require diagnosis in order for AS compressor to run normally.
- SVE system on at departure from site / AS off at departure from site.

December 20, 2017 – ATC performed system repairs and restart activities as well as limited operation and maintenance activities as follows:

- System (SVE and AS) was off upon arrival to site. Alarm present on display.
- Restarted System (Successfully restarted SVE system, but AS compressor will not turn on).
- Pumped water accumulated in sump pit to the system separation tank.
- Adjusted water filters/reset filter gaskets (slight leaks observed).
- Performed system monitoring event (see below).
- O&M:

A partial O&M event was conducted during the December 20, 2017 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system; collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); and collection of vacuum, velocity and vapor data from well headers of the SVE system manifold.

February 27, 2018 ATC performed the following system maintenance activities:

- System was off upon arrival to site.
- Manually rotated the liquid transfer pumps P-5501, P-501, P-401
- Manually rotated the AS compressor motor C-2201 and noted that the motor turns with significant resistance.
- Noted that a section of PVC piping between the vapor liquid separator VLS-201 and the system separation tank had been broken.

March 27, 2018 ATC performed the following system repair and maintenance activities:

- System was off upon arrival to site.
- Repaired the broken section of PVC piping between the vapor liquid separator VLS-201 and the system separation tank.
- Manually rotated the liquid transfer pumps P-5501, P-501, P-401.
- Manually rotated the AS compressor motor C-2201 and noted that the motor turns with significant resistance.

April 18, 2018 ATC performed the following system repair and maintenance activities:

- System was off upon arrival to site.
- Manually rotated the liquid transfer pumps P-5501, P-501, P-401.
- Manually rotated the AS compressor motor C-2201 Manually rotated the liquid transfer pumps P-5501, P-501, P-401.

- Noted that the control panel touchscreen display was not functioning.
- Performed over-the-phone troubleshooting of display with vendor (Newterra) and diagnosed that the display would need to be removed and shipped to vendor for servicing.
- Removed touchscreen display module.

July 13, 2018 ATC visited the site with Valley Electric to make an assessment of system electrical component status and estimate costs to perform troubleshooting and repairs to panel:

- System was off upon arrival to site.
- Valley electric performed review of electrical components.
- ATC performed review of system condition.

July 27, 2018 – ATC performed the following system repair and restart activities.

- System was off upon arrival to site.
- Confirmed that electrical panel was energizing system display
- Attempted restart of SVE / AS systems but equipment would not turn on/blowers would not rotate.
- Identified that blowers B-701 and B-801 were seized. Blower electrical motors appeared in good condition and the electrical motor shafts rotated freely.
- Attempted manual rotation of blowers but was unsuccessful.

August 8, 2018 – ATC performed the following system repair and restart activities.

- System was off upon arrival to the site.
- Disassembled blowers B-701 and B-801 (removed belt cages, removed auto oiler connections, removed piping/flange connections)
- Applied lubricant to blower lobes and freed seized lobes via manual rotation
- Began reassembly of blower components/connections

August 9, 2018 – ATC performed the following system repair and restart activities.

- System was off upon arrival to the site.
- Completed reassembly of blower components/connections.
- Successfully restarted SVE system / blowers running in auto mode.
- Greased blowers and checked belt tension.
- Attempted restart of AS system but was unsuccessful.
- Restarted SVE system.

August 10, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- Attempted restart of AS system but was unsuccessful.
- Performed troubleshooting of AS compressor and identified that AS motor was receiving power, but would not turn on/rotate.
- Locked out/tagged out AS system.
- Removed electrical wiring to AS motor, disconnected compressor from system piping and partially disconnected motor from compressor in preparation for service by subcontractor.
- Performed partial system monitoring event (see below).
- **O&M**:

A partial O&M event was conducted during the August 10, 2018 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and

flowrate vapor data from the vapor phase treatment system; and collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801).

August 16, 2018 – ATC performed partial system monitoring activities. The SVE system was on upon arrival. The AS system was off (down for planned servicing):

• O&M:

A partial O&M event was conducted on August 16, 2018 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system; and collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801).

August 22, 2018 – ATC subcontracted Beckwith and Kuffel and the following system repair and restart activities were performed.

- SVE system was on upon arrival / AS system was off
- SVE system turned off and system locked out for inspection of AS system.
- Beckwith and Kuffel removed AS compressor from AS motor
- Beckwith and Kuffel confirmed that the AS compressor was seized (corrosion on internal parts), but AS motor appeared in good order.
- AS compressor left on skid, disconnected. (Beckwith and Kuffel will return to site to remove compressor and perform further evaluation at their shop).
- ATC restarted SVE system.
- ATC performed partial system monitoring event (see below).
- O&M:

A partial O&M event was conducted during the August 22, 2018 site visit which involved the following activities: Collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system.

September 12, 2018 – ATC performed system operation and maintenance activities as described below.

- The SVE system was off upon arrival (alarms present on system control panel). The AS system was off (down for servicing).
- ATC cleared alarms present on system control panel and restarted the SVE system.
- O&M:

A partial O&M event was conducted on September 12, 2018, which involved the following activities: Collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system.

September 25, 2018 – ATC subcontracted Beckwith and Kuffel and the following system repair and restart activities were performed.

- SVE system was on upon arrival / AS system was off
- SVE system turned off and system panel breaker turned off and locked out/tagged out for installation of new AS compressor.
- Beckwith and Kuffel removed existing/seized AS compressor unit
- Beckwith and Kuffel attempted installation of new AS compressor unit, but found that threads were stripped on compressor oil plug (Plug had been temporarily removed in order to mount legs to base of compressor).

- Beckwith and Kuffel discontinued installation of new AS compressor and left site with new compressor unit repair oil plug threads.
- ATC removed lockout-tagout (LOTO) from system panel breaker, re-energized system and restarted SVE system. (Note: AS system is still locked out/tagged out).

October 5, 2018 – ATC subcontracted Beckwith and Kuffel and the following system repair and restart activities were performed.

- SVE system was on upon arrival / AS system was off.
- SVE system shut down (system panel breaker turned off and locked out/tagged out).
- Beckwith and Kuffel installed new AS compressor unit (reconnected to motor, reconnected piping and electrical connections).
- ATC/Beckwith and Kuffel attempted system restart. SVE system running normally, but cannot start AS system in "auto" mode. AS cooling fan and compressor will operate in manual "hand" mode.
- At departure from site, SVE system left on and AS system turned off.

October 12, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- Performed troubleshooting of AS system operation, but was unsuccessful at restarting system in "auto" mode. AS system will operate in manual mode for approximately one to two minutes and then automatically shuts off.
- Determined that problem is most-likely a programming issue.
- Noted squeaking from B-701 belt cage area.
- Shut down SVE system and LOTO main panel breaker to inspect B-701 belt.
- Removed B-701 belt cage and determined that belt was worn /belt alignment was slightly off.
- Attempted to adjust position of B-701 motor to align belt, but identified that adjustment bolts in the base mount of the B-701 motor were not functioning.
- ATC reinstalled B-701 belt cage, removed LOTO from panel breaker and restarted SVE system.
- At departure from site, SVE system left on and AS system turned off.

October 24, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- ATC performed rotation of AS compressor by running it in manual mode.

October 30, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- Took measurements and photographs of B-701 motor base mount to order a replacement mount assembly.

November 1, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- ATC performed short term rotation of AS compressor by running it in manual, "hand" mode

November 7, 2018 – ATC performed the following system repair and restart activities.

- SVE system was on upon arrival / AS system was off.
- Successfully performed troubleshooting of AS system operation (programming errors which would not allow well valves to open).
- Turned AS system on in auto mode. (SVE and AS systems on upon departure from site).

November 8, 2018 – ATC performed the following system repair and restart activities.

- SVE and AS systems were on upon arrival.
- Systems shut down and main panel breaker LOTO for replacement of B-701 motor mount.
- Removed B-701 belt cage, removed belt, unbolted B-701 motor from mount and unbolted mount from skid table and removed motor from skid table.
- Replaced B-701 motor mount, reinstalled motor bolted connections.
- Replaced B-701 belt and realigned by adjusting motor position.
- LOTO removed from panel and SVE/AS systems restarted.

November 16, 2018 – ATC performed system repairs and restart activities as well as limited operation and maintenance activities as follows:

- SVE and AS systems were on upon arrival.
- Observed that AS well W11 rotameter body was broken.
- Observed that pressure relief valve of AS system was activating.
- System shut down and panel breaker LOTO for replacement of W11 rotameter.
- Replaced W11 rotameter.
- Removed LOTO from panel breaker and restarted SVE/ AS systems.
- Performed system monitoring event (see below).
- Performed troubleshooting of AS pressure relief valve and identified that pressure relief valve was broken.
- Upon departure from site, the SVE system was running and AS system was turned off.
- O&M:

A partial O&M event was conducted during the November 16, 2018 site visit which involved the following activities: Recording the totalizer reading for the liquid phase treatment system, recording SVE/AS system hour meter readings; collection of stack temperature, velocity and flowrate vapor data from the vapor phase treatment system; and collection of vacuum, temperature and pressure data from both SVE systems (B-701 and B-801).

November 21, 2018 – ATC performed system repairs and restart activities as follows:

- SVE system was running/ AS system was off upon arrival.
- System shut down and panel breaker LOTO for lubrication of system components and replacement of pressure relief valve on AS system.
- Added oil to SVE blowers B-701 and B-801 auto oiler reservoirs.
- Replaced AS system pressure relief valve.
- Removed LOTO from panel breaker and restarted SVE and AS systems.
- Tested AS operation as AS cycled through well field zones (AS bleed valve in 50% open position). Identified that AS pulse program Step #4 resulted in pressure relief valve activation and required bleed valve to be set to 75% open position to alleviate over-pressure.
- Reset AS pulse programming so that step #4 was not active and remaining steps would pulse for seven minutes (reduced from 10 minutes).
- Upon departure from site, the SVE and AS system were running.

November 28, 2018 – ATC performed system operation and maintenance activities as follows:

- SVE and AS systems were running upon arrival.
- Observed that storm sewer catch basin in compound was backed up, however the backed up storm water was not overflowing outside of system compound.

• **O&M**:

During the November 28, 2018 site visit, the following O&M activities were conducted: Recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from all SVE wells; Collected pressure and air flow measurements from all AS wells; Collected vapor samples from the discharge vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total hydrocarbons (THC) as gasoline and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Collected DA 4262-02 compliance sample from the discharge sampling port on second liquid phase carbon vessel. The sample submitted to PACE Analytical of Minneapolis, MN for analysis of BTEX by EPA Method 8260 and Nonpolar fat/oil/grease by method EPA 1664A TPH. The SVE/AS system remained operating upon departure.

December 7, 2018 – ATC performed system operation and maintenance activities as follows:

- SVE and AS systems were running upon arrival.
- Inspected storm sewer catch basin with GLY representatives and observed that catch basin was free of sediment/debris blockages.
- Added oil to AS compressor.
- O&M:

During the December 7, 2018 site visit, the following O&M activities were conducted: Recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells; Collected pressure and air flow measurements from all AS wells; The SVE/AS system remained operating upon departure.

3.0 DATA SUMMARY AND EVALUATION

Historical system performance data collected prior to the 2017 - 2018 activities is summarized in the following reports:

- Cardno, Remediation Progress Report, First Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, July 2, 2014.
- Cardno, *Remediation Progress Report, Second Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, August 22, 2014.*
- Cardno, *Remediation Progress Report, Third Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, January 21, 2015.*
- Cardno, Remediation Progress Report, Fourth Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, February 19, 2015.
- Cardno, Remediation Progress Report, First Quarter 2015, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, May 22, 2015.
- ATC, Remediation System Restart Report Third and Fourth Quarter 2016, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, May 3, 2017.

Cumulative historical system operational and performance data collected prior to the August 2016 SVE/AS system re-start activities is provided in **Tables 1** through **5** of **Appendix A**.

<u>RUNTIME EVALUATION</u>: The cumulative runtimes for the AS and VE systems were approximately 68% and 80%, respectively, during this period. System runtime summaries for the AS and the SVE system are provided in **Tables 2** and **3**, respectively. System downtime during this reporting period was attributed to factors, including: seized and/or damaged equipment requiring maintenance and/or replacement and PLC issues which prevented the AS system from running in "Auto" mode.

GROUNDWATER DEPTH TO WATER AND FLOW DIRECTION EVALUATION:

2017 Monitoring Period - Depths to groundwater measured on December 12 and 13, 2017 (while system SVE operated) ranged from 10.82 feet below the top of well casing (TOC) in monitoring well SMW-3 to 21.15 feet below TOC in monitoring well MW-216. The inferred shallow groundwater flow direction is generally towards the northeast, at an average gradient of approximately 0.04 foot/foot.

2018 Monitoring Period - Depths to groundwater measured on June 13, 2018 (while system was off) ranged between 8.66 feet below TOC in monitoring well MWR-5 to 10.94 feet below TOC in monitoring well MWR-6. Depths to groundwater measured on January 1, 2019 (while system was off) ranged from 7.72 feet below TOC in monitoring well MWR-5 to 11.38 feet below TOC in monitoring well MW-217. The inferred shallow groundwater flow direction during both the June 2018 and January, 2019 monitoring events is generally towards the northeast, at an average gradient of approximately 0.04 foot/foot.

Historical groundwater data indicates that the pre-dominant groundwater flow direction is toward the northnortheast (toward South Lake Union located approximately 500 feet north of the Site). The depths to water and groundwater flow direction are likely influenced by the presence of native soil and fill materials on and off-site and the presence of subsurface hydrogeologic barriers installed during the remedial excavation activities completed in 2008. The elevation of the water surface in south Lake Union may also influence the direction of the groundwater flow beneath the site. A summary of the groundwater conditions measured during the 2017 monitoring period are summarized in ATC's *Groundwater Monitoring Report (2017 Annual Report)*, dated January 26, 2018. A summary of the groundwater conditions measured in the 2018 monitoring period are summarized in ATC's *Groundwater Monitoring Report (2017 Annual Report)*, dated January 26, 2018. A summary of the groundwater conditions measured in the 2018 monitoring period are summarized in ATC's *Groundwater Monitoring Report (2018 February 2, 2019*.

GROUNDWATER DISSOLVED CONCENTRATION EVALUATION:

2017 Monitoring Period - Laboratory analytical results for groundwater samples collected on during the 2017 monitoring period indicate that gasoline-range hydrocarbons, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were not detected above laboratory method reporting limits or were detected at concentrations less than the MTCA Method A cleanup levels in all of the samples submitted for analysis.

2018 Monitoring Period - Laboratory analytical results for groundwater samples collected During the 2018 monitoring period indicate that gasoline-range hydrocarbons, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were not detected above laboratory method reporting limits or were detected at concentrations less than the MTCA Method A cleanup levels in the samples submitted for analysis, with the exception of gasoline-range hydrocarbons and benzene detected at concentration of 11,000 μ g/L and 5.9 μ g/L respectively in MWR-5 during the June, 2018 sampling event, gasoline-range hydrocarbons, benzene, ethylbenzene and total xylenes detected at concentrations of 43,000 μ g/L, 20.9 μ g/L, 1,180 μ g/L, and 4,280 μ g/L respectively in MWR-5, and gasoline-range hydrocarbons detected at a concentration of 1,230 μ g/L in MW-45 during the January, 2019 sampling event. These analytical results are generally similar to historical analytical results. A summary of the groundwater analytical results collected from the wells on December 13, 14 and 16, 2016 are summarized in ATC's *Groundwater Monitoring Report (Fourth*

Quarter 2016), dated February 23, 2017. A summary of the groundwater analytical results collected during the 2017 and 2018 monitoring periods is presented in ATC's *Groundwater Monitoring Report (2017 Annual Report)*, dated January 26, 2018 and ATC's *Groundwater Monitoring Report (2018 Annual Report)*, dated February 2, 2019.

INCIDENTAL GROUNDWATER / CONDENSATE RECOVERY: The SVE/AS system recovered less than 100 gallons of water during operation during the 2017 and 2018 operating periods. An effluent compliance sample per King County DA 4262-02 was collected on November 28, 2018. Sample port locations are shown on **Figure 3**. The sample was submitted to PACE Analytical of Minneapolis, MN for analysis of BTEX by EPA Method 8260 and Nonpolar fat, oil and grease by method EPA 1664A TPH. BTEX and fat, oil and grease were not detected above the laboratory's method reporting limits in the sample submitted for analysis, and the sample demonstrated compliance with DA 4261-02 limits. The analytical report is presented in **Appendix B**. Note no discharge from the system to the King County sewer system occurred during the 2017 – 2018 period. All accumulated incidental accumulated water is currently being stored within system vessels.

VAPOR AND OFFGAS ANALYTICAL AND TREATMENT EVALUATION: PSSCA compliance vapor samples were collected from the influent, intermediate, and effluent vapor sampling ports on each of the vapor phase carbon treatment trains, utilizing Tedlar bags on November 29, 2017. PSSCA compliance vapor samples were also collected from the effluent vapor sampling ports on each of the vapor phase carbon treatment trains on November 28, 2018. Vapor sample port locations are shown on **Figure 3**. The samples were submitted to PACE Analytical of Minneapolis, MN for analysis of gasoline-range hydrocarbons and BTEX by EPA Method TO-15. Copies of the laboratory analytical reports of the vapor samples are provided in **Appendix B**. (Note: The PSCAA permit specifies vapor concentrations as TPH, while the analytical laboratory reports Method TO-15 results as Total Hydrocarbon Concentration as gasoline [THCg]. For reporting purposes, TPH and THCg are assumed to be equivalent).

The vapor analytical results, the PID screening results, and the corresponding mass recovery and emissions rates for each of the three vapor trains are summarized in **Tables 5**, **6** and **7**, respectively. The PSCAA permit specifies that a control efficiency of 97% must be demonstrated when total petroleum hydrocarbon (TPH) concentrations at the inlets to the granular activated carbon vessels are 200 ppmv or greater. As shown on **Tables 5**, **6** and **7**, TPH concentrations have never exceeded this threshold; therefore control efficiency is not reported.

Because readings used to calculate air flow were not collected during 2017, mass recovery rates and cumulative mass removal values were not calculated for this period.

Because vapor samples were not collected from the influent sampling ports of the vapor phase carbon treatment trains during 2018, mass recovery rates and cumulative mass removal values were not calculated for this period

ATC amended calculations for flow rate data previously generated for the 2016 operating period which were presented in the ATC *Remediation System Restart Report – Third and Fourth Quarter 2016*. The amended calculations yield higher flow rates which in turn yield slightly higher mass recovery rates and higher cumulative mass removed values. These changes are reflected in **Tables 3**, **5**, **6 and 7**. The previously reported total mass of hydrocarbons recovered by the SVE system as of May 3, 2017 was 3,091 lbs. After factoring the amended flow rate calculations, this value has been corrected to 3,126.6 lbs.

<u>SVE PID AND AS FLOW RATE DATA</u>: SVE PID measurements and AS flow rate data for this reporting period are provided in **Tables 8** and 9, respectively.

4.0 2018 WINTERIZATION ACTIVITIES

On December 17, 2018, ATC visited the site to conduct winterization activities on the SVE/AS system. Upon arrival, the system (SVE and AS) was on. ATC shut down the system by turning off the main panel breaker and applied LOTO to the panel breaker. During the visit, ATC ensured that all SVE manifold valves were opened and the water from above the valve was allowed to drain back to the well and/or underground piping. The three water transfer pumps were run to convey all water stored in vapor liquid separator tanks and conveyance piping to the separation tank vessel. All water conveyance piping and hoses were detached at the cam lock fittings and hoses and piping were allowed to drain. The three water transfer pumps were stored in the onsite construction box. The AS compressor was covered with plastic sheeting to prevent water intrusion. The sump pump was removed from the sump pit, allowed to drain, placed in a plastic garbage bag and stored at the southwest corner of the compound. The two water filters and cartridge housings were removed. The filters and housings were placed in plastic garbage bags and stored in the onsite construction compound gate was secured and locked upon departure.

Beginning January 4, 2019. ATC commenced a program of bi-weekly site visits to inspect the system condition following winterization and perform short duration operation of the SVE blowers and AS compressor to keep equipment lubricated and prevent corrosion.

