

July 2, 2019

Andrew Smith, Site Manager Department of Ecology PO Box 47775 Olympia, Washington 98504-7775

Subject: Additional Investigation Results Report NuStar Vancouver Annex Facility 5420 NW Fruit Valley Road Vancouver, Washington 0060-001-005

Dear Mr. Smith:

Enclosed, please find the *Additional Investigation Results Report* that has been prepared on behalf of NuStar Terminals Services, Inc. (NuStar) by Cascadia Associates, LLC. (Cascadia). The enclosed report provides a summary of the soil and groundwater investigation and comprehensive groundwater monitoring event conducted at the NuStar Vancouver Annex Facility during first quarter 2019. The results from this investigation are being used to evaluate remedial options for the Feasibility Study.

If you have any questions or would like to discuss this further, please contact me at (503) 906-6577 (ext. 110).

Sincerely,

Stephanie Bosy Salielery Stephanie Bosze Salisbury, L.G.

Stephanie Bosze Salisbury, L.G Senior Associate Geologist

Enclosure

Additional Investigation Results Report (electronic via email and 2 hard copies)

cc: Renee Robinson, NuStar Energy, L.P. (electronic deliverable)
 Aaron Flett, NuStar Energy, L.P. (electronic deliverable)
 Zack Chaffin, NuStar Energy, L.P. (electronic deliverable)
 Chris Chan, NuStar Energy, L.P. (electronic deliverable)

Additional Investigation Results Report NuStar Vancouver Annex Terminal 5420 NW Fruit Valley Road Vancouver, Washington

Prepared for:

NuStar Terminals Operations Partnership, L.P. 19003 IH-10 West San Antonio, Texas 78257

Prepared by:

Cascadia Associates, LLC 5820 SW Kelly Avenue, Suite B Portland, Oregon 97239

> Project No. 0060-001-005 July 1, 2019

Additional Investigation Results Report NuStar Vancouver Annex Terminal 5420 NW Fruit Valley Road Vancouver, Washington

Prepared for:

NuStar Terminals Operations Partnership, L.P. Project No. 0060-001-005 July 1, 2019

Prepared by:

Amanda Spencer Principal Hydrogeologist, Cascadia Associates

Stephanie Bosze Salisbury, L.G. Sr. Associate Geologist, Cascadia Associates

CONTENTS

1.0	INTRC	DUCTION	1
2.0	BACK	GROUND	2
2.1	Site	Location, Description, and History	2
2.2	Geo	logy and Hydrogeology	3
2	.2.1	Geology	3
2	.2.2	Hydrogeology	3
3.0	SUMM	ARY OF SITE INVESTIGATIONS	4
3.1	Sum	mary of Historical Investigations – 2001 through 2012	4
3.2	Sum	ımary of Additional Investigation – 2014 through 2016	5
3.3	Pilo	t Study - 2017	6
4.0	ADDIT	IONAL INVESTIGATION - 2019	6
4.1	Scoj	be and Rationale for Investigation Areas	7
4	.1.1	Loading Rack Soil Investigation	7
4	.1.2	Soil and Groundwater Assessment for De-Icer Constituents	7
4	.1.3	Groundwater Investigation – Western Area	7
4	.1.4	Groundwater Investigation – Vapor Recovery Area	8
4.2	Met	hods and Procedures	8
4	.2.1	Preparatory Activities	8
4	.2.2	Soil Boring Installation	9
4	.2.3	Field Screening	9
4	.2.4	Soil Sample Collection – Former Truck Rack Area	9
4	.2.5	Soil Sample Collection – Western Area	9
4	.2.6	Depth Discrete Groundwater Sampling – Western Area	9
4	.2.7	Historical Vapor Recovery Area – Grab Groundwater Sampling and Monitoring W	ell
Ir	nstallati	on	10
4	.2.8	Comprehensive Groundwater Monitoring Event	
4.3	Ana	lytical Program	11
5.0	RESUI	ΤЅ	11
5.1	Soil	Investigation – Former Truck Rack Area	11
5.2	Soil	Sample Results – Western Area	13

5	.2.1	Well MW-5 Area	13
5	.2.2	Well MW-6 Area	13
5	.2.3	Storm Pond	14
5.3 Loa		and Groundwater Assessment for De-Icer Constituents in AST and Former Truck ick Area	14
5.4	Gro	undwater Investigation – Western Area	15
5	.4.1	Vertical Delineation of Groundwater in the Well MW-5 Area	15
5	.4.2	Vertical Delineation of Groundwater in the Well MW-6 Area	15
5	.4.3	Lateral Delineation Between the Well MW-5 and Well MW-6 Areas	16
5.5	Gro	undwater Investigation – Former Vapor Recovery Area	16
5.6	Con	prehensive Groundwater Sampling Event	16
6.0	SUMM	ARY AND CONCLUSIONS	16
7.0	REFEF	RENCES	18

TABLES

Table 1	Groundwater Elevation Data
Table 2	Summary of Soil Analytical Results: TPH and VOCs
Table 3	Summary of Groundwater Sample Analytical Results: TPH and VOCs
Table 4	Summary of Analytical Results - Monitoring Wells

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevations – February 2019
Figure 4	BTEX, MTBE and Naphthalene Soil Sample Results – Former Truck Loading Rack
	Area Detail
Figure 5	TPHg and TPHd Soil Sample Results – Former Truck Loading Rack Area Detail
Figure 6	BTEX, MTBE and Naphthalene Grab Groundwater Results – February 2019
Figure 7	TPHg and TPHd Grab Groundwater Results – February 2019
Figure 8	BTEX and MTBE in Groundwater from Monitoring Wells – February 2019
Figure 9	TPHg and TPHd in Groundwater from Monitoring Wells – February 2019
Figure 10	TPH in First Encountered Groundwater – Western Area
Figure 11	BTEX in First Encountered Groundwater – Western Area

APPENDICES

- Appendix A Historical Figures
- Appendix B Cascadia Standard Operating Procedures (SOPs)
- Appendix C Boring Logs and Well MW-11 Construction Log
- Appendix D Laboratory Analytical Reports and Quality Assurance/Quality Control Review
- Appendix E Field Sampling Forms

1.0 INTRODUCTION

This *Additional Investigation Results Report* summarizes data collected during a soil and groundwater investigation conducted at the NuStar Terminals Operations Partnership, L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Facility). A location map for the Facility is provided on Figure 1; a site plan is provided on Figure 2.

On July 12, 2012, NuStar submitted a draft Feasibility Study (FS) to the Washington State Department of Ecology (Ecology) in accordance with Agreed Order (AO) No. 09-TC-S DE5250 between Ecology and NuStar (Ash Creek, 2012). The technical basis of the FS was the Remedial Investigation (RI) and Risk Assessment (RA) documented in the Remedial Investigation and Risk Assessment Report (RI/RA Report) submitted to Ecology in December 2010 (Ash Creek, 2010) and approved by Ecology on June 23, 2011. The draft FS proposed monitored natural attenuation to address residual hydrocarbon constituents in groundwater in the eastern portion of the tank farm. On October 16, 2013, Ecology provided NuStar with comments on the draft FS. In the months following receipt, NuStar held several meetings with Ecology to discuss Ecology's comments on the FS, as well as additional comments that were presented to NuStar in a February 4, 2014 meeting. The meetings culminated in a Final Project Coordinator's Decision (the "Decision") issued by Ecology on August 26, 2014, which established a series of steps for collecting additional data to support submittal of a revised FS. The additional data requested by Ecology included one year of sitewide quarterly groundwater monitoring and additional groundwater investigation near historical borings SB-8 and SB-9 located in the western portion of the terminal. NuStar agreed to the additional investigation and monitoring and collected a series of grab groundwater samples and ultimately installed seven additional monitoring wells (MW-5 through MW-10 and MW-8D). The results indicated the presence of petroleum hydrocarbons in groundwater at concentrations above Washington Model Toxics Control Act (MTCA) Method A Cleanup Levels in two apparently isolated areas in the vicinity of historical borings SB-8 and SB-9. A pilot study was conducted in one of these areas to evaluate the efficacy of injecting chemical oxidants to address the petroleum hydrocarbons. The results of the pilot study were summarized in the Pilot Study Results report (Cascadia, 2019b) that was submitted to Ecology on January 17, 2019.

While evaluating the results from the pilot study, it was apparent that additional delineation of hydrocarbon constituents in soil and groundwater would be beneficial in the western portion of the Facility to evaluate applicable remedial alternatives for the FS. Specifically, additional vertical delineation of residual hydrocarbon constituents in soil and groundwater was needed in certain portions of the western tank farm areas, and lateral delineation was needed to determine whether the dissolved-phase hydrocarbon constituents in groundwater around wells MW-5 and MW-6 were discreet or connected. Additionally, in April 2018, Ecology requested additional soil investigation near the truck loading rack at the Facility to better define the presence and extent of petroleum hydrocarbon constituents in soil.

An Additional Soil and Groundwater Investigation Work Plan (Work Plan) was submitted to Ecology on October 22, 2018, summarizing the methods and procedures for collecting the additional soil and groundwater data. Ecology provided NuStar with comments on the Work Plan on November 15, 2018, and NuStar provided a response to comments in an email on December 5, 2018. Ecology approved the Work Plan scope on December 12, 2018; however, the agency requested that soil and groundwater samples in the vicinity of the truck loading rack and small above-ground storage tank (AST) area also be analyzed for chemicals present in fuel system icing inhibitor (diethylene glycol monomethyl ether[DGME]).

On January 14, 2019, a final Work Plan (Cascadia 2019a) was submitted to Ecology, which included a proposed analysis for evaluating the chemicals present in the icing inhibitor. The Work Plan included a cover letter with responses to Ecology's November 15, 2018 comments as well as responses to Ecology comments provided during a January 3, 2019 telephone call. The additional soil and groundwater investigation was implemented between January 28 and February 5, 2019. Following the investigation, a comprehensive groundwater monitoring event was completed from February 18 through 19, 2019. The methods, procedures, and results for the soil and groundwater investigation are described in this report.

2.0 BACKGROUND

2.1 SITE LOCATION, DESCRIPTION, AND HISTORY

Location. The Facility address is 5420 NW Fruit Valley Road, Vancouver, Washington 98660 (Latitude: N45^o 39.70', Longitude: W122^o 41.66'), as shown on Figure 1. The Facility is located on Clark County Tax Lot (TL) No. 147360.

Physical Features. Figure 2 is a Site Plan. The Facility is approximately 31 acres and is roughly rectangular, with dimensions of approximately 800 by 1,800 feet. The Facility is located in a mixed industrial-agricultural area and currently includes ASTs containing jet fuel and methanol (seven ASTs ranging in size from 30,000 to 3,000,000 gallons); a covered truck refueling rack with two smaller volume ASTs (an approximately 400-gallon AST which stores anti-static additive [ASA] and a 7,500-gallon AST containing fuel system icing inhibitor [FSII] additive); and several buildings used for equipment storage and offices. A former underground storage tank (UST) associated with a vapor recovery system was also located on the Facility and was removed in 2001. The vapor recovery system and an associated oil/water separator (OWS) remain on-site but are no longer used. The surface of the Facility is comprised of graveled areas and grass fields, with asphalt-paved roads providing access to the fueling areas, ASTs, and office buildings.

Property History. Support Terminals Operating Partnership, L.P. (STOP) purchased the Facility from Cenex Harvest States Cooperative (Cenex) in 2003. In March 2008, NuStar acquired STOP.

The property was developed in 1957 as a truck loading terminal. Records are unclear as to whether the Facility was developed by Cenex. Historically, chemicals and other products stored at the Facility included liquid fertilizers and refined petroleum products such as gasoline, diesel and

kerosene, de-natured alcohol, and petroleum product additives. A transmix tank is present in the western portion of the Facility (Figure 2), and this is typically where waste (such as from tankbottom cleanouts or the OWS) would be stored prior to off-site disposal or recycling. The transmix tank is no longer in use.

2.2 GEOLOGY AND HYDROGEOLOGY

This section presents the understanding of the geology and hydrogeology as discussed in the RI/RA Report (Ash Creek, 2010).

2.2.1 Geology

Regional Geology. The regional geology is summarized below and is based on reports prepared by Pacific Groundwater Group (PGG; 2001) and AMEC (2002a). The vicinity of the Facility is dominated by three primary units: Recent Alluvial deposits; the Pleistocene Alluvial deposits; and the Troutdale Formation.

The Recent Alluvial deposits are the upper unit with deposits approximately 55 feet thick and consist of fine-grained silt and sand within the areas investigated near Vancouver Lake. The Pleistocene Alluvial deposits are approximately 95 to 115 feet thick and consist of coarse-grained sand and gravel. The Pleistocene Alluvial deposits originate from alluvial deposits from the Columbia River and deposits from the catastrophic Missoula Floods. The Troutdale Formation underlies the Pleistocene Alluvial deposits and can be greater than 1,000 feet thick. It is made up of cemented sandy gravels and semi-consolidated sands, silts, and clays.

Site Geology. During previous Facility investigations performed by others, soil borings have been installed to depths of up to 50 feet below ground surface (bgs) at the Facility. During a 2007 Facility investigation conducted by Ash Creek Associates (Ash Creek, 2007), one boring was completed to a depth of 72 feet bgs. Recent investigations in the western portion of the Facility included installing borings up to depths of 65 feet bgs.

The Recent Alluvial deposits underlying the western portion of the Facility consist of silt and silty clay with some fine sand to depths of approximately 20 to 25 feet bgs. Below 20 to 25 feet bgs, the Recent Alluvial deposits consist of layers of fine- to medium-grained sand to a depth of at least 65 feet bgs. On the eastern portion of the Facility, fine sand or sandy silt with variable layers of sand or silty sand is encountered to a depth of approximately 10 feet bgs. Below 10 feet bgs, the Recent Alluvial deposits in the eastern portion of the Facility consist of layers of fine- to medium-grained sand to a depth of approximately 50 to 60 feet bgs. The Pleistocene Alluvial deposits are encountered below the Recent Alluvial deposits and consist of sand and/or gravel layers of varying thicknesses.

2.2.2 Hydrogeology

Regional Hydrogeology. The regional aquifers, Recent Alluvial Aquifer (RAA); Pleistocene Alluvial Aquifer (PAA); and the aquifers of the Troutdale Formation, follow the regional geology discussed

above. The regional hydrogeology summarized below is based on reports prepared in support of Clark Public Utilities (CPU) South Lake Wellfield (PGG, 2001; PGG, 2009), and by Ash Creek (2008a and 2008b).

The RAA is unconfined and receives recharge directly from the land surface and/or surface water features. The PAA directly underlies the RAA and is a productive aquifer with high well yields (several thousand gallons per minute [gpm] without significant drawdown). The groundwater flow system is highly influenced by local surface water bodies. The Columbia River, Vancouver Lake, Vancouver Lake Flushing Channel, and Lake River form natural hydrologic boundaries to the groundwater flow system. Tidal influences and seasonal variations in surface water runoff cause dynamic variation in the stage of the Columbia River, and resulting adjustments in the stages of the other three connected surface water bodies. The groundwater flow system is also influenced by tidal and seasonal variations in the surface water bodies. Regionally, it is anticipated that groundwater within the RAA and PAA near the Facility would have a net gradient towards Vancouver Lake and the Columbia River.

Site Hydrogeology. In the west tank farm, area depth to first encountered groundwater is typically 16 to 20 feet bgs, and in the eastern portion of the site, near the former truck loading area, depth to groundwater typically ranges from 26 to 32 feet bgs. During the May 2018 monitoring event, the water table was approximately 8 feet higher than typical spring water levels. A review of historical water level monitoring results suggests that the water levels in May 2018 were elevated in response to heavy rainfall and were not indicative of typical Spring conditions.

First encountered groundwater at the Facility corresponds to the silt and fine- to medium-grained sand of the RAA.

Shallow groundwater flow at the Facility is typically, under static conditions, flat with a slight gradient (0.0002 foot per foot [ft/ft]) to the southeast (AMEC, 2002a; SECOR, 2003; Ash Creek, 2009). The groundwater gradient during the February 2019 monitoring event was generally consistent with historical results, as shown on Figure 3. The groundwater elevation in well MW-7, located outside of the tank farm berm to the west, was lower than the wells in the western tank farm (MW-5, MW-6, and MW-8) suggesting a potential groundwater divide in the western tank farm. A quarterly monitoring program has been initiated in 2019, and groundwater flow will continue to be monitored during quarterly events.

3.0 SUMMARY OF SITE INVESTIGATIONS

The below sections summarize historical and recent investigations conducted at the Facility.

3.1 SUMMARY OF HISTORICAL INVESTIGATIONS – 2001 THROUGH 2012

Several investigations have been conducted at the Facility since 2001. The initial investigation assessed the area of a possible fuel release during a UST decommissioning and resulted in further work to define the extent of petroleum constituents in soil and groundwater (AMEC 2002a, 2002b).

In 2003, SECOR conducted a comprehensive Phase II Environmental Site Assessment (ESA) of the Facility as a part of due diligence activities for Cenex during the property transaction to NuStar (SECOR, 2003). From 2007 to 2008, Ash Creek completed several investigations to further characterize the site (Ash Creek, 2007, 2008a, and 2008b). Four monitoring wells were installed in 2004 and were monitored periodically or quarterly during the 2004 to 2012 investigation period. The scope and results of each of these investigations are detailed in the RI/RA Report (Ash Creek, 2010). Table 1 summarizes the depth to groundwater and groundwater elevation data from these investigations; Table 2 summarizes the historical soil data; and Table 3 summarizes the historical grab groundwater data; and Table 4 summarizes the historical groundwater monitoring data from site monitoring wells.

3.2 SUMMARY OF ADDITIONAL INVESTIGATION – 2014 THROUGH 2016

As previously discussed in Section 1.0, Ecology provided NuStar with comments on the Draft FS on October 16, 2013. In the months following receipt, NuStar held several meetings with Ecology to discuss Ecology's comments on the FS, as well as additional comments that were presented to NuStar in a February 4, 2014 meeting. The additional comments included a request for additional groundwater investigation near historical borings SB-8 and SB-9; the locations of these borings are shown on Figure 2. NuStar agreed to the additional investigation, and the preliminary investigation indicated that petroleum hydrocarbon constituents were present in groundwater near historical borings SB-8 and SB-9 at concentrations above MTCA Method A Cleanup Levels. As a result, additional site investigation, well installation, and groundwater monitoring were conducted to evaluate the magnitude and extent of petroleum hydrocarbon constituents in groundwater in the western portion of the terminal. The results of these investigations are detailed in Apex 2015a, 2015b, and 2017. The soil results from these investigations are included in Table 3, and the grab groundwater results are shown in Table 4. Boring and monitoring well locations are shown on Figure 2.

In summary, these investigations included:

- Installing two monitoring wells, MW-5 and MW-6, at the locations of historical borings SB-8 and SB-9, respectively (soil boring SB-8 was located adjacent to tank 5503 while boring SB-9 was located adjacent to the transmix tank located in the southwestern quadrant of the Facility);
- Conducting one year of quarterly groundwater monitoring of existing wells MW-1 through MW-4 and the new wells, MW-5 and MW-6;
- Conducting additional groundwater investigation to define the extent of petroleum hydrocarbons and related constituents in the areas of wells MW-5 and MW-6, including the installation of 12 additional borings (B-1 through B-12) and the collection of two to three depth discrete groundwater samples from each boring using temporary well points;

- Conducting a groundwater investigation to delineate the extent of petroleum hydrocarbons in groundwater to the west of wells MW-5 and MW-6, including the installation of two borings, B-13 and B-14, outside and to the west of the tank farm berms of the Facility;
- Installing four shallow compliance wells, MW-7 through MW-10, to monitor the potential for offsite migration to the north, west, and south; and
- Installing two deeper monitoring wells, MW-5D and MW-8D, adjacent to wells MW-5 and MW-8, respectively to evaluate potential vertical gradients in groundwater.

Total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations in the samples from borings B-13 and B-14, and wells MW-7 through MW-10 and MW-8D were below method reporting limits. The results were presented to Ecology in a meeting on September 22, 2016. During the meeting, Ecology supported the conclusion that the compliance well network was acceptable for monitoring purposes.

3.3 PILOT STUDY - 2017

In the September 2016 meeting, Ecology stated that the FS would need to evaluate active remediation to address the petroleum hydrocarbons in groundwater near wells MW-5 and MW-6 based on the additional groundwater investigations conducted from 2014 to 2016. As such, NuStar indicated that initial evaluations of potential remedial alternatives identified injection of oxygen releasing compound (ORC) and/or *in-situ* chemical oxidation (ISCO) as possible options. However, due to the presence of the heavier hydrocarbons in the saturated soil and shallow groundwater, it was determined that a pilot study would be needed to better evaluate the viability of this option. A pilot study work plan was submitted to Ecology in August 2017 (Apex, 2017) and implemented in October and November 2017. After the injections were completed, one year of groundwater monitoring was conducted to assess the effectiveness of the ORC and ISCO injections. The results of the pilot study were submitted to Ecology in the Pilot Study Results Report (Cascadia, 2019b). While the remedial technology was not ruled out as a potential future cleanup option for the Facility, the tight soils in the tank farm area significantly limited the effective distribution of ISCO/ORC products into the subsurface rendering the technology inefficient for remediating petroleum hydrocarbon constituents in that portion of the site.

4.0 ADDITIONAL INVESTIGATION - 2019

In reviewing the available site data and the results of the pilot study, it became apparent that additional site data were needed to adequately evaluate remedial options and prepare the FS. Specifically, three areas of additional investigation were identified and included:

• Soil sampling adjacent to the truck loading rack to assess current petroleum hydrocarbon constituent concentrations;

- Additional groundwater sampling in the western area of the Facility to better delineate the vertical and lateral extent of petroleum hydrocarbon constituents in this area; and
- Soil and groundwater screening and sampling between wells MW-1 and MW-3 to confirm that petroleum hydrocarbon constituent concentrations in groundwater in this area are below MTCA Method A Cleanup Levels.

In addition, a comprehensive groundwater monitoring event was conducted in February 2019, initiating a quarterly monitoring program to be conducted at the Facility.

4.1 SCOPE AND RATIONALE FOR INVESTIGATION AREAS

The rationale and work scope for each area of investigation was provided in the Work Plan (Cascadia, 2019a). The section below summarizes the work scope for each of the investigation areas. Figure 2 shows the locations of the borings installed during the 2019 investigation.

4.1.1 Loading Rack Soil Investigation

Historical sampling conducted in 2002 and 2003 in the former truck loading rack, located just east of the current truck loading rack, indicated the presence of petroleum hydrocarbon constituents in soil, generally in the 8- to 10-foot depth interval. Historical grab groundwater sampling conducted in this area did not indicate the presence of petroleum hydrocarbons or related constituents above MTCA Method A Cleanup Levels, and hydrocarbon constituents were not detected in groundwater samples recently collected from monitoring well MW-4 located adjacent to this area.

To assess current soil conditions and better support remedial alternative evaluations for soil containing residual hydrocarbons in the truck rack area in the Revised FS, six soil borings were installed at the locations shown on Figure 2. Borings B-23, B-24, B-25, and B-27 were advanced at or near the locations of historical borings GP-34, GP-14, GP-33, and GP-32, respectively, to assess current hydrocarbon concentrations at these locations. The 2002/2003 investigations indicated petroleum hydrocarbon constituent concentrations ranging from 363 milligram per kilogram (mg/kg) up to 19,700 mg/kg at the historical boring locations. Two additional borings (B-26 and B-28) were advanced in the grassy area to the east of these borings to verify the low to non-detect results reported in the 2002/2003 investigation.

4.1.2 Soil and Groundwater Assessment for De-Icer Constituents

As requested by Ecology, soil and groundwater samples collected from one boring, B-27, were also analyzed for DGME, the primary compound in the de-icer stored at the terminal.

4.1.3 Groundwater Investigation – Western Area

While the aerial and vertical extent of groundwater in the tank farm area has been defined sufficiently for compliance monitoring purposes, additional assessment was completed to further refine delineation of petroleum hydrocarbon constituents in groundwater to support preparation of the FS.

Borings B-20 and B-21 were advanced to further vertically delineate groundwater in the vicinity of historical borings B-5 and B-9, respectively. Borings B-17 and B-18 were advanced to vertically delineate groundwater near historical boring B-4 and to the east of boring B-10, respectively. Boring B-18 also provides additional lateral delineation to the east of boring B-10.

Additionally, previous investigations have identified petroleum constituents in the vicinity of well MW-5, located in the northwestern area of the Facility, and well MW-6, located in the southwestern area of the Facility, and these results suggested that the dissolved-phase petroleum constituents are two separate "plumes". Therefore, further delineation was conducted between these two wells during the recent investigation to better assess whether the plumes are separate or connected. To this end, three borings were proposed in the Work Plan – two in the storm pond (B-15 and B-16) and one to the east of the storm pond (B-19), at the locations shown on Figure 2. However, due to the steep slope of the bermed walls around the storm pond area, the "limited access" probe rig was not able to enter the storm pond area, and groundwater could not be sampled at locations B-15 and B-16. To supplement historical soil data collected in the storm pond, soil samples were collected from boings B-15 and B-16 using a hand auger to compare to historical soil results collected in the storm pond in 2003.

4.1.4 Groundwater Investigation – Vapor Recovery Area

In reviewing the historical grab groundwater data collected in the former truck loading rack area, an area of higher petroleum hydrocarbon concentrations was identified between wells MW-1 and MW-3, near the former vapor recovery unit, specifically at historical boring location B-8. Historical figures summarizing these data are contained in Appendix A.

Monitoring wells MW-1, MW-2, and MW-3 surround the former vapor recovery unit, and no longer contain petroleum hydrocarbon constituents at concentrations above MTCA Method A Cleanup Levels. Boring B-22 was advanced adjacent to historical boring GP-8, and in the approximate center of wells MW-1, MW-2, and MW-3, to confirm that petroleum hydrocarbons were no longer present in the historical vapor recovery area.

4.2 METHODS AND PROCEDURES

The following sections describe the methods and procedures utilized during the soil and groundwater investigation including preparatory activities, soil boring advancement, field screening and/or sampling of vadose zone soil, depth discrete sampling of groundwater, monitoring well installation, and sampling of groundwater monitoring wells. Soil boring and monitoring well construction logs are provided in Appendix C.

4.2.1 Preparatory Activities

Prior to the investigation, the public utility notification center was contacted, and on January 22, 2019, a private utility locator (Mt. View Locating) was contracted to check for the presence of buried utilities and/or infrastructure in the work area. Additionally, each probe location was

cleared with a hand auger down to 8 feet to confirm that no utilities or other buried materials were present in the subsurface at that location.

The proposed boring locations in the storm pond were not accessible during the January 22, 2019 private locate event due to standing water in the storm pond. By January 29, 2019, the storm pond no longer contained standing water, so a private utility locator (Locates Down Under) was contracted to check for buried infrastructure beneath the storm pond; the pond was cleared of buried infrastructure at the proposed sampling locations.

4.2.2 Soil Boring Installation

From January 28-2019 through February 4, 2019, a representative from Cascade Drilling, of Clackamas, Oregon, advanced 12 borings using a direct-push rig. Two additional borings were advanced in the storm pond using a hand auger. The site investigation was conducted with oversight from a Cascadia Associates field scientist in accordance with Cascadia standard operating procedures (SOPs) for direct-push explorations (Appendix B).

4.2.3 Field Screening

Continuous soil samples were collected during push-probe activities for the purpose of documenting lithologic descriptions and for field screening. Field screening consisted of sheen testing and using a photoionization detector (PID). Soil boring logs with lithologic descriptions, PID measurements and sheen testing information are provided in Appendix C.

