

June 18, 2019 Reference No. 11145847

Mr. Ted Uecker Washington State Department of Ecology Eastern Regional Office 4601 N. Monroe Street, Suite 202 Spokane, Washington 99205

Dear Mr. Uecker:

Re: Site Assessment Work Plan
Phillips 66 Facility No. 6880
Geiger Corrections Facility
Spokane, Washington
Facility/Site No. 663
VCP Project No. EA0263

GHD is submitting this *Site Assessment Work Plan* on behalf of Phillips 66 Company (P66) for the purpose of collecting the additional information necessary to complete the site characterization in accordance with Washington Administrative Code (WAC) 173-340-350 at the P66 Geiger Corrections Facility, located at the northwest corner of South Spotted Road and Will D Alton Road, Spokane, Spokane County, Washington (Property; Figure 1). The scope of work detailed below is based on the findings of GHD's *Remedial Investigation (RI) Report*, dated December 19, 2018, and Washington State Department of Ecology's (Ecology's) *Further Action* letter, dated January 22, 2019.

The Property currently consists of a Yellowstone Pipeline (YPL) Company pipeline easement within a minimum security prison, Geiger Corrections Center (Figure 2). The 3-inch YPL was constructed in 1968 and enters the Property near the intersection of South Spotted Road and West Will D Alton Road.

A review of previous site investigations and boring logs indicates that the site is underlain by aeolian silt and sand, and fluvial deposits of silt, sand, and gravel underlain by basalt to a maximum explored depth of 101 feet below ground surface (bgs). Basalt has been encountered at the Site at depths ranging from 3 to 37 feet bgs. Additionally, a scour channel fill deposit, consisting of fine to coarse sand and gravel lenses, is located on the central portion of the site (Figure 2). The scour channel fill deposit is underlain by competent to fractured basalt bedrock.

Shallow groundwater at the Site is present between approximately 2 to 6.5 feet bgs, and predominantly flows towards the northeast. The depth to water in the deeper water bearing zone at the site is present between 26 and 39 feet bgs. The groundwater flow for the deeper water bearing zone has historically been variable; however, in 2018 the flow was predominantly observed to be toward the northwest.

Based on previous investigations, concentrations of petroleum constituents exceeding applicable Model Toxics Control Act (MTCA) Method A cleanup levels have been identified in shallow soil, and shallow and deep groundwater immediately surrounding the YPL and to the west of the YPL, within the scour channel fill deposit. Ecology's MTCA site (Site) is defined as all affected areas from the

petroleum release associated with the Property. Based on the results of the RI completed by GHD in December 2018, the Site boundary is presented on Figure 2. For additional information regarding the Site history and remedial activities performed at the Site please refer to GHD's *Remedial Investigation* report, dated December 19, 2018.

1. Objectives and Scope

The objectives and scope of this site assessment are as follows:

- Delineate the extent of shallow and deep groundwater impacts at the Site to adequately define the Site boundary
- Evaluate current soil conditions in the vicinity of historical soil impacts
- Evaluate shallow soil conditions near occupied buildings for future vapor intrusion evaluation
- Delineate the vertical extent of soil impacts at the Site
- Collect the appropriate soil data to calculate site-specific MTCA Method B direct contact soil cleanup levels
- Gather appropriate data to allow for evaluation of potential remedial alternatives at the Site

Historical groundwater data are provided in Tables 1A and 1B, and historical soil data are provided in Table 2. Historical soil data, and historical soil and groundwater extents are provided on Figure 2.

2. Pre-field Activities

GHD will complete the following pre-field activities:

2.1 Health and Safety Plan

GHD will prepare a Site-specific Health and Safety Plan (HASP) in accordance with federal regulations (Title 40, Code of Federal Regulations, Section 1910.120). The HASP will identify potential physical and chemical hazards associated with the proposed field activities and will outline safe work practices.

2.2 Underground Utility Clearance

Prior to any Site work involving soil disturbance, Washington State One Call Utility Notification
Service will be called to alert the utility companies in the area of the scheduled work and to
request identification of all underground utilities in the vicinity of the disturbance area. A private
utility locating contractor will be retained to mark private utilities and to verify the absence of all
underground utilities near each of the proposed boring locations.

To further mitigate the chances of encountering a subsurface utility, each soil boring will be hand cleared to a depth of 5 feet bgs using a hand auger, air knife, or other appropriate method.

3. Investigation Activities

3.1 Soil Assessment

Seven soil borings (A through G) will be advanced to further characterize soil and groundwater impacts at the Site. The borings will be advanced by a Washington State licensed driller using a vacuum truck and/or sonic drill rig. Boring locations A through C will be completed as monitoring wells. The locations of the proposed borings are presented on Figure 2. The table below outlines sample location, sample depth, proposed well depth, purpose, and selected analysis per boring location.

Table 3.1 Soil Boring Plan

Proposed Boring	Anticipated Soil Samples Per Boring	Anticipated Total Depth / Well Details	Purpose	Soil Analysis
A and B	Up to 2 samples: 1 sample at 6 feet bgs 1 sample at the water table	15 feet bgs Final depth based on field screening and depth to water 10 feet of well screen	Evaluate shallow groundwater bearing zone conditions and define MTCA boundary down gradient ¹ of historical impacts	TPHg, TPHd, TPHo, BTEX, and naphthalene
С	Up to 3 samples: 1 sample at shallow water table 1 sample at deep water table 1 sample in vadose zone between water bearing zones	40 feet bgs Final depth based on field screening and depth to water 10 feet of well screen	Evaluate deep groundwater bearing zone conditions and define MTCA boundary down gradient ² of historical impacts	TPHg, TPHd, TPHo, BTEX, and naphthalene

Proposed Boring	Anticipated Soil Samples Per Boring	Anticipated Total Depth	Purpose	Soil Analysis
D through F	Up to 2 samples: 1 sample at 6 feet bgs 1 sample at the water table	10 feet bgs	Evaluate current soil conditions near historical soil sample locations GCC 29, GCC 21, and GCC 15	TPHg, TPHd, TPHo, BTEX, naphthalene VPH/EPH, n-hexane, and cPAHs analysis (1 sample from each boring based on field screening)
G	Up to 3 samples: 1 sample in the vadose zone 1 sample at 35 feet bgs 1 sample at 40 feet bgs	40 feet bgs	Delineate vertical historical soil impacts near MW-5	TPHg, TPHd, TPHo, BTEX, naphthalene

bgs = below ground surface

TPHg = Gasoline range organics per Method Northwest Total Petroleum Hydrocarbon Identification (NWTPH) Gx

TPHd = Diesel range organics per Method Northwest Total Petroleum Hydrocarbon Identification (NWTPH) Dx

TPHo = Oil range organics per Method Northwest Total Petroleum Hydrocarbon Identification (NWTPH) Dx

BTEX = Benzene, Toluene, Ethylbenzene and Xylenes per EPA Method 8260B

Naphthalene = per EPA Method 8260B

cPAH = Carcinogenic polycyclic aromatic hydrocarbons per EPA Method 8270SIM

EPH = Extractable Petroleum Hydrocarbons per NWTPH EPH

VPH = Volatile Petroleum Hydrocarbons per NWTPH VPH

n-hexane per EPA Method 8260B

1 = Shallow groundwater migration predominately has been observed to the northeast

2 = Deep groundwater migration predominately has been observed to the northwest

3.2 Soil Sampling and Logging

The first 5 feet of all borings will be advanced using an air knife and vacuum truck and/or hand auger in order to further mitigate contact and damage to potential subsurface utility lines. The borings will then be advanced by a sonic drill rig to the depths noted above. Borings A through C will be completed as groundwater monitoring wells. Remaining borings will be backfilled with Portland Type II cement and finished to grade to match the surrounding surface.

Soil will be continuously logged during the first 5 feet and then every 5 feet below that using the modified Unified Soil Classification System. Soil samples will be screened at 5 foot intervals using a photo ionization detector (PID) and visual inspection. Soil samples will be collected in accordance with Table 3.1 above. Soil samples submitted for chemical analyses will be labeled, entered onto a chain of custody form, packed on ice, and sent to Eurofins Lancaster Laboratory of Lancaster, Pennsylvania.

3.3 Monitoring Well Installation

Soil borings A through C will be completed as monitoring wells. The final depths are estimated to be 15 feet bgs (location A and B) and 40 feet bgs (location C). The wells will be constructed with 2-inch Schedule 40, polyvinyl chloride (PVC), with a 0.010-inch slot screen, flush threaded with PVC blank well casing from the top of the screen to the top of the well. The well annulus will be backfilled with a

12/20 silica sand pack to a minimum of 1 foot above the top of the screen and sealed with a minimum of 1 foot of hydrated bentonite chips above the filter pack then filled with a mixture of neat Portland Type II cement with up to 5 percent bentonite powder. The surface of the wells will be completed with flush mount, traffic rated well boxes.