5.0 SYSTEM DECOMMISSIONING

The remediation system was decommissioned in April, 2019. A report documenting the removal of the system is forthcoming.

...

TABLES

TABLE 1SVE/AS REMEDIATION SYSTEM SUMMARY

No. 4262-02, expiration: 6/18/2018).

		Startup Date:	8/17/2016
Permits		Discharge of treated groundwater to King County sewer system under King County	
(e.g. NPDES, cor	nsumptive use)	Disharge Authorization No. 4262-02, expires 6/18/2019. Discharge treated vapors	
		to atmoshere under PSCCA permit Registration No. 29548.	
Soil Vapor E	xtraction		
Mercer Street S	VE Well ID's:	19 1-inch diameter vertical SVE wells to approximately 8 feet bgs, designated	
		MSVE-1 through MSVE-19	
Valley Street SV	'E Well ID's:	8 1-inch diameter horizontal SVE wells to approximately 8 feet bgs, designated	
		VSVE-1 through VSVE-7, and VSVE-9	
Terry Avenue N	orth SVE Well ID's:	15 1-inch diameter vertical SVE wells (depths unknown), designated WA-1 through	
		WC-3, V-1 through V-9, TSVE-1 through TSVE-8, TSVE-10 through TSVE-12,	
		TEFR-1 Air, TEFR-2 Air, TMW-48 Air, and TMW-65 Air	
Westlake Avenu	ue North SVE Well ID's:	9 1-inch diameter horizontal SVE wells (depths unknown), designated	
		WC1 through WC3, WB1 through WB3, and WA1 through WA3	
Screen Interval		Not specified	
Design Flow Rat	te	Total =~ 200 CFM @ 22" Hg; Legs = 30 CFM @ 12" Hg	
Off Gas Treatme	ent	Vapor-Phase Granular Activated Carbon	
Other		Water from SVE moisture separators treated with Liquid Phase Granular Activated Car	bon.
Air Sparging			
Mercer Street A	S Well ID's:	27 1-inch diameter AS wells to approximately 21 feet bgs, designated	
		MAS-1 through MAS-19	
Valley Street AS	Well ID's:	14 1-inch diameter AS wells to approximately 18 feet bgs, designated	
		VAS-1 through VAS-14	
Terry Avenue N	orth AS Well ID's:	No AS wells in Terry Avenue North	
Westlake Avenu	e North AS Well ID's:	21 1-inch diameter AS wells to approximately 25 feet bgs, designated	
		AS-1 through AS-21	
Screen Interval		Not specified	
Design Flow Rat	te	Not specified	
Equipment &	& Specifications	(2) 10HP Sutorbuilt 5L-RHC Blower, Newterra Vapor Liquid Separator - VLW Series	
(i.e. tower, blov	ver, flowmeter,	With Goulds Transfer Pump	
pumps) Specify	usage, type, mfg,	(6) (2 in-Series) (3 Trains in Parallel)- 1000 lbs Siemens Vent-Scrub- Vapor Phase Adsor	bers
and design spec	cifications.	220 Gallon Cylindrical Poly Tank with 1.5 HP Gould Transfer Pump	
		(2) 1000 lbs. Siemens Aqua Scrub Liquid Phase Adsorbers (in Series)	
		(1) Rietchle Rotary Claw Compressor 10 HP with American Industrial Heat Exchanger	
Control Panel		Custom - Newterra	
(Brand & List co	omponents)	Control panel Nema 4, 480 VAC, 3 phase 4 W, 100 amp service	
Surge Protectio	n (MFG & Type)	600V Lightning Arrestor Square D	
Other		60"x 60"x 12" Double Door Encl with 3-Point Latch	
Telemetry (Mfg)	Sensaphone Cell 682 Autodialer	
		SYSTEM REPAIR HISTORY	
11/22/2016	System shut down		
12/16/2016	Winterized pumps, blowers, compresso	r, carbon vessels, and associated piping.	
8/29/2017	Disconnect both blowers from the syste	em for repair/replacement.	
11/14/2017	Remove and replace both blowers (B-70	01 and B-801).	
11/29/2017	Completed reinstallation of B701 and B	801 blowers and restarted system (SVE/AS)	
12/6/2017	Changed oil in compressor		
12/14/2017	Replaced AS well W-1 rotameter		
3/27/2018	Repaired the broken section of PVC pip	ing between the vapor liquid separator VLS-201 and the system separation tank	
4/18/2018	Removed touch screen display from part	nel for repairs	
8/8/2018	Blowers B-701 and B-801 freed via man	ual rotation (had been seized).	
8/9/2018	Blowers B-701 and B-801 restarted.		
8/10/2018	Began dismantling AS for repairs (seized	j)	
10/5/2018	Completed installation of new air-end of	ompressor unit of AS system.	
11/7/2018	Restarted AS system.		
11/8/2018	Replaced blower B-701 base mount and	l belt and realigned B-701 blower with motor	
11/16/2018	Replaced rotameter for AS well W11		_
11/21/2018	Replaced AS pressure relieif valve		
12/17/2018	Winterized pumps, blowers, compresso	r, carbon vessels, and associated piping.	

TABLE 2: AIR SPARGING PERFORMANCE SUMMARY

Facility Name: Ecology Facility ID: Former Phillips 66 Facility No. 255353 (AOC 1396)

Startup Date:

8/17/2016

Process Status		
Code	Arrive	Depart
1	on	on
2	off	on
3	off	off
4	on	off

Ecology VCP No:

NW1714

46445373

			AS Con	npressor						
Site	Days	Days	Hour	Daily	Hours of	Total Hours	Approved	Percent	Percent	Process
Visit	Between	Since	Meter	Designed Run	Operation	of Operation	Down Time	Run Time	Run Time	
Data		Startun	Pooding	Time (hours)	Deried	Cumulativo	(hours) ¹	(poriod)	(cumulativo)	Status
Dale	Site Visits	Startup	Reading	Time (nours)	Period	Cumulative	(instant)	(period)	(cumulative)	
08/1//16	0	0	10,372	24	0.0	0	Start Up	Start Up	Start Up	2
08/18/16	1	1	10,393	24	21.0	21.0	0	88%	88%	1
08/22/16	4	5	10,489	24	96.0	117.0	0	100%	98%	1
08/23/16	1	6	10,514	24	25.0	142.0	0	104%	99%	4
08/29/16	6	12	10,514	24	25.0	142.0	0	17%	49%	2
09/19/16	21	33	10,919	24	405.0	547.0	0	80%	69%	3
09/26/16	7	40	10,919	24	0.0	547.0	168	100%	74%	3
10/05/16	9	49	10,919	24	0.0	547.0	216	100%	79%	3
10/06/16	1	50	10,919	24	0.0	547.0	24	100%	80%	3
10/07/16	1	51	NM	24			24			3
10/12/16	5	56	NM	24			120			3
10/21/16	9	65	10,919	24	0.0	547.0	216	100%	84%	2
11/02/16	12	77	11,204	24	285.0	832.0	0	99%	87%	1
11/16/16	14	91	11,544	24	340.0	1172.0	0	101%	89%	1
11/22/16	6	97	11,684	24	140.0	1312.0	0	97%	89%	4
11/29/17	372	469	11,684	24	140.0	1312.0	6,720	77%	78%	3
12/06/17	7	476	11,684	24	0.0	1312.0	0	0%	77%	3
12/20/17	14	490	11,684	24	0.0	1312.0	0	0%	75%	3
12/29/17	9	499	11,684	24	0.0	1312.0	0	0%	73%	3
08/10/18	224	723	11,686	24	2.0	1314.0	4,440	83%	76%	3
08/16/18	6	729	11,686	24	0.0	1314.0	0	0%	76%	3
09/12/18	27	756	NM	24	0.0	1314.0	0	0%	73%	3
11/07/18	56	812	11,686	24	0.0	1314.0	0	0%	68%	2
11/16/18	9	821	11,871	24	185.0	1499.0	0	86%	68%	4
11/28/18	12	833	12,034	24	163.0	1662.0	0	57%	68%	1
12/07/18	9	842	12.251	24	217.0	1879.0	0	100%	68%	1

TABLE 3: SOIL VAPOR EXTRACTION PERFORMANCE SUMMARY

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)

Ecology Facility ID#:46445373Ecology VCP No:NW1714

			Stand	ard Temp =	80	°F						Standa	ard Pressure =	14.7	psi						
				System	System	System	Corrected			S٧	'E Blower B-7	01					S	VE Blower B-8	01		
Site	Days	Days		Vacuum	Velocity	Flow Rate	System	Hour	Hours of	Total Hrs	Approved	Percent	Percent		Hour	Hours of	Total Hrs	Approved	Percent	Percent	1
Visit	Between	Since	Totalizer	(manifold)			Flow Rate	Meter	Operation	Operation	Down Time	Run Time	Run Time	Process	Meter	Operation	Operation	Down Time	Run Time	Run Time	Proces
Date	Site Visits	Startup	(gallons)	″wc	(ft/min)	acfm	scfm	Reading	Period	Cumulative	(hours)	(period)	(cumulative)	Status	Reading	Period	Cumulative	(hours)	(period)	(cumulative)	Statu
08/17/16	0	0	82,300	5	1,829	143	120	10,238	0	0		0%	0%	2	9380		0		0%	0%	3
08/18/16	1	1	82,300	5	3,708	290	244	10,258	20.0	20.0		83%	100%	1	9401	21.0	21.0		88%	100%	2
08/22/16	4	5	82,300	5	4,048	316	266	10,354	96.0	116.0		100%	97%	1	9497	96.0	117.0		100%	98%	1
08/29/16	7	12	82,300	5	4,056	317	267	10,522	168.0	284.0		100%	99%	1	9664	167.0	284.0		99%	99%	2
09/19/16	21	33	82,300	NM	NM	NM	NM	10,929	407.0	691.0		81%	87%	3	10071	407.0	691.0		81%	87%	2
09/26/16	7	40	82,300	NM	NM	NM	NM	10,929	0.0	691.0	168	100%	89%	3	10071	0.0	691.0	168	100%	89%	1
10/05/16	9	49	82,300	NM	NM	NM	NM	10,929	0.0	691.0	216	100%	91%	2	10071	0.0	691.0	216	100%	91%	1
10/06/16	1	50	82,300	18	4,501	352	286.4	10,949	20.0	711.0		83%	91%	1	10092	21.0	712.0		88%	91%	1
10/07/16	1	51	82,300	NM	NM	NM	NM	NM						1	NM						1
10/12/16	5	56	82,300	NM	NM	NM	NM	NM				-		1	NM						1
10/21/16	9	65	82,372	34	3,359	262	205	11,310	361.0	1,072.0		100%	93%	1	10453	361.0	1,073.0		100%	93%	4
11/02/16	12	77	82,422	20	2,045	160	129	11,597	287.0	1,359.0		100%	94%	1	10454	1.0	1,074.0	288	100%	94%	3
11/16/16	14	91	82,629	20	2,561	200	162	11,936	339.0	1,698.0		100%	95%	1	10454	0.0	1,074.0	336	100%	95%	3
11/22/16	6	97	82,629	22	NM	NM	NM	12,076	140.0	1,838.0		97%	95%	4	10454	0.0	1,074.0	144	100%	96%	3
11/29/17	372	469	82,629	NM	NM	NM	NM	12,079	3.0	1,841.0	6,720	75%	79%	2	10457	3.0	1,077.0	6,720	75%	80%	2
12/06/17	7	476	82,629	NM	NM	NM	NM	12,240	161.0	2,002.0		96%	80%	1	10617	160.0	1,237.0		95%	80%	1
12/20/17	14	490	82,629	NM	NM	NM	NM	12,359	119.0	2,121.0	192	93%	80%	2	10735	118.0	1,355.0	192	92%	80%	2
12/29/17	9	499	82,629	NM	NM	NM	NM							4							4
08/10/18	224	723	82,629	NM	NM	NM	NM	12,593			4,440	-		1	10970			4,440			1
08/16/18	6	729	82,629	NM	NM	NM	NM	12,738	145.0	2,266.0		100%	80%	1	11115	145.0	1,500.0		100%	80%	1
09/12/18	27	756	NM	NM	NM	NM	NM	NM	NM	NM				2	NM	NM	NM				2
11/16/18	65	821	82,629	NM	NM	NM	NM	14,269	1,531.0	3,797		98%	79%	1	12718	1,603.0	3,103.0		103%	79%	1
11/28/18	12	833	82,629	NM	NM	NM	NM	14,553	284	4,081		99%	79%	1	13002	284.0	3,387.0		99%	79%	1
12/07/18	9	842	82,629	NM	NM	NM	NM	14,770	217	4,298		100%	79%	1	13218	216.0	3,603.0		100%	80%	1

NM = Not Measured

cfm = ft^3/min = velocity [ft/min] x pipe area [πr^2]; pipe size = 4 inch diameter

 $scfm = acfm X ((P^{st}-P^g)/Pst)x(T^{st}/(T^{st}+T^{act}))$

Process Status

Code

1

2

3

4

Startup Date: 8/17/2016

Restart Date: 11/29/2017

Arrive

on

off

off

on

Depart

on

on

off

off

TABLE 4: LIQUID PHASE ANALYTICAL SUMMARY

Facility Name: Facility Address: Ecology Facility ID#: Ecology VCP No:		Former Phill 600 Westlak 46445373 NW1714	ips 66 Facility e Avenue Nor	No. 255353 (/ th, Seattle, W	AOC 1396) /A			
Sample Location	Sample ID	Date	Benzene	Toluene	Ethyl benzene	Total Xylenes	ТРН	Oil & Grease
W-INF-WS1	W-INF-WS1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	NS
W-OUT-WC1	W-OUT-WS1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	NS
W-DSCHG	W-DSCHG-1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	< 5,100
W-DSCHG	W-DSCHG-2	11/16/16	NS	NS	NS	NS	NS	< 5,100
W-DSCHG	W-DSCHG-3	11/16/16	NS	NS	NS	NS	NS	< 5,100
W-DSCHG	W-DSCHG-1	11/28/18	<0.10	<0.083	<0.14	<0.31	NS	2.1 J
KCIW Permit Limits			70	1,400	1,700	2,200	NE	100,000

Notes:

All results reported in micrograms per liter (μ g/L).

There are a total of two liquid phase carbon units plumbed in series to treat water. Sample W-INF-WS1 was collected from a sample port located prior to the first liquid phase carbon unit. Sample W-OUT-WC1 was collected from a sample port located between the first and second liquid phase carbon units. Samples W-DSCHG-1, W-DSCHG-2 and W-DSCHG-3 were collected in succession 5 minutes apart from the sample port located after the second (and final) liquid phase carbon unit . The sample port locations are shown on Figure 3.

Permit Limits Established in King County Industrial Waste (KCIW) Discharge Authorization No. 4262-01 (expires 6/30/2018).

NS = Not Sampled

NE = Not Established

J = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

TABLE 5: SVE ANALYTICAL SUMMARY

Vapor Train No. 1

Facility Name:		Former Phillip	os 66 Facility	No. 255353 (AOC 1396)							If Non-Detect	Use MDL "U"					
Facility Address:		600 Westlake	Avenue Nor	th, Seattle, W	/Α							Not Sampled	= NS					
Ecology Facility ID#:		46445373										Analytical Re	sults = μg/m³					
Ecology VCP No:		NW1714																
				Sta	ndard Temp =	80	°F		St	tand	ard Pressure =	14.7	psi					
																Recovery Rate	<u>.</u>	mulativo Marr
																Emission Rate	cu	Recovered /
Sample	Sample		Hour	Flow Rate	PID							Total			THCg ¹	(Effluent) ²		Discharged ³
Location	ID	Date	Meter	(scfm)	(ppm)	Benzene	Toluen	e	Ethyl benzene	еT	Total Xylenes	VOCs	THCg (ug/m ³	3)	(ppmv)	Rate (lb/day)		(lbs)
	Inf-1	08/17/16	10,238	120.2	NM							Not Sampled						
	Inf-1	08/18/16	10,258	243.8	14.2	13.1	U 31.1	U	35.6 L	U	107.0 U	186.8	8,070		1.91	0.18		0.15
	Inf-1	08/22/16	10,354	266.1	NM	1.4	U 6.7		1.8 L	U	9.3	19.2	3,750		0.89	0.09		0.51
	Inf-1	08/29/16	10,522	266.7	NM	26.20	U 57.8		35.6 L	U	107.0 U	226.6	15,100		3.58	0.36		3.04
	Not Sampled	09/19/16	NM	NM	NM							Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM							Not Sampled						
	Inf-1	10/05/16	10 949	286.4	NM	51.90	130.00	T	34.1		220.00	436.0	68 600		16.74	1 77	1	34.44
	Not Sampled	10/07/16	10,545 NM	NM	NM	51.50	100.00	_	54.1	~	220.00	Not Sampled	00,000		10.24	1.77	_	54.44
	Not Sampled	10/12/16	NM	NM	NM							Not Sampled						
	Inf-1	10/21/16	11,310	204.9	NM	1.4	55.0	Τ	1.8 L	U	5.4 U	63.6	5,550		1.31	0.10		35.98
V-INF-1	Inf-1	11/02/16	11,597	129.4	NM	14.9	U 35.3	U	40.3 L	U	121.0 U	211.5	5,120		1.21	0.06		36.69
	Inf-1	11/16/16	11,936	162.1	NM	0.82	U 8.7		2.2 L	U	8.7	20.4	1,740		0.41	0.03		37.05
	Inf-1	11/22/16	12,076	NM	NM	3.4	U 16.7		9.2 L	U	31.3	60.6	1,670		0.40	NA		NA
	Inf-1	11/29/17	12,079	NM	0.6	2.4	120		4.1		9.1	135.6	6,640		1.57	NA		NA
	Not Sampled	12/06/17	12,240	NM	0.4							Not Sampled						
	Not Sampled	12/20/17	12,359	NM	0.1							Not Sampled						
	Not Sampled	08/10/18	12,593	NM	0.3							Not Sampled						
	Not Sampled	09/12/18	NM	NM	0.2							Not Sampled						
	Not Sampled	11/16/18	14.269	NM	0.0							Not Sampled						
	Not Sampled	11/28/18	14,553	NM	0.0							Not Sampled						
	Not Sampled	12/07/18	14,770	NM	0.0							Not Sampled						
	Not Sampled	08/17/16	10,238	120.2	NM							Not Sampled						
	Int -1	08/18/16	10,258	243.8	14.2	18.2	U 153.0		49.3 L	U	148.0 U	368.5	3,990	U	0.94	0.09		NA
	Not Sampled	08/22/16	10,354	266.1	NM							Not Sampled						
	Not Sampled	08/29/16	10,522	266.7	NM							Not Sampled						
	Not Sampled	09/19/16	NM	NM	NM							Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM							Not Sampled						
	Not sampled	10/05/16	10 9/9	NIM 286.4	NM	10.0	102.0	Т	24.1		102.0	Not Sampled	25 400		0.20	0.01	-	NA
	Not Sampled	10/07/16	10,545 NM	200.4 NM	NM	15.5	192.0	_	54.1 0	0	105.0 0	Not Sampled	33,400		0.50	0.51	_	110
	Not Sampled	10/12/16	NM	NM	NM							Not Sampled						
	Not Sampled	10/21/16	11,310	204.9	NM							Not Sampled						
V-INT-1	Not Sampled	11/02/16	11,597	129.4	NM							Not Sampled						
	Not Sampled	11/16/16	11,936	162.1	NM							Not Sampled						
	Not Sampled	11/22/16	12,076	NM	NM							Not Sampled						
	Int -1	11/29/17	12,079	NM	0.1	0.66	U 95.1		1.8 L	U	5.4 U	103.0	3,440		0.81	NA		NA
	Not Sampled	12/06/17	12,240	NM	0.1							Not Sampled						
	Not Sampled	12/20/17	12,359	NM	0.1							Not Sampled						
	Not Sampled	08/10/18	12,593	NM	0.4							Not Sampled						
	Not Sampled	09/12/18	12,756 NM	NM	0.0							Not Sampled						
	Not Sampled	11/16/18	14.269	NM	0.0							Not Sampled						
	Not Sampled	11/28/18	14,553	NM	0.1							Not Sampled						
	Not Sampled	12/07/18	14,770	NM	0.0							Not Sampled						
	Not Sampled	08/17/16	10,238	120.2	NM							Not Sampled						
	Eff-1	08/18/16	10,258	243.8	14.2	12.6	U 29.9		34.1 L	U	103.0 U	179.6	2,760	U	0.65	0.06		0.05
	Not Sampled	08/22/16	10,354	266.1	NM							Not Sampled						
	Not Sampled	08/29/16	10,522	266.7	NM							Not Sampled						
	Not Sampled	09/19/16	NM	NM	NM							Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM							Not Sampled						
	Fff-1	10/05/10	10 949	286.4	NM	16.2	133.0	Т	35.6	ul.	107.0 11	291.8	17 700	T	4 19	0.46		13.16
	Not Sampled	10/07/16	10,545 NM	200.4 NM	NM	10.2	133.0	_	55.0 0	0	107.0	Not Sampled	17,700		4.15	0.40	_	15.10
	Not Sampled	10/12/16	NM	NM	NM							Not Sampled						
	Not Sampled	10/21/16	11,310	204.9	NM							Not Sampled						
V-DSCHG-1	Not Sampled	11/02/16	11597	129.4	NM							Not Sampled						
	Not Sampled	11/16/16	11,936	162.1	NM							Not Sampled						
	Not Sampled	11/22/16	12,076	NM	NM		-					Not Sampled					_	
	DSCHG-1	11/29/17	12,079	NM	0.0	0.63	U 85.3		1.8 L	U	5.1 U	92.8	2,410		0.57	NA		NA
	Not Sampled	12/06/17	12,240	NM	0							Not Sampled						
	Not sampled	12/20/17	12,359	NM 200.2	0							Not Sampled						
	Not Sampled	08/16/19	12,593	285.4	0.1							Not Sampled						
	Not Sampled	09/17/18	NM	235.4	0.0							Not Sampled						
	Not Sampled	11/16/18	14,269	290.7	0.1							Not Sampled						
	Eff-1	11/28/18	14,553	304.6	0.0	1.0	17.0		1.1	1	6.5	25.6	607		0.14	0.02		14.88
	Not Sampled	12/07/18	14,770	315.5	0.0			_				Not Sampled						
PSCAA Threshold Concentrat	ion ¹														200			

