King County Department of Natural Resources and Parks Solid Waste Division

ENVIRONMENTAL INVESTIGATIONS, MONITORING, AND REMEDIATION SERVICES FOR CLOSED LANDFILLS CONTRACT NO. E00102E08

TASK No. 310.1.7.5

TECHNICAL MEMORANDUM PERIMETER PROBE INVESTIGATION AND MONITORING— VASHON LANDFILL

Prepared by

Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 206.441.9080

February 2, 2016

Note:

Some pages in this document have been purposely skipped or blank pages inserted so that this document will copy correctly when duplexed.

TECHNICAL MEMORANDUM PERIMETER PROBE INVESTIGATION AND MONITORING

VASHON LANDFILL

Prepared for

Department of Natural Resources and Parks
Solid Waste Division
201 South Jackson Street, Room 701
Seattle, Washington 98104

by

Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206.441.9080

February 2, 2016

TABLE OF CONTENTS

Vashon Landfill

List of I	Figures
List of	Tables
1.0	Introduction
2.0	Background
3.0	Field Investigation
4.0	Results
5.0	Recommendations
LIST	OF FIGURES
Figure	1. Gas Clam Data Plot
Figure	2. Barometric Pressure Plot
Figure	3. Perimeter LFG Probe Location Map
Figure	4. Proposed Temporary Probe Location Map15
LIST	OF TABLES
Table 1	1. Summary of Probe and Monitoring Well Water Level Measurements and Construction Details 5
Table 2	2. Summary of Landfill Gas Monitoring Results.

LIST OF APPENDICES

Appendix A Daily Field Reports

1.0 INTRODUCTION

Herrera Environmental Consultants (Herrera) has prepared this Technical Memorandum for King County Solid Waste Division (KCSWD) under Contract Number: E00102E08 for Environmental Investigations Monitoring, and Remediation Services for Closed Landfills. The Technical Memorandum addresses Perimeter Probe Investigation and Monitoring at Vashon Landfill under Task 310.1.7.5, based on the Work Plan completed by Herrera on November 19, 2015.

2.0 BACKGROUND

A review of recent landfill gas (LFG) system monitoring results at Vashon Landfill indicated:

- No methane detected in lateral EF-1 during 9 of 12 monthly monitoring events (June 2014 to June 2015), with concentrations of 6.5, 10.1, and 1.2 percent methane detected November 2014, December 2014, and January 2015, respectively.
- Methane concentrations ranged from 0 to 3.1 percent and from 0 to 0.9 percent in laterals EF-2 and EF-3, respectively, in the same period (June 2014 through June 2015)
- The valve at lateral T-2 remained closed during this past year and no methane was detected when monitored
- Methane concentrations greater than 50 percent have been measured in south slope probe VTP2D, periodically from September 18 to October 5, 2015 (Figure 1).

In addition, no methane was detected in T-2 during March and April 2013, when Herrera and King County monitored the extraction system with the valves fully closed, partially opened, and fully opened.

Blockages within laterals EF-1, EF-2, EF-3, and T-2 were originally thought to have resulted in this low to no LFG found over the last couple of years of monitoring. A camera survey, conducted in June 2015, indicated no blockages in any of the laterals; however, some fine-grained material was identified both within a small portion of the EF-1 lateral pipe itself, which was removed during cleaning as well as in bedding material exposed during pipe excavation. Based on limited observations, it appears that this fine-grain material may exist along the entire lateral lengths, limiting LFG flow into the pipes. It was also determined that laterals EF-1, EF-2, and EF-3 are all connected to each other.

The present configuration of the LFG collection system at the south end of the landfill, including lateral EF-1 is not able to collect methane from the vicinity of VTP2D, Additional infrastructure is needed south of EF-1 to effectively collect LFG that is contributing to groundwater contamination.

Herrera's scope of work for Task 310.1.6.4 currently includes influence testing to determine lateral effectiveness in drawing LFG from surrounding formations and to evaluate potential LFG migration/interconnection within the gravel blanket.

3.0 FIELD INVESTIGATION

Herrera conducted a field investigation of existing perimeter probes on December 1, 2, and 3, 2015, during a downward trending period of barometric pressure (Figure 2). Daily field reports are provided in Appendix A. In general, the barometric pressure trend was downward, although pressure stagnated during the first 2 days, then decreased the third day of monitoring. Figure 2 provides locations of NP-1 through NP-8 (NP probes each include three nested probes); GP-1; GP-2; and three temporary probes VTP1S, VTP2S, and VTP2D. LFG measurements also were taken from monitoring wells MW-21 and MW-35.