4.2.4 Soil Sample Collection – Former Truck Rack Area

In the former truck rack area, soil samples from borings B-23 through B-28 were collected for analysis from the same depth as the historically highest petroleum hydrocarbon concentrations in each borehole. An additional sample was collected at borings B-25 (from 8.5 to 9.5 feet bgs) and B-27 (from 9 to 10 feet bgs) for laboratory analysis because PID measurements indicated higher vapor concentrations at these depths than at the depth of the historically highest soil analytical result.

4.2.5 Soil Sample Collection – Western Area

Soil samples were collected from borings B-15 through B-21 in the western tank farm (Figure 2). One soil sample from each borehole was collected from just above the water table. A second sample was collected from the borings at a depth corresponding to the most elevated PID reading. PID readings were not elevated in boreholes B-15 and B-19, so only the sample directly above the water table was collected for chemical analysis in those boreholes.

4.2.6 Depth Discrete Groundwater Sampling – Western Area

Grab groundwater samples were collected from borings B-17 through B-21 in the western tank farm area. At each location, the borings were advanced to the bottom depth of the uppermost targeted sampling interval, and a temporary well with a 5-foot-long well screen was installed

through the push probe rod. The rod was then lifted 5 feet to allow the temporary well screen to be placed across the targeted sampling interval. A groundwater sample was then collected from the temporary well using low flow methodology in accordance with the Low Flow Groundwater Sampling Method SOP contained in Appendix B. Following collection of the uppermost groundwater sample, each borehole was further advanced to the bottom depth of the next targeted interval, and a new temporary well was installed as described above across the second targeted interval. This process was used to collect samples from each targeted interval. Sampled intervals for each boring are summarized in Table 3.

As previously discussed, the push probe rig was not able to navigate the steep slopes of the storm pond berm, so groundwater samples were not collected from locations B-15 and B-16; soil samples were collected from these locations via hand-auger.

4.2.7 Historical Vapor Recovery Area – Grab Groundwater Sampling and Monitoring Well Installation

A grab groundwater sample was collected from first encountered groundwater (20 to 25 feet bgs) in boring B-22 and was analyzed on a 24-hour turnaround time to determine whether or not a monitoring well was needed at that location. Per the January 2019 Work Plan, if petroleum constituent concentrations exceeded MTCA Method A Cleanup Levels in the grab groundwater sample, a monitoring well would be installed. After the borehole was sampled, it was backfilled with hydrated bentonite. The analytical results indicated that gasoline range hydrocarbons as well as benzene, ethylbenzene, xylenes were present in the grab groundwater sample from boring B-22 at concentrations above MTCA Method A Cleanup Levels. Therefore, per the Work Plan, monitoring well MW-11 was installed adjacent to boring B-22, at the location shown on Figure 2.

On February 26, 2019, well MW-11 was installed in accordance with WAC 173-160-400 and the Cascadia SOPs contained in Appendix B. Well MW-11 is constructed of 2-inch PVC casing, with a 0.01-inch slotted PVC screen from 10 to 25 feet bgs. The Work Plan (Cascadia, 2019a) stated that the well would be completed with casing and a monument that would extend approximately 6 inches above the ground surface. Upon conferring with the Washington licensed well driller, a stick-up monument would require multiple bollards around the monument to be compliant with state laws. There were concerns that this would be an obstruction for terminal operations, so the monument was instead raised 6 inches above the ground surface in a concrete mound. A mounded monument can be driven over, thus does not require protection using bollards.

Prior to setting the monument, a representative from Cascade Drilling developed the monitoring well using a downhole pump. The well was developed until groundwater was clear, which included the removal of 10 well volumes of groundwater or the equivalent of 12 gallons of groundwater. The development water was contained in a 55-gallon drum and was transported from the Facility for disposal as investigation-derived waste.

4.2.8 Comprehensive Groundwater Monitoring Event

On February 18, 2019, a comprehensive groundwater monitoring event was conducted to assess current groundwater conditions across the Facility and to support the evaluation of remedial alternatives for the Facility. The groundwater monitoring event including the gauging and sampling of wells MW-1 through MW-11, MW-5D and MW-8D. Samples were collected from each well using the low-flow sampling SOPs as provided in Appendix B and were submitted for laboratory analysis using the analytical program outlined in Section 4.3. Field sampling forms are provided in Appendix E.

4.3 ANALYTICAL PROGRAM

Soil and grab groundwater samples from the borings and groundwater samples from site monitoring wells were submitted to Apex Laboratory of Tigard, Oregon, for the following analyses.

- BTEX and methyl tert-butyl ether (MTBE) by U.S. Environmental Protection Agency (EPA) Method 8260B;
- TPHg by Method NWTPH-Gx and TPHd by Method NWTPH-Dx (with silica gel cleanup); and
- Soil and groundwater samples collected from boring B-27 were also analyzed for DGME using a modified (semi-quantitative) version of Method 8260B.

On March 21, 2019, after the investigation was completed, NuStar received an inquiry from Ecology requesting information about the historical analysis of lead and naphthalene at the Facility. NuStar provided Ecology with the requested data in an email on April 2, 2019, and it is summarized in tables and/or figures herein.

5.0 RESULTS

The results of the soil and groundwater investigation are summarized in the sections below. The laboratory analytical reports from this investigation are provided in Appendix D, along with a data quality assurance/quality control review. The analytical results of samples collected from monitoring wells, soil, and grab groundwater locations are provided in Tables 2 through 4, respectively. Soil analytical results are shown by location on Figures 4 and 5. Groundwater analytical results are summarized on Figures 6 through 9.

5.1 SOIL INVESTIGATION – FORMER TRUCK RACK AREA

Borings B-23, B-24, B-25, and B-27 were advanced in the former truck loading area to assess current conditions at historical boring locations GP-34, GP-14, GP-33, and GP-32, respectively. Historically, petroleum hydrocarbons were above MTCA Method A Cleanup Levels at these locations at depths between 6 and 10 feet. With the exception of boring B-27, the 2019 results were well below historical concentrations and/or below analytical reporting limits. A table comparing the 2002 and 2019 results is provided below.

Sample ID (Depth ft bgs)	Sample year	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes
GP-34 (6-8)	2002	728	13,600	< 0.500	< 0.500	0.717	16.9
B-23 (6.5 - 7.5)	2019	<7.26	<25.0	<0.0145	<0.0726	<0.0363	<0.109
GP-14 (10-12)	2002	3,230	19,700				
B-24 (10.5-11.5)	2019	<7.19	<26.5	<0.0144	<0.0719	<0.0359	<0.108
GP-33 (8-10)	2002	363	31,500	<0.500	<0.500	7.2	33.9
B-25 (8.5 – 9.5)	2019	88.6	7,650	<0.0148	<0.0739	<0.0369	<0.111
GP-32 (6.5 – 8)	2002	910	2,530	<5	<5	<5	16
B-27 (7 - 8)	2019	1,910	6,620	<0.0725	<0.363	1.89	11.1

Table 5.1A - Comparison of historical (2002) and recent (2019) soil samples in former truck loading area.

Shading indicates exceedance of MTCA Method A Cleanup Level.

"--" indicates sample not analyzed for constituent.

"<" indicates analyte not detected at or above the specified laboratory method reporting limit.

It should be noted that the recent soil sample collected from a depth of 10 feet at boring B-27 contained TPH in the gasoline hydrocarbon range (TPHg) at a concentration of 11,500 mg/kg and in the diesel range (TPHd) at 23,000 mg/kg. Samples were not collected from this depth historically; therefore, a data comparison cannot be made to assess whether attenuation has occurred. However, as shown in the table below, PID readings collected below 10 feet in all recent borings except B-27 were below a 5 parts per million per volume (ppmv) equipment measurement levels, and the readings in boring B-27 decreased rapidly below a depth of 12 feet and were below measurement levels below a depth of 18 feet. These results support that the residual petroleum hydrocarbons in the truck rack area are limited to a vertical depth interval of approximately 6 to 13 feet.

	PID Measurement (ppmv)									
Boring	0 to 6 feet	6 to 10 feet	11 to 13 feet	14 to 16 feet	17 to 18 feet	19 to bottom of boring				
B-23	<5	<5	<5	<5	See note	See note				
B-24	<5	<5	<5	<5	See note	See note				
B-25	<5	1.2 - 21.5	<5	<5	See note	See note				
B-26	<5	<5	<5	<5	<5	<5				
B-27	<5	97 - 773	679	25 - 50	5.6	<5				
B-28	<5	<5	<5	<5	See note	See note				

Table 5.1B - PID measurements for 2019 soil samples in former truck loading area.

Note: Bottom of boring at 15 feet bgs.

Borings B-26 and B-28 were advanced in the grassy area to the east of the former truck loading area borings to verify the low to non-detect results reported in the 2002 investigation. The concentrations of TPHg, TPHd, BTEX, and MTBE in borings B-26 and B-28 were below analytical reporting limits and confirmed the historical investigation results (Table 2).

The results of the former truck loading rack area investigation indicate that volatile organic compounds (VOCs) have attenuated significantly in this area since it was last investigated in 2002. Residual petroleum hydrocarbons in this area are limited to the vicinity of boring B-25 and B-27 and are constrained to the east and west by borings B-23 and B-24, to the north by historical borings GP-37 and GP-18, and to the south by historical borings GP-15 and GP-16.

5.2 SOIL SAMPLE RESULTS – WESTERN AREA

The soil sample results from the borings installed in the western area of the Facility are discussed in the sections below as the "Well MW-5 Area", the "Well MW-6 Area", and the "Storm Pond Area". Results of the recent soil investigation are shown on Figures 4 and 5. Table 2 summarizes both historical and recent analytical results of soil samples collected at the Facility.

5.2.1 Well MW-5 Area

Borings B-20 and B-21 were installed in the well MW-5 area to assess residual hydrocarbon concentrations in vadose zone soil to assist in FS remedial alternative evaluations for hydrocarbons in groundwater in this area. Soil samples were collected at two sampling intervals between 10 and 13 feet in boring B-20 and between 13 and 16.5 feet in boring B-21. Field observations of wet soil indicate that these samples were collected directly above and below the water table.

BTEX, MTBE, and naphthalene were not detected in the soil samples collected from either boring (Figure 4). TPHg and TPHd concentrations were low to non-detect in the soil samples collected from boring B-21 and the 12- to 13-foot sample from boring B-20 (Figure 5). TPHg and TPHd were detected at concentrations of 302 mg/kg and 89.4 mg/kg, respectively, in the 10- to 11-foot sample from B-20 (Figure 5).

Field screening results on soil collected directly below the water table in borings B-20 and B-21 indicated PID readings between 78 and 505 parts ppmv and a moderate sheen. Borings B-20 and B-21 were located adjacent to historical borings B-9 and B-6, respectively, and the field observations were consistent with the results observed in borings B-9 and B-6. First encountered grab groundwater samples were collected from the historical borings, and therefore, additional grab groundwater samples at the water table were not collected during the recent investigation, consistent with the Work Plan.

5.2.2 Well MW-6 Area

Similar to the MW-5 area, soil samples were collected from borings B-17 and B-18 to assess residual hydrocarbon concentrations in vadose zone soil in the MW-6 area to assist in FS remedial alternative evaluations for hydrocarbons in groundwater in this area. Soil samples were collected at

two sampling intervals between 11 and 16 feet in boring B-17 and between 6 and 15 feet in boring B-18.

BTEX, MTBE, and naphthalene were not detected in the soil samples collected from boring B-17, and TPHg and TPHd concentrations were low to non-detect (Figures 4 and 5, respectively). Higher than anticipated concentrations of TPHg, TPHd, and BTEX were detected in the soil samples collected at both sampling intervals from boring B-18 (Table 2), and PID measurements from soil screening ranged from 180 to 647 ppmv between the depths of 6 to 24 feet bgs. These results indicate that vadose zone soil below 6 feet bgs in the vicinity of boring B-18 might present a source of petroleum hydrocarbons to groundwater, and these results will need to be considered in the evaluation of remedial technologies for this area in the FS.

5.2.3 Storm Pond

Borings B-15 and B-16 were hand augered in the storm pond to compare analyte concentrations in soil to historical results from borings HA-4 and HA-5, respectively. A comparison of current and historical (2003) analytical results is provided in Table 4.2.2 below. As the comparison shows, concentrations have attenuated since the 2003 investigation.

	TPH-G	TPH-G (mg/kg) TPH-D				
Depth (feet bgs)	3-4	5-6	3-4	5-6		
HA-5 (2003)	3,320	2,290	4,780	10,700		
B-16 (2019)	<7.80	1,900	27.8	483		
	TPH-G (mg/kg)	TPH-D (mg/kg)		I		
Depth (feet bgs)	!	5]			
HA-4 (2003)	ND	ND ND				
B-15 (2019)	<7.94	<28.2	I			

Table 5.2.3 Comparison of historical (2003) and recent (2019) soil data in storm pond area.

Shading indicates exceedance of MTCA Method A Cleanup Levels.

ND = indicates non-detect using HCID analysis.

"<" indicates analyte not detected at or above the specified laboratory method reporting limit.

BTEX, MTBE, and naphthalene were not detected in soil samples collected from borings B-15 or B-16, and these constituents were not analyzed in the historical samples from borings HA-4 or HA-5.

5.3 SOIL AND GROUNDWATER ASSESSMENT FOR DE-ICER CONSTITUENTS IN AST AND FORMER TRUCK LOADING RACK AREA

Soil and groundwater samples collected from boring B-27 in the truck loading rack area were analyzed for DGME, the primary chemical in the de-icing fluid stored at the Facility. The laboratory analysis was calibrated using de-icer product samples from the Facility as an analytical standard.

DGME was not detected in the soil or groundwater sample from boring B-27. Results are shown in Tables 2 and 3; the laboratory report, including standard preparation and method development information, is included in Appendix D.

5.4 GROUNDWATER INVESTIGATION – WESTERN AREA

Grab groundwater sampling was conducted in the western area of the Facility to determine the vertical extent of petroleum hydrocarbons in groundwater in the vicinity of wells MW-5 and MW-6, as well as to assess whether the petroleum hydrocarbons in groundwater extended between the two wells as one "plume" of dissolved-phase petroleum constituents. As detailed in the subsections below, the vertical extents of petroleum hydrocarbon constituents were determined in the vicinity of each well and the data show that the dissolved-phase petroleum hydrocarbons are localized around each well and are not connected. Results are shown graphically on Figures 6 and 7, and summarized in Table 3.

5.4.1 Vertical Delineation of Groundwater in the Well MW-5 Area

Borings B-20 and B-21 were advanced to vertically delineate hydrocarbons in groundwater in the vicinity of monitoring well MW-5. Analytical results for the grab groundwater samples collected from the borings are shown on Figures 6 and 7. In both borings, the deeper (60 to 65 feet bgs) sample did not contain TPHg or TPHd at concentrations above MTCA Method A Cleanup Levels. For boring B-20, TPHg and TPHd were detected in the shallower (45 to 50 feet bgs) groundwater grab sample; however, only TPHg exceeded the MTCA Method A Cleanup Level. The concentrations of BTEX, MTBE, and naphthalene were below laboratory reporting limits at both the 50 to 55 feet bgs and 60 to 65 feet bgs intervals in samples from both borings B-20 and B-21.

The results of the 2019 grab groundwater investigation and the previous investigations (Table 3) indicate that affected groundwater is not present deeper than 55 feet bgs in the well MW-5 area of the tank farm. A review of historical data indicates that the deepest extent of petroleum constituents to groundwater in the well MW-5 area are in the vicinity of boring B-9, at a depth of 46 to 50 feet bgs.

5.4.2 Vertical Delineation of Groundwater in the Well MW-6 Area

Borings B-17 and B-18 were advanced and grab groundwater samples were collected to further delineate the extent of petroleum hydrocarbons and related constituents vertically in groundwater in the well MW-6 area.

TPHg, TPHd, BTEX, MTBE, and naphthalene were not detected above MTCA Method A Cleanup Levels in the grab groundwater samples collected from borings B-17 and B-18 (Figures 6 and 7).

The results of the 2019 grab groundwater investigation and previous investigations (Table 3) indicate that affected groundwater is not present deeper than 40 feet bgs in the well MW-6 area.

5.4.3 Lateral Delineation Between the Well MW-5 and Well MW-6 Areas

Boring B-19 was installed between the well MW-5 and MW-6 areas to assess whether there are two distinct dissolved-phase petroleum hydrocarbon plumes around each well or if the dissolved-phase constituents are connected as one plume in the western area of the Facility. Grab groundwater samples were collected at depth intervals of 15 to 20 feet; 30 to 35 feet; 40 to 45 feet; and 50 to 55 feet.

TPHd, TPHg, BTEX, MTBE, and naphthalene were below laboratory method reporting limits for the depth intervals, as shown on Figures 6 and 7.

5.5 GROUNDWATER INVESTIGATION – FORMER VAPOR RECOVERY AREA

As discussed in section 4.2.7, boring B-22 was advanced in the former vapor recovery area and a grab groundwater sample was collected for laboratory analysis from the first encountered groundwater (Table 3). The analytical results of the grab groundwater sample indicated that gasoline range hydrocarbons as well as benzene, ethylbenzene, xylenes were present in the grab groundwater sample at concentrations above MTCA Method A Cleanup Levels. Per the Work Plan, monitoring well MW-11 was installed adjacent to boring B-22 and was sampled as part of the comprehensive groundwater monitoring event in February 2019.

TPHg, TPHg, BTEX, and MTBE were not detected in well MW-11 above MTCA Method A Cleanup Levels (Table 4). Well MW-11 will be sampled quarterly during preparation of the FS, to verify the results for that well.

5.6 COMPREHENSIVE GROUNDWATER SAMPLING EVENT

Site wells were sampled in February 2019; analytical results are tabulated in Table 4. BTEX, MTBE, and naphthalene results from the sampling event are shown on Figure 8, and TPHg and TPHd results are shown on Figure 9.

Consistent with historical sampling results from the former Vapor Recovery and Truck Rack areas, TPHd, TPHg, BTEX, and MTBE concentrations were non-detect or below MTCA Method A Cleanup Levels in wells MW-1 through MW-4 (Figures 8 and 9). As identified above, TPHd, TPHg, BTEX, MTBE, and naphthalene results on groundwater samples collected from new well MW-11 were either non-detect or below MTCA Method A Cleanup Levels.

Results from sampling of wells MW5 through MW-10, MW-5D, and MW-8D in the western area of the Facility were consistent with previous results from these wells (Table 4).

6.0 SUMMARY AND CONCLUSIONS

The January/February 2019 additional soil and groundwater investigation was successful in collecting additional data to support potential future pilot studies and the preparation of the FS for the Facility. Figures 10 and 11 summarize data collected from first encountered groundwater

during the current or previous investigations and show the lateral extent of BTEX/MTBE/naphthalene and TPH, respectively, in the western area of the Facility. As shown on the figures, the lateral extent is defined and consists of two dissolved-phase petroleum hydrocarbon plumes in the vicinity of wells MW-5 and MW-6, respectively.

Several conclusions can be made about the nature and extent of petroleum hydrocarbons and associated constituents from the historical and recent data collected from the Facility, and include the following:

- Vertical Groundwater Delineation in the Tank Farm Area. The maximum depth of petroleum constituents in groundwater in the tank farm area was confirmed during this investigation. In the well MW-5 area, affected groundwater is limited to above 50 feet bgs, and in the well MW-6 area affected groundwater is limited to above 40 feet bgs.
- Lateral Groundwater Delineation in the Tank Farm Area. The results from the 2019 investigation, in conjunction with historical grab groundwater and monitoring well data, were used to further define the extent of affected groundwater in the tank farm area. The recent investigation confirmed that the well MW-5 and well MW-6 area plumes are isolated and do not comprise one larger plume. The extent of the plumes depicted on Figures 10 and 11 are conservative and can be used for evaluating remedial options in the FS.
- **Confirmation of Natural Attenuation of Soil in the Storm Pond Area.** During the 2019 investigation, soil samples were collected from beneath the storm pond to compare to historical results from 2003. The results indicated a 65% to 95% reduction of total hydrocarbon concentration between 2003 and 2019 as a result of natural attenuation processes. BTEX and MTBE were not detected in any of the 2019 storm pond area samples.
- **Confirmation of Historical Soil Results in the Former Truck Loading Rack Area.** During the 2019 investigation, soil samples were collected from the former truck loading rack area from similar locations to samples collected during an investigation in 2002. The 2019 results indicated a significant reduction in hydrocarbon and BTEX concentrations due to natural attenuation processes. Additionally, the results support that residual hydrocarbons in soil in the truck rack area are limited vertically to the 6 to 13 feet bgs depth interval, which is approximately 20 feet above the water table. The data collected during the 2019 investigation can be used in the Revised FS to prepare a disproportionate cost analysis for evaluating remedial alternatives for soil in this portion of the Facility.
- Verification of Groundwater Conditions near Former Vapor Recovery Area. Grab groundwater samples were collected from the former vapor recovery area in a location that corresponds with the most elevated hydrocarbon concentrations observed during the 2002 investigation. While monitoring wells MW-1 through MW-3 were installed in the former vapor recovery area in 2004, they were positioned around but not in the most affected groundwater area, likely due to access restrictions associated with the vapor recovery unit. Well MW-11 was installed in the area which historically exhibited the highest petroleum

concentrations; the new well was developed and sampled for petroleum hydrocarbons and associated constituents. The results indicated that while hydrocarbons and some constituents were detected in the groundwater sample from well MW-11, the concentrations were below MTCA Method A Cleanup Levels. Well MW-11 will continue to be monitored during upcoming quarterly groundwater monitoring events to confirm the results obtained during the February 2019 groundwater monitoring event.

• **De-Icer Chemicals Not Present Near AST and Former Truck Loading Area.** Soil and groundwater from boring B-27 in the truck loading rack area (the location selected by Ecology) were analyzed for DGME, the primary chemical in the de-icing fluid stored at the Facility, to confirm that there had not been a historical release of de-icing material at the Facility. DGME was not detected in the soil or groundwater samples.

The conclusions from this investigation will be used to further evaluate remedial alternatives for the Facility to support preparation of the FS. As the most appropriate remedies are identified, an additional pilot test may be necessary to evaluate the implementability and potential effectiveness of the identified remedial action. If it is determined that an additional pilot study is needed to complete the FS, a Pilot Study Work Plan will be prepared and submitted to Ecology within 60 days of the submittal of this report. If a pilot study is not deemed necessary, a Revised FS report will be submitted within 120 days of the submittal of this report.

7.0 REFERENCES

- AMEC, 2002a. Phase II Environmental Site Assessment, Cenex Harvest State Cooperatives. May 2002.
- AMEC, 2002b. Subsurface Investigation and Soil Removal Report, Cenex Harvest State Cooperatives. December 2002
- Apex Companies, LLC (Apex), 2015a. *Groundwater Monitoring Results December 2014.* February 6, 2015.
- Apex, 2015b. March 2015 Groundwater Results Report and Groundwater Investigation Work Plan. May 28, 2015.
- Apex, 2017. Additional Investigation Summary Report and Pilot Test Work Plan, NuStar Terminals Operations Partnership, L.P. – Vancouver Annex Terminal. August 2, 2017.
- Ash Creek Associates (Ash Creek), 2007. *Evaluation of Migration Potential Due to Proposed Clark Public Utilities Fruit Valley Well Field.* April 10, 2007.
- Ash Creek, 2008a. Results of Direct-Push Groundwater Assessment. January 28, 2008.
- Ash Creek, 2008b. Groundwater Monitoring Report Quarterly Monitoring 2007. January 28, 2008.

Ash Creek, 2009. Remedial Investigation Work Plan. October 2009.

Ash Creek, 2010. Remedial Investigation/Risk Assessment Report. December 29, 2010.

Ash Creek, 2012. *Feasibility Study Vancouver Annex Terminal*. July 12, 2012.

Cascadia Associates, LLC (Cascadia), 2019a. *Additional Investigation Work Plan* NuStar Vancouver Annex Terminal. January 14, 2019.

Cascadia, 2019b. Pilot Study Results Report. NuStar Vancouver Annex Facility. January 17, 2019.

- Pacific Groundwater Group (PGG), 2001. *Clark Public Utilities Lakeshore Wellfield Exploration and Testing Program.* February 2001.
- PGG, 2009. *Hydrogeologic Evaluation for Clark Public Utilities South Lake Wellfield, SGA Production Wells PW-2 and PW-3.* July 2009.

SECOR, 2003. Results of Phase II Environmental Site Assessment. June 6, 2003.

TABLES

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	05/14/02	NS			16.00		NS
	05/25/07	26.66			14.92		11.74
	08/24/07	26.66			18.67		7.99
	11/26/07	26.66			17.91		8.75
	02/27/08	26.66			16.92		9.74
	03/30/10	26.66			17.09		9.57
	09/01/10	26.66			19.19		7.47
	12/16/14	26.66	14.5 - 24.5		16.19		10.47
MW-1	03/25/15	26.66	14.5 - 24.5		15.25		11.41
	06/24/15	26.66			18.43		8.23
	09/15/15	26.66			19.05		7.61
	11/30/17	26.72			16.16		10.56
	02/28/18	26.72			15.07		11.65
	05/29/18	26.72			8.43		18.29
	08/30/18	26.72			18.37		8.35
	02/18/19	26.72			16.51		10.21
	05/14/02	NS			27.46		NS
	05/25/07	38.21			26.46		11.75
	08/24/07	38.21			30.17		8.04
	11/26/07	38.21			29.42		8.79
	02/27/08	38.21			28.50		9.71
	03/30/10	38.21			28.66		9.55
MW-2	09/01/10	38.21			30.74		7.47
10100-2	12/16/14	38.21	20 - 35		27.77		10.44
	03/25/15	38.21			26.79		11.42
	06/24/15	38.21			30.05		8.16
	09/15/15	38.21			30.65		7.56
	11/30/17	38.27			27.66		10.61
	02/28/18	38.27			26.70		11.57
	05/29/18	38.27			19.96		18.31
	08/30/18	38.27			29.94		8.33
	02/18/19	38.27			28.04		10.23

Please refer to notes at end of table.

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	05/14/02	NS			28.15		NS
	05/25/07	39.11			27.17		11.94
	08/24/07	39.11			31.04		8.07
	11/06/07	39.11			30.36		8.75
	02/27/08	39.11			28.71		10.40
	03/30/10	39.11			29.55		9.56
	09/01/10	39.11			31.65		7.46
	12/16/14	39.11	24.5 - 34.5		28.54		10.57
MW-3	03/25/15	39.11			27.72		11.39
	06/24/15	39.11			30.85		8.26
	09/15/15	39.11			31.52		7.59
	11/30/17	39.17			28.61		10.56
	02/28/18	39.17			27.18		11.99
	05/29/18	39.17			20.91		18.26
	08/30/18	39.17			30.80		8.37
	02/18/19	39.17			28.94		10.23
	05/14/02	NS			29.40		NS
	05/25/07	40.17			28.35		11.82
	08/24/07	40.17			32.12		8.05
	11/06/07	40.17			31.40		8.77
	02/27/08	40.17			30.40		9.77
	03/30/10	40.17			30.77		9.40
	09/01/10	40.17			32.62		7.55
MW-4	12/16/14	40.17	20 - 35		29.63		10.54
10100-4	03/25/15	40.17			28.76		11.41
	06/24/15	40.17			31.92		8.25
	09/15/15	40.17			32.61		7.56
	11/30/17	40.23			29.59		10.64
	02/28/18	40.23			28.60		11.63
	05/29/18	40.23			21.88		18.35
	08/30/18	40.23			31.86		8.37
	02/18/19	40.23			30.04		10.19
	12/16/14	27.03			16.60		10.43
	03/25/15	27.03			15.37		11.66
	06/24/15	27.03			18.89		8.14
	09/15/15	27.03			19.35		7.68
MW-5	10/23/17	27.03	10 - 25		17.82		9.21
10100-5	11/30/17	27.03			16.39		10.64
	02/28/18	27.03			15.41		11.62
	05/29/18	27.03			8.68		18.35
	08/30/18	27.03			18.55		8.48
	02/18/19	27.03			16.70		10.33

Please refer to notes at end of table.