PSCAA Notes:

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-1, Int-1 and Eff-1 were collected from sample ports associated with the first train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3. VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes) U = Analyte not detected above the referenced laboratory method reporting limit. 1. THCg pprw = THC (ug/m³)/42.23 (conversion factor for molar volume @ STPJ/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when the TPH (THC) influent concentration is greater than or equal to 200 pprw. None of the THCg concentrations exceed 200 pprw. 2. Recovery/Ension Rate [lg/day] = Conc (ug/m³) × Flow Rate [sft⁴³/min] × (1m⁴375.3ft⁴³) × 1(g/1,000000 ug) × (11b/454 g) × (1240 min/day) 3. Cumulative Mass Recoverd/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, Ibs. per day) × Flow Rate [sft⁴³/min] + 24 hours + previous calculated Cumulative Mass

Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the

text of the report also includes the total mass of hydrocarbons recovered from Trains 2 and 3. V-DSCHG-1 Flow Rates (scfm) for the period of 12/6/17 to 12/7/17 were calculated using field collected velocity and temperature, and a standard pressure value.

NA = Not applicable

TABLE 6: SVE ANALYTICAL SUMMARY

Vapor Train No. 2

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396) If Non-Detect Use MDL "U" Facility Address: 600 Westlake Avenue North, Seattle, WA Not Sampled = NS Analytical Results = µg/m³ Ecology Facility ID#: 46445373 Ecology VCP No: NW1714 Recovery Rate Cumulative (Influent)/ Mass nission Rate ecovered / Sample Sample Hour Flow Rate PID Total THCg (Effluent)² Discharged Location ID. Date (scfm) (ppm VOCs Rate (lb/day (lbs) (nnm Inf-2 08/17/16 10,238 120.2 NM Not Sampled 08/18/16 08/22/16 Inf-2 10,258 243.8 14.2 11.7 27. 31.7 U 166.5 3,900 0.92 0.07 15.7 229.2 3,420 19,700 Inf-2 08/29/10 266. NN U NM Not Sample 09/19/16 NM NM t Sampl Not Sampled 09/26/16 NM NM NM Not Sampled Not Sampled 10/05/16 NM NN NN Not Sampled Inf-2 10/06/16 10,949 NM 48.70 185.00 U 181.00 447.6 42,100 9.97 286.4 32.9 1.08 Not Sampled NM NM 10/07/16 NM Not Sample Not Sampled 10/12/16 10/21/16 NM 11,310 NM 204.9 NM NM Not Sample 189.1 Inf-2 146.0 2,510 34.6 23.6 0.59 0.0 1.3 NM 11/02/16 V-INE-2 Inf-2 11,597 129.4 14.9 35.3 40.3 211.5 4,750 U 1.12 0.0 24.33 Inf-2 11/16/16 11,936 162. NM 0.89 10.2 12.1 1,930 0.46 11/22/1 1.520 12 07 16 Inf-11/29/17 12,079 NM 0.4 2.6 8.8 υ 17.5 3,910 N/ Not Sampled 12/06/17 12,240 NM 0.4 Not Sampled Not Sampled 12/20/17 12,359 NM 0.1 Not Sample Not Sampled 08/10/18 125.93 NM 0.3 Not Sampled Not Sampled NM 0.2 08/16/18 12,738 Not Sampled Not Sampled 0.0 09/12/18 NM NM Not Sample Not Sampled 11/16/18 14,269 NM 0.0 Not Sampled Not Sampled 14,553 NM 0.0 Not Sampled 11/28/18 Not Sampled 12/07/18 14.770 NM 0.0 Not S Not Sampled 08/17/16 10,238 120.2 NM Not Sampled U 193.9 U 0.7: 10,258 243. 14.2 U 32.3 U 08/22/16 10,354 266.1 NM Not Sampled Not Sample Not Sampled 08/29/16 10,522 266.7 NM Not Sampled Not Sampled 09/19/16 NM NM NM Not Sampled Not Sampled 09/26/16 NM NM NM Not Sampled Not Sampled 10/05/16 NM NM NM Not Sampled U 308.3 24,500 5.80 20.7 145.0 35.6 U 107.0 NM 0.63 10/06/16 10,949 Int -2 286.4 Not Sampled 10/07/16 NM NM NM Not Sample Not Sampled 10/12/16 NM NM NM Not Sampled Not Samp 10/21/16 11,310 204.9 NM Not Sampled V-INT-2 Not Sampled 11/02/16 129.4 NM 11597 Not Sampled Not Sampled 11/16/16 11,936 162.1 NM Not Sampled Not Sampled 12,076 NM NM Not Sampled 11/22/16 Int -2 11/29/17 12,079 NM 0.0 0.63 U 4.2 1.7 U 5.1 U 11.6 1,930 0.46 NA NA Not Sampled 12/06/17 12,240 NM 0.2 Not Sampled Not Sampled 12,359 NM 12/20/17 0.1 Not Sampled Not Sampled 08/10/18 12,593 NM 0.6 Not San Not Sampled 08/16/18 12.738 NM 1.0 Not Sampled Not Sampled NM 09/12/18 NM 1.0 Not Sampled Not Sampled 14,269 NM 11/16/18 Not Sampled Not Sampled 11/28/18 14.553 NM 0.1 Not Sampled NM Not Sampled 12/07/18 14,770 0.1 Not Samp Not Sampled 08/17/16 10,238 120.2 NM Not Sampled U 173.0 2,660 U 0.63 12.2 U 28.8 32.9 U 99.1 0.06 0.05 Eff-2 08/18/16 10,258 243.8 14.2 Not Sampled 08/22/16 10,354 NM 266.1 Not Sampled Not Sampled 08/29/16 10,522 266.7 NM Not Sampled Not Sampled 09/19/16 NM NM NM Not Sampled NM NM 09/26/16 NM Not Sampled Not Sampled 10/05/16 NM NM NM Not Sampled U 331.1 20,900 4.95 10,949 Eff-2 NN 21.6 155.0 38.5 U 10/06/16 286. Not Sampled 10/07/16 NM NM NM Not Sampled Not Sampled 10/12/16 NM NM NM Not Sampled Not Sampled 11,310 204.9 NM 10/21/16 Not Sampled V-DSCHG-2 Not Sampled 11/02/16 11597 129.4 NM Not Sampled Not Sampled 11/16/16 11,936 162.1 NM Not Sampled Not Sampled 12,076 NM NM 11/22/16 Not Sampled 20.78 DSC 11/29/17 12,079 NM 0.1 1.0 U 99.0 2.8 U U 111.2 **3,540** 0.84 0.11 Not Sampled 12/06/17 12.240 350.6 0.1 Not Sampled Not Sampled 12/20/17 12,359 350.6 0.1 Not Sampled Not Sampled 08/10/18 12,593 321.5 0.7 Not Sampled Not Sampled 08/16/18 12,738 321.5 1.0 Not Sampled Not Sampled 09/12/18 NM 251.9 1.1 Not Sample Not Same 11/16/18 14,269 310.9 0.4 Eff-2 11/28/18 14,553 324.4 0.1 4.0 41.2 31.2 179 255.4 3180.0 0.75 0.09 30.34 Not Samp 12/07/1 14,77 353.

CAA Threshold Con

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-2, Int-2 and Eff-2 were collected from sample ports associated with the second train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon

units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes)

U = Analyte not detected above the referenced laboratory method reporting limit.

1. THCg ppmv = THC (ug/m³)/42.23 (conversion factor for molar volume @ STP)/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when

the TPH (THC) influent concentration is greater than or equal to 200 ppmv. None of the THCg concentrations exceed 200 ppmv

2. Recovery/Emission Rate [lb/day] = Conc [ug/m^3] x Flow Rate [sft^3/min] x (1m^3/35.3ft^3) x (1g/1,000000 ug) x (1lb/454 g) x (1440 min/day)

3. Cumulative Mass Recovered/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, lbs. per day) x Flow Rate [sft^3/min] - previous Flow Rate [sft^3/min] + 24 hours + previous calculated Cumulative Mass

Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the

text of the reep to includes the total mass of hydrocarbons recovered from Trains 1 and 3. V-DSCHG-2 Flow Rates (schm) for the period of 12/6/17 to 12/7/17 were calculated using field collected velocity and temperature, and a standard pressure value NA = Not applicable

TABLE 7: SVE ANALYTICAL SUMMARY

Vapor Train No. 3

Facility Name:		Former Phillip	os 66 Facility	No. 255353 (AOC 1396)	If Non-Detect Use MDL "U"	
Facility Address:		600 Westlake	Avenue Nor	rth, Seattle, W	A	Not Sampled = NS	
Ecology Facility ID#:		46445373				Analytical Results = µg/m	
Ecology VCP No:		NW1714		Sta	ndard Temn =	80 *F Standard Pressure = 14.7 tsi	
				514	idard remp -	00 1 Januaro Pressure = 14,7 p.	
						Recovery Rate	ve Mass
						Emission Rate Recove	ered /
Sample	Sample		Hour	Flow Rate	PID	Total THCg ¹ (Effluent) ² Discha	rged ³
Location	ID	Date	Meter	(scfm)	(ppm)	Benzene Toluene Ethyl benzene Total Xylenes VOCs THCg (ug/m ³) (ppmv) Rate (lb/day) (lb	s)
	Inf-3	08/17/16	10,238	120.2	NM	Not Sampled	
	Int-3	08/18/16	10,258	243.8	14.2 NM	14.2 U 33.7 U 38.5 U 116.0 U 202.4 3,120 0.74 0.07 0.0 11 U 52 15 U 70 14.8 3170 0.75 0.08 0.3	16
	Inf-3	08/29/16	10,522	266.7	NM	26.20 U 80.6 35.6 U 148.0 290.4 2,880 U 0.68 0.07 0.8	34
	Not Sampled	09/19/16	NM	NM	NM	Not Sampled	
	Not Sampled	09/26/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/05/16	NM	NM	NM	Not Sampled	
	Inf-3	10/06/16	10,949	286.4	NM	51.00 154.00 35.6 U 176.00 416.6 39,600 9.38 1.02 18.5	97
	Not Sampled	10/07/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/12/16	NM 11.210	NM 204.0	NM	Not Sampled	20
	Inf-3	10/21/16	11,310	204.9	NM	1.9 7.7 3.0 18.3 30.9 1,500 0.36 0.03 19.3 16.4 U 38.8 U 44.4 U 134.0 U 233.6 5,230 U 1,24 0.06 20.	39 11
V-INF-3	Inf-3	11/16/16	11,936	162.1	NM	0.78 U 6.7 2.1 U 10.8 20.4 1,680 0.40 0.02 20.4	46
	Inf-3	11/22/16	12,076	NM	NM	1.4 11.1 3.1 20.7 36.3 943 0.22 NA N/	A
	Inf-3	11/29/17	12,079	NM	0.6	3.4 6.8 1.6 U 5.0 U 16.8 4,440 1.05 NA NA	A
	Not Sampled	12/06/17	12,240	NM	0.4	Not Sampled	
	Not Sampled	12/20/17	12,359	NM	0.1	Not Sampled	
	Not Sampled	08/10/18	125.93	NM	0.3	Not Sampled	
	Not Sampled	08/16/18	12,738	NM	0.2	Not Sampled	
	Not Sampled	09/12/18	NM	NM	0.0	Not Sampled	
	Not Sampled	11/16/18	14,269	NM	0.0	Not Sampled	
	Not Sampled	12/07/18	14,553	NM	0.0	Not sampled	
	Not Sampled	09/17/16	10.729	120.2	NM	Not Sampled	
	Int -3	08/18/16	10,258	243.8	14.2	12.6 U 29.9 34.1 U 103.0 U 179.6 2,760 U 0.65 0.06 N/	A
	Not Sampled	08/22/16	10,354	266.1	NM	Not Sampled	
	Not Sampled	08/29/16	10,522	266.7	NM	Not Sampled	
	Not Sampled	09/19/16	NM	NM	NM	Not Sampled	
	Not Sampled	09/26/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/05/16	NM	NM	NM	Not Sampled	
	Int -3	10/06/16	10,949	286.4	NM	68.8 304.0 44.2 215.0 632.0 33,400 7.91 0.86 N/	A
	Not Sampled	10/07/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/12/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/21/16	11,310	204.9	NM	Not Sampled	
V-INT-3	Not Sampled	11/02/10	11.026	162.1	NM	Not Sampled	
	Not Sampled	11/10/10	12,076	102.1 NM	NM	Not Sampled	
	Int -3	11/29/17	12,070	NM	0.0	0.78 7.7 4.4 6.8 19.2 3.780 0.90 NA NA	۵
	Not Sampled	12/06/17	12,240	NM	0.0	Not Sampled	
	Not Sampled	12/20/17	12.359	NM	0.1	Not Sampled	
	Not Sampled	08/10/18	12,593	NM	0.3	Not Sampled	
	Not Sampled	08/16/18	12,738	NM	0.7	Not Sampled	
	Not Sampled	09/12/18	NM	NM	0.2	Not Sampled	
	Not Sampled	11/16/18	14,269	NM	0.5		
	Not Sampled	11/28/18	14,553	NM	0.1	Not Sampled	
	Not Sampled	12/07/18	14,770	NM	0.1	Not Sampled	
	Not Sampled	08/17/16	10,238	120.2	NM	Not Sampled	
	Eff-3 Not Sampled	08/18/16	10,258	243.8	14.2	13.1 U 31.1 35.6 U 107.0 U 186.8 2,880 U 0.68 0.06 0.0	15
	Not Sampled	00/22/10	10,534	200.1	NM	Not Sampled	
	Not Sampled	09/19/16	NM	NM	NM	Not Sampled	
	Not Sampled	09/26/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/05/16	NM	NM	NM	Not Sampled	
	Eff-3	10/06/16	10,949	286.4	NM	Not Analyzed Due to Insufficent Sample Volume Upon Receipt at Laboratory	
	Not Sampled	10/07/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/12/16	NM	NM	NM	Not Sampled	
	Not Sampled	10/21/16	11,310	204.9	NM	Not Sampled	
V-DSCHG-3	Not Sampled	11/02/16	11597	129.4	NM	Not Sampled	
	Not Sampled	11/16/16	11,936	162.1	NM	Not Sampled	
	Not Sampled	11/22/16	12,076	NM	NM	Not Sampled	
	DSCHG-3	11/29/17	12,079	NM	0.1	1.0 U 99.0 2.8 U 8.4 U 111.2 4,100 0.97 0.13 N/	A
	Not Sampled	12/06/17	12,240	365.7	0.1	Not Sampled	
	Not Sampled	12/20/17	12,359	357.0	0.1	Not Sampled	
	Not Sampled	08/10/18	12,593	336.0	2.0	Not Sampled	
	Not Sampled	08/16/18	12,738	344.8	0.2	Not Sampled	
	Not Sampled	09/12/18	NM	286.2	0.0	Not Sampled	
	Not Sampled	11/16/18	14,269	355.5	0.0	Not Sampled	
	Eff-3	11/28/18	14,553	357.2	0.2	4.8 47.5 32.0 179.8 264.1 2570.0 0.61 0.08 14.4	81
PSCAA Threshold Concentrat	Not Sampled	12/07/18	14,770	375.6	0.2	Not Sampled	
SCAR Intestiola concentrat						200	

Notes:

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-3, Int-3 and Eff-3 were collected from sample ports associated with the third train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes) U = Analyte not detected above the referenced laboratory method reporting limit.

1. THCg ppmv = THCg (ug/m³)/42.23 (conversion factor for molar volume @ STP)/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when the TPH (THC) influent concentration is greater than or equal to 200 ppmv. None of the THCg concentrations exceed 200 ppmv.

2. Recovery/Emission Rate [lb/day] = Conc [ug/m^3] x Flow Rate [sft*3/min] x [1m*3/35.3f*3] x (1g/1,000000 ug) x (1b/454 g) x (1440 min/day) 3. Cumulative Mass Recovered/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, lbs. per day) x Flow Rate [sft*3/min] - previous Flow Rate [sft*3/min] + 24 hours + previous calculated Cumulative Mass Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the

text of the report also includes the total mass of hydrocarbons recovered from Trains 1 and 2.

V-DSCHG-3 Flow Rates (scfm) for the period of 12/6/17 to 12/7/17 were calculated using field collected velocity and temperature, and a standard pressure value.

