

Spring 2017 Long-Term Monitoring Report

Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2

CONTRACT NO. N44255-14-D-9011 LTM/OM / TASK ORDER 46

Naval Base Kitsap

Keyport, Washington

Department of the Navy Naval Facilities Engineering Command Northwest

1101 Tautog Circle, Suite 203 Silverdale, WA 98315-1101

CONTRACT NO. N44255-14-D-9011 LTM/OM / TASK ORDER 46

FINAL SPRING 2017 LONG-TERM MONITORING REPORT FORMER PLATING SHOP/WASTE OIL SPILL AREA, AREA 8, OPERABLE UNIT 2

NAVAL BASE KITSAP KEYPORT, WASHINGTON

JUNE 5, 2018

SEALASKA ENVIRONMENTAL SERVICES, LLC POULSBO, WASHINGTON

Prepared by:

James R. Ruef, LG Task Order Manager/Senior Geologist

nner Cara Alferness (

Reviewed by:

Geologist/Project Quality Control Manager

CONTENTS

1.	INT	RODUCTION	1-1
	1.1	SITE DESCRIPTION AND BACKGROUND	1-4
	1.2	CURRENT CONCEPTUAL SITE MODEL	1-5
	1.3	OBJECTIVE AND SCOPE OF WORK	1-9
		1.3.1 Selected Remedy	1-12
		1.3.2 Chemicals of Concern	1-12
	1.4	REMEDIATION GOALS	1-12
2.	FIE	LD ACTIVITIES	2-1
3.	LAI	BORATORY ANALYSIS AND DATA VALIDATION	3-1
4.	GR	OUNDWATER FLOW AND ANALYTICAL RESULTS	4-1
	4.1	GROUNDWATER FLOW	4-1
	4.2	GROUNDWATER ANALYTICAL RESULTS	4-2
		4.2.1 Volatile Organic Compounds in Groundwater	4-19
		4.2.2 1,4-Dioxane in Groundwater	4-22
		4.2.3 Dissolved Metals in Groundwater	4-22
	4.3	SEEP WATER ANALYTICAL RESULTS	4-25
		4.3.1 Volatile Organic Compounds in Seep Water	4-25
		4.3.2 Dissolved Metals in Seep Water	4-27
5.	DA	TA TRENDS	5-1
	5.1	VOLATILE ORGANIC COMPOUND TRENDS	5-1
	5.2	DISSOLVED METAL TRENDS	5-3
	5.3	1,4-DIOXANE TRENDS	5-4
6.	SUN	MMARY, CONCLUSIONS, AND RECOMMENDATIONS	6-1
	6.1	MONITORING WELL SAMPLING SUMMARY	6-1
		6.1.1 Target VOCs	6-1
		6.1.2 1,4-Dioxane	6-2
		6.1.3 Dissolved Metals	6-2
	6.2	SEEP SAMPLING SUMMARY	6-3
		6.2.1 Target VOCs	6-3
		6.2.2 Dissolved Metals	6-3
	6.3	LONG-TERM MONITORING RECOMMENDATIONS	6-4
7.	REF	FERENCES	7-1

CONTENTS (continued)

APPENDICES

 APPENDIX B FIELD FORMS, FIELD LOGBOOK PAGES, AND TABLE B-1: HISTORICAL FIELD-MEASURED PARAMETER DATA APPENDIX C DATA VALIDATION REPORTS APPENDIX D GRAPHS OF CONCENTRATION TRENDS APPENDIX E RESPONSE TO AGENCY COMMENTS ON DRAFT REPORT 	APPENDIX A	FIELD CHANGE REQUEST
APPENDIX CDATA VALIDATION REPORTSAPPENDIX DGRAPHS OF CONCENTRATION TRENDSAPPENDIX ERESPONSE TO AGENCY COMMENTS ON DRAFT REPORT	APPENDIX B	FIELD FORMS, FIELD LOGBOOK PAGES, AND TABLE B-1: HISTORICAL FIELD-MEASURED PARAMETER DATA
APPENDIX DGRAPHS OF CONCENTRATION TRENDSAPPENDIX ERESPONSE TO AGENCY COMMENTS ON DRAFT REPORT	APPENDIX C	DATA VALIDATION REPORTS
APPENDIX E RESPONSE TO AGENCY COMMENTS ON DRAFT REPORT	APPENDIX D	GRAPHS OF CONCENTRATION TRENDS
	APPENDIX E	RESPONSE TO AGENCY COMMENTS ON DRAFT REPORT

FIGURES

Figure 1-1.	NBK Keyport Vicinity Map	1-2
Figure 1-2.	Area 8 Site Location Map	1-3
Figure 1-3.	Area 8 Layout	1-6
Figure 1-4.	Area 8 Groundwater Surface Elevation Contour Map	1-7
Figure 4-1.	Distribution of Selected VOCs in Groundwater and Seep Water	4-9
Figure 4-2.	Distribution of Selected Metals in Groundwater and Seep Water	4-17

TABLES

Table 1-1.	OU 2, Area 8 Remediation Goals for Groundwater and Surface Water	1-13
Table 2-1.	Field Parameter Measurements for Groundwater and Seep Sampling	2-2
Table 4-1.	June 2017 Groundwater Table Measurements at Area 8	4-1
Table 4-2.	Summary of Selected VOC Results for Area 8 Groundwater Sampling Locations, Fall 1995 through Spring 2017	4-3
Table 4-3.	Summary of 1,4-Dioxane Results for Area 8 Groundwater and Seep Sampling Locations, Spring 2007 through Spring 2017	4-7
Table 4-4.	Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through Spring 2017	4-11
Table 4-5.	Summary of Selected VOC Results for Area 8 Groundwater Sampling Locations, Spring 2017	4-19
Table 4-6.	Summary of Other VOC Results for Area 8 Groundwater Sampling Locations, Spring 2017	4-21
Table 4-7.	Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Spring 2017	4-24
Table 4-8.	Summary of Selected VOC Results for Area 8 Seep Sampling Locations, Fall 1995 through Spring 2017	4-26
Table 4-9.	Summary of Selected Dissolved Metals Results for Area 8 Seep Sampling Locations, Fall 1995 through Spring 2017	4-28

ABBREVIATIONS AND ACRONYMS

ARAR	Applicable or Relevant and Appropriate Requirements
bgs	below ground surface
btoc	below top of casing
CFR	Code of Federal Regulations
COC	chemical of concern
DCA	dichloroethane
DCE	dichloroethene
Ecology	Washington State Department of Ecology
EPA	United States Environmental Protection Agency
FCR	field change request
IC	institutional control
LOQ	limit of quantitation
LTM	long-term monitoring
MLLW	mean lower low water
MMA	Management and Monitoring
msl	mean sea level
μg/L	microgram per liter
MTCA	Model Toxics Control Act
Navy	U.S. Navy
NAVFAC	Naval Facilities Engineering Command
NBK	Naval Base Kitsap
OU	Operable Unit
PCE	tetrachloroethene
pН	potential hydrogen
PQL	practical quantitation limit
QA	quality assurance
QC	quality control

iii

ABBREVIATIONS AND ACRONYMS (continued)

RAO	Remedial Action Objective
RG	remediation goal
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RPD	relative percent difference
SAP	Sampling and Analysis Plan
Sealaska	Sealaska Environmental Services, LLC
SIM	selected ion monitoring
SOP	standard operating procedure
SVOC	semi-volatile organic compound
TCA	trichloroethane
TCE	trichloroethene
ТО	Task Order
ТРН	total petroleum hydrocarbons
URS	URS Group, Inc. (aka URS Corporation)
UST	underground storage tank
VOC	volatile organic compound
WAC	Washington Administrative Code

1. INTRODUCTION

The U.S. Navy (Navy) is conducting a long-term monitoring (LTM) program for Area 8, Former Plating Shop/Waste Oil Spill Area in Operable Unit (OU) 2 of Naval Base Kitsap (NBK) Keyport in Keyport, Washington (Figures 1-1 and 1-2). Sealaska Environmental Services, LLC (Sealaska) is implementing the LTM program at Area 8 under Contract N44255-14-D-9011, Task Order (TO) 46, including groundwater, seep, sediment, and marine tissue (shellfish) sampling components. This report includes the results of groundwater and seep sampling conducted in June 2017 by Sealaska. Sediment and marine tissue were sampled in 2016 by others under contract to the Navy; the results of those investigations are presented under separate cover. Specific LTM program requirements were updated to incorporate changes recommended in the Fourth Five-Year Review (Navy 2015a), as defined in the Management and Monitoring (MMA) Sampling and Analysis Plan (SAP) for LTM at NBK Keyport (Navy 2017a) and approved by the Washington State Department of Ecology (Ecology), the United States Environmental Protection Agency (EPA), and the Suquamish Tribe. The recommended and adopted change was to revise the 1,4-dioxane analytical method to achieve a reduced practical quantitation limit (PQL) less than the Model Toxics Control Act (MTCA) Method B cleanup level for 1,4-dioxane. Based on recommendations made in the Spring 2016 LTM Report (Navy 2017b), tin, thallium, and mercury were also removed from the Area 8 list of analytes, as implemented in June 2017 through Field Change Request (FCR) TO 46 FCR-02 (Appendix A).

This monitoring report summarizes the background, scope, field activities, and results of groundwater and seep sampling conducted at Area 8 in June 2017. Sealaska conducted the field sampling and data analysis described herein, and prepared this data report. Subcontractors to Sealaska performed laboratory analytical and data validation tasks.

C:USERS/WALTER.BOWLES/DOCUMENTS/KEYPORT/TO 45/LTMAREA 5/NATIVE/FIG 1-1.DWG Mod: 7/20/2017 12:28:17 PM Piotod: 7/20/2017 12:28:39 PM By: WALTER BOWLES CTB: SES-MAIN-COLOR.CTB

1.1 SITE DESCRIPTION AND BACKGROUND

NBK Keyport occupies 340 acres (including tidelands) adjacent to the town of Keyport in Kitsap County, Washington, on a small peninsula in the western bays of Puget Sound. The peninsula is bordered by Liberty Bay to the north and Port Orchard Bay to the southeast (Figure 1-1). The topography of the base rises gently from the shoreline to an average elevation of 25 to 30 feet above mean sea level (msl) and then rises steeply at the southeast corner of the site to approximately 130 feet above msl.

Marine or brackish surface water bodies on and near the base include Liberty Bay, Dogfish Bay, the tide flats, a marsh pond, and a shallow lagoon. Freshwater bodies include two unnamed creeks that discharge into the marsh pond and two unnamed creeks that discharge into the lagoon.

Area 8 occupies approximately 1 acre on the eastern portion of NBK Keyport (Figure 1-2) surrounding the location of the former plating shop (Building 72; Figure 1-3). The site is located in a heavily industrialized part of the base bordered by Port Orchard Bay to the south and east (Figure 1-2). The area is predominantly flat and almost entirely paved or covered by buildings.

Past releases at Area 8 include chrome plating solution spilling onto the ground; plating wastes discharging to a utility trench; and plating solutions leaking through cracks in the Building 72 plating shop floor, waste disposal pipes, and sumps. Petroleum hydrocarbons (diesel and heavy oil) were also released to the environment from leaky underground storage tanks (USTs) and underground concrete vaults located within Area 8.

Extensive subsurface soil and groundwater sampling was conducted to determine the chemicals of concern (COCs) and their extent (Navy 1993a). The Remedial Investigation/Feasibility Study (RI/FS) process, and human health and ecological risk assessments for OU 2, Area 8 were completed in 1993 (Navy 1993a, 1993b, 1993c, and 1993d). No human health or ecological risk was identified in association with OU 2, Area 8. However, remedies were selected based on (1) unacceptable risks from exposure to soil and groundwater to future hypothetical residential, and (2) the potential for human health and ecological exposures from contaminants discharging to Port Orchard Bay and impacting marine sediment and tissue. The Record of Decision (ROD), prepared and approved in 1994 (Navy, EPA, and Ecology 1994), outlined the selected remedies for the site including continued groundwater monitoring, sediment and tissue monitoring, and institutional

controls (ICs) to restrict residential use of the site, and remove hot spots of vadose zone soil for offsite disposal.

Additional remedial actions at Area 8 since 1995 include the demolition of Building 72, the removal and disposal of hot spot (metals-contaminated) soil, and the removal of USTs and associated petroleum-contaminated soils. Two slurry (cutoff) walls were constructed at the location of former USTs (immediately northeast and immediately south of the former plating shop; Figure 1-3) as shoring during petroleum-contaminated soils removal.

Current LTM activities at this site include sampling of groundwater and a groundwater seep for comparison to established criteria.

1.2 CURRENT CONCEPTUAL SITE MODEL

The depth to water in the upper aquifer (water table) is generally less than 10 feet below ground surface (bgs). Based on pre-ROD investigations of Area 8, the upper aquifer is believed to be 50 to 165-feet thick, with the thickest portion being where paleochannel erosion and deposition have removed portions of the Clover Park Unit and left behind alluvial sediments. However, pre-ROD investigations also indicated that water-level elevations in wells tapping the bottom of the upper aquifer are about 3 to 4 feet higher than those of wells tapping the top of the upper aquifer, which could indicate the presence of a confining layer, or an upward flow potential within the lower portion of the upper aquifer.

Although intermittent reversals from tidal influence have been inferred in wells near the shoreline during high tide, horizontal groundwater flow is generally eastward toward the shoreline (Figure 1-4). These gradient conditions characterize groundwater discharge in the region.

Groundwater also discharges from Area 8 via conspicuous groundwater seeps in the Port Orchard Bay intertidal zone adjacent and east of Area 8. Seep A is approximately 180 feet north of the former Pier 1 (removed in 2001), 40 feet east of the seawall, and 6 feet above mean lower low water (MLLW). Seep B is approximately 100 feet north of the former Pier 1, 30 feet east of the seawall, and 9 feet above MLLW (Figure 1-4). Five other seeps have been identified at the beach; Seep C is south of Seep A, and remaining seeps D through G are north of Seep A. In addition, three stormwater outfalls empty into the intertidal zone adjacent to Area 8. Seeps C through G are not sampled as a part of the scope of work performed and reported herein. Details regarding the sampling and results of stormwater outfalls and Seeps C through G are reported under separate cover (Navy 2016a).

The slope of the beach adjacent to Area 8 ranges from gentle to moderate (approximately 1.5 to 10 percent). The beach is self-armored, with intertidal sediments consisting primarily of sand, gravel, and cobbles overlying fine sand, silt, and clay.

The site, located adjacent to Port Orchard Bay, is predominantly flat and almost entirely paved or covered by buildings. A paved road, 4th Street (east/west) which turns into H Street (north/south), is located along the shoreline next to the site. The shoreline has a medium embankment, which drops steeply from the road approximately 12 feet to the intertidal area, and is reinforced by an armor rock wall and seawall. Data generated to date indicate that solvents used in former Building 72 or other former adjacent buildings, and metals from plating activities conducted in former Building 72, have impacted shallow groundwater and subsurface soils. These solvents could impact downgradient groundwater seeps, surface water, and sediments in Port Orchard Bay.

Two classes of contaminants have been identified as COCs for Area 8: volatile organic compounds (VOCs) and metals. Based on a recommendation in the Second Five-Year Review (Navy 2005), the semi-volatile organic compound (SVOC) 1,4-dioxane was sampled in 2007 to determine if the contaminant was present at the site. As a result of this sampling and a recommendation in the Third Five-Year Review (Navy 2010a), 1,4-dioxane was added to the LTM program to be monitored as an emergent COC for the site. Petroleum hydrocarbons and aromatic compounds identified as heavy fuel oils were detected in groundwater samples from locations around former Buildings 181 and 804 (Figure 1-3). VOCs, SVOCs, and total petroleum hydrocarbons (TPH) as diesel in soil, were also characterized in 1998 and 1999. The source of these compounds was believed to be the former fuel storage vaults at former Buildings 181 and 804. The remediation of TPHcontaminated soil and associated risk assessment were conducted under the UST program as an independent action under MTCA regulations (Washington Administrative Code [WAC] 173-340-450), as reported in the Independent Remedial Action Report (Navy 2000). After this removal action, and follow-on sampling and risk assessment, it was determined that petroleum hydrocarbons posed no current human health or ecological risk and were dropped from the COC list.

The current conceptual site model indicates that VOCs and metals were identified as COCs due to risks associated with exposure to soil, groundwater, and produce by future hypothetical residents and the potential for human health and ecological exposure from contaminants discharging to Port Orchard Bay impacting marine sediment and tissue (Navy 2015a). VOC and metal concentrations above remediation goals (RGs) remain in the upper

aquifer, generally exhibiting stable or decreasing concentration trends except for trichloroethene (TCE) at two locations which exhibit an increasing concentration trend (Navy 2015a). Continued monitoring of groundwater and an intertidal seep is intended to confirm the effectiveness of the remedy (source removal, monitored natural attenuation, and ICs), and document progression toward achieving RGs.

1.3 OBJECTIVE AND SCOPE OF WORK

Remedial Action Objectives (RAOs) specified in the OU 2 ROD (Navy, EPA, and Ecology 1994) for Area 8 are:

- Prevent human exposures to carcinogenic chemicals resulting in cumulative risks above the 10⁻⁴ to 10⁻⁶ risk range.
- Prevent human exposures to noncarcinogenic chemicals resulting in a noncancer hazard index greater than 1.
- Prevent exposures to chemicals resulting in significant ecological risks.
- Prevent exposures to chemicals above Applicable or Relevant and Appropriate Requirements (ARARs). Principal chemical-specific ARARs for OU 2 are:
 - MTCA, 173-340 WAC, which establishes cleanup levels for groundwater, soil, and surface water based on human health risk. The cumulative sum of the individual chemical risks may not exceed 10⁻⁵ incremental cancer risk and a hazard index of 1 for noncancer risk.
 - The national drinking water regulations, Code of Federal Regulations (40 CFR 141, 142, and 143) and the State Board of Health drinking water regulations (246-290-310 WAC) which establish federal and state drinking water standards applicable to public water supplies.
 - The Water Quality Standards for Surface Waters of the State of Washington (173-201A WAC) which establish state standards for surface water and incorporates federal ambient water quality criteria.
 - The Sediment Management Standards (173-204 WAC) which establish state standards for marine sediments.

RAOs for Area 8 groundwater focus on preventing ingestion of metals (specifically cadmium and chromium) and VOCs (TCE and 1,1-dichloroethene [DCE]) above drinking water standards, or acceptable human health risk levels. Because it was recognized that

contaminants in Area 8 groundwater could cause future impacts or human health risks in Liberty Bay, RAOs developed for groundwater also include protection of sediments and surface water quality offshore of Area 8.

The overall objective of the LTM program is to assess the effectiveness of contaminated soil removal, establish contaminant trends in groundwater over time, and determine whether additional groundwater controls are necessary, or if ICs prohibiting the use of groundwater as a drinking water source can be discontinued. Data generated in the LTM program are compared to the RGs established in the OU 2 ROD to evaluate whether the selected remedy is making progress toward the RGs (Navy, EPA, and Ecology 1994). Seep monitoring is performed to evaluate the type, magnitude, and trends of contaminants being discharged to Port Orchard Bay from the shallow aquifer. Sediment and marine tissue monitoring are performed to determine if contaminated groundwater discharging from Area 8 has impacted sediment and marine tissue immediately downgradient of the site, and to support risk assessment efforts.

The LTM program at OU 2 Area 8 includes measuring depths to groundwater in site monitoring wells, and collecting and analyzing groundwater, seep, sediment, and marine tissue samples. The June 2017 monitoring event included the following scope of work:

- Measuring depths to groundwater in seven groundwater monitoring wells;
- Collecting groundwater samples from six groundwater monitoring wells;
- Collecting a seep sample at one location on the beach bordering Port Orchard Bay;
- Collecting quality assurance/quality control (QA/QC) samples;
- Laboratory analysis of groundwater, seep, and QA/QC samples using EPA Method 8260C for VOCs, Methods 200.7 and 200.8 for dissolved metals, and modified Method 1640 for reductive precipitation preparation of dissolved metals samples prior to analysis;
- Laboratory analysis of groundwater and QA/QC samples using EPA Method 8270D with selected ion monitoring (SIM) for 1,4-dioxane; and
- Third-party data validation of the laboratory data packages.

Sampling locations are shown on Figure 1-5.

1.3.1 Selected Remedy

The selected remedy for Area 8 described in the ROD (Navy, EPA, and Ecology 1994) is implemented, construction is complete for all elements, monitoring activities are ongoing, and ICs are in place. The remedy includes the following components:

- Conduct LTM of groundwater and groundwater seeps in the intertidal zone of Area 8.
- Implement ICs for soil and groundwater.
- Implement contingent groundwater control actions if a risk assessment of sediments and marine tissue from Area 8 demonstrates that groundwater is a significant source of the identified risk.

The point of compliance for the groundwater RGs is defined as the entire site. This approach was taken because metals and VOCs in groundwater are widespread at the site. The effectiveness of the remedy at the site will be assessed by (1) conducting groundwater monitoring at upland monitoring wells to ensure that contaminant concentrations continue to reduce and (2) conducting groundwater monitoring at shoreline monitoring wells and one seep that discharges to marine surface water to ensure that the adjacent marine environment is not adversely impacted.

1.3.2 Chemicals of Concern

Nine inorganic analytes and eighteen VOCs are analyzed in groundwater and groundwater seep samples as COCs at Area 8. The COCs are shown in Section 1.4, Table 1-1. Although not listed as a COC in the ROD, 1,4-dioxane was added to the LTM analyte list as an emergent contaminant during the Third Five-Year Review (Navy 2010a).

1.4 REMEDIATION GOALS

The groundwater RGs for Area 8 are based on the most stringent regulatory criteria for the protection of drinking water to protect future potential residential users of groundwater (as a drinking water source) and for the protection of surface water to protect the ecosystem and potential future recreational and subsistence users of the Area 8 beach. The RG for each chemical was selected in the ROD as the lowest value included in the applicable or relevant and appropriate regulatory criteria. Selected Area 8 RGs are bolded in Table 1-1, and are listed under "MTCA Method B Cleanup Levels" for surface water and groundwater.

	Drinking Wate			L)	Surface Water (µg/L)			
				· · ·	Stat	e Water	MTCA	
	RI Background Value				Quality	Standards	Method B	
	for Groundwater	Federal	State	MTCA Method B	Ambient	Fish	Cleanup	
Chemical	$(\mu g/L)^{1/2}$	MCL	MCL	Cleanup Level ^{2/}	Marine ^{3/,4/}	Ingestion ^{5/}	Level ^{2/}	
Inorganics								
Arsenic	12	50	50	0.05	36	0.14	0.14	
Barium	130	2,000	1,000	1,000	NE	NE	NE	
Cadmium	2.5	5	10	5	8	107	8	
Chromium (III)	NE	NE	NE	16,000	NE	NE	160,000	
Chromium (VI)	10 U	NE	NE	80	50	NE	50	
Chromium (total)	4 U	100	50	50	NE	NE	NE	
Copper	3 U	1,3004/	NE	590	2.5	NE	2.5	
Lead	1 U	154/	50	15	5.8	NE	5.8	
Mercury	0.2 U	2	2	2	0.025	0.15	0.025	
Nickel	3 U	100	NE	100	7.9	4,600	7.9	
Silver	29	NE	NE	48	1.2	NE	1.2	
Thallium	2 U	2	NE	1.1	NE	6.3	1.6	
Tin	NE	NE	NE	9,600	NE	NE	NE	
Zinc	19	NE	NE	4,800	77	NE	77	
Volatile Organic Comp	ounds							
Acetone	NE	NE	NE	800	NE	NE	NE	
Benzene	NE	5	5	5	NE	71	71	
Carbon tetrachloride	NE	5	5	0.34	NE	4.4	4.4	
Chloroform	NE	1006/	1006/	7.2	NE	470	470	
1,1-Dichloroethane	NE	NE	NE	800	NE	NE	NE	
1,1-Dichloroethene	NE	7	7	7	NE	3.2	3.2	
1,2-Dichloroethane	NE	5	5	5	NE	99	5.9	
1,2-Dichloroethene (cis)	NE	70	NE	70	NE	NE	NE	
1,2-DCE (trans)	NE	100	NE	100	NE	140,000	33,000	
Ethylbenzene	NE	700	NE	700	NE	29,000	69,000	
Styrene	NE	100	NE	1.5	NE	NE	NE	
Tetrachloroethene	NE	5	NE	5	NE	8.9	8.9	
Toluene	NE	1,000	NE	1,000	NE	200,000	49,000	
1,1,1-Trichloroethane	NE	200	200	200	NE	170,000	42,000	
1,1,2-Trichloroethane	NE	5	NE	5	NE	42	42	
Trichloroethene	NE	5	5	5	NE	81	81	
Xylenes	NE	10,000	NE	10,000	NE	NE	NE	
Notes:								

Table 1-1.OU 2, Area 8 Remediation	Goals for Groundwater and Surface W	'ater
------------------------------------	-------------------------------------	-------

^{1/} Background levels from Final Remedial Investigation Report (Navy 1993b).

²⁷ Value listed accounts for adjustment when an MCL or water quality standard is "sufficiently protective" to serve as the MTCA cleanup level (Implementation Memo No. 1; Kraege 1993). Value does not account for adjustments due to background or practical quantitation limits.

^{3/} Value listed is the lower of the chronic or acute standard for marine water.

^{4/} The standard for copper and lead are "treatment techniques." Copper and lead have action levels, rather than MCLs. When applied to a purveyor of a public water supply, if the concentration measured at the tap exceeds the action level, this requires implementation of specified treatment techniques (40 CFR 261 Subpart I).

^{5/} Value listed was derived from: 40 CFR 131.36, WAC 173-201A-040(3), and federal water quality criterion documents (as amended). If values conflicted, the value was selected in the following order of preference: 40 CFR 131.36 supersedes WAC 173-201A-040(3), which supersedes the federal criterion documents.

^{6/} Based on trihalomethanes

Bolded values indicate the selected RG for each analyte (based on the most stringent value).

µg/L – microgram per liter

CFR – Code of Federal Regulations	MCL - maximum contaminant level
N – Value is based on the non-cancerous rather than cancerous effects.	MTCA – Model Toxics Control Act
NE – Not established	RI – remedial investigation
U – Not detected at the specified concentration	WAC - Washington Administrative Code

Because 1,4-dioxane was not specified in the ROD as a COC, no RG was established. However, to allow for data evaluation, the results of 1,4-dioxane analyses are compared to the MTCA Method B risk-based cleanup level (carcinogenic) for 1,4-dioxane. This cleanup level was reduced by Ecology in August 2010 from 4.4 to 0.44 microgram per liter (µg/L).

As previously discussed, the dissolved metals tin, thallium, and mercury were removed from the Area 8 analyte list by TO 46 FCR-02 (Appendix A) based upon recommendations made in the Spring 2016 LTM Report for Area 8 (Navy 2017b). Tin, thallium, and mercury had either not been detected at PQLs well below the RGs for these metals, or were detected at trace concentrations well below the RGs for many years.

2. FIELD ACTIVITIES

Groundwater and seep water samples were collected from the groundwater monitoring wells and the seep identified for sampling during the 2017 LTM event in the MMA SAP (Navy 2017a). Sampling was conducted in accordance with the procedures established in the MMA SAP sections for Area 8, as amended by TO 46 FCR-02 (Appendix A), and the Navy Standard Operating Procedures (SOPs) for environmental sampling (NAVFAC Northwest 2015). On June 21, 2017, groundwater samples were collected from groundwater monitoring wells MW8-8, MW8-9, MW8-11, MW8-12, MW8-14, and MW8-16 (Figure 1-5) during an extreme low-tide event and within 6 hours after the low tide. On June 22, 2017, a water sample was collected from Seep A during low tide (Figure 1-5).

Time-coincident depth to groundwater measurements were taken during low tide on June 21, 2017, between 0932 and 0936 hours in the wells listed above, along with an additional well, MW8-15, which was not scheduled for sampling. The low tide in Liberty Bay on June 21, 2017, was predicted to be -1.2 feet at 0932 hours (www.saltwatertides.com). Depth to groundwater was measured using an electronic water level indicator with a tape graduated in hundredths of a foot. Measurements were made from the surveyed top of casing elevation mark on each well.

Immediately prior to sampling, five of the six groundwater monitoring wells were purged with low-flow technique using a peristaltic pump with dedicated polyethylene tubing. The deeper well MW8-16 was purged with a submersible pump with dedicated tubing to allow placement of the pump intake at mid-screen depth (i.e., at approximately 45 feet below the top of the well casing) in accordance with the MMA SAP (Navy 2017a). The purging rate was maintained at 0.4 liters per minute. During purging, the water-quality parameters potential hydrogen (pH), specific conductance, turbidity, temperature, salinity, dissolved oxygen, and oxygen-reduction potential (redox) were measured and recorded every 5 minutes using a Horiba U22 water quality instrument. When pH, specific conductance, turbidity, and temperature stabilized to within 10 percent in consecutive measurements, groundwater samples were collected directly into clean, pre-preserved, laboratory-supplied containers.

The seep sample was collected during low tide on June 22, 2017. Sampling was conducted by digging a shallow excavation at the seep location. After allowing the water flowing into the excavation to become clear and recording water-quality parameters (pH, specific conductance, turbidity, and temperature), seep water was transferred from the excavation to clean, pre-preserved, laboratory-supplied containers by low-flow sampling techniques using a peristaltic pump.

The sample containers were packaged and shipped to ALS Environmental, Kelso, Washington, in accordance with the MMA SAP for Area 8 (Navy 2017a). Purge water, disposable polyethylene tubing, and general sampling waste (nitrile gloves, paper towels, plastic bags, etc.) from the sampling event were the only investigation-derived wastes generated. The purge water was disposed of by NBK Keyport personnel at Building 1051, as specified in the SAP. The disposable tubing and general non-hazardous sampling waste were placed in a designated on-site commercial waste dumpster.

Field forms and chain of custody documentation from the sampling event are included in Appendix B.

Final parameter measurements recorded immediately before sampling are shown in Table 2-1 below. Historical parameters recorded during sampling events from spring 2007 through spring 2017 are shown in Table B-1 in Appendix B.

					Specific			Dissolved	
	Sample	Sample	Temperature		Conductivity	Salinity	Turbidity	Oxygen	Redox
Location	Date	Time	(Celsius)	pН	(mS/cm)	(%)	(NTU)	(mg/L)	(millivolts)
MW8-8	6/21/2017	1245	18.70	6.92	0.343	0.02	2.1	4.89	131
MW8-9	6/21/2017	1200	16.65	7.08	29.0	1.77	6.1	6.43	137
MW8-11	6/21/2017	1040	17.29	6.80	21.8	1.30	2.0	6.81	223
MW8-12	6/21/2017	0955	15.50	7.29	4.99	0.27	1.3	7.07	138
MW8-14	6/21/2017	1130	16.08	7.97	36.6	2.27	2.6	7.44	123
MW8-16	6/21/2017	1420	18.02	6.96	15.0	0.87	1.7	3.85	-78
SEEP A	6/22/2017	0945	16.50	7.02	28.8	1.77	15.2	6.21	136

Table 2-1. Field Parameter Measurements for Groundwater and Seep	Sampling
---	----------

Notes:

MW denotes groundwater monitoring well

mg/L - milligrams per liter

mS/cm – milliSiemens per centimeter

NTU – nephelometric turbidity unit

All of the field-measured water-quality parameters stabilized per requirements of the sampling protocol described in the MMA SAP. All of the parameters were similar to historical data collected from the same locations (see Appendix B, Table B-1).

Wells MW8-9; -11; -14; and -16 have historically exhibited conductivity and salinity greater than fresh water but less than the average salinity for Liberty Bay of around 2.9%. This is indicative that some degree of mixing of seawater and freshwater is occurring in the aquifer, as is expected in shallow groundwater at locations immediately adjacent to the Puget Sound.

3. LABORATORY ANALYSIS AND DATA VALIDATION

Analysis of groundwater and seep samples was performed by ALS Environmental, Kelso, Washington. The samples were analyzed according to EPA Method 8260C for VOCs (18 analytes), EPA Method 8270D SIM for the SVOC 1,4-dioxane (well samples only), and EPA Methods 200.7 and 200.8 for dissolved metals (nine analytes). Prior to analysis for dissolved metals by Method 200.8, the laboratory performed a reductive precipitation preparation using modified Method 1640 to reduce interferences.

The laboratory analytical report and an electronic data deliverable in a format compatible with Ecology's Environmental Information Management (EIM) system have been included on the compact disc attached to this report.

Laboratory Data Consultants, Inc. (Carlsbad, California) performed a Level 3 data validation using National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA 2017a); National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017b); and Navy SOPs (NAVFAC Northwest 2015). The data validation reports are presented in Appendix C. Laboratory analytical results summary forms are included in the data validation reports. Data validation included a review of holding times, instrument performance checks, calibrations, laboratory and trip blanks, surrogate recovery, internal standards, interference check samples, serial dilutions, laboratory control samples, matrix spike/matrix spike duplicate sets, and field duplicate sets.

The data validation reports (Appendix C) indicate that the reviewed items, with a few exceptions, met the objectives identified in the MMA SAP (Navy 2017a), as amended by TO 46 FCR-02 (Appendix A). As discussed in Appendix C, data qualifiers were applied to sample results on the basis of trace contamination in a laboratory method blank and trip blank, and a percent difference (%D) value outside of control limits in one calibration standard. Ten sample results, which consist of nine VOC results and one dissolved metal result, out of a total of 268 sample results were qualified during validation. Thus, 3.7 percent of the sample results were qualified during validation. Thus, 3.7 percent of the sample results were qualified during validation, which is a relatively low percentage for a project of this size and nature. In addition to qualifiers applied during data validation, the laboratory applied J flags to several sample results that were detected at concentrations at or greater than the method detection limit but less than the PQL (referred to as a "limit of quantitation" or LOQ in the laboratory reports).

As discussed in the applicable data validation reports (Appendix C), no VOCs were detected in the trip blanks submitted with the field samples, with the following exception: one trip blank contained toluene (a VOC analyte) at an estimated concentration of 0.35 J μ g/L. Therefore, six groundwater sample results for toluene at concentrations below the PQL were elevated to the PQL and qualified as not detected (U) during data validation. The trace detections of toluene in the samples and trip blank were significantly less than the applicable RGs of 1,000 μ g/L (for drinking water) and 49,000 μ g/L (for surface water); thus, the trace contamination and data qualification do not affect data usability.

Field duplicate sets were collected from well MW8-11 (for VOCs, 1,4-dioxane, and dissolved metals) and Seep A (for VOCs and dissolved metals) during the 2017 sampling event. The 55 paired results for the two field duplicate sets indicate data precision was acceptable, as demonstrated by all relative percent difference (RPD) values for analytes detected in both members of the field-duplicate set meeting the project goal of less than or equal to 50 percent, as specified in the MMA SAP (Navy 2017a). Thus, overall precision was considered acceptable.

In accordance with project specifications, matrix spike and matrix spike duplicate sets were collected at well MW8-14 (for VOCs, 1,4-dioxane, and dissolved metals) and at Seep A (for VOCs and dissolved metals). The percent recoveries for 108 out of 110 spiked analytes were within QC limits, and all RPDs were within QC limits, as specified in the MMA SAP. For the sample from Seep A, the percent recoveries for cadmium were outside the control limit; however, the original sample concentration was greater than four times the amount spiked. In accordance with data validation guidelines, the associated sample results were not qualified based on a matrix spike recovery since the recoveries were not indicative of a problem with data quality.

In conclusion, the majority of the items reviewed during data validation were within project control limits. In a few cases, data qualifiers were applied due to minor QC issues. The validated analytical data for the 2017 event, as qualified, are useable for the intended purposes of the project.

4. GROUNDWATER FLOW AND ANALYTICAL RESULTS

This section interprets the depth to groundwater data, summarizes the distribution of contaminants detected in the samples collected in June 2017, and compares the reported concentrations to the RGs (if established).