The field investigation included:

- Measured total depth (and water levels, if present) in 28 perimeter probes and three temporary probes and compared to conditions identified in probe construction logs to determine whether screens were blocked blockages exist and compare to conditions identified in probe construction logs
- Measured water levels in monitoring wells MW-21 and MW-35 to compare with well construction logs to verify that there is an unsaturated screen section
- Monitored LFG concentrations at all probe and monitoring well locations using purge times
 evacuating a minimum of one probe/well volume at each location while recording gas
 measurements.

The LFG monitoring procedures provided in the November 2015 Work Plan – Perimeter Probe Investigation and Monitoring – Vashon Landfill were followed during this investigation.

4.0 RESULTS

Table 1 provides a summary of water level measurements and construction details for the probes and monitoring wells. Standing water was detected in many of the shallow probes, but the water level extended above the screened zone only at VTP1S. Approximately 0.5 to 1.5 gallons of water were purged from probes NP1S, NP2S, NP3S, NP6S, NP8S, VTP1S, VTP2S, and VTP2D2 prior to monitoring. Despite purging water from VTP1S on December 1, prior to monitoring, the water level extended above the screen when re-monitored on December 3 and purging was required again prior to monitoring.

The total measured well depth was greater than the total depth reported on construction logs in 14 probes. The discrepancy ranged from 0.2 to 5.4 feet; however, it appears that probes 8S, 8I, and 8D were altered from aboveground to belowground completions. The discrepancy in those probes ranged from 4.5 to 5.4 feet. The discrepancy in the remaining 11 probes ranged from 0.2 to 1.6 feet, which could be attributed to the sump installed at the bottom of each probe.

At MW-35, a transducer and submersible pump are installed with cable and tubing to a depth of over 100 feet, preventing water level measurement. Holes in the well cap are used to suspend the cable

prevented a good seal for LFG monitoring. Note: the well is 4 inches in diameter, not 2 inches, as reported, which would affect the purge time needed if one full volume is required prior to monitoring.

Table 2 provides a summary of LFG monitoring results. Methane was detected only at probe VTP2D, with a concentration of 10.1 percent by volume on December 1 and 29.5 percent on December 3. Hydrogen sulfide was only detected at VTP2D, with a concentration of 10 parts per million (ppm) on December 3 (it was not detected December 1). Probe VTP2D is located approximately 150 feet south of the southern limit of the lined refuse area (Figure 3). Figure 4 defines an area where refuse is potentially in direct contact with a transmissive upper sand unit, situated beneath less permeable glacial till. Refuse reportedly extends approximately 360 feet beyond the southern limit of lined refuse, provided in the March 2006 Vashon Island Closed Landfill Environmental Evaluation. Approximately 5.5 feet of refuse was observed in probe VTP2D at depths ranging from 19.5 to 25 feet below ground surface (bgs), the probe did not extend to the bottom of the refuse. Approximately 70 feet west-southwest, refuse was encountered in well MW-33 at a depth of 12 to 28 feet bgs and thickness of 16 feet.

An attempt was made to measure LFG at MW-35, but holes in the well cap could not be sealed. With a well diameter of 4 inches, it would take approximately 1 hour to purge one pore volume. The well was purged for approximately 3 minutes at a rate of approximately 5,000 milliliters per minute, but no methane was detected.

5.0 RECOMMENDATIONS

Herrera offers the following recommendations:

- Based on the presence of methane concentrations ranging from 0 to 55.1, percent by volume in probe VTP2D, installation of one extraction well located between EF-1 and VTP2D, and four temporary gas probes is recommended. The temporary gas probes will be paired at the two locations shown on Figure 4; a shallow probe will be screened in the refuse; and a deeper probe will be screened in the soil beneath the refuse. The well and probes will be used to characterize the extent and thickness of refuse, the presence of methane and to conduct influence testing (Figure 4).
- Temporary probe VTP1S should be abandoned. Methane has never been detected in the probe, it
 is screened in glacial till, offering limited radial influence, and it usually requires purging to remove
 water that extends above the screened zone. A deeper replacement probe should be installed to
 determine if LFG has migrated beyond the landfill boundary caused by refuse in direct contact with
 Unit B (Qva) soils beneath the landfill.
- Well MW-35 should be monitored for LFG. Monitoring would be performed by installing a drop tube
 to the screen zone. This well is screened in the Cc2 permeable sand unit, located below the
 screened zones of the deep perimeter probes. The presence of LFG at this depth could contribute
 to groundwater contamination.