NA = Not applicable

Table 8 SVE PID Data Summary Phillips 66 Facility #255353 (AOC 1396)

Data			Westlal	ke Avenue S	VE Wells - I	PID Reading	s (ppm)		
Date	WC1	WC2	WC3	WB3	WB2	WB1	WA3	WA2	WA1
08/18/16	6.4	0.0	0.1	0.0	10.6	0.0	0.3	0.0	0.0
08/22/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
08/29/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
10/06/16	Closed	Closed	Closed	Closed	1.3	Closed	Closed	Closed	Closed
10/21/16 ¹	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/22/16 ²	0	0	0	0.4	0	0.1	0.1	0	0
11/29/17	0.0	0.2	0.4	0.6	1.05	0.1	0.0	0.0	0.0
12/6/17	NM	NM	NM	NM	NM	NM	NM	NM	NM
12/20/17	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/28/18	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
12/07/18	NM	NM	NM	04	NM	NM	NM	NM	NM

Data			Valley Stre	et SVE Well	s - PID Rea	dings (ppm)		
Dale	V1	V2	V3	V4	V5	V6	V7	V9
08/18/16	0.6	0.2	1.7	0.2	1.3	0.5	0.4	0.9
08/22/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
08/29/16	Closed	Closed	Closed	Closed	0.5	Closed	Closed	0.7
10/06/16	1.1	0.1	0.1	0.1	0.1	1.4	0	0.5
10/21/2016 ¹	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/22/16 ²	0	0	0.1	0.2	0	0	0	0.1
11/29/16	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.1
12/6/2017	NM	NM	NM	NM	NM	NM	NM	NM
12/20/17	NM	NM	NM	NM	NM	NM	NM	NM
11/28/18	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1
12/07/18	NM	NM	NM	0.2	NM	NM	NM	NM

Data								Merce	er Street SVI	E Wells - Pl	D Readings	(ppm)							
Dale	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19
08/18/16	44.6	45.3	10.3	1.4	21	29.2	7.3	8.7	32.9	42.6	29.2	67.9	4.3	3.5	6.8	8.4	22.1	57.2	6.1
08/22/16	0.1	3.1	3.1	Closed	0	15.4	Closed	Closed	0.6	0.2	2.1	7.3	Closed	Closed	Closed	Closed	0.6	0.6	Closed
08/29/16	Closed	Closed	Closed	Closed	Closed	3.3	Closed	0.8	Closed	Closed	0.5	5.5	Closed	Closed	Closed	Closed	0.1	0.1	Closed
10/06/16	0.7	1.7	0.5	3	0.2	0.5	1	0.5	0.9	0	1.7	2.8	1.6	0.6	0.8	0.1	0.2	0.4	0.1
10/21/2016 ¹	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.1	Closed	Closed	Closed	0.1	Closed	Closed
11/02/16	0	0	0	0	0	0.1	0.1	0	0.2	0.1	0	0	0	Closed	Closed	Closed	0	Closed	Closed
11/16/16	0	0	0	0	0	0.1	0	0	0	0.1	0	0	0	Closed	Closed	Closed	0	Closed	Closed
11/22/16 ²	0	0	0	0	0.1	0	0	1.4	1.9	0	0	0	0	0	0.2	0.1	0	0.1	0
11/29/17	0.1	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.2	0.4	2.7	0.0	1.2	0.0	0.3	0.1	5.4	5.5	7.3
12/6/17	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.0	0.0	0.0
12/20/17	NM	NM	NM	NM	NM	NM	NM	NM	3.0	NM	10.0	NM	NM	NM	NM	NM	NM	NM	NM
11/28/18	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	NM	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.0
12/07/18	NM	NM	NM	NM	NM	NM	NM	NM	0.3	NM	NM	NM	NM	NM	0.3	NM	NM	0.3	NM

Dete						Terry	Avenue SV	E Wells - Pll	D Readings	(ppm)					
Dale	TSVE1	TSVE2	TSVE3	TSVE4	TSVE5	TSVE6	TSVE7	TSVE8	MW-65	MW-66	MW-67	MW-68	TEFR1-Air	TEFR2-Air	TMW48-Air
08/18/16	0.3	1.2	3.8	0.7	0.2	0.6	0.3	0.2	0.2	1.7	0.4	0.3	0.0	0.2	0.1
08/22/16	Closed	Closed	Closed	0	Closed	Closed	Closed	Closed	Closed						
08/29/16	Closed	Closed	Closed	0	Closed	Closed	Closed	Closed	Closed						
10/06/16	0.1	0	0	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0	0.1	0	0.1	0.1
10/21/16 ¹	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed						
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed						
11/22/16 ²	0.1	0.1	0	0	0.1	0	0	0.2	0.1	0	0	0	0	0.3	0.1
11/29/17	0.0	0.1	0.7	0.1	1.9	0	0.1	0.1	0.1	0.8	0.5	1.4	0.1	0.1	0.8
12/6/17	NM	NM	NM	NM	NM	NM	NM	NM	NM						
12/20/17	NM	NM	NM	NM	0.0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/28/18	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.1
12/07/18	NM	0.2	NM	NM	NM	NM	NM	0.2	NM						

	Terry Avenu	ue SVE Well	ls - PID Rea	dings (ppm)
Date	TMW48-	TEFR2-	TEFR1-	TMW65-
	WATER	WATER	WATER	WATER
12/6/17	0.0	0.5	3.1	0.3
12/20/17	NM	NM	NM	NM
11/28/18	NM	NM	NM	NM

Notes:

All SVE wells were adjusted to 45 degrees open
 All SVE wells were re-opened 100 percent

SVE = Soil Vapor Extraction

PID = Photo Ionization Detector

ppm = parts per million

Table 9 AS Flow Data Summary Phillips 66 Facility #255353 (AOC 1396)

									Westlake	Avenue AS	Nells - Flow	Rate Readi	nas (scfm)								
Date	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	W-11	W-12	W-13	W-14	W-15	W-16	W-17	W-18	W-19	W-20	W-21
08/18/16	+25 ¹	4	4	1	2	5	4	5	5	3	2	4	2	4	3	4	Damaged ²	4	4	6	6
08/22/16	+25 ¹	2	2	1	2	+25 ¹	3	3	3	2	1	2	NM	2	1	2	Damaged ²	2	2	2	3
08/29/16	+25 ¹	2	2	1	1	+25 ¹	4	2	1	1	2	2	NM	2	1	2	Damaged ²	3	2	2	2
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
10/21/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/02/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/16/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/22/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/28/18	5	0	0	+251	0	0	0	0	0	0	04	0	+25 ¹	0	0	0	0				-
12/07/18	9	7	0	+251	0	0	2	7	2	0	0	0	13	4	2	12	0				-

Data					V	alley Street	AS Wells - F	low Rate Re	eadings (scfr	n)				
Date	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14
08/18/16	2	Damaged ²	6	12	5	3	8	5	4	2	8	2	6	6
08/22/16	2	Damaged ²	5	8	4	2	4	3	2	2	6	4	6	4
08/29/16	2	Damaged ²	3	+251	2	1	2	2	2	2	6	2	8	4
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
10/21/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/02/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/16/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/22/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/28/18	+25 ¹	20	NM	0	+25 ¹	0	13	0	NM	0	0	0	4	NM
12/07/18	+251	18	0	16	+251	0	13	0	0	+251	0	0	7	3

Data												Mercer	Street AS W	ells - Flow R	ate Reading	s (scfm)											
Date	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27
08/18/16	16	+25 ¹	6	10	8	10	8	10	+25 ¹	8	6	8	6	9	6	6	18	8	6	13	3	10	4	8	15	+25	4
08/22/16	14	+25 ¹	8	8	8	12	8	8	+25 ¹	6	4	11	6	8	8	4	18	6	8	+25 ¹	2	8	2	6	16	+25 ¹	2
08/29/16	12	+25 ¹	8	10	10	12	6	10	+25 ¹	6	4	10	8	8	6	4	16	6	6	+25 ¹	2	8	2	6	15	+25 ¹	2
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
10/21/16	14	+25 ¹	10	+25	10	15	7	15	+25 ¹	12	10	10	8	8	8	6	18	8	6	+25 ¹	4	10	2	8	15	+25 ¹	4
11/02/16	12	+25 ¹	12	10	12	14	12	12	+25 ¹	10	+25 ¹	8	8	10	6	6	12	4	4	+25 ¹	3	8	4	6	12	+25 ¹	2
11/16/16	14	+25 ¹	8	12	12	14	10	12	+25 ¹	8	6	6	6	8	6	4	16	6	4	+25 ¹	2	6	4	4	12	+25 ¹	4
11/22/16	12	+25 ¹	8	10	+25 ¹	12	15	11	+25 ¹	8	4	8	6	10	6	6	12	4	4	+25 ¹	2	8	2	4	12	+25 ¹	2
11/28/18	NM	0	0	0	8	0	NM	0	0	0	+25 ¹	0	0	0	+25 ¹	0	0	NM	NM	0	0	0	0	NM ³	NM	0	0
12/07/18	8	0	9	12	8	14	15	13	0	0	0	0	0	+25 ¹	+25 ¹	0	0	NM	NM	0	NM	0	0	NM ³	NM	0	0

Notes: AS = Air Sparge SCFM = Standard Cubic Feet per Minute NM - Not Measured OL = Off Line ¹ = Rotometer pegged at 25 scfm (not accurate reading - rotometer likely "stuck"). ² = Domense in a function of an accurate reading - 2005 meter likely "stuck"). ² = Rotometers were repaired/replaced on October 5, 2016.

³ = No rotameter installed

⁴ = Rotameter was repaired/replaced on November 16, 2018
 -- = Not present on manifold

...

FIGURES

SEATTLE, WA

...

APPENDIX A

Cumulative historical system operational and performance data

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample Location	Sample Date		Ana	alytical Vapor R (EPA Method / (µa	tesults, Vapor Train ΓΟ-15 for VOCs) g/m3)	1		*THCg (ppmv)
Location	Date	THCg	Benzene	Toluene	Ethylbenzene	m&p Xylenes	o- Xylenes	
V1 Influent		77,100	ND<12.6	121	86	411	81.8	18.3
V1 Intermediate	01/27/14	54,100	ND<21.9	128	ND<59.3	ND<119	ND<59.3	12.8
V1 Effluent		30,500	ND<12.2	ND<12.3	ND<12.4	ND<12.5	ND<12.6	7.2
V1 Influent		158,000	84	598	1,370	9,450	2,150.0	37.4
V1 Intermediate	02/19/14	ND<2040	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	NC
V1 Effluent		7,800	ND<10.9	38	ND<29.6	ND<59.1	ND<29.6	1.8
V1 Influent		181,000	227	2,380	3,110	21,000	9,420.0	42.9
V1 Intermediate	03/10/14	4,560	ND<11.3	27.6	ND<30.6	ND<61.2	ND<30.6	1.1
V1 Effluent		8,660	ND<13.6	40	ND<37.0	ND<73.9	ND<37.0	2.1
V1 Influent		156,000	119	2,050	1,430	9,170	3,630.0	36.9
V1 Intermediate	04/16/14	ND<1220	ND<6.5	32	ND<17.6	ND<35.2	ND<17.6	NC
V1 Effluent		ND<1220	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	NC
V1 Influent		107,000	28	483	745	7,240	2,720.0	25.3
V1 Intermediate	05/08/14	4,120	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.0
V1 Effluent		5,110	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.2
V1 Influent		55,200	ND<76	309	277	5,840	2,280	13.1
V1 Intermediate	06/25/14	9,600	19.3	231	148	773	38	2.3
V1 Effluent		ND<2040	20.6	36.5	ND<29.6	ND<59.1	ND<29.6	NC
V1 Influent		131,000	ND<58.4	235.0	253	5,360	2,460	31.0
V1 Intermediate	07/09/14	ND<3520	ND<37.6	ND<44.6	ND<51.0	ND<102	ND<51.0	NC
V1 Effluent		9,860	17	29.7	ND<22.3	ND<44.5	ND<22.3	2.3
V1 Influent		33,900	ND<37.6	127	ND<102	1,560	701	8.0
V1 Intermediate	08/05/14	2,630	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<79.5	0.6
V1 Effluent		ND<2190	ND<11.7	28.6	ND<31.7	ND<63.4	ND<79.5	NC
V1 Influent		20,500	ND<10.9	51.5	ND<78.6	3,730	1,720	4.9
V1 Intermediate	09/04/14	ND<2040	ND<10.9	88.1	ND<78.6	ND<59.1	ND<29.6	NC
V1 Effluent		ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V1 Influent		16,500	ND<13.1	ND<31.1	ND<35.6	372	246	3.9
V1 Intermediate	10/16/14	ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V1 Effluent		16,800	64.0	84.5	ND<25.5	ND<51.0	ND<25.5	4.0
V1 Influent		ND<1640	ND<8.7	ND<48.3	ND<55.6	ND<119	63.1	NC
V1 Intermediate	11/11/14	ND<1760	ND<9.4	ND<55.4	ND<63.9	ND<128	ND<63.9	NC
V1 Effluent		ND<1760	10.2	ND<55.4	ND<63.9	ND<128	ND<63.9	NC
V1 Influent		6,930	ND<6.0	14.8	ND<16.1	ND<32.3	ND<16.1	1.6
V1 Intermediate	12/10/14	7,240	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	1.7
V1 Effluent		10,700	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	2.5
V1 Influent		ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V1 Intermediate	01/20/15	2,100	ND<10.9	ND<129	ND<29.6	ND<59.1	ND<29.6	0.5
V1 Effluent		2,660	ND<12.6	ND<149	ND<34.2	ND<68.5	ND<34.2	0.6
V1 Influent		ND<1750	ND<9.4	ND<22.2	ND<25.3	ND<50.7	ND<25.3	NC
V1 Intermediate	02/25/15	ND<2060	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC
V1 Effluent		ND<2060	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC
V1 Influent		1,970	ND<6.1	23.1	ND<82.5	44.4	ND<82.5	0.5
V1 Intermediate	03/18/15	3,310	19.4	342	ND<74.2	ND<29.6	ND<74.2	0.8
V1 Effluent		2,720	ND<3.3	10.2	ND<44.7	ND<17.8	ND<44.7	0.6
		PSCAA	A Threshold Co	ncentration *				200

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample	Sample Date		Ana	lytical Vapor R (EPA Method ((µנ	esults, Vapor Train ΓΟ-15 for VOCs) g/m3)	2		*THCg (ppmv)
Docuton	Dutt	THCg	Benzene	Toluene	Ethylbenzene	m&p Xylenes	o- Xylenes	
V2 Influent		179,000	ND<13.1	750	1,110	5,390	1,530	42.4
V2 Intermediate	01/27/14	62,300	ND<11.3	34.5	ND<30.6	ND<61.2	ND<30.6	14.8
V2 Effluent		32,500	ND<12.6	39.5	ND<34.1	ND<68.3	ND<34.1	7.7
V2 Influent		153,000	88	432	1,030	4,540	1,600	36.2
V2 Intermediate	02/19/14	5,700	ND<10.9	30.7	ND<29.6	ND<59.1	ND<29.6	1.3
V2 Effluent		7,750	ND<10.9	31.4	ND<29.6	ND<59.1	ND<29.6	1.8
V2 Influent		219,000	214	2,230	2,910	19,000	5,800	51.9
V2 Intermediate	03/10/14	9,140	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	2.2
V2 Effluent		6,320	ND<12.2	ND<28.8	ND<32.9	ND<65.8	ND<32.9	1.5
V2 Influent		162,000	85	1,420	988	5,510	2,530	38.4
V2 Intermediate	04/16/14	ND<1220	ND<6.5	22.9	ND<17.6	ND<35.2	ND<17.6	NC
V2 Effluent		ND<1220	ND<6.5	30.3	ND<17.6	ND<35.2	ND<17.6	NC
V2 Influent		103,000	ND<16.2	435	711	8,340	2,660.0	24.4
V2 Intermediate	05/08/14	3,310	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	0.8
V2 Effluent		5,620	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.3
V2 Influent		23,200	ND<73.4	ND<174	ND<199	2,820	1,070	5.5
V2 Intermediate	06/25/14	12,900	19.4	143	34	ND<61.2	ND<30.6	3.1
V2 Effluent		ND<2040	12	ND<25.9	ND<29.6	ND<59.1	ND<29.6	NC
V2 Influent		46,000	ND<56.5	154	146	3,040	1,290	10.9
V2 Intermediate	07/09/14	ND<3520	ND<37.6	ND<44.6	ND<51.0	ND<102	ND<51.0	NC
V2 Effluent		6,900	ND<18.8	28.0	ND<25.5	ND<51.0	ND<25.5	1.6
V2 Influent		39,300	ND<22.0	83.7	ND<59.5	1,230	571	9.3
V2 Intermediate	08/05/14	ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<76.8	NC
V2 Effluent		10,600	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<79.5	2.5
V2 Influent		19,500	ND<10.9	39.3	ND<78.6	1,780	910	4.6
V2 Intermediate	09/04/14	ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V2 Effluent		ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V2 Influent		67,800	ND<13.1	ND<31.1	ND<35.6	238	171	16.1
V2 Intermediate	10/16/14	ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V2 Effluent		7,860	ND<9.4	ND<22.3	ND<25.5	ND<51.0	ND<25.5	1.9
V2 Influent		ND<1640	8.2	ND<48.3	ND<55.6	ND<111	58.0	NC
V2 Intermediate	11/11/14	ND<2060	ND<11.0	ND<64.7	ND<74.6	ND<149	ND<74.6	NC
V2 Effluent		ND<2060	ND<11.0	ND<64.7	ND<74.6	ND<149	ND<74.6	NC
V2 Influent		6,210	ND<7.3	ND<17.3	ND<19.8	ND<39.5	ND<19.8	1.5
V2 Intermediate	12/10/14	5,950	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	1.4
V2 Effluent		3,140	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	0.7
V2 Influent		ND<2190	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<31.7	NC
V2 Intermediate	01/20/15	ND<1760	ND<9.4	37.4	ND<63.9	ND<51.0	ND<25.5	NC
V2 Effluent		2,360	ND<12.2	ND<143	ND<32.9	ND<65.8	ND<32.9	0.6
V2 Influent		2,940	ND<7.4	ND<17.6	ND<20.2	ND<40.3	32.3	0.7
V2 Intermediate	02/25/15	ND<1980	ND<10.6	ND<25.1	ND<28.7	115	46.7	NC
V2 Effluent		2,530	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	0.6
V2 Influent		2,300	ND<5.8	ND<13.9	ND<79.5	39.7	ND<79.5	0.5
V2 Intermediate	03/18/15	1,500	ND<5.5	15.0	ND<74.2	ND<29.6	ND<74.2	0.4
V2 Effluent		3,470	ND<8.6	29.5	ND<117	ND<46.8	ND<117	0.8
		PSCAA	A Threshold Co	ncentration *				200

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample	Sample Date		Ana	alytical Vapor R (EPA Method ((µa	tesults, Vapor Train ΓΟ-15 for VOCs) g/m3)	3	-	*THCg (ppmv)
Location	Duit	THCg	Benzene	Toluene	Ethylbenzene	m&p Xylenes	o- Xylenes	
V3 Influent		261,000	184	1,680	2,440	9,530	3,590	61.8
V3 Intermediate	01/27/14	108,000	ND<13.6	39.5	ND<37.0	ND<73.9	ND<37.0	25.6
V3 Effluent		31,800	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	7.5
V3 Influent		165,000	85	456	1,070	4,550	1,650	39.1
V3 Intermediate	02/19/14	2,640	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	0.6
V3 Effluent		3,220	ND<10.9	34.1	ND<29.6	ND<59.1	ND<29.6	0.8
V3 Influent		209,000	204	2,110	2,830	18,400	5,550	49.5
V3 Intermediate	03/10/14	8,010	ND<10.8	27.3	ND<29.5	ND<59.0	ND<29.5	1.9
V3 Effluent		4,980	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	1.2
V3 Influent		167,000	78	1,320	882	6,860	2,290	39.5
V3 Intermediate	04/16/14	ND<1220	ND<6.5	18	ND<17.6	ND<35.2	ND<17.6	NC
V3 Effluent		ND<1220	ND<6.5	30.8	ND<17.6	ND<35.2	ND<17.6	NC
V3 Influent		134,000	33	641	1,060	11,600	3,690.0	31.7
V3 Intermediate	05/08/14	9,300	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	2.2
V3 Effluent		3,970	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	0.9
V3 Influent		ND<28400	ND<152	ND<360	ND<412	3,140	1,130	NC
V3 Intermediate	06/25/14	19,100	24.5	188	130	944	207	4.5
V3 Effluent		ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V3 Influent		83,400	ND<56.5	172	180	3,440	1,540	19.7
V3 Intermediate	07/09/14	ND<2120	ND<22.6	27.9	ND<30.6	ND<61.2	ND<30.6	NC
V3 Effluent		3,540	ND<18.8	22.7	ND<25.5	ND<51.0	ND<25.5	0.8
V3 Influent		35,700	ND<22.0	85.3	ND<59.5	1,140	519	8.5
V3 Intermediate	08/05/14	ND<2460	ND<13.1	ND<31.1	ND<35.6	ND<71.1	ND<89.2	NC
V3 Effluent		5,840	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<76.8	1.4
V3 Influent		4,850	ND<10.9	ND<25.9	ND<78.6	1,460	640	1.1
V3 Intermediate	09/04/14	ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V3 Effluent		ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V3 Influent		15,200	ND<13.1	ND<31.1	ND<35.6	241	170	3.7
V3 Intermediate	10/16/14	ND<2550	ND<13.6	ND<32.3	ND<37.0	ND<73.9	ND<37.0	NC
V3 Effluent		ND<1760	ND<9.4	ND<22.3	ND<25.5	ND<51.0	ND<25.5	NC
V3 Influent		ND<1750	ND<9.4	ND<55.2	ND<63.6	ND<127	65.6	NC
V3 Intermediate	11/11/14	ND<1760	ND<9.4	ND<55.4	ND<63.9	ND<128	ND<63.9	NC
V3 Effluent		ND<1540	ND<8.2	ND<48.4	ND<55.8	ND<112	ND<55.8	NC
V3 Influent		6,140	ND<9.4	ND<22.3	ND<25.5	ND<51.0	ND<25.5	1.5
V3 Intermediate	12/10/14	ND<2060	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC
V3 Effluent		7,100	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	1.7
V3 Influent		12,100	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<31.7	2.9
V3 Intermediate	01/20/15	ND<2270	ND<12.2	ND<28.8	ND<32.9	ND<65.8	ND<32.9	NC
V3 Effluent	1	ND<2550	ND<13.6	ND<161	ND<37.0	ND<73.9	ND<37.0	NC
V3 Influent		3,340	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<31.7	0.8
V3 Intermediate	02/25/15	ND<1980	ND<10.6	ND<25.1	ND<28.7	ND<57.3	ND<28.7	NC
V3 Effluent		ND<1980	ND<10.6	ND<25.1	ND<28.7	ND<57.3	ND<28.7	NC
V3 Influent		2,290	ND<5.7	14.8	ND<76.8	38.3	ND<76.8	0.5
V3 Intermediate	03/18/15	ND<1280	ND<6.8	28.4	ND<92.7	ND<37.0	ND<92.7	NC
V3 Effluent		2,240	ND<5.5	ND<12.9	ND<74.2	ND<29.6	ND<74.2	0.5
		PSCAA	A Threshold Co	ncentration *	·	•		200

Notes:

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples V1 Influent, V1 Intermediate, and V1 Effluent were collected from sample ports associated with the first train of vapor phase carbon units. Samples V2 Influent, V2 Intermediate, and V2 Effluent were collected from sample ports associated with the second train of vapor phase carbon units. Samples V3 Influent, V3 Intermediate, and V3 Effluent were collected from sample ports associated with the second train of vapor phase carbon units. Samples V3 Influent, V3 Intermediate, and V3 Effluent were collected from sample ports associated with the third train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 2.

