

April 6, 2017

Ms. Kaia Petersen
Department of Ecology
Hazardous Waste and Toxics Reduction
Southwest Regional Office
PO Box 47775
Olympia, WA 98504-7775

Re: Burlington Environmental, LLC; a wholly-owned subsidiary of PSC Environmental

Services, LLC, a wholly-owned subsidiary of Stericycle Environmental Solutions, Inc.

Tacoma Facility, Dangerous Waste Permit No. WAD 020 257 945

Dear Ms. Petersen:

Enclosed, please find two copies of the Annual Progress Report for the period of January 1, 2016 through December 31, 2016 which includes the groundwater sampling conducted in 2016, and water level measurements conducted in June and December 2016, as required by Section E of the Stericycle Tacoma Facility dangerous waste permit No. WAD 020 257 945.

If you have questions or concerns related to this report, please contact me at (425) 227-6149 or at William.Beck@STERICYCLE.com.

Respectfully,

William Beck Project Manager

Corrective Action Group

Enclosures: 2016 Progress Report, Stericycle Facility, Tacoma, Washington

Cc: Tacoma Main Public Library – Repository

Citizens for a Healthy Bay - Repository

Steve Teel, Ecology

Mr. Russell Post, Tacoma Public Utilities

Mr. Bill Sullivan, Puyallup Tribe of Indians

Mr. Desiree Pooley, Tacoma Public Works

Mr. Jerry Bartlett, Emerald Recycling

Mr. Doug Kunkle, EPI

Mr. Scott Hooten, Port of Tacoma

Ms. Natasya Gray, DOF

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possibility of fine and imprisonment for knowing violations.

William Beck

Stericycle CA Project Manager

This report was prepared by Stericycle Environmental Solutions, Inc. under the supervision of the Geologist whose seal and signature appears below.

The findings, recommendations, specifications, or professional opinions are presented in accordance with generally accepted professional geologic practice.

John A. Maloy, L Hg.

Licensed Hydrogeologist #1367 Expiration Date: June 11, 2017

ANNUAL PROGRESS REPORT

2016

STERICYCLE ENVIRONMENTAL SOLUTIONS, INC.

TACOMA FACILITY

TACOMA, WASHINGTON

April 6, 2017

STERICYCLE ENVIRONMENTAL
SOLUTIONS, INC.
Corrective Action Group
18000 72nd Avenue South, Suite 217
Kent, WA 98032
(425) 227-0311

TABLE OF CONTENTS

2	1.1 1.2 1.3 SUMM 2.1	RIPTION OF WORK COMPLETED	
TABLES	<u> </u>		
Table 2 Table 2 Table 3 Table 4 Table 6	2 3 4 5	Groundwater Elevation and LNAPL Thickness Volatile Organic Compounds in Groundwater 1,4-Dioxane in Groundwater Total Petroleum Hydrocarbons in Groundwater Total Inorganics in Groundwater Select COC MDLs	
FIGURE	<u>s</u>		
Figure Figure Figure Figure Figure Figure Figure	2 3 4 5 6	Site Map Groundwater Elevation Contour Map - Shallow Aquifer; June 6, 2016 LNAPL Thickness Map; June 6, 2016 Groundwater Elevation Contour Map - Deep Aquifer; June 6, 2016 Groundwater Elevation Contour Map - Shallow Aquifer; December 1, 2016 LNAPL Thickness Map; December 1, 2016 Groundwater Elevation Contour Map - Deep Aquifer; December 1, 2016	

ATTACHMENTS

Attachment A Groundwater Quality Worksheet - Stericycle Tacoma Facility; June 2016 Attachment B Laboratory Analytical Report

1

Attachment C Data Validation Report

1 DESCRIPTION OF WORK COMPLETED

Stericycle Environmental Solutions, Inc. prepared this Annual Progress Report to document the corrective action activities conducted in 2016 and to present the results of the sampling activities conducted in the second quarter 2016 for the Burlington Environmental LLC. (Burlington) Tacoma Facility located at 1701 Alexander Avenue in the City of Tacoma, Washington (the "Facility"). Burlington is a wholly owned subsidiary of PSC Environmental Services, LLC. (PSC), a wholly owned subsidiary of Stericycle Environmental Solutions, Inc., hereafter referred to in this report as Stericycle. This report was prepared in accordance with the requirements of Section E of the Facility's Dangerous Waste Permit (Permit No. WAD 020 257 945) (the "Permit"), reissued in March 2012 for the period of March 22, 2012 through March 22, 2022.

Stericycle submitted a revised Long Term Groundwater Monitoring Plan (GWMP) to Ecology during the fourth quarter 2011. The GWMP included a reduction of the sampling program to an annual sampling in June of each subsequent year. The draft groundwater monitoring plan was submitted to Ecology in October 2011 for review and was included as Section I-5 in the RCRA Part B Permit Application in December 2011, which is a part of the revised permit effective through March 22, 2022.

The GWMP requires groundwater sampling during the 2nd Quarter of each year, but also requires that groundwater level measurements are also taken in the 4th Quarter (December). Well inspections are required for every quarter.

This report, therefore, relates information on the 2nd Quarter 2016 Groundwater Monitoring event and the 4th Quarter 2016 groundwater level measurements.

1.1 Construction Activities

Extensive construction-related activities occurred at the Tacoma facility in 2016 under permit approval from Ecology. Included in that process was the construction of a soil vapor barrier and soil gas venting system under the planned Lab Pack Building, to be completed in 2017.

1.2 Second / Fourth Quarter 2016 Liquid-Level Measurements and LNAPL Recovery

Stericycle conducted groundwater monitoring at the Tacoma facility during the second and fourth quarters on June 6, 2016 and again on December 1, 2016. Field activities included gauging the depth to groundwater, and where present, the depth to LNAPL. Sampling was conducted at the following monitoring points:

- Monitoring points that are part of the routine quarterly groundwater sampling program:
 - Facility groundwater-monitoring wells: CTMW-1, CTMW-5 through CTMW-10, CTMW-11R, CTMW-12, CTMW-14, CTMW-15, CTMW-17, CTMW-17D, CTMW-18, CTMW-20, CTMW-21, CTMW-23. CTMW-24, CTMW-24D, and CTMW-25D.
 - Potter Properties well MW-1.

- Stericycle piezometers: PZ-1, and PZ-4 through PZ-10.
- Shallow-aquifer monitoring points associated with the Interim Measure:
 - 1999 LNAPL-interceptor trench piezometers: TP-1 through TP-5.
 - 2000 LNAPL-interceptor trench piezometers: TP-8 through TP-10.
- Monitoring points added to the quarterly groundwater gauging program at the request of Ecology:
 - Three shallow-aquifer monitoring wells (SB-1A, SB-2A and SB-3A) on the Port of Tacoma property that abuts the Facility on the west.
 - Three monitoring well nests (CCW-2, CCW-3 and CCW-5) on the CleanCare property that abuts the Facility on the east.
- In addition, Stericycle obtained groundwater elevation data from the adjacent property owner for the following wells:
 - Monitoring wells (EMW-1 through EMW-4) located on the Emerald Services, Inc. (Emerald) property located southeast of the Facility.

1.3 Second Quarter 2016 Groundwater Sampling

As part of the second quarter 2016 groundwater monitoring event, Stericycle collected groundwater samples from the groundwater monitoring wells in the Stericycle monitoring network from June 8 through June 9, 2016. Prior to sampling, Stericycle personnel purged each well. During purging, Stericycle personnel monitored the following groundwater stabilization criteria: purging flow rate; volume purged; water temperature; dissolved oxygen; turbidity; specific conductivity; redox potential; pH; pump speed; and total volume purged before and at stabilization. Attachment A provides a summary of these and other measurements taken in the field during sampling. When the field purging parameter measurements indicated that the groundwater quality in the well had stabilized, Stericycle collected groundwater samples into laboratory-provided sample containers, and placed the sample containers in a cooler with ice.

The groundwater samples from select wells were submitted to an independent laboratory [ALS Environmental (ALS)] for analysis. The sampling program includes analysis of: volatile organic compounds (VOCs); one semi-volatile organic compound (SVOC), 1,4-dioxane; gasoline-range organics (GRO) as total petroleum hydrocarbons (TPH); diesel-range organics (DRO) and lube oil-range organics (LRO); total metals from unfiltered samples and, when necessary, dissolved from filtered samples. Groundwater samples are not collected from wells CTMW-1, CTMW-6, CTMW-10 and MW-1 because of the historic presence of LNAPL.

2 SUMMARY OF FINDINGS

2.1 Second Quarter 2016

2.1.1 Interim Measure

The results of the Interim Measure activities are summarized below:

Upon completion of the water level measurement activities, Stericycle personnel attempted to recover light non-aqueous phase liquids (LNAPL) from all wells with measurable LNAPL using a peristaltic pump and disposable tubing. The following documents the LNAPL recovery effort conducted during the second quarter field work on June 6, 2016:

CTMW-1: Purged ~100 ml of product
 CTMW-6: Purged ~100 ml of product

CTMW-10: Trace LNAPL Present; no purge recovery
 PZ-1: Trace LNAPL Present; no purge recovery

PZ-6: Purged ~80 ml of product; too viscous for WL readings

• MW-1: Trace LNAPL Present; no purge recovery

The gauging data associated with the Interim Measure are presented in Table 1.

The following documents the LNAPL recovery effort conducted during the fourth quarter field work on December 1, 2016:

CTMW-1: Trace LNAPL Present; no purge recovery

• CTMW-6: Purged ~70 ml of product; too viscous for WL readings

• CTMW-10: Trace LNAPL Present; no purge recovery

PZ-1: Purged ~10 ml of product; too viscous for WL readings
 PZ-6: Purged ~40 ml of product; too viscous for WL readings

MW-1: Trace LNAPL Present; no purge recovery

The gauging data associated with the Interim Measure are presented in Table 1.

2.1.2 Hydrogeologic Results

On June 6 and December 1, 2016, Stericycle conducted groundwater monitoring activities that included gauging the depth to groundwater from the wells located on the Facility and in select wells on the former CleanCare facility. The depth to groundwater, LNAPL thickness, and the calculated groundwater elevations for data are summarized in the Table 1.

The results of the second quarter 2016 gauging activities are summarized below:

Second Quarter 2016

Shallow Aquifer

- The calculated groundwater elevation contours for the shallow-aquifer monitoring points are illustrated on Figure 2. The groundwater contours indicate the presence of one elongated mound in the groundwater elevation surface in the central portion of the Facility.
- LNAPL was detected in all of the wells and piezometers tested, but mostly at trace levels, see Section 2.1.1 for recovery volumes. In order to accurately measure the LNAPL thickness and calculate the potentiometric surface, Stericycle placed small diameter piezometers (1-inch diameter PVC casing) inside the annulus of wells CTMW-1, CTMW-6, CTMW-10, and MW-1. The depth to the potentiometric surface is measured inside the piezometer and the depth to LNAPL is measured outside the piezometer. The thickness of LNAPL in these wells is calculated in accordance with the following formula:

$$LNAPL_{thickness} = \frac{DepthToPS - DepthToLNAPL}{1 - SpecificGravity}$$

The maximum LNAPL-thickness in the shallow aquifer was observed in well CTMW-1 at 0.28 ft. Due to the high viscosity of the LNAPL only 200 ml of LNAPL was recovered from the wells (see Section 2.1.1). The calculated LNAPL thickness in monitoring points and the historic extent of LNAPL are documented in Table 1 and illustrated on Figure 3.

Deep Aquifer

- The deep aquifer beneath the Facility is influenced by tidal fluctuations in Commencement Bay. Of the important tidal constituents for Commencement Bay, the one with the highest frequency is semidiurnal (i.e., with a period of about 12 hours). Because of this, the water level can fluctuate over its entire range of values within about 6 hours. Therefore, to obtain representative estimates of deep-aquifer groundwater elevations, hydraulic gradients, and groundwater flow rates; the deep-aquifer water-level measurements must be completed within a period less than four hours. Stericycle measured the water levels at the deep-aquifer monitoring wells (Stericycle wells CTMW-7, CTMW-9, CTMW-12, CTMW-17D; CTMW-24D, and CTMW-25D and CleanCare wells CCW-2C, CCW-3C and CCW-5C) within a 4-hour period. The depth to groundwater and the calculated groundwater elevations at the deep-aquifer monitoring points for these measurements are summarized in Table 1.
- The deep-aquifer groundwater-elevation contours indicate that the direction of groundwater flow during the monitoring period flows to the southeast of the facility. The calculated groundwater elevation contours for the deep-aquifer monitoring points are illustrated on Figure 4.

Fourth Quarter 2016

Shallow Aquifer

- The calculated groundwater elevation contours for the shallow-aquifer monitoring points are illustrated on Figure 5. The groundwater contours indicate the presence of one elongated mound in the groundwater elevation surface in the central portion of the Facility.
- LNAPL was detected in three of the wells and piezometers tested, except wells CTMW-10 and MW-1, see Section 2.1.1 for recovery volumes. In order to accurately measure the LNAPL thickness and calculate the potentiometric surface, Stericycle placed small diameter piezometers (1-inch diameter PVC casing) inside the annulus of wells CTMW-1, CTMW-6, CTMW-10, and MW-1. The depth to the potentiometric surface is measured inside the piezometer and the depth to LNAPL is measured outside the piezometer. The thickness of LNAPL in these wells is calculated in accordance with the following formula:

$$LNAPL_{thickness} = \frac{DepthToPS - DepthToLNAPL}{1 - SpecificGravity}$$

LNAPL-thickness in the shallow aquifer was not determined. Due to the high viscosity of the LNAPL only 120 ml were recovered from the wells (see Section 2.1.1). The calculated LNAPL thickness in monitoring points and the historic extent of LNAPL are documented in Table 1 and illustrated on Figure 6.

Deep Aquifer

- The deep aquifer beneath the Facility is influenced by tidal fluctuations in Commencement Bay. Of the important tidal constituents for Commencement Bay, the one with the highest frequency is semidiurnal (i.e., with a period of about 12 hours). Because of this, the water level can fluctuate over its entire range of values within about 6 hours. Therefore, to obtain representative estimates of deep-aquifer groundwater elevations, hydraulic gradients, and groundwater flow rates; the deep-aquifer water-level measurements must be completed within a period less than four hours. Stericycle measured the water levels at the deep-aquifer monitoring wells (Stericycle wells CTMW-7, CTMW-9, CTMW-12, CTMW-17D; CTMW-24D, and CTMW-25D and CleanCare wells CCW-2C, CCW-3C and CCW-5C) within a 4-hour period. The depth to groundwater and the calculated groundwater elevations at the deep-aquifer monitoring points for these measurements are summarized in Table 1.
- The deep-aquifer groundwater-elevation contours indicate that the direction of groundwater flow during the monitoring period flows to the south with a mounding in the central portion of the facility. The calculated groundwater elevation contours for the deep-aquifer monitoring points are illustrated on Figure 4.

2.1.3 Groundwater Sampling Results

Stericycle personnel conducted groundwater sampling activities at the Tacoma facility during the second quarter 2016 between June 2 and June 3, 2016. Prior to sampling, Stericycle personnel purged each well. During purging, Stericycle personnel monitored the following groundwater stabilization criteria: purging flow rate; water temperature; dissolved oxygen; turbidity; specific conductivity; redox potential; pH; pump speed; and total volume purged. A table summarizing the field purging parameter measurements is provided in Attachment A. When the field purging parameter measurements indicated that the groundwater quality in the well had stabilized, Stericycle collected groundwater samples for laboratory analysis into laboratory provided sample containers, and placed the sample containers in a cooler with ice.

The groundwater samples collected from select wells were submitted to the project laboratory (ALS) for laboratory analysis. The sampling program includes analysis of: VOCs; one SVOC, 1,4-dioxane; GRO as TPH; DRO and LRO; total metals from unfiltered samples and, where necessary, dissolved metals from filtered samples. CAS analyzed the samples and prepared reports documenting the results. Copies of the analytical reports are provided in Attachment B.

The data validation report was generated for the second quarter 2016 sampling event was submitted to Stericycle on September 27, 2016. The groundwater analytical results were reviewed and validated by Stericycle consultant, QA/QC Solutions, Inc. (QA/QC Solutions). QA/QC Solutions' review indicated the following:

Overall, the data are of good quality; 76 results were qualified as estimated (J), 38 results reported as detected and were restated as undetected (U); and no results were rejected (R).

Copies of the validation reports are provided in Attachment C.

The laboratory analytical results and QA/QC Solutions' validation qualifiers are summarized in Tables 2 through 6. The lowest of the Washington State Model Toxics Control Act (MTCA) Method A and Method B groundwater cleanup levels (minimum CULs) were compared to the groundwater analytical results in the attached tables and are summarized bellow.

- Concentrations of VOCs in excess of their minimum CULs were not detected in the
 groundwater samples collected from the wells completed within the deep-aquifer. The
 following shallow zone wells had VOCs detected in excess of their minimum CULs in
 groundwater samples: Vinyl Chloride in well CTMW-17 at 0.73 ug/L (the CUL is 0.54
 ug/L); and vinyl chloride in well CTMW-17 at 0.29 ug/L (the CUL is 0.029 ug/L). The
 laboratory analytical results for VOCs and minimum CULs are presented in Table 2.
- Concentrations of 1,4-dioxane were detected in excess of the minimum CUL in both shallow and deep aquifer wells, specifically wells CTMW-7, CTMW-9, CTMW-15, CTMW-18, CTMW-24D and CTMW-25D. The laboratory analytical results and minimum CUL for 1,4-dioxane are presented in Table 3. Of note, the 1,4-Dioxane Method B value decreased in 2011 by a factor of approximately 18 (from 7.955 ug/L to 0.438 ug/L), based on revisions to Ecology's CLARC table.