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	10/24/17	26.71			17.50		9.21
	11/30/17	26.71			16.21		10.50
	02/28/18	26.71	35 - 45		15.20		11.51
MW-5D	05/29/18	26.71			8.37		18.34
	08/30/18	26.71			18.51		8.20
	02/18/19	26.71			16.43		10.28
	12/16/14	27.33			16.93		10.40
	03/25/15	27.33			15.73		11.60
	06/24/15	27.33			19.34		7.99
	09/15/15	27.33			19.70		7.63
	10/24/17	27.33	10.05		18.12		9.21
MW-6	11/30/17	27.33	10 - 25		16.71		10.62
	02/28/18	27.33			15.77		11.56
	05/29/18	27.33			9.03		18.30
	08/30/18	27.33			18.99		8.34
	02/18/19	27.33			16.99		10.34
	11/30/2017	21.67			11.12		10.55
	2/28/2018	21.67			10.19		11.48
MW-7	5/29/2018	21.67	10 - 25		3.4		18.27
10100 /	08/30/18	21.67			13.26		8.41
	02/18/19	21.67			11.41		10.26
	11/30/2017	27.68			16.91		10.77
	2/28/2017	27.68			16.01		11.67
MW-8	5/29/2018	27.68	10 - 25		9.31		18.37
	08/30/18	27.68			19.22		8.46
	02/18/19	27.68			17.28		10.40
	11/30/2017	27.87			17.36		10.51
	2/28/2018	27.87			16.35		11.52
MW-8D	5/29/2018	27.87	35 - 45		9.53		18.34
	08/30/18	27.87			19.41		8.46
	02/18/19	27.87			17.59		10.28
	11/30/2017	29.39			18.78		10.61
	2/28/2018	29.39			17.79		11.60
MW-9	5/29/2018	29.39	10 - 25		11.09		18.30
	08/30/18	29.39			21.04		8.35
	02/18/19	29.39			19.13		10.26
	11/30/2017	28.71			18.16		10.55
	2/28/2018	28.71			17.19		11.52
MW-10	5/29/2018	28.71	10 - 25		10.38		18.33
	08/30/18	28.71			20.3		8.41
	02/18/19	28.71			18.42		10.29
MW-11	02/18/19	NS	NS		17.27		NS

Notes:

1. Survey elevations determined by Bluedot Group surveying, November 2017.

2. Reference elevation (i.e., top of casing) relative to NAVD 88, feet above mean sea level.

3. feet above MSL = feet above mean sea level.

4. NS = Not surveyed

5. -- = SPH not measured/observed.

6. bgs = below ground surface.

File No. 0060-001-005 Page 3 of 3

Summary of Analytical Results - Monitoring Wells

NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)
	05/14/02	<0.080	0.455 5.	<0.500	<0.0005	<0.0005	<0.0005	<0.001	
	05/19/03				<0.001	<0.001	< 0.001	<0.002	
	05/25/07	<0.080	<0.238	<0.476	<0.0002	<0.0005	<0.0005	< 0.001	
	08/24/07	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006	
	11/26/07	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006	
	02/27/08	<0.080	<0.294	<0.588	<0.0005	<0.0005	<0.0005	< 0.001	
MW-1	03/31/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
	09/01/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005	
	03/25/15	<0.250	<0.046	<0.093	<0.0005	<0.0005	<0.0005	< 0.001	
	06/24/15	<0.250	<0.100	<0.250	<0.0005	<0.0005	< 0.0005	< 0.001	
	09/15/15	<0.250	<0.130	<0.340	<0.0005	<0.0005	0.0015	0.0022	
	02/19/19	<0.100	<0.0762	<0.152	<0.0002	<0.001	<0.0005	<0.00015	<0.001
	05/14/02	41.4	<0.250	<0.500	4.35	2.68	1.84	8.72	
	05/19/03				0.534	0.00975	0.194	0.876	
	05/25/07	0.439	<0.238	<0.476	0.071	0.00114	0.0361	0.0453	
	08/24/07	0.102	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006	
	11/26/07	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006	
	02/27/08	0.0817	<0.294	<0.588	0.005	<0.0005	<0.0005	< 0.001	
MW-2	03/31/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
	09/01/10	<0.250	<0.250	<0.500	0.0016	<0.0005	<0.0005	<0.0015	
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005	
	03/25/15	<0.250	<0.046	<0.091	<0.0005	<0.0005	<0.0005	< 0.001	
	06/24/15	<0.250	<0.100	<0.250	<0.0005	<0.0005	<0.0005	< 0.001	
	09/15/15	<0.250	0.17 D	0.37	<0.0005	<0.0005	<0.0005	< 0.001	
	02/19/19	<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	0.00121
	05/14/02	4.5	<0.250	<0.500	0.0419	0.0096	0.293	0.521	
	05/19/03				0.0908	0.0097	0.338	0.5382	
	05/25/07	0.361	<0.238	<0.476	<0.0005	<0.0005	0.0132	0.0145	
	08/24/07	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006	
	11/26/07	<0.080	<0.236	<0.472	0.0011	<0.002	0.0066	<0.006	
	02/27/08	2.14	0.387 ^{6.}	<0.500	<0.0005	<0.0005	0.17	0.17	
	2/27/2008 DUP	1.85	0.342	<0.485	0.0011	<0.0005	0.19	0.2	
	03/31/10	2.10	<0.250	<0.500	<0.0005	<0.0005	0.018	0.021	
MW-3	3/31/2010 DUP	1.90	<0.250	<0.500	<0.0015	<0.0015	0.018	0.020	
	09/01/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
	9/1/2010 DUP	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005	
	03/25/15	<0.418	<0.046	<0.092	<0.0005	<0.0005	<0.0005	<0.001	
	06/24/15	<0.250	0.120	<0.026	< 0.0005	< 0.0005	< 0.0005	<0.001	
	09/15/15	<0.250	0.140	<0.250	<0.0008	<0.0008	<0.0008	< 0.001	
	02/18/19	<0.100	< 0.0755	<0.151	<0.0002	<0.001	< 0.0005	< 0.00015	< 0.001

Please refer to notes at end of table.

Summary of Analytical Results - Monitoring Wells

NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

MW-4	25/07 22/07 22/07 27/08 31/10 01/10 16/14 25/15 22/15	<0.080 <0.080 <0.1	0.358 ^{5.} <0.238	<0.500			(mg/L)	(mg/L)	MTBE (mg/L)
MW-4	225/07 24/07 26/07 27/08 31/10 01/10 16/14 225/15 24/15	<0.1	 <0 238		<0.0005	<0.0005	<0.0005	<0.001	
MW-4 MW-4	224/07 226/07 227/08 31/10 01/10 16/14 225/15 224/15	<0.1	<0 228		<0.001	< 0.001	<0.001	<0.002	
MW-4 11/26/ 02/27/ MW-4 03/31/ 09/01/ 12/16/ 03/25/ 06/24/ 09/15/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2019 06/24/ 6/24/2019 06/24/ 09/15/ 07/11/ 10/23/ 11/30/ 11/30/ 11/30/ 11/30/ 11/30/ 11/30/ 02/28/ 05/29/ 08/30/ 8/30/2019 08/30/2019 02/18/ MW-5D 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 09/15/ 03/25/ 06/24/ 09/15/ 09/15/ 01/5/	26/07 27/08 31/10 01/10 16/14 25/15 24/15		~0.250	<0.476	<0.0002	<0.0005	<0.0005	< 0.001	
MW-4 02/27/ 02/27/ 03/31/ 09/01/ 12/16/ 03/25/ 06/24/ 09/15/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2011 06/24/ 6/24/2011 06/24/ 6/24/2011 06/24/ 6/24/2011 06/24/ 6/24/2011 06/24/ 09/15/ 07/11/ 11/30/ 11/30/ 11/30/ 11/30/ 11/30/ 02/18/ MW-5D 10/24/ 11/30 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 21/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ MW-5D 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ MW-5D 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 09/15/ 03/25/ 06/24/ 09/15/ 09/15/ 01/5/ 09/15/ 00/15/ 09/15/ 01/5/ 01/5/ 01/5/ 01/5/ 00/20/ 00/15/ 09/15/ 01/5/ 00/15/ 00/	27/08 31/10 01/10 16/14 25/15 24/15	_	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006	
MW-4 03/31/ 09/01/ 12/16/ 03/25/ 06/24/ 09/15/ 02/18/ 12/16/201 03/25/ 3/25/2013 06/24/ 6/24/2013 06/24/ 6/24/2013 06/24/ 09/15/ 07/11/ 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 11/30/ 11/30/ 11/30/ 11/30/ 11/30/ 02/28/ MW-5D 10/24/ 11/30 02/18/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 00/15/ 03/25/ 06/24/ 09/15/ 09/15/ 01/	31/10 01/10 16/14 25/15 24/15	<0.080	<0.236	<0.472	< 0.001	<0.002	<0.002	<0.006	
MW-5D (228) MW-5D (228) (01/10 16/14 25/15 24/15	<0.080	<0.248	<0.495	<0.0005	<0.0005	<0.0005	<0.001	
MW-5D (02/18/ (12/16/ 03/25/ 06/24/ 09/15/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2019 06/24/ 6/24/2019 06/24/ 09/15/ 07/11/ 10/23/ 11/30/ 11/30/ 11/30/ 02/18/ 10/24/ 11/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 03/25/ 06/24/ 09/15/ 01/20/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 01/20/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 03/25/ 05/29/ 05/29/ 05/29/ 08/30/ 02/18/ 02/28/ 05/29/ 05/29/ 08/30/ 02/18/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 05/29/ 08/30/ 02/18	'16/14 '25/15 '24/15	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
MW-5D (02/18/ 06/24/ 09/15/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2013 06/24/ 6/24/2013 09/15/ 07/11/ 10/23/ 11/30/ 11/30/ 11/30/ 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 09/15/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 09/15/ 01/21/ 09/15/ 01/5/	25/15 24/15	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015	
MW-5D (02/18/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2019 06/24/ 6/24/2019 06/24/ 09/15/ 07/11/ 10/23/ 11/30/17 02/28/ 05/29/ 08/30/ 8/30/2019 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 09/15/ 01/	24/15	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005	
MW-5D (02/18/ 02/18/ 12/16/ 12/16/201 03/25/ 3/25/2013 06/24/ 6/24/2013 07/11/ 07/11/ 10/23/ 11/30/7 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 01/20/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 03/25/ 08/30/ 02/18/ 02/18/ 02/18/ 03/25/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 05/29/ 08/30/ 02/18/ 0/		<0.250	0.074	<0.091	<0.0005	<0.0005	<0.0005	< 0.001	
MW-5D (02/18) (02/18) (12/16/201 03/25/ 3/25/2011 06/24/ 6/24/2011 09/15/ 07/11/ 10/23/ 11/30/17 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/		<0.250	<0.099	<0.250	<0.0005	<0.0005	<0.0005	< 0.001	
MW-5D 12/16/ 12/16/201 03/25/ 3/25/2012 06/24/ 6/24/2012 09/15/ 07/11/ 10/23/ 11/30/7 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 03/25/ 08/30/ 02/18/ 02/18/ 05/29/ 08/30/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/	15/15	<0.250	<0.130	<0.340	<0.0005	<0.0005	<0.0005	<0.001	
MW-5D 12/16/201 03/25/ 3/25/2013 06/24/ 6/24/2013 09/15/ 07/11/ 10/23/ 11/30/7 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 03/25/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 03/25/ 06/24/ 09/15/ 09/15/ 01/5/		<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00150	<0.001
MW-5D (02/28/ 02/28/ 02/28/ 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 11/30/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 09/15/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 03/25/ 06/24/ 09/15/ 03/25/ 06/24/ 09/15/ 03/25/ 06/24/ 09/15/ 09/15/ 09/15/ 09/15/ 01/27/ 00/18/ 02/15/ 05/29/ 05/20/ 05/2	16/14	15	0.350	<0.500	0.00070	0.00066	0.12	1.2	
MW-5D (22) MW-5D (24) MW-5D (24) MW-5D (24) MW-5D (26) MW-5D (26) MW-5D (26) (27)	2014 DUP	15	<0.250	<0.500	0.00088	0.00081	0.18	1.3	
MW-5D (02/24) (6/24/2011) 09/15/ 07/11/ 10/23/ 11/30/ 11/30/ 11/30/ 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 03/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/15/ 05/29/ 05/20/	25/15	18.1	<0.045	<0.091	<0.00050	0.00061	0.218	1.45	
MW-5 MW-5 6/24/201 09/15/ 07/11/ 10/23/ 11/30/1 02/28/ 05/29/ 08/30/ 8/30/201 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 05/29/ 02/18/ 11/30/ 02/28/ 05/29/ 05/29/ 02/18/ 02/28/ 05/29/ 05/29/ 02/28/ 05/29/ 02/28/ 02/28/ 02/28/ 05/29/ 02/28/ 05/29/ 02/28/ 05/29/ 05/29/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 03/25/ 06/24/ 09/15/ 01/5/	2015 DUP	17.2	<0.046	<0.092	0.0005	0.00065	0.236	1.22	
MW-5 MW-5	24/15	15	0.33 D	<0.250	<0.0012	< 0.0012	0.228	1.51	
MW-5 07/11/ 10/23/ 11/30/17 02/28/ 05/29/ 08/30/ 8/30/201: 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 11/30/ 02/28/ 11/30/ 02/28/ 02/18/ 11/30/ 02/28/ 02/28/ 02/18/ 11/30/ 02/28/ 02/28/ 02/28/ 02/28/ 02/28/ 02/18/ 11/30/ 02/28/ 03/20/ 02/28/ 02/28/ 05/29/ 08/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 03/25/ 06/24/ 09/15/ 9/15/2015/	2015 DUP	16.8	0.560 D	<0.250	<0.0012	< 0.0012	0.232	1.49	
MW-5 10/23/ 11/30/17 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/28/ 08/30/ 02/18/ 11/30/ 02/28/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2013	15/15	17.3	0.82 D	<0.34	<0.00050	0.00060	0.289	1.92	
MW-5D 11/30/ 11/30/ 11/30/17 02/28/ 05/29/ 08/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 02/18/ 02/18/ 02/18/ 03/25/ 06/24/ 09/15/ 9/15/2013	11/16	19.4	0.310	<0.29	<0.00084	0.00100	0.215	1.17	
MW-5D 11/30/17 02/28/ 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 08/30/ 02/18/ 02/18/ 03/25/ 06/24/ 09/15/ 9/15/2013	23/17	7.93 J-	1.26	<0.25	<0.0010	0.00117	0.174	0.99	
MW-5D 02/28/ 05/29/ 08/30/ 8/30/2018/ 10/24/ 11/30/ 02/28/ 08/30/ 02/18/ 02/28/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2019	30/17	11.3	1.63	<0.25	<0.0250	<0.0250	0.187	1.21	
MW-5D 05/29/ 08/30/ 8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2013	/17 DUP	10.9	1.75	<0.25	<0.0010	0.00112	0.187	1.48	
MW-5D 02/18/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2015	28/18	9.86	1.77	<0.25	<0.0010	0.00115	0.145	0.877	
MW-5D 02/18/ 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2015	29/18	13.2	2.20	<0.25	<0.0010	0.00130	0.271	1.15	
8/30/2013 02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2013		18.6	0.819 F-18	<0.151	<0.00200	<0.0100	0.190	0.936	
02/18/ 10/24/ 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2015		20.8	0.631 F-18	<0.151	<0.00200	<0.0100	0.212	1.06	
MW-5D 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2019		29.2	1.06 F-18	<0.151	<0.00200	<0.0100	0.187	1.06	<0.010
MW-5D 11/30/ 02/28/ 05/29/ 08/30/ 02/18/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2019	24/17	0.42	0.147 J	<0.25	<0.0010	<0.0010	0.00138	0.00296 J	
MW-5D 02/28/ 05/29/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2019		0.41	0.49	<0.25	<0.0010	<0.0010	<0.0010	<0.0030	
MW-5D 05/29/ 08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/2019		0.589	0.249	<0.25	<0.0010	<0.0010	0.00508	0.00204	
08/30/ 02/18/ 12/16/ 03/25/ 06/24/ 09/15/ 9/15/201		0.68	<0.38	<0.38	<0.0010	<0.0010	0.00220	<0.0030	
12/16/ 03/25/ 06/24/ 09/15/ 9/15/201	'30/18	0.673	<0.0755	<0.151	<0.000200	<0.00100	<0.00050	<0.00150	
03/25/ 06/24/ 09/15/ 9/15/201	18/19	0.165	<0.0748	<0.150	<0.000200	<0.00100	<0.00050	<0.00150	<0.001
06/24/ 09/15/ 9/15/201	16/14	15	<0.250	<0.500	0.47	0.065	1.3	2.6	
09/15/ 9/15/201	25/15	13.7	0.047	<0.092	0.516	0.0756	1.40	2.26	
9/15/201	24/15	17.7	1.2 D	<0.250	0.423	0.0582	1.58	1.92	
	15/15	15.1	0.54 D	<0.34	0.306	0.0672	1.23	1.92	
07/11/	2015 DUP	14	0.44 D	<0.35	0.328	0.0684	1.32	2.07	
- / /	11/16	15.5	0.23	<0.28	0.358	0.0616	1.63	1.82	
MW-6 10/24/	24/17	7.73	5.07	0.111 J	0.194	0.051	1.51	1.29	
10/24/17	/17 DUP	4.19 J	8.96 QJ	1.19 QJ	0.153	0.046	1.18	1.04	
11/30/	30/17	9.42	7.44	0.69	2.223	0.053	1.71	1.12	
02/28/		7.72	3.57	0.152	0.256	0.0423	1.44	0.735	
05/29/	28/18	1.5	9.30	0.570	0.23	0.0444	1.38	0.891	
08/30/		20.1	1.24 F-18	<0.151	0.212	0.0452	1.59	1.15	
02/18/	29/18	18.2	2.15 F-20	<0.151	0.249	0.0408	1.74	0.577	<0.010

Please refer to notes at end of table.

Summary of Analytical Results - Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	MTBE (mg/L)
	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015	
MW-7	02/19/19	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.00015	<0.001
	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015	
MW-8	7/11/16 DUP	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015	
02/18/19		<0.100	<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	<0.001
MW-8D	MW-8D 02/18/19		<0.0755	<0.151	<0.0002	<0.001	<0.0005	<0.00015	<0.001
	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015	
MW-9	02/18/19	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.0015	<0.001
	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015	
MW-10	02/19/19	<0.100	<0.0748	<0.150	<0.0002	<0.001	<0.0005	<0.00015	<0.001
MW-11 02/19/19		0.727	<0.0748	<0.150	0.00162	0.00176	0.083	0.0652	<0.001
Washington DOE MTCA Method A Cleanup Level		0.8	0.5	0.5	0.005	1	0.7	1	0.02

Notes:

1. TPHg = Total petroleum hydrocarbons in gasoline carbon range by NW-TPHgx method.

2. TPHd = Total petroleum hydrocarbons in diesel carbon range by NW-TPHdx method with silica gel cleanup.

3. TPHho = Total petroleum hydrocarbons ion heavy oil carbon range NW-TPHdx method with silica gel cleanup.

4. Bold values represent concentration that exceeds MTCA Method A cleanup level.

5. Analysis completed without silica gel cleanup. Lab detected hydrocarbons with non-petroleum peaks or elution pattern that suggests the presence of biogenic interference.

6. Hydrocarbon pattern most closely resembles a blend of heavy gas-/light diesel-range components.

7. mg/L (ppm) = Milligrams per liter (parts per million).

8. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.

9. Washington DOE MTCA Method A cleanup level = Washington Department of Ecology Model Toxics Control Act Method A cleanup level.

10. < = Not detected at or above the specified laboratory method reporting limit (MRL).

11. bgs = below ground surface

12. -- = Sample not analyzed for constituent.

Quality Assurance/Quality Control Data Qualifiers

J = Reported result is an estimated value.

J- = Reported result is estimated and biased low.

Q = Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.

F-18 = Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.

F-20 = Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.

D = Laboratory report noted discreet peaks that are not indicative of diesel. The laboratory chemist confirmed the peaks were from non-petroleum organic material.

Summary of Soil Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal

Vancouver, Washington

											C	oncentratio	ns in mg/kg (pp	om)							
Sample Location	Sample Date	Depth	TPH-HCID	ТРНg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	lsopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethy ether
oil Borings	04/40/02		1				1		1												
GP-2	04/10/02- 4/11/02	10-12		ND	ND	ND															
GP-3	04/10/02- 4/11/02	10-12		ND	ND	ND															
GP-5	04/10/02- 4/11/02	17-19		ND	ND	ND															
GP-7	04/10/02- 4/11/02	14-16		ND	ND	ND															
GP-8	04/10/02- 4/11/02	6-8		ND	ND	ND															
GP-9	04/10/02- 4/11/02	16-18		ND	ND	ND															
GP-12	04/10/02- 4/11/02	22-24		ND	ND	ND															
GP14	05/09/02	10-12	DET	3,230	19,700	<1,000															
GP16	05/09/02	10-12	ND	ND	ND	ND															
MW2	05/09/02	25-26.5	ND	314	<25	<50															
GP26	06/26/02	6-8		5,850			<2.5	9.74	91.3	825	<2.5	<2.5	<10	124	891	293	29.7	125			
GP27	06/26/02	10-12		4.96			<0.0050	<0.0050	< 0.0050	<0.1	<0.05	< 0.05	<0.2	<0.5	<0.1	< 0.05	<0.2	< 0.05			
GP31	06/26/02	22-24		<2.5	<25	<50	< 0.0050	< 0.0050	< 0.0050	<0.0050											
GP32	06/26/02	6.5-8		910	2,530	<50	<5	<5	<5	16											
GP33	06/26/02	8-10		363	31,500	<2,500	<0.500	<0.500	7.2	33.9											
GP34	06/26/02	6-8		728	13,600	<1,000	<0.500	<0.500	0.717	16.9											
GP35	06/26/02	8-10		10.3	<25	<50	<0.0050	<0.0050	<0.0050	<0.0050											
SB-2	04/17/03	4	ND																		
SB-2	04/17/03	22	ND																		
SB-4	04/17/03	3	ND		<25	<50															
SB-4	04/17/03	27	ND		<25	<50															
SB-5	04/17/03	11	ND																		
SB-6	04/16/03	3	ND																		
SB-6	04/16/03	16	ND																		
SB-7	04/17/03	12	ND																		
SB-8	04/17/03	8	DET	1,020	7,890	<1,000	<0.500	<0.500	<0.500	7.45				6.14	31	20.4	<1	3.22	3.54	<0.5	
SB-8	04/17/03	16	DET	369	1,440	<50	<0.500	<0.500	<0.500	<1,000				6.47	1.67	<0.5	1.13	0.837	<2.5	0.539	
SB-8R	09/30/14	12		<5.0	<5.0																
SB-9	04/18/03	12	DET	504	1,890	<50															
SB-9	04/18/03	15	DET	168	1,210	<50															
SB-9R	09/30/14	12		1,000	4,000																
SB-9R	09/30/14	13.5			3,400																
SB-11	04/16/03	2.5	ND		<25	<50															
SB-11	04/16/03	14	ND		<25	<50															
SB-12	04/22/03	3	ND																		
SB-12 SB-12	04/18/03	12	ND																		
SB-12 SB-13	04/22/03	2	ND																		
SB-13	04/22/03	5	ND																		
20 13	07/22/03			.=										-	-						

Summary of Soil Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

											C	oncentratio	ns in mg/kg (pj	om)							
Sample Location	Sample Date	Depth	TPH-HCID	TPHg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	lsopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether
oil Borings (contin	nued)																				
B-15	01/31/19	4.5 - 5.5		<7.94	<28.2	<56.5	<0.0159	<0.0794	<0.0397	<0.119			<0.0794	<0.159							
B-16-1	01/30/19	3 - 4		<7.80	27.8 F-11	<52.2	<0.0156	<0.0780	< 0.0390	<0.117			<0.0780	<0.156							
B-16-2	01/30/19	5 - 6		1,900	483 F-20	<52.0	<0.0683	<0.342	<0.171	<0.513			< 0.342	1.53							
B-17-1	01/31/19	11.5 - 12.5		<9.32	<28.5	<56.9	<0.0186	<0.0932	< 0.0466	<0.140			< 0.0932	<0.186							
B-17-2	01/31/19	15 - 16		38.7	323 F-13	<61.2	<0.0174	<0.0872	<0.0436	<0.131			<0.0872	<0.174							
B-18-1	01/30/19	6.5 - 7.5		5,100	12,800	<1100	0.295	<0.777	24.5	88.7			<0.777	60.7							
B-18-2	01/30/19	14 - 15		10,800	7,460	<501	4.05	67.6	98	524			<3.07	111							
B-19	01/29/19	10 - 11		<7.59	<27.8	<55.6	<0.0152	<0.0759	<0.0380	<0.114			<0.0759	<0.152							
B-20-1	02/04/19	10 - 11		302	89.4	<50.0	<0.0139	<0.0696	<0.0348	<0.104			<0.0696	<.0.348							
B-20-2	02/04/19	12 - 13		35.1	<27.4	<54.7	<0.0157	<0.0836	<0.0418	<0.125			<0.0836	<0.157							
B-21-1	02/01/19	13 - 14		<8.11	<27.1	<54.3	< 0.0162	<0.0811	<0.0405	<0.122			<0.0811	<0.162							
B-21-2	02/01/19	15.5 - 16.5		10.5	<25.0	<50.0	< 0.0131	<0.0656	< 0.0328	<0.0983			<0.0656	<0.131							
B-23	01/29/19	6.5 - 7.5		<7.26	<25.0	<50.0	< 0.0145	< 0.0726	< 0.0363	<0.109			< 0.0726	<0.145							
B-24	01/28/19	10.5 - 11.5		<7.19	<26.5	<53.1	<0.0144	<0.0719	< 0.0359	<0.108			<0.0719	<0.144							
B-25-1	01/28/19	6 - 7		10.8	5,540	<534	<0.0146	<0.0728	< 0.0364	<0.109			<0.0728	<0.146							
B-25-2	01/28/19	8.5 - 9.5		88.6	7,650	<518	<0.0148	<0.0739	< 0.0369	<0.111			< 0.0739	0.394							
B-26	01/28/19	8 - 9		<8.16	<27.3	<54.6	< 0.0163	<0.0816	<0.0408	<0.122			<0.0816	<0.163							
B-27	01/28/19	7 - 8		1,910	6,620	<493	<0.0725	< 0.363	1.89	11.1			< 0.363	11.2							<10.5
B-27-2	01/28/19	9 - 10		11,500	23,700	<1190	<0.597	<2.99	71.2	573			<2.99	168							
B-28	01/28/19	8 - 9		<8.95	<30.2	<60.4	< 0.0179	<0.0895	< 0.0359	<0.134			< 0.0895	<0.179							
land Augers																					
HA-1	04/17/03	3	ND																		
HA-1	04/17/03	6	ND																		
HA-2	04/18/03	2	ND																		
HA-2	04/18/03	5	ND																		
HA-3	04/17/03	2					<0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
HA-3	04/17/03	5.5					<0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	<0.1	< 0.5	<0.1	
HA-4	04/18/03	2	ND				<0.1														
HA-4	04/18/03	5	ND																		
HA-5	04/18/03	3	DET	3,320	4,780	<50	<5.0	10.5	48.5	500				76.4	341	109	<10	39.1	<25	6.6	
HA-5	04/18/03	5	DET	2,290	10,700	<250	6.7	216	177	1,204				141	576	176	20.8	83.3	34	<5	
HA-5 HA-6	04/18/03	2	ND	2,250		~250				1,204											
HA-6	04/18/03	5	ND																		
НА-6 НА-7		5	ND																		
	04/14/03	o c																			
HA-8	04/14/03		ND																		
Washing	ton DOE MTCA Me	ethod A cleanup	level	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA

Please refer to notes at end of table.