The wells will be developed following installation by surging the well screen with a surge block for 5-10 minutes followed by pumping on the well with a monsoon-style down-hole pump. Grab samples will be collected and analyzed for turbidity with a calibrated field turbidity meter after each well volume. Well development will be considered complete when turbidity is below 100 NTU or when the well has pumped dry.

The new wells will be surveyed by a licensed surveyor to determine the horizontal coordinates and vertical elevation of the top of well casing.

3.4 Investigation Derived Waste

Investigation derived waste (IDW) will include decontamination fluids, soil from borings, and purged well water. All IDW will be placed in properly labeled 55-gallon drums and stored on site pending analyses. All IDW will be disposed of according to P66 procedures and applicable regulatory requirements.

3.5 Groundwater Sampling

To establish points of compliance, the newly installed monitoring wells will be gauged and sampled a minimum of four consecutive quarters if analytes are detected but below MTCA Method A cleanup levels.

4. Reporting and Scheduling

Following completion of the above activities and receipt of laboratory analytical data, GHD will prepare a site investigation report that will include the following:

- A summary of soil boring and well installation activities
- Boring logs with well completion details
- Tabulated analytical results for soil and groundwater sampling
- · Laboratory analytical reports and chain of custody forms for soil samples
- Summary of waste disposal
- GHD's conclusions and recommendations

GHD will begin the proposed work upon receipt of Ecology's approval of this work plan. GHD will submit a report of findings approximately 60 days following receipt of all final analytical data.

Please contact Moshghan Mansoori at (425) 563-6516 if you have any questions or require additional information.

Sincerely,

GHD

Heather Gadwa, LG

elklan

Christina McClelland, LG

9.Mchelleul

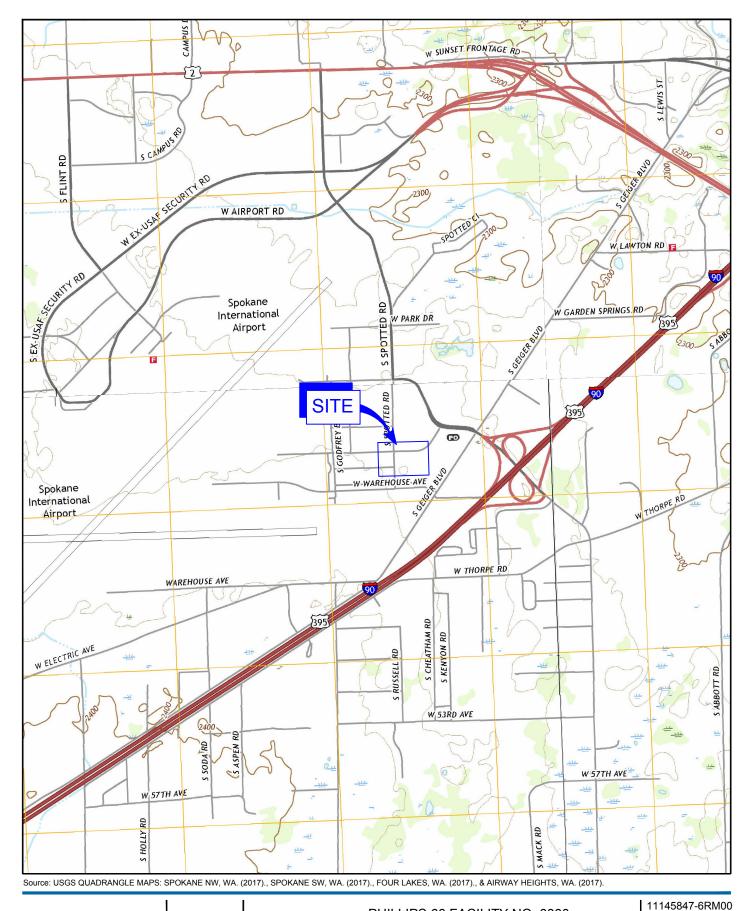
Moshghan Mansoori

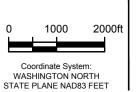
MM/md/1

Encl. Figure 1 Site Location Map

Figure 2 Proposed Investigation Map

Table 1A Summary of Groundwater Monitoring Data – Shallow Wells

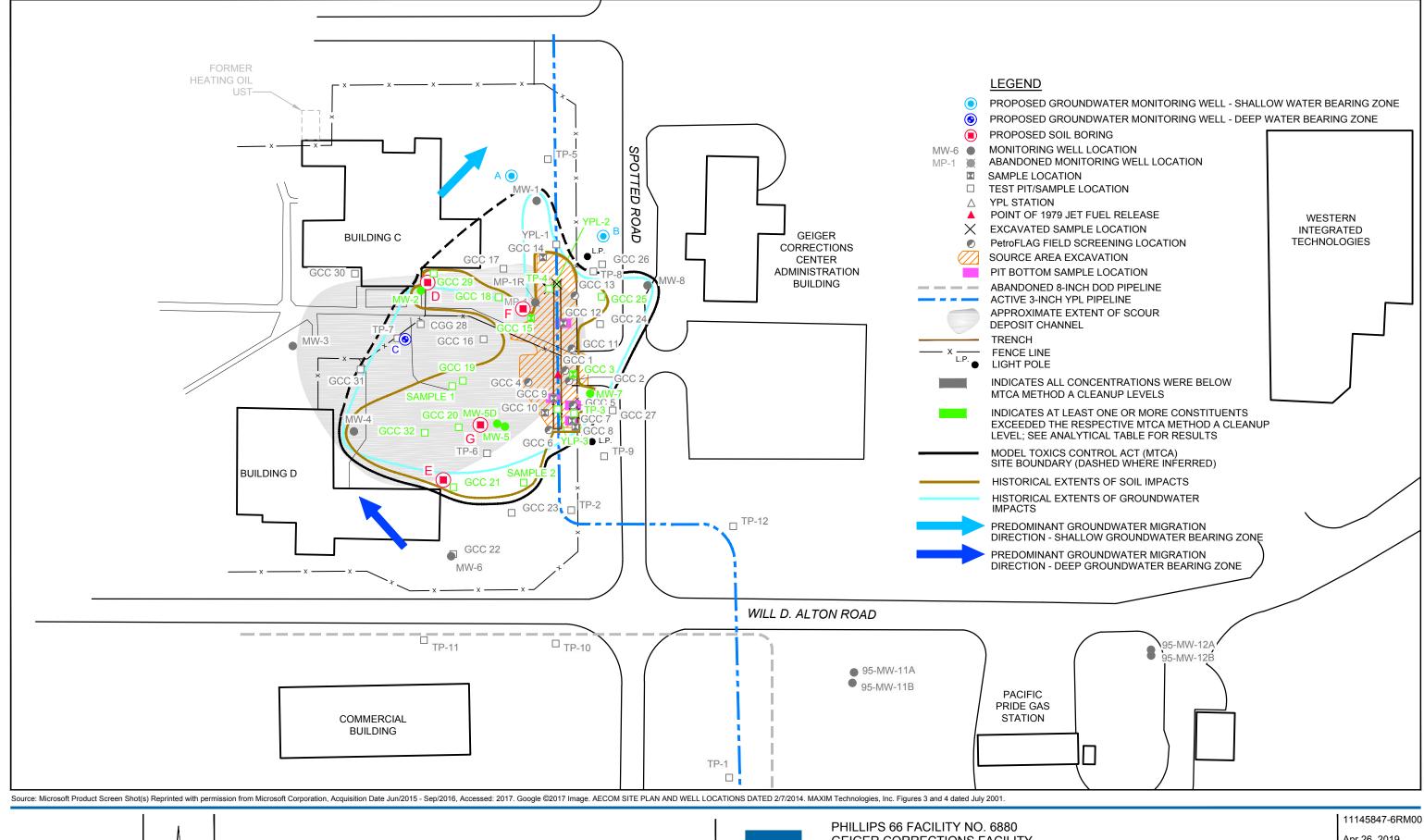

Table 1B Summary of Groundwater Monitoring Data – Deep Wells


Table 2 Summary of Soil Analytical Data

cc: Mr. Rich Solomon, P66 (electronic copy)

Ms. Kathy Reimer, Spokane Airport Business Park (electronic copy)

