

Imagine the result

Remedial Action Plan

Former ARCO Facility No. 0977

VCP No. NW2447

155 Northwest 85th Street Seattle, WA 98117

November 28, 2011

Arti Patel

Environmental Engineer II

Scott Zorn Project Manager

Peter Campbell PE Project Engineer

Remedial Action Plan Former ARCO Facility No. 0977

VCP No. NW2447

155 Northwest 85th Street Seattle, WA 98117

Prepared by: ARCADIS 2300 Eastlake Avenue East Suite 200 Seattle, Washington 98102 Tel 206-325-5254 Fax 206-325-8218

Our Ref.: GP09BPNA.WA30.E0000

Date: November 28, 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Remedial Action Plan

Former ARCO Facility No. 0977

1

Ac	ronyms	and Abbreviations	5
1.	Introdu	ction	7
2.	Objecti	ve	7
3.	Backgr	ound	7
4.	Site Cle	eanup Levels	7
5.	Site His	story	8
6.	Regional and Site-specific Settings		
	6.1	Regional Geology and Hydrogeology	10
		6.1.1 Historical Site Specific Semi-annual Gauging Data	11
7.	Site Pe	troleum Hydrocarbon Impacts	11
	7.1	Soil Impacts	11
	7.2	Groundwater Impacts	12
8.	Biogeochemical Data		
9.	Historical Site Remediation		
	9.1	SVE Well Installation and SVE Pilot Test	13
		9.1.1 Extraction Well Installation	13
		9.1.2 SVE Pilot Test	14
10.	Evalua	ion of Remedial Alternatives	15
	10.1	Alternative 1 - MNA	15
	10.2	Alternative 2 – Enhanced Anaerobic Biodegradation	16
	10.3	Alternative 3 – Air Sparge and Soil Vapor Extraction (AS/SVE)	18
11.	Remed	ial Design	19
	11.1	Objectives	19
	11.2	AS/SVE Remedial Approach	19
		11.2.1 Well Design and Completion Details	20
		11.2.2 System Components	21
		11.2.2.1 AS System	21

Remedial Action Plan

Former ARCO Facility No. 0977

	11.2.2.2 Soil Vapor Extraction System	22
	11.2.2.3 Remedial Compound	23
11.3	Air Sparge Conveyance Piping	23
11.4	SVE Conveyance Piping	23
11.5	Site Preparation	24
	11.5.1 Well Location and Utility Clearance	24
	11.5.2 Well Installation and Construction	24
	11.5.3 Well Development	25
	11.5.4 Trenching	25
	11.5.5 Management of Investigation Derived Waste	26
	11.5.6 System Delivery and Installation	26
	11.5.7 Site Surveying and As-Built Report	27
	11.5.8 System Start-up and Optimization	27
	11.5.8.1 SVE System	27
	11.5.8.2 AS System	28
	11.5.9 System Monitoring	28
	11.5.10 Shutdown Criteria	29
	11.5.11 Post -Remediation Success Criteria	29
11.6	Enhanced Anaerobic Biodegradation	29
	11.6.1 Technical Background	30
	11.6.2 Anticipated Effects of Sulfate on Groundwater Chemistry	31
	11.6.3 Hydraulic Conductivity Testing	31
	11.6.4 Sulfate Injection	31
	11.6.4.1 Permitting	32
	11.6.4.2 Injection Setup	32
	11.6.4.3 Estimated Injection Volumes	32
	11.6.4.4 Baseline Monitoring	33

Remedial Action Plan

Former ARCO Facility No. 0977

11.6.4.5	Injection Monitoring	33
11.6.4.6	Post-Injection Monitoring	34
12. Health and Safety Procedures		34
13. Schedule		34
14. References		35

Tables

res	
Table 6	Sulfate Injection Sampling Matrix
Table 5	Sulfate Loading Conceptual Design
Table 4	Biogeochemical Parameters
Table 3	Soil Analytical Data – PAHs
Table 2	Soil Analytical Data – Petroleum Hydrocarbons and Lead
Table 1	Groundwater Gauging Data and Select Analytical Results

Figures

Figure 1	Site Aerial Map
Figure 2	Site Plan
Figure 3	Historical Soil Analytical Map
Figure 4	Groundwater Map with Analytical Results
Figure 5	Site Plan – Remediation Wells and System
Figure 6	SVE Treatment System Installation Details

Appendices

Appendix A	Laboratory Analytical Data Reports – Biogeochemical data from October 2010
Appendix B	Soil Boring Logs
Appendix C	SVE Pilot Test Results
Appendix D	Remediation Design Calculations For Soil Vapor Extraction and Air Sparge System

Remedial Action Plan Former ARCO Facility No. 0977

4

Appendix E ARCADIS Standard Operating Procedures

Acronyms and Abbreviations

ARCADIS	ARCADIS U.S., Inc.
AS	air sparge
bgs	below ground surface
BP	BP West Coast Products, LLC.
btoc	below top of casing
BTEX	benzene, toluene, ethylbenzene, and xylenes
CL	Cleanup Level
COC	constituents of concern
Delta	Delta Environmental Consultants, Inc.
DO	dissolved oxygen
Ecology	Washington State Department of Ecology
EPA	Environmental Protection Agency
g/L	grams per liter
gpm	gallons per minute
GRO	gasoline range organics
GSCI	Greenwood Shopping Center Inc.
HDPE	high density polyethylene
In. wc.	Inches of water column
LNAPL	light nonaqueous phase liquid
msl	mean sea level
μg/L	micrograms per liter
lb/day	pounds per day
L/L	liter per liter
mg/kg	milligrams per kilogram
MNA	monitored natural attenuation
MTBE	methyl tertiary-butyl ether
MTCA	Model Toxics Control Act
NFA	No Further Action
NWTPH	Northwest Total Petroleum Hydrocarbon
PAHs	polynuclear aromatic hydrocarbons
PID	photoionization detector
PLC	Programmable Logic Control
PPE	personal protective equipment
ppm(v)	parts per million (by volume)
psi	pound per square inch
PVC	polyvinyl chloride
lbs	pounds

Remedial Action Plan

Former ARCO Facility No. 0977

RAP	Remedial Action Plan
ROI	radius of influence
scfm	standard cubic feet per minute
SOP	Standard Operating Procedure
SVE	soil vapor extraction
UST	Underground Storage Tank
VOC	volatile organic compound

1. Introduction

ARCADIS U.S., Inc. (ARCADIS) has prepared this Remedial Action Plan (RAP) for ARCO Facility number 0977 located at 155 Northwest 85th Street in Seattle, Washington (the Site). The Site and surrounding area is illustrated on **Figure 1**.

2. Objective

The objective of the RAP is to outline the actions which would allow for a No Further Action (NFA) designation for the Site on behalf of BP West Coast Products, LLC., (BP). This RAP summarizes pilot testing results and presents the proposed remedial strategy. Two remedial approaches are proposed for this Site. Low-flow air sparge and soil vapor extraction (AS/SVE) will be used onsite to recover, remove, or volatilize residual light nonaqueous phase liquid (LNAPL) from the subsurface and treat dissolved phase impacts. Enhanced anaerobic biodegradation through injection of magnesium sulfate (Epsom Salt) solution will be used to treat dissolved phase impacts in offsite wells.

3. Background

The Site is located at the intersection of 3rd Avenue Northwest and Northwest 85th Street in Seattle, Washington. The property is a former retail gasoline facility and convenience store and is now an automotive glass repair shop. Operations at the Site included the storage and distribution of unleaded gasoline and diesel fuel. The former service station building and canopy remain onsite although the two fuel dispensers and underground storage tanks (USTs) have been removed (Delta 2004).

The Site is located in a mixed commercial and residential area. A retail property is immediately adjacent to the Site to the east; residential properties are located to the south, 3rd Avenue Northwest and a restaurant are located to the west, and North 85th Street and a grocery store parking lot are located to the north. Site features are illustrated on **Figure 2**.

4. Site Cleanup Levels

The Washington State Department of Ecology (Ecology) issued cleanup levels under Model Toxics Control Act (MTCA) Method A and Method B Cleanup Levels (CLs). The Method A and Method B CLs have been established for groundwater where drinking water is a beneficial use, soil for unrestricted land use and industrial properties.

Residual and dissolved phase constituents of concern (COCs) detected at the Site greater than MTCA Method A CLs are as follows:

- Gasoline Range Organics (GRO) (soil and groundwater) •
- Benzene (soil and groundwater) •
- Toluene (groundwater)
- Ethylbenzene (soil and groundwater)
- Total xylenes (soil and groundwater) ٠

Additional guidance used to compare concentrations of residual and dissolved phase COCs with cleanup criteria is from the Washington State Department of Ecology Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels (MTCA Chapter 173-340) and from the Cleanup Levels and Risk Calculation (CLARC) Summary for Method B soil CLs for benzene, toluene, ethylbenzene and total xylenes determined by the Standard Formula Value (carcinogen and non-carcinogen) based on direct contact (ingestion only) for unrestricted land use.

Ground		Soils		
Constituent	Cleanup Criteria (µg/L)¹	Constit	uent	Cleanup Criteria (mg/kg)¹
GRO	800 / 1,000 ²	GRO		30 / 100 ²
Benzene	5	Benzene	•	18 ³
Toluene	1,000	Toluene		6,400 ⁴
Ethylbenzene	700	Ethylben	zene	8,000 4
Total Xylenes	1,000	Total Xyl	enes	16,000 ⁴

Clean-up Criteria based on Washington State MTCA Method A Cleanup Levels for Soils and Groundwater (MTCA Cleanup Regulation 173-340).

Method A Cleanup Levels for GRO are determined based on the presence of benzene.

³ Method B Cleanup Levels for benzene determined by the Standard Formula Value (Carcinogen) based on direct contact (ingestion only) for unrestricted land use.

⁴ Method B Cleanup Levels for toluene, ethylbenzene and total xylenes determined by the Standard Formula Value (Non-carcinogen) based on direct contact (ingestion only) for unrestricted land use.

μg/L =micrograms per liter.

mg/kg = milligrams per kilogram.

5. Site History

The Site was owned and operated as a gasoline service station by ARCO from 1954 to 1984, at which point the property was purchased by David and Mary Ehlers. In 1984 the retail gasoline station was closed and the USTs were removed in 1989. The

property was then sold to Henry and Lydia Cheng (The Cheng Family Trust) in 1990, and again in September 2001, to Medhi Saghafi, the current property owner.

In 2001, total petroleum hydrocarbons as gasoline range organics (GRO) was discovered in soils at the southwest corner of the grocery store property to the north of the Site. In 2004, under direction of Ecology, dissolved phase GRO impacts were discovered in onsite groundwater and residual phase petroleum hydrocarbon related impacts were found in soil and remediation activities were initiated. A settlement agreement was reached in 2005 between Greenwood Shopping Center Inc. (GSCI) and ARCO, of which BP America Inc. is successor in interest. ARCO was deemed responsible for the remediation of all petroleum hydrocarbon related impacts in accordance with MTCA.

Site characterization activities were initiated on March 22, 2004, to determine the extent of residual hydrocarbons in soil and dissolved phase hydrocarbons in groundwater. Four soil borings were advanced to a maximum depth of 28 feet below ground surface (bgs) and the borings were completed as monitoring wells MW-1, MW-2, MW-3, and MW-4. Groundwater was encountered at approximately 20 feet bgs and groundwater flow was determined to be to the north. Soil samples were collected at approximately five foot intervals and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tertiary-butyl ether (MTBE), GRO and lead. Laboratory analysis did not detect GRO, benzene, ethylbenzene or MTBE at concentrations greater than laboratory detection limits. Toluene and total xylenes were detected at concentrations greater than the laboratory detection limits but less than Method A CLs, from the soil sample collected at MW-2 at 16 feet bgs (Delta, 2004). Well locations are illustrated on **Figure 2**.

Supplemental soil and groundwater assessment activities were conducted by Delta Environmental Consultants Inc. (Delta), in October, 2004. During these activities, six soil borings were advanced in offsite locations to depths ranging from 28 to 30.5 feet bgs. These borings were completed as monitoring wells MW-5 through MW-10. Petroleum hydrocarbon related concentrations in soil samples collected during installation were less than the laboratory reporting limits, except for BTEX constituents detected in the soil samples collected from borings MW-5 and MW-6 at 15 feet bgs. All detected petroleum hydrocarbon constituents were less than their applicable Method A CLs, with the exception of the benzene concentration of 0.143 mg/kg in the soil sample collected from soil boring MW-5 at 15 feet bgs (Delta, 2005).

On September 23, 2010, one monitoring well (MW-2) was decommissioned in place using bentonite chips. One monitoring well (MW-16) was installed at the Site as a replacement for monitoring well MW-2. Two soil samples and one duplicate soil sample were collected during the installation of the monitoring well at depths of 18.0 and 22.5 feet bgs, and were submitted for petroleum hydrocarbon laboratory analysis. The sample collected at 18 feet bgs was also analyzed for polynuclear aromatic hydrocarbons (PAHs). **Figure 3** shows boring locations and soil analytical data.

A quarterly groundwater monitoring program was initiated at the Site in the first quarter of 2004, and is currently ongoing. During quarterly sampling, groundwater samples are collected from seven monitoring wells; MW-1, MW-5, MW-6, MW-11, MW-12, MW-16 and MW-GW-1. LNAPL has been measured in monitoring well MW-2 since June, 2004. The maximum LNAPL thickness in MW-2 was measured at 2.06 feet in November, 2004. To determine if LNAPL was trapped in the sand-pack of MW-2, this well was decommissioned on September 24, 2010, and replacement well MW-16 was installed in close proximity of MW-2. Prior to being decommissioned, MW-2 was gauged and the LNAPL thickness was 0.25 feet. MW-16 has not contained measurable amounts of LNAPL. Analytical data and the estimated groundwater flow direction from the most recent monitoring event are illustrated on **Figure 4**.

6. Regional and Site-specific Settings

6.1 Regional Geology and Hydrogeology

The Site is located in the Puget Lowland, bound by the North Cascade Mountains to the east, South Cascade Mountains to the south, Puget Sound and Olympic Mountains to the west. (Lasmanis, 1991). The Puget Lowland is underlain by unconsolidated deposits originating from continental glacial drift from the Pleistocene age (WA DNR, 2005). Such deposits are typically sand and gravel, which are as much as 3,000 feet deep, and often form discontinuous lenses. The local topography slopes to the south and the approximate elevation of the Site is 320 feet above mean sea level (msl).

Previous assessments indicate that the Site is underlain by poorly graded sand and silty sand to the maximum depth explored (28 feet bgs). Small zones of well-graded sands exist intermittently at shallower depths (ARCADIS, 2010; Delta, 2004).

The Site is located within the Puget-Willamette Trough Regional Aquifer System, which is a linear elongated basin stretching from the Canadian border in Washington to central Oregon. Specifically, the Site is located in an unconsolidated-deposit aquifer,

which is the principle aquifer type in the Puget Lowlands. Sand and gravel lenses underlain in the area can retain localized productive groundwater (USGS, 1994).

6.1.1 Historical Site Specific Semi-annual Gauging Data

Historically, depth to groundwater measured at onsite and offsite wells has ranged from 14.08 to 19.65 feet below top of casing (btoc) and groundwater flow direction has ranged from southwest to north. During the second half 2011 monitoring event, groundwater conditions at the Site remained generally consistent with previous years. The depth to groundwater during this sampling event ranged between 14.08 feet btoc in well MW-7 to 16.67 feet btoc in well MW-3. Groundwater elevations during this sampling event ranged from 249.77 feet above msl in well MW-1 to 250.82 feet above msl in well MW-3. Based on the data collected, the inferred direction of groundwater flow could not be determined because of the extensively flat gradient, but in general groundwater flow is southwest to west across the Site. Groundwater gauging data are presented in **Table 1** and on **Figure 4**.

7. Site Petroleum Hydrocarbon Impacts

7.1 Soil Impacts

Supplemental soil assessment activities were conducted by Delta in October, 2004. During these activities, six soil borings were advanced in offsite locations to depths ranging from 28 to 30.5 feet bgs. All detected COCs were less than their applicable Method A or Method B CLs (Delta, 2005).

On September 23, 2010, monitoring well MW-16 was installed at the Site as a replacement for monitoring well MW-2. Two soil samples and one duplicate soil sample were collected during the installation of the monitoring well at depths of 18.0 and 22.5 feet bgs, and were submitted for COC analysis. The sample collected at 18 feet bgs was also analyzed for PAHs. The concentration of GRO in the soil sample collected at 18 feet bgs exceeded Method A CLs, with a concentration of 3,230 mg/kg. The concentration of benzene in the soil sample collected at 18 feet bgs exceeded Method B CLs, with a concentration of 33.7 mg/kg. No other soil samples contained concentrations of COCs exceeding their applicable Method A or Method B CLs (ARCADIS, 2010). A map showing boring locations and soil analytical data is presented on **Figure 3.** Soil sample analytical results for petroleum hydrocarbons and lead are summarized in **Table 2**, and soil analytical results for PAHs are summarized in **Table 3**.

7.2 Groundwater Impacts

A quarterly groundwater monitoring program was initiated at the Site in the first quarter of 2004, and is currently ongoing. The most recent sampling event was performed in July, 2011. Groundwater samples collected from well MW-6, the duplicate sample from MW-6 and the sample collected from well MW-16 contained concentrations of GRO greater than the Method A CL of 800 micrograms per liter (μ g/L), with concentrations of 7,870 μ g/L, 7,830 μ g/L and 167,000 μ g/L, respectively. Groundwater samples collected from well MW-16 contained concentrations of 15,200 μ g/L, 29,000 μ g/L, 2,680 μ g/L, and 18,400 μ g/L, respectively.

As mentioned above, LNAPL had been observed in monitoring well MW-2 since June 2004. To determine if LNAPL was trapped in the sand-pack of MW-2, this well was decommissioned in 2010 and a replacement well (MW-16) was installed in close proximity to MW-2. No LNAPL has been observed in MW-16 since installation; however, the concentration of GRO in groundwater collected from MW-16 was 167,000 µg/L and benzene concentration was 15,200 µg/L in July, 2011.

Analytical groundwater data is presented in **Table 1**. The groundwater analytical data from July, 2011, is presented on **Figure 4**.

8. Biogeochemical Data

In October, 2010, groundwater samples were collected from monitoring wells MW-1, MW-4, MW-5, MW-6, MW-11, MW-12, and MW-16 and analyzed for GRO, BTEX, and the following biogeochemical parameters:

- Total Alkalinity
- Sulfate
- Nitrate and Nitrite as Nitrogen
- Methane
- Total and Dissolved Manganese
- Total and Dissolved Iron
- Total Organic Carbon
- Sulfide

Results for GRO and BTEX from October, 2010 are presented in **Table 1**, and biogeochemical data are presented on **Table 4**. Method A CL exceedances of GRO,

benzene, toluene, ethylbenzene and total xylenes were observed in samples collected from monitoring wells MW-1, MW-5, MW-12, and MW-16.

Biogeochemical data were analyzed to determine the extent of naturally occurring attenuation within the Site plume. Reducing conditions in which hydrocarbons degrade are characterized by increased methane concentrations, higher concentrations of iron and manganese from disassociation of aquifer minerals due to lower pH levels, and lower concentrations of nitrates due to nitrogen reduction. Methane, a byproduct of reducing conditions, was detected in samples collected from all wells with Method A CLs exceedances except MW-1. Methane concentrations ranged from 43 µg/L in MW-16 to 9,110 µg/L in MW-5. Methane was not detected in samples collected from upgradient or downgradient wells, MW-4 and MW-11. For most wells with Method A CLs exceedances, concentrations of nitrate and sulfate (electron acceptors) were at least one order of magnitude lower than concentrations detected from samples at MW-4 and MW-11. Electron acceptors may be depleted in these wells due to bio-attenuation. Minimal sulfide production was observed in groundwater sampled from MW-6 and may be indicative of sulfide reducing conditions.

Laboratory analytical data reports for the October, 2010, sampling event are presented in **Appendix A**.

9. Historical Site Remediation

To date, a remedial action plan has not been implemented at the Site. In 2004, under direction of Ecology, GRO impacts were discovered on the Site and site monitoring activities were implemented. A settlement agreement was reached in 2005 between GSCI and ARCO. To assess the effectiveness of a SVE system at the Site, ARCADIS conducted an SVE pilot study in February, 2011.

9.1 SVE Well Installation and SVE Pilot Test

This section summarizes the installation of one vapor extraction well and SVE pilot testing activities. The original work plan for well installation and pilot study were submitted to Ecology under separate cover.

9.1.1 Extraction Well Installation

Extraction well VE-1 was installed approximately 13 feet to the south of well MW-16 (Figure 2). The initial 6.5-feet of the borehole were cleared using a vacuum truck. The

boring was then advanced to a depth of 18 feet bgs using a truck mounted hollow stem auger drilling rig.

During drilling, soil samples were collected for lithologic description and volatile organic compound (VOC) analysis using a handheld photoionization detector (PID) at five-foot intervals from 2.5 feet bgs to the bottom of the boring (18 feet bgs). PID readings, soil types, and other pertinent geologic data was recorded on a boring log by an ARCADIS geologist. The boring log for well VE-1 is included in **Appendix B**.

Upon reaching the total depth of the borehole, SVE well VE-1 was installed within the annulus of the hollow-stem auger. The SVE well was constructed of 4-inch diameter, Schedule 40 polyvinyl chloride (PVC) casing with a screened interval of 8 to 18 feet bgs, with 0.02-inch wide horizontally slotted casing. Number 2/12 sand was used as the filter pack from the total depth of the wells to two feet above the screened interval. A 1.5-foot hydrated bentonite seal was placed above the filter pack. The remaining well annulus was backfilled with hydrated bentonite chips to 3 feet bgs. The top three feet of the well annulus was sealed using neat cement. The well was capped with a locking water tight well plug and a traffic-rated well box installed at grade.

9.1.2 SVE Pilot Test

An SVE pilot test was completed at VE-1 on February 22 and 23, 2011. The pilot test consisted of one step test and two constant rate tests. Monitoring wells MW-1, MW-4, MW-5, and MW-16 were used as observation wells during the pilot test (**Figure 2**).

For each test, vacuum pressure was measured at extraction and monitoring well heads using vacuum gauges. Pretreatment effluent concentrations of VOCs were measured periodically with a PID at the extraction well manifold. Air velocity was measured using a hotwire anemometer inserted in a sampling port at the manifold and then used to calculate the extraction flow rate.

The step test was conducted for three hours. The flow rate ranged from approximately 20 to 80 standard cubic feet per minute (scfm). At the start of the pilot study concentrations of VOCs spiked to 10,000 parts per million by volume (ppmv), and after the first hour concentrations ranged from approximately 340 ppmv to 1,540 ppmv as the extraction flow rate was increased from approximately 19 to 86 scfm. Flow rates and PID readings were used to calculate mass removal rates and the total mass removed. Mass removal rates ranged from 8.2 to 46.2 pounds per day (lb/day). It is

estimated that approximately 2.4 lb of petroleum hydrocarbons were removed during the step test.

The first constant rate test was conducted for two hours. The average flow rate and vacuum was 56 scfm and 26 in. wc., respectively. The concentrations of VOCs ranged from 330 to 821 ppmv. The calculated mass removal rate ranged from 7.4 to 12.4 lb/day, and the estimated mass removed was 0.9 lb. Vacuum readings collected from the extraction and monitoring wells were used to determine the extraction vacuum radius of influence (ROI). The calculated ROI was 77 feet.

The second constant rate test was conducted for over five and a half hours. The average flow rate and vacuum was 60 scfm and 26.4 in. wc., respectively. The concentrations of VOCs ranged from 200 to 4,882 ppmv. The calculated mass removal rate ranged from ranged from 4.0 to 103 lb/day, and the estimated mass removed was 2.3 lb. Vacuum readings collected from the extraction and monitoring wells were used to determine the extraction vacuum ROI. The calculated ROI was 68 feet.

Details of the SVE pilot study are presented in Appendix C.

10. Evaluation of Remedial Alternatives

The following provides a feasibility discussion for potential remedial alternatives for the Site. For the purpose of this RAP, three remedial alternatives were identified and evaluated for their effectiveness at remediating affected soil and groundwater:

- Monitored natural attenuation (MNA)
- Enhanced anaerobic bio-attenuation using electron acceptor solution injected / gravity feed into the dissolved phase petroleum hydrocarbon plume
- Active remediation utilizing an AS/SVE system to address identified soil and groundwater impacts in the vicinity of the dispenser island

10.1 Alternative 1 - MNA

This alternative does not involve the implementation of engineered remedial technologies to remove, treat or contain COCs at the Site. Under this alternative, natural attenuation processes will reduce chemical concentrations through time and routine (quarterly) groundwater monitoring will be performed to document changes.

MNA has been defined as the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site specific remediation objectives within a time frame that is reasonable compared to that offered by other, more active methods. The "natural attenuation processes" at work in such a remediation approach include a variety of physical, chemical or biological processes that, under favorable conditions, act to reduce the mass, toxicity, mobility, volume or concentration of COCs in soil and groundwater. These in-situ processes include dilution, sorption, biodegradation, volatilization and chemical biological stabilization, transformation or destruction of COCs.

Natural attenuation processes are typically occurring at all sites, but to varying degrees of effectiveness, depending on the types and concentrations of contaminants present, and physical, chemical, and biological characteristics of the soil and groundwater. Natural attenuation processes may reduce the potential risk posed by site contamination in three ways:

- 1. The contaminant may be converted into a less toxic form through destructive processes such as bioremediation or abiotic transformations.
- 2. Potential exposure levels may be reduced by lowering concentrations levels through physical processes or by dilution.
- 3. Contaminant mobility and bioavailability may be reduced by sorption to the soil or aquifer matrix.

Long term trends indicate that COC concentrations are decreasing within the onsite plume. However, MNA is not the preferred remedial alternative at the Site due to elevated COC concentrations and a prohibitive timeframe required to achieve dissolved concentrations less than MTCA Method A CLs.

10.2 Alternative 2 – Enhanced Anaerobic Biodegradation

Organic carbon in the form of aromatics and ketones (i.e., GRO and BTEX constituents) can stimulate indigenous microorganisms to utilize available electron acceptors to facilitate microbial growth. As the indigenous ecology evolves, available electron acceptors are depleted in order of thermodynamic favorability in the following order: oxygen, nitrate, manganese, iron, sulfate, and eventually carbon dioxide under methanogenic conditions. The electron acceptors are reduced through electron

transport as the hydrocarbon constituents are oxidized to benign end products (hydrogen, acetic acid, and carbon dioxide) as microbes generate energy.

Typical undisturbed hydrocarbon related impacts can generate strong sulfate reducing conditions, and establish strongly reductive environments. If sulfate exists (or is supplied) in sufficient quantity to meet the stoichiometric demand of the available hydrocarbon related impacts, the constituents will be destroyed naturally. This alternative involves adding electron acceptors in the form of magnesium sulfate to enhance ongoing petroleum hydrocarbon related oxidation mechanisms induced by metabolic activity of native microorganisms.

Previous groundwater data collected at the Site indicates anaerobic bio-oxidation is occurring within the Site plume. Sulfate and nitrate concentrations are depleted or reduced within the plume as compared to upgradient and downgradient concentrations. Implementation of this approach would involve the injection or gravity flow of a potable water, and magnesium sulfate solution within the impacted saturated zone to enhance anaerobic bio-oxidation of the dissolved and sorbed-phase petroleum related hydrocarbons.

Components of this alternative potentially include:

- Installing an electron acceptor delivery system through a network of injection wells at and/or hydraulically upgradient from the source area.
- Performing a baseline sampling event in all Site wells to collect COC data and biogeochemical data prior to injection of the electron acceptor solution.
 Biogeochemical parameters may include: alkalinity, nitrate, sulfate, total and dissolved iron, downhole field parameters (pH, conductivity, temperature), and sulfide (collected in the field with a field spectrometer kit).
- Performing an initial pilot study injection of electron acceptor solution and monitoring downgradient wells to confirm distribution characteristics.
- One month following injection, performing one sampling event to evaluate the extent of biodegradation processes (i.e. occurring within site groundwater). This includes collecting biogeochemical indicator parameters including total and dissolved iron, sulfate, and downhole field parameters. Based on this sampling event additional sampling may occur three months and six months following injections.

- Performing additional electron acceptor solution injections with volumes and target concentrations adjusted based on pilot test results.
- Initiating a quarterly monitoring program for one year following injection.

As mentioned above in section 7.3, previous biogeochemical sampling shows elevated concentrations of methane and depleted concentrations of sulfate and nitrate in the presence of dissolved-phase petroleum hydrocarbons, thus, suggesting bioactivity within the plume. Therefore, it was determined that enhanced anaerobic biodegradation can be used for treating dissolved phase impacts observed at offsite wells MW-5, MW-6, and MW-12.

10.3 Alternative 3 – Air Sparge and Soil Vapor Extraction (AS/SVE)

An AS/SVE system involves injecting air under pressure into the saturated zone to increase dissolved phase oxygen concentrations thus degrading dissolved phase COC concentrations through aerobic degradation. Air sparging also increases volatilization of dissolved phase petroleum hydrocarbon related impacts through phase transfer from dissolved phase to vapor phase. SVE removes residual LNAPL and sorbed phase hydrocarbons from vadose zone soils, as well as, captures the vapor phase from sparging activities. An AS/SVE system would consist of a series of AS and SVE wells connected to a blower and compressor via manifold piping. Effluent vapors would be treated above ground through activated carbon filtration or catalytic oxidation. Components of this alternative potentially include:

- Installing a skid-mounted AS/SVE treatment system at the Site
- Installing new trenching and subsurface piping
- Performing system startup and operation and maintenance (O&M) activities
- Conduct air monitoring activities to evaluate the reduction of total VOC concentrations in the influent air to the treatment system
- Continued groundwater and air monitoring activities to evaluate the reduction of VOC concentrations in soil and groundwater

SVE removes residual LNAPL and sorbed-phase hydrocarbons from vadose zone soils, as well as, increases the oxygen concentration in vadose zone soils enhancing aerobic oxidation of COCs. ARCADIS performed an SVE pilot test in February, 2011, to determine the feasibility of remediating vadose zone soils and reducing residual LNAPL within the smear zone. As part of the pilot study ARCADIS installed one vapor extraction well (VE-1) and performed a vapor extraction step and constant rate test. The results of the pilot study are summarized above in *Section 9.2.1 SVE Pilot Test* and are presented in further detail in **Appendix C**.

Based on pilot test results it was determined that AS/SVE is the preferred remedial alternative at the Site to treat residual and sorbed-phase LNAPL impacts in the area of wells MW-2 (abandoned) and MW-16 and dissolved phase impacts observed at MW-1.

It is proposed that AS/SVE will be used onsite to recover, remove, or volatilize residual LNAPL from the subsurface and treat dissolved phase impacts. Initially, low-flow AS will be used to prevent migration of any potential LNAPL, and sparging flow rates may increase to treat dissolved phase impacts if LNAPL is no longer observed at the Site. AS/SVE treatment may be followed by enhanced anaerobic biodedgradation to treat remaining dissolved phase impacts.

11. Remedial Design

11.1 Objectives

To address onsite GRO and BTEX impacts stemming from historical Site activities, ARCADIS proposes to install an AS/SVE system to treat impacts observed at onsite wells MW-1, MW-2 (abandoned) and MW-16. Enhanced anaerobic biodegradation (magnesium sulfate injection) will be used to treat dissolved-phase impacts observed at offsite monitoring wells MW-5, MW-6, and MW-12.

11.2 AS/SVE Remedial Approach

The AS/SVE system will be used to remediate smear zone soils, volatilize residual LNAPL, and treat dissolved phase impacts detected during previous soil boring investigations and quarterly groundwater monitoring events at onsite wells MW-1, MW-2 (abandoned), and MW-16. The existing extraction well VE-1 may provide adequate extraction coverage; however, to ensure effective treatment, two additional extraction wells, VE-2 and VE-3, will be installed. The location of these wells is shown on **Figure 5**. Initially, low-flow AS will be used to prevent migration of LNAPL, sparging flow rates

may increase to treat dissolved phase impacts if LNAPL is no longer observed at the Site. Remediation equipment will be procured through a system vendor to meet ARCADIS design specifications. AS/SVE treatment may be followed with sulfate injection as a polishing step.

11.2.1 Well Design and Completion Details

SVE wells will be installed within the estimated source area based on previous site assessments. The results from a SVE pilot study conducted in February, 2011, (Appendix C) concluded that a 72.5 foot ROI could be achieved by SVE wells. This result is the average ROI from the two constant rate tests conducted during the pilot study. For design purposes, an ROI of 90 percent of this value, or 65 feet, will be assumed. These design criteria are within typical SVE system design criteria as described in the Army Corps of Engineers Engineering Manual- EM1110-1-4001 (US Army Corps of Engineers, 2002).

AS/SVE treatment may be followed with sulfate injection as a polishing step. Based on this remedial approach, the location of VE-2 and VE-3 will be based on implementation of enhanced anaerobic biodegradation. As described in Section 9.3, *Enhanced Anaerobic Biodegradation Remedial Approach*, the assumed ROI for injection is 15 feet based on soil types and target injection volumes. Historically, flow direction has ranged from southwest to west across the Site, therefore, it is assumed that the new wells, VE-2 and VE-3, will be located 15 feet to the northeast of MW-1 and MW-16, respectively.

Groundwater seasonally fluctuates between 16.28 and 19.65 feet btoc based on historical groundwater data from MW-1, MW-2 (abandoned), and MW-16. The average depth to groundwater is approximately 17.88 feet btoc. Therefore, the dual purpose injection and soil vapor extraction wells will be set approximately 28 feet bgs, with 20 feet of well screen, with approximately 10 feet of screen within vadose zone soils. The AS wells will have two feet of screen, set approximately 30 feet bgs, 10 feet below the deepest depth-to-water recorded (19.65 feet btoc).

Proposed AS wells will be 2-inch diameter schedule 80 PVC, approximately 30 feet bgs with 2 feet of 0.020" slot stainless steel wire wrapped or stainless steel slotted screen at the bottom of the well. #2/12 silica sand will be placed to a depth of 1-foot above the top of screen. Several feet of coated pelletized bentonite seal will be place above the sand through the saturated zone. Neat cement will be placed above the

coated pelletized bentonite seal to a depth just below the well box (approximately 3.5 to 4 feet bgs) for temporary completion.

The dual purpose injection and soil vapor extraction wells will be constructed of 4-inch diameter, Schedule 40 PVC with a 20 foot screened interval of stainless steel wire wrapped screen. #2/12 silica sand will be placed to a depth of 1-foot above the top of screen, a one foot layer of very fine (sugar) will be placed on top of the silica sand, and neat cement will be used to complete the well to ground surface. A traffic-rated well box and locking well cap will be installed at ground surface.

The SVE system is designed to remove one pore volume per day in the treatment area. SVE will be conducted at approximately 55 scfm per well. The design ROI will be verified during startup and testing procedures to ensure adequate vacuum influence and air flow is occurring over the treatment area. Startup procedures are described in Section 9.2.14 System Start-up and Optimization.

System design calculations are based on expected pore volume exchange and soil and groundwater pressures during average conditions observed over time, as well as, historical high and low groundwater elevations. System design parameters and calculations are included in **Appendix D**.

The ROI for AS wells is assumed to be 15 feet based on soil type and empirical data from the Air Sparging Design Paradigm (Leeson et al 2002). Considering well spacing and the targeted treatment area, four new AS wells will be installed (AS-1 to AS-4) as shown on **Figure 5**.

11.2.2 System Components

The AS/SVE system will be installed in a skid mounted temporary portable building to enable use of this system at different sites throughout Washington. The system includes a regenerative blower, knockout tank, vacuum piping manifold, ventilation fans, programmable logic control (PLC), pressure, temperature, vacuum and flow gauges and transmitters, and system heaters. The effluent vapor will be treated through an electric catalytic oxidizer mounted to the outside of the portable building.

11.2.2.1 AS System

Based on design calculations attached in **Appendix C**, the AS compressor will have to be capable of producing air at 21 pounds per square inche [gauge] (psig). Typical air

Remedial Action Plan Former ARCO Facility No. 0977

flow rate to an AS well is 10 to 15 scfm, but due to the potential of LNAPL at the Site, air flow rates will initially have to be lower (2 to 3 scfm) to prevent further spreading of LNAPL impacts. To improve air distribution and lower capital and operational costs, the AS system will operate in pulse mode. It is assumed that in pulse mode, a maximum of two wells will be sparging at the same time, therefore, the maximum blower capacity will be approximately 30 scfm. At this flow rate, the maximum piping pressure drop is calculated to be less than 1 pound per square inch (psi). The compressor will be connected to four AS wells through a manifold consisting of individual well monitoring gauges and valves. Manifold gauges and valves include a rotameter, solenoid valve, gate valve, and pressure indicator. Immediately following the compressor, air will flow through a heat exchanger with condensate drain to reduce the air stream temperature and vapor content. The AS compressor will have an internal pressure relief switch to prevent high internal pressure buildup which may cause blower and piping damage. The compressor air inlet is composed of a filter to pull ambient air in from the exterior of the system compound. High pressure and temperature switches will be interlocked with the main PLC to automatically shut down the system if conditions become abnormal. Solenoid valves and a system timer will allow for pulsed sparging of two wells at a time. The pulsing schedule will be determined during the initial system optimization.

11.2.2.2 Soil Vapor Extraction System

The SVE blower will be selected to accommodate a wide range of applications and flow rates using a variable speed drive. For application at this Site, calculations for expected operating conditions are included in **Appendix D**. The blower will be connected to three SVE wells, VE-1, VE-2, and VE-3 through a manifold consisting of individual well monitoring gauges and valves. Based on this extraction flow rate and an estimated maximum piping vacuum drop of 0.15 psi, the vacuum blower will need a capacity of approximately 145 scfm. Manifold gauges and valves include a differential pressure gauge, gate valve, and vacuum indicator. Prior to the blower, piping will run through a condensate knock out drum. The blower will be equipped with a vacuum relief valve to prevent high vacuum in the system which may cause blower and piping damage. The blower air inlet bleed valve is composed of a filter and silencer to pull ambient air in from the exterior of the system and adjust vacuum. High vacuum and temperature switches are interlocked with the main PLC to automatically shut down the system if conditions become abnormal.

11.2.2.3 Remedial Compound

The remedial enclosure is composed of an equipment room housing the AS compressor and manifold, as well as SVE system components. The control panel will be mounted on the building exterior and contain a wireless cellular modem, a PLC with user interface, heater, ventilation fan, and the main system breakers and switches. Additional health and safety equipment, including an emergency eyewash station, first aid kit, and fire extinguisher, will be installed in the equipment room.

11.3 Air Sparge Conveyance Piping

AS conveyance piping will be below ground and lead from the system manifold to four newly installed AS wells. The AS conveyance piping will be 2-inch diameter highdensity polyethylene (HDPE), or 2-inch Schedule 80 PVC piping to allow for the increased pressures required during sparging. At the location where AS piping daylights near the system, 1-inch galvanized steel piping will be used and 3-inch schedule 80 PVC sleeves may be placed around the AS piping to protect it from accidental damage during asphalt replacement. All transitional fittings will be made below grade. The AS conveyance piping will be connected to the AS manifold via union fittings and lead through the sidewall of the system building. Conveyance piping will be installed in trenches at a minimum depth of 30-inches and will be connected below grade to the AS well casing through PVC or HDPE 2-inch tee fittings.

11.4 SVE Conveyance Piping

SVE conveyance piping will be below ground and will lead from the system manifold to two newly installed dual purpose wells. The SVE conveyance piping will be 2-inch Schedule 40 PVC and connected to the wells will be made below grade through a 2-inch by 4-inch PVC tee fitting. At the location where SVE piping daylights near the system, 2-inch Schedule 80 PVC will be used. Aboveground SVE piping to the system compound will be protected by a 3-inch schedule 80 PVC sleeve. SVE piping will connect to the system manifold through the sidewall of the remediation building. Conveyance piping will be installed in trenches at a minimum depth of 30-inches and will be connected below grade to the SVE well casing through PVC or HDPE 2-inch tee fittings. System piping and connection details are shown on **Figure 6**.

Remedial Action Plan Former ARCO Facility No. 0977

11.5 Site Preparation

The construction perimeter will be fenced off in sections with secure temporary fencing during drilling, trenching, and system installation activities. A traffic control plan will be established with agreement by the business and property owners in order to reduce impacts to current Site operations. A pre-construction meeting will be scheduled prior to drilling, and a second pre-construction meeting will be scheduled prior to trenching involving an ARCADIS representative and contractor representatives.

11.5.1 Well Location and Utility Clearance

A public utility clearance using Washington 811 dig alert will be conducted prior to construction and drilling activities. A private utility locating service will also be scheduled for site clearance using ground penetrating radar (GPR) and magnetic locating equipment to identify utilities not included under the public locate. Representatives from the drilling contractor and the general contractor will be present to ensure that equipment maneuverability and site access is adequate around the placement of AS and SVE wells and trenching. An additional private utility locate, prior to trenching activities, will be scheduled to locate utility markings removed during well installation.

11.5.2 Well Installation and Construction

Two dual purpose soil vapor extraction and injection wells (VE-2 and VE-3) and four AS wells (AS-1 to AS-4) will be installed in the western portion of the Site (**Figure 5**). The initial 6.5 feet of the borehole will be cleared using an air-knife and vacuum truck to reduce the potential for damage to underground improvements. The boring will then be advanced using a hollow-stem auger rig. If a hollow-stem auger rig cannot be used due to site constraints, and if soil conditions allow, a direct push drill rig will be used. The drilling rig will be provided and operated by Cascade Drilling Incorporated (Cascade) of Woodinville, Washington.

During drilling, soil samples will be collected by split spoon at 2.5-foot to 5-foot intervals from five feet bgs to the total depth of boring (28 feet bgs and 30 feet bgs). Soil samples will be screened in the field for VOCs using a PID. PID readings, soil types, and other pertinent geologic data will be recorded on the boring log.

Groundwater seasonally fluctuates between 16.28 and 19.65 feet btoc based on historical groundwater data from MW-1, MW-2 (abandoned), and MW-16. The average

depth to groundwater is approximately 17.88 feet btoc. Therefore, the dual purpose injection and soil vapor extraction wells will be set approximately 28 feet bgs, with 20 feet of well screen, with approximately 10 feet of screen within vadose zone soils. The AS wells will have two feet of screen, set at approximately 30 feet bgs, 10 feet below the deepest depth-to-water recorded (19.65 feet btoc).

Screen interval may vary based on encountered groundwater elevation during drilling. The sand pack of #2/12 silica sand will be placed around the well screen to one foot above the top of screen for all wells. For sparge wells, coated pelletized bentonite place above the sand through the saturated zone. Neat cement will be placed above the pelletized bentonite seal to a depth just below the well box (approximately 3.5 to 4 feet bgs) for temporary completion. ARCADIS standard operating procedure (SOP) for monitoring well installation has been included in **Appendix E**.

11.5.3 Well Development

Newly installed wells will be developed using a combination of surging and purging or jetting techniques based on well screen type. Wells with wire wrapped stainless steel screen will be developed through jetting which introduces high velocity water into the well screen through a small diameter tube equipped with nozzles. Injected water is purged simultaneously, effectively keeping the in-well water level equal to the static water level. The well will initially be gently surged to remove fines by moving the pump the length of the saturated screen. The submersible pump will be capable of purging between 0.5 to 4 gallons per minute (gpm). Wells with PVC slotted screen will be developed through standard surging and purging techniques. Storage of well development purge water is discussed below under the Management of Investigation Derived Waste Section. Details describing well jetting are attached in the Well Development-Water Jetting Standard Operating Procedure included as **Appendix E**.

11.5.4 Trenching

Trenching activities will be completed by an ARCADIS-approved subcontractor. Trenching will be excavated to a minimum of 30-inches. Two inches of self compacting sand bedding material will be placed in the trench prior to conveyance piping. An additional 2 inches of bedding material will be placed over and surrounding the piping. Geotextile fabric will be placed above the compacted sand bedding to ensure separation from native fill. Native fill and locating tape will be placed within the upper 1foot of trench fill material. Trenching will be finished to match existing grade. Where trenching is installed through asphalt or concrete, the surface will initially be saw-cut.

Upon completion, trenching through asphalt will be sealed and concrete will be matched to the existing surface. Proposed trenching locations are shown on **Figure 5**.

11.5.5 Management of Investigation Derived Waste

Excavated soil will be stockpiled in bermed containment areas to allow for characterization sampling prior to disposal. Soils will be sampled in in accordance with Guidance for Site Checks and Site Assessments for Underground Storage Tanks from Ecology (Ecology 2003). Soil samples will be submitted to Pace Analytical for the following COCs analyses:

- GRO by NWTPH-Gx
- BTEX by EPA 8021B

And the following Resource Conservation Recovery Act (RCRA) 8 Metals:

- Arsenic, Barium, Cadmium, Chromium, Lead, Selenium, Silver by EPA 6010
- Mercury by EPA 7470
- Based on results from metals analysis, samples may be analyzed for Toxicity Characteristic Leaching Procedure (TCLP).

Pending sampling results, waste soil will be loaded onto haul trucks for transport to the appropriate disposal facility. Soil stockpiles will be covered with plastic sheeting at the end of each day.

11.5.6 System Delivery and Installation

Prior to system shipment, vendor factory inspection of system components will be reported to ARCADIS. Full power will be applied to the system for testing. The system blower and compressor will be tested under load to verify initial design specifications are met. System interlocks will be tested including float switches, lower explosive limit (LEL) meter, emergency stop buttons, and temperature and pressure switches. Results of the initial system inspection will be reported in a system installation report submitted to Ecology following system startup.

The system will be delivered to the Site with internal components connected and tested. The system will be placed by the general contractor onsite under the direction of ARCADIS personnel.

Electrical permits will be obtained by the electrical contractor, and connections will be tested prior to utility company and city inspection. Final electrical system inspection, including voltage loading from ground to phase and between phases, will be performed in the presence of ARCADIS personnel and relevant subcontractors.

11.5.7 Site Surveying and As-Built Report

An ARCADIS-approved licensed surveyor will survey existing Site features including building corners, monitoring well top-of-casing, new remediation wells, and trenching locations relative to NAD83 ASP Zone 4 horizontal datum. The NAVD88 datum is the standard vertical geoid used by the North American Geological Survey. For reporting purposes, the NAVD88 referenced datum will be considered mean sea level. An asbuilt report with drawings, soil boring data, soil disposal data, and final trenching and well locations will be submitted to Ecology following completion of system installation.

11.5.8 System Start-up and Optimization

11.5.8.1 SVE System

During initial start-up activities, design criteria will be tested to ensure adequate SVE radius of influence are met. Initial testing will involve system operation in an unloaded condition with bleed valves open. Pressure, temperature, flow and effluent vapor concentration readings will be recorded as baseline conditions.

The SVE system will be optimized so that field operating conditions meet or exceed design criteria. SVE wells will be closed and vacuum gauges will be placed on the well heads of MW-1, MW-4, and MW-16. The main manifold bleed valve and flow control valve for well VE-1 will be fully opened. System flow and vacuum data will then be recorded from the manifold. Additional vacuum readings will be taken from the vacuum gauges placed on MW-1, MW-4, and MW-16. The vacuum gauges will read a minimum of 0-30 in. wc. The variable speed throttle will initially be set at the midpoint. The bleed valve will be throttled closed until a total system vacuum reaches a maximum set point (e.g. 40 inches of water). Vacuum readings on the monitoring well gauges, as well as total flow readings will be recorded every five minutes for 30 minutes. Results will be plotted logarithmically to verify the induced vacuum radius of influence. Additional bleed valve throttling will occur and measurements will be taken until adequate ROI and flow rate are met. The test will be repeated on dual purpose well VE-2 while vacuum measurements are observed at monitoring MW-1, MW-4, and MW-16.

When individual well parameter settings have been determined, all wells will be opened and valves will be throttled to meet test conditions. If testing indicates field operation does not meet design criteria, additional SVE wells or alternative remedial strategies may be required to adequately address vacuum influence.

11.5.8.2 AS System

To verify that the design AS radius of influence is achieved under field conditions, compliance wells will be monitored for dissolved oxygen (DO) and groundwater mounding effects during initial startup of each AS well. A downhole DO meter and a water level transducer will be installed in compliance wells during the operation of each AS well. Pressure and flow will be adjusted using bleed valves and the variable frequency drive on the compressor to obtain adequate radius of influence. These data will also be used to determine adequate time sequences for pulsed sparge operation. DO and mounding effects will be plotted vs. time to determine peak DO concentrations and groundwater elevation influence.

11.5.9 System Monitoring

Prior to system startup, groundwater will be sampled to obtain baseline conditions in Site wells. Baseline monitoring will be performed in conjunction with regularly scheduled groundwater sampling. Following system startup, groundwater monitoring will continue based on the regularly scheduled semi-annual sampling events. Groundwater samples will be collected using low-flow peristaltic pumps.

Groundwater samples will be submitted to Pace Analytical, a Washington statecertified laboratory, for analysis. Chain-of-custody procedures will be followed from the time the samples are collected until the time the samples are relinquished to the laboratory. The samples will be analyzed for the following:

- GRO by Northwest Method NWTPH-Gx
- BTEX by EPA Method 8260B
- Total lead by EPA Method 6010

System parameters will be collected daily during the first week of operation, weekly for the first month of operation and monthly thereafter. System readings will include manifold pressure, individual well pressure, individual well flow, overall system flow, and pre- and post-heat exchanger temperature and pressure readings. PID measurements will be taken from the SVE system effluent stack on a monthly basis.