4.1 GROUNDWATER FLOW

Table 4-1 summarizes the water table and total well depth measurements, measurement point elevations, and associated groundwater elevations (hydraulic heads). Groundwater elevation contours, flow direction, and hydraulic gradient were estimated based on groundwater elevations (see Figure 1-4). On the basis of the depth to groundwater measurements performed on June 21, 2017, the shallow groundwater flow direction is inferred to be from the west-northwest toward the east-southeast. The horizontal hydraulic gradient varies from approximately 0.025 (2.5 percent) on the northern portion of Area 8 to approximately 0.015 (1.5 percent) on the southern portion of Area 8, which is consistent with historical gradients calculated for Area 8 (Navy 2014, 2015b, 2016b, and 2017b).

Location ID	Top of Casing Elevation (feet above msl)	Depth to Water (feet btoc)	Water Level Elevation (feet above msl)	Screened Interval (feet btoc)
MW8-8	12.50	9.77	2.73	4.5-19.5
MW8-9	11.93	10.16	1.77	5-20
MW8-11	12.40	10.03	2.37	7-17
MW8-12	11.95	9.33	2.62	7-17
MW8-14	12.14	10.74	1.40	5-15
MW8-15 ^{1/}	12.47	10.33	2.14	160.5-165.5
MW8-16 ^{1/}	12.62	11.91	0.71	42.5-47.5

Table 4-1.	June 2017	Groundwater	Table	Measurements at Area 8

Notes:

^{1/}Screened below the water table.

Measurements were conducted on June 21, 2017 between 0932 and 0936 hours. Low tide was -1.2 feet at 0932 hours. msl – mean sea level

btoc - below top of casing

The direction of shallow groundwater flow at Area 8, which is approximately perpendicular to the shoreline, is expected for an aquifer discharging to surface water (Figure 1-4). The flow orientation is similar to the inferred direction of flow in the springs of 2006 through 2016 (Navy 2006, 2007, 2008, 2009, 2010b, 2012a, 2012b, 2014, 2015b, 2016b, and 2017b), but varies slightly from the direction inferred in 2005, which was toward the east-northeast (Navy 2005). The noted variation was likely the result of tidal influences on the upper aquifer near

the shoreline that caused apparent short-term hydraulic head variations. Wells MW8-14 and MW8-16 are both interpreted to be screened within the shallow aquifer. Hydraulic head variations in the collocated wells MW8-14, MW8-15, and MW8-16 appear to indicate that there is a downward gradient in the shallow aquifer between monitoring wells MW8-14 (water level elevation 1.40 feet above msl) and MW8-16 (water level elevation 0.71 feet above msl), but that a confining layer exists between the screened interval of well MW8-16 (42.5-47.5 feet below top of casing [btoc]; water elevation of 0.71 feet above msl) and the screened interval of well MW8-15 (160.5-165.5 feet btoc; water elevation of 2.14 feet above msl). This confining layer, which creates an upward gradient between the shallow and deeper aquifer, reduces the potential for downward migration of contaminants from the shallow to the deeper aquifer in this area. The groundwater in the shallow aquifer is known to discharge at Seep A and other seeps along the beach adjacent to Area 8.

4.2 GROUNDWATER ANALYTICAL RESULTS

Groundwater was sampled from wells MW8-8, MW8-9, MW8-11, MW8-12, MW8-14, and MW8-16 during spring 2017. Data for selected VOCs from fall 1995 through spring 2017 are summarized in Table 4-2, and are shown on Figure 4-1. Data for 1,4-dioxane for 2007 and 2011 through 2017 are summarized in Table 4-3. Data for selected metals from 1995 through 2017 are summarized in Table 4-4, and are shown on Figure 4-2. Results of selected VOCs, 1,4-dioxane, and dissolved metals analyses are discussed in the report subsections following Tables 4-2 through 4-4 and Figures 4-1 and 4-2. VOCs and metals listed in Table 1-1 but not discussed in this section have either not been detected at or above the laboratory PQLs, or have been detected only at relatively low levels below RGs since 1995.

Location	Sampling	TCI	E	PCH	E	1,1-D	CE	cis-1,2-	DCE	1,1,1-T	CA
ID	Date	(µg/I	L)	(µg/I)	(µg/	L)	(µg/	L)	(µg/L	.)
Drinking Wa	iter	5		5		7		70		200	
Remediation	Goals	5		5		1		70		200	
Surface Wate	er	81		89		32				42 000	
Remediation	Goals		-			5.2				42,000	
MW8-8	11-95	190	J	49	J	1		2		23	
MW8-8	05-96	110	J	34		0.9	J	1		11	
MW8-8	09-96	190	J	58	J	1		2		19	
MW8-8	05-97	68	J	15		1	U	1		3	
MW8-8	10-97	78	J	19		0.6	U	2		9	
MW8-8	05-98	63	J	12		1	U	0.9	J	3	
MW8-8	10-98	76	J	30		1	U	1	U	9	
MW8-8	05-99	58	J	5	U	5	U	5	U	5	U
MW8-8	11-99	150		2		1		3.2		10	
MW8-8	06-00	120		23		1	J	4.5		6.6	
MW8-8	06-01	84	J	20		1.3		7.3		3.9	
MW8-8	06-02	81	J	17		1.1		7.3		3.9	
MW8-8	06-03	81	J	12		0.94		6.8		2.7	
MW8-8	06-04	80		13		1.1		8.5		2.9	
MW8-8	06-05	64		11		0.7		7.4		2	
MW8-8	06-06	68	D	9.2		0.68		7.6		2.2	
MW8-8	06-07	53	D	7.7		0.55		7.5		1.7	
MW8-8	05-08	59		8.4		0.41	J	6.6		1.6	
MW8-8	06-09	66		5.6		0.69		9.1		1.6	
MW8-8	06-10	58		5.1		0.55		8.4		1.5	
MW8-8	07-11	59		6.0		0.37	J	5.9		1.5	
MW8-8	06-12	38		9.7		0.14	J	2.1		1.1	
MW8-8	06-13	24	J	9.0		0.5	U	0.46	J	0.6	
MW8-8	06-14	32		9.8		0.5	U	0.83		0.83	
MW8-8	06-15	26		8.4		0.5	U	0.45	J	0.87	
MW8-8	06-16	37		6.9		0.11	J	1.2		0.90	
MW8-8	06-17	40		7.1		0.11	J	1.6		0.93	
MW8-9	11-95	1.600	J	50	U^1	50	U^1	27	J	50	U
MW8-9	05-96	800	J	1	U	1	U	28	-	2	-
MW8-9	09-96	1.000	J	0.4	J	1	U	28		2	
MW8-9	05-97	1,400	J	0.3	J	1	Ū	34	J	2	
MW8-9	10-97	720	J	1	Ū	1	Ū	50	U	1	
MW8-9	05-98	370	J	1	Ū	1	Ū	12	~	07	J
MW8-9	10-98	610	J	1	Ū	1	Ū	34	J	3	•
MW8-9	05-99	84	J	1	Ū	1	Ū	6	•	1	U
MW8-9	11-99	500	•	0.6	~	0.5	Ū	30		1 4	~
MW8-9	06-00	170		2.5	U	2.5	U	15		1.1	J
MW8-9	06-01	330	J	0.26	J	0.24	Ū	18	J	0 44	J
MW8-9	06-02	60	J	0.20	J	0.12	U	7 5	5	0.44	3
MW8-9	06-03	21	U	0.11	1	0.12	U	13		0.09	T
MW8-9	06-04	21		0.11	I	0.12	U	1.5		0.23	J
MW8-9	06-05	<u> </u>		0.13	J	0.12	U	0.2		0.44	J
MW8-0	06-05	3.0		0.2	<u>г</u>	0.2	U	0.2	T	0.2	I
111 11 077	00-00	5.7		0.20		0.5	U	0.42	J	0.20	J

 Table 4-2.
 Summary of Selected VOC Results for Area 8 Groundwater Sampling Locations. Fall 1995 through Spring 2017

Location	Sampling	ТСЕ	PC	E	1,1-D	СЕ	cis-1,2-	DCE	1,1,1-T	CA
ID	Date	(µg/L)	(µg/	'L)	(μg/	L)	(µg/	L)	(µg/L	.)
Drinking Wat	ter	5	5		7		70		200	
Remediation	Goals	5	5		/		70		200	
Surface Wate	r	81	89		32				42 000	
Remediation	Goals	01	0.7		5.2				12,000	
MW8-9	06-07	1.9	0.5	U	0.5	U	0.27	J	0.15	J
MW8-9	05-08	1.7	0.16	J	0.5	U	0.23	J	0.14	J
MW8-9	06-09	20	0.18	J	0.2	U	1.3		0.14	J
MW8-9	06-10	9.4	0.11	J	0.5	U	0.69		0.12	J
MW8-9	07-11	12	0.12	J	0.5	U	0.80		0.11	J
MW8-9	06-12	14	0.49	J	0.5	UJ	1.2		0.16	
MW8-9	06-13	43	J 0.18	J	0.5	U	2.7		0.13	J
MW8-9	06-14	24	0.29	J	0.5	U	1.5		0.12	J
MW8-9	06-15	5.6	0.16	J	0.5	U	0.35	J	0.13	J
MW8-9	06-16	0.27 .	J 0.10	J	0.50	U	0.070	J	0.15	J
MW8-9	06-17	0.12 .	J 0.13	J	0.50	U	0.50	U	0.50	U
MW8-11	11-95	84	J 1	U	44	J	1	U	520	J
MW8-11	05-96	84 .	J 1	U	47	J	1	U	460	J
MW8-11	09-96	83	1	<u> </u>	31	-	0.3	J	470	-
MW8-11	05-97	80 .	J 1	<u> </u>	42	J	1	U	500	J
MW8-11	10-97	62	J l	<u>U</u>	30	J	1	<u> </u>	300	J
MW8-11	05-98	61 .	J l	<u>U</u>	33	•	1	<u> </u>	200	J
MW8-11	10-98	62		<u>U</u>	35	J	1	U	220	<u>J</u>
MW8-11	05-99	27	J 2	<u>U</u>	8	J	2	U	45	J
MW8-11	11-99	54	0.5	<u>U</u>	12		0.5	U T	64	т.
MW8-11	06-00	41 .	J 0.5	U T	12		0.4	J	82	J
MW8-11	06-01	62	0.27	J	15		0.38	J T	91	J
MW 8-11	06-02	92	J 0.79		1/		0.46	J	84	J T
MW 8-11 MW 8-11	06-03	99 c	0.64		22		0.49	J T	80	J
MW 8-11 MW 8-11	06-04	61	0.00		25 10		0.37	J	22	
	06-05	00 1	0.3 D 0.68		10		0.2	т	20	
MW8 11	06.07	46	D = 0.00		2.2		0.27	J T	21	
MW8-11	05-08	53	1 1		2.4		0.29	J	31	
MW8-11	05-08	67	1.1		1.6		0.37	J	22	
MW8-11	06-10	80	$\frac{1.2}{1.4}$		1.0		0.50	5	14	
MW8-11	07-11	75	0.79		0.35	T	0.80		10	
MW8-11	06-12	56	D = 11		0.33	J	0.02		9.7	
MW8-11	06-13	67	10		0.56	0	0.61		67	
MW8-11	06-14	55	0.90		0.21	J	0.01	J	5.0	
MW8-11	06-15	63	0.77		0.20	J	0.55	-	6.3	
MW8-11	06-16	45	0.50		0.10	J	0.38	J	4.2	
MW8-11	06-17	24	0.44	J	0.50	U	0.26	J	3.0	
MW8-12	11-95	85 .	J 13		10	-	1	-	140	J
MW8-12	05-96	63	J 5		14		1	U	180	J
MW8-12	09-96	120	J 23		20		2		250	J
MW8-12	05-97	63 .	J 12		6		1		67	J

Table 4-2.Summary of Selected VOC Results for Area 8 Groundwater Sampling
Locations, Fall 1995 through Spring 2017 (continued)

Location ID	ocation Sampling D Date		PCE (µg/L)	1,1-DCE (μg/L)	cis-1,2-DCE (µg/L)	1,1,1-TCA (μg/L)
Drinking Wat Remediation	ter Goals	5	5	7	70	200
Surface Water Remediation	r Goals	81	8.9	3.2		42,000
MW8-12	10-97	44 J	8	4	1	41 J
MW8-12	05-98	46 J	10	2	2	20
MW8-12	10-98	46 J	15	1 U	1 U	22
MW8-12	05-99	25 U	4	1 U	1 U	8
MW8-12	11-99	50	9.7	0.9	2.1	14
MW8-12	06-00	54	16	0.5 J	3	6.8
MW8-12	06-01	76	14	0.67	4 8	6.5
MW8-12	06-02	47	14	0.49 J	4.5	5
MW8-12	06-03	36	9.8	0.31 J	3.2	3.2
MW8-12	06-04	40	8.5	0.34 J	3.1	4.1
MW8-12	06-05	34	8.8	0.3	3.3	2.8
MW8-12	06-06	31	7.9	0.28 J	2.5	2.5
MW8-12	06-07	37	6.8	0.22 J	3.5	2.0
MW8-12	05-08	28	7.7	0.15 J	2.4	1.8
MW8-12	06-09	52	11	0.18 J	3.4	2.5
MW8-12	06-10	31	6.2	0.20 J	3.9	1.5
MW8-12	07-11	31	6.0	0.11 J	3.0	2.1
MW8-12	06-12	31	6.3	0.5 UJ	1.8	1.6
MW8-12	06-13	23	5.6	0.5 U	0.5	1.2
MW8-12	06-14	22	5.7	0.5 U	0.39 J	1.1
MW8-12	06-15	17	4.6	0.5 U	0.26 J	1.7
MW8-12	06-16	11	2.9	0.50 U	0.19 J	1.2
MW8-12	06-17	10	2.8	0.50 U	0.28 J	0.87
MW8-14	11-95	1 U	1 U	1 U	1 U	1 U
MW8-14	05-96	1 U	1 U	1 U	1 U	1 U
MW8-14	09-96	1 U	1 U	1 U	1 U	1 U
MW8-14	05-97	1 U	1 U	1 U	1 U	1 U
MW8-14	10-97	1 U	1 U	1 U	1 U	1 U
MW8-14	05-98	1 U	1 U	1 U	1 U	1 U
MW8-14	10-98	1 U	1 U	1 U	1	1 U
MW8-14	05-99	1 U	1 U	1 U	1 U	1 U
MW8-14	11-99	0.5 U	0.5 U	0.5 U	3.2	0.5 U
MW8-14	06-00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-01	0.12 U	0.11 U	0.12 U	0.12 U	0.93
MW8-14	06-02	0.12 U	0.11 U	0.12 U	0.12 U	0.18 J
MW8-14	06-03	0.12 U	0.11 U	0.12 U	0.12 U	0.12 U
MW8-14	06-04	0.12 U	0.11 U	0.12 U	0.12 U	0.12 J
MW8-14	06-05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
MW8-14	06-06	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-07	0.23 J	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	05-08	0.5 U	0.5 U	0.5 U	0.5 U	0.11 J
MW8-14	06-09	0.5 U	0.5 U	0.2 U	0.5 U	0.10 J

Table 4-2.Summary of Selected VOC Results for Area 8 Groundwater Sampling
Locations, Fall 1995 through Spring 2017 (continued)

			0 1 0	,	,	
Location	Sampling	TCE	PCE	1,1-DCE	cis-1,2-DCE	1,1,1-TCA
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Drinking Wat	er	5	5	7	70	200
Remediation (Goals	5	3	/	70	200
Surface Water	r	81	8.0	3.2		42 000
Remediation (Goals	01	8.9	5.2		42,000
MW8-14	06-10	0.5 U	0.5 U	0.5 U	0.5 U	0.18 J
MW8-14	07-11	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-12	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
MW8-14	06-13	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-14	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-15	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
MW8-14	06-16	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
MW8-14	06-17	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
MW8-16	11-95	58 J	0.6 J	1 U	2	2
MW8-16	05-96	72 J	0.8 J	1 U	2	2
MW8-16	09-96	69 J	0.8 J	1 U	3	2
MW8-16	05-97	57 J	0.8 J	1 U	2	2
MW8-16	10-97	47 J	0.6 J	1 U	2	2
MW8-16	05-98	63 J	0.8 J	1 U	2	1
MW8-16	10-98	47 J	1 U	1 U	3	1 U
MW8-16	05-99	40	1 U	1 U	6	2
MW8-16	11-99	63	0.8	0.5 U	5.3	1.7
MW8-16	06-00	51	0.7	0.59	16	1.1
MW8-16	06-01	74 J	0.84	0.77	21	1.2
MW8-16	06-02	130 J	0.99	0.67	30	0.83
MW8-16	06-03	190 J	1.5	0.57	28	0.94
MW8-16	06-04	120	0.75	0.61	130	0.49 J
MW8-16	06-05	350	2.2	0.9	34	0.7
MW8-16	06-06	200 D	1.1	0.64	93 D	0.33 J
MW8-16	06-07	430 D	1.5	0.68	38	0.42 J
MW8-16	05-08	380 D	1	0.65	67 D	0.18 J
MW8-16	06-09	140 D	0.64	0.21	14	0.13 J
MW8-16	06-10	79 D	0.64	0.13 J	9.2	0.16 J
MW8-16	07-11	88	0.76	0.10 J	3.6	0.22 J
MW8-16	06-12	56 D	0.80	0.08 J	2.7	0.18 J
MW8-16	06-13	50	0.79	0.5 U	0.93	0.21 J
MW8-16	06-14	50	0.97	0.5 U	1	0.19 J
MW8-16	06-15	48	0.51	0.09 J	1.8	0.19 J
MW8-16	06-16	8.1	0.50 U	0.11 J	28	0.50 U
MW8-16	06-17	7.2	0.15 J	0.090 J	26	0.50 U

Table 4-2. Summary of Selected VOC Results for Area 8 Groundwater Sampling Locations, Fall 1995 through Spring 2017 (continued)

Notes:

Bold indicates detected value is equal to or exceeds the drinking water RG.

Shading indicates detected value is equal to or exceeds the surface water RG.

 $\mu g/L$ – microgram per liter DCE – dichloroethene TCA - trichloroethane D-result reported from a diluted analysis TCE - trichloroethene ID - identification U - not detected at value shown U1- not detected at value shown and value exceeds remediation goal J-estimated result PCE-tetrachloroetheneVOC - volatile organic compounds

Location ID	Date	1,4-Dioxane (µg/L)
MW8-8	06-07	0.70 J
MW8-8	07-11	1.0 U^1
MW8-8	06-12	0.76 J
MW8-8	06-13	1.0 U^1
MW8-8	06-14	1.0 U ¹
MW8-8	06-15	0.22 J
MW8-8	06-16	0.41
MW8-8	06-17	1.1
MW8-9	06-07	1.0 U ¹
MW8-9	07-11	1.0 U ¹
MW8-9	06-12	1.0 U ¹
MW8-9	06-13	1.0 U ¹
MW8-9	06-14	1.0 U ¹
MW8-9	06-15	0.40 U
MW8-9	06-16	0.25 J
MW8-9	06-17	0.40 U
MW8-11	06-07	39
MW8-11	07-11	29
MW8-11	06-12	19
MW8-11	06-13	11
MW8-11	06-14	11
MW8-11	06-15	12
MW8-11	06-16	14
MW8-11	06-17	16
MW8-12	06-07	1.1
MW8-12	07-11	0.18 J
MW8-12	06-12	0.53 J
MW8-12	06-13	$1.0 \ { m U}^1$
MW8-12	06-14	0.31 J
MW8-12	06-15	0.53
MW8-12	06-16	1.1
MW8-12	06-17	1.1
MW8-14	06-07	1.0 U ¹
MW8-14	07-11	$1.0 \ { m U}^1$
MW8-14	06-12	1.0 J
MW8-14	06-13	$1.0 \ { m U}^1$
MW8-14	06-14	$1.0 \ { m U}^1$
MW8-14	06-15	0.40 U
MW8-14	06-16	0.16 J
MW8-14	06-17	0.40 U
MW8-16	06-07	1.0 U ¹
MW8-16	07-11	1.0 U ¹
MW8-16	06-12	$1.0 \ { m U}^1$
MW8-16	06-13	1.0 U ¹
MW8-16	06-14	1.0 U ¹
MW8-16	06-15	0.40 U
MW8-16	06-16	0.22 I

Table 4-3.Summary of 1,4-Dioxane Results for Area 8 Groundwater and Seep
Sampling Locations, Spring 2007 through Spring 2017

Table 4-3.	Summary of 1,4-Dioxane Results for Area 8 Groundwater and Seep
	Sampling Locations, Spring 2007 through Spring 2017 (continued)

Location ID	Date	1,4-Dioxane (µg/L)
MW8-16	06-17	0.40 U
Seep A	07-11	$1.0 \ { m U}^1$
Seep B	07-11	$1.0 \ { m U}^1$

Notes:

There is no remediation goal established for 1,4-dioxane.

Bold indicates detected value is equal to or exceeds the MTCA Method B cleanup level (0.44 µg/L).

 $\mu g/L$ – microgram per liter

U – Not detected at value shown U^1 – not detected at value shown and value exceeds MTCA Method B cleanup level

J – Estimated value below reporting limit but above detection

C:\USERS\WALTER.BOWLES\DOCUMENT6 Mod: 9/16/2017 12:41:39 PM Plotted: 9/16/20

-			
_	MW8-1	4	
	1,1,-DCE	cis-1,2-DCE	1,1,1-TCA
	1U	1U	1U
	1U	1	1U
	1U	1U	1U
	0.5U	3.2	0.5U
	0.5U	0.5U	0.5U
	0.12U	0.12U	0.93
	0.12U	0.12U	0.18J
	0.12U	0.12U	0.12U
	0.12U	0.12U	0.12U
	0.2U	0.2U	0.2U
	0.5U	0.5U	0.5U
	0.5U	0.5U	0.5U
	0.5U	0.5U	0.11J
	0.2U	0.5U	0.10J
	0.5U	0.5U	0.18J
	0.5U	0.5U	0.5U
	0.5UJ	0.5U	0.5U
	0.50U	0.50U	0.50U
	0.50U	0.50U	0.50U
	0.50U	0.50U	0.50U
1	0.50U	0.50U	0.50U
	0.5011	0.5011	0.5011

Legend

Units in μ g/L

Results in **red** exceed the drinking water remediation goal.

Highlighted results exceed the surface water remediation goal.

- MW8-9
 Monitoring Well Sampled
- MW8-15
 Monitoring Well Not Sampled

SEEP A Ø Seep Sampling Location

Low-tide Waterline

J

UJ

The result is an estimated concentration

Former Building Location

NS Not Sampled

U The compound was not detected at or above the stated limit

The compound was not detected at or above the stated limit, which is an estimated value

VOC	Remediation Goal						
100	Surface Water	Drinking Water					
TCE	81	5					
PCE	8.9	5					
1,1-DCE	3.2	7					
cis-1,2-DCE	-	70					
1,1,1-TCA	42,000	200					

Figure 4-1

Distribution of Selected VOCs in Groundwater and Seep Water

Spring 2017 Long-Term Monitoring Report Area 8, OU 2, NBK Keyport Contract No. N44255-14-D-9011 LTM/OM / Task Order 46

Location ID	Sampling Date	Arsenic (μg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cr(VI) ^{1/} (μg/L)	Copper (µg/L)	Lead (µg/L)	Mercury (μg/L) ^{2/}	Nickel (µg/L)	Silver (µg/L)	Thallium (μg/L)	Zinc (µg/L)
Drinking V Remediati	Water on Goals	0.05 ^{3/}	5	50 ^{4/}	80	590	15	2	100	48	1.1	4,800
Surface W Remediati	ater on Goals	0.143/	8	505/	50	2.5	5.8	0.025	7.9	1.2	1.6	77
MW8-8	11-956/	$1 U^1$	1 U	436	390	4.8	1.5	$0.1 U^1$	12.8	3 U ¹	$2 U^1$	18
MW8-8	05-96	1.4 J	1 U	384	380	4 U ¹	1 U	0.2 U ¹	15 U ¹	4 U ¹	1.2 J	12 U
MW8-8	09-96	1 U ¹	1 U	330	320	9 U ¹	1 U	0.2 U ¹	11 U ¹	8 U ¹	1 U	17.6 J
MW8-8	05-97	2 U ¹	1 U	319	350	2 U	1 U	0.2 U ¹	5 U	4 U ¹	1 U	8 U
MW8-8	10-97	0.5 U ¹	1 U	372	NT	2.3 J	1 J	0.1 U ¹	11 U ¹	1.8 J	1.8 U ¹	6.8 J
MW8-8	10-98	1.8 U ¹	0.2 U	322	NT	0.6 U	2 J	0.1 U ¹	1.3 U	1 U	1.2 U ¹	7.7 U
MW8-8	05-99	$1.7 U^{1}$	1.2 J	184	NT	0.73 J	2.2 J	$0.1 \ U^1$	3.5 J	$2.2 U^{1}$	1 U	8.6 U
MW8-8	11-99	5 U ¹	4 U	154	NT	$10 U^{1}$	2	$0.2 U^1$	$20 U^1$	10 U ¹	5 U ¹	10 U
MW8-8	06-00	0.2 J	1.33	95.7	102 J	0.46 J	0.03	$0.1 \ U^1$	3.21 J	0.907	0.01 U	3.1
MW8-8	06-01	0.3 UJ ¹	0.58	71.4	NT	0.29 J	0.04 U	0.0022	1.5	0.62	0.005 U	2 U
MW8-8	06-02	0.13 J	0.827 J	191	NT	0.4	0.147 UJ	$0.1 U^{1}$	1.45	0.468 J	0.006 J	0.8
MW8-8	06-03	0.43 J	0.15	84.1 J	NT	0.49	0.04	0.1 U ¹	0.76 J	0.17	0.005 J	0.7
MW8-8	06-04	0.32	0.201	111	NT	0.45	0.009	$0.04 U^1$	0.79	0.489	0.003 U	1.45
MW8-8	06-05	0.44	1.2	88.3	NT	0.42	0.1 U	0.1 U ¹	2.8	0.265	0.01 U	0.99
MW8-8	06-06	0.27 B	0.334	88.6	NT	0.369	0.021 U	0.2 U ¹	0.61 J	0.284	0.02 U	1.02
MW8-8	06-07	0.26 J	0.12	81.9	NT	5.1	0.24	0.2 U ¹	0.69	0.19	0.02 U	1.0
MW8-8	05-08	0.21 B	0.124	96	NT	0.496	0.054 U	0.2 U ¹	1.08	0.182	0.005 B	0.77
MW8-8	06-09	0.21 J	0.432	43.8	NT	0.437	0.020 U	0.2 U ¹	1.05	0.746 J	0.009 J	1.43
MW8-8	06-10	0.85	0.114	55.6	NT	0.77	0.008 UJ	0.02 J	0.72	0.292	0.02 U	0.87
MW8-8	07-11	0.91	0.036 UJ	118	NT	0.55	0.020 UJ	0.20 U ¹	0.40	0.198	0.02 U	0.48 J
MW8-8	06-12	0.7	0.022	59.6	NT	0.51	0.107	0.20 U ¹	0.68	0.200	0.013 J	0.5
MW8-8	06-13	0.648	0.008 J	52.3	NT	0.33	0.020 U	0.20 U ¹	0.34	0.211	0.020 U	0.37 J
MW8-8	06-14	0.56	0.015 J	66.7	NT	0.39 J	0.050	0.00230	0.33	0.336	0.020 U	0.38 J
MW8-8	06-15	0.61	0.040 UJ	83.2	NT	1.05	0.122	0.00361	0.28	0.327 J	0.020 UJ	1.69
MW8-8	06-16	0.8	0.082	53.6	NT	0.30	0.147	0.00264	0.30	0.496	0.020 UJ	2.1
MW8-8	07-17	0.33 J	0.057	70.2	NT	0.32	0.008 J	NT	0.41	0.466	NT	0.54
MW8-9	11-956/	3	1 U	17.1	10	3.6	10 U ¹	0.1 U ¹	9 U ¹	3 U ¹	10 U ¹	20.4
MW8-9	05-96	2.6 J	1	6 U	380	4 U ¹	1 U	0.2 U ¹	15 U ¹	4 U ¹	10 U ¹	12 U
MW8-9	09-96	3.4 J	3.5 J	13.4	10	9 U ¹	2 U	0.2 U ¹	11 U ¹	8 U ¹	10 U ¹	12 U
MW8-9	05-97	3.2	1 U	8.5 J	10 U	2 U	1 U	0.2 U ¹	5 U	4 U ¹	134	8 U
MW8-9	10-97	1.4 J	1.1 J	15.7	NT	1 U	0.5 U	0.35	11 U ¹	1 U	1.8 U ¹	10.9 J

	opii	ing 2017 (C	ontinaea)									
Location ID	Sampling Date	Arsenic (ug/L)	Cadmium (ug/L)	Chromium (ug/L)	Cr(VI) ^{1/} (µg/L)	Copper (ug/L)	Lead (ug/L)	Mercury ^{2/} (ug/L)	Nickel (ug/L)	Silver (ug/L)	Thallium (µg/L)	Zinc (ug/L)
Drinking V	Water			(18)							(18)	
Remediati	on Goals	0.053/	5	504/	80	590	15	2	100	48	1.1	4,800
Surface W	ater	0.1.43/	0	5.05/	50	2.5	5.0	0.025	7.0	1.2	1.6	
Remediati	on Goals	0.14	8	50%	50	2.5	5.8	0.025	7.9	1.2	1.0	//
MW8-9	04-98	NT	5 U	10 U	NT	NT	NT	NT	NT	NT	NT	NT
MW8-9	10-98	5.4 J	1.2 J	7.9 J	NT	0.6 U	0.51 J	0.13 J	38.2 J	2 J	6	7.7 U
MW8-9	05-99	2 J	1 J	10.1	NT	0.7 U	2 J	0.1 J	16.3 J	2.7 J	10 U ¹	8.6 U
MW8-9	11-99	5 U ¹	14	8	NT	$10 U^{1}$	2 U	$0.2 U^{1}$	$20 U^{1}$	$10 U^{1}$	5 U ¹	10 U
MW8-9	06-00	0.8 J	1.05	9.8	16 J	0.95 J	0.97	0.1 U ¹	8.57 J	3.7	0.01 U	8.6
MW8-9	06-01	0.5 J	1.13	9.7	NT	0.78 J	0.04 U	0.0036	4.2	1.61	0.005 J	3 U
MW8-9	06-02	0.43 J	0.651 J	6.43	NT	0.9	0.049 UJ	0.1 U ¹	4.97	1.44 J	0.003 J	3.2
MW8-9	06-03	0.58 J	0.98	6.9 J	NT	1.38	0.23	0.1 J	4.85 J	1.66	0.015 J	4.9
MW8-9	06-04	0.42	0.509	7.09	NT	0.73	0.515	$0.05 U^{1}$	3.91	1.3	0.003 U	1.57
MW8-9	06-05	0.43	0.904	6.8	NT	0.75	0.1 U	0.1 U ¹	3.5	0.68	0.01 U	2.17
MW8-9	06-06	0.49 B	0.454	6.87	NT	0.652	0.02 U	0.2 U ¹	2.57 J	0.863	0.02 U	1.01
MW8-9	06-07	0.52 J	0.30	6.10	NT	8.1	0.35	0.2 U ¹	2.30	0.48	0.02 U	1.30
MW8-9	05-08	0.69	0.363	6.38	NT	0.654	0.026 U	0.2 U ¹	2.25	0.421	0.004 B	0.82
MW8-9	06-09	0.63 J	0.590	4.85	NT	0.659	0.020 U	0.2 U ¹	1.55	0.263 J	0.020 U	0.59
MW8-9	06-10	0.73	0.174	4.28	NT	0.739	0.018 UJ	0.20 U ¹	1.20	0.312	0.006 UJ	4.57
MW8-9	07-11	0.63	0.343	7.46	NT	0.739	0.014 J	0.20 U ¹	1.74	0.497	0.020 UJ	0.65
MW8-9	06-12	0.61	0.286	6.09	NT	0.581	0.015 J	0.20 U ¹	1.48	0.430	0.020 UJ	0.60
MW8-9	06-13	0.67	0.238	5.41	NT	0.561	0.009 J	0.20 U ¹	1.28	0.245	0.020 UJ	0.48 J
MW8-9	06-14	0.66	0.231	6.3	NT	0.564	0.18	0.00439	1.38	0.36	0.020 UJ	0.7
MW8-9	06-15	0.67 J	0.438	6.32	NT	1.980	0.090	0.00300	1.87	0.488	0.020 U	2.5
MW8-9	06-16	0.56	0.523	7.81	NT	0.990	12.0	0.00374	1.54	0.668	0.020 U	6.58
MW8-9	07-17	0.49 J	0.284	5.00	NT	0.57	0.016 J	NT	1.51	0.439	NT	0.67
MW8-11	11-956/	2	299	887	950	15.7	10 U ¹	0.22	52.5	5.6	$2 U^{1}$	212
MW8-11	05-96	5.6 J	444	614	800	18.9 J	1 U	0.2 U ¹	39.5 J	4 U ¹	1 U	248
MW8-11	09-96	2.4 J	264	626	730	14.3 J	2 U	0.2 U ¹	42.3	8 U ¹	10 U ¹	168
MW8-11	05-97	2.1	210	441	610	12.4	1 U	0.2 U ¹	30.5	7	10 U ¹	161
MW8-11	10-97	0.66 J	278	377	NT	11.7 J	0.5 U	0.32	40	4.4 J	9 U ¹	178
MW8-11	10-98	2.1 J	126	459	NT	9 J	0.5 U	0.17 J	16.2 J	2.2 J	1.2 U ¹	50.9
MW8-11	05-99	2.6 J	33.5	198	NT	5.3 J	1 U	0.1 U ¹	4.6 J	2.2 J	1 U	23.7
MW8-11	11-99	5 U ¹	205	201	NT	$10 U^{1}$	2 U	0.2 U ¹	20 U	10 U ¹	5 U ¹	89 U ¹
MW8-11	06-00	0.8 J	106	221	227 J	4.44 J	0.16	$0.1 \ U^1$	10.2 J	2.09	0.04	109

Table 4-4.Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through
Spring 2017 (continued)