Figures



PHILLIPS 66 FACILITY NO. 6880 GEIGER CORRECTIONS FACILITY SPOKANE, WASHINGTON

Apr 18, 2019

SITE LOCATION MAP

FIGURE 1

0 40 80ft

GEIGER CORRECTIONS FACILITY SPOKANE, WASHINGTON

Apr 26, 2019

PROPOSED SOIL INVESTIGATION MAP

FIGURE 2

Tables

Sample ID Date							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTCA I	Method A S	creening L	evels (Sh	allow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MP-1	08/20/01	NS												
MP-1	11/30/01	N						50,300	<750	<0.50	<2.0	<1.0	<1.5	990
MP-1	03/25/02	N						9,650	<750	<0.50	<2.0	1.9	23	599
MP-1	06/04/02	N						39,700	<500	<0.50	<2.0	1.9	<1.5	353
MP-1	08/20/02	N						19,100	<500	<0.50	<2.0	1.1	13	223
MP-1	10/29/02	N						20,900	<500	<0.50	<2.0	1.2	13	413
MP-1	02/19/03	N						<250	<500	<0.50	<2.0	<1.0	4.2	62
MP-1	06/05/03	N						9,950	<500	<0.50	<2.0	<1.0	<1.5	268
MP-1	09/09/03	N						8,430	<500	<0.50	<2.0	<1.0	17	459
MP-1	12/10/03	N						13,600	<500	<0.50	<2.0	<1.0	5.9	184
MP-1	06/03/04	N						16,800	<500	<0.50	<2.0	<1.0	9.5	246
MP-1	12/01/04	N						14,800	<500	<0.50	<2.0	1.7	16	246
MP-1	06/03/05	N						17,400	<500	<0.50	<2.0	3.1	29	178
MP-1	11/21/05	N						9,900	500	<0.50	<2.0	<1.0	17	32
MP-1	06/15/06	N						11,200	<500	<0.50	<2.0	<1.0	18	<20
MP-1	12/19/06	N						2,700	<500	<0.50	<2.0	<1.0	7.2	114
MP-1	05/30/07	N						6,100	<500	<0.50	<2.0	<1.0	19	120
MP-1	10/30/07	removed from s	ampling sch	edule due t	o well obs	struction								
MP-1	02/02/11		2,354.90	3.96		2350.94								
MP-1	04/26/11		2,354.90	4.20		2350.70								
MP-1	07/12/11		2,354.90	DRY										
MP-1	10/28/11		2,354.90	Obstruction	on in Well	at 4.59 Feet								
MP-1	10/09/13		2,354.90	Well Deco	ommissior	ned								

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTCA	Method A Sc	reening L	.evels (Sł	nallow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MP-1R	10/12/13	N	2,354.78	4.86		2349.92	3,210	1,200	<400	<1.0	<1.0	<1.0	13.9	16.3
MP-1R	03/11/14	N	2,354.78	2.15		2352.63	1,260	500	500	<1.0	<1.0	<1.0	<3.0	<4.0
MP-1R	03/11/14	FD					1,300	520	640	<1.0	<1.0	<1.0	<3.0	<4.0
MP-1R	06/03/14	N	2,354.78	4.95		2349.83	3,890	1,400	<420	<1.0	<1.0	<1.0	13.5	10.6
MP-1R	04/06/17	N	2,354.78	3.58		2351.20	430	290	110 J	<0.5	<0.5	<0.5	<0.5	<1.0
MP-1R	04/06/17	FD	2,554.76				450	250	80 J	<0.5	<0.5	<0.5	<0.5	<1.0
MP-1R	09/14/17	N	2,354.78	4.79		2,349.99	2,200	1,400	140 J	<1	<1	<1	<1	5
MP-1R	03/21/18	N	2354.78	3.88		2350.90	540	280	<260					
MP-1R	06/21/18	N	2354.78	3.88 4.79		2349.99	1,900	1,500	<270					
MP-1R	06/21/18	FD					1,900	1,400	<260					
MP-1R	09/21/18			4.01		 2349.87	•	-	<270					
		N	2354.78	4.91			1,600	1,400						
MP-1R	12/06/18	N	2354.78	4.27		2350.51	2,800	1,400	<260					
MP-1R	03/06/19	N	2354.78	4.31		2350.47	700	360	<260					
MP-1R	03/06/19	FD	2354.78	4.31		2350.47	710	380	<260					
MW-2	08/20/01	NS												
MW-2	03/25/02	N						19,800	<750	<0.50	<2.0	<1.0	11	216
MW-2	06/04/02	N						22,100	<500	<0.50	<2.0	<1.0	8.2	1,320
MW-2	08/20/02	N						4,970	<500	<0.50	<2.0	<1.0	6.7	156
MW-2	10/29/02	N						13,700	<500	<0.50	<2.0	<1.0	6.1	199
MW-2	10/29/02	FD						15,400	<500 <500	<0.50	<2.0	<1.0	9.3	328
MW-2	02/19/03	N						10,400	<500	<0.50	<2.0 <2.0	<1.0 <1.0	9.5 <1.5	140
								-						
MW-2	06/05/03	N						4,570	<500	< 0.50	<2.0	<1.0	2.0	134
MW-2	06/05/03	FD						4,320	<500	< 0.50	<2.0	<1.0	2.4	182
MW-2	09/09/03	N						2,560	<500	<0.50	<2.0	<1.0	<1.5	203
MW-2	09/09/03	FD						2,440	<500	<0.50	<2.0	<1.0	<1.5	204

						_	HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTCA	Method A Sc	reening L	evels (Sh	nallow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1414 O	10/10/00							10.100	-500	.0.50	.0.0	.4.0	.4 =	222
MW-2	12/10/03	N						42,100	<500	<0.50	<2.0	<1.0	<1.5	282
MW-2	06/03/04	N						6,000	<500	<0.50	2.6	<1.0	6.0	162
MW-2	06/03/04	FD						6,500	<500	<0.50	2.1	<1.0	5.4	170
MW-2	12/01/04	N						2,410	<500	<0.50	<2.0	<1.0	5.2	38
MW-2	06/03/05	N						2,810	<500	<0.50	<2.0	<1.0	<1.5	129
MW-2	06/03/05	FD						2,910	<500	<0.50	<2.0	<1.0	5.2	129
MW-2	11/21/05	N						3,440	<500	<0.50	<2.0	<1.0	<1.5	24
MW-2	11/21/05	FD						3,680	500	<0.50	<2.0	<1.0	<1.5	23
MW-2	06/15/06	N						2,750	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-2	06/16/06	FD						11,200	<500	<0.50	<2.0	<1.0	18	<20
MW-2	12/19/06	N						2,340	<500	< 0.50	<2.0	<1.0	2.6	95
MW-2	05/30/07	N						2,790	<500	< 0.50	<2.0	<1.0	1.7	98
MW-2	10/30/07	N					2,600	1,800	140	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	06/24/08	N					1,600	830	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	12/03/08	N					1,800	700	<69	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	06/03/09	N					1,730	620	<58	<0.12	<0.21	<0.20	<0.15	
MW-2	11/10/09	N					2,230	821	<379	<1.0	<1.0	<1.0	<3.0	3.2
MW-2	02/02/10	N					1,450	940	<388	<1.0	<1.0	<1.0	<3.0	3.9
MW-2	05/18/10	N					1,330	1,870	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-2	08/09/10	N					1,200	831	<396	<1.0	<1.0	<1.0	<3.0	
MW-2	11/01/10	N					1,680	2,080	<388	<1.0	<1.0	<1.0	<3.0	
MW-2	02/02/11	N					1,700	1,170	<385	<1.0	<1.0	<1.0	<3.0	
MW-2	04/26/11	N					3,280	562	<392	<1.0	<1.0	<1.0	<3.0	
MW-2	07/12/11	N					1,020	700	<408	<1.0	<1.0	<1.0	<3.0	
MW-2	10/27/11	N					2,000	920	<410	<1.0	<1.0	<1.0	<3.0	
MW-2	07/02/12	N	2,354.55	4.83		2349.72	1,960	580	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-2	10/10/12	N	2,354.55	5.06		2349.49	1,500	680	<840	<1.0	<1.0	<1.0	<3.0	7.4
		• •	_,	0.00			.,		• • •					