Remedial Action Plan Former ARCO Facility No. 0977

Influent air filters will be inspected and cleaned or replaced monthly. Additional system maintenance procedures will include recordable hours of operation, and adjustments to vacuum pressure and flow rates. Compliance wells will be monitored for observable signs of sparging (i.e., bubbling) and a measureable increase in DO during the first two weeks of operation.

11.5.10 Shutdown Criteria

The AS/SVE system is expected to operate for 2 years based on typical AS/SVE remediation efforts at similar sites. Periodic shutdown of both AS and SVE components will be performed to evaluate concentration rebound in groundwater and soil vapor. A rebound test will be recommended after mass removal has become asymptotic and dissolved phase groundwater concentrations are within an order of magnitude of CLs and indicate overall decreasing trends. During rebound testing, the system will remain shut down for approximately one month, and compliance wells will be sampled for GRO and BTEX. The system will be restarted and allowed to run approximately 24hours. Vapor samples will be collected and submitted for COC analysis. The system will again be shutdown pending analytical data. If dissolved concentrations rebound greater than the pre-rebound test groundwater data for GRO and BTEX the AS system may be restarted. If SVE vapor analytical samples show significant rebound the SVE will operate until asymptotic mass removal rates are again observed. If continued system operation is required, subsequent rebound evaluation should be conducted following the initial rebound test. If rebounded concentrations are not lower than those detected during the previous rebound evaluation, the AS system may no longer be effective and additional site remediation strategies may be considered. If system shutdown criteria are met, equipment will remain near the location and available for hookup for one year after shutdown to evaluate rebound prior to decommissioning.

11.5.11 Post -Remediation Success Criteria

After system shutdown, groundwater will be monitored semi-annually to determine if stable and decreasing dissolved-phase plume concentrations are present and support a move to one of the following strategies: enhanced anaerobic biodegradation, MNA, or potentially a "No Further Action" designation.

11.6 Enhanced Anaerobic Biodegradation

As mentioned in section 7.3, biogeochemical data was last collected in October, 2010, and suggests sulfate reducing conditions exist in the subsurface based on

concentrations of methane, nitrate, and sulfate. Conditions indicate that increasing sulfate concentrations within the core of the hydrocarbon plume may stimulate naturally occurring bacteria, therefore, Epsom salt application is a feasible remedial strategy for this Site.

ARCADIS proposes to use enhanced anaerobic biodegradation to treat offsite impacts observed at MW-5, MW-6, and MW-12. This remedial approach proposes to inject under gravity feed an Epsom salt solution into these wells.

11.6.1 Technical Background

Aquifers impacted by petroleum hydrocarbons are typically anaerobic because DO is energetically favorable and is preferentially consumed by indigenous microbes during aerobic oxidation (i.e., biodegradation) of the petroleum hydrocarbons, which serves as an electron donor in the microbial metabolism reactions. Following the depletion of oxygen, alternative electron acceptors (i.e., nitrate, iron, manganese, sulfate, and carbon dioxide) are utilized in the continued anoxic/anaerobic oxidation of petroleum hydrocarbons. The anaerobic oxidation of petroleum hydrocarbons under various dominant electron-accepting processes (e.g., sulfate-reduction, iron-reducing, methanogenesis, etc.) is well-founded in the literature (Anderson, et al., 2000; Aronson and Howard, 1997; Beller et al., 1992; Bordon et al, 1997; Coyne and Smith, 1995; Cunningham et al, 2001; Davis et al, 1999; Schreiber et al., 2004; Wiedemeier, et al., 1999). Similar to enhanced aerobic systems, engineered anaerobic approaches rely on redox couples such as nitrate reduction, ferric iron reduction, sulfate reduction, and methanogenesis to facilitate cellular respiration using the petroleum hydrocarbon as an electron donor.

Anaerobic processes generally occur at slower kinetic rates than that observed with oxygen. Non-oxygen electron acceptors (i.e. sulfate) can be advantageous to oxygen injection approaches as they are highly soluble, can be supplied at elevated dissolved concentrations, and have minimal abiotic or non-target reactions that typically limit oxygen persistence in the subsurface. The higher concentrations of sulfate that can be maintained in a petroleum hydrocarbon impacted aquifer accompanied by electron acceptor persistence allows for effective hydrocarbon degradation. Comparatively, oxygen sparging approaches are fundamentally limited by low oxygen solubility in groundwater and gas transfer inefficiencies that limit the effective dissolved oxygen concentrations typically maintained in engineered aerobic reactive zones. Thus, while the kinetic rates of anaerobic hydrocarbon bio-oxidation may be slower than under aerobic conditions, the ability to deliver elevated concentrations of non-oxygen electron

acceptors over a relatively long time period during infrequent events can be costeffective compared to long-term operation of continuous oxygen sparging or other engineered aerobic treatment alternatives.

11.6.2 Anticipated Effects of Sulfate on Groundwater Chemistry

Short-term effects of Epsom salt injection on groundwater chemistry may include the following:

- Increase of sulfate concentrations to a calculated concentration of 5 grams per liter (g/L) prior to consumption by sulfate reducing bacteria (initially localized to the injection well vicinity)
- Increase in the population of sulfate reducing bacteria, and the reduced form of sulfate hydrogen sulfide
- Precipitation of iron sulfides from sulfide ions in solution and iron in the groundwater
- Localized increases in groundwater total dissolved solids (TDS), before the effects of advection and dilution disseminate the delivered sulfate
- Further consumption of nitrate to oxidize sulfide back into sulfate (Londry and Suflita, 1999)

Long-term effects on groundwater chemistry are expected to be minimal due to diffusion, advection, and consumption of the sulfate and the reaction's byproducts.

11.6.3 Hydraulic Conductivity Testing

To determine if sulfate application will be feasible, hydraulic testing will need to be conducted at the Site. Rising-head aquifer testing (slug testing) will be conducted on monitoring wells MW-5 and VE-2. VE-2 has been included for slug test since it is a dual-purpose well (injection and extraction) and may be used for sulfate injection following AS/SVE treatment at onsite wells. The slug test will be conducted in accordance to ARCADIS SOP. The Slug Test SOP is attached in **Appendix E.**

11.6.4 Sulfate Injection

This remedial approach assumes injection at wells MW-5, MW-6, and MW-12 (Figure 5). During the last sampling round in July, 2011, only the concentration of GRO at MW-6 exceeded Method A CLs, however, during recent sampling rounds the concentrations of GRO and BTEX have fluctuated at these wells and exceeded

Method A CLs. For example, in January, 2011, the concentration of GRO, benzene, ethylbenzene and total xylenes was 21,100 μ g/L, 567 μ g/L, 1,790 μ g/L, and 2,970 μ g/L, respectively at MW-5. The Method A CLs for these compounds are 800 μ g/L, 1,000 μ g/L, 5 μ g/L, 700 μ g/L, and 1,000 μ g/L, respectively. Historical groundwater data is summarized in **Table 1**.

11.6.4.1 Permitting

As shown on **Figure 2**, offsite monitoring wells MW-5, MW-6, and MW-12 are located in sidewalks, therefore, the necessary permitting will have to be completed to allow access to the sidewalks during injections. Due to space limitations, it is proposed that the injection trailer will be parked on the sidewalk during injections at MW-6 and MW-12.

11.6.4.2 Injection Setup

Each monitoring well that will be used for injection will be temporarily connected aboveground by 5/8-inch garden hose to a distribution manifold staged inside an injection trailer. The manifold will include flow control valves and flow meters to adjust the application rate and quantify injection volumes. Water will be supplied to the trailer via flexible 1-inch rubber hose via camlock fittings leading to a temporary onsite water tank. Batch mixtures of Epsom salt will be dissolved into four 275 gallon mixing tanks. An air lance will be connected to a portable air compressor and used to mix the dissolved Epsom salt solution with potable water within the injection trailer. Once the tanks are adequately mixed the Epsom salt solution will be initially pumped through the manifold to establish a siphon to the injection wells. The solution will then be gravity fed into the injection wells. ARCADIS personnel will be onsite to execute the injection process and record injection parameters throughout the event. Well head pressure will be closely monitored to ensure pressure build up does not exceed 5 psi, potentially causing soil to fracture and create a preferential pathway to the surface.

11.6.4.3 Estimated Injection Volumes

Arrangements will be made to use the onsite water source, however, if the onsite water source is not adequate for the large volumes of injection solution required, a truck mounted tank will be used to supply potable water to the Site. Approximately 6,345 gallons of potable water per injection will be used to dissolve approximately 1,355 pounds (lbs) Epsom salt. A target injection concentration of approximately 25.6 g/L of Epsom salt will be injected into the well. The target in-situ sulfate concentration is 5 g/L

assuming a groundwater dilution factor of approximately 2 L/L along the flow path from the injection wells to the dose response monitoring well. Stoichiometric equations and estimations are summarized in **Table 5**.

Injection volumes are based on a target 15-foot ROI per well over 15 feet of vertical well screen and an estimated 8% mobile porosity, which results in an approximate injection volume of approximately 6,345 gallons at wells MW-5, MW-6, and MW-12.

11.6.4.4 Baseline Monitoring

Prior to sulfate injection, groundwater will be sampled to obtain baseline conditions from monitoring wells (MW-5, MW-6, and MW-12). Groundwater samples will be collected by purging one casing volume. Biogeochemical parameters will be collected with a downhole multi-parameter meter and include conductivity, pH, and temperature from these injection points. Groundwater samples will be submitted to a Washington state-certified laboratory for analysis. Chain-of-custody procedures will be followed from the time the samples are collected until the time the samples are relinquished to the laboratory. The samples will be analyzed for some or all of the following:

- GRO by Northwest Method NWTPH-Gx
- DRO and HO by Northwest Method NWTPH-Dx
- BTEX by EPA Method 8260B
- Sulfide by EPA Method 376.1
- Sulfate by EPA Method 300.0
- Nitrate by Nitrogen by EPA Method 300.0
- Total and Dissolved Iron and Lead by EPA Method 6020

The sampling matrix is presented in Table 6.

11.6.4.5 Injection Monitoring

During injection, a downhole multi-parameter meter will be used to collect conductivity, pH, and temperature measurements from downgradient wells MW-11 and MW-13. Measurements will be taken approximately every 500 gallons of injected solution. Once sustained conductivity measurements are observed at these wells, a groundwater sample will be collected for sulfate and sulfide analysis.

11.6.4.6 Post-Injection Monitoring

Groundwater sampling of injection wells MW-5, MW-6, and MW-12, and downgradient wells MW-11 and MW-13 will occur one week and two months following injection. Groundwater samples will be collected by purging one casing volume. At one week, monitoring wells will be sampled for sulfide and sulfate. At two months, the sampling schedule will be the same as baseline sampling two months following injection. A downhole multi-parameter meter will be used to measure conductivity, pH, and temperature from these wells during sampling events. Concentration trends of sulfate and COCs will be analyzed to determine the rate of sulfate reduction within the plume. If concentrations remain greater than Method A CLs but reducing conditions exist and sulfate is depleted, an additional injection event may be scheduled. Based on the rate of sulfate utilization by the subsurface microbial communities, sulfate concentrations may be adjusted for subsequent injection events. The sampling matrix is presented in **Table 6**.

12. Health and Safety Procedures

The Health and Safety Plan (HASP) will include methods for protection of site workers and visitors during the proposed remedial activities and will include:

- A list of COC, their characteristics, and the potential routes of exposure
- Action levels for the various COC
- Methods for field monitoring for the various COC
- Emergency procedures and contact information
- Air monitoring
- Identification of routes to emergency facilities
- Identification of potential physical hazards and response actions for specific remedial tasks
- Personal protective equipment (PPE) for specific remedial tasks

PPE will generally consist of hard hats, steel-toed boots, chemical resistant gloves, ear protection, and eye protection. Respiratory protection is not anticipated, but will be available should field particulate monitoring suggest such measures are necessary.

13. Schedule

Following RAP submittal and Ecology comments, ARCADIS will install additional wells during the first half of 2012. Following well installation, AS/SVE system installation will

occur. As-built drawings along with system installation and optimization details will be submitted following completion of system installation and start up. The proposed schedule is subject to change based on equipment availability.

Injection at offsite wells will occur during onsite AS/SVE treatment. Based on sulfate utilization rates observed during groundwater monitoring, additional injections may occur. A progress report will be submitted to Ecology following injection and post-injection monitoring summarizing results of injection events.

14. References

ARCADIS-US Inc., 2010. Subsurface Investigation and Fourth Quarter Groundwater Monitoring Report, Former ARCO Facility No. 00977, (November, 2010).

Aronson D.; Howard, P.H.; Anaerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies. Environmental Science Center, Syracuse Research Corporation November 12, 1997

Beller, H.R.; Grbic-Galic, D.; Reinhard, M. Microbial Degradation of Toluene under Sulfate-Reducing Conditions and the Influence of Iron on the Process. Applied and Environmental Microbiology 58 (1992) 786-793

Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Baralz, M.A. Anaerobic Biodegradation of BTEX in Aquifer Material. USEPA Research and Development EPA/600/S-97/003, August 1997

Coyne, P.; Smith, G. Summary Report on the Aerobic Degradation of Diesel Fuel and the Degradation of Toluene Under Aerobic, Denitrifying and Sulfate Reducing Conditions. August 15, 1995

Cunningham, J.A.; Rahme, H.; Hopkins, G.D.; Lebron, C.; Reinhard, M. Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by Combined Injection of Nitrate and Sulfate. Environmental Science and Technology, 35, (2001) 1663-1670

Davis, G.B.; Barber, C.; Power, T.R.; Thierrin, J.; Patterson, B.M.; Rayner, J.L.; Wu, Q. The Variability and Intrinsic Remediation of a BTEX Plume in Anaerobic Sulfate-Rich Groundwater. Journal of Contaminant Hydrology 36 (1999) 265-290.

Delta Environmental Consultants, Inc. 2004. Subsurface Investigation Report Atlantic Richfield Company Facility 0977. (April 29, 2004).

Delta Environmental Consultants, Inc. 2005. *Supplemental Investigation Report Atlantic Richfield Company Facility* 0977. (February 2, 2005).

Lasmanis, R. 1991. The Geology of Washington. Rocks and Minerals 66:263-277.

Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr. J.M. Mechanisms of Electron Acceptor Utilization: Implications for Stimulating Anaerobic Biodegradation. Journal of Contaminant Hydrology 73 (2004) 99-127.

Washington State Department of Natural Resources. 2005. *Geologic Map of Washington State*.

Wiedemeier, T. H., Rifai, H.S., Newell, C. J., and Wilson, J.T. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons, Inc. New York.

DOE (Washington State Department of Ecology), 2003. Guidance for Site Checks and Site Assessments for Underground Storage Tanks. (February 1991, revised April 2003).

United States Army Corps of Engineers 2002. Engineering and Design - Soil Vapor Extraction and Bioventing. EM 1110-1-4001. June 2002.

Leeson, A., P. Johnson, R. Johnson, C. Vogel, R. Hinchee, M. Marley, T Peargin, C Bruce, I Amerson, C Coonfare, R Gillespie, D. McWhorter. Air Sparging Desing Paradigm. Battelle Institute. August 12, 2002.

Londry and Suflita. 1999. Cresol metabolism by the sulfate-reducing bacterium Desulfotomaculum. Canadian Journal of Microbiology 1999; 45(6):458-63

Tables

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Independent CaleIntervent A (Clear Cale)Intervent A (Clear Cale)	Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Image 97.2004 (P) 90.77 17.10 82.6 92.8 83 -1.00 32.6 MM-1 11/12204 (P) 90.77 11.83 81.87	Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
Image 11 11 11 11 11 11 200 4.500 2.50	MW-1	3/24/2004	(P)	99.77	17.43		82.34	213			11.5	0.525	5.05	4.78	<5.00			43.4	2.94
Image: Number 1 129/2014 (NS) 99.77 17.8 - <	MW-1	6/7/2004	(P)	99.77	17.61		82.16	1,160			136	52.8	28.8	83	<1.00			32.6	1.43
Image OP 9977 10.14 B163 1020 42 0.91 26.4 52.6 -2.00 4.92 MM+1 632005 10.80	MW-1	11/12/2004	(P)	99.77	18.30		81.47	926			24	2.22	56.9	19.1	<2.00	<0.500	2.39	<1.00	<1.00
MM+1 54/2005 (P) 9977 18.25 - 9152 -	MW-1	12/9/2004	(NS)	99.77	17.89		81.88												
MV:1 6302005 (NS) 99.77 18.24 81.53 <td>MW-1</td> <td>2/1/2005</td> <td>(P)</td> <td>99.77</td> <td>18.14</td> <td></td> <td>81.63</td> <td>1,020</td> <td></td> <td></td> <td>12</td> <td>0.91</td> <td>28.4</td> <td>52.6</td> <td><2.00</td> <td></td> <td></td> <td>4.89</td> <td><1.00</td>	MW-1	2/1/2005	(P)	99.77	18.14		81.63	1,020			12	0.91	28.4	52.6	<2.00			4.89	<1.00
IMM-1 8872005 (P) 99.77 18.40 81.37 300 26 0.500 0.874 20.3 -2.00 -0.001	MW-1	5/4/2005	(P)	99.77	18.25		81.52	1,090			43	<0.500	31.9	50.7	<2.00	<0.010	1.29	<1.00	<1.00
IMM-1 11%62005 (P) 99.77 18.71 81.06 165 0.51 0.500 0.100 <1.00 <0.001 <0.100 <0.001 <0.100 <0.001 <0.100 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <0.0010 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00	MW-1	6/30/2005	(NS)	99.77	18.24		81.53								-				
MW-1 22/2006 (P) 99.77 17.81 81.96 2.470 58.7 82.2 <1.00 -0.010 1.11 <1.00 MW+1 \$1422006 (P) 99.77 17.75 82.02 2.44 77.4 <0.500	MW-1	8/5/2005	(P)	99.77	18.40		81.37	300			26	<0.500	0.874	20.3	<2.00	<0.010	<1.00	<1.00	<1.00
WM-1 5/18/2006 (P) 99.77 17.31 82.42 1.380 77.1 80.01	MW-1	11/16/2005	(P)	99.77	18.71		81.06	165			0.51	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	<1.00	<1.00
WH-1 8/14/2006 (P) 99.77 17.75 - 82.02 234 - - 77.1 40.500 -0.500 9.13 <1.00 <1.00 <1.00 MW-1 65/2007 (NP) 99.77 17.25 - 82.52 171 - - 4.39 <0.500	MW-1	2/2/2006	(P)	99.77	17.81		81.96	2,470			502	61.9	58.7	82.2	<1.00	<0.010	1.11	<1.00	<1.00
MW-1 3/72007 (NP) 99.77 17.16 - 82.61 359 - - 4.39 c0.500 7.17 18.7 -	MW-1	5/18/2006	(P)	99.77	17.31		82.46	1,350			384	<0.500	6.28	44.9	<1.00	<0.010	<1.00	<1.00	<1.00
MW-1 6/5/207 (NP) 99.77 17.25 82.52 171 0.58 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.	MW-1	8/14/2006	(P)	99.77	17.75		82.02	294			77.1	<0.500	<0.500	9.13	<1.00	<0.010	<1.00	<1.00	
MW-1 96/2007 (NP) 99.77 17.72 82.05 132 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	MW-1	3/7/2007	(NP)	99.77	17.16		82.61	359			4.39	<0.500	7.17	18.7					
MW-1 11/21/2007 (NP) 99.77 18.04 81.73 152 <	MW-1	6/5/2007	(NP)	99.77	17.25		82.52	171			0.58	<0.500	0.66	2.03	-				
MW-1 1/17/2008 (NP) 99.77 17.69 82.08 255 2.74 <0.500 <0.300 <1.00 1.55 MW-1 4/102008 (NP) 99.77 17.63 82.14 341 <0.500	MW-1	9/6/2007	(NP)	99.77	17.72		82.05	132			<0.500	<0.500	<0.500	<1.00					
MW-1 4/10/2008 (NP) 99.77 17.63 82.14 341 1.49 <0.500 0.78 <3.00 <1.00 <0.500 <0.500 <0.78 <0.300 <0.100 <0.500 <0.500 <0.500 <0.78 <0.300 <1.00 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <td>MW-1</td> <td>11/21/2007</td> <td>(NP)</td> <td>99.77</td> <td>18.04</td> <td></td> <td>81.73</td> <td>152</td> <td></td> <td></td> <td><0.500</td> <td><0.500</td> <td><0.500</td> <td><3.00</td> <td></td> <td></td> <td></td> <td></td> <td></td>	MW-1	11/21/2007	(NP)	99.77	18.04		81.73	152			<0.500	<0.500	<0.500	<3.00					
MW-1 7/2/2008 (NP) 99.77 17.81 81.96 130 <td>MW-1</td> <td>1/17/2008</td> <td>(NP)</td> <td>99.77</td> <td>17.69</td> <td></td> <td>82.08</td> <td>255</td> <td></td> <td></td> <td>2.74</td> <td><0.500</td> <td><0.500</td> <td><3.00</td> <td><1.00</td> <td></td> <td></td> <td>1.55</td> <td></td>	MW-1	1/17/2008	(NP)	99.77	17.69		82.08	255			2.74	<0.500	<0.500	<3.00	<1.00			1.55	
MW-1 107/2008 (NP) 99.77 18.24 81.53 302 <td>MW-1</td> <td>4/10/2008</td> <td>(NP)</td> <td>99.77</td> <td>17.63</td> <td></td> <td>82.14</td> <td>341</td> <td></td> <td></td> <td>1.49</td> <td><0.500</td> <td>1.63</td> <td><3.00</td> <td><1.00</td> <td></td> <td></td> <td><1.00</td> <td></td>	MW-1	4/10/2008	(NP)	99.77	17.63		82.14	341			1.49	<0.500	1.63	<3.00	<1.00			<1.00	
MW-1 3/19/2009 (NP) 99.77 18.20 81.57 407 3.88 <0.500 1.64 1.56 5.93 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	MW-1	7/2/2008	(NP)	99.77	17.81		81.96	130			<0.500	<0.500	0.78	<3.00	<1.00			<1.00	
MW-1 6/15/2009 (NP) 99.77 18.05 81.72 220 <-1.00 <1.00 1.3 8.4 <1.00 <2.00 MW-1 9/4/2009 (NP) 99.77 18.44 81.33 50 <1.00	MW-1	10/7/2008	(NP)	99.77	18.24		81.53	302			<0.500	<0.500	<0.500	<3.00	<1.00			1.13	
MW-1 9/4/2009 (NP) 99.77 18.44 81.33 50 <1.00 <1.00 <2.00 <1.00 <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <- <-	MW-1	3/19/2009	(NP)	99.77	18.20		81.57	407			3.88	<0.500	1.64	1.56	5.93			<1.00	
MW-1 12/3/2009 (NP) 99.77 18.21 81.56 580 13	MW-1	6/15/2009	(NP)	99.77	18.05		81.72	220			<1.00	<1.00	13	8.4	<1.00			<2.00	
MW-1 3/17/2010 (NP) 99.77 17.93 81.84 2,000 280 33 120 200 <1.0 4.2 MW-1 3/17/2010 (Dup)(NP) 99.77 17.93 81.84 2,200 280 34 120 210 <1.0	MW-1	9/4/2009	(NP)	99.77	18.44		81.33	50			<1.00	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-1 3/17/2010 (Dup)(NP) 99.77 17.93 81.84 2,200 280 34 120 210 <1.0 4.8 MW-1 7/21/2010 (NP) 267.43 17.34 250.09 813 221 1.0 121 57.8 <1.0	MW-1	12/3/2009	(NP)	99.77	18.21		81.56	580			13	<1.00	13	4.6	<1.00			<2.00	
MW-1 7/21/2010 (NP) 267.43 17.34 250.09 813 221 1.0 121 57.8 <1.0 <	MW-1	3/17/2010	(NP)	99.77	17.93		81.84	2,000			280	33	120	200	<1.0			4.2	
MW-1 7/21/2010 (Dup)(NP) 267.43 17.34 250.9 780 193 <1.0 86.8 37.4 <1.0 10/3/2010 (LF) 267.43 17.68 0.0 249.75 358 20.9 <1.0 31.0 4.6 <1.0 <10.0 MW-1 1/13/2010 (LFP) 267.43 17.15 0.0 250.28 632 47.6 4.6 36.6 21.2 <1.0	MW-1	3/17/2010	(Dup)(NP)	99.77	17.93		81.84	2,200			280	34	120	210	<1.0			4.8	
MW-1 10/13/2010 (LF) 267.43 17.68 0.0 249.75 358 20.9 <1.0 31.0 4.6 <1.0 <1.0 MW-1 1/13/2011 (LFP) 267.43 17.15 0.0 250.28 632 47.6 4.6 36.6 21.2 <1.0	MW-1	7/21/2010	(NP)	267.43	17.34		250.09	813			221	1.0	121	57.8	<1.0			<10.0	
MW-1 1/13/2011 (LFP) 267.43 17.15 0.0 250.28 632 47.6 4.6 36.6 21.2 <1.0 <1.0 MW-1 7/19/2011 (NP) 267.43 17.66 0.0 249.77 <50.0	MW-1	7/21/2010	(Dup)(NP)	267.43	17.34		250.09	780			193	<1.0	86.8	37.4	<1.0			<10.0	
MW-1 7/19/2011 (NP) 267.43 17.66 0.0 249.77 <50.0 <-1.0 <1.0 <1.0 <3.0 <10.0 MW-GW-1 5/4/2005 (P) 17.30 140 6.94 <0.500	MW-1	10/13/2010	(LF)	267.43	17.68	0.0	249.75	358			20.9	<1.0	31.0	4.6	<1.0			<10.0	
MW-GW-1 5/4/2005 (P) 17.30 140 6.94 <0.500 2.94 <1.00 <2.00 <0.010 <0.500 71.8 MW-GW-1 6/30/2005 (NS) 99.00 17.41 81.59 -	MW-1	1/13/2011	(LFP)	267.43	17.15	0.0	250.28	632			47.6	4.6	36.6	21.2	<1.0			<10.0	
MW-GW-1 6/30/2005 (NS) 99.00 17.41 81.59 5.79 <0.500 1.5 <1.00 <2.00 <0.010 <1.00 <45.3 MW-GW-1 11/16/2005 (P) 99.00 17.80 81.20 406 7.22 0.59 2.56 2.23 <td>MW-1</td> <td>7/19/2011</td> <td>(NP)</td> <td>267.43</td> <td>17.66</td> <td>0.0</td> <td>249.77</td> <td><50.0</td> <td></td> <td></td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><3.0</td> <td></td> <td></td> <td></td> <td><10.0</td> <td></td>	MW-1	7/19/2011	(NP)	267.43	17.66	0.0	249.77	<50.0			<1.0	<1.0	<1.0	<3.0				<10.0	
MW-GW-1 8/5/2005 (P) 99.00 17.53 81.47 218 5.79 <0.500 1.5 <1.00 <2.00 <0.010 <1.00 45.3 MW-GW-1 11/6/2005 (P) 99.00 17.80 81.20 406 7.22 0.59 2.56 2.23 <1.00	MW-GW-1	5/4/2005	(P)		17.30			140			6.94	<0.500	2.94	<1.00	<2.00	<0.010	<0.500	71.8	<1.00
MW-GW-1 11/16/2005 (P) 99.00 17.80 81.20 406 7.22 0.59 2.56 2.23 <1.00 <0.010 <1.00 5.96	MW-GW-1	6/30/2005	(NS)	99.00	17.41		81.59												
	MW-GW-1	8/5/2005	(P)	99.00	17.53		81.47	218			5.79	<0.500	1.5	<1.00	<2.00	<0.010	<1.00	45.3	<1.00
	MW-GW-1	11/16/2005	(P)	99.00	17.80		81.20	406			7.22	0.59	2.56	2.23	<1.00	<0.010	<1.00	5.96	<1.00
MW-GW-1 2/2/2006 (P) 99.00 16.75 82.25 193 8.2 1.2 1.06 7.85 <1.00 <0.010 <1.00 5.88	MW-GW-1	2/2/2006	(P)	99.00	16.75		82.25	193			8.2	1.2	1.06	7.85	<1.00	<0.010	<1.00	5.88	1.55

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	μg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-GW-1	5/18/2006	(P)	99.00	16.48		82.52	121			2.59	<0.500	0.92	<1.00	<1.00	<0.010	<1.00	8.58	<1.00
MW-GW-1	8/14/2006	(NS)	99.00															
MW-GW-1	3/7/2007	(NP)	99.00	16.34		82.66	98.8			3.04	<0.500	<0.500	<3.00					
MW-GW-1	6/5/2007	(NS)	99.00															
MW-GW-1	9/6/2007	(NP)	99.00	16.88		82.12	260			10.3	3.02	1.93	12					
MW-GW-1	11/21/2007	(NP)	99.00	7.18		91.82	604			52.4	3.91	4.6	56					
MW-GW-1	1/17/2008	(NP)	99.00	16.75		82.25	366			21.2	1.17	1.51	18.4	<1.00			46.4	
MW-GW-1	4/10/2008	(NP)	99.00	16.76		82.24	<50.0			<0.500	<0.500	<0.500	<3.00	<1.00			2.05	
MW-GW-1	7/2/2008	(NP)	99.00	16.99		82.01	53			0.99	<0.500	<0.500	<3.00	<1.00			28.3	
MW-GW-1	10/7/2008	(NP)	99.00	17.36		81.64	87			2.22	<0.500	<0.500	<3.00	<1.00			<1.00	
MW-GW-1	3/23/2009	(NP)	99.00	17.33		81.67	111			1.32	<0.500	<0.500	<1.00	2.63			<1.00	
MW-GW-1	6/15/2009	(NP)	99.00	17.19		81.81	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-GW-1	9/4/2009	(NP)	99.00	17.60		81.40	170			1.3	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-GW-1	12/3/2009	(NP)	99.00	17.26		81.74	110			4.4	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-GW-1	3/17/2010	(NP)	99.00	16.74		82.26	<50			<1.0	<1.0	<1.0	<2.0	<1.0			3.2	
MW-GW-1	7/21/2010	(NP)	266.62	16.53		250.09	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-GW-1	10/13/2010	(LF)	266.62	16.84	0.0	249.78	68.9			1.5	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-GW-1	10/13/2010	(Dup)(LF)	266.62	16.84	0.0	249.78	75.7			1.7	<1.0	<1.0	<3.0	<1.0				
MW-GW-1	1/13/2011	(NS NM)	266.62															
MW-GW-1	7/19/2011	(NP)	266.62	15.83	0.0	250.79	<50.0			<1.0	<1.0	<1.0	<3.0				<10.0	
MW-2	3/24/2004	(P)	99.36	17.24		82.12	233,000			11,300	34,200	5,770	30,400	<5,000			222	19.2
MW-2	6/7/2004	(P)	99.36	17.80	0.80	82.20	452,000			27,300	62,400	7,190	38,600	<1,000			144	106
MW-2	11/12/2004	(NS)	99.36	19.55	2.06	81.46												
MW-2	12/9/2004	(NS)	99.36	19.05	1.55	81.55												
MW-2	2/1/2005	(NS)	99.36	18.90	1.49	81.65												
MW-2	5/4/2005	(P)	99.36	18.93	1.50	81.63	654,000			23,800	51,500	4,540	25,000	<1,000	<250	<250	124	65.5
MW-2	6/30/2005	(NS)	99.36	19.13	1.64	81.54												
MW-2	8/5/2005	(NS)	99.36	18.20	0.29	81.39												
MW-2	11/16/2005	(NS)	99.36	19.65	1.83	81.17												
MW-2	2/2/2006	(NS)	99.36	17.18	0.17	82.32												
MW-2	5/18/2006	(NS)	99.36	17.38	0.63	82.48												
MW-2	8/14/2006	(NS)	99.36	17.81	0.70	82.11												
MW-2	3/7/2007	(NS)	99.36	17.86	0.14	81.61												
MW-2	6/5/2007	(NS)	99.36	16.82	0.10	82.62												
MW-2	9/6/2007	(NS)	99.36	17.66	0.42	82.04												
MW-2	11/21/2007	(NS)	99.36	18.55	1.15	81.73												
MW-2	1/17/2008	(NS)	99.36	17.30	0.12	82.16												
W/A 00077 Grou		_	-		-	-			-	vf 11						-		

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-2	4/10/2008	(NS)	99.36	17.36	0.16	82.13												
MW-2	7/2/2008	(NS)	99.36	17.68	0.36	81.97												
MW-2	10/7/2008	(NS)	99.36	18.45	0.81	81.56												
MW-2	3/19/2009	(NS)	99.36	18.90		80.46												
MW-2	6/15/2009	(NS)	99.36	18.17	0.65	81.71												
MW-2	9/4/2009	(NS)	99.36	18.51	0.56	81.30												
MW-2	12/3/2009	(NS)	99.36	18.86	1.42	81.64												
MW-2	3/17/2010	(NS)	99.36	17.25	0.15	82.22												
MW-2	7/21/2010	(NS)	267.03	17.01	0.06	250.01												
MW-2	10/13/2010	(ABD)																
MW-2	1/13/2011	(ABD)																
MW-3	3/24/2004	(P)	100.83	18.45		82.38	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			42	2.69
MW-3	6/7/2004	(P)	100.83	16.50		84.33	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			22.3	<1.00
MW-3	11/12/2004	(P)	100.83	19.27		81.56	<80.0			<0.200	0.69	<0.500	<1.00	<2.00	<0.500	<0.500	<1.00	<1.00
MW-3	12/9/2004	(NS)	100.83	19.10		81.73												
MW-3	2/1/2005	(P)	100.83	19.06		81.77	<80.0			2.72	<0.500	<0.500	<1.00	<2.00			24	<1.00
MW-3	5/4/2005	(P)	100.83	19.27		81.56	<80.0			0.29	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	3.81	<1.00
MW-3	6/30/2005	(NS)	100.83	19.28		81.55												
MW-3	8/5/2005	(P)	100.83	19.39		81.44	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	3.96	<1.00
MW-3	11/16/2005	(P)	100.83	19.72		81.11	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	3.84	<1.00
MW-3	2/2/2006	(P)	100.83	18.71		82.12	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	3.6	<1.00
MW-3	5/18/2006	(NS)	100.83															
MW-3	8/14/2006	(NS)	100.83	16.39		84.44												
MW-3	3/7/2007	(NS)	100.83															
MW-3	6/5/2007	(NS)	100.83															
MW-3	9/6/2007	(NS)	100.83															
MW-3	11/21/2007	(NS)	100.83															
MW-3	1/17/2008	(NS)	100.83															
MW-3	4/10/2008	(NS)	100.83															
MW-3	7/2/2008	(NS)	100.83															
MW-3	10/7/2008	(NS)	100.83															
MW-3	3/19/2009	(NS)	100.83															
MW-3	6/15/2009	(NS)	100.83															
MW-3	9/4/2009	(NS)	100.83															
MW-3	12/3/2009	(NS)	100.83															
MW-3	7/21/2010	(NP)	268.49	18.36		250.13	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-3	10/13/2010	(NS)	268.49	18.72	0.0	249.77												
WA 00077 Gro		_								¥ 11								

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-3	1/13/2011	(NS)	268.49	18.15	0.0	250.34												
MW-3	7/19/2011	(NS)	268.49	17.67	0.0	250.82												
MW-4	3/24/2004	(P)	98.73	16.35		82.38	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			20	6.32
MW-4	6/7/2004	(P)	98.73	16.55		82.18	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			22.6	<1.00
MW-4	11/12/2004	(P)	98.73	17.20		81.53	<80.0			<0.200	1.13	<0.500	1.04	<2.00	<0.500	<0.500	<1.00	<1.00
MW-4	12/9/2004	(NS)	98.73	17.36		81.37												
MW-4	2/1/2005	(P)	98.73	17.20		81.53	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			15.1	<1.00
MW-4	5/4/2005	(P)	98.73	17.11		81.62	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	8.89	<1.00
MW-4	6/30/2005	(NS)	98.73	17.14		81.59												
MW-4	8/5/2005	(P)	98.73	17.29		81.44	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	8.4	<1.00
MW-4	11/16/2005	(P)	98.73	17.60		81.13	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	13	<1.00
MW-4	2/2/2006	(P)	98.73	16.53		82.20	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	4.65	<1.00
MW-4	5/18/2006	(NS)	98.73	16.22		82.51												
MW-4	8/14/2006	(NS)	98.73	17.02		81.71												
MW-4	3/7/2007	(NS)	98.73															
MW-4	6/5/2007	(NS)	98.73															
MW-4	9/6/2007	(NS)	98.73															
MW-4	11/21/2007	(NS)	98.73															
MW-4	1/17/2008	(NS)	98.73															
MW-4	4/10/2008	(NS)	98.73															
MW-4	7/2/2008	(NS)	98.73															
MW-4	10/7/2008	(NS)	98.73															
MW-4	3/19/2009	(NS)	98.73															
MW-4	6/15/2009	(NS)	98.73															
MW-4	9/4/2009	(NS)	98.73															
MW-4	12/3/2009	(NS)	98.73															
MW-4	7/21/2010	(NP)	266.40	16.26		250.14	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-4	10/13/2010	(NS)	266.40	16.60	0.0	249.80												
MW-4	1/13/2011	(NS)	266.40	16.05	0.0	250.35												
MW-4	7/19/2011	(NS)	266.40	15.60	0.0	250.80												
MW-5	11/12/2004	(P)	99.13	17.80		81.33	36,500			5,520	246	3,550	10,500	<1.00	<25.0	<25.0	3.81	1.33
MW-5	12/9/2004	(NS)	99.13	17.67		81.46												
MW-5	2/1/2005	(P)	99.13	17.50		81.63	43,800			6,960	298	3,970	11,500	<100			40	3.86
MW-5	5/4/2005	(P)	99.13	17.60		81.53	40,200			5,900	384	3,190	9,100	<100	0.037	<25.0	17.6	2.85
MW-5	6/30/2005	(NS)	99.13	17.62		81.51												
MW-5	8/5/2005	(P)	99.13	17.78		81.35	61,500			5,610	681	4,080	12,700	<2.00	0.032	<1.00	58.5	1.95
MW-5	11/16/2005	(P)	99.13	18.01		81.12	34,300			3,840	408	3,180	8,920	<1.00	0.043	<1.00	40.6	1.88
W/A-00977- Grou	undwater Monitorii			-		-			4.0	of 11	-					-		2/2011 3:35:43 PM

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-5	2/2/2006	(P)	99.13	17.63		81.50	53,900			3,520	611	3,070	9,160	<1.00	<0.010	<1.00	9.83	2.19
MW-5	5/18/2006	(P)	99.13	17.81		81.32	19,400			1,650	197	1,280	3,770	<1.00	<0.010	<1.00	1.42	<1.00
MW-5	8/14/2006	(P)	99.13	17.10		82.03	24,900			2,450	169	2,180	5,930	<1.00	<0.010	<1.00	38.4	14.6
MW-5	3/7/2007	(NP)	99.13	16.49		82.64	3,770			111	3.25	92	165					
MW-5	6/5/2007	(NP)	99.13	16.61		82.52	395			88.5	1.03	43.6	76.1					
MW-5	9/6/2007	(NP)	99.13	17.07		82.06	4,940			<20.0	6.05	955	4,070					
MW-5	11/21/2007	(NP)	99.13	17.35		81.78	4,100			2,820	49.6	3,130	5,180					
MW-5	1/17/2008	(NP)	99.13	16.93		82.20	27,200			1,700	68.5	2,170	4,130	<1.00			14.4	
MW-5	4/10/2008	(NP)	99.13	17.00		82.13	8,010			400	14	673	876	<1.00			5.01	
MW-5	7/2/2008	(NP)	99.13	17.22		81.91	44,800			2,150	57.8	3,100	5,700	<1.00			6.07	
MW-5	10/7/2008	(NP)	99.13	17.57		81.56	30,800			1,200	22.1	2,200	2,970	<1.00			3.84	
MW-5	3/19/2009	(NP)	99.13	17.50		81.63	36,600			1,360	82.6	2,860	6,020	23.5			2.81	
MW-5	6/15/2009	(NP)	99.13	17.40		81.73	28,000			1,300	63	2,600	5,500	<1.00			4.3	
MW-5	9/4/2009	(NP)	99.13	17.81		81.32	42,000			1,400	70	3,100	6,800	<1.00			3.5	
MW-5	12/3/2009	(NP)	99.13	17.47		81.66	32,000			1,100	53	2,500	5,500	<1.00			3.8	
MW-5	3/17/2010	(NP)	99.13	17.00		82.13	790			18	1.0	63	69	<1.0			<2.0	
MW-5	7/21/2010	(NP)	266.76	16.71		250.05	20,200			578	83.1	1,790	3,930	<1.0			21.2	
MW-5	10/13/2010	(NS)	266.76	17.04	0.0	249.72												
MW-5	10/14/2010	(LF)	266.76	17.04	0.0	249.72	28,600			1,100	72.1	2,760	4,890	<1.0			<10.0	
MW-5	1/13/2011	(LFP)	266.76	16.42	0.0	250.34	21,100			567	18.5	1,790	2,970	<1.0	<0.0098	<1.0	<10.0	
MW-5	7/19/2011	(NP)	266.76	16.01	0.0	250.75	<50.0			<1.0	<1.0	<1.0	<3.0				<10.0	
MW-6	11/12/2004	(P)	98.62	17.25		81.37	29,200			89	1,700	1,270	9,920	<40.0	<10.0	<10.0	7.65	3.37
MW-6	12/9/2004	(NS)	98.62	17.32		81.30												
MW-6	2/1/2005	(P)	98.62	16.99		81.63	7,060			12.8	23.4	350	987	<10.0			27.6	1.76
MW-6	5/4/2005	(P)	98.62	17.04		81.58	3,850			9.8	9.44	239	237	<4.00	0.032	<1.00	13.9	1.65
MW-6	6/30/2005	(NS)	98.62	17.00		81.62												
MW-6	8/5/2005	(P)	98.62	17.25		81.37	5,500			18.4	35.7	433	489	<10.0	0.013	<1.00	56.7	1.25
MW-6	11/16/2005	(P)	98.62	17.50		81.12	2,950			3.35	3.8	232	53.2	<5.00	<0.010	<5.00	15.2	<1.00
MW-6	2/2/2006	(P)	98.62	16.87		81.75	261			1.3	<0.500	1.74	1.5	<1.00	<0.010	<1.00	13.1	<1.00
MW-6	5/18/2006	(P)	98.62	16.28		82.34	2,970			5.49	16.3	145	462	<1.00	<0.010	<1.00	8.76	1.66
MW-6	8/14/2006	(P)	98.62	16.59		82.03	7,110			16.8	38.7	516	1,520	<1.00	<0.010	<1.00	18.5	<1.00
MW-6	3/7/2007	(NP)	98.62	16.10		82.52	2,940			5.4	<2.50	204	118					
MW-6	6/5/2007	(NP)	98.62	16.12		82.50	4,460			8.39	13.2	332	659					
MW-6	9/6/2007	(NP)	98.62	16.58		82.04	19,200			13.3	62.5	735	645					
MW-6	11/21/2007	(NP)	98.62	16.87		81.75	24,000			16.5	98.6	974	4,790					
MW-6	1/17/2008	(NP)	98.62	16.41		82.21	2,870			4.6	1.72	214	190	<1.00			13.2	
MW-6	4/10/2008	(NP)	98.62	16.41		82.21	4,330			<10.0	5.62	268	424	<1.00			4.05	
W/A 00077 Grou																		2/2011 2:25:42 DM

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	μg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-6	7/2/2008	(NP)	98.62	16.62		82.00	12,900			6.01	27.1	613	1,920	<1.00			5.56	
MW-6	10/7/2008	(NP)	98.62	17.05		81.57	20,100			5.48	27.9	998	3,800	<1.00			2.91	
MW-6	3/19/2009	(NP)	98.62	16.98		81.64	1,940			3.29	<2.50	219	33.6	<5.00			1.32	
MW-6	6/15/2009	(NP)	98.62	16.90		81.72	5,600			<10	12	420	700	<1.00			<2.00	
MW-6	9/4/2009	(NP)	98.62	17.31		81.31	13,000			1.5	20	910	2,500	<1.00			4.5	
MW-6	12/3/2009	(NP)	98.62	16.93		81.69	120			<1.00	<1.00	13	<2.00	<1.00			5.6	
MW-6	3/17/2010	(NP)	98.62	16.56		82.06	290			<1.0	<1.0	15	3.0	<1.0			7.3	
MW-6	7/21/2010	(NP)	266.26	16.23		250.03	5,860			1.3	22.4	453	1,150	<1.0			10	
MW-6	10/13/2010	(NS)	266.26	16.54	0.0	249.72												
MW-6	10/14/2010	(LF)	266.26	16.54	0.0	249.72	7,290			1.2	15.0	323	1,580	<1.0			<10.0	
MW-6	1/13/2011	(LFP)	266.26	15.90	0.0	250.36	417			<1.0	<1.0	23.9	32.9	<1.0	<0.0099	<1.0	<10.0	
MW-6	7/19/2011	(NP)	266.26	15.55	0.0	250.71	7,870			3.2	5.4	238	766				<10.0	
MW-6	7/19/2011	(Dup)(NP)	266.26	15.55	0.0	250.71	7,830			<1.0	5.5	254	837				<10.0	
MW-7	12/9/2004	(P)	97.17	15.80		81.37	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			<1.00	<1.00
MW-7	2/1/2005	(P)	97.17	15.46		81.71	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			1.88	<1.00
MW-7	5/4/2005	(P)	97.17	15.62		81.55	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	15.4	<1.00
MW-7	6/30/2005	(NS)	97.17	15.61		81.56												
MW-7	8/5/2005	(P)	97.17	15.76		81.41	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	49.8	<1.00
MW-7	11/16/2005	(P)	97.17	16.00		81.17	<50.0			<0.500	<0.500	<0.500	<1.00	<2.00	<0.010	<1.00	13.6	<1.00
MW-7	2/2/2006	(P)	97.17	14.90		82.27	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	10.5	<1.00
MW-7	5/18/2006	(NS)	97.17	15.22		81.95												
MW-7	8/14/2006	(NS)	97.17	15.80		81.37												
MW-7	3/7/2007	(NS)	97.17															
MW-7	6/5/2007	(NS)	97.17															
MW-7	9/6/2007	(NS)	97.17															
MW-7	11/21/2007	(NS)	97.17															
MW-7	1/17/2008	(NS)	97.17															
MW-7	4/10/2008	(NS)	97.17															
MW-7	7/2/2008	(NS)	97.17															
MW-7	10/7/2008	(NS)	97.17															
MW-7	3/19/2009	(NS)	97.17															
MW-7	6/15/2009	(NS)	97.17															
MW-7	9/4/2009	(NS)	97.17															
MW-7	12/3/2009	(NS)	97.17															
MW-7	7/21/2010	(NP)	264.83	14.72		250.11	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-7	10/13/2010	(NS)	264.83	15.04	0.0	249.79												
MW-7	1/13/2011	(NS)	264.83	15.48	0.0	249.35												
WA 00077 Grou		_																2/2011 2:25:42 D

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L	•	800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-7	7/19/2011	(NS)	264.83	14.08	0.0	250.75												
MW-8	12/9/2004	(P)	97.52	16.05		81.47	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			1.33	<1.00
MW-8	2/1/2005	(P)	97.52	15.80		81.72	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			1.42	<1.00
MW-8	5/4/2005	(P)	97.52	15.99		81.53	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	12.4	<1.00
MW-8	6/30/2005	(NS)	97.52	16.01		81.51												
MW-8	8/5/2005	(P)	97.52	16.15		81.37	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	22.6	<1.00
MW-8	11/16/2005	(P)	97.52	16.55		80.97	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	23.2	<1.00
MW-8	2/2/2006	(P)	97.52	15.15		82.37	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	13.9	<1.00
MW-8	5/18/2006	(NS)	97.52	15.27		82.25												
MW-8	8/14/2006	(NS)	97.52	16.27		81.25												
MW-8	3/7/2007	(NS)	97.52															
MW-8	6/5/2007	(NS)	97.52															
MW-8	9/6/2007	(NS)	97.52															
MW-8	11/21/2007	(NS)	97.52															
MW-8	1/17/2008	(NS)	97.52															
MW-8	4/10/2008	(NS)	97.52															
MW-8	7/2/2008	(NS)	97.52															
MW-8	10/7/2008	(NS)	97.52															
MW-8	3/19/2009	(NP)	97.52	15.85		81.67	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			1.36	
MW-8	6/15/2009	(NS)	97.52															
MW-8	9/4/2009	(NS)	97.52															
MW-8	12/3/2009	(NS)	97.52	-														
MW-8	7/21/2010	(NP)	265.18	15.12		250.06	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-8	10/13/2010	(NS)	265.18	15.41	0.0	249.77												
MW-8	1/13/2011	(NS)	265.18	14.79	0.0	250.39												
MW-8	7/19/2011	(NS)	265.18	14.47	0.0	250.71												
MW-9	12/9/2004	(P)	98.24	16.81		81.43	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			3.35	<1.00
MW-9	2/1/2005	(P)	98.24	16.52		81.72	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			<1.00	<1.00
MW-9	5/4/2005	(P)	98.24	16.55		81.69	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	4.2	<1.00
MW-9	6/30/2005	(NS)	98.24	16.62		81.62												
MW-9	8/5/2005	(P)	98.24	16.77		81.47	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	34.3	<1.00
MW-9	11/16/2005	(P)	98.24	17.09		81.15	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	14.4	<1.00
MW-9	2/2/2006	(P)	98.24	16.05		82.19	<50.0			<0.500	<0.500	<0.500	1.02	<1.00	<0.010	<1.00	13.8	<1.00
MW-9	5/18/2006	(NS)	98.24	16.62		81.62												
MW-9	8/14/2006	(NS)	98.24	16.89		81.35												
MW-9	3/7/2007	(NS)	98.24															
MW-9	6/5/2007	(NS)	98.24															
W/A-00977- Grou	undwater Monitorii								. 70	f 11								2/2011 3:35:43 PM