Table 3Summary of Soil Analytical Results: TPH and VOCsNuStar Terminals Operations Partnership, L.P. - Annex TerminalVancouver, Washington

											C	oncentratio	ns in mg/kg (p	pm)							
Sample Location	Sample Date	Depth	TPH-HCID	TPHg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	lsopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether
Soil Sample from A	dvancement of Ter	mporary Monit	oring Wells																		
PMW-5	04/16/03	8	ND		31	<50															
PMW-5	04/16/03	10	DET		146	<50															
PMW-6	04/16/03	3	ND																		
PMW-6	04/16/03	12	ND																		
PMW-7	04/16/03	3	ND																		
PMW-7	04/16/03	16	ND																		
Soil Samples from I	Excavation Confirm	nation																			
N. Wall	5/20/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
N. Wall	5/20/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
E. Wall	5/21/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
E. Wall	5/21/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1	
Washingto	on DOE MTCA Met	hod A cleanup	level ^{12.}	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA

Notes:

1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by NW-TPH-HCID

2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.

3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method with silica gel cleanup.

4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method with silica gel cleanup.

Note: Flags in the lab reports indicate that TPHg and TPHd results do not fall under the (respective) standard gasoline or diesel ranges, but typically represent an

overlap of diesel and gasoline ranges. Specific notes for individual samples can be found in the attached laboratory anlaytical reports.

5. mg/kg (ppm) = Milligrams per kilogram (parts per million).

6. -- = Not analyzed or not available.

7. < = Not detected at or above the specified laboratory method reporting limit (MRL).

8. ND = Not detected; MRL not available.

9. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.

10. Boldface values represent concentration that exceeds MTCA Method A cleanup level.

11. TPHg cleanup level dependent on presence of benzene in soil. Cleanup level = 30 mg/kg if benzene is present and 100 mg/kg if benzene is not present.

12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.

13. NA = Cleanup level not available.

14. Grey highlight identifies the 2014 borings installed at the historical (2003) locations of SB-8 and SB-9.

Summary of Grab Groundwater Sample Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

Location Date (feet bgs) Groundwater Samples from Soil Borings B-1(1) 10/22/2015 21-25 B-1(2) 10/22/2015 26-30 B-1(3) 10/22/2015 36-40 B-2(1) 10/23/2015 16-20 B-2(2) 10/23/2015 36-40 B-3(1) 10/23/2015 16-20 B-3(1) 10/23/2015 26-30 B-3(1) 10/23/2015 26-30 B-4(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-4(2) 10/27/2015 16-20 B-5(1) 10/27/2015 16-20 B-6(2) 10/27/2015 51-55 B-6(2) 10/27/2015 21-25 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-9(2) 10/29		Г									Concentration	s in mg/L (ppm)									
B-1(1) 10/22/2015 21-25 B-1(2) 10/22/2015 26-30 B-2(1) 10/23/2015 36-40 B-2(1) 10/23/2015 26-30 B-2(2) 10/23/2015 26-30 B-2(3) 10/23/2015 36-40 B-3(1) 10/23/2015 26-30 B-3(2) 10/23/2015 26-30 B-3(1) 10/23/2015 26-30 B-4(1) 10/27/2015 16-20 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 19-23 B-6(1) 10/27/2015 51-55 B-6(3) 10/27/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-9(1) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40	TP	TPH-HCID	TPHg	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethylb enzene	1,3,5- Trimethylb enzene	lsopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether	Dissolved Lead
B-1(2) 10/22/2015 26-30 B-1(3) 10/22/2015 36-40 B-2(1) 10/23/2015 16-20 B-2(2) 10/23/2015 36-40 B-2(3) 10/23/2015 36-40 B-3(1) 10/23/2015 16-20 B-3(2) 10/23/2015 26-30 B-3(2) 10/23/2015 26-30 B-4(1) 10/27/2015 16-20 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 51-55 B-6(2) 10/27/2015 61-65 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-9(1) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40																					
B-1(3) 10/22/2015 36-40 B-2(1) 10/23/2015 16-20 B-2(2) 10/23/2015 26-30 B-3(1) 10/23/2015 26-30 B-3(2) 10/23/2015 26-30 B-3(2) 10/23/2015 26-30 B-4(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(1) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-8(1) 10/28/2015 21-25 B-9(2) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40	21-25		0.483	0.51	<0.28	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-2(1) 10/23/2015 16-20 B-2(2) 10/23/2015 26-30 B-2(3) 10/23/2015 36-40 B-3(1) 10/23/2015 26-30 B-3(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-4(2) 10/27/2015 16-20 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 51-55 B-6(1) 10/27/2015 61-65 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 16-20 B-8(1) 10/28/2015 16-20 B-9(1) 10/29/2015 16-20 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40	26-30		<0.250	0.24	0.38	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-2(2) 10/23/2015 26-30 B-2(3) 10/23/2015 36-40 B-3(1) 10/23/2015 26-30 B-3(2) 10/23/2015 26-30 B-4(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 16-20 B-5(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 16-20 B-8(1) 10/29/2015 16-20 B-9(1) 10/29/2015 16-20 B-9(2) 10/29/2015 16-20 B-10(1) 10/29/2015 36-40 B-11(2) 10/30/2015 41-45	36-40		0.687	0.35	<0.24	<0.00050	<0.00050	0.00053	<0.0010	<0.00050											
B-2(3) 10/23/2015 36-40 B-3(1) 10/23/2015 16-20 B-3(2) 10/23/2015 26-30 B-4(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 51-55 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-8(1) 10/28/2015 16-20 B-8(2) 10/29/2015 16-20 B-9(1) 10/29/2015 16-20 B-9(2) 10/29/2015 16-20 B-10(1) 10/29/2015 36-40 B-11(1) 10/30/2015 36-40	16-20		4.02	0.77	<0.30	0.0104	0.0155	1.31	3.18	<0.00050											
B-3(1) 10/23/2015 16-20 B-3(2) 10/23/2015 26-30 B-4(1) 10/23/2015 26-30 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 36-40 B-5(2) 10/27/2015 36-40 B-6(2) 10/27/2015 51-55 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 21-25 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 16-20 B-8(2) 10/28/2015 16-20 B-9(3) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 41-45	26-30		<0.250	0.2	<0.23	<0.00050	<0.00050	0.0057	0.0108	<0.00050											
B-3(2) 10/23/2015 26-30 B-4(1) 10/23/2015 16-20 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 51-55 B-6(2) 10/27/2015 61-65 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 16-20 B-8(1) 10/29/2015 36-40 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 16-20 B-11(2) 10/30/2015 16-20	36-40		2.37	3.5	<0.28	0.0022	0.0019	0.122	0.184	<0.00050											
B-4(1) 10/23/2015 16-20 B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 16-20 B-6(1) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 26-30 B-7(2) 10/28/2015 16-20 B-8(1) 10/28/2015 16-20 B-8(2) 10/28/2015 16-20 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-11(2) 10/30/2015 41-45 B-11(2) 10/30/2015 41-45 B-11(2) 10/30/2015 41-45			22.3	15.9/3.2 ¹⁶	0.69 /<0.003 ¹⁶	3.94	0.112	1.24	3.9	<0.010											
B-4(2) 10/23/2015 26-30 B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(2) 10/27/2015 61-65 B-7(1) 10/28/2015 26-30 B-7(2) 10/28/2015 16-20 B-8(1) 10/28/2015 16-20 B-8(1) 10/29/2015 36-40 B-9(1) 10/29/2015 36-40 B-9(2) 10/29/2015 16-20 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-112(1) 10/30/2015 36-40	26-30		25.6	37.4	0.46	3.91	0.104	1.23	3.52	<0.010											
B-5(1) 10/27/2015 16-20 B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-8(1) 10/28/2015 21-25 B-8(1) 10/28/2015 21-25 B-8(1) 10/28/2015 16-20 B-9(1) 10/29/2015 36-40 B-9(3) 10/29/2015 16-20 B-10(1) 10/30/2015 21-25 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-112(1) 10/30/2015 36-40	16-20		10.3	6.2	<0.300	<0.0012	<0.0012	0.26	0.321	<0.0012											
B-5(2) 10/27/2015 36-40 B-6(1) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-7(2) 10/28/2015 21-25 B-8(1) 10/28/2015 21-25 B-8(1) 10/28/2015 16-20 B-9(1) 10/29/2015 36-40 B-9(2) 10/29/2015 16-20 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 <td>26-30</td> <td></td> <td>9.88</td> <td>2.1</td> <td><0.260</td> <td>0.0012</td> <td>0.001</td> <td>0.255</td> <td>0.214</td> <td><0.00050</td> <td></td>	26-30		9.88	2.1	<0.260	0.0012	0.001	0.255	0.214	<0.00050											
B-6(1) 10/27/2015 19-23 B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7(1) 10/28/2015 21-25 B-7(2) 10/28/2015 26-30 B-8(1) 10/28/2015 21-25 B-8(1) 10/28/2015 21-25 B-8(2) 10/28/2015 16-20 B-9(1) 10/29/2015 36-40 B-9(2) 10/29/2015 16-20 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 36-40 <td>16-20</td> <td></td> <td>34.7</td> <td>68.4</td> <td>3.8</td> <td><0.025</td> <td><0.025</td> <td>2.77</td> <td>5.24</td> <td><0.025</td> <td></td>	16-20		34.7	68.4	3.8	<0.025	<0.025	2.77	5.24	<0.025											
B-6(2) 10/27/2015 51-55 B-6(3) 10/27/2015 61-65 B-7 (1) 10/28/2015 21-25 B-7(2) 10/28/2015 26-30 B-8(1) 10/28/2015 16-20 B-8(1) 10/28/2015 21-25 B-9(1) 10/29/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-12(2) 10/30/2015 16-20 B-12(3) 10/30/2015 36-40 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 <	36-40		20.6	0.89	<0.30	<0.0031	0.0097	0.955	1.26	<0.0031											
B-6(3) 10/27/2015 61-65 B-7 (1) 10/28/2015 21-25 B-7(2) 10/28/2015 26-30 B-8(1) 10/28/2015 16-20 B-8(1) 10/28/2015 21-25 B-8(2) 10/28/2015 16-20 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-10(2) 10/30/2015 21-25 B-11(1) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-112(1) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 </td <td>19-23</td> <td></td> <td>48.6</td> <td>117/67.7¹⁶</td> <td>0.77/0.62¹⁶</td> <td><0.0025</td> <td>0.005</td> <td>0.0743</td> <td>0.0245</td> <td><0.0025</td> <td></td>	19-23		48.6	117/67.7 ¹⁶	0.77/0.62 ¹⁶	<0.0025	0.005	0.0743	0.0245	<0.0025											
B-7 (1) 10/28/2015 21-25 B-7(2) 10/28/2015 26-30 B-8(1) 10/28/2015 16-20 B-8(1) 10/28/2015 21-25 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40 B-9(2) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-12(2) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 36-40 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 </td <td>51-55</td> <td></td> <td><0.250</td> <td>0.35</td> <td>0.31</td> <td><0.00050</td> <td><0.00050</td> <td><0.00050</td> <td><0.0010</td> <td><0.00050</td> <td></td>	51-55		<0.250	0.35	0.31	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-7(2) 10/28/2015 26-30 B-8(1) 10/28/2015 16-20 B-8(2) 10/28/2015 21-25 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(3) 10/30/2015 16-20 B-12(1) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 36-40 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30	61-65		<0.250	0.35	<0.30	<0.00050	<0.00050	<0.00050	<0.0010	0.0025											
B-8(1) 10/28/2015 16-20 B-8(2) 10/28/2015 21-25 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 46-50 B-10(1) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(2) 10/30/2015 41-45 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 25-30 B-14 (2) 7/7/2016 25-30 </td <td>21-25</td> <td></td> <td><0.250</td> <td><0.170</td> <td><0.260</td> <td><0.00050</td> <td><0.00050</td> <td><0.00050</td> <td><0.0010</td> <td><0.00050</td> <td></td>	21-25		<0.250	<0.170	<0.260	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-8(2) 10/28/2015 21-25 B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 36-40 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 16-20 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 </td <td>26-30</td> <td></td> <td><0.250</td> <td><0.190</td> <td><0.280</td> <td><0.00050</td> <td><0.00050</td> <td>< 0.00050</td> <td>< 0.0010</td> <td><0.00050</td> <td></td>	26-30		<0.250	<0.190	<0.280	<0.00050	<0.00050	< 0.00050	< 0.0010	<0.00050											
B-9(1) 10/20/2015 16-20 B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 46-50 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(3) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-50 1/31/2019 50-55 </td <td>16-20</td> <td></td> <td><0.250</td> <td><0.190</td> <td><0.290</td> <td><0.00050</td> <td><0.00050</td> <td><0.00050</td> <td><0.0010</td> <td><0.00050</td> <td></td>	16-20		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-9(2) 10/29/2015 36-40 B-9(3) 10/29/2015 46-50 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(2) 7/7/2016 15-20 B-14(2) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-50 1/31/2019 50-55	21-25		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	< 0.0010	<0.00050											
B-9(3) 10/29/2015 46-50 B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-11(2) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(3) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-50 1/31/2019 50-55	16-20		1.63	0.24	0.28	<0.00050	<0.00050	<0.00050	< 0.0010	<0.00050											
B-10(1) 10/29/2015 16-20 B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 50-55	36-40		3.03	0.38	0.62	<0.00050	<0.00050	<0.00050	<0.0010	0.0039											
B-10(2) 10/29/2015 36-40 B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(2) 10/30/2015 36-40 B-11(3) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 50-55	46-50		1.55	0.56	<0.300	<0.00050	<0.00050	<0.00050	<0.0010	0.0048											
B-11(1) 10/30/2015 21-25 B-11(2) 10/30/2015 36-40 B-11(3) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 15-20 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-40 1/31/2019 50-55 B-19-15 1/29/2019 30-35	16-20		32.7	284	0.58	< 0.0012	< 0.0012	0.377	0.495	< 0.0012											
B-11(2) 10/30/2015 36-40 B-11(3) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-14/50 1/31/2019 40-45 B-18-40 1/31/2019 50-55 B-19-30 1/29/2019 30-35	36-40		0.421	2.2	0.37	<0.00050	<0.00050	0.0022	0.003	<0.00050											
B-11(3) 10/30/2015 41-45 B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 25-30 B-14 (2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-40 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-30 1/29/2019 30-35	21-25		19.2	46.7	0.92	<0.0025	< 0.0025	0.455	0.701	< 0.0025											
B-12(1) 10/30/2015 16-20 B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13(1) 7/7/2016 15-20 B-13(2) 7/7/2016 25-30 B-14(1) 7/7/2016 25-30 B-14(2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 30-35 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 50-55	36-40		1.58	6.9	0.62	<0.00050	<0.00050	0.0112	0.0187	<0.00050											
B-12(2) 10/30/2015 36-40 B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 15-20 B-14 (2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-40 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 50-55 B-19-50 1/29/2019 50-55	41-45		<0.250	0.28	0.3	<0.00050	<0.00050	0.00052	< 0.0010	<0.00050											
B-12(3) 10/30/2015 41-45 B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 15-20 B-14 (2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 30-35 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 50-55 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55	16-20		0.265	<0.200	0.36	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050											
B-13 (1) 7/7/2016 15-20 B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 15-20 B-14 (2) 7/7/2016 25-30 B-17-50 1/31/2019 40-45 B-18-40 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 30-35 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	36-40		<0.250	0.29	<0.260	<0.00050	<0.00050	<0.00050	< 0.0010	<0.00050											
B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 15-20 B-14 (2) 7/7/2016 25-30 B-14 (2) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	41-45		<0.250	<0.200	< 0.300	<0.00050	<0.00050	<0.00050	<0.0010	0.001											
B-13 (2) 7/7/2016 25-30 B-14 (1) 7/7/2016 15-20 B-14 (2) 7/7/2016 25-30 B-14 (2) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 30-35 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	15-20		<0.250	<0.18	<0.27	< 0.00050	< 0.00050	< 0.00050	< 0.0015												
B-14 (2) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 30-35 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 50-55	25-30		<0.250	<0.18	<0.27	<0.00050	<0.00050	<0.00050	<0.0015												
B-14 (2) 7/7/2016 25-30 B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 30-35 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 50-55	15-20		<0.250	<0.18	<0.27	< 0.00050	<0.00050	<0.00050	<0.0015												
B-17-40 1/31/2019 40-45 B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 30-35 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 50-55	25-30		<0.250	<0.17	<0.26	<0.00050	<0.00050	<0.00050	<0.0015												
B-17-50 1/31/2019 50-55 B-18-40 1/31/2019 40-45 B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	40-45		0.187	0.233 F-13	<0.154	<0.0002	< 0.001	0.000816	<0.0015	< 0.001		0.00261									
B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 50-55	50-55		0.741 Q-42	0.397 F-13	<0.162	<0.0002	<0.001	0.00508	0.00574	<0.001		0.011									
B-18-50 1/31/2019 50-55 B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	40-45		<0.100	<0.0792	<0.158	< 0.0002	< 0.001	0.000981	0.00458	< 0.001		<0.002									
B-19-15 1/29/2019 15-20 B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	50-55		0.154	<0.0784	<0.157	<0.0002	0.00148	0.00194	0.00972	<0.001		0.0023									
B-19-30 1/29/2019 30-35 B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65	15-20		<0.100	<0.0755	<0.151	< 0.0002	< 0.001	<0.0005	<0.0015	<0.001		<0.002									
B-19-40 1/29/2019 40-45 B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65			<0.100	< 0.0784	<0.157	< 0.0002	< 0.001	< 0.0005	< 0.0015	<0.001		< 0.002									
B-19-50 1/29/2019 50-55 B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65			<0.100	< 0.0769	<0.154	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-20-50 2/4/2019 50-55 B-20-60 2/4/2019 60-65			<0.100	<0.0800	<0.160	<0.0002	<0.001	<0.0005	<0.0015	<0.001		<0.002									
B-20-60 2/4/2019 60-65			2.47	0.214 F-18	<0.167	< 0.0002	< 0.001	< 0.0005	<0.0015	< 0.001		< 0.003									
			<0.100	<0.0800	<0.160	< 0.0002	< 0.001	< 0.0005	< 0.0015	< 0.001		< 0.002									
			<0.100	< 0.0784	<0.157	< 0.0002	< 0.001	< 0.0005	<0.0015	< 0.001		< 0.002									
			<0.100	< 0.0777	<0.155	< 0.0002	< 0.001	< 0.0005	< 0.0015	< 0.001		< 0.002									
			18.8	0.500 L	<0.490	0.017	0.018	2.2	2.5	<0.0025		< 0.010									
			0.161	0.109 F-18	<0.160	< 0.0002	< 0.001	0.00119	0.00858	< 0.001		< 0.002								<0.0187	

Please refer to notes at end of table.

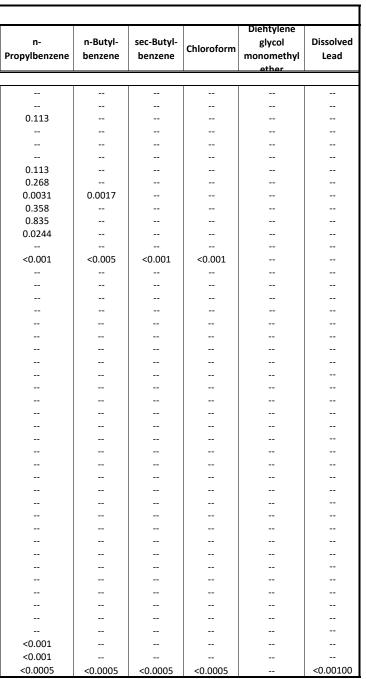


Table 4

Summary of Grab Groundwater Sample Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

												Concentration	s in mg/L (ppm)			
Sample Location	Sample Date	Depth (feet bgs)	TPH-HCID	TPHg	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethylb enzene	1,3,5- Trimethylb enzene	lsopropyl- benzene	
Historical Grab Gro	undwater Samples from	Soil Borings															
GP-1	04/10/02-04/11/02																
GP-2	04/10/02-04/11/02																
GP-3	04/10/02-04/11/02	24		25.1	ND		5.2	1.03	1.41	1.258			0.14	0.338	0.128		
GP-4	04/10/02-04/11/02																
GP-5	04/10/02-04/11/02	22		ND	ND	ND											
GP-6	04/10/02-04/11/02																
GP-7	04/10/02-04/11/02	24		60.2	ND		3.97	16.2	2.17	9.69			0.212	0.914	0.228		
GP-8	04/10/02-04/11/02	23					15	32.9	4.51	19.57			0.462	2.11	0.55		
GP-9	04/10/02-04/11/02	24		0.536			ND	ND	0.00135	0.01153			0.0782	0.0102	0.0114		
GP-10	04/10/02-04/11/02	23		159	ND		4.44	28.1	5.09	23.07			0.476	2.79	0.728		
GP-11	04/10/02-04/11/02	32					14.2	48.3	8.25	36.6			1.91	6.4	1.76		
GP-12	4/11/2002	32					0.698	1.64	0.363	0.999				0.11	0.0318		
GP-13	05/09/02-05/10/02						< 0.0005	< 0.0005	< 0.0005	< 0.001							
GP-14	5/9/2002						< 0.001	< 0.001	< 0.001	0.00518	< 0.001		< 0.002	0.00219	<0.001	< 0.002	
GP-15	05/09/02-05/10/02						< 0.0005	<0.0005	0.0019	0.0186							
GP-16	5/9/2002						< 0.0005	< 0.0005	0.00515	0.0522							
GP-17	05/09/02-05/10/02						0.0243	0.00056	0.00186	0.0146							
GP-18	05/09/02-05/10/02						0.00064	0.00053	0.00051	0.00411							
GP-19	05/09/02	34					< 0.0005	<0.0005	<0.0005	< 0.001							
GP-20	05/09/02	34					< 0.0005	<0.0005	<0.0005	< 0.001							
GP-21	05/10/02	34					< 0.0005	<0.0005	<0.0005	< 0.001							
GP-22	05/10/02	34					5.81	29.2	6.31	28.6							
GP-23	05/10/02	34					0.00544	0.101	0.0667	0.302							
GP-24	05/10/02	24					0.00094	0.0144	0.00846	0.0424							
GP-25	05/10/02	24					0.00062	0.00882	0.00398	0.0193							
GP-28	06/26/02	26					< 0.0005	<0.0005	<0.0005	< 0.001							
GP-29	06/26/02	50					0.538	6.14	1.55	7.14							
GP-30	06/26/02	26					< 0.0005	0.000626	0.000507	< 0.001							
SB-1	04/17/03	36	ND														
SB-2	04/17/03		ND														
SB-3	04/18/03																
SB-4	04/17/03		ND		<0.526	<1.05											
SB-5	04/17/03		ND														
SB-6	04/18/03	24	ND														
SB-7	04/17/03		ND														
SB-8	04/17/03		DET ^{6.}		20.9	<1.17											
SB-8R	09/30/14			45	9.8												
SB-9	04/18/03		DET ^{6.}		66.2	<1.05											
SB-9R	09/30/14			26	3.6												
SB-10	04/18/03		ND														
SB-11	04/16/03		ND		<0.500	<1.00											
SB-12	04/18/03		ND														
SB-18	04/18/03																
GP-1	06/11/07	70-72					<0.001	<0.001	< 0.001	<0.002	0.0137	<0.001	<0.002	<0.001	<0.001	<0.002	
GP-2	06/11/07	64-66					< 0.001	<0.001	< 0.001	<0.002	< 0.002	<0.001	<0.002	<0.001	< 0.001	< 0.002	
DP-1 GRAB	03/30/10	60.7-64.7					< 0.0005	<0.0005	<0.0001	<0.0015	< 0.0002	<0.0005	< 0.0005	< 0.0001	<0.0001	< 0.002	
DF-1 GRAD		00.7-04.7					-0.0005	NO.0000	-0.000J	-0.001J	NO.000	NO.0000	-0.0000	-0.0003	NO.0000	-0.0003	_

Please refer to notes at end of table.

Table 4

Summary of Grab Groundwater Sample Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

					Concentrations in mg/L (ppm)																	
Sample Location	Sample Date	Depth (feet bgs)	TPH-HCID	TPHg	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethylb enzene	1,3,5- Trimethylb enzene	lsopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chloroform	Diehtylene glycol monomethyl ether	Dissolved Lead
Groundwater Sample	es from Temporary Mo	onitoring Wells																				/
PMW-5	04/16/03	10-20	DET ^{6.}		1.88	<0.943																
PMW-6	04/16/03	5-20	ND																			
PMW-7	04/16/03	9-24	ND																			
Groundwater Sample	e from Irrigation Well																					
IRRIG WELL	04/17/03						<0.001	<0.001	< 0.001	<0.002	<0.001		< 0.002	< 0.001	<0.001	<0.002	< 0.001	< 0.005	<0.001	<0.001		
Washing	ton DOE MTCA Metho	od A cleanup lev	el ^{12.}	0.800 ^{11.}	0.5	0.5	0.005	1	0.7	1	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	NA	0.015

Notes:

1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by method NWTPH-HCID.

2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.

3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method. September 2014 samples were analyzed using silica gel cleanup method.

4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method.

Note: Flags in the lab reports indicate that TPHg and TPHd results do not fall under the (respective) standard gasoline or diesel ranges, but typically represent an overlap of diesel and gasoline ranges (i.e F-13, F-18, L). Specific notes for individual samples can be found in the attached laboratory anlaytical reports and quality review summary report.

5. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analysis per EPA Method 8260B.

6. Volatile organic compounds (VOCs) analysis per EPA Method 8260B.

7. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.

8. ND = Not detected; method reporting limit (MRL) not available.

9. < = Not detected at or above the specified laboratory method reporting limit (MRL).

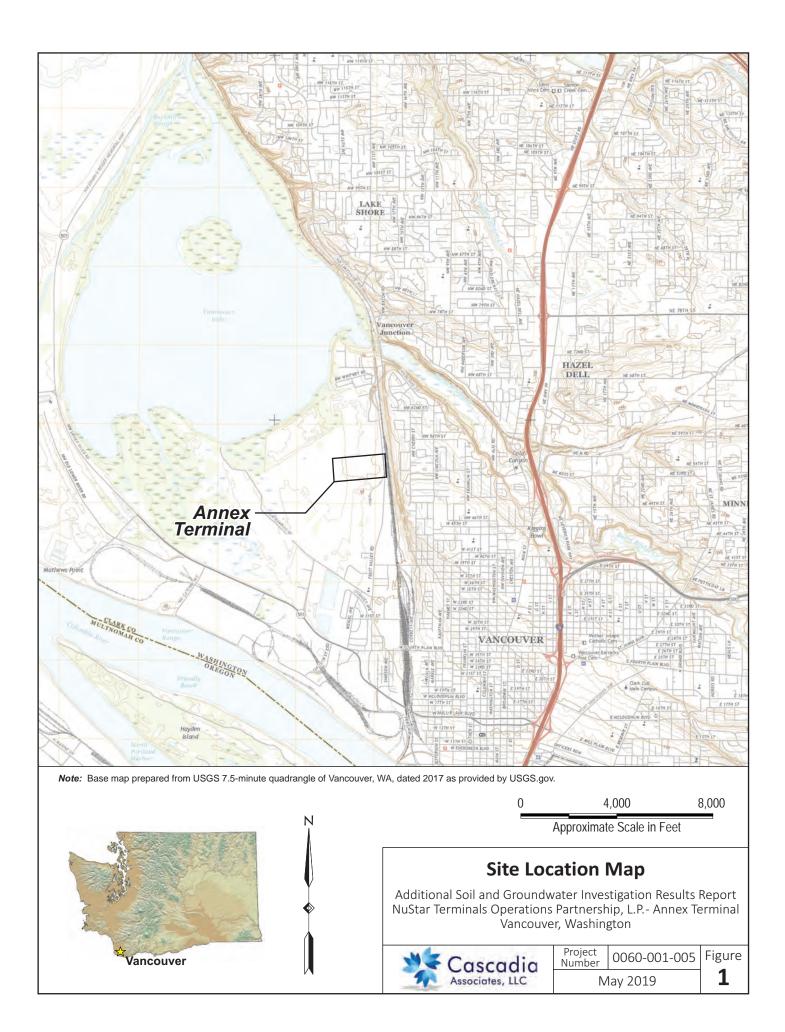
10. mg/L (ppm) = Milligrams per liter (parts per million).