Environmental Investigations, Monitoring, and Remediation Services for Closed Landfills
Technical Memorandum: Perimeter Probe Investigation and Monitoring—
Vashon Landfill

Influence testing will be conducted by inducing a low vacuum in the proposed extraction well and
monitoring the two existing temporary probes, VTP2S, VTP2D, the condensate trap, and the four
proposed probes to the east and west of the extraction well.

Environmental Investigations, Monitoring, and Remediation Services for Closed Landfills
Technical Memorandum: Perimeter Probe Investigation and Monitoring—Vashon Landfill

	Table 1. Su	mmary of Probe	e and Monitoring	g Well Water Lev	vel Measureme	nts and Constru	ction Details.	
Monitoring Location	Measurement Date	Static Water Level (feet below TOC)	Measured Total Depth (feet below TOC)	Construction Log Well Depth (feet below TOC)	Screen Setting (feet below TOC) ^a	Screen Length (feet)	Unsaturated Screen	Well Stickup (feet) ^b
NP1S	12/1/2015	20.52	24.6 ^c	24.1	14.1–24.1	10	6.4 ^d	2.1
NP1I	12/1/2015	Dry	45.8	49.8	39.8–49.8	10	6.0	1.8
NP1D	12/1/2015	Dry	106.9 ^c	106.0	91.5–106.0	14.5	14.5	1.5
NP2S	12/1/2015	21.37	23.7	24.0	14.0-24.0	10	7.4 ^d	2.0
NP2I	12/1/2015	58.72	58.9 ^c	58.6	48.6–58.6	10	10	1.6
NP2D	12/1/2015	Dry	95.8	96.2	81.2–96.2	15	14.6	1.2
NP3S	12/1/2015	14.78	21.7	23.9	13.9-23.9	10	0.9 ^d	1.9
NP3I	12/1/2015	Dry	45.2	45.6	35.6-45.6	10	9.6	1.6
NP3D	12/1/2015	NA	NA	93.2	83.2-93.2	10	NA	1.2
NP4S	12/2/2015	24.05	24.3 ^c	24.0	14.0–24.0	10	10	2.0
NP4I	12/2/2015	Dry	44.2 ^c	43.6	33.6-43.6	10	10	1.6
NP4D	12/2/2015	NA	NA	91.3	76.3–91.3	15	NA	1.3
NP5S	12/2/2015	22.14	22.3 ^c	22.1	12.1–22.1	10	10	2.1
NP5I	12/2/2015	Dry	42.6 ^c	41.7	31.7-41.7	10	10	1.7
NP5D	12/2/2015	NA	NA	81.4	66.4-81.4	15	NA	1.4
NP6S	12/1/2015	14.95	23.7 ^c	23.4	13.4-23.4	10	1.6 ^d	1.4
NP6I	12/1/2015	Dry	46.0	46.0	36.0-46.0	10	10	1.0
NP6D	12/1/2015	NA	NA	105.7	90.7–105.7	15	NA	0.7
NP7S	12/2/2015	23.30	23.9 ^c	23.5	13.5–23.5	10	9.8	1.5
NP7I	12/2/2015	50.95	51.2 ^c	51.8	40.8–50.8	10	10	1.8
NP7D	12/2/2015	Dry	102.8 ^c	102.2	88.2-101.2	13	13	2.2

Environmental Investigations, Monitoring, and Remediation Services for Closed Landfills

Technical Memorandum: Perimeter Probe Investigation and Monitoring—

Ta	Table 1 (continued). Summary of Probe and Monitoring Well Water Level Measurements and Construction Details.										
Monitoring Location	Measurement Date	Static Water Level (feet below TOC)	Measured Total Depth (feet below TOC)	Construction Log Well Depth (feet below TOC)	Screen Setting (feet below TOC) ^a	Screen Length (feet)	Unsaturated Screen	Well Stickup (feet) ^b			
NP8S	12/2/2015	18.48	25.5 ^c	21.0	11.0–21.0	10	7.5 ^d	-1.0			
NP8I	12/2/2015	Dry	62.7 ^c	58.2	48.2–58.2	10	10	-0.8			
NP8D	12/2/2015	Dry	113.4 ^c	108.8	93.8–108.8	15	15	-1.2			
GP-1	12/2/2015	Dry	31.2	31.6	21.6–31.6	10	9.6	1.6			
GP-2	12/2/2015	Dry	31.4	31.7	26.7-31.7	5	4.7	1.7			
VTP1S	12/1/2015	13.88	17.4	17.7	15.2–17.7	2.5	-1.3 ^d	2.7			
VTP2S	12/1/2015	8.60	9.9	10.0	7.5–10.0	2.5	1.1 ^d	3.0			
VTP2D	12/1/2015	26.33	27.40	27.5	25.0–27.5	2.5	1.3	3.5			
MW-21	12/2/2015	106.85	NM	111.9	93.4–111.9	18.5	13.5	1.9			
MW-35 ^e	12/3/15	NM	NM	124.8	114.5–124.5	10	NM	NM			