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

	Date	Notes	TOC	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics C	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	μg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-9	9/6/2007	(NS)	98.24															
MW-9	11/21/2007	(NS)	98.24															
MW-9	1/17/2008	(NS)	98.24															
MW-9	4/10/2008	(NS)	98.24															
MW-9	7/2/2008	(NS)	98.24															
MW-9	10/7/2008	(NS)	98.24															
MW-9	3/19/2009	(NS)	98.24															
MW-9	6/15/2009	(NS)	98.24															
MW-9	9/4/2009	(NS)	98.24															
MW-9	12/3/2009	(NS)	98.24															
MW-9	7/21/2010	(NP)	265.89	15.77		250.12	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-9	10/13/2010	(NS)	265.89	16.10	0.0	249.79												
MW-9	1/13/2011	(NS)	265.89	15.53	0.0	250.36												
MW-9	7/19/2011	(NS)	265.89	15.09	0.0	250.80												
MW-10	12/9/2004	(P)	98.11	16.71		81.40	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			8.79	<1.00
MW-10	2/1/2005	(P)	98.11	16.24		81.87	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00			2.41	<1.00
MW-10	5/4/2005	(P)	98.11	16.40		81.71	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	9.58	<1.00
MW-10	6/30/2005	(NS)	98.11	16.19		81.92												
MW-10	8/5/2005	(P)	98.11	16.46		81.65	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	12.3	<1.00
MW-10	11/16/2005	(P)	98.11	16.69		81.42	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	<1.00	<1.00
MW-10	2/2/2006	(P)	98.11	15.80		82.31	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	1.61	<1.00
MW-10	5/18/2006	(NS)	98.11	15.94		82.17												
MW-10	8/14/2006	(NS)	98.11	16.57		81.54												
MW-10	3/7/2007	(NS)	98.11															
MW-10	6/5/2007	(NS)	98.11															
MW-10	9/6/2007	(NS)	98.11															
MW-10	11/21/2007	(NS)	98.11															
MW-10	1/17/2008	(NS)	98.11															
MW-10	4/10/2008	(NS)	98.11															
MW-10	7/2/2008	(NS)	98.11															
MW-10	10/7/2008	(NS)	98.11															
MW-10	3/19/2009	(NS)	98.11															
MW-10	6/15/2009	(NS)	98.11															
MW-10	9/4/2009	(NS)	98.11															
MW-10	12/3/2009	(NS)	98.11															
MW-10	7/21/2010	(NP)	265.41	15.35		250.06	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			91.9	
MW-10	10/13/2010	(NS)	265.41	15.66	0.0	249.75												

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	но	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	ls (CULs) in	μg/L	•	800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-10	1/13/2011	(NS)	265.41	15.19	0.0	250.22												
MW-10	7/19/2011	(NS)	265.41	14.85	0.0	250.56												
MW-11	6/30/2005	(P)	100.06	18.79		81.27	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	28.9	<1.00
MW-11	8/5/2005	(P)	100.06	18.80		81.26	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	43.3	<1.00
MW-11	11/16/2005	(P)	100.06	19.10		80.96	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	13.6	<1.00
MW-11	2/2/2006	(P)	100.06	18.59		81.47	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	12.6	<1.00
MW-11	5/18/2006	(P)	100.06	18.71		81.35	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	<1.00	<1.00
MW-11	8/14/2006	(P)	100.06	18.20		81.86	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	7.82	<1.00
MW-11	3/7/2007	(NS)	100.06															
MW-11	6/5/2007	(NS)	100.06															
MW-11	9/6/2007	(NS)	100.06															
MW-11	11/21/2007	(NS)	100.06															
MW-11	1/17/2008	(NP)	100.06	18.01		82.05	<50.0			<0.500	<0.500	0.8	<3.00	<1.00			52.8	
MW-11	4/10/2008	(NP)	100.06	18.02		82.04	<50.0			<0.500	<0.500	<0.500	<3.00	<1.00			8.71	
MW-11	7/2/2008	(NP)	100.06	18.19		81.87	<50.0			<0.500	<0.500	1.01	3	<1.00			4.35	
MW-11	10/7/2008	(NP)	100.06	18.62		81.44	<50.0			<0.500	<0.500	<0.500	<3.00	<1.00			19.1	
MW-11	3/19/2009	(NP)	100.06	18.62		81.44	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			<1.00	
MW-11	6/15/2009	(NP)	100.06	18.47		81.59	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-11	9/4/2009	(NP)	100.06	18.88		81.18	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			4	
MW-11	12/3/2009	(NP)	100.06	18.65		81.41	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			3.6	
MW-11	3/17/2010	(NP)	100.06	18.00		82.06	<50			<1.0	<1.0	<1.0	<2.0	<1.0			2.3	
MW-11	7/21/2010	(NP)	267.70	17.72		249.98	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-11	10/13/2010	(LF)	267.70	18.06	0.0	249.64	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-11	1/13/2011	(LFP)	267.70	17.50	0.0	250.20	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-11	7/19/2011	(NP)	267.70	17.00	0.0	250.70	<50.0			<1.0	<1.0	<1.0	<3.0				<10.0	
MW-12	6/30/2005	(P)	100.01	18.50		81.51	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	23.8	<1.00
MW-12	8/5/2005	(P)	100.01	18.70		81.31	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	56.2	<1.00
MW-12	11/16/2005	(P)	100.01	18.92		81.09	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	7.49	<1.00
MW-12	2/2/2006	(P)	100.01	17.82		82.19	96.1			1.74	<0.500	<0.500	<1.00	<1.00	<0.010	1.78	6.78	<1.00
MW-12	5/18/2006	(P)	100.01	18.03		81.98	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	4.39	<1.00
MW-12	8/14/2006	(P)	100.01	18.05		81.96	<50.0			<0.500	<0.500	<0.500	1.32	<1.00	<0.010	<1.00	30.9	
MW-12	3/7/2007	(NS)	100.01															
MW-12	6/5/2007	(NS)	100.01															
MW-12	9/6/2007	(NS)	100.01															
MW-12	11/21/2007	(NS)	100.01															
MW-12	1/17/2008	(NP)	100.01	17.84		82.17	<50.0			0.5	<0.500	<0.500	<3.00	<1.00			87.7	
MW-12	4/10/2008	(NP)	100.01	17.84		82.17	<50.0			<0.500	<0.500	<0.500	<3.00	<1.00			5.72	
WA 00077 Gro	undwater Monitori	na Poport							0.0	of 11								2/2011 3:35·44 P

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

O∰Ásej æţ^œ&æ¢Á^•č|@Ásek^Áj;^•^}&^åÆjÆ, æk[*;æ{•Á^;Áær\;ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	TCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-12	7/2/2008	(NP)	100.01	18.07		81.94	<50.0			<0.500	< 0.500	<0.500	<3.00	<1.00			3.46	
MW-12	10/7/2008	(NP)	100.01	18.48		81.53	<50.0			<0.500	<0.500	<0.500	<3.00	<1.00			2.54	
MW-12	3/19/2009	(NP)	100.01	18.42		81.59	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00			<1.00	
MW-12	6/15/2009	(NP)	100.01	18.33		81.68	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-12	9/4/2009	(NP)	100.01	18.74		81.27	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			<2.00	
MW-12	12/3/2009	(NP)	100.01	18.37		81.64	<50.0			<1.00	<1.00	<1.00	<2.00	<1.00			2.4	
MW-12	3/17/2010	(NP)	100.01	17.91		82.10	<50			<1.0	<1.0	<1.0	<2.0	<1.0			<2.0	
MW-12	7/21/2010	(NP)	267.67	17.65		250.01	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-12	10/13/2010	(LF)	267.67	17.96	0.0	249.71	682			56.7	<1.0	23.0	16.0	<1.0			<10.0	
MW-12	1/13/2011	(LFP)	267.67	17.33	0.0	250.34	304			9.3	<1.0	3.4	3.8	<1.0			<10.0	
MW-12	7/19/2011	(NP)	267.67	16.95	0.0	250.72	<50.0			<1.0	<1.0	<1.0	<3.0				<10.0	
MW-13	6/30/2005	(P)	98.02	16.52		81.50	<80.0			<0.200	<0.500	<0.500	<1.00	<2.00	<0.010	<0.500	5.82	<1.00
MW-13	8/5/2005	(P)	98.02	16.66		81.36	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	26.7	<1.00
MW-13	11/16/2005	(P)	98.02	16.86		81.16	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	13.4	<1.00
MW-13	2/2/2006	(P)	98.02	16.26		81.76	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	32.8	<1.00
MW-13	5/18/2006	(P)	98.02	15.68		82.34	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	6.27	<1.00
MW-13	8/14/2006	(P)	98.02	16.10		81.92	<50.0			<0.500	<0.500	<0.500	<1.00	<1.00	<0.010	<1.00	3.76	<1.00
MW-13	3/7/2007	(NS)	98.02															
MW-13	6/5/2007	(NS)	98.02															
MW-13	9/6/2007	(NS)	98.02															
MW-13	11/21/2007	(NS)	98.02															
MW-13	1/17/2008	(NS)	98.02															
MW-13	4/10/2008	(NS)	98.02															
MW-13	7/2/2008	(NS)	98.02															
MW-13	10/7/2008	(NS)	98.02															
MW-13	3/19/2009	(NS)	98.02															
MW-13	6/15/2009	(NS)	98.02															
MW-13	9/4/2009	(NS)	98.02															
MW-13	12/3/2009	(NS)	98.02															
MW-13	7/21/2010	(NP)	265.68	15.65		250.03	<50.0			<1.0	<1.0	<1.0	<3.0	<1.0			<10.0	
MW-13	10/13/2010	(NS)	265.68	15.93	0.0	249.75												
MW-13	1/13/2011	(NS)	265.68	15.20	0.0	250.48												
MW-13	7/19/2011	(NS)	265.68	14.99	0.0	250.69												
MW-16	10/13/2010	(NS)	267.04	17.30	0.0	249.74												
MW-16	10/14/2010	(LF)	267.04	17.30	0.0	249.74	180,000			24,800	47,400	3,440	21,200	<1.0			111	
MW-16	1/13/2011	(LFP)	267.04	16.71	0.0	250.33	220,000			23,500	44,300	3,720	21,300	<1.0			168	
MW-16	1/13/2011	(Dup)(LFP)	267.04	16.71	0.0	250.33	237,000			22,700	44,000	3,630	20,800	<1.0			167	
WA 00077 Cro	undwater Monitori	n n Dan ant							40	of 11								2/2011 3:35·44 P

WA-00977- Groundwater Monitoring Report

155 N W 85th St, Seattle, WA 98107

ŒĮÁġ)æļ^œ&æ¢Á^•`|@Ásc/Ą,!^•^} c^åÆjĄ(æ&[*¦æ{•Å}^¦Áæ^¦ÁÇ*EŠD

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (M	ITCA) Method A	Cleanup Leve	els (CULs) in	µg/L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	
MW-16	7/19/2011	(NP)	267.04	16.28	0.0	250.76	167,000			15,200	29,000	2,680	18,400				246	

msl = Mean sea level

TOC = Top of casing

GWE = Groundwater elevation above msl

DTW = Depth to water below TOC

ABD = Well abandoned

All analytical results are in micrograms per liter (μ g/L)

TOC/DTW/LNAPL/GWE measurements are in feet (ft)

ND = Not detected at or above the laboratory reporting limit

-- = Not analyzed/not applicable

NA = Not analyzed

NM = Not measured

NE = Top of casing not established

DUP = Duplicate sample

NS = Not Sampled

NAPL = Non-Aqueous Phase Liquid

GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

HO = Total Petroleum Hydrocarbons- Heavy Oil Range Organics

EDB = Ethylene Dibromide

EDC = 1,2-Dichloroethane

MTBE = Methyl Tertiary Butyl Ether

BTEX = Benzene, Toluene, Ethylbenzene and Total Xylenes

P = Purge sampling

LFP = Low flow purge sampling

NP = No purge sampling

GRO, DRO, HO methods by Ecology NW Methods; BTEX, MTBE and EDB by 8260B, lead by EPA 6000/7000 Series, EDC by EPA 8011

Historic analysis by former consultant of BTEX, MTBE and EDB by EPA 8021B and confirmed with EPA 8260B if necessary

Groundwater Elevation - If NAPL is present, the elevation is corrected according to the following formula, (TOC elevation - depth to water) + (0.8 X NAPL Thickness)

800/1,000 = GRO MTCA cleanup levels with benzene present (800) and without (1,000)

Data collected prior to 2010 have been provided by previous consultants and are included as historical reference only

Site resurveyed in 2010. TOC elevation in reference to vertical datum N.A.V.D. 88 and horizontal datum NAD 83/98

BOLD constituent detected above MTCA Cleanup Levels

Table 2
Soil Analytical Data - Petroleum Hydrocarbons and Lead
WA-00977
155 Northwest 85th Street, Seattle, Washington 98107

Sample ID	Date	Depth	GRO	DRO	НО	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Total Lead
Iodel Toxics Control Act (M	TCA) Cleanup Levels	i	100 ¹	2,000 ¹	2,000 ¹	18 ²	6,400 ²	8,000 ²	16,000 ²	0.1 ¹	250 ¹
MW-1-6.0	3/22/2004	6	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	2.22
MW-1-16.0	3/22/2004	16	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	1.99
MW-2-6.0	3/22/2004	6	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	2.01
MW-2-16.0	3/22/2004	16	ND < 5.00	NA	NA	ND < 0.0300	0.0628	ND < 0.0500	0.185	ND < 1.0	3.73
MW-3-6.0	3/22/2004	6	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	3.21
MW-3-16.0	3/22/2004	16	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	1.55
MW-4-6.0	3/22/2004	6	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	1.81
MW-4-16.0	3/22/2004	16	ND < 5.00	NA	NA	ND < 0.0300	ND < 0.0500	ND < 0.0500	ND < 0.1	ND < 1.0	1.55
MW-5-5.0	10/22/2004	5	ND < 3.32	NA	NA	ND < 0.0166	ND < 0.0208	ND <0.0208	ND < 0.0416	ND < 0.0166	2.39
MW-5-15.0	10/22/2004	15	ND < 3.20	NA	NA	0.143	ND < 0.0200	0.0732	0.18	ND < 0.0160	1.75
MW-6-10.0	10/22/2004	10	ND < 4.00	NA	NA	ND < 0.0200	ND < 0.0250	ND < 0.0250	ND < 0.0500	ND < 0.0200	2.3
MW-6-15.0	10/22/2004	15	ND < 3.06	NA	NA	ND < 0.0153	0.0595	0.0462	0.368	ND < 0.0153	7.26
MW-7-15.5	12/6/2004	15.5	ND < 3.37	NA	NA	ND < 0.0168	ND < 0.0210	ND < 0.0210	ND < 0.0421	ND < 0.0168	1.49
MW-8-16.0	12/6/2004	16	ND < 3.13	NA	NA	ND < 0.0157	ND < 0.0196	ND < 0.0196	ND < 0.0392	ND < 0.0157	1.48
MW-9-15.5	12/6/2004	15.5	ND < 3.12	NA	NA	ND < 0.0156	ND < 0.0195	ND < 0.0195	ND < 0.0390	ND < 0.0156	1.41
MW-10-16.0	12/6/2004	16	ND < 3.56	NA	NA	ND < 0.0178	ND < 0.0222	ND < 0.0222	ND < 0.0445	ND < 0.0178	1.32
MW-11-6.5	6/21/2005	6.5	ND < 3.11	NA	NA	ND < 0.0155	ND < 0.0194	ND < 0.0194	ND < 0.0389	ND < 0.0155	3.62
MW-11-15.0	6/21/2005	15	ND < 3.00	NA	NA	ND < 0.0150	ND < 0.0187	ND < 0.0187	ND < 0.0375	ND < 0.0150	2.09
MW-12-15.0	6/21/2005	15	ND < 3.33	NA	NA	ND < 0.0167	ND < 0.0208	ND < 0.0208	ND < 0.0417	ND < 0.0167	1.87
MW-13-15.0	6/21/2005	15	ND < 3.03	NA	NA	ND < 0.0152	ND < 0.0190	ND < 0.0190	ND < 0.0379	ND < 0.0152	1.92
MW-16-18-18.5	9/24/2010	18-18.5	3,230	87	ND < 30.1	33.7	219	64.6	385	ND<0.0026	4.0
MW-16-22.5-23.0	9/24/2010	22.5-23.0	17.3	ND < 8.8	ND < 35.3	1.43	0.363	0.636	2.44	ND<0.003	2.5
MW-16-22.5-23.0 (Dup-1)	9/24/2010	22.5-23.0	20.4	ND < 8.4	ND < 33.7	1.38	0.822	0.652	2.84	ND<0.0027	2.5

All analytical data is in mg/kg

BOLD = Constituent detected above MTCA cleanup levels

GRO = Total Petroleum Hydrocarbons in the gasoline range

DRO = Total Petroleum Hydrocarbons in the diesel range

HO = Total Petroleum Hydrocarbons in the oil range

MTBE = Methyl Tertiary Butyl Ether

ND = Not detected at or above the laboratory reporting limit

¹ = MTCA Method A CLs

² = MTCA Method B CLs

Table 3 Soil Analytical Data - PAHs

WA-00977

155 NW 85th Street, Seattle, Washington

Sample ID	Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)Anthracen e	Benzo(a)Pyrene	Benzo(b) fluoranthene	Benzo(g,h,i) Perylene	Benzo(k) Fluoranthene	Chrysene	Dibenzo(a,h) Anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) Pyrene	1- Methylnaphthalene	2- Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Total Adjusted cPAHs	Total Naphthalenes
Model Toxics Control Ac Cleanup Levels	t (MTCA) Method A	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100	5,000
MW-16-18-18.5	9/24/2010	21.3	19.6	16.4	8.1	ND<6.6	ND<6.6	ND<6.6	ND<6.6	ND<6.6	ND<6.6	9.4	39.4	ND<6.6	4,750	9,670	9,680	54.8	16.5	5.5	24,100

Notes:

All analytical results are in micrograms per kilogram (µg/kg)

Bold and shaded cells represent concentrations greater than MTCA Method A Cleanup Levels

NA = Not analyzed

< = Not detected greater than laboratory detection limit. Value listed is laboratory detection limit.

Depths are listed in feet below ground surface

Analytical Method = EPA Method 8270 SIM

ND = Not determined.

cPAHs adjusted for toxicity according to WAC 173-340-708(8) and Air Toxics Hot Spots Program Risk Assessment Guidelines, Part II Technical Support Document for Describing Available Cancer Potency Factors . Office of Environmental Health Hazard Assessment, California EPA, May 2005. If one or more adjusted cPAH constituents were reported as Non-Detect, half of the reporting limt was used in calculations.

Total Naphthalenes are a total of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene according to MTCA Table 740-1.

Table 4 Biogeochemical Parameters WA-0977

155 Northwest 85th Street, Seattle, Washington, 98107

Relative Location ⁸	Monitoring Well ID	Date Sampled	Total Alkalinity (mg/L as CaCO ₃) ¹	Sulfate (mg/L) ²	Nitrogen, Nitrite/Nitrate (mg/L) ³	Methane (μg/L) ⁴	Total Manganese (µg/L) ⁵	Dissolved Manganese (µg/L) ⁵	Total Iron (μg/L)⁵	Dissolved Iron (µg/L) ⁵	Total Organic Carbon (mg/L) ⁶	Sulfide (mg/L) ⁷
Within Plume	MW-12	10/13/2010	195	24.4	2	96	724	880	440	ND < 100	4.1	ND < 0.50
Down gradient	MW-11	10/13/2010	100	20.4	9.1	ND < 10.0	21.4	ND < 15.0	297	ND < 100	1.3	ND < 0.50
Within Plume	MW-6	10/13/2010	191	5.4	ND < 0.050	621	2,820	2,650	3,410	837	2.8	0.6
Within Plume	MW-6 (Dup)	10/13/2010										0.55
Within Plume	MW-5	10/13/2010	393	1.2	0.18	9,110	6,170	5,910	2,410	178	9.3	ND < 0.50
Within Plume	MW-16	10/13/2010	598	2.2	0.08	43	6,540	6,250	625	ND < 100	30.6	ND < 0.50
Up gradient	MW-4	10/13/2010	73.3	15.7	5.5	ND < 10.0	ND < 15.0	ND < 15.0	133	ND < 100	1.4	ND < 0.50
Within Plume	MW-1	10/13/2010	276	6.4	0.13	ND < 10.0	1,570	1,410	ND < 100	ND < 100	1.8	ND < 0.50

¹: Total alkalinity analyzed using SM method 2320B.

²: Sulfate analyzed by EPA method 300.0.

³: Nitrogen, Nitrite/Nitrate analyzed by EPA method 353.2.

⁴: Methane analyzed using method RSK 175.

⁵: Total and dissolved manganese and iron anayzed by EPA method 6010.

⁶: Total organic carbon analyzed by SM method 5310C

⁷: Sulfide analyzed by SM method 4500-S²F

⁸: Relative location based on groundwater samples collected in October 2010.

DO = Dissolved oxygen

"<" = Indicates analyte not detected above MRL

"--" = Indicates analyte was not sampled or analyzed

mS/cm = microseimens per centermeter

 $CaCO_2$ = Calcium carbonate

mg/L = Miligrams per liter

 μ g/L = Micrograms per Liter

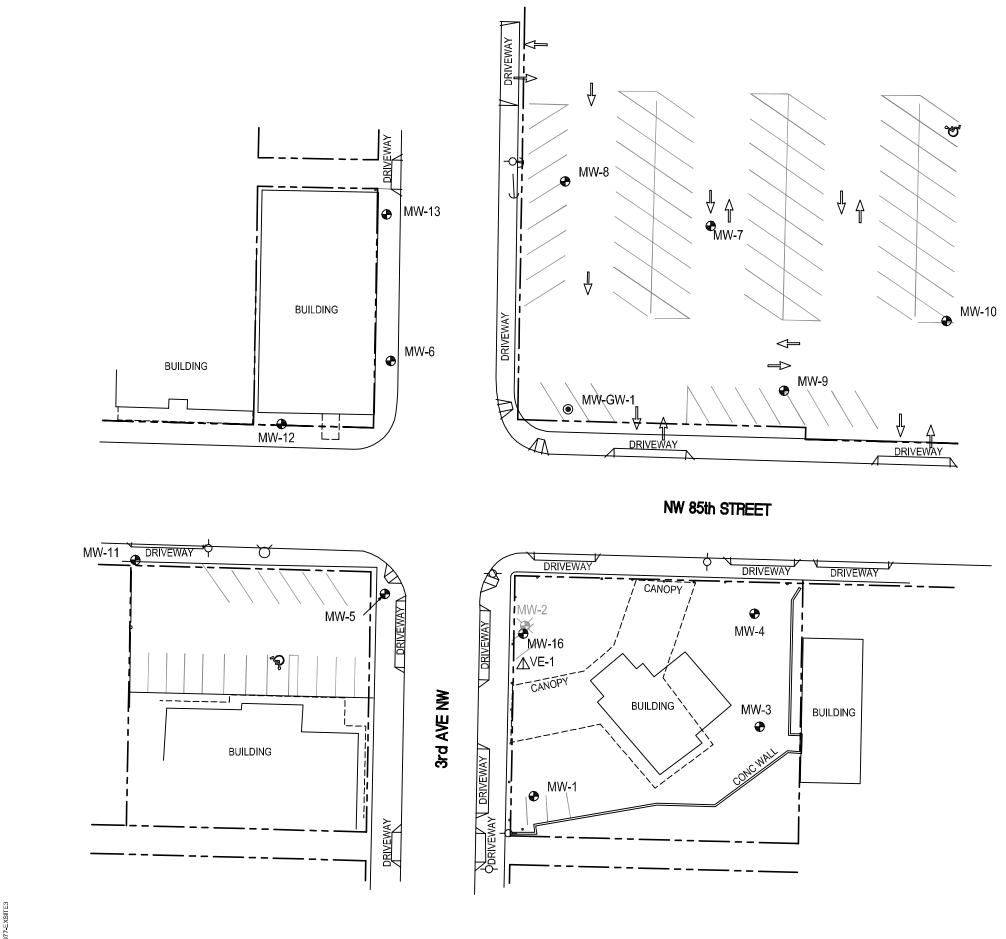
Table 5 Sulfate Loading Conceptual Design

WA-0977 155 Northwest 85th Street, Seattle, Washington 98107

Design Elements	Quantity	Units	Notes
Aquifer Characteristics			
Mobile Porosity (θ _m)	8%		Assumed
Γotal Porosity (θ _i)	30%		Assumed
Hydraulic Gradient (i)	0.0005	ft/ft	Calculated from 1Q2011 data
njection Wells and Volume			
Screened Interval (h)	15	ft	Assumed
Fotal Number of Injection Wells Required (#IW)	3	wells	MW-5, MW-6, and MW-12
Radius of Influence (ROI)	15 283	ft	Assumed
Required injection volume per foot of screen (Vin/ft)	423	gal	$V_{inj}/ft = (\pi^* ROI^{2*} h^* \theta_m^* 7.48)/h$
Fotal required injection volume per well (V _{ini})	6,345	gal	V _{ini} = V _{ini} /ft*h
Fotal required injection volume per event (V _{tot})	19,034	gal	$V_{tot} = V_{inj} # W$
Mass Loading			
Average GRO Concentration	7830	µg/L	Based on 3Q2011 data for MW-6
Average Soil Concentration Estimate fraction of Organic Carbon	3230	mg/kg	Max GRO results from the Site. MW-16-18-18.5
-	0.001	f _{oc}	
Sorbed phase partitioning coefficeint	5000	k _{oc}	
Estimated soil bulk density	1.5	kg/L	
Sorbed Phase Mass TPH per Injection well	35.77	lbs	Serbed Mass = [[Agueous Concentration (ug/l.)*K (1./kg)*f]/(1000) * [treatment
			Sorbed Mass = {[Aqueous Concentration (ug/L)* K_{oc} [L/kg)* f_{oc}]/1000} * {treatment
			volume of soil (ft ³)*soil density (kg/L)*28.32 (L/ft ³)} / 453592.4 (mg/lbs)
Aqueous Phase Mass TPH per Injection well	0.14	lbs	Aqueous Mass = Treatement volume pore space (ft ³) * 28.32 (L/ft ³)*Average
Farget in situ concentration of SO ₄	5.00	g/L	GRO Concentration (µg/L)/1000 (µg/mg)*2.20x10 ⁻⁶ (lbs/mg) Assumed
Sulfate Loading	0.00	g/L	Abbanea
Farget Sulfate Concentration in Aquifer (AC _{SO42} .)	5,000	mg/L	
Farget Sulfate Concentration in Aquifer (AC _{S042-})	0.042	lb/gal	Conversion
Jnit Weight of Water (y _w)	8.3	Ŭ	Assumed
		lb/gal	
Farget Sulfate Mass Percentage in Aquifer AM% _{SO42} .	0.50%	%	$M\%_{SO42} = AC_{SO42}/\gamma_W$
Dilution in Aquifer (D)	2	X	Assumed aquifer dilution of 2X
Formula Weight of Magnesium Sulfate Heptahydrate (FW _{MgSO4*7H2O})	246	g/mol	$FW_{MgSo4*7H20} = MW_{Mg} + MW_{S} + 4*MW_{O} + 7*MW_{H20}$
Formula Weight of Sulfate (FW SO42.)	96	g/mol	$FW_{SO42} = MW_S + 4^*MW_O$
Formula Weight of Magnesium (FW Mg)	24	g/mol	$FW_{Mg} = MW_{Mg}$
Magnesium Sulfate Hepta Hydrate:Sulfate Mass Ratio (FW _{MgSO4*7H2O} :FW _{SO42-})	2.6		FW _{MgSO4*7H2O} :FW _{SO42} = FWMg _{SO4} /FW _{SO42} -
Magnesium:Magnesium Sulfate Hepta Hydrate Mass Ratio (FW _{Na} :FW _{Na2S208})	0.098		FW _{Mg} :FW _{MgSO4*7H2O} = FW _{Mg} /FW _{MgSO4}
Mass Percentage of Injection Strength as Sulfate (IM% _{SO42} .)	1.0%	%	IM% _{SO42-} = D*M% _{SO42-}
njection Strength as Sulfate (IC _{SO42-})	0.083	lb/gal	$IC_{SO42} = IM\%_{SO42} * \gamma_w$
njection Strength as Sulfate (IC _{SO42-})	10,000	mg/L	Conversion
njection Strength of Magnesium Sulfate Hepta Hydrate (CMgSO4*7H2O)	25,625	mg/L	C _{MgSO4} = IC _{SO42} *FW _{MgSO4*7H2O} :FW _{SO42} (approximate solubility @ 20°C = 710 g/L)
njection Strength of Magnesium Sulfate Hepta Hydrate (C _{MaSDe})	0.21	lb/gal	
njection Strength of Magnesium Sulfate Hepta Hydrate (C _{MoSO4})	0.21	lb/gal	Check
Vass Percentage of Injection Strength as Magnesium Sulfate Hepta Hydrate (IM% _{MnSO4})	2.6%	%	Check
Sulfate requirement per well (SO4 ² /W)	529	lbs	SO4 ² /W = (IC _{SO42} .)*V _{inj}
Sulfate requirement per event (SO4 ² /Évent)	1,586	lbs	SO_4^2 /Event = SO_4^2 /W*#IW
Magnesium Sulfate Hepta Hydrate requirement per event (MgSO ₄ /event)	4,065	lbs	MgSO ₄ /Event = SO ₄ ²⁻ /Event*FWMgSO ₄ :FWSO ₄ ²⁻
Magnesium Sulfate Hepta Hydrate requirement per event (MgSO ₄ /event)	4,065	lbs	CHECK: MgSO _{4*7H2O} /Event = CMgSO _{4*7H2O} *V _{tot}
njection Timeframe			
Assumed per well injection rate (Q _{ini})	3	gpm	Design Parameter
Assumed hours worked per day	10	hr/d	Assumed
njection hours per day (t_{abor})	10	hr/d	Assumed - continuous gravity feed not possible
Fine to complete injection at one well (t _{ini})	36	hours	$t_{inj} = (V_{inj})/(Q_{inj}*60)$
Number of wells for Simultaneous Injection	2	nours	ng (+ng/(+ng /
Length of continuous injection	4	days	Not possible
Fime required for travel, setup/teardown, mix batches each day (t _{setup})	1	hours	Change this with local site knowledge
		1	Assumed
Required Technician Oversight	100%		
Required Technician Oversight Field Technician Oversight Time	111	hours	Assumed

Table 6Sulfate Injection Sampling Matrix

Former ARCO Facility WA-0977 155 Northwest 85th Street, Seattle, Washington 98107

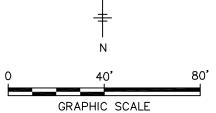

Well ID	GRO by NWTPH-GX	DRO by NWTPH-Dx	HO by NWTPH-Dx	BTEX and MTBE by EPA 8260	Sulfide by EPA 376.1	Sulfate by EPA 300.0	Nitrate as Nitrogen by EPA 300.0	Total/Dissolved Iron and Lead by EPA 6020	Conductivity by downhole meter	Temperature by downhole meter	pH by downhole meter
Baseline Samplin	g										
MW-5	х	х	х	х	х	х	х	х	х	х	х
MW-6	х	х	х	x	x	x	х	х	х	х	х
MW-12	х	х	х	х	х	х	х	х	х	х	х
njection Monitoring (Initally at 250 gallons injected and then every 500 gallons of injected solution per well)											
MW-1					BC	BC			х	х	х
MW-5					BC	BC			х	х	х
MW-16					BC	BC			х	х	х
Week 1 Sampling	I										
MW-5					х	х			х	х	х
MW-6					x	x			х	х	х
MW-12					x	х			х	х	х
IVV-1					х	х			х	х	х
IW-2					х	х			х	х	х
VE-2					х	х			х	х	х
Month 2 Sampling	g										
MW-5	х	х	х	х	х	х	х	х	х	х	х
MW-6	х	х	х	х	х	х	х	х	х	х	х
MW-12	х	х	х	х	х	х	х	х	х	х	х

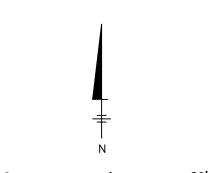
BC- Sampling based on observed spike and sustained elevated conductivity measurements.

Figures

PIC- PMLS. DAVIS TMLT. POTTER LYR(ODI)ON+'OFF-REF VAWA08+V024Mg LAYOUT: 1 SAVED: 6/722011447 PM ACADVER: 18.0S (LMSTECH) PAGESETUP: -- PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 6/22201110:20 AM BY: REYES, ALEC CITY: PETALUMA, CA G:/ENVCAD/Emervville/

TM:(Opt) g LAY DB (Reqd) LD (Opt) PIC (Opt) PM (Reqd) NA\WA08\E0000\RAP\GP09BPNAWA08_B01 dwc




FIGURE 2

SITE PLAN

FORMER ARCO FACILITY №. 0977 155 NW 85th STREET, SEATTLE, WASHINGTON **REMEDIAL ACTION PLAN**

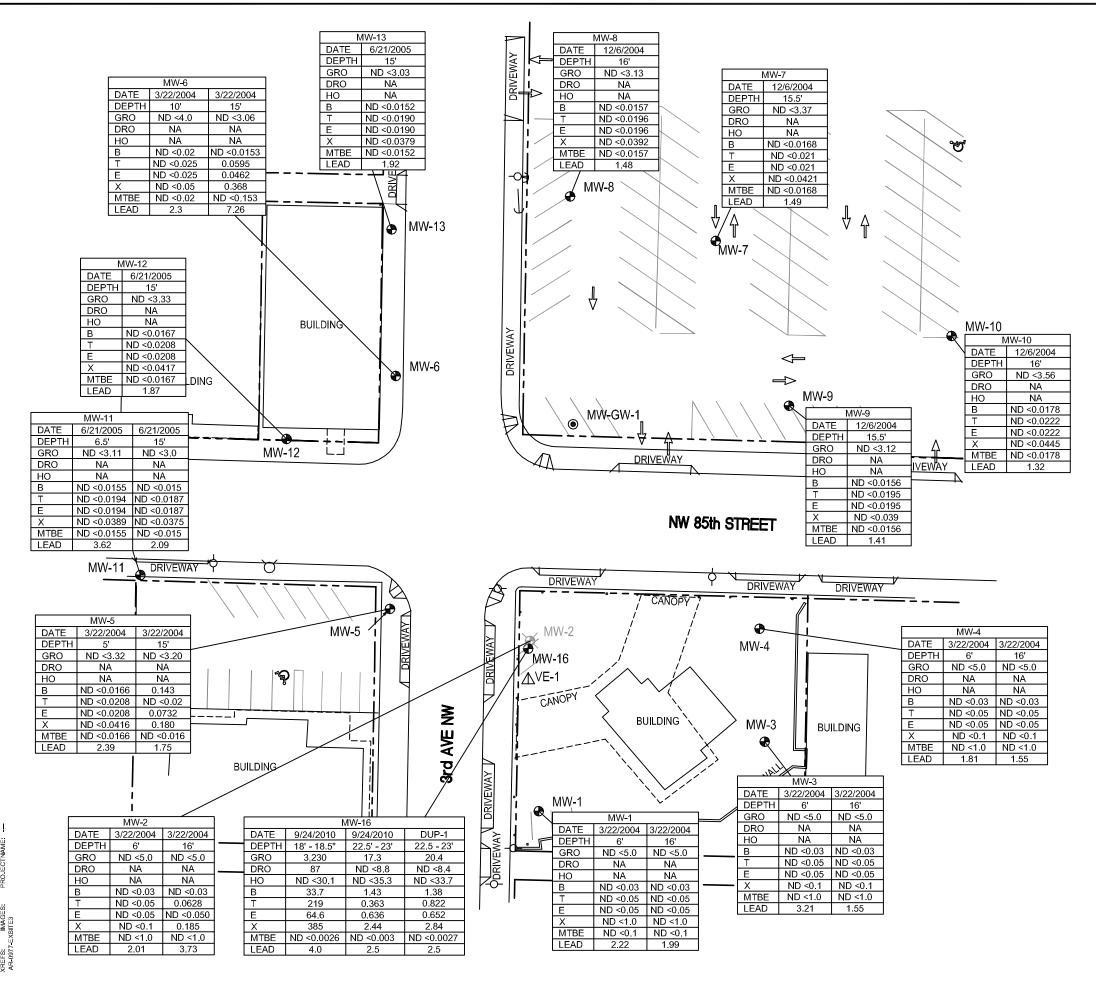
NOTES: BASEMAP SUPPLIED BY OTAK, INC., IN 2010. SUPPLEMENTAL HISTORICAL INFORMATION SUPPLIED BY DELTA ENVIRONMENTAL CONSULTANTS, INC LOCATION OF VE-1 IS APPROXIMATE. VE-1 WILL BE SURVEYED LATER THIS YEAR.

LEGEND

•

۲

X

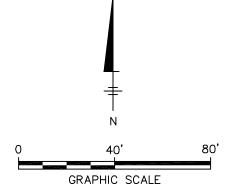

VE-1∕∆

GROUNDWATER MONITORING WELL (DELTA)

ABANDONED GROUNDWATER MONITORING WELL

GROUNDWATER MONITORING WELL (INSTALLED BY OTHERS)

SOIL VAPOR EXTRACTION WELL



HISTORICAL SOIL ANALYTICAL MAP

FORMER ARCO FACILITY No. 0977 155 NW 85th STREET, SEATTLE, WASHINGTON **REMEDIAL ACTION PLAN**

NOTES: BASEMAP SUPPLIED BY OTAK, INC., IN 2010. SUPPLEMENTAL HISTORICAL INFORMATION SUPPLIED BY DELTA ENVIRONMENTAL CONSULTANTS, INC LOCATION OF VE-1 IS APPROXIMATE. VE-1 WILL BE SURVEYED LATER THIS YEAR.

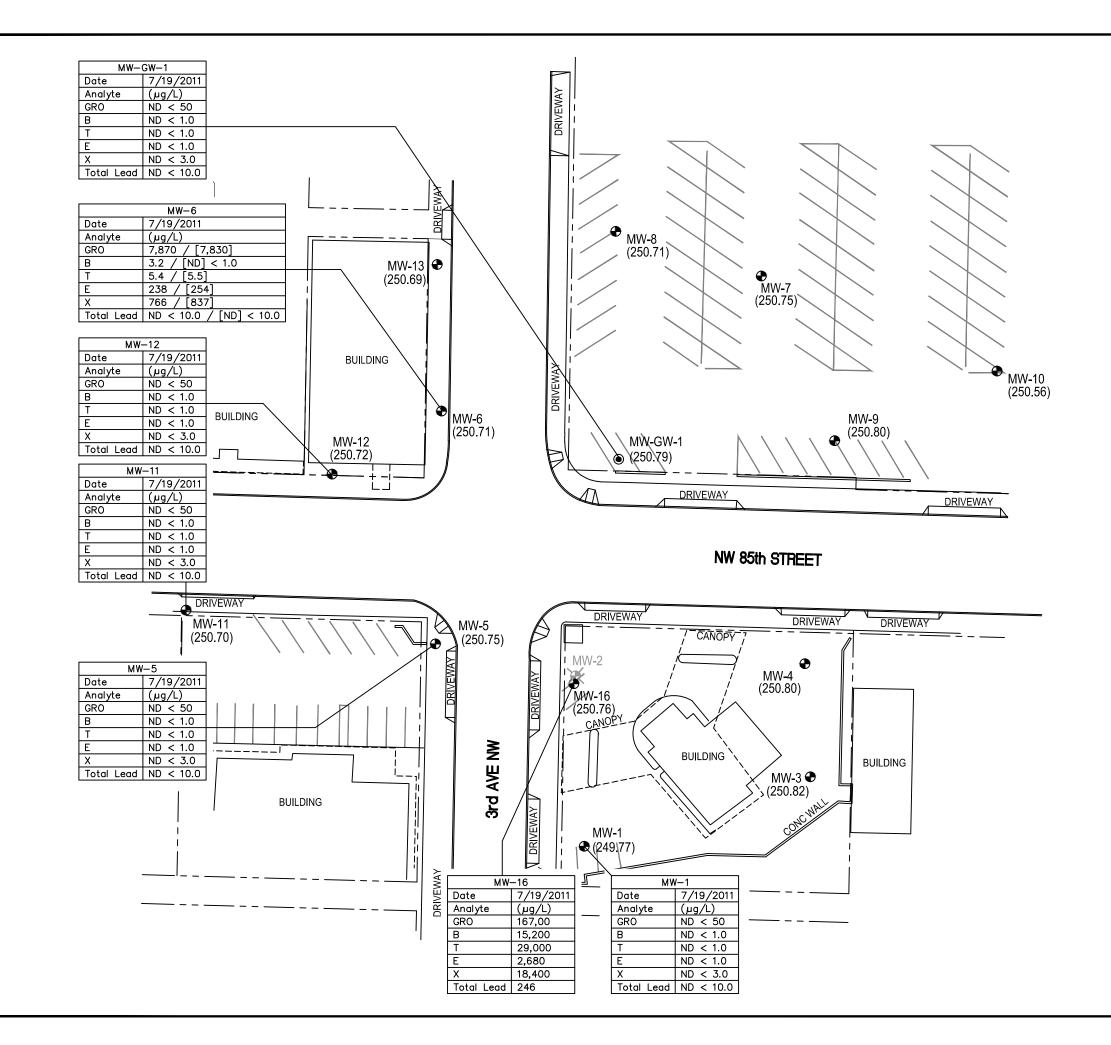
DATE
DEPTH
GRO
DRO
HO
В
Т
E
Х
MTBE
LEAD

Ð

۲

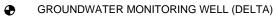
DATE SAMPLE COLLECTED DEPTH BELOW GROUND SURFACE (feet) GASOLINE RANGE ORGANICS (mg/kg) DIESEL RANGE ORGANICS (mg/kg) HEATING OIL RANGE ORGANICS (mg/kg) BENZENE (mg/kg) TOLUENE (mg/kg) ETHYLBENZENE (mg/kg) XYLENES, TOTAL (mg/kg) METHYL TERTIARY BUTYL ETHER (mg/kg) TOTAL LEAD (mg/kg)

ABANDONED GROUNDWATER MONITORING WELL


(INSTALLED BY OTHERS)

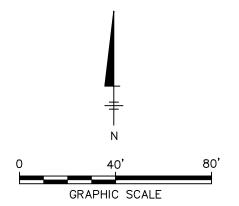
(mg/kg) MILLIGRAMS PER KILOGRAM

GROUNDWATER MONITORING WELL


GROUNDWATER MONITORING WELL (DELTA)

<u>LEGEND</u>

X

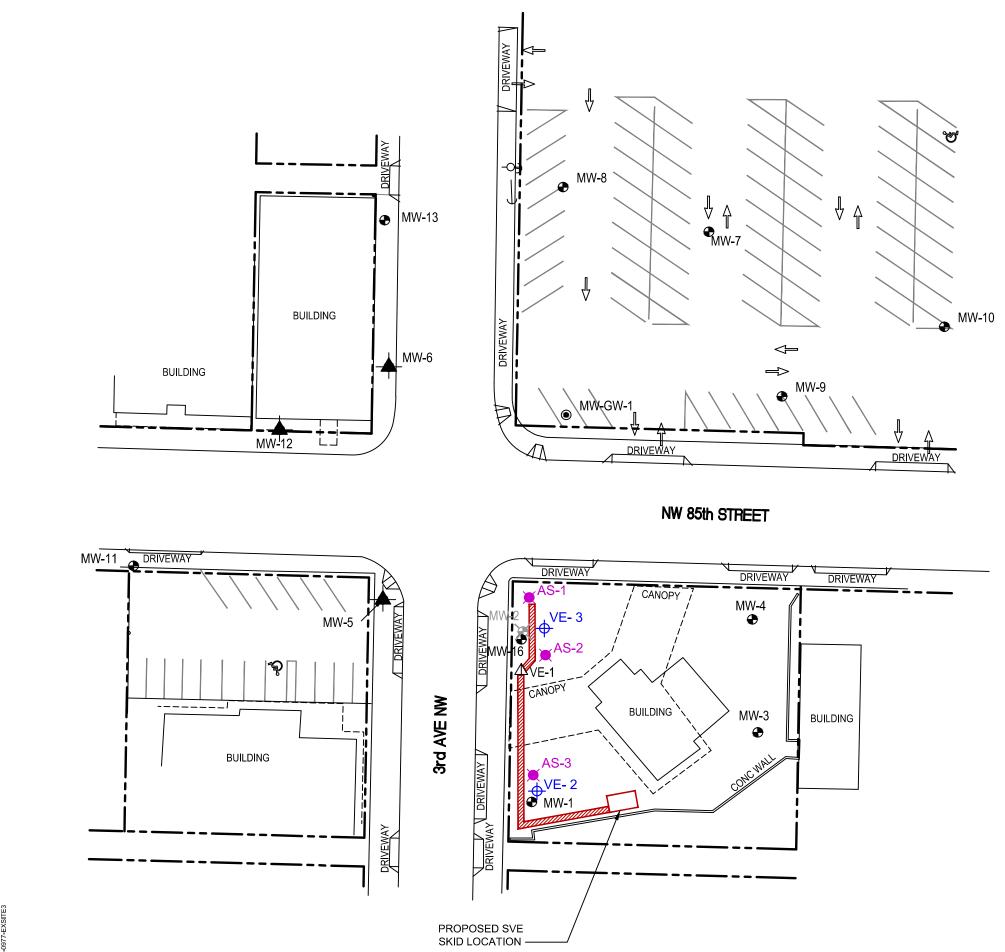


GROUNDWATER MONITORING WELL (INSTALLED BY OTHERS)

ABANDONED GROUNDWATER MONITORING WELL

(250.56) GROUNDWATER ELEVATION (FEET ABOVE MSL)

LOCATION ID		
DATE	Date Sample Taken	
GRO	Gasoline Range Organics (µg/L / [Duplicate (µg/L)]	
В	Benzene (µg/L) / [Duplicate (µg/L)]	
Т	Toluene (μg/L) / [Duplicate (μg/L)]	
E	Ethylbenzene (µg/L) / [Duplicate (µg/L)]	
Х	Total Xylenes (µg/L) / [Duplicate (µg/L)]	
MTBE	Methyl Tertiary Butyl Ether (µg/L) / [Duplicate (µg/L)]	
Total Lead	Total Lead (µg/L) / [Duplicate (µg/L)]	
µg/L	MICROGRAMS PER LITER	
MSL	MEAN SEA LEVEL	
ND	NOT DETECTED, VALUE SHOWN IS DETECTION LIN	١T
NM	NOT MEASURED	
NS	NOT SAMPLED	


NOTE: BASEMAP SUPPLIED BY OTAK, INC., IN 2010. SUPPLEMENTAL HISTORICAL INFORMATION SUPPLIED BY DELTA ENVIRONMENTAL CONSULTANTS, INC

FORMER ARCO FACILITY No. 0977 155 NW 85th STREET, SEATTLE, WASHINGTON **REMEDIAL ACTION PLAN**

GROUNDWATER MAP WITH ANALYTICAL RESULTS

FIGURE

:(Opt)ON=*;OFF=*REF SAVED: 9/21/2011 11: TM:(Opt) LYR: PM:(Reqd) PIC:(Opt) :(Opt)

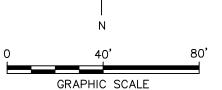
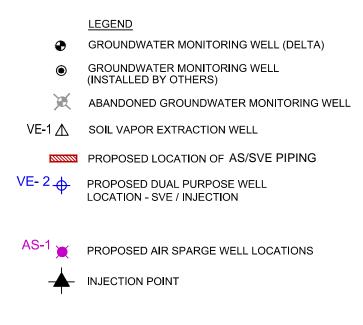
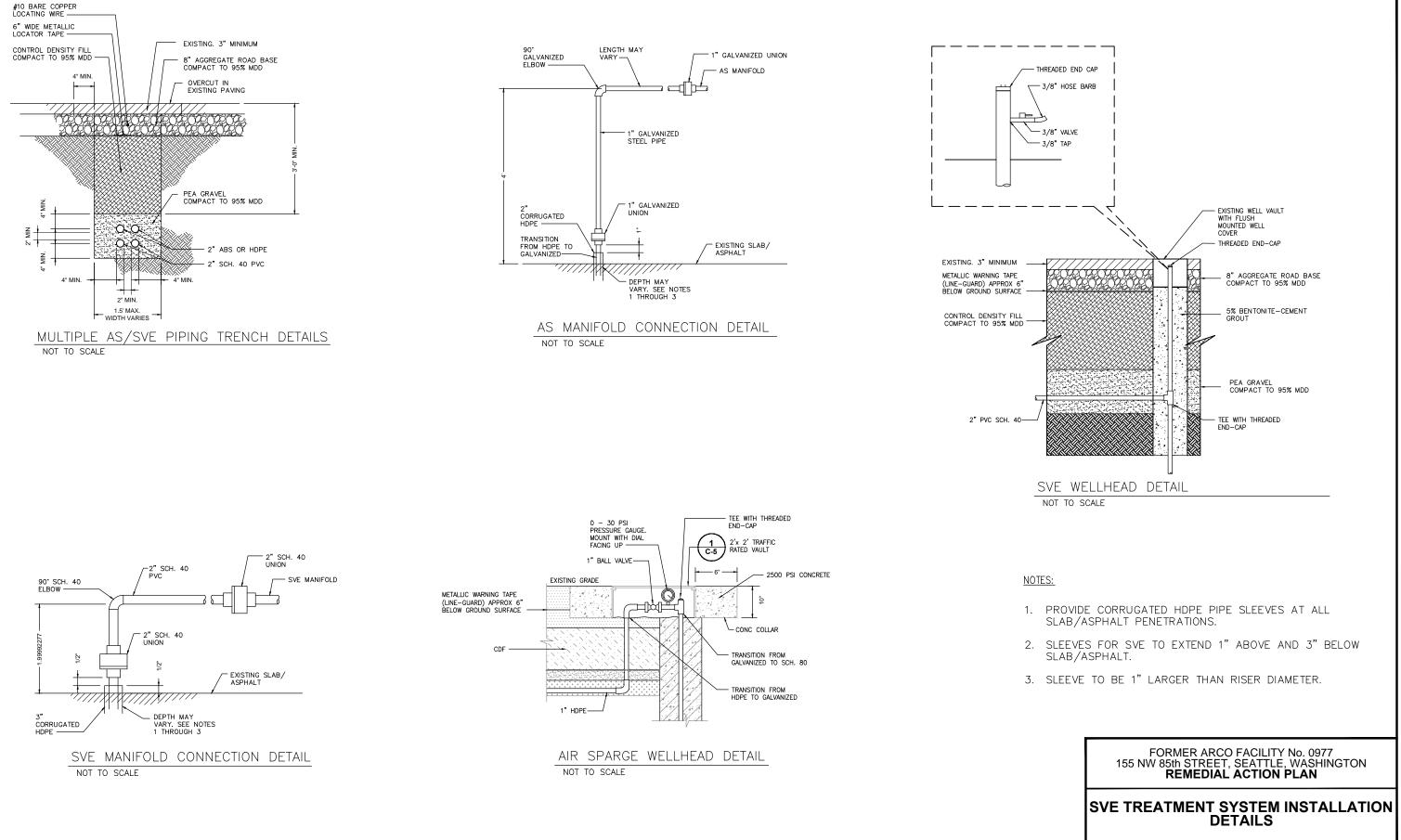
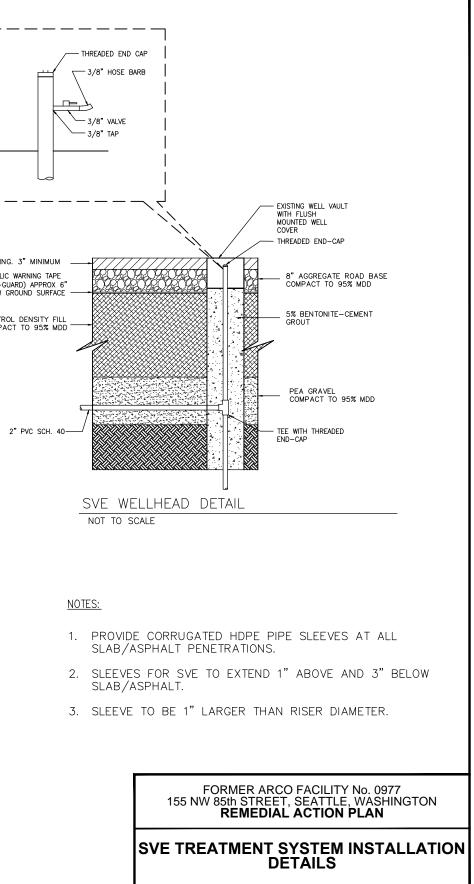
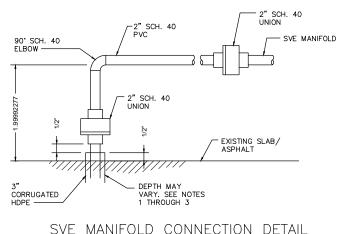


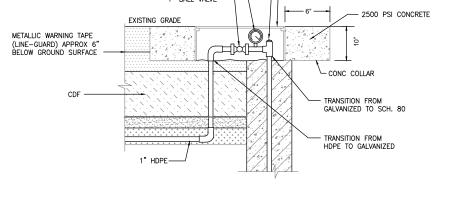
FIGURE 5


SITE PLAN - REMEDIATION WELLS AND SYSTEM


FORMER ARCO FACILITY No. 0977 155 NW 85th STREET, SEATTLE, WASHINGTON **REMEDIAL ACTION PLAN**


NOTES: BASEMAP SUPPLIED BY OTAK, INC., IN 2010. SUPPLEMENTAL HISTORICAL INFORMATION SUPPLIED BY DELTA ENVIRONMENTAL CONSULTANTS, INC LOCATION OF VE-1 IS APPROXIMATE. VE-1 WILL BE SURVEYED LATER THIS YEAR.