Spring Zorr (commund)												
Location	Sampling	Arsenic	Cadmium	Chromium	Cr(VI) ^{1/}	Copper	Lead	Mercury ^{2/}	Nickel	Silver	Thallium	Zinc
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Drinking Water Remediation Goals		0.05 ^{3/}	5	504/	80	590	15	2	100	48	1.1	4,800
Surface Water Remediation Goals		0.14 ^{3/}	8	50 ^{5/}	50	2.5	5.8	0.025	7.9	1.2	1.6	77
MW8-11	06-01	07 J	129	429	NT	4 95 I	0.062	0.0071	13	2 29	0.038	110
MW8-11	06-02	0.52 J	420 J	608	NT	4.9	0.047 UJ	$0.1 U^1$	9.46	3.87 J	0.04 J	221
MW8-11	06-03	0.61 J	353	308 J	NT	5.15	0.02 U	0.1 U ¹	9.53 J	5.87	0.041	134
MW8-11	06-04	0.57	357	290	NT	5.29	0.036	0.08 U ¹	31.9	6.45	0.053	157
MW8-11	06-05	1.9	266	230	NT	4.63	0.1 U	0.1 U ¹	24.4	6	0.05	91
MW8-11	06-06	0.61	338	157	NT	3.48	0.066 U	0.2 U ¹	25.8 J	6.17	0.0405	135
MW8-11	06-07	0.53 J	231	150	NT	3.60	0.094	0.2 U ¹	19.3	4.70	0.038	81.0
MW8-11	05-08	0.82	154	191	NT	3.44	0.055 U	0.2 U ¹	15.1	3.5	0.025	58.1
MW8-11	06-09	0.94 J	115	163	NT	3.10	0.020 U	0.2 U ¹	11.1	2.45 J	0.024	49.1
MW8-11	06-10	0.87	213	157	NT	3.09	0.011 J	0.02 J	19.4	5.860	0.034 UJ	85.7
MW8-11	07-11	0.68	166	165	NT	3.00	0.023	0.20 U ¹	16.0	3.550	0.025	68.0
MW8-11	06-12	0.70	152	153	NT	2.810	0.020 U	0.20 U ¹	11.4	3.220	0.026 UJ	68.4
MW8-11	06-13	0.86	85.1	187	NT	2.610	0.014 J	0.20 U ¹	9.77	2.770	0.022 UJ	44.0
MW8-11	06-14	0.93	106	166	NT	2.76	0.05	0.00973	12.1	2.60	0.033 UJ	43.0
MW8-11	06-15	0.87 J	127	182	NT	3.520	0.047	0.0102	13.8	3.11	0.026	52.4
MW8-11	06-16	0.74	131	145	NT	5.75	8.020	0.0114	19.1	4.21	0.029	85.0
MW8-11	06-17	0.91	135	140	NT	2.62	0.017 J	NT	14.6	2.70	NT	48
MW8-12	11-956/	5.1	28.6	1790	1500	32.9	11.7	0.19	34.6	3 U ¹	2 U ¹	31.3
MW8-12	05-96	3.6 J	46.1	852	380	4 U ¹	1 U	0.2 U ¹	17.9 J	4 U ¹	1 U	29.7
MW8-12	09-96	1.9 J	53.8	1740	1800	9 U ¹	1 U	0.2 U ¹	49.3	8 U ¹	1 U	30.3
MW8-12	05-97	$2 U^{1}$	565	1280	1400	64.4	20 U ¹	0.2 U ¹	673	4 U ¹	1 U	727
MW8-12	10-97	1.8 J	158	1030	NT	155	0.5 U	0.12 J	423	2 J	1.8 U ¹	344
MW8-12	10-98	$1.8 U^{1}$	8.5	1090	NT	4 J	0.5 U	0.15 J	8.9 J	1.2 J	1.2 U ¹	7.7 U
MW8-12	05-99	$1.7 U^{1}$	45.7	815	NT	19.9	3.2	0.1 U ¹	70	2.2 U ¹	1	48.9
MW8-12	06-00	0.2 J	20	163	216 J	5.65 J	0.75	0.1 U ¹	26.8 J	0.88	0.01 U	24.9
MW8-12	06-01	0.3 J	20.7	193	NT	6.14 J	1.2	0.0022	22	1.24	0.013 J	25.3
MW8-12	06-02	0.38 J	4.42 J	238	NT	4.1	0.121 UJ	0.1 U ¹	3.19	0.267 J	0.006 J	1.9
MW8-12	06-03	0.32 J	7.84	107 J	NT	2.78	0.15	0.1 U ¹	4.36 J	0.47	0.013 J	2.3
MW8-12	06-04	0.48	3.48	147	NT	5.21	0.111	0.05 U ¹	2.67	0.202	0.007	1.76
MW8-12	06-05	1.3	2.04	114	NT	3.7	0.219	0.1 U ¹	3	0.22	0.01 U	5.97
MW8-12	06-06	0.28 B	2.71	113	NT	2.67	0.048 U	0.2 U ¹	1.99 J	0.279	0.02 U	4.17

Table 4-4.Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through
Spring 2017 (continued)
	Spir		ontinucuj									
Location ID	Sampling Date	Arsenic (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cr(VI) ^{1/} (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury ^{2/} (μg/L)	Nickel (µg/L)	Silver (µg/L)	Thallium (μg/L)	Zinc (µg/L)
Drinking Remediat	Water ion Goals	0.05 ^{3/}	5	504/	80	590	15	2	100	48	1.1	4,800
Surface W Remediat	/ater ion Goals	0.14 ^{3/}	8	505/	50	2.5	5.8	0.025	7.9	1.2	1.6	77
MW8-12	06-07	0.47 J	0.31	101	NT	2.60	0.054	0.2 U ¹	0.92	0.037	0.02 U	0.67
MW8-12	05-08	0.53	0.431	100	NT	2.18	0.036 U	0.2 U ¹	1.07	0.057	0.004 B	0.25 B
MW8-12	06-09	0.68 J	0.109	80.8	NT	1.65	0.018 J	0.2 U ¹	0.57	0.016 J	0.006 J	0.15 J
MW8-12	06-10	0.35 J	0.433	74.8	NT	2.48	0.264 J	0.02 J	0.93	0.050	0.006 UJ	0.39 J
MW8-12	07-11	0.46 J	0.194	137	NT	2.22	0.048	0.20 U ¹	0.66	0.027 UJ	0.020 UJ	0.20 J
MW8-12	06-12	0.50	0.128	105	NT	1.760	0.026	0.20 U ¹	0.55	0.019 J	0.034 J	0.50 UJ
MW8-12	06-13	4.63	0.063	89.4	NT	1.53	0.032	0.20 U ¹	0.42	0.008 J	0.020 U	0.43 J
MW8-12	06-14	2.2	0.096	97.2	NT	2.70 J	0.064	0.00142	0.33	0.020 UJ	0.020 U	0.35 J
MW8-12	06-15	2.3	0.082	118	NT	2.11	0.425	0.00328	0.58	0.020 UJ	0.020 UJ	0.58
MW8-12	06-16	0.30 J	0.797	87.69	NT	2.29	0.057 UJ	0.00367	1.11	0.141	0.020 U	1.63
MW8-12	06-17	0.45 J	0.352	72.9	NT	1.45	0.039	NT	0.79	0.045	NT	0.33 J
MW8-14	11-956/	5.1	22.4 U ¹	208	90	152	203	0.52	100	3 U ¹	20 U ¹	241
MW8-14	05-96	3.3 J	10.9	6 U	11 U	6.7 J	1 U	0.2 U ¹	15 U ¹	4 U ¹	10 U ¹	29.9
MW8-14	09-96	3.1 J	19.9	19.2	20	9 U ¹	2 U	0.2 U ¹	$11 U^{1}$	8.6 J	10 U ¹	12 U
MW8-14	05-97	3.1	9.8	9 J	10	2 U	1.2	0.2 U ¹	5 U	7.3	$10 U^1$	9.2 J
MW8-14	10-97	1 J	13.2	17.7	NT	1 U	1 U	0.48	$11 U^{1}$	2 J	1.8 U ¹	9.8 J
MW8-14	10-98	10.8	16.9	19.9	NT	0.6 U	0.5 U	0.17 J	4.9 J	1.6 J	6	7.7 U
MW8-14	05-99	2.2 J	10.5	10.1	NT	0.7 U	1.4 J	$0.1 U^{1}$	3.7 J	$2.2 U^{1}$	10 U ¹	8.6 U
MW8-14	11-99	5 U ¹	13	7	NT	$10 U^{1}$	2 U	0.2 U ¹	$20 U^{1}$	10 U ¹	5 U ¹	10 U
MW8-14	06-00	2 J	13.8	14.4	58.8 J	1.22 J	0.61	0.1 U ¹	3.71 J	0.564	0.01 U	3.2
MW8-14	06-01	1.4 J	13.2	31.5	NT	1.16 J	1.01	0.001	2.5	0.32	0.008 J	3 U
MW8-14	06-02	1.53 J	14.9 J	15.8	NT	1.7	0.741 UJ	0.1 U ¹	4.63	0.44 J	0.007 J	4
MW8-14	06-03	2.08 J	14.6	16.2 J	NT	1.53	0.74	0.1 U ¹	4.71 J	0.38	0.006 J	2.6
MW8-14	06-04	1.63	13.5	22.2	NT	1.37	0.885	0.06 U ¹	5.61	0.351	0.007	2.6
MW8-14	06-05	2	12.5	17.8	NT	1.65	1.1	$0.1 U^{1}$	6.9	0.46	0.01 U	2.92
MW8-14	06-06	1.66	11.1	14.9	NT	1.13	0.682	$0.2 U^{1}$	5.17 J	0.358	0.02 U	2.25
MW8-14	06-07	1.5 J	9.8	15.4	NT	2.90	0.99	0.2 U ¹	5.50	0.33	0.02 U	2.60
MW8-14	05-08	1.91	8.33	21	NT	1.38	0.817	0.2 U ¹	5.21	0.24	0.012 B	2.2
MW8-14	06-09	1.78 J	8.91	18.2	NT	1.76	1.18	0.2 U ¹	5.08	0.259 J	0.005 J	2.58
MW8-14	06-10	1.91	10.4	28.3	NT	1.42	1.57 J	0.02 U ¹	4.89	0.383	0.011 UJ	2.23
MW8-14	07-11	1.75	8.65	15.1	NT	1.87	1.06	0.20 U ¹	5.42	0.285	0.020 UJ	2.38

Table 4-4.Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through
Spring 2017 (continued)

	Spir	ng 2017 (C	Sintinueu)									
Location ID	Sampling Date	Arsenic (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cr(VI) ^{1/} (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury ^{2/} (µg/L)	Nickel (µg/L)	Silver (µg/L)	Thallium (µg/L)	Zinc (µg/L)
Drinking Remediat	Water ion Goals	0.05 ^{3/}	5	504/	80	590	15	2	100	48	1.1	4,800
Surface W	Vater	0.14 ^{3/}	8	505/	50	2.5	5.8	0.025	7.9	1.2	1.6	77
MW8-14	06-12	1.67	7 90	19.8	NT	1 290	0.880	0.20 U ¹	1 12	0.223	0.039 1	2 10
MW8-14	06-12	1.07	8 520	23.9	NT	1.290	1.070	0.20 U ¹	4.72	0.225	0.020 III	2.10
MW8-14	06-14	1.50	7.60	15.76	NT	1.290	1.070	0.00202	4.35	0.25	0.020 UI	2.01
MW8-14	06-15	1.00 1.61 I	9.04	17.94	NT	1 760	1 710	0.00197	5 19	0.25	0.020 CJ	3.1
MW8-14	06-15	1.01 5	6.94	1/.74	NT	1.700	1.710	0.00125	1.64	0.230	0.008 I	1.12
MW8-14	06-17	1.55	5.91	12 /	NT	1.05	0.984	0.00125 NT	1 37	0.232	0.008 J	2.41
MW8-15	11-956/	1 U ¹	1 11	5 U	10 U	1.55	1 11	0.1 U ¹	ч.57	3 111	2 H ¹	39.9
MW8-15	11-95	$\frac{1 \text{ U}}{1 \text{ U}^1}$	1 U	<u>5 U</u>	10 0	<u>1 U</u>	1 U	0.1 0	93	3 U ¹	2 U 2 U ¹	35.6
MW8-16	11-956/	2.3	5 U	<u>5 U</u>	10 U	12	<u>1 U</u>	0.16	7.5	3 U ¹	$\frac{2}{2}$ U ¹	7 1
MW8-16	05-96	3.6 J	1 U	6 U	10 U	$\frac{1.2}{4 \text{ U}^1}$	13 J	0.10 0.2 U ¹	$15 U^1$	4 U ¹	1.1 J	149 J
MW8-16	09-96	2.9 J	1 U	7 U	10 U	9 U ¹	1 U	0.2 U ¹	11 U ¹	8 U ¹	1 U	12 U
MW8-16	05-97	2.3	1 U	2 U	10 U	2 U	1 U	0.2 U ¹	5 U	4 U ¹	1 U	8 U
MW8-16	10-97	1.4 J	1 U	5.6 J	NT	1 U	1 U	0.1 U ¹	11 U ¹	1 U	1.8 U ¹	7.2 J
MW8-16	10-98	1.8 U ¹	0.2 U	0.99 J	NT	0.6 U	0.5 U	0.1 U ¹	1.3 U	1 U	1.2 U ¹	7.7 U
MW8-16	05-99	1.7 U ¹	0.26 J	0.7 U	NT	0.7 U	3.4	0.11 J	4.1 J	2.2 U ¹	1 U	8.6 U
MW8-16	11-99	5 U ¹	4 U	5 U	NT	10 U ¹	2 U	0.2 U ¹	20 U ¹	10 U ¹	5 U ¹	10 U
MW8-16	06-00	1.14 J	0.16	0.17 U	4 U	0.2 J	0.05	0.1 U ¹	1.02 J	0.02 U	0.03 U	4
MW8-16	06-01	1.5 J	0.21	0.45	NT		0.04 U	0.0003 J	1.4	0.07 U	0.005 U	36.5
MW8-16	06-02	1.82 J	0.065 J	0.04 U	NT	0.2	0.011 UJ	0.1 U ¹	2.59	0.001 J	0.002 UJ	1.7
MW8-16	06-03	2.37 J	0.42	1 UJ	NT	0.1 U	0.1 U	0.1 U ¹	9.34 J	0.04 U	0.02 U	2.3 J
MW8-16	06-04	2.75	0.055	0.04 U	NT	0.38	0.011	0.04 U ¹	3.76	0.005 U	0.001 U	1.07
MW8-16	06-05	3	2 U	5 U	NT	2	2 U	0.1 U ¹	10 U ¹	3 U ¹	1 U	6 U
MW8-16	06-06	2.44	0.186	0.2 U	NT	0.043 B	0.02 U	0.2 U ¹	3.61 J	0.028	0.02 U	1.15
MW8-16	06-07	2.3 J	0.098	1.00	NT	0.77	0.075	0.2 U ¹	2.70	0.02 U	0.02 U	1.00
MW8-16	05-08	3.61	0.125	0.41	NT	0.043 B	0.044 U	0.2 U ¹	0.64	0.01 B	0.002 U	0.36 B
MW8-16	06-09	3.50 J	0.013 J	0.10 J	NT	0.156	0.020 U	0.2 U ¹	0.42	0.004 J	0.02 U	0.10 J
MW8-16	06-10	1.52	0.022 UJ	0.06 J	NT	0.071 UJ	0.009 UJ	0.02 U ¹	1.00	0.005 J	0.007 UJ	0.21 J
MW8-16	07-11	3.9	0.059	0.29	NT	0.72	0.020 UJ	0.20 U ¹	0.60	0.020 UJ	0.02 U	0.41 J
MW8-16	06-12	2.04	0.027	0.33	NT	0.295	0.009 J	0.20 U ¹	0.35	0.015 J	0.020 UJ	0.50 UJ
MW8-16	06-13	4.19	0.037	2.49	NT	0.50	0.042	0.20 U ¹	0.68	0.053	0.020 U	1.25
MW8-16	06-14	3.9	0.013 J	1.11	NT	1.06 J	0.054	0.00289	0.31	0.022 UJ	0.020 U	0.84

Table 4-4.Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through
Spring 2017 (continued)

Table 4-4.	Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Fall 1995 through
	Spring 2017 (continued)

Location ID	Sampling Date	Arsenic (μg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cr(VI) ^{1/} (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury ^{2/} (μg/L)	Nickel (µg/L)	Silver (µg/L)	Thallium (μg/L)	Zinc (µg/L)
Drinking V Remediati	Water on Goals	0.05 ^{3/}	5	504/	80	590	15	2	100	48	1.1	4,800
Surface W Remediati	ater on Goals	0.14 ^{3/}	8	50 ^{5/}	50	2.5	5.8	0.025	7.9	1.2	1.6	77
MW8-16	06-15	2.6	0.022	0.42	NT	0.66	0.046	0.00218	0.26	0.020 UJ	0.020 UJ	0.99
MW8-16	06-16	2.14	0.074	0.20 UJ	NT	0.100 UJ	0.020 UJ	0.00034 B	1.93	0.020 UJ	0.007 J	0.76
MW8-16	06-17	2.17	0.006 J	1.01	NT	0.10 UJ	0.016 J	NT	4.45	0.008 J	NT	0.50 J

Notes:

^{1/}Cr(VI) concentrations are for the total fraction only.

^{2/} Analytical method for dissolved mercury changed to EPA Method 1631E (low-level dissolved mercury) in June 2014.

 $^{3/}$ The background concentration of arsenic in groundwater at the site is 12 μ g/L.

 $^{4/}$ Value is for total chromium. Cr(VI) value is 80 µg/L.

 $^{5/}$ The RG of 50 µg/L is for Cr(VI). There is no RG established for total dissolved chromium.

^{6/} Total fraction was collected for this date and analyzed. Concentrations shown are total concentrations.

All concentrations are dissolved (except where noted above) and in ug/L.

Bold indicates detected value is equal to or exceeds the drinking water RG.

Shading indicates detected value is equal to or exceeds the surface water RG.

 $\mu g/L$ – microgram per liter or parts per billion (ppb)

Cr(VI) – hexavalent chromium

B – detected at a concentration greater than the method detection limit but less than the reporting limit

J – estimated result below reporting limit but above detection

U – not detected at value shown

U¹ - not detected at value shown and value exceeds remediation goal

NT - not tested

Final

SES-LTM/OM-9011-18-0058

ò

N8-14	
dmium	Chromium
2.4U	208
10.9	6U
19.9	19.2
9.8	9J
13.2	17.7
16.9	19.9
10.5	10.1
13	7
13.8	14.4
13.2	31.5
4.9J	15.8
14.6	16.2J
13.5	22.2
12.5	17.8
11.1	14.9
9.8	15.4
8.33	21
8.91	18.2
10.4	28.3
8.65	15.1
7.90	19.8
3.520	23.9
7.60	15.76
9.04	17.94
6.94	14.78
5.91	12.4

Legend

Units in μ g/L

Results in **red** exceed the drinking water remediation goal.

Highlighted results exceed the surface water remediation goal.

- MW8-9
 Monitoring Well Sampled
- MW8-15
 Monitoring Well Not Sampled

SEEP A Ø Seep Sampling Location

Low-tide Waterline

Former Building Location

The result is an estimated concentration

NS Not Sampled

J

- U The compound was not detected at or above the stated limit
- UJ The compound was not detected at or above the stated limit, which is an estimated value

Remediation Goal								
Surface Water	Drinking Water							
8	5							
50	50							
	Remedia Surface Water 8 50							

Figure 4-2

Distribution of Selected Metals in Groundwater and Seep Water

4.2.1 Volatile Organic Compounds in Groundwater

The VOCs detected in groundwater samples collected in June 2017 are summarized and discussed in the following subsections. The ROD indicates that contaminant concentrations in groundwater will be compared to: (1) drinking water RGs to determine if the IC prohibiting groundwater use for drinking water can be discontinued; and (2) surface water RGs to determine if contaminants in Area 8 groundwater have the potential to adversely impact the marine environment adjacent to Area 8 (Navy, EPA, and Ecology 1994). Therefore, contaminant concentrations detected in Area 8 groundwater samples were evaluated by comparing to both the drinking water and surface water RGs. Table 4-5 presents the VOC results from the June 2017 sampling event.

Location ID	Sampling Date	TCE (µg/L)	PCE (µg/L)	1,1-DCE (μg/L)	cis-1,2-DCE (µg/L)	1,1,1-TCA (μg/L)
Drinking Water Remediation Goals		5	5	7	70	200
Surface Water Remediation Goals		81	8.9	3.2		42,000
MW8-8	06-17	40	7.1	0.11 J	1.6	0.93
MW8-9	06-17	0.12 J	0.13 J	0.50 U	0.50 U	0.50 U
MW8-11	06-17	24	0.41 J	0.50 U	0.26 J	3.0
MW8-11 (field duplicate)	06-17	24	0.44 J	0.50 UJ	0.26 J	3.0
MW8-12	06-17	10	2.8	0.50 U	0.28 J	0.87
MW8-14	06-17	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
MW8-16	06-17	7.2	0.15 J	0.090 J	26	0.50 U

Table 4-5.Summary of Selected VOC Results for Area 8 Groundwater Sampling
Locations, Spring 2017

Notes:

Bold indicates detected value is equal to or exceeds the drinking water RG.

Shading indicates detected value is equal to or exceeds the surface water RG.

 $\mu g/L-microgram \ per \ liter$

DCE – dichloroethene

D - result reported from a diluted analysis

ID – identification

J – estimated result below reporting limit but above detection

PCE-tetrachloroethene

TCA - trichloroethane

TCE - trichloroethene

U – not detected at value shown

VOC – volatile organic compounds

4.2.1.1 Trichloroethene

The drinking water RG for trichloroethene (TCE) is 5 μ g/L and the surface water RG is 81 μ g/L. No TCE concentrations exceeded the surface water RG. The highest concentration of TCE in groundwater at the site was 40 μ g/L detected in well MW8-8, which exceeds the drinking water RG. TCE was also detected above the drinking water RG in wells MW8-11, MW8-12, and MW8-16 (refer to Table 4-5).

TCE was not detected at or above the PQL of 0.50 μ g/L in well MW8-14, which is located closest to the shoreline.

4.2.1.2 Tetrachloroethene

The drinking water RG for tetrachloroethene (PCE) is 5 μ g/L and the surface water RG is 8.9 μ g/L. PCE was detected above the drinking water RG only in well MW8-8, but below both RGs in wells MW8-9, MW8-11, MW8-12, and MW8-16 (refer to Table 4-5). PCE was not detected at or above the PQL of 0.50 μ g/L in well MW8-14.

4.2.1.3 1,1-Dichloroethene

The drinking water RG for 1,1-DCE is 7 μ g/L and the surface water RG is 3.2 μ g/L. The only detections of 1,1-DCE were below both RGs in wells MW8-8 and MW8-16 (refer to Table 4-5). The VOC 1,1-DCE was not detected at or exceeding the PQL of 0.50 μ g/L in well MW8-14.

4.2.1.4 cis-1,2-Dichloroethene

The drinking water RG for cis-1,2-DCE is 70 μ g/L and there is no surface water RG. This VOC was detected below the drinking water RG in wells MW8-8, MW8-11, MW8-12, and MW8-16 (refer to Table 4-5). It was not detected at or exceeding the PQL of 0.50 μ g/L in wells MW8-9 or MW8-14.

4.2.1.5 1,1,1-Trichloroethane

The drinking water RG for 1,1,1-trichloroethane (TCA) is 200 μ g/L and the surface water RG is 42,000 μ g/L. VOC 1,1,1-TCA was detected at concentrations less than both the RGs in wells MW8-8, MW8-11, and MW8-12 (refer to Table 4-5). VOC 1,1,1-TCA was not detected at or above the PQL of 0.50 μ g/L in wells MW8-9, MW8-14, and MW8-16.

4.2.1.6 Other Detected VOCs: Chloroform, 1,1-Dichloroethane, Toluene, Trans-1,2-Dichloroethene, Total Xylenes, and 1,1,2-Trichloroethane

The drinking water RGs for chloroform, 1,1-dichloroethane (DCA), toluene, trans-1,2-DCE, and total xylenes are 7.2 μ g/L, 800 μ g/L, 1,000 μ g/L, 100 μ g/L, and 10,000 μ g/L, respectively. The surface water RGs for chloroform, 1,1-DCA, toluene, trans-1,2-DCE, and total xylenes are 470 μ g/L, none established, 49,000 μ g/L, 33,000 μ g/L, and none established, respectively. Three of these five VOCs were detected in one or more wells during the June 2017 sampling event, all at trace levels and less than their respective RGs, where established. Specific results are presented in Table 4-6. One other VOC, 1,1,2-trichloroethane, was detected at an estimated concentration of 0.19 μ g/L in MW8-8, far less than the drinking water and surface water RGs of 5 μ g/L and 42 μ g/L, respectively, and was not detected in any of the other wells.

Location ID	Sampling Date	Chlorof (µg/L	orm 2)	1,1-DC (μg/L	CA L)	Toluen (μg/L)	e	trans-1,2- (μg/L	DCE	Total Xylen (μg/L	l es)
Drinking Water Remediation Goals		7.2		800		1,000		100		10,000	
Surface Water Remediation Goals		470		NE		49,000		33,000		NE	
MW8-8	06-17	0.62		0.50	U	0.50	U	3.0		0.50	U
MW8-9	06-17	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
MW8-11	06-17	0.23	J	0.10	J	0.50	U	0.11	J	0.50	U
MW8-11 (field duplicate)	06-17	0.23	J	0.10	J	0.50	U	0.14	J	0.50	U
MW8-12	06-17	0.74		0.50	U	0.50	U	0.78		0.50	U
MW8-14	06-17	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
MW8-16	06-17	0.14	J	0.080	J	0.50	U	0.19	J	0.50	U
Notes:											

Table 4-6.	Summary of Other VOC Results for Area 8 Groundwater Sampling
	Locations, Spring 2017

Bold indicates detected value is equal to or exceeds the drinking water RG.

Shading indicates detected value is equal to or exceeds the surface water RG.

μg/L – microgram per liter	
DCA – dichloroethane	
DCE – dichloroethene	TCA – trichloroethane
D – result reported from a diluted analysis	TCE – trichloroethene
ID – identification	U – not detected at value shown
J – estimated result	U ¹ – not detected at value shown and value exceeds remediation goal
PCE – tetrachloroethene	VOC – volatile organic compounds

4.2.2 1,4-Dioxane in Groundwater

Sampling in Area 8 for 1,4-dioxane was first conducted at the request of Ecology in June 2007, and based on the results of this initial sampling was conducted again in summer 2011, and spring 2012 through 2017. As specified in the MMA SAP (Navy 2017a), sampling of the Area 8 groundwater monitoring wells for 1,4-dioxane is conducted annually. There is no RG established for 1,4-dioxane. For data evaluation, concentrations are compared to the MTCA Method B cleanup level (carcinogenic) of 0.44 μ g/L. During the June 2017 sampling event, 1,4-dioxane was detected above the MTCA Method B cleanup level in wells MW8-8, MW8-11, and MW8-12 (refer to Table 4-3). It was not detected at a PQL of 0.40 in wells MW8-9, MW8-14, and MW8-16.

4.2.3 Dissolved Metals in Groundwater

The dissolved metals detected in groundwater samples collected during the June 2017 sampling event are discussed in the following subsections. Again, concentrations of metals detected in Area 8 groundwater samples were evaluated by comparison to both the drinking water and surface water RGs. Table 4-7 presents the dissolved metals results from the June 2017 sampling event.

4.2.3.1 Dissolved Arsenic

The drinking water RG for arsenic is 0.05 μ g/L and the surface water RG is 0.14 μ g/L. Dissolved arsenic exceeded both the drinking water and surface water RGs in all six groundwater wells (refer to Table 4-7). However, the concentrations detected were well below the background value of 12 μ g/L for arsenic in groundwater at Area 8, as determined during the remedial investigation (Navy 1993e).

4.2.3.2 Dissolved Cadmium

The drinking water RG for cadmium is 5 μ g/L and the surface water RG is 8 μ g/L. Dissolved cadmium was detected at concentrations exceeding both RGs in well MW8-11 at 135 μ g/L, but only the drinking water RG in MW8-14 at 5.91 μ g/L. Dissolved cadmium was detected below both RGs in wells MW8-8, MW8-9, MW8-12, and MW8-16 (refer to Table 4-7).

4.2.3.3 Dissolved Chromium

The drinking water RG for total chromium is 50 μ g/L and the surface water RG for chromium VI is also 50 μ g/L (most stringent). Dissolved chromium was detected above both RGs in wells MW8-8, MW8-11, and MW8-12, but below both RGs in wells MW8-9 and MW8-14, and MW8-16 (refer to Table 4-7).

4.2.3.4 Dissolved Copper

The drinking water RG for copper is 590 μ g/L and the surface water RG is 2.5 μ g/L. Dissolved copper was detected above the surface water RG, but less than the drinking water RG, in well MW8-11. It was also detected below both RGs in wells MW8-8, MW8-9, MW8-12 and MW8-14. Dissolved copper was not detected at an estimated PQL of 0.10 μ g/L in MW8-16 (refer to Table 4-7).

4.2.3.5 Dissolved Lead

The drinking water RG for lead is 15 μ g/L and the surface water RG is 5.8 μ g/L. Dissolved lead was detected at concentrations below both RGs in all six of the wells (refer to Table 4-7).

4.2.3.6 Dissolved Nickel

The drinking water RG for nickel is 100 μ g/L and the surface water RG is 7.9 μ g/L. Dissolved nickel was detected above the surface water RG, but below the drinking water RG in well MW8-11, and below both RGs in the five remaining wells sampled (refer to Table 4-7).

4.2.3.7 Dissolved Silver

The drinking water RG for silver is 48 μ g/L and the surface water RG is 1.2 μ g/L. Dissolved silver was detected above the surface water RG, but below the drinking water RG, in well MW8-11. Dissolved silver was detected below both RGs in wells MW8-8, MW8-9, MW8-12, MW8-14, and MW8-16 (refer to Table 4-7).

4.2.3.8 Dissolved Zinc

The drinking water RG for zinc is 4,800 μ g/L and the surface water RG is 77 μ g/L. Dissolved zinc was detected well below both RGs in all six of the sampled wells (refer to Table 4-7).

4.2.3.9 Dissolved Barium

The drinking water RG for barium is 1,000 μ g/L. No surface water RG has been developed for barium. Dissolved barium was not detected at concentrations exceeding its RGs in any of the six wells sampled during June 2017. The maximum dissolved barium concentration detected was 144 μ g/L in MW8-16 (Appendix C). Barium levels have ranged from a maximum of 62.5 μ g/L to 197 μ g/L over the past decade. Thus, barium has not been detected at Area 8 at concentrations significantly above its background concentration (130 μ g/L) or approaching the drinking water remediation goal for barium of 1,000 μ g/L (there is no surface water remediation goal for barium).

Location	Sampling	Arsenic	Cadmium	Chromium	Cr(VI) ^{1/}	Copper	Lead	Mercury	Nickel	Silver	Thallium	Zinc
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)^{2/2}$	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Drinking V	Water	0.053/	5	504/	80	500	15	2	100	19	1.1	4 800
Remediation	on Goals	0.03	5	30	80	390	15	2	100	40	1.1	4,800
Surface W	ater	0.1.43/	o	505/	50	2.5	5 9	0.025	7.0	1.2	1.6	77
Remediatio	on Goals	0.14	0	30	30	2.3	3.8	0.023	1.9	1.2	1.0	//
MW8-8	06-17	0.33 J	0.057	70.2	NT	0.32	0.008 J	NT	0.41	0.466	NT	0.54
MW8-9	06-17	0.49 J	0.284	5.00	NT	0.57	0.016 J	NT	1.51	0.439	NT	0.67
MW8-11	06-17	0.90	134	136	NT	2.62	0.017 J	NT	14.6	2.70	NT	47
MW8-11	06-17	0.91	135	140	NT	2.61	0.015 J	NT	14.3	2.69	NT	48
(field dupli	cate)											
MW8-12	06-17	0.45 J	0.352	72.9	NT	1.45	0.039	NT	0.79	0.045	NT	0.33 J
MW8-14	06-17	1.47	5.91	12.4	NT	1.39	0.984	NT	4.37	0.210	NT	2.41
MW8-16	06-17	2.17	0.006 J	1.01	NT	0.10 UJ	0.016 J	NT	4.45	0.008 J	NT	0.50 J

 Table 4-7.
 Summary of Selected Dissolved Metals Results for Area 8 Groundwater Sampling Locations, Spring 2017

Notes:

^{1/}Cr(VI) concentrations are for the total fraction only.

^{2/}Analytical method for dissolved mercury changed to EPA Method 1631E (low-level dissolved mercury) in June 2014.

^{3/}The background concentration of arsenic in groundwater at the site is $12 \mu g/L$.

^{4/}Value is for total chromium. Cr(VI) value is 80 μ g/L.

 $^{5/}$ The RG of 50 µg/L is for Cr(VI). There is no RG established for total dissolved chromium.

All concentrations are dissolved (except where noted above) and in μ g/L.

Bold indicates detected value is equal to or exceeds the drinking water RG.

Shading indicates detected value is equal to or exceeds the surface water RG.

 $\mu g/L$ – microgram per liter or parts per billion (ppb)

Cr(VI) – hexavalent chromium

J – estimated result below reporting limit but above detection

U – not detected at value shown

U1 - not detected at value shown and value exceeds remediation goal

NT - not tested

4.3 SEEP WATER ANALYTICAL RESULTS

Water from Seep A in Area 8 on the western shoreline of Port Orchard Bay was sampled in June 2017. The location of Seep A is shown on Figures 1-4, 1-5, 4-1, and 4-2. Seep sample results were compared to surface water RGs for data evaluation to determine if Area 8 groundwater is adversely impacting the adjacent marine environment.

4.3.1 Volatile Organic Compounds in Seep Water

In June 2017 at Seep A, TCE was detected at 6.7 μ g/L which is below the surface water RG of 81 μ g/L (Table 4-8). PCE was detected at a concentration of 0.58 μ g/L, below the surface water RG of 8.9 μ g/L. The VOC 1,1-DCE was detected in Seep A at a concentration of 2.6 μ g/L, below the surface water RG of 3.2 μ g/L. The VOC cis-1,2-DCE was detected at 0.69 μ g/L in Seep A. No surface water RG has been established for cis-1,2-DCE; however, the detected concentration does not exceed the drinking water RG of 42,000 μ g/L in Seep A at a concentration of 18 μ g/L. Chloroform and trans-1,2-DCE were detected well below their respective surface water RGs of 470 μ g/L and 33,000 μ g/L in Seep A at concentrations of 0.76 μ g/L and 0.11 J μ g/L (estimated concentration), respectively (Appendix C). The VOC 1,1-DCA was detected in Seep A at 1.3 μ g/L (Appendix C). Although no surface water RG of 800 μ g/L. Total xylene concentrations were not detected in Seep A at the PQL of 0.50 μ g/L. No surface water RG has been established for total xylenes. No other VOCs were detected in Seep A above their respective PQLs.

Location	Sampling	TCE]	PCI	E	1,1-D	CE	cis-1,2-	DCE	1,1,1-T	CA
ID	Date	(µg/I	.)	(µg/l	L)	(μg/	L)	(µg/	L)	(µg/L)
Drinking Wate Remediation G	er Joals	5		5		7		70		200	
Surface Water		0.1								10.000	
Remediation G	oals	81		8.9		3.2				42,000	
Seep A	05-96	68	J	3		16		7		88	J
Seep A	06-00	7.4		0.3	J	3.1		3.7		19	
Seep A	06-01	3		0.31	J	1.4		1.3		11	
Seep A	06-02	1.2		0.11	U	1		0.68		9.5	
Seep A	06-03	0.36	J	0.26	J	0.12	U	0.12	U	1.6	
Seep A	06-04	49		0.92		13		9.9		77	
Seep A	06-05	0.3		0.3		0.2	U	0.2	U	2.2	
Seep A	06-06	3.6	J	0.30	J	1.5	J	2.0	J	12	J
Seep A	06-07	2.4		0.31	J	0.42		0.85		2.8	
Seep A	05-08	7.7		0.55		1.1		1.7		5.5	
Seep A	06-09	6.4		0.39	J	1.5		1.9		5.7	
Seep A	06-10	4.4		0.29	J	0.36	J	1.6		1.8	
Seep A	07-11	1.4		0.10	J	0.5	U	0.09	J	0.5	U
Seep A	06-12	13		1.0		11	J	1.9		53	JD
Seep A	06-13	3.3	J	0.26	J	0.5	U	1.3		1.0	
Seep A	06-14	7.4		0.73		2.9		1.0		21	
Seep A	06-15	2.5		0.30	J	0.25	J	1.3		3.6	
Seep A	06-16	7.9		0.65		5.4		0.82		44	J
Seep A	06-17	6.7		0.58		2.6		0.69		18	
Seep B	05-96	14		1	U	1	U	0.7	J	1	
Seep B	06-00	2.2		0.5	U	0.5	U	0.5	U	0.3	J
Seep B	06-01	3.1		0.13	J	0.12	U	0.44	J	0.26	J
Seep B	06-02	5.4		0.12	J	0.12	U	0.52		0.15	J
Seep B	06-03	1.9		0.14	J	0.12	U	0.2	J	0.12	U
Seep B	06-04	0.64		0.39	J	0.12	U	0.23	J	0.87	
Seep B	06-05	0.3		0.4		0.2	U	0.2	U	0.3	
Seep B	06-06	0.48	J	0.22	J	0.5	U	0.18	J	0.12	J
Seep B	06-07	0.14	J	0.5	U	0.5	U	0.5	U	0.5	U
Seep B	05-08	0.41	J	0.17	J	0.5	U	0.12	J	0.1	J
Seep B	06-09	0.40	J	0.18	J	0.2	U	0.5	U	0.16	J
Seep B	06-10	5.7		0.18	J	0.5	U	0.51		0.09	J
Seep B	07-11	1.3		0.12	J	0.5	U	0.09	J	0.5	U
Notes: Shading indicates µg/L – microgran	detected value is en per liter	qual to or e	xcee	ds surface w	ater R	kG.					
DCE – dichloroet	hene d from a diluted and	alveis		TCA – tri	chlore	ethane					
Seep B Seep B Seep B Seep B Seep B Seep B Seep B Seep B Notes: Shading indicates µg/L – microgram DCE – dichloroet D – result reporte	06-03 06-04 06-05 06-06 06-07 05-08 06-09 06-10 07-11 • detected value is en n per liter hene d from a diluted and	1.9 0.64 0.3 0.48 0.14 0.41 0.40 5.7 1.3 qual to or e	J J J	0.14 0.39 0.4 0.22 0.5 0.17 0.18 0.18 0.12 ds surface w TCA - tri TCE - tric	J J U J J J J cater R chloro	0.12 0.12 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	U U U U U U U U U	0.2 0.23 0.2 0.18 0.5 0.12 0.5 0.51 0.09	J J U J U J J J	0.12 0.87 0.3 0.12 0.5 0.1 0.16 0.09 0.5	U J J J U U

Table 4-8.	Summary of Selected VOC Results for Area 8 Seep Sampling Locations, Fall
	1995 through Spring 2017

ID – identification

J – estimated result PCE – tetrachloroethene

4-26

U - not detected at value shown

 $VOC-volatile \ organic \ compounds$

U1 - not detected at value shown and value exceeds remediation goal

4.3.2 Dissolved Metals in Seep Water

Dissolved arsenic was detected at a concentration of 0.93 μ g/L in Seep A, above the surface water RG of 0.14 μ g/L (refer to Table 4-9). However, this concentration is less than the Area 8 background concentration for arsenic in groundwater of 12 μ g/L established during the remedial investigation (Navy 1993e).