- Gasoline range organics (GRO), diesel range organics (DRO), and lube oil range organic (LRO) were not detected in excess of their minimum CULs. However, the laboratory reporting limit (RL) for lube oil range organics was reported as slightly higher than the MTCA CUL of 500 ug/L – at 520 ug/L. The laboratory analytical results for petroleum hydrocarbons is presented in Table 4.
- Concentrations of arsenic were detected in excess of its minimum CUL in all of the groundwater samples using EPA Method 6020 (see Table 5). In addition, lead was detected excess of its minimum CUL in shallow well CTMW-17. The laboratory analytical results for total metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc) are presented in Table 5.
- In the Draft Remedial Investigation Report submitted in July 2002, Stericycle proposed to collect both filtered and unfiltered samples for metals analysis for one year in order to determine the effect of suspended particulates on reported dissolved and total metals concentrations. However, no consistent trends between concentrations of filtered and unfiltered samples have been observed, suggesting that elevated metals concentrations in groundwater samples from permanent monitoring wells do not appear to be associated with quantification of suspended particulates. As a result, Stericycle no longer routinely analyzes groundwater samples for dissolved metals, unless turbidity stabilizes at a reading of 5 NTU or greater during purging. During the second quarter 2016, turbidity measurements stabilized at a levels less than 5 NTU in all the wells tested on site.

2.1.4 Problems Encountered

Two VOCs, 1,2,3-Trichloropropane and acrylonitrile both had reporting limits and method detection limits above their applicable MTCA cleanup criteria (see Table 6). Also, Arsenic had a reporting limit and method detection limit above it's MTCA cleanup criteria (see Table 6). We also noted damage to the asphalt covering the interceptor trench and began planning patch repairs to the asphalt after conferring with Ecology.

Stericycle abandoned two wells in place in 2016 as a part of the facility redevelopment process based on Ecology approval. The replacement of these wells (PZ-4 and CTMW-23) may occur at a later date.

2.2 Annual 2017 Progress Report

The next progress report Stericycle will submit to Ecology for the Tacoma Facility will be on April 15, 2018, per the Groundwater Monitoring Plan approved by Ecology an in effect as of March 2012. The report will include a summary of all annual activities, including the quarterly well assessments, the Second Quarter 2016 groundwater sampling, and the December 2017 Groundwater Level Measurements.

3 PROJECTED WORK FOR THE NEXT REPORTING PERIOD

The projected corrective action activities for the next reporting period are summarized below:

- Stericycle personnel plan to conduct second quarter 2017 groundwater-monitoring event in June 2017. As part of the second quarter 2017 groundwater-sampling event, Stericycle personnel will measure water levels (and where appropriate, LNAPL thicknesses) at monitoring wells and piezometers in the network. Stericycle will submit the groundwater samples collected during the event to CAS for laboratory analysis. Laboratory data will be reviewed and validated by an independent expert chemist at QA/QC Solutions.
- Stericycle will continue to measure water levels (and where appropriate, LNAPL thicknesses) at the LNAPL-interceptor trench piezometers, as part of the Interim Action.
 Stericycle personnel will measure the levels at the same time that the levels are measured at the other wells and piezometers.
- Stericycle will repair the asphalt surface cover of the interceptor trench using app.3 inches of asphalt over the area where there are concerns.

TABLES

Page: 1 of 4 Date: 03/30/2017

PERIOD: From 06/06/2016 thru 12/01/2016 - Inclusive

Site ID	Date	Measuring Point Elevation	Time	Depth To Water	LNAPL Thickness	Potentiometric Surface Elevation	Change in Groundwater Elevation	Freshwater Head Surface Elevation
		(feet)		(feet)	(feet)	(feet)	(feet)	(feet)
CCW-2A	6/6/2016	12.22	09:04	3.84	0.00	8.38	NA	8.38
CCW-2A	12/1/2016	12.22	11:25	2.55	0.00	9.67	1.29	9.67
CCW-2B	6/6/2016	12.12	09:06	3.88	0.00	8.24	NA	8.24
CCW-2B	12/1/2016	12.12	11:26	1.65	0.00	10.47	2.23	10.47
CCW-2C	6/6/2016	12.06	09:02	9.20	0.00	2.86	NA	2.86
CCW-2C	12/1/2016	12.06	11:27	8.64	0.00	3.42	0.56	3.42
CCW-3A	6/6/2016	13.75	09:16	4.90	0.00	8.85	NA	8.85
CCW-3A	12/1/2016	13.75	11:31	3.67	0.00	10.08	1.23	10.08
CCW-3B	6/6/2016	14.11	09:14	5.66	0.00	8.45	NA	8.45
CCW-3B	12/1/2016	14.11	11:29	4.11	0.00	10.00	1.55	10.00
CCW-3C	6/6/2016	15.68	09:18	12.67	0.00	3.01	NA	3.01
CCW-3C	12/1/2016	15.68	11:33	12.00	0.00	3.68	0.67	3.68
CCW-5B	6/6/2016	12.62	09:09	4.22	0.00	8.40	NA	8.40
CCW-5B	12/1/2016	12.62	11:36	2.95	0.00	9.67	1.27	9.67
CCW-5C	6/6/2016	12.40	09:11	9.46	0.00	2.94	NA	2.94
CCW-5C	12/1/2016	12.40	11:38	8.64	0.00	3.76	0.82	3.76
CTMW-1	6/6/2016	13.43	10:31	5.59	0.28	7.84	NA	8.11
CTMW-1	12/1/2016	13.43	12:45	3.50	0.00	9.93	2.09	9.93
CTMW-10	6/6/2016	12.80	10:22	4.98	0.00	7.82	NA	7.82
CTMW-10	12/1/2016	12.80	12:38	2.30	0.00	10.50	2.68	10.50
CTMW-12	6/6/2016	18.29	08:46	15.39	0.00	2.90	NA	2.90
CTMW-12	12/1/2016	18.29	10:51	14.97	0.00	3.32	0.42	3.32
CTMW-14	6/6/2016	13.13	08:58	8.46	0.00	4.67	NA	4.67
CTMW-14	12/1/2016	13.13	11:07	4.81	0.00	8.32	3.65	8.32
CTMW-15	6/6/2016	13.28	09:56	6.61	0.00	6.67	NA	6.67
CTMW-15	12/1/2016	13.28	12:11	5.20	0.00	8.08	1.41	8.08
CTMW-17	6/6/2016	19.32	08:40	10.25	0.00	9.07	NA	9.07
CTMW-17	12/1/2016	19.32	10:46	7.22	0.00	12.10	3.03	12.10

Elevations based on Datum NGVD 1929 NM = Not Measured, D = Dry Well

Page: 2 of 4 Date: 03/30/2017

PERIOD: From 06/06/2016 thru 12/01/2016 - Inclusive

Site ID	Date	Measuring Point Elevation	Time	Depth To Water	LNAPL Thickness	Potentiometric Surface Elevation	Change in Groundwater Elevation	Freshwater Head Surface Elevation
		(feet)		(feet)	(feet)	(feet)	(feet)	(feet)
CTMW-17D	6/6/2016	16.64	08:42	13.72	0.00	2.92	NA	2.92
CTMW-17D	12/1/2016	16.64	10:45	13.14	0.00	3.50	0.58	3.50
CTMW-18	6/6/2016	19.36	09:41	9.82	0.00	9.54	NA	9.54
CTMW-18	12/1/2016	19.36	12:27	7.12	0.00	12.24	2.70	12.24
CTMW-20	6/6/2016	11.03	09:28	3.33	0.00	7.70	NA	7.70
CTMW-20	12/1/2016	11.03	12:15	1.45	0.00	9.58	1.88	9.58
CTMW-24	6/6/2016	16.35	08:27	8.54	0.00	7.81	NA	7.81
CTMW-24	12/1/2016	16.35	11:00	5.65	0.00	10.70	2.89	10.70
CTMW-24D	6/6/2016	16.39	08:29	13.32	0.00	3.07	NA	3.07
CTMW-24D	12/1/2016	16.39	11:01	13.05	0.00	3.34	0.27	3.34
CTMW-25D	6/6/2016	13.06	09:58	13.34	0.00	- 0.28	NA	-0.28
CTMW-25D	12/1/2016	13.06	12:08	9.65	0.00	3.41	3.69	3.41
CTMW-5	6/6/2016	14.10	09:25	6.00	0.00	8.10	NA	8.10
CTMW-5	12/1/2016	14.10	12:18	3.35	0.00	10.75	2.65	10.75
CTMW-6	6/6/2016	14.80	10:58	5.91	0.25	8.89	NA	9.13
CTMW-6	12/1/2016	14.80	12:56	3.75	0.00	11.05	2.16	11.05
CTMW-7	6/6/2016	14.75	08:50	11.97	0.00	2.78	NA	2.78
CTMW-7	12/1/2016	14.75	11:15	11.36	0.00	3.39	0.61	3.39
CTMW-8	6/6/2016	14.77	08:53	6.55	0.00	8.22	NA	8.22
CTMW-8	12/1/2016	14.77	11:09	4.35	0.00	10.42	2.20	10.42
CTMW-9	6/6/2016	14.38	08:55	11.44	0.00	2.94	NA	2.94
CTMW-9	12/1/2016	14.38	11:10	10.95	0.00	3.43	0.49	3.43
	6/6/0046	40.04	00.20	2.40	0.00	7.05	NIA	7.05
EMW-1 EMW-1	6/6/2016 12/1/2016	10.84 10.84	09:30 07:45	3.19 1.51	0.00	7.65 9.33	NA 1.68	7.65 9.33
EMW-2	6/6/2016	10.44	09:36	3.60	0.00	6.84	NA 1.40	6.84
EMW-2	12/1/2016	10.44	08:00	2.14	0.00	8.30	1.46	8.30
EMW-3R	6/6/2016	11.15	09:45	4.07	0.00	7.08	NA	7.08

Elevations based on Datum NGVD 1929 NM = Not Measured, D = Dry Well

Page: 3 of 4 Date: 03/30/2017

PERIOD: From 06/06/2016 thru 12/01/2016 - Inclusive

Site ID	Date	Measuring Point Elevation	Time	Depth To Water	LNAPL Thickness	Potentiometric Surface Elevation	Change in Groundwater Elevation	Freshwater Head Surface Elevation
		(feet)		(feet)	(feet)	(feet)	(feet)	(feet)
EMW-3R	12/1/2016	11.15	07:29	3.80	0.00	7.35	0.27	7.35
EMW-4	6/6/2016	10.60	09:41	3.07	0.00	7.53	NA	7.53
EMW-4	12/1/2016	10.60	07:39	1.34	0.00	9.26	1.73	9.26
MW-1	6/6/2016	10.84	10:27	3.05	0.00	7.79	NA	7.79
MW-1	12/1/2016	10.84	12:40	1.00	0.00	9.84	2.05	9.84
PZ-1	6/6/2016	13.79	10:47	3.82	0.00	9.97	NA	9.97
PZ-1	12/1/2016	13.79	12:48	0.90	0.00	12.89	2.92	12.89
PZ-10	6/6/2016	12.61	09:43	2.20	0.00	10.41	NA	10.41
PZ-10	12/1/2016	12.61	12:30	0.76	0.00	11.85	1.44	11.85
PZ-5	6/6/2016	12.86	08:32	4.87	0.00	7.99	NA	7.99
PZ-5	12/1/2016	12.86	12:31	2.83	0.00	10.03	2.04	10.03
PZ-6	6/6/2016	12.10	11:10	1.94	0.00	10.16	NA	10.16
PZ-6	12/1/2016	12.10	12:59	0.20	0.00	11.90	1.74	11.90
PZ-7	6/6/2016	20.97	08:24	12.50	0.00	8.47	NA	8.47
PZ-7	12/1/2016	20.97	10:58	10.10	0.00	10.87	2.40	10.87
PZ-8	6/6/2016	14.84	08:21	8.54	0.00	6.30	NA	6.30
PZ-8	12/1/2016	14.84	10:55	6.45	0.00	8.39	2.09	8.39
PZ-9	6/6/2016	15.55	08:17	7.20	0.00	8.35	NA	8.35
PZ-9	12/1/2016	15.55	10:53	5.90	0.00	9.65	1.30	9.65
SB-1A	6/6/2016	12.34	10:13	5.60	0.00	6.74	NA	6.74
SB-1A	12/1/2016	12.34	11:52	2.00	0.00	10.34	3.60	10.34
SB-2A	6/6/2016	11.91	10:09	5.97	0.00	5.94	NA	5.94
SB-2A	12/1/2016	11.91	11:47	3.51	0.00	8.40	2.46	8.40
SB-3A	6/6/2016	13.58	10:05	5.41	0.00	8.17	NA	8.17
SB-3A	12/1/2016	13.58	11:55	2.70	0.00	10.88	2.71	10.88
TP-1	6/6/2016	13.88	09:39	2.37	0.00	11.51	NA	11.51
TP-1	12/1/2016	13.88	12:25	1.21	0.00	12.67	1.16	12.67

Elevations based on Datum NGVD 1929 NM = Not Measured, D = Dry Well

Page: 4 of 4 Date: 03/30/2017

PERIOD: From 06/06/2016 thru 12/01/2016 - Inclusive

Site ID	Date	Measuring Point Elevation	Time	Depth To Water	LNAPL Thickness	Potentiometric Surface Elevation	Change in Groundwater Elevation	Freshwater Head Surface Elevation
		(feet)		(feet)	(feet)	(feet)	(feet)	(feet)
TP-10	6/6/2016	10.62	09:54	2.88	0.00	7.74	NA	7.74
TP-10	12/1/2016	10.62	12:02	0.55	0.00	10.07	2.33	10.07
TP-2	6/6/2016	13.92	09:37	2.52	0.00	11.40	NA	11.40
TP-2	12/1/2016	13.92	12:24	1.35	0.00	12.57	1.17	12.57
TP-3	6/6/2016	13.65	09:35	2.25	0.00	11.40	NA	11.40
TP-3	12/1/2016	13.65	12:23	1.09	0.00	12.56	1.16	12.56
TP-4	6/6/2016	13.81	09:33	2.41	0.00	11.40	NA	11.40
TP-4	12/1/2016	13.81	12:22	1.25	0.00	12.56	1.16	12.56
TP-5	6/6/2016	13.84	09:31	2.54	0.00	11.30	NA	11.30
TP-5	12/1/2016	13.84	12:21	1.36	0.00	12.48	1.18	12.48
TP-6	6/6/2016	10.69	09:46	2.84	0.00	7.85	NA	7.85
TP-6	12/1/2016	10.69	00:00	NM	NA	NA	NA	NA
TP-7	6/6/2016	9.89	09:48	2.25	0.00	7.64	NA	7.64
TP-7	12/1/2016	9.89	00:00	NM	NA	NA	NA	NA
TP-8	6/6/2016	10.32	09:50	2.53	0.00	7.79	NA	7.79
TP-8	12/1/2016	10.32	12:04	0.20	0.00	10.12	2.33	10.12
TP-9	6/6/2016	10.21	09:52	2.43	0.00	7.78	NA	7.78
TP-9	12/1/2016	10.21	12:03	0.15	0.00	10.06	2.28	10.06

Page: 1 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

			1,1,1,2-Tetra		1,1,1-Tri-		1,1,2,2,-Tetra		1,1,2-Tri-		
Site	Date / Time	Sample	chloroethane	Lab Expert	chloroethane	Lab Expert	chloroethane		Expert chloroethane	Lab	Expert
		Depth	(ug/l)	Quals Qual	(ug/l)	Quals Qual	(ug/l)	Qual	Qual (ug/l)	Quals	Qual
MTCA A & B Minim	num Level		1.6827		200		0.2188		0.7675		
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U	<0.50	U	<0.20	U	<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U	<0.50	U	<0.20	U	<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 2 of 13

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

			1,1-Dichloro-			1,1-Dichloro-			1,2,3-Trichloro			1,2-Dichloro-		
Site	Date / Time	Sample	ethane	Lab	Expert	ethene	Lab	Expert	propane	Lab	Expert	ethane	Lab	Expert
		Depth	(ug/l)	Quals	Qual	(ug/l)	Quals	Qual	(ug/l)	Qual	Qual	(ug/l)	Quals	Qual
MTCA A & B Minim	num Level		7.68			400			0.00146			0.4808		
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	U		<0.020	J	J	[<0.50]	U		<0.20	J	J
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	J	J	<0.020	J	J	[<0.50]	U		<0.20	J	J
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U		<0.020	U		[<0.50]	U		<0.20	J	J
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	J	J	<0.020	U		[<0.50]	U		<0.20	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U		<0.020	U		[<0.50]	U		<0.20	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 3 of 13

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	1,2-Dichloro- propane (ug/l)	Lab Quals	Expert Qual	2-Butanone (ug/l)	Lab Quals	Expert Qual	2-chloroethyl vinylether (ug/l)	Lab Qual	Expert Qual	2-Hexanone (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	ium Level		1.22			4800			(~9)					
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U		<20	U		<5.0	U		<20	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U		<20	U		<5.0	U		<20	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 4 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	4-Methyl-2- pentanone (ug/l)	Lab Expert Quals Qual	Acetone (ug/l)	Lab Expert Quals Qual	Acetonitrile	Lab Qual	Expert Qual	Acrolein (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	um Level		(ug/i) 640		7200		(ug/l)			4		
		00.000					.50					
CTMW-12	06/09/2016 - 09:44	26.000	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-14	06/08/2016 - 07:02	9.900	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-15	06/08/2016 - 08:47	9.300	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-17	06/09/2016 - 08:37	14.000	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-18	06/08/2016 - 11:29	12.500	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-20	06/08/2016 - 10:50	6.600	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-24	06/09/2016 - 10:37	11.100	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-5	06/08/2016 - 12:17	9.950	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-7	06/09/2016 - 07:18	25.000	<20	U	<20	U	<50	U	J	[<20]	U	
CTMW-8	06/08/2016 - 13:34	9.100	<20	U	22		<50	U	J	[<20]	U	
CTMW-9	06/08/2016 - 12:55	24.000	<20	U	<20	U	<50	U	J	[<20]	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 5 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