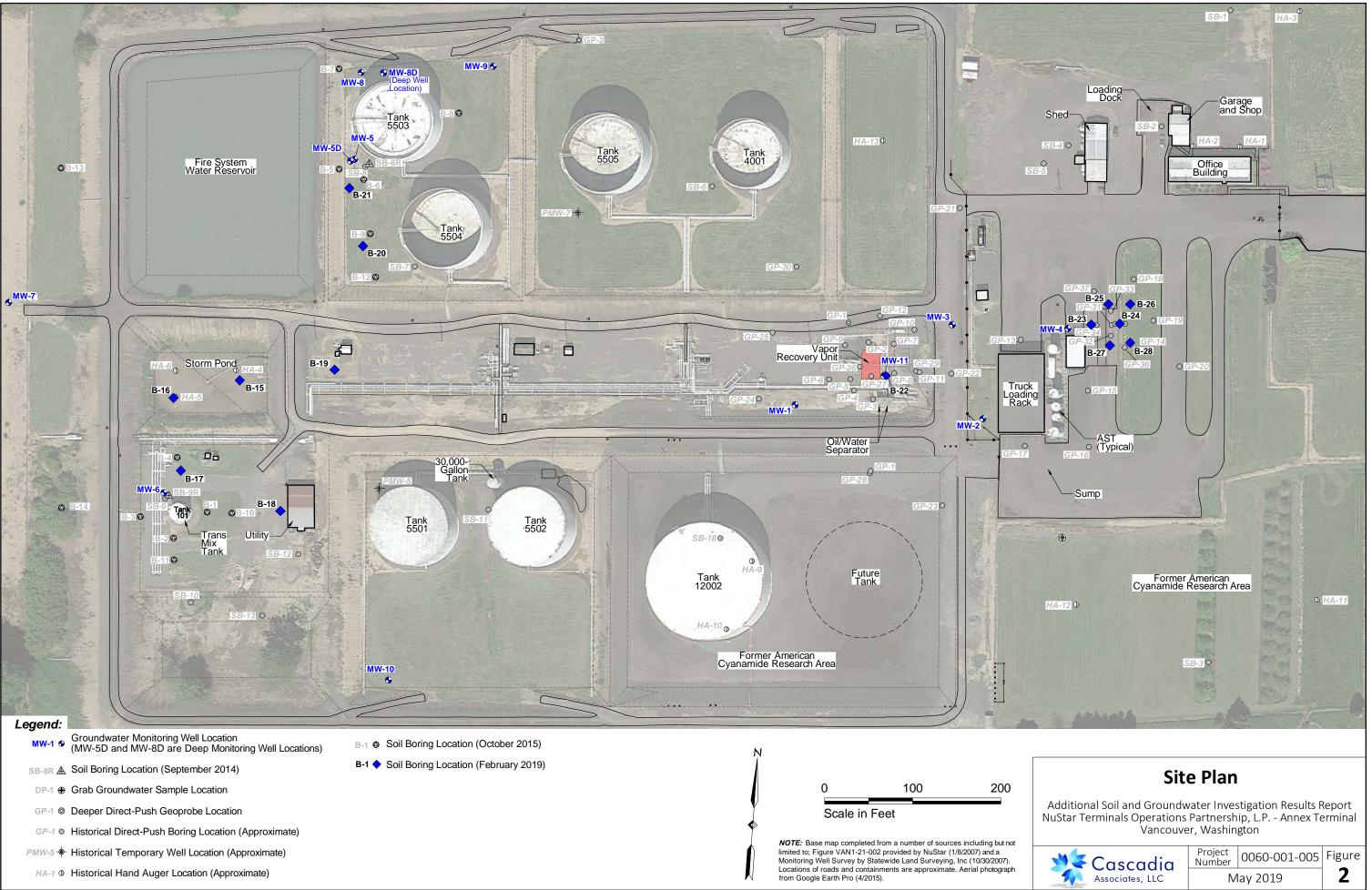
11. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.

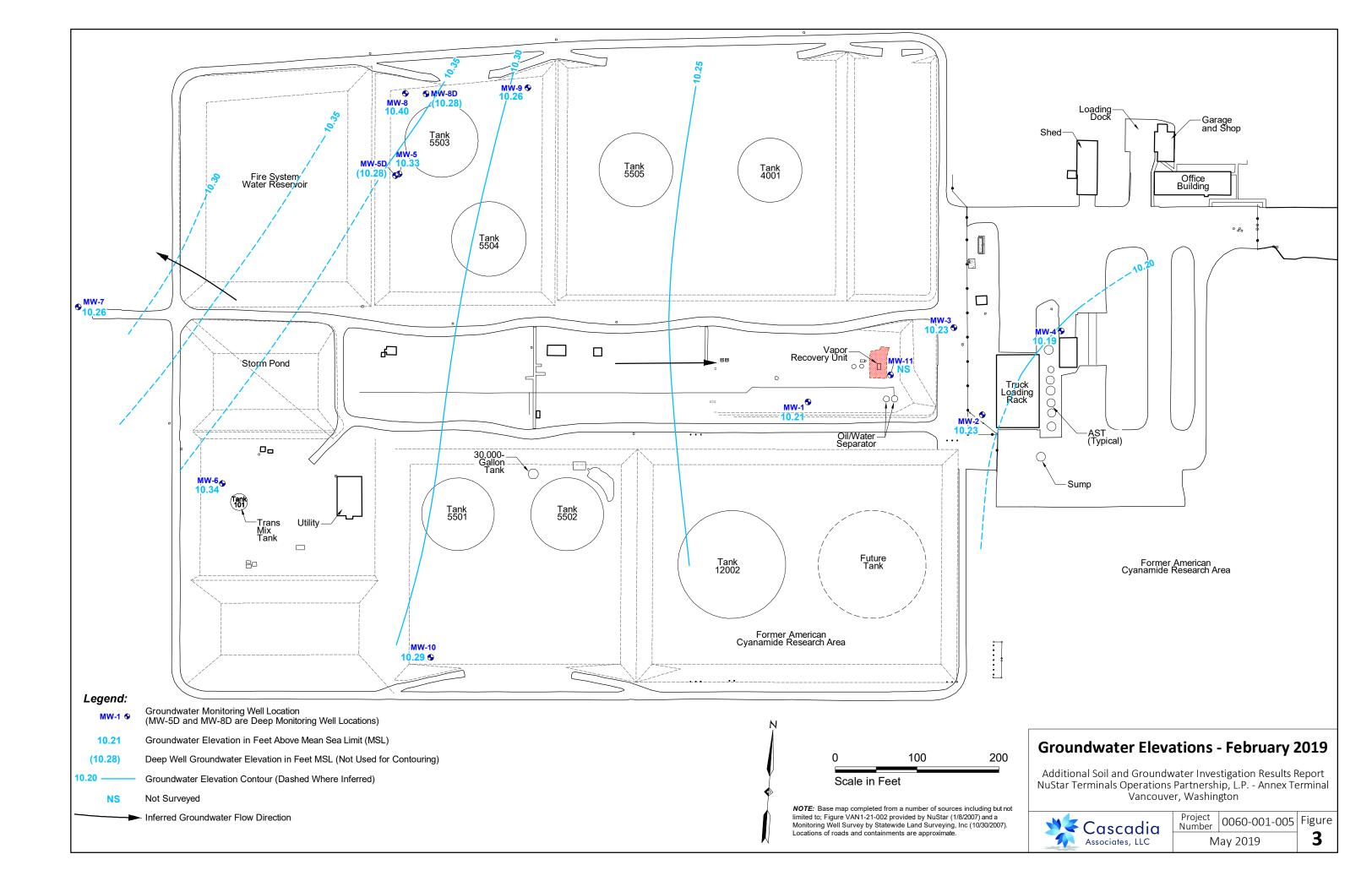
12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.

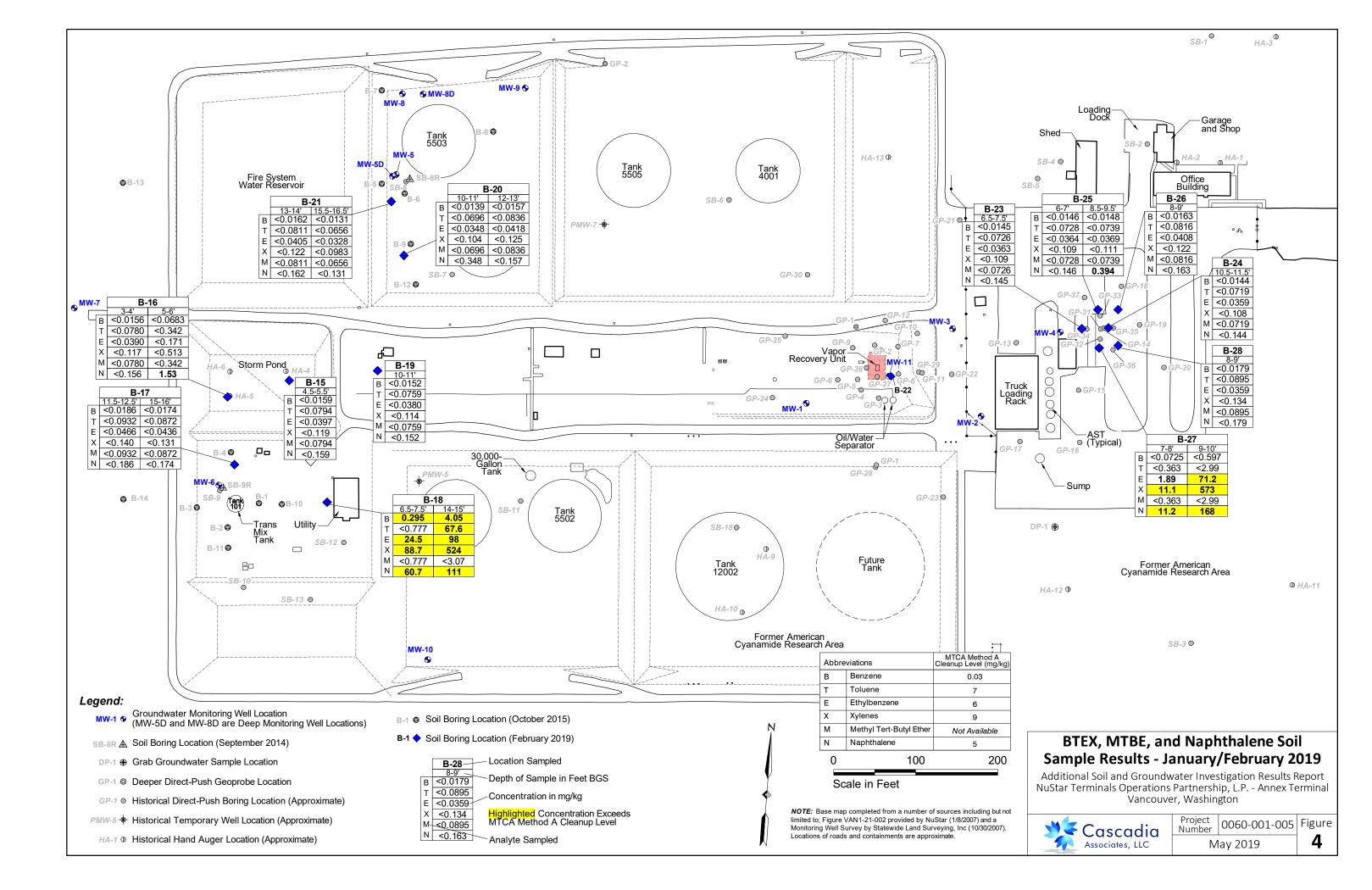
13. Boldface values represent concentration that exceeds MTCA Method A cleanup level.

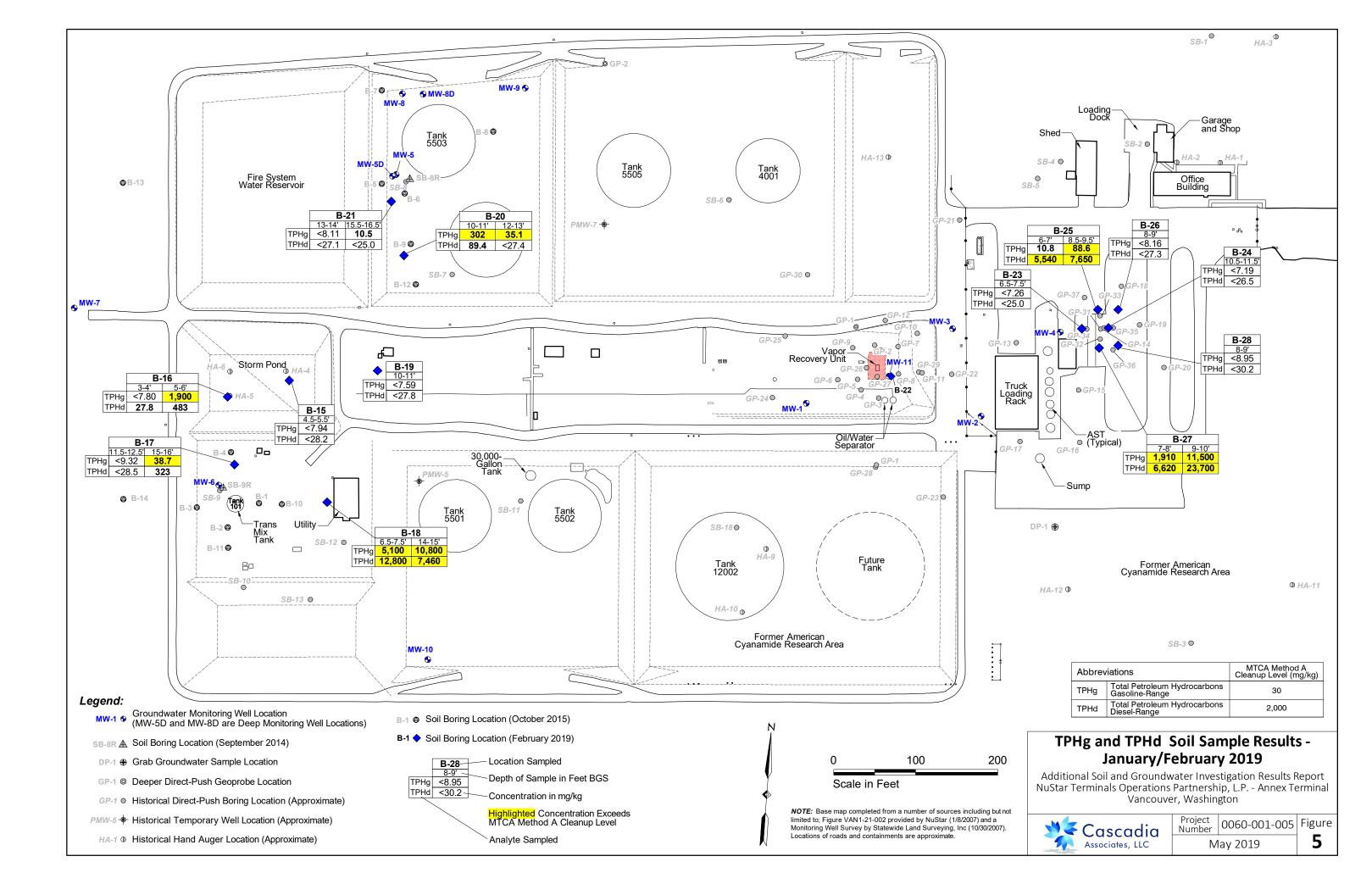
14. NA = Cleanup level not available.

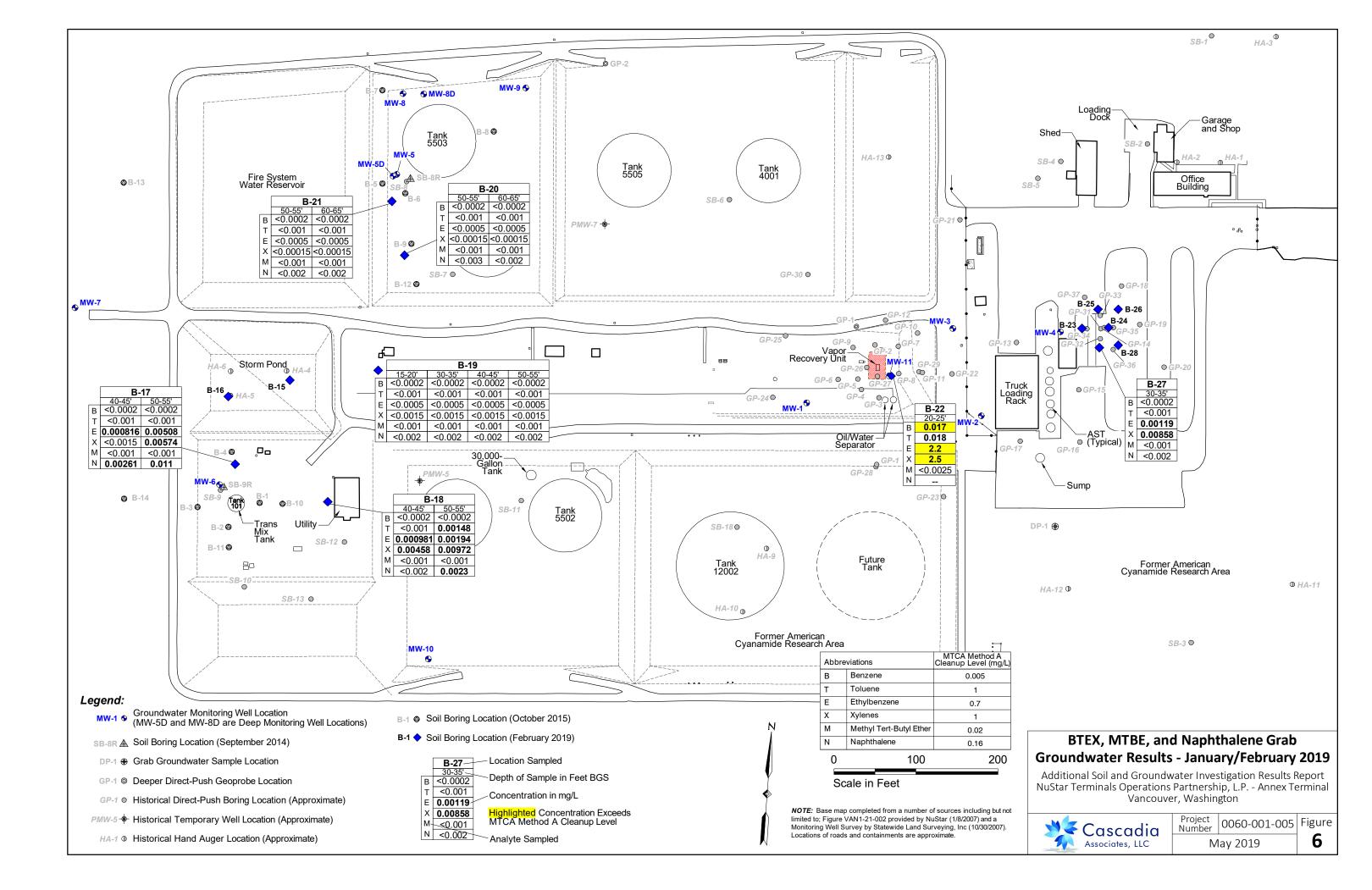

15. The screened intervals for the October 2015 samples are shown. Sample intake was generally from the centerpoint of each interval - see boring logs for more detail.