Appendix A

Laboratory Analytical Data Reports– Biogeochemical data from October 2010

October 28, 2010

Scott Zorn Arcadis U.S., Inc. 2300 Eastlake Ave E. Ste. 200 Seattle, WA 98102

RE: Project: WA-0977 Pace Project No.: 255347

Dear Scott Zorn:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina Ste. Marie

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

Enclosures

cc: David Rasar, Arcadis U.S., Inc.

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: WA-0977

Pace Project No.: 255347

Washington Certification IDs 940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: WA-0977 Pace Project No.: 255347

255347001 MW-12 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347002 MW-11 NWTPH-Gx AY1 255347003 MW-11 NWTPH-Gx AY1 EPA 6010 BGA EPA 6010 BGA 255347003 MW-1 NWTPH-Gx AY1 255347003 MW-1 NWTPH-Gx AY1 255347003 MW-1 NWTPH-Gx AY1 255347004 MW-GW-1 BGA EPA 6010 BGA 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA		Laboratory
EPA 5030B/8260 LPM 255347002 MW-11 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347003 MW-1 NWTPH-Gx AY1 255347003 MW-1 EPA 6010 BGA EPA 6010 BGA EPA 6010 BGA 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM	3	PASI-S
255347002 MW-11 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347003 MW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA	1	PASI-S
EPA 6010 BGA EPA 5030B/8260 LPM 255347003 MW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 6010 BGA EPA 5030B/8260 LPM 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM BGA EPA 6010 BGA	9	PASI-S
EPA 5030B/8260 LPM 255347003 MW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 6010 BGA EPA 6010 BGA	3	PASI-S
255347003 MW-1 NWTPH-Gx AY1 EPA 6010 BGA EPA 5030B/8260 LPM 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA	1	PASI-S
EPA 6010 BGA EPA 5030B/8260 LPM 255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA	9	PASI-S
EPA 5030B/8260 LPM 255347004 NW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA	3	PASI-S
255347004 MW-GW-1 NWTPH-Gx AY1 EPA 6010 BGA	1	PASI-S
EPA 6010 BGA	9	PASI-S
	3	PASI-S
EPA 5030B/8260 LPM	1	PASI-S
	9	PASI-S
255347005 Dup-1 NWTPH-Gx AY1	3	PASI-S
EPA 5030B/8260 LPM	9	PASI-S
255347006 MW-6 NWTPH-Gx AY1	3	PASI-S
EPA 6010 BGA	1	PASI-S
EPA 5030B/8260 LPM	9	PASI-S
255347007 MW-5 NWTPH-Gx AY1	3	PASI-S
EPA 6010 BGA	1	PASI-S
EPA 5030B/8260 LPM	9	PASI-S
255347008 MW-16 NWTPH-Gx AY1	3	PASI-S
EPA 6010 BGA	1	PASI-S
EPA 5030B/8260 LPM	9	PASI-S
255347009 Trip Blank NWTPH-Gx AY1	3	PASI-S
EPA 5030B/8260 LPM	9	PASI-S

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255347

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Arcadis U.S., Inc.Date:October 28, 2010

General Information:

9 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: GCV/1967

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- DUP (Lab ID: 46255)
 - 4-Bromofluorobenzene (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: GCV/1967

- R1: RPD value was outside control limits.
 - DUP (Lab ID: 46255)
 - Gasoline Range Organics

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255347

Method:	NWTPH-Gx
Description:	NWTPH-Gx GCV
Client:	Arcadis U.S., Inc.
Date:	October 28, 2010

Analyte Comments:

QC Batch: GCV/1967

1n: RPD value was outside control limits due to carryover from previously analyzed sample.

• DUP (Lab ID: 46260)

Gasoline Range Organics

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255347

Method:	EPA 6010
Description:	6010 MET ICP
Client:	Arcadis U.S., Inc.
Date:	October 28, 2010

General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255347

Method:EPA 5030B/8260Description:8260 MSVClient:Arcadis U.S., Inc.Determine:October 20, 2010

Date: October 28, 2010

General Information:

9 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/3306

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- MW-16 (Lab ID: 255347008)
 - 1,2-Dichloroethane-d4 (S)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

WA-0977

255347

Project:

Pace Project No.:

ANALYTICAL RESULTS

Sample: MW-12	Lab ID: 2553	47001	Collected: 10/13/2	10 11:55	Received: 10)/15/10 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx					
Gasoline Range Organics	682 ug/	L	50.0	1		10/19/10 14:24		
a,a,a-Trifluorotoluene (S)	103 %		50-150	1		10/19/10 14:24	98-08-8	
4-Bromofluorobenzene (S)	135 %		50-150	1		10/19/10 14:24	460-00-4	
6010 MET ICP	Analytical Method	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Lead	ND ug/	L	10.0	1	10/20/10 08:28	10/20/10 16:54	7439-92-1	
8260 MSV	Analytical Methe	od: EPA 50	030B/8260					
Benzene	56.7 ug/	L	1.0	1		10/21/10 01:01	71-43-2	
Ethylbenzene	23.0 ug/	L	1.0	1		10/21/10 01:01	100-41-4	
Methyl-tert-butyl ether	ND ug/	L	1.0	1		10/21/10 01:01	1634-04-4	
Toluene	ND ug/	L	1.0	1		10/21/10 01:01	108-88-3	
Xylene (Total)	16.0 ug/	L	3.0	1		10/21/10 01:01	1330-20-7	
4-Bromofluorobenzene (S)	97 %		80-120	1		10/21/10 01:01	460-00-4	
Dibromofluoromethane (S)	104 %		80-122	1		10/21/10 01:01	1868-53-7	
1,2-Dichloroethane-d4 (S)	117 %		80-124	1		10/21/10 01:01	17060-07-0	
Toluene-d8 (S)	85 %		80-123	1		10/21/10 01:01	2037-26-5	
Sample: MW-11	Lab ID: 2553	47002	Collected: 10/13/2	10 13:25	5 Received: 10)/15/10 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx					
Gasoline Range Organics	ND ug/	L	50.0	1		10/19/10 15:12		
a,a,a-Trifluorotoluene (S)	103 %		50-150	1		10/19/10 15:12	98-08-8	
4-Bromofluorobenzene (S)	97 %		50-150	1		10/19/10 15:12	460-00-4	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Lead	ND ug/	L	10.0	1	10/20/10 08:28	10/20/10 16:57	7439-92-1	
8260 MSV	Analytical Meth	od: EPA 50	030B/8260					
Benzene	ND ug/	L	1.0	1		10/21/10 01:21	71-43-2	
Ethylbenzene	ND ug/	L	1.0	1		10/21/10 01:21	100-41-4	
Methyl-tert-butyl ether	ND ug/	L	1.0	1		10/21/10 01:21	1634-04-4	
Toluene	ND ug/		1.0	1		10/21/10 01:21	108-88-3	
Xylene (Total)	ND ug/		3.0	1		10/21/10 01:21	1330-20-7	
4-Bromofluorobenzene (S)	99 %		80-120	1		10/21/10 01:21		
Dibromofluoromethane (S)	105 %		80-122	1		10/21/10 01:21		
1,2-Dichloroethane-d4 (S)	117 %		80-124	1		10/21/10 01:21	17060-07-0	
Toluono dQ (C)	92.0/		00 100	4		10/01/10 01.01	2027 26 5	

Date: 10/28/2010 05:15 PM

Toluene-d8 (S)

REPORT OF LABORATORY ANALYSIS

80-123

1

82 %

Page 8 of 20

10/21/10 01:21 2037-26-5

ANALYTICAL RESULTS

Project:	WA-0977
----------	---------

Pace Project No.: 255347

Sample: MW-1	Lab ID: 2	55347003	Collected: 10/13/1	10 14:30	Received: 10)/15/10 10:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical N	lethod: NWTP	H-Gx					
Gasoline Range Organics	358	ug/L	50.0	1		10/19/10 15:36		
a,a,a-Trifluorotoluene (S)	109	%	50-150	1		10/19/10 15:36	98-08-8	
4-Bromofluorobenzene (S)	97	%	50-150	1		10/19/10 15:36	460-00-4	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
Lead	ND	ug/L	10.0	1	10/20/10 08:28	10/20/10 17:00	7439-92-1	
8260 MSV	Analytical Method: EPA 5030B/8260							
Benzene	20.9	ug/L	1.0	1		10/21/10 01:41	71-43-2	
Ethylbenzene	31.0	ug/L	1.0	1		10/21/10 01:41	100-41-4	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		10/21/10 01:41	1634-04-4	
Toluene	ND	ug/L	1.0	1		10/21/10 01:41	108-88-3	
Xylene (Total)	4.6	ug/L	3.0	1		10/21/10 01:41	1330-20-7	
4-Bromofluorobenzene (S)	98	%	80-120	1		10/21/10 01:41	460-00-4	
Dibromofluoromethane (S)	106	%	80-122	1		10/21/10 01:41	1868-53-7	
1,2-Dichloroethane-d4 (S)	122	%	80-124	1		10/21/10 01:41	17060-07-0	
Toluene-d8 (S)	83	%	80-123	1		10/21/10 01:41	2037-26-5	
Sample: MW-GW-1	Lab ID: 2	55347004	Collected: 10/13/1	10 15:35	Received: 10)/15/10 10:45 N	Aatrix: Water	
Sample: MW-GW-1 Parameters	Lab ID: 2 Results	55347004 Units	Collected: 10/13/1 Report Limit	10 15:35 DF	Received: 10 Prepared)/15/10 10:45 M Analyzed	Aatrix: Water CAS No.	Qual
	Results		Report Limit					Qual
Parameters NWTPH-Gx GCV	Results Analytical N	Units lethod: NWTP	Report Limit			Analyzed		Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics	Results	Units lethod: NWTP ug/L	Report Limit	DF			CAS No.	Qual
Parameters NWTPH-Gx GCV	Results Analytical M 68.9	Units lethod: NWTP ug/L %	H-Gx 50.0	DF 1		Analyzed	CAS No. 98-08-8	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Results Analytical M 68.9 96 92	Units lethod: NWTP ug/L % %	Report Limit H-Gx 50.0 50-150	DF 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01	CAS No. 98-08-8	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical M 68.9 96 92 Analytical M	Units lethod: NWTP ug/L % %	Report Limit H-Gx 50.0 50-150 50-150	DF 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01	CAS No. 98-08-8 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	Results Analytical M 68.9 96 92 Analytical M ND	Units lethod: NWTP ug/L % lethod: EPA 60	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0	DF 1 1 1 hod: EP/	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/19/10 16:01	CAS No. 98-08-8 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead	Results Analytical M 68.9 96 92 Analytical M ND Analytical M	Units lethod: NWTP ug/L % lethod: EPA 60 ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0	DF 1 1 1 hod: EP/	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/19/10 16:01	CAS No. 98-08-8 460-00-4 7439-92-1	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5	Units lethod: NWTP ug/L % lethod: EPA 60 ug/L lethod: EPA 50	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260	DF 1 1 1 hod: EP/ 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND	Units lethod: NWTP ug/L % lethod: EPA 60 ug/L lethod: EPA 50 ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0	DF 1 1 1 hod: EP/ 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND ND	Units lethod: NWTP ug/L % lethod: EPA 60 ug/L lethod: EPA 50 ug/L ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0	DF 1 1 1 hod: EP/ 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03 10/21/10 02:01 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND ND ND	Units lethod: NWTP ug/L % 9 lethod: EPA 60 ug/L lethod: EPA 50 ug/L ug/L ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0 1.0 1.0	DF 1 1 1 hod: EP/ 1 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND ND ND	Units lethod: NWTP ug/L % % lethod: EPA 60 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0 1.0 1.0 1.0	DF 1 1 1 hod: EP/ 1 1 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/20/10 16:01 10/20/10 17:03 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total)	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND ND ND ND	Units lethod: NWTP ug/L % lethod: EPA 60 ug/L lethod: EPA 50 ug/L ug/L ug/L ug/L ug/L ug/L %	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0 1.0 1.0 3.0	DF 1 1 1 1 hod: EP/ 1 1 1 1 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) 4-Bromofluorobenzene (S)	Results Analytical M 68.9 96 92 Analytical M ND Analytical M 1.5 ND ND ND ND ND ND 94	Units lethod: NWTP ug/L % % lethod: EPA 60 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx 50.0 50-150 50-150 010 Preparation Meth 10.0 030B/8260 1.0 1.0 1.0 1.0 3.0 80-120	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared	Analyzed 10/19/10 16:01 10/19/10 16:01 10/20/10 17:03 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01 10/21/10 02:01	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7 460-00-4 1868-53-7	Qual

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Project:	WA-0977

Pace Project No.: 255347

Sample: Dup-1	Lab ID: 2553	47005	Collected: 10/13/1	00:00	Received: 10	D/15/10 10:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Metho	od: NWTP	H-Gx					
Gasoline Range Organics	75.7 ug/l	L	50.0	1		10/19/10 16:25		
a,a,a-Trifluorotoluene (S)	105 %		50-150	1		10/19/10 16:25	98-08-8	
4-Bromofluorobenzene (S)	101 %		50-150	1		10/19/10 16:25	460-00-4	
3260 MSV	Analytical Metho	od: EPA 50)30B/8260					
Benzene	1.7 ug/l	L	1.0	1		10/21/10 02:21	71-43-2	
Ethylbenzene	ND ug/I	L	1.0	1		10/21/10 02:21	100-41-4	
Methyl-tert-butyl ether	ND ug/l	L	1.0	1		10/21/10 02:21	1634-04-4	
Toluene	ND ug/l		1.0	1		10/21/10 02:21	108-88-3	
Xylene (Total)	ND ug/l		3.0	1		10/21/10 02:21		
4-Bromofluorobenzene (S)	95 %	_	80-120	1		10/21/10 02:21		
Dibromofluoromethane (S)	102 %		80-122	1		10/21/10 02:21		
1,2-Dichloroethane-d4 (S)	102 %		80-122	1		10/21/10 02:21		
				1				
Toluene-d8 (S)	84 %		80-123	I		10/21/10 02:21	2037-20-5	
Sample: MW-6	Lab ID: 2553	47006	Collected: 10/14/1	10 11:20	Received: 10	D/15/10 10:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WTPH-Gx GCV	Analytical Metho	od: NWTP	—— – H-Gx			1		
Gasoline Range Organics	7290 ug/l	l	250	5		10/22/10 13:29		
a,a,a-Trifluorotoluene (S)	107 %	-	50-150	5		10/22/10 13:29	98-08-8	
	107 %		50-150	5		10/22/10 13:29		
4-Bromofluorobenzene (S)						10/22/10 13.29	400-00-4	
6010 MET ICP	-		010 Preparation Metl					
Lead	ND ug/l	L	10.0	1	10/20/10 08:28	10/20/10 17:06	7439-92-1	
3260 MSV	Analytical Metho	od: EPA 50	030B/8260					
Benzene	1.2 ug/l	L	1.0	1		10/21/10 10:13	71-43-2	
Ethylbenzene	323 ug/l	L	5.0	5		10/21/10 05:26	100-41-4	
Methyl-tert-butyl ether	ND ug/l		1.0	1		10/21/10 10:13	1634-04-4	
Toluene	15.0 ug/l		1.0	1		10/21/10 10:13	108-88-3	
Xylene (Total)	1580 ug/l		15.0	5		10/21/10 05:26	1330-20-7	
4-Bromofluorobenzene (S)	103 %	_	80-120	1		10/21/10 10:13		
Dibromofluoromethane (S)	102 %		80-122	1		10/21/10 10:13		
1,2-Dichloroethane-d4 (S)	102 %		80-122	1		10/21/10 10:13		
Toluene-d8 (S)	90 %		80-123	1		10/21/10 10:13		
Sample: MW-5	Lab ID: 2553	47007	Collected: 10/14/1	10 12.25	Received: 10)/15/10 10·45 N	fatrix: Water	
								• •
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Metho	od: NWTP	H-Gx					
Gasoline Range Organics	28600 ug/l	L	250	5		10/19/10 19:13		

without the written consent of Pace Analytical Services, Inc..

Project: WA-0977

Pace Project No.: 255347

Sample: MW-5	Lab ID: 2553	Lab ID: 255347007 Collected: 10/14/10 12:25		Received: 10	/15/10 10:45 N	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx					
a,a,a-Trifluorotoluene (S)	107 %		50-150	5		10/19/10 19:13	98-08-8	
4-Bromofluorobenzene (S)	124 %		50-150	5		10/19/10 19:13	460-00-4	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	nod: EP/	A 3010			
Lead	ND ug/	Ľ	10.0	1	10/20/10 08:28	10/20/10 17:09	7439-92-1	
8260 MSV	Analytical Meth	od: EPA 50	030B/8260					
Benzene	1100 ug/	Ľ	10.0	10		10/21/10 09:13	71-43-2	
Ethylbenzene	2760 ug/	Ľ	20.0	20		10/22/10 07:00	100-41-4	
Methyl-tert-butyl ether	ND ug/	Ľ	1.0	1		10/21/10 10:33	1634-04-4	
Toluene	72.1 ug/	Ľ	1.0	1		10/21/10 10:33	108-88-3	
Xylene (Total)	4890 ug/		60.0	20		10/22/10 07:00	1330-20-7	
4-Bromofluorobenzene (S)	99 %		80-120	1		10/21/10 10:33		
Dibromofluoromethane (S)	97 %		80-122	1		10/21/10 10:33		
1,2-Dichloroethane-d4 (S)	111 %		80-122	1		10/21/10 10:33		
Toluene-d8 (S)	92 %		80-124	1		10/21/10 10:33		
	52 /0		00120			10/21/10 10:00	2007 20 0	
Sample: MW-16	Lab ID: 2553	347008	Collected: 10/14/1	0 14:20	Received: 10	/15/10 10:45 M	fatrix: Water	
Sample: MW-16 Parameters	Lab ID: 2553 Results	47008 Units	Collected: 10/14/1 Report Limit	0 14:20 DF	Received: 10 Prepared	/15/10 10:45 M Analyzed	Matrix: Water CAS No.	Qual
•		Units	Report Limit					Qual
Parameters NWTPH-Gx GCV	Results Analytical Meth	Units od: NWTP	Report Limit	DF		Analyzed		Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics	Results Analytical Meth 180000 ug/	Units od: NWTP	H-Gx	DF 100		Analyzed	CAS No.	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Results Analytical Meth 180000 ug/ 87 %	Units od: NWTP	H-Gx 5000 50-150	DF 100 100		Analyzed 10/20/10 19:07 10/20/10 19:07	CAS No. 98-08-8	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical Meth 180000 ug/ 87 % 82 %	Units od: NWTP L	Report Limit H-Gx 5000 50-150 50-150	DF 100 100 100	Prepared	Analyzed	CAS No. 98-08-8	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth	Units od: NWTP 'L od: EPA 60	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth	DF 100 100 100 nod: EP/	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07	CAS No. 98-08-8 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/	Units od: NWTP L od: EPA 60 L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0	DF 100 100 100	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07	CAS No. 98-08-8 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth	Units od: NWTP L od: EPA 60 L od: EPA 50	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260	DF 100 100 100 mod: EP/ 1	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13	CAS No. 98-08-8 460-00-4 7439-92-1	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200	DF 100 100 100 nod: EP/ 1 200	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200	DF 100 100 100 nod: EP/ 1 200 200	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/ ND ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200 1.0	DF 100 100 100 mod: EP/ 1 200 200 1	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 07:23	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/ ND ug/ 47400 ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200 1.0 200	DF 100 100 100 mod: EP/ 1 200 200 1 200	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/ ND ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200 1.0	DF 100 100 100 mod: EP/ 1 200 200 1	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 07:23	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/ ND ug/ 47400 ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200 1.0 200	DF 100 100 100 mod: EP/ 1 200 200 1 200	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total)	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 24800 ug/ 3440 ug/ ND ug/ 47400 ug/ 21200 ug/	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 010 Preparation Meth 10.0 030B/8260 200 200 1.0 200 600	DF 100 100 100 100 100 100 200 1 200 200 2	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7 460-00-4	Qual
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Lead 8260 MSV Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Xylene (Total) 4-Bromofluorobenzene (S)	Results Analytical Meth 180000 ug/ 87 % 82 % Analytical Meth 111 ug/ Analytical Meth 111 ug/ Analytical Meth 124800 ug/ 3440 ug/ 47400 ug/ 21200 ug/ 103 % %	Units od: NWTP L od: EPA 60 L od: EPA 50 L L L	Report Limit H-Gx 5000 50-150 50-150 10 Preparation Meth 10.0 030B/8260 200 200 1.0 200 600 80-120	DF 100 100 100 100 100 100 200 1 200 200 1 200 200	Prepared	Analyzed 10/20/10 19:07 10/20/10 19:07 10/20/10 19:07 10/20/10 17:13 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 06:59 10/22/10 07:23	CAS No. 98-08-8 460-00-4 7439-92-1 71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7 460-00-4 1868-53-7	Qual

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255347

Sample: Trip Blank	Lab ID: 2553	47009	Collected: 10/1	3/10 00:00	Received:	10/15/10 10:45	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	od: NWTPH-	Gx					
Gasoline Range Organics	ND ug/	L	50.	D 1		10/19/10 13:37	7	
a,a,a-Trifluorotoluene (S)	102 %		50-15	D 1		10/19/10 13:37	7 98-08-8	
4-Bromofluorobenzene (S)	96 %		50-15	D 1		10/19/10 13:37	7 460-00-4	
8260 MSV	Analytical Meth	od: EPA 503	0B/8260					
Benzene	ND ug/	L	1.	D 1		10/21/10 00:41	71-43-2	
Ethylbenzene	ND ug/	L	1.	D 1		10/21/10 00:41	100-41-4	
Methyl-tert-butyl ether	ND ug/	L	1.	D 1		10/21/10 00:41	1634-04-4	
Toluene	ND ug/	L	1.	D 1		10/21/10 00:41	108-88-3	
Xylene (Total)	ND ug/	L	3.	D 1		10/21/10 00:41	1330-20-7	
4-Bromofluorobenzene (S)	98 %		80-12	D 1		10/21/10 00:41	460-00-4	
Dibromofluoromethane (S)	101 %		80-12	2 1		10/21/10 00:41	1868-53-7	
1,2-Dichloroethane-d4 (S)	117 %		80-12	4 1		10/21/10 00:41	17060-07-0	
Toluene-d8 (S)	83 %		80-12	3 1		10/21/10 00:41	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Page 12 of 20

Project:	WA-09	77										
Pace Project No.:	255347	,										
QC Batch:	GCV/	1967		Analys	is Metho	d:	N٧	WTPH-Gx				
QC Batch Method:	NWT	PH-Gx		Analys	is Descri	iption:	N٧	NTPH-Gx GC	V W	/ater		
Associated Lab San	nples:	255347001, 25	5347002	2, 255347003, 25	5347004	, 2553470	005,	255347007,	2553	347009		
METHOD BLANK:	46069			N	latrix: W	/ater						
Associated Lab San	nples:	255347001, 25	5347002	2, 255347003, 25				255347007,	2553	347009		
_				Blank		Reporting				o ""		
Paran	neter		Units	Resul	t	Limit		Analyzed	t	Qualifie	ers	
Gasoline Range Org	-	ug/L	-		ND	-	0.0	10/19/10 13				
4-Bromofluorobenze	. ,	%			93	50-1		10/19/10 13				
a,a,a-Trifluorotoluen	ie (S)	%			99	50-1	50	10/19/10 13	3:04			
LABORATORY COM	NTROLS	SAMPLE: 460	070									
				Spike	LC	CS		LCS	%	Rec		
Paran	neter		Units	Conc.	Re	sult	9	% Rec	L	imits	Qualifiers	
Gasoline Range Org	ganics	ug/L	-	250		226		90		50-163		
4-Bromofluorobenze	()	%						93		50-150		
a,a,a-Trifluorotoluen	ne (S)	%						93		50-150		
SAMPLE DUPLICA	TE: 46	255										
				2553470	001	Dup						
Paran	neter		Units	Resul	t	Result		RPD		Qualifiers		
Gasoline Range Org	ganics	ug/L	-		682	g	964		34 F	R1		
4-Bromofluorobenze	()	%			135	1	55		14 S	\$5		
a,a,a-Trifluorotoluen	ne (S)	%			103	1	09		6			
SAMPLE DUPLICA	TE: 46	260										
				2553910	001	Dup						
Paran	neter		Units	Resul	t	Result		RPD		Qualifiers		
Gasoline Range Org	ganics	ug/L	-		66.4	2	288	1	25 1	n		
4-Bromofluorobenze	ene (S)	%			105	1	01		4			
a,a,a-Trifluorotoluen	ne (S)	%			110	1	07		3			

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 20

Project: WA-0977						
Pace Project No.: 255347						
QC Batch: GCV/1970	0	Analysis M	ethod: N	WTPH-Gx		
QC Batch Method: NWTPH-0	Gx	Analysis De	escription: N	WTPH-Gx G	CV Water	
Associated Lab Samples: 255	5347008					
METHOD BLANK: 46276		Matrix	k: Water			
Associated Lab Samples: 255	5347008					
_		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	ed Qualifi	ers
Gasoline Range Organics	ug/L	ND				
4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	%	85 95				
	70	30	5 50-150	10/20/10 1	4.24	
LABORATORY CONTROL SAM	PLE: 46277					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	ug/L	250	245	98	50-163	
4-Bromofluorobenzene (S)	%			88	50-150	
a,a,a-Trifluorotoluene (S)	%			93	50-150	
SAMPLE DUPLICATE: 46278						
		255346002	Dup			
Parameter	Units	Result	Result	RPD	Qualifiers	
Gasoline Range Organics	ug/L	ND	26.5J			
4-Bromofluorobenzene (S)	%	95			21	
a,a,a-Trifluorotoluene (S)	%	103	8 87		16	
SAMPLE DUPLICATE: 46279						
SAIVIFLE DUFLICATE. 40279		255346008	Dup			
Parameter	Units	Result	Result	RPD	Qualifiers	
Gasoline Range Organics	ug/L	89.9	9 112		22	
4-Bromofluorobenzene (S)	%	87			5	
a,a,a-Trifluorotoluene (S)	%	98	89 89		10	

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 20

Project: WA-0977							
Pace Project No.: 255347							
QC Batch: GCV/1973	3	Analysis M	ethod: I	WTPH-Gx			
QC Batch Method: NWTPH-C	Gx	Analysis De	escription: I	WTPH-Gx G	CV Water		
Associated Lab Samples: 255	5347006						
METHOD BLANK: 46537		Matrix	: Water				
Associated Lab Samples: 255	5347006						
_		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Qualifi	ers	
Gasoline Range Organics	ug/L	ND					
4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	% %	91 100					
a,a,a- millorololuene (3)	70	100	0 30-13	5 10/22/10 12	2.00		
LABORATORY CONTROL SAM	PLE: 46538						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Gasoline Range Organics	ug/L	250	244	98	50-163		
4-Bromofluorobenzene (S)	%			97	50-150		
a,a,a-Trifluorotoluene (S)	%			102	50-150		
SAMPLE DUPLICATE: 46648							
		255405003	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Organics	ug/L		84	 9	3		
4-Bromofluorobenzene (S)	%	104	•		9		
a,a,a-Trifluorotoluene (S)	%	103	9	3	6		
SAMPLE DUPLICATE: 46649							
		255395001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Organics	ug/L	83.5		5	7		
4-Bromofluorobenzene (S)	%	81			22		
a,a,a-Trifluorotoluene (S)	%	88	5 10	5	18		

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 20

Project:	WA-0977											
Pace Project No.:	255347											
QC Batch:	MPRP/184	1		Analys	is Method:	E	PA 6010					
QC Batch Method:	EPA 3010			Analys	is Descript	ion: 6	010 MET					
Associated Lab Sar	nples: 2553	847001, 255	347002, 255	347003, 25	5347004, 2	255347006	6, 255347007	7, 2553470	80			
METHOD BLANK:	46191			N	latrix: Wat	ter						
Associated Lab Sar	nples: 2553	847001, 255	347002, 255	347003, 25	5347004, 2	255347006	6, 255347007	7, 2553470	08			
				Blank	R	eporting						
Paran	neter		Units	Result	t	Limit	Analyz	ed	Qualifiers			
Lead		ug/L			ND	10.0	10/20/10	16:48				
LABORATORY COI	NTROL SAMP	LE: 4619	2									
				Spike	LCS	5	LCS	% Rec				
Paran	neter		Units	Conc.	Resu	llt	% Rec	Limits	G	ualifiers		
Lead		ug/L		500		513	103	80	-120		-	
MATRIX SPIKE & M	1ATRIX SPIKE		FE: 46193			46194						
				MS	MSD							
			255334025	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Paramet				-	~		Decult	0/ D = =	0/ D	1.1		<u> </u>
Falame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 20

Project: V	VA-0977										
Pace Project No.: 2	55347										
QC Batch:	MSV/3300		Analys	sis Method	I: Ef	PA 5030	3/8260				
QC Batch Method:	EPA 5030B/826	0	Analys	sis Descrip	otion: 82	260 MSV	Water 1	0 mL Purge			
Associated Lab Samp	les: 25534700	01, 255347002,	255347003, 25	5347004,	255347005,	255347	006, 255	347007, 25	5347009		
METHOD BLANK: 4	6346		Ν	Matrix: Wa	ater						
Associated Lab Samp	les: 25534700	01, 255347002,	255347003, 25		-	255347	006, 255	347007, 25	5347009		
_			Blank		Reporting			a "'			
Parame	ter	Units	Resu	lt	Limit	Ana	lyzed	Qualif	iers		
Benzene		ug/L		ND	1.0	10/21/	10 00:21				
Ethylbenzene		ug/L		ND	1.0	10/21/	10 00:21				
Methyl-tert-butyl ether		ug/L		ND	1.0	10/21/	10 00:21				
Toluene		ug/L		ND	1.0	10/21/	10 00:21				
Xylene (Total)		ug/L		ND	3.0	10/21/	10 00:21				
1,2-Dichloroethane-d4	- (S)	%		118	80-124	10/21/	10 00:21				
4-Bromofluorobenzene	e (S)	%		96	80-120	10/21/	10 00:21				
Dibromofluoromethane	e (S)	%		104	80-122	10/21/	10 00:21				
Toluene-d8 (S)		%		82	80-123	10/21/	10 00:21				
LABORATORY CONT		LCSD: 4634	17		46348						
		403-	Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parame	ter	Units	Conc.	Result	Result		% Rec	Limits	RPD	RPD	Qualifiers
Benzene		ug/L	20	19.3	3 18.7	96	93	76-127	3	30	
Ethylbenzene		ug/L	20	18.9	9 17.8	95	89	72-125	6	30	
Methyl-tert-butyl ether		ug/L	20	23.	1 22.3	116	112	58-145	4	30	
Toluene		ug/L	20	17.3	3 16.7	87	83	69-125	4	30	
Xylene (Total)		ug/L	60	56.	1 53.5	93	89	74-124	5	30	
1,2-Dichloroethane-d4	- (S)	%				113	115	80-124			
4-Bromofluorobenzene	e (S)	%				95	97	80-120			
Dibromofluoromethane	e (S)	%				105	104	80-122			
T (0)											

87

86

80-123

Toluene-d8 (S)

%

REPORT OF LABORATORY ANALYSIS

Project: WA-0977 Pace Project No .: 255347 QC Batch: MSV/3306 Analysis Method: EPA 5030B/8260 QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge Associated Lab Samples: 255347008 METHOD BLANK: 46421 Matrix: Water Associated Lab Samples: 255347008 Blank Reporting Parameter Limit Units Result Analyzed Qualifiers Benzene ug/L ND 1.0 10/21/10 23:12 ND Ethylbenzene ug/L 1.0 10/21/10 23:12 Methyl-tert-butyl ether 1.0 ug/L ND 10/21/10 23:12 Toluene ug/L ND 10/21/10 23:12 1.0 Xylene (Total) ug/L ND 3.0 10/21/10 23:12 1,2-Dichloroethane-d4 (S) % 93 80-124 10/21/10 23:12 4-Bromofluorobenzene (S) % 105 80-120 10/21/10 23:12 Dibromofluoromethane (S) % 97 80-122 10/21/10 23:12 Toluene-d8 (S) % 102 80-123 10/21/10 23:12 LABORATORY CONTROL SAMPLE & LCSD: 46497 46422 LCS LCSD LCS Spike LCSD % Rec Max RPD Parameter Units Conc. Result Result % Rec % Rec Limits RPD Qualifiers Benzene 20 ug/L 19.2 18.0 96 90 76-127 6 30 Ethylbenzene 5 ug/L 20 17.8 16.9 89 84 72-125 30 Methyl-tert-butyl ether ug/L 20 20.1 18.8 100 94 58-145 7 30 Toluene ug/L 20 17.5 16.7 88 83 69-125 5 30 Xylene (Total) ug/L 60 53.1 50.7 88 85 74-124 4 30 1,2-Dichloroethane-d4 (S) % 93 91 80-124 4-Bromofluorobenzene (S) % 106 80-120 105

101

100

100

102

80-122

80-123

Dibromofluoromethane (S)

Toluene-d8 (S)

%

%

REPORT OF LABORATORY ANALYSIS

Page 18 of 20

QUALIFIERS

Project: WA-0977

Pace Project No.: 255347

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

- 1n RPD value was outside control limits due to carryover from previously analyzed sample.
- R1 RPD value was outside control limits.
- S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	WA-0977
Pace Project No.:	255347

255347001 WW-12 NWTPH-Gx GCV/1967 255347002 MW-11 NWTPH-Gx GCV/1967 255347003 MW-1 NWTPH-Gx GCV/1967 255347004 MW-6W-1 NWTPH-Gx GCV/1967 255347005 Dup-1 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1967 255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1967 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 <t< th=""><th>ID</th><th>Sample ID</th><th>QC Batch Method</th><th>QC Batch</th><th>Analytical Method</th><th>Analytical Batch</th></t<>	ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255347003 MW-1 NWTPH-Gx GCV/1967 255347004 MW-GW-1 NWTPH-Gx GCV/1967 255347005 Dup-1 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1967 255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1967 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347005 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 5030B/8260 MSV/3300 255347003	347001	MW-12	NWTPH-Gx	GCV/1967		
255347004 MW-GW-1 NWTPH-Gx GCV/1967 255347005 Dup-1 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1967 255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1967 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-6W-1 EPA 3010 MPRP/1841 EPA 6010 255347005 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 5030B/8260 MSV/3300 <	347002	MW-11	NWTPH-Gx	GCV/1967		
255347005 Dup-1 NWTPH-Gx GCV/1967 255347006 MW-6 NWTPH-Gx GCV/1973 255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1967 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-6W-1 EPA 3010 MPRP/1841 EPA 6010 255347005 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 5030B/8260 MSV/3300 255347008 255347005 MW-11 EPA 5030B/8260 <	347003	MW-1	NWTPH-Gx	GCV/1967		
255347006 MW-6 NWTPH-Gx GCV/1973 255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1970 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-6W-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 <	347004	MW-GW-1	NWTPH-Gx	GCV/1967		
255347007 MW-5 NWTPH-Gx GCV/1967 255347008 MW-16 NWTPH-Gx GCV/1970 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300	347005	Dup-1	NWTPH-Gx	GCV/1967		
255347008 MW-16 NWTPH-Gx GCV/1970 255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-6W-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300	347006	MW-6	NWTPH-Gx	GCV/1973		
255347009 Trip Blank NWTPH-Gx GCV/1967 255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 5030B/8260 MSV/3300 Strant 255347002 MW-11 EPA 5030B/8260 MSV/3300 Strant 255347003 MW-1 EPA 5030B/8260 MSV/3300 Strant 255347004 MW-6W-1 EPA 5030B/8260 MSV/3300 Strant 255347005 Dup-1 EPA 5030B/8260 MSV/3300 St	347007	MW-5	NWTPH-Gx	GCV/1967		
255347001 MW-12 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300	347008	MW-16	NWTPH-Gx	GCV/1970		
255347002 MW-11 EPA 3010 MPRP/1841 EPA 6010 255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300	347009	Trip Blank	NWTPH-Gx	GCV/1967		
255347003 MW-1 EPA 3010 MPRP/1841 EPA 6010 255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300	347001	MW-12	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347004 MW-GW-1 EPA 3010 MPRP/1841 EPA 6010 255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347002 MW-11 EPA 5030B/8260 MSV/3300	347002	MW-11	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347006 MW-6 EPA 3010 MPRP/1841 EPA 6010 255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347003	MW-1	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347007 MW-5 EPA 3010 MPRP/1841 EPA 6010 255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347004	MW-GW-1	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347008 MW-16 EPA 3010 MPRP/1841 EPA 6010 255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347006	MW-6	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347001 MW-12 EPA 5030B/8260 MSV/3300 255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347007	MW-5	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347002 MW-11 EPA 5030B/8260 MSV/3300 255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347008	MW-16	EPA 3010	MPRP/1841	EPA 6010	ICP/1754
255347003 MW-1 EPA 5030B/8260 MSV/3300 255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347001	MW-12	EPA 5030B/8260	MSV/3300		
255347004 MW-GW-1 EPA 5030B/8260 MSV/3300 255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347002	MW-11	EPA 5030B/8260	MSV/3300		
255347005 Dup-1 EPA 5030B/8260 MSV/3300 255347006 MW-6 EPA 5030B/8260 MSV/3300	347003	MW-1	EPA 5030B/8260	MSV/3300		
255347006 MW-6 EPA 5030B/8260 MSV/3300	347004	MW-GW-1	EPA 5030B/8260	MSV/3300		
	347005	Dup-1	EPA 5030B/8260	MSV/3300		
255347007 MW-5 EPA 5030B/8260 MSV/3300	347006	MW-6	EPA 5030B/8260	MSV/3300		
	347007	MW-5	EPA 5030B/8260	MSV/3300		
255347008 MW-16 EPA 5030B/8260 MSV/3306	347008	MW-16	EPA 5030B/8260	MSV/3306		
255347009 Trip Blank EPA 5030B/8260 MSV/3300	347009	Trip Blank	EPA 5030B/8260	MSV/3300		

Date: 10/28/2010 05:15 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 20

November 02, 2010

Scott Zorn Arcadis U.S., Inc. 2300 Eastlake Ave E. Ste. 200 Seattle, WA 98102

RE: Project: WA-0977 Pace Project No.: 255348

Dear Scott Zorn:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Sample 001 has a Dissolved Mn result higher than the Total Mn result. The lab re-analyzed the sample on 11/02/10 and obtained confirming results.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina Ste. Marie

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

Enclosures

cc: David Rasar, Arcadis U.S., Inc.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project:	WA-0977
Pace Project No.:	255348

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: WA-0977 Pace Project No.: 255348

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255348001			SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
255348002	MW-11	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
55348003	MW-1	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
55348004	MW-6	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
55348005	MW-5	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
255348006	MW-16	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 27

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: WA-0977 Pace Project No.: 255348

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S
255348007	MW-4	RSK 175	SK3	1	PASI-M
		EPA 6010	BGA	2	PASI-S
		EPA 6010	BGA	2	PASI-S
		SM 2320B	BPR	1	PASI-S
		EPA 300.0	CMS	1	PASI-S
		EPA 353.2	CMS	1	PASI-S
		SM 5310C	KMT	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255348

Method: RSK 175

Description:RSK 175 AIR HeadspaceClient:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for RSK 175. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255348

Method:	EPA 6010
Description:	6010 MET ICP
Client:	Arcadis U.S., Inc.
Date:	November 02, 2010

General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977 Pace Project No.: 255348

Method: EPA 6010

Description:6010 MET ICP, Dissolved (LF)Client:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255348

Method: SM 2320B

Description:2320B AlkalinityClient:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255348

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/1753

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 255348001,255404001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 46904)
 - Sulfate
- MSD (Lab ID: 46905)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977 Pace Project No.: 255348

Method:EPA 353.2Description:353.2 Nitrogen, NO2/NO3 pres.Client:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: WA-0977

Pace Project No.: 255348

Method: SM 5310C

Description:5310C TOCClient:Arcadis U.S., Inc.Date:November 02, 2010

General Information:

7 samples were analyzed for SM 5310C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project: WA-0977 Pace Project No.: 255348	
Sample: MW-12	Lab ID: 255348001 Collected: 10/13/10 11:55 Received: 10/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared Analyzed CAS No. Qu
RSK 175 AIR Headspace	Analytical Method: RSK 175
Methane	96.0 ug/L 10.0 1 10/20/10 09:56 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron Manganese	440 ug/L100110/21/10 08:1510/21/10 13:197439-89-6724 ug/L15.0110/21/10 08:1510/21/10 13:197439-96-5
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron, Dissolved Manganese, Dissolved	ND ug/L100110/21/1008:1510/21/1014:157439-89-6880 ug/L15.0110/21/1008:1510/21/1014:157439-96-5
2320B Alkalinity	Analytical Method: SM 2320B
Alkalinity, Total as CaCO3	195 mg/L 2.0 1 10/20/10 19:00
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0
Sulfate	24.4 mg/L 5.0 5 10/27/10 11:38 14808-79-8
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2
Nitrogen, NO2 plus NO3	2.0 mg/L 0.050 1 10/27/10 13:49
5310C TOC	Analytical Method: SM 5310C
Total Organic Carbon	4.1 mg/L 1.0 1 10/28/10 12:30 7440-44-0
Sample: MW-11	Lab ID: 255348002 Collected: 10/13/10 13:25 Received: 10/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared Analyzed CAS No. Qu
RSK 175 AIR Headspace	Analytical Method: RSK 175
Methane	ND ug/L 10.0 1 10/20/10 10:22 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron Manganese	297 ug/L100110/21/10 08:1510/21/10 13:287439-89-621.4 ug/L15.0110/21/10 08:1510/21/10 13:287439-96-5
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron, Dissolved Manganese, Dissolved	ND ug/L100110/21/1008:1510/21/1014:307439-89-6ND ug/L15.0110/21/1008:1510/21/1014:307439-96-5
2320B Alkalinity	Analytical Method: SM 2320B
Alkalinity, Total as CaCO3	100 mg/L 2.0 1 10/20/10 19:00
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0
Sulfate	20.4 mg/L 2.0 2 10/27/10 12:30 14808-79-8

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 27

Sample: MW-11	Lab ID: 255348002 Collected: 10/13/10 13:25 Received: 10/	/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared	Analyzed CAS No. Qua
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2	
Nitrogen, NO2 plus NO3	9.1 mg/L 0.25 5	10/27/10 14:26
5310C TOC	Analytical Method: SM 5310C	
Total Organic Carbon	1.3 mg/L 1.0 1	10/28/10 12:30 7440-44-0
Sample: MW-1	Lab ID: 255348003 Collected: 10/13/10 14:30 Received: 10/	/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared	Analyzed CAS No. Qua
RSK 175 AIR Headspace	Analytical Method: RSK 175	
Methane	ND ug/L 10.0 1	10/20/10 10:47 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010	
Iron Manganese	6	10/21/10 13:31 7439-89-6 10/21/10 13:31 7439-96-5
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010 Preparation Method: EPA 3010	
Iron, Dissolved Manganese, Dissolved	6	10/21/10 14:33 7439-89-6 10/21/10 14:33 7439-96-5
2320B Alkalinity	Analytical Method: SM 2320B	
Alkalinity, Total as CaCO3	276 mg/L 2.0 1	10/20/10 19:00
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0	
Sulfate	6.4 mg/L 1.0 1	10/27/10 12:47 14808-79-8
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2	
Nitrogen, NO2 plus NO3	0.13 mg/L 0.050 1	10/27/10 13:55
5310C TOC	Analytical Method: SM 5310C	
Total Organic Carbon	1.8 mg/L 1.0 1	10/28/10 12:30 7440-44-0
Sample: MW-6	Lab ID: 255348004 Collected: 10/14/10 11:20 Received: 10/	/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared	Analyzed CAS No. Qua
RSK 175 AIR Headspace	Analytical Method: RSK 175	
Methane	621 ug/L 10.0 1	10/20/10 11:13 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010	
Iron		10/21/10 13:34 7439-89-6
Manganese	6	10/21/10 13:34 7439-96-5