										Bromo-		
Site	Date / Time	Sample Depth	Acrylonitrile (ug/l)	Lab Exp Quals Qu	_	Lab Quals	Expert Benze Qual (ug/l	Qual	Expert Qual	dichloro- methane (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	um Level		0.081		800		0.795	55		0.7056		
CTMW-12	06/09/2016 - 09:44	26.000	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	[<5.0]	U	<5.0	U	<0.50) J	J	<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	[<5.0]	U	<5.0	U	<0.50) J	J	<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	[<5.0]	U	<5.0	U	0.63			<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	[<5.0]	U	<5.0	U	<0.50) J	J	<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	[<5.0]	U	<5.0	U	<0.50) J	J	<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	[<5.0]	U	<5.0	U	<0.50) U		<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 6 of 13

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

							Carbon		Carbon		
Site	Date / Time	Sample	Bromoform	Lab Expert	Bromomethane	Lab Expert	disulfide		Expert tetrachloride	Lab	Expert
		Depth	(ug/l)	Quals Qual	(ug/l)	Quals Qual	(ug/l)	Qual	Qual (ug/l)	Quals	Qual
MTCA A & B Minim	ium Level		5.5380		11.2		800		0.625		
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U	<0.50	U	<0.50	U	<0.20	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U	<0.50	U	<0.50	U	<0.20	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 7 of 13

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	Chlorobenzene (ug/l)	Lab Quals	Expert Qual	Chloroethane (ug/l)	Lab Quals	Expert Qual	Chloroform (ug/l)	Lab Qual	Expert Qual	Chloromethane (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	num Level		160						1.41					
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	J	J	<0.50	U		<0.50	U		<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	J	J	0.83			<0.50	U		<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	1.4			<0.50	U		<0.50	U		<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 8 of 13 Date: 03/31/2017

PERIOD: From 06/08

From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site MTCA A & B Minimu	Date / Time um Level	Sample Depth	cis-1,2- Dichloro ethylene (ug/l)	Lab Quals	Expert Qual	cis-1,3- Dichloropropene (ug/l)	Lab Quals	Expert Qual	Dibromochloro- methane (ug/l) 0.5208	Lab Qual	Expert Qual	Dichloro- difluoro- methane (ug/l)	Lab Quals	Expert Qual
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	J	J	[<0.50]	U		<0.50	U		<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	3.4			[<0.50]	U		<0.50	U		<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	J	J	[<0.50]	U		<0.50	U		<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	J	J	[<0.50]	U		<0.50	U		<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U		[<0.50]	U		<0.50	U		<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 9 of 13

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

			Ethyl					Isobutyl			m, p-Xylene		
Site	Date / Time	Sample	methacrylate	Lab Expert Quals Qual	Ethylbenzene	Lab Quals	Expert Qual	alcohol	Lab Qual	Expert Qual		Lab Quals	Expert Qual
		Depth	(ug/l)	Quais Quai	(ug/l)	Quais	Quai	(ug/l)	Quai	Quai	(ug/l)	Quais	Quai
MTCA A & B Minim	num Level		720		700			2400			1600		
CTMW-12	06/09/2016 - 09:44	26.000	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	<5.0	U	<0.50	J	J	<100	U	J	<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	<5.0	U	<0.50	J	J	<100	U	J	<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	<5.0	U	<0.50	U		<100	U	J	<0.50	J	J
CTMW-24	06/09/2016 - 10:37	11.100	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	<5.0	U	<0.50	U		<100	U	J	<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	<5.0	U	<0.50	U		<100	U	J	<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 10 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	Methacrylo nitrile (ug/l)	Lab Quals	Expert Qual	Methyl iodide (ug/l)	Lab Quals	Expert Qual	Methylene bromide (ug/l)	Lab Qual	Expert Qual	Methylene chloride (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minin	num Level		1.6						80			5.0		
CTMW-12	06/09/2016 - 09:44	26.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-14	06/08/2016 - 07:02	9.900	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-15	06/08/2016 - 08:47	9.300	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-17	06/09/2016 - 08:37	14.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	J	U
CTMW-17D	06/09/2016 - 09:13	28.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-18	06/08/2016 - 11:29	12.500	[<5.0]	U		<5.0	U		<0.50	U		<2.0	J	U
CTMW-20	06/08/2016 - 10:50	6.600	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-24	06/09/2016 - 10:37	11.100	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-24D	06/09/2016 - 11:12	24.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-25D	06/08/2016 - 09:49	19.700	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-5	06/08/2016 - 12:17	9.950	[<5.0]	U		<5.0	U		<0.50	U		<2.0	J	U
CTMW-7	06/09/2016 - 07:18	25.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-8	06/08/2016 - 13:34	9.100	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	
CTMW-9	06/08/2016 - 12:55	24.000	[<5.0]	U		<5.0	U		<0.50	U		<2.0	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 11 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

						Tetrachloro-						trans-1,2-		
Site	Date / Time	Sample	o-Xylene	Lab	Expert	ethene	Lab	Expert	Toluene	Lab	Expert	Dichloroethene	Lab	Expert
		Depth	(ug/l)	Quals	Qual	(ug/l)	Quals	Qual	(ug/l)	Qual	Qual	(ug/l)	Quals	Qual
MTCA A & B Minim	ium Level		1600			5			640			160		
CTMW-12	06/09/2016 - 09:44	26.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	<0.50	U		<0.50	U		<0.50	J	J	<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	<0.50	U		<0.50	J	J	<0.50	J	J	<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	<0.50	J	J	<0.50	U		<0.50	J	J	<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.50	U		<0.50	U		<0.50	J	J	<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	<0.50	U		<0.50	U		<0.50	J	J	<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.50	U		<0.50	U		0.98			<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.50	U		<0.50	U		<0.50	U		<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 12 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

						trans-1,4-								
			Trans-1,3-			Dichloro-2-			Trichloro-			Trichloro		
Site	Date / Time	Sample Depth	Dichloropropene	Lab Quals	Expert Qual	butene	Lab Quals	Expert Qual	ethene	Lab Qual	Expert Qual	fluoromethane	Lab Quals	Expert Qual
		Бериі	(ug/l)	Quais	Quai	(ug/l)	Quais	Quai	(ug/l)	Quai	Quai	(ug/l)	Quais	Quai
MTCA A & B Minim	ium Level		0.4375						0.54			2400		
CTMW-12	06/09/2016 - 09:44	26.000	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-14	06/08/2016 - 07:02	9.900	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-15	06/08/2016 - 08:47	9.300	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-17	06/09/2016 - 08:37	14.000	[<0.50]	U		<10	U		[0.73]			<0.50	U	
CTMW-17D	06/09/2016 - 09:13	28.000	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-18	06/08/2016 - 11:29	12.500	[<0.50]	U		<10	U		<0.50	J	J	<0.50	U	
CTMW-20	06/08/2016 - 10:50	6.600	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-24	06/09/2016 - 10:37	11.100	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-24D	06/09/2016 - 11:12	24.000	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-25D	06/08/2016 - 09:49	19.700	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-5	06/08/2016 - 12:17	9.950	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-7	06/09/2016 - 07:18	25.000	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-8	06/08/2016 - 13:34	9.100	[<0.50]	U		<10	U		<0.50	U		<0.50	U	
CTMW-9	06/08/2016 - 12:55	24.000	[<0.50]	U		<10	U		<0.50	U		<0.50	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Page: 13 of 13 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	Vinyl acetate (ug/l)		Expert Qual	Vinyl chloride (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	num Level		8000			0.029		
CTMW-12	06/09/2016 - 09:44	26.000	<5.0	U		<0.020	U	
CTMW-14	06/08/2016 - 07:02	9.900	<5.0	U		<0.020	U	
CTMW-15	06/08/2016 - 08:47	9.300	<5.0	U		<0.020	U	
CTMW-17	06/09/2016 - 08:37	14.000	<5.0	U		[0.29]		
CTMW-17D	06/09/2016 - 09:13	28.000	<5.0	U		<0.020	U	
CTMW-18	06/08/2016 - 11:29	12.500	<5.0	U		0.024		
CTMW-20	06/08/2016 - 10:50	6.600	<5.0	U		0.025		
CTMW-24	06/09/2016 - 10:37	11.100	<5.0	U		<0.020	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<5.0	U		<0.020	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<5.0	U		<0.020	U	
CTMW-5	06/08/2016 - 12:17	9.950	<5.0	U		<0.020	J	J
CTMW-7	06/09/2016 - 07:18	25.000	<5.0	U		<0.020	U	
CTMW-8	06/08/2016 - 13:34	9.100	<5.0	U		<0.020	U	
CTMW-9	06/08/2016 - 12:55	24.000	<5.0	U		<0.020	U	

Methods 8290 C, 8260C SIM

^{() =} Below reporting limit.

Table 3
1,4-Dioxane in Groundwater
2016 Annual
Stericycle Tacoma Facility

Page: 1 of 1 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	1,4-Dioxane (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minimu	m Level		0.438		
CTMW-15	06/08/2016 - 08:47	9.300	[3.5]		
CTMW-18	06/08/2016 - 11:29	12.500	[1.0]		
CTMW-24	06/09/2016 - 10:37	11.100	<0.40	U	
CTMW-24D	06/09/2016 - 11:12	24.000	[4.0]		
CTMW-25D	06/08/2016 - 09:49	19.700	[31]		
CTMW-5	06/08/2016 - 12:17	9.950	<0.40	J	J
CTMW-7	06/09/2016 - 07:18	25.000	[29]		
CTMW-8	06/08/2016 - 13:34	9.100	<0.40	U	
CTMW-9	06/08/2016 - 12:55	24.000	[44]		

Methods 8270D SIM

^{() =} Below reporting limit.

Table 4 Total Petroleum Hydrocarbons in Groundwater 2016 Annual Stericycle Tacoma Facility

Page: 1 of 1

Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample	Diesel		Expert	Gasoline	Lab	Expert	Lube Oil	Lab	Expert
		Depth	(ug/l)	Quals	Qual	(ug/l)	Quals	Qual	(ug/l)	Qual	Qual
MTCA A & B Minim	um Level		500			800			500		
CTMW-12	06/09/2016 - 09:44	26.000	<260	U		NT			[<520]	U	
CTMW-14	06/09/2016 - 06:35	9.900	<260	U		NT			[<520]	U	
CTMW-15	06/08/2016 - 08:47	9.300	<260	U		NT			[<520]	U	
CTMW-17	06/09/2016 - 08:37	14.000	<260	U		NT			[<520]	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<260	U		NT			[<520]	U	
CTMW-18	06/08/2016 - 11:29	12.500	<260	U		<50	U		[<520]	U	
CTMW-20	06/08/2016 - 10:50	6.600	<260	U		<50	U		[<520]	U	
CTMW-24	06/09/2016 - 10:37	11.100	<270	U		NT			[<530]	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<270	U		NT			[<530]	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<270	U		NT			[<530]	U	
CTMW-5	06/08/2016 - 12:17	9.950	<270	U		NT			[<530]	U	
CTMW-7	06/09/2016 - 07:18	25.000	<260	U		NT			[<520]	U	
CTMW-8	06/08/2016 - 13:34	9.100	<260	U		NT			[<520]	U	
CTMW-9	06/08/2016 - 12:55	24.000	<270	U		NT			[<530]	U	

Methods NWTPH-Gx, Dx-SG

^{() =} Below reporting limit.

Page: 1 of 2 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	Arsenic (mg/l)	Lab Quals	Expert Qual	Cadmium (mg/l)	Lab Quals	Expert Qual	Chromium (mg/l)	Lab Qual	Expert Qual	Copper (mg/l)	Lab Quals	Expert Qual
MTCA A & B Minim	num Level		0.000058			0.0050			0.050			0.59		
CTMW-12	06/09/2016 - 09:44	26.000	[0.0006]			<0.000020	J	U	0.00360			0.00032		
CTMW-14	06/09/2016 - 06:35	9.900	[0.0026]			0.000183			0.00061		U	0.00895		
CTMW-15	06/08/2016 - 08:47	9.300	[0.0017]			0.000100			0.00042		U	0.00203		
CTMW-17	06/09/2016 - 08:37	14.000	[0.0116]			0.000298			0.00127			0.03075		
CTMW-17D	06/09/2016 - 09:13	28.000	[0.0007]			0.000022		U	0.00292			0.00027		
CTMW-18	06/08/2016 - 11:29	12.500	[0.0063]			0.000026			0.00084			0.00118		
CTMW-20	06/08/2016 - 10:50	6.600	[0.0034]			<0.000020	J	U	0.00063		U	0.00047		U
CTMW-24	06/09/2016 - 10:37	11.100	[0.0091]			0.000019	J	U	0.00056		U	0.00079		
CTMW-24D	06/09/2016 - 11:12	24.000	[0.0012]			<0.000020	U		0.00630			0.00050		
CTMW-25D	06/08/2016 - 09:49	19.700	[0.0018]			<0.000020	J	U	0.01632			0.00426		
CTMW-5	06/08/2016 - 12:17	9.950	[0.0173]			0.000087			0.00347			0.00775		
CTMW-7	06/09/2016 - 07:18	25.000	[<0.00050]	J	U	<0.000020	J	U	0.0020			0.000105		U
CTMW-8	06/08/2016 - 13:34	9.100	[0.0016]			0.000017	J	J	0.00021		U	0.00060		
CTMW-9	06/08/2016 - 12:55	24.000	[<0.00050]	J	J	<0.000020	J	U	0.0024			0.000196		

Methods 6000/7000 Series

^{() =} Below reporting limit.

Page: 2 of 2 Date: 03/31/2017

PERIOD:

From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	Lead (mg/l)		pert Mercu ual (mg/l	Ouals	Expert Qual	Nickel (mg/l)	Lab Qual	Expert Qual	Zinc (mg/l)	Lab Quals	Expert Qual
MTCA A & B Minim	num Level		0.015		0.002			0.32			4.8		
CTMW-12	06/09/2016 - 09:44	26.000	0.000050		U <0.0002	0 U		0.00102			0.00103		U
CTMW-14	06/09/2016 - 06:35	9.900	0.000912		<0.0002	0 U		0.00168			0.00622		
CTMW-15	06/08/2016 - 08:47	9.300	0.000063		U <0.0002	0 U		0.00195			0.00185		U
CTMW-17	06/09/2016 - 08:37	14.000	[0.020630]		<0.0002	0 U		0.00937			0.01846		
CTMW-17D	06/09/2016 - 09:13	28.000	0.000076		U <0.0002	0 U		0.00142			0.00223		U
CTMW-18	06/08/2016 - 11:29	12.500	0.000183		<0.0002	0 U		0.00538			0.00069		
CTMW-20	06/08/2016 - 10:50	6.600	0.000040		U <0.0002	0 U		0.00137			0.00087		U
CTMW-24	06/09/2016 - 10:37	11.100	0.000163		U <0.0002	0 U		0.00471			0.01412		
CTMW-24D	06/09/2016 - 11:12	24.000	0.000048		U <0.0002	0 U		0.00094			0.00129		U
CTMW-25D	06/08/2016 - 09:49	19.700	0.000494		<0.0002	0 U		0.00427			0.00231		
CTMW-5	06/08/2016 - 12:17	9.950	0.001617		<0.0002	0 U		0.00271			0.00770		
CTMW-7	06/09/2016 - 07:18	25.000	0.000040		U <0.0002	0 U		0.0020			0.00134		U
CTMW-8	06/08/2016 - 13:34	9.100	0.000281		<0.0002	0 U		0.00506			<0.00066		U
CTMW-9	06/08/2016 - 12:55	24.000	0.000040	J	U <0.0002	0 U		0.00028			<0.00050	J	J

Methods 6000/7000 Series

^{() =} Below reporting limit.