^a Screen settings based on construction logs.

NA – not accessible.

Vashon Landfill

NM – not measured.

^b Well stickup relative to ground surface.

^c Measured total well depth greater than total depth reported on construction log.

^d Perched groundwater pumped from probe prior to monitoring.

^e 4-inch-diameter well. Unable to remove dedicated submersible pump and transducer.

	7	able 2.	Summary of	Landfill Gas	Monitoring	g Results.		
Monitoring Location	Date	Time	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ 0)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppm)
NP1S	12/1/2015	12:20	29.65	0.50	0.0	2.8	17.0	0
NP1S	12/3/2015	7:59	29.07	0.03	0.0	2.7	17.0	0
NP1I	12/1/2015	12:35	29.65	0.10	0.0	0.3	20.6	0
NP1I	12/3/2015	8:12	29.07	0.00	0.0	0.4	18.5	0
NP1D	12/1/2015	12:50	29.65	0.00	0.0	0.3	18.4	0
NP1D	12/3/2015	8:12	29.07	0.00	0.0	0.4	18.5	0
NP2S	12/1/2015	13:45	29.61	0.00	0.0	1.7	19.3	0
NP2S	12/3/2015	8:46	29.07	0.00	0.0	1.7	19.5	0
NP2I	12/1/2015	14:00	29.61	0.00	0.0	0.4	18.6	0
NP2I	12/3/2015	9:00	29.07	0.00	0.0	0.4	19.1	0
NP2D	12/1/2015	14:20	29.61	0.00	0.0	0.5	19.2	0
NP2D	12/3/2015	9:12	29.07	0.00	0.0	0.6	19.3	0
NP3S	12/1/2015	15:05	29.62	0.08	0.0	2.1	17.9	0
NP3S	12/3/2015	9:44	29.07	0.08	0.0	2.2	17.7	0
NP3I	12/1/2015	15:10	29.62	0.00	0.0	2.7	17.9	0
NP3I	12/3/2015	9:55	29.07	0.00	0.0	2.7	17.9	0
NP3D	12/1/2015	15:15	29.62	0.00	0.0	1.8	18.1	0
NP3D	12/3/2015	10:00	29.07	1.94	0.0	1.8	18.1	0
NP4S	12/2/2015	8:50	29.65	0.18	0.0	3.4	18.7	0
NP4I	12/2/2015	9:04	29.65	0.01	0.0	2.8	18.4	0
NP4D	12/2/2015	9:10	29.65	0.05	0.0	1.8	16.8	0
NP5S	12/2/2015	10:55	29.66	0.02	0.0	4.7	16.7	0
NP5I	12/2/2015	11:10	29.66	0.03	0.0	3.9	17.9	0
NP5D	12/2/2015	11:18	29.66	0.01	0.0	3.0	16.3	0
NP6S	12/1/2015	16:17	29.63	0.00	0.0	4.2	17.4	0
NP6S	12/3/2015	10:30	29.04	0.00	0.0	4.9	16.6	0
NP6I	12/1/2015	16:25	29.63	0.00	0.0	3.3	19.4	0
NP6I	12/3/2015	10:38	29.04	0.00	0.0	3.1	19.5	0
NP6D	12/1/2015	16:38	29.63	0.00	0.0	1.8	19.9	0
NP6D	12/3/2015	10:49	29.04	0.02	0.0	1.8	19.6	0
NP7S	12/2/2015	13:36	29.58	0.18	0.0	3.5	17.6	0
NP7I	12/2/2015	13:50	29.58	0.00	0.0	1.2	20.4	0
NP7D	12/2/2015	14:04	29.58	0.00	0.0	0.9	19.3	0
NP8S	12/2/2015	15:54	29.50	0.00	0.0	7.2	12.3	0
NP8I	12/2/2015	16:04	29.50	0.00	0.0	3.1	15.1	0
NP8D	12/2/2015	16:12	29.50	0.00	0.0	0.7	15.5	0
GP-1	12/2/2015	9:32	29.65	0.00	0.0	2.2	19.4	0
GP-2	12/2/2015	12:46	29.64	0.00	0.0	2.7	18.0	0
OI -Z	12/2/2013	12.40	Z 7.04	U.Z I	0.0	۷.1	10.0	L