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 27

Project: WA-0977 Pace Project No.: 255348							
Sample: MW-6	Lab ID: 255348004 Co	ollected: 10/14/1	0 11:20	Received: 10	/15/10 10:45 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010	Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved Manganese, Dissolved	837 ug/L 2650 ug/L	100 15.0	1 1		10/21/10 14:36 10/21/10 14:36		
2320B Alkalinity	Analytical Method: SM 2320B						
Alkalinity, Total as CaCO3	191 mg/L	2.0	1		10/20/10 19:00		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0						
Sulfate	5.4 mg/L	1.0	1		10/27/10 13:04	14808-79-8	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2						
Nitrogen, NO2 plus NO3	ND mg/L	0.050	1		10/27/10 13:56		
5310C TOC	Analytical Method: SM 5310C						
Total Organic Carbon	2.8 mg/L	1.0	1		10/28/10 12:30	7440-44-0	
Sample: MW-5	Lab ID: 255348005 Cc	ollected: 10/14/1	0 12:25	Received: 10	/15/10 10:45 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 AIR Headspace	Analytical Method: RSK 175						
Methane	9110 ug/L	10.0	1		10/20/10 11:38	74-82-8	
6010 MET ICP	Analytical Method: EPA 6010	Preparation Meth	nod: EPA	A 3010			
Iron Manganese	2410 ug/L 6170 ug/L	100 15.0	1 1		10/21/10 13:37 10/21/10 13:37		
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010	Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved Manganese, Dissolved	178 ug/L 5910 ug/L	100 15.0	1 1		10/21/10 14:39 10/21/10 14:39		
2320B Alkalinity	Analytical Method: SM 2320B						
Alkalinity, Total as CaCO3	393 mg/L	2.0	1		10/20/10 19:00		
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0						
Sulfate	1.2 mg/L	1.0	1		10/27/10 13:22	14808-79-8	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2						
Nitrogen, NO2 plus NO3	0.18 mg/L	0.050	1		10/27/10 13:58		
5310C TOC	Analytical Method: SM 5310C						
Total Organic Carbon	9.3 mg/L	1.0	1		10/28/10 12:30	7440-44-0	

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Project: WA-0977 Pace Project No.: 255348	
Sample: MW-16	Lab ID: 255348006 Collected: 10/14/10 14:20 Received: 10/15/10 10:45 Matrix: Water
Parameters	Results Units Report Limit DF Prepared Analyzed CAS No. Qu
RSK 175 AIR Headspace	Analytical Method: RSK 175
Methane	42.7 ug/L 10.0 1 10/20/10 12:04 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron Manganese	625 ug/L100110/21/1008:1510/21/1013:407439-89-66540 ug/L15.0110/21/1008:1510/21/1013:407439-96-5
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron, Dissolved Manganese, Dissolved	ND ug/L100110/21/10 08:1510/21/10 14:427439-89-66250 ug/L15.0110/21/10 08:1510/21/10 14:427439-96-5
2320B Alkalinity	Analytical Method: SM 2320B
Alkalinity, Total as CaCO3	598 mg/L 2.0 1 10/20/10 19:00
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0
Sulfate	2.2 mg/L 1.0 1 10/27/10 13:39 14808-79-8
353.2 Nitrogen, NO2/NO3 pres.	Analytical Method: EPA 353.2
Nitrogen, NO2 plus NO3	0.080 mg/L 0.050 1 10/27/10 14:04
5310C TOC	Analytical Method: SM 5310C
Total Organic Carbon	30.6 mg/L 2.0 1 10/29/10 11:55 7440-44-0
Sample: MW-4	Lab ID: 255348007 Collected: 10/14/10 15:10 Received: 10/15/10 10:45 Matrix: Water
Parameters	ResultsUnitsReport LimitDFPreparedAnalyzedCAS NoQu
RSK 175 AIR Headspace	Analytical Method: RSK 175
Methane	ND ug/L 10.0 1 10/20/10 12:29 74-82-8
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron Manganese	133 ug/L100110/21/1008:1510/21/1013:507439-89-6ND ug/L15.0110/21/1008:1510/21/1013:507439-96-5
6010 MET ICP, Dissolved (LF)	Analytical Method: EPA 6010 Preparation Method: EPA 3010
Iron, Dissolved Manganese, Dissolved	ND ug/L100110/21/10 08:1510/21/10 14:457439-89-6ND ug/L15.0110/21/10 08:1510/21/10 14:457439-96-5
2320B Alkalinity	Analytical Method: SM 2320B
Alkalinity, Total as CaCO3	73.3 mg/L 2.0 1 10/20/10 19:00
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0
Sulfate	15.7 mg/L 1.0 1 10/26/10 20:41 14808-79-8

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Project:	WA-0977									
Pace Project No.:	255348									
Sample: MW-4		Lab ID: 25	5348007	Collected:	10/14/1	0 15:10	Received: 10	0/15/10 10:45 N	Matrix: Water	
Param	neters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NC	02/NO3 pres.	Analytical Me	hod: EPA 353	3.2						
Nitrogen, NO2 plus	NO3	5.5 m	g/L		0.25	5		10/27/10 14:28	5	
5310C TOC		Analytical Me	hod: SM 531	0C						
Total Organic Carbo	on	1.4 m	g/L		1.0	1		10/28/10 12:30	7440-44-0	

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 16 of 27

Project:	WA-0977										
Pace Project No.:	255348										
QC Batch:	AIR/11092		Analysi	s Method:	R	SK 175					
QC Batch Method:	RSK 175		Analysi	s Descriptio	on: RS	SK 175 A		DSPACE			
Associated Lab Sar	mples: 25534800	01, 255348002, 255	348003, 255	5348004, 2	55348005,	255348	006, 255	348007			
METHOD BLANK:	874477		М	latrix: Wate	er						
Associated Lab Sar	mples: 25534800	01, 255348002, 255	348003, 255	5348004, 2	55348005,	255348	006, 255	348007			
			Blank	Re	porting						
Parar	neter	Units	Result		Limit	Ana	lyzed	Qualif	ers		
Methane		ug/L		ND	10.0	10/20/	10 09:31				
LABORATORY CO	NTROL SAMPLE 8	LCSD: 874478		87	74479						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane		ug/L	60.7	60.4	50.6	100	83	70-130	18	30	

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 17 of 27

Project:	WA-0977										
Pace Project No.:	255348										
QC Batch:	MPRP/1846		Analys	is Method:	El	PA 6010					
QC Batch Method:	EPA 3010		Analys	is Descripti	ion: 60	010 MET					
Associated Lab Sam	ples: 255348001	, 255348002,	255348003, 25	5348004, 2	255348005	, 255348006	6, 2553480	07			
METHOD BLANK:	46360		N	Aatrix: Wate	er						
Associated Lab Sam	ples: 255348001	, 255348002,	255348003, 25	5348004, 2	255348005	, 255348006	6, 2553480	07			
			Blank	Re	eporting						
Param	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers	6		
		ug/L		ND	100	10/21/10	13:13				
ron		uy/L									
		ug/L ug/L		ND	15.0	10/21/10	13:13				
Manganese		ug/L		ND	15.0	10/21/10	13:13				
Manganese		-	Spike								
Manganese	ITROL SAMPLE:	ug/L	Spike Conc.	ND LCS Resul		10/21/10 · LCS % Rec	13:13 % Re Limits		Qualifiers		
Manganese _ABORATORY CON Param	ITROL SAMPLE:	ug/L 46361 Units	•	LCS Resul		LCS	% Re Limits		Qualifiers		
Manganese ABORATORY CON Param ron	ITROL SAMPLE:	ug/L 46361	Conc.	LCS Resul	lt	LCS % Rec	% Re Limits	s C	Qualifiers		
Manganese LABORATORY CON Param Iron Manganese	ITROL SAMPLE:	46361 Units ug/L ug/L	Conc. 10000	LCS Resul	lt	LCS % Rec 96	% Re Limits)-120	Qualifiers		
Manganese LABORATORY CON Param Iron Manganese	ITROL SAMPLE:	46361 Units ug/L ug/L	Conc. 10000 500	LCS Resul	lt 9600 469	LCS % Rec 96	% Re Limits)-120	Qualifiers		
Manganese _ABORATORY CON Param ron Manganese	ITROL SAMPLE:	46361 Units ug/L ug/L	Conc. 10000 500 362 MS	LCS Resul	lt 9600 469	LCS % Rec 96	% Re Limits)-120	Qualifiers % Rec		
Manganese LABORATORY CON Param Iron Manganese	ITROL SAMPLE:	ug/L 46361 Units ug/L ug/L LICATE: 463	Conc. 10000 500 362 MS 01 Spike	LCS Resul	lt 9600 469 46363	LCS % Rec 96 94	% Re Limits 80 80	5 C 0-120 0-120		RPD	Qual
Iron Manganese MATRIX SPIKE & M	ITROL SAMPLE:	46361 Units ug/L ug/L LICATE: 46: 25534800 nits Resul	Conc. 10000 500 362 MS 01 Spike	LCS Resul	lt 9600 469 46363 MS	LCS % Rec 96 94 MSD	% Re Limits 80 80	5 C 0-120 0-120 MSD	% Rec Limits	RPD 3	Qual

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 27

Project:	WA-0977										
Pace Project No .:	255348										
QC Batch:	MPRP/1847		Analys	is Method:	EF	PA 6010					
QC Batch Method:	EPA 3010		Analys	is Description	n: 60	10 MET Dis	solved				
Associated Lab Sam	ples: 2553480	01, 255348002,	255348003, 25	5348004, 25	5348005,	255348006	6, 25534800)7			
METHOD BLANK:	46364		N	latrix: Water							
Associated Lab Sam	ples: 2553480	01, 255348002, 2	255348003, 25	5348004, 25	5348005,	255348006	6, 25534800)7			
			Blank	- 1	orting						
Param	neter	Units	Resul	t Li	imit	Analyz	ed (Qualifiers	_		
Iron, Dissolved		ug/L		ND	100	10/21/10					
Manganese, Dissolv	ed	ug/L		ND	15.0	10/21/10 ⁻	14:08				
LABORATORY CON											
	ITROL SAMPLE:	46365									
	TROL SAMPLE:	46365	Spike	LCS		LCS	% Rec				
Param		46365 Units	Spike Conc.	LCS Result	c	LCS % Rec	% Rec Limits	Qu	ualifiers		
			•	Result	900		Limits	Qu 120	ualifiers		
Param	neter	Units	Conc.	Result 89		% Rec	Limits 80-		ualifiers		
Param Iron, Dissolved	ed	Units ug/L ug/L	Conc. 10000	Result 89	900	% Rec 89	Limits 80-	120	ualifiers		
Param Iron, Dissolved Manganese, Dissolv	ed	Units ug/L ug/L	Conc. 10000 500	Result 89	900 454	% Rec 89	Limits 80-	120	ualifiers		
Param Iron, Dissolved Manganese, Dissolv	ed	Units ug/L ug/L	Conc. 10000 500 3666 MS	Result 89	900 454	% Rec 89	Limits 80-	120	valifiers		
Param Iron, Dissolved Manganese, Dissolv	ed ATRIX SPIKE DU	Units ug/L ug/L PLICATE: 463	Conc. 10000 500 366 MS 01 Spike	Result 89 4 MSD Spike	900 454 46367	% Rec 89 91	Limits 80- 80-	120 120	% Rec	RPD	Qual
Param Iron, Dissolved Manganese, Dissolv MATRIX SPIKE & M	ed ATRIX SPIKE DU	Units ug/L ug/L PLICATE: 463 25534800 Units Resul	Conc. 10000 500 366 MS 01 Spike	Result 89 4 MSD Spike	900 454 6367 MS	% Rec 89 91 MSD	Limits 80- 80- 80-	120 120 MSD	% Rec	RPD 7	Qual

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 27

Project: WA-09	977						
Pace Project No.: 25534	18						
QC Batch: WET	Г/2356		Analysis M	ethod:	SM 2320B		
QC Batch Method: SM 2	2320B		Analysis D	escription:	2320B Alkalinit	у	
Associated Lab Samples:	25534800	01, 255348002, 25	5348003, 255348	8004, 2553480	005, 255348006,	255348007	
METHOD BLANK: 46238	3		Matri	x: Water			
Associated Lab Samples:	25534800	01, 255348002, 25	5348003, 255348	8004, 255348	005, 255348006,	255348007	
			Blank	Reporting]		
Parameter		Units	Result	Limit	Analyze	d Qualif	iers
Alkalinity, Total as CaCO3		mg/L	N)	2.0 10/20/10 1	9:00	
-		-					
LABORATORY CONTROL	SAMPLE:	46239					
LABORATORY CONTROL	SAMPLE:	46239	Spike	LCS	LCS	% Rec	
LABORATORY CONTROL Parameter	. SAMPLE:	46239 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Parameter	SAMPLE:		•				Qualifiers
	SAMPLE:	Units	Conc.	Result	% Rec	Limits	Qualifiers
Parameter Alkalinity, Total as CaCO3	SAMPLE:	Units	Conc.	Result	% Rec	Limits	Qualifiers
Parameter Alkalinity, Total as CaCO3		Units	Conc.	Result	% Rec	Limits	Qualifiers
Parameter Alkalinity, Total as CaCO3		Units		Result 96.1	% Rec	Limits	

REPORT OF LABORATORY ANALYSIS

Page 20 of 27

Project: W	/A-0977										
Pace Project No.: 25	55348										
QC Batch:	WETA/1753		Analy	sis Method	: E	PA 300.0					
QC Batch Method:	EPA 300.0		Analys	sis Descrip	tion: 3	00.0 IC Anio	ons				
Associated Lab Sample	es: 255348001, 2	255348002, 255	348003, 25	55348004,	255348005	5, 255348000	6, 2553480	07			
METHOD BLANK: 46	6902			Matrix: Wa	iter						
Associated Lab Sample	es: 255348001, 2	255348002, 255	348003, 25	55348004,	255348005	5, 255348006	6, 2553480	07			
			Blan	k R	leporting						
Paramet	er	Units	Resu	lt	Limit Analyzed		zed	ed Qualifiers			
Sulfate	m	mg/L			1.(0 10/26/10 18:05					
LABORATORY CONT		5903 Units	Spike Conc.	LCS Resi		LCS % Rec	% Rec		ualifiers		
Sulfate		g/L	15		15.5	103)-110			
MATRIX SPIKE & MAT		CATE: 46904			46905						
-		255348001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Sulfate	mg/L	24.4	75	75	125	126	133	136	90-110	1	M1
MATRIX SPIKE SAMP	LE: 46	6906									
			25540	04001	Spike	MS	N	IS	% Rec		
Paramet	er	Units	Res	sult	Conc.	Result	% I	Rec	Limits		Qualifiers
Sulfate	m	g/L		40.5	75	1	16	101	90-	110	

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Project: V	VA-0977											
Pace Project No.: 2	55348											
QC Batch:	WETA/1752			Analys	sis Method	: E	PA 353.2					
QC Batch Method:	EPA 353.2			Analys	sis Descrip	tion: 3	53.2 Nitrate	+ Nitrite, p	reserved			
Associated Lab Samp	les: 2553480)01, 25	5348002, 255	348003, 25	5348004,	255348005	5, 25534800	6, 2553480	07			
METHOD BLANK: 4	6896			٦	Matrix: Wa	iter						
Associated Lab Samp	les: 2553480)01, 25	5348002, 255	348003, 25	5348004,	255348005	5, 25534800	6, 2553480	07			
				Blank		Reporting						
Parame	ter		Units	Resu	lt	Limit	Analyzed Qua		Qualifiers			
Nitrogen, NO2 plus No	D 3	mg/L			ND	0.050	0 10/27/10	13:44				
LABORATORY CONT	ROL SAMPLE:	4689	97									
_				Spike	LCS		LCS	% Red				
Parame	ter		Units	Conc.	Resu	ult	% Rec	Limits	s Qu	ualifiers		
Nitrogen, NO2 plus No	D3	mg/L		1		0.97	97	90	0-110			
MATRIX SPIKE & MA			TE: 46898			46899						
			40030	MS	MSD	40033						
			255348001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Nitrogen, NO2 plus No	 D3 mg	g/L	2.0	1	1	3.0	3.1	101	102	90-110	.4	
MATRIX SPIKE SAMP	PLE:	4690	00									
				25543	5001	Spike	MS	N	1S	% Rec		
Parame	ter		Units	Res	ult	Conc.	Result	%	Rec	Limits		Qualifiers
Nitrogen, NO2 plus N	D3	mg/L			0.039J	1	,	1.1	104	90-1	110	

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 27

Project:	WA-0977												
Pace Project No.:	255348												
QC Batch:	WETA/17	51		Analys	is Method:	SI	V 5310C						
QC Batch Method:	SM 53100)		Analys	is Descripti	ion: 53	B10C Tota	al Organi	c Carbon				
Associated Lab Sar	nples: 258	5348001, 255	348002, 255	348003, 25	5348004, 2	255348005,	2553480	007					
METHOD BLANK:	46802			N	latrix: Wat	er							
Associated Lab Sar	nples: 25	5348001, 255	348002, 255	348003, 25	5348004, 2	255348005,	2553480	007					
				Blank	Re	eporting							
Parameter Units			Result	t	Limit	Ana	Qualifie	ers					
Total Organic Carbo	n	mg/L			ND	1.0	10/28/	10 12:30			_		
LABORATORY COI	NTROL SAM	PLE & LCSD	2: 46803		4	6806							
				Spike	LCS	LCSD	LCS	LCSD	% Rec			Max	
Paran	neter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	RP	D	RPD	Qualifiers
Total Organic Carbo	n	mg/L		10	10.6	10.8	106	108	90-110		2	20	
MATRIX SPIKE & M	IATRIX SPIK	E DUPLICAT	TE: 46804			46805							
				MS	MSD								
			255348002	Spike	Spike	MS	MSD	MS	S MSE)	% Rec		
								_					
Parame	er	Units	Result	Conc.	Conc.	Result	Result	% Re	ec % Re	C	Limits	RPD	Qual

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 27

Project: WA-0977											
Pace Project No.: 255348											
QC Batch: WETA/1	762	Analysis Method:			SM 5310C						
QC Batch Method: SM 5310	C	Analysi	s Descrip	tion: 53	310C Tota	al Organi	c Carbon				
Associated Lab Samples: 2	55348006										
METHOD BLANK: 47385		Μ	atrix: Wa	ter							
Associated Lab Samples: 2	55348006										
Parameter	Blank Result		eporting Limit	Ana	lyzed	Qualifiers					
Total Organic Carbon	mg/L		ND	1.0	10/29/	10 11:55					
LABORATORY CONTROL SA	MPLE & LCSD: 47386			47387							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers	
Total Organic Carbon	mg/L	10	10.2	9.8	102	98	90-110	4	20		
MATRIX SPIKE SAMPLE:	47388										
		255473005		Spike	MS		MS		Rec		
Parameter	Units	Result Cor		Conc.	Result		% Rec	Lin	nits	Qualifiers	
Total Organic Carbon	mg/L		3.5	10		12.9	9	3	70-119		
MATRIX SPIKE SAMPLE:	47389										
Parameter	Units		255498001 Result		MS Result		MS % Rec		Rec nits	Qualifiers	
Total Organic Carbon	mg/L		4.6	10		14.1	9	5	70-119		

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 27

QUALIFIERS

Project:	WA-0977

Pace Project No.: 255348

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

REPORT OF LABORATORY ANALYSIS

Page 25 of 27

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	WA-0977
Pace Project No .:	255348

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
255348001	 MW-12		AIR/11092			
255348002	MW-11	RSK 175	AIR/11092			
255348003	MW-1	RSK 175	AIR/11092			
255348004	MW-6	RSK 175	AIR/11092			
255348005	MW-5	RSK 175	AIR/11092			
255348006	MW-16	RSK 175	AIR/11092			
255348007	MW-4	RSK 175	AIR/11092			
255348001	MW-12	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348002	MW-11	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348003	MW-1	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348004	MW-6	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348005	MW-5	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348006	MW-16	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348007	MW-4	EPA 3010	MPRP/1846	EPA 6010	ICP/1757	
255348001	MW-12	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348002	MW-11	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348003	MW-1	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348004	MW-6	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348005	MW-5	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348006	MW-16	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348007	MW-4	EPA 3010	MPRP/1847	EPA 6010	ICP/1758	
255348001	MW-12	SM 2320B	WET/2356			
255348002	MW-11	SM 2320B	WET/2356			
255348003	MW-1	SM 2320B	WET/2356			
255348004	MW-6	SM 2320B	WET/2356			
255348005	MW-5	SM 2320B	WET/2356			
255348006	MW-16	SM 2320B	WET/2356			
255348007	MW-4	SM 2320B	WET/2356			
255348001	MW-12	EPA 300.0	WETA/1753			
255348002	MW-11	EPA 300.0	WETA/1753			
255348003	MW-1	EPA 300.0	WETA/1753			
255348004	MW-6	EPA 300.0	WETA/1753			
255348005	MW-5	EPA 300.0	WETA/1753			
255348006	MW-16	EPA 300.0	WETA/1753			
255348007	MW-4	EPA 300.0	WETA/1753			
255348001	MW-12	EPA 353.2	WETA/1752			
255348002	MW-11	EPA 353.2	WETA/1752			
255348003	MW-1	EPA 353.2	WETA/1752			
255348004	MW-6	EPA 353.2	WETA/1752			
255348005	MW-5	EPA 353.2	WETA/1752			
255348006	MW-16	EPA 353.2	WETA/1752			
255348007	MW-4	EPA 353.2	WETA/1752			
255348001	MW-12	SM 5310C	WETA/1751			
255348002	MW-11	SM 5310C	WETA/1751			
255348003	MW-1	SM 5310C	WETA/1751			
255348004	MW-6	SM 5310C	WETA/1751			

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: WA-0977 Pace Project No.: 255348

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255348005	MW-5	SM 5310C	WETA/1751		
255348006	MW-16	SM 5310C	WETA/1762		
255348007	MW-4	SM 5310C	WETA/1751		

Date: 11/02/2010 12:45 PM

REPORT OF LABORATORY ANALYSIS

Page 27 of 27

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Pace Analytical Attn: Regina SteMarie 940 South Harney Seattle, WA 98108

RE: WA-0977 Project ID: CHM101019-2 Work Order: 255348

October 22nd, 2010

Regina:

Enclosed are the analytical results for the *WA-0977* water samples delivered to Fremont Analytical on October 19th, 2010.

Sample Receipt:

The sample was received in good condition - in the proper containers (7 – 500mL Poly preserved with Zn Acetate and NaOH), properly sealed, labeled and within holding time. The samples were received in a cooler with wet ice, with a cooler temperature of 4.4°C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The sample was stored in a refrigeration unit at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt issues to report.

Sample Analysis:

Examination of these samples was conducted for the presence of the following:

• Sulfide by SM 4500- S²⁻F

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied. There were no sample analysis issues to report.

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical.

Sincerely,

lement

Michelle Clements Lab Manager / Sr. Chemist

mclements @fremont analytical.com

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Sulfide by SM 4500-S²⁻F

Project: WA-0977 Client: Pace Analytical Client Project #: 255348 Lab Project #: CHM101019-2

SM 4500- S ²⁻ F	MRL	Method	LCS	MW-12	MW-11	MW-1
(mg/L)		Blank				
Date Analyzed Matrix		10/19/10	10/19/10	10/19/10 Water	10/19/10 Water	10/19/10 Water
Date Collected Sulfide	0.5	nd	110%	nd	nd	nd

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30%

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Sulfide by SM 4500-S²⁻F

Project: WA-0977 Client: Pace Analytical Client Project #: 255348 Lab Project #: CHM101019-2

-			Duplicate				
SM 4500- S ²⁻ F	MRL	MW-6	MW-6	RPD	MW-5	MW-16	MW-4
(mg/L)				%			
Date Analyzed Matrix		10/19/10 Water	10/19/10 Water		10/19/10 Water	10/19/10 Water	10/19/10 Water
Date Collected Sulfide	0.5	0.55	0.60	9%	nd	nd	nd

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

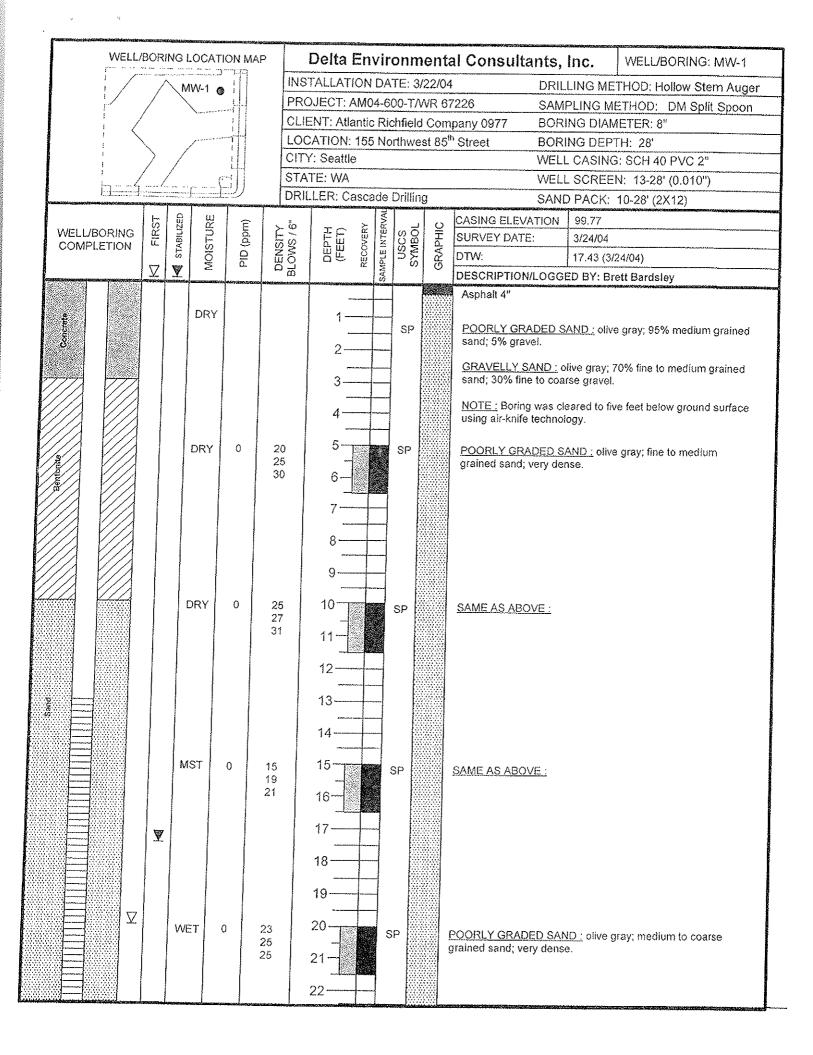
"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"RPD" Indicates Relative Percent Difference

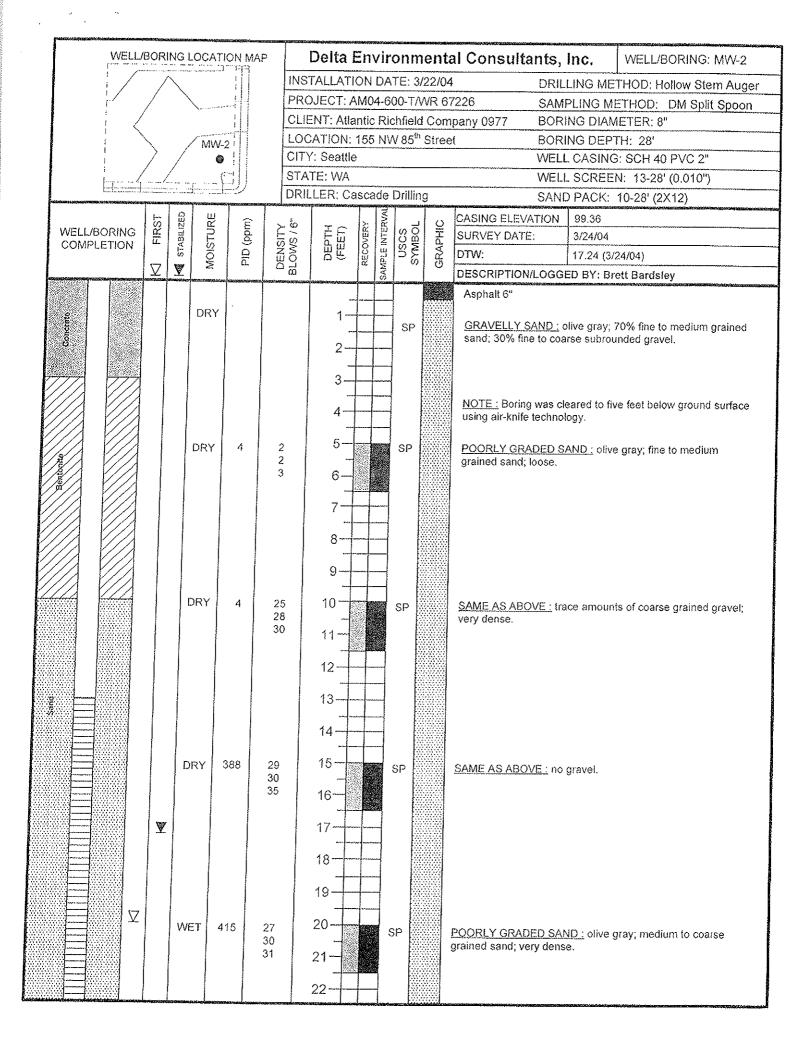
Acceptable RPD is determined to be less than 30%

Chain of Custody


CHm 1010 19 - 2 Pace Analytical www.pacelabs.com

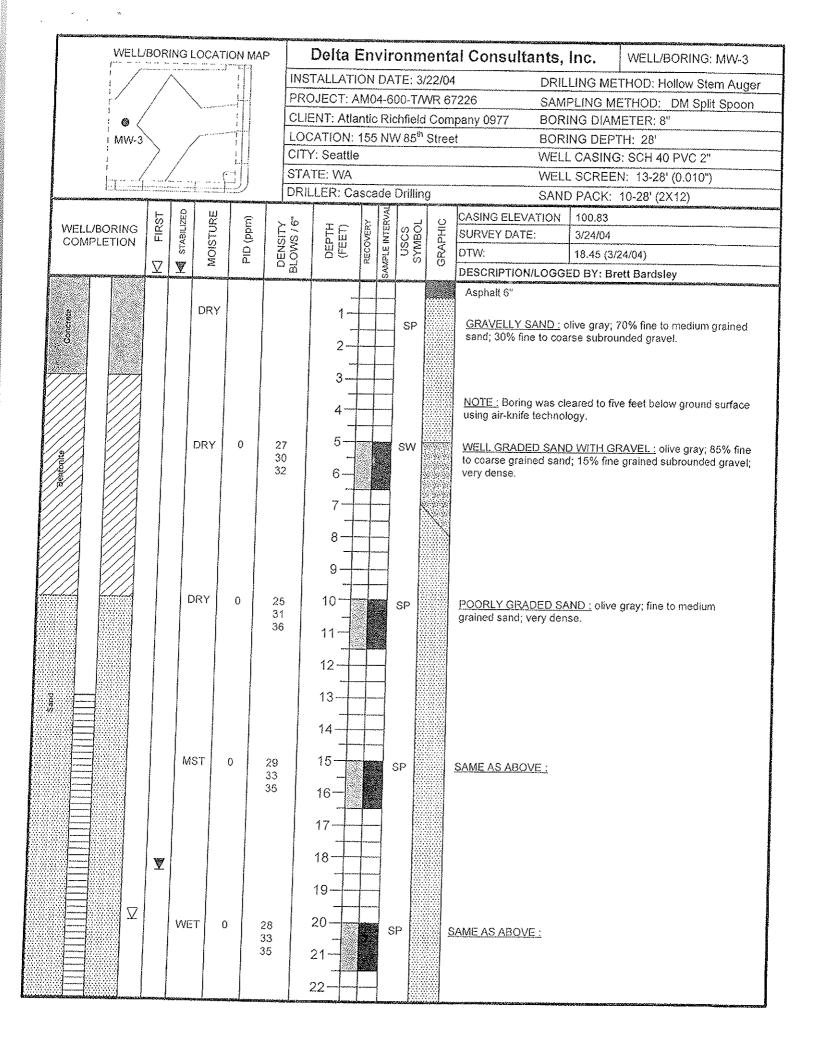
V 6 5 4 W Regina SteMarie UN 4 W N Email: regina.stemarie@pacelabs.com Seattle, WA 98108 Pace Analytical Seattle 940 South Harney Report / Invoice To Workorder: 255348 _ Phone (206)767-5060 Transfers MW-16 MWV-6 MW-11 MW-12 MW-5 MW-1 MW-4 Sample ID Released By He ta W Maver Workorder Name: 10/14/2010 12:25 10/14/2010 11:20 10/13/2010 14:30 10/13/2010 11:55 10/14/2010 15:10 255348007 10/14/2010 14:20 Date/Time 01810/1800 fremont 255348005 255348003 255348002 255348006 255348004 Lab ID WA-0977 Received By Water Water Water Water Water Water Watrix Water 5 P.0. **Preserved Containers** BRZZ トナト ++++ 4 Date/Time Mal alling Rde 1 メイ イナイ **Results Requested** Requested Analysis 10/27/2010 Comments LAB USE ONLY

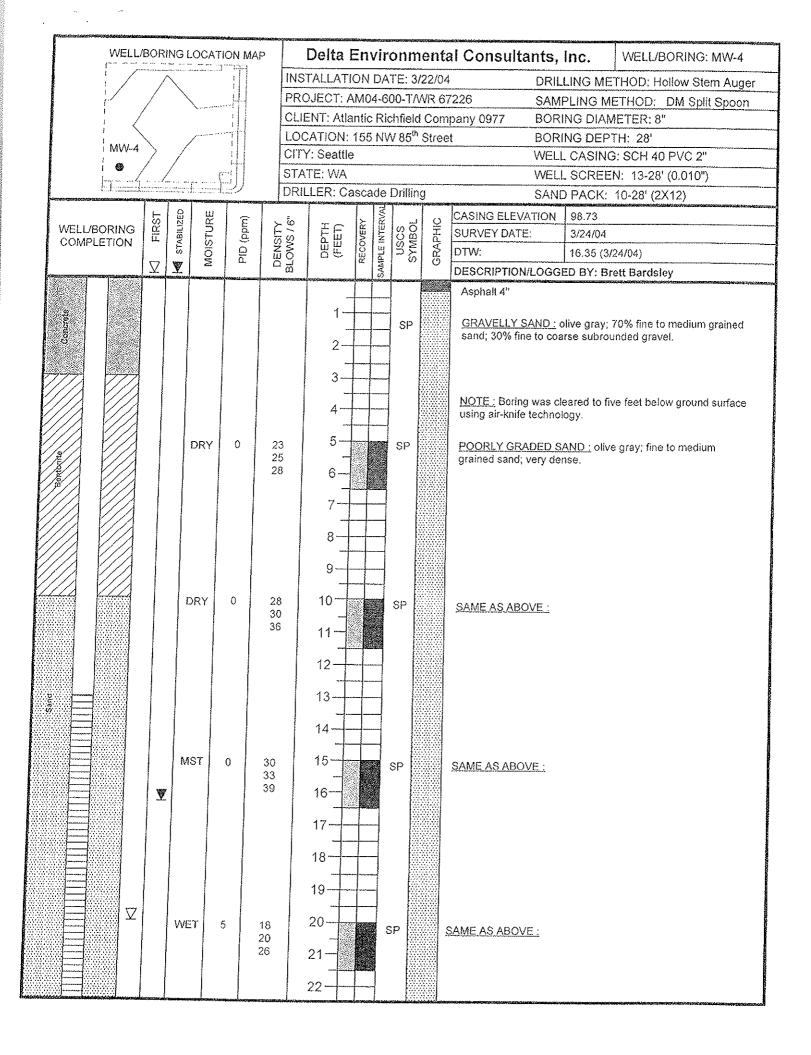
ARCADIS


 $\mathsf{Appendix}\, \mathbf{B}$

Soil Boring Logs

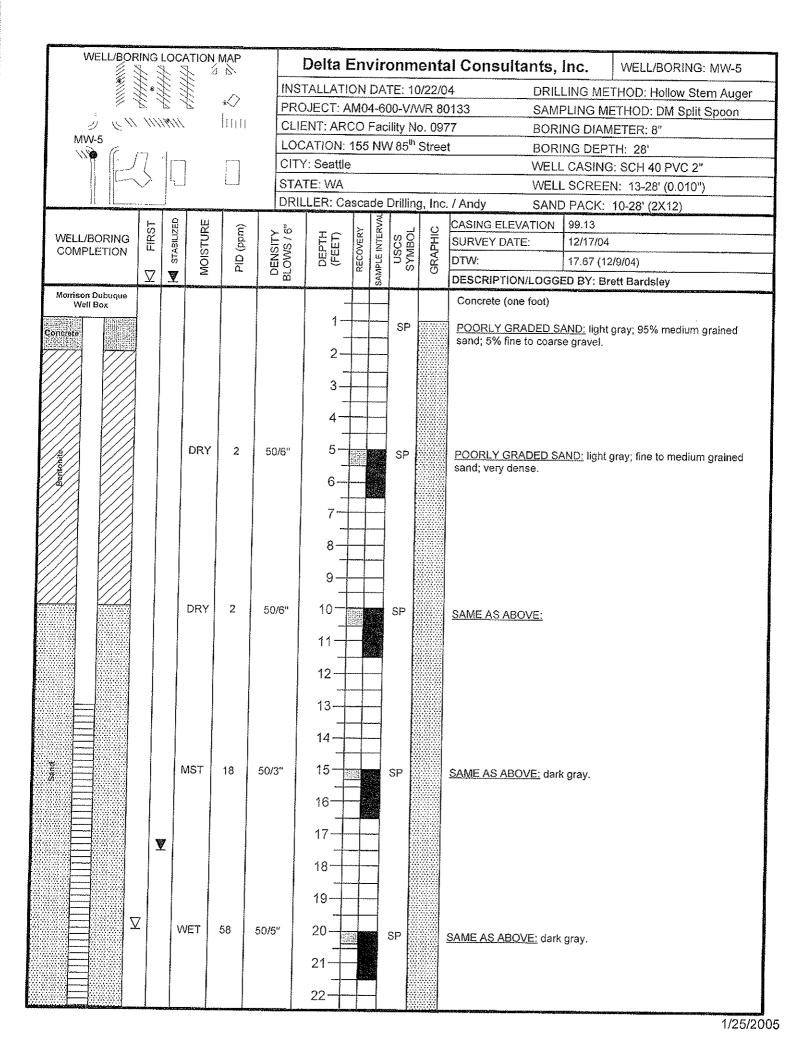
WELL/BOR	RING	LOC	ATION	MAP	1920clinites	Delta I	Envir	onm	enta	l Consultants,	Inc.	WELL/BORING: MW-1
					INS	TALLATI	ON DA	TE: 3/	22/04	DRIL	LING ME	THOD: Hollow Stem Auger
					{	OJECT: A				226 SAMI		ETHOD: DM Split Spoon
								***********			ING DIAN	AETER: 8"
						CATION:		V 85 th	Stree		NG DEP	
						Y: Seattle		······				5: SCH 40 PVC 2"
						TE: WA						N: 13-28' (0.010")
					DRI	LLER: Ca		Drillin	<u>g</u>	SANE	D PACK:	10-28' (2X12)
	FIRST	IZED	RE	Ê	م ح	TO	RECOVERY SAMPLE INTERVA		2	CASING ELEVATION	99.77	
VELL/BORING	FIR	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY	USCS SYMBOL	GRAPHIC	SURVEY DATE:	3/24/04	
	~	ی ۲	- NO	QId	LOUT	ЦЩ.	NPLE	22	GR	DTW:	17.43 (3/	
·····	V	<u>X</u>			<u>۵</u>		S.			DESCRIPTION/LOGGI	ED BY: Bi	rett Bardsley
						23-		1				
						24 -						
			WET	7	20	25-						
			**1		22 23 24	26 -		SP		sand; dense.	AND : Olive	e gray; fine to medium grained
					<u>к</u> т	20						
						27 -						
				ŀ		28 -		:				
ļ						r						
						29-						
						30 -						
	ł					31						
						32 -						
						33 -			[
		ĺ				34						
					ĺ	Ŭ ,						
						35 +						
						36						
						37 -						
						38						
						20						
						39						
						40 +						
						41						
			ļ			42						
			(
						43						
		< C	1	1	1	1		1	1			
		1			1	44						


× *

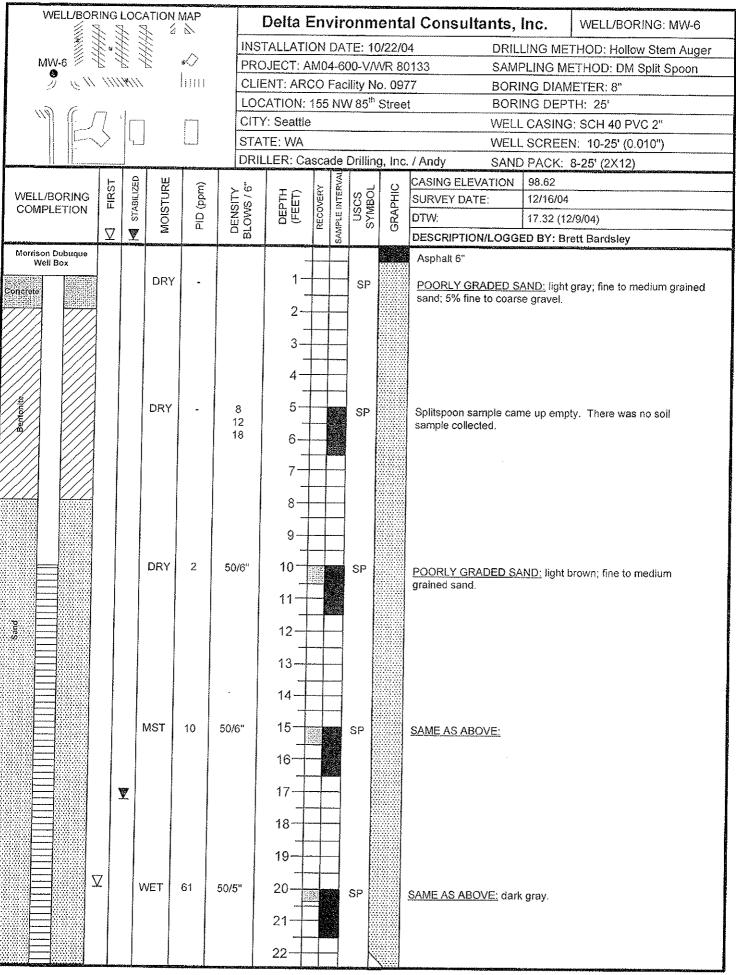

WELL/BOI	RING	LOC	ATION	MAP		Delta I	Envir	onm	enta	al Consultant	ts, Inc		WELL/BORING: MW-2
					INS	TALLATI		****				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	THOD: Hollow Stem Auger
					PR	OJECT: A	M04-6	00-T/V	VR 67				ETHOD: DM Split Spoon
					CLI	ENT: Atla	ntic Ric	chfield	Com				METER: 8"
					LO	CATION:	155 NV	V 85 th	Stree	L B	ORING	DEP	TH: 28'
					CIT	Y: Seattle)			W	'ELL CA	SINC	9: SCH 40 PVC 2"
						TE: WA				W	ELL SC	REE	N: 13-28' (0.010")
an an higg of the late the definition of the second second second second second second second second second se					DRI	LLER: Ca	iscade	Drillin	g	Si	AND PA	.CK:	10-28' (2X12)
	15	ZED	Ш	Ê	~ 50		RVAL	ب ا	0	CASING ELEVATION	ON 99.	36	
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	(mqq) Olq	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVA	USCS SYMBOL	GRAPHIC	SURVEY DATE:	3/2-	4/04	
			ğ	0 6	ЩО	L L L L L L	REC(SXI N	SRA	DTW:			24/04)
	∇	X			ធ	**************************************	- F			DESCRIPTION/LO	GGED B	Y: Br	ett Bardsley
			WET	258	28 30 30	23- 24- 25- 26- 27- 28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39-		SP		POORLY GRADE grained sand; very	<u>D SAND</u> dense.	<u>:</u> olive	e gray; medium to coarse
						40							
						43							

4

·· .



WELL/BO	RING	LOC	ATION	MAP		Delta I	Envir	onm	enta	al Consultants,	lnc.	WELL/BORING: MW-3
					INS	TALLATI	ON DA	TE; 3/	22/04	DRIL	LING ME	THOD: Hollow Stem Auger
					PR	OJECT: A	M04-6(00-TA	<u>VR 67</u>		****	ETHOD: DM Split Spoon
					CLI	ENT: Atla	ntic Ric	hfield	Com	pany 0977 BORI	NG DIAN	METER: 8"
					LOC	CATION:	155 NV	V 85 th	Stree	L BORI	NG DEP	TH: 28'
					CIT	Y: Seattle				WELL	CASING	G: SCH 40 PVC 2"
						TE: WA	····			WELL	_ SCREE	N: 13-28' (0.010")
ali da kaj na kaj kaj kaj kaj kaj kaj kaj kaj kaj ka	gamaa		A CONTRACTOR OF		DRI	LLER: Ca	iscade i	Drillin	g	SANE) PACK:	10-28' (2X12)
	5	ED	ш	Ê	5.0		Y RVAL		0	CASING ELEVATION	100.83	
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVA	USCS	GRAPHIC	SURVEY DATE:	3/24/04	
COMPLETION			NO I	0	ЩŎ	E E	PLE PLE	D Å	SRA	DTW:	18.45 (3	/24/04)
and the second	Σ	Y			ឹត		SAM 5			DESCRIPTION/LOGGI	ED BY: Bi	rett Bardsley
		Į				23-						
						20	ļ	ļ				
						24 -						
						_						
			WET	0	38 50/6"	25 -		SP		POORLY GRADED S/ grained sand; 5% fine	<u>AND :</u> olive grained si	e gray; 95% medium to coarse ubrounded gravel; very dense.
						26 -						
						27 -						
				ĺ		28						
						29 -						
						30 -						
						31 -	-+					
	Ì					~						
						32						
						33 -						
				ĺ								
						34 -						
						35						
						36						
						37		[
						38						
						39						
	1					40-		ļ				
						41						
							~					
						42						
						43						
		1					+					
		1				44						
							1		Ì			



WELL/BOF	RING	LOC	ATION	MAP		Delta E	Envir	onm	ienta	al Consultant	s, Inc.	WELL/BORING: MW-4
					INS	TALLATIC	DN DA	TE: 3/	22/04	DF		IETHOD: Hollow Stem Auger
					PRO	DJECT: AI	M04-6(DO-TA	VR 67			METHOD: DM Split Spoon
					CLI	ENT: Atlar	ntic Ric	hfield	Com			AMETER: 8"
					· · · · · · · · · · · · · · · · · · ·	CATION: 1	****	V 85 th	Stree	L BC	RING DE	PTH: 28'
					j	Y: Seattle				Wi	ELL CASI	NG: SCH 40 PVC 2"
					}	TE: WA				W	ELL SCRE	EEN: 13-28' (0.010")
	1 Amontecont		tinini (ining typesery)		DRII	LLER: Cas	scade	Drillin	g	SA	ND PACK	<: 10-28' (2X12)
	FIRST	IZED	н Ц	Ê	م ج	TO	RVAL		0	CASING ELEVATIO	N 98.73	
WELL/BORING COMPLETION	E L L L	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	USCS SYMBOL	GRAPHIC	SURVEY DATE:	3/24/0	4
	5		NOI	PID	LOV	H H H	REC	SY C	GR	DTW:		(3/24/04)
	V	Y			- <u>6</u>		S.	mananana		DESCRIPTION/LOC	GED BY: I	Brett Bardsley
			WET	4	23 26 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SP				ive gray; fine to medium grained

. .