Table 6
Selected COC MDLs
2016 Annual
Stericycle Tacoma Facility

Page: 1 of 2 Date: 03/31/2017

PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

SAMPLE TYPE: Water

Site	Date / Time	Sample Depth	1,2,3-Trichloro propane (ug/l)	Lab Expert Quals Qual	Acrolein (ug/l)	Lab Expert Quals Qual	Acrylonitrile (ug/l)	Lab Expe Qual Qua		Lab Quals	Expert Qual
MTCA A & B Minim	num Level		0.00146		4		0.081		0.000058		
CTMW-12	06/09/2016 - 09:44	26.000	<0.20	U	<1.2	U	<0.53	U	[0.0006]		
CTMW-14	06/08/2016 - 07:02	9.900	<0.20	U	<1.2	U	<0.53	U	NT		
CTMW-14	06/09/2016 - 06:35	9.900	NT		NT		NT		[0.0026]		
CTMW-15	06/08/2016 - 08:47	9.300	<0.20	U	<1.2	U	<0.53	U	[0.0017]		
CTMW-17	06/09/2016 - 08:37	14.000	<0.20	U	<1.2	U	<0.53	U	[0.0116]		
CTMW-17D	06/09/2016 - 09:13	28.000	<0.20	U	<1.2	U	<0.53	U	[0.0007]		
CTMW-18	06/08/2016 - 11:29	12.500	<0.20	U	<1.2	U	<0.53	U	[0.0063]		
CTMW-20	06/08/2016 - 10:50	6.600	<0.20	U	<1.2	U	<0.53	U	[0.0034]		
CTMW-24	06/09/2016 - 10:37	11.100	<0.20	U	<1.2	U	<0.53	U	[0.0091]		
CTMW-24D	06/09/2016 - 11:12	24.000	<0.20	U	<1.2	U	<0.53	U	[0.0012]		
CTMW-25D	06/08/2016 - 09:49	19.700	<0.20	U	<1.2	U	<0.53	U	[0.0018]		
CTMW-5	06/08/2016 - 12:17	9.950	<0.20	U	<1.2	U	<0.53	U	[0.0173]		
CTMW-7	06/09/2016 - 07:18	25.000	<0.20	U	<1.2	U	<0.53	U	[0.00008]	J	U
CTMW-8	06/08/2016 - 13:34	9.100	<0.20	U	<1.2	U	<0.53	U	[0.0016]		
CTMW-9	06/08/2016 - 12:55	24.000	<0.20	U	<1.2	U	<0.53	U	[0.00012]	J	J

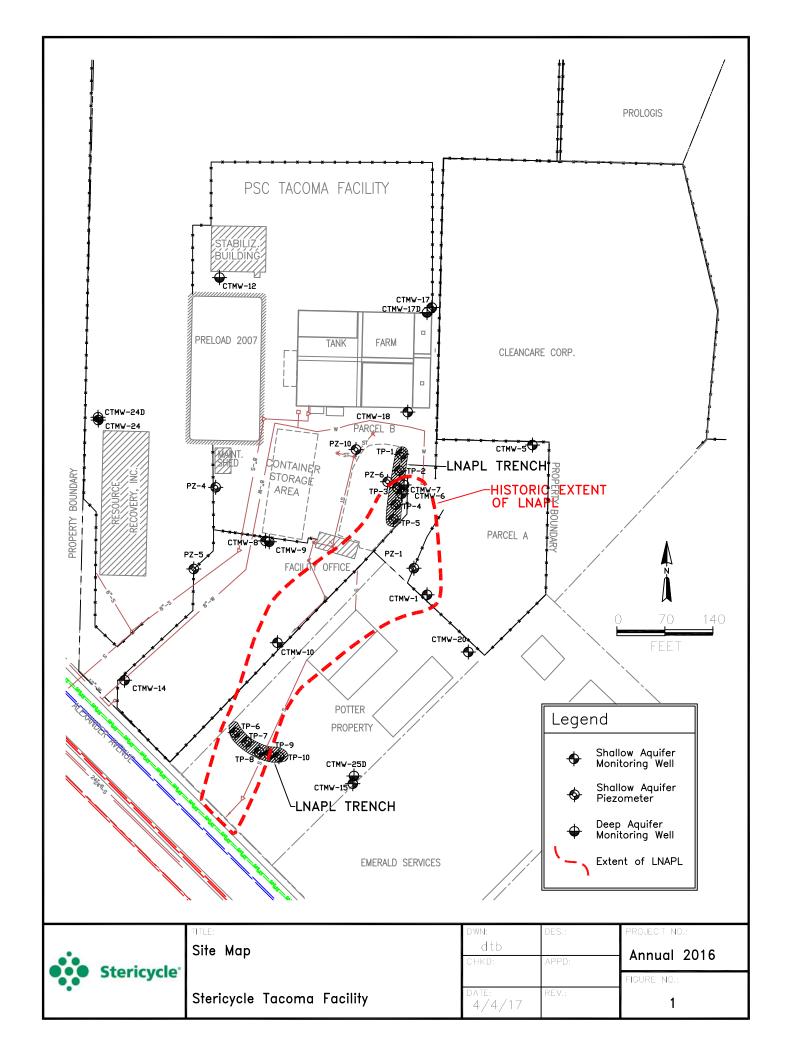
Methods 8260C, 8260C SIM, NWTPH-Dx, 6020A

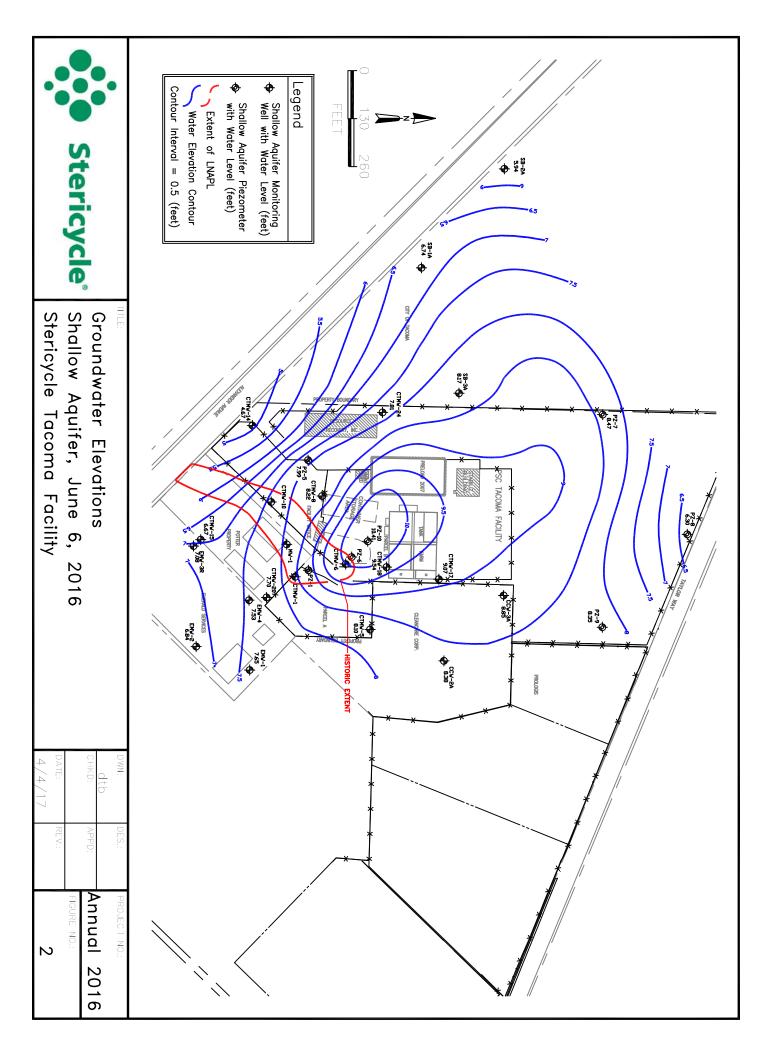
^{() =} Below reporting limit.

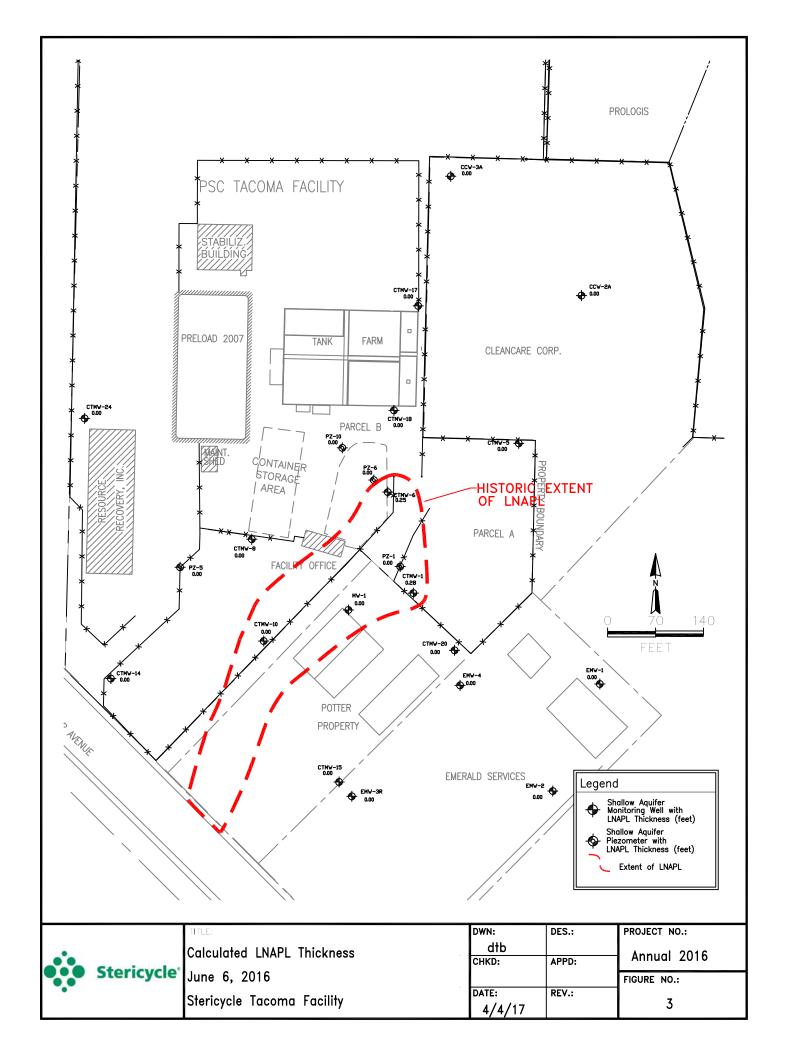
Table 6
Selected COC MDLs
2016 Annual
Stericycle Tacoma Facility

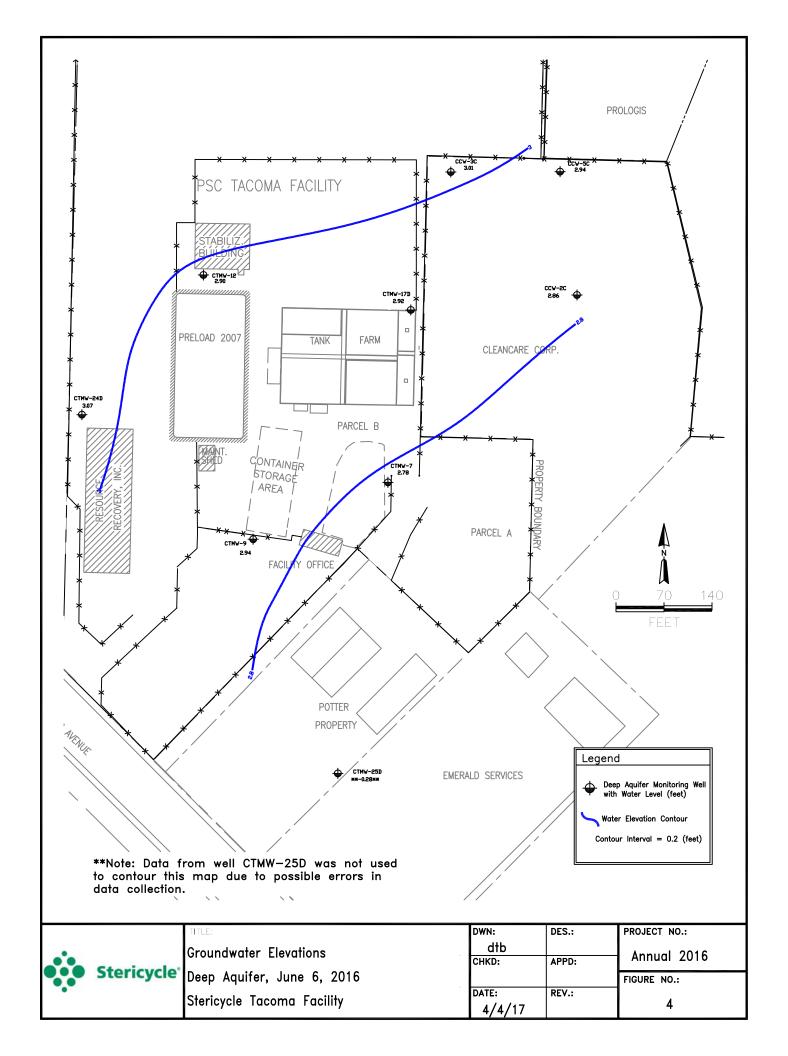
Page: 2 of 2 Date: 03/31/2017

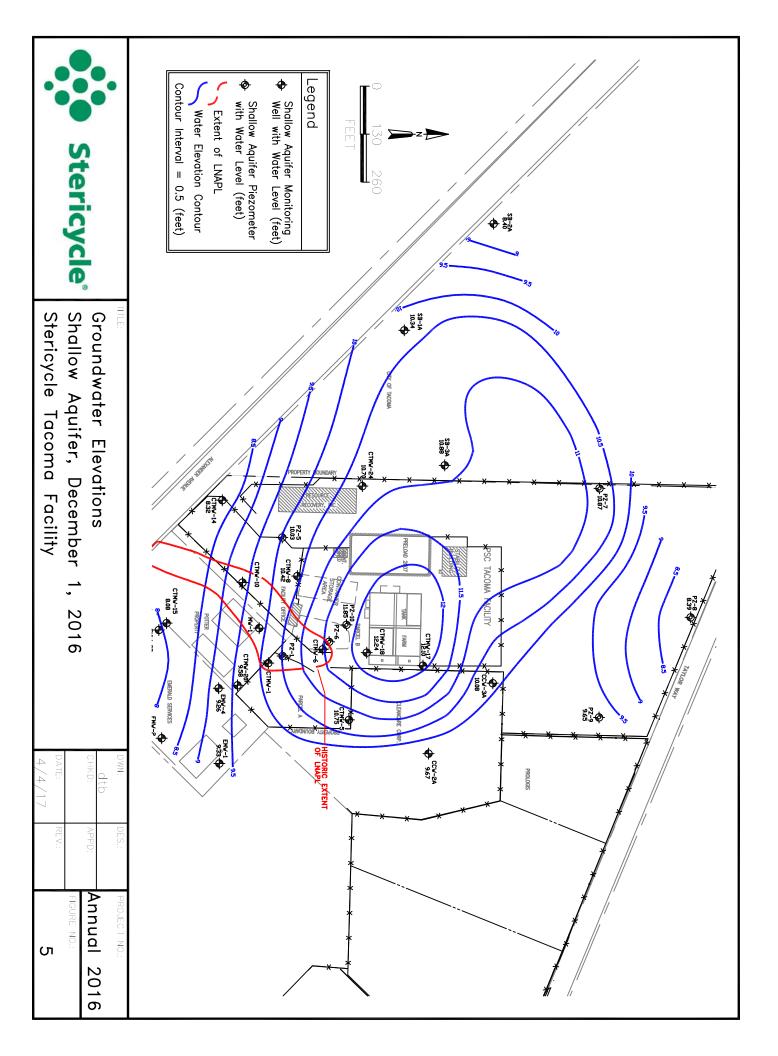
PERIOD: From 06/08/2016 thru 06/09/2016 - Inclusive