NC = Not Calculated due to concentration below laboratory MDL.

* THCg ppm = THCg (μg/m³) /42.23 (conversion factor for molar volume @ STP)/M (molecular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when the TPH (THC) influent concentration is greater than or equal to 200 ppmv.

Table 2. Liquid Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample Location	Sample Date	Analytica	l Water Res EPA N	sults (NWTI Aethod 826((µg/L)	PH-Gx/8021 for) for VOCs)	THCg and
		THCg	Benzene	Toluene	Ethylbenzene	Total Xylenes
						č
W-DSCHG		2,250	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INT	01/27/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF		ND (<100)	ND (<1.0)	1.5	ND (<1.0)	8.6
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	02/20/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	1.3	11.4
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	03/10/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	04/16/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	5.5
W-DSCG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	05/08/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	06/25/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	07/09/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	08/13/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	09/04/14	*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	10/16/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	11/11/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	12/10/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	01/21/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		827	10.2	82.1	11.4	86.2
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	02/25/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	03/18/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
KCIW P	ermit Limit	ts	70	1,400	1,700	2,200

Notes:

There are a total of two liquid phase carbon units plumbed in series to treat water. Samples W-INF or W-INF-WS1 were collected from a sample port located prior to the first liquid phase carbon unit. Samples W-INT or W-OUT-WC1 were collected from a sample port located between the first and second liquid phase carbon units. Samples W-DSCHG or W-DSCG were collected from the sample port located after the second (and final) liquid phase carbon unit. The sample port locations are shown on Figure 2.

KCIW Permit Maximum Allowable Concentrations:

Benzene – 0.07 mg/L (70 µg/L); Ethylbenzene – 1.7 mg/L (1,700 µg/L); Toluene – 1.4 mg/L (1,400 µg/L); Total Xylenes – 2.2 mg/L (2,200 µg/L).

* THCg analysis was requested, but the laboratory inadvertently neglected to complete the THCg analysis.

Table 3. Remediation System Operational Data SummaryPHILLIPS 66 FACILITY #255353 (AOC 1396)

			SVE S	System								Off-gas	Treatment	System						
	Merc	cer-Westlak	e Wells	Va	Illey-Terry W	ells	AS Sys	stem		VPC-1			VPC-2			VPC-3		5	System Tota	als
																			Estimated	
											Estimated			Estimated			Estimated	Estimated	TPHa	Cumulative
	Period	Wells On-	Applied	Period	Wells On-	Applied	Period	Applied		Influent	TPHa	Flow	Influent	TPHa	Flow	Influent	TPHa	TPHa	Removal	TPHa
	Operating	line	Vacaum	Operating	line	Vocum	Operating	Prossure	Flow Rate	Conc.	Removed	Rate	Conc.	Removed	Rate	Conc.	Removed	Removed	Rate	Removed
		(count)	vaccum	Operating	(count)	(in LLO)		(poi)	(oofm)	(ua/m^3)	(lbc)	(oofm)	(ma/m^3)	(lba)	(oofm)	(ua/m^3)	(lba)	(lba)	(lba /br)	(lbc)
Date	Houis	(count)	(In. H ₂ O)	Hours	(count)	$(In. H_2O)$	Hours	(psi)	(sciiii)	(µg/m)	(IDS.)	(sciiii)	(μg/m)	(IDS.)	(SCIIII)	(µg/m)	(IDS.)	(ibs.)	(IDS./III)	(ibs.)
1/2/14	114	20	26	114	22	26	111	6.5	NIM	05000	20.44	NIM	74050	15 52	NIM	E4000	10.90	46.94	0.41	154.04
1/3/14	114	20	20	114	23	20	114	0.5		95000	20.41	I NIVI	74950	15.55	INIVI NIM	54900	10.69	40.04	0.41	154.94
1/0/14	3	20	20	3	23	20	3	0		95000	0.34	100.07	74950	0.41		54900	0.29	7.04	0.41	100.17
1/7/14	19	28	18	19	23	25	19	6	503.07	95000	3.40	485.37	74950	2.59	464.73	54900	1.82	7.81	0.41	163.98
1/8/14	28	28	18	28	23	26	28	5		95000	0.00		74950	0.00		54900	0.00	0.00	0.00	163.98
1/9/14	24	28	22	24	23	26	24	8	515.92	95000	9.55	496.37	74950	7.25	496.38	54900	2.45	19.24	0.43	183.22
1/10/14	17	28	22	18	23	27	17	7.5	517.42	95000	3.13	502.21	74950	2.54	528.50	54900	1.96	7.62	0.43	190.84
1/13/14	79	28	22	79	23	26	80	6.5	508.97	95000	14.31	532.16	74950	11.80	548.73	54900	8.91	35.02	0.44	225.87
1/14/14	19	28	- 22	18	23	27	18	6.5	497.43	95000	3.36	523.97	74950	2.65	553.03	54900	2.05	8.06	0.44	233.92
1/15/14	28	28	23	28	23	27	26	/	512.50	95000	5.11	513.61	74950	4.04	537.68	54900	3.10	12.24	0.44	246.16
1/16/14	19	28	24	19	23	28	19	6	538.21	95000	3.64	533.57	74950	2.85	538.31	54900	2.10	8.59	0.45	254.75
1/17/14	25	28	34	26	23	44	25	6	441.06	95000	3.92	420.97	74950	3.07	464.49	54900	2.48	9.48	0.37	264.23
1/20/14	69	28	33	69	23	44	69	6.5	456.66	95000	11.21	452.21	74950	8.76	455.74	54900	6.47	26.44	0.38	290.67
1/21/14	29	28	46	29	23	53	29	5.5	429.86	95000	4.44	460.09	74950	3.75	466.58	54900	2.78	10.96	0.38	301.63
1/22/14	20	28	42	19	23	33	20	6.5	451.76	95000	3.22	462.40	74950	2.47	500.94	54900	1.96	7.64	0.39	309.27
1/23/14	30	28	40	30	23	32	30	8.5	418.24	95000	4.46	438.07	74950	3.69	471.91	54900	2.91	11.07	0.37	320.34
1/24/14	25	28	41	25	23	32	25	7	432.19	95000	3.84	439.34	74950	3.08	479.91	54900	2.47	9.40	0.38	329.73
1/27/14	66	28	41	66	23	31	66	6.5	431.90	77100	8.23	431.15	179000	19.08	475.41	261000	30.68	57.99	0.88	387.72
1/28/14	25	28	40	25	23	31	25	8	439.45	77100	3.17	441.02	179000	7.39	475.41	261000	11.62	22.18	0.89	409.91
1/29/14	23	28	44	23	23	59	23	8.5	450.89	77100	2.99	406.78	179000	6.27	454.55	261000	10.22	19.49	0.85	429.39
1/30/14	17	28	44	17	23	56	17	7	452.30	77100	2.22	433.34	179000	4.94	444.43	261000	7.39	14.55	0.86	443.94
1/31/14	3	28	46	3	23	47	3	8.5	429.59	77100	0.37	413.24	179000	0.83	414.10	261000	1.21	2.42	0.81	446.36
2/3/14	69	28	40	69	23	46	69	8.7	464.08	77100	9.25	430.25	179000	19.90	463.12	261000	31.24	60.39	0.88	506.75
2/4/14	28	28	46	28	23	48	28	8	399.93	77100	3.23	421.40	179000	7.91	448.73	261000	12.28	23.43	0.84	530.18
2/7/14	69	28	48	69	23	47	69	8	409.47	77100	8.16	424.23	179000	19.63	456.33	261000	30.78	58.57	0.85	588.75
2/11/14	97	28	50	97	23	51	98	6	449.75	77100	12.60	444.32	179000	28.90	451.16	261000	42.78	84.28	0.87	673.02
2/12/14	26	28	47	26	23	51	25	6	438.41	77100	3.29	482.88	179000	8.42	483.94	261000	12.30	24.01	0.92	697.03
2/13/14	19	28	48	19	23	51	20	6	422.95	77100	2.32	412.96	179000	5.26	458.18	261000	8.51	16.09	0.85	713.13
2/17/14	67	28	51	67	23	52	66	7	415.17	77100	8.03	427.60	179000	19.21	449.94	261000	29.47	56.71	0.85	769.84
2/19/14	25	28	49	25	23	49	26	7	432.53	158000	6.40	468.57	153000	6.71	487.13	165000	7.53	20.64	0.83	790.48
2/20/14	22	28	50	22	23	49	21	9	433.97	158000	5.65	458.83	153000	5.78	497.26	165000	6.76	18.20	0.83	808.68
2/25/14	122	28	48	122	23	46	122	10	438.82	158000	31.68	499.65	153000	34.93	493.41	165000	37.20	103.82	0.85	912.50
2/26/14	26	28	49	26	23	53	26	8.5	365.19	158000	5.62	395.49	153000	5.89	411.09	165000	6.61	18.12	0.70	930.62
2/27/14	23	28	50	23	23	63	23	9	359.08	158000	4,89	390.85	153000	5.15	419.23	165000	5.96	16.00	0.70	946.61
3/3/14	97	28	50	97	23	62	97	8	343.96	158000	19.75	381.85	153000	21.23	388.82	165000	23.31	64.28	0.66	1010.90
3/5/14	38	28	50	38	23	67	38	12.2	339.24	158000	7.63	370.37	153000	8.07	374.87	165000	8.80	24.50	0.64	1035.39
3/7/14	48	28	52	48	23	67	48	11.9	417.00	158000	11.85	473 58	153000	13.03	493 58	165000	14 64	39.52	0.82	1074.91
3/10/14	74	28	65	74	23	71	74	11.8	376 48	181000	18 89	415 20	219000	25 20	430 89	209000	24.96	69.05	0.93	1143.96
3/14/14	91	28	70	90	23	73	91	13.4	400 74	181000	24 72	428.35	219000	31.62	463.82	209000	32.68	89.03	0.99	1232.99
3/18/14	99	28	74	100	23	75	gq	12.6	410.20	181000	27.53	442 68	219000	36.31	462 90	209000	36.24	100.08	1 00	1333.07
3/20/14	45	28	71	44	23	74	45	12.3	416.64	181000	12 71	438 17	219000	15.81	468 67	209000	16 14	44 67	1.00	1377 74
3/24/14	95	28	75	96	23	77	95	13.4	423 51	181000	27.28	473 84	219000	37.31	495 55	209000	37.24	101.83	1.06	1479.58
4/1/14	194	28	73	194	23	74	194	15.1	399.25	181000	52.51	428.93	219000	68.26	468 17	209000	71 10	191.87	0.99	1671 45
4/11/14	71	28	70	70	23	73	71	15.4	434 40	181000	20.91	478 15	219000	27.46	503 76	209000	27.61	75 97	1.08	1747 42
4/16/14	118	27	72	110	21	74	118	12.5	406.84	156000	28.05	496 74	162000	35.87	501 69	167000	37 34	101 27	0.85	1848 60
4/22/14	168	27	62	168	21	74	168	12.5	406.20	156000	39.88	464 92	162000	47 39	482 21	167000	50.67	137.95	0.82	1986.63
4/30/14	146	27	73	169	21	73	170	12.0	336 33	107000	45 20	351 75	102000	48 72	363.86	134000	65 56	159 58	0.02	2146 21
5/8/14	100	27	73	100	21	75	100	12.0	310.88	107000	13.08	33/ 30	103000	13.16	345.69	134000	17 70	43.00	0.43	2190.21
5/12/14	102	27	73	102	21	7/	102	13/	318 18	107000	20.07	333 56	103000	30.10	343.00	134000	40.20	100 37	0.43	2200.14
5/00/14	225	21	74	224	21	74	224	10.4	325.05	107000	13.02	336 54	102000	13 11	358 27	134000	40.29	100.37	0.43	2230.01
5/22/14	∠30	21	/4	234	∠1	14	234	12.5	323.05	107000	13.03	JJ0.54	103000	13.11	300.27	134000	10.10	44.30	0.44	2334.01

Table 3. Remediation System Operational Data SummaryPHILLIPS 66 FACILITY #255353 (AOC 1396)

			SVE S	System								Off-gas	Treatment	System						
	Merc	er-Westlake	e Wells	Va	alley-Terry W	ells	AS Sys	stem		VPC-1			VPC-2			VPC-3		5	System Tota	als
																			Estimated	
											Estimated			Estimated			Estimated	Estimated	TPHg	Cumulative
	Period	Wells On-	Applied	Period	Wells On-	Applied	Period	Applied		Influent	TPHg	Flow	Influent	TPHg	Flow	Influent	TPHg	TPHg	Removal	TPHg
	Operating	line	Vaccum	Operating	line	Vaccum	Operating	Pressure	Flow Rate	Conc.	Removed	Rate	Conc.	Removed	Rate	Conc.	Removed	Removed	Rate	Removed
Date	Hours	(count)	(in. H ₂ O)	Hours	(count)	(in. H ₂ O)	Hours	(psi)	(scfm)	(µg/m ³)	(lbs.)	(scfm)	(µg/m ³)	(lbs.)	(scfm)	(µg/m ³)	(lbs.)	(lbs.)	(lbs./hr)	(lbs.)
5/27/14	100	27	76	101	21	75	100	12.7	333.45	107000	22.45	376.74	103000	24.42	376.67	134000	31.76	78.63	0.47	2413.44
6/3/14	168	16	77	168	22	68	169	13.3	321.35	107000	21.38	371.88	103000	23.82	371.30	134000	30.94	76.13	0.46	2489.58
6/10/14	166	16	79	166	22	82	165	13.8	323.85	107000	18.69	339.19	103000	18.71	350.53	134000	25.16	62.56	0.44	2552.14
6/16/14	144	16	80	143	22	85	144	12.7	316.85	55200	13.95	348.40	23200	6.48	357.32	28400	8.13	28.57	0.13	2580.71
6/25/14	213	16	78	214	22	85	214	10.7	320.62	55200	0.13	337.27	23200	0.06	354.99	28400	0.08	0.27	0.13	2580.97
7/1/14	2	16	75	2	22	78	2	15.2	315.28	131000	30.17	343.08	46000	11.53	352.97	83400	21.50	63.20	0.32	2644.17
7/9/14	195	16	78	195	22	79	195	10.1	323.83	131000	11.60	376.45	46000	8.95	375.90	83400	16.21	36.76	0.34	2680.93
7/15/14	73	16	71	138	22	75	137	13.2	308.90	131000	22.28	343.61	46000	8.64	357.62	83400	16.31	47.24	0.32	2728.16
7/21/14	147	16	73	146	22	76	147	12	306.32	131000	12.78	343.95	46000	5.04	350.79	83400	9.31	27.13	0.32	2755.29
7/30/14	85	16	71	85	22	70	85	12.2	314.00	33900	5.50	338.85	39300	6.88	352.17	35700	6.50	18.88	0.14	2774.17
8/5/14	138	18	73	138	22	74	138	11.8	312.81	33900	7.31	328.88	39300	8.91	349.19	35700	8.59	24.81	0.13	2798.98
8/13/14	184	18	73	184	22	64	184	12.3	327.24	33900	7.65	343.02	39300	9.29	362.57	35700	8.92	25.86	0.14	2824.84
8/21/14	184	18	73	184	22	64	184	12	311.21	33900	4.82	388.48	39300	6.98	381.94	35700	6.23	18.03	0.15	2842.87
8/26/14	122	18	71	122	22	62	122	14.9	339.72	20500	5.50	439.51	19500	6.77	408.65	4850	1.57	13.84	0.07	2856.71
9/4/14	211	18	82	211	22	73	211	13	338.28	20500	3.79	473.59	19500	5.05	436.07	4850	1.16	10.00	0.07	2866.71
9/10/14	146	18	82	146	22	74	146	12.2	334.25	20500	4.26	462.21	19500	5.60	419.59	4850	1.27	11.13	0.07	2877.84
9/17/14	166	18	81	166	22	77	166	12.9	341.08	20500	3.30	454.77	19500	4.19	413.23	4850	0.95	8.43	0.07	2886.27
9/22/14	126	18	80	126	22	76	126	11.5	328.56	20500	5.63	452.80	19500	7.38	424.43	4850	1.72	14.72	0.07	2900.99
10/3/14	223	18	80	223	22	77	223	14	323.83	16500	6.16	416.06	67800	32.54	395.12	15200	6.93	45.64	0.15	2946.63
10/16/14	308	18	81	308	22	82	308	11	333.97	16500	6.94	426.08	67800	36.36	413.66	15200	7.91	51.21	0.15	2997.84
10/30/14	336	18	79	336	22	83	336	12.4	319.37	820	0.18	371.05	820	0.21	365.29	875	0.22	0.60	0.00	2998.44
11/11/14	181	18	79	181	22	75	181	13.1	310.64	820	0.34	401.50	820	0.44	377.78	875	0.44	1.23	0.00	2999.66
11/26/14	358	15	79	358	19	74	358	9.1	285.03	6930	1.37	337.16	6210	1.45	333.38	6140	1.42	4.24	0.02	3003.90
12/10/14	185	15	90	185	19	80	185	9	286.29	6930	2.19	350.27	6210	2.41	344.49	6140	2.35	6.95	0.02	3010.85
12/23/14	295	15	91	296	19	80	295	12.9	315.04	6930	2.33	334.14	6210	2.60	352.16	6140	2.71	7.65	0.02	3018.50
1/6/15	285	13	90	335	19	76	336	13	331.40	1060	0.44	405.42	1095	0.56	399.64	12100	6.05	7.04	0.02	3025.54
1/20/15	334	13	71	334	19	70	333	12.7	353.11	1060	0.47	301.76	1095	0.41	360.20	12100	5.44	0.32	0.02	3031.86
2/3/15	333	11	76	333	28	68	334	11.5	309.19	1060	0.09	333.62	1095	0.10	357.34	12100	1.23	1.43	0.02	3033.29
2/0/15	70	11	82	76	14	73	75	11.7	320.72	1060	0.12	343.09	1095	0.13	300.90	12100	1.04	1.79	0.02	3035.08
2/10/13	90	10	04 75	90	14	79	90	14.2	222.46	1060	0.09	222.97	1095	0.10	303.04	12100	0.22	0.27	0.02	3036.75
2/13/13	20	10	84	20	13	/0 87	20	12.1	331.20	875	0.03	323.07	2040	0.03	341.66	3340	0.32	1.0/	0.02	3038.70
2/10/13	20	22	84	20	21	87	20	14.1	135 72	875	0.23	158.62	2940	0.79	168 12	3340	0.92	0.08	0.01	3038.77
2/20/10	160	22 8	83	210		NM	160	10	1// 32	875	0.00	162 /2	2940	0.00	164 72	3340	0.00	0.00	0.00	3038.87
3/12/15	196	0 19	85	0	0	NM	196	93	134 97	1970	0.05	167.80	2340	0.00	169 75	2290	0.00	0.05	0.00	3039.01
3/18/15	140	0	100	0	0	NM	130	16.6	1/8 80	1070	0.14	15/ 76	2300	0.00	150 31	2200	0.00	0.14	0.00	3030.01
3/24/15	140	9 Q	99	0	0	NM	117	8.5	140.00	1970	0.13	154.70	2300	0.00	159.51	2290	0.00	0.13	0.00	3039.13
3/24/13	110	э	33	U	U	INIVI	117	0.0	142.43	1970	0.23	104.00	2300	0.00	109.20	2290	0.00	0.23	0.00	2029.20