Dissolved cadmium was detected at a concentration of 10.5 μ g/L in Seep A, above the surface water RG of 8 μ g/L.

Dissolved chromium was detected at 6.14 μ g/L in Seep A, well below the surface water RG of 50 μ g/L. Dissolved chromium in samples collected from Area 8 seeps has not exceeded the surface water RG since 1996.

Dissolved copper was detected at $0.42 \ \mu g/L$ in Seep A, below the surface water RG of 2.5 $\mu g/L$. Dissolved copper in samples collected from Area 8 seeps has not exceeded the surface water RG since 1996.

Dissolved lead was detected at 0.034 μ g/L in Seep A, below the surface water RG of 5.8 μ g/L. Dissolved lead in samples collected from Area 8 seeps has not exceeded the surface water RG since 1996 (refer to Table 4-9).

Dissolved nickel was detected in Seep A at 6.78 μ g/L, below the surface water RG of 7.9 μ g/L. Dissolved nickel in samples collected from Area 8 seeps has not exceeded the surface water RG since 1996 (refer to Table 4-9).

Dissolved silver was detected in Seep A at a concentration of 0.039 μ g/L below the surface water RG of 1.2 μ g/L. Dissolved silver in samples collected from Area 8 seeps has never exceeded the surface water RG since sampling began in 1996 (refer to Table 4-9).

Dissolved zinc was detected in Seep A at 0.87 μ g/L, below the surface water RG of 77 μ g/L. Dissolved zinc in samples collected from Area 8 seeps has never exceeded the surface water RG since sampling began in 1996 (refer to Table 4-9).

Dissolved barium was detected in Seep A at a concentration of 43.6 μ g/L (Appendix C). No surface water RG exists for barium. The concentration detected did not exceed the drinking water RG for barium of 1,000 μ g/L.

Spring 2017 Long-Term Monitoring Report Area 8, OU 2, NBK Keyport Contract No. N44255-14-D-9011 LTM/OM / Task Order 46

Location	Sampling	Arsenic	Cadmium	Chromium	Cr(VI) ^{1/}	Copper	Lead	Mercury ^{2/}	Nickel	Silver	Thallium	Zinc
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Drinking V	Water	0.05 ^{3/}	5	50 ^{4/}	80	590	15	2	100	48	11	4 800
Remediati	on Goals	0.00	U	00	00	030	10	-	100			.,
Surface W Remediation	ater on Goals	0.14 ^{3/}	8	505/	50	2.5	5.8	0.025	7.9	1.2	1.6	77
Seep A	05-96 ^{6/}	1.8 J	46.7	183	240	7.8 J	1 U	0.2 U ¹	15 U ¹	4 U ¹	10 U ¹	12 U
Seep A	05-96	1.3 J	33.9	159		5.1 J	1 U	0.2 U ¹	15 U ¹	4 U ¹	10 U ¹	12 U
Seep A	06-00	2.4 J	0.14	0.6	450	0.27	1.3 J		5.59 J	1.14 J	0.02	0.8
Seep A	06-01	0.9 J	23.2	5.6	NT	1 J	0.06	0.0034	1	0.1	0.022	7.6 J
Seep A	06-02	1.95 J	2.57 J	0.44 U	NT	0.8	0.054 UJ	$0.1 \ U^1$	0.95	0.011 UJ	0.003 J	1.3
Seep A	06-03	1.33 J	38.4	7.6 J	NT	0.93	0.08	$0.1 \ U^1$	1.26 J	0.09	0.015 J	1
Seep A	06-04	0.66	88.9	45.5	NT	1.08	0.032	$0.06 \ U^1$	4.29	0.031	0.015	0.83
Seep A	06-05	1.7	50.3	11	NT	1.13	0.1 U	0.1 U ¹	2	0.032 U	0.014	1.83
Seep A	06-06	1.21	14.4	3.58	NT	0.814	0.08 U	0.2 U ¹	1.74 J	0.162	0.02 U	1.40
Seep A	06-07	1.00 J	19.4	7.2	NT	1.20	0.063	$0.2 U^{1}$	1.50	0.02 U	0.02 U	1.50
Seep A	05-08	2.48	7.96	10.6	NT	0.867	0.092 U	0.2 U ¹	1.77	0.037	0.01 B	1.44
Seep A	06-09	1.50 J	2.57	5.0	NT	0.383	0.028	0.2 U ¹	1.18	0.013 J	0.003 J	1.00
Seep A	06-10	1.66	6.60	4.87	NT	0.517	0.042 UJ	$0.02 \ U^1$	1.94	0.030	0.007 UJ	2.58
Seep A	07-11	1.19	1.08	3.59	NT	0.651	0.036	$0.20 U^{1}$	1.58	0.020 UJ	0.020 UJ	0.60
Seep A	06-12	0.98	15.4	7.52	NT	0.468	0.047	0.20 U ¹	2.99	0.107	0.026 UJ	1.21
Seep A	06-13	1.27	0.848	4.32	NT	0.435	0.016 J	0.20 U ¹	1.03 UJ	0.009 J	0.020 UJ	0.68
Seep A	06-14	1.10	2.90	7.30	NT	0.511	0.03	0.00162	1.97	0.020 UJ	0.020 UJ	0.8
Seep A	06-15	0.99 J	0.729	1.37	NT	0.380	0.047	0.00506	1.05	0.011 J	0.006 J	2.3
Seep A	06-16	0.89	10.5	3.22	NT	0.372	0.053 UJ	0.00134	6.83	0.057	0.008 J	0.62
Seep A	06-17	0.93	10.5	6.14	NT	0.42	0.034	NT	6.78	0.039	NT	0.87
Seep B	05-96	3 J	1 U	6 U	10 U	24.5 J	1 U	0.2 U ¹	15 U ¹	4 U ¹	1 U	12 U
Seep B	05-96	4.6 J	1 U	6 U	NT	8.5 J	1 U	0.2 U ¹	15 U ¹	4 U ¹	10 U ¹	12 U
Seep B	06-00	2.5 J	0.82	6.4	17.5	0.77	0.22 J		0.88 J	0.297 J	0.02	1.4
Seep B	06-01	1.4 J	1.52	4.4	NT	0.9 J	0.06	0.0009 J	1	0.1 U	0.011 J	3.4 U
Seep B	06-02	1.3 J	2.23 J	3.62	NT	0.9	0.009 UJ	$0.1 \ U^1$	1.95	0.049 J	0.011 J	1.9
Seep B	06-03	1.6 J	4.18	2.9 J	NT	0.76	0.02 U	$0.1 \ U^1$	3.14 J	0.04	0.013 J	1.3
Seep B	06-04	1.02	8.33	15.9	NT	0.71	0.27	0.06 U ¹	4.31	0.097	0.017	0.97

Table 4-9.Summary of Selected Dissolved Metals Results for Area 8 Seep Sampling Locations, Fall 1995 through Spring 2017

Table 4-9.	Summary of Selected Dissolved Metals Results for Area 8 Seep Sampling Locations, Fall 1995 through Spring 2017
	(continued)

Location ID	Sampling Date	Arsenic (μg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cr(VI) ^{1/} (μg/L)	Copper (µg/L)	Lead (µg/L)	Mercury ^{2/} (μg/L)	Nickel (µg/L)	Silver (µg/L)	Thallium (μg/L)	Zinc (µg/L)
Drinking V Remediati	Water on Goals	0.05 ^{3/}	5	504/	80	590	15	2	100	48	1.1	4,800
Surface W Remediati	ater on Goals	0.14 ^{3/}	8	50 ^{5/}	50	2.5	5.8	0.025	7.9	1.2	1.6	77
Seep B	06-05	1.43	2.06	6.52	NT	0.89	0.1 U	0.1 U ¹	2.77	0.035	0.01 U	1.12
Seep B	06-06	1.32	2.1	3.33	NT	0.602	0.022	0.2 U ¹	2.64 J	0.085	0.02 U	1.01
Seep B	06-07	1.10 J	1.1	2.7	NT	0.60	0.058	0.2 U ¹	1.80	0.02 U	0.02 U	0.96
Seep B	05-08	2.27	1.26	3.28	NT	0.668	0.18 U	0.2 U ¹	2.11	0.051	0.019 B	1.39
Seep B	06-09	1.26 J	0.616	3.19	NT	0.618	0.058	0.2 U ¹	1.10	0.009 J	0.004 J	0.73
Seep B	06-10	1.40	0.928	3.70	NT	0.646	0.015 UJ	0.02 U ¹	1.46	0.202	0.009 UJ	2.31
Seep B	07-11	1.17	1.05	3.53	NT	0.690	0.025	0.20 U ¹	1.61	0.024 UJ	0.018 J	0.68

Notes:

4-29

^{1/}Cr(VI) concentrations are for the total fraction only.

^{2/}Analytical method for dissolved mercury changed to EPA Method 1631E (low-level dissolved mercury) in June 2014.

 $^{3/}$ The background concentration of arsenic in groundwater at the site is 12 μ g/L.

 $^{4/}$ Value is for total chromium. Cr(VI) value is 80 µg/L.

 $^{5/}$ The RG of 50 µg/L is for Cr(VI). There is no RG established for total dissolved chromium.

^{6/}Total fraction was collected for this date and analyzed. Concentrations shown are total concentrations.

All concentrations are dissolved (except where noted above) and in μ g/L.

Shading indicates detected value is equal to or exceeds the surface water RG.

 $\mu g/L$ – microgram per liter or parts per billion (ppb)

Cr(VI) – hexavalent chromium

J – estimated result below reporting limit but above detection

U – not detected at value shown

 $\mathrm{U}^{1}-\mathrm{not}$ detected at value shown and value exceeds remediation goal

NT - not tested

5. DATA TRENDS

Monitoring trends for VOCs, 1,4-dioxane, and dissolved metals in groundwater are presented and discussed in this section.

5.1 VOLATILE ORGANIC COMPOUND TRENDS

Graphs showing trends in VOC concentrations over the last 10 years (2007 through 2017) for groundwater are included in Appendix D. Graphs are presented as Figures D-1 through D-6, and D-1a through D-6a for sampling locations where chemicals have historically been detected (MW8-8, MW8-9, MW8-11, MW8-12, MW8-16, and Seep A). For each of these locations, chemical concentrations of particular interest, specifically TCE, PCE, and cis-1,2-DCE on Figures D-1 through D-6, and 1,1-DCE and 1,1,1-TCA on Figures D-1a through D-6 are graphically presented. Drinking water RGs are shown on the groundwater monitoring well graphs and surface water RGs are shown on the seep water graphs.

No VOC trend analysis graph was developed for MW8-14 because target VOCs have not been detected consistently or have been detected at only low concentrations, below RGs.

Analysis of concentrations trends from the past 10 years (2007 to 2017, inclusive) indicates that target VOC concentrations are generally declining; exceptions and RG exceedances are summarized by sample location below:

- MW8-8 (Figures D-1 and D-1a): PCE appears stable and continues to exceed the drinking water RG, but is less than the surface water RG (surface water RG not shown on figure). TCE exhibits an overall decrease in the last 10 years, however has increased three of the last four years. TCE continues to exceed the drinking water RG, but is less than the surface water RG. Since 2009, the TCE-degradation daughter product cis-1,2-DCE, exhibits an overall decreasing trend that corresponds roughly with the reduction of the parent compound TCE. The compound cis-1,2-DCE remains an order of magnitude lower than the drinking water RG. Other COCs are trending downward overall and have consistently remained below their respective RGs.
- MW8-9 (Figures D-2 and D-2a): PCE appears stable and at trace concentrations well below the RGs. Since 2013, TCE appears to be decreasing and has been below the drinking water RG for the past two years. The TCE concentration remains well below the surface water RG. The cis-1,2-DCE trend corresponds closely with the trend of its

parent compound TCE, mirroring the recent decreasing trend since 2013, and is well below the drinking water RG. Other COCs appear stable and have consistently remained below their respective RGs, or have not been detected at or above PQLs.

- MW8-11 (Figures D-3 and D-3a): PCE concentrations are consistently below the RGs and appear to be exhibiting a decreasing trend since 2010. The TCE concentration also appears to exhibit an overall decreasing trend since 2010, at levels that exceed the drinking water RG but are less than the surface water RG. The compound cis-1,2,-DCE may be decreasing since 2012, and is at levels well below the drinking water RG. Other COCs are trending downward overall and remain below their respective RGs.
- MW8-12 (Figures D-4 and D-4a): PCE and TCE appear to be decreasing, with TCE remaining above the drinking water RG, and PCE falling below the drinking water RG for the third consecutive time since 1999 (see Figure D-4). Both PCE and TCE remain below their respective surface water RGs. Concentrations of cis-1,2-DCE exhibit a decreasing trend and remain an order of magnitude below the drinking water RG. Other COCs are generally decreasing and remain well below their respective RGs or are not detected at the PQL.
- MW8-14: Given that VOCs have remained consistently either not detected at the PQL; detected at or above the laboratory PQLs, but below RGs; or detected at very low concentrations below RGs, a trend analysis graph was not developed for this well.
- MW8-16 (Figures D-5 and D-5a): PCE exhibits a stable to slightly decreasing trend at levels below the drinking water and surface water RGs. TCE exhibits a decreasing trend, although at levels exceeding the drinking water RG, but below the surface water RG. The cis-1,2-DCE concentration exhibits an increasing trend since 2013, but remains below the RG. Other COCs are generally stable and remain well below their respective RGs.
- Seep A (Figures D-6 and D-6a): The PCE trend is stable at levels remaining well below the surface water RG. TCE also exhibits a stable trend at levels well below the surface water RG since monitoring began in 1996 (see Figure D-6 and Table 4-2). The cis-1,2-DCE concentrations exhibit a stable trend at levels well below the RG. Referring to Table 4-2 and Figures D-6 and D-6a, all VOC concentrations at Seep A have remained less than their respective surface water RGs over the past 10 years (2007 to 2017, inclusive), with the exception of 1,1-DCE which exceeded the surface water RG in only 2012 and 2016.

5.2 DISSOLVED METAL TRENDS

Graphs showing trends of concentrations of dissolved metals over the past 10 years in Area 8 groundwater are included in Appendix D. Graphs are presented as Figures D-7 through D-12 for sampling locations where dissolved metals have historically been detected (MW8-8, MW8-9, MW8-11, MW8-12, MW8-14, and Seep A). Metals of particular interest include dissolved cadmium and chromium, which have been charted for each of these locations. Drinking water RGs are shown on the groundwater monitoring well graphs and surface water RGs are shown on the seep water graphs.

A trend analysis graph was not developed for well MW8-16 because target metals have not been consistently detected in this well, or have been detected at only low concentrations, below RGs.

For groundwater wells and seeps, the overall trends over the past 10 years are generally stable or decreasing toward lower metal concentrations and below the RGs for the following wells and metals:

- Dissolved cadmium at wells MW8-8 and MW8-12;
- Dissolved chromium at MW8-14 and Seep A; and
- Both dissolved cadmium and dissolved chromium at well MW8-9.

The following are the exceptions summarized by sample location below:

- MW8-8 (Figure D-7): The dissolved chromium concentration continues to be stable but remains above the drinking water and surface water RGs.
- MW8-11 (Figure D-9): Dissolved cadmium may be decreasing, and chromium appears stable, however, this well consistently exhibits the highest levels of dissolved cadmium and chromium with concentrations exceeding their respective drinking water and surface water RGs.
- MW8-12 (Figure D-10): The dissolved chromium concentration appears stable but remains above both drinking water and surface water RGs.
- MW8-14 (Figure D-11): The dissolved cadmium concentration appears to be decreasing, but continues to exceed the drinking water RG. It has remained below the surface water RG for the past two years.
- Seep A (Figure D-12): The dissolved cadmium concentration may be decreasing however it has oscillated above and below the surface water RG, and has exceeded the RG over the past two years.

5.3 1,4-DIOXANE TRENDS

Graphs depicting trends for 1,4-dioxane in groundwater at wells where it has been historically detected (MW8-8, MW8-11, and MW8-12) are presented in Figure D-13. Based upon 1,4-dioxane analyses at Area 8 in June 2007 and over the past 7 consecutive years, MW8-11 has exhibited an overall downward trend from a high of 39 μ g/L in June 2007, declining to 11 μ g/L in June 2013 and June 2014, and is now at 16 μ g/L in June 2017. Wells MW8-8 and MW8-12 have exhibited relatively stable trends with low concentrations of 1,4-dioxane detected both above and below the MTCA Method B cleanup level in these wells over that same time period. June 2017 concentrations of 1,4-dioxane continue to exceed the MTCA Method B cleanup level of 0.44 μ g/L in wells MW8-11 (16 μ g/L), MW8-8 (1.1 μ g/L), and MW8-12 (1.1 μ g/L).

6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 MONITORING WELL SAMPLING SUMMARY

Groundwater was sampled in June 2017 from six groundwater monitoring wells at Area 8 (MW8-8, MW8-9, MW8-11, MW8-12, MW8-14, and MW8-16) within 6 hours after an extreme low tide event. Water levels were measured at those wells and at well MW8-15.

Groundwater flows in a generally east-southeast direction toward Port Orchard Bay at an orientation essentially perpendicular to the shoreline. The calculated horizontal hydraulic gradient is approximately 0.02 (2 percent), which is consistent with discharge occurring to the nearby bay. Hydraulic head variations in the collocated wells MW8-14, MW8-15, and MW8-16 appear to indicate that a confining layer exists between the screened interval of well MW8-16 (42.5-47.5 feet btoc; groundwater elevation of 0.71 feet above msl) and the screened interval of well MW8-15 (160.5-165.5 feet btoc; groundwater elevation of 2.14 feet above msl). This confining layer creates an upward gradient between the shallow and deeper aquifers, reducing the potential for downward migration of contaminants in this area. MW8-14 and MW8-16 are both interpreted to be screened in the shallow aquifer. The groundwater in the shallow aquifer is known to discharge at Seep A and other seeps along the shoreline.

6.1.1 Target VOCs

Concentrations of TCE and PCE detected in several Area 8 monitoring wells consistently exceed drinking water RGs (see Figure 4-1).

Similar to previous sampling rounds, the highest PCE concentrations detected during June 2017 were in the shallow-aquifer wells MW8-8 and MW8-12 immediately downgradient of, and adjacent to, the former plating shop. PCE remains above the drinking water RG but below the surface water RG in MW8-8. PCE in MW8-12 declined to less than the drinking water RG, and has remained below the surface water RG since June 2015.

The highest concentrations of TCE continue to be detected (in order of decreasing concentrations) in MW8-8, MW8-11, MW8-12, and deeper well, MW8-16. The TCE drinking water RG continues to be exceeded at all four wells.

VOCs have never been detected above PQLs in MW8-14, with the exceptions of cis-1,2-DCE and 1,1,1-TCA detected three times at concentrations well below their respective RGs. Trend analyses were performed on selected groundwater monitoring wells for target VOCs over the past 10 years. Based on these analyses, target VOCs are generally declining or stable at VOC concentrations below their respective RGs with the following exceptions:

- MW8-8: Both PCE and TCE remain above drinking water RGs, but below their surface water RGs. PCE appears stable while TCE may be decreasing overall.
- MW8-9: TCE appears to be decreasing and is below the drinking water RG for the second consecutive year; a change since 2015.
- MW8-11: TCE appears stable and exceeds the drinking water RG, but is less than the surface water RG.
- MW8-12: PCE and TCE trends appear to be continuing to decrease, with TCE remaining above the drinking water RG, and PCE falling below the drinking water RG for the third consecutive time since 2015. Both PCE and TCE remain below their surface water RGs.
- MW8-16: TCE exhibits a decreasing trend and is above the drinking water RG but below the surface water RG.

6.1.2 1,4-Dioxane

The SVOC 1,4-dioxane was detected in MW8-11 at a concentration of 16 μ g/L, in MW8-8 at 1.1 μ g/L, and in MW8-12 at 1.1 μ g/L. As previously discussed, there is no RG established for 1,4-dioxane, so the MTCA Method B cleanup level (carcinogenic) of 0.44 μ g/L is used for data evaluation. Therefore, concentrations of 1,4-dioxane in wells MW8-11, MW8-8, and MW8-12 exceed the current MTCA Method B cleanup level (carcinogenic). The SVOC 1,4-dioxane was not detected above the PQL of 0.4 μ g/L in groundwater samples from the other wells sampled. Based upon the 7 years of 1,4-dioxane analyses at Area 8, MW8-11 has exhibited an overall downward trend, although levels have been slightly increasing over the past 3 years. Wells MW8-8 and MW8-12 have exhibited some relatively low concentrations of 1,4-dioxane, with levels oscillating both below and above the MTCA Method B cleanup level over that same time period.

6.1.3 Dissolved Metals

The target metals dissolved cadmium and dissolved chromium were detected in all Area 8 shallow aquifer wells, but were not detected at significant concentrations in the deeper well MW8-16. Consistent with previous reports, the drinking water and surface water RGs for dissolved cadmium were exceeded in MW8-11, but only the drinking water RG was

exceeded in MW8-14 in 2017, as in years past. The drinking water and surface water RGs for dissolved chromium were exceeded at three wells, MW8-8, MW8-11, and MW8-12. Dissolved cadmium and chromium concentrations over the past 10 years have generally shown stable or decreasing trends in all wells.

The drinking water RG for dissolved arsenic has consistently been exceeded in all wells. However, the dissolved arsenic concentrations detected have been well below the background concentration identified for arsenic during the remedial investigation (Navy 1993e).

As was the case during past sampling rounds, dissolved copper, nickel, and silver surface water RGs were also exceeded at well MW8-11, but levels have steadily declined over the past several years. In 2016, dissolved zinc and lead were detected above the surface water RG at MW8-11; the first exceedance for dissolved lead since sampling began. Dissolved lead was also detected for the first time above the surface water RG in well MW8-9. In 2017, concentrations of dissolved zinc and lead declined to levels below their surface water RGs.

6.2 SEEP SAMPLING SUMMARY

During the June 2017 sampling round, water was sampled from Seep A at Area 8. Due to consistently low and stable VOC and dissolved metals concentrations detected in Seep B water, sampling was discontinued for Seep B in spring 2012, in accordance with the recommendations of the Final Third Five-Year Review (Navy 2010a).

6.2.1 Target VOCs

TCE concentrations have fluctuated at Seep A over the past 10 years, but levels have been well below the surface water RG since monitoring began in 1996. PCE was detected in June 2017 at a concentration well below the RG and the trend appears stable. The VOC 1,1-DCE has exceeded the surface water RG four times since sampling began, including 2016, but is below the RG again in 2017. The fluctuation in TCE concentrations over the last 6 years with spikes in 2012, 2014, and 2016 can be seen mirrored in the TCE-degradation daughter products concentrations cis-1,2-DCE, 1,1-DCE, and 1,1-TCA.

6.2.2 Dissolved Metals

The only target metals that exceeded surface water RGs at Seep A in June 2017 were dissolved arsenic and cadmium. Subsequent to removal of the plating shop, increased concentrations in seep samples were observed in 1999 through 2004 followed by decreasing or stabilized trends with small fluctuations since then. Including 2017, dissolved cadmium has exceeded the surface water RG six times in the last 11 years.

The surface water RG for arsenic has consistently been exceeded at Seep A, but arsenic concentration trends have remained stable and well below the Area 8 background level for arsenic identified during the remedial investigation (Navy 1993e).

6.3 LONG-TERM MONITORING RECOMMENDATIONS

Based on the results of the June 2017 sampling event and concentrations trends over time, no changes to the locations or frequency of well or seep sampling are recommended.

Barium levels have ranged from a maximum of 62.5 μ g/L to 197 μ g/L over the past decade. Thus, barium has not been detected at Area 8 at concentrations significantly above its background concentration (130 μ g/L) or approaching the drinking water remediation goal for barium of 1,000 μ g/L (there is no surface water remediation goal). Therefore, discontinuing barium analysis is recommended as only very low concentrations, well below the RG, have been detected since the RG was established in the OU 2 ROD (Navy, EPA, and Ecology 1994).

7. REFERENCES

- EPA (United States Environmental Protection Agency). 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA-540-R-2017-001. January 2017.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-2017-002. January 2017.
- Kraege, C. 1993. Implementation Memo No. 1, Re: Guidance on the Use of MCLs as Cleanup Levels. Washington State Department of Ecology, Toxics Cleanup Program. March 15, 1993.
- NAVFAC Northwest (Naval Facilities Engineering Command Northwest). 2015. Standard Operating Procedure: NAVFAC Northwest Field Procedures Manual. Version 5.0. Revised 2015.
- Navy. (U.S. Navy). 1993a. Final Baseline Risk Assessment Report: Ecological Risk Assessment for the Comprehensive Long-Term Environmental Action Navy (CLEAN) Northwest Area. Naval Undersea Warfare Center Division Keyport. URS Consultant, Seattle, Washington. October 1993.
- Navy. 1993b. Final Remedial Investigation. Comprehensive Long-Term Environmental Action Navy (CLEAN) Northwest Area. Naval Undersea Warfare Center Division Keyport. URS Consultant, Seattle, Washington. October 1993.
- Navy. 1993c. Final Baseline Risk Assessment Report: Human Health Risk Assessment for the Comprehensive Long-Term Environmental Action Navy (CLEAN) Northwest Area. Naval Undersea Warfare Center Division Keyport. URS Consultant, Seattle, Washington. October 1993.
- Navy. 1993d. Feasibility Study Report for NUWC Keyport. Prepared by URS Consultants, Inc., and Science Applications International Corporation for the Comprehensive Long-Term Environmental Action Navy (CLEAN) Contract, Task Order No. 010. November 1993.

- Navy. 1993e. Final Remedial Investigation Report, Naval Undersea Warfare Center Keyport, Washington. Prepared for Engineering Field Activity, Northwest, Western Division, Naval Facilities Engineering Command, Silverdale, Washington. Prepared by URS Consultants, Seattle, Washington, and Science Applications International Corporation, Bothell, Washington.
- Navy. 1999. Final Closure Report, Remedial Action, Area 8, Building 72 Plating Shop Demolition and Soil Hot Spot Removal, Naval Undersea Warfare Center Division, Keyport, Washington. Prepared by Foster Wheeler Environmental Corporation for Engineering Field Activity, Northwest. Poulsbo, Washington. 1999.
- Navy. 2000. Independent Remedial Action Report, TPH Soil Removal and Demolition of Building 804, Area 8, Operable Unit 2, Naval Undersea Warfare Center Division, Keyport, Washington. Prepared by Foster Wheeler Environmental Corporation. 2000.
- Navy. 2005. 2005 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Units 1 and 2, Long-Term Monitoring, Naval Undersea Warfare Center Keyport, Washington. Prepared for Naval Facilities Engineering Command Northwest, under Contract No. N44255-02-D-2008, Delivery Order 57. Poulsbo, Washington. December 2005.
- Navy. 2006. Spring 2006 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC-Tetra Tech EC, Inc. for Naval Facilities Engineering Command Northwest, under Contract
 No. N44255-05-D-5101, TO 14. Silverdale, Washington. December 2006.
- Navy. 2007. Spring 2007 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC-Tetra Tech EC, Inc. for Naval Facilities Engineering Command Northwest, under Contract
 No. N44255-05-D-5101, TO 33. Silverdale, Washington. December 2007.
- Navy. 2008. Spring 2008 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC-Tetra Tech EC, Inc. for Naval Facilities Engineering Command Northwest, under Contract No. N44255-05-D-5101, TO 46. Silverdale, Washington. October 2008.

- Navy. 2009. Spring 2009 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 04. Silverdale, Washington. December 7, 2009.
- Navy. 2010a. Third Five-Year Review, Naval Base Kitsap Keyport, Keyport, Washington, December 8, 2010.
- Navy. 2010b. Spring 2010 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 18. Silverdale, Washington. December 2, 2010.
- Navy. 2012a. Spring 2011 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 30. Silverdale, Washington. February 14, 2012.
- Navy. 2012b. Spring 2012 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 48. Silverdale, Washington. November 29, 2012.
- Navy. 2014. Spring 2013 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 69. Silverdale, Washington. February 14, 2014.
- Navy. 2015a. Fourth Five-Year Review, Naval Base Kitsap Keyport, Keyport, Washington, November 20, 2015.

- Navy. 2015b. Spring 2014 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-4005, TO 84. Silverdale, Washington. March 11 2015.
- Navy 2016a. Area 8 Marine Investigation Report, Naval Base Kitsap Keyport, Keyport, Washington, Prepared by Resolution Consultants, a joint venture of AECOM and EnSafe for NAVFAC Northwest, under Contract Number N62470-11-D-8013, CTO JP08, December 23, 2016.
- Navy. 2016b. Spring 2015 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-14-D-9011, TO 13. Silverdale, Washington. March 14, 2016.
- Navy. 2017a. Management and Monitoring Approach Sampling and Analysis Plan, Area 1 Former Landfill, Area 2 Van Meter Road Spill/Drum Storage Site, and Area 8 Plating Shop Waste/Oil Spill Area, Long-Term Monitoring, Operable Units 1 and 2, Naval Base Kitsap at Keyport, Washington. Prepared by Sealaska for Naval Facilities Engineering Command Northwest, under Contract No. N44255-09-D-9011, TO 13. Poulsbo, Washington. May 19, 2017.
- Navy. 2017b. Spring 2016 Long-Term Monitoring Report, Former Plating Shop/Waste Oil Spill Area, Area 8, Operable Unit 2, Naval Base Kitsap Keyport, Washington.
 Prepared by Sealaska Environmental Services, LLC for Naval Facilities Engineering Command Northwest, under Contract No. N44255-14-D-9011, TO 27. Silverdale, Washington. April 14, 2017.
- Navy, EPA, and Ecology (U.S. Navy, U.S. Environmental Protection Agency, and Washington State Department of Ecology). 1994. Final Record of Decision for Operable Unit 2, Naval Undersea Warfare Center Division Keyport, Washington.
 Prepared by URS Consultants, Science Applications International Corporation, and Shannon and Wilson, Inc., for Engineering Field Activity, Northwest under CLEAN Contract No. N62474-89-D-9295, CTO 0010. Poulsbo, Washington.
 September 1994.