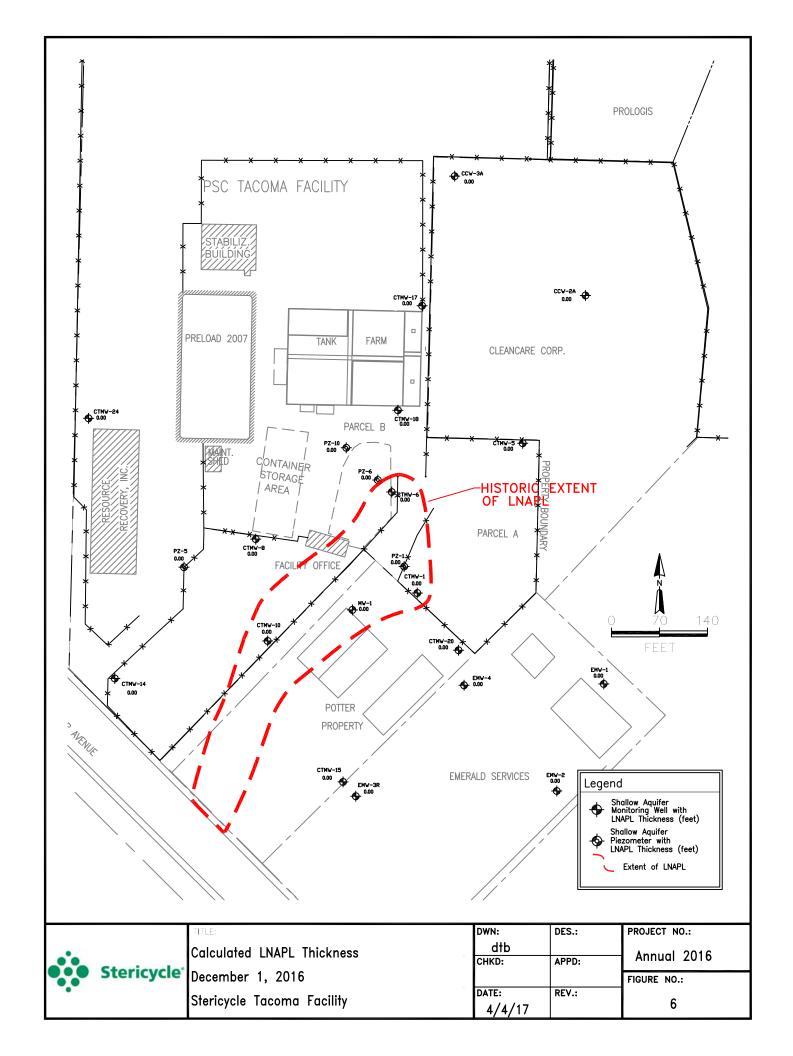

SAMPLE TYPE: Water

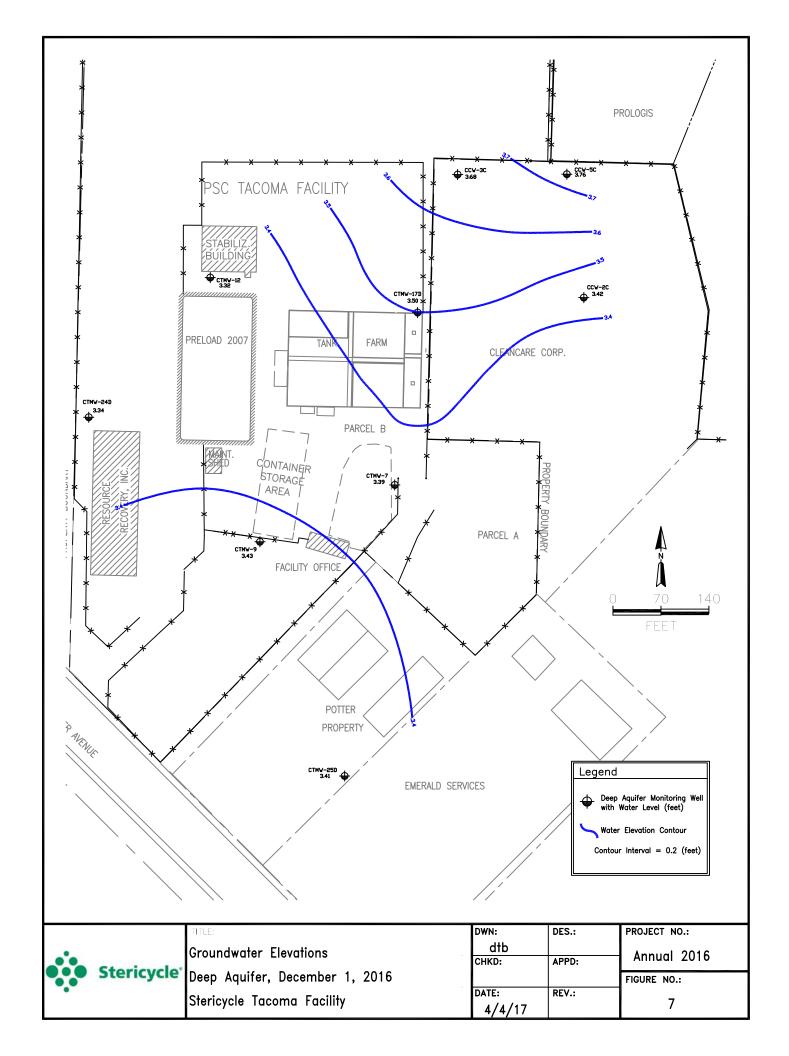

Site	Date / Time	Sample Depth	cis-1,2- Dichloro ethylene (ug/l)	Lab Quals	Expert Qual	Lube Oil (ug/l)	Lab Quals	Expert Qual	Methacrylo nitrile (ug/l)	Lab Qual	Expert Qual	Trans-1,3- Dichloropropene (ug/l)	Lab Quals	Expert Qual
MTCA A & B Minim	num Level		16			500			1.6			0.4375		
CTMW-12	06/09/2016 - 09:44	26.000	0.070	J	J	<520	U		<0.35	U		<0.068	U	
CTMW-14	06/08/2016 - 07:02	9.900	<0.067	U		NT			<0.35	U		<0.068	U	
CTMW-14	06/09/2016 - 06:35	9.900	NT			<520	U		NT			NT		
CTMW-15	06/08/2016 - 08:47	9.300	<0.067	U		<520	U		<0.35	U		<0.068	U	
CTMW-17	06/09/2016 - 08:37	14.000	3.4			<520	U		<0.35	U		<0.068	U	
CTMW-17D	06/09/2016 - 09:13	28.000	<0.067	U		<520	U		<0.35	U		<0.068	U	
CTMW-18	06/08/2016 - 11:29	12.500	0.12	J	J	<520	U		<0.35	U		<0.068	U	
CTMW-20	06/08/2016 - 10:50	6.600	<0.067	U		<520	U		<0.35	U		<0.068	U	
CTMW-24	06/09/2016 - 10:37	11.100	<0.067	U		<530	U		<0.35	U		<0.068	U	
CTMW-24D	06/09/2016 - 11:12	24.000	<0.067	U		<530	U		<0.35	U		<0.068	U	
CTMW-25D	06/08/2016 - 09:49	19.700	<0.067	U		<530	U		<0.35	U		<0.068	U	
CTMW-5	06/08/2016 - 12:17	9.950	0.12	J	J	<530	U		<0.35	U		<0.068	U	
CTMW-7	06/09/2016 - 07:18	25.000	<0.067	U		<520	U		<0.35	U		<0.068	U	
CTMW-8	06/08/2016 - 13:34	9.100	<0.067	U		<520	U		<0.35	U		<0.068	U	
CTMW-9	06/08/2016 - 12:55	24.000	<0.067	U		<530	U		<0.35	U		<0.068	U	


Methods 8260C, 8260C SIM, NWTPH-Dx, 6020A


^{() =} Below reporting limit.


FIGURES





ATTACHMENT A

		Flow	Volume		Dissolv	ed Oxygen	Tu	rbidity Relative	Specific (Conductivity Relative	Redo	x Potential Relative		pH Relative	Pump Speed	Total Purge Time Before	Total Volume Purged at	Draw-	
	Time	rate	Purged (L)		(ppm) ^r	(ppm) +/- 0.3ppm	(NTU)	Change (%) +/- 10%	(mS/cm)	Change (%) +/- 3%	(mV)	Change (mV) +/- 10mV		Change +/- 0.1	(Hz or cpm)	Stabilization (min)	Stabilization (gallons)	down (0.01 ft)	Comments
Well CTMW-12 6\09\16 FC500		Volume purged before 1st readir	^{ng} 1.2													12	1.6	0.02	
9	9:32:41	400		15.46	1.15		2.03		1.883		-42		6.49		3.0 cpm	All parameters sta	able when sample was	collected.	
9	9:35:06	400	1.2	15.45	0.92	-0.23	1.42	-42.96	1.864	-1.02	-63	-21	6.43	-0.06	3.0 cpm	Turbidty < 5 NTU			
	9:38:25	400	1.2	15.46	0.88	-0.04	1.91	25.65	1.869	0.27	-68	-5	6.47	0.04	3.0 cpm	Do > 0.20 mg/L			
	9:41:06	400	1.2	15.45	0.85	-0.03	1.26	-51.59	1.893	1.27	-69	-1	6.55	0.08	3.0 cpm				
9	9:44:10	400	1.2	15.47	0.83	-0.02	1.09	-15.6	1.870	-1.23	-69	0	6.5	-0.05	3.0 cpm				
Well CTMW-1	4 '	Volume purged													<u> </u>	<u> </u>			
6\08\16 FC500		before 1st readir	ng _{0.3}													12	0.4	1.21	
	6:50:18	100		14.98	2.60	#Error	2.10	#Error	0.391	#Error	140	#Error	6.32		0.2 cpm	All parameters sta	able when sample was	collected.	
	6:53:27	100	0.3	14.99	2.41	-0.19	2.84	26.06	0.390	-0.21	129	-11	6.23	-0.09	0.2 cpm	Turbidty < 5 NTU			
	6:56:29	100	0.3	14.97	2.31	-0.10	2.66	-6.77	0.388	-0.46	125	-4	6.24	0.01	0.2 cpm	Do > 0.20 mg/L			
	6:59:07	100	0.3	14.95	2.34	0.03	2.66	0	0.387	-0.23	121	-4	6.29	0.05	0.2 cpm	1			
-	7:02:05	100	0.3	14.92	2.30	-0.04	2.53	-5.14	0.386	-0.39	118	-3	6.31	0.02	0.2 cpm				
Well CTMW-1		Volume purged	20																
6\08\16 FC500		before 1st readir	ng _{0.3}		<u> </u>					I		1			 	42	1.2	1.64	
	8:05:05	100		15.28	2.63		3.34	 	1.399	 	-91	1	6.63		0.2 cpm	<u> </u>	able when sample was	collected.	
	8:08:11	100	0.3	15.29	2.24	-0.39	3.24	-3.09	1.340	-4.4	-109	-18	6.61	-0.02	0.2 cpm	Turbidty < 5 NTU			
	8:11:46	100	0.3	15.43	2.05	-0.19	3.54	8.47	1.216	-10.2	-102	7	6.65	0.04	0.2 cpm	Do > 0.20 mg/L			
·-	8:14:10	100	0.3	15.50	2.16	0.11	3.83	7.57	1.095	-11.05	-96	6	6.59	-0.06	0.2 cpm	1			
	8:17:23	100	0.3	15.57	2.15	-0.01	4.01	4.49	0.942	-16.27	-84	12	6.58	-0.01	0.2 cpm	1			
	8:20:54	100	0.3	15.61	2.29	0.14	3.99	-0.5	0.846	-11.34	-74	10	6.65	0.07	0.2 cpm	1			
	8:23:16	100	0.3	15.71	2.42	0.13	3.14	-27.07	0.781	-8.32	-66	8	6.65	0.00	0.2 cpm	<u> </u>			
	8:26:14	100	0.3	15.76	2.26	-0.16	3.09	-1.62	0.740	-5.51	-60	6	6.67		0.2 cpm				
·-	8:29:05	100	0.3	15.78	2.46	0.20	3.45	10.43	0.688	-7.54	-52	8	6.65	-0.02	0.2 cpm	1			
	8:32:13	100	0.3	15.83	5.22	2.76	2.26	-52.65	0.672	-2.4	-43	9	6.67	0.02	0.2 cpm	<u> </u>			
	8:35:33	100	0.3	15.86	2.02	-3.20	2.03	-11.33	0.647	-3.82	-37	6	6.64	-0.03	0.2 cpm				
	8:38:06	100	0.3	15.86	1.66	-0.36	1.55	-30.97	0.635	-1.94	-36	1	6.57	-0.07	0.2 cpm]			
	8:41:04	100	0.3	15.89	1.87	0.21	2.59	40.15	0.608	-4.47	-30	6	6.58	0.01	0.2 cpm				
·-	8:44:07	100	0.3	15.93	1.71	-0.16	1.59	-62.89	0.605	-0.43	-23	7	6.64	0.06	0.2 cpm				
8	8:47:26	100	0.3	15.98	1.69	-0.02	1.43	-11.19	0.605	-0.05	-24	-1	6.55	-0.09	0.2 cpm				
Well CTMW-1	7 '	Volume purged													<u> </u>	<u> </u>			
6\09\16 FC500		before 1st readir	ng 0.6													18	1.1	2.55	
	8:19:25	200		14.64	2.26		7.29		0.594		-13		6.59		1.0 cpm	All parameters sta	able when sample was	collected.	
	8:22:05	200	0.6	14.57	2.24	-0.02	5.87	-24.19	0.568	-4.43	-15	-2	6.59	0.00	1.0 cpm	Turbidty < 5 NTU			
	8:25:33	200	0.6	14.70	2.22	-0.02	6.08	3.45	0.573	0.79	-19	-4	6.56	-0.03	1.0 cpm	Do > 0.20 mg/L			
	8:28:46	200	0.6	14.81	2.23	0.01	5.12	-18.75	0.585	2.05	-22	-3	6.42	-0.14	1.0 cpm				

relative change calculated after 2nd reading

Wednesday, March 29, 2017

Page 1 of 4

					Dissolve	ed Oxygen	Tu	rbidity	Specific (Conductivity	Redo	x Potential		рН	Pump	Total Purge	Total Volume		
	Time	Flow rate (ml/min)	Volume Purged (L)	Temp. (C)	(ppm) R	elative Change (ppm) +/- 0.3ppm	(NTU)	Relative Change (%) +/- 10%	(mS/cm)	Relative Change (%) +/- 3%	(mV)	Relative Change (mV) +/- 10mV		Relative Change +/- 0.1	Speed	Time Before Stabilization (min)	Purged at Stabilization (gallons)	Draw- down (0.01 ft)	Comments
8	8:31:05	200	0.6	14.92	2.26	0.03	4.56	-12.28	0.595	1.75	-24	-2	6.53	0.11	1.0 cpm		I	1 1	
8	8:34:07	200	0.6	14.96	2.21	-0.05	4.39	-3.87	0.607	1.93	-28	-4	6.57	0.04	1.0 cpm				
8	8:37:25	200	0.6	14.99	2.31	0.10	4.05	-8.4	0.612	0.85	-29	-1	6.54	-0.03	1.0 cpm				
II CTMW-1		olume purged efore 1st readin	¹⁹ 1.2													12	1.6	0.03	
9	9:01:49	400		14.72	1.41		1.90		1.806		-45		6.41		3.0 cpm	All parameters sta	able when sample was	collected.	
9	9:04:56	400	1.2	14.44	1.04	-0.37	0.97	-95.88	1.815	0.5	-61	-16	6.49	0.08	3.0 cpm	Turbidty < 5 NTU			
	9:07:05	400	1.2	14.38	0.89	-0.15	0.85	-14.12	1.806	-0.5	-63	-2	6.51	0.02	3.0 cpm	Do > 0.20 mg/L			
	9:10:12	400	1.2	14.37	0.86	-0.03	0.79	-7.59	1.813	0.39	-64	-1	6.55	0.04	3.0 cpm				
(9:13:05	400	1.2	14.34	0.88	0.02	0.61	-29.51	1.821	0.44	-64	0	6.56	0.01	3.0 cpm	l			
ell CTMW-18	1.	olume purged efore 1st readin	ng 0.6													12	0.8	0.64	
	11:17:05	200		17.94	1.08		2.14		0.751		-44		6.17		1.0 cpm	1	able when sample was	•	
	11:20:10	200	0.6	17.30	0.51	-0.57	1.57	-36.31	0.732	-2.48	-51	-7	6.1	-0.07	1.0 cpm	Turbidty < 5 NTU			
1	11:23:05	200	0.6	17.34	0.49	-0.02	1.24	-26.61	0.735	0.34	-54	-3	6.31	0.21	1.0 cpm	Do > 0.20 mg/L			
1	11:26:34	200	0.6	17.34	0.46	-0.03	1.24	0	0.742	0.93	-57	-3	6.32	0.01	1.0 cpm				
1	11:29:23	200	0.6	17.46	0.45	-0.01	1.18	-5.08	0.743	0.19	-58	-1	6.34	0.02	1.0 cpm				
ell CTMW-20 8\16 FC500		olume purged efore 1st readin	9 1.2													18	2.2	0.09	
1	10:32:32	400		14.41	1.13		5.27		0.923		-76		6.71		3.0 cpm	All parameters sta	able when sample was	collected.	
1	10:35:11	400	1.2	14.18	0.52	-0.61	10.02	47.41	0.809	-13.99	-103	-27	6.79	0.08	3.0 cpm	Turbidty < 5 NTU			
1	10:38:05	400	1.2	14.35	0.41	-0.11	18.7	46.42	0.736	-9.9	-106	-3	6.42	-0.37	3.0 cpm	Do > 0.20 mg/L			
1	10:41:21	400	1.2	14.63	0.39	-0.02	6.93	-169.84	0.632	-16.61	-104	2	6.48	0.06	3.0 cpm				
1	10:44:39	400	1.2	14.62	0.33	-0.06	3.33	-108.11	0.572	-10.32	-104	0	6.74	0.26	3.0 cpm				
1	10:47:44	400	1.2	14.65	0.34	0.01	2.26	-47.35	0.567	-0.88	-103	1	6.67	-0.07	3.0 cpm				
1	10:50:12	400	1.2	14.80	0.32	-0.02	1.30	-73.85	0.562	-1.03	-102	1	6.69	0.02	3.0 cpm				
II CTMW-2		olume purged sefore 1st readin	ng 0.0													40	0.0	0.00	
\16 FC500			¹ 9 0.6	45.05	0.57		2.20		0.400		00		6.05		10	12	0.8 able when sample was	0.36	
	10:25:06	200	0.6	15.85	2.57	0.14	2.39	22.04	0.499	2.24	-22 20	6	6.35	0.24	1.0 cpm	Turbidty < 5 NTU		ooneoled.	
	10:28:15	200	0.6	15.18 15.02	2.71 2.52	-0.19	1.81 2.02	-32.04 10.4	0.488	-2.34	-28	-6	6.14	-0.21 0.08	1.0 cpm	Do > 0.20 mg/L			
	10:31:26	200	0.6	14.99	2.52	0.06	1.38	-46.38	1	-1.1	-30 -30	-2	6.22		•	DO > 0.20 mg/L			
I	10.04.04	200	0.6	14.99	2.56	-0.16	1.09	-26.61	0.482	0.04	-30 -31	-1	6.23	0.00	1.0 cpm	1			