Vashon Landfill

	Table 2 (continued). Summary of Landfill Gas Monitoring Results.										
Monitoring Location	Date	Time	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ 0)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppm)			
VTP1S	12/1/2015	11:10	29.71	0.03	0.0	0.1	20.7	0			
VTP1S	12/3/2015	11:20	29.03	NA	0.0	0.1	21.4	0			
VTP2S	12/1/2015	8:30	29.80	-0.41	0.0	5.5	13.5	0			
VTP2S	12/1/2015	9:48	29.81	0.00	0.0	3.8	16.7	0			
VTP2S	12/3/2015	12:00	29.06	0.00	0.0	0.1	21.4	0			
VTP2D	12/1/2015	8:59	29.80	0.00	10.1	9.9	13	0			
VTP2D	12/3/2015	12:12	29.06	0.00	29.5	20.5	6.7	10			
MW-21	12/2/2015	11:52	29.68	0.00	0.0	0.1	21.6	0			
MW-35*	12/3/2015	12:20	29.06	NA	0	0.9	17.5	0			

^{*4-}inch-diameter well. Unable to get a good seal for LFG monitoring. **Bold** indicates detection of methane and hydrogen sulfide.

Figures

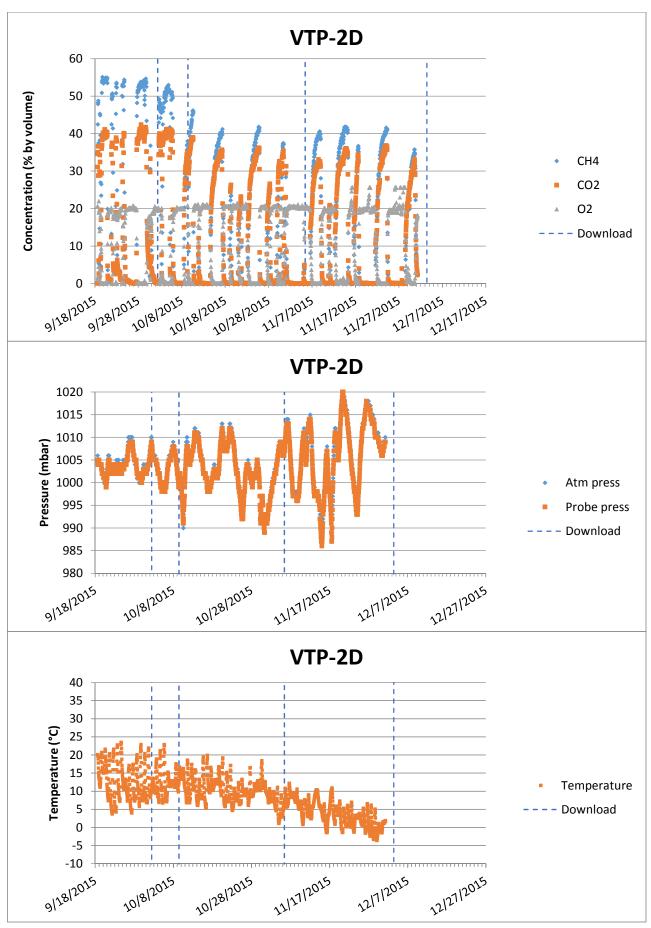
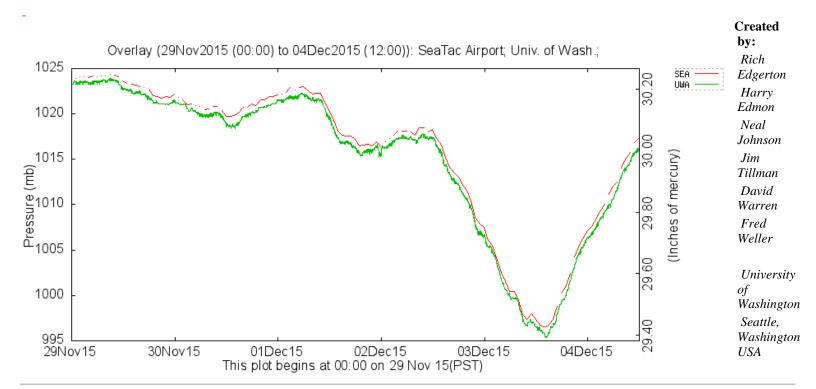
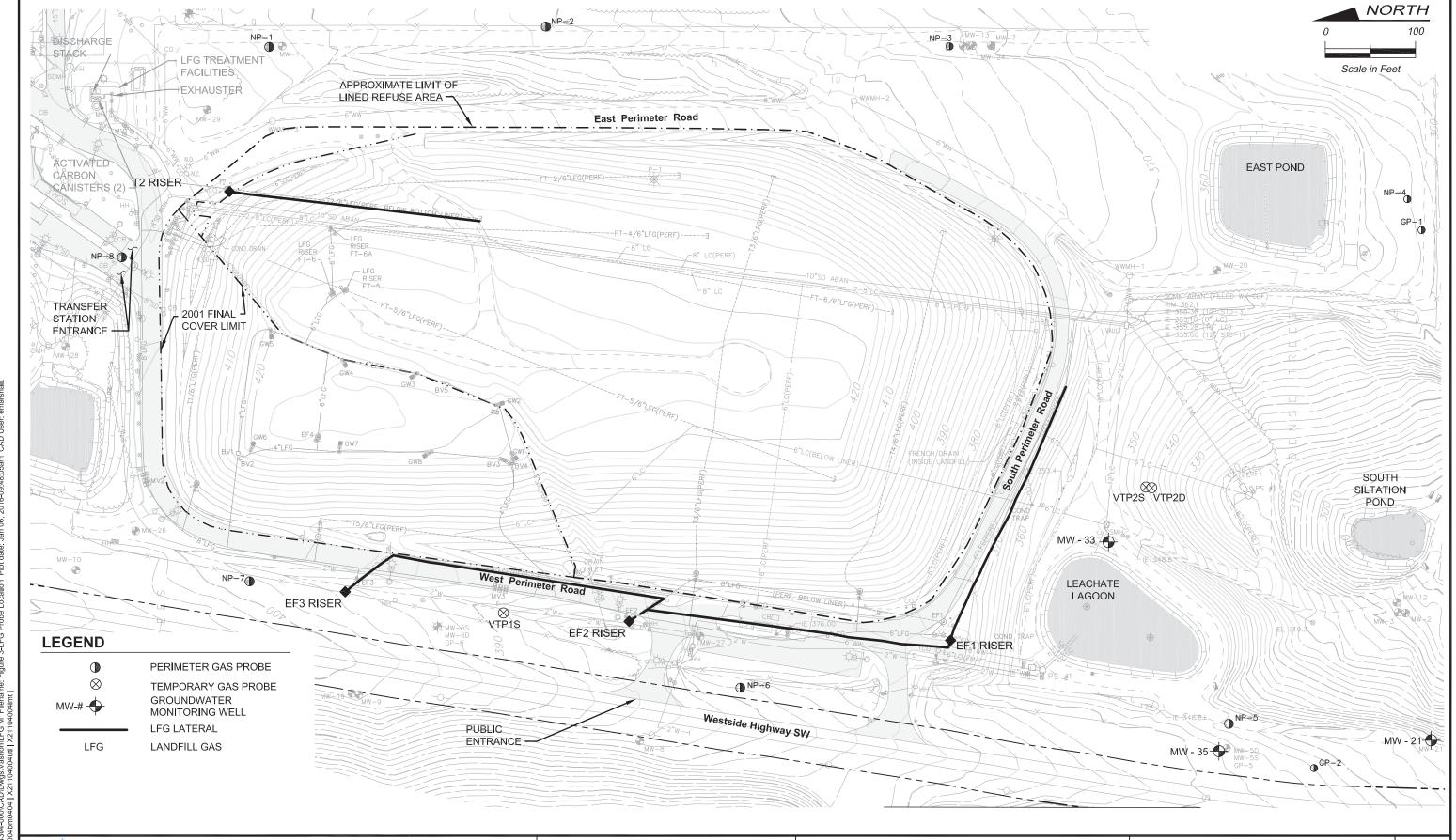



Figure 1. Gas Clam Data Plot.

Pressure (millibars)



Clicking on a plot brings up the data file that was used to create that plot and available station information.