					Delta E	Envir	onm	enta	I Consultants,	Inc.	WELL/BORING: MW-5
					TALLATIO	,					THOD: Hollow Stem Auger
					DJECT: A						ETHOD: DM Split Spoon
1					ENT: ARC						AETER: 8"
					ATION: 1		-			NG DEP	
				CIT	∕: Seattle						G: SCH 40 PVC 2"
				STA	TE: WA				·····		N: 13-28' (0.010")
		3.5627336674577		DRIL	LER: Ca	scade l	Drillin	g, Inc.			10-28' (2X12)
	E C	n W	Ê	, to		۲. «Val	ļ			99.13	
WELL/BORING	FIRST STARII 17ED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	USCS SYMBOL	GRAPHIC	SURVEY DATE:	12/17/04	· · · · · · · · · · · · · · · · · · ·
COMPLETION		<u> </u>	<u> </u>	0 EN	E E	FLE I	NN NS	RAI	DTW:	17.67 (12	2/9/04)
	∇	7 <u>></u>		۵ä		SAM		0	DESCRIPTION/LOGGI	ED BY: B	rett Bardsley
		WET	188	11 50/6"	23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 43 - 44 - 43 - 44 - 43 - 44 -		SP		POORLY GRADED S/ grained sand; very der	AND: dark	

1988-1988-1988-1988-1999-1999-1999-1999				Recommente		Delta E	invir	onm	enta	l Consultants,	Inc.	WELL/BORING: MW-5
						(ALLATIC	••••••		·····			THOD: Hollow Stem Auger
						JECT: AN						ETHOD: DM Split Spoon
						ENT: ARC						METER: 8"
						ATION: 1	·····				NG DEP	······································
					CITY	∕: Seattle						G: SCH 40 PVC 2"
					STA	TE: WA				WELI	SCREE	N: 10-25' (0.010")
	-		Yalionena autoritati	1	DRI	LER: Cas	scade	Drillin	g, Inc	/Andy SANE	D PACK:	8-25' (2X12)
	5 L	ZED	ШЖ	Ê	متحر	-	RVAI		0	CASING ELEVATION	98.62	
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAI	USCS SYMBOL	GRAPHIC	SURVEY DATE:	12/16/04	
			Ö	E		L E	REC	S Γ	GR	DTW:	17.32 (1	
	∇	V			<u>ش</u>	-	SAI	<u> </u>		DESCRIPTION/LOGG	ED BY: B	rett Bardsley
						23-		1				
						2.4		1				
						25-	-	SP		NOTE: There was no	soil sampl	e collected due to heaving
						26-				sands.		-
						27-						
						29-						
						30-						
						31						
						32						
						33						
						34						
						35			ļ			
						36-	_					
						37-						
						38-						
						39						
							+					
						40						
						41						
						42						
							+					
						43			ļ			
						44	+					

WELL/BO	RING	LOCA		MAP		Delta Er	iviro	onm	enta	I Consultants, Inc		WELL/BORING: MW-7
	1.0 1	1111. 1444.			INS	TALLATION	·					HOD: Hollow Stem Auger
	MW-	14		*	PR	OJECT: AM	04-60	0-V/	NR 80			THOD: DM Split Spoon
11 ي لا	////	11/19/1		ШН	CL	IENT: ARCC) Faci	ility N	o. 097			
S Car	·····	1			LO	CATION: 15	5 NW	/ 85 th	Stree			
	/ [1			СП	Y: Seattle						: SCH 40 PVC 2"
	\searrow	[L_]			ST/	ATE: WA				WELL SC		√: 13-28' (0.010")
					DR	LLER: Casc	ade I	Drillin	g, Inc.			10-28' (2X12)
	5	Ê	ш	e	> fo		RVAL			,	7.17	ning and and a second a second a second s
WELL/BORING	FIRST	STABILIZED	MOISTURE	(mqq) OI4	DENSITY BLOWS / 6"	DEPTH (FEET)	SAMPLE INTERVA	USCS SYMBOL	GRAPHIC	SURVEY DATE: 12/	/16/04	······································
COMPLETION			SIO	ĝ	OW		PLEI	S W	RAI	DTW: 15.	.80 (12/	/9/04)
	∇	V	S	<u>ц</u>			SAMI	0,	0	DESCRIPTION/LOGGED E	3Y: Bre	ett Bardsley
Morrison Dubuque Well Box				1						Asphalt 6"		
Well Box			DRY	_		1 1		SP		POORLY GRADED SAND): liaht o	vav: 10% silt find to
ncrelo						'		01		medium grained sand; 5%	fine to	coarse rounded gravel.
	1			}		2						
	1											
	1					3						
	1			ĺ								
	1					4						
	1		DRY	0	23	5-5-						
ohite			ULI	0	25			SP		POORLY GRADED SAND; medium grained sand; very	L light g	ray; 10% silt; fine to
					28	6—				nicaani granca sana, very	y dense	<i>.</i> ,
		ĺ										
						7						
		ļ					[
						8						
1 \//						9						
			DRY	0	50/6"	10-		SP				
				-	00.0					SAME AS ABOVE:		
	1		ĺ			11						
						12——						
			ĺ			13						
		1				14						
			1		-	14						
		M	AST	0	33	15	200000	SP		SAME AS ABOVE:		
	ĺ				50/6"			or i		SAIVE AS ABOVE:		
						16-1						
	ļ					17						
	Ì											
			Ì			18						
						10 +++		1				
						19						
	ļ	W	/ET	0	35	20-						
	Ì				50/5"			SP 🗄		SAME AS ABOVE:		
· · · · · · · · · · · · · · · · · · ·			1			21						
		1	1					T				

		dishang ng				Delta E	Envir	onm	ienta	al Consultants, Inc.	WELL/BORING: MW-7
					·	TALLATIO					IETHOD: Hollow Stem Auger
					PRC	DJECT: A	M04-60)0-V/\	NR 80		METHOD: DM Split Spoon
					CLI	ENT: ARC	CO Fac	ility N	o. 097		
						ATION: 1		V 85 th	Stree	BORING DE	PTH: 30.5'
						/: Seattle				······································	NG: SCH 40 PVC 2"
					STA	TE: WA					EN: 13-28' (0.010")
	T	-		1		-	1 7-2				<: 10-28' (2X12)
WELL/BORING	FIRST	STABILIZED	MOISTURE) E	ق ح	I I C	RECOVERY SAMPLE INTERVAL	 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _	2	CASING ELEVATION 97.17	
COMPLETION		TABIL	IST	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY MPLE INTERV	USCS SYMBOL	GRAPHIC	SURVEY DATE: 12/16/	
	∇	v ▼	M N	l ∏	Ш С С		REC	5	L R	t	(12/9/04)
	_¥.	<u> </u>				 			Devee	DESCRIPTION/LOGGED BY:	Brett Bardsley
		ļ				23-	├	ĺ			
						24-					
						24					
			WET	0	41	25		SP		POORLY GRADED SAND: lig	ht aray: 10% silt: fine to
					50/6"					medium grained sand; trace a	mounts of fine rounded gravel;
						26				very dense.	
						27-					
						28-					
						29-					
		1				20					
			WET	0	50/6"	30-		SP		POORLY GRADED SAND: lig	ht gray; 10% silt; fine to
							<u>1. N.1</u>		210200	 Medium grained sand; trace a very dense. 	mounts of fine rounded gravel;
						31					
						32-		ĺ			
						-					
					ļ	33-					
						34-					
						35					
	{					36-					
						37+					
						-+-					
	Í					38					
						39					
	ĺ					39					
						40-					
						41					
						42					
Ē						43					
						44					
	_										

	RING LC		MAP る 入		Delta Envi	ronn	nenta	al Consultants, Inc	WELL/BORING: MW-8
MW-8 🕏	#*#			INS	TALLATION D	ATE: 1	2/6/04	DRILLING	G METHOD: Hollow Stem Auger
1	* *	N.	*	PRO	DJECT: AM04-	600-V/	WR 80		IG METHOD: DM Split Spoon
19 C	/////	111		CLI	ENT: ARCO F	acility N	lo. 097		DIAMETER: 2"
S lav	<i></i>			LOC	CATION: 155 N	IW 85 [#]	¹ Stree	t BORING	DEPTH: 30.5'
	$\int \frac{1}{2} dt$			CIT	Y: Seattle			WELL CA	SING: SCH 40 PVC 2"
	>	Ĺ,		STA	TE: WA			WELL SC	REEN: 13-28' (0.010")
				DRI	LLER: Cascad	e Drillir	ng, Inc		ACK: 10-28' (2X12)
	H	B W		Ę		CVAL V			.52
WELL/BORING	FIRST	STABILIZED MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET) RECOVERY	USCS USCS SYMBOI	GRAPHIC		16/04
COMPLETION		STAI OIS	l Q	SNS	LEE DE		RAF	DTW: 16.	05 (12/9/04)
		v ž	<u>م</u>	L R R			ס יס	DESCRIPTION/LOGGED E	
Aorrison Dubuque			*********		+	2 million and a million of the second		Asphalt 6"	
Well Box		DRY				SP			: light brown; 10% silt; 80% fine to fine rounded gravel.
					3				
					4	-			
		DRY	0	22 50/6"	5 	SP		POORLY GRADED SAND: medium grained sand.	; light brown; 10% silt; fine to
					7				
					8 9				
		DRY	0	22 38 50	10	SP		SAME AS ABOVE: light gra	ay.
					11-				
					13				
		MST	0	20	14	SP		SAME AS ABOVE:	
	X			35 22	16	0		<u>Unitero Aboyt.</u>	
					17				
					18				
	z	WET	0	18	19	sw		WELL GRADED SAND: 109	(alb: 009/ fina
				21 26	21	UVV .		WELL GRADED SAND, 109	o sin, 30 % line.
					22			24.4 Martin Contention State Contention Contention Contention Contention Contention Contention Contention Contention	

				ndaran menganyakan dari			Delta E	Envir	onm	enta	I Consultants, I	Inc.	WELL/BORING: MW-8
							TALLATIC						THOD: Hollow Stem Auger
							JECT: A						ETHOD: DM Split Spoon
							ENT: ARC						METER: 2"
							ATION: 1						TH: 30.5'
						CITY	∕: Seattle				WELL	CASING	G: SCH 40 PVC 2"
						STA	TE: WA				WELL	SCREE	N: 13-18' (0.010")
	ورعم فناطن	onsopa	TA CALLY	-	-	DRI	LER: Ca	scade	Drillin	g, Inc.	/ Andy SAND	PACK:	10-28' (2X12)
	ł		ZED	ш	Ê	0.2		Y RVAL	_	0	CASING ELEVATION	97.52	
WELL/BORING COMPLETION	3	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	USCS SYMBOL	GRAPHIC	SURVEY DATE:	12/16/04	
COMPLETION	'			Q	8	ЩŎ.	H H H	RECO	NS C	SRA 1	DTW:	16.05 (1	
	7	Z	V.			니퍼	-	- VVS			DESCRIPTION/LOGGE	ED BY: B	rett Bardsley
							23-						
								·	-				
							24-		-				
									ł				
				WET	0	22 50/6"	25-		SP		POORLY GRADED SA	<u>AND:</u> light	gray; fine to medium grained ided gravel; very dense.
						00/0	26-				sano, trace amounts of	i ine roun	idea graver, very dense.
							27-						
							28-						
							29-						
							v						
					0	50/6"	30-				SAME AS ABOVE:		
							31-						
							32						
									ľ				
							33-						
							34-						
							35						
							36						
							37-		ļ				
					ł				[
							38-						
							39-						
					ļ		40						
							41-						
							42						
							43		1				
		:		ĺ									
							44						
<u></u>													

WE	ELL/BOR	ING	LOC/ K		MAP		Delta E	invir	onm	enta	l Consultants, Inc.	WELL/BORING: MW-9
						INS	TALLATIC		Γ <u>Ε:</u> 1;	2/6/04	DRILLING ME	THOD: Hollow Stem Auger
	11	1	The second		*	PR	DJECT: AI	VI04-60)0-V/	WR 80		ETHOD: DM Split Spoon
_/	611				100	CLI	ENT: ARC	O Fac	ility N	o. 097		
(a)	6		MW-9)		LOC	CATION: 1	55 NV	/ 85 ^{1h}	Stree	BORING DEP	'TH: 30.5'
12		7	·	-		CIT	Y: Seattle		·			G: SCH 40 PVC 2"
		\mathbf{i}	l	ļ		STA	TE: WA					EN: 13-28' (0.010")
	<u> </u>					DRI	LLER: Cas	scade	Drillin	g, Inc.		10-28' (2X12)
		<u> -</u> -	Q.	ш				000.004/0200/000			CASING ELEVATION 98.24	
WELL/BC		FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	USCS SYMBOL	GRAPHIC	SURVEY DATE: 12/16/04	1
COMPLE	ETION		STAI	SS 1		SNS	요빈	LE IN	NS(AF	DTW: 16.81 (1	
		V		ž	ā			AMP Re	ં	0	DESCRIPTION/LOGGED BY: B	
Morrison D	ubuque			10078465000000000				www.			Construction of the second state of the	rett Barusiey
Well B	юх										Asphalt 6"	
ncrote							1-		SP		POORLY GRADED SAND: ligh	t brown; 10% silt; 80% fine to
ICIUID.											medium grained sand.	
	\langle / \rangle						2-					
							3_					
							4-					
		ĺ					· -					
	\mathbb{N}			DRY	2	15	5-	0100	SP			a hana a sa ang ang ang ang ang ang ang ang ang an
	\mathbb{N}					15			35		POORLY GRADED SAND: light grained sand.	brown; line to mealum
						17	6				•	
			1						-			
	\mathbb{N}						7-					
Λ							8					
			}									
							9-+					
							. +					
				DRY	0	50/6"	10		SP		SAME AS ABOVE: grayish brow	'n.
							11					
									Ē			
							12					
							13					
					ĺ		13					
							14-					
				NST	0	32	15-		SP		SAME AS ADOVICE	
			`		Ů	50/5"			or i		SAME AS ABOVE:	
							16					
			887		1							
		-	2				17					
) – N						5						
				ĺ	[18					
							19					
	7 1000	7	Į									
		-	V	VET	0	18	20-		SP 🖁		SAME AS ABOVE; light gray.	
· · · • • • • • • • • • • • • • • • • •			ĺ	ľ		22 36						
		1					21-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
					1				- 19			
							22					

		X-MURANCE	1771) A. 1990 (1996)			Delta E	Envir	onm	ienta	al Consultants, I	Inc.	WELL/BORING: MW-9
						TALLATIO						THOD: Hollow Stem Auger
						JECT: A						ETHOD: DM Split Spoon
						ENT: ARC			*****	****		AETER: 2"
						ATION: 1					•••••••	TH: 30.5'
					CITY	: Seattle						3: SCH 40 PVC 2"
					STA	TE: WA						N: 13-28' (0.010")
	permitter				DRI	LER: Ca	scade	Drillin	g, Inc		·····	10-28' (2X12)
	F.	E	Я	6			Y		0	CASING ELEVATION	98.24	an a
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVA	USCS SYMBOL	GRAPHIC	SURVEY DATE:	12/16/04	
COMPLETION			Įğ		N N N	<u> </u>	RECO	SYN	GRA	DTW:	16.81 (12	2/9/04)
	∇	V	2	Į –	្រក		SAV			DESCRIPTION/LOGGE	ED BY: Bi	rett Bardsley
						23-		-				a na sa n
	ĺ					24	┝	-				
					_			1				
<i></i>				0	42 26	25-		SP		POORLY GRADED SA sand; trace amounts of	<u>ND:</u> light	gray; fine to medium grained
					32	26-				sanu, uace amounts of	i ime roun	ided gravel.
					:	27-						
						~~						
		1		[28-						
						29-						
				0	50/6"	30-		SP		SAME AS ABOVE:		
						31						
						31						
						32-						
						33-						
						34-						
						34		ĺ				
						35-						
						36-						
						37						
	1							1				
						38	_					
									ļ			
1						39						
						40-						
									ļ			
						41-						
							+-					
	ĺ					42						
						43						
	l					44						
							+					

١	NELL/BOF	RING	LOC/ SL		MAP		Delta E	invir	onm	enta	d Consultants, I	Inc.	WELL/BORING: MW-10
		144	444 11 11 11	3	v-10 ©		TALLATIC						THOD: Hollow Stem Auger
	19 ×	£.				PR	DJECT: AI	M04-60	00-V/V	VR 80			ETHOD: DM Split Spoon
	19 61	111	11911		[[]]]	CLI	ENT: ARC	O Fac	ility N	o. 097			METER: 2"
	5					LO	CATION: 1	55 NV	V 85 th	Stree	~~~~~~		'TH: 30.5'
		7	*]		CIT	Y: Seattle						G: SCH 40 PVC 2"
	1	\searrow				STA	TE: WA						EN: 13-28' (0.010")
							LLER: Ca	scade	Drillin	a. Inc.			10-28' (2X12)
			<u>a</u>	LU				000000000000000000000000000000000000000			CASING ELEVATION	98.11	
WELL	BORING	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	EE	RECOVERY SAMPLE INTERVAL	USCS	GRAPHIC	SURVEY DATE:	12/16/04	1
	PLETION	L.	STAB	ISI		ISN	DEPTH (FEET)	E IN	USC IN	₹AP	DTW:	16.71 (1	
		∇	V	¥		L R C		RE	5	6		£	· · · · · · · · · · · · · · · · · · ·
Morriso	n Dubuque	<u></u>			-			ŝ			DESCRIPTION/LOGGE	ED 8Y: B	rett Bardsley
We	li Box						-	-			Asphalt 6"		
				DRY			1-		SP		POORLY GRADED S	AND: liaht	t brown; fine to medium
ncrete					ļ		-				grained sand.		
	777						2-						
\square							3						
							4-						
				DRY	0	15	5-	450 864 8	00				
CO MIG		ļ				15			SP		sand; medium dense.	<u>AIND:</u> light	gray; fine to medium grained
			1			15	6—						
							7-						
\square							8						
\square									ļ				
							9		ŀ				
			Ì										
				DRY	0	32 47	10-		SP		SAME AS ABOVE: very	y dense s	and.
						47 32							
						02	11-						
							10						
							12						
							13						
							13						
							14						
			1	MST	0	22	15-		SP		SAME AS ABOVE: den	eo cond	
					Ĩ,	32			or c		SAME AS ABOVE. Dell	se sanu,	
						14	16						
				1	Ì	ļ	17						
*** =				ļ	1								
							18						
							19						
		1	V	VET	0	33	20-		SP 🗄		SAME AS ABOVE: very	dense.	
						36 41			接		vory		
						чı	21-						
	10.000	1	1					C 10505					
<u></u>			1	1	1	1	22	1	r				

		*****				Delta E	Inviro	onm	enta	al Consultants, Inc. WELL/BORING: MW-10
						FALLATIC				
					PRC	JECT: AN	M04-60)0-V/V	VR 80	
					CLIE	ENT: ARC	O Fac	ility No	o. 097	
*					LOC	ATION: 1	55 NV	√ 85 th	Street	BORING DEPTH: 30.5
					CITY	: Seattle				WELL CASING: SCH 40 PVC 2"
					STA	TE: WA				WELL SCREEN: 13-28' (0.010")
0000404-4044.co.co.co.co.co.co.co.co.co.co.co.co.co.	-	-			DRIL	LER: Ca	scade	Drilling	g, Inc.	c. / Steve SAND PACK: 10-28' (2X12)
		ED	μ	Ê	5.0		RVAL		0	CASING ELEVATION 98.11
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	USCS	GRAPHIC	SURVEY DATE: 12/16/04
COMPLETION			NOI		N N N	E E E E E	APLE APLE	ы К.	GRA	DTW: 16.71 (12/9/04)
	$ \Sigma $	X		-	ᆸᆆ		SAN			DESCRIPTION/LOGGED BY: Brett Bardsley
Sand			WET	0	36 50/6*	23- 24- 25- 26- 27- 28- 28-		SP		<u>POORLY GRADED SAND:</u> light gray; fine to medium grained sand.
			WET	0	50/6"	29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		SP		SAME AS ABOVE:

۷	VELL/BC	RIN	IG L		N MAP		Delta B	Envir	onm	ienta	Il Consultants, I	nc.	WELL/BORING: MW-1*
	11121111		4		- 54	IN	STALLATI	ON DA	TE: 6	/21/05	DRILL	ING ME	THOD: Hollow Stem Auge
	1	1	1		6	PR	OJECT: O	OCKB			SAMP	LING M	ETHOD: DM Split Spoon
V-11	a i i	, i		₹.		CL	IENT: AR	CO Fac	ility N	lo. 097	7 BORII	NG DIAN	/ETER: 2"
v-ts)	N 4					LO	CATION:	155 NV	V 85 th	Stree	BORI	VG DEP	TH: 25'
							Y: Seattle				WELL	CASING	3: SCH 40 PVC 2"
	14 A A	·					ATE: WA				WELL	SCREE	N: 10-25' (0.010")
	04104-6007031000314704	wargaa	ennada		constitution and the second	DR	ILLER: Ca	A CONTRACTOR OF A CONTRACTOR O	Drillin	ig, Inc.	SAND	PACK:	8-25' (2X12)
			ST	ZED		· _ to		RECOVERY SAMPLE INTERVAL	<u> </u>	0	CASING ELEVATION	100.06	
	30RING LETION	li	FIRST	STABUIZED	(mag)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY APLE INTER	USCS SYMBOL	GRAPHIC	SURVEY DATE:	7/8/05	
			1	2		O EN	L RE	REC	ک د	GRA	DTW:	18.79 (6	
	<u></u>		7	X S		, ⊔ ŭ	and a management of the second	SAF	-	-	DESCRIPTION/LOGGE	D BY: M	atthew Miller
											Concrete Surface		
							1-		CI.		CLAY: olive brown; m	oderate to	o high plasticity; trace very
										1			ning; trace roots; very stiff.
							2-						
7		7					3-						
4		1											
							4-						
2				DP	2	8	5-		CI.,				
4						11 13	6-						
2													
1							7	{{					
2							-						
							8						
									:	$\langle \rangle \rangle$			
							9						
				MST	1	27	10-			12			
						56			sc	1.1.		×0000 20	to 2001 Engained find to
							11		30	1.1.1	fine sand; very dense.	10WN; 30	to 40% fines; very fine to
										14	•		
							12			10			
							13			19			
		:											
							14			Ð			
									ļ	D.			
		∇		WET	2	50/2"	15		sc [@15' AS ABOVE: 10 to	20% fine	s; very dense; minimal
							16		ļ	19	sample recovery.		
				1						94			
							17		ļ				
									ļ	Ø.			
							18		ļ	GA.			
			<u>V</u>				-+-		ľ	GA.			
							19						
			1	WET	1	50/4"	20			14	.		
				· · · · · ·		0014	20		sc /	A	@20' AS ABOVE; dark o	olive gray	; decreasing fines.
							21	-		H.			
·····				1					1	///			
		[ł	1	í	1	1	1				

						Delta F	nvir	anm	anto	Il Consultants, I	Inc. WELL/BORING: MW-11
					j	TALLATIC		يعيده مستويد وعده			ING METHOD: Hollow Stem Auger
					}/	DJECT: G					PLING METHOD: DM Split Spoon
					1	ENT: ARC		ility N	o. 097		NG DIAMETER: 2"
						CATION: 1					NG DEPTH: 25'
					CITY	Y: Seattle				WELL	CASING: SCH 40 PVC 2"
					*****	TE: WA					SCREEN: 10-25' (0.010")
		osnahdræe			DRI	LLER: Cas	COMPANY COMPANY OF	Drillin	g, Inc.	SANE) PACK: 8-25' (2X12)
WELL/BORING	FIRST	STABILIZED	JRE	(u	<u>ة</u> ح	IIC	RECOVERY SAMPLE INTERVAL	600	2	CASING ELEVATION	100.06
COMPLETION	ц.	TABIE	MOISTURE	PID (ppm)	USIT NS /	DEPTH (FEET)	RECOVERY	USCS SYMBOL	GRAPHIC	SURVEY DATE: DTW:	7/8/05
	∇	сл У 1	MO	a.	DENSITY BLOWS / 6"	DE	RE	ۍ ر	B	DESCRIPTION/LOGGE	18.79 (6/30/05)
		an La, Matoriana				-	S.	4000000004650000		DESCRIPTIONLOGG	
						23					
						24-					
						2 T			11		
			WET	1	50/6"	25		SC			; decreasing fines; 5 to 10% fines; very
						26-			<u></u>	dense.	
			Î								
						27					
						28-					
						20					
						29				PID background levels	s = 1-2 ppm
						20-					
						30					
						31					
						~	-				
						32					
						33					
						34					
						35					
						36					
						37					
						38					
						39					
						40	+				
						41					
						42	+				
						42					
						43					
						44					

		JRIN S	IG LI		IN MAP		Delta En	virc	nm	enta	l Consultants, l	nc.	WELL/BORING: MW-12
						IN	STALLATION						THOD: Hollow Stem Auger
MW-12			11		95 - S	1	ROJECT: GOC						ETHOD: DM Split Spoon
Ø	5 S	- ⁻ -	N., 8	8 (5 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		}	IENT: ARCO		lity N	o. 097			
	A - 2						CATION: 155					NG DEP	
1							TY: Seattle	*****					
	÷	×., ;				ST	ATE: WA	*********************			WELL	SCREE	N: 13-28' (0.010")
		and the face of the				DR	ILLER: Casca	ide [Drillin	g, Inc.	SAND	PACK:	11-28' (2X12)
		Π,	-	8 u		**************************************		**	*************		CASING ELEVATION	100.01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	BORING		1221	STABILIZED	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET) RECOVERY	SAMPLE INTERVAL	USCS SYMBOL	GRAPHIC	SURVEY DATE:	7/8/05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
COMPL	ETION		-	STA OIS) g	. GNS		181	NN W	RAF	DTW:	18.50 (6	/30/05)
		[]	<u>Z </u>	Z S	ш	۵j	α (α	SAMI	0)	G	DESCRIPTION/LOGGE	D BY: M	atthew Miller
	<u></u>			ACCURATE AN ADAPT OF THE	WHEN COLORAD	1/////////////////////////////////////			****		Asphalt	**********	
ete							1						
Concrete							· · · · ·	ļ	SP		 <u>SAND</u>: light olive brow sand; trace medium to 		o 5% fines; very fine to fine
							2					0001000	
77	77	7											
		1			ļ		3						
							4						
							5	5.99 0 0	SP		No recovery at 5'		
		1							Ŭ,				
		1					6						
							•••••••••						
							8						
							9						
							10						
				DP	0	20 36	10		SP [SAND: dark grayish bro sand; trace medium to o		to 5% fines; very fine to fine
	1 derten					35	11-		ĺ		sand, dave medion to t	coarse sa	ald, very dense.
							12						
							13-						
							14						
								_					
				DP	0	50/6"	15		SP		@15' AS ABOVE:		
]			16						
			l				17	X		100.00			
							18						
			V.										
							19	_					
3 (d													
·	7	7		WET	0	50/5"	20-	1 5	SP 🖗		@20' AS ABOVE:		
		~ 1				1	1.	010	1.1.				
		-					21-		一該				
		-					21						