APPENDICES

APPENDIX A	FIELD CHANGE REQUEST
APPENDIX B	FIELD FORMS, FIELD LOGBOOK PAGES, AND TABLE B-1: HISTORICAL FIELD-MEASURED PARAMETER DATA
APPENDIX C	DATA VALIDATION REPORTS
APPENDIX D	GRAPHS OF CONCENTRATION TRENDS
APPENDIX E	RESPONSE TO AGENCY COMMENTS ON DRAFT REPORT

APPENDIX A FIELD CHANGE REQUEST

SEALASKA ENVIRONMENTAL SERVICES

CONTRACT NUMBER: N44255-14-D-9011

FIE	LD CHAN	GE REQUEST (FCR)	
TASK ORDER # 46	+ FCR	#_TO 46 FCR-02 T	TE 5/24/17
LOCATION: NBK Keyport, WA		NTR / RPM Charlie Escola/ Carlotta Cellucci	+
1. Document to be changed. Identify revision, da	te, section, o	trawing, etc.	
Management and Monitoring Approach Sampling and Anal	ysis Plan, Fina	l, 19 May 2017 - Tables 5-1 and 5-5	
2. Description of existing requirement and proposition	sed change (Attach sheet if necessary)	·····
ITEM 1 REQUIREMENT: Table 5-1 indicates sampling and analysi scheduled for spring 2018. PROPOSED CHANGE: Area 1 well MW1-02 will be sample	s for VOCs at A	Area 1 well MW1-02 at a frequency of once every two yea 2017 and then revert back to sampling in even years.	irs with the next event
ITEM 2 REQUIREMENT: Table 5-5 indicates annual sampling and MW8-16) will include dissolved low-level mercury, dissolved PROPOSED CHANGE: Three dissolved metals (low-level r field event.	analysis at Are d tin, and disso mercury, tin, an	a 8 locations (Seep A and wells MW8-8, MW8-9, MW8-1 lved thallium along with several other target analytes. d thallium) will be excluded from the Area 8 locations beg	1, MW8-12, MW8-14, and ginning with the June 2017
3. Reason for Change (Attach sheet if necessary)			·····
ITEM 1 Sampling and analysis for VOCs at Area 1 well MW1-02 in upgradient tree roots had any effect on concentrations of V	2017 is propos OCs.	ed in order to determine if ABS solution (root enhancer/o	kidizer) applied at the
ITEM 2 Per the recommendation presented in the Spring 2016 Long (Final, 14 April 2017) (specifically Section 6.3, Long-Term M (low-level mercury, tin, and thallium) at Area 8 locations sho	g-Term Monitor Ionitoring Conc ould be disconti	ing Report, Former Plating Shop/Waste Oil Spill Area, Ar clusions and Recommendations), sampling and analysis nued since no concentrations exceed the applicable rem	ea 8, Operable Unit 2 or three dissolved metals ediation goals.
4. Originator: (print name and sign)	<u>.</u>	Title	Date
Sherri Wunderlich . There i Wunde	alich	Project Chemist	5/24/17
Reviewed by: (print name and sign)		Title	Date
Cara Alferness / Mara / Uherness		Project Quality Control Manager	5/24/17
Site Superintendent (Print name and sign)	Date	Task Order Manager (Print name and sign)	Date
James Ruef James R. Koof	5/24/17	James Ruef Jounda N. Kout	5/24/17
Program QC Manager (Print Name and Sign)	Date	NTR Acknowledgement (Print name and sign)	Date
Sherri Wunderlich Ohenne L Wunderlich	5/24/17		

APPENDIX B

FIELD FORMS, FIELD LOGBOOK PAGES, AND TABLE B-1: HISTORICAL FIELD-MEASURED PARAMETER DATA

	EN	SKA	NTAL				SEA Discov 18743 Frot Pou	ery Center, P.(nt Street, NE, 1 Isbo, WA 9833	D. Box 869 Suite 201 70			
lontrac lomber	4 : <u>N44255-1</u>	14-D-9011	" Task Ordes	n <u>46</u>	Nava Installation	NAVBASE	itsap Keypon	Site Name:	Arca 8 Samilar Ever	W Annual I	M. June Sci. 9	1
				T		pH/cond/turb/ DO/temp/ORP/	VOCs (18) 8260C	1,5-Dioxañe 8270D SIM	Dissolved Metals (9) Ba, As, Cd, Ci, Cu, Pb, Ni, As, Zn 200,7/200,8 with RPP (Inscessiony		M. June 2017	
ocation	Sample ID	Sample Type	Snapshot DTW (A broe)	Sampling Date	Sampling Time	salinity	40 mL VOC HCI	250 mL Ambor	I L Poly HNO ₃ (#	Previous DTB	BTG	
8-8	AREA-8-17-200	Environmental	9.77	06/21/17	1245	1	3	2	annen en	18.30	18,30	-
.3-9	AREA-8-17-201	Environmental	10.16	06/21/17	1200	1	3	2		20.46	10,46	-
(8-11	AREA-8-17-202	Environmental	10.03	06/21/17	1040	1	3	2	na na mana na m I	18.00	15910	-
8-11	AREA-8-17-203	Duplicate	-	06/21/17	1050		3	2	t and a second second	The second s	13,10	arci
8-12	AREA-8-17-204	Environmental	9.33	06/21/17	0955	1	3	2	1	18.00	111 11	-
8-14	AREA-8-17-205	Environmental M SMSD	10.74	a.1:1/17	1130	1	Ð	2	ð	15.50	1519	ione
8-16	AREA-8-17-206	Environmental	11.91	01/12/17	1420	1	3	2		48.00	42 24	
PA	AREA-8-17-207	Environmental MSMSD		06/22/17	A 935	1	2	n ()	3	and the second	11.00	вто
P.9	AREA-8-17-208	Duplicate	*	06/22/17	6945	1	3		1	1. ************************************		
4-15	NA	DTW only	10.33	00/21/12	0935	-	-	- 74		170.00	linta 1010	1
Biank 1	FB-	QC	-	na na sana na s	т	-	2				100.00	SOFT BC
Blank 1	FB- Constant	QC	14. 14. 14. 14. 14. 14. 14. 14. 14. 14.		19	-	2	a)	nen an de la companya de la company 			
Blank 7	(B AD (B COA)	QC		and Statements - Northern Addresses		-	~	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Annan an		The second s	
a second	the state of the s	The second s	and the second second	and designed and the second second			43	14	13	and a street of the street of the		

		al			С	HAIP	N OF	: Cl	JST	OD	Y					İ		SR	#	11	70	6626
r	1	317 South	13th Ave., I	Kelso, WA 9862	6 +1 ;	360 577 7	222 +1	800 69	95 7222	+136	60 636	1068 (fax)	PAGI	Ξ.,		OF			<u>CO</u>	<u>C#</u>	
		KITSPO	VEYPOR:	T ANZEA "	6	/			19	6	/ /		/ /	8	S'	/	10		/ /	Bhel	Ľ/	' / /
	PROJECT MANAGER	In ben De	ain P			/	1 1	SN SN	ALE I	15	' /	121	/:	Ž /	4	ູ ບໍ /	8	2 8	'/		ξ /	
ŀ	COMPANY NAME STAAL ARUP	+ FNVI	NONLAFA	ITAL			/ /&		Mo	5			gh s		5 12			ğ /	6	ale ale		
ł	ADDRESS 18743 FRU	nr s	TNE	STE. 201		<i>ا ڇ ا</i>		300			erer 417			80 m	3/2		§/~		Sta		/	
	DITY/STATE/ZIP PULSED	, WA	9837	D		7 <i>§</i>		1 m	E D H	/ క్ర		8				:/ð	5		sue la	1 4	/ /	'/
	Show w	NUDER	uch OSE	ACASILA, CO	<u>v</u>	4	100						MO		₹¥]			Solo Solo	Net Ses	2 /		
-	AMPLER'S SIGNATURE	<u>zo</u>	FAA #		/	E		58/8 .0	T and	200	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	12/0		<u> </u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>				1 8 P				
	Lafer	Ļ					625 lemi	E E E				letal	jaji /		දි/දූ	Ikali.				/	/	REMARKS
	SAMPLE I.D.	DATE	TIME	LAB I.D. MAT	$\frac{1}{2}$	+		7 7	$-\frac{1}{2}$	र/× @ 		1< 8/	- / •	2 < / 2 `		\bigwedge^{\sim}	$\int_{-\infty}^{\infty}$	$\int \frac{1}{\sqrt{\alpha}}$	5		<u></u>	
	NEEA-8-17-204	6/21/17	0955	VVC			12					$\frac{1}{2}$							5			
1	REA-8-11-203	6/21/17	1050	W($\alpha \psi$		3					1							6			
ľ	nen-8-17-202	6/2017	1040	WE	<u>, 0</u>		2												4			
£	NGA-3-17-205	6/21/7	1130	W(<u>n 14</u>		9					3							2			NSIMSD
P	1269-8-17-201	6/21/17	1200	W	nle		3					1							2			
	REA-Y-17-705	Julin	20 Quinin]
2-2-[HEA-8-17-200	duln	1245	W	ale		3					1							2			
ſ	NZEA-8-17-206	6/21/17	1420	WO	nle		3					1							2			
ρ	REA-8-17-207	0/22/17	0935	SP	12	-	9					3										MSMBD
Ĥ	NEA-5-17-205	6/22/n	0945	SP	4		3					l										
	REPORT REQUIREM	ENTS	INVO		ON	Circle wh	ich metals	are to b	e analyzed:													
	I. Routine Report: N	Method	P.O. # <u>M</u> Bill To:	UP UNESTR	<u>)`]</u>	Total N	fetals: Al	As SI	Ba Be	B Ca	Cd C	Co Cr	Cu f	e Pb N	vlg Mi	n Mo	Ni I	K Ag	Na S	Se Sr	TI S	3n V Zn Hg
	Blank, Surrogate,	, as		· · · · · · · · · · · · · · · · · · ·		Dissolved	Metals: Al	(As)s	b 🕝 Bə	B Ca		ං රි		Fe 🙆 I	Mg M	n Mo		к 🗛	Na	Se Si	r TI S	Sn V 🕢 Hg
	required			· · · · · · · · · · · · · · · · · · ·		*INDIC	ATE STA	TE HY	DROCAR	BON	PROCE	DUR	E: AK	CA	WI N	IORT	HWES	эт от	HER:			(CIRCLE ONE)
	required	, MSD as	TURNARC		MENTS		LINSTRI		NS/COMN	AENTS	:											
	III. CLP Like Summa	ary	24 nr. 5 day	: 48 n /	r.		n5 1	· · · ·	~ ·									Co	ontair	ner S	suppl	y Number
	(no raw data)		Stand	, dard (15 working c	ays)																	
-	V. Data Validation R	eport	Provi	de FAX Results																 7	/### '7101	
	¥ V. EDD				-		nla Shin	ment	ontaine l		recula	ated e	oilean	nlee (ct	ack h	ox if	annlir	ahla)	γ	-		
ŀ			Keqi	uested Report Dat	e PEC					A				V.	IGUN D		appin					
	melingui	JZ3/7	0 800	WC Della	REC RN		•		I/M	CD	neur b):vo	vuuis Vv	ITED B		(12	A		CEIAE	1001	RII FILS
	Signature /	Date/T/m	ne Neka	Signature		Date	/Time		Sign	ature	TIME		Date/1	Time		TX	Signa	tare	$\Delta \Delta$	/	Date/	Time AAA
	Printed Name	Firm		Printed Nan	10	Firm			9 of 9 90 nt	ed Nai	ne		Firm			ŀ	Dine	d Nart	10		Firm	HUY

Contract Jumber: <u>N4</u>		No. of Concession, Name		Poulsbo, V	et, NE, Suite 20 VA 98370	1	Mea	sureme	nt Form
	4255-14-D-90	011 Tas Ord	k er: 46	Naval Installati	on: Naval Base	Kitsap at Key	port Name	e:/	Area 8
				Well	Data			tenine (energial energial en	
Vell ID: MVV	8-8		N	Measuring Poi	int (MP): Top o	f Casing, Rir	n Monument	, Other:	
otal Well De	epth (ft below	(MP): <u>18.30</u>	Eine) Poole	d Water in W	ell Head: Y:	N:	Vell Casing	Volume (lite	rs/ft): o c
lepth to Wate	er (ft below N	MP): 9.93	Inner Casi	ng Straight an	d Clear: Y. V	N.	Wel	Volume (1	itomol. 6
ength of Wa	ter Column in	n well (ft): 8	37	Well Head	Locked V. V	/ ···		n volume (i	ners): <u>5.0</u>
lameter of w	ell casina (in	whee) o'l		The formation	LUCKED. 1: V	/ ^{IN:}	2 x Wel	I Volume (I	iters): 10,0
Mana Mada d	in casing (in	1		Exterior Se	eal Good Y:	N:	Volun	te Purged (1	iters): <u>8</u>
inge method	r eristaltic/S	submersible/B	ladder/Other:	:		R	emarks: <u>PID</u>	- Or Oppm	
				Water Sar	mple Data			Contraction of the local division of the	
ample ID: A	REA-8-17-20	0	Type: EN	V. D	ate: 06/ 21	/2017 Tim	- 17V5	# Control	
C Sample ID:	NA		Tune NA	D	NA NA	2017 1 111	e. 1240	# Contail	ters: <u>6</u>
maline Dem	A '		Type	D	ate:	Tim	e: <u>NA</u>	# Contain	ters: NA
unpung Pers	ionnel: <u>IN</u>	ly Lewis			Samplin	ng Method:	ow Flow Gra	ib	
emarks (colo	or, odor, etc.):	Durgen	argens - C,	bar : 020	ress				
					17				
	D				T	T			
	Vol.	Depth to		Spec.	_				1999
Time	(liters)	(ft btoc)	nH	(ms/em)	Turbidity	DO	Temp.	ORP	Salinity
Stal	bilization R	equirements	(± 10%)	$(\pm 10\%)$	(+10%)	(mg/L)	(°C)	(mv)	(%)
1211	0	9,93		1	nitial Depth to	Water (Pr	(± 1070)		1
1213	power o	pump,	set flum	fate to	400ml/min		c pumping		1
1215	Conect	Sample +	ubry to	the flow	Cell				
1220		9,93	7.09	0.611	2.1	5.13	18.16	109	0.03
1220	7	9,94	6.95	0.353	2.0	4.95	13.32	127	0.02
1235	8	9 94	6.73	0.348	7:1	4.93	18.54	130	0.02
1245	Collect	Sanala	wit -	0.11	2.(4.81	18.70	131	0.02
			_						
					-				
	1		Final	at time of	mula action				
1235	8	9011	1.90	at the of sa	mple collectio	n)			
12 35 1		6.19	6.72	0.393	2-1	4.89	18.70	131	0.02
	317.4	1	W	Vell Volume (Calculation				
	Wel	i volume (liter	s = [Well ca	sing volume ((liters/ft)] x [Lei	ngth of wate	r column (ft)]	··········
1 25"	02	Well	casing diam	eter (in) $\rightarrow W$	ell casing volur	me (liters/ft)			
1.23 -> (0.3 1.5	$\rightarrow 0.4$	$2^{\prime\prime} \rightarrow 0.6$	$2.5" \rightarrow 1$	$3" \rightarrow 1.4$	3.5" → 2	$2 4^{**} \rightarrow$	2.5 6"	→ 5.5
							Contraction of the second strength in the sec	A DESCRIPTION OF A	AND DESCRIPTION OF A DE

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc

SEALASK ENVIR	ACONMENTA	S	ealaska Marir 187	Environ e Science Ce 43 Front Stree Poulsbo, V	nmental S nter, P.O. Box 8 et, NE, Suite 20 VA 98370	Services 869 1	W Pur Mea	ell Insp rging, ar isureme	ection, 1d Field nt Form
Contract Number: <u>N4</u>	14255-14-D-9	011 Tas	k er: 46	Nava Installati	on: Naval Base	Kitsap at Key	Site	e:)	Area 8
6.610	19 0			Well	Data				
Well ID:	10-9		N	Aeasuring Poi	int (MP): Top of	f Casing, Rin	n Monument	, Other:	
Fotal Well D	epth (ft below	w MP): 20.46	Same Poole	d Water in W	ell Head: Y:	, N: √ V	Vell Casing	Volume (lite	ers/ft): 0.6
Depth to Wa	ter (ft below !	MP): 10.32	Inner Casi	ng Straight an	d Clear:: Y· V	. N-	Wel	Il Volumo (1	itona). [
ength of Wa	ater Column i	n well (ff) 10	NÍ	Well Hood	Lookad V. V	/ ···	Wei	n volume (i	ners): (AO
Viamatar of .	well ender (wen nead	Locked: Y:	/ ^{N:}	2 x Wel	ll Volume (l	iters): [2.]
Maineter 01	wen casing (n	icnes): 2		Exterior S	eal Good Y: <u> V</u>	N:	Volun	ne Purged (1	iters): <u> </u>
urge Metho	d: Peristahic/	Submersible/B	ladder/Other:			Re	emarks: <u>PID</u>	- 0.0 ppm	
				Water Sa	nnle Data			11.4	THE R. L. LEWIS CO.
ample ID: 4	AREA-8-17-20)1	Type MS	AMSDE ANY D	ator occ. 21		1.72		
C Samula ID	. NA		T NA	ENKD	NA	2017 Time	e:12.00	# Contai	ners: 6
x Sampie ID	·	1.	Type: 101	D	ate:	Time	e: NA	# Contain	ners: NA
ampling Per	sonnel: <u>H</u>	Lewiss S.	Patterson	1	_ Samplin	ng Method:	ow Flow Gra	ab	
Remarks (col	or, odor, etc.)	: clear : o	dorless pr	use weder					
			,						
		T		1					-
	Purge	Depth to		Spec.		1.1.1.1.1.1.1	24.48	183.20	
Time	(liters)	(ft htoc)	nIJ	Cond.	Turbidity	DO	Temp.	ORP	Salinity
Sta	bilization R	equirements	(± 10%)	(ms/cm) (+ 10%)	(NIU) (+ 10%)	(mg/L)	(°C)	(mv)	(%)
1132	0	10.32	(= 1070)	(= 10 /0)	nitial Depth to	Water (Dr	(± 10%)	1	1
11 34	Poweri	an own p	and set	flow cat	e to 400 ms 1	ha ha	e-pumping	<u>}</u>	1
1136	Conect	sande to	by to F	lun cell		1 Miles			
1141	2	10.35	7.16	29.2	6.0	6.66	16.04	137	119
1146	4	10.36	7.10	29.0	5.9	6.58	16.45	142	128
1151	6	10.37	7.08	29.0	6.0	6.36	16.44	140	1.78
1100	0	10.37	7.08	25,0	6,1	6.73	16.705	137-	1.77
1200	Collect	Sample							
								-	
~									
			Final (at time of sa	mple collection	n)	I		L
1200	8	10.37	7.08	29.0	6.1	1.42	11.15	L21	117
			U.	ell Volume	Coloulation	613	10.02	1JT	1.47
	We	Il volume (liter	s) = [Well ca	sing volume	liters/ft)] v []	noth of which		2	
	Construction of the second second	Well	casing diam	eter (in) \rightarrow 1	(all cosine vel	ingth of water	column (ft)]	
1.25" →	0.3 1.5	" → 0.4	2 [™] → 0.6	$25^{\prime\prime} \rightarrow 1$	2" . 1 4	ne (inters/it)			
A COMPANY AND A COMPANY				4.5 -7 1	$3 \rightarrow 1.4$	$3.5^{\prime\prime} \rightarrow 2$	$2 4" \rightarrow$	2.5 6"	→ 5.5

Page 1 of 1

Meter Model: Horiba U-52

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc

SEALASK ENVIF	A		ealaska Marin 187	Environ e Science Ce 43 Front Stree Poulsbo, V	nter, P.O. Box 8 et, NE, Suite 20 VA 98370	Services 869 11	W Pui Mea	ell Insp rging, an asureme	ection, Id Field nt Form
Contract Number:	14255-14-D-9	011 Ta Ord	sk ler: <u>46</u>	Nava Installati	I ion: <u>Naval Base</u>	Kitsap at Key	site port Nam	e 	Area 8
				Well	Data				
Well ID: MV	V8-11			Aeasuring Poi	int (MP): Top o	f Casing, Rin	n Monument	t. Other:	
Total Well D	Depth (ft below	w MP): 15.96	Fine Poole	d Water in W	ell Head: Y-	N-V I	Vell Cosing	Volumo (lite	(0)
Depth to Wa	ter (ft below)	MP): 10 02	Inner Casi	no Straight on	d Closen V.	7	wen Cashig	voiune (inte	ers/n): <u>0.6</u>
ength of W	ater Column :		ail	ng Suaigin an		~ ^{N:} —	We	ll Volume (l	iters): 3,5
Sengui UI Wa		m wen (m): _2	. 17	Well Head	Locked: Y: V	N:	2 x We	ll Volume (l	iters): 7,1
Diameter of v	well casing (in	nches): 2 ¹		Exterior Se	eal Good Y: √	N:	Volun	ne Purged (I	iters): 8
Purge Methor	d: Peristaltic/	Submersible/E	Bladder/Other:		_	R	emarks: PID	D- 0. 000m	
				Water Sar	nple Data	And a vertice of the second states of the second states of the second states of the second states of the second			
Sample ID: A	AREA-8-17-20)2	Type EN	V. D	ate 06/ 21 /	2017	a. l.v.		
C Samala ID	AREA-8-17-	-203		U	06/21 "	Im	e:	# Contain	ners: <u>6</u>
ic sample ID:			Type: 00	D	ate: 00/21 /	2017 Tim	e: 1050	# Contain	ners: 6
sampling Per	sonnel: And	y Louis	f. Sunrise	Patterson	Samplin	ng Method: ^I	low Flow Gra	ab	
Remarks (col	or, odor, etc.)	: Clear ;	22012670	purge word	en				
Cemarks (col	or, odor, etc.) Purge Vol. (liters)	Depth to Water (ft btoc)	2201670	Spec. Cond. (ms/cm)	Turbidity (NTU)	DO (mg/L)	Temp.	ORP (my)	Salinity
Time Sta	or, odor, etc.) Purge Vol. (liters) abilization R	Depth to Water (ft btoc)	ог&лься рН (± 10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU) (± 10%)	DO (mg/L)	Temp. (°C) (± 10%)	ORP (mv)	Salinity (%)
Time Sta	Purge Vol. (liters) abilization R	Depth to Water (ft btoc) io. 02	рн (± 10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU) (± 10%) nitial Depth to	DO (mg/L) D Water (Pt	Temp. (°C) (± 10%) 'e-pumping	ORP (mv)	Salinity (%)
Time Sta 1012 1014	Purge Vol. (liters) abilization R	Depth to Water (ft btoc) equirements 10.02	рН (± 10%) Set fl	Spec. Cond. (ms/cm) (± 10%) I	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w	DO (mg/L) Water (Pr	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%)
Time 5ta 1012 1014 1014 1014	Purge Vol. (liters) abilization R 0 Short p Concept	Depth to Water (ft btoc) equirements 10.02	рн (± 10%) Set fl	Spec. Cond. (ms/cm) (± 10%) I Dw (ale 1 Flux cell	Turbidity (NTU) (± 10%) nitial Depth to O 400m) w	DO (mg/L) Water (Pi	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%)
Time 5ta 1012 1014 1014 1021 1021	Purge Vol. (liters) abilization R 0 Skot p concep 2	Depth to Water (ft btoc) equirements 10.02 mup and sample to 10.06	pH (± 10%) (± 10%) Set fl Loing to (0.80	Spec. Cond. (ms/cm) (±10%) I Dw (ale 1 Flux cell 23,0 722	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1. 8	DO (mg/L) Water (Pr	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%)
Time Sta 1012 1014 1014 1014 1021 1020 1031	Purge Vol. (liters) abilization R 0 Skart p 2 2 4	Depth to Water (ft btoc) equirements 10.02 Sangle to 10.04 10.07	pH (± 10%) Set fl bing to (0.80 (0.80 (0.80	Spec. Cond. (ms/cm) (±10%) I Dw (ale 1 Flux tell Z3,0 Z2,7 21,9	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1. 8 1.6	DO (mg/L) Water (Pr 7, 4/ 7, 20	Temp. (°C) (± 10%) e-pumping	ORP (mv) 181 204	Salinity (%)
Time Sta 1012 1014 1014 1021 1021 1026 1031 1036	Purge Vol. (liters) abilization R 0 Slert C 2 4 4	Depth to Water (ft bloc) equirements 10.02 Sangle to 10.04 10.07 10.07	pH (± 10%) Set fl Loing to (0.80 6.80 (0.80	Spec. Cond. (ms/cm) (±10%) I Dw (abe 1 Flux tell 23,0 22,7 21,9 21,9	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1. 8 .6 .9	DO (mg/L) Water (Pi 7.4/ 7.20 7.05	Temp. (°C) (±10%) e-pumping 17.24 17.24 17.26	ORP (mv) 181 204 215	Salinity (%) 1.38 1.34 1.31
Time Sta 1012 1014 1014 1021 1026 1036	Purge Vol. (liters) abilization R 0 Skrt c corect 2 4 5 8	Depth to Water (ft btoc) equirements 10.02 map and scande to 10.07 10.07 10.07	pH (± 10%) (±	Spec. Cond. (ms/cm) (±10%) Flux cale Flux call Z3, 0 Z2,7 21,9 21, 8	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to 0 400m w 1.8 1.6 1.9 2.0	DO (mg/L) o Water (Pr 7. 4/ 7.20 7.05 6.81	Temp. (°C) (± 10%) e-pumping 17.2% 17.2% 17.2% 17.2%	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34) (.3) (.30
Time Sta 1012 1014 1014 1021 1020 1031 1036 1040	Purge Vol. (liters) abilization R 0 Skert p 2 Corect 2 4 6 8 2 V CV Corece	Depth to Water (ft bloc) equirements 10.02 Sande to 10.07 10.07 10.07 10.07	pH (± 10%) (± 0%) (± 0%) (0%) (± 0%) (0%) (0%) (0%) (0%) (0%)	Spec. Cond. (ms/cm) (± 10%) I Dw (ale 1 Flux tell Z3, 0 Z2, 7 21, 9 21, 8	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to 0 - 400m w 1.8 1.6 1.9 2.0	DO (mg/L) Water (Pr 7, 4/ 7, 20 7, 05 6, 8]	Temp. (°C) (±10%) e-pumping 17.24 17.24 17.26 17.26	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34) (.3) (.30
Time Sta 1012 1014 1014 1021 1020 1031 1036 1040 1050	Purge Vol. (liters) abilization R 0 Short p 2 0 2 4 4 6 8 2 2 4 6 8 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Depth to Water (ft bloc) equirements 10.02 mp and sangle to 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07	pH (± 10%) (±	Spec. Cond. (ms/cm) (± 10%) I Sw (ale 1 Flux tell Z3, 0 Z2,7 21,9 21,8	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to 0 + 000m w 1.8 1.6 1.9 2.0	DO (mg/L) Water (Pr 7, 4/ 7, 20 7, 05 6, 8]	Temp. (°C) (± 10%) e-pumping 17.29 17.26 17.26 17.26	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34) (.30
Time Time Sta 1012 1014 1014 1021 1026 1036 1036 1040 1050	Purge Vol. (liters) abilization R 0 Skort p Concert 2 4 6 8 2 x con Concert Concert	E Clear & Depth to Water (ft btoc) equirements 10.02 mup and sample to 10.07 10.07 10.07 10.07 10.07 10.07 10.07	pH (±10%)	Spec. Cond. (ms/cm) (±10%) Sw (ale	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) /w 1.8 1.6 1.9 2.0	DO (mg/L) D Water (Pr 7, 4/ 7, 20 7, 05 G. 8	Temp. (°C) (± 10%) e-pumping 17.24 17.24 17.26 17.26	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34) (.3) (.30
Time Sta 1012 1014 1014 1024 1026 1036 1036 1040 1050	Purge Vol. (liters) abilization R 0 Skort C Concert 2 4 4 6 8 2 V Cr Concert	Depth to Water (ft bloc) equirements 10.02 Mup and Sample to 10.07 10.07 10.07 10.07 10.07 10.07 556NG VO SAMPLE DUP	pH (±10%)	Spec. Cond. (ms/cm) (±10%) (±10%) I Dw (ale 1 Flux tell 23,0 22,7 21,9 21,8	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0	DO (mg/L) Water (Pi 7.4/ 7.20 7.05 6.8	Temp. (°C) (±10%) e-pumping 17.24 17.24 17.26 17.26	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34 (.3) (.30
Time Sta 1012 1014 1014 1021 1020 1036 1036 1040 1050	Purge Vol. (liters) abilization R 0 Skert p 2 2 4 4 6 8 2 x cr Correct	E Clear & Depth to Water (ft bloc) equirements 10.02 Sample to 10.07 10.07 10.07 10.07 10.07 55506 VO SAMPLE C DUP	pH (± 10%) (±	Spec. Cond. (ms/cm) (± 10%) I Dw (ale 1 Flux tell Z3, 0 Z2, 7 21, 9 21, 8 21, 8 21, 8	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0 mple collectio	DO (mg/L) Water (Pr 7, 4/ 7, 20 7, 05 6, 8]	Temp. (°C) (± 10%) e-pumping 17.24 17.24 17.24 17.24	ORP (mv) 181 204 215 223	Salinity (%) (.38 (.34) (.31) (.30)
Time Sta 1012 1014 1014 1021 1026 1036 1040 1050 1036	Purge Vol. (liters) abilization R 0 Skort p 2 2 4 6 8 2 x cor Correct Correct	Depth to Water (ft btoc) equirements 10.02 Sample to 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07	pH (± 10%) (±	Spec. Cond. (ms/cm) (± 10%) I Sw (ale 1 Flux tell 23,0 22,7 21,9 21,8 at time of sa 21.8	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0 mple collectio 2.0	DO (mg/L) Water (Pi 7.20 7.05 G.81 0) (6.81	Temp. (°C) (±10%) e-pumping 17.24 17.24 17.26 17.20 17.29	ORP (mv)) 181 204 215 223	Salinity (%) 1.38 1.34 1.31 1.30
Time Sta 1012 1014 1014 1021 1026 1036 1036 1040 1050 1036	Purge Vol. (liters) abilization R 0 Short p Concer 2 4 6 8 2 x cr Concer Concer Concer	Depth to Water (ft bloc) equirements 10.02 Mup and Sample to 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07	pH (± 10%) (±	Spec. Cond. (ms/cm) (± 10%) Flux tell Z3, 0 Z2,7 21, 9 21, 8 21, 8 21, 8 21, 8	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0 mple collectio 2.0 Calculation	DO (mg/L) Do Water (Pi 7, 4/ 7, 20 7, 05 G. 8] n) (6. 8 f	Temp. (°C) (± 10%) e-pumping 17.24 17.24 17.26 17.26 17.20	ORP (mv) 181 204 215 223 223	Salinity (%) (.38 (.34 (.30
Time Sta 1012 1014 1014 1021 1020 1036 1036 1036	Purge Vol. (liters) abilization R 0 Shert p 2 2 4 4 6 8 2 V Cr Correct Correct Correct Vol. 8 2 V Cr Correct Vol. 8 2 V Vol. 8 2 V Vol. (liters) 2 V Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) 2 Vol. (liters) (liters) 2 Vol. (liters) (li	Depth to Water (ft bloc) equirements 10.02 Sample to 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07	pH (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 80 (± 80 (± 80 (± 80 (± 80 (± 80) Final (± (± 80) Wars) = [Well ca	Spec. Cond. (ms/cm) (± 10%) (± 10%) Flux tell 23,0 22,7 21,9 21,8 21,8 21,8 21,8 21,8 21,8 21,8 21,8	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0 mple collectio 2.0 Calculation liters/ft)] x [Let	DO (mg/L) D Water (Pr 7, 4/ 7, 20 7, 05 G, 8] n) (c. 8 /	Temp. (°C) (± 10%) re-pumping 17.24 17.24 17.24 17.24 17.24 17.29 17.29	ORP (mv)	Salinity (%) (.38 (.34) (.30)
Time Sta 1012 1014 1014 1024 1026 1036 1040 1050 1050	Purge Vol. (liters) abilization R 0 Shert p 2 0 Shert p 2 2 4 4 6 8 2 2 4 6 8 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Depth to Water (ft btoc) equirements 10.02 Sample to 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07	рН (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 10%) (± 80 (± 80 (± 80) (± 80) Final ((± 80) Wars) = [Well call (casing diamong	Spec. Cond. (ms/cm) $(\pm 10\%)$ I 5w (a)& 2 Flux tell 23,0 22,7 21,9 21,8 21,8 21,8 Vell Volume (eter (in) $\rightarrow W$	Turbidity (NTU) (± 10%) nitial Depth to 0 400m) w 1.8 1.6 1.9 2.0 mple collectio 2.0 Calculation liters/ft)] x [Ler ell casing voluments	DO (mg/L) D Water (Pr 7. 4/ 7. 20 7. 05 G. 8] n) (c. 8 / ngth of wate ne (liters/ft)	Temp. (°C) (±10%) re-pumping 17.24 17.24 17.24 17.24 17.29 17.29	ORP (mv)) 181 204 215 223 223	Salinit; (%) 1.38 1.34 1.31 1.30

Reviewed by: US Artessin Date: 6.21-17 Reviewed by: US Artessin Date: 6 21/17 Page ____ of ____