Notes:

SVE	=	Soil Vapor Extraction	AS	=	Air Sparge	VPC	=	Vapor Phase Carbon
in. H ₂ O	=	inches of water	psi	=	pounds per square inch	scfm	=	standard cubic feet per minute
ppm	=	parts per million	(µg/m ³)	=	micrograms per cubic me	TPHg	=	Total Petroleum Hydrocarbons (Gasoline)

Table 4. SVE PID Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Date			We	stlake SVE	Wells - PID	Readings (p	pm)		
	WC1	WC2	WC3	WB3	WB2	WB1	WA3	WA2	WA1
1/17/2014	6	8.6	3.4	5	10.9	3	0.2	1.2	0.5
1/20/2014	5.4	9	7.1	5.3	4.5	3.7	3.4	5.4	5.1
1/21/2014	1.8	1.7	2.7	2.2	1.6	1.3	1.3	2.3	2
1/27/2014	1	1.2	1.9	1.5	1.4	1.3	1.9	2.7	2.7
1/29/2014	1.5	1.6	2	3.2	1.9	3.2	2.3	5.8	3.3
2/3/2014	1.5	1.6	2	3.2	1.9	3.2	2.3	5.8	3.3
2/12/2014	0.2	0.1	1.7	0.8	0.1	0.1	0	0.1	0
2/19/2014	0.7	0.6	0.7	0.6	0.4	0.4	0.3	0.3	0.4
2/27/2014	0.9	1.2	1.2	1.3	1.3	1.4	1.6	1.8	1.9
3/7/2014	0.6	0.3	0.5	0.4	0.3	0.2	0.3	0.2	0.1
3/20/2014	0.7	0.6	0.5	0.4	0.4	0.4	0.3	0.2	0.3
4/16/2014	69	225	210	135	32	225	64	210	115
6/3/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
8/5/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/26/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
1/6/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
1/28/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/3/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/6/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/10/2015	OL	OL	OL	OL	OL	0	4	0.3	0.1
2/13/2015	0	0.1	6.2	0	4	0	0	0	0
2/16/2015	0	0	0	0	0	OL	OL	OL	OL
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/12/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/18/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL

		Valley S	VE Wells -	PID Readin	gs (ppm)		
V9	V7	V1	V6	V2	V5	V3	V4
7.8	3.3	2.4	4.3	15.1	38.8	3.3	69.4
4	1.8	2.3	1.6	2.3	35.8	3	2.8
5.3	1.4	2.6	2.3	9	32	2.3	2.9
4.6	1	1.1	0.8	3	42.5	2.4	5.3
3.2	1.2	1.4	2	4.8	35.2	1.4	2.1
1.4	1.2	1.7	1.4	3.3	26.9	1	1.1
0.9	0.8	1.2	1.2	2.2	27.5	1.1	2
0.8	1	0.9	1	1.5	17.3	1.3	1.1
0.7	0.6	0.7	1	1.8	31.3	0.6	0.8
0.7	0.6	0.6	0.9	1.9	31	0.4	0.8
0.6	0.7	0.4	1.5	1.5	51.1	0.5	0.3
0.1	0.1	0.1	0.1	W	81.1	W	0.1
0	0	0.1	0	0	22.8	W	0.1
					22	W	
	0	W		W	0.1	0.3	0.7
0.2	0.4	OL	0.2	OL	0.2	OL	0.6
0.5	0.6	1	0.2	0.6	0.5	0.6	0.6
0.3	0.2	0.6	OL	0.1	0.2	OL	0.4
0	0	0.4	OL	0	0.2	OL	0.1
OL	0.1	0	OL	0.1	0	OL	0
OL	0.1	OL	OL	0	0	OL	0.1
OL	0	0.2	0	0.1	0	0	0
OL	OL	OL	OL	OL	OL	OL	OL
OL	OL	OL	OL	OL	OL	OL	OL
ÖL	OL	OL	OL	OL	ÖL	OL	ÖL

Date								Me	ercer SVE V	Vells - PID F	Readings (pp	om)							
	M6	M7	M10	M9	M8	M1	M2	M3	M4	M5	M14	M13	M15	M12	M11	M16	M17	M18	M19
1/17/2014	0.1	0.4	0.3	1.2	184	3.5	22.3	0	9.9	10.5	13	13.5	13.7	430	260	31	107	220	200
1/20/2014	5.6	7.2	10.1	16.8	171	2.2	3.5	3.7	1.1	1.2	3.2	3.3	4.3	281	235	29.7	150	184	222
1/21/2014	3.2	3	2.2	1.7	145	6.5	4.1	3.4	2.4	2	2.6	3.1	4.6	184	267	46.2	153	161	226
1/27/2014	3.5	4.8	7.5	16	236	0.9	1.2	1.1	0.7	0.5	1.5	0.6	2.9	100	355	33.8	216	183	240
1/29/2014	2.8	3.7	7.6	13.9	191	0.6	0.9	1.1	0.7	0.7	1.9	0.7	4	40	302	23	193	156	160
2/3/2014	2.8	3.7	7.6	13.9	191	0.6	0.9	1.1	0.7	0.7	1.9	0.7	4	40	302	23	193	156	160
2/12/2014	0	0.1	0	0	98.9	2	2.3	2.5	2.6	3.1	6.1	4.3	8.9	15.5	237	16.9	159	97.5	36.1
2/19/2014	0.4	0.7	0.3	0.3	78.1	1.9	2.1	2.4	2.2	2.6	4	4	7.8	18.1	192	13.5	121	65	25.9
2/27/2014	2.3	2.7	3.8	6	63.9	0.5	0.4	0.3	0.1	0.2	1.6	0.4	1.6	0.2	179	8	139	70	21.5
3/7/2014	0.1	0.3	0.1	0.1	60.5	1.8	1.4	1.1	0.8	0.8	2	0.7	1.4	0.6	178	9.5	134	71.2	21.5
3/20/2014	0.3	0.7	0.2	0.2	58	3.1	1.8	1.4	0.8	0.8	1.6	0.7	1.3	0.6	156	16.1	146	101	14.2
4/16/2014	W	0.4	0.1	2.6	49.3	1.6	0.3	0.2	0.1	0.1	1.1	0.1	0.1	0.1	183	8.3	154	118	8.5
6/3/2014	0.1	0	0.2	0.8	8	0	OL	0.1	0.1	W	1.1	0	OL	0.1	124	12.5	74.5	31	0.8
8/5/2014					7.3					W					74.1	5.1	63.7	13.1	
11/26/2014			0.4	0.3	10.4		W			W				W					W
1/6/2015	1.9	1	OL	0.7	9	0.8	OL	0.7	1	OL	11	w	0.6	OL	7.4	4.6	9.6	4.5	OL
1/28/2015	2.9	1.4	1.5	2.5	8.9	2.5	0.1	1.3	0.2	0.2	0.4	0.8	0.2	20.5	9.5	2.6	12	3	0.8
2/3/2015	2.5	OL	0.8	2.1	9.3	2.3	OL	OL	OL	OL	OL	1.2	OL	14.9	11.5	4.8	10.7	3.8	OL
2/6/2015	1.9	OL	2.5	2.7	4.8	3	OL	OL	OL	OL	OL	4.5	OL	19.3	3.5	2.3	5.2	2	OL
2/10/2015	2	OL	0.1	0.1	2.1	0	OL	OL	OL	OL	OL	0.1	OL	11.1	4.6	0.1	6.8	0.1	OL
2/13/2015	0.1	OL	0.1	0.1	1	OL	OL	OL	OL	OL	OL	0	OL	10.6	3.8	OL	4	0	OL
2/16/2015	OL	OL	0.1	0	0.1	0	0	0	1	0	0	0	0	7.5	0.1	0	0.1	0	13.2
3/4/2015	OL	OL	0.3	0.2	1.8	OL	OL	OL	0	OL	OL	OL	OL	8.4	3.3	OL	2.1	OL	3.7
3/12/2015	0	0.3	0	0.1	1.6	10.1	0	0	0	0	0	0	0.1	8.2	1.8	1.2	1.1	1	2.4
3/18/2015	OL	OL	OL	0	0.3	0.1	OL	OL	0.5	OL	OL	OL	OL	4.9	0.9	0.1	0	OL	0.8

Date						Te	erry SVE W	ells - PID R	eadings (pp	m)					
		TEFR1	TMW65		TSVE11-	TSVE10 -				TSVE12-			TEFR2		TMW48
	TSVE3	AIR	AIR	TSVE4	MW67	MW66	TSVE2	TSVE1	TSVE7	MW68	TSVE5	TSVE6	AIR	TSVE8	AIR
1/17/2014	19.2	9.5	11.8	2.6	4.6	107	4.1	1.7	1.5	1.3	20.1	6.4	0.4	0.3	131
1/20/2014	26.6	10.3	8.5	8.4	11.1	125	10	5.5	3.5	4.7	6.3	5.4	4.5	2	115
1/21/2014	17.1	3.1	4.1	3.4	5.8	115	1.7	1	1.2	1.4	6.5	4.9	3.8	4.5	100
1/27/2014	15.5	5.1	3.1	1.9	3.5	116	4.2	2.2	1.1	1.2	4.7	3.7	1.3	1	113
1/29/2014	14.3	1.1	1.7	2.3	7.2	138	0.5	0.5	0.6	0.7	7.3	3.6	2.9	5.7	97.1
2/3/2014	14.3	1.1	1.7	2.3	7.2	138	0.5	0.5	0.6	0.7	2.4	2.9	2.9	6.2	69.7
2/12/2014	3.6	1	1.1	1.9	7.2	120	0.4	0.5	0.6	0.4	3.4	3.2	2.5	6.2	77.3
2/19/2014	5.6	1	1.2	1.6	3.5	71.3	0.6	0.6	0.6	0.6	2.9	2.2	2.1	2.4	47
2/27/2014	3.4	1	0.9	1.2	4.1	58.7	0.3	0.3	0.3	0.4	0.7	1.2	0.9	1.6	29.8
3/7/2014	3.5	0.9	1	1	4	52.7	0.1	0.1	0.1	0.3	0.6	1.1	0.9	1.7	26.3
3/20/2014	2.8	2.2	1.5	0.9	2.6	44.9	0.9	4.4	0.7	0.7	0.3	0.4	0.2	0.5	18.4
4/16/2014	3.2	1.5	0.8	0.2	2.5	45	1.8	1	0.2	0.3	0.2	0.1	0	0.1	16.1
6/3/2014	0.8	0.5	0.3	0.2	0.6	30.7	1.3	0.4	0.1	0.1	0	0	0.1	0	0.3
8/5/2014						16.3									
11/26/2014			OL										OL		
1/6/2015	1.9	1.4	1.9	0.3	1	0.5	0	0.5	0.4	1.4	0.3	0.4	OL	0.1	0.1
1/28/2015	1	0.9	1.9	1.8	0.6	0.6	0.7	0.7	0.7	1	0.5	0.8	0.7	0.7	0.3
2/3/2015	OL	0.1	OL	0.2	OL	OL	0.3	0.5	0.3	OL	0.2	0.4	OL	0.7	OL
2/6/2015	OL	0.4	OL	0.3	OL	OL	0.2	0.3	0.4	OL	0	0.1	OL	0.1	OL
2/10/2015	OL	0	OL	0.1	OL	OL	0.1	0	0.1	OL	0.1	0.1	OL	0.1	OL
2/13/2015	OL	OL	OL	0	OL	OL	0	0	0.1	OL	0	0.1	OL	0	OL
2/16/2015	0	0	0	0	0	0	0	0	0.1	OL	0.1	0	0	0	0
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/12/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/18/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

SVE	=	Soil Vapor Extraction
PID	=	Photo Ionization Detector
ppm	=	parts per million
	=	Not Measured
OL	=	Offline
W	=	Water in Well