<u> </u>			,	1	ed Oxygen	Tu	rbidity	Specific C	Conductivity	Redo	x Potential		рН	Pump	Total Purge	Total Volume		
	Flow	Volume			Relative Change		Relative	-	Relative		Relative		Relative	Speed	Time Before	Purged at Stabilization	Draw-	
	rate	Purged		(ppm)	(ppm)	(NTU)	Change (%)	(mS/cm) (Change (%)	(mV)	Change (mV)		Change	(Hz or	Stabilization	(gallons)	down	
Time	(ml/min)	(L)	(C)		+/- 0.3ppm		+/- 10%		+/- 3%		+/- 10mV		+/- 0.1	cpm)	(min)	, ,	(0.01 ft)	Comments
Well CTMW-24D 6\09\16 FC5000T	Volume purged before 1st readin	g 1.2													12	1.6	0.04	
11:00:19	400		14.99	1.99		3.53		2.841		-57		6.53		3.0 cpm	All parameters st	able when sample was	collected.	
11:03:06	400	1.2	13.78	1.39	-0.60	2.08	-69.71	2.868	0.94	-86	-29	6.6	0.07	3.0 cpm	Turbidty < 5 NTU	I		
11:06:19	400	1.2	13.67	1.23	-0.16	3.27	36.39	2.872	0.14	-89	-3	6.6	0.00	3.0 cpm	Do > 0.20 mg/L			
11:09:09	400	1.2	13.70	1.14	-0.09	0.96	-240.62	2.847	-0.88	-90	-1	6.56	-0.04	3.0 cpm				
11:12:05	400	1.2	13.73	1.12	-0.02	0.62	-54.84	2.815	-1.14	-91	-1	6.59	0.03	3.0 cpm				
Well CTMW-25D	Volume purged		<u> </u>					1						<u> </u>				<u> </u>
6\08\16 FC5000T	before 1st readin	g 1.2													18	2.2	0.03	
9:31:06	400		14.31	0.66		2.03		1.277		-67		6.74		3.0 cpm	All parameters st	able when sample was	collected.	-
9:34:09	400	1.2	14.18	0.33	-0.33	1.09	-86.24	1.407	9.24	-80	-13	6.44	-0.30	3.0 cpm	Turbidty < 5 NTU	I		
9:37:16	400	1.2	14.23	0.33	0.00	0.60	-81.67	1.449	2.9	-83	-3	6.6	0.16	3.0 cpm	Do > 0.20 mg/L			
9:40:26	400	1.2	14.24	0.32	-0.01	0.90	33.33	1.544	6.15	-89	-6	6.51	-0.09	3.0 cpm				
9:43:39	400	1.2	14.22	0.29	-0.03	0.90	0	1.605	3.8	-93	-4	6.51	0.00	3.0 cpm				
9:46:19	400	1.2	14.27	0.28	-0.01	0.51	-76.47	1.618	0.8	-95	-2	6.42	-0.09	3.0 cpm				
9:49:08	400	1.2	14.25	0.27	-0.01	0.43	-18.6	1.630	0.74	-96	-1	6.66	0.24	3.0 cpm				
Well CTMW-5 6\08\16 FC5000T	Volume purged before 1st readin	9 1.05					_								15	1.7	0.17	
12:02:25	350		14.76	1.77		1.90		0.189		27		5.65		4.0 cpm	All parameters st	able when sample was	collected.	
12:05:30	350	1.05	14.47	0.92	-0.85	1.67	-13.77	0.175	-8.41	29	2	5.62	-0.03	4.0 cpm	Turbidty < 5 NTU	I		
12:08:05	350	1.05	14.32	0.58	-0.34	1.59	-5.03	0.174	-0.34	26	-3	5.69	0.07	4.0 cpm	Do > 0.20 mg/L			
12:11:04		1.05	14.38	0.36	-0.22	1.41	-12.77	0.172	-0.99	21	-5	5.79	0.10	4.0 cpm				
12:14:05		1.05	14.38	0.35	-0.01	1.41	0	0.171	-0.94	16	-5	5.8	0.01	4.0 cpm				
12:17:06	350	1.05	14.35	0.34	-0.01	1.38	-2.17	0.171	0.06	12	-4	5.86	0.06	4.0 cpm				
	Volume purged																	
	before 1st readin	g 1.2						<u> </u>				<u> </u>			12	1.6	0.03	
7:06:26	400		14.47	1.04		4.34		2.681		-75	<u> </u>	6.38		3.0 cpm	1 '	able when sample was	collected.	
7:09:06	400	1.2	14.48	1.14	0.10	0.78	-456.41	2.660	-0.79	-79	-4	6.41	0.03	3.0 cpm	Turbidty < 5 NTU	1		
7:12:00	_ `	1.2	14.49	1.28	0.14	0.96	18.75	2.658	-0.08	-82	-3	6.35	-0.06	3.0 cpm	Do > 0.20 mg/L			
7:15:05	-	1.2	14.51	1.31	0.03	0.49	-95.92	2.661	0.11	-83	-1	6.45	0.10	3.0 cpm	<u> </u>			
7:18:08	400	1.2	14.49	1.37	0.06	0.34	-44.12	2.663	0.08	-84	-1	6.39	-0.06	3.0 cpm	l			
	Volume purged before 1st readin	g 0.6													15	1.0	2.15	
13:19:10		0.0	17.73	1.80		52.7		5.956		-196		12.14		1.0 cpm	!	able when sample was		<u> </u>
13:22:05	<u> </u>	0.6	17.50	0.92	-0.88	21.1	-149.76	6.025	1.15	-201	-5	12.05	-0.09	1.0 cpm	Turbidty < 5 NTU			
13:25:07	-	0.6	17.48	0.60	-0.32	10.11	-108.7	6.037	0.2	-201	0	12.11	0.06	1.0 cpm	Do > 0.20 mg/L			
13.23.07	1 200	0.0	17.40	0.00	-0.32	10.11	-100.7	1 0.037	0.2	-201	U	1 12.11	0.00	1.0 cpiii	I 0.20 mg/L			

Time	Flow rate (ml/min)	Volume Purged (L)	Temp. (C)		red Oxygen Relative Change (ppm) +/- 0.3ppm	Tu (NTU)	rbidity Relative Change (%) +/- 10%	Specific (mS/cm)	Conductivity Relative Change (%) +/- 3%	Redo (mV)	x Potential Relative Change (mV) +/- 10mV	F	OH Relative Change +/- 0.1	Speed	l Total Purge	Stabilization	Draw- down (0.01 ft)	Comments
13:28:20	200	0.6	17.49	0.59	-0.01	4.89	-106.75	6.108	1.16	-199	2	12.1	-0.01	1.0 cpm				
13:31:05	200	0.6	17.48	0.56	-0.03	4.38	-11.64	6.147	0.63	-198	1	12.05	-0.05	1.0 cpm				
13:34:05	200	0.6	17.55	0.55	-0.01	4.09	-7.09	6.106	-0.67	-198	0	12	-0.05	1.0 cpm				

	olume purged efore 1st reading	1.2												12	1.6	0.07	
12:43:13	400		15.93	1.02		0.73		5.307		-70		6.45	3.0 cpm	All parameters sta	able when sample was	collected.	
12:46:17	400	1.2	15.57	0.62	-0.40	0.46	-58.7	5.242	-1.24	-85	-15	6.41 -0.04	3.0 cpm	Turbidty < 5 NTU			
12:49:29	400	1.2	15.42	0.51	-0.11	0.21	-119.05	5.158	-1.63	-89	-4	6.44 0.03	3.0 cpm	Do > 0.20 mg/L			
12:52:05	400	1.2	15.47	0.47	-0.04	0.18	-16.67	5.217	1.13	-91	-2	6.46 0.02	3.0 cpm				
12:55:06	400	1.2	15.39	0.48	0.01	0.09	-100	5.260	0.82	-93	-2	6.44 -0.02	3.0 cpm				

relative change calculated after 2nd reading

Wednesday, March 29, 2017

Page 4 of 4

GENERAL PERSONNEL

PID

Field Event: Tacoma 2Q16

Name(s): Jimmy McKechnie/Slavik Karashchuk

Brand: Photovac

Model: 2020 ComboPro

Date (mm / dd / yyyy): 0 6 / 0 6 / 2 0 1 6

Organization: PSC Serial No.: PCZL0004

Serial No.: 001

LIQUID-LEVEL METER Brand: WLM Series Water Level Meter

Model: Mini EZ Reel

	Dedicated	Well \	Venting	Liqu	iid-Level Measuren	nent	Total Well		
Well or Piezometer	Pump (VERIFY) (X = yes)	Time (24-h clock) (hh mm)	Headspace PID Reading (ppm)	Time (24-h clock) (bh.mm)	Depth to LNAPL (feet)	Depth to Water (feet)	Depth (4 th Q only) (feet)	Comments	NOTES
CTMW-1		0654		1031	5.58	5.59		Purged ~ 100 ml of product.	Inner casing for accurate water levels
CTMW-5	Х	0651		0925		6.00			
CTMW-6	. k# a	0736		1058	5.89	5.91		Purged ~ 100 ml of product.	Inner casing for accurate water levels
CTMW-7	Х	0737		0850		11.97			
CTMW-8	Х	0646		0853		6.55			
CTMW-9	·	0647		0855		11.44			
CTMW-10		0644		1022	N/A	4.98		Trace of LNAPL/ Did not purge.	Inner casing for accurate water levels
CTMW-12		0633		0846		15,39			
CTMW-14	\ T	0641		0858		8.46			
CTMW-15	\(\text{\tin}\text{\te}\tint{\text{\tin}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\tex{\text{\texi}\text{\texi}\text{\texit{\texi}\text{\texi}\t	0722		0956		6.61			
CTMW-17	Х	0630		0840		10.25			
CTMW-17D	922	0631		0842		13.72			
CTMW-18	Х	0740		0941		9.82			
CTMW-20	295	0658		0928		3,33			
CTMW-21		N/A		N/A		N/A		Well has been decomissioned and will be replaced in future.	
CTMW-24		0636		0827		8.54			
CTMW-24D		0637		0829		13.32			
CTMW-25D		0723		0958		13.34			
PZ-1		0656		1047	N/A	3.82		Trace of LNAPL/ Did not purge.	
PZ-4		N/A		N/A		N/A		Well has been decomissioned and will be replaced in future.	
PZ-5	Dec	0639		0832		4.87			
PZ-6	35	0738		1110	N/A	1.94		LNAPL too viscous for WL/ Purged ~ 80 ml of product.	Inner casing for accurate water levels
PZ-7		0624		0824		12.50			
PZ-8	#	0622		0821		8.54			
PZ-9	#	0619		0817		7.20			
PZ-10	7.	0742		0943		2,20			
MVV-1		0729		1027	N/A	3.05		Trace of LNAPL/ Did not purge.	Inner casing for accurate water levels
TP-1		0735		0939		2.37			

if i	Dedicated	Well	Venting	Lic	uid-Level Measurem	ent	Total Well			
Well or Piezometer	Pump (VERIFY)	Time (24-h clock)	Headspace PID Reading	Time (24-h clock)	Depth to LNAPL	Depth to Water		(4 th	Comments	NOTES
	(X = yes)	(hh mm)	(ppm)	(hh:mm)	(feet)	(feet)	(feet)	_		
TP-2	:355	0734		0937		2.52				
TP-3	*	0733		0935		2.25				
TP-4	===	0732		0933		2.41				
TP-5	1221	0731		0931		2.54				
TP-6		0730		0946		2,84				
TP-7	120	0713		0948		2.25				
TP-8	\$775	0714		0950		2,53				
TP-9	1111	0715		0952		2,43				
TP-10	790	0718		0954		2.88				
SB-1A	1346	0749		1013		5.60				
SB-2A	325	0745		1009		5.97				
SB-3A	522	0747		1005		5.41				
CCW-2A	.044	0757		0904		3.84			Water in monument.	
CCW-2B	596	0759		0906		3.88			Water in monument.	
CCW-2C	0.75	0755		0902		9,20				
CCW-3A	100	0806		0916		4.90				
CCW-3B	540	0805		0914		5.66				
CCW-3C	E	0804		0918		12.67				
CCW-5B	15	0802		0909		4.22			Water in monument.	
CCW-5C	=	0800		0911		9,46			Water in monument.	

Shading indicates wells/piezometers with a history of LNAPL accumulation
 Bold indicates wells/piezometers whose water levels must be measured within a single one-hour period.

GENERAL

Field Event: Tacoma 4Q16

Date (mm / dd / yyyy): 12/01/2016

PERSONNEL

Name(s): Jimmy McKechnie/Slavik Karashchuk

PID Brand: Photovac

Model: 2020 ComboPro

Organization: PSC
Serial No.: PCZL0004

LIQUID-LEVEL METER Brand: WLM Series Water Level Meter

Model: Mini EZ Reel

Serial No.: 001

	Dedicated	Well \	/enting	Liqui	d-Level Measure	ement	Total Well		
Well or Piezometer	Pump (VERIFY) (X = yes)	Time (24-h clock) (hh:mm)	Headspace PID Reading (ppm)	Time (24-h clock) (hh:mm)	Depth to LNAPL (feet)	Depth to Water (feet)	Depth (4th Q only) (feet)	Comments	NOTES
CTMW-1	THE .	0914		1245		3.50		No LNAPL Present.	Inner casing for accurate water levels
CTMW-5	х	0854		1218		3.35			
CTMW-6	125-115	0858		1256		3.75		LNAPL too viscous for WL / Purged ~ 30ml. of product.	Inner casing for accurate water levels
CTMW-7	х	0859		1115		11.36			
CTMW-8	×	0847		1109		4.35			
CTMW-9	-	0848		1110		10.95			
CTMW-10		0845		1238		2.30		No LNAPL Present.	Inner casing for accurate water levels
CTMW-11R	-	N/A		N/A		N/A			
CTMW-12		0945		1051		14.97			
CTMW-14	;ee.	0842		1107		4.81			
CTMW-15	199	0938		1211		5.20			
CTMW-17	х	0947		1046		7.22			
CTMW-17D	134	0948		1045		13.14			
CTMW-18	×	0911		1227		7.12			
CTMW-20	達	0916		1215		1.45			
CTMW-21	*	N/A		N/A		N/A		Trailer Parked on top Decan wis.	
CTMVV-23	3 NH	N/A		N/A		N/A		Decan mis.	
CTMW-24		0832		1100		5.65			
CTMW-24D		0833		1101		13.05			
CTMW-25D		0939		1208		9.65			
PZ-1	+	0913		1248		0.90		LNAPL too viscous for WL / purged ~ 10ml. of product.	
PZ-4		N/A		N/A		N/A			
PZ-5	366	0840		1231		2.83			
PZ-6	-	0908	8 - 1490	1259		0.20		LNAPL too viscous for WL / purged ~ 40ml. of product.	Inner casing for accurate water levels
PZ-7		0829		1058		10.10			
PZ-8	3.00	0825		1055		6.45			
PZ-9	55	0822		1053		5.90			
PZ-10	16	0906		1230		0.76		Water in well monument,	
MW-1	=	0921	- T	1240		1.00		No LNAPL Present.	Inner casing for accurate water levels

GENERAL

Field Event: Tacoma 4Q16

Date (mm / dd / yyyy): 12/01/2016

PERSONNEL

Name(s): Jimmy McKechnie/Slavik Karashchuk

PID

Brand: Photovac

Model: 2020 ComboPro

Organization: PSC Serial No.: PCZL0004

LIQUID-LEVEL METER Brand: WLM Series Water Level Meter

Model: Mini EZ Reel

Serial No.: 001

	Dedicated	Well \	/enting	Liquid	d-Level Measuri	ement	Total Well		
Well or Piezometer	Pump (VERIFY)	Time (24-h clock)	Headspace PID Reading	Time (24-h clock)	Depth to LNAPL	Depth to Water	Depth (4th Q only)	Comments	NOTES
	(X = yes)	(hh:mm)	(ppm)	(hh:mm)	(feet)	(feet)	(feet)		
TP-1		0900		1225		1.21			
TP-2	2000	0901		1224		1.35			
TP-3	5 ±	0902		1223		1.09			
TP-4	0.55	0903		1222		1.25			
TP-5	ing:	0904		1221		1.36			
TP-6	1984	N/A		N/A		N/A		Trailer parked over well.	
TP-7	38	N/A		N/A		N/A		Trailer parked over well.	
TP-8	357	0935		1204		0.20			
TP-9	544	0932		1203		0.15			
TP-10	(e	0936		1202		0.55			
SB-1A	16	1000		1152		2.00			
SB-2A	144	1004		1147		3.51			
SB-3A	144	0955		1155		2.70			
CCW-2A	-	1029		1125		2.55		Water in well monument.	
CCW-2B		1032		1126		1.65		Water in well monument.	
CCW-2C	=	1031		1127		8.64		Water in well monument.	
CCW-3A		1015		1131		3.67			
CCW-3B	==	1016		1129		4.11			
CCW-3C	2	1017		1133		12.00			
CCW-5B		1021		1136		2.95		Water in well monument.	
CCW-5C	-	1022		1138		8.64		Water in well monument.	

⁽¹⁾ Shading indicates wells/piezometers with a history of LNAPL accumulation.

⁽²⁾ **Bold** indicates wells/piezometers whose water levels must be measured within a single one-hour period

Beery, Duane

From:

Chang, Rachel/SEA < Rachel.Chang@CH2M.com>

Sent:

Thursday, March 30, 2017 9:16 AM

To: Cc: Beery, Duane Sheila Smith

Subject:

RE: Tacoma 2016 H2O level for Emerald

Hi Duane,

Per your request, below is groundwater elevation data for June and December 2016 at Emerald Tacoma.

Table 1. June 6, 2016 Groundwater Elevation Measurements

	MW-1	MW-2	MW-3R	MW-4
Date and Time	June 6, 2016 09:30 a.m.	June 6, 2016 09:36 a.m.	June 6, 2016 09:45 a.m.	June 6, 2016 09:41 a.m.
Measuring Point Elevation ^a (feet)	14.34	13.94	14.65	14.10
Depth to Water (feet)	3.19	3.60	4.07	3.07
Water Elevation (feet)	11.15	10.34	10.58	11.03
Measured Well Depth (feet)	7.02	8.22	7.54	8.03

^a Based on survey data conducted by CH2M HILL in January 2006 (referenced to NGVD 29).

Table 1. December 2016 Groundwater Elevation Measurements

	MW-1	MW-2	MW-3R	MW-4
Date and Time	Dec. 1, 2016 7:45 a.m.	Dec. 1, 2016 8:00 a.m.	Dec. 1, 2016 7:29 a.m.	Dec. 1, 2016 7:39 a.m.
Measuring Point Elevation ^a (feet)	14.34	13.94	14.65	14.10
Depth to Water (feet)	1.51	2.14	3.80	1.34
Water Elevation (feet)	12.83	11.80	10.85	12.76
Measured Well Depth (feet)	7.00	8.27	NA	NA

^a Based on survey data conducted by CH2M HILL in January 2006 (referenced to NGVD 29).