						HYDROCARBONS GWE TRUG TRUG TRU					PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	X	Naph
		MTCA	Method A Sc	reening L	evels (Sh	nallow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-2	03/13/13	N	2,354.55	4.61		2349.94	1,060	620	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	05/15/13	N	2,354.55	5.09		2349.46	1,220	990	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	08/06/13	N	2,354.55	4.68		2350.51	924	560	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	10/11/13	N	2,355.19	5.19		2350.00	833	910	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	03/11/14	N	2,355.19	3.21		2351.98	1,900	910	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	06/03/14	N	2,355.19	5.10		2350.09	1,870	610	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	04/06/17	N	2,355.19	4.18		2351.01	1,500	1,200	<73	<0.5	<0.5	<0.5	<0.5	2.0
MW-2	09/14/17	N	2,355.19	4.89		2,350.30	1,200	720	<260	<1	<1	<1	<1	<4
MW-2	03/21/18	N	2355.19	4.45		2350.74	940	380	<250					
MW-2	06/21/18	N	2355.19	4.78		2350.41	1,000	540	<280					
MW-2	09/21/18	N	2355.19	5.02		2350.17	810	740	<270					
MW-2	12/06/18	N	2355.19	4.57		2350.62	1,400	510	<250					
MW-2	12/06/18	FD	2355.19	4.57		2350.62	1,400	400	<260					
MW-2	03/06/19	N	2355.19	4.70		2350.49	1,300	410	<270					
MW-3	08/20/01	NS												
MW-3	03/25/02	N						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-3	06/04/02	N						267	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	08/02/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	10/29/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	02/19/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	06/05/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	09/09/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	12/10/03	N						<250	<500	<1.5	<2.0	<1.0	<1.5	<20
MW-3	06/03/04	NS												
MW-3	12/01/04	NS												
MW-3	06/03/05	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20

Page 5 of 10

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTCA	Method A Sc	reening L	evels (Sł	nallow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	11/21/05	NS												
MW-3	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	12/19/06	NS												
MW-3	05/30/07	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	10/30/07	NS												
MW-3	06/24/08	NS												
MW-3	12/03/08	NS												
MW-3	06/03/09	NS												
MW-3	11/10/09	NS												
MW-3	02/02/10	NS												
MW-3	05/18/10	NS												
MW-3	08/09/10	NS												
MW-3	11/01/10	NS												
MW-3	02/02/11	NS												
MW-3	04/26/11	NS												
MW-3	07/12/11	NS												
MW-3	10/27/11	NS												
MW-3	07/02/12	N	2,355.18	4.92		2350.26	NS							
MW-3	10/11/12	N	2,355.18	5.17		2350.01	<50	<160	<820	<1.0	<1.0	<1.0	<3.0	<1.0
MW-3	03/13/13	NS	2,355.18	4.68		2350.50								
MW-3	05/15/13	N	2,355.18	5.16		2350.02	<100	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-3	08/06/13	NS	2,355.18	4.64		2350.80								
MW-3	10/11/13	N	2,355.44	5.28		2350.16	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-3	03/11/14	NS	2,355.44	3.52		2351.92								
MW-3	06/03/14	N	2,355.44	4.98		2350.46	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-3	04/06/17	N	2,355.44	4.28		2351.16	<50	<28	<66	<0.5	<0.5	<0.5	<0.5	<1.0
MW-3	09/14/17	N	2,355.44	4.89		2,350.55	<250	<100	<260	<1	<1	<1	<1	<4

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	T	Е	Х	Naph
		MTCA	Method A Sc	reening L	evels (Sh	allow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	12/06/18	NM	2355.44											
MW-3	03/06/19	NS	2355.44											
MW-4	08/20/01	NS												
MW-4	03/25/02	N						10,600	<750	1.1	3.2	<1.0	1.9	526
MW-4	03/26/02	N						5,770	<750	<0.50	<2.0	<1.0	<1.5	344
MW-4	06/04/02	N						11,400	<500	<0.50	<2.0	<1.0	<1.5	432
MW-4	06/05/02	N						12,500	<500	<0.50	<2.0	1.1	1.6	278
MW-4	08/20/02	N						1,500	<500	<0.50	<2.0	<1.0	<1.5	43
MW-4	10/29/02	N						2,220	<500	<0.50	<2.0	<1.0	<1.5	72
MW-4	02/19/03	N						1,570	<500	<0.50	<2.0	<1.0	<1.5	22
MW-4	06/05/03	N						720	<500	<0.50	<2.0	<1.0	<1.5	40
MW-4	09/09/03	N						890	<500	<0.50	<2.0	<1.0	<1.5	61
MW-4	12/10/03	N						2,750	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	06/03/04	N						710	<500	<0.50	<2.0	<1.0	<1.5	41
MW-4	12/01/04	N						620	<500	0.69	<2.0	<1.0	<1.5	22
MW-4	06/03/05	N						370	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	11/21/05	N						920	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	12/19/06	N						360	<500	<0.50	<2.0	<1.0	<1.5	31
MW-4	12/19/06	FD						380	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	05/30/07	N						449	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	05/30/07	FD						445	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	10/30/07	N					700			<0.50	<0.70	<0.80	<0.80	1.0
MW-4	10/30/07	FD					660	650	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-4	06/24/08	N					190	200	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-4	12/03/08	N					330	200	<66	<0.50	<0.70	<0.80	<0.80	<1.0

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MTCA	Method A Sc	reening L	evels (Sh	allow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-4	06/03/09	N					193	120	<59	<0.12	<0.21	<0.20	<0.15	
MW-4	11/10/09	N					380	363	<381	<1.0	<1.0	<1.0	<3.0	2.9
MW-4	02/02/10	N					162	286	<388	<1.0	<1.0	<1.0	<3.0	2.7
MW-4	05/18/10	N					227	650	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-4	08/09/10	N					156	123	<385	<1.0	<1.0	<1.0	<3.0	
MW-4	11/01/10	N					374	277	<388	<1.0	<1.0	<1.0	<3.0	
MW-4	02/02/11	N					137	201	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	04/26/11	N					1,010	185	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	07/12/11	N					510	210 J	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	10/27/11	N					173	340	<380	<1.0	<1.0	<1.0	<3.0	
MW-4	07/02/12	N	2,356.37	5.85		2350.52	241	180	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-4	10/09/12	N	2,356.37	6.15		2350.22	113	<160	<810	<1.0	<1.0	<1.0	<3.0	5.1
MW-4	03/13/13	N	2,356.37	5.62		2350.75	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	05/15/13	N	2,356.37	6.05		2350.32	136	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	08/06/13	N	2,356.37	5.68		2350.76	120	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	10/09/13	N	2,356.44	6.17		2350.27	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	03/11/14	N	2,356.44	4.70		2351.74	192	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	06/03/14	N	2,356.44	5.93		2350.51	277	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	04/03/17	N	2,356.44	5.09		2351.35	J200	190	<75	<0.5	<0.5	<0.5	<0.5	<1.0
MW-4	09/14/17	N	2,356.44	6.27		2,350.17	270	260	<260	<1	<1	<1	<1	<4
MW-4	03/21/18	NS	2356.44	5.47		2350.97								
MW-4	06/21/18	NS	2356.44	5.80		2350.64								
MW-4	09/21/18	NS	2356.44	6.07		2350.37								
MW-4	12/06/18	NS	2356.44	5.61		2350.83								
MW-4	03/06/19	NS	2356.44	5.76		2350.68								

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MTCA N	lethod A So	creening L	evels (Sh	allow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-5	08/20/01	NS												
MW-5	03/25/02	N						1,360	<750	19.1	121	16	123	27
MW-5	06/04/02	N						2,720	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	08/20/02	N						774	<500	<0.50	<2.0	<1.0	1.6	<20
MW-5	10/29/02	N						2,580	<500	< 0.50	<2.0	<1.0	<1.5	56
MW-5	02/19/03	N						1,510	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	06/05/03	N						596	<500	<0.50	<2.0	<1.0	<1.5	28
MW-5	09/09/03	N								< 0.50	<2.0	<1.0	<1.5	40
MW-5	12/10/03	N						5,040	800	< 0.50	<2.0	<1.0	<1.5	<20
MW-5	06/03/04	N						360	<500	< 0.50	<2.0	<1.0	<1.5	<20
MW-5	12/01/04	N						4,600	<500	1.8	<2.0	<1.0	<1.5	28
MW-5	06/03/05	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	11/21/05	N						2,150	<500	< 0.50	<2.0	<1.0	<1.5	<20
MW-5	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	12/19/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	05/30/07	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	10/30/07	N					250	2,500	<94	< 0.50	<0.70	<0.80	<0.80	<1.0
MW-5	06/24/08	N					<50	170	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-5	12/03/08	N					240	73	<68	<0.50	<0.70	<0.80	<0.80	<1.0
MW-5	06/03/09	N					<13	<36	<59	<0.12	<0.21	<0.20	<0.15	
MW-5	11/10/09	N					<50	315	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	02/02/10	N					<50	81	<388	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	05/18/10	N					<50	126	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	08/09/10	NS												
MW-5	11/01/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-5	02/02/11	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-5	04/26/11	N					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	