Table 5. AS Flow Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Date									Westla	ke AS Wells	s - Flow Ra	te Readings	s (scfm)]					
	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	W-11	W-12	W-13	W-14	W-15	W-16	W-17	W-21	W-20	W-19	W-18						
1/23/2014	0	3	0	0	3	0	0	0	0	0	0	0	0	5	0	0	0	0	0	3	0						
1/31/2014	2	4	>25	2	3.5	5	<2	<2	4.5	<2	<2	3.5	14.5	6	4	3	7	7.5	7	3	8.5						
2/4/2014	2	3	>25	3	3	7	<2	5	4	2	<2	4	11	7	3	3	7	7	7	4	8.5						
2/12/2014	<2	5	>25	4	<2	11	6	9	7	<2	2	6	12	7	8	4	7.5	7	8	4	9						
2/17/2014	2	6	9	3	2	9	4	8	5	3	3	6	16	8	6	4	8	10	13	4	10						
2/26/2014	2	10	9	6	<2	12	7	9.5	9	3	3	6	13	9	6	3	11	14	7.5	4	11						
3/3/2014	2	10	10	5	3	12	8	9	4	5	4	7	13.5	10	6	6	10	8	9.5	5	11						
3/18/2014	2	11	<2	6	2	16	11	14	9	4	4	<2	15	11	17	8	9	15	10	5	11						
5/27/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL						
7/9/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL						
11/26/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL						
2/13/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL						
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL						
												-			-												
Date												Merce	r AS Wells	- Flow Rate	Readings	(scfm)						-					
Date	M-8	M-20	M-26	M-2	M-27	M-16	M-3	M-9	M-17	M-5	M-19	Merce M-15	r AS Wells M-7	- Flow Rate M-10	Readings M-14	(scfm) M-18	M-6	M-13	M-4	M-22	M-12	 M-1	M-23	M-11	M-25	M-24	M-21
Date 1/23/2014	M-8 9	M-20 0	M-26 0	M-2 0	M-27 0	M-16 0	M-3 0	M-9 0	M-17 7.5	M-5 0	M-19 0	Merce M-15 0	r AS Wells M-7 6	- Flow Rate M-10 0	Readings M-14 0	(scfm) M-18 1	M-6 0	M-13 0	M-4 5	M-22 0	M-12 0	M-1 0	M-23 0	M-11 0	M-25 0	M-24 0	M-21 0
Date 1/23/2014 1/31/2014	M-8 9 9	M-20 0 3.5	M-26 0 <2	M-2 0 <2	M-27 0 <2	M-16 0 4.5	M-3 0 3	M-9 0 5	M-17 7.5 7.5	M-5 0 7.5	M-19 0 3.5	Merce M-15 0 6	r AS Wells M-7 6 5	- Flow Rate M-10 0 6	Readings M-14 0 >25	(scfm) M-18 1 <2	M-6 0 <2	M-13 0 <2	M-4 5 5.5	M-22 0 5	M-12 0 <2	M-1 0 11.5	M-23 0 <2	M-11 0 <2	M-25 0 7.5	M-24 0 4	M-21 0 <2
Date 1/23/2014 1/31/2014 2/4/2014	M-8 9 9 10	M-20 0 3.5 <2	M-26 0 <2 <2	M-2 0 <2 <2	M-27 0 <2 <2	M-16 0 4.5 3.5	M-3 0 3 4	M-9 0 5 5	M-17 7.5 7.5 7.5	M-5 0 7.5 7	M-19 0 3.5 3	Merce M-15 0 6 6	r AS Wells M-7 6 5 6	- Flow Rate M-10 0 6 7	Readings M-14 0 >25 >25	(scfm) M-18 1 <2 2	M-6 0 <2 <2	M-13 0 <2 <2	M-4 5 5.5 6.5	M-22 0 5 5	M-12 0 <2 <2	M-1 0 11.5 11.5	M-23 0 <2 <2	M-11 0 <2 <2	M-25 0 7.5 5.5	M-24 0 4 >25	M-21 0 <2 7
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014	M-8 9 9 10 10	M-20 0 3.5 <2 6	M-26 0 <2 <2 3	M-2 0 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2	M-16 0 4.5 3.5 4	M-3 0 3 4 3.5	M-9 0 5 5 5	M-17 7.5 7.5 7.5 7	M-5 0 7.5 7 9	M-19 0 3.5 3 4	Merce M-15 0 6 6 5.5	r AS Wells M-7 6 5 6 7	- Flow Rate M-10 0 6 7 8	Readings M-14 0 >25 >25 >25 >25	(scfm) M-18 1 <2 2 3	M-6 0 <2 <2 <2 <2	M-13 0 <2 <2 <2 <2	M-4 5 5.5 6.5 8	M-22 0 5 5 6	M-12 0 <2 <2 <2 <2	M-1 0 11.5 11.5 13	M-23 0 <2 <2 <2 <2	M-11 0 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5	M-24 0 4 >25 >25	M-21 0 <2 7 7 7
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014 2/17/2014	M-8 9 9 10 10 11	M-20 0 3.5 <2 6 12	M-26 0 <2 <2 3 2	M-2 0 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6	M-3 0 3 4 3.5 3.5	M-9 0 5 5 5 6	M-17 7.5 7.5 7.5 7 8	M-5 0 7.5 7 9 10	M-19 0 3.5 3 4 5	Merce M-15 0 6 6 5.5 7	r AS Wells M-7 6 5 6 7 5	- Flow Rate M-10 0 6 7 8 9	Readings M-14 0 >25 >25 >25 >25 8	(scfm) M-18 1 <2 2 3 <2	M-6 0 <2 <2 <2 <2 <2 <2	M-13 0 <2 <2 <2 <2 2	M-4 5 5.5 6.5 8 7	M-22 0 5 5 6 8	M-12 0 <2 <2 <2 <2 <2 <2	M-1 0 11.5 11.5 13 14	M-23 0 <2 <2 <2 <2 2	M-11 0 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5	M-24 0 4 >25 >25 4	M-21 0 <2 7 7 <2
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014 2/17/2014 2/26/2014	M-8 9 9 10 10 11 12	M-20 0 3.5 <2 6 12 12	M-26 0 <2 <2 3 2 <2	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5	M-3 0 3 4 3.5 3.5 4	M-9 0 5 5 5 6 8	M-17 7.5 7.5 7.5 7 8 8.5	M-5 0 7.5 7 9 10 11	M-19 0 3.5 3 4 5 6	Merce M-15 0 6 5.5 7 6.5	r AS Wells M-7 6 5 6 7 5 6	- Flow Rate M-10 0 6 7 8 9 10	Readings M-14 0 >25 >25 >25 >25 8 9	(scfm) M-18 1 <2 2 3 <2 3 <2 3	M-6 0 <2 <2 <2 <2 <2 <2 <2 2	M-13 0 <2 <2 <2 2 2 3	M-4 5 5.5 6.5 8 7 8	M-22 0 5 5 6 8 9	M-12 0 <2 <2 <2 <2 <2 <2 <2 3	M-1 0 11.5 11.5 13 14 12	M-23 0 <2 <2 <2 2 2 2	M-11 0 <2 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5 9	M-24 0 4 >25 >25 4 4	M-21 0 <2 7 7 ~ 7 ~ 2 <2
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014 2/17/2014 2/26/2014 3/3/2014	M-8 9 9 10 10 11 11 12 13	M-20 0 3.5 <2 6 12 12 12 10	M-26 0 <2 <2 3 2 <2 <2 <2 <2	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5	M-3 0 3 4 3.5 3.5 4 4.5	M-9 0 5 5 6 8 7	M-17 7.5 7.5 7.5 7 8 8.5 9	M-5 0 7.5 7 9 10 11 12	M-19 0 3.5 3 4 5 6 5	Merce M-15 0 6 5.5 7 6.5 6.5	M-7 6 5 6 7 5 6 7 7 7	- Flow Rate M-10 0 6 7 8 9 10 11	Readings M-14 0 >25 >25 >25 8 9 10	(scfm) M-18 1 <2 2 3 <2 3 4	M-6 0 <2 <2 <2 <2 <2 <2 <2 2 2	M-13 0 <2 <2 <2 2 3 3	M-4 5 5.5 6.5 8 7 8 11	M-22 0 5 6 8 9 9	M-12 0 <2 <2 <2 <2 <2 <2 3 3 3	M-1 0 11.5 11.5 13 14 12 13	M-23 0 <2 <2 <2 2 2 2 <2	M-11 0 22 22 22 22 22 22 22 22 22	M-25 0 7.5 5.5 8.5 5.5 9 8	M-24 0 4 >25 >25 4 4 4	M-21 0 <2 7 7 ~2 ~2 2
Date 1/23/2014 1/31/2014 2/12/2014 2/12/2014 2/26/2014 3/3/2014 3/18/2014	M-8 9 9 10 10 11 12 13 13	M-20 0 3.5 <2 6 12 12 12 10 11	M-26 0 <2 <2 3 2 <2 <2 <2 <2 <2	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5 7	M-3 0 3 4 3.5 3.5 4 4.5 5	M-9 0 5 5 6 8 7 9	M-17 7.5 7.5 7 8 8.5 9 10	M-5 0 7.5 7 9 10 11 12 13	M-19 0 3.5 3 4 5 6 5 8	Merce M-15 0 6 5.5 7 6.5 6.5 9	M-7 6 5 6 7 5 6 7 8	- Flow Rate M-10 0 6 7 8 9 10 11 11	Readings M-14 0 >25 >25 >25 8 9 10 11	(scfm) M-18 1 <2 2 3 <2 3 4 7	M-6 0 <2 <2 <2 <2 <2 <2 2 2 2 <2	M-13 0 <2 <2 <2 2 3 3 8	M-4 5 5.5 6.5 8 7 8 11 10	M-22 0 5 6 8 9 9 12	M-12 0 <2 <2 <2 <2 <2 3 3 4	M-1 0 11.5 13 14 12 13 16	M-23 0 <2 <2 <2 2 2 2 2 2 3	M-11 0 22 22 22 22 22 22 22 22 22 22 22 22 2	M-25 0 7.5 5.5 8.5 5.5 9 8 11	M-24 0 4 >25 >25 4 4 4 6	M-21 0 <2 7 7 ~ 7 ~ 2 ~ 2 8
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014 2/17/2014 2/26/2014 3/3/2014 3/38/2014 5/27/2014	M-8 9 10 10 11 12 13 13 14	M-20 0 3.5 <2 6 12 12 10 11 25	M-26 0 <2 <2 3 2 <2 <2 <2 <2 <2 <2 0	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5 7 6.5	M-3 0 3 4 3.5 3.5 4 4.5 5 7	M-9 0 5 5 6 8 7 9 7	M-17 7.5 7.5 7.5 7 8 8.5 9 10 10	M-5 0 7.5 7 9 10 11 12 13 15	M-19 0 3.5 3 4 5 6 5 8 8 6.5	Merce M-15 0 6 5.5 7 6.5 6.5 9 8	r AS Wells M-7 6 5 6 7 5 6 7 8 7	- Flow Rate M-10 0 6 7 8 9 10 11 11 25	Readings M-14 0 >25 >25 >25 8 9 10 11 25	(scfm) M-18 1 <2 2 3 <2 3 4 7 0	M-6 0 <2 <2 <2 <2 <2 2 2 2 2 2 2 16	M-13 0 <2 <2 <2 2 3 3 8 5	M-4 5 5.5 6.5 8 7 8 11 10 11	M-22 0 5 6 8 9 9 12 11.5	M-12 0 <2 <2 <2 <2 <2 3 3 4 6	M-1 0 11.5 13 14 12 13 16 16	M-23 0 <2 <2 <2 2 2 2 2 3 1	M-11 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5 9 8 11 25	M-24 0 4 >25 >25 4 4 4 4 6 9	M-21 0 <2 7 7 <2 <2 2 2 8 0
Date 1/23/2014 1/31/2014 2/12/2014 2/12/2014 2/17/2014 2/26/2014 3/3/2014 3/3/2014 3/3/2014 7/9/2014	M-8 9 10 10 11 12 13 13 14 12	M-20 0 3.5 <2 6 12 12 12 10 11 25 25	M-26 0 <2 <2 3 2 <2 <2 <2 <2 <2 <2 <2 <2 0 0	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5 7 6.5 5	M-3 0 3 4 3.5 3.5 4 4.5 5 7 6	M-9 0 5 5 6 8 7 9 7 7	M-17 7.5 7.5 7 8 8.5 9 10 10 9	M-5 0 7.5 7 9 10 11 12 13 15 12	M-19 0 3.5 3 4 5 6 5 8 6.5 7	Merce M-15 0 6 5.5 7 6.5 6.5 9 8 6	r AS Wells M-7 6 5 6 7 5 6 7 8 7 7 7 7	- Flow Rate M-10 0 6 7 8 9 10 11 11 25 20	Readings M-14 0 >25 >25 >25 8 9 10 11 25 25	(scfm) M-18 1 <2 2 3 <2 3 4 7 0 0	M-6 0 <2 <2 <2 2 2 2 2 2 2 2 16 13	M-13 0 <2 <2 2 2 3 3 8 5 5 5	M-4 5 5.5 6.5 8 7 8 11 10 11 12	M-22 0 5 6 8 9 9 12 11.5 10	M-12 0 <2 <2 <2 <2 3 3 4 6 6 4	M-1 0 11.5 13 14 12 13 16 16 16	M-23 0 <2 <2 2 2 2 2 2 2 3 1 1 1	M-11 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5 9 8 11 25 25	M-24 0 4 >25 >25 4 4 4 6 9 7	M-21 0 <2 7 7 <2 <2 2 2 8 0 0
Date 1/23/2014 1/31/2014 2/4/2014 2/12/2014 2/17/2014 2/26/2014 3/3/2014 3/3/2014 3/3/2014 5/27/2014 11/26/2014	M-8 9 10 10 11 12 13 13 14 12 	M-20 0 3.5 <2 6 12 12 12 10 11 25 25 20	M-26 0 <2 <2 3 2 <2 <2 <2 <2 <2 <2 0 0 0	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5 7 6.5 5 	M-3 0 3 4 3.5 3.5 4 4.5 5 7 6	M-9 0 5 5 6 8 7 9 7 7 7	M-17 7.5 7.5 7 8 8.5 9 10 10 9	M-5 0 7.5 7 9 10 11 12 13 15 12 	M-19 0 3.5 3 4 5 6 5 8 6.5 7 7 7	Merce M-15 0 6 5.5 7 6.5 7 6.5 9 8 8 6	r AS Wells M-7 6 5 6 7 5 6 7 8 7 7 7 7	- Flow Rate M-10 0 6 7 8 9 10 11 11 25 20 	Readings M-14 0 >25 >25 >25 8 9 10 11 25 25 	(scfm) M-18 1 <2 2 3 <2 3 <2 3 4 7 0 0 1	M-6 0 <2 <2 <2 2 2 2 2 2 2 16 13 14	M-13 0 <2 <2 2 2 3 3 8 5 5 5 	M-4 5 5.5 6.5 8 7 8 11 10 11 12 	M-22 0 5 6 8 9 9 12 11.5 10 	M-12 0 <2 <2 <2 <2 3 3 4 6 6 4 	M-1 0 11.5 13 14 12 13 16 16 16	M-23 0 <2 <2 2 2 2 2 2 3 1 1 0	M-11 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5 9 8 11 25 25 	M-24 0 4 >25 >25 4 4 4 6 9 7 7	M-21 0 <2 7 7 <2 2 2 8 0 0 0 1
Date 1/23/2014 1/31/2014 2/12/2014 2/12/2014 2/12/2014 3/3/2014 3/3/2014 3/3/2014 5/27/2014 1/26/2014 1/1/26/2014 2/13/2015	M-8 9 9 10 10 11 12 13 13 13 14 12 11	M-20 0 3.5 <2 6 12 12 12 10 11 11 25 25 20 20	M-26 0 <2 <2 3 2 <2 <2 <2 <2 <2 0 0 0 0 0	M-2 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-27 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-16 0 4.5 3.5 4 6 5 5 5 7 6.5 5 0	M-3 0 3 4 3.5 3.5 4 4.5 5 7 6 4	M-9 0 5 5 6 8 7 9 7 7 7 7 7 11	M-17 7.5 7.5 7.5 7 8 8.5 9 10 10 10 9 15	M-5 0 7.5 7 9 10 11 12 13 15 12 3	M-19 0 3.5 3 4 5 6 5 8 6.5 7 7 7 OL	Merce M-15 0 6 5.5 7 6.5 6.5 9 8 6 6 5 5 9 8 6 6 6	M-7 6 5 6 7 5 6 7 5 6 7 8 7 7 7 7	- Flow Rate M-10 0 6 7 8 9 10 11 11 11 25 20 0	Readings M-14 0 >25 >25 >25 8 9 10 11 25 25 8	(scfm) M-18 1 <2 2 3 <2 3 <2 3 4 7 0 0 1 OL	M-6 0 <2 <2 <2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 16 13 14 14	M-13 0 <2 <2 2 3 3 8 5 5 5 6	M-4 5 5.5 6.5 8 7 8 11 10 11 12 11	M-22 0 5 6 8 9 9 12 11.5 10 0	M-12 0 <2 <2 <2 2 3 3 4 6 6 4 3 3	M-1 0 11.5 13 14 12 13 16 16 16 16 11	M-23 0 <2 <2 2 2 2 2 2 3 1 1 0 0	M-11 0 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	M-25 0 7.5 5.5 8.5 5.5 9 8 11 25 25 	M-24 0 4 >25 >25 4 4 4 6 9 7 7 7	M-21 0 <2 7 7 <2 2 2 8 0 0 1 0

Date						Valley AS \	Vells - Flow	Rate Read	dings (scfm))				
	V-6	V-7	V-8	V-9	V-10	V-5	V-11	V-4	V-12	V-3	V-13	V-2	V-14	V-1
1/23/2014	0	6	0	0	0	0	0	0	0	0	6	0	0	0
1/31/2014	4	8	6	<2	3	5	7.5	3	4	3.5	7.5	10	8.5	2
2/4/2014	3.5	8	5	<2	4	4	7.5	4	4	4	7	9.5	5	5
2/12/2014	4	8	8	<2	5	6	11	4	5	6	8	10	7	7
2/17/2014	4	6	7	2	6	5	9	5	5	6	8	12	2	4
2/26/2014	8	9	7	3	8	8	13.5	3.5	4	6	9	11	8	10
3/3/2014	10	10	8	2	10	<2	16.5	5	5	9	8	12	9	9
3/18/2014	4	12	7	4	7	<2	21	4	4	12	14	13	<2	7
5/27/2014	1	18	5	3	8	0	17	2	3	8	8	12	0	6
7/9/2014	1	13	4	5	6	0	16	2	2	2	6	12	0	5
11/26/2014	3	7	6	0	5	1	-	3		8	4	4	3	:
2/13/2015	3	7	5	0	4	1	0	2	0	7	5	4	5	0
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

Notes: AS

= SCFM

Air Sparge Standard Cubic Feet per Minute Not Measured =

= OL = Offline

...

APPENDIX B Laboratory Analytical Reports

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

December 06, 2018

Elisabeth Silver ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: Z076000073 P66-Westlake Pace Project No.: 10457067

Dear Elisabeth Silver:

Enclosed are the analytical results for sample(s) received by the laboratory on November 30, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (TROSS

Jennifer Gross jennifer.gross@pacelabs.com (206)957-2426 Project Manager

Enclosures

cc: Laurence Brown, ATC Group Services LLC

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: Z076000073 P66-Westlake Pace Project No.: 10457067

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

SAMPLE SUMMARY

Project: Z076000073 P66-Westlake

Pace Project No.: 10457067

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10457067001	EFF-1	Air	11/28/18 15:45	11/30/18 09:55
10457067002	EFF-2	Air	11/28/18 15:55	11/30/18 09:55
10457067003	EFF-3	Air	11/28/18 16:10	11/30/18 09:55

SAMPLE ANALYTE COUNT

Project:Z076000073 P66-WestlakePace Project No.:10457067

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10457067001	EFF-1	TO-15	CH1	6	PASI-M
10457067002	EFF-2	TO-15	CH1	6	PASI-M
10457067003	EFF-3	TO-15	CH1	6	PASI-M

Project: Z076000073 P66-Westlake

Pace Project No.: 10457067

Sample: EFF-1	Lab ID:	10457067001	Collected	d: 11/28/18	3 15:45	Received: 11	/30/18 09:55 Ma	atrix: Air	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Benzene	0.99	ug/m3	0.57	0.27	1.74		12/04/18 00:06	71-43-2	A4
Ethylbenzene	1.1J	ug/m3	1.5	0.53	1.74		12/04/18 00:06	100-41-4	
THC as Gas	607	ug/m3	181	90.3	1.74		12/04/18 00:06		N2
Toluene	17.0	ug/m3	1.3	0.61	1.74		12/04/18 00:06	108-88-3	
m&p-Xylene	4.8	ug/m3	3.1	1.2	1.74		12/04/18 00:06	179601-23-1	
o-Xylene	1.7	ug/m3	1.5	0.60	1.74		12/04/18 00:06	95-47-6	

Project: Z076000073 P66-Westlake

Pace Project No.: 10457067

Sample: EFF-2	Lab ID:	10457067002	Collecte	d: 11/28/18	3 15:55	Received: 11	/30/18 09:55 Ma	atrix: Air	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Benzene	4.0	ug/m3	0.57	0.27	1.74		12/04/18 00:37	71-43-2	A4
Ethylbenzene	31.2	ug/m3	1.5	0.53	1.74		12/04/18 00:37	100-41-4	
THC as Gas	3180	ug/m3	181	90.3	1.74		12/04/18 00:37		N2
Toluene	41.2	ug/m3	1.3	0.61	1.74		12/04/18 00:37	108-88-3	
m&p-Xylene	125	ug/m3	3.1	1.2	1.74		12/04/18 00:37	179601-23-1	
o-Xylene	54.0	ug/m3	1.5	0.60	1.74		12/04/18 00:37	95-47-6	

Project: Z076000073 P66-Westlake

Pace Project No.: 10457067

Sample: EFF-3	Lab ID:	10457067003	Collecte	d: 11/28/18	8 16:10	Received: 11	/30/18 09:55 Ma	atrix: Air	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
Benzene	4.8	ug/m3	0.57	0.27	1.74		12/04/18 01:06	71-43-2	A4
Ethylbenzene	32.0	ug/m3	1.5	0.53	1.74		12/04/18 01:06	100-41-4	
THC as Gas	2570	ug/m3	181	90.3	1.74		12/04/18 01:06		N2
Toluene	47.5	ug/m3	1.3	0.61	1.74		12/04/18 01:06	108-88-3	
m&p-Xylene	125	ug/m3	3.1	1.2	1.74		12/04/18 01:06	179601-23-1	
o-Xylene	54.8	ug/m3	1.5	0.60	1.74		12/04/18 01:06	95-47-6	

QUALITY CONTROL DATA

Pace Project No.: 10457067

QC Batch:	578556	Analysis Metho	od: TO-15
QC Batch Method:	TO-15	Analysis Descri	iption: TO15 MSV AIR Low Level
Associated Lab Sam	ples: 10457067001, 10457067002, 10	0457067003	
METHOD BLANK:	3138171	Matrix: A	- ir
Associated Lab Sam	ples: 10457067001, 10457067002, 10	0457067003	
		Blank	Reporting

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Benzene	ug/m3	<0.076	0.16	0.076	12/03/18 15:26	
Ethylbenzene	ug/m3	<0.15	0.44	0.15	12/03/18 15:26	
m&p-Xylene	ug/m3	<0.35	0.88	0.35	12/03/18 15:26	
o-Xylene	ug/m3	<0.17	0.44	0.17	12/03/18 15:26	
THC as Gas	ug/m3	<26.0	52.0	26.0	12/03/18 15:26	N2
Toluene	ug/m3	<0.18	0.38	0.18	12/03/18 15:26	

LABORATORY CONTROL SAMPLE: 3138172

Deveryor	Linita	Spike	LCS	LCS	% Rec	Qualifiana
Parameter	Units	Conc.	Result	% Rec	Limits	Quaimers
Benzene	ug/m3	34.4	31.7	92	70-134	
Ethylbenzene	ug/m3	45.5	44.3	97	70-133	
m&p-Xylene	ug/m3	45.9	45.4	99	70-133	
o-Xylene	ug/m3	44.1	43.8	99	70-132	
THC as Gas	ug/m3	4440	4570	103	59-150 N	12
Toluene	ug/m3	39.4	38.5	98	70-130	

SAMPLE DUPLICATE: 3138950

		10457168002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	 ug/m3	0.45J	0.39J		25	5
Ethylbenzene	ug/m3	<0.45	<0.45		25	5
m&p-Xylene	ug/m3	<1.0	<1.0		25	5
o-Xylene	ug/m3	<0.51	<0.51		25	5
THC as Gas	ug/m3	<77.3	95.4J		25	5 N2
Toluene	ug/m3	0.81J	0.75J		25	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Z076000073 P66-Westlake

Pace Project No.: 10457067

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

SAMPLE QUALIFIERS

Sample: 10457067001

[1] Sample was collected in a sampling bag. Sampling bags are not certified for volatile organic compound concentrations prior to sample collection.

Sample: 10457067002

[1] Sample was collected in a sampling bag. Sampling bags are not certified for volatile organic compound concentrations prior to sample collection.

Sample: 10457067003

[1] Sample was collected in a sampling bag. Sampling bags are not certified for volatile organic compound concentrations prior to sample collection.