NA – Not available

Going forward, please contact Sheila Smith (cc'ed on this email) for groundwater elevation data. Her contact information is below.

Sheila Smith

Director, Environmental Compliance

Emerald. A Safety-Kleen Company 7343 East Marginal Way S., Seattle WA 98108 ssmith@emeraldrenews.com ATTACHMENT B

ATTACHMENT C

QA/QC Solutions, LLC

James J. Mc Ateer, Jr., Managing Member

7532 Champion Hill Rd. SE Salem, Oregon 97306

Telephone: 503.763.6948 Facsimile: 503.566.2114 Cellular: 503.881.1501 email: jjmcateer@msn.com

September 27, 2016

William Beck and Duane Beery Stericycle Environmental Solutions 1800 72nd Avenue South, Suite 217 Kent, Washington 98032

Subject: Tacoma 2nd Quarter 2016 Data Validation Review

Client Project No.: 376.01

QA/QC Solutions, LLC Project No.: 072816.1 (QA/QC Support, Tacoma 2ndQ16)

Dear Bill and Duane:

This letter documents the results of the data validation review of the chemical analyses of organic and inorganic compounds completed on groundwater samples associated with Stericycle Environmental Solutions Tacoma 2nd quarter 2016 sampling event.

The data were validated to verify the laboratory quality assurance and quality control (QA/QC) procedures were documented and that the overall quality of the data reported is sufficient to support its intended purposes. A summary of the data set, the analytical methods used to complete the chemical analyses, the data validation procedures used, and the overall assessment of data quality is presented below.

Data Set

The data set consisted of 19 water samples (i.e., 16 groundwater samples, 1 field duplicate, 2 trip blanks, and 1 field blank that were collected in June 2016. A summary of the samples collected and the analyses completed is presented in Table 1.

All organic and inorganic chemical analyses were completed by ALS Group USA Corp. dba ALS Environmental (ALS) located in Kelso, Washington under service requests K1606284. ALS submitted a complete hardcopy data validation deliverables and electronic data deliverables (EDDs).

Analytical Methods

The analytical methods used to complete the chemical analyses included the following:

> Total metals (i.e., arsenic, cadmium, chromium, copper, lead, nickel, and zinc) by digestion with 1% nitric acid (selected samples) or with nitric and hydrochloric acids (selected samples) and analysis by inductively coupled plasma-mass spectrometry (ICP-MS) using U.S. EPA SW-846 Method 6020A (U.S. EPA 2016).

- ➤ Total mercury by digestion with hydrogen peroxide and nitric acid, addition of nickel nitrate solution, and analysis by cold vapor atomic absorption (CVAA) using U.S. EPA SW-846 Method 7470A (U.S. EPA 2016).
- Sasoline-range petroleum hydrocarbons by purge and trap and analysis by gas chromatography/flame ionization detection (GC/FID) using the Washington Department of Ecology NWTPH-Gx method (Ecology 1997).
- ➤ Diesel- and oil-range petroleum hydrocarbons by extraction and analysis by GC/FID using the Washington Department of Ecology NWTPH-Dx (extended) method (Ecology 1997).
- ➤ Volatile organic compounds (VOCs) (46 target analytes with co-elutions included) by purge and trap and analysis by gas chromatography/mass spectrometry (GC/MS) operated in the full scan mode using U.S. EPA SW-846 Methods 5030B and 8260C, respectively (U.S. EPA 2016).
- ➤ VOCs (5 target analytes) by purge and trap and analysis by GC/MS operated in the selected ion monitoring (SIM) mode to achieve lower reporting limits using U.S. EPA SW-846 Methods 5030B and 8260C, respectively (U.S. EPA 2016).
- ➤ 1,4-Dioxane by separatory funnel extraction and analysis by GC/MS operated in the SIM mode using U.S. EPA SW-846 Methods 3510C and 8270D-SIM, respectively (U.S. EPA 2016).

Data Validation Procedures

Data validation procedures included evaluating a summary of the sample results and applicable quality control results reported by the laboratory; this level of validation is also referred to as an abbreviated data review (equivalent to "Stage 2B" review per U.S. EPA 2009, which is equivalent to "Level EPA2B" for use with the Washington Department of Ecology EIMS database). The analytical data were validated generally following the applicable guidance and requirements:

- > Guidance on Environmental Data Verification and Validation (U.S. EPA 2002)
- ➤ USEPA Contract Laboratory Program, National Functional Guidelines for Superfund Organic Methods Data Review. Final. OSWER 9240.1-45. USEPA/540/R-08/01 (U.S. EPA 2008).
- ➤ Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. (U.S. EPA 2009).
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OSWER 9240.1-51. EPA 540-R-10-011 (U.S. EPA 2010).
- ➤ Method-specific and laboratory-established quality control requirements, as applicable.

Data validation procedures were modified to accommodate QA/QC requirements for methods (e.g., petroleum hydrocarbon analyses) that are not specifically addressed by the USEPA Nation Functional Guidelines. In this situation, method-specific and laboratory-established control limits were used, as necessary, to determine if qualification of the data was necessary. The laboratory data deliverables that were validated included the following:

- Case narratives discussing analytical problems (if any) and procedures.
- ➤ Chain-of-custody documentation to verify completeness of the data set.
- > Sample preparation logs or laboratory summary result forms to verify analytical holding times were met.
- Results for applicable instrument tuning, initial calibration, and continuing calibration verification (CCV) results to assess instrument performance.
- > Results for applicable instrument blanks (i.e., initial calibration blanks [ICBs] and continuing calibration blanks [CCBs]), method blanks, trip blanks, and field blanks to determine whether an analyte that was reported as detected in any sample was the result of possible contamination introduced at the laboratory, during transport of samples, or during field sampling, respectively.
- Results for applicable internal standards performance (VOC and 1,4-Dioxane analyses) to verify that instrument sensitivity and response was stable during the analysis of the samples.
- Results for applicable method-specific quality control measurements for metals (i.e., serial dilutions and interference check samples for metals analyses) to assess potential matrix interference effects.
- ➤ Results for applicable surrogate compound (or system monitoring compound for VOC analyses), laboratory control sample (LCS) (i.e., blank spike), duplicate LCS, matrix spike (MS), and matrix spike duplicate (MSD) recoveries to assess analytical accuracy.
- > Results for applicable laboratory duplicate sample, duplicate LCS, and MSD analyses to assess analytical precision.
- > Results for the field duplicate samples to provide additional information in support of the quality assurance review.
- A review of instrument printouts (e.g., chromatograms and quantification reports analyses for gasoline-range petroleum hydrocarbons) to assess the validity of analyte identification reported as either detected or undetected.
- ➤ Laboratory summaries of analytical results.

Verification of applicable laboratory calculations, transcriptions, review of instrument printouts, and review of bench sheets were generally not completed during the abbreviated data validation review. There may be analytical problems that could only be identified by completing a thorough review (i.e., 100-percent data validation) of all original instrument printouts and associated analytical quality control results. Verification of all possible factors that could result in the degradation of data quality was not completed nor should be inferred at this time. The laboratory case narratives did not indicate any significant problems with data that were not reviewed. The adequacy of the sampling procedures was not completed during data validation.

Performance based control limits established by the laboratory and control limits provided in the method protocols were used to evaluate data quality and determine the need for data qualification. Applicable laboratory control limits (e.g., recoveries for surrogate compounds, LCSs and LCS duplicates, and MS/MSDs) were used during data validation. Data qualifiers were assigned during data validation to both hardcopy data sheets (data validation copies only) and the EDD when applicable QA/QC limits were not

Bill Beck and Duane Beery September 27, 2016 Page 4

met and qualification of the data was warranted. Data qualifiers were assigned following guidance specified by U.S. EPA (2002, 2008, and 2010) and the quality control requirements specified in the applicable analytical methods referenced below.

Overall Assessment of Data Quality

Overall, the data reported are of good quality and the results for the applicable QA/QC procedures that were used by the laboratory during the analysis of the samples were generally acceptable. Selected sample results required qualification during data validation because method-specific QA/QC criteria were not met; results maybe qualified for more than one reason. During data validation, the following actions were taken:

- A total of 76 results reported as detected were qualified as estimated (assigned a *J* qualifier).
- \triangleright A total of 38 results reported as detected were restated as undetected (assigned a U qualifier).
- \triangleright No results required rejection (R).

Analytical data that did not meet method- and/or laboratory-established control limits for applicable quality control measurements were qualified as estimated (J) by the laboratory or during data validation. These qualified data are considered usable and have an acceptable degree of uncertainty (i.e., may be less precise or less accurate than unqualified data). Analytical data that were reported as undetected (U) by the laboratory or that were restated as undetected (U) during data validation are usable. A summary of the qualified sample data and the reason(s) for qualification is presented in Table 2.

The data and reasons for qualification (*note that results may be qualified for more than one reason) included the following:

Metals, VOC, and 1,4-Dioxane Analyses

A total of 37 results reported as detected at a concentration above the method detection limit (MDL), but less than the method reporting limit (MRL) were qualified as estimated (*J*). These qualified results may exhibit a greater degree of uncertainty than a concentration that is reported above the MRL.

Metals Analyses

➤ A total of 35 metals results reported as detected for either arsenic, cadmium, chromium, cadmium, lead, or zinc were restated as undetected (*U*) because the concentrations were either less than the concentration found in the associated trip blanks or were less than between ≤2 times and ≤5 times the concentration found the associated blanks.

VOC Analyses

➤ All results reported acetonitrile and isobutyl alcohol were qualified as estimated (*J*) because the method-specific minimum relative response factor (RRF) requirement of ≥0.01 was not met in the associated initial calibration standards and CCVs.

Bill Beck and Duane Beery September 27, 2016 Page 5

> Three results reported as detected for methylene chloride were restated as undetected (*U*) because the concentrations were either less than the concentration found in the associated trip blanks or were less than between ≤2 times and ≤5 times the concentration found the associated trip blanks. These qualified results were either restated as undetected at the concentration found in the associated trip blank or were restated as undetected at the concentration reported if it was between ≤2 times and ≤5 times the concentration found the associated blank.

During data validation, it was confirmed that selected data-validation-specific and/or method-specific QA/QC measurement criteria were not met. Qualification of the sample results was not required because the overall quality of the data reported was not affected. Some of the QA/QC measurement criteria that were not met (but not inclusive of all exceedances noted) included the following:

Diesel-Range Petroleum Hydrocarbons Analyses

➤ Insufficient sample volume was available to complete analysis of sample duplicate analyses. Precision was assessed based on the results reported for the LCS and LCS duplicates.

VOC Analyses

- ➤ The percent differences for selected target compounds were above the method-specific control limit of 20 percent in some CCVs. No data required qualification because more than 80 percent of the target compounds were within the 20 percent difference method-specific control limit allowed in Method 8260C (U.S. EPA 2016).
- > The LCS and/or LCS Duplicate recoveries for acrolein were above the upper laboratory-established control limit. This VOC was not reported as detected in any sample; therefore, no acrolein results required qualification for this reason.

In some instances, selected samples required dilution prior to analysis (as is required by the analytical methods) to obtain concentrations that were within the linear range of the instrument or to minimize the effects of matrix interferences to obtain reportable results.

This concludes the data validation review. Should you have any questions regarding the information presented herein, please contact me by telephone at 503.763.6948 or by e-mail at jjmcateer@msn.com.

Cordially,

QA/QC Solutions, LLC

James J. Mc Ateer, Jr., Managing Member

cc: Chris Waldron, Pioneer Technologies Corporation Natasya Gray, L.G., Dalton, Olmsted & Fuglevand, Inc.

Attachments

Bill Beck and Duane Beery September 27, 2016 Page 6

References

Ecology. 1997. Analytical methods for petroleum hydrocarbons. June 1997. Washington Department of Ecology, Olympia, WA.

U.S. EPA 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA/240/R-02/004. November 2002. U.S. Environmental Protection Agency, Office of Environmental Information, Washington DC.

U.S. EPA 2008. USEPA Contract Laboratory Program, national functional guidelines for superfund organic methods data review. Final. OSWER 9240.1-45. USEPA/540/R-08/01. June 2008. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, DC.

U.S. EPA 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. January 13, 2009. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA 2010. USEPA Contract Laboratory Program national functional guidelines for inorganic data superfund data review. Final. OSWER 9240.1-51. EPA 540-R-10-011. January 2010. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, DC.

U.S. EPA 2016. SW-846 on-line. Test methods for evaluating solid wastes, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-compendium. Accessed on September 1, 2016. Last updated on July 5, 2016. U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC

Table 1. Summary of Samples Collected and Analyses Completed for Tacoma Second Quarter 2016 Groundwater Sampling Event

	Laboratory	Sample	Sample	Sample	Total Metals	Total Mercury by	NWTPH-Gx by WDOE	NWTPH-Dx by WDOE	VOCs by	VOCS by	1,4-Dioxane by
	Sample Number	Date	Time	Depth	by 6020A	7470A	Method	Method	8260C	8260C SIM	8270D SIM
Trip Blank #1-0616	K1606284-001	6/8/16	06:20	0			✓		✓	✓	
CTMW-14-0616	K1606284-002	6/8/16	07:02	9.9					✓	✓	
CTMW-15-0616	K1606284-003	6/8/16	08:47	9.3	✓	✓		✓	✓	✓	✓
CTMW-25D-0616	K1606284-004	6/8/16	09:49	19.7	✓	✓		✓	✓	✓	✓
CTMW-20-0616	K1606284-005	6/8/16	10:50	6.6	✓	✓	✓	✓	✓	✓	
CTMW-18-0616	K1606284-006	6/8/16	11:29	12.5	✓	✓	✓	✓	✓	✓	✓
CTMW-5-0616	K1606284-007	6/8/16	12:17	9.95	✓	✓		✓	✓	✓	✓
CTMW-9-0616	K1606284-008	6/8/16	12:55	24	✓	✓		✓	✓	✓	✓
CTMW-8-0616	K1606284-009	6/8/16	13:34	9.1	✓	✓		✓	✓	✓	✓
Trip Blank #2-0616	K1606284-010	6/9/16	06:10	0					✓	✓	
CTMW-14-0616	K1606284-011	6/9/16	06:35	9.9	✓	✓		✓			
CTMW-7-0616	K1606284-012	6/9/16	07:18	25	✓	✓		✓	✓	✓	✓
CTMW-9-7-0616	K1606284-013	6/9/16	07:18	25	✓	✓		✓	✓	✓	✓
Field Blank #1-0616	K1606284-014	6/9/16	08:02	0	✓	✓		✓	✓	✓	✓
CTMW-17-0616	K1606284-015	6/9/16	08:37	14	✓	✓		✓	✓	✓	
CTMW-17D-0616	K1606284-016	6/9/16	09:13	28	✓	✓		✓	✓	✓	
CTMW-12-0616	K1606284-017	6/9/16	09:44	26	✓	✓		✓	✓	✓	
CTMW-24-0616	K1606284-018	6/9/16	10:37	11.1	✓	✓		✓	✓	✓	✓
CTMW-24D-0616	K1606284-019	6/9/16	11:12	24	√	✓		√	✓	√	√
Notes		Total Nur	nber of S	amples:	16	16	3	16	18	18	11

Dx - diesel-range and oil-range hydrocarbons

Gx - gasoline-range hydrocarbons

NWTPH - Northwest Total Petroleum Hydrocarbons

SIM - selected ion monitoring VOC - volatile organic compound

WDOE - Washington Department of Ecology

Table 2. Summary of Qualified Data for Tacoma Second Quarter 2016 Groundwater Sampling Event^a