Table 1A Page 9 of 10

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	X	Naph
		MTCA	Method A Sc	reening L	evels (Sh	nallow GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-5	07/12/11	N					<50	<78	<392	<1.0 UJ	<1.0 UJ	<1.0 UJ	<3.0 UJ	
MW-5	10/27/11	N					<50	990	<400	<1.0	<1.0	<1.0	<3.0	
MW-5	07/02/12	N	2,354.81	4.73		2350.08	<50	<78	<390	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	10/09/12	N	2,354.81	5.06		2349.75	<50	<170	<830	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	03/13/13	N	2,354.81	4.51		2350.30	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	05/15/13	N	2,354.81	5.01		2349.80	<100	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	08/06/13	N	2,354.81	4.67		2350.44	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	10/09/13	N	2,355.11	5.05		2350.06	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	03/11/14	N	2,355.11	3.40		2351.71	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	06/03/14	N	2,355.11	5.05		2350.06	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	04/03/17	N	2,355.11	3.95		2351.16	<50	<30	<69	<0.5	<0.5	<0.5	<0.5	<1.0
MW-5	09/14/17	N	2,355.11	4.89		2,350.22	<250	<100	<260	<1	<1	<1	<1	<4
MW-5	03/21/18	NS	2355.11	4.39		2350.72								
MW-5	06/21/18	NS	2355.11	4.84		2350.27								
MW-5	09/21/18	NS	2355.11	4.97		2350.14								
MW-5	12/06/18	NS	2355.11	4.55		2350.56								
MW-5	03/06/19	NS	2355.11											

Table 1A Page 10 of 10

Summary of Groundwater Monitoring Data - Shallow Wells Yellowstone Pipeline Geiger Correctional Facility Spokane, Washington

							HYD	ROCARBO	NS		PRIMA	RY VOCs			
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	X	Naph	
		MTCA M	lethod A S	creening L	eening Levels (Shallow GW)			500	500	5	1000	700	1000	160	
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	

Notes:

DTW = Depth to Water in feet

GWE = Groundwater Elevation in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

TOC = Top of Casing in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

All results are in micrograms per liter (µg/L) unless otherwise indicated

TPHg = Total petroleum hydrocarbons as gasoline analyzed by NWTPH---Gx unless otherwise noted. The higher value is based on the assumption that no benzene is present in the groundwater sample. If any detectable amount of benzene is present in the groundwater sample, then the lower TPHg cleanup level is applicable.

TPHd = Total petroleum hydrocarbons as diesel, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

TPHo = Total petroleum hydrocarbons as oil, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

VOCs = Volatile organic compounds

BTEX = Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B unless otherwise noted.

Total Xylenes = o---xylene + m,p---xylene

<x = Not detected at laboratory reporting limit x</p>

FD = Field duplicate

N = Normal

NS = Not sampled

NM = Not measured

----- = Not analyzed

Concentrations in bold type indicate the analyte was detected above the Site-specific cleanup level.

- J = Concentration is between the method detection limit (MDL) and the limit of quantitation (LOQ) and is therefore estimated.
- >S = The cleanup level exceeds the saturation level; therefore, the absense of separate phase hydrocarbons (SPH) indicates compliance with the TPH cleanup level.

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTC	A Method A	Cleanup	Levels (Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-1	08/20/01	NS												
MW-1	03/25/02	N N						 274	 <750	<0.50	<2.0	<1.0	 <1.5	<20
MW-1	06/04/02							<250	<500	<0.50	<2.0 <2.0	<1.0 <1.0	<1.5 <1.5	<20 <20
MW-1	08/20/02	N												
		N						<250	<500	< 0.50	<2.0	<1.0	<1.5	<20
MW-1	10/29/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	02/19/03	N						9,310	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	02/19/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	06/05/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	09/09/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/10/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	06/03/04	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/01/04	N						<250	<500	3.6	<2.0	1.5	2.0	<20
MW-1	06/03/05	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	11/21/05	NS												
MW-1	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/19/06	NS												
MW-1	05/30/07	N						<250	<500	< 0.50	<2.0	<1.0	<1.5	<20
MW-1	10/30/07	NS												
MW-1	06/24/08	NS												
MW-1	12/03/08	N					<50	<29	<68	<0.50	<0.7	<0.80	<0.80	<1.0
MW-1	06/03/09	N					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-1	11/10/09	N					<50	80	<383	<1.0M0	<1.0	<1.0	<3.0	<1.0
MW-1	02/02/10	N					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	05/18/10	N					< 50	<76	<379	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	08/09/10	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-1	11/01/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
141 4 4 - 1	1 1/0 1/ 10	1 1					-50	110	1000	٠١.٥	٠١.٥	٠١.٥	٠٥.٥	

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MT	CA Method	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-1	02/02/11	N					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	
MW-1	04/26/11	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-1	07/12/11	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-1	10/27/11	N					<50	<78	<390	<1.0	< 1.0	<1.0	<3.0	
MW-1	10/27/11	FD					<50	<78	<390	<1.0	<1.0	<1.0	<3.0	
MW-1	07/02/12	N	2,354.55	31.90		2322.65	<50	<86	<430	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	07/02/12	FD					<50	<82	<410	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	10/10/12	N	2,354.55	36.02		2318.53	<50	<160	<810	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	10/10/12	FD					<50	<160	<800	<1.0	<1.0	<1.0	<3.0	<1.0
MW-1	03/13/13	FD					<100	<460	<460	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	05/15/13	N	2,354.55	32.62		2321.93	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	05/15/13	FD					<100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	08/06/13	N	2,354.55	34.22		2320.38	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	08/06/13	FD					<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	10/11/13	N	2,354.60	35.79		2318.81	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	10/11/13	FD					<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	03/11/14	N	2,354.60	35.45		2319.15	<100	<400	500	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	06/03/14	N	2,354.60	33.90		2320.70	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	06/03/14	FD					<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-1	04/06/17	N	2,354.60	27.10		2327.50	<50	<29	<68	<0.5	<0.5	<0.5	<0.5	<1.0
MW-1	09/14/17	N	2,354.60	33.15		2,321.45	<250	<110	<270	<1	<1	<1	<1	<4
MW-1	03/21/18	NS	2354.60	29.56		2325.04								
MW-1	06/21/18	NS	2354.60	30.57		2324.03								
MW-1	09/21/18	NS	2354.60	33.80		2320.80								
MW-1	12/06/18	NS	2354.60	35.37		2319.23								
MW-1	03/06/19	NS	2354.60	32.63		2321.97								

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MT	CA Method A	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-5D	10/11/13	N	2,355.03	35.57		2319.46	614	1,100	<450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	03/11/14	N	2,355.03	35.48		2319.55	<100	<400	700	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	06/03/14	N	2,355.03	33.73		2321.30	128	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	09/14/17	N	2,355.03	32.48		2,322.55	<250	560	<250	<1	<1	<1	<1	<4
MW-5D	03/21/18	N	2355.03	29.02		2326.01	69 J	370	<260					
MW-5D	03/21/18	FD	2355.03	29.02		2326.01	57 J	1,600 *	2,400 *					
MW-5D	06/21/18	N	2355.03	30.01		2325.02	<250	670	<260					
MW-5D	09/21/18	N	2355.03	33.51		2321.52	81 J	160	<280					
MW-5D	09/21/18	FD	2355.03	33.51		2321.52	<250	220	<270					
MW-5D	12/06/18	N	2355.03	35.21		2319.82	<250	72 J	<260					
MW-5D	03/06/19	N	2355.03	32.46		2322.57	<250	110	<260					
MW-6	08/20/01	NS												
MW-6	03/25/02	N						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/04/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	08/20/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	10/29/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/05/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	09/09/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	12/10/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/03/04	NS												
MW-6	12/01/04	NS												
MW-6	06/03/05	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	11/21/05	NS												

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		мто	A Method A	A Cleanup	Levels ((Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-6	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	12/19/06	NS												
MW-6	05/30/07	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	10/30/07	NS												
MW-6	06/24/08	N					<50	<75	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-6	12/03/08	NS												
MW-6	06/03/09	N					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-6	11/10/09	N					<50	135	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	02/02/10	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	05/18/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	08/09/10	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	11/01/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-6	02/02/11	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	04/26/11	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-6	07/12/11	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	10/27/11	N					<50	<78	<390	<1.0	<1.0	<1.0	<3.0	
MW-6	07/02/12	N	2,355.87	32.83		2323.04	<50	<82	<410	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	10/09/12	N	2,355.87	35.71		2320.16	<50	<160	<800	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	03/13/13	N	2,355.87	32.45		2323.42	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	05/15/13	N	2,355.87	33.07		2322.80	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0 UJ
MW-6	08/06/13	N	2,355.87	34.91		2321.02	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	10/11/13	N	2,355.93	38.50		2317.43	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	03/11/14	N	2,355.93	36.59		2319.34	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	06/03/14	N	2,355.93	34.65		2321.28	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	04/03/17	N	2,355.93	27.98		2327.95	<50	<30	<70	<0.5	<05	<0.5	<0.5	<1.0
MW-6	09/14/17	N	2,355.93	33.26		2,322.67	<250	<110	<260	<1	<1	<1	<1	<4