Meter Model: Horiba U-52

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc
SEALASK ENVIR	A CONMENTA		Sealaska Environmental Services Marine Science Center, P.O. Box 869 18743 Front Street, NE, Suite 201 Poulsbo, WA 98370Well Inspection 												
Contract Number: <u>N4</u>	4255-14-D-9	011 Tas Ord	sk ler: 46	Naval Installati	on: Naval Base	Kitsap at Keyj	Site Name	e:/	Area 8						
Well ID: <u>MW</u> Total Well D Depth to Wat Length of Wa	/8-12 Pepth (ft below ter (ft below I ater Column i	w MP): <u>14,13</u> MP): <u>1693</u> in well (ft):	N Pooled 9,33 Inner Casir 4,80	<u>Well</u> Ieasuring Poi d Water in Wi ng Straight an Well Head	Data nt (MP): Top of ell Head: Y: d Clear:: Y: Locked: Y:	f Casing, Rin N:	n Monument Vell Casing V Wel 2 x Wel	, Other: Volume (lite I Volume (l I Volume (l	ers/ft): <u>0.(</u> iters): <u>2.8</u> ° iters): 5.7						
Diameter of v	well casing (in	nches): 2"		Exterior Se	eal Good Y:_✓	N:	Volun	ne Purged (1	iters): (o						
Purge Method	d: Peristaltic	Submersible/B	Bladder/Other:			Re	emarks: Did	= 0,0000	n						
		Antika populari pokang kalang kala		Water Sar	nole Data										
Sample ID: A	AREA-8-17-20	04	Type: EN	V. D	ate: 6-21-1	7 Tim	e Nace	# Control	narce O						
QC Sample ID:	NA		Type: NA	D	ate. NA	Time	<u>0755</u>	# Contai	ners: b						
Sampling Bon	connel. D.	J. Luis 2	S	D	die	1 im		# Contain	ners: NA						
ampning ren	sonner. <u>FA</u>	ley Lewis :	Junne fo	atterson	Samplin	ng Method:	low flow								
5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	the state of the s	. A 9													
CONTRACTOR (CON	or, odor, etc.)	. <u>Clear</u>	1 220/7050 L	satth	LOIT DIB-	= 14.18			-						
vemarks (coli	or, odor, etc.)	- Clear :	0005605 W	sall R	LOIT DTB-	= 14.1 8									
Time	Purge Vol.	Depth to Water (ft btoc)	10007600 V	Spec. Cond.	Turbidity	= 14.1 8 DO	Temp.	ORP	Salinity						
Time Sta	Purge Vol. (liters)	Depth to Water (ft btoc)	pH (±10%)	Spec. Cond. (ms/cm) (±10%)	Turbidity (NTU) (+ 10%)	= (4.) 8 DO (mg/L)	Temp. (°C)	ORP (mv)	Salinity (%)						
Time Sta	Purge Vol. (liters) bilization R	Depth to Water (ft btoc) Requirements	рН (±10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU) (± 10%) nitial Depth to	= (4.) 8 DO (mg/L)	Temp. (°C) (± 10%) e-pumping	ORP (mv)	Salinity (%)						
Time Sta	Purge Vol. (liters) bilization R	Depth to Water (ft btoc) Requirements	pH (±10%) Set Flo	Spec. Cond. (ms/cm) (± 10%) I N fale	Turbidity (NTU) (± 10%) nitial Depth to 5 400 m/	= (4.) 8 DO (mg/L) Water (Pr	Temp. (°C) (± 10%) e-pumping	ORP (mv)	Salinity (%)						
Time 5ta 0936 0938	Purge Vol. (liters) bilization R 0 Stert pr (ones)	Depth to Water (ft btoc) lequirements	pH (± 10%) Set Flo Flowcell	Spec. Cond. (ms/cm) (±10%) I	$\frac{\text{Turbidity}}{(\text{NTU})}$ $\frac{(\pm 10\%)}{(\pm 00 \text{ m})}$	= 14.1 8 DO (mg/L) Water (Pr	Temp. (°C) (± 10%) e-pumping	ORP (mv)	Salinity (%)						
Time 0936 0943 0943	Purge Vol. (liters) bilization R 0 Shert pr Concep	Depth to Water (ft btoc) Requirements wwp and tubing to 9.36	pH (±10%) (±10%) Set Flo Flowcell 7.32	Spec. Cond. (ms/cm) (± 10%) I W fake 4,99	$\frac{L_{017} \text{ DTB}}{\text{Turbidity}}$ (NTU) $(\pm 10\%)$ nitial Depth to $\frac{L_{00}}{100}$ $\frac{L_{00}}{100}$	= 14.1 8 DO (mg/L) Water (Pr M.10 6.88	Temp. (°C) (± 10%) e-pumping	ORP (mv)	Salinity (%)						
Time 0936 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943	Purge Vol. (liters) bilization R 0 Stert pr (oneu) 2 4	Depth to Water (ft btoc) Requirements tuber to 9.36 9.36 9.36	pH (±10%) Set Flo Flowcell 7.32 7.31	Spec. Cond. (ms/cm) (± 10%) I N fale 4,99 4,98	$\frac{1 \times 3}{1 \times 3}$	= 14.1 8 DO (mg/L) Water (Pr M:10 6.88 G.99	Temp. (°C) (± 10%) e-pumping (5.59 (5.49	ORP (mv)	Salinity (%) 0.27 0.27 0.27						
Time 0936 0943 0943 0943 0943 0943 0943 0943	Purge Vol. (liters) bilization R 0 Stert pr (onest 2 4 6	Depth to Water (ft btoc) Requirements tubing to 9.36 9.36 9.36	pH (±10%) (±10%) Fluvcell 7.32 7.31 7.29	Spec. Cond. (ms/cm) (± 10%) I N fale 4,99 4,98 4,99	$ \begin{array}{r} Turbidity \\ (NTU) \\ (\pm 10\%) \\ nitial Depth to \\ \pm 000 ml \\ /.3 \\ /.3 \\ /.3 \\ /.3 /.3 $	= 14.1 8 DO (mg/L) Water (Pr M:N 6.88 6.99 7.07	Temp. (°C) (± 10%) e-pumping (5.59 (5.59 (5.50)	ORP (mv)	Salinity (%) 0.27 0.27 0.27 0.27						
Time 5ta 0936 0938 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943 0943	Purge Vol. (liters) bilization R 0 Stort pr (ones) 2 4 6 Collect	Depth to Water (ft btoc) Requirements vurp and tubing to 9.36 9.36 9.36 9.36 9.36	pH (±10%) (±10%) Szt Flo Flowcell 7.32 7.31 7.29	Spec. Cond. (ms/cm) (± 10%) I N fak 4,99 4,98 4,98 4,99	$\frac{\text{Lo}_{17} \text{ DTB}}{\text{Turbidity}}$ (NTU) $(\pm 10\%)$ nitial Depth to $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	= 14.1 8 DO (mg/L) Water (Pr Min 6.88 G.99 7.07	Temp. (°C) (± 10%) e-pumping (5.59 (5.59 (5.50)	ORP (mv)	Salinity (%) 0.27 0.27 0.27						
Time 5ta 0936 0938 0943 0943 0955	Purge Vol. (liters) bilization R 0 Stert pr (ones) 2 4 6 Collect	Depth to Water (ft btoc) Requirements taking to 9.36 9.36 9.36 9.36 9.36	pH (±10%) Set Flo Flowcell 7.32 7.31 7.29	Spec. Cond. (ms/cm) (± 10%) I N fale 4,99 4,99 4,99	$\frac{1 \cdot 3}{1 \cdot 3}$	= 14.1 8 DO (mg/L) Water (Pr MiN 6.88 6.99 7.07	Temp. (°C) (± 10%) e-pumping (5.59 15.50	ORP (mv)	Salinity (%) 0.27 0.27 0.27 0.27						
Time 5ta 0936 09436 09436 09436 09436 09436 09436 09436 09436 09436	Purge Vol. (liters) bilization R 0 Stert pr (ones) 2 4 6 Collect	Depth to Water (ft btoc) Requirements tuber to 9.36 9.36 9.36 9.36	pH (±10%) Set Flo Flovcell 7.32 7.31 7.29	Spec. Cond. (ms/cm) (± 10%) I N Tale 4,99 4,99 4,99	$\frac{1}{2017} \text{ DTB}$ $\frac{\text{Turbidity}}{(\text{NTU})}$ $\frac{(\pm 10\%)}{(\pm 10\%)}$ $\frac{1}{10}$	= 14.1 8 DO (mg/L) Water (Pr M:10 6.88 G.99 7.07	Temp. (°C) (± 10%) e-pumping (5.59 (5.50) (5.50)	ORP (mv)	Salinity (%) 0.27 0.27 0.27						
Time 5ta 0936 0938 0943 0943 0943 0943 0943 0943 0943	Purge Vol. (liters) bilization R 0 Stert pr (ones) 2 4 6 Collect	Depth to Water (ft btoc) Requirements tuber to 9.36 9.36 9.36 9.36	pH (± 10%) Set Flo Flowcell 7.32 7.31 7.29 Final	Spec. Cond. (ms/cm) (± 10%) I N fale 4,99 4,99 4,99	$\frac{1}{1} \frac{1}{3}$	= 14.1 8 DO (mg/L) Water (Pr M.10 6.88 G.99 7.07	Temp. (°C) (± 10%) e-pumping (5.59 (5.50) (5.50)	ORP (mv)	Salinity (%) 0.27 0.27 0.27						
Time 5ta 0936 0938 0943 0943 0943 0943 0943 0943 0943 0943 0955 0955	Purge Vol. (liters) bilization R 0 Stort pr Concept 2 4 6 Collect	Depth to Water (ft btoc) Requirements Mup and Hubig to 9.36 9.36 9.36 9.36 9.36	pH (± 10%) Szt Flo Flow cell 7.32 7.31 7.29 Final (7.29	Spec. Cond. (ms/cm) (± 10%) I v fak 4,99 4,98 4,98 4,98 4,99 4,99 4,99	$\frac{L_{017} \text{ DTB}}{\text{Turbidity}}$ (NTU) $(\pm 10\%)$ nitial Depth to $\frac{L_{00}}{1.3}$ $\frac{L_{00}}{1.3}$	= 14.1 8 DO (mg/L) DWater (Pr MiN 6.88 G.99 7.07 1.07 1.07 1.07	Temp. (°C) (± 10%) e-pumping (5.59 (5.59) (5.50)	ORP (mv)	Salinity (%) 0.27 0.27 0.27						
Time Sta 0936 0938 0948 0955 0955	Purge Vol. (liters) bilization R 0 Stert pr (ones) 2 4 6 Collest	Depth to Water (ft btoc) Requirements taking to 9.36 9.36 9.36 9.36 9.36	pH (± 10%) Set Flo Flowcell 7.32 7.31 7.29 Final (7.29	Spec. Cond. (ms/cm) (± 10%) I N fale 4,99 4,99 4,99 4,99 4,99	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	= 14.1 8 DO (mg/L) • Water (Pr M.'M 6.88 6.99 7.07 	Temp. (°C) (± 10%) e-pumping (5.59 15.50 15.50	ORP (mv)	Salinity (%) 0.27 0.27 0.27 0.27						
Time 5ta 0936 0938 0943 0943 0943 0943 0943 0943 0943 0943 0943 0955 0955 0955	Purge Vol. (liters) bilization R 0 Stert pr (onest 2 4 6 Collect	Depth to Water (ft btoc) tequirements fully to 9.36 9.36 9.36 9.36 9.36 9.36 9.36	$\frac{pH}{(\pm 10\%)}$ (± 10%) Set Flo Flow cell 7.32 7.31 7.29 Final (7.29 W	Spec. Cond. (ms/cm) $(\pm 10\%)$ I $\sqrt{10\%}$ 4,99 4,99 4,99 4,99 4,99 4,99 4,99 4,99 4,99 4,99	$ \begin{array}{c} Turbidity \\ (NTU) \\ (\pm 10\%) \\ nitial Depth to \\ to 400 m[] \\ /.3 \\ $	= 14.1 8 DO (mg/L) Water (Pr Min 6.88 G.99 7.07 n) 7.07	Temp. (°C) (± 10%) e-pumping (5.5%) 15.49 15.50	ORP (mv) 122 132 138	Salinity (%) 0.27 0.27 0.27 0.27						
Time Sta 0936 0938 0948 0955	Purge Vol. (liters) bilization R 0 Stert pr (ones) 2 4 6 Collect	Depth to Water (ft btoc) Requirements (ft btoc) Requirements (ft btoc) Requirements (ft btoc) (ft btoc) (f	$\frac{pH}{(\pm 10\%)}$ $\frac{get Flo}{Flow cell}$ $\frac{7.32}{7.31}$ $\frac{7.29}{7.29}$ Final (1) Final (1) Fin	Spec. Cond. (ms/cm) (\pm 10%) I V Take 4,99	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $(\pm 00\%)$ 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 Calculation liters/ft)] x [Len	= $14.1 \ 8$ DO (mg/L) Water (Pr M:M 6.88 $\overline{0.99}$ $\overline{7.07}$ n) $\overline{7.07}$ ngth of water	Temp. (°C) (± 10%) e-pumping (5.59 15.50 15.50	ORP (mv)	Salinit, (%) 0.27 0.27 0.27 0.27						
Time Sta 0936 0938 0938 0948 0955 0955 0955	Purge Vol. (liters) bilization R 0 Stert pr (onest 2 4 6 Collect (c We 0.3 1.5	Depth to Water (ft btoc) tequirements y_{mp} and f_{mbry} to 9.36	pH $(\pm 10\%)$ s = + F + 0 F + 0 F + 0 F + 29 F + 29	Spec. Cond. (ms/cm) $(\pm 10\%)$ I $\sqrt{10\%}$ 4,99	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $(\pm 10\%)$ 1/3 1/3 1/3 1/3 1/3 1/3 Calculation liters/ft)] x [Len [ell casing voluments]	= 14.1 % DO (mg/L) Water (Pr M.M 6.8% G.99 7.07 n) 7.07 ngth of water ne (liters/ft)	Temp. (°C) (± 10%) e-pumping (5.5%) (5.5%) (5.5%) (5.5%) (column (ft)	ORP (mv)	Salinit (%) 0.27 0.27 0.27 0.27						

Recorded by: <u>HALLOWIS</u> Date: <u>6-21-17</u> Reviewed by: <u>J.S.A-T.C.J.W.Date:</u> <u>06</u>[21][7]

Page ____ of ____

Meter Model: Horiba U-52

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc

SEALASK ENVIR	ACONMENTA	S	ealaska Marin 187	Environ ne Science Ce 43 Front Stree Poulsbo, V	mmental S enter, P.O. Box 8 et, NE, Suite 20 WA 98370	Services 869 11	S W Pur Mer	ell Insp rging, ar asureme	ection, 1d Field nt Form
Contract Number:	4255-14-D-9	011 Tas Orde	sk er: <u>46</u>	Nava Installati	l ion: <u>Naval Base</u>	Kitsap at Ke	yport Nam	e:/	Area 8
				Well	Data	Million and a second second second			Carting and a second second
Well ID: MW	18-14			Measuring Poi	int (MP): Top o	f Casing, Ri	m Monumen	Other	
fotal Well D	epth (ft below	WMP): 15.13	Poole	d Water in W	ell Head V.	N·V	Woll Cosing		(0)
Depth to Wat	er (ft below I	MP): 10 92	Inner Casi	na Straight or	d Cleans V.	7	wen Casing	volume (inte	rs/π): <u>0.(</u>
enoth of Wa	ter Column	in molt (A).	11	ng suaigin ai	id Clear:: Y: $$	/ ^{N:}	We	ll Volume (l	iters):2.5(
		in wen (n): <u>1</u> .		Well Head	Locked: Y: _	/ N:	2 x We	ll Volume (I	iters): <u>5.0</u>
hameter of v	vell casing (i	nches):'		Exterior S	eal Good Y: _	N:	Volun	ne Purged (1	iters): 6
urge Method	1: Peristaltic)	Submersible/B	ladder/Other	:	1010-10 10 10	F	Remarks:	= 0.0	
				33/			- He	- C. O ppw	
ample ID. A	REA-8-17-20	05	- MC	Water Sai	mple Data				
ample ID:	NA		Type: Mo	D	Date: 6/21/1	7 Tin	ne: 11.30	# Contain	ners: 14
C Sample ID:			Type: NA	D	Date: NA	Tin	ne: NA	# Contain	ners: NA
ampling Pers	sonnel:	Indy Lewis	5 Sunnise	Putterson	Samplin	19 Method	In Ch.	-	
emarks (cold	or, odor, etc.)	: cleure	while bus		alan Ort		10W FILW		
			TWC DOG 10	> fings u	later UN	N 2017	=15,19		
Time	Purge Vol. (liters)	Depth to Water (ft btoc)	nU	Spec. Cond.	Turbidity	DO	Temp.	ORP	Salinity
Time	Purge Vol. (liters) bilization R	Depth to Water (ft btoc)	рН (± 10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	ORP (mv)	Salinity (%)
Time Sta	Purge Vol. (liters) bilization R	Depth to Water (ft btoc) tequirements 10197	рН (± 10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU) (± 10%) nitial Denth to	DO (mg/L)	Temp. (°C) (± 10%)	ORP (mv)	Salinity (%)
Time Sta 1105 1109	Purge Vol. (liters) bilization R 0 Stert p	Depth to Water (ft btoc) tequirements 10.97	рН (±10%)	Spec. Cond. (ms/cm) (± 10%) I	Turbidity (NTU) (± 10%) nitial Depth to	DO (mg/L) Water (P	Temp. (°C) (± 10%) re-pumping	ORP (my)	Salinity (%)
Time Sta 1105 1109 1111	Purge Vol. (liters) bilization R 0 Stort p Const	Depth to Water (ft btoc) equirements 10.97	рН (±10%) Set (Slow	Spec. Cond. (ms/cm) (± 10%) I Dwrage rad	Turbidity (NTU) (± 10%) nitial Depth to & +o 400	DO (mg/L) Water (P	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%)
Time Sta 1105 1109 1111 1116	Purge Vol. (liters) bilization R 0 Stort p (Const 2	Depth to Water (ft btoc) Requirements 10.97 hump and tubing to 11.21	pH (± 10%) Set (Elow Flow	Spec. Cond. (ms/cm) (± 10%) I VN rage rad Cell 35.3	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm 10 - 400$ S. 2	DO (mg/L) Water (P /m/ min	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%)
Time Sta 1105 1109 1111 1116 1121	Purge Vol. (liters) bilization R 0 Stort p Conset 2 4	Depth to Water (ft btoc) tequirements 10,97 map and tubing te 11,21 11,24	pH (±10%) Se+ (e flow 7.94 7.94 7.96	Spec. Cond. (ms/cm) (± 10%) I Wrage rad cell 35.3 36.3	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm \pm 0 - 400$ S. 2 2. 8	DO (mg/L) Water (P /m/ min 17.74 7.59	Temp. (°C) (±10%) re-pumping	ORP (my)	Salinity (%) 2.21 2.27
Time Sta 1105 1109 1111 1116 1121 1126	Purge Vol. (liters) bilization R 0 Stort p Conset 2 4 6 2 4	Depth to Water (ft btoc) tequirements 10.97 tup and tubin te 11.21 11.24 11.24 11.27	pH (± 10%) Set (Elow 7.94 7.94 7.94	Spec. Cond. (ms/cm) (± 10%) I (± 10)	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm 10 - 400$ S. 2 Z. 8 2. 6	DO (mg/L) Water (P /m1 min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping (7.71 16.32 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1116 1121 1126 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CA	Depth to Water (ft btoc) tequirements 10,97 mp and tubin te 11,21 11,24 11,24 11,24 11,27 11,27	pH (± 10%) Set (Set (S	Spec. Cond. (ms/cm) (± 10%) I Nrige 1 a.d Cerl 35.3 3 (c. 3 3 (c. 3 3 (c. 3) 3 (c. 6)	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm \pm 0 - 400$ \overline{S} . 2 2. 8 2. 6	DO (mg/L) Water (P /m1 min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping [7.7] [6.32 [6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1116 1121 1126 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2-x CA	Depth to Water (ft bloc) equirements 10,97 mp and tubing to 11,21 11,24 (1.27 (1.27 (1.27) (1.27) (1.27) (1.27) (1.27) (1.27) (1.27)	pH (± 10%) Set (E E Set (F) Set (Set (F) Set (Set	Spec. Cond. (ms/cm) (± 10%) I Wrage rad cell 35.3 36.3 36.3 36.3	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm \pm 0 - 400$ S. 2 2. 8 2. 6	DO (mg/L) D Water (P /m1 min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping 7.7 6.32 6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time \$\$105 1109 1111 1116 1121 1126 1120	Purge Vol. (liters) bilization R 0 Stert p (Onue) 2 4 6 2 4 6 2 2 4 6 2 2 4 6 2 2 4 6 2 2 4 6 2 2 4 6 2 2 2 2	Depth to Water (ft bloc) equirements 10,97 tubin to 11,21 11,24 11,24 11,27 SING VOL	pH (± 10%) Set (Flow 7.94 7.94 7.94 7.94 7.94 Flow 7.94	Spec. Cond. (ms/cm) (± 10%) I Nrage rad cell 35.3 36.3 36.3 36.3	Turbidity (NTU) (± 10%) nitial Depth to 2. 5. 2 2. 8 2. 6	DO (mg/L) Water (P /m1 min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping (17.71 16.32 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time Sta 1109 1110 1110 1121 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CA Const	Depth to Water (ft bloc) equirements 10,97 mp and tubing to 11,21 11,24 11,27 11,27 SING VOL t SPANNOL	pH (± 10%) 5 Se+ (2 Flow 7.94 7.94 7.94 7.94 7.94 7.94 7.94 Flow Flow	Spec. Cond. (ms/cm) (± 10%) I Wrage rad cell 35.3 36.3 36.3 36.4	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm \pm 0 - 400$ S. 2 2. 8 2. 6	DO (mg/L) Water (P /m1 min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping 7.7 6.32 6.08	ORP (my)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1116 1121 1126 1130	Purge Vol. (liters) bilization R 0 Stert p Conset 2 4 6 2 x CAS	Depth to Water (ft bloc) lequirements 10.97 tup and tubin to 11.21 11.24 11.24 11.27 (11.27 (11.27) (1.27) (1.27) (1.27) (1.27) (1.27)	pH (± 10%) Set (Flow 7.94 7.94 7.94 7.95 E	Spec. Cond. (ms/cm) (± 10%) I Nrage i a.d Cell 35.3 36.3 36.3 36.3	Turbidity (NTU) (± 10%) nitial Depth to 2. 2 2. 8 2. 6	DO (mg/L) D Water (P /m/ min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1116 1121 1126 1120	Purge Vol. (liters) bilization R 0 Stort p Conset 2 4 6 2-x CAS	Depth to Water (ft btoc) tequirements 10,97 mp and tubing te 11,21 11,24 11,27 (1,27 (1,27) (1,27) (1,27) (1,27) (1,27) (1,27)	pH (± 10%) (±	Spec. Cond. (ms/cm) (± 10%) I Nrige 1 a.d Cell 35.3 3 (c. 3 3 (c. 3 3 (c. 3 3 (c. 4)	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pounds + 0 - 400$ $\xi \cdot 2$ $\xi \cdot $	DO (mg/L) Water (P /m/ min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping 17.71 16.32 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1116 1121 1126 1120	Purge Vol. (liters) bilization R 0 Stert p Const 2 4 6 2 x CA Const	Depth to Water (ft bloc) equirements 10.97 mp and tubing to 11.21 11.24 (1.27 SING VOL 5PAMPL	рН (± 10%) 5 Se+ (2 Elow 7.94 7.94 7.94 7.94 7.94 7.94 7.94 7.94	Spec. Cond. (ms/cm) (± 10%) I wrage rad cevt 35.3 36.3 36.3 36.3 36.4 2	Turbidity (NTU) (± 10%) nitial Depth to 2. 5. 2 2. 8 2. 6 mple collectio	DO (mg/L) Water (P /m/ min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping (7.71 16.32 (6.08	ORP (my)	Salinity (%) 2.21 2.27 2.27
Time Sta 1105 1109 1111 1110 1121 1120 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CA Const Const 2 4 6 2 x CA Const Const 2 4 6	Depth to Water (ft bloc) equirements 10.97 tup and tubin te 11.21 11.24 11.27 (SPAND)	pH (± 10%) Set (Flow 7,94 7,94 7,94 7,94 7,94 Final (7,97	Spec. Cond. (ms/cm) (± 10%) I Nrige 1 ad cell 3 5.3 3 (e. 3 3 (e. 3 3 (e. 6) at time of sa 3 (e. 6)	Turbidity (NTU) (± 10%) nitial Depth to 2. 5. 2 2. 6 2. 6 mple collection 2. 6	DO (mg/L) D Water (P /m/ min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping (17.71 16.3 2 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27 2.27
Time Sta 1109 1110 1110 1121 1126 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CA Const Const 2 4 6	Depth to Water (ft bloc) equirements 10,97 hump and hubing to 11,21 11,24 (1,27 SING VOL 6 SPANNOL	рН (± 10%) 5 Se+ (2 Flow 7.94 7.94 7.94 7.94 7.94 7.94 7.97 Final (7.97 W	Spec. Cond. (ms/cm) (\pm 10%) I 35.3 36.3 36.3 36.4	Turbidity (NTU) (± 10%) nitial Depth to 2. 2. 8 2. 6 mple collection 2. 6 Calculation	DO (mg/L) D Water (P /m/ min 17.74 7.59 7.44	Temp. (°C) (± 10%) re-pumping 7.7 6.32 (6.08	ORP (my)	Salinity (%) 2.21 2.27 2.27 2.27 2.27
Time Sta 1109 1111 1116 1121 1126 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CAP	Depth to Water (ft bloc) equirements 70.97 hump and hubing to 11.21 11.24 11.24 11.24 11.27 SPANDI SPANDI 11.27	pH (± 10%)	Spec. Cond. (ms/cm) (± 10%) I NGQE 10.3 Cell 35.3 36.3 36.3 36.6 36.6 36.6 Vell Volume (sing volume (Turbidity (NTU) (± 10%) nitial Depth to 2. 2 2. 8 2. 6 mple collection 2. 6 Calculation liters/ft)] x [Len	DO (mg/L) D Water (P /m/ min 17.74 7.59 7.44 7.44	Temp. (°C) (±10%) re-pumping (7.71 16.32 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27 2.27 2.27
Time Sta 1105 1109 1111 1110 1121 1120 1120 1120	Purge Vol. (liters) bilization R 0 Stert p Conuct 2 4 6 2 X CA Conuct Conuct Conuct Conuct Conuct Conuct Conuct Conuct	Depth to Water (ft bloc) equirements 10,97 tubin te 11,21 11,24 11,24 11,27 SING VOL (SPANNOL (SPANNOL (SPANNOL (SPANNOL (SPANNOL (SPANNOL (SPANNOL) (SPANNOL)	pH (± 10%)	Spec. Cond. (ms/cm) ($\pm 10\%$) I Wroge 10.0 Cell 35.3 36.3 36.3 36.4 Cell Cell Volume (sing volume (eter (in) \rightarrow W	Turbidity (NTU) (± 10%) nitial Depth to 2. 2. 3 2. 6 mple collection 2. 6 Calculation liters/ft)] x [Ler 'ell casing volur	DO (mg/L) • Water (P /m/ min 17.74 7.59 7.44 n) 7.44 mgth of water ne (liters/ft)	Temp. (°C) (± 10%) re-pumping (17.71 16.3 2 (6.08	ORP (mv)	Salinity (%) 2.21 2.27 2.27 2.27
Time 1105 1109 1111 1116 1121 1126 1120 1120 1120 1120 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2-x CA Const Cons	Depth to Water (ft bloc) equirements 70.97 mp and 10.97 mp and 11.21 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27	pH (\pm 10%) (Spec. Cond. (ms/cm) (\pm 10%) I Wrege 10.0 Cevil 35.3 36.3 36.3 36.3 36.4 Cevil at time of sa 36.6 (ell Volume (sing volume (eter (in) \rightarrow W 2.5" \rightarrow 1	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to ± 10 400 5.2 2.8 2.6 mple collection 2.6 Calculation (liters/ft)] x [Ler Yell casing volur $3^{\circ} \rightarrow 1.4$	DO (mg/L) p Water (P m/min 17.74 7.59 7.44 mgth of water ne (liters/ft) $3.5^{\circ} \rightarrow$	Temp. (°C) (\pm 10%) (\pm 10%) re-pumping (\pm 10%) ($17,71$ ($16,32$ ($16,03$ ($6,03$ ($16,03$ ($2,03$ ($16,03$	ORP (my)	Salinity (%) 2.21 2.27 2.27 2.27 2.27
Time Sta 1109 1110 1110 1121 1126 1120 1120 1120 1120 1120	Purge Vol. (liters) bilization R 0 Stort p Const 2 4 6 2 x CA Correct 0 0 0 2 x CA Correct 0 0 0 0 2 x CA Correct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth to Water (ft bloc) equirements 70.97 which and thoin to 11.21 11.24 11.24 11.27 (1.27) (1.	pH (± 10%) $5 \le 4 + 9$ $2 \le 10 \text{ W}$ 7,94 8,97 8,90 8,9	Spec. Cond. (ms/cm) (\pm 10%) I Wrege (add cev) 3 5.3 3 (\oplus .3 3 (\oplus .3 3 (\oplus .6 at time of sa 3 (\oplus .6 (ell Volume (sing volume (eter (in) \rightarrow W 2.5" \rightarrow 1	Turbidity (NTU) $(\pm 10\%)$ nitial Depth to $\pm 10 \ 400$ S. 2 2. 8 2. 6 mple collection 2. 6 Calculation liters/ft)] x [Ler 'ell casing volur 3" $\rightarrow 1.4$	DO (mg/L) Water (P /m/ min $\overline{7.74}$ $\overline{7.59}$ $\overline{7.44}$ $\overline{7.44}$ $\overline{7.44}$ $\overline{7.44}$ $\overline{7.44}$ mgth of water ne (liters/ft) $3.5^{\circ} \rightarrow$	Temp. (°C) $(\pm 10\%)$ ($\pm 10\%$) re-pumping ($17,71$) 16.32 (16.08) 16.32 (16.08) 16.32 (16.08) 16.32 (16.08) 16.32 (16.08) 16.32 (16.08) 16.08 (16.08)	ORP (mv) 12.8 12.9 12.3 12.3	Salinity (%) 2.21 2.27 2.27 2.27 2.27 2.27

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc

SEALASKA Sealaska Environmental Services Marine Science Center, P.O. Box 869 Well Inspection, 18743 Front Street, NE, Suite 201 Purging, and Field Poulsbo, WA 98370 Measurement Form												
Contract Number: N4	4255-14-D-9	011 Tas Ord	sk er: <u></u> 46	Nava Installat	l on: Naval Base	e Kitsap at Keyp	Site	e:	Area 8			
				Well	Data							
Well ID: MW	8-16		N	Aeasuring Poi	int (MP): Top o	f Casing, Rin	n Monument	Other: 🕤	λC			
Total Well De	epth (ft below	w MP): <u>47.11</u>	Poole	d Water in W	ell Head: Y:	N: VW	ell Casing	Volume (lit	erc/ft). A			
Depth to Wat	er (ft below l	MP): 10,48	Inner Casi	ng Straight an	d Clear:: Y: V	N:	We	Il Volume (III	$(15/10) \cdot 0.6$			
Length of Wa	ter Column i	in well (ft): 30	0-63	Well Head	Locked V. J	/ N·	2		inters): <u>21.98</u>			
Diameter of w	ell casing (in	nches): 2"		Exterior S	al Good V. V	/ ¹	2 x we	II Volume (liters): <u>45,96</u>			
Purge Method	: Peristaltic	Submersible	ladder/Other	Exterior 5		N:	Volun	ne Purged (liters): ZZ			
			ladder/Other.			Re	emarks: Md	= 0, 0 ppi	M			
Sample ID: <u>A</u> QC Sample ID: Sampling Pers Remarks (colo 2011 DTB	NA onnel: <u>Onc</u> r, odor, etc.) - 47.06 F	y leunis : : <u>Clear a</u> : Totol	Type: EN Type: NA Sinise	v. D D D D D D D D D D D D D D D D D D D	ate: <u>6/21 /17</u> ate: NA Samplin Worft R	Time	:: <u>1420</u> :: NA low flow	# Contai	iners: NA			
	Purge	Dender				1						
	Vol.	Water		Spec.	Turbidity	DO	T					
Time	(liters)	(ft btoc)	pH	(ms/cm)	(NTU)	(mg/L)	(°C)	ORP (my)	Salinity			
1 3/8 Stal	0	equirements	(± 10%)	(± 10%)	(± 10%)		(±10%)	(417)	(70)			
1320	stert p	mun and	001 81	10.1.00.10	litial Depth to	Water (Pro	e-pumping)	1			
1355	14	Conert FI	ascell to	tuber	quomymin							
1400	16	6189.94	6.96	15.2	1.8	4.11	18.31	-78	080			
1410	18	7,88	6.96	15.1	1.7	3,99	18.13	-78	0.88			
1415	22	9.70	6.96	15.1	1,7	3,90	1807	-78	0.87			
			- <u>w-r</u> ¥	10-0		2,85	18.02	-78	0.87			
							-					
			Final (at time of sa	mple collectio	n)						
				All Vala								
	Wel	l volume (liter	s) = [Well cases]	sing volume (liters/ft)] v [] or	oth of water	aahun (O)a					
		Well	casing diame	eter (in) $\rightarrow W$	ell casing volum	ne (liters/ft)	column (ft)					
1.25" → (0.3 1.5'	"→ 0.4	$2" \rightarrow 0.6$	$2.5" \rightarrow 1$	$3" \rightarrow 1.4$	$3.5" \rightarrow 2$	4"→	25 6"				
corded by: And	HEWIS Da	te: 6/21/17		Page	of		Me	ter Model:	Horiba U-52			

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016.doc

SEALASE			Sealaska Marin 187	Environ ne Science Cen 43 Front Stree Poulsbo, W	Pu Me	Well Inspection, Purging, and Field Measurement Form						
Contract Number: _N	144255-14-D-9(011 Ta	sk ier: <u>46</u>	Naval Installati	on: Naval Base	Kitsap at Key	vport Nan	te ne:/	Area 8			
	ED A			Well	Data							
Well ID: 32			A	Aeasuring Poi	nt (MP): Top o	f Casing, Ri	m Monumen	nt, Other: NA				
Total Well I	Depth (ft below	v MP): <u>NA</u>	Poole	d Water in W	ell Head: Y: NA	N:	Well Casing	Volume (lite	ers/ft): NA			
Depth to Wa	ater (ft below N	MP): NA	Inner Casi	ng Straight an	d Clear:: Y: NA	N:	We	ell Volume (i	iters): NA			
Length of W	Vater Column i	n well (ft): <u>N</u>	Α	Well Head	Locked: Y: NA	N:	2 x We	ell Volume (1	iters) ata			
Diameter of	well casing (in	iches): NA	3	Exterior Se	eal Good Y: NA	N-	Volu	ma Durgad (1	iters). <u>NA</u>			
urge Methr	od: Ceristaltio	Submersible/B	Bladder/Other				v Olu	me rugeu (1	ners): <u>OA</u>			
	the second second	CALIFORNIA CONTRACTOR				N	emarks: /	<i>∨/</i> +				
	ADEA 0 47 00	7		Water San	nple Data							
sample ID:	ARCA 0 17 20		I ype: MS	1360	are: 6/22/17	1 117	Ne: 0935	≓ Contan	ners: 12			
C Sample II	D:	208	Type: DU	P. D.	ate: 6/22/17	7 Tim	1e: 0 945	# Contai	ners 4			
ampling Pe	ersonnel: An	dy Lewis	5 Shanise	Patterson	Samplie	a Mathad	001	_ ~ ~ vindi				
				1011-120	C Dampin	ie ivicuiou.	JUPP					
(coarks (co	nor, odor, etc.):											
Time	Purge Vol.	Depth to Water		Spec. Cond.	Turbidity	DO	Temp.	ORP	Salinity			
Time St	Purge Vol. (liters)	Depth to Water (ft btoc)	рН (± 10%)	Spec. Cond. (ms/cm) (+ 10%)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	ORP (mv)	Salinit: (%)			
Time St	Purge Vol. (liters) abilization R.	Depth to Water (ft btoc) equirements	рН (± 10%)	Spec. Cond. (ms/cm) (± 10%)	Turbidity (NTU) (± 10%) nitial Depth to	DO (mg/L)	Temp. (°C) (± 10%)	ORP (mv)	Salinit: (%)			
Time St NA 0930	Purge Vol. (liters) tabilization R. 0 30m; o. pwge	Depth to Water (ft btoc) equirements NA Syrface	рН (± 10%) 7.02	Spec. Cond. (ms/cm) (± 10%) II Z 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pl 6.2/	Temp. (°C) (± 10%) re-pumping (%.50	ORP (mv) 3)	Salinit (%)			
Time St 0930 0935	Purge Vol. (liters) tabilization R. 0 30min.pwge Colleas	Depth to Water (ft btoc) equirements NA Svifue MSMSD	pH (± 10%) 7.02 Somf 8	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5-2	DO (mg/L) Water (Pr 6.2/	Temp. (°C) (± 10%) re-pumping (%.SO	ORP (mv) 3)	Salinit <u>(%)</u>			
Time St 0930 0935 0945	Purge Vol. (liters) tabilization R 0 30m: o puse Collect	Depth to Water (ft btoc) equirements NA Svifice MSMSD Jupli a)	рН (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I Z 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pl G.2/	Temp. (°C) (± 10%) re-pumping (%.SO	ORP (mv) 3) /3 (p	Salinit, (%)			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30min.pwge Collect	Depth to Water (ft btoc) equirements NA SvrRee MSMSD Jupli a	pH (± 10%) 7.02 Songe E Samp	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (P) G.2/	Тетр. (°С) (± 10%) re-pumping (%.SO	ORP (mv) 3)	Salinit <u>(%)</u>			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R 0 30m: n pwse Collect	Depth to Water (ft btoc) equirements NA Svifice MSMSD Shipli al	рН (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pl G.2/	Temp. (°C) (±10%) re-pumping (%.SO	ORP (mv) /3 (p	Salinit; (%)			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30m: o purge Colloat Colloat	Depth to Water (ft btoc) equirements NA Svrfue MSMSD Jupli a)	pH (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pi G.2/	Тетр. (°С) (± 10%) re-pumping (%.SO	ORP (mv) 3) /3 (p	Salinit <u>(%)</u>			
Time St 0930 0945	Purge Vol. (liters) tabilization R. 0 30min purge Collest	Depth to Water (ft btoc) equirements NA Svifice MSMSD	рН (± 10%) 7.02 Songe E Same	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pi G.Z/	Temp. (°C) (±10%) re-pumping (%.SO	ORP (mv) /3 (p	Salinit; (%)			
Time St 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30m: n purge Collocot	Depth to Water (ft btoc) equirements NA SvrRue MSMSD Juplio	pH (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5-2	DO (mg/L) Water (Pi G.2/	Тетр. (°С) (±10%) re-pumping (%.SO	ORP (mv) 3) /3 (p	Salinit; (%)			
Time St 0930 0945	Purge Vol. (liters) tabilization R/ 0 30min purge Callest Callest	Depth to Water (ft btoc) equirements NA Svifice MSMSD Suplical	pH (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I 2 3 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (P) G.Z/	Temp. (°C) (±10%) re-pumping (%.SO	ORP (mv) /3 (p	Salinit, (%)			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30m: o purge Collo at Collo at	Depth to Water (ft btoc) equirements NA Svrfue MSMSD Juplio	pH (± 10%) 7.02 Songe E Sang	Spec. Cond. (ms/cm) (± 10%) I 2 8 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2	DO (mg/L) Water (Pi G.2/	Temp. (°C) (± 10%) (± 10%) re-pumping (\varepsilon \varepsil\varepsi \varepsilon \varepsil\varep \varepsilon \varepsilon \	ORP (mv) 3)	Salinity (%)			
Time St <u>NA</u> 0930 0935 0945	Purge Vol. (liters) tabilization R 0 30min purge Colleat Colleat	Depth to Water (ft btoc) equirements NA SvrRee MSMSD Suplical	рН (± 10%) 7.02 Songe E Same Final (Spec. Cond. (ms/cm) (± 10%) I 2 3 8 by at time of sa	Turbidity (NTU) (± 10%) nitial Depth to /5.2 mple collection	DO (mg/L) Water (P) G.Z/	Temp. (°C) (±10%) re-pumping (%.SO	ORP (mv) /3 (¢	Salinit, (%)			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30m:n purge Collocot Collocot 20min. purge	Depth to Water (ft btoc) equirements NA SvrRue MSM3D Jupli a)	pH (± 10%) 7.02 Sompe E Samp Final (7.02	Spec. Cond. (ms/cm) (± 10%) I 2 8 8	Turbidity (NTU) (± 10%) nitial Depth to /5.2 mple collection /5.2	DO (mg/L) Water (Pr G.21	Тетр. (°С) (± 10%) ге-ритріпу (%.SO	ORP (mv) 3) 136	Salinit; (%)			
Emarks (co St NA 0930 0935 0935 0945	Purge Vol. (liters) tabilization R/ 0 30min purge Colleat Colleat 20min. purge	Depth to Water (ft btoc) equirements NA SvrAce MSMSD Surface	рН (± 10%) 7.02 Songe E Sang Final (7.02 W	Spec. Cond. (ms/cm) (± 10%) 2 3 8 2 4 2 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	Turbidity (NTU) (± 10%) nitial Depth to /5.2 mple collection /5.2 2 alculation	DO (mg/L) Water (P) 6.2/	Temp. (°C) (±10%) re-pumping (%.SO	ORP (mv) /3 (¢	Salinit, (%)			
Time St NA 0930 0935 0945	Purge Vol. (liters) tabilization R. 0 30min purge Collocot Collocot Collocot 20min. purge	Depth to Water (ft btoc) equirements NA SvrRue MSM3D Jupli a) Jupli a) Sullie Sullie	pH (\pm 10%) 7.02 Som gree E Samg E Samg Final (7.02 Well ca	Spec. Cond. (ms/cm) (± 10%) I 2 8 8 by at time of sau 2 8, 8 /ell Volume (sing volume (Turbidity (NTU) (± 10%) nitial Depth to /5.2 mple collection /5.2 Calculation liters/fi)] x [Ler	DO (mg/L) Water (P) G.2.1	Тетр. (°С) (± 10%) ге-ритрія (4.50	ORP (mv) 3) 136	Salinit, (%)			
Time St NA 0930 0935 0945 0945	Purge Vol. (liters) tabilization R. 0 30min purge Colleat Colleat 20min purge Well Well	Depth to Water (ft btoc) equirements NA SvrAce MSMSD SvrAce MSD SvrAce SvrAce MSD SvrAC	pH $(\pm 10\%)$ 7.02 Some 8 8 Some 8 8 Some 9 9 br>9 9 9 9 9 9 9 9 9 9 9 9	Spec. Cond. (ms/cm) ($\pm 10\%$) I 2 3 8 b 4 2 3 8 b 4 2 8 8 b 4 2 8,8 (ell Volume (sing volume (eter (in) \rightarrow W	Turbidity (NTU) (± 10%) nitial Depth to /5.2 mple collection /5.2 Calculation liters/ft)] x [Ler ell casing volum	DO (mg/L) Water (P) G. 2/ G. 2/ b. 2/ ngth of wate ne (liters/ft)	Temp. (°C) (±10%) re-pumping (%.SO) (%.SO)]]] [] [] [] [] [] [] [] []	ORP (mv) /3 (¢ /3 (¢	Salinit; (%)			