Current time GMT/UTC Thu Dec 17 16:44:48 2015 Local (Pacific Standard Time) Thu Dec 17 08:44:48 2015

Figure 2. Barometric Pressure Plot.

PERIMETER LFG PROBE LOCATION MAP

Vashon Island Landfill King County, Washington

Sheet 3

Date January 2016

PROPOSED TEMPORARY PROBE LOCATION MAP

Data

Vashon Island Landfill King County, Washington Date January 2016

Appendix A

Daily Field Reports

DAILY FIELD REPORT

PROJECT NO. 09-04304-000

DAY TUESD		0 1 1 5 wo	ORK PERIOD 7:30	AM TO 16	:45 PM R	EPORT NO. 1
WEATHER S	unny, calm TEMP.	<u> </u>	40s °1	PRECIPITATION	None	
PERSONNEL ON	USITE				- *1017.07	
Simon Butler	r - Aspect				1=	
Bruce Carpe	nter – Herrera			15		A 5 18 1
					7 1 2 3	1 To 12
					1 1- 3	4 15
1.4	The state of the s	1,312	4.1.5			
		EQUIPA	MENT ON PROJECT		LEVAL TO	
			ESCRIPTION			
Herrera – GE	EM 2000 Plus, SKC pump, wat	er level indicator				
1						
location VTF	PIS, prior to purging. Water levove stopcock was not able to be hane was detected at only one	vels and total depti	hs were not able to be	e measured at locat I well, none appeare	ions NP3D and NP ed to be clogged du	P6D,
					176, 4 4	
Action Item	ns: Aspect requested re-monito	oring the 15 probes	s tested today on eith	er Wednesday or T	hursday. The baron	netric
pressure is p	rojected to continue to drop ov	er the next few da	ys.			
Salar		340				
	(18mm	AG	56	ı	2/7/15	- 4/3
	SIGNATURE	7		DATI	3	

DAILY FIELD REPORT

PROJECT NO. 09-04304-000

(1)	DAY WEDNESDAY DATE 1 2 0 2 1 5 WORK PERIOD 7:45 AM TO 16:30 PM REPORT NO. 2									
	WEATHER Sunny, calm TEMP. 40s °F PRECIPITATION None									
(2)	PERSONNEL ONSTITE									
	Bruce Carpenter – Herrera									
(3)	EQUIPMENT ON PROJECT									
(6)	DESCRIPTION									
	Herrera – GEM 2000 Plus, SKC pump, water level indicator									
(4)	Monitored 15 probes today, including NP4 (S,I,D), NP5 (S,I,D), NP7 (S,I,D), NP8 (S,I,D), GP-1, GP-2, and MW-21. Groundwater was present at probes NP4S, NP5S, NP7S, and NP8S, but purged only from probe NP8S due to the presence of 7 feet of groundwater. Less than 0.5-inches of groundwater were detected at the other three locations, not enough to purge, the screen extends 10 feet at each of the NP probes. Water levels and total depths were not able to be measured at locations NP4D and NP5D, because the pvc stopcock was not able to be removed. All of the probes functioned well, none appeared to be clogged during purging. Methane was not detected at any of the 15 monitored locations.									
(5)	Action Items: Per Aspect's request the 15 probes tested on Tuesday will be re-monitored on Thursday during a period of lower									
	barometric pressure. Monitoring well MW-35 is constructed with 4-inch diameter pvc, not 2-inch as noted in the work plan. The									
	well cap is perforated to suspend a transducer, pressure tubing, and a submersible pump to approximately 119 feet below ground									
	surface. It is unlikely this well cap can be effectively sealed to test for methane.									
(6)	SIGNATURE DATE									