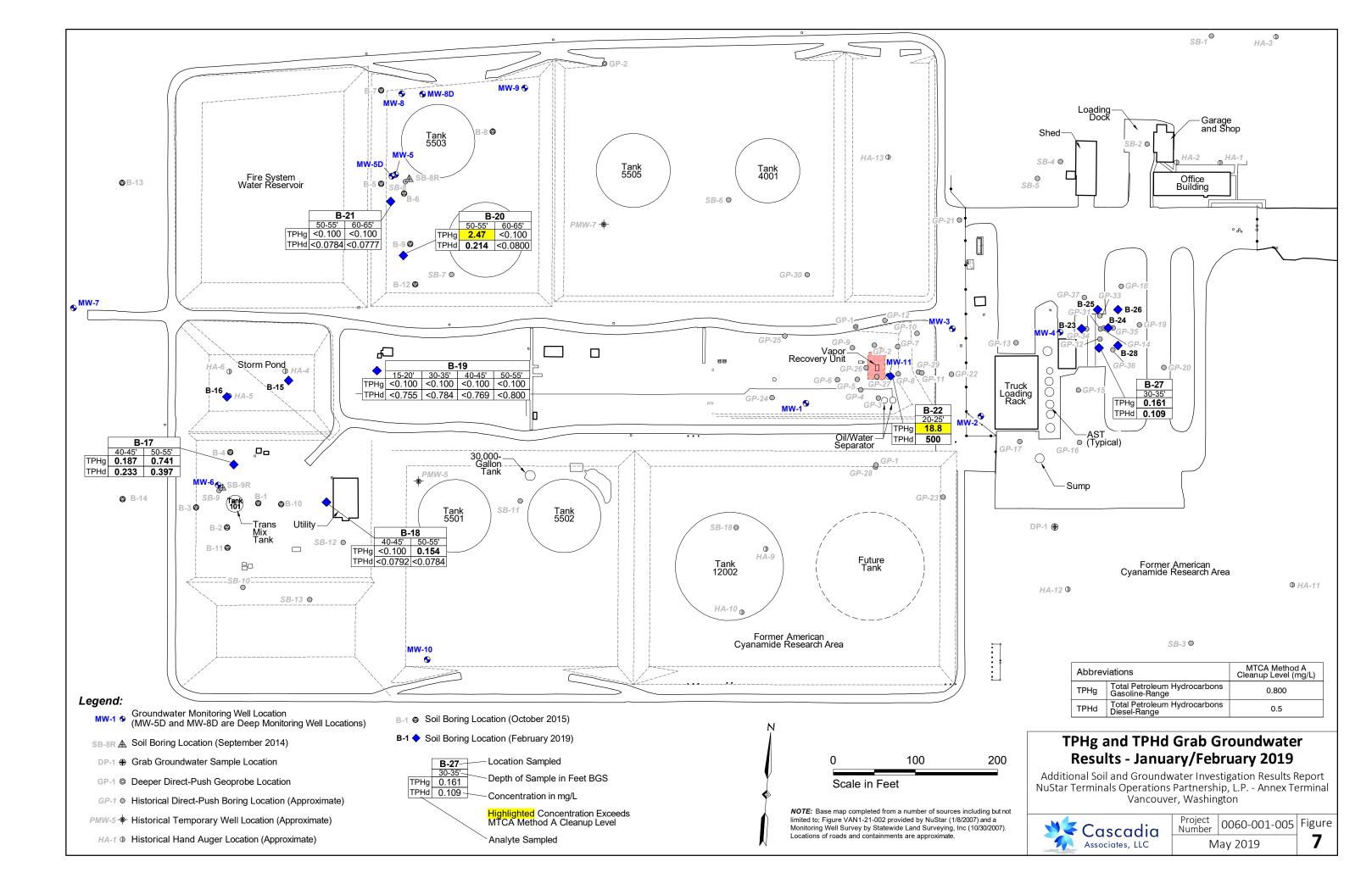

16. For TPHd and TPHo, the first value represents with silica gel cleanup and the second without (i.e. 15.9/3.2)

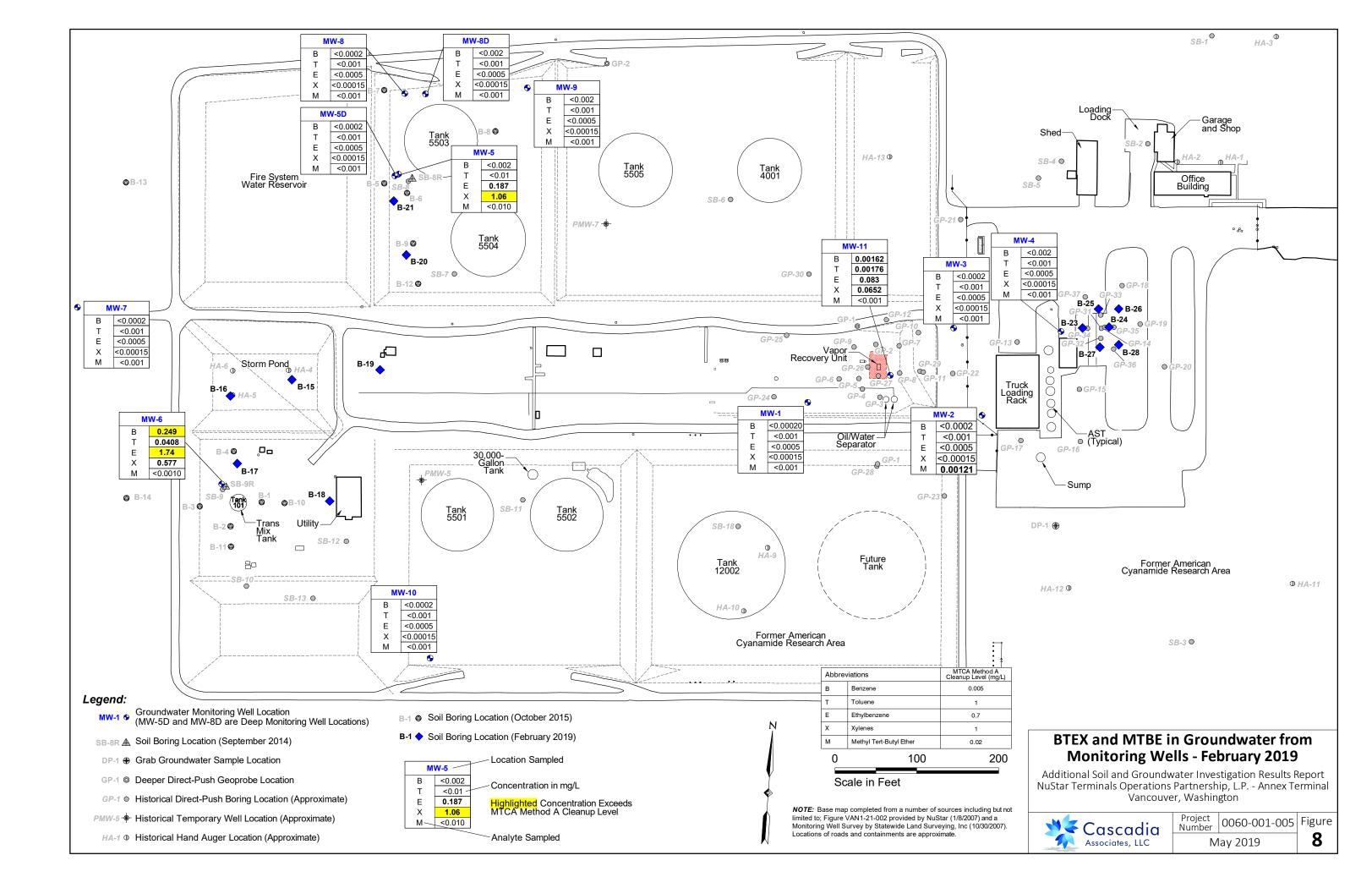

17. DGME = Diethylene glycol monomethyl ether

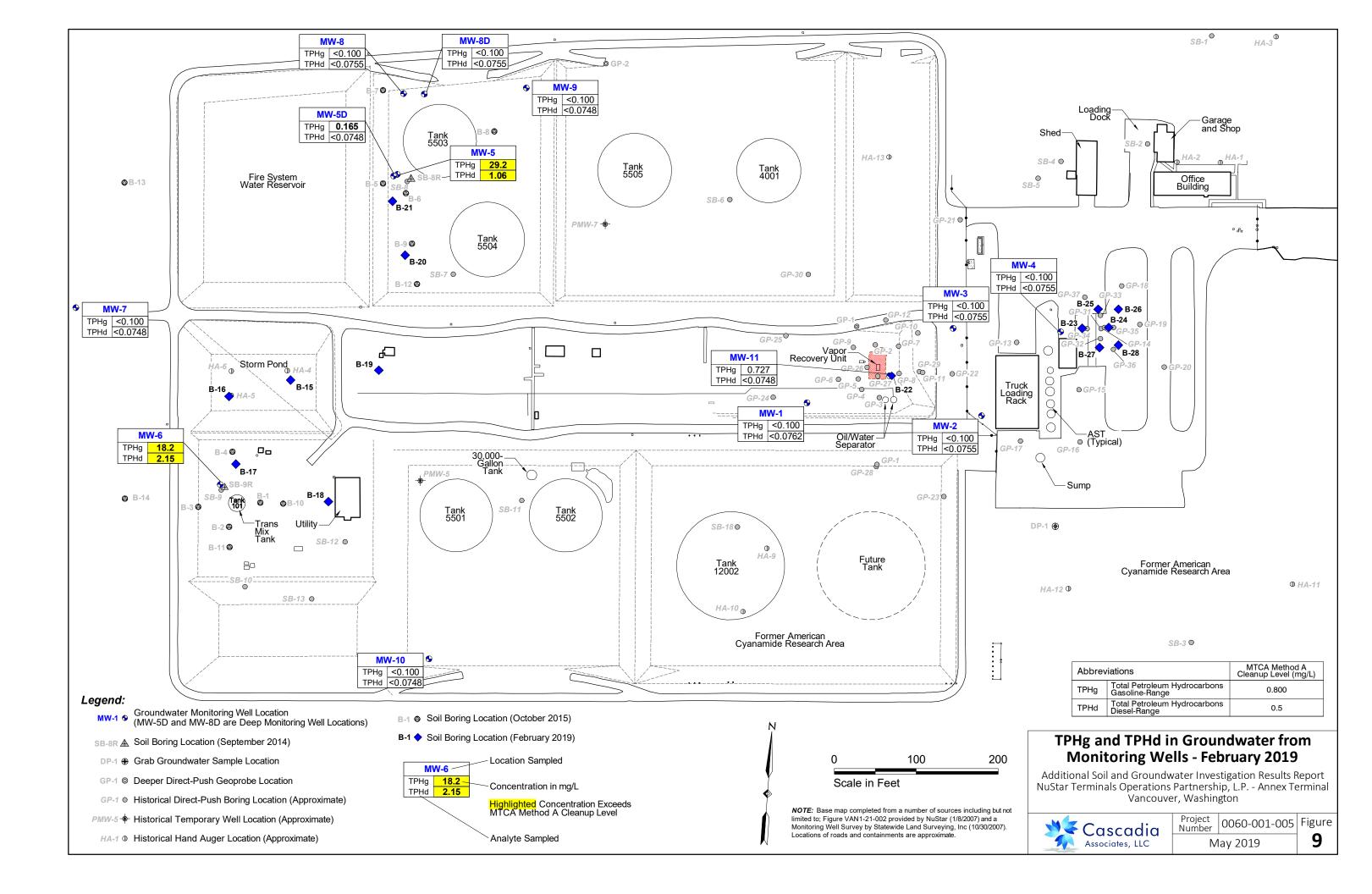


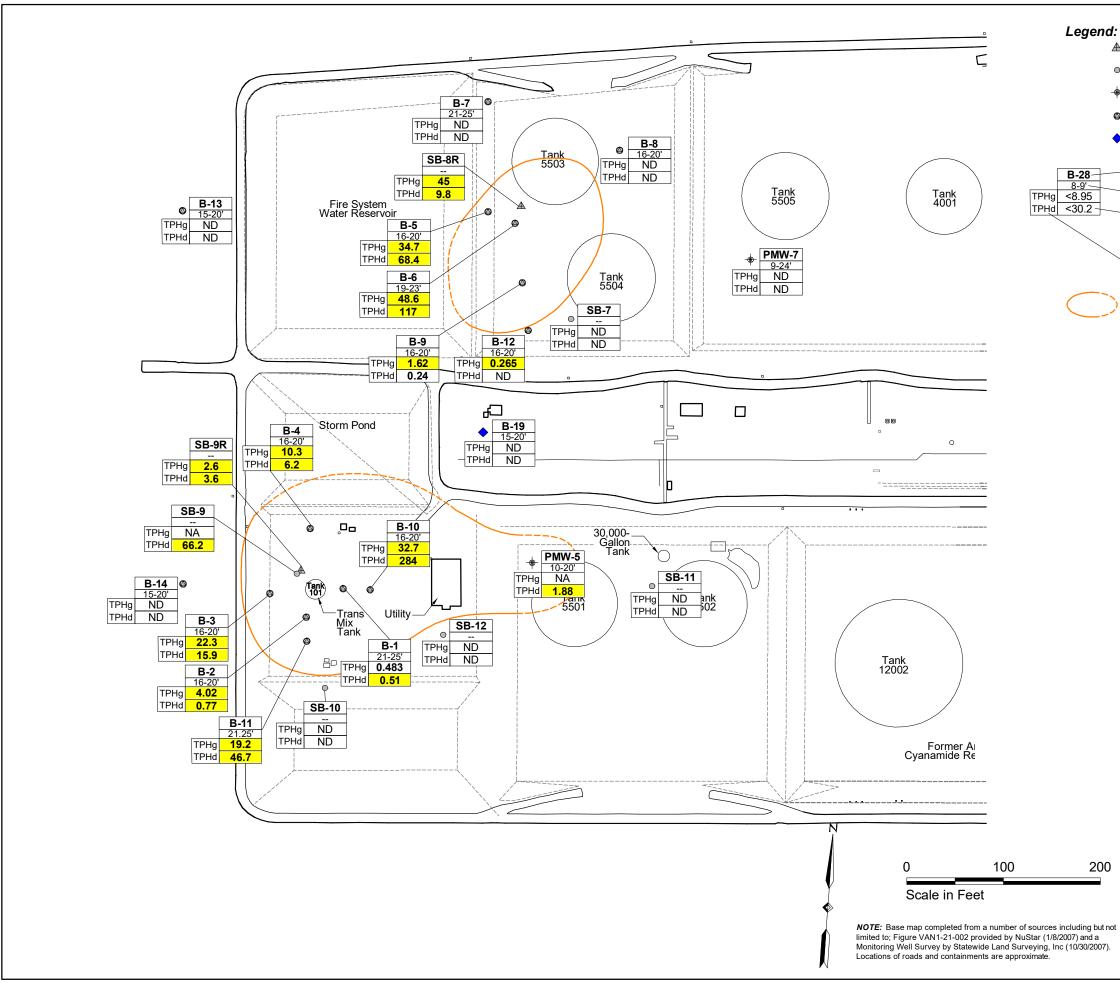

FIGURES









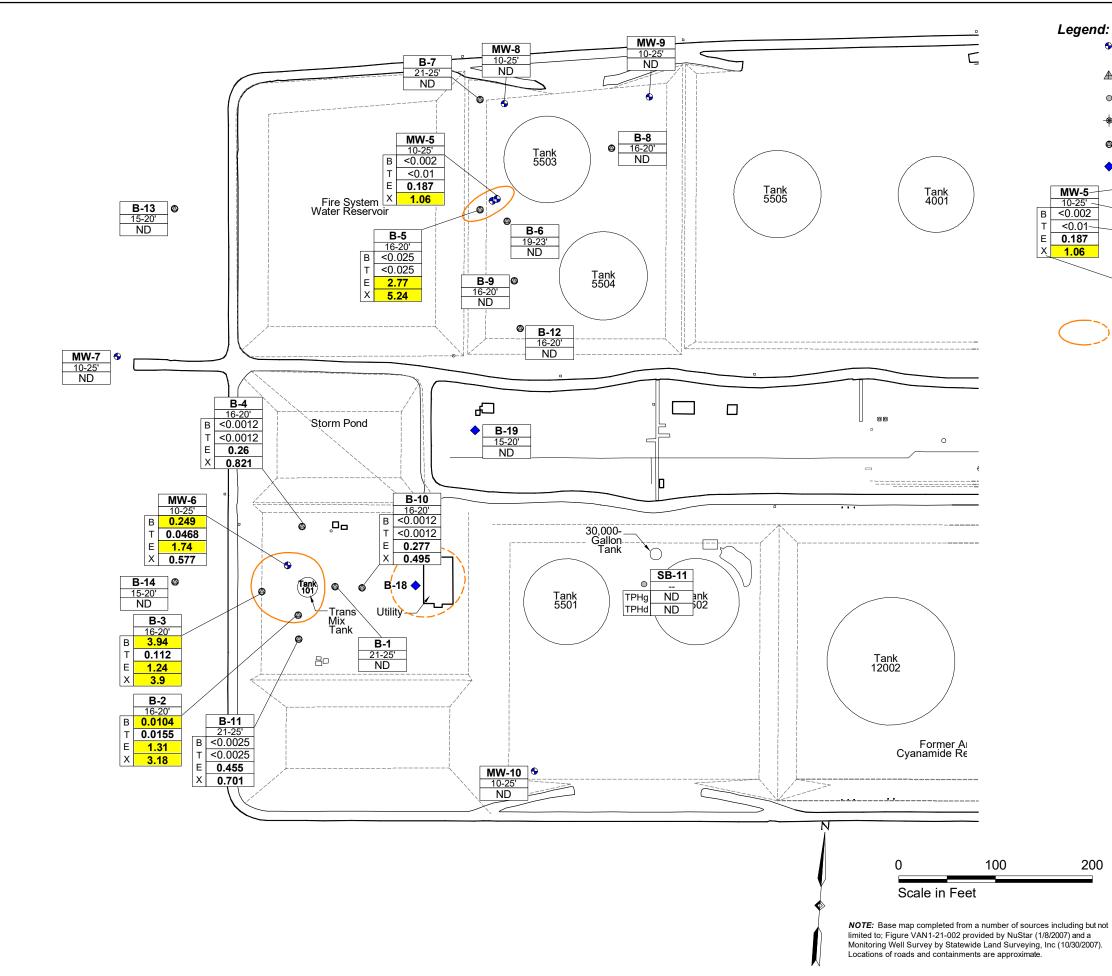


- ▲ Soil Boring Location (September 2014)
- Historical Direct-Push Boring Location (Approximate)
- + Historical Temporary Well Location (Approximate)
- Soil Boring Location (October 2015)
- Soil Boring Location (February 2019)
- Location Sampled
- Depth of Sample in Feet BGS
- Concentration in mg/L

Highlighted Concentration Exceeds MTCA Method A Cleanup Level

Analyte Sampled

Extent of TPH Above MTCA Method A Cleanup Levels (Dashed Where Inferred)

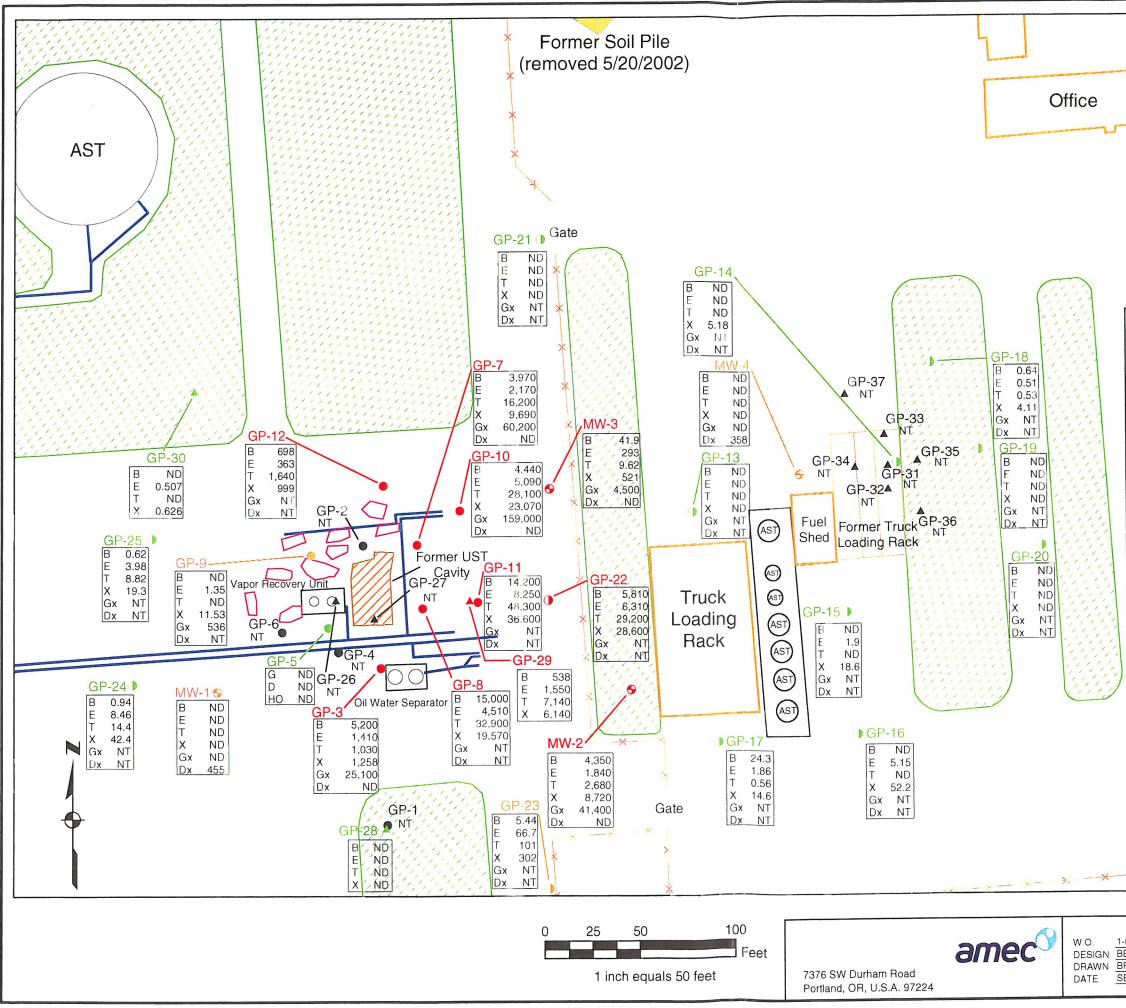

NOTE: Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.

Abbrev	riations	MTCA Method A Cleanup Level (mg/L)
TPHg	Total Petroleum Hydrocarbons Gasoline-Range	0.800
TPHd	Total Petroleum Hydrocarbons Diesel-Range	0.5

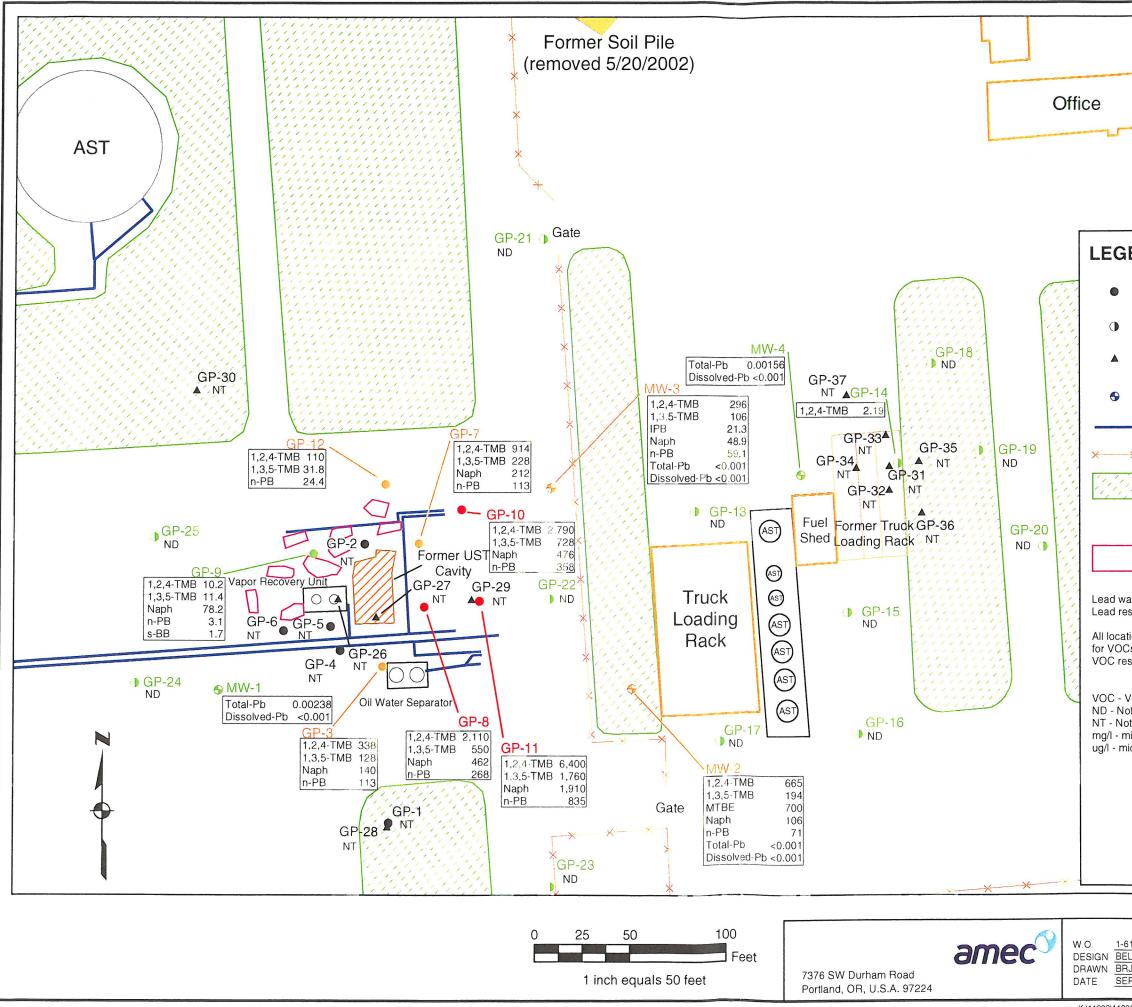
TPH in First Encountered Groundwater -Western Area

Additional Soil and Groundwater Investigation Results Report NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

- Groundwater Monitoring Well Location
 (MW-5D and MW-8D are Deep Monitoring Well Locations)
- ▲ Soil Boring Location (September 2014)
- Historical Direct-Push Boring Location (Approximate)
- + Historical Temporary Well Location (Approximate)
- Soil Boring Location (October 2015)
- Soil Boring Location (February 2019)
- Location Sampled
- Depth of Sample in Feet BGS
- -Concentration in mg/L
- Highlighted Concentration Exceeds MTCA Method A Cleanup Level - February 2019
- Analyte Sampled
- Extent of TPH Above MTCA Method A Cleanup Levels (Dashed Where Uncertain)
- **NOTES:** Groundwater data presented on this figure are first encountered groundwater, unless otherwise noted.
- MTBE not detected in any samples, so data are not included on this figure.
- If BTEX constituents are all below reporting limits, results are presented as 'ND' (Not Detected).

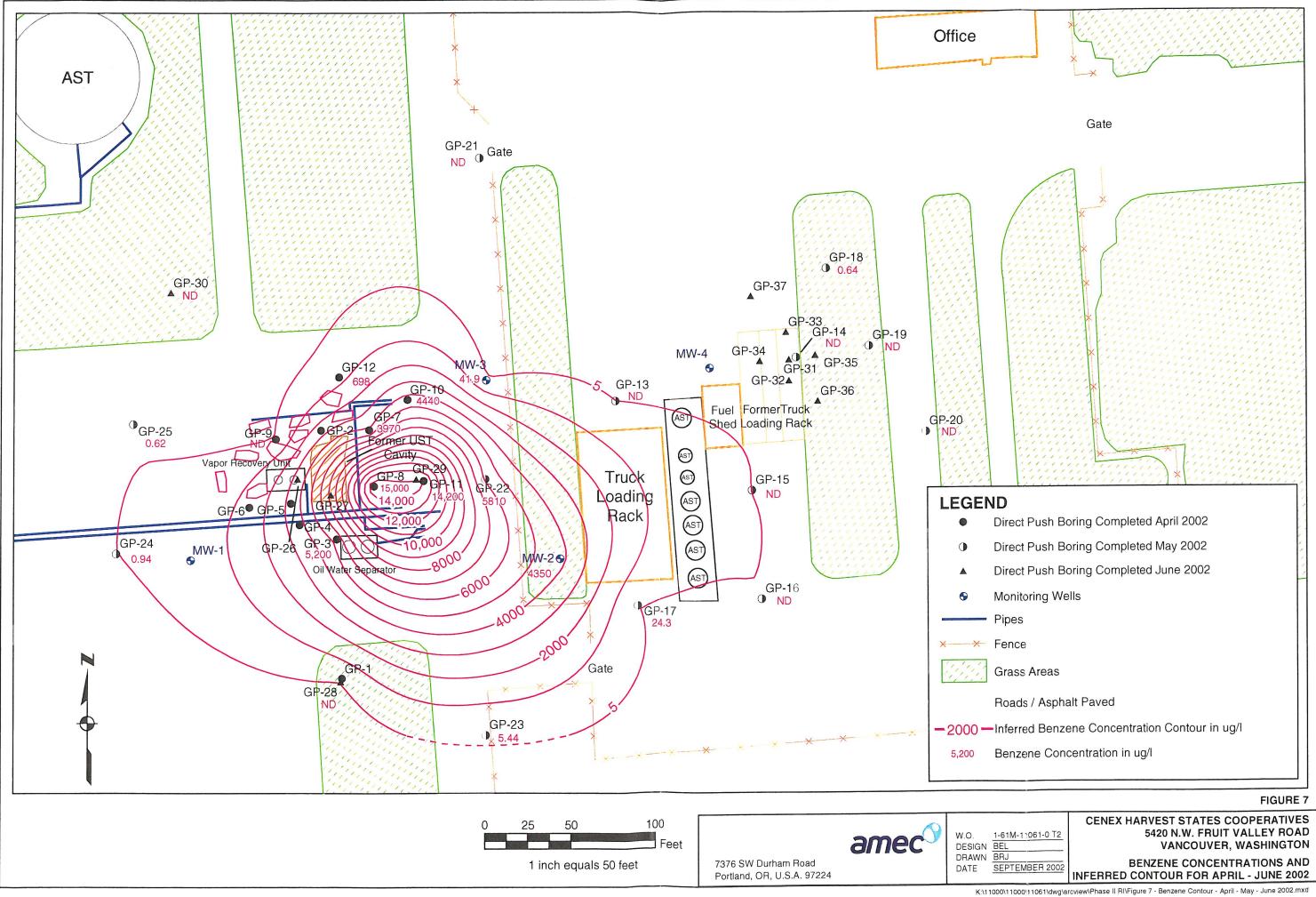

Abbrev	iations	MTCA Method A Cleanup Level (mg/L)						
в	Benzene	0.005						
т	Toluene	1						
E	Ethylbenzene	0.7						
х	Xylenes	1						

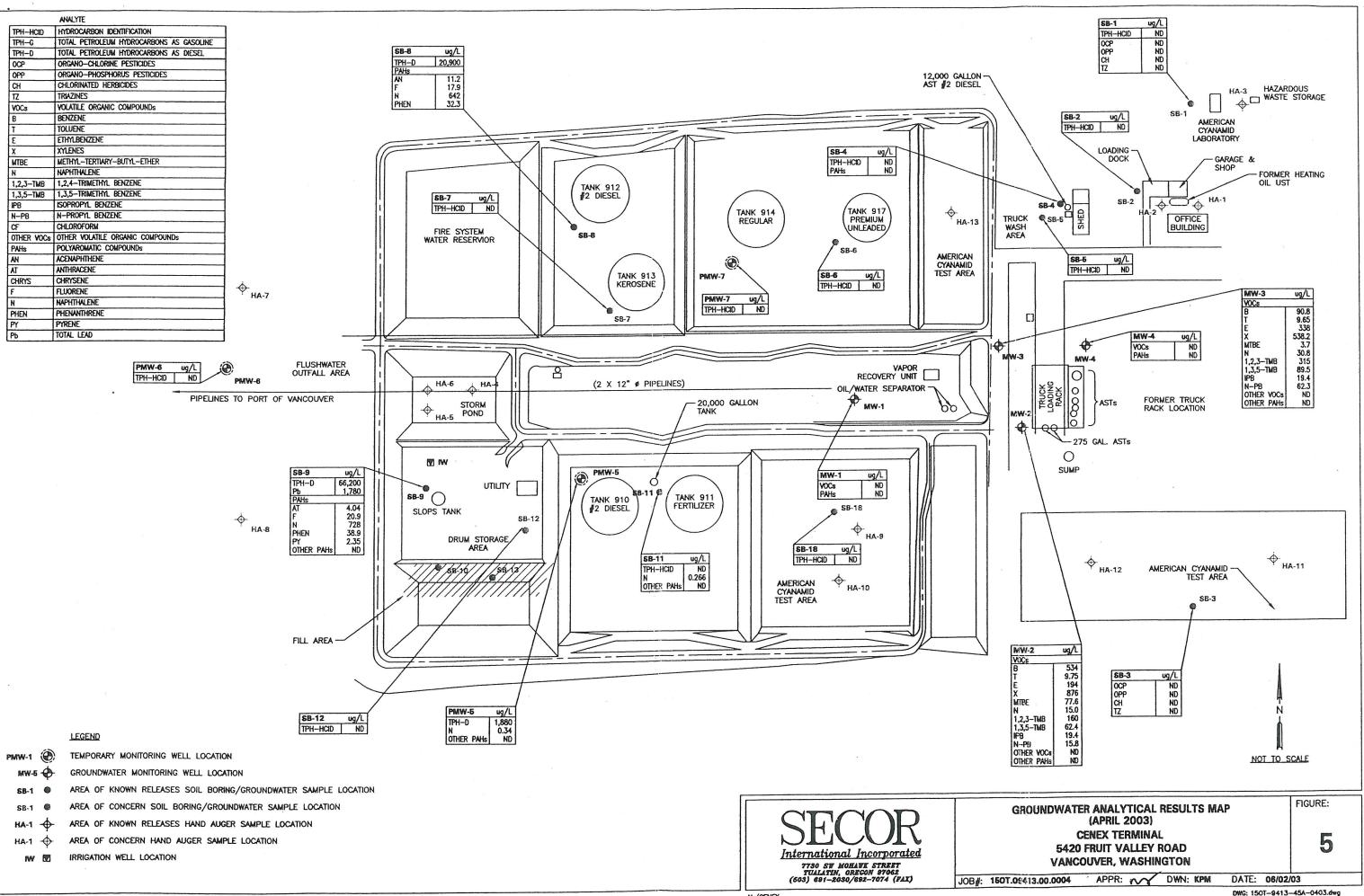
BTEX in First Encountered Groundwater -Western Area