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MT	CA Method	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-6	03/21/18	NS	2355.93	30.08		2325.85								
MW-6	06/21/18	NS	2355.93	30.93		2325.00								
MW-6	09/21/18	NS	2355.93	34.40		2321.53								
MW-6	12/06/18	NS	2355.93	36.13		2319.80								
MW-6	03/06/19	NS	2355.93	33.36		2322.57								
MW-7	08/20/01	NS												
MW-7	03/25/02	N						6,280	<750	<0.50	<2.0	<1.0	25	154
MW-7	06/04/02	N						13,100	<500	<0.50	<2.0	<1.0	14	221
MW-7	08/21/02	N						6,850	<500	<0.50	<2.0	<1.0	<1.5	65
MW-7	08/21/02	N						6,100	<500	0.82	4.0	1.9	13	92
MW-7	10/29/02	N						5,460	<500	0.70	<2.0	<1.0	9	172
MW-7	02/19/03	N						7,390	<500	<0.50	<2.0	<1.0	6	<20
MW-7	06/05/03	N						770	<500	0.99	<2.0	<1.0	<1.5	<20
MW-7	09/09/03	NS												
MW-7	09/11/03	N						1,250	<500	<0.50	<2.0	4.7	30	81
MW-7	12/10/03	N						7,120	<500	<0.50	<2.0	1.2	15	114
MW-7	06/03/04	N						1,000	<500	<0.50	<2.0	<1.0	<1.5	48
MW-7	12/01/04	N						1540	<500	<0.50	<2.0	<1.0	<1.5	21
MW-7	06/03/05	N						830	<500	<0.50	<2.0	<1.0	<1.5	24
MW-7	11/21/05	N						2,970	<500	<0.50	<2.0	<1.0	<1.5	48
MW-7	06/15/06	N						1,410	<500	<0.50	<2.0	<1.0	<1.5	23
MW-7	12/19/06	N						1,300	<500	<0.50	6.42	2.74	9.43	24
MW-7	05/30/07	N						961	<500	0.71	<2.0	<1.0	<1.5	<20
MW-7	10/30/07	N					2,700	14,000	<4,700	<0.50	<0.70	<0.80	<0.80	<1.0
MW-7	06/24/08	N					1,600	1,200	<95	<0.50	<0.70	<0.80	<0.80	<1.0

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MT	CA Method A	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-7	12/04/08	N					1,400	<29	<68	<0.50	<0.70	<0.80	<0.80	<1.0
MW-7	06/04/09	N					155	560	<58	<0.12	<0.21	<0.20	<0.15	
MW-7	11/10/09	N					577	7,600	<388	<1.0	<1.0	<1.0	<3.0	2.7
MW-7	02/02/10	N					214	2,000	<377	<1.0	<1.0	<1.0	<3.0	2.4
MW-7	05/18/10	N					717	16,900	<400	<1.0	<1.0	<1.0	<3.0	<1.0
MW-7	08/09/10	N					928	22,100	<388	<1.0	<1.0	<1.0	<3.0	
MW-7	11/01/10	N					3,130	28,300	<388	<1.0	<1.0	<1.0	<3.0	
MW-7	02/02/11	N					704	10,700	<392	<1.0	<1.0	<1.0	<3.0	
MW-7	04/26/11	N					5,710	3,690	<400	<1.0	<1.0	<1.0	<3.0	
MW-7	07/12/11	N					278	2,540	<392	<1.0	<1.0	<1.0	<3.0	
MW-7	10/26/11	N					2,420	37,200	<380	<1.0	<1.0	<1.0	<3.0	
MW-7	07/02/12	N	2,356.25	31.84		2324.41	<50	78	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-7	10/10/12	N	2,356.25	35.24		2321.01	207	350	<820	<1.0	<1.0	<1.0	<3.0	5.4
MW-7	03/13/13	N	2,356.25	31.94		2324.31	104	<440	<440	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	05/14/13	N	2,356.25	32.74		2323.51	< 100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	08/06/13	N	2,356.25	34.54		2321.77	250	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	10/12/13	N	2,356.31	36.11		2320.20	410	600	< 450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	03/11/14	N	2,356.31	35.62		2320.69	448	430	550	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	06/04/14	N	2,356.31	34.37		2321.94	201	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	04/05/17	NS	2,356.31	26.25		2330.06	ORC sock	stuck in wel	l - unable t	o sample				
MW-7	09/14/17	NS	2,356.31	33.17		2,323.14	ORC sock	stuck in wel	l - unable t	o sample				
MW-7	03/21/18	NS	2356.31	29.59		2326.72	ORC sock	stuck in wel	l - unable t	o sample				
MW-7	06/21/18	NS	2356.31	30.76		2325.55	ORC sock	stuck in wel	l - unable t	o sample				
MW-7	09/21/18	NS	2356.31	34.13		2322.18	ORC sock	stuck in wel	l - unable t	o sample				
MW-7	12/06/18	NS	2356.31	36.09		2320.22								
MW-7	03/06/19	NS	2356.31	33.05		2323.26								

						_	HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		MTCA	A Method A	Cleanup	Levels (Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
									-	_			_	_
MW-8	08/20/01	NS												
MW-8	03/25/02	N						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-8	06/04/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	08/21/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	10/29/02	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	02/19/03	N						<250	<500	< 0.50	<2.0	<1.0	<1.5	<20
MW-8	06/05/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	09/09/03	NS												
MW-8	09/11/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	12/10/03	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	06/03/04	NS												
MW-8	12/01/04	NS												
MW-8	06/03/05	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	11/21/05	NS												
MW-8	06/15/06	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	12/19/06	NS												
MW-8	05/30/07	N						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	10/30/07	NS												
MW-8	06/24/08	N					<50	<75	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-8	12/04/08	N					< 5 0	35,000	<3,500	<0.50	<0.70	<0.80	<0.80	<1.0
MW-8	06/04/09	N					<13.4	<36	<59	<0.12	<0.21	<0.20	<0.15	
MW-8	11/10/09	N					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	02/02/10	N					<50	<76	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8		N						<78		<1.0 <1.0		<1.0 <1.0		
	05/18/10	N					<50		<388		<1.0		<3.0	<1.0
MW-8	08/09/10	1 1					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MT	CA Method	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-8	11/01/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-8	02/02/11	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-8	04/26/11	N					<50	<80	<400	<1.0	<1.0	<1.0	<3.0	
MW-8	07/12/11	N					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	
MW-8	10/26/11	N					<50	<76	<380	<1.0	<1.0	<1.0	<3.0	
MW-8	07/02/12	N	2,356.57	32.36		2324.21	<50	<86	<430	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	10/10/12	N	2,356.57	35.56		2321.01	<50	<170	<830	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	03/13/13	N	2,356.57	32.66		2323.91	<100	<440	<440	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	05/14/13	N	2,356.57	33.12		2323.45	<100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	08/06/13	N	2,356.57	34.83		2321.77	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	10/12/13	N	2,356.60	36.36		2320.24	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	03/11/14	N	2,356.60	36.98		2319.62	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	06/04/14	N	2,356.60	34.75		2321.85	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	04/05/17	N	2,356.60	29.20		2327.40	<50	<30	<69	<0.5	<0.5	<0.5	<0.5	<1.0
MW-8	09/14/17	N	2,356.60	33.04		2,323.56	<250	<100	<250	<1	<1	<1	<1	<4
MW-8	03/21/18	NS	2356.60	30.79		2325.81								
MW-8	06/21/18	NS	2356.60	31.11		2325.49								
MW-8	09/21/18	NS	2356.60	34.24		2322.36								
MW-8	12/06/18	NS	2356.60	36.15		2320.45								
MW-8	03/06/19	NS	2356.60	33.58		2323.02								
MW-11A				re	emoved f	rom samplin	g schedule	due to wel	l obstruction	n				
MW-11A	02/02/11	NS	2,357.25	Obstruction	on in We	ll at 3.25 Fee	- t							
MW-11A	04/26/11	NS	2,357.25	Obstruction	on in We	ll at 3.25 Fee	t							
MW-11A	09/14/17	NS	2,357.25	34.47		2,322.78								
MW-11A	03/21/18	NS	2357.25	30.76		2326.49								