Reviewed by: VS. PATTGESON Date: 0/22/17

Meter Model: Horiba U-52

Revision: January 2016 Filename: GW Sample Collection Form-Keyport-2016 doc

TD HE NAUBASE KITCAP LEYPORT 2017, WAEZI	TO UNA NOUPORE VITING VITING TO SUSTING
MOD S. POTTORSON M HANDRUE ALGUNS SPATTORSON	S DATIGASTOL & A LEWIS IN SITE DIAN
DN SITE	ALEET OPERATOR, CLIMA TO STATE FULS
ADDINGT THUGATE SAFETY BRIFFING	ONLY START ALLE
SSHD-S PATTERSON	1425 Par at Dona, TERE D. A. E. Var - 201 ALL - 27
TOPINS INVILLADE	Loss correct Philippine rock - 300, pH-1.11,
POCKERPOTINE SPECTU	COND 0.28 Ins/cm, TURD 11.1 NTUS, DU-9.03 Nig1C,
Auto control alan	100010 1294°C, ULD-32MV, DAL0.0190, CLEAR,
Childs, Scentiscs, Materiales, Mutchilles	COORLESS
- USE CARTION GERING INJOHT OF TRACE	0830 COULES DAMPLE HIVEN -1-17-208
PHYDRATTION	5-40ml voa MHG VOCS(4) SLEDC
· MODEL PRE-LEVEL D	ON SITE NAVIES SET UP TO SAMPLE
SAFETY: GLASSES, TOED BOOTS, VEST	VA GRAPS ANNP RUNNING
- GLOVES: WORK, NITRILE	HARGE
- WEED WHALLER! CHAPS, HARD HAT, FACE	. 0340 Corver PATRAMETERS: pH-8.22, COND 0.35 MS/cm,
SHIELD, HEARING PROTECTION	TURB 1. 7 NTUS, DO-9. 5/11/4/4, TEMP 13.13°C,
SITE INSPECTION: STUMPS & DEBRIS IN LANDFILL	ORP-17 MV, SALINITJ-0.01%, CLEAR, ODORLESS
WY: CLOUDY - PARTLY CLOUDY, 55-660F,	0845 COLLECT SAMPLE AREA-1-17-209
WIND 5-10 MDH	3-40ml voa W/HCI VOCS(9) 8260C
MOB FOR SAMPLE COLLECTION/MAINTENANCE	0854 DN SITE AREA & OPEN WELLS
OTSD CLEAN CALIBRATE HORIDA USZ: DH-3.98,	LOW TIDE -1.2 @ 0932
COND 450ms/cm, TheB 2.0 Notus, DO-9.94 mg/L,	. 0932 Conject DTWS
TEMP 17,1°C, OLP-294 muy SAL-0.24%	WELL ID DTN)
R. BOYD & M. HALDANE START PLANTATION	MW8-12 9.33
MAINTENANCE	MWS-11 10.03
S. ATTERSON & A. LEWIS CONDUCT SAMPLING	MW8-16 11.91
ACTIVITIES [11/MA]	0935 MW8-15 10.33 1111M 1111
VHMP outsilly	Will bound the hein

22	23
TO 46 NAV BASE KITS AP KEYPORT 2017 JUNE21	TO 46 NAUBASE KITSAP KEY POET ZOTTJUNEZI
WELL ID DTW	TWED 2. DINTUS, DO-6. SINGL, TEMP 17.2996,
MW8-14 10.74	020-223mv, SAL-1.30%
MW8-9 10.16	1020 J. LUEF ON SITE REVIEW H3S
MW5-8 9.77	1040 Coller Samal AREA-8-17-202
0936 ON SITE MW8-12 START PERISTALTIC RUMP *	3-40ml voa WHELE VOLS (18) 8260C
SET FLOW RATE: 400 MUMIN	2-250ml ANDER UP \$270D SIM 1,4-DIOXANIE
0938 CONNECT TO FLOW LELC	(-IL POLY W/HND3 (FF) DISS METALS 2007/20058/RAP
0943 COLLECT PANAMETERS - LISTED ON ALEGE FORM	1050 COLLECT DUP SAMPLE AREA-8-17-203
0953 PARLAMETERS STABILIZE: ANDRE VOL- 6L,	3-40 mL voa W/HC1 VOCS (15) 82600
DTW-9.34FT BTOC, pH-7.29, COND 4.99 NS/CM.	2-250ml AMBER UP \$2700 SIM 1, 4-DIOXANE
Twee -1.3 Nous, DO-7.07 Myll, TEMP 15.50°C,	1- IL POLY W/HNO3 (FF) DISS. METALS 2007/2008/RPP
ORD-138mu, SALI-D.27010, CLEARE, ODORLESS	DTB-15.96 FTBTOR
0955 Contar SAMPLE AREA-8-17-204	· ON SITE \$ MW8-14 SETUP TO SAMPLE
3-40 ml voa W/ HCI VOCS (18) 8260C	VIA AGRISTALTIC AIMP PID-0.0 ppm
2-250 ML ANNOGE UP \$2700 SIM 1, 4-DIOXANE	1105 DTW-10,97 FTBTOC
1-12 POLY WHINDS (FF) Diss. METALS 2007/2008/200	1109 START PAMP SET FLOW RATE: 400mil min
DTB-14.18 FTBTOC	1111 CONNECT TO FLOW CELL
ON SITE MW8-11 SET NP TO SAMPLE	1116 CONCER PATERMETERS - LISTED ON ANDERE
VIA PERISTALTIC PUMP PID-0.0 ppm	FORM
1012 DTW-10.02 FT BTOC	1/24 AMERICASS REACH 24 LASING VOLUME
1014 START RIMP SET FLOW RATE: 400ml/min	FINAL PARAMETERS: PURCE-UL, DTN-11.27 FT BTOC,
1016 CONNECT TO FLOW LELL .	At-7.97, COND 366 molion, Thep 2.6 NTUS DO 7.44 mill,
1021 COLLECT PARAMETERS-LISTED ON PURCHEREORM	TEMP 16.05°C, OLP-123mv, SAL-2.27%, CLEME,
1036 AADAMETERS STADILIZE: ANAGE VOL SL.	ODORIESS.
Uty aduliz	1130 COULET SAMORE AVER- 8-17-205 MS/MSD VATIO 016/21/17 Rete in che Rain

1		
	24	
	e I	

NT .	25
TO 46 NAVBASE KITSAP KEYPORT ZOMUNEZI	TO 46 NAVBASE KITSAP KENPORT 2017JUNEZI
4-40ml voa W/HC1 VOCS (18) 82600	1235 DARAMETERS STABILIZE: PHEGE VOL 8'L,
2-250ML NMBER UP 1,4-DIOXANE 8270D SIM	DTW-9.94-7 BTOC, pH-6.92, COND-0343mS/cm
3-1L POLY WHNOS (PP) DISS. METALS 200:7/200.8/ RPP	TWEB 21 NTUS, DO-4,89 mg 12, TEMP-18,70°C
DTW-15,19 FT BROC.	OLP-131my, SAL-DOZU CLEAR ODORLESS
DN SITE MWS-9 SET WE TO SAMPLE VIA	1245 Correct SAMPLE AREA-SY-17-200
PERISTALTIC PHILIP PID-D.O. pom	3-40ml von W/Her VOLS(18) 82600
1132 DTW-10.32 FrBTOC	2-250mLANBERLAP 1.4-DIOVANE 8270D SIM
1134 STAVET PWEDE SET FLOW RATE: 400mL/min	1-12 PUY WHINO3 (FF) DISS, METALS 200.7/200. V/RPP
1136 CONNECT TO FLOW CELL	DTB-18.3D
141 COLLECT PARAMETERS -LISTED ON PURCHE FORM	ONSITE MWS-16 SET UP TO SAMPLE VIA
1156 PARAMETERS STADI42E: PURGE VOL-82,	SUDIMERSIBLE PUMP PID-0.0000
DTW-10:37 FT BTOG, 011-7.08 COND29.0 mslcm.	1318 DTW-10.48FT BTOC
THER -6. WILLS DO-6443 rule, TEMP, -16.45 °C	1320 START PIMP SET FLOW RATE: 40Dalfmin
OLP-137mu, SAL-1.77%, CLEAR, ODORLETS	1355 CONNECT TO FLOW CELL
1200 Confect SAMPLE AREA-8-17-201	1400 COLLET PARAMETERS-LISTED ON PURGE FORM
3-40ml voa WHEN JOCS (18) SZLEOC	1415 PARAMETERS STADILIZE: PARGE VOL-22L,
2-250me AMBER UP 1, 4-DIOXANE 8210D SIN	DTW-9.75 Fronce pH-6.96, COND-15.0ms/cm.
1-12 POLY W/HND3 (FF) DISS, METALS 200,7/200.5/2PP	Tuez1.7. NTUS, DO-3.85 mg/4, TEN.P18.0200,
DTB-20,46 FTBTOD	ORD78mv, SAL-0,52020, CLEAR DORLESS
DN SITE MINS-S SET UP TO SAMPLE VIA	1420 COLLECT SAMPLE AREA-8-17-204
ABUSTALTIC ALLAP PID-D. Oppom	3-40 me voa W/HCI VOGS (14) 8260C
1211 DTW-9.93 FT BTOC	2-250ml AMDER WHIGH UP 1,4-DIOXANE SZTOD SIM
1213 START AWERE SET FLOW RATE: 400ml/min	1-IL POLY WHOOS (FF) DISS, METALS 2007/2004 RPP
1215 CONNECT TO FLOW CELL	DTB-47.04 FT BROC
1220 COLLECT PARAMETERS - LISTED ON PURESE FORM Util outulin	CLEAN SUBMERSIBLE PUMP (HAM citzeller

26	27
TO 46 NAVBASE KITSAP KEYPORT 2017 JUNE 21	TO YUNAVBASE KITSAP KEYPORT 2017 JANE 21
1. CLEAN PUMP " SCENE DEUSH	0700 A. LEWIS, S. PATTERSON, M. HALDANE ON SITE
2. PLACE PUMP IN LIGHINOV SOLUTION	CONDUCT TAILGATE SAFETY BRIEFING
ALLON TO CYCLE FOR MINIMUM OF	SSHO-S. PATTELSON
5 MINNTES	TOPILS INCLUDE:
3. TRANSFER PUMP TO RINSE WATER	" VEHICLE OPERATIONS
ALLOW TO CYCLE FOR MINIMUM OF	· CUTS, SCRAPES, BUENS, PUNCTURES
5 MINUTES	· HAND TOOL SAFETY
1450 ON SITE BULD 1057 DISPOSE OF	· BIOLOGIEAL HAZARDS
APPROX 16 GALLONS OF PURCHE	· PROPER PPE -LEVEL D
AND DECON WATER,	-SAFETY: GLASSES, TOED BOOTS, VEST
ON SITE SHED DEMOB/QC PAPERWORK	- WORK OF NITRILE CILOVES
J. LUEF LEVIENED IC AREAS	SHE INSPECTIONS:
NO FINDINGS W/EXCEPTION TO 220FT	-DEPORIS/ROCKS/STAPS IN LANDFILL
AREA IN THE NORTHEAST PORTION OF	-SCIPPERY /UNEVEN SURFACES AT BEACH
HILEA 22 SE" OF THE INTERSECTION OF	NX: SUNNY, 52-720F WIND 10-15 MPH
TORPEDO RD & A ST.	MOB THERE FOR SAMPLING
1610 CALIBRATE HORIDA U-52: DH-3.99,	CONDUCT PLANTATION INSPECTIONS
1000-451, Tues-0, Ourus, DO-10, 04mg/L.	INSPECTION RESULTS: BOTH PLANTATIONS:
TEAL - 17,1°C, 08P-307mJ, SAL -0.24%	"TEEKS LEAFED OUT " FULL LAWOPY
1635 ALENIS, J. LUEF, S.PATTERSON, L. BOYD,	· A FEW DEAD LEAVES NOTED IN CANOPY (45%)
M. HALDANE OFFSITE	- ON SMALL BROKEN BRANCHES
	· GIRCNITH ON WAPER HALF OF TREES
11/11 Intervi	· SEVERAL BROVEN DEAD FALLEN BRACKHES
1 the ore 21 to	IN CLUDING LARROSE BRANZHES
fair	- CUT POPUL REMOVED 1 MIL Inter
	Mar Call the in the Rain.

MW8-8	6/11/2007	5/5/2008	6/17/2009	6/14/2010	7/20/2011	6/14/2012	6/18/2013	6/17/2014	6/26/2015	6/20/2016	6/21/2017	
Temperature (°C)	14.6	13.5	14.3	14.4	15.9	14.5	16.10	15.35	17.35	17.90	18.7	
pH (SU)	6.49	6.76	6.50	7.09	6.58	7.18	7.17	7.12	6.85	6.78	6.92	
Specific Conductivity (mS/cm)	0.305	0.427	0.625	0.495	0.321	0.154	0.172	0.276	0.480	0.346	0.343	
Salinity (%)	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.02	
Turbidity (NTUs)	3	16	10	35	4	0	134.0	20	0	0	2.1	
Dissolved Oxygen (mg/L)	2.3	2.13	2.77	1.92	2.51	5.94	9.49	7.15	7.55	6.01	4.89	
Redox (millivolts)	137	122	145	156	229	212	165	200	192	158	131	
MW8-9	6/11/2007	5/5/2008	6/17/2009	6/14/2010	7/20/2011	6/14/2012	6/18/2013	6/18/2014	6/25/2015	6/20/2016	6/21/2017	
Temperature (°C)	12.4	11.9	13.5	13.0	14.3	13.0	15.11	14.37	16.30	18.79	16.65	
pH (SU)	6.71	6.91	6.89	6.87	6.92	6.36	7.23	7 28	6.98	6.92	7.08	
Specific Conductivity (mS/cm)	32.7	35.4	30.2	26.6	37.2	28.7	30.1	34.9	34.7	31.5	29	
Salinity (%)	2.0	2.2	1 9	1.6	23	1.7	1 9	21	21	2.0	1 77	
Turbidity (NTUs)	16	22	25	36	2.0	14	29.4	30	32	0	6.1	
Dissolved Oxygen (mg/L)	60	6.20	7 00	5.68	5.75	5 18	4 38	3.88	5.47	5 13	6.43	
Bodov (millivolto)	152	144	1.55	207	249	220	4.50	162	107	176	127	
	0/11/2007	E/C/2000	000	201	7/40/2014	200	6/40/2042	000	C/DE/D04E	0100/0010	C/04/0047	
	15 4	12.0	14.2	14 70	15.0	14.0	16 15	16.24	19.04	10.74	17.20	
	15.4	13.0	14.3	14.70	15.9	14.9	10.15	7.40	10.94	19.74	17.29	
	80.0	0.68	08.0	0.41	0.05	0.02	0.81	7.10	80.0	0.50	08.0	
Specific Conductivity (mS/cm)	29.1	26.4	28.9	26.8	28.0	24.0	21.7	24.6	24.1	24.0	21.8	
Salinity (%)	1.8	1.6	1.8	1.6	1./	1.5	1.3	1.6	1.6	1.6	1.30	
Turbidity (NTUs)	0	6	8.0	19	3	0	67.7	13	0	0	2.0	
Dissolved Oxygen (mg/L)	7.9	7.08	6.96	6.49	7.24	6.51	6.31	6.01	7.05	5.03	6.81	
Redox (millivolts)	200	220	269	263	256	257	237	242	241	240	223	
MW8-12	6/11/2007	5/6/2008	6/17/2009	6/14/2010	7/19/2011	6/14/2012	6/18/2013	6/17/2014	6/25/2015	6/20/2016	6/21/2017	
Temperature (°C)	14.4	11.7	13.8	13.7	16.1	14.5	15.54	16.93	19.34	19.40	15.50	
pH (SU)	7.20	7.29	7.37	7.00	7.11	7.17	7.66	7.84	7.51	6.94	7.29	
Specific Conductivity (mS/cm)	2.89	3.90	1.59	5.84	3.45	2.44	1.20	1.46	1.51	1.70	4.99	
Salinity (%)	0.1	0.2	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.27	
Turbidity (NTUs)	0	5	7	20	3	0	25.6	31	23	0	1.3	
Dissolved Oxygen (mg/L)	7.9	8.22	7.77	4.75	7.35	7.40	7.91	6.15	7.51	5.99	7.07	
Redox (millivolts)	139	147	209	224	202	250	151	227	161	180	138	
MW8-14	6/11/2007	5/5/2008	6/18/2009	6/14/2010	7/19/2011	6/14/2012	6/18/2013	6/18/2014	6/26/2015	6/21/2016	6/21/2017	
Temperature (°C)	13.9	10.6	14.1	13.4	15.5	13.2	15.47	16.21	18.91	18.02	16.08	
pH (SU)	7.85	8.04	7.87	7.18	7.91	7.71	8.24	8.36	7.92	7.84	7.97	
Specific Conductivity (mS/cm)	48.3	49.5	50.1	51.0	49.8	43.0	52.9	55.3	53.7	47.4	36.6	
Salinity (%)	3.1	3.2	3.2	3.2	3.2	2.7	3.5	3.5	3.5	3.0	2.27	
Turbidity (NTUs)	10	14	14	21	3	0	30.6	89	10	0	2.6	
Dissolved Oxygen (mg/L)	9.7	9.24	8.79	8.56	7.55	7.25	7.62	6.55	6.72	5.09	7.44	
Redox (millivolts)	107	145	130	192	219	237	149	180	181	155	123	
MW8-16	6/12/2007	5/6/2008	6/18/2009	6/14/2010	//20/2011	6/14/2012	6/18/2013	6/18/2014	6/25/2015	6/21/2016	6/21/2017	
remperature ('C)	14.3	13.4	14.4	14.50	15.7	14.3	18.06	16.18	16.97	17.12	18.02	
μπ (SU) Seesifia Canductivity (mC(cor)	0.61	b./4	1.21	6.40	b./5	b./2	1.44	7.30	b.93	7.08	6.96	
Specific Conductivity (mS/cm)	10.2	7.42	0.44	5.24	0.592	0.459	0.313	0.346	0.466	0.406	15.0	
Salinity (%)	0.6	7	0.3	10	0.0	0.0	0.0	0.0	0.0	0.0	0.07	
Dissolved Oxygen (mg/L)	0.4	0.5	0.61	0 62	2 20	3 7/	07.9	00	20	4.65	3.85	
Peday (millivalte)	-53	-64	-95	28	2.23	107	113	100	155	139	-78	
	6/12/2007	-04	6/10/2000	6/15/2010	7/10/2014	6/18/2012	6/10/2012	6/17/2014	6/20/2015	6/20/2010	-10 6/22/20117	
	17.1	18.6	16.1	15.8	16.3	15.5	16 10	16.51	17 20	18.01	16.50	
nemperature (00)	6.49	6.36	6 1 9	633	6.50	6.21	5 /12	6.61	6.81	6.65	7.02	
Specific Conductivity (mS/cm)	42.7	38.4	0.10 41.1	41 1	41 7	31.0	2.40 20 0	40.0	30.1	37.3	28.8	
Salinity (%)	-+2.7	2.4	26	27	27	20	26	26	25	24	1 77	
Turbidity (NTUs)	12	1.9	2.0	33	36	2.0 41	79.2	61	34	14	15	
Dissolved Oxygen (mg/L)	8.4	7.61	7.89	8.17	7.84	6.89	6.13	5.29	6.21	5.51	6.21	
Redox (millivolts)	169	154	105	131	141	278	30	89	91	101	136	

TABLE B-1 HISTORICAL FIELD-MEASURED PARAMETER DATA FOR OU 2 AREA 8 LTM PROGRAM

Notes:

ft. msl = feet mean sea level

SU = scale units 1 to 14 (1 = acidic; 7 = neutral; 14 = basic)

mS/cm = milliSiemens per centimeter

NTUs = nephelometric turbidity units

mg/L = milligrams per liter

APPENDIX C DATA VALIDATION REPORTS

Sealaska Environmental Services PO BOX 869 Marine Science Center, 2nd Floor 18743 Front Street NE Poulsbo, WA 98370 ATTN: Ms. Sherri Wunderlich

SUBJECT: Keyport LTM, Area 8, TO 046, Data Validation

Dear Ms. Wunderlich,

Enclosed is the final validation report for the fractions listed below. This SDG was received on July 31, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #39185:

SDG #	Fraction
K1706626	Volatiles, 1,4-Dioxane, Dissolved Metals

The data validation was performed under Level III guidelines. The analyses were validated using the following documents, as applicable to each method:

- NAVFAC North West Standard Operating Procedure: Field Procedures Manual, Naval Facilities Engineering Command Northwest, 2015
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Chisting Rink

Christina Rink Project Manager/Chemist

August 14, 2017

	HC	Attachment 1																																			
	Level III				LD	C #	391	85	(Se	eala	sk	a-B	oth	nell	, W	Α/	Ke	уро	ort	LTI	M, /	Are	a 8	, TC	C O	46)											
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (826	DA 60C)	1, Diox (827)	,4- kane 0D-S)	Di Me (200	ss. tals .7/8)								-																				
Matr	x: Water/Soil	1	r	w	s	W	s	W	s	W	S	W	S	W	s	W	s	W	s	W	s	w	s	w	s	W	s	W	s	W	S	W	S	W	s	W	S
А	K1706626	07/31/17	08/21/17	10	0	7	0	9	0																									\rightarrow		<u> </u>	
																																		\rightarrow			
																																			-		
																																		\rightarrow		⊢	
																																				<u> </u>	
																																		\rightarrow	-+		
																																			-+	\rightarrow	
																																		\rightarrow		⊢	
																																				<u> </u>	
																																		\rightarrow	-+		
																																			-+	 	
																																		$ \square$		⊢	
																																					
																																		\rightarrow	$ \rightarrow $	 	
																																		\rightarrow			
																																			-+	 	
			1																																\neg		
Total	T/CR			10	0	7	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26
	Shaded cell	s indicate Le	vel IV review	/ (all c	other	cells a	are Le	vel III	revie	w). Th	nese s	sampl	e cou	ints de	o not	incluc	de MS	/MSE), DL,	RE a	and D	UPs		V:\L	_OGI	√\Sea	laska	\Keyp	oort\3	91855	ST-Ar	ea 8-1	⁻ O46.	wpd			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Keyport, Area 8, TO 046

LDC Report Date: August 14, 2017

Parameters: Volatiles

Validation Level III Level III

Laboratory: ALS Environmental

Sample Delivery Group (SDG): K1706626

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-8-17-204	K1706626-001	Water	06/21/17
AREA-8-17-203	K1706626-002	Water	06/21/17
AREA-8-17-202	K1706626-003	Water	06/21/17
AREA-8-17-205	K1706626-004	Water	06/21/17
AREA-8-17-201	K1706626-005	Water	06/21/17
AREA-8-17-200	K1706626-006	Water	06/21/17
AREA-8-17-206	K1706626-007	Water	06/21/17
AREA-8-17-207	K1706626-008	Water	06/21/17
AREA-8-17-208	K1706626-009	Water	06/21/17
TB-061917	K1706626-010	Water	06/21/17
AREA-8-17-205MS	K1706626-004MS	Water	06/21/17
AREA-8-17-205MSD	K1706626-004MSD	Water	06/21/17
AREA-8-17-207MS	K1706626-008MS	Water	06/21/17
AREA-8-17-207MSD	K1706626-008MSD	Water	06/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the NAVFAC Northwest Standard Operating Procedure: Field Procedures Manual (Naval Facilities Engineering Command Northwest, 2015) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag
06/29/17	Carbon tetrachloride	24	AREA-8-17-205 AREA-8-17-207 TB-061917	UJ (all non-detects)

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TB-061917 was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
TB-061917	06/21/17	Toluene	0.35 ug/L	AREA-8-17-204 AREA-8-17-203 AREA-8-17-202 AREA-8-17-205 AREA-8-17-201 AREA-8-17-200 AREA-8-17-206 AREA-8-17-207 AREA-8-17-208

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
AREA-8-17-205	Toluene	0.070 ug/L	0.50U ug/L
AREA-8-17-201	Toluene	0.060 ug/L	0.50U ug/L
AREA-8-17-200	Toluene	0.11 ug/L	0.50U ug/L
AREA-8-17-206	Toluene	0.070 ug/L	0.50U ug/L
AREA-8-17-207	Toluene	0.090 ug/L	0.50U ug/L
AREA-8-17-208	Toluene	0.060 ug/L	0.50U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples AREA-8-17-203 and AREA-8-17-202 and samples AREA-8-17-207 and AREA-8-17-208 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	AREA-8-17-203	AREA-8-17-202	RPD (Limits)
trans-1,2-Dichloroethene	0.14	0.11	24 (≤50)
1,1-Dichloroethane	0.10	0.10	0 (≤50)
cis-1,2-Dichloroethene	0.26	0.26	0 (≤50)
Chloroform	0.23	0.23	0 (≤50)
1,1,1-Trichloroethane	3.0	3.0	0 (≤50)
Trichloroethene	24	24	0 (≤50)
Tetrachloroethene	0.44	0.41	7 (≤50)

	Concentra		
Compound	AREA-8-17-207	AREA-8-17-208	RPD (Limits)
1,1-Dichloroethene	2.6	2.6	0 (≤50)
trans-1,2-Dichloroethene	0.10	0.11	10 (≤50)
1,1-Dichloroethane	1.3	1.2	8 (≤50)
cis-1,2-Dichloroethene	0.69	0.69	0 (≤50)

	Concentra		
Compound	AREA-8-17-207	AREA-8-17-208	RPD (Limits)
Chloroform	0.76	0.73	4 (≤50)
1,1,1-Trichloroethane	18	17	6 (≤50)
Trichloroethene	6.7	6.6	2 (≤50)
Toluene	0.090	0.060	40 (≤50)
Tetrachloroethene	0.58	0.58	0 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Level III validation.

XIV. System Performance

Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D, data were qualified as estimated in three samples.

Due to trip blank contamination, data were qualified as not detected in six samples.

Quality control criteria were met, other than those discussed above, and no significant issues impacting data quality were identified. The analytical data are acceptable for use as reported by the laboratory and qualified during data validation.

Keyport, Area 8, TO 046 Volatiles - Data Qualification Summary - SDG K1706626

Sample	Compound	Flag	Reason
AREA-8-17-205 AREA-8-17-207 TB-061917	Carbon tetrachloride	UJ (all non-detects)	Continuing calibration (%D)

Keyport, Area 8, TO 046 Volatiles - Laboratory Blank Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Keyport, Area 8, TO 046 Volatiles - Field Blank Data Qualification Summary - SDG K1706626

Sample	Compound	Modified Final Concentration
AREA-8-17-205	Toluene	0.50U ug/L
AREA-8-17-201	Toluene	0.50U ug/L
AREA-8-17-200	Toluene	0.50U ug/L
AREA-8-17-206	Toluene	0.50U ug/L
AREA-8-17-207	Toluene	0.50U ug/L
AREA-8-17-208	Toluene	0.50U ug/L

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-204	Units:	ug/L
Lab Code:	K1706626-001	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	0	LOO	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1.1-Dichloroethene	ND	U	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	0.78		0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	0.28	J	0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.74		0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	0.87		0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096	1	06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	10		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	ND	U	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	2.8		0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
			=		
Dibromofluoromethane	87	80-119	06/26/17	Acceptable	
Toluene-d8	97	89-112	06/26/17	Acceptable	
4-Bromofluorobenzene	88	85-114	06/26/17	Acceptable	

AUG 1 4 2017

Initials: CR

RR199944

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

Analytical Results

	•		
Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-203	Units:	ug/L
Lab Code:	K1706626-002	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	0.14	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	0.10	J	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	0.26	J	0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.23	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	3.0		0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096	1	06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	24		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	ND	U	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	0.44	J	0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	93	80-119	06/26/17	Acceptable	
Toluene-d8	98	89-112	06/26/17	Acceptable	
4-Bromofluorobenzene	89	85-114	06/26/17	Acceptable	

AUG 1 4 2017

Initials: CR

RR199944

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

wg.

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-202	Units:	ug/L
Lab Code:	K1706626-003	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

						Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	0.11	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	0.10	J	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	0.26	J	0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.23	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	3.0		0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096	1	06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	24		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	ND	U	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	0.41	J	0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	92	80-119	06/26/17	Acceptable
Toluene-d8	98	89-112	06/26/17	Acceptable
4-Bromofluorobenzene	90	85-114	06/26/17	Acceptable

AUG 1 4 2017

and the second sec

RR199944

Initials: CR

Comments:

Merged

Form 1A - Organic

Analytical Results

Sealaska Environmental Services, LLC **Client:** NAVBASE Kitsap Keyport Area 8/TO 46 **Project:** Water Sample Matrix:

Volatile Organic Compounds

Sample Name:	AREA-8-17-205	Units:	ug/L
Lab Code:	K1706626-004	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name Resu	lt (Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene N	DΙ	IJ	0.50	0.20	0.080	1	06/29/17	06/29/17	KWG1705456	
Acetone N	Dι	J	20	10	3.3	1	06/29/17	06/29/17	KWG1705456	
trans-1,2-Dichloroethene N	Dι	J	0.50	0.20	0.072	1	06/29/17	06/29/17	KWG1705456	
1,1-Dichloroethane N	DU	J	0.50	0.20	0.077	1	06/29/17	06/29/17	KWG1705456	
cis-1,2-Dichloroethene N	Dι	J	0.50	0.20	0.067	1	06/29/17	06/29/17	KWG1705456	
Chloroform N	Dι	IJ	0.50	0.20	0.072	1	06/29/17	06/29/17	KWG1705456	
1,1,1-Trichloroethane (TCA) N	DΙ	U	0.50	0.20	0.075	1	06/29/17	06/29/17	KWG1705456	
Carbon Tetrachloride N	Dι	UUS	0.20	0.20	0.096	1	06/29/17	06/29/17	KWG1705456	*
Benzene N	Dι	U	0.50	0.10	0.062	1	06/29/17	06/29/17	KWG1705456	
1,2-Dichloroethane (EDC) N	Dι	U	0.50	0.15	0.080	1	06/29/17	06/29/17	KWG1705456	
Trichloroethene (TCE) N	Dι	U	0.50	0.20	0.10	1	06/29/17	06/29/17	KWG1705456	
Toluene 0.07	0 J	0.500	0.50	0.10	0.054	1	06/29/17	06/29/17	KWG1705456	
1,1,2-Trichloroethane N	Dι	U	0.50	0.40	0.14	1	06/29/17	06/29/17	KWG1705456	
Tetrachloroethene (PCE) N	Dι	U	0.50	0.20	0.099	1	06/29/17	06/29/17	KWG1705456	
Ethylbenzene N	DΙ	U	0.50	0.10	0.050	1	06/29/17	06/29/17	KWG1705456	
m,p-Xylenes N	Dι	U	0.50	0.20	0.11	1	06/29/17	06/29/17	KWG1705456	
o-Xylene N	Dι	U	0.50	0.20	0.074	1	06/29/17	06/29/17	KWG1705456	
Styrene N.	DI	U	0.50	0.20	0.089	1	06/29/17	06/29/17	KWG1705456	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	86	80-119	06/29/17	Acceptable	
Toluene-d8	97	89-112	06/29/17	Acceptable	
4-Bromofluorobenzene	87	85-114	06/29/17	Acceptable	

AUG: 1 4 2017

Service Request: K1706626

Date Collected: 06/21/2017

Date Received: 06/23/2017

Initials: CR

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

.