Additional Soil and Groundwater Investigation Results Report NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

💥 Cascadia	Project Number	0060-001-005	Figure
Associates, LLC	Μ	ay 2019	11

APPENDIX A HISTORICAL FIGURES




Gate	
Direct Push Boring Completed April 2002	
 Direct Push Boring Completed May 2002 	
 Direct Push Boring Completed June 2002 	
 Monitoring Wells 	
Pipes	
× × Fence	
Grass Areas	
Roads / Asphalt Paved	
Test Pits	
B - BenzeneGx - Gasoline Range OrganicsE - EthylbenzeneDx - Diesel Range OrganicsT - TolueneG - HCID GasolineX - Xylenes (total)D- HCID DieselHO - HCID Heavy OilND - Not DetectedNT - Not Testedug/L - micrograms per liter	
Color Code Based on Analytical Results Total BTEX or Gx/Dx Values GP-5 <100 ug/L GP-9 100-1,000 ug/L GP-3 >1,000 ug/L	
FIGURE	_ 5
CENEX HARVEST STATES COOPERATIVE 5420 N.W. FRUIT VALLEY ROAL BEL VANCOUVER, WASHINGTO	S D

	Gate					
GEND						
Direct F	Push Boring Completed April 2002					
Direct F	Push Boring Completed May 2002					
Direct F	Push Boring Completed June 2002					
Monitor	ing Wells					
- Pipes						
Grass /	Areas					
Roads	/ Asphalt Paved					
Test Pi	its					
	/-1, MW-2, MW-3, and MW-4. I.					
results are in mg/l. ations (expect those marked NT) were tested VCs - only the detections are shown. results are in ug/l. 1,2,4-TMB = 1,2,4-Trimethylbenzene 1,3,5-TMB = 1,3,5-Trimethylbenzene MTBE = Methyl tert-butyl ether IPB = Isopropylbenzene Not Detected Naph = Naphthalene Iot Tested milligrams per liter micrograms per liter Naphender Pb = Lead						
on A VOC	or Code Based Analytical Results C Values GP-9 <100 ug/l GP-3 100-1,000 ug/l GP-8 >1,000 ug/l					
	FIGURE 6					
1-61M-11061-0 T2 BEL BRJ	CENEX HARVEST STATES COOPERATIVES 5420 N.W. FRUIT VALLEY ROAD VANCOUVER, WASHINGTON	- 1				
SEPTEMBER 2002	VOC and Pb RESULTS FOR GROUNDWATER FROM DIRECT PUSH & MONITORING WELL BORINGS					

K \11000\11000\11061\dwg\arcview\Phase II RI\Figure 6 - VOC and Pb Results - April & May & June 2002 mxd

N:/CENEX

APPENDIX B

CASCADIA STANDARD OPERATING PROCEDURES (SOPS)

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE PUSH-PROBE EXPLORATION PROCEDURES

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for observing and sampling from push-probes (i.e., GeoProbe™, AMS PowerProbe™, or similar). Subsurface soil cores may be obtained using this system for purposes of determining subsurface soil conditions and for obtaining soil samples for physical and/or chemical evaluation. Grab groundwater samples may be collected using temporary well screens. Soil vapor samples may be obtained using temporary well points. Shallow (less than 50 feet), small-diameter (2-inch max) pre-packed wells may also be installed using push-probe equipment. This procedure is applicable during all Cascadia Associates, LLC (Cascadia) push-probe activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, tools, keys, and buckets/drums
- Water quality meter with calibration solutions (record daily calibration/calibration check in field notes)
- Sampling equipment (water level probe, pumps, tubing) and laboratory-supplied sample containers
- Field documentation materials
- Decontamination materials
- Personal protective equipment (as required by project Health and Safety Plan)

3. METHODOLOGY

Coring Procedure (Conducted by Drilling Subcontractor):

The sampling procedure includes driving a 2-inch outside-diameter, 5-foot-long, push-probe soil sampler to the desired depth using a combination of hydraulic pressure and mechanical hammer blows. When the sampling depth is reached, the pin attaching the sampler's tip is released (if a tip is used), which allows the tip to slide inside the sampler (Macro-Core Sampler with removable plastic liner). The sampler is driven the length of the sampler to collect a soil core, which is then withdrawn from the exploration. When the sampler is retrieved from the borehole the drive head/cutting shoe is detached and the liner is removed and the liner is cut open to expose the recovered soil core. Soil cores are collected continuously to the full depth of the exploration unless otherwise specified in a project-specific sampling and analysis plan (SAP). Verify that the subcontractor decontaminates the sampling device prior to its initial use and following collection of each soil sample.

Logging and Soil Sample Collection:

Remove the soil core from the sampler for field screening, description, and placement into sample jars. Soil samples will be collected for field screening and possible chemical analysis on two foot intervals unless otherwise specified in a project-specific SAP. The sampling interval will be determined in the field based on recovery, soil variability, and evidence of contamination.

Complete field screening as specified in the applicable SOP. Soil samples should be collected using different procedures for volatile on non-volatile analyses, as follows.

- Volatile Analyses. Sampling for volatile organics analysis (VOA) is different than other routine physical or chemical testing because of the potential loss of volatiles during sampling. To limit volatile loss, the soil sample must be obtained as quickly and as directly as possible. If a VOA sample is to collected as part of a multiple analyte sample, the VOA sample portion will be obtained first. The VOA sample should be obtained from a discrete portion of the entire collected sample and should not be composited or homogenized. Sample bottles should be filled to capacity, with no headspace.
- Other Analyses. Soil samples for non-volatile analyses will be thoroughly homogenized in a stainless-steel bowl prior to bottling. Sample homogenizing is accomplished by manually mixing the entire soil sample in the stainless-steel bowl with a clean sampling tool until a uniform mixture is achieved. The sample jar should be filled completely.

Grab Groundwater Sample Collection:

Collect grab groundwater samples using a sampling attachment with a 4 to 5-foot-long temporary screen (specify to drillers whether to use decontaminated stainless steel or disposable PVC. Also, specify whether a filter pack is necessary based on field observations). Obtain samples using a peristaltic pump unless otherwise specified in the SAP with new tubing for each boring. Record field parameters (e.g., temperature, conductivity, and pH) prior to sampling.

Backfilling the Excavation (Conducted by Drilling Subcontractor):

After sampling activities are completed, abandon each exploration in accordance with Oregon Water Resources Department (OWRD) regulations and procedures (or other regulatory authority if work is completed outside of the State of Oregon. The abandonment procedure typically consists of filling the exploration with granular bentonite and hydrating the bentonite with water. Match the surface completion to the surrounding materials.

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) provides instructions for standard field screening. Field screening results are used to aid in the selection of soil samples for chemical analysis. This procedure is applicable during all Cascadia Associates, LLC (Cascadia) soil sampling operations.

Standard field screening techniques include the use of a photoionization detector (PID) to assess for volatile organic compounds (VOCs) and for the presence of separate-phase petroleum hydrocarbons using a sheen test. These methods will not detect all potential contaminants, so selection of screening techniques shall be based on an understanding of the site history. The PID is not compound or concentration-specific, but it can provide a qualitative indication of the presence of VOCs. PID measurements are affected by other field parameters such as temperature and soil moisture. Other field screening methods, such as screening for dense non-aqueous phase liquid (DNAPL) using dye or UV light, are not considered "standard" and will be detailed in the site-specific sampling and analysis plan (SAP).

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- PID with calibration gas (record daily calibration/calibration check in field notes);
- Plastic resealable bags (for PID measurement); and
- Glass jars or stainless steel bowls (for sheen testing).

3. METHODOLOGY

Each soil sample will be field screened for VOCs using a PID and for the presence of separatephase petroleum hydrocarbons using a sheen test.

PID lamps come in multiple sizes, typically 9.8, 10.6, and 11.7 electron volts (eV). The eV rating for the lamp must be greater than the ionization potential (in eV) of a compound for the PID to detect the compound. For petroleum hydrocarbons, a lamp of at least 9.8 eV should be used. For typical chlorinated alkenes (dichloroethene, trichloroethene, tetrachloroethene, or vinyl chloride), a lamp of at least 10.6 eV should be used. The compatibility of the lamp size with the site constituents should be verified prior to the field event and will be detailed in the site-specific SAP.

PID Calibration Procedure: The PID used on-site should be calibrated daily or more frequently if needed. Calibration of the PID should be documented in field notes. Calibrations procedures should be conducted per the manufacturer's instructions.

PID Screening Procedure:

- Place a representative portion (approximately one ounce) of freshly exposed, uncompacted soil into a clean resealable plastic bag.
- Seal the bag and break up the soil to expose vapors from the soil matrix.
- Allow the bag to sit to reach ambient temperature. Note: Ambient temperature and

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE

Revision Number: 0

Date: July 7, 2017

STANDARD FIELD SCREENING PROCEDURES

Page: 2 of 2

weather conditions/humidity should be recorded in field notes. Changes in ambient temperature and weather during the field work should also be recorded, as temperature and humidity can affect PID readings.

- Carefully insert the intake port of the PID into the plastic bag.
- Record the PID measurement in the field notes or boringlogs.

Sheen Test Procedure:

- Following the PID screen, place approximately one ounce of freshly exposed, uncompacted soil into a clean glass jar or stainless steel bowl.
- Add enough water to cover the sample.
- Observe the water surface for signs of discoloration/sheen and characterize based on the descriptions below.

No Sheen (NS)	No visible sheen on the water surface				
Biogenic Film (BF)	Dull, platy/blocky or foamy film.				
Slight Sheen (SS)	Light sheen with irregular spread, not rapid. May have small				
	spots of color/iridescence. Majority of water surface not covere				
	by sheen.				
Moderate Sheen (MS)	Medium to heavy coverage, some color/iridescence, spread is				
	irregular to flowing. Sheen covering a large portion of water				
	surface.				
Heavy Sheen (HS)	Heavy sheen coverage with color/iridescence, spread is rapid,				
	entire water surface covered with sheen. Separate-phase				
	hydrocarbons may be evident during sheen test.				

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE FIELD NOTES AND DOCUMENTATION

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for documenting environmental field activities. The purpose of establishing SOPs for field notes and documentation is to establish a consistent method and format for the use and control of documentation generated during daily field activities. Field notes and records are intended to provide sufficient information that can be used to recreate the field activities, as well as, the collection of environmental data. Information placed in these documents and/or records shall be factual, detailed and objective.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Bound field books;
- Black waterproof and/or indelible ink pens; and
- Field forms.

3. METHODOLOGY

This SOP primarily includes the documentation procedures for the field logbooks. However, procedures discussed in this SOP are applicable to all other types of field documentation collected, and should be universal in application. Details of other field records and forms (e.g. boring logs, sample labels, chain of custody records, and waste containment labels are discussed in the specific SOP associated with that field activity (e.g. borehole drilling, sample handling, investigative derived waste), and not covered in detail in this SOP.

Field Logbooks:

Field personnel will keep accurate written records of their daily activities in a bound logbook that will be sufficient to recreate the project field activities without reliance on memory. This information will be recorded in chronological order. All entries will be legible, written in black waterproof or indelible ink, and contain accurate and inclusive documentation of field activities, including field data observations, deviations from project plans, problems encountered, and actions taken to solve the problem. Each page of the field logbook will be consecutively numbered, signed and dated by the field author(s). Pages should not be removed for any reason.

There should be no blank lines on a page. A single blank line or a partial blank line (such as at the end of a paragraph) should be lined to the end of the page. If only part of a page is used, the remainder of the page should have an "X" drawn across it.

In addition to documenting field activities, field logbooks will include the following:

- Date and time of activities,
- Site location,
- Purpose of site visit,
- Site and weather conditions,

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE FIELD NOTES AND DOCUMENTATION

- Personnel present, including sampling crew, facility/site personnel and representatives (including site arrival and departure times),
- Subcontractors present,
- Regulatory agencies and their representatives (including phone numbers, site arrival and departure times),
- Level of health and safety protection,
- Sampling methodology and information,
- Sample locations (sketches are helpful),
- Source of sample(s), sample identifications, sample container types and preservatives used, and lot numbers for bottles and preservatives (if applicable and if not recorded on other forms or in a sample control logbook),
- A chronological description of the field observations and events,
- Specific considerations associated with sample acquisition (e.g., field parameter measurements, field screening data, HASP monitoring data, etc.) (if not recorded on another form),
- Wastes generated, containment units (including volumes, matrix, etc), and storage location (if not recorded on another form),
- Field quality assurance/quality control samples collection, preparation, and origin (if not recorded on other forms or in a sample control logbook),
- The manufacturer, model and serial number of field instruments (e.g., PID, water quality, etc.) shall be recorded, if not using a calibration form. Also, source lot # and expiration date of standard shall be recorded if calibrated in the field.
- Well construction materials, water source(s), and other materials used on-site (if not recorded on another form).
- Sample conditions that could potentially affect the sample results,
- If deviating from plan, clearly state the reason(s) for deviation,
- Persons contacted and topics discussed,
- Documentation of exclusion zone set-up and location,
- Documentation of decontamination procedures, and
- Daily Summary.

Field situations vary widely. No general rules can specify the extent of information that must be entered in a logbook. However, records should contain sufficient information so that someone can reconstruct the field activity without relying on the collector's memory. Language used shall be objective, factual, and free of personal opinions. Hypothesis for observed phenomena may be

recorded, however, they must be clearly indicated as such and only relate to the subject observation.

Logbooks will be assigned to a specific sampling team. If it is necessary to transfer the log book to alternative team member during field work, the person relinquishing the log book will sign and date the log book at the time of transfer.

Field logbooks should consist of a bound book, in which the insertion or removal of pages will be visibly noticeable after the logbook has been assembled. Logbooks can be prepared by gluing or laminating pages together either at the left side or top of the page. If inclement weather is expected, logbooks may have plastic laminated front and back covers to protect the interior pages, and should not be broken apart for coping. Loose-leaf binding, such as comb binding is not considered hard binding. To maintain the integrity of the logbook, pages should be consecutively numbered prior to use. Logbook pages can be of any format, and may include blank pages for recording or field forms that are used for specific tasks. As an alternative, commercially bound and consecutive page numbered field logbooks may also be used.

Additional Field Forms/Records:

Additional field records may be required for each specific field event. The use of these records and examples are described in other SOPs specific for the activity (e.g. Borehole Logging SOP, Groundwater Sampling and Purging SOP, etc.). These other records may include:

- Borehole Logs during drilling,
- Well Construction and Development records,
- Groundwater Purge and Sample Collection Records,
- Water Level Monitoring,
- Investigation Derived Waste (IDW) Tracking Records,
- Instrument Calibration Records, and
- Health and Safety Monitoring Records and sign-off sheets.

Prior to field activities, the field sampling personnel will coordinate with the Project Manager, or designee, to determine which additional records will be required for the specific field task. These additional records will be maintained in a field file or a three-ring notebook throughout the duration of the field activities, or included in a specially prepared site-specific notebook. If the field notebook is being created, the forms may be part of the laminated book.

Corrections:

If an error is made in the field, logbook corrections will be made by drawing a single line through the error, entering the correct information, and initialing and dating the change. Materials that obliterate the original information, such as correction fluids and/or mark-out tapes, are prohibited. All corrections will be initialed and dated. Some projects require that a brief reason for the change must also be added where the correction was made. Ask the Project Manager, if this requirement is necessary.

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE FIELD NOTES AND DOCUMENTATION

Documentation Reviews:

Periodically, the Project Manager, or designee, will review the field logbooks pertaining to the activities under their supervision. The elements of this review will include technical content, consistency, and compliance with the project plans and SOPs. Discrepancies and errors identified during the review should be resolved between reviewer and author of the field documentation. Corrections and/or additions of information shall be initialed and dated by the field author or reviewer.

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE SOIL SAMPLING WITH HAND AUGER

1. PURPOSE AND SCOPE

The objective of this standard operating procedure (SOP) is to define the techniques and requirements for collecting shallow subsurface soil samples for environmental characterization purposes from the subsurface. The sampling techniques discussed in this SOP involve use of hand augers at various project sites.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- T-handle,
- Hand auger, extensions, bucket or tube type auger,
- Extension rods, and
- Wrenches/pliers.

3. METHODOLOGY

Preparation:

The following steps should be performed to prepare for hand auger soil sampling:

- Review the site-specific health and safety plan and sampling plan.
- Don the appropriate personal protective clothing as indicated in the site-specific health and safety plan.
- Locate sampling location(s).
- Use clean, (decontaminated) sampling tools to obtain sample material from each specified sample location.
- Carefully remove stones, vegetation, debris, etc. from the ground surface in the sampling location area. Core through Portland cement concrete or asphalt-concrete if necessary. Clear the sample location using a new and/or appropriately decontaminated tools.

Hand Auger Sampling:

The following steps must be followed when collecting environmental soil samples using a handauger and slide hammer:

- Auger to the depth required for sampling. Place cuttings on plastic sheeting. If possible, lay out the cuttings in stratigraphic order.
- During auger advancement and sample collection, record observations made of the geologic features of the soil.
- Stop advancing the auger when the top of the specified sampling depth has been reached. Remove the auger from the hole and set aside for future decontamination (see line item 11 below).
- Obtain the subsurface soil sample by driving the sample sleeve through the specified

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE SOIL SAMPLING WITH HAND AUGER

sample interval with the slide hammer. Remove the stainless-steel liner from the slide hammer and quickly screen the sleeve for VOCs.

- Immediately subsample for VOCs (if required), observe stained soil, petroleum odor, or elevated PID reading).
- If it is not feasible to obtain the subsurface sample using a slide hammer, the soil sample may be collected directly from the auger bucket. The sample should be collected from material not in direct contact with the walls of the auger bucket.
- Decontaminate the auger bucket, sample tube and shoe, and repeat the preceding steps for sample collection from deeper depths as required by the FSP Addendum.
- When sampling is complete, place cuttings into a designated investigation-derived waste container. Place plastic sheeting and gloves in garbage bag and transfer decontamination water to a storage container.
- Decontaminate all equipment between each sample.
- Complete the field logbook entry and other forms, being sure to record all relevant information before leaving the sample location.

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE Low Flow Groundwater Sampling

1. PURPOSE AND SCOPE

The objective of this standard operating procedure (SOP) is to define the methods and requirements for collection of groundwater samples from monitoring wells applying low flow protocols. Low flow sampling is a technique for collecting samples that does not require the removal of large volumes of water and therefore does not overly agitate the water, suspend particles, or potentially aspirate VOCs. Typical flow rates for low flow sampling should range from 0.1 L/min to 0.5 L/min depending on site characteristics. The groundwater monitoring activities will consist of measuring water levels, purging and sampling groundwater, and measuring groundwater field parameters. This procedure is applicable during all Cascadia Associates, LLC low flow groundwater sampling activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, tools, keys, and buckets/drums;
- Water quality meter with calibration solutions (record daily calibration/calibration check in field notes);
- Sampling equipment (water level indicator, pump, tubing);
- Laboratory-supplied sample containers (Consult the project-specific sampling and analysis plan (SAP) for sampling requirements);
- Field documentation materials;
- Decontamination materials; and
- Personal protective equipment (consult the site-specific Health and Safety Plan).

3. METHODOLOGY

Water Levels:

Water levels in the wells will be measured and recorded for the purpose of determining groundwater elevations and gradient. The wells will be opened and the water level allowed to equilibrate before the measurements are taken. Measurements of the depth to water will be made to the nearest 0.01 foot using an electronic water level indicator.

Purging:

Purge using low-flow sampling equipment (e.g., peristaltic or bladder pump) at a rate no greater than the recharge rate of the groundwater to prevent water table drawdown. Unless specified otherwise in the project-specific SAP the sample tubing/pump will be lowered to the middle of the screened interval. Groundwater field parameters (pH, electrical conductivity, and temperature) will be measured using a water quality meter and flow cell connected to the discharge tubing of the sample pump to assess the effectiveness of purging. Purging will be considered complete when the water quality parameters (i.e., pH, temperature, and specific conductance) stabilize within 10 percent for three consecutive 3-minute intervals. Consult the

project-specific SAP for additional parameters and stabilization criteria. Purge water will be placed in Department of Transportation (DOT) approved drums.

Sample Collection:

After the purging of each well is complete, collect groundwater samples for chemical analyses using the same pump used for the well purging.

Low Yield Sampling Procedure:

If a well pumps dry during purging discontinue measurement of water quality parameters. Collect groundwater samples once the water level recovers to 90 percent of the pre-purge water column. Contact project manager in the event of slow recharge conditions. Always collect samples for VOC analysis as soon after recharge as possible.

APPENDIX C

BORING LOGS AND WELL MW-11 CONSTRUCTION LOG

	PROJECT:	BORING ID:					
	Additional Soil and Groundwater Investigation	B-29					
	LOCATION:	WELL ID:					
	5420 NW Fruit Valley Rd, Vancouver, WA.	B-29					
Vacadia		Hole Diameter: Casing Diameter:					
Associates, LLC	NuStar Vancouver Annex Facility	4 in.	2 in. PVC				
	DRILLING EQUIPMENT:	SURFACE ELEV. (NAVD88):					
	Hand auger to 8', Geoprobe 7730 to depth	SURFACE ELEV. (NAVDOO).					
	DRILLING METHOD:	TOTAL DEPTH:	DEPTH TO WATER:				
	Direct-Push	25	18				
LOGGED BY: JM	SAMPLING METHOD:	DATE STARTED:	DATE COMPLETED:				
Depth (feet bgs)	Well Construction	Nc	tes				
0		Quick-set	concrete				
_							
2 —							
-							
4 —							
-		3/8" chip	bentonite				
6 —							
8 —							
_							
10							
10 —							
12 —							
-							
-							
14 —							
-		0.11	a aand				
16 —		Silic	a sand				
-							
18 —							
-							
]						
20 —							
_							
22 —							
-							
-							
24 —							
-							
NOTES: Bottom of boring	g at 25 feet bgs.						

			PROJECT:	BORIN	G ID:							
			Additional Soil and Groundwater Investigation	B-15	5							
			LOCATION:	WELL I	D:							
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA								
			DRILLING CONTRACTOR:	NORTHING: EASTING:								
			NuStar Vancouver Annex Facility	24								
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88).	TOC ELEVATION:				
			Hand Auger	Not	measu	ired	200).	Ν	Α			
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:		
			Direct-Push	10				Ν	ot enc	ountered		
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DA	TE COM	PLETED:		
			1.25-Inch Single Tube Sampler	1/31				1/31/19				
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes		
0	ML		Clayey SILT with trace fine sand, brown, slightly moist, stiff.	-2.0/2.0	<5	NS						
	ML		Fine sand increasing, becomes moist.	2.0/2.0	<0	115						
2 -	ML		Clayey SILT with sand, brown, wet, medium stiff.	2.0/2.0	<5	NS						
4 -	ML		Clayey SILT with trace sand, brown, moist, stiff. Becomes medium stiff.	2.0/2.0	<5	NS			\boxtimes			
6 -	ML			2.0/2.0	<5	NS						
8 - - 	ML		Becomes wet.	2.0/2.0	<5	NS						

	PROJECT:	BORIN	G ID:							
	Additional Soil and Groundwater Investigation	B-16	;							
	LOCATION:	WELL ID:								
	5420 NW Fruit Valley Rd, Vancouver, WA.	NA								
	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:			
	NuStar Vancouver Annex Facility									
	DRILLING EQUIPMENT:	SURFACE ELEV. (NAVD88):					TOC ELEVATION:			
	Hand Auger	Not	measu	ured	200).	N	Α			
	DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:		
	Direct-Push	10				N	ot enc	ountered		
LOGGED BY:	SAMPLING METHOD:		STARTE	D:		DA	TE COM	PLETED:		
LW	1.25-Inch Single Tube Sampler	1/30				1/30/19				
Elev. (feet) USCS Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes		
0	Clayey SILT, with trace fine sand, brown with		-							
- ML	grey mottles, slightly moist, stiff.	2.0/2.0	<5	NS						
2 - <u></u>	Becomes moist.		<5	NS						
- ML		2.0/2.0	<5	NS	B-16 ((1)	\boxtimes			
4 -	Clayey SILT, with trace fine sand, gray, wet, stiff.	2.0/2.0	100	MS						
6 -		2.0/2.0	120	MS	B-16 ((2)	\square			
- ML		2.0/2.0	112	MS						
8 -			61	MS						
		2.0/2.0	10.7	NS						
10			10.1							

			PROJECT:	BORIN						
			Additional Soil and Groundwater Investigation	B-17						
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR: NuStar Vancouver Annex Facility	NORTH	IING:			EAS	STING:	
			DRILLING EQUIPMENT:	SURFA		V (NAV	/D88)·	то	C ELEVAT	ION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ured	000).	N	A	
			DRILLING METHOD:	TOTAL	DEPTH	:			РТН ТО V	
			Direct-Push	55						untered
ogge LW	D BY:		SAMPLING METHOD: 2.25-Inch Single Tube Sampler	DATE S		D:			TE COMP /31/19	LETED:
		0		0	ace om)		٩		0	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	ML		Clayey SILT, with trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
2 -	ML		Becomes stiff.	-2.0/2.0	<5	NS				
4 -			Clay increasing, becomes moist.		-		-			
_	ML			2.0/2.0	<5	NS				
6 -	ML	n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 19 1 2 n 2 n 2 n 2 n 2 n 2 n 19 1 2 n 2 n 2 n 2 n 2 n 2 n 10 2 n 2 n 2 n 2 n 2 n 2 n 2 n 19 2 n 2 n 2 n 2 n 2 n 2 n 2 n	Clayey SILT, with fine sand, gray/brown, moist, stiff.	2.0/2.0						
8 -	ML		Becomes slightly moist, medium stiff.	2.0/2.0	<5	NS				
_				0/1.5			-			
10 -	ML ML	nanananananan nananananan nananananan nanananananan nananananananan	Clayey SILT, with fine sand, brown, slightly moist, medium stiff.	0.5/0.5	<5	NS	-			
-	ML		Becomes moist. Clayey SILT, with fine sand, brown, moist, medium stiff.	_		NS				
12 -			Fine sand increasing, becomes wet.	5.0/5.0	<5	NS	B-17 ((1)		
14 -	ML				<5		-			
-			Clayey SILT, with fine sand, gray, wet, medium stiff.			MS	B-17 ((2)		
16 -	ML				377	MS				
18 -			Clay increasing, becomes stiff.	5.0/5.0	350		-			
_	ML				340	MS				
20 -			Clayey SILT, with fine sand, gray, wet, medium stiff.		141	мѕ				

			PROJECT: Additional Soil and Groundwater Investigation	BORIN B-17						
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	TING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	тос	ELEVA	FION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ured	,	N/	4	
			DRILLING METHOD:		DEPTH	:			РТН ТО V	
			Direct-Push	55				No	ot enco	ountered
	D BY:		SAMPLING METHOD:		STARTE	D:				LETED:
LW			2.25-Inch Single Tube Sampler	1/31				1/3	31/19	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -	ML									
-2				5.0/5.0						
-					13.7	NS				
24 -	ML	11111111111111 11111111111111111111111	Increasing clay, becomes stiff.	1						
_	IVIL									
			Becomes brown.		31	NS				
26 -	ML									
-	ML	nananananana Nananananan	Increasing sand.	5.0/5.0						
28 -					5.1	NS				
-			Sandy SILT with clay, brown, wet, medium stiff.							
_										
30 -					4.1	NS				
50 -					4.1					
_										
	ML									
32 -				E 0/E 0	05.0					
_				5.0/5.0	25.8	NS				
34 -										
					00.0					
_			SAND with silt, gray, wet, medium-grained,		26.6	NS				
36 -			medium dense.							
-					49.1	NS				
38 -	SM			5.0/5.0						
-		and a								
4.6					6.7	NS				
40 -		<i>tette</i>	SAND with silt, gray, wet, medium-grained,							
_	SM		medium dense.							
42 -			Becomes coarser material.	-	18	NS				
	SM			5.0/5.0						