							HYD	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MT	CA Method	A Cleanup	Levels ((Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-11A	06/21/18	NS	2357.25	31.98		2325.27								
MW-11A	09/21/18	NS	2357.25	35.48		2321.77								
MW-11A	12/06/18	NS	2357.25	37.18		2320.07								
MW-11A	03/06/19	NS	2357.25	34.11		2323.14								
WW-11A	03/00/19	110	2007.20	J 4 .11		2020.14								
MW-11B	08/20/01	NS												
MW-11B	03/25/02	NS												
MW-11B	06/04/02	NS												
MW-11B	10/29/02	NS												
MW-11B	02/19/03	NS												
MW-11B	06/05/03	NS												
MW-11B	09/09/03	NS												
MW-11B	12/10/03	NS												
MW-11B	06/03/04	NS												
MW-11B	12/01/04	NS												
MW-11B	06/03/05	NS												
MW-11B	11/21/05	NS												
MW-11B	06/15/06	NS												
MW-11B	12/19/06	NS												
MW-11B	05/30/07	NS												
MW-11B	10/30/07	NS												
MW-11B	06/24/08	NS												
MW-11B	12/03/08	NS												
MW-11B	06/03/09	N					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-11B	11/10/09	N					<50	144	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	02/02/10	N					<50	<76	<381	<1.0	<1.0	<1.0	<3.0	<1.0

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		M	ΓCA Method A	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-11B	05/18/10	N					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	08/09/10	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-11B	11/01/10	N					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-11B	02/02/11	N					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	
MW-11B	04/26/11	N					<50	<80	<400	<1.0	<1.0	<1.0	<3.0	
MW-11B	07/12/11	N					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-11B	10/26/11	N					<50	<75	<380	<1.0	<1.0	<1.0	<3.0	
MW-11B	07/02/12	N	2,357.78	33.82		2323.96	<50	<77	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	10/10/12	N	2,357.78	37.18		2320.60	< 5 0	<160	<810	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	03/13/13	N	2,357.78	33.67		2324.11	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	05/14/13	N	2,357.78	34.52		2323.26	<100	<450	<450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	08/06/13	N	2,357.78	36.34		2321.51	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	10/12/13	N	2,357.85	37.96		2319.89	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	03/12/14	N	2,357.85	38.10		2319.75	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	06/04/14	N	2,357.85	35.97		2321.88	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	04/05/17	N	2,357.85	28.38		2329.47	<50	<30	<70	<0.5	<0.5	<0.5	<0.5	<1.0
MW-11B	09/14/17	N	2,357.85	34.78		2,323.07	<250	<110	<260	<1	<1	<1	<1	<4
MW-11B	03/21/18	NS	2357.85	31.19		2326.66								
MW-11B	06/21/18	NS	2357.85	32.27		2325.58								
MW-11B	09/21/18	NS	2357.85	34.76		2323.09								
MW-11B	12/06/18	NS	2356.71	36.51		2320.20								
MW-11B	03/06/19	NS	2356.71	33.42		2323.29								
MW-12A	08/20/01	NS												
MW-12A	03/25/02	NS												
MW-12A	06/04/02	NS												

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	Х	Naph
		MTC	A Method A	Cleanup	Levels (Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	40400400													
MW-12A	10/29/02	NS												
MW-12A	02/19/03	NS												
MW-12A	06/05/03	NS												
MW-12A	09/09/03	NS												
MW-12A	12/10/03	NS												
MW-12A	06/03/04	NS												
MW-12A	12/01/04	NS												
MW-12A	06/03/05	NS												
MW-12A	11/21/05	NS												
MW-12A	06/15/06	NS												
MW-12A	12/19/06	NS												
MW-12A	05/30/07	NS												
MW-12A	10/30/07	NS												
MW-12A	06/24/08	NS												
MW-12A	12/03/08	NS												
MW-12A	06/03/09	N					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-12A	07/02/12	NS	2,355.12	31.23		2323.89								
MW-12A	10/09/12	NS	2,355.12	34.66		2320.46								
MW-12A	03/12/13	NS	2,355.12	30.97		2324.15								
MW-12A	05/14/13	NS	2,355.12	32.00		2323.12								
MW-12A	08/05/13	NS	2,355.12	33.74		2321.48								
MW-12A	10/18/13		2,355.22	35.36		2319.86								
MW-12A	03/11/14		2,355.22	35.02		2320.20								
MW-12A	06/02/14		2,355.22	33.38		2321.84								
MW-12A	04/03/17		2,355.22	25.76		2329.46								
MW-12A	09/14/17		2,355.22	32.27		2,322.95								

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
		МТ	CA Method	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-12A	03/21/18	NS	2355.22	23.53		2331.69								
MW-12A	06/21/18	NS	2355.22	29.80		2325.42								
MW-12A	09/21/18	NS	2355.22	33.28		2321.94								
MW-12A	12/06/18	NS	2355.22	34.91		2320.31								
MW-12A	03/06/19	NS	2355.22	31.85		2323.37								
MW-12B	08/20/01	NS												
MW-12B	03/25/02	NS												
MW-12B	06/04/02	NS												
MW-12B	10/29/02	NS												
MW-12B	02/19/03	NS												
MW-12B	06/05/03	NS												
MW-12B	09/09/03	NS												
MW-12B	12/10/03	NS												
MW-12B	06/03/04	NS												
MW-12B	12/01/04	NS												
MW-12B	06/03/05	NS												
MW-12B	11/21/05	NS												
MW-12B	06/15/06	NS												
MW-12B	12/19/06	NS												
MW-12B	05/30/07	NS												
MW-12B	10/30/07	NS												
MW-12B	06/24/08	NS												
MW-12B	12/03/08	NS												
MW-12B	06/03/09	N					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-12B	07/02/12	NS	2,355.02	30.85		2324.17								

Table 1B Page 13 of 14

						_	HYD	ROCARBO	ONS					
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	X	Naph
		MT	CA Method	A Cleanup	Levels	(Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-12B	10/09/12	NS	2,355.02	34.24		2320.78								
MW-12B	03/12/13	NS	2,355.02	30.72		2324.30								
MW-12B	05/14/13	NS	2,355.02	31.56		2323.46								
MW-12B	08/05/13	NS	2,355.02	33.36		2321.73								
MW-12B	10/18/13	NS	2,355.09	35.00		2320.09								
MW-12B	03/11/14	NS	2,355.09	34.99		2320.10								
MW-12B	06/02/14	NS	2,355.09	33.03		2322.06								
MW-12B	04/03/17	NS	2,355.09	26.35		2328.74								
MW-12B	09/14/17	NS	2,355.09	31.76		2,323.33								
MW-12B	03/21/18	NS	2355.09	28.18		2327.91								
MW-12B	06/21/18	NS	2355.09	29.22		2325.87								
MW-12B	09/21/18	NS	2355.09	32.81		2322.28								
MW-12B	12/06/18	NS	2355.09	34.55		2320.54								
MW-12B	03/06/19	NS	2355.09	32.62		2322.47								

Table 1B Page 14 of 14

Summary of Groundwater Monitoring Data - Deep Wells Yellowstone Pipeline Geiger Correctional Facility Spokane, Washington

							HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	E	X 1000	Naph
		MTC	A Method	A Cleanup	Levels (Deep GW)	800	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

Notes:

DTW = Depth to Water in feet

GWE = Groundwater Elevation in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

TOC = Top of Casing in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

All results are in micrograms per liter (µg/L) unless otherwise indicated

TPHg = Total petroleum hydrocarbons as gasoline analyzed by NWTPH---Gx unless otherwise noted. The higher value is based on the assumption that no benzene is present in the groundwater sample. If any detectable amount of benzene is present in the groundwater sample, then the lower TPHg cleanup level is applicable.

TPHd = Total petroleum hydrocarbons as diesel, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

TPHo = Total petroleum hydrocarbons as oil, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

VOCs = Volatile organic compounds

BTEX = Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B unless otherwise noted.

Total Xylenes = o---xylene + m,p---xylene

<x = Not detected at laboratory reporting limit x</p>

FD = Field duplicate

N = Normal

NS = Not sampled

NM = Not measured

--- = Not analyzed

Concentrations in bold type indicate the analyte was detected above the Model Toxics Control Act (MTCA) Method A cleanup level

* = Field duplicate concentration is not consistent with the "parent" sample; therefore, this data is considered anomalous.