DAILY FIELD REPORT

PROJECT NO. 09-04304-000

D.		D	Cloud	colm		TE	41)				40-	0			care			Р М	REPOR		_3
		_		, caiiii			vii	_	_	_	40s	ol:	PRE	CIPITA	TION		Occa	asiona	l light	rain	
	ERSON			-																	
-	Bruce	Carp	penter -	Herre	a						_		-		-						
_										N. V					-						8
_	-			-045	093																
_			_											_	_						
_			F.															_			
\vdash									EQUI	PMENT C	N PRO	JECT									_
<u>.</u>	Harrar		3EM 20	00 DI.	o SVC			1 ! 1		DESCRI	NOIT		- 10								_
Ľ	nener:	a – C	JEWI Z	OU Plu	s, SKC	pump.	water I	evel ind	icato	r											
2																					
,																					- 1
			OMPLISH					15 probe													
_(_F	(S,I,D).	, an	d NP6	(S,I,D)	Groun	dwate n at o	r was pi	esent at	prob P1S.	es VTP Ground	IS, V	ΓΡ2S, V was pur	TP2E	O, NPI	S, NE TPIS	2S, N and V	P3S, as	nd NP	P6S, bu ane wa	t only	
_ _ _ _	(S,I,D)	, and abo	d NP6 ve the only or	(S,I,D) op of t	Groun he screetion, VT	dwate en at o	r was pr ne locat t a conc	esent at ion, VTI entratio	prob P1S.	es VTP Ground 29.5 per	IS, V water cent b	ΓΡ2S, V was pur y volum	TP2C ged fr ie. Ap	O, NP1 rom V	S, NF FP1S nately	2S, N and V , 15,0	P3S, ar TP2S. 00 cubi	nd NP Metha	P6S, bu ane wa timeter	t only s s (cc)	
	present detected were pu	abo d at	d NP6 ove the conly or	(S,I,D) op of t e locat well M	Groundhe screetion, VT	en at o P2D a out due	r was prine location to the to the	esent at ion, VTI entratio perforate	PIS. of 2 ed we	es VTP Ground 29.5 per ell cap, i	water water by	ΓP2S, V was pur y volum not poss	TP2C ged fr ie. Ap	O, NP1 rom V	S, NF FP1S nately	2S, N and V , 15,0	P3S, ar TP2S. 00 cubi	nd NP Metha	P6S, bu ane wa timeter	t only s s (cc)	
_(_I _C _V	present detected were pu	abo d at	d NP6 ove the conly or	(S,I,D) op of t e locat well M	Groundhe screetion, VT	en at o P2D a out due	r was prine location to the to the	esent at ion, VTI entratio	PIS. of 2 ed we	es VTP Ground 29.5 per ell cap, i	water water by	ΓP2S, V was pur y volum not poss	TP2C ged fr ie. Ap	O, NP1 rom V	S, NF FP1S nately	2S, N and V , 15,0	P3S, ar TP2S. 00 cubi	nd NP Metha	P6S, bu ane wa timeter	t only s s (cc)	
	present detected were pu	abo d at	d NP6 ove the conly or	(S,I,D) op of t e locat well M	Groundhe screetion, VT	en at o P2D a out due	r was prine location to the to the	esent at ion, VTI entratio perforate	PIS. of 2 ed we	es VTP Ground 29.5 per ell cap, i	water water by	ΓP2S, V was pur y volum not poss	TP2C ged fr ie. Ap	O, NP1 rom V	S, NF FP1S nately	2S, N and V , 15,0	P3S, ar TP2S. 00 cubi	nd NP Metha	P6S, bu ane wa timeter	t only s s (cc)	
	present detected were pu	abo d at	d NP6 ove the conly or	(S,I,D) op of t e locat well M	Groundhe screetion, VT	en at o P2D a out due	r was prine location to the to the	esent at ion, VTI entratio perforate	PIS. of 2 ed we	es VTP Ground 29.5 per ell cap, i	water water by	ΓP2S, V was pur y volum not poss	TP2C ged fr ie. Ap	O, NP1 rom V	S, NF FP1S nately	2S, N and V , 15,0	P3S, ar TP2S. 00 cubi	nd NP Metha	P6S, bu ane wa timeter	t only s s (cc)	
	present detecte were pu	d at urged	d NP6 ove the conly or d from One casi	(S,I,D) op of t e locat well M ng vol	Groun he scree ion, VT W-35, t ume in v	en at o P2D a out due	r was pine locate t a conce to the W-35 is	esent at ion, VTI entratio perforate s approx	PIS. n of 2 ed we imate	es VTP Ground 29.5 per ell cap, i	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTi entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTI entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTi entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTi entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTi entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	
	present detected were pu detected	t about about dat	d NP6 ove the only or d from One casi	(S,I,D) op of the locate well Mong volume li MW	Groun he scree ion, VT W-35, t ume in v	P2D a out due well M	r was pine located a concept to the W-35 is	esent at ion, VTi entratio perforate s approx	PIS. on of 2 ed we imate	es VTP Ground 29.5 per ell cap, i ely 294,	water cent b	rP2S, V was pur y volum not poss	TP2E ged fr ne. Ap sible to	o, NPI	S, NF	2S, N and V , 15,00 effect	P3S, and TP2S.	Methalic cen	P6S, bu ane wa timeter methar	s (cc)	