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-201	Units:	ug/L
Lab Code:	K1706626-005	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

						Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	ND	U	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	ND	U	0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	ND	U	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	·U	0.20	0.20	0.096		06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	0.12	J	0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	0.060	J 0.50V	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	0.13	J	0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	85	80-119	06/26/17	Acceptable	
Toluene-d8	97	89-112	06/26/17	Acceptable	
4-Bromofluorobenzene	88	85-114	06/26/17	Acceptable	

AUG 1 4 2017

Initials: CR

RR199944

Comments:

Merged

Form 1A - Organic

Daga 64 of 000

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-200	Units:	ug/L
Lab Code:	K1706626-006	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene	0.11	J	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	3.0		0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	1.6		0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.62		0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	0.93		0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096	1	06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	40		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	0.11	10.50U	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	0.19	J	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	7.1		0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	87	80-119	06/26/17	Acceptable
Toluene-d8	99	89-112	06/26/17	Acceptable
4-Bromofluorobenzene	88	85-114	06/26/17	Acceptable

AUG 1 4 2017

Initials: CR

Comments:

Merged

Form 1A - Organic

SuperSet Reference: RR199944

Page 1 of 1

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-206	Units:	ug/L
Lab Code:	K1706626-007	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction	Note
1,1-Dichloroethene	0.090	J	0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	0.19	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	0.080	J	0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	26		0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.14	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096		06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	7.2		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	0.070	J 0.500	0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	0.15	J	0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	<u> </u>
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U ·	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	87	80-119	06/26/17	Acceptable	
Toluene-d8	97	89-112	06/26/17	Acceptable	
4-Bromofluorobenzene	88	85-114	06/26/17	Acceptable	

AUG 1 4 2017

Initials: CR

Comments:

Merged

Analytical Results

Client:	Sealaska Environmental Services, LLC
Project:	NAVBASE Kitsap Keyport Area 8/TO 46
Sample Matrix:	Water

Service Request: K1706626 Date Collected: 06/22/2017 Date Received: 06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-207	Units:	ug/L
Lab Code:	K1706626-008	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene	2.6		0.50	0.20	0.080	1	06/29/17	06/29/17	KWG1705456	
Acetone	ND	U	20	10	3.3	1	06/29/17	06/29/17	KWG1705456	
trans-1,2-Dichloroethene	0.10	J	0.50	0.20	0.072	1	06/29/17	06/29/17	KWG1705456	
1,1-Dichloroethane	1.3		0.50	0.20	0.077	1	06/29/17	06/29/17	KWG1705456	
cis-1,2-Dichloroethene	0.69		0.50	0.20	0.067	1	06/29/17	06/29/17	KWG1705456	
Chloroform	0.76		0.50	0.20	0.072	1	06/29/17	06/29/17	KWG1705456	
1,1,1-Trichloroethane (TCA)	18		0.50	0.20	0.075	1	06/29/17	06/29/17	KWG1705456	
Carbon Tetrachloride	ND	υ υፓ	0.20	0.20	0.096		06/29/17	06/29/17	KWG1705456	*
Benzene	ND	U	0.50	0.10	0.062	1	06/29/17	06/29/17	KWG1705456	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/29/17	06/29/17	KWG1705456	
Trichloroethene (TCE)	6.7		0.50	0.20	0.10	1	06/29/17	06/29/17	KWG1705456	
Toluene	0.090	J 0.50U	0.50	0.10	0.054	1	06/29/17	06/29/17	KWG1705456	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/29/17	06/29/17	KWG1705456	
Tetrachloroethene (PCE)	0.58		0.50	0.20	0.099	1	06/29/17	06/29/17	KWG1705456	
Ethylbenzene	ND	U .	0.50	0.10	0.050	1	06/29/17	06/29/17	KWG1705456	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/29/17	06/29/17	KWG1705456	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/29/17	06/29/17	KWG1705456	
Styrene	ND	U	0.50	0.20	0.089	1	06/29/17	06/29/17	KWG1705456	

* See Case Narrative

7		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Note
Dibromofluoromethane	102	80-119	06/29/17	Acceptable
Toluene-d8	98	89-112	06/29/17	Acceptable
4-Bromofluorobenzene	89	85-114	06/29/17	Acceptable

AUG 1 4 2017

Initials: CR

RR199944

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Sealaska Environmental Services, LLC
Project:	NAVBASE Kitsap Keyport Area 8/TO 46
Sample Matrix:	Water

 Service Request:
 K1706626

 Date Collected:
 06/22/2017

 Date Received:
 06/23/2017

Volatile Organic Compounds

Sample Name:	AREA-8-17-208	Units:	ug/L
Lab Code:	K1706626-009	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene	2.6		0.50	0.20	0.080	1	06/26/17	06/26/17	KWG1705299	
Acetone	ND	U	20	10	3.3	1	06/26/17	06/26/17	KWG1705299	
trans-1,2-Dichloroethene	0.11	J	0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1-Dichloroethane	1.2		0.50	0.20	0.077	1	06/26/17	06/26/17	KWG1705299	
cis-1,2-Dichloroethene	0.69		0.50	0.20	0.067	1	06/26/17	06/26/17	KWG1705299	
Chloroform	0.73		0.50	0.20	0.072	1	06/26/17	06/26/17	KWG1705299	
1,1,1-Trichloroethane (TCA)	17		0.50	0.20	0.075	1	06/26/17	06/26/17	KWG1705299	
Carbon Tetrachloride	ND	U	0.20	0.20	0.096	1	06/26/17	06/26/17	KWG1705299	
Benzene	ND	U	0.50	0.10	0.062	1	06/26/17	06/26/17	KWG1705299	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	06/26/17	06/26/17	KWG1705299	
Trichloroethene (TCE)	6.6		0.50	0.20	0.10	1	06/26/17	06/26/17	KWG1705299	
Toluene	0.060	J O	SOU 0.50	0.10	0.054	1	06/26/17	06/26/17	KWG1705299	
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	06/26/17	06/26/17	KWG1705299	
Tetrachloroethene (PCE)	0.58		0.50	0.20	0.099	1	06/26/17	06/26/17	KWG1705299	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	06/26/17	06/26/17	KWG1705299	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	06/26/17	06/26/17	KWG1705299	
o-Xylene	ND	U	0.50	0.20	0.074	1	06/26/17	06/26/17	KWG1705299	
Styrene	ND	U	0.50	0.20	0.089	1	06/26/17	06/26/17	KWG1705299	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	98	80-119	06/26/17	Acceptable	
Toluene-d8	97	89-112	06/26/17	Acceptable	
4-Bromofluorobenzene	88	85-114	06/26/17	Acceptable	

AUG 1 4 2017

Initials: CR

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

Volatile Organic Compounds

Sample Name:	TB-061917	Units:	ug/L
Lab Code:	K1706626-010	Basis:	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result	Q	I	.OQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,1-Dichloroethene	ND	U		0.50	0.20	0.080	1	06/29/17	06/29/17	KWG1705456	
Acetone	ND	U		20	10	3.3	1	06/29/17	06/29/17	KWG1705456	
trans-1,2-Dichloroethene	ND	U		0.50	0.20	0.072	1 ·	06/29/17	06/29/17	KWG1705456	
1,1-Dichloroethane	ND	U		0.50	0.20	0.077	1	06/29/17	06/29/17	KWG1705456	
cis-1,2-Dichloroethene	ND	U		0.50	0.20	0.067	1	06/29/17	06/29/17	KWG1705456	
Chloroform	ND	U	(0.50	0.20	0.072	1	06/29/17	06/29/17	KWG1705456	
1,1,1-Trichloroethane (TCA)	ND	U		0.50	0.20	0.075	1	06/29/17	06/29/17	KWG1705456	
Carbon Tetrachloride	ND	U (5	0.20	0.20	0.096	1	06/29/17	06/29/17	KWG1705456	*
Benzene	ND	U		0.50	0.10	0.062	1	06/29/17	06/29/17	KWG1705456	
1,2-Dichloroethane (EDC)	ND	U		0.50	0.15	0.080	1	06/29/17	06/29/17	KWG1705456	
Trichloroethene (TCE)	ND	U		0.50	0.20	0.10	1	06/29/17	06/29/17	KWG1705456	
Toluene	0.35	J		0.50	0.10	0.054	1	06/29/17	06/29/17	KWG1705456	
1,1,2-Trichloroethane	ND	U		0.50	0.40	0.14	1	06/29/17	06/29/17	KWG1705456	
Tetrachloroethene (PCE)	ND	U		0.50	0.20	0.099	1	06/29/17	06/29/17	KWG1705456	
Ethylbenzene	ND	U		0.50	0.10	0.050	1	06/29/17	06/29/17	KWG1705456	
m,p-Xylenes	ND	U	1	0.50	0.20	0.11	1	06/29/17	06/29/17	KWG1705456	
o-Xylene	ND	U		0.50	0.20	0.074	1	06/29/17	06/29/17	KWG1705456	
Styrene	ND	U		0.50	0.20	0.089	1	06/29/17	06/29/17	KWG1705456	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	88	80-119	06/29/17	Acceptable	· · · · · · · · · · · · · · · · · · ·
Toluene-d8	97	89-112	06/29/17	Acceptable	
4-Bromofluorobenzene	87	85-114	06/29/17	Acceptable	
					· · · · · · · · · · · · · · · · · · ·

AUG 1 4 2017

Initials: CR

RR199944

Comments:

Merged

Form 1A - Organic

SuperSet Reference:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Keyport, Area 8, TO 046

LDC Report Date: August 14, 2017

Parameters: 1,4-Dioxane

Validation Level III Level III

Laboratory: ALS Environmental

Sample Delivery Group (SDG): K1706626

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-8-17-204	K1706626-001	Water	06/21/17
AREA-8-17-203	K1706626-002	Water	06/21/17
AREA-8-17-202	K1706626-003	Water	06/21/17
AREA-8-17-205	K1706626-004	Water	06/21/17
AREA-8-17-201	K1706626-005	Water	06/21/17
AREA-8-17-200	K1706626-006	Water	06/21/17
AREA-8-17-206	K1706626-007	Water	06/21/17
AREA-8-17-205MS	K1706626-004MS	Water	06/21/17
AREA-8-17-205MSD	K1706626-004MSD	Water	06/21/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the NAVFAC Northwest Standard Operating Procedure: Field Procedures Manual (Naval Facilities Engineering Command Northwest, 2015) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

Average relative response factors (RRF) were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples AREA-8-17-203 and AREA-8-17-202 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	=	
Compound	AREA-8-17-203	AREA-8-17-202	RPD (Limits)
1,4-Dioxane	16	15	6 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Level III validation.

XIV. System Performance

Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Keyport, Area 8, TO 046 1,4-Dioxane - Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Keyport, Area 8, TO 046 1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Keyport, Area 8, TO 046 1,4-Dioxane - Field Blank Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name:	AREA-8-17-204	Units:	ug/L
Lab Code:	K1706626-001	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
1,4-Dioxane	1.1	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Dioxane-d8	81	64-120	07/18/17	Acceptable	

and the second
AUG 1 4 2017

Initials: CR

Comments:

Printed: 08/11/2017 11:41:19 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 99 of 990

SuperSet Reference: RR199949

Page 1 of 1

Analytical Results						
Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626			
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017			
Sample Matrix:	Water	Date Received:	06/23/2017			

1,4-Dioxane by GCMS										
Sample Name: Lab Code:	AREA-8-17-2 K1706626-002	03 2							Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM								Level: Low	
Analyte Name		Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane		16	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	
Surrogate Name		%Rec	Control Limits	Date Analyzed	1	Note				
1,4-Dioxane-d8		82	64-120	07/18/17		Acceptable				

AUG 1 4 2017

Initials: CR

Page

Comments:

Printed: 08/11/2017 11:41:29 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged
	Analytical Results		
Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name: Lab Code:	AREA-8-17-2 K1706626-003	02 3							Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM								Level: Low	
Analyte Name		Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane		15	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	
			Control	Date						

Surrogate Name	%Rec	Limits	Analyzed	Note
1,4-Dioxane-d8	80	64-120	07/18/17	Acceptable

AUG 1 4 2017

an and the second s

960. JAC (00000

Initials: CR

REVISED 2:47 pm, Aug 11, 2017

Comments:

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name: Lab Code:	AREA-8-17-2 K1706626-00	05 4								Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM									Level: Low	
Analyte Name		Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane		ND	U	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	
Surrogate Name		%Rec		Control Limits	Date Analyze	d	Note				
1,4-Dioxane-d8		83		64-120	07/18/1	7	Acceptable				

AUG 1 4 2017

in the state of the second
Initials: CR

Comments:

Printed: 08/11/2017 11:41:35 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 102 of 990

SuperSet Reference: RR199949

Page 1 of 1

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name: Lab Code:	AREA-8-17-20 K1706626-005)1								Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM									Level: Low	
Analyte Name		Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane		ND	U .	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	• •
1,4-Dioxane-d8	85	64-120	07/18/17	Acceptable	

AUG 1 4 2017

ALCONT ON

Initials: CR

REVISED 2:47 pm, Aug 11, 2017

Comments:

Printed: 08/11/2017 11:41:39 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 103 of 990

SuperSet Reference: RR199949

Page 1 of 1

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name:	AREA-8-17-200	Units:	ug/L
Lab Code:	K1706626-006	Basis:	NA
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
1,4-Dioxane	1.1	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
1,4-Dioxane-d8	80	64-120	07/18/17	Acceptable		

and a subscription of the
AUG 1 4 2017

Initials: CR

Comments:

Printed: 08/11/2017 11:41:43 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 104 of 990 Page 1 of 1 SuperSet Reference: RR199949

Analytical Results

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/2017
Sample Matrix:	Water	Date Received:	06/23/2017

1,4-Dioxane by GCMS

Sample Name: Lab Code:	AREA-8-17-206 K1706626-007								Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3535A 8270D SIM					x			Level: Low	
Analyte Name	Resu	lt Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	N	DU	0.40	0.20	0.16	1	06/28/17	07/18/17	KWG1705360	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Dioxane-d8	79	64-120	07/18/17	Acceptable

AUG 1 4 2017

AS ADDRESS

AND THE REAL PROPERTY AND

Initials: \mathcal{CR}

Comments:

Printed: 08/11/2017 11:41:47 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 105 of 990

SuperSet Reference:

Page 1 RR199949

1 of 1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Keyport, Area 8, TO 46

LDC Report Date: August 11, 2017

Parameters: Dissolved Metals

Validation Level III

Laboratory: ALS Environmental

Sample Delivery Group (SDG): K1706626

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-8-17-204	K1706626-001	Water	06/21/17
AREA-8-17-203	K1706626-002	Water	06/21/17
AREA-8-17-202	K1706626-003	Water	06/21/17
AREA-8-17-205	K1706626-004	Water	06/21/17
AREA-8-17-201	K1706626-005	Water	06/21/17
AREA-8-17-200	K1706626-006	Water	06/21/17
AREA-8-17-206	K1706626-007	Water	06/21/17
AREA-8-17-207	K1706626-008	Water	06/22/17
AREA-8-17-208	K1706626-009	Water	06/22/17
AREA-8-17-205MS	K1706626-004MS	Water	06/21/17
AREA-8-17-205MSD	K1706626-004MSD	Water	06/21/17
AREA-8-17-207MS	K1706626-008MS	Water	06/22/17
AREA-8-17-207MSD	K1706626-008MSD	Water	06/22/17

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the NAVFAC Northwest Standard Operating Procedure: Field Procedures Manual (Naval Facilities Engineering Command Northwest, 2015) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Nickel, Silver, and Zinc by Environmental Protection Agency (EPA) Methods 200.7/200.8

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Laboratory Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Copper	0.02 ug/L	All samples in SDG K1706626
ICB/CCB	Barium	0.8 mg/L	All samples in SDG K1706626

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
AREA-8-17-206	Copper	0.10 ug/L	0.10UJ ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample.

For AREA-8-17-205MS/MSD, no data were qualified for Chromium percent recoveries outside the QC limits since the parent sample results were greater than 4X the spike concentration.

For AREA-8-17-207MS/MSD, no data were qualified for Cadmium percent recoveries outside the QC limits since the parent sample results were greater than 4X the spike concentration.

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples AREA-8-17-203 and AREA-8-17-202 and samples AREA-8-17-207 and AREA-8-17-208 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	AREA-8-17-203	AREA-8-17-202	RPD (Limits)
Arsenic	0.91	0.90	1 (≤50)
Barium	83.6	86.7	4 (≤50)

	Concentra		
Analyte	AREA-8-17-203	AREA-8-17-202	RPD (Limits)
Cadmium	135	134	1 (≤50)
Chromium	140	136	3 (≤50)
Copper	2.61	2.62	0 (≤50)
Lead	0.015	0.017	13 (≤50)
Nickel	14.3	14.6	2 (≤50)
Silver	2.69	2.70	0 (≤50)
Zinc	48	47	2 (≤50)

	Concentra		
Analyte	AREA-8-17-207	AREA-8-17-208	RPD (Limits)
Arsenic	0.77	0.93	19 (≤50)
Barium	42.9	43.6	2 (≤50)
Cadmium	9.99	10.5	5 (≤50)
Chromium	5.95	6.14	3 (≤50)
Copper	0.38	0.42	10 (≤50)
Lead	0.034	0.027	23 (≤50)
Nickel	6.76	6.78	0 (≤50)
Silver	0.038	0.039	3 (≤50)
Zinc	0.87	0.77	12 (≤50)

XII. Internal Standards (ICP-MS)

All internal standard percent recoveries (%R) were within QC limits.

XIII. Sample Result Verification

Raw data were not reviewed for Level III validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected and estimated in one sample.

Quality control criteria were met, other than those discussed above, and no significant issues impacting data quality were identified. The analytical data are acceptable for use as reported by the laboratory and qualified during data validation.

Keyport, Area 8, TO 46 Dissolved Metals - Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Keyport, Area 8, TO 46 Dissolved Metals - Laboratory Blank Data Qualification Summary - SDG K1706626

Sample	Analyte	Modified Final Concentration
AREA-8-17-206	Copper	0.10UJ ug/L

Keyport, Area 8, TO 46 Dissolved Metals - Field Blank Data Qualification Summary - SDG K1706626

No Sample Data Qualified in this SDG

Analytical Report

Client: Sealaska Environmental Services, LLC Service Request: K1706626 Date Collected: 06/21/17 09:55 NAVBASE Kitsap Keyport Area 8/TO 46 **Project:** Date Received: 06/23/17 11:12 Sample Matrix: Water

Basis: NA

AREA-8-17-204 Sample Name: K1706626-001 Lab Code:

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Årsenic	200.8	0.45 J	ug/L	0.50	0.13	0.03	1	07/20/17 10:31	07/17/17	
Barium	200.7	9.9	ug/L	4.2	2.1	0.6	1	07/05/17 09:43	07/03/17	
Cadmium	200.8	0.352	ug/L	0.020	0.010	0.003	1	07/20/17 10:31	07/17/17	
Chromium	200.8	72.9	ug/L	4.0	2.0	0.6	20	07/20/17 11:09	07/17/17	
Copper	200.8	<u>1.45</u>	ug/L	0.10	0.05	0.02	1	07/20/17 10:31	07/17/17	
Lead	200.8	0.039	ug/L	0.020	0.010	0.004	1	07/20/17 10:31	07/17/17	
Nickel	200.8	0.79	ug/L	0.20	0.10	0.03	1	07/20/17 10:31	07/17/17	
Silver	200.8	0.045	ug/L	0.020	0.010	0.004	1	07/20/17 10:31	07/17/17	
Zinc	200.8	0.33 J	ug/L	0.50	0.25	0.07	1	07/20/17 10:31	07/17/17	• • • • • • • • • • • • • • • • • • • •

AUG 1 4 2017

weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen weeksen

Analytical Report

Client:	Sealaska Environmental Services, LLC
Project:	NAVBASE Kitsap Keyport Area 8/TO 46
Sample Matrix:	Water
Sample Name:	AREA-8-17-203
Lab Code:	K1706626-002

Service Request: K1706626 Date Collected: 06/21/17 10:50 Date Received: 06/23/17 11:12

Basis: NA

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.91	ug/L	0.50	0.13	0.03	1	07/20/17 10:34	07/17/17	
Barium	200.7	83.6	ug/L	4.2	2.1	0.6	1	07/05/17 09:46	07/03/17	
Cadmium	200.8	135	ug/L	0.40	0.20	0.06	20	07/20/17 11:13	07/17/17	
Chromium	200.8	140	ug/L	4.0	2.0	0.6	20	07/20/17 11:13	07/17/17	
Copper	200.8	2.61	ug/L	0.10	0.05	0.02	1	07/20/17 10:34	07/17/17	
Lead	200.8	0.015 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:34	07/17/17	
Nickel	200.8	14.3	ug/L	0.20	0.10	0.03	1	07/20/17 10:34	07/17/17	
Silver	200.8	2.69	ug/L	0.020	0.010	0.004	1	07/20/17 10:34	07/17/17	
Zinc	200.8	48	ug/L	10	5	1	20	07/20/17 11:13	07/17/17	

AUG 1 4 2017

and the second
Analytical Report

Client:Sealaska Environmental Services, LLCProject:NAVBASE Kitsap Keyport Area 8/TO 46Sample Matrix:Water

Service Request: K1706626 Date Collected: 06/21/17 10:40 Date Received: 06/23/17 11:12

Basis: NA

Sample Name: Lab Code:

AREA-8-17-202 K1706626-003

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.90	ug/L	0.50	0.13	0.03	1	07/20/17 10:38	07/17/17	
Barium	200.7	86.7	ug/L	4.2	2.1	0.6	1	07/05/17 09:49	07/03/17	
Cadmium	200.8	134	ug/L	0.40	0.20	0.06	20	07/20/17 11:17	07/17/17	
Chromium	200.8	136	ug/L	4.0	2.0	0.6	20	07/20/17 11:17	07/17/17	
Copper	200.8	2.62	ug/L	0.10	0.05	0.02	1	07/20/17 10:38	07/17/17	
Lead	200.8	0.017 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:38	07/17/17	
Nickel	200.8	14.6	ug/L	0.20	0.10	0.03	1	07/20/17 10:38	07/17/17	
Silver	200.8	2.70	ug/L	0.020	0.010	0.004	1	07/20/17 10:38	07/17/17	
Zinc	200.8	47	ug/L	10	5	1	20	07/20/17 11:17	07/17/17	

AUG 1 4 2017

Initials: CR

.

Analytical Report

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/17 11:30
Sample Matrix:	Water	Date Received:	06/23/17 11:12
Sample Name: Lab Code:	AREA-8-17-205 K1706626-004	Basis:	NA

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	_Q
Arsenic	200.8	1.47	ug/L	0.50	0.13	0.03	1	07/20/17 09:25	07/17/17	
Barium	200.7	18.6	ug/L	4.2	2.1	0.6	1	07/05/17 09:52	07/03/17	
Cadmium	200.8	5.91	ug/L	0.020	0.010	0.003	1	07/20/17 09:25	07/17/17	
Chromium	200.8	12.4	ug/L	0.20	0.10	0.03	1	07/20/17 09:25	07/17/17	
Copper	200.8	1.39	ug/L	0.10	0.05	0.02	1	07/20/17 09:25	07/17/17	
Lead	200.8	0.984	ug/L	0.020	0.010	0.004	1	07/20/17 09:25	07/17/17	
Nickel	200.8	4.37	ug/L	0.20	0.10	0.03	1	07/20/17 09:25	07/17/17	
Silver	200.8	0.210	ug/L	0.020	0.010	0.004	1	07/20/17 09:25	07/17/17	
Zinc	200.8	2.41	ug/L	0.50	0.25	0.07	1	07/20/17 09:25	07/17/17	

AUG 1 4 2017

, men s**kristerese**n i en sou poro

Analytical Report

Client:	Sealaska Environmental Services, LLC	Service Request: K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected: 06/21/17 12:00
Sample Matrix:	Water	Date Received: 06/23/17 11:12
Sample Name:	AREA-8-17-201	Basis: NA
Lab Code:	K1706626-005	

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.49 J	ug/L	0.50	0.13	0.03	1	07/20/17 10:43	07/17/17	
Barium	200.7	66.4	ug/L	4.2	2.1	0.6	1	07/05/17 10:36	07/03/17	
Cadmium	200.8	0.284	ug/L	0.020	0.010	0.003	1	07/20/17 10:43	07/17/17	
Chromium	200.8	5.00	ug/L	0.20	0.10	0.03	1	07/20/17 10:43	07/17/17	
Copper	200.8	0.57	ug/L	0.10	0.05	0.02	1	07/20/17 10:43	07/17/17	
Lead	200.8	0.016 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:43	07/17/17	
Nickel	200.8	1.51	ug/L	0.20	0.10	0.03	1	07/20/17 10:43	07/17/17	
Silver	200.8	0.439	ug/L	0.020	0.010	0.004	1	07/20/17 10:43	07/17/17	
Zinc	200.8	0.67	ug/L	0.50	0.25	0.07	1	07/20/17 10:43	07/17/17	

AUG 1 4 2017

Non () - Stranger - Charlen and a stranger - Karler Barr

Initials: CR

١

Analytical Report

Client:	Sealaska Environmental Services, LLC	Service Request:	K1706626
Project:	NAVBASE Kitsap Keyport Area 8/TO 46	Date Collected:	06/21/17 12:45
Sample Matrix:	Water	Date Received:	06/23/17 11:12
Sample Name:	AREA-8-17-200	Basis:	NA
Lab Coue:	K1700020-000		

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.33 J	ug/L	0.50	0.13	0.03	1	07/20/17 10:46	07/17/17	
Barium	200.7	4.7	ug/L	4.2	2.1	0.6	1	07/05/17 10:39	07/03/17	
Cadmium	200.8	0.057	ug/L	0.020	0.010	0.003	1	07/20/17 10:46	07/17/17	
Chromium	200.8	70.2	ug/L	4.0	2.0	0.6	20	07/20/17 11:21	07/17/17	
Copper	200.8	0.32	ug/L	0.10	0.05	0.02	1	07/20/17 10:46	07/17/17	
Lead	200.8	0.008 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:46	07/17/17	
Nickel	200.8	0.41	ug/L	0.20	0.10	0.03	1	07/20/17 10:46	07/17/17	
Silver	200.8	0.466	ug/L	0.020	0.010	0.004	1	07/20/17 10:46	07/17/17	
Zinc	200.8	0.54	ug/L	0.50	0.25	0.07	1	07/20/17 10:46	07/17/17	

AUG 1 4 2017

and Defining the second states and states and

Initials: CR

,

Analytical Report

Client:	Sealaska Environmental Services, LLC
Project:	NAVBASE Kitsap Keyport Area 8/TO 46
Sample Matrix:	Water
Sample Name:	AREA-8-17-206
Lab Code:	K1706626-007

Service Request: K1706626 Date Collected: 06/21/17 14:20 Date Received: 06/23/17 11:12

Basis: NA

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	2.17	ug/L	0.50	0.13	0.03	1	07/20/17 10:50	07/17/17	
Barium	200.7	144	ug/L	4.2	2.1	0.6	1	07/05/17 10:42	07/03/17	
Cadmium	200.8	0.006 J	ug/L	0.020	0.010	0.003	1	07/20/17 10:50	07/17/17	
Chromium	200.8	1.01	ug/L	0.20	0.10	0.03	1	07/20/17 10:50	07/17/17	
Copper	200.8	<u>ں 0.10 J</u>	J ug/L	0.10	0.05	0.02	_1	07/20/17 10:50	07/17/17	
Lead	200.8	0.016 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:50	07/17/17	
Nickel	200.8	4.45	ug/L	0.20	0.10	0.03	1	07/20/17 10:50	07/17/17	
Silver	200.8	0.008 J	ug/L	0.020	0.010	0.004	1	07/20/17 10:50	07/17/17	
Zinc	200.8	0.50 J	ug/L	0.50	0.25	0.07	1	07/20/17 10:50	07/17/17	

AUG 1 4 2017

Section and the section of the secti

Analytical Report

Cliente	Sociastic Environmental Services IIC
Chent:	Sealaska Elivitoimiental Services, LLC
Project:	NAVBASE Kitsap Keyport Area 8/TO 46
Sample Matrix:	Water
Sample Name:	AREA-8-17-207
Lab Code:	K1706626-008

 Service Request:
 K1706626

 Date Collected:
 06/22/17 09:35

 Date Received:
 06/23/17 11:12

Basis: NA

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.77	ug/L	0.50	0.13	0.03	1	07/20/17 10:00	07/17/17	
Barium	200.7	42.9	ug/L	4.2	2.1	0.6	1	07/05/17 10:45	07/03/17	
Cadmium	200.8	9.99	ug/L	0.020	0.010	0.003	1	07/20/17 10:00	07/17/17	
Chromium	200.8	5.95	ug/L	0.20	0.10	0.03	1	07/20/17 10:00	07/17/17	
Copper	200.8	0.38	ug/L	0.10	0.05	0.02	1	07/20/17 10:00	07/17/17	
Lead	200.8	0.034	ug/L	0.020	0.010	0.004	1	07/20/17 10:00	07/17/17	
Nickel	200.8	6.76	ug/L	0.20	0.10	0.03	1	07/20/17 10:00	07/17/17	
Silver	200.8	0.038	ug/L	0.020	0.010	0.004	1	07/20/17 10:00	07/17/17	
Zinc	200.8	0.87	ug/L	0.50	0.25	0.07	1	07/20/17 10:00	07/17/17	

AUG 1 4 2017

Analytical Report

Client:	Sealaska Environmental Services, LLC						
Project:	NAVBASE Kitsap Keyport Area 8/TO 46						
Sample Matrix:	Water						
Sample Name:	AREA-8-17-208						
Lab Code:	K1706626-009						

Service Request: K1706626 Date Collected: 06/22/17 09:45 Date Received: 06/23/17 11:12

١

Basis: NA

Dissolved Metals

	Analysis								Date	
Analyte Name	Method	Result	Units	LOQ	LOD	MDL	Dil.	Date Analyzed	Extracted	Q
Arsenic	200.8	0.93	ug/L	0.50	0.13	0.03	1	07/20/17 10:54	07/17/17	
Barium	200.7	43.6	ug/L	4.2	2.1	0.6	1	07/05/17 10:53	07/03/17	
Cadmium	200.8	10.5	ug/L	0.020	0.010	0.003	1	07/20/17 10:54	07/17/17	
Chromium	200.8	6.14	ug/L	0.20	0.10	0.03	1	07/20/17 10:54	07/17/17	
Copper	200.8	0.42	ug/L	0.10	0.05	0.02	1	07/20/17 10:54	07/17/17	
Lead	200.8	0.027	ug/L	0.020	0.010	0.004	1	07/20/17 10:54	07/17/17	
Nickel	200.8	6.78	ug/L	0.20	0.10	0.03	1	07/20/17 10:54	07/17/17	
Silver	200.8	0.039	ug/L	0.020	0.010	0.004	1	07/20/17 10:54	07/17/17	
Zinc	200.8	0.77	ug/L	0.50	0.25	0.07	1	07/20/17 10:54	07/17/17	

AUG 1 4 2017

and the second second second second

APPENDIX D

GRAPHS OF CONCENTRATION TRENDS

Figure D-1. MW8-8 PCE, TCE, and cis-1,2-DCE Concentration Trends Since 2007

Figure D-1a. MW8-8 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

Figure D-2. MW8-9 PCE, TCE, and cis-1,2-DCE Concentration Trends Since 2007

Figure D-2a. MW8-9 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

Figure D-3. MW8-11 PCE, TCE, and cis-1,2-DCE Concentration Trends Since 2007

Figure D-3a. MW8-11 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

Date

Figure D-4. MW8-12 PCE, TCE, and cis-1,2-DCE Concentration Trends Since 2007

Figure D-4a. MW8-12 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

D-8

Figure D-5a. MW8-16 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

Date

Figure D-6a. Seep A 1,1,1-TCA and 1,1-DCE Concentration Trends Since 2007

Figure D-7. MW8-8 Cd and Cr Concentration Trends Since 2007

Date

Date

Figure D-8. MW8-9 Cd and Cr Concentration Trends Since 2007

Figure D-9. MW8-11 Cd and Cr Concentration Trends Since 2007

Figure D-10. MW8-12 Cd and Cr Concentration Trends Since 2007

Figure D-11. MW8-14 Cd and Cr Concentration Trends Since 2007

Figure D-12. Seep A Cd and Cr Concentration Trends Since 2007

Date

Figure D-13. SVOC 1,4-Dioxane Concentration Trends Since 2007

Date

APPENDIX E

RESPONSE TO AGENCY COMMENTS ON DRAFT REPORT

Navy Responses to Ecology Comments on the Draft Spring 2017 Long-Term Monitoring Report, NBK Keyport Operable Unit 2, Area 8

Washington State Department of Ecology (Ecology) appreciates the opportunity to review and comment on this document. Ecology provides the following comments & suggestions:

Comment # 1: Page 1-5, Line 27

"Figure 2-4" could not be found.

Response: Corrected to Figure 1-4.

Comment # 2: Page 1-5, Line 27-30

These features could not be found in Figure 1-4.

Response: Results of sampling at seeps and outfalls other than Seeps A and B are not a part of the LTM sampling program reported in this Area 8 LTM Report or included in the current MMA SAP; they are reported under separate cover by the Navy. Therefore their locations are not shown on figures for this report, but are discussed briefly in the report text. The MMA SAP will be revised in early 2019. The locations of all seeps and outfalls will be shown on the figures included as a part of that update of the MMA SAP, and then will be included in figures and reporting for the subsequent LTM reports. The current report text will be revised to reference the separate report (Navy 2016a) for sampling at seeps and outfalls other than Seeps A and B.

Comment # 3: Page 1-13

The Table lists the remediation goals (RGs) for the site. The RGs for the parent compounds PCE & TCE are listed as well as some of degradation products such as 1,2-DCE. But the other degradation product vinyl chloride (VC), which is also a hazardous compound, doesn't have any RGs listed. Also, this chemical is not listed for any further monitoring. Was there a reason/rationale to exclude VC from cleanup consideration? A quick read of the 1994 OU2 ROD did not reveal much information. Any explanation/clarification/comments from the Navy on this exclusion of VC?

Response: This question was addressed during comment responses for the MMA SAP. VC was not listed in the OU 2 Record of Decision (ROD) as a contaminant of concern for Area 8 based upon remedial investigation studies prior to the ROD's implementation. Results of sampling conducted from implementation of the ROD through 2014 (the last year VC was tested and reported) have demonstrated that VC has been either undetected or detected at trace, estimated (j-flag) levels only below the practical quantitation limit). However, it is recognized that VC is a degradation by-product of PCE/TCE-family chemicals which are present in Area 8 groundwater and seep water. Therefore, it is recommended that the need for VC analysis and reporting be conducted during the upcoming early-2019 MMA SAP update, with appropriate implementation at that time.

Comment # 4: Page 2-3, Line 8-10

Thanks for preparing the EIM EDD. Has this been uploaded into the EIM system? This may not have been scoped but data from OU1 VI study, Area 8 marine investigation have been uploaded into the EIM previously. Tips for uploading the data in the EIM system can be found here:

https://ecology.wa.gov/Research-Data/Data-resources/Environmental-Information-Managementdatabase/EIM-submit-data

<u>Response:</u> This issue was addressed during review and comments for the MMA SAP. This is not currently within the scope of sample data reporting under this Navy LTM contract or task order. Based on discussions between Navy and Ecology management held on March 29, 2017, this requirement may be added to future task orders at the direction of Navy management. Therefore, as discussed in the MMA SAP, the EIM package will be provided by the analytical laboratory in electronic format, and will be included on the compact disc provided with the paper copy of each report.

Comment # 5: Page 3-2, Line 2-5

It seems toluene and chloroform got mixed up. Clarify.

Response: Yes, toluene and not chloroform was detected in the trip blank. Therefore the word "chloroform" in lines 4 and 6 have been revised to "toluene".

Comment # 6: Page 4-2, Line 13

No information on field measurements (pH, conductivity, DO, and others) are provided or discussed in the text. Ecology suggests to add a Paragraph and a Table to present the data from field measurements. Field measurements are important and should also be preserved electronically for easier retrieval. For example in this study, conductivity and salinity are very important parameters as they depict the amount of tidal mixing present in the sample.

If field measurements are available electronically for the previous years, Ecology PM requests the electronic data to be sent separately.

Response: The field-measured water-quality parameters have historically been presented only in the report appendices (i.e., on the Well Inspection, Purging, and Field Measurement Forms and in the field logbook copies) and not discussed in the text unless data indicated parameters were not stabilizing. A table of current-year sampling parameters with brief discussion will be inserted into Section 2, the field activities sampling methodology discussion. A historical data table with field-measured water-quality parameters recorded from 2007 through 2017 will be attached in Appendix B as Table B-1.

Comment # 7: Page 4-12

Is there a reason why groundwater samples were filtered for metals analysis? MTCA generally requires that the samples are unfiltered unless there is a reason to believe unfiltered samples are not representative of groundwater quality. See Ch. 173-340-720 (9)(b) WAC for details.

Response: Yes, the ROD and list of COCs specifically includes dissolved-phase metals, not total metals. Therefore, the samples are filtered in accordance with directives of the MMA SAP (and earlier versions of the Area 8 SAP) which have been reviewed and approved by Ecology, the U.S. EPA, and the Suquamish Tribe.

Comment # 8: Page 4-25, Line 24-28 & Page 4-29, Line 26-28

Barium data: Why the Barium data is not presented in any of the Tables? The test refers to Appendix C, which are the data validation reports. The data needs to be presented in Tables and Graphs for easier interpretation.

Response: Data has historically been presented in tabular format for COCs with significant detections, with the target metals (the focus of metals LTM at Area 8) being cadmium and chromium. Barium levels have ranged from a maximum of $62.5 \ \mu g/L$ to $197 \ \mu g/L$ over the past decade. Thus, barium has not been detected at Area 8 at concentrations significantly above its background concentration ($130 \ \mu g/L$) or approaching the drinking water remediation goal for barium of $1,000 \ \mu g/L$ (there is no surface water remediation goal). For those reasons, barium has historically been discussed in the report results-sections text but not reported in a table or on graphs. We recommend inserting the summary for barium testing discussed above into the text in the results and recommendations sections of the LTM report; tables and graphs for barium appear to be unwarranted at this time.

Comment # 9: Page 4-26

It seems the sample dates are wrong.

Response: Revised all sampling dates to 06-17.

Comment # 10: Page 5-1

Data trends: It seems no statistical trend analyses were performed. It seems logical to perform statistical trend analyses when graphical charts do not clearly show any trends. In addition, the Navy needs to provide information on how long it will take to reach the remediation goals at the present pace if no additional remedial actions are performed.

Response: Statistical trend analysis and estimates of the time required for compliance with RGs are beyond the scope of work for this current LTM report and would appear to be premature at this time given the relatively high exceedances of remediation goals for several Area 8 analytes at several sampling locations. It is recommended that evaluation of the need for statistical trend analysis be conducted during the early-2019 update of the MMA SAP, with appropriate implementation at that time.