	Laboratory						Laboratory	Data Validation			Possible
Sample Number	Sample Number	Chemical	Concentration	Units	MRL	MDL	Data Flag	Qualifier	Quality Control Reason	Quality Control Result	Bias ^{b,c,d}
Metals	1/4000004 000	Ohana and issues	0.00040	//	0.00000	0.00000			Datastad in field blank	Datastad at 0 00044//	Falsa assitiva
CTMW-15-0616	K1606284-003	Chromium	0.00042	mg/L	0.00020	0.00002		U U	Detected in field blank	Detected at 0.00014 mg/L	False positive
		Lead	0.000063	mg/L	0.000020	0.000005		U	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00185	mg/L	0.00050	0.00020		U	Detected in field blank	Detected at 0.00066 mg/L	False positive
CTMW-25D-0616	K1606284-004	Cadmium	0.000015	mg/L	0.000020	0.000005	J	U	Detected in CCB	Detected at 0.000013 mg/L	False positive
CTMW-20-0616	K1606284-005	Cadmium	0.000013	mg/L	0.000020	0.000005	J	U	Detected in CCB	Detected at 0.000013 mg/L	False positive
		Chromium	0.00063	mg/L	0.00020	0.00002		U	Detected in field blank	Detected at 0.00014 mg/L	False positive
		Copper	0.00047	mg/L	0.00010	0.00002		U	Detected in method blank	Detected at 0.000033 mg/L	False positive
		Lead	0.000040	mg/L	0.000020	0.000005		U	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00087	mg/L	0.00050	0.00020		U	Detected in field blank	Detected at 0.00066 mg/L	False positive
CTMW-9-0616	K1606284-008	Arsenic	0.00012	mg/L	0.00050	0.00003	J	J	Detected in method blank	Detected at 0.00010 mg/L	False positive
		Cadmium	0.000013	mg/L	0.000020	0.000001	Ĵ	Ü	Detected in CCB	Detected at 0.000013 mg/L	False positive
		Lead	0.000040	mg/L	0.000020	0.000008	Ĵ	Ū	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00036	mg/L	0.00050	0.00005	J	J	Detected in field blank	Detected at 0.00066 mg/L	False positive
CTMW-8-0616	K1606284-009	Cadmium	0.000017	mg/L	0.000020	0.000005	J	J	Detected in CCB	Detected at 0.000013 mg/L	False positive
C110100-0-0010	111000204-003	Chromium	0.00021	mg/L	0.000020	0.000003	3	Ü	Detected in field blank	Detected at 0.00013 mg/L	False positive
		Zinc	0.00021	mg/L	0.00020	0.00002		Ŭ	Detected in field blank	Detected at 0.00014 mg/L	False positive
CTMW-14-0616	K1606284-011	Chromium	0.00061	mg/L	0.00020	0.00002		U	Detected in field blank	Detected at 0.00014 mg/L	False positive
O11010-14-0010	1000204-011	Onioniani	0.00001	ilig/L	0.00020	0.00002		U	Detected in field blank	Detected at 0.00014 mg/L	i alse positive
CTMW-7-0616	K1606284-012	Arsenic	0.00008	mg/L	0.00050	0.00003	J	U	Detected in method blank	Detected at 0.00010 mg/L	False positive
		Cadmium	0.000013	mg/L	0.000020	0.000001	J	U	Detected in CCB	Detected at 0.000013 mg/L	False positive
		Copper	0.000105	mg/L	0.000100			U	Detected in method blank	Detected at 0.000033 mg/L	False positive
		Lead	0.000040	mg/L	0.000020			U	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00134	mg/L	0.00050	0.00005		U	Detected in field blank	Detected at 0.00066 mg/L	False positive
CTMW-9-7-0616	K1606284-013	Arsenic	0.00008	mg/L	0.00050	0.00003	J	U	Detected in method blank	Detected at 0.00010 mg/L	False positive
		Cadmium	0.000014	mg/L	0.000020	0.000001	J	U	Detected in CCB	Detected at 0.000013 mg/L	False positive
		Copper	0.000100	mg/L	0.000100			U	Detected in method blank	Detected at 0.000033 mg/L	
		Lead	0.000040	mg/L	0.000020	0.000008	J	U	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00133	mg/L	0.00050	0.00005		U	Detected in field blank	Detected at 0.00066 mg/L	False positive
Field Blank #1-0616	K1606284-014	Chromium	0.00014	mg/L	0.00020	0.00002	J	J	Concentration >MDL. <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Copper	0.00003	mg/L	0.00010	0.00002	J	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Nickel	0.00005	mg/L	0.00020	0.00002	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-17D-0616	K1606284-016	Cadmium	0.000022	mg/L	0.000020	0.000005		U	Detected in CCB	Detected at 0.000013 mg/L	False positive
	111000201010	Lead	0.000076	mg/L	0.000020			Ŭ	Detected in field blank	Detected at 0.0000040 mg/L	
		Zinc	0.00223	mg/L	0.00050	0.00020		Ü	Detected in field blank	Detected at 0.00066 mg/L	False positive
CTMW 12 0616	K1606284-017	Cadmium	0.000013	ma/l	0.000020	0.000005	J	U	Detected in CCB	Detected at 0.000012 ~~"	False positive
CTMW-12-0616	11000204-017	Lead	0.000013	mg/L mg/L	0.000020		J	U	Detected in GCB Detected in field blank	Detected at 0.000013 mg/L Detected at 0.0000040 mg/L	
		Zinc	0.000030	mg/L	0.000050	0.00000		Ü	Detected in field blank	Detected at 0.000066 mg/L	False positive
				_						· ·	·
CTMW-24-0616	K1606284-018	Cadmium	0.000019	mg/L	0.000020		J	U	Detected in CCB	Detected at 0.000013 mg/L	•
		Chromium	0.00056	mg/L	0.00020	0.00002		U	Detected in field blank	Detected at 0.00014 mg/L	False positive
		Lead	0.000163	mg/L	0.000020	0.000005		U	Detected in field blank	Detected at 0.0000040 mg/L	False positive
CTMW-24D-0616	K1606284-019	Lead	0.000048	mg/L	0.000020	0.000005		U	Detected in field blank	Detected at 0.0000040 mg/L	False positive
		Zinc	0.00129	mg/L	0.00050	0.00020		U	Detected in field blank	Detected at 0.00066 mg/L	False positive

Table 2, continued

CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	ated in full scan	Acetonitrile Chloroform Isobutyl Alcohol Methylene Chloride Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND 0.11 ND 0.17 ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 0.50 100 2.0 50 100 50 100 0.50 50 100	13 0.072 6.9 0.10 13 6.9 13 6.9 0.054 13 6.9	U U U U U U U U U	Qualifier J J J J J J J J J J J J J J J J J J	RRF in calibration standards <0.01 Concentration >MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" <0.01<="" calibration="" in="" rrf="" standards="" th=""><th>RRF < 0.01 NA RRF < 0.01 NA RRF < 0.01 NA</th><th>Low or high Low or high</th></mrl></mrl></mrl>	RRF < 0.01 NA RRF < 0.01 NA RRF < 0.01 NA	Low or high
Trip Blank #1-0616 K1 CTMW-14-0616 K1 CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	<1606284-001 <1606284-002 <1606284-003 <1606284-004 <1606284-005	Acetonitrile Chloroform Isobutyl Alcohol Methylene Chloride Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.11 ND 0.17 ND ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 100 2.0 50 100 50 100 0.50 50 100	0.072 6.9 0.10 13 6.9 13 6.9 0.054 13 6.9	707 00 00 1	J	Concentration >MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl< th=""><th>NA RRF <0.01 NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01</th><th>Low or high Low or high</th></mrl<></mrl></mrl></mrl>	NA RRF <0.01 NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01	Low or high
CTMW-14-0616 K1 CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	<1606284-002 <1606284-003 <1606284-004 <1606284-005	Chloroform Isobutyl Alcohol Methylene Chloride Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.11 ND 0.17 ND ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.50 100 2.0 50 100 50 100 0.50 50 100	0.072 6.9 0.10 13 6.9 13 6.9 0.054 13 6.9	707 00 00 1	J	Concentration >MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl< td=""><td>NA RRF <0.01 NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01</td><td>Low or high Low or high</td></mrl<></mrl></mrl></mrl>	NA RRF <0.01 NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01	Low or high
CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	K1606284-003 K1606284-004 K1606284-005	Isobutyl Alcohol Methylene Chloride Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND 0.17 ND ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 2.0 50 100 50 100 0.50 50 100	6.9 0.10 13 6.9 13 6.9 0.054 13 6.9	0	J	RRF in calibration standards <0.01 Concentration >MDL, <mrl <0.01<br="" calibration="" in="" rrf="" standards="">RRF in calibration standards <0.01 RRF in calibration standards <0.01 RRF in calibration standards <0.01 Concentration >MDL, <mrl <0.01<br="" calibration="" in="" rrf="" standards="">RRF in calibration standards <0.01</mrl></mrl>	RRF <0.01 NA RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high
CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	K1606284-003 K1606284-004 K1606284-005	Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.17 ND ND ND O.070 ND ND ND ND ND ND O.19 ND O.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.0 50 100 50 100 0.50 50 100 50	0.10 13 6.9 13 6.9 0.054 13 6.9 13		J J	Concentration >MDL, <mrl <0.01="" calibration="" concentration="" in="" rrf="" standards="">MDL, <mrl <0.01="" <0.01<="" calibration="" in="" rrf="" standards="" td=""><td>NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01</td><td>Low or high Low or high</td></mrl></mrl>	NA RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high
CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	K1606284-003 K1606284-004 K1606284-005	Acetonitrile Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 100 50 100 0.50 50 100	13 6.9 13 6.9 0.054 13 6.9	n n n	J J J	RRF in calibration standards <0.01 Concentration >MDL, <mrl <0.01="" <0.01<="" calibration="" in="" rrf="" standards="" td=""><td>RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01</td><td>Low or high Low or high Low or high Low or high Low or high Low or high</td></mrl>	RRF <0.01 RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high Low or high Low or high Low or high Low or high Low or high
CTMW-15-0616 K1 CTMW-25D-0616 K1 CTMW-20-0616 K1	K1606284-003 K1606284-004 K1606284-005	Isobutyl Alcohol Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 100 0.50 50 100	6.9 13 6.9 0.054 13 6.9	n n n	J J J	RRF in calibration standards <0.01 RRF in calibration standards <0.01 RRF in calibration standards <0.01 Concentration >MDL, <mrl <0.01="" <0.01<="" calibration="" in="" rrf="" standards="" td=""><td>RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01</td><td>Low or high Low or high Low or high Low or high Low or high</td></mrl>	RRF <0.01 RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high
CTMW-25D-0616 K1 CTMW-20-0616 K1	<1606284-004 <1606284-005	Acetonitrile Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 100 0.50 50 100	13 6.9 0.054 13 6.9	n n n	J J J	RRF in calibration standards <0.01 RRF in calibration standards <0.01 Concentration >MDL, <mrl RRF in calibration standards <0.01 RRF in calibration standards <0.01</mrl 	RRF <0.01 RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high Low or high Low or high Low or high Low or high
CTMW-25D-0616 K1 CTMW-20-0616 K1	<1606284-004 <1606284-005	Isobutyl Alcohol Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND 0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L	100 0.50 50 100	6.9 0.054 13 6.9	η η η	J	RRF in calibration standards <0.01 Concentration >MDL, <mrl RRF in calibration standards <0.01 RRF in calibration standards <0.01</mrl 	RRF <0.01 NA RRF <0.01 RRF <0.01	Low or high Low or high Low or high Low or high
CTMW-20-0616 K1	<1606284-005	Toluene Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.070 ND ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L ug/L	0.50 50 100 50	0.054 13 6.9	J U	J	Concentration >MDL, <mrl <0.01="" <0.01<="" calibration="" in="" rrf="" standards="" td=""><td>NA RRF <0.01 RRF <0.01</td><td>Low or high Low or high Low or high</td></mrl>	NA RRF <0.01 RRF <0.01	Low or high Low or high Low or high
CTMW-20-0616 K1	<1606284-005	Acetonitrile Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L ug/L	50 100 50	13 6.9 13	U	J	RRF in calibration standards <0.01 RRF in calibration standards <0.01	RRF <0.01 RRF <0.01	Low or high Low or high
CTMW-20-0616 K1	<1606284-005	Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L	100 50	6.9 13	Ü	-	RRF in calibration standards <0.01	RRF <0.01	Low or high
CTMW-20-0616 K1	<1606284-005	Isobutyl Alcohol Acetonitrile Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	ND ND 0.19 ND 0.11	ug/L ug/L ug/L ug/L	100 50	6.9 13	Ü	-	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.19 ND 0.11	ug/L ug/L						DDE -0.04	Law or bi
		Chlorobenzene Isobutyl Alcohol m,p-Xylene Toluene	0.19 ND 0.11	ug/L ug/L			U	J	RRF in calibration standards < 0.01	RRF < 0.01	
CTMW-18-0616 K1	<1606284-006	Isobutyl Alcohol m,p-Xylene Toluene	ND 0.11	ug/L	0.50	0.11	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-18-0616 K1	K1606284-006	m,p-Xylene Toluene	0.11		100	6.9	Ü	J J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
CTMW-18-0616 K1	<1606284-006	Toluene			0.50	0.9	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-18-0616 K1	K1606284-006		0.070		0.50	0.11	J	J	Concentration >MDL, <mrl< td=""><td>NA NA</td><td>Low or high</td></mrl<>	NA NA	Low or high
CTMW-18-0616 K1	K1606284-006	1.1 Diablaraathana		ug/L	0.50	0.054	J	J	Concentration > MDL, < MRL	INA	Low of High
		1,1-Dichloroethane	0.11	ug/L	0.50	0.077	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
		Benzene	0.28	ug/L	0.50	0.062	Ĵ	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		cis-1,2-Dichloroethene	0.12	ug/L	0.50	0.067	Ĵ	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Ethylbenzene	0.29	ug/L	0.50	0.050	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Isobutyl Alcohol		ug/L	100	6.9	Ü	Ĵ	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Methylene Chloride	0.20	ug/L	2.0	0.10	Ĵ	Ŭ	Detected in associated trip blank	Detected at 0.17 ug/L	False positive
		o-Xylene	0.14	ug/L	0.50	0.074	Ĵ	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Toluene	0.33	ug/L	0.50	0.054	Ĵ	Ĵ	Concentration > MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Trichloroethene	0.28	ug/L	0.50	0.10	Ĵ	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-5-0616 K1	<1606284-007	1,1-Dichloroethane	0.14	ug/L	0.50	0.077	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
C100V-3-0010 K1	1000204-007	Acetonitrile	ND	ug/L ug/L	50	13	Ü	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Benzene	0.43	ug/L ug/L	0.50	0.062	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
			0.43			0.062	J	J	· · · · · · · · · · · · · · · · · · ·	NA NA	
		cis-1,2-Dichloroethene		ug/L	0.50		IJ	J	Concentration >MDL, <mrl< td=""><td></td><td>Low or high</td></mrl<>		Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	_	J U	RRF in calibration standards <0.01	RRF < 0.01	Low or high
		Methylene Chloride Toluene	0.17 0.070	ug/L ug/L	2.0 0.50	0.10 0.054	J J	J	Detected in associated trip blank Concentration >MDL, <mrl< td=""><td>Detected at 0.17 ug/L NA</td><td>False positive Low or high</td></mrl<>	Detected at 0.17 ug/L NA	False positive Low or high
OTMANO COMO	(400000 : 000			•				,	,		J
CTMW-9-0616 K1	(1606284-008	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
CTMW-8-0616 K1	K1606284-009	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
		Benzene	0.12	ug/L	0.50	0.062	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
Trip Blank #2-0616 K1	<1606284-010	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
		Chloroform	0.12	ug/L	0.50	0.072	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards < 0.01	RRF < 0.01	Low or high
		Methylene Chloride	0.15	ug/L	2.0	0.10	J	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-7-0616 K1	(1606284-012	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	Ü	Ĵ	RRF in calibration standards <0.01	RRF <0.01	Low or high
CTMW-9-7-0616 K1	<1606284-013	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
C. W. V V J 7-00 10 K1	11000204-010	Isobutyl Alcohol	ND	ug/L ug/L	100	6.9	Ü	J	RRF in calibration standards <0.01	RRF <0.01	Low or high

Table 2, continued

								Data			B 2.1.
	Laboratory						Laboratory				Possible
	Sample Number	Chemical	Concentration	Units	MRL	MDL	Data Flag	Qualifier	Quality Control Reason	Quality Control Result	Bias ^{b,c,d}
Field Blank #1-0616	K1606284-014	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
CTMW-17-0616	K1606284-015	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Benzene	0.11	ug/L	0.50	0.062	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Chlorobenzene	0.11	ug/L	0.50	0.11	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Ethylbenzene	0.060	ug/L	0.50	0.050	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
		Methylene Chloride	0.15	ug/L	2.0	0.10	J	U	Detected in associated trip blank	Detected at 0.15 ug/L	False positive
		Tetrachloroethene	0.20	ug/L	0.50	0.099	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Toluene	0.15	ug/L	0.50	0.054	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-17D-0616	K1606284-016	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
CTMW-12-0616	K1606284-017	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		cis-1,2-Dichloroethene	0.070	ug/L	0.50	0.067	Ĵ	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	Ü	J	RRF in calibration standards <0.01	RRF < 0.01	Low or high
CTMW-24-0616	K1606284-018	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
CTMW-24D-0616	K1606284-019	Acetonitrile	ND	ug/L	50	13	U	J	RRF in calibration standards < 0.01	RRF < 0.01	Low or high
		Isobutyl Alcohol	ND	ug/L	100	6.9	U	J	RRF in calibration standards <0.01	RRF <0.01	Low or high
VOCs by GC/MS ope	erated in SIM mod	le									
CTMW-20-0616	K1606284-005	1,2-Dichloroethane	0.018	ug/L	0.20	0.0058	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-18-0616	K1606284-006	1.1-Dichloroethene	0.010	ug/L	0.020	0.0090	J	J	Concentration >MDL. <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		1,2-Dichloroethane	0.064	ug/L	0.20	0.0058	J	Ĵ	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
CTMW-5-0616	K1606284-007	Vinyl Chloride	0.0056	ug/L	0.020	0.0046	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
C11111V-3-0010	K1000204-007	Viriyi Criionde	0.0030	ug/L	0.020	0.0040	J	J	Concentration > MDE, < MIXE	IVA	Low or might
CTMW-17-0616	K1606284-015	1,1-Dichloroethene	0.013	ug/L	0.020	0.0090	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
		1,2-Dichloroethane	0.015	ug/L	0.20	0.0058	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
1,4-Dioxane by GC/M	IS operated in SI	M mode									
CTMW-5-0616	K1606284-007	1,4-Dioxane	0.32	ug/L	0.40	0.16	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high
Field Blank #1-0616	K1606284-014	1,4-Dioxane	0.19	ug/L	0.40	0.16	J	J	Concentration >MDL, <mrl< td=""><td>NA</td><td>Low or high</td></mrl<>	NA	Low or high

Notes:

GC/MS - gas chromatography/mass spectrometry

J - estimated

MDL - method detection limit

MRL - method reporting limit

NA - not applicable

ND - NOT DETECTED

SIM - selected ion monitoring

U - undetected at detection limit shown

VOC - volatile organic compound

Total results qualified "J" = 76 Total results qualified "U" = 38 Total results qualified "UJ" = 0 Total results qualified "R" =

^a Summary of qualified data is for natural and field quality control samples only

^bLow bias - concentration reported is exhibits low bias and the actual reporting limit or concentration may be greater than reported

^cHigh bias - result reported exhibits high bias and the actual reporting limit or concentration may be lower than reported

^dFalse positive - compound is likely not present