ANALYTE QUALIFIERS

- A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Z076000073 P66-Westlake Pace Project No.: 10457067

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10457067001	EFF-1	TO-15	578556		
10457067002	EFF-2	TO-15	578556		
10457067003	EFF-3	TO-15	578556		

10457067			VCY	SOUND WATER T DRINKING WATER	RA CTHER					(N/J)	Residual Chlorine		1302	(23)						SAMPLE CONDITIONS	1-4-10-10	x x -		act Du C	ni qr aived (۲/۷) ان (۲/۷) ان (۲/۷) ان (۲/۷) ان (۲/۷)	Temp Samp ((Cu Seald (Cu	F-ALL-C-010-rev.00, 09Nov2017
umant WO# :		10457067	REGULATORY AGEI	L NPDES I GF	LUST L RC	Site Location	STATE:	nalysis Filtered (Y/N												DATE	V-24-6 159	56 32-92-11					
/ Analytical Request Doo MENT. All relevant fields must be completed	bon:	ount tauable	man ONices	347 Ceaniero Are, NN	withe , with 98107		32376	Requested A	reservatives	(51- (51-01) 1	HCI Nacot Nacot Methanol Other Other Other Other Other Methanol Other Ot									ACCEPTED BY / AFFILIATION	tulle . Me	ver allone			ne Form	DATE Signed	t paid within 30 days.
DF-CUSTODY Sustody is a LEGAL DOCL	Section C Invoice Informa	Attention:	Company Nam	· Con	Pace Quote Reference:	Pace Project Manager:	Pace Profile #:		. ц.	S	R SAMPLE TEMP AT C A OF CONTAINER H ₂ SO4	1 1	1 1	1 1 01						DATE TIME	1/25/12 13.50	DEI STRO		GNATURE	SAMPLER: Zavre	AMPLER:	% per month for any involces no
CHAIN-6 The Chain-of-C		r Silver	Found	own @ atcas		Restalle	000073	•	COLLECTED	MPOSITE COMPOSITE TART END/GRAB	E DATE	21 21/24/11		V /6						Y / AFFILIATION	Sown / ATC 1			SAMPLER NAME AND SI	PRINT Name of S	SIGNATURE of S	s and agreeing to late charges of 1.5
	Section B Required Project Information:	Report To: 62,5abeth	COPY IO: LAWERCE	lavrence - br	Purchase Urder No.:	Project Name: 466 -			odes codes codes	작 중 = GEVB C=CC see Alliq coqes	유분유요) adoo Xiram Matrix Code (6) ачгеттее (6) Замецеттее	F-1 AR G	F-242 G	-F-3 ARG							Lavrence	he al		-	GINAL		ig Pace's NET 30 day payment term
Pace Analytical "	Section A Required Client Information:	company. ATC Groups Concises	Est garing the All	Jeattle WH 78/07	elisabeth silver parage in	206-381-1449 Tax 0	State por analysis hold limits	<i>•</i> • •	Section D Matrix C Required Client Information MATRIX /	Drinking Wate Water Waster Water Product Soli/Solid	Sample ID Wipe (A-Z, 0-9/ -) Air Sample IDs MUST BE UNIQUE Tissue Other	1 4-DSCH6-1 EF	2 V-DSCHG-D El	3 V-DSCH6-381	5 4	0	8	6	11	12 ADDITIONAL COMMENTS	Extract to SUMAS	Immediately) F	Page	11 of	f 12	"Important Note: By signing this form you are accepti

- and 1972				Document Name:			Document I	Revised: 11Oct2	018	
, Ba	/ ca Analutical	q+	Air Sam	Document No	Receipt		Pi	age 1 of 1		
[uc Analytical			F-MN-A-106-rev.16			Pace Minne	sota Quality Of	fice	
Air Sample Condition Upon Receipt	Client Name:			Proje	ct #:	WO#	:104	570	67	
Courier:	Fed Ex Commercial		Speed Other	lee Client		PM: JMG CLIENT:	P66_Car	Due Date WA	: 12/07/	18
Tracking Number:	4486	778 4	6429							
Custody Seal on Cooler,	/Box Present?	Yes	No	Seals Intact?	Yes		Optional: Pr	oj. Due Date:	Proj. Name:	
Packing Material: 🔲 🗄	lubble Wrap	Bubble B	ags 🗌 Foa	im 🔲 None	Tin Can	Other:		Temp	Blank rec:	Yes No
Temp. (TO17 and TO13 san	nples only) (°C):	\times	Corrected Ter	np (°C):	_ Thermo	m. Used:			G87A9170	600254
Temp should be above fre	ezing to 6°C (Correction Fac	tor:	<	Date & I	nitials of Pe	son Examinin	g Contents:	<u>1-30-6</u>	8 Aq_
Type of ice Received 🗌	Blue 🗌 Wet	None							-	1
p	· · · · ·						Con	nments:		1
Chain of Custody Present	?		- Tes	No	1.	· .		· · · ·		
Chain of Custody Filled O	ut?	·····	Tes	No	2.					
Chain of Custody Relingu	ished?			No	3.					
Sampler Name and/or Sig	nature on COC	?	Yes		4.					
Samples Arrived within H	old Time?		Yes	No	5.		<u></u>			
Short Hold Time Analysis	(<72 hr)?		Yes	No	6.	<u> </u>		••••••••••••••••••••••••••••••••••••••		
Rush Turn Around Time I	Requested?		☐ Yes	No	7.					
Sufficient Volume?				ΠNο	8.					
Correct Containers Used?	I		Tes	ΠNο	9.					
-Pace Containers Used	?		Pres	No						
Containers Intact?			Tes	No	10.					
Media: Air Can	Airbag	Filter	TDT	Passive	11.	Individua	ly Certified Ca	ans Y N	(list which sa	mples)
Is sufficient information a to the COC?	vailable to reco	oncile samples	s Tres		12.					
Samulas Bassivadu`				··		•••••••••••••••••••••••••••••••••••••••	Pressure Ga	uge # 10AIR	35	
Samples Received.	i	rtorc		······			Cor			
	Callis	Flow	Initial	Final			Car	Flow	Initial	Final
Sample Number	Can ID	Controller	Pressure	Pressure	Sample N	lumber	Can ID	Controller	Pressure	Pressure
		<u>.</u>								
				<u> </u>						
			<u> </u>							
	I		I	I I						<u> </u>
CLIENT NOTIFICATION/	RESOLUTION						Field Data	a Required?	Yes N	lo
Person Cor	tacted:				Date/Tir	ne:				
Comments/Reso	olution:									
·····			· · ·				<u> </u>			· · · · · · · · · · · · · · · · · · ·
Project Manager Review	v:		ENNI (-TROSS	· ····		Date:	11/30	/18		
Note: Whenever there is a dis hold, incorrect preservative. o	crepancy affecti ut of temp. inco	ng North 🛛 🗠 rrect containe	rs)	samples, a copy o	t this form wi	ill be sent to '	the North Card	oiina DEHNR Ce	ertification Offi	ce (i.e out of
	.,									
									_	

į

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

December 07, 2018

Elisabeth Silver ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: Z076000073 P66-Westlake Pace Project No.: 10457136

Dear Elisabeth Silver:

Enclosed are the analytical results for sample(s) received by the laboratory on November 30, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (TROSS

Jennifer Gross jennifer.gross@pacelabs.com (206)957-2426 Project Manager

Enclosures

cc: Laurence Brown, ATC Group Services LLC

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: Z076000073 P66-Westlake Pace Project No.: 10457136

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

SAMPLE SUMMARY

Project: Z076000073 P66-Westlake

Pace Project No.: 10457136

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10457136001	W-DSCHG-1	Water	11/28/18 15:15	11/30/18 09:55
10457136002	W-DSCHG-2	Water	11/28/18 15:20	11/30/18 09:55
10457136003	W-DSCHG-3	Water	11/28/18 15:25	11/30/18 09:55

SAMPLE ANALYTE COUNT

Project:Z076000073 P66-WestlakePace Project No.:10457136

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10457136001	W-DSCHG-1	EPA 8260B	GD1	7	PASI-M
		EPA 1664A TPH	AR3	1	PASI-M

Project: Z076000073 P66-Westlake

Pace Project No.: 10457136

Sample: W-DSCHG-1	Lab ID:	10457136001	Collecte	d: 11/28/18	8 15:15	Received: 11	/30/18 09:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV UST	Analytical	Method: EPA 8	260B						
Benzene	<0.10	ug/L	1.0	0.10	1		12/02/18 21:51	71-43-2	
Ethylbenzene	<0.14	ug/L	1.0	0.14	1		12/02/18 21:51	100-41-4	
Toluene	<0.083	ug/L	1.0	0.083	1		12/02/18 21:51	108-88-3	
Xylene (Total)	<0.31	ug/L	3.0	0.31	1		12/02/18 21:51	1330-20-7	
Surrogates		-							
1,2-Dichloroethane-d4 (S)	101	%.	75-125		1		12/02/18 21:51	17060-07-0	
Toluene-d8 (S)	100	%.	75-125		1		12/02/18 21:51	2037-26-5	
4-Bromofluorobenzene (S)	102	%.	75-125		1		12/02/18 21:51	460-00-4	
1664A SGT-HEM, TPH	Analytical	Method: EPA 1	664A TPH						
Total Petroleum Hydrocarbons	2.1J	mg/L	5.1	1.3	1		12/05/18 13:18		В

QUALITY CONTROL DATA

Project: Z076000073 P66-Westlake

QC Batch: 578392		Analysis Method:		A 8260B		
QC Batch Method: EPA 8260B		Analysis Des	cription: 826	OB MSV UST-V	VATER	
Associated Lab Samples: 1045713	6001					
METHOD BLANK: 3137537		Matrix:	Water			
Associated Lab Samples: 1045713	6001					
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Benzene	ug/L	<0.10	1.0	0.10	12/02/18 18:44	
Ethylbenzene	ug/L	<0.14	1.0	0.14	12/02/18 18:44	
Toluene	ug/L	< 0.083	1.0	0.083	12/02/18 18:44	
Xylene (Total)	ug/L	<0.31	3.0	0.31	12/02/18 18:44	
1,2-Dichloroethane-d4 (S)	%.	101	75-125		12/02/18 18:44	
4-Bromofluorobenzene (S)	%.	101	75-125		12/02/18 18:44	
Toluene-d8 (S)	%.	98	75-125		12/02/18 18:44	

LABORATORY CONTROL SAMPLE:	3137538
----------------------------	---------

			Spike	LCS	LCS	% Rec		
I	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Benzene		ug/L	20	18.1	91	75-126		
Ethylbenzene		ug/L	20	18.4	92	75-125		
Toluene		ug/L	20	18.3	92	74-125		
Xylene (Total)		ug/L	60	56.9	95	75-125		
1,2-Dichloroet	hane-d4 (S)	%.			101	75-125		
4-Bromofluoro	benzene (S)	%.			100	75-125		
Toluene-d8 (S))	%.			101	75-125		

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 313753	39		3137540							
			MS	MSD								
		10456748002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	19.6	19.7	98	98	62-140	0	30	
Ethylbenzene	ug/L	ND	20	20	20.2	20.1	101	101	75-131	0	30	
Toluene	ug/L	ND	20	20	19.7	19.9	98	100	68-132	1	30	
Xylene (Total)	ug/L	ND	60	60	60.6	61.7	101	103	69-135	2	30	
1,2-Dichloroethane-d4 (S)	%.						101	99	75-125			
4-Bromofluorobenzene (S)	%.						101	99	75-125			
Toluene-d8 (S)	%.						101	100	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:	Z076000073 P66-	Westlake														
Pace Project No.:	10457136															
QC Batch:	579049	Analysis Metho	od: E	EPA 1664A TPH												
QC Batch Method:	EPA 1664A TPH		Analysis Desc	ription: 1	664A SGT-HEN	I, TPH										
Associated Lab San	nples: 10457136	001														
METHOD BLANK:	3140689		Matrix: V	Vater												
Associated Lab San	nples: 10457136	001														
Paran	neter	Units	Blank Result	Reporting Limit	MDI	Analyzed	Qualifie	rs								
Total Petroleum Hydrocarbons		mg/L	1.4J		0 1.	3 12/05/18 13	:18									
LABORATORY COM	NTROL SAMPLE:	3140690														
Parameter		Units	Spike L Conc. Re	CS esult	LCS % Rec	% Rec Limits	Qualifiers									
Total Petroleum Hyc	drocarbons	mg/L	20	16.4	82	64-132										
MATRIX SPIKE SAM	MPLE:	3140691														
-			40180210001	Spike	MS	MS	% Rec	0 11								
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers								
Total Petroleum Hydrocarbons		mg/L	2.6J	J 19.2	11.5	46	64-132	M1								
SAMPLE DUPLICA	TE: 3140692															
Paran	neter	Units	40180210004 Result	Dup Result	RPD	Max RPD	Qualifiers									
Total Petroleum Hydrocarbons		mg/L	2.4J	3.0.	J	3	4	_								

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Z076000073 P66-Westlake

Pace Project No.: 10457136

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: 579049

[BE] Batch extracted by solid phase extraction (SPE).

ANALYTE QUALIFIERS

B Analyte was detected in the associated method blank.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

METHOD CROSS REFERENCE TABLE

 Project:
 Z076000073 P66-Westlake

 Pace Project No.:
 10457136

 Parameter
 Matrix
 Analytical Method
 Preparation Method

 8260B MSV UST
 Water
 SW-846 8260B/5030B
 N/A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Z076000073 P66-Westlake
Pace Project No.:	10457136

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10457136001	W-DSCHG-1	EPA 8260B	578392		
10457136001	W-DSCHG-1	EPA 1664A TPH	579049		

CHAIN-OF-CUSTODY / Analytical Request Document

1 march 1	Docu Sample Conditi	ment Name:	ot Form	Document Revised: 310ct2018 Page 1 of 2									
Face Analytical*	Doc	ument No.:			Issuing Authority:								
	F-MN	-L-213-rev.24		Pace N	linnesota Quality Of	fice							
Sample Condition Upon Receipt Att. 1 mon. P. Second	(8	Project	*: WC)#:1(045713	6							
Courier: XEFed Ex UPS	USPS	Client	CLIE	JMG INT: P66_	Due Date: CarWA	12/07/18							
		 als Intact?		Optiona	II: Proj. Due Date:	Proj. Name:							
			ينين ديني المحمد من ال	the set	Temn Blank?								
			<u>~rd.b*a.~04</u>	121 Atrition									
Used: G87A9170600254	Туре о	fice: 📈 Wei	Blue	None	DryMeli	ted							
Cooler Temp Read (°C): Cooler Temp C Femp should be above freezing to 6°C Correction Fa USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the Unite NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? If Yes to either question, fill out a R	orrected (°C): ctor:d d States: AL, AR, legulated Soil C	CA, FL, GA, ID, L Yes Checklist (F-MN	Bi and Initials A. MS, Di No in Q-338) and in	iological Tissu of Person Exa id samples orig cluding Hawaii nclude with S	IE Frozen? Yes Imining Contents: Inate from a foreign sc and Puerto Rico)? CUR/COC paperwor	No XN/A							
					COMMENTS:								
Chain of Custody Present?	Ves	No	1.	1.11		·							
Chain of Custody Filled Out?	Yres	No	2.										
Chain of Custody Relinquished?	X Yes	No	3.	-									
Sampler Name and/or Signature on COC?	∠ ⊈Yes		4.	· •									
Samples Arrived within Hold Time?	X Les	No	5.		•••••								
Short Hold Time Analysis (<72 hr)?	Yes	K No	6.			······································							
Rush Turn Around Time Requested?	Yes		7.			<u>.</u>							
Sufficient Volume?	Yes	No	8.										
Correct Containers Used?	Yes	□No	9.										
-Pace Containers Used?	Yes	No				<u> </u>							
Containers Intact?	X Yes	No	10.			<u></u>							
Filtered Volume Received for Dissolved Tests?	Yes		11. Note	if sediment is	visible in the dissolve	d container							
Is sufficient information available to reconcile the samples	to 🏹 Yes	No	12.			. · ·							
All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation?	□Yes		13. Sample #	∏HNO₃	∏H₂SO₄ ∏Na	OH Positive for Re Chlorine? Y							
(HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: (OA) Coliform, TOC/DOC Oi and Grease)	Yes		Initial when	ł	Lot # of addec	1							
DRO/8015 (water) and Dioxin/PFAS	₩ Yes	<u>No</u> N/A	completed:		preservative:_								
Headspace in VOA Vials (>6mm)?	Yes		14.		<u> </u>								
Trip Blank Present?	Yes		15.										
Trip Blank Custody Seals Present?	Yes	∐No ⊡∢ N/A											
Pace Trip Blank Lot # (if purchased):iV A													
CLIENT NOTIFICATION/RESOLUTION			Date/Time	Fi ≘: 11/2	eiα Data Required ?								
Commente/Recolution: II 1 1		0.0.2	-	<u></u>	<u> </u>								
Comments/Kesolution: Hold_samples_(102 and -	003, se	e attac	hed re	vised COC.	<u></u>							
Project Manager Review: Note: Whenever there is a discrepancy affecting Norl hold, incorrect preservative, out of temp, incorrect containers	INI Gross ; ar	nples, a copy of t	nis form will be	Date: sent to the No	11/30/18 rth Carolina DEHNR Ce	rtification Office (i.e. o							
				Labeled by	· 0-1								

Face Analytical[®]

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

REVISED COC 11/30/18 Per Larry Brown; JMG

Section A Section B Required Client Information:						Section C											Page: / of /										
Company:	Report To		ca d	holl	(. Lui	c" sm			Atten	tion:	rmation	: 6-	12	6	11	1						2297736					
Address:	Address:								Company Name:								F										
Senttle 1184 98112	there	- <u></u>	p 1	5000	n Co	teci	C (1)	7 -	Addre	ess:	547		45		e v e t nite	- 6	NUU									ATER	
Email To: h. th. silves watcac.c.	Purchase	Purchase Order No.:					Pace (Refere	Quote ence:		~/,	He	100	27	1	6101	4	ΓU	ST		RCRA		Ē	OTHE	R			
Phone: 266-781-1449 Fax: /	Project Na	ame:	76	- Un	Alak	ć			Pace Manag	Project ger:			87		96 <u>-</u> 2		s.		Site L	ocation	25						
Requested Due Date/TAT:	Project Nu	umber	er: 207600023 Pace Profile #: 32376							STATE:	l	14															
					×											1	Request	ed A	nalys	is Filte	red ()	(/N)					-
Section D Matrix C Required Client Information MATRIX /	Codes	to left)	(AMO	-	COLL	ECTED					Pres	serva	atives		N/N	L							~ 20	En Ly			
Drinking Wat Water Waste Waste Product Soil/Solid	er DW WT WW P SL	see valid codes	=GRAB C=C	COMPO	OSITE RT	COMPOS END/GF	SITE RAB	OLLECTION	0						-	6360	-00-						(N/A)			, J	
SAMPLE ID Oil Wipe (A-Z, 0-9 /,-) Air Sample IDs MUST BE UNIQUE Tissue Other	OL WP AR TS OT	MATRIX CODE (s	SAMPLE TYPE (G=	DATE	TIME	DATE	TIME	SAMPLE TEMP AT C	# OF CONTAINERS	Unpreserved	HNO3	HCI	NaUH Na ₂ S ₂ O ₃	Methanol	Analysis Test	RT5 X 311	Numpelad F						Residual Chlorine	Pac	e Projec	t No./	Lab I.D.
1 11- DSCHG-1	ж.	WT	G	£		11/28/10	1515		8	\square		20				X	X		\top								
2 111-DSCHG-2		UT	G	5 I			1520		2			2					X				4			HOL	D	×.	0
3 W-DSCHG-3		UT	6			V	1525		2			2					X							HOL	D	3	ан 14
4		⊢	-					-			++	-						_	_					- 1			
5		-	-							\vdash	+	-	-			⊢	$\left \right $		+-	$\left \cdot \right $		+					
7		1						_		\vdash		+	+		-	⊢	$\left \right $					-			4		*
8										\vdash		-	+		and a	H		+	+								
9																			+		\vdash			a			
10	~						1. 19 6 ALAS									F		+	+-			1.00	1				
11	-						-		5. 6							F											
12						т. 			- ŝ,																-		
ADDITIONAL COMMENTS		REI	LINQU	ISHED BY	/ AFFILIATI	ON	DATE		т	IME		1	AC	CEPTE	DBY	/ AF	FILIATION	N	DATE TIME				SAMPLE CONDITIONS				
	ha		SICC	Br	7.11.07	IATC.	11/28	110	13	SN	1	All	11	h			PAG	2	11-	24-14	13	50		1			
t ing					1		197			- Q		1	0				7					¢.	1				. i
							34. ¹ .			a.													1				
							ų.				1															_	
	5				SAMPLE	R NAME AI	ND SIGNA	TUR	E				R Weine										ç	u o) oler		itact
	5					PRINT Nam	e of SAMP	ER:	L	1,017	- 1100	2		17:11	1.57	, .							° ni qr	eived (Y/N	istody id Coc Y/N)		rles In Y/N)
SIGNATURE of					E of SAMP	LER:	R: DATE Signed						11/29/18				Terr	Rece	Seale	Page	13 of 13						
*Important Note: By signing this form you are accep	ting Pace's N	ET 30	day pay	yment terms a	and agreeing	to late charges	s of 1.5% per	month	n for any	invoic	es not pa	aid wit	thin 30	days.	90 - 190 191		· .		1	1/			F-ALL	-C-010-re	v.00, 09No	ov2017	