	01 0804-008 040,408	******	QQ-adamic and conferences (and conferences)			Delfa F	- nv	irc	nm	enta	I Consultants, Inc. WELL/BORING: MW-12
						TALLATIO					DRILLING METHOD: Hollow Stem Auger
					\$	JECT: G		·····			SAMPLING METHOD: DM Split Spoon
						ENT: ARC			lity No	o. 097	
					LOC	ATION: 1	155	NW	/ 85 th :	Stree	BORING DEPTH: 28'
					CITY	/: Seattle					WELL CASING: SCH 40 PVC 2"
						TE: WA					WELL SCREEN: 13-28' (0.010")
					DRIL	LER: Ca	, personale d	2000112000	Drilling	g, Inc.	SAND PACK: 11-28' (2X12)
	ST	260	В Ш	Ê	مة بر	- -	2	SAWPLE INTERVAI		õ	CASING ELEVATION 100.01
WELL/BORING COMPLETION	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY	INTE	USCS SYMBOL	GRAPHIC	SURVEY DATE: 7/8/05
	~~~~		MOI	DIG	Log Log	E E	REC	BIdM	SYC	90	DTW: 18.50 (6/30/05)
	$\nabla$	X			0			Ś	-		DESCRIPTION/LOGGED BY: Matthew Miller
						23-					
	ļ					-					
						24-					
			WET	0	50/4"	25-		2015	SP		SAND: dark grayish brown; trace fines; very fine to fine sand;
ġ.						26-					5% medium to coarse sand; trace gravel; very dense.
						27-					
						28				<u>1177777</u>	
						29-		]			
						30					
						•					
						31					
						32-					
						33-					
						33-					
						34		_			
				Í		35					
			-			36					
						37-					
						38-					
						39-					
						40					
						~+U 		_			
						41					
						42					
					Í	43					
						44					
								-			

W	ELL/B	Se	ING	LOCA	ΓΙΟΝ	MAP		Delta E	Enviro	onm	nent	al Consultants, I	nc.	WELL/BORING: MW-13
AW-13	10140100						IN	STALLATIC	DN DA'	TE: 6	/21/0	5 DRILL	ING ME	THOD: Hollow Stem Auge
	2					4. ¹¹	PF	OJECT: G	OCKB			SAMP	LING MI	ETHOD: DM Split Spoon
	2 N.	N.	1.53					IENT: ARC	*****	*****	*****		IG DIAN	IETER: 8"
	. :							CATION: 1	155 NV	V 85 th	Stre	······································	IG DEP	
		. 2						TY: Seattle						S: SCH 40 PVC 2"
		· ^ (	. 1				}	ATE: WA						N: 10-25' (0.010")
			Statusou		****		DR	ILLER: Ca	Cuantras de concercentes de la concerce de la conce	Drillir	ig, Ind			8-25' (2X12)
	0000		FIRST	STABILIZED	ЯE	Ê	ق ح	In	RECOVERY SAMPLE (NTERVAL	0	<u></u>	CASING ELEVATION	98.02	
/ELL/B OMPL			FIF	TABIL	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	DEPTH (FEET)	RECOVERY	USCS	GRAPHIC	SURVEY DATE:	7/8/05	120,005
			$\Sigma$	S V	MOI	PIC		й Ц	REC	⊐ ≿	GR	DTW:	16.52 (6	
			_ <u></u>	<u> </u>	GRA:Stitute	•			S.A.	dater and and		DESCRIPTION/LOGGE	D BY: Ma	atthew Miller
3								-						
								1	*****	SP				
								2						
~														
		1			ļ			3						
		1												
4		4						4-						
4					DP	0	12	5		SP		SAND: dark vellowish h	brown: fra	ice to 5% fines; very fine to
		1					22 27	-		OI.		fine sand; 5% medium		sand; 10% gravel; iron oxide
		2					21	6-				staining; very dense.		
								7						
2		1												
								8						
								9						
<u></u>					-		50/0"	10		SP		No recovery at 10'		
							0010	-				i No lecovery at to		
								11	-8					
					Í			12						
								13						
								14		ĺ				
				WE			50/3"	15		SP			tork aravi	sh brown; 5% fines; very
		X					00/0			or		fine to fine sand; 5% me		
			155	,				16——	-			very dense.		
			N N											
								17						
								18						
								19	+					
				WE	-	0	50//21	20						
				VVC			50/6"	20-		SP		SAND: dark gray; trace f medium to coarse sand;	ines; very	/ fine to fine sand; 5 to 10%
								21				metium to coarse sand;	iose Gig/	ver, very dense.
				1	1			22	1	- IV	Sector 1			

**************************************				der fan de fan de fan ser fan s								
										I Consultants, I		WELL/BORING: MW-13
					}	JECT: G			21/00			
					J	ENT: ARC			0.007	SAMPLING METHOD: DM Split Spoon           7         BORING DIAMETER: 8"		
					}	ATION: 1		****************			NG DEP	
						: Seattle	0011	** 00	onco			G: SCH 40 PVC 2"
						TE: WA						N: 10-25' (0.010")
						LER: Cas	scade	Drillin	a, Inc.			8-25' (2X12)
	}	a	ш		(nananan karanan manya ka		occupation in the second	and an		CASING ELEVATION	98.02	******
WELL/BORING	FIRST	STABILIZED	MOISTURE	PID (ppm)	DENSITY BLOWS / 6"	FE	RECOVERY MPI F INTERV	USCS SYMBOL	GRAPHIC	SURVEY DATE:	7/8/05	
COMPLETION	14.	STAE	OIS ⁻	9) G	SNE	DEPTH (FEET)	ECO/	US(U	RAF	DTW:	16.52 (0	6/30/05)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\nabla$	V	ž	٩	E E		RECOVERY SAMPLE INTERVAL	0	0	DESCRIPTION/LOGGE	ED BY: M	atthew Miller
			WET	0	50/6"	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		SP			ark gray; t	race fines; very fine to coarse

Dr Dr Dr Au Rig	Date Start/Finish: 9/23/2010 Drilling Company: Cascade Drilling Driller's Name: Andy Drilling Method: HSA Auger Size: 8" Rig Type: HSA Sampling Method: Split Spoon									Northing: Easting: Casing Elevation: Borehole Depth: 24 Surface Elevation: Descriptions By: David Rasar	Well/Boring ID: MW-16 Client: BP West Coast, LLC Location: Former ARCO Facility #0977		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (%)	Blow Counts	N - Value	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction		
I													
-	-5 -	-					0.4	SM		Silty SAND with gravel, fine-medium sand, poorly graded, tra gravel, brown, moist.	ace silt, trace		
-	-	-		100 100 100 0 100 100	1 1 2 2 2 2		2.0		┥┥┥┙┙┙┙┙┙┙┙┥┥┥┥┙┙┙┙┙┙┙┙┙┙┙┙	Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, no odor. Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, no odor.	ace silt, brown,		
- 10	) -10 -	-		100 100 100 100	6 12 18 13 20		20.0	SM		Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, no odor. Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, no odor.			



Project Number: GP09BPNA.WA08Template:Logplot Shared Files\Logplot 7\boring_well Split Spoon 2007 USCS Data File:Site Investigation Report 2016/\$6/118/2010/L@seatwork file:Site Investigation Report 2016/\$6/118/2010/D

Dril Dril Dril Aug Rig	Date Start/Finish: 9/23/2010 Drilling Company: Cascade Drilling Driller's Name: Andy Drilling Method: HSA Auger Size: 8" Rig Type: HSA Sampling Method: Split Spoon									Northing: Easting: Casing Elevation: Borehole Depth: 24 Surface Elevation: Descriptions By: David Rasar	Well/Boring ID: MW-16 Client: BP West Coast, LLC Location: Former ARCO Facility #0977	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (%)	Blow Counts	N - Value	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction	
- 15	-15 -			100 100 100	28 18 20 28		126	SM	H H H H H H H H H H H H H H H H H H H	Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, slight HCLO.	ace silt, brown,	15
-	- M₩	-16-18-	18.5	100 100 100	12 18 23		1029		HHHHHHHHHHHHHHHHH	Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, slight HCLO, no LNAPL.	ace silt, grey,	
- 20 - -	-20 -			100 100 100	23 50/6 50/6		370		남려서서서서서서서서 이에 이 아이에 가 나가 다. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, slight HCLO, no LNAPL.	ace silt, grey,	20
- 25	MW 	-16-22.	5-23	100 100 100	23 32 50/6			SM	╌╫╧┝╴╔╴╔╴┍╴┍╴┍╴┍╴┍	Silty SAND with gravel, very fine-fine sand, poorly graded, tra moist, slight HCLO, no LNAPL.	ace silt, grey,	25



Project Number: GP09BPNA.WA08Template:Logplot Shared Files\Logplot 7\boring_well Split Spoon 2007 USCS Data File:Site Investigation Report 2016/Solf18/2010 Logsa Make MicGuire

Drill Drill Drill Aug Rig	Date Start/Finish: 2/1/2011 Drilling Company: Cascade Drilling LLP. Driller's Name: Frank Drilling Method: Hollow Stem Auger Auger Size: 10 inch OD Rig Type: 75 Limited Access Sampling Method: 1.5 ft. x 2 inch Split Spoon										Northing: NM Easting: NM Casing Elevation: NM Borehole Depth: 18 ft. bgs Surface Elevation: NM Descriptions By: Dave Rasar	Client: BP	Well/Boring ID: VE-1 Client: BP ARCO Location: WA-0977 155 NW 85th Street Seattle, Washington				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	USCS Code	Geologic Column	Stratigraphic Description	Stratigraphic Description					
		1	0.0				0.0	×	SP SP		Poorly graded SAND, trace gravel, very fine to fine sand, me moist, no HCLO. Poorly graded SAND, very fine to fine sand, grey, moist, no		Cement				
- - 10	- - -10 -		7 - 8.5 10 - 11.5		50 / 6 50 50 15	>50	1.3		SP	•••	No recovery. Poorly graded SAND, very fine to fine sand, trace silt, grey,	moist, no HCLO.	4" PVC Well Casing				
- - 15 -	- - -15 -		12.5 - 14 15 - 16.5		25 20 15 28 18 20	35	0.5		SP SP	•••	SAA. SAA, slight HCLO at 15 ft bgs.		#2/12 Sand 0.020 Slot 4" PVC Well Screen				
-	-		17.5 - 19		28 18 20	38	11.5	-	SP	•••	SAA, increasing grain size at 18.5 with trace fine gravel.						

	Remarks:	Water Level Data
	bgs = below ground surface; ft. = feet; OD = outer diameter; NM = Not Measured; SAA = Same As Above; HCLO = hydrocarbon-like odor	Date Depth Elev.
Infrastructure, environment, buildings	Hand cleared to 7.0 ft. bgs using air knife and vac truck. Samples at 2.5 ft. bgs and 5.0 ft. bgs collected with hand auger.	
		Depth measured from top of casing
Project: WA-0977 Template: Data File:	Date: 6/30/2011 Created/Edited by: LKW	Page: 1 of

# ARCADIS

Appendix **C** 

SVE Pilot Test Results

ARCADIS conducted an SVE system pilot test using newly installed extraction well VE-1 on February 22 and 23, 2011. Data collected from the pilot test was used to determine a radius of influence (ROI) in soils at the site, and to determine if an SVE remedial strategy would be successful in removing residual and sorbed phase hydrocarbon impacts from vadose zone soils.

The pilot test was designed to address measurable LNAPL observed in MW-2, residual petroleum hydrocarbons and potential LNAPL that remain in the sand and silty sand layers in the northwest portion of the site. The pilot test focused on vapor extraction of impacted soils and LNAPL observed between 16 and 19 feet bgs. The scope of work for the SVE pilot test included a flow rate step test and a constant rate test. A short-term step and constant rate SVE pilot test was completed at VE-1. Monitoring wells MW-1, MW-4, MW-5, and MW-16 were used as observation wells during the pilot test (**Figure 2**).

For each test, vacuum pressure was measured at extraction and monitoring well heads using vacuum gauges. Pretreatment effluent concentrations of volatile organic compounds (VOCs) were measured periodically with a photoionization detector (PID) at the extraction well. Air velocity was measured using an anemometer at the extraction well and used to calculate the extraction flow rate.

# STEP TEST RESULTS

The SVE step test involved the incremental increase of extraction flow rates to determine the flow capacity of the extraction well. A target extraction rate of approximately 40 standard cubic feet per minute (scfm) was assumed due to subsurface soil conditions encountered during previous soil boring activities. The target extraction rate is calculated based on a pore volume exchange rate of 3 pore volume per day as follows:

# $Q = \pi \times r^2 \times d \times n \times \epsilon$

Where:

- Q = flow rate in cubic feet per minute (cfm)
- r = target radius of influence of 50 feet
- d = is the screen interval of 10 feet
- n = assumed soil porosity of 25% based on sandy soils
- $\epsilon$  = pore volume exchange rate in volumes per day, assume 3 pore volume per day.

Flow from the mobile SVE unit started at approximately 50% of the estimated target flow rate, or 20 scfm. Once stable readings were observed (approximately three data points) at extraction and monitoring wells, flow was increased to 75%, 100% and 150% of the target flow rate until the maximum sustainable flow rate and vacuum from the well was achieved.

Step test results are presented on **Table C-1**. Vacuum readings at VE-1 ranged from 8 to 32.5 inches of water column (in. wc) and the extraction flow rate ranged from 20 to 86 standard cubic feet per minute (scfm). Step test data showing the relationship between extraction flow rate and vacuum is presented in **Figure C-1**.

PID readings ranged from 340 to 10,000 parts per million by volume (ppmv). **Figure C-2** presents extraction flow rate and influent VOCs concentrations over time. At the start of the pilot study concentrations of VOCs

spiked to 10,000 ppmv, and after the first hour concentrations ranged from approximately 340 ppmv to 1,540 ppmv as the extraction flow rate was increased from approximately 19 to 86 scfm.

Flow rates and PID readings were used to calculate mass removal rates and the total mass removed. Mass removal rates ranged from 8.2 to 46.2 pounds per day (lb/day). The step test lasted approximately three hours and it is estimated that approximately 2.4 lb of petroleum hydrocarbons were removed. **Figure C-3** presents mass removal rates and cumulative mass removed over time.

As mentioned above, vacuum readings were recorded at monitoring wells MW-1, MW-4, MW-5, and MW-16 during the step test. The results are presented on **Table C-1**. At on-site monitoring well MW-16, which is approximately 12 feet away from VE-1, vacuum readings ranged from 0.7 to 2.8 in. wc. At on-site monitoring well MW-1, which is located 71 feet away from VE-1, vacuum readings range from 0 to 0.6 in. wc. At on-site monitoring well MW-4 which is located 85 feet from VE-1, vacuum ranged from 0 to 0.1 in. wc. At off-site monitoring well MW-5, vacuum ranged from 0 to 0.1 in. wc. MW-5 is located 70 feet from VE-1 on the west side of 3rd Avenue NW. Vacuum readings recorded at monitoring wells over time are presented on **Figure C-4**.

# CONSTANT RATE TEST RESULTS

Once the maximum sustainable flow rate was achieved, constant rate tests were performed to determine longer term sustainability of the selected vacuum rate. During each constant rate test, vapor extraction flow rates, influent vapor concentrations, and vacuum readings were recorded on a graduated basis. For this site, two constant rate tests were conducted at VE-1.

The first constant rate test was conducted on February 22, 2011 for two hours. The average vacuum at VE-1 was 26 in. wc and the average flow rate was 56 scfm. PID readings ranged from 330 to 821 ppmv. Data from constant rate test is provided in **Table C-2**. **Figure C-5** presents VOCs concentrations and extraction flow rates during the constant rate test. Flow rates and PID readings were used to calculate mass removal rates and the total mass removed. Mass removal rates ranged from 7.4 to 12.4 lb/day. It was calculated that 0.9 lb of petroleum hydrocarbon mass was removed. **Figure C-6** presents the mass removal rate and cumulative mass removed over time.

Vacuum readings were observed and recorded at monitoring wells MW-1, MW-4, MW-5, and MW-16 during the constant rate test. This data was used to determine the SVE pilot test radius of influence (ROI). To do this, the observed vacuum at the extraction and monitoring wells are plotted as a function of distance from extraction well VE-1 on a logarithmic scale for each time interval as shown on **Figure C-7**. Linear equations are developed from this data and the ROI is determined. Based on empirical data, the ROI is equal to the distance where the extraction vacuum is equal to 0.1 in. wc. For this site, linear equations were derived for each time interval and the ROI was determined from these equations. The average ROI determined was 77 feet.

The second constant rate test was conducted on February 23, 2011 over five and a half hours. The average vacuum at VE-1 was 26.4 in. wc and the average flow rate was 60 scfm. PID readings ranged from 200 to 4,882 ppmv. Data from constant rate test is provided in **Table C-2**. Figure C-8 presents VOCs concentrations and extraction flow rates during the constant rate test. Flow rates and PID readings were used to calculate mass removal rates and the total mass removed. Mass removal rates ranged from 4.0 to

103 lb/day. It was calculated that 2.3 lb of petroleum hydrocarbon mass was removed. **Figure C-9** presents the mass removal rate and cumulative mass removed over time. The ROI was calculated based on the method described above and data is presented on **Figure C-10**. The estimated ROI was 68 feet.

System pre-treatment vapor samples were collected from the manifold sampling point and submitted for lab analysis. Samples were collected using Summa canisters. Two samples, SVE-1 and SVE-2, were collected from extraction well VE-1. SVE-1 was collected at the end of the first constant rate test and sample SVE-2 was collected at the end of the second constant rate test. Samples were submitted to Washington State-certified laboratory, Pace Analytical of Seattle, Washington, for the following chemical analyses:

- Total Hydrocarbon Compounds- Gasoline Range (THC-G) and BTEX by TO-3 Air
- Carbon dioxide, methane, nitrogen, and oxygen by Method 3C Gases

Analytical results are presented on **Table C-3**. Concentrations of gasoline range hydrocarbons and benzene for SVE-1 were 767 ppmv and 7.6 ppmv, respectively. Concentrations of gasoline range hydrocarbons and benzene for SVE-2 were 471 ppmv and 5.4 ppmv, respectively. Laboratory certificates are included at the end of this appendix.

### Attachments

# Tables

Table C-1	Step Test Results – SVE Pilot Test
Table C-2	Constant Rate Test Results – SVE Pilot Test
Table C-3	Laboratory Analytical Results – SVE Pilot Test
Figures	
Figure C-1	Flow rate vs. Extraction Vacuum – Step Test VE-1
Figure C-2	Influent VOCs and Q vs. Time – Step Test VE-1
Figure C-3	GRO Mass Removal – Step Test VE-1
Figure C-4	Measured Vacuum vs. Time Elapsed – Step Test VE-1 (monitoring wells)
Figure C-5	Influent VOCs and Q vs. Time – Constant Rate Test VE-1 (#1)
Figure C-6	Influent VOCs and Flow rate vs. Time Elapsed - Constant Rate VE-1 (#1)
Figure C-7	Measured Vacuum vs. Distance – Constant Rate Test VE-1 (log scale) (#1)
Figure C-8	Influent VOCs and Q vs. Time – Constant Rate Test VE-1 (#2)
Figure C-9	Influent VOCs and Flow rate vs. Time Elapsed - Constant Rate VE-1 (#2)
Figure C-10	Measured Vacuum vs. Distance – Constant Rate Test VE-1 (log scale) (#2)
Deee Analytics	L obereter ( Cortificates

Pace Analytical Laboratory Certificates

# Table C-1Step Test Results - SVE Pilot TestWA-0977155 Northwest 85th Street, Seattle, Washington, 98107

								Ν	Measured Vacuum (in. wc)		)
Time	Time Elapsed (h)	VE-1 Vaccuum (in. wc)	Anenometer Reading (ft/min)	Flow rate (scfm) ^a	Influent VOCs - PID (ppmv)	Mass Removal Rate (Ib/day) ^b	Cumulative Mass Removed (Ib) ^b	MW-16	MW-1	MW-4	MW-5
12:09	0	10.18	1150	25.09	1700	15.1	0	0.85	0	0	
12:24	0.25	9	900	19.63	10000	46.2	0.5	0.8	0	0	
12:34	0.42	8	940	20.51	1530	40.9	0.8	0.7	10	0	
12:44	0.58	9	880	19.20	1535	10.8	0.8	0.85	0.125	0	0
12:54	0.75	18	1990	43.42	818	13.0	0.9	1.6	0.35	0.05	0.07
13:04	0.92	19	1950	42.54	850	12.7	1.0	1.65	0.1	0.05	0.05
13:14	1.08	19	1910	41.67	710	11.6	1.1	1.75	0.38	0	0.01
13:24	1.25	19	1970	42.98	830	11.5	1.2	1.75	0.32	0.02	0.01
13:48	1.65	24	2660	58.03	1306	19.1	1.5	2.1	0.4	0	0
14:00	1.85	24.2	2770	60.43	1190	26.1	1.7	2.2	0.45	0	0.05
14:15	2.10	25	2720	59.34	1129	24.5	2.0	2.1	0.45	0.05	0.05
14:25	2.27	26	2610	56.94	470	16.4	2.1	2.2	0.5	0.05	0.03
14:35	2.43	22	2470	53.89	370	8.2	2.1	2.18	0.45	0	0
14:45	2.60	32.5	3940	85.96	440	10.0	2.2	2.8	0.6	0.11	0.05
14:55	2.77	32.5	3620	78.98	421	12.5	2.3	2.8	0.6	0.05	0.04
15:05	2.93	32.5	3510	76.58	399	11.3	2.4	2.8	0.6	0.05	0.02

Notes:

(a) Flow rate calculated based on anenometer and cross sectional area of mainfold piping (2 in. pipe).

(b) Assumptions and Calculations for mass removal

- When concentrations are less than laboratory reporting limits, one-half the detection limit is used for mass removal calculations.

- Net Removed (lb) = EFFL GRO Concentration (ppmv) * Hours of Operation (hr) * Flow (scfm) * 1.33E-5 ((lb-min)/(ft3*hr))

- Mass Removal Rate (lb/day) = Net Mass Removed (lb) / (Hours of Operation (hr))/24)

- Molecular weight of GRO (hexane) is approximately 95 grams per mol (g/mol).

- Period percent operational calculation based on total hours between first day and last monitoring event in current quarter.

in. wc = inches of water column

# Table C-2Constant Rate Test Results - SVE Pilot TestWA-0977155 Northwest 85th Street, Seattle, Washington, 98107

#### Constant Rate Test Conducted on February 22, 2011

	Time	VE-1 Vacuum	Anenometer	Flow rate	Influent	Mass Removal	Cumulative Mass	Measured Vaccuum (in. wc)				
Time	Elapsed	(in. wc)	Reading	(scfm) ^a	VOCs	Rate (Ib/day) ^b	Removed (lb) ^b	VE-1	MW-16	MW-1	MW-4	MW-5 °
							distance from VE-1 $\rightarrow$	0	12	71	85	70
15:15	0.0	26.0	2530	55.2	480	9.4	0	26	2.15	0.55	0.05	0.03
15:45	0.5	25.0	2520	55.0	432	8.9	0.2	25	2.1	0.45	0.00 ^d	0.05
16:15	1.0	26.0	2600	56.7	821	12.4	0.4	26	2.05	0.5	0.06	0.00 ^d
16:45	1.5	26.0	2520	55.0	425	12.3	0.7	26	2.1	0.45	0.00 ^d	0.00 ^d
17:15	2.0	27.0	2570	56.1	330	7.4	0.9	27	2.1	0.4	0.00 ^d	0.00 ^d

#### Constant Rate Test Conducted on February 23, 2011

	Time	VE-1 Vacuum	Anenometer	Flow rate	Influent	Mass Removal	Cumulative Mass		Measur	ed Vaccuum	(in. wc)	
Time	Elapsed	(in. wc)	Reading	(scfm) ^a	VOCs	Rate (Ib/day) ^b	Removed (Ib) ^b	VE-1	MW-16	MW-1	MW-4	MW-5 ^c
							distance from VE-1 →	0	12	71	85	70
8:53	0.1	26.5	2750	60.0	4882	103.5	0	26.5	2	0.32	0	0.05
9:23	0.6	25.5	3000	65.4	233	56.7	1.2	25.5	2	0.39	0	0
9:53	1.1	26.5	2980	65.0	253	5.8	1.3	26.5	1.96	0.41	0	0.05
10:53	1.6	26.5	2740	59.8	298	6.1	1.4	26.5	1.9	0.36	0	0.02
11:53	2.6	27.0	2570	56.1	310	6.1	1.7	27.0	1.6	0.35	0	0.01
12:53	3.6	26.0	2630	57.4	320	6.3	1.9	26.0	1.7	0.35	0	0
13:53	4.6	27.0	2570	56.1	200	4.0	2.2	27.0	1.7	0.2	0	0
14:53	5.6	26.0	2700	58.9	214	4.2	2.3	26.0	1.8	0.35	0	0.03

#### Notes

(a) Flow rate calculated based on anenometer and cross sectional area of mainfold piping (2 in. pipe).

#### (b) Assumptions and Calculations for mass removal

- When concentrations are less than laboratory reporting limits, one-half the detection limit is used for mass removal calculations.

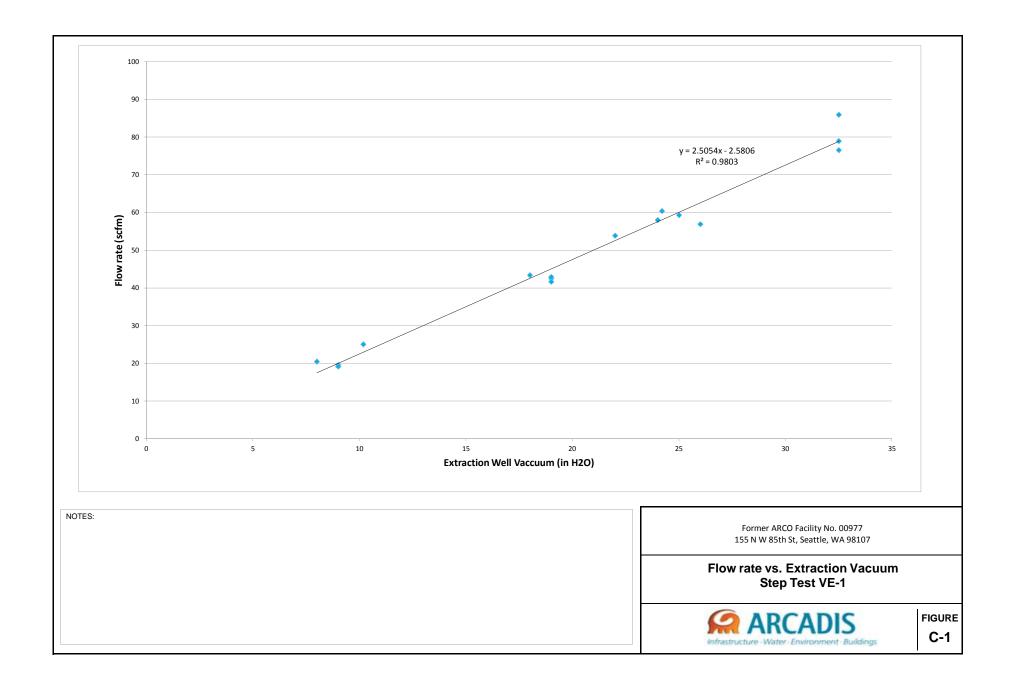
- Net Removed (lb) = EFFL GRO Concentration (ppmv) * Hours of Operation (hr) * Flow (scfm) * 1.33E-5 ((lb-min)/(ft3*hr))

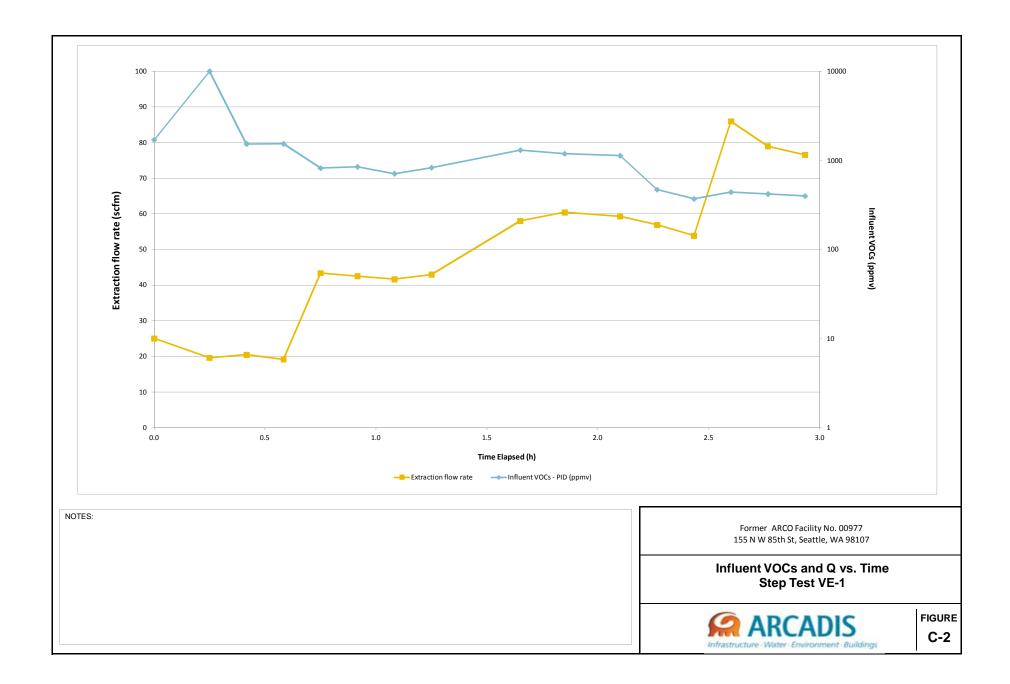
- Mass Removal Rate (lb/day) = Net Mass Removed (lb) / (Hours of Operation (hr))/24)

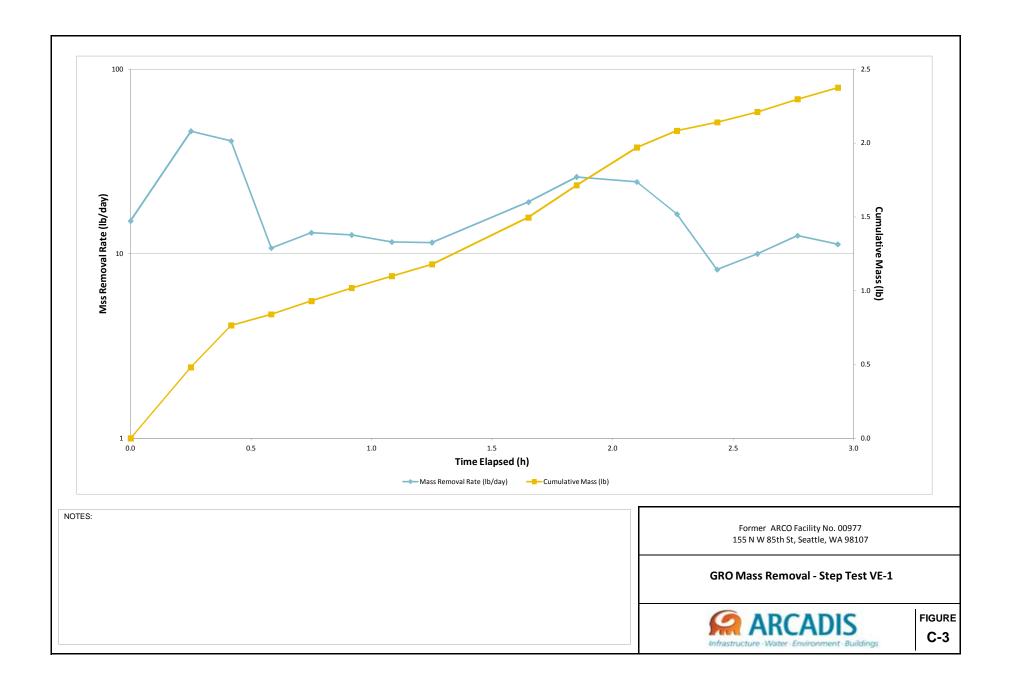
- Molecular weight of GRO (hexane) is approximately 95 grams per mol (g/mol).

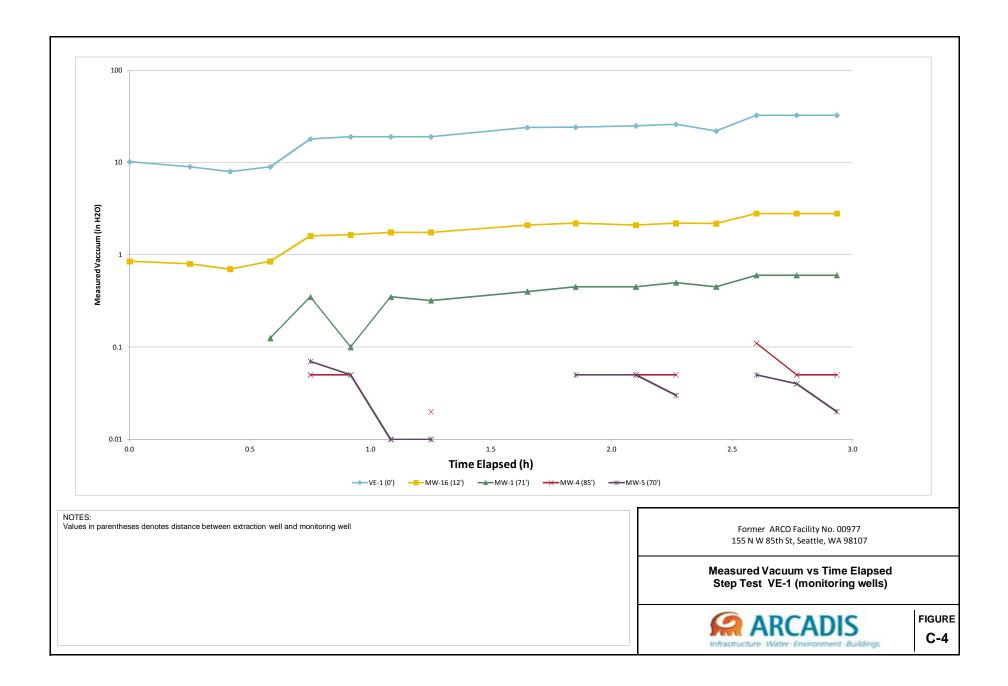
- Period percent operational calculation based on total hours between first day and last monitoring event in current quarter.

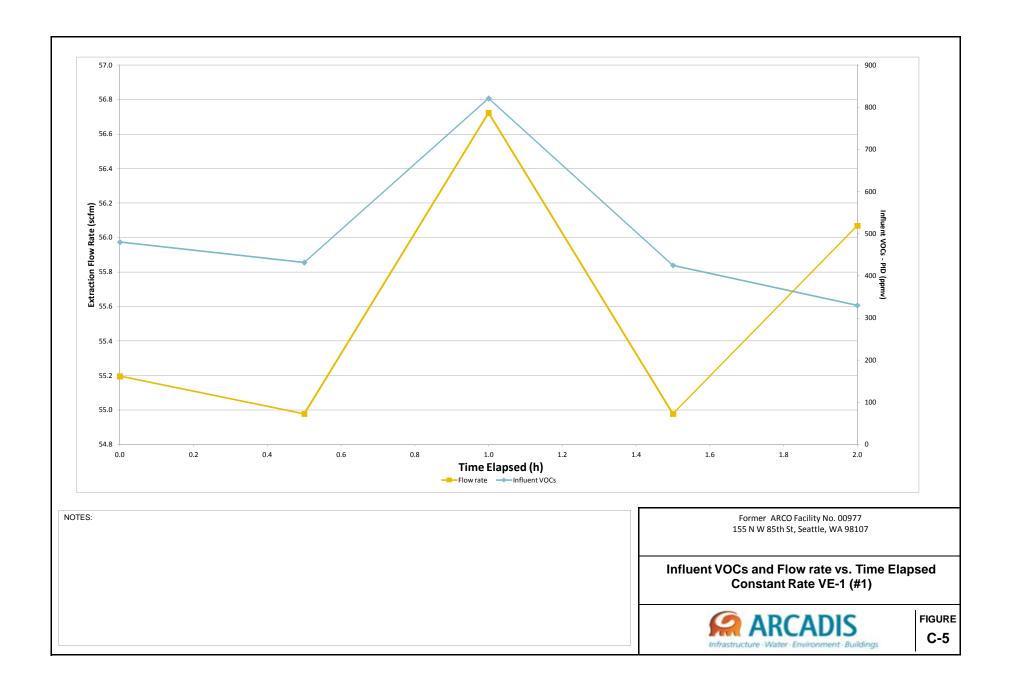
(c) Measured vacuum at MW-5 was not used for radius of influence determination.

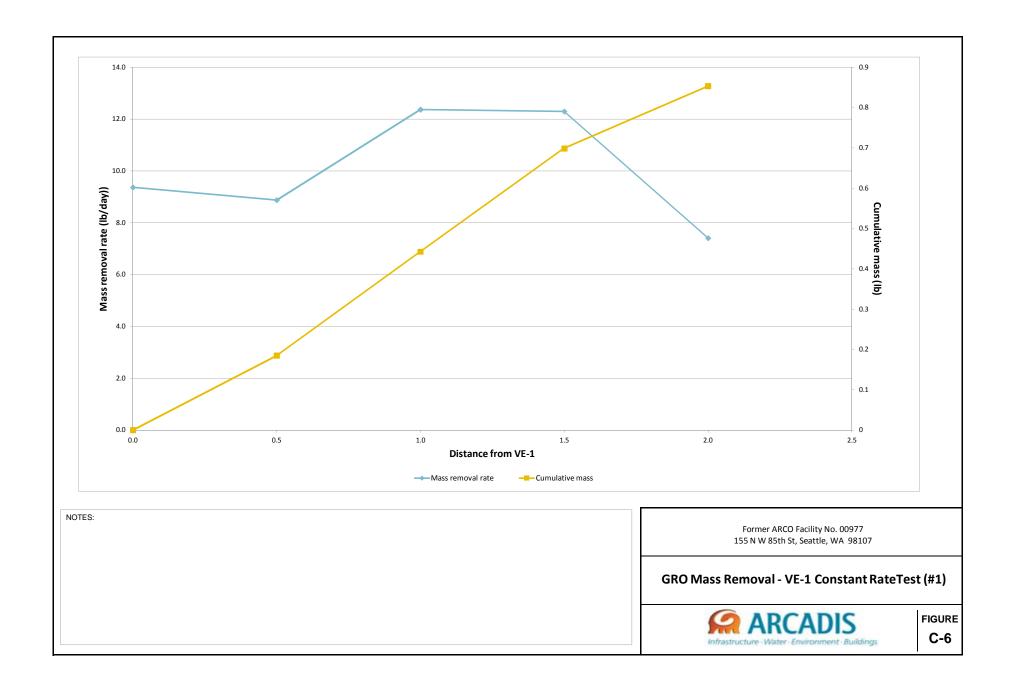

(d) To determine radius of influence it was assumed pressure reading at these wells were 0.01 in. wc.

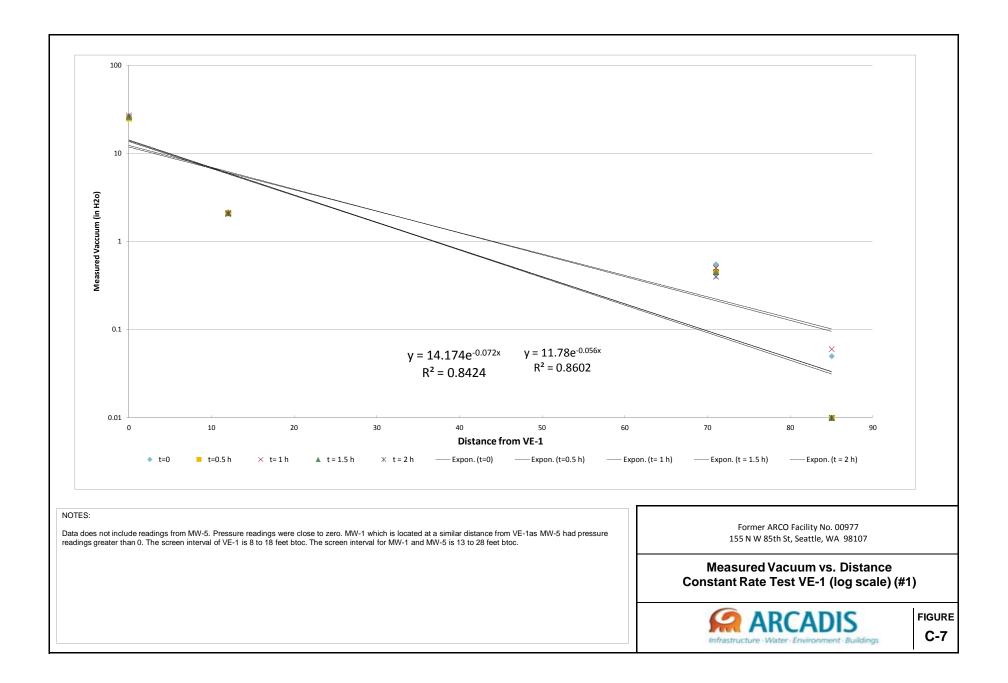

in. wc = inches of water column


# Table C-3Laboratory Analytical Results - SVE Pilot TestWA-0977


155 Northwest 85th Street, Seattle, Washington 98107

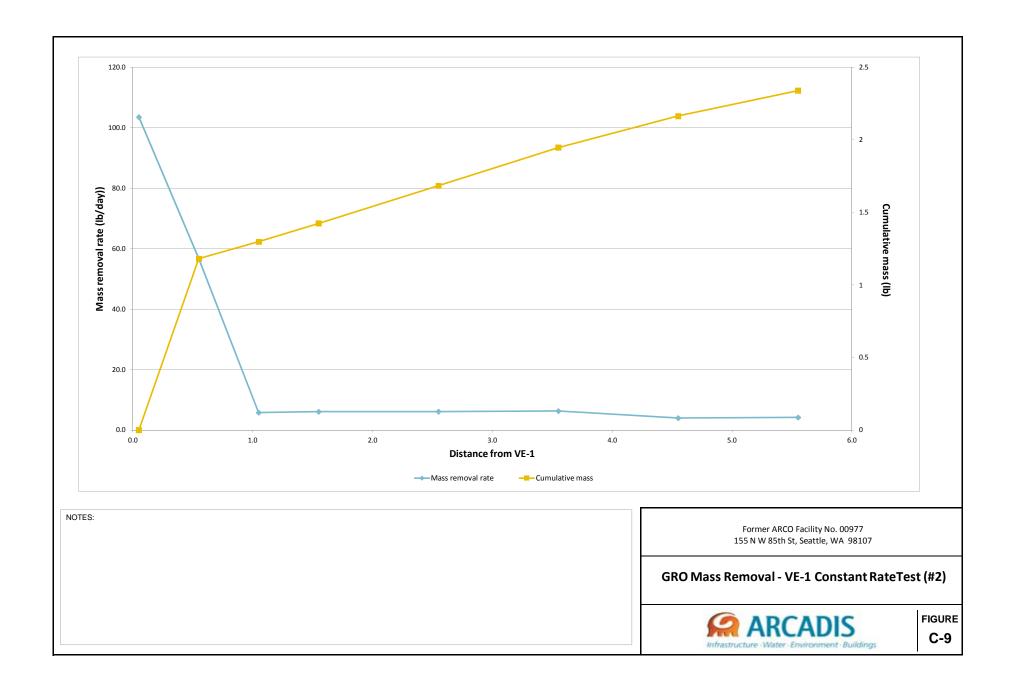

		Samples						
Analyte	SVE-1		SVE-2					
Fixed Gases								
Carbon Dioxide (Acn)	2.7	%	ND < 2	%				
Carbon monoxide	ND < 0.4	%	ND < 0.4	%				
Methane	ND < 4	%	ND < 4	%				
Nitrogen	74.9	%	75.1	%				
Oxygen	15.7	%	18.3	%				
Volatiles								
1,2,4-Trimethylbenzene	4.8	ppmv	2.7	ppmv				
1,3,5-Trimethylbenzene	2.4	ppmv	1.3	ppmv				
Benzene	7.9	ppmv	5.4	ppmv				
Ethylbenzene	7.6	ppmv	4.3	ppmv				
m&p-Xylene	36.5	ppmv	18.3	ppmv				
Methyl t-butyl ether	6.4	ppmv	3.6	ppmv				
n-Hexane	49.6	ppmv	31.2	ppmv				
o-Xylene	10.9	ppmv	5.6	ppmv				
THC as Gas	767	ppmv	471	ppmv				
Toluene	51.6	ppmv	29.8	ppmv				

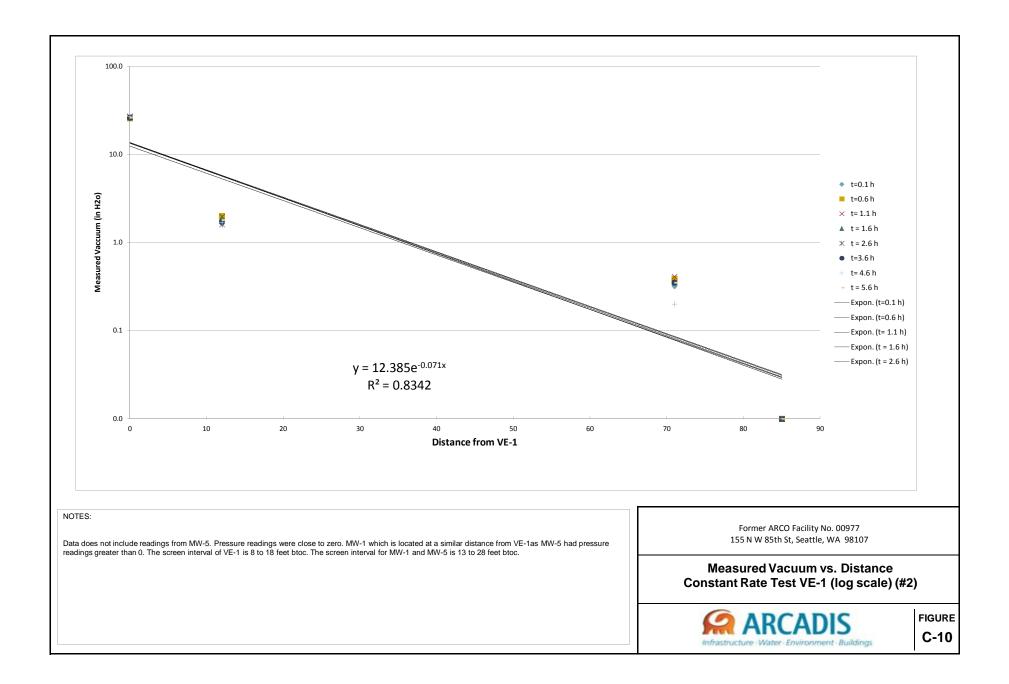





















March 18, 2011

Scott Zorn Arcadis U.S., Inc. 2300 Eastlake Ave E. Ste. 200 Seattle, WA 98102

RE: Project: ARCO 977 Pace Project No.: 256787

Dear Scott Zorn:

Enclosed are the analytical results for sample(s) received by the laboratory on February 24, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Analy Brownfield

Andy Brownfield for Regina SteMarie regina.stemarie@pacelabs.com Project Manager

Enclosures

cc: Alan Kahal, Arcadis U.S., Inc. Nick Olivier, Arcadis U.S., Inc. David Rasar, Arcadis U.S., Inc. Rick Rodriguez, Arcadis U.S., Inc.

# **REPORT OF LABORATORY ANALYSIS**

Page 1 of 10





Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

#### CERTIFICATIONS

Project: ARCO 977 Pace Project No.: 256787

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

# **REPORT OF LABORATORY ANALYSIS**





# SAMPLE ANALYTE COUNT

Project: ARCO 977 Pace Project No.: 256787

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256787001	SVE1	Method 3C Gases	RTP	5	PASI-M
		TO-3 Air	RTP	10	PASI-M
256787002	SVE2	Method 3C Gases	RTP	5	PASI-M
		TO-3 Air	RTP	10	PASI-M

# **REPORT OF LABORATORY ANALYSIS**





#### **PROJECT NARRATIVE**

Project: ARCO 977

Pace Project No.: 256787

#### Method: Method 3C Gases

Description:Method 3C AIR - Fixed GasesClient:Arcadis U.S., Inc.Date:March 18, 2011

#### General Information:

2 samples were analyzed for Method 3C Gases. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### **Initial Calibrations (including MS Tune as applicable):** All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### QC Batch: AIR/11896

- R1: RPD value was outside control limits.
  - LCSD (Lab ID: 943148)
    - Oxygen

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

# **REPORT OF LABORATORY ANALYSIS**





#### **PROJECT NARRATIVE**

Project: ARCO 977

Pace Project No.: 256787

#### Method: TO-3 Air

Description:TO3 GCV AIR BTEX CANClient:Arcadis U.S., Inc.Date:March 18, 2011

#### General Information:

2 samples were analyzed for TO-3 Air. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

**Initial Calibrations (including MS Tune as applicable):** All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

# **REPORT OF LABORATORY ANALYSIS**





## ANALYTICAL RESULTS

Project: ARCO 977

Pace Project No.: 256787

Sample: SVE1	Lab ID: 256	787001	Collected: 02/22/1	11 17:30	Received: 0	2/24/11 12:07 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Method 3C AIR - Fixed Gases	Analytical Met	hod: Method	3C Gases					
Carbon dioxide	2.7 %		2.0	1		03/15/11 10:48	124-38-9	
Carbon monoxide	ND %		0.40	1		03/15/11 10:48	630-08-0	
Methane	ND %		4.0	1		03/15/11 10:48	74-82-8	
Nitrogen	74.9 %		8.0	1		03/15/11 10:48	7727-37-9	
Oxygen	15.7 %		2.0	1		03/15/11 10:48	7782-44-7	
TO3 GCV AIR BTEX CAN	Analytical Met	hod: TO-3 Ai	r					
Benzene	<b>7.9</b> pp	οmν	1.3	13.4		03/17/11 09:14	71-43-2	
Ethylbenzene	<b>7.6</b> pp	omv	1.3	13.4		03/17/11 09:14	100-41-4	
n-Hexane	<b>49.6</b> pp		1.3	13.4		03/17/11 09:14	110-54-3	
Methyl-tert-butyl ether	6.4 pr	omv	1.3	13.4		03/17/11 09:14	1634-04-4	
THC as Gas	<b>767</b> pp	omv	13.4	13.4		03/17/11 09:14		
Toluene	<b>51.6</b> pp	omv	1.3	13.4		03/17/11 09:14	108-88-3	
1,2,4-Trimethylbenzene	4.8 pp	omv	1.3	13.4		03/17/11 09:14	95-63-6	
1,3,5-Trimethylbenzene	<b>2.4</b> pp	omv	1.3	13.4		03/17/11 09:14	108-67-8	
m&p-Xylene	<b>36.5</b> pp	omv	2.7	13.4		03/17/11 09:14	179601-23-1	
o-Xylene	<b>10.9</b> pp		1.3	13.4		03/17/11 09:14	95-47-6	
Sample: SVE2	Lab ID: 256	787002	Collected: 02/23/1	1 15:05	Received: 0	2/24/11 12:07 N	latrix: Air	
Sample: SVE2 Parameters	Lab ID: 256	<b>787002</b> Units	Collected: 02/23/1 Report Limit	11 15:05 DF	Received: 0. Prepared	2/24/11 12:07 M	fatrix: Air CAS No.	Qual
		Units	Report Limit					Qual
Parameters	Results	Units hod: Method	Report Limit				CAS No.	Qual
Parameters Method 3C AIR - Fixed Gases	Results	Units hod: Method	Report Limit 3C Gases	DF		Analyzed	CAS No.	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide	Results Analytical Met ND %	Units	Report Limit 3C Gases 2.0	DF 1		Analyzed 03/15/11 11:00	CAS No. 124-38-9 630-08-0	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide	Results Analytical Met ND % ND %	Units hod: Method	Report Limit 3C Gases 2.0 0.40	DF 1 1		Analyzed 03/15/11 11:00 03/15/11 11:00	CAS No. 124-38-9 630-08-0 74-82-8	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane	Results Analytical Met ND % ND % ND %	Units hod: Method	Report Limit 3C Gases 2.0 0.40 4.0	DF 1 1		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen	Results Analytical Met ND % ND % ND % 75.1 %	Units hod: Method	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0	DF 1 1 1 1		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen	Results           Analytical Met           ND %           ND %           ND %           75.1 %           18.3 %	Units hod: Method hod: TO-3 Ai	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0	DF 1 1 1 1		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN	Results Analytical Met ND % ND % ND % 75.1 % 18.3 % Analytical Met	Units hod: Method hod: TO-3 Ai omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0	DF 1 1 1 1		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene	Results           Analytical Met           ND %           ND %           ND %           75.1 %           18.3 %           Analytical Met           5.4 pp           4.3 pp	Units hod: Method hod: TO-3 Ai omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 r 0.69	DF 1 1 1 1 1 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene	Results           Analytical Met           ND %           ND %           ND %           75.1 %           18.3 %           Analytical Met           5.4 pp	Units hod: Method hod: TO-3 Ai pmv pmv pmv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 ir 0.69 0.69	DF 1 1 1 1 1 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene n-Hexane	Results Analytical Met ND % ND % 75.1 % 18.3 % Analytical Met 5.4 pp 4.3 pp 31.2 pp	Units hod: Method hod: TO-3 Ai omv omv omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 ir 0.69 0.69 0.69 0.69	DF 1 1 1 1 1 6.9 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene n-Hexane Methyl-tert-butyl ether	Results Analytical Met ND % ND % 75.1 % 18.3 % Analytical Met 5.4 pp 4.3 pp 31.2 pp 3.6 pp 471 pp	Units hod: Method hod: TO-3 Ai omv omv omv omv omv omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 ir 0.69 0.69 0.69 0.69 0.69	DF 1 1 1 1 1 6.9 6.9 6.9 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3 1634-04-4	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene n-Hexane Methyl-tert-butyl ether THC as Gas Toluene	Results           Analytical Met           ND %           ND %           75.1 %           18.3 %           Analytical Met           5.4 pp           31.2 pp           3.6 pp           471 pp           29.8 pp	Units hod: Method hod: TO-3 Ai omv omv omv omv omv omv omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 ir 0.69 0.69 0.69 0.69 0.69 0.69 0.69	DF 1 1 1 1 1 6.9 6.9 6.9 6.9 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3 1634-04-4 108-88-3	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene n-Hexane Methyl-tert-butyl ether THC as Gas Toluene 1,2,4-Trimethylbenzene	Results           Analytical Met           ND %           ND %           ND %           75.1 %           18.3 %           Analytical Met           5.4 pp           31.2 pp           3.6 pp           471 pp           29.8 pp           2.7 pp	Units hod: Method hod: TO-3 Ai omv omv omv omv omv omv omv omv omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 ir 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	DF 1 1 1 1 1 6.9 6.9 6.9 6.9 6.9 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3 1634-04-4 108-88-3 95-63-6	Qual
Parameters Method 3C AIR - Fixed Gases Carbon dioxide Carbon monoxide Methane Nitrogen Oxygen TO3 GCV AIR BTEX CAN Benzene Ethylbenzene n-Hexane Methyl-tert-butyl ether THC as Gas Toluene	Results           Analytical Met           ND %           ND %           75.1 %           18.3 %           Analytical Met           5.4 pp           31.2 pp           3.6 pp           471 pp           29.8 pp	Units hod: Method hod: TO-3 Ai omv omv omv omv omv omv omv omv omv omv	Report Limit 3C Gases 2.0 0.40 4.0 8.0 2.0 7 7 7 9 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.	DF 1 1 1 1 1 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9		Analyzed 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/15/11 11:00 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40 03/17/11 12:40	CAS No. 124-38-9 630-08-0 74-82-8 7727-37-9 7782-44-7 71-43-2 100-41-4 110-54-3 1634-04-4 108-88-3 95-63-6 108-67-8	Qual

Date: 03/18/2011 10:04 AM

# **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA**

Project: ARCO 977

Pace Project No.: 256787

QC Batch: AIR/1189	6	Analysis Met	hod: M	ethod 3C Gases	
QC Batch Method: Method 3	C Gases	Analysis Des	cription: M	ETHOD 3C AIR - F	IXED GASES
Associated Lab Samples: 25					
METHOD BLANK: 943146	Matrix:	Air			
Associated Lab Samples: 25	6787001, 256787002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Carbon dioxide	%	ND	2.0	03/15/11 09:41	
Carbon monoxide	%	ND	0.40	03/15/11 09:41	
Methane	%	ND	4.0	03/15/11 09:41	
Nitrogen	%	ND	8.0	03/15/11 09:41	
Oxygen	%	ND	2.0	03/15/11 09:41	

LABORATORY CONTROL SAMPL	E & LCSD: 943147		94	13148						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Carbon dioxide	%	10	11.6	9.0	116	90	70-130	26	30	
Carbon monoxide	%	2	2.3	1.8	116	89	70-130	26	30	
Methane	%	20	23.8	17.6	119	88	70-130	30	30	
Nitrogen	%	40	32.0	41.5	80	104	70-130	26	30	
Oxygen	%	10	8.7	11.8	87	118	70-130	31	30 I	₹1

Date: 03/18/2011 10:04 AM

# **REPORT OF LABORATORY ANALYSIS**

Page 7 of 10





#### **QUALITY CONTROL DATA**

Analysis Method:

Matrix: Air

Project: ARCO 977

Pace Project No.: 256787

QC Batch: AIR/11924 QC Batch Method: TO-3 Air

Associated Lab Samples: 256787001, 256787002

Analysis Description: TO3 GCV AIR BTEX CAN

TO-3 Air

METHOD BLANK: 944427

Associated Lab Samples: 256787001, 256787002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenzene	ppmv	ND	0.10	03/17/11 08:55	
1,3,5-Trimethylbenzene	ppmv	ND	0.10	03/17/11 08:55	
Benzene	ppmv	ND	0.10	03/17/11 08:55	
Ethylbenzene	ppmv	ND	0.10	03/17/11 08:55	
m&p-Xylene	ppmv	ND	0.20	03/17/11 08:55	
Methyl-tert-butyl ether	ppmv	ND	0.10	03/17/11 08:55	
n-Hexane	ppmv	ND	0.10	03/17/11 08:55	
o-Xylene	ppmv	ND	0.10	03/17/11 08:55	
THC as Gas	ppmv	ND	1.0	03/17/11 08:55	
Toluene	ppmv	ND	0.10	03/17/11 08:55	

LABORATORY CONTROL SAM	PLE & LCSD: 944428		94	14429						
_		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2,4-Trimethylbenzene	ppmv	1	0.95	0.92	95	92	70-130	3	30	
1,3,5-Trimethylbenzene	ppmv	1	0.96	0.94	96	94	70-130	2	30	
Benzene	ppmv	1	0.96	0.94	96	94	70-130	2	30	
Ethylbenzene	ppmv	1	0.98	0.98	98	98	70-130	.6	30	
m&p-Xylene	ppmv	2	2.0	2.0	100	99	70-130	2	30	
Methyl-tert-butyl ether	ppmv	1	1.1	1.0	106	104	70-130	2	30	
n-Hexane	ppmv	1	1.0	0.99	100	99	70-130	1	30	
o-Xylene	ppmv	1	0.99	0.98	99	98	70-130	1	30	
THC as Gas	ppmv	10	10.3	10.3	103	103	70-130	.06	30	
Toluene	ppmv	1	1.0	0.99	100	99	70-130	1	30	

Date: 03/18/2011 10:04 AM

# **REPORT OF LABORATORY ANALYSIS**

Page 8 of 10





## QUALIFIERS

Project: ARCO 977

Pace Project No.: 256787

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

#### LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

#### ANALYTE QUALIFIERS

R1 RPD value was outside control limits.

## **REPORT OF LABORATORY ANALYSIS**





# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: ARCO 977 Pace Project No.: 256787

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256787001 256787002	SVE1 SVE2	Method 3C Gases Method 3C Gases	AIR/11896 AIR/11896		
256787001 256787002	SVE1 SVE2	TO-3 Air TO-3 Air	AIR/11924 AIR/11924		

Date: 03/18/2011 10:04 AM

# **REPORT OF LABORATORY ANALYSIS**

Page 10 of 10



Pace Analytical

# AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

	ection B equired Project Information:		Section C	mation:																	Page:	of	1
	Alan Kahal		Attention:		-							4					F	Progr	am				
Address: Z300 EGST ake Ave E. Co	opy To: Peter Campbell		Company Na	ame:									-	UST Suprefund FEmmisions Flean Air Act					1				
Sectle WA 98102	Totor Consport		Address:											X	Volunt	ary Cl	ean Ur	, r	Iry Cle	an F	CRA	□ rer_	
Scott. Zorn@Arcedis-US. com	GPO9 BPNA. WAO S		Pace Quote										-	Location of Sampling by WA ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppb									
206 726 4709 Fax: Pr	roject Name: ARCO 977		Pace Project	t Manager/S	Sales Rep.	Reance	St	Mari	~									=					
Requested Due Date/TAT: Standard Pr	roject Number:		Pace Projec Pace Profile	#:			220	95	TL.	14				Rep	ort Le	vel	II	ш	- 1	/ (	Other		
AIR SAMPLE ID Tec Con Character per box. Lite (A.2, 0.977.) Sur	Hid Media Codes Idar Bag TB L 1 LLC ter Summa Chin 6LC 6 Liter LVP Imma Can MVP Imma Can MVP	AEDIA CODE PLE TYPE ab C=Composite	COLLECTED			Canister Pressure (Initial Field)	Canister Pressure (Final Field)	Summa Can		/	und alle	(1) 100(1)	51.0000	10-13 (14) 10-13 (24) 10-10-0000				/					
Put		SAM G=G	DATE	TIME	DATE	TIME	Car	Car				12	3/3/	5/2	5/2/	2/2	5/2/	Im	1	/	Pace l	_ab ID	
1 SVEI	HI	vi° 6	2/22	1730			-30	-5	14	6	4	X	Y										
2 5 V E 2 3	н	v? 6	2123	1505			-30	- 5	10	7	9	X	X										
3																							
4																							
5																							
5 6 7 8 9 10 11 -12																			1				
7														ļ.				5					
8								c		2													
9									-						-				1.				
10											_			-	-	-			+				
-11									_		_			_	-	_		_					
-12																			No. of Lot of Lo				
Additional Comments:	RELINQUIS	And and a second s		and the second se	DATE	TIN	ΛE	ACCEP							DAT	Sector Sector	1.000	ГІМЕ	Concession in which the			ONDIT	
	NICK	Ohu	es Avc	udis :	2/24	120	07	Res	ina	2	to	Ma	NU	0	2/22	1/11	12:	07		21.0	Q×	NY NY	NA NIA NIA
								U	/					-			-				NIX 1	5	TX T
														-							ATY 1	1	ATY 1
						-				1941	4	1.00				di Mila	-				AIY.	44	a YN
						and the second se			ST T						Mi-					O.U	uo pe	Custody Sealed Cooler	Samples Intact
					of SAMPLER	Nick	Qi	ner			0	ATE Signe	od (MM	DD / Y	¥1	Te	71-		-	Temp in	Received on Ice	Custo baled	mples
				SIGNATORE	or Grann CER	0	ma	-				In the origin	en fundi		2	12	3/2	01		-	ŭ	Se	Sa

Sample Container Count

×.

ND

Trip Blank?

							-	ample	Conte		Jount			2 3 0
CLIENT:	Ar	cad	hs											Face Analytical
COC PAGE COC ID#	(													
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	Л		Comments
1												1		
2												1		
3														
4														
5						_							_	
6														
7														
8														
9														
10														

AG1H	1 liter HCL amber glass	. BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG1U	1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
AG2S	500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U	500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S	250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H	1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U	1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035
BP1N	1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S	1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U	1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z	1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N	500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O	500mL NaOH plastic	-	Wipe/Swab		

11

12

	Sample Cond	lition Upon Rec	eipt	
Pace Analytical Client Nam	e: Arcadis		Draiget #	256787
	e. Thereas		Project #	200101
Courier: Fed Ex UPS USPS	ent Commercial	Pace Other		
Custody Seal on Cooler/Box Present: Ye	s No Seal	s intact: 🗌 Yes	No No	
Packing Material: Bubble Wrap Bubb	le Bags None	Other	Temp. Blank Yes	No
Thermometer Used 132013 or 101731962 of 2260	Day Type of Ice: We	t Blue None		ling process has begun
Cooler Temperature 21.0	Biological Tissue	e is Frozen: Yes No	Date and Initials contents:	s of person examining
Temp should be above freezing ≤ 6°C		Comments:	contents	
Chain of Custody Present:	Yes DNO DN/A	1	and an	
Chain of Custody Filled Out:	DYes DNO DN/A	2. Analysis	penoting	1
Chain of Custody Relinquished:	Yes DNo DN/A	3.	' 0	
Sampler Name & Signature on COC:	PYes DNo DN/A	4.		
Samples Arrived within Hold Time:	Yes DNo DN/A	5.		
Short Hold Time Analysis (<72hr):	Dyes DNo DN/A	6.		
Rush Turn Around Time Requested:	DYes No DN/A	7.		
Follow Up / Hold Analysis Requested:	DYes DNO DN/A	8.		
Sufficient Volume:	Pres DNo DN/A	9.		
Correct Containers Used:	Pres DNo DN/A	10.0	Cons.	
-Pace Containers Used:		Simma	Cons.	
Containers Intact:	Dres DNO DNA	11.		
Filtered volume received for Dissolved tests	Yes No PN/A	12.		
Sample Labels match COC:	GYes DNO DNA	13.		
-Includes date/time/ID/Analysis Matrix:	AIR	117000		
All containers needing preservation have been checked.	DYes DNo DN/A	14.		
All containers needing preservation are found to be in compliance with EPA recommendation.	DYes DNO DNA			
Exceptions: VOA, coliform, TOC, O&G		Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:		15.		
Headspace in VOA Vials ( >6mm):		16.		
Trip Blanks Present:		17.	21	
Trip Blank Custody Seals Present				
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:			Field Data Required?	Y / N
Person Contacted: Alan Kahal	Date/	Time: @ racei	pt	200 K. 20
Comments/ Resolution:			1	
COC to be delivered	DINext	Shipment	- of sun	nma cans.
Hold for shipment	lintil a	11 Samples	s received.	fsm 02/25/1
				, , , , , , , , , , , , , , , , , , , ,
Project Manager Review:	SM		Date: DE	3/04/11
Note: Whenever there is a discrepancy affecting North C	Carolina compliance sam	ples, a copy of this form	will be sent to the North Ca	Irolina DEHNR

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

# ARCADIS

Appendix **D** 

Remediation Design Calculations For Soil Vapor Extraction and Air Sparge System

# Remediation Design Calculations For Soil Vapor Extraction and Air Sparge System

Prepared for:

Remedial Action Plan Former BP Station No. 0977 155 NW 85th Street, Seattle, WA

Prepared by:

ARCADIS 2300 Eastlake Avenue East, Suite 100 Seattle, Washington

November 10, 2011

# AIR SPARGE (AS)

#### **Minimum Injection Pressure**

(Air Sparging Design Paradigm)

Minimum Injection Pressure = (0.43) * (hydrostatic head) + [air entry pressure for the well annulus packing material + air entry pressure for the formation (sand and gravel - assume <u>0.2 psig</u> per *Air Sparging Design Paradigm*)]

# Low groundwater

Minimum Injection Pressure = (0.43) * (32 feet-2 feet-19.65 feet) + (0.2 psi) = 4.7 psi

High groundwater Maximum Injection Pressure = (0.43) * (32 feet-2 feet-16.28 feet) + (0.2 psi) = 6.1 psi

#### **Maximum Injection Pressure**

(US Army Corps of Engineers In-Situ Air Sparging)

Pressure soil column = (depth top well screen) * (G_s) * (1-n) * ( $\rho_{H2O}$ )

 $Pressure_{H2O \ column} = (depth \ _{top \ well \ screen} - DTW)^*(n)^*(\rho_{H2O})$ 

 $\begin{array}{l} G_s = \text{Specific gravity of soil} = 2.7^*(\text{specific gravity of water} @ 20 \text{ degrees Celsius}) \\ n = \text{Porosity} = 30 \ \% = 0.30 \ (\text{silty sand}) \\ \text{depth}_{top \ well \ screen} = 30 \ \text{ft} \\ \rho_{\text{H2O}} = \text{density of water} \\ \text{DTW} = \text{Depth to water table} = 16.28 \ \text{ft} \end{array}$ 

 $P_{\text{soil column}} = (30 \text{ ft})^* (2.7)^* (1-0.30)^* (62.4 \frac{lb_m}{ft^3}) = 3538 \frac{lb_m}{ft^2} = 24.6 \text{ psi}$ 

P_{H2O column}= (30 ft - 16.28 ft)*(0.30)*(62.4  $\frac{lb_m}{ft^3}$ ) = 257  $\frac{lb_m}{ft^2}$  = 1.8 psi

Total Overburden Pressure = P_{soil column} + P_{H2O column} = 24.6 psi + 1.8 psi = 26.4 psi

Air Sparge design paradigm suggests a range of:  $P_{Injection} = 0.6^*$  (Total Overburden Pressure) to  $P_{Injection} = 0.8^*$  (Total Overburden Pressure)

 $P_{injection} = 0.6^{*}$ (Total Overburden Pressure) =  $0.6^{*}$ (26.4 psi) = 15.6 psi  $P_{injection} = 0.8^{*}$ (Total Overburden Pressure) =  $0.8^{*}$ (26.4 psi) = 21.1 psi

### **Air Flow**

There are 4 proposed AS wells. The AS wells will be divided up into 2 zones with 2 wells each. Therefore, the total required flow = 2 * (15 scfm) = 30 scfm.

The AS compressor must be capable of producing 30 scfm at a pressure between approximately 4.7 to 21.1 psi at the well head, and designed for three phase electrical service. Air flow will be 15 scfm at each well, with a maximum injection pressure of 21.1 psi.

# **Frictional Pressure Loss**

Based on a maximum flow rate of 30 scfm and a pipe diameter of 2 inches, the pressure loss due to friction is anticipated to be 0.023 inches  $H_20$  (0.0008 psi) per foot of pipe. An extra 5 feet of pipe length per 90 degree elbow was also figured into the pressure loss calculation. An estimated 260 feet of maximum pipe run per zone and 10 elbows results in a maximum pressure loss of 5.98 in  $H_20$ . This converts to 0.22 psi.

The friction loss was estimated based on Figure 5-15 in US Army Corps of Engineers Manual EM 1110-1-4001, Engineering and Design - Soil Vapor Extraction and Bioventing (2002).

# SOIL VAPOR EXTRACTION

# Air Flow

Initially, it is proposed that three extraction wells will be operating (VE-1, VE-2, and VE-3). To ensure that a minimum of one pore volume ( $V_p$ ) per day of vapor will be extracted from the subsurface to mitigate vapor migration and build up, the blower will operate at approximately 48 cfm per well. The required flow rate ( $Q_f$ ) in cubic feet per minute was estimated based on the soil porosity (n) of 0.3 (unitless), the measured effective radius of observed induced vacuum (R) of 65 feet and the vadose zone depth (L) of 17.5 feet. The length of the vadose zone is the average of depth-to-water measurements based on historical data for onsite wells.

$$Q_{f} = (V_{p} * \pi * R^{2} * L * n)$$

$$Q_{f} = (1 \frac{pore}{day} * \pi * (65 \text{ ft })^{2} * 17.5 \text{ ft } * 0.3) / 1440 \frac{\min}{day}$$

$$Q_{f} = 48 \int_{t}^{t^{3}} \text{ per well}$$

During the SVE pilot study, two constant rate tests were conducted. The average flow rate was 58 scfm and observed vacuum ROI was 72.5 feet. The extraction vacuum during the constant rate test was between 25 and 27 in. wc. It is expected that vacuum during normal SVE system operation will be similar to these values.

# **Frictional Vacuum Loss**

min

Based on a flow rate of 145 scfm and a 2 inch pipe diameter, the pressure loss due to friction is approximately 0.021 inches  $H_20$  (0.0008 psi) per foot of pipe. The maximum total length of piping is approximately 200 feet. An extra 5 feet of pipe length per 90

degree elbow was also figured into the pressure loss calculation. Assuming 10 elbows and 200 feet of pipe the total length used to determine the pressure loss of the system is 250 feet. This results in an overall pressure loss of approximately 4.2 in.  $H_20$  or 0.15 psi.

The friction loss was estimated based on Figure 5-15 in US Army Corps of Engineers Manual EM 1110-1-4001, Engineering and Design - Soil Vapor Extraction and Bioventing (2002).

# ARCADIS

Appendix **E** 

ARCADIS Standard Operating Procedures (SOPs)



Imagine the result

## **Monitoring Well Installation**

Rev. #: 2

Rev Date: August 22, 2008

**Approval Signatures** 

Date: 8/25/08

Prepared by: <u>Song</u> a Cadle Reviewed by: <u>Minhel J. Sefle</u>

(Technical Expert)

g:\sop-library\reformatted sops 2008\hydrogeology sops\1723199 - monitoring well installation.doc

Date: 8/25/08

#### I. Scope and Application

The procedures set out herein are designed to produce standard groundwater monitoring wells suitable for: (1) groundwater sampling, (2) water level measurement, (3) bulk hydraulic conductivity testing of formations adjacent to the open interval of the well.

Monitoring well boreholes in unconsolidated (overburden) materials are typically drilled using the hollow-stem auger drilling method. Other drilling methods that are also suitable for installing overburden monitoring wells, and are sometimes necessary due to site-specific geologic conditions, include: drive-and-wash, spun casing, Rotasonic, dual-rotary (Barber Rig), and fluid/mud rotary with core barrel or roller bit. Direct-push techniques (e.g., Geoprobe or cone penetrometer) and driven well points may also be used in some cases within the overburden. Monitoring wells within consolidated materials such as bedrock are commonly drilled using water-rotary (coring or tri-cone roller bit), air rotary or Rotasonic methods. The drilling method to be used at a given site will be selected based on site-specific consideration of anticipated drilling/well depths, site or regional geologic knowledge, type of monitoring to be conducted using the installed well, and cost.

No oils or grease will be used on equipment introduced into the boring (e.g., drill rod, casing, or sampling tools). No coated bentonite pellets will be used in the well drilling or construction process. Specifications of materials to be installed in the well will be obtained prior to mobilizing onsite, including:

- well casing;
- bentonite;
- sand; and
- grout.

Well materials will be inspected and, if needed, cleaned prior to installation.

#### II. Personnel Qualifications

Monitoring well installation activities will be performed by persons who have been trained in proper well installation procedures under the guidance of an experienced field geologist, engineer, or technician. Where field sampling is performed for soil or bedrock characterization, field personnel will have undergone in-field training in soil or

bedrock description methods, as described in the appropriate SOP(s) for those activities.

#### III. Equipment List

The following materials will be available during soil boring and monitoring well installation activities, as required:

- Site Plan with proposed soil boring/well locations;
- Work Plan or Field Sampling Plan (FSP), and site Health and Safety Plan (HASP);
- personal protective equipment (PPE), as required by the HASP;
- traffic cones, delineators, caution tape, and/or fencing as appropriate for securing the work area, if such are not provided by drillers;
- appropriate soil sampling equipment (e.g., stainless steel spatulas, knife);
- soil and/or bedrock logging equipment as specified in the appropriate SOPs;
- appropriate sample containers and labels;
- drum labels as required for investigation derived waste handling;
- chain-of-custody forms;
- insulated coolers with ice, when collecting samples requiring preservation by chilling;
- photoionization detector (PID) or flame ionization detector (FID);
- ziplock style bags;
- water level or oil/water interface meter;
- locks and keys for securing the well after installation;
- decontamination equipment (bucket, distilled or deionized water, cleansers appropriate for removing expected chemicals of concern, paper towels);

field notebook.

Prior to mobilizing to the site, ARCADIS personnel will contact the drilling subcontractor or in-house driller (as appropriate) to confirm that appropriate sampling and well installation equipment will be provided. Specifications of the sampling and well installation equipment are expected to vary by project, and so communication with the driller will be necessary to ensure that the materials provided will meet the project objectives. Equipment typically provided by the driller could include:

- drilling equipment required by the American Society of Testing and Materials (ASTM) D 1586, when performing split-spoon sampling;
- disposable plastic liners, when drilling with direct-push equipment;
- drums for investigation derived waste;
- drilling and sampling equipment decontamination materials;
- decontamination pad materials, if required; and
- well construction materials.

#### IV. Cautions

Prior to beginning field work, underground utilities in the vicinity of the drilling areas will be delineated by the drilling contractor or an independent underground utility locator service. See separate SOP for utility clearance.

Some regulatory agencies require a minimum annular space between the well or permanent casing and the borehole wall. When specified, the minimum clearance is typically 2 inches on all sides (e.g., a 2-inch diameter well requires a 6-inch diameter borehole). In addition, some regulatory agencies have specific requirements regarding grout mixtures. Determine whether the oversight agency has any such requirements prior to finalizing the drilling and well installation plan.

If dense non-aqueous phase liquids (DNAPL) are known or expected to exist at the site, refer to the DNAPL Contingency Plan SOP for additional details regarding drilling and well installation to reduce the potential for inadvertent DNAPL remobilization.

Avoid using drilling fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

Similarly, consider the material compatibility between the well materials and the surrounding environment. For example, PVC well materials are not preferred when DNAPL is present. In addition, some groundwater conditions leach metals from stainless steel.

Water used for drilling and sampling of soil or bedrock, decontamination of drilling/sampling equipment, or grouting boreholes upon completion will be of a quality acceptable for project objectives. Testing of water supply should be considered.

Specifications of materials used for backfilling bore hole will be obtained, reviewed and approved to meet project quality objectives. Bentonite is not recommended where DNAPLs are likely to be present. In these situations, neat cement grout is preferred.

No coated bentonite pellets will be used in monitoring well construction, as the coating could impact the water quality in the completed well.

Monitoring wells may be installed with Schedule 40 polyvinyl chloride (PVC) to a maximum depth of 200 feet below ground surface (bgs). PVC monitoring wells between 200 and 400 feet total depth will be constructed using Schedule 80 PVC. Monitoring wells deeper than 400 feet will be constructed using steel.