Summary of Soil Analytical Data Yellowstone Pipeline Geiger Correctional Facility Spokane, Washington

			•	HY	DROCARB	ONS	PRIMARY VOCs			OXYGENATES	TES PAHs		
Sample ID		Sample Date A Method A Scr		TPHg 30/100	TPHd 2,000	TPHo 2,000	B 0.03	T 7	E 6	X 9	MTBE 0.1	Naphthalenes 5	
			ft bgs	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
TP-2-3.5	Maxim	03/19/01	3.5	6.98	<10	<25	<0.050	<0.100	<0.050	0.108	<0.200	<0.01	
TP-3-2.0	Maxim	03/19/01	2	1,460	690	<25	<0.250	<0.500	0.488	1.37	<1.00	0.163	
TP-3-2.0 (dup)	Maxim	03/19/01	2	699	804	<25	<0.100	<0.200	0.268	0.733	<0.400	0.130	
TP-4-6.0	Maxim	03/19/01	6	4,250	11,600	<275	<0.500	<1.00	1.5	7.06	<2.00	9.30	
TP-5-3.5	Maxim	03/19/01	3.5	<5.00	<10	<25	<0.050	<0.100	<0.050	<0.100	<0.200	<0.01	
TP-6-5.5	Maxim	03/19/01	5.5	44.8	69.9	<25	<0.050	<0.100	< 0.050	<0.100	<0.200	<0.01	
TP-7-4.0	Maxim	03/19/01	4	10.3	<10	<25	<0.050	<0.100	<0.050	<0.100	<0.200	<0.01	
TP-8-4.0	Maxim	03/19/01	4	<5.00	<10	<25	<0.050	<0.100	< 0.050	<0.100	<0.200	<0.01	
TP-9-4.0	Maxim	03/19/01	4	<5.00	<10	<25	<0.050	<0.100	<0.050	<0.100	<0.200	<0.01	
YPL#2-5.0	Maxim	03/21/01	5	1,070	5,390	<250	<0.050	<0.100	0.123	0.716	<0.200	0.0515	
YPL#3-5.0	Maxim	03/21/01	5	414	971	<25	<0.050	<0.100	0.130	0.411	<0.200	0.0829	
GCC-3	Maxim	10/15/01	2-5		756	<25	<0.100	<0.800	<0.800	<0.800		11.2	
GCC-7	Maxim	10/15/01	4		343	<25	<0.0250	<0.200	<0.200	<0.200		4.12	
GCC8-3.5	Maxim	10/16/01	3.5		<10	<25							
GCC9-6	Maxim	10/16/01	6		25.4	<25							
GCC10-4	Maxim	10/16/01	4		<10	<25							
GCC12-6	Maxim	10/16/01	6		190	<25	<0.0250	<0.200	<0.200	<0.200		4.48	
GCC14-5	Maxim	10/16/01	5		808	<25							
GCC15-5.5	Maxim	10/17/01	5.5		6,180	<250							
GCC16-6	Maxim	10/17/01	6		14.6	<25							
GCC17-5.5	Maxim	10/17/01	5.5		<10	<25							
GCC18-5.5	Maxim	10/17/01	5.5		2,690	<250							
GCC19-6	Maxim	10/17/01	6		1,510	<250	<0.0250	<0.200	<0.200	0.702		17.3	
GCC20-6	Maxim	10/17/01	6		3,470	<250							
GCC21-6	Maxim	10/17/01	6		5,780	<250							
GCC22-6	Maxim	10/17/01	6		<10	<25							
GCC23-7	Maxim	10/17/01	7		57.5	<25	<0.0250	<0.200	<0.200	<0.200		<0.500	
GCC24-6.5	Maxim	10/18/01	6.5		11	29.8							
GCC25-6	Maxim	10/18/01	6		3,940	<250							
GCC26-6	Maxim	10/18/01	6		11.3	<25							
GCC27-6	Maxim	10/18/01	6		<10	<25							
GCC28-6	Maxim	10/18/01	6		690	<25							
GCC29-6	Maxim	10/18/01	6		8,280	<250							
GCC30-6	Maxim	10/18/01	6		<10	<25							

Table 2 Page 2 of 3

Summary of Soil Analytical Data Yellowstone Pipeline Geiger Correctional Facility Spokane, Washington

				HYDROCARBONS				PRIMA	RY VOCs	OXYGENATES	PAHs	
Sample ID	Consultant Sample Date Sample Depth MTCA Method A Screening Levels				TPHd 2,000	TPHo 2,000	B 0.03	T 7	E 6	X 9	MTBE 0.1	Naphthalenes 5
	WITC	A Method A Sci	ft bgs	30/100 (mg/kg)	2,000 (mg/kg)	2,000 (mg/kg)	0.03 (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	0.1 (mg/kg)	s (mg/kg)
GCC31-6	Maxim	10/18/01	6		<10	<25						
GCC32-6	Maxim	10/18/01	6		2,810	<250						
MW-1-45	Maxim	03/18/02	45		67.1	98.5	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-2-10-10.5	Maxim	03/19/02	10-10.5		87.9	27	<0.0250	<0.200	<0.200	<0.200		27.8
MW-3-4-6	Maxim	03/19/02	4-6		<10	<25	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-4-7-9	Maxim	03/19/02	7-9		505	40.2	<0.0250	<0.200	<0.200	<0.200		13.6
MW-4-12-14	Maxim	03/19/02	12-14		15.2	<25	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-5-4-6	Maxim	03/19/02	4-6		328	<25	<0.0250	<0.200	<0.200	<0.200		16.8
MW-5-9.5-11.5	Maxim	03/19/02	9.5-11.5		45.4	40.3	<0.0250	<0.200	<0.200	<0.200		0.544
MW-6-22-24	Maxim	3/19/2002	22-24		68	<25	< 0.0250	<0.200	<0.200	<0.200		1.6
MW-6-42	Maxim	3/20/2002	42		27.9	29.2	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-7-4-4.5	Maxim	3/20/2002	4-4.5		301	<25	<0.0250	<0.200	<0.200	0.402		20.3
MW-7-37	Maxim	3/20/2002	37		87.1	47.4	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-8-4-6	Maxim	3/20/2002	4-6		<10	<25	<0.0250	<0.200	<0.200	<0.200		<0.500
MW-8-36	Maxim	3/20/2002	36		26.7	35.1	<0.0250	<0.200	<0.200	<0.200		<0.500

Table 2 Page 3 of 3

Summary of Soil Analytical Data Yellowstone Pipeline Geiger Correctional Facility Spokane, Washington

		HYDROCARBONS				PRIMAF	RY VOCs	OXYGENATES	PAHs			
Sample ID	Consultant	t Sample Date Sample Depth		TPHg	TPHd	TPHo	В	т	E	x	MTBE	Naphthalenes
	MTC	A Method A Scr	eening Levels	30/100	2,000	2,000	0.03	7	6	9	0.1	5
			ft bgs	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MP-1R-4.5-4.6-1013	AECOM	10/8/2013	4.5-4.6	<6.7	47.3	<101	<0.0274	<0.0685	<0.0685	<0.205		
MW-5D-4.9-5.9-1013	AECOM	10/7/2013	4.9-5.9	412	2,580	<84.9	< 0.0237	<0.0592	<0.0592	<0.178		
MW-5D-35-35.2-1013	AECOM	10/7/2013	35-35.2	117	54.9	<87.8	<0.0282	<0.0706	<0.0706	<0.212		
MW-90-4.4-4.5-1013	AECOM	10/15/2013	4.4-4.5	<4.9	<21.2	<84.2	<0.0229	<0.0573	< 0.0573	<0.172		
MW-9-4.4-4.5-1013	AECOM	10/15/2013	4.4-4.5	<8.1	<21.1	<84.4	< 0.0221	< 0.0553	< 0.0553	<0.166		

Notes:

MTCA = Model Toxics Control Act

-- = Not analyzed or not reported

All results in milligrams per kilogram (mg/kg) unless otherwise indicated.

Results in bold indicate an exceedance of the MTCA Method A cleanup levels.

ft bgs = feet below ground surface

TPHg = Total petroleum hydrocarbons as gasoline range organics analyzed by NWTPH-Gx; before May 20, 2008, analyzed by EPA Method 8015, unless otherwise noted

TPHd = Total petroleum hydrocarbons as diesel range organics analyzed by NWTPH-Dx; before May 20, 2008, analyzed by Method WTPH-HICD; before June 2, 1992, analyzed by EPA Method 8015, unless otherwise noted

TPHo = Total petroleum hydrocarbons as heavy oil range organics analyzed by NWTPH-Dx; before May 20, 2008, analyzed by Method WTPH-HCID, unless otherwise noted

BTEX = Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B; before May 20, 2008, analyzed by EPA Method 8020 unless otherwise noted

VOCs = volatile organic compounds

<x = Not detected at reporting limit x</pre>

Shading indicates the soil sample has been overexcavated.

^{* =} Generic direct contact TPHg cleanup level from Model Remedies for Sites with Petroleum Contaminated Soils