#### V. Health and Safety Considerations

Field activities associated with monitoring well installation will be performed in accordance with a site-specific HASP, a copy of which will be present on site during such activities.

#### VI. Procedures

The procedures for installing groundwater monitoring wells are presented below:

Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods

- 1. Locate boring/well location, establish work zone, and set up sampling equipment decontamination area.
- Advance boring to desired depth. Collect soil and/or bedrock samples at appropriate interval as specified in the Work Plan and/or FSP. Collect, document, and store samples for laboratory analysis as specified in the Work Plan and/or FSP. Decontaminate equipment between samples in accordance with the Work Plan and/or FSP. A common sampling method that produces

high-quality soil samples with relatively little soil disturbance is the ASTM D 1586 - Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils. Split-spoon samples are obtained during drilling using hollow-stem auger, drive-and-wash, spun casing, and fluid/mud rotary. Rotasonic drilling produces large-diameter soil cores that tend to be more disturbed than split-spoon samples due to the vibratory action of the drill casing. Dual-rotary removes cuttings by compressed air and allows only a general assessment of geology. High-quality bedrock samples can be obtained by coring.

- 3. Describe each soil or bedrock sample as outlined in the appropriate SOP. Record descriptions in the field notebook and/or personal digital assistant (PDA). It should be noted that PDA logs must be electronically backed up and transferred to a location accessible to other project team members as soon as feasible to retain and protect the field data. During soil boring advancement, document all drilling events in field notebook, including blow counts (number of blows required to advance split-spoon sampler in 6-inch increments) and work stoppages. Blow counts will not be available if Rotasonic, dual-rotary, or directpush methods are used. When drilling in bedrock, the rate of penetration (minutes per foot) is recorded.
- If it is necessary to install a monitor well into a permeable zone below a 4. confining layer, particularly if the deeper zone is believed to have water quality that differs significantly from the zone above the confining layer, then a telescopic well construction should be considered. In this case, the borehole is advanced approximately 3 to 5 feet into the top of the confining layer, and a permanent casing (typically PVC, black steel or stainless steel) is installed into the socket drilled into the top of the confining layer. The casing is then grouted in place. The preferred methods of arouting telescoping casings include: pressure-injection grouting using an inflatable packer installed temporarily into the base of the casing, such that grout is injected out the bottom of the casing until it is observed at ground surface outside the casing; displacement-method grouting (also known as the Halliburton method), which entails filling the casing with grout and displacing the grout out the bottom of the casing by pushing a drillable plug, typically made of wood to the bottom of the casing, following by tremie grouting the remainder of the annulus outside the casing; or tremie grouting the annulus surrounding the casing using a tremie pipe installed to the base of the borehole. In all three cases, the casing is grouted to the ground surface, and the grout is allowed to set prior to drilling deeper through the casing. Site-specific criteria and work plans should be created for the completion of non-standard monitoring wells, including telescopic wells.

- 5. In consolidated formations such as competent bedrock, a monitoring well may be completed with an open borehole interval without a screen and sandpack. In these cases, the borehole is advanced to the targeted depth of the top of the open interval. A permanent casing is then grouted in place following the procedures described in Step 4 above. After the grout sets, the borehole is advanced by drilling through the permanent casing to the targeted bottom depth of the open interval, which then serves as the monitoring interval for the well. If open-borehole interval stability is found to be questionable or if a specific depth interval is later selected for monitoring, a screened monitoring well may later be installed within the open-borehole interval, depending on the annular space and well diameter requirements.
- 6. Prior to screened well installation or after the completion of an open-bedrock well, the water level or oil/water interface probe should be used to determine the static water level in the borehole in relation to the proposed well screen or open-interval location. If necessary, an open-bedrock well may be drilled deeper to intersect the water table or a permeable water-bearing zone.
- 7. Upon completing the borehole to the desired depth, if a screened well construction is desired, install the monitoring well by lowering the screen and casing assembly with sump through the augers or casing. Monitoring wells typically will be constructed of 2-inch-diameter, flush-threaded PVC or stainless steel slotted well screen and blank riser casing. Smaller diameters may be used if wells are installed using direct-push methodology or if multiple wells are to be installed in a single borehole. The screen length will be specified in the Work Plan or FSP based on regulatory requirements and specific monitoring objectives. Monitoring well screens are usually 5 to 10 feet long, but may be up to 25 feet long in very low permeability, thick geologic formations. The screen length will depend on the purpose for the well and the objectives of the groundwater investigation. Typically, the slot size will be 0.010 inch and the sand pack will be 20-40, Morie No. 0, or equivalent. In very fine-grained formations where sample turbidity needs to be minimized, it may be preferred to use a 0.006-inch slot size and 30-65, Morie No. 00, or equivalent sand pack. Alternatively, where monitoring wells are installed in coarse-grained deposits and higher well yield is required, a 0.020-inch slot size and 10-20, Morie No. 1, or equivalent sand pack may be preferred. To the extent practicable, the slot size and sand pack gradation may be predetermined in the Work Plan or FSP based on site-specific grain-size analysis or other geologic considerations or monitoring objectives. A blank sump may be attached below the well screen if the well is being installed for DNAPL recovery/monitoring purposes. If so, the annular space around the sump will be backfilled with neat cement grout to the bottom of the well screen prior to placing the sand pack around the screen. A

blank riser will extend from the top of the screen to approximately 2.5 feet above grade or, if necessary, just below grade where conditions warrant a flushmounted monitoring well. For wells greater than 50 feet deep, centralizers may be desired to assist in centralizing the monitoring well in the borehole during construction.

- 8. When the monitoring well assembly has been set in place and the grout has been placed around the sump (if any), place a washed silica sand pack in the annular space from the bottom of the boring to a height of 1 to 2 feet above the top of the well screen. The sand pack is placed and drilling equipment extracted in increments until the top of the sand pack is at the appropriate depth. The sand pack will be consistent with the screen slot size and the soil particle size in the screened interval, as specified in the Work Plan or FSP. A hydrated bentonite seal (a minimum of 2 feet thick) will then be placed in the annular space above the sand pack. If non-hydrated bentonite is used, the bentonite should be permitted to hydrate in place for a minimum of 30 minutes before proceeding. No coated bentonite pellets will be used in monitoring well drilling or construction. Potable water may be added to hydrate the bentonite if the seal is above the water table. Monitor the placement of the sand pack and bentonite with a weighted tape measure. During the extraction of the augers or casing, a cement/bentonite or neat cement grout will be placed in the annular space from the bentonite seal to a depth approximately 2 feet bgs.
- 9. Place a locking, steel protective casing (extended at least 1.5 feet below grade and 2 feet above grade) over the riser casing and secure with a neat cement seal. Alternatively, for flush-mount completions, place a steel curb box with a bolt-down lid over the riser casing and secure with a neat cement seal. In either case, the cement seal will extend approximately 1.5 to 2.0 feet below grade and laterally at least 1 foot in all directions from the protective casing, and should slope gently away to promote drainage away from the well. Monitoring wells will be labeled with the appropriate designation on both the inner and outer well casings or inside of the curb box lid.

When an above-grade completion is used, the PVC riser will be sealed using an expandable locking plug and the top of the well will be vented by drilling a smalldiameter (1/8 inch) hole near the top of the well casing or through the locking plug, or by cutting a vertical slot in the top of the well casing. When a flushmount installation is used, the PVC riser will be sealed using an unvented, expandable locking plug.

- 10. During well installation, record construction details and actual measurements relayed by the drilling contractor and tabulate materials used (e.g., screen and riser footages; bags of bentonite, cement, and sand) in the field notebook.
- 11. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section VII below.

#### **Direct-Push Method**

The direct-push drilling method may also be used to complete soil borings and install monitoring wells. Examples of this technique include the Diedrich ESP vibratory probe system, GeoProbe®, or AMS Power Probe® dual-tube system. Environmental probe systems typically use a hydraulically operated percussion hammer. Depending on the equipment used, the hammer delivers 140- to 350-foot pounds of energy with each blow. The hammer provides the force needed to penetrate very stiff/medium dense soil formations. The hammer simultaneously advances an outer steel casing that contains a dual-tube liner for sampling soil. The outside diameter (OD) of the outer casing ranges from 1.75 to 2.4 inches and the OD of the inner sampling tube ranges from 1.1 to 1.8 inches. The outer casing isolates shallow layers and permits the unit to continue to probe at depth. The double-rod system provides a borehole that may be tremie-grouted from the bottom up. Alternatively, the inside diameter (ID) of the steel casing provides clearance for the installation of small-diameter (e.g., 0.75- to 1-inch ID) micro-wells. The procedures for installing monitoring wells in soil using the direct-push method are described below.

- 1. Locate boring/well location, establish work zone, and set up sample equipment decontamination area.
- Advance soil boring to designated depth, collecting samples at intervals specified in the Work Plan. Samples will be collected using dedicated, disposable, plastic liners. Describe samples in accordance with the procedures outlined in Step 3 above. Collect samples for laboratory analysis as specified in the Work Plan and/or FSP.
- 3. Upon advancing the borehole to the desired depth, install the micro-well through the inner drill casing. The micro-well will consist of approximately 1-inch ID PVC or stainless steel slotted screen and blank riser. The sand pack, bentonite seal, and cement/bentonite grout will be installed as described, where applicable, in Step 7 and 8 above.

- 4. Install protective steel casing or flush-mount, as appropriate, as described in Step 9 above. During well installation, record construction details and tabulate materials used.
- 5. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section VII below.

#### **Driven Well Point Installation**

Well points will be installed by pushing or driving using a drilling rig or direct-push rig, or hand-driven where possible. The well point construction materials will consist of a 1- to 2-inch-diameter threaded steel casing with either 0.010- or 0.020-inch slotted stainless steel screen. The screen length will vary depending on the hydrogeologic conditions of the site. The casings will be joined together with threaded couplings and the terminal end will consist of a steel well point. Because they are driven or pushed to the desired depth, well points do not have annular backfill materials such as sand pack or grout.

#### VII. Waste Management

Investigation-derived wastes (IDW), including soil cuttings and excess drilling fluids (if used), decontamination liquids, and disposable materials (well material packages, PPE, etc.), will be placed in clearly labeled, appropriate containers, or managed as otherwise specified in the Work Plan, FSP, and/or IDW management SOP.

#### VIII. Data Recording and Management

Drilling activities will be documented in a field notebook. Pertinent information will include personnel present on site, times of arrival and departure, significant weather conditions, timing of well installation activities, soil descriptions, well construction specifications (screen and riser material and diameter, sump length, screen length and slot size, riser length, sand pack type), and quantities of materials used. In addition, the locations of newly-installed wells will be documented photographically or in a site sketch. If appropriate, a measuring wheel or engineer's tape will be used to determine approximate distances between important site features.

The well or piezometer location, ground surface elevation, and inner and outer casing elevations will be surveyed using the method specified in the site Work Plan. Generally, a local baseline control will be set up. This local baseline control can then be tied into the appropriate vertical and horizontal datum, such as the National Geodetic Vertical Datum of 1929 or 1988 and the State Plane Coordinate System. At a minimum, the elevation of the top of the inner casing used for water-level

measurements should be measured to the nearest 0.01 foot. Elevations will be established in relation to the National Geodetic Vertical Datum of 1929. A permanent mark will be placed on top of the inner casing to mark the point for water-level measurements.

#### IX. Quality Assurance

All drilling equipment and associated tools (including augers, drill rods, sampling equipment, wrenches, and any other equipment or tools) that may have come in contact with soil will be cleaned in accordance with the procedures outlined in the appropriate SOP. Well materials will also be cleaned prior to well installation.

#### X. References

American Society of Testing and Materials (ASTM) D 1586 - *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.* 



Imagine the result

# SLUG TEST STANDARD OPERATING PROCEDURES

8

### ARCADIS

#### PUMPING TEST PROCEDURES

#### TABLE OF CONTENTS

Α.	TEST DESIGN		
	1.	Understand What You Are Testing	3
	2.	Slug Test Theory	3
	3.	Determine Well Conditions	3
	4.	Select the Appropriate Slug-Inducing Equipment	4
	5.	Select the Appropriate Water-Level Measurement Device	4
	6.	Verify Measuring Device Accuracy	6
	7.	Plan for Test Well Water Disposal	6
В.	PRETEST ACTIVITIES		
	1.	Establish a Reference Point for Measuring Water Levels	6
	2.	Record Background Water Levels	6
	3.	Set-up: Decontamination	7
	4.	Set-up: Remaining Equipment Required for Test	7
	5.	Perform a Job Safety Analysis	7
C.	CONDUCTING THE TEST		7
	1.	Record Information	7
	2.	Start the Test	7
	3.	Reverse Test	8
	4.	Post-test Procedure	8
D.	ASSESSING TEST RESULTS		8
	1.	Have Pertinent Well Construction Details	

1

Pag

### Slug Test SOP

	2.	Determine the Type of Response to the Test	8
	3.	Decontaminate All Equipment Contacting Site Groundwater and Soil	9
<b>E</b> . :	SPECIA	L CONSIDERATIONS	9
	1.	Wells Containing Floating Nonaqueous Phase Liquids	9
	2.	Karst and Cavernous Aquifers	10
	3.	Fractured Aquifers	10
F.	REFER	ENCES	10

#### A. TEST DESIGN

#### 1. Understand What You Are Testing

An instantaneous change in head (slug) test is conducted in order to determine the hydraulic conductivity/transmissivity of a water-bearing zone in a quick and inexpensive manner. It can be conducted in materials of lower hydraulic conductivity than generally considered suitable for pumping tests. A slug test also does not require disposal of large quantities of water.

However, recognize that a slug test's shorter time frame and limited stress on the system provides a measurement of hydraulic conductivity on a smaller scale than a pumping test. Because a slug test affects only the aquifer near the well, its results are more strongly influenced by near-well conditions such as the filter pack, poor well development, and skin effects. Therefore, make sure that the stress on the well (i.e., the amount of change in head) is sufficient to test more than the hydraulic conductivity of the filter pack. Although the results of a slug test are not necessarily representative of the average hydraulic conductivity of the area, this limitation does present an opportunity to test discrete layers within an aquifer. Also understand that the storage coefficient (S) usually cannot be determined from a slug test.

#### 2. Slug Test Theory

An estimate of local hydraulic conductivity of the material surrounding a well is calculated by measuring the time/rate of return to static water levels after an instantaneous change in head. Homogeneity and constant aquifer thickness are general assumptions for the test analysis; these are generally met due to the small radius of influence of the test.

Two classes of solutions are generally used: one that assumes water and soil are incompressible (storage is zero; i.e., Bouwer and Rice, and Hvorslev methods), which is a straight-line solution method similar to Thiem; and one that assumes a non-zero storage coefficient (i.e., Cooper et.al, and Hyder et. al methods), which is a type-curve matching solution method similar to Theis.

#### 3. Determine Well Conditions

Unless installed specifically for the test, sound all wells that are to be tested to verify well depth. (Do not use water level meters for this purpose, because some meters have probes that leak and trap water when subjected to excessive pressure.) Verify that the well has been adequately developed, and is not silted in. If the water-level response in the slug test appears to be too sluggish or no response is apparent, the well may need to be redeveloped.

Measure depth to water, or check historic depths to water, to determine if the screen is below the top of water or straddles the piezometric surface. This will determine the types of slug tests (slug-in, slug-out) and mechanisms (water, mechanical, pneumatic) that are applicable for the particular well to be tested. Note that a fully submerged screen is highly preferable for best test results, otherwise a "double-straight line" effect resulting from filter-pack drainage into the well (initial drainage followed by actual aquifer response) will likely be seen in the test response curve (Bower, 1989).

#### 4. Select the Appropriate Slug-Inducing Equipment

A variety of methods are available for inducing a change in water level. The basic requirements are the change needs to take place rapidly ("instantaneous"), and the change needs to be of sufficient magnitude: at least one foot, preferably two to four feet. (Similar results can be achieved with a wide range of induced head change, so a change greater than four feet is not necessary.) The slug can either be introduced (slug in) or withdrawn (slug out). However, if the well screen is open above the water table, slug out is the only method acceptable.

Methods of introducing a slug are as follows:

- a) adding clean (DI or potable) water to the well, preferably from a holding vessel with a ball valve that allows the water to drain into the well quickly;
- b) dropping a "blank" (typically capped PVC pipe filled with clean sand) into the well; or
- c) after raising the water level within a well by applying a vacuum, releasing the vacuum and observing the drop in water level.

Methods of removing a slug are as follows:

- a) pulling a slug of water out of the well quickly with a bailer;
- b) pulling a "blank" out of the well; or
- c) after pressurizing a well and pushing down the water level, releasing pressure from the well and observing the rise in water level.

#### 5. Select the Appropriate Water-Level Measurement Device

Pressure/head changes are rapid (i.e., "instantaneous"), therefore, the measuring device needs to be able to collect measurements quickly and accurately, especially

for fast-responding wells. Pressure transducers with dataloggers are best equipped for slug tests. Pressure transducers are also necessary for closed wells in which water level changes are induced by pressure or vacuum.

(a) Pressure Transducers and Data Logger Combination

Transducers connected to electronic data loggers provide rapid water-level measurements with accuracy and ease. Some electronic data loggers (i.e., Hermit) collect and store data from a number of input channels (downhole pressure transducers plus atmospheric pressure) to provide water-level measurements in multiple within several hundred feet radius of the data logger, while others consist of a single logging transducer (i.e., TrollTM, LeveloggerTM). Typical loggers take readings at preprogrammed linear or logarithmic intervals. If desired, data can be transferred to a personal computer for processing.

Small-diameter transducers (typically 0.5 to 0.75 in) are available that cover a range of pressures. Because they yield readings accurate to a percentage of their pressure range (usually about  $\pm$ 0.1 percent of the range in the center of that range, and  $\pm$ 0.2 percent near the limits) transducers that span a wide pressure range have lower absolute accuracies than those that span a narrow range. For example, a typical transducer with a 5 psi range detects water-level changes over a 11.6 ft with an accuracy of  $\pm$ 0.01 ft, whereas, a transducer with a 15 psi range detects changes over a 34.7 ft with an accuracy of  $\pm$ 0.03 ft. Thus, to ensure the greatest accuracy, select the transducer with the pressure range that most closely encompasses the anticipated drawdown or water-level change. Install the transducer at a depth at least 2 feet from the bottom of the well, but below the targeted drawdown estimated for the well.

Caution: To prevent transducer malfunction, do not submerge transducers in excess of their operating range.

(b) Water Level Meters, Interface Probes

These devices provide quick and easy water-level measurements with reasonable accuracy. They employ a sensor that is lowered into a well on the end of a marked cable (typically imprinted in feet and hundredths of a foot). When the sensor contacts water, a circuit is completed, activating a light, audio signal, ammeter, or digital display in the cable reel or housing. However, because the measurements are manual, the speed of readings cannot match those of a pressure transducer with a data logger. Thus, a

water level meter is most useful with slow-responding wells, typically installed in low-permeability formations.

#### 6. Verify Measuring Device Accuracy

Test pressure transducers and data logger readings using a bucket or barrel filled with water. Submerge each transducer, accurately measure the water head above the transducer, and compare the measurement to the data-logger reading. Check transducer response to changing heads by raising the transducer a certain distance, observing the change in the datalogger reading, and then measuring the distance with a standard steel tape. Water level meters should be in good working condition and calibrated, ensuring there are no breaks or splices in the cable.

#### 7. Plan for Test Well Water Disposal

If the water quality is such that direct discharge to the ground is not permitted, arrange for collection and disposal for standard slug-out testing. Discharge water must be disposed according to all applicable laws and regulations. Contact the governing agencies to determine which restrictions apply. ARCADIS should not be responsible for signing manifests and should not "take possession" of discharged water.

#### B. PRETEST ACTIVITIES

#### 1. Establish a Reference Point for Measuring Water Levels

At each test well, establish and clearly mark the position of the selected reference point (often the north side, top of the casing). Determine the elevation of this point, record it, and state how this elevation was determined. This elevation point is important to establish the position of the piezometric surface, so it must be determined accurately.

#### 2. Record Background Water Levels

Measure the groundwater level in the test well before beginning the test for a period of time equal to the length of the slug test response. This will help detect any background water level fluctuations and establish a reference static water level. Be sure to allow time for equilibration with atmospheric pressure for wells with unvented caps. If possible, arrange to have nearby active wells shut down or pumped at a

constant rate to ease data interpretation.

#### 3. Set-up: Decontamination

Make sure all equipment that enters the test well (slug, water-level meter, transducer) is decontaminated before use. If testing multiple wells, start with the least contaminated progressing to the most contaminated.

#### 4. Set-up: Remaining Equipment Required for Test

Keep sensitive electronic equipment away from devices that generate significant magnetic fields. For example, do not place data loggers near electric power generators or electric pump motors. Likewise, radio signals may cause dataloggers or computers to malfunction. Secure data logger and transducer cables at the well head to prevent movement that would affect measurements. Mark a reference point on transducer cables and check regularly to detect slippage.

#### 5. Perform a Job Safety Analysis

To ensure that everyone is aware of the hazards associated with the work, and that each person knows his/her responsibilities during the preliminary and full-scale test, run through a JSA of the test before the start of pumping.

#### C. CONDUCTING THE TEST

#### 1. Record Information

- (a) Use appropriate data forms
- (b) Record all required background information, including well geometry, on logs before beginning the test
- (c) Record time as military (24-hour) time
- (d) Record the initial depth to water with a water-level meter. (This can be entered into the datalogger if one is being used.)

#### 2. Start the Test

- (a) Introduce or remove the slug quickly, causing a measurable change in water level.
- (b) Measure water-level response to the initial change at closely spaced intervals (preferably 0.5 second or less to catch fast response) in order to define the water-level response curve.
- (c) Continue measuring and recording depth-time measurements until the

water level has equilibrated or a clear trend on a semi-log plot of time versus depth has been established. Measurements taken manually should continue until the water level has recovered about 80%.

#### 3. Reverse Test

If desired, after a slug-in test has been finished and equilibrium reached, a slug-out test can be performed as a check.

#### 4. Post-test Procedure

Make a preliminary analysis of the data before leaving the test area. Compare volume of slug to actual water displacement in the well. Evaluate the quality of the data, and the method of analysis applicable for the results. If a clear trend was not established, the test may need to be re-run. Ensure that equilibrium has been reached before re-running a test in the same well.

#### D. ASSESSING TEST RESULTS

#### 1. Have Pertinent Well Construction Details

To evaluate data from the test, it will be necessary to have well construction information, such as the following:

- Lithologic logs
- Well depths
- Screen lengths
- Filter pack thickness and length
- Test well casing radius
- Borehole radius
- Sand pack grain size (affects the size of the practical borehole radius)
- Thickness of saturated zone
- Initial water depth
- Initial head change from slug

#### 2. Determine the Type of Response to the Test

The type of response to the test is as important as the type of permeable zone (confined, unconfined) for picking the type of analysis. As with pumping tests, do not assume that all standard analyses (Bower and Rice; Hvorslev; Cooper, Bredehoeft,

Papadopulos) are suitable; pick the type of analysis based on the goodness-of-fit of the response (Herzog and Morse, 1990) to the theoretical curve. Do not force the data; if a clear straight line does not exist then the standard straight-line analytical methods may not be appropriate.

Wells testing confined aguifers with a high transmissivity or long water column (large water mass within the casing) can show an oscillatory recovery (underdamped or critically damped; see ASTM D5785 and ASTM D5881) to initial water level; common response is an exponential decay (overdamped response, frictional forces within the aquifer are dominant over inertial; see ASTM D4104 and ASTM D5912). These oscillatory test results require calculation of the angular frequency and damping factor (Kipp, 1985; van der Kamp, 1976) to account for the inertial effects before solving for transmissivity. The underdamped solution technique is available in the standard aquifer test program, AQTESOLV, and in public domain spreadsheet programs available from the USGS (http://pubs.usgs.gov/of/2002/ofr02197/) and Kansas Geological from the Survey (http://www.kgs.ku.edu/Hydro/Publications/OFR00_40/High_K.zip).

Note: the critically damped well response is a transitional response (showing oscillations) between overdamped and underdamped; its analysis requires the typecurve matching method by Kipp (1985). It is determined by a dimensionless "damping factor":

$$\zeta = \frac{\alpha \left(\sigma + \frac{1}{4} \ln \beta\right)}{2\beta^{\frac{1}{2}}}$$

where  $\zeta >1$  is overdamped;  $\zeta =1$  is critically damped; and  $\zeta <1$  is underdamped.

#### 3. Decontaminate All Equipment Contacting Site Groundwater and Soil

Use appropriate decontamination procedures before proceeding to the next well and/or leaving the site.

#### E. SPECIAL CONSIDERATIONS

#### 1. Wells Containing Floating Nonaqueous Phase Liquids

It is best to use pressure transducers to measure water levels in wells containing floating product such as gasoline. Contact with floating product, however, may make transducers and cable unsuitable for future use. Thus, protect each transducer and cable assembly by encasing it in plastic tubing or pipe. Be sure that each protected transducer still can respond accurately to any pressure changes.

As an alternative to pressure transducers, make manual measurements (using an interface probe) of both the fuel level and water level individually. Then correct the observed thickness of floating product by its density to arrive at the effective water level. This manual procedure will work, but takes time and is only suitable for slow-responding wells.

#### 2. Karst and Cavernous Aquifers

Recognize that the response of the slug tests within a Karst regime will be as diverse as the stratigraphy. Document the well stratigraphy to understand the range in responses measured within a single groundwater zone.

#### 3. Fractured Aquifers

The upper boundary condition for the Bower-Rice and Hvorslev methods, based on the Thiem analysis, is a no-flow boundary. Often, the residuum above fractured aquifers are at least partially saturated and serve as a leaky upper boundary; this condition cannot generally be confirmed by slug tests.

Fractured-zone aquifers typically meet the assumptions of the analysis by Cooper-Bredehoeft-Papadopulos, although care should be taken in the interpretation in case the screened zone may cross a single fracture or discrete zone

#### F. REFERENCES

- ASTM D4044, Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug Tests) for Determining Hydraulic Properties of Aquifers. ASTM 04-08, Soil and Rock.
- ASTM D4104, Standard Test Method (Analytical Procedure) for Determining Transmissivity of Nonleaky Confined Aquifers by Overdamped Well Response to Instantaneous Change in Head (Slug Test), ASTM 04-08, Soil and Rock.
- ASTM D5785, Standard Test Method (Analytical Procedure) for Determining Transmissivity of Confined Nonleaky Aquifer by Underdamped Well Response to Instantaneous Change in Head (Slug Test), ASTM 04-09, Soil and Rock.

- ASTM D5881, Standard Test Method (Analytical Procedure) for Determining Transmissivity of Confined Nonleaky Aquifer by Critically Damped Well Response to Instantaneous Change in Head (Slug Test), ASTM 04-09, Soil and Rock.
- ASTM D5912, Standard Test Method (Analytical Procedure) for Determining Transmissivity of an Unconfined Aquifer by Overdamped Well Response to Instantaneous Change in Head (Slug Test), ASTM 04-09, Soil and Rock.
- Bower, Herman, 1989. *The Bower and Rice Slug Test An Update*. Ground Water, Vol. 27, No. 3, pp 304-309.
- Bower, H., and Rice, R.C., 1980. A Slug Test for Determining the Hydraulic Properties of Tight Formations. Water Resources Research, Vol. 16, No. 1, pp 233-238.
- Cooper, H.H., Bredehoeft, J.D., Papadopulos, S.S., 1967. *Response of a Finite-Diameter Well to an Instantaneous Change in Water*. Water Resources Research, Vol. 3, No. 1, pp 263-269.
- Ferris, J.G, and Knowles, D.B., 1964. The Slug-Injection Test for Estimating the Coefficient of Transmissibility of an Aquifer, from Methods of Determining Permeability, Transmissibility and Drawdown, compiled by Ray Bentall. Geological Survey Water-Supply Paper 1536-I, U.S. Government Printing Office, Washington DC, pp 299-304.
- Herzog, B.L., and Morse, W.J., 1990. Comparison of Slug Test Methodologies for Determination of Hydraulic Conductivity in Fine-Grained Sediments, Ground Water and Vadose Zone Monitoring, ASTM STP 1053, Nielsen and Johnson, editors, pp 152-164.
- Hvorslev, M.J., 1951. *Time Lag and Soil Permeability in Ground Water Observations*, Bulletin No. 36, U.S. Army Corps of Engineers, p 50.
- Hyder, Z, Butler, J.J., Jr., McElwee C.D., and Liu, W., 1994. *Slug Tests in Partially Penetrating Wells*, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.
- Kipp, K.L., Jr., 1985. Type Curve Analysis of Inertial Effects in the Response of a Well to a Slug Test. Water Resources Research, Vol. 21, No. 9, pp 1397-1408.

- Stallman, Robert W., 1971. Aquifer Test Design, Observation and Data Analysis. Techniques of Water-Resources Investigations of the United States Geological Survey, Chapter B1, Book 3, 26 p.
- van der Kamp, Garth, 1976. Determining Aquifer Transmissivity by Means of Well Response Tests: The Underdamped Case. Water Resources Research, Vol. 12, No. 1, pp 71-77.



Imagine the result

## Well Development – Water Jetting Standard Operating Procedure

Rev. #: 1

Rev Date: July 2, 2010

Rev. #: 1 | Rev Date: July 02, 2010

### **Approval Signatures**

7/6/10 Date: Prepared by: Erin Hauber Reviewed by: Date: Royee Face, PE. PG July 2, 2010 Date: Reviewed by: Kevin Wilson, PG

Rev. #: 1 | Rev Date: July 02, 2010

#### 1. Scope and Application

This standard operating procedure (SOP) provides an overview of jetting with water as a method of well development. While the goal of groundwater sampling is to obtain water samples that are representative of natural, undisturbed hydrogeologic conditions, all drilling methods disturb geologic materials around the well bore to some extent. Development of remediation wells (monitoring wells, piezometers, injection wells, extraction wells) is needed to repair (to the extent practicable) damage to the formation caused by drilling, and to remove fine-grained sediments and drilling fluids introduced during the drilling process. Well development enhances the hydraulic connection between the well and the surrounding formation, ensuring that the screen transmits groundwater that is representative of the surrounding formation. Periodic redevelopment may also be necessary to improve the operation of extraction or injection wells.

The ultimate goal of any development technique is to create a filter pack that is coarsest near the well screen and becomes progressively finer until it blends with the native formation. The ideal development would merge the filter pack seamlessly into the formation, without a noticeable change in grain size.

Development through jetting introduces high velocity water into the well screen while simultaneously evacuating water from the well (ideally maintaining an in-well water level that is equal to or below the static water level, but always less than 20 percent of the available head space in the well). Prior to and/or following jetting, the screened interval can be gently surged using a surge block, bailer, or inertia pump with optional surge block fitting to remove fines freed from filter pack during the jetting process.

Design and selection of the appropriate jetting equipment and delivery pressure will be based on site-specific parameters (well construction details), tubing, and pump specifications. The disposal of investigation derived waste (IDW) generated during the jetting process must also be taken into consideration.

In general, jetting involves lowering either single or multiple small diameter pipe(s) or tube(s) equipped with nozzles into the well screen and injecting a high velocity horizontal stream of water through the pipe(s) into the screen openings. The jets are moved vertically along the screened interval and rotated, if needed, to effectively address the entire screen surface area. Typical jetting assemblies include a submersible pump to extract the injected water and maintain the static water level, but alternate removal methods (air lifting, centrifugal pump) are acceptable.

Jetting tools usually have two to four nozzles; however, site conditions and well diameter will ultimately dictate the number of nozzles used at a specific well. Nozzle

Jetting SOP_Rev 1.docx

#### SOP: Well Development – Water Jetting 3

Rev. #: 1 | Rev Date: July 02, 2010

orifice sizes are selected to produce velocities between approximately 100 and 300 feet per sec (ft/sec). The injected (and extracted) flow into the well and the approximate pressure delivered by the jetting pump to achieve the target jetting velocities can be determined by considering the following:

- screen material and opening configuration
- nozzle specifications
- pressure losses from pump manifold to nozzles
- pump and tubing pressure limitations
- screen exit velocity
- IDW generation and/or recirculation options.

The attached jetting design tool (see Section X. References) can be used to estimate the target manifold pressure and injection/extraction flow rate for a specific remediation well.

#### II. Personnel Qualifications

Well development activities will be performed by persons who have been trained in proper field procedures. Well development activities will be performed under the guidance of an experienced field geologist, engineer, or technician.

#### III. Equipment List

General materials for well development include:

- personal protective equipment (PPE) and any other safety equipment required by the site-specific Health and Safety Plan (HASP)
- cleaning equipment
- water level meter and/or oil/water interface probe
- water quality meter that is capable of recording pH, temperature, conductivity, and turbidity (optional)

#### SOP: Well Development – Water Jetting 4

Rev. #: 1 | Rev Date: July 02, 2010

- photoionization detector (PID) to measure headspace vapors (recommended; may be required by the site-specific HASP)
- plastic sheeting
- graduated pails
- drum(s) or tank(s) to contain purge water, and equipment to move the container(s)
- field notebook
- well construction logs (or summary table) indicating completed well depths and screened intervals
- monitoring well keys.

Materials needed specifically for development by jetting include:

- Down-hole jetting assembly consisting of:
  - Two or three jetting nozzles pointed outward in the horizontal plane.
    - Select jet nozzles rated for velocities between 150 and 300 ft/sec. Higher velocities may damage the well, whereas lower velocities will be less effective at penetrating the filter pack.
    - Nozzles should spray in a wide angle horizontal fan (e.g., 145°). An array of three nozzles with overlapping fans is preferred. If the combined spray arc is not a full 360°, the assembly will need to be rotated throughout the well development process.
    - The nozzles must be equally spaced to hydraulically balance the jetting tool.
    - Since a larger orifice will require a higher injection rate to achieve the same velocity, small-orifice jets (approximately 0.016 inch to 0.065 inch in diameter) are preferred.
  - A rate-controllable submersible pump (or alternate pumping device) attached below the jetting nozzles (or above the jetting nozzles, if jetting at the very bottom of the screen is required).
    - The pump capacity should be greater than the anticipated jetting flow required to jet at the target velocity (for the full array of jets).
  - A flexible rubber flange (or collar) attached between the jetting nozzles and the submersible pump.
    - The flange prevents flow from the jet to the pump from occurring within the well casing, thereby forcing the flow through the screen and filter pack.
    - Flanges should be constructed of flexible rubber and sized appropriately to slide freely up and down inside the well casing, yet provide a partial seal against vertical flow.

#### SOP: Well Development – Water Jetting 5

Rev. #: 1 | Rev Date: July 02, 2010

- Associated tubing and control wire bundled together (e.g., with zip ties or heat shrink plastic wrapping). The jetting assembly must be sufficiently rigid and bundled to minimize friction between the well casing and the jetting tool and allow vertical movement and rotation (if necessary). Ease of jetting tool movement within the well can become a concern in small (i.e., 2-inch) diameter wells if the jetting tool is not properly designed.
- Above-grade jetting assembly consisting of:
  - potable water supply (e.g., 250-gallon water tote)
  - above-grade water pump (e.g., booster pump) and recirculation or pressure relief line into supply water tank, if needed
  - injection manifold consisting of the following:
    - poly vinyl chloride (PVC) or steel pipe, with an input connection from the water pump and branches to each jetting line (all piping and tubing must be pressure rated to withstand jetting pressures)
    - pressure gage
    - gate valves on each output line
  - Storage tank for extracted water
  - Filter unit (if recirculation is used)
    - If recirculation is being used, sediment must be removed prior to re-injection.
    - Sediment may erode nozzle orifices (thereby reducing delivered pressure), harm the jetting pump, and abrade screen material,
- Power supplies for jetting pump and submersible pump.

#### IV. Cautions

- Delivery pressures greater than 150 pounds per square inch (psi) are often required to achieve effective jetting velocities. All tubing/piping, connections, and pumps should be rated for the anticipated delivery pressures, and should be inspected for damage prior to and periodically during use.
- Care should be taken when testing the jetting tool above ground. Similar to a pressure washer, high pressure water exiting the jets may pose a risk if it comes into direct contact with skin.
- The type of screen opening greatly affects what percentage of the jetted water reaches the formation surrounding the filter pack (i.e., v-shaped continuous slot screens transfer the high velocity stream more effectively than louvered screens).
- Water exiting the jetting tool should not exceed the recommended screen exit velocity of 0.05 ft/sec to prevent possible damage to the well screen.

Rev. #: 1 | Rev Date: July 02, 2010

- Continuous movement of the jetting tool is recommended to minimize formation of cavities within the filter pack and to protect the screen.
- Water pressure should not exceed 100 psi when jetting PVC screens.
- Only use sediment-free water with the jetting tool to minimize damage to the well screen from abrasive particles, avoid erosion of the nozzle orifice (which could cause a reduction in nozzle velocity), and protect the jetting pump.
- Avoid using development fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

#### V. Health and Safety Considerations

Field activities associated with well development by jetting will be performed in accordance with the site-specific HASP, a copy of which will be present onsite during such activities. Note that additional precautions may be required to account for the use of pressurized equipment or handling large storage vessels.

#### VI. Procedure

The procedures for developing a well using the <u>jetting method</u> are outlined below. These procedures are applicable to wells that are screened primarily in clay and silt formations.

- 1. Don appropriate PPE (as required by the HASP).
- 2. Using a non-phosphate cleaner (e.g., Alconox) and potable water, clean and double rinse all non-dedicated equipment that will enter the well (refer to separate equipment cleaning procedures where applicable).
- 3. Breathing zone testing is recommended (to be determined by the project team). If required:
  - a. Open the well cover while standing upwind of the well; remove the well cap. Insert the PID probe approximately 4 to 6 inches into the casing or the well headspace; cover with gloved hand.
  - b. Record the PID reading in the field notebook.
  - c. If the well headspace reading is less than 5 PID units, proceed; if the headspace reading is greater than 5 PID units, screen the air within the breathing zone. If the PID reading in the breathing zone is below 5 PID

#### SOP: Well Development – Water Jetting 7

Rev. #: 1 | Rev Date: July 02, 2010

units, proceed. If the PID reading is above 5 PID units, move upwind from the well for 5 minutes to allow the volatiles to dissipate, then repeat the breathing zone test. If the reading is still above 5 PID units, don the appropriate respiratory protection in accordance with the requirements of the HASP. Record all PID readings.

- Measure the depth to water and total well depth. Check for the presence of non-aqueous phase liquid (NAPL). *If NAPL is present do not continue development until consulting with the task manager (or TKI specialist).* Compare the well depth to the as-built construction details. Calculate the volume of water in the well casing.
- 5. Hydraulic testing is recommended to evaluate the effectiveness of the jetting process (implementation will be determined by the project team). If hydraulic testing is to be performed, the following process can be used:
  - a. Lower a pump into the well and begin pumping while monitoring the water level in the well.
  - b. Adjust the pumping rate to achieve steady flow from the well, with drawdown in the well at 20 to 30 percent of the original water column.
  - c. Record this flow rate and drawdown and calculate the initial specific capacity:  $SC = \frac{Flow(Q)}{drawdown(\Delta h)}$
- 6. Determine final jetting/purging parameters and set-up:
  - a. Calculate the operational jetting pressure (manifold gage reading) to achieve the target jet velocity (i.e., 150 to 300 ft/sec) based on the jet nozzle manufacturer's specifications (e.g., 200 psi at 0.5 gallons per minute [gpm]), tubing losses, and equipment pressure rating. See attached calculation worksheet.
  - b. Water recirculation should not be completed unless approved by the project manager. Recirculation of sediment-laden water may damage the well screen or jetting pump.
  - c. Lower the jetting tool into the well. Check that the swabbing flange is loose enough to permit the tool to move up and down inside the well casing without significant effort.
  - d. Place a water level meter into the well to monitor the water level during development.
- 7. To maintain the static water level in the well, the rate of water extraction must equal or exceed the rate of injection. A water level above baseline will drive fines suspended in the water column into the formation and therefore decrease the effectiveness of development. Carefully monitor the water level

Rev. #: 1 | Rev Date: July 02, 2010

to insure that it does not exceed 20 percent of the available head space in the well.

- 8. Jet and purge the saturated portion of the well screen in 2-foot increments, as follows:
  - a. Start jetting in the bottom 2-foot interval of the well screen (or as close to the bottom of the screen as practical, based on the jetting assembly). While jetting:
    - i. Pump from beneath (or above) the jetting tool at a rate sufficient to maintain the water-level in the well at or below the static water level.
    - ii. Gently swab the well while pumping by slowly moving the jetting tool up and down the well screen at no greater than 0.5 ft/sec. Vigorous surging is not appropriate. Do not reverse the up/down stroke suddenly.
    - iii. Hold the jetting tool loosely and away from the body. If jetting/surging rates are imbalanced or a filter pack blockage prevents flow, the tool may push upward or downward. Do not force the tool to remain stationary; adjust jetting/surging rates as needed.
    - iv. Do not let the tool remain in one position for longer than a few seconds.
  - b. Continue jetting in the 2-foot interval for 10 minutes, rotating the tool (if necessary) and covering the well screen interval multiple times.
  - c. Repeat steps 8a through 8b in the next 2-foot interval of screen until the entire length of the saturated screen interval has been developed.
  - d. Sediment loading and turbidity of the extracted water should improve throughout the jetting process. Visual observations of the sediment and turbidity should be recorded in the field notes or the well development form (see Section X, References). The project team may opt to record water quality parameters (temperature, conductivity, pH, turbidity) during development.
- 9. Monitor and record water use (i.e., volume of potable water injected and volume of water purged by pumping) throughout the development process. Increasing the extraction rate or decreasing the injection rate may be necessary to prevent the water level in the well from rising above static conditions or to prevent the well from going dry.
- 10. After development, measure the depth to water and the total well depth, and check for the presence of non-aqueous phase liquid (NAPL). Confirm that the total depth of the well matches the as-built well depth within a reasonable tolerance. If a discrepancy exists, note it, and evaluate it to the degree feasible. Continue development if necessary.

Jetting SOP_Rev 1.docx

Rev. #: 1 | Rev Date: July 02, 2010

- 11. If hydraulic testing was completed prior to development, a test should be completed at the end of development activities to ascertain the level of improvement (see Step 5). Additional development may be needed if the well does not meet design criteria.
- 12. When complete, re-secure the well cover.
- 13. Using a non-phosphate cleaner (e.g., Alconox) and potable water, clean and double rinse all non-dedicated equipment that entered the well (refer to separate equipment cleaning procedures where applicable). Place disposable materials in plastic bags for appropriate disposal, and decontaminate reusable, downhole pump components and/or bailer.

#### VII. Waste Management

IDW generated during well development may include disposable equipment and PPE, purged groundwater, and water associated with equipment cleaning. All disposable and liquid waste should be handled and disposed in accordance with project plans and applicable regulations.

#### VIII. Data Recording and Management

Well development activities will be documented in a proper field notebook and/or Personal Digital Assistant (PDA). Pertinent information will include:

- General Field Notes:
  - personnel present onsite
  - times of arrival and departure
  - significant weather conditions
  - timing of well development activities
- Jetting Field Notes:
  - observations of NAPL
  - manifold pressure
  - water levels before and during testing
  - observations of purge water color, turbidity, odor, and sheen over time
  - purge rate
  - initial and final total depth of well
  - hydraulic testing parameters (if specified by project technical lead)

### SOP: Well Development – Water Jetting 10

Rev. #: 1 | Rev Date: July 02, 2010

IX. References

Jetting Design Tool

Well Development Form