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-17	,					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	HING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	(D88)	то	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measu	ired	200).	N	Α	
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:
			Direct-Push	55				N	ot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:	DATES	STARTE	D:		DA	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/31				1	/31/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
44 -			SAND with trace silt, grey, wet, coarse-grained, medium dense.		8.3	NS				
46 -					24.5	NS	-			
48 -	SM			5.0/5.0	6.6	NS				
50 -					0.9	NS				
52 -			Silt increasing.	5.0/5.0	1.9	NS				
54 -	SM				25.8					

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-18	5					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	D88) [.]	то	CELEVAT	ON:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measi	ired	200).	N	Α	
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO W	ATER:
			Direct-Push	55				N	ot enco	untered
OGGE	D BY:		SAMPLING METHOD:	DATE S		D:			TE COMPL	ETED:
LW			2.25-Inch Single Tube Sampler	1/30/		1		1/	/30/19	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	ML	n de de de de de de de Reference de la composition Reference de la composition	SILT with gravel, brown, slightly moist, medium stiff.		<5	NS				
_	ML		Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0						
2 -		nananana ananana Mananananananana Mananananananan	Clayey SILT with fine sand, gray, slightly moist,							
=			stiff.	2.0/2.0	<5	NS				
4 -	ML									
-		n ar ar ar ar ar ar a 1939 - Ar ar ar ar ar a 1939 - Ar ar ar ar ar ar ar ar		2.0/2.0	<5	NS				
			Fine sand increasing.	2.0/2.0						
6 -					246	MS				
_				2.0/2.0			B-18 ((1)	\square	
	ML				455	MS		()		
8 -										
-				2.0/2.0	451	MS				
10										
10 -		nanakakaka ana nanahan akanani nanahan akanani	Becomes moist.							
_					356	MS				
12 -	ML			5.0/5.0						
_					604	MS				
14 -	ML	nanana ara ara Manana arama	Becomes wet.	1			B-18 ((2)	\boxtimes	
_	IVIL	n an an an an an an an an Internet (an an an an a Internet (an an an an an			647	MS	0-101	(~)		
			Clayey SILT with fine sand, gray, wet, stiff.							
16 -										
4										
	ML			5.0/5.0	376	MS				
18 -										
_										
20 -			Clayey SILT with trace fine sand, gray, wet,		431	MS				
20 7			medium stiff.	1						

			PROJECT: Additional Soil and Groundwater Investigation	BORIN B-18						
			LOCATION:	WELL I						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH				EASTI	NG	
			NuStar Vancouver Annex Facility		inite.			LASI	NG.	
			DRILLING EQUIPMENT:						LEVAT	ION ·
			Hand auger to 8', Geoprobe 7730 to depth	SURFA	CE ELE measi	V. (NAV	D88):	NA		ion.
			DRILLING METHOD:		DEPTH					
			Direct-Push	55	DEFIN				H TO W	
										untered
LW	D BY:		SAMPLING METHOD: 2.25-Inch Single Tube Sampler	1/30	STARTE / 19	D:			COMPL)/19	ETED:
				ů.	ace om)		Ð		0	
(fee	nscs	phic og	Description	n/Re	dspa r (pp	en	il mpl		oth	Notes
Elev. (feet)	∩	Graphic Log	Decemption	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	NOLES
_	ML				<u>+></u>					
22 -					400					
				5.0/5.0	180	NS				
	ML		Clay increasing.							
24 -		, 8, 8, 8, 8, 8, 8, , 8, 8, 8, 8, 8, 8,	Recomes brown	_						
	ML		Becomes brown.							
-		nanananananan Nananananan Nananananan	Clayey SILT with trace fine sand, brown, wet,		14.3	NS				
26			medium stiff.							
26 -										
_					<5	NS				
	ML			5.0/5.0	-0					
28 -										
					<5	NS				
_					_					
30 -					<5	NS				
50 -			SAND with trace silt, brown, wet, medium to							
-			fine-grained, medium dense.		13.4	NS				
32 -	SM									
				5.0/5.0						
-					<5	NS				
34 -										
			SAND with silt, brown, wet, coarse to medium-grained, medium dense.							
-			medium-grained, medium dense.		<5	NS				
36 -	SM									
_					<5	NS				
				5.0/5.0	-0					
38 -			Recomes contract material	_						
			Becomes coarser material.							
-	SM				<5	NS				
40										
40 -			SAND with silt, brown, wet, coarse to							
_	SM		medium-grained, medium dense.		<5	NS				
42 -			Becomes finer material.	_						
				5.0/5.0						

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-18	3					
			LOCATION:	WELL	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	HING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	D88) [.]	TO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measu	ired	200).	N	Α	
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:
			Direct-Push	55				N	lot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:	DATE	STARTE	D:		DA ⁻	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/30				1.	/30/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
44 -	SM				<5	NS				
46 - - 48 -	SM		SAND with trace silt, brown, wet, medium-grained, medium dense	5.0/5.0	<5	NS				
- 50 -					<5	NS				
_	SM		SAND with silt, brown, wet, medium-grained, medium dense.		<5	NS				
52 - - 54 -	SW		SAND with trace gravel, brown, wet, coarse to medium-grained, medium dense.	5.0/5.0	<5	NS				

		PROJECT:	BORIN	G ID:					
		Additional Soil and Groundwater Investigation	B-19)					
		LOCATION:	WELL I	D:					
		5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
		DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
		NuStar Vancouver Annex Facility							
		DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	то	C ELEVA	TION:
		Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ured	,	N	Α	
		DRILLING METHOD:		DEPTH	:		DE	РТН ТО	WATER:
		Direct-Push	55				1	7	
OGGED BY:		SAMPLING METHOD:	DATE S		D:			ГЕ СОМР /29/19	PLETED:
		2.25-Inch Single Tube Sampler	_					29/19	
Elev. (feet) USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0 - ML		SILT with clay and trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
2 -		Clayey SILT with trace fine sand, brown, slightly moist, stiff.	2.0/2.0	<5	NS				
4 - ML			2.0/2.0	<5	NS				
6 - - ML		Becomes moist.	2.0/2.0	<5	NS				
8 - - ML		SILT with clay and fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
10 - - ML		Clayey SILT with trace fine sand, brown, moist, medium stiff.		<5	NS	B-19	(1)	\boxtimes	
12 - - ML		Becomes wet.	5.0/5.0		NS				
14 -		Clayey SILT with trace fine sand, gray, wet, medium stiff.	-	<5	NS				
16 - - ML			5.0/5.0	<5	NS				
18 -			5.0/3.0	<5	NS				
20 -		Clayey SILT with trace fine sand, gray, wet, soft.		1.2	NS				

	PROJECT:	BORIN						
	Additional Soil and Groundwater Investigation	B-19						
	LOCATION:	WELL I	D:					
	5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
	DRILLING CONTRACTOR:	NORTH	HING:			EASTI	NG:	
	NuStar Vancouver Annex Facility							
	DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth	SURFA	CE ELE measu	V. (NAV J red	D88):	тос е NA	LEVAT	ION:
	DRILLING METHOD:		DEPTH					/ATER:
	Direct-Push	55				17	110 W	ATEN.
OGGED BY:	SAMPLING METHOD:	DATES	STARTE	D:			COMPL	ETED:
LW	2.25-Inch Single Tube Sampler	1/29				1/29	/19	
USCS	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Depth	Notes
ML			->					
22 -	Becomes brown and medium stiff.	5.0/5.0	<5	NS				
- ML			<5	NS				
26 -		5.0/5.0	<5	NS				
28 - - SM	SAND; gray, wet, coarse-grained, medium dense		<5	NS				
30 -	Silty SAND; gray, wet, medium-grained, medium dense.		<5	NS				
32 - - 34 - SM		5.0/5.0	<5	NS				
36 -			<5	NS				
38 -		5.0/5.0	<5	NS				
- SM	Increasing silt.		<5	NS				
40 -	Silty SAND; dark gray ,wet, medium-grained, medium dense		<5	NS				
42		5.0/5.0						

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-19)					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88).	то	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measu	ured	200).	Ν	Α	
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:
			Direct-Push	55				1	7	
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DA	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/29				1/	/29/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
-					<5	NS				
44 -										
44										
_		en e	Silty SAND; dark gray ,wet, medium-grained,		<5	NS				
			medium dense.							
46 -										
_	SM				<5	NS				
	OW			5.0/5.0						
48 -										
_		<u>terrer</u> ie	Becomes dense.		<5	NS				
50 -										
00										
-					<5	NS				
52 -	SM									
_				5.0/5.0	<5	NS				
54 -										
					<5	NS	1			

		Additional Soil and Groundwater Investigation	B-20)					
		LOCATION.	WELL I	D:					
		5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
		DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
		NuStar Vancouver Annex Facility							
		DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):			ION:
		Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD:		meası DEPTH			N		
		Direct-Push	60	DEFIN	•			PTH TO W	untered
		SAMPLING METHOD:							
OGGED BY: LW		2.25-Inch Single Tube Sampler	2/4/1	STARTE	D:			TE COMPI '4/19	LETED:
						0			
Elev. (feet) USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0 - ML 2 -		SILT with clay and fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
4		Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.	-2.0/2.0	<5	NS				
- ML			2.0/2.0	<5	NS				
8 - ML		Fine sand increasing.	-2.0/2.0	<5	NS				
10 - ML		Sandy SILT with clay, gray, slightly moist, medium stiff.	-2.0/2.0	<5					
- ML				82.9		B-20 ((1)		
12 - - ML		Becomes wet.	5.0/5.0		NS	B-20 ((2)		
14 -		Clayey SILT with fine sand, gray, wet, soft.	-	35					
16 - - ML			5.0/5.0	219	MS				
18 -			5.0/5.0						
20 -		Sandy SILT with clay, gray, wet, soft.		78.5	MS				

			PROJECT:	BORIN							
			Additional Soil and Groundwater Investigation	B-20							
			LOCATION:	WELL I	D:						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA							
			DRILLING CONTRACTOR:	NORTH	HING:			EAST	ING:		
			NuStar Vancouver Annex Facility								
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	TOC ELEVATION:			
			Hand auger to 8', Geoprobe 7730 to depth		meası			NA			
			DRILLING METHOD:		DEPTH	:			TH TO W		
			Direct-Push	60						untered	
OGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:			E COMPL 2/ 19	ETED:	
LW			2.25-Inch Single Tube Sampler					2/4	/19		
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes	
22 -	ML			5.0/5.0	378	MS					
-	IVIL			3.0/3.0							
24 -					9.4	NS					
-			Clayey SILT with fine sand, gray, wet, soft.								
26 -	ML				3.4	NS					
-			SAND with trace silt, dark gray, wet, coarse to medium-grained, medium dense.	5.0/5.0							
28 -	SM				6.1	NS					
30 -			SAND with trace silt, gray, wet, mediumto fine-grained, medium dense.		3	NS					
_	SM										
32 -					1.4	NS					
_			SAND with trace silt, brown, wet, mediumto	5.0/5.0							
34 -			fine-grained, medium dense.		1.6	NS					
-	SM										
36 -					<5	NS					
-			SAND with trace silt, brown, wet, coarse to medium-grained, medium dense.	5.0/5.0							
38 -	SM				<5	NS					
- 40					<5	NS					
-			SAND with trace silt, brown, wet, medium-grained, medium dense.		<5	NS					
42 -				5.0/5.0							
			0	3.0/3.0							

Additional Soil and Groundwater Investigation LOCATION: 5420 NW Fruit Valley Rd, Vancouver, WA. DRILLING CONTRACTOR:	B-20 WELL I NA	D:			EASTING:				
NuStar Vancouver Annex Facility DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV J red	D88):	тос	ELEVA	TION:		
DRILLING METHOD: Direct-Push	TOTAL 60	DEPTH	:		DEP ⁻ No	тн то • t enc	ountered		
SAMPLING METHOD: 2.25-Inch Single Tube Sampler		9	D:		1		PLETED:		
Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes		
		<5	NS						
		<5	NS						
SAND with gravel, dark gray, wet, loose.	5.0/5.0	<5	NS						
		<5	NS						
		<5	NS						
	5.0/5.0	<5	NS						
		<5	NS						
	5.0/5.0	<5	NS						
	DRILLING CONTRACTOR: NuStar Vancouver Annex Facility DRILLING EQUIPMENT: Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD: Direct-Push SAMPLING METHOD: 2.25-Inch Single Tube Sampler Description	DRILLING CONTRACTOR: NORTH NuStar Vancouver Annex Facility SURFA DRILLING EQUIPMENT: SURFA Hand auger to 8', Geoprobe 7730 to depth Not I DRILLING METHOD: TOTAL Direct-Push 60 SAMPLING METHOD: DATE S 2.25-Inch Single Tube Sampler 2/4/1 Description geographic geograp	DRILLING CONTRACTOR: NORTHING: NUStar Vancouver Annex Facility SURFACE ELE DRILLING EQUIPMENT: SURFACE ELE Hand auger to 8', Geoprobe 7730 to depth TOTAL DEPTH DRILLING METHOD: DATE STARTE 2.25-Inch Single Tube Sampler 2/4/19 Description orggeneration SAND with gravel, dark gray, wet, loose. <5	DRILLING CONTRACTOR: NORTHING: NUStar Vancouver Annex Facility SURFACE ELEV. (NAV DRILLING EQUIPMENT: SURFACE ELEV. (NAV Hand auger to 8', Geoprobe 7730 to depth TOTAL DEPTH: Dritect-Push Cottal DEPTH: SAMPLING METHOD: 2/4/19 2.25-Inch Single Tube Sampler 2/4/19 Description Juit Start Started: SAND with gravel, dark gray, wet, loose. <5	DRILLING CONTRACTOR: NORTHING: NuStar Vancouver Annex Facility SURFACE ELEV. (NAVD88): DRILLING EQUIPMENT: SURFACE ELEV. (NAVD88): Hand auger to 8', Geoprobe 7730 to depth TOTAL DEPTH: Driect-Push 60 SAMPLING METHOD: 2/4/19 2.25-Inch Single Tube Sampler 2/4/19 Description give give give give give give give give	DRILLING CONTRACTOR: NORTHING: EAST NUStar Vancouver Annex Facility SURFACE ELEV. (NAVD88): TOC Hand auger to 8', Geoprobe 7730 to depth SURFACE ELEV. (NAVD88): TOC DRILLING METHOD: Direct-Push 60 No SAMPLING METHOD: DATE STARTED: Z4/19 Z4/19 Description	DRILLING CONTRACTOR: NORTHING: EASTING: Nuklar Vancouver Annex Facility SURFACE ELEV. (NAVD88): Not measured TOC ELEVA NA DRILLING METHOD: Direct-Push TOTAL DEPTH: DepTH TO 60 SAMPLING METHOD: DATE STARTED: DATE COME 2/4/19 DATE COME 2/4/19 Description		

	PROJECT:	BORIN	G ID:					
	Additional Soil and Groundwater Investigation	B-21						
	LOCATION:	WELL I	D:					
	5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
	DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
	NuStar Vancouver Annex Facility							
	DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	(88 ^{).}	то	C ELEVA	TION:
	Hand auger to 8', Geoprobe 7730 to depth	Not	measu	ired	200).			
	DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:
	Direct-Push	65						ountered
LOGGED BY:	SAMPLING METHOD:	DATES	STARTE	D:		DA	TE COM	PLETED:
LW	2.25-Inch Single Tube Sampler	2/1/1				2	/1/19	
USCS Graphic	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0		NS				
2		2.0/2.0	<5	NS				
4 - ML 6 -		2.0/2.0	<5	NS				
8		2.0/2.0	<5	NS	-			
10 - ML	Becomes light gray with red/orange mottles.	-2.0/2.0	<5	NS	_			
12 -	Fine sand increasing.		<5	NS				
- ML 14 -		5.0/5.0	<5	NS	B-21	(1)	\boxtimes	
= ML	Clayey SILT with fine sand, gray, moist, medium stiff.		0.8	NS		,		
16 -	SAND; grey, wet, medium grained, dense	5.0/5.0	160.7	MS	B-21	(2)		
18 - sw			389	MS				
20 - ML	Clayey SILT with fine sand, gray, wet, soft.		504	MS				
NOTES: Bottom of b	oring at 65 feet bgs.							

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-21	I					
			LOCATION:	WELL	ID:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	HING:			EAS	TING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	тос	ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		measu					
			DRILLING METHOD: Direct-Push	65	DEPTH	1:			PTH TO	NATER: Duntered
LOGGE	עם ח.		SAMPLING METHOD:		STARTE	חי			E COMP	
LUGGE	DBI:		2.25-Inch Single Tube Sampler	2/1/1		.D.			1/19	LETED.
			· · · ·	ů.	om)		٥		0	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -										
			Clay increasing.	5.0/5.0	388	MS				
24 -	ML									
_					185	MS				
26 -		n 2020, 2020, 2020, 2020 n 2020, 2020, 2020, 2020 n 2020, 2020, 2020, 2020 n 2020, 20200, 20200, 2020, 202000, 20200, 202000, 20200, 20200, 202000, 20200, 20200, 20200, 20200, 202000, 202000, 20200, 20200, 20200, 20200, 20200, 20200, 20200, 202000, 20200, 20200, 20200, 20200, 202000, 202000, 20200, 20200, 20200, 20200, 202000, 202000, 20200, 202000, 2020000, 202000, 20200000000	Fine sand increasing.	_						
_			Fille Salid Incleasing.		23	NS				
28 -	ML			5.0/5.0						
_		nanananananan Kasaranananana Kasaranananan Kasaranananan		_	7.7	NS				
30 -			SAND with silt, gray, wet, coarse to medium-grained, medium dense.		-					
_	SM				71	NS				
32 -										
_				5.0/5.0	40	NS				
34 -			Becomes finer material.							
_					13	NS				
36 -										
_	SM				<5	NS				
38 -				5.0/5.0						
00					<5	NS				
40 -										
40 -										
-					<5	NS				
42 -				5.0/5.0						
NOT	ES: Bot	tom of boring	g at 65 feet bgs.							
IUN	сэ. DO[אווסמ וס וווס	y al ער ובבו אאס.							

			PROJECT:	BORIN					
			Additional Soil and Groundwater Investigation	B-21					
			LOCATION:	WELL I	D:				
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA					
			DRILLING CONTRACTOR:	NORTH	IING:			EASTING:	
			NuStar Vancouver Annex Facility DRILLING EQUIPMENT:					TOC ELEV	
			Hand auger to 8', Geoprobe 7730 to depth	SURFA	CE ELE	V. (NAVI Jred	D88):	TOC ELEV	ATION.
			DRILLING METHOD:		DEPTH				
			Direct-Push	65		•		DEPTH TC	countered
OGGE	D BY:		SAMPLING METHOD:		STARTE	D.		DATE COM	
LW			2.25-Inch Single Tube Sampler	2/1/1	9			2/1/19	
et)	(0	o		tec.	Headspace Vapor (ppm)		ole	Ð	
Elev. (feet)	USCS	Graphic Log	Description	en/R (ft.)	adsp or (p	Sheen	Soil Sample	Sample Depth	Notes
Ele		9 G		Driven/Rec. (ft.)	He Vap	sh	ິ ທິ	De Se	
-			Becomes brown.		<5	NS			
44 -									
••									
-					<5	NS			
46 -									
+0 -									
_					<5	NS			
				5.0/5.0					
48 -		ddddd							
_					<5	NS			
50 -									
_	SM				<5	NS			
	OW				-0				
52 -									
		dddddd		5.0/5.0	<5	NS			
_					<0				
54 -									
-					<5	NS			
56 -									
_					<5	NS			
58 -				5.0/5.0					
-		tatat dabatatat Matatatatatata	SAND with silt and gravel, gray, wet, coarse to		<5	NS			
60	SM		medium-grained, medium dense.						
-00									
					<5	NS			
				5.0/5.0					
				3.0/5.0					
					<5	NS			
					1				1

			PROJECT:	BORIN	IG ID:					
			Additional Soil and Groundwater Investigation	B-2'	1					
			LOCATION:	WELL	ID:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTI	HING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	ν (ΝΑν	D88).	TO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		measu		200).			
			DRILLING METHOD:	TOTAL	. DEPTH	:		DE	PTH TO	WATER:
			Direct-Push	65				N	lot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:	DATE	STARTE	D:		DA	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	2/1/				2	/1/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-22	2					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING [.]			FAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:			\/ /NIA\/	000\.	то	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	SURFA	measu	ured	Doo).			
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	ΡΤΗ ΤΟ \	WATER:
			Direct-Push	25				1	7.9	
OGGE	D BY:		SAMPLING METHOD:		STARTE	D:			TE COMP	LETED:
LW			2.25-Inch Single Tube Sampler	1/29		1		1/	/29/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	ML		Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.							
2 -			SILT with trace clay and fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS	-			
-	ML			2.0/2.0	<5	NS				
4 -	-			2.0/2.0	<5	NS				
6 -	ML		Sand increasing. SAND with silt, brown, slightly moist,	2.0/2.0	<5	NS	-			
8 -	SM		medium-grained, medium dense.	2.0/2.0	<5	NS	-			
10 -			Becomes dark gray.				-			
- 12 -	SM				<5	NS	-			
_	ML		Clayey SILT lens with trace fine sand, brown, wet, medium stiff.	5.0/5.0	<5	NS				
14 -	SM		SAND with silt, gray, slightly moist, medium-grained, medium dense.		<5	NS				
16 -	SM		Silt increasing.	-	<5	NS				
18 -			Becomes moist.	5.0/5.0			-			
-	SM				<5	NS				
20 -			Silty SAND; gray, wet, medium grained, medium dense		<5	NS	B-22 ((1)		

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-22	2					
			LOCATION:	WELL	ID:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	HING:			EAS	TING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	тос	ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		measu		/			
			DRILLING METHOD:	TOTAL	. DEPTH	l:		DEP	тн то	WATER:
			Direct-Push	25				17	. 9	
LOGGE	D BY:		SAMPLING METHOD:	DATES	STARTE	D:		DAT	E COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/29		-		1/2	29/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -	SM			5.0/5.0	65	NS				
24 -					45	NS				

			PROJECT:	BORIN	IG ID:					
			Additional Soil and Groundwater Investigation							
			LOCATION:	WELL	ID:					
			5420 NW Fruit Valley Rd, Vancouver, WA. DRILLING CONTRACTOR:	NORTI				E۷۵	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	ACE ELE	V. (NAV	′D88):	тос	C ELEVA	TION:
			DRILLING METHOD:	TOTAL	. DEPTH	:		DEF	PTH TO	WATER:
LOGGE	D BY:		SAMPLING METHOD:	DATE	STARTE	D:		DAT	E COM	PLETED:
-					e ĉ					
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0										
_										
2 -										
4 -										
_										
6 -										
_										
8 -										
10 -										
-										
12 -										
-										
14 -										
-										
16 -										
18 -										
-										
20 -										
ΝΟΤ	ES:									

			PROJECT:	BORIN	g id:					
			Additional Soil and Groundwater Investigation	WELL I	<u>ں</u>					
					J.					
			5420 NW Fruit Valley Rd, Vancouver, WA. DRILLING CONTRACTOR:	NORTH				EV6.	TING:	
			NuStar Vancouver Annex Facility		into.					
			DRILLING EQUIPMENT:					тос	ELEVA	TION
				SURFA	CE ELE	V. (NAV	D88):			
			DRILLING METHOD:	TOTAL	DEPTH	:				WATER:
				-						
OGGE	D BY:		SAMPLING METHOD:	DATES	STARTE	D:		DAT	E COMF	PLETED:
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -										
-										
24 -										

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-23	5					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE FI F	V. (NAV	D88).	TO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth		measu					
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	РТН ТО	WATER:
			Direct-Push	15				N	lot enc	ountered
OGGE	D BY:		SAMPLING METHOD:		STARTE	D:		1		PLETED:
LW			2.25-Inch Single Tube Sampler	1/29				1	/29/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			Clayey SILT with trace fine sand, brown, slightly		->					
J			moist, stiff.							
-				2.0/2.0	<5	NS				
2 -	ML			L			-			
-		n narararan nara Manazarara								
-		o non non non. O non non non agus		2.0/2.0	<5	NS				
_		n an an an an an an an In an an an an an an In an an an an an an an								
4 -	N #1	n ayayayayayayay n ayayayayayay	SILT with clay, brown, slightly moist, medium stiff.		~~		-			
	ML	nan anan anan anan Inanan anan anan Inanan anan		2.0/2.0	<5	NS				
		na n	Sand increasing.	2.0/2.0	<5	NS				
6 -		nandrahananan Indrahananan				<u> </u>	-			
		n anaranan anara Na anaranan ang Na anaranan ang			<5	NS				
-				2.0/2.0	-		B-23	(1)	\square	
Q	ML	n de de de de de de la Nacional de la de la			<5	NS				
8 -	IVIL				<5	NS				
_				2.0/2.0			-			
10 -					<5	NS				
-	ML		Clayey SILT with trace fine sand, brown, moist,	1			1			
12 -	IVIL		medium stiff.		<5	NS				
				5.0/5.0						
-			mealan sun.				-			
	ML									
14 -		e e e e e e e e e			<5	NS				
12 -	ML		SILT with trace fine sand and clay, brown, dry, medium stiff.	5.0/5.0	<5 <5	NS				

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-24						
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	(D88) [.]	TO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measu	ured	200).			
			DRILLING METHOD:	TOTAL	DEPTH	:		DEI	PTH TO	WATER:
			Direct-Push	15				Ν	ot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DAT		PLETED:
LW			2.25-Inch Single Tube Sampler	1/28				1/	28/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	ML		SILT with trace clay, light brown, slightly moist, medium stiff.		<5					
- -	ML	1 2 4 2 2 4 2 4 2 4 7 9 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2	Trace angular to subangular gravel.	2.0/2.0	~0	NS				
2 -			Clayey SILT; light brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
4 -	ML			2.0/2.0	<5	NS				
6 -			Becomes brown.	-2.0/2.0	<5	NS				
8 -	ML			2.0/2.0	<5	NS				
10 -	ML		Clayey SILT with trace fine sand, brown, moist, medium stiff.		<5	NS	B-24 ((1)	\boxtimes	
12 -			Sandy SILT; brown, slightly moist, medium stiff.	5.0/5.0	<5	NS	-			
14 -	ML	n de la fait de la fait 19 de la de la fait 19 de la defait de la fait 19 de la fait de la fait 19 de la fait de la fait de			<5	NS	-			

NOTES: Bottom of boring at 15 feet bgs.

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-25						
			LOCATION:	WELLI						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH					STING:	
			NuStar Vancouver Annex Facility		iing.				JIING.	
			DRILLING EQUIPMENT:					то	C ELEVA	
				SURFA	CE ELE meası	V. (NAV	'D88):		JELEVA	HON.
			Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD:							
			Direct-Push		DEPTH				PTH TO \	
				15						ountered
LOGGE	D BY:		SAMPLING METHOD:			D:				LETED:
LW			2.25-Inch Single Tube Sampler	1/28				1	/28/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0	ML		SILT with gravel, dark gray, dry, medium stiff		9.2	NS				
-			Clayey SILT with trace fine sand, dark brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
2 -				2.0/2.0	<5	NS				
4 -	ML						-			
_				2.0/2.0	<5	NS				
6 -	5.41	1999 (1999) (1999) 1999 (1999) (1999) 1999 (1999) (1999) 1999 (1999) (1999) 1999 (1999) (1999)	Becomes gray and brown.	2.0/2.0	13.5	NS	B-25 ((1)	\square	
- 8	ML			2.0/2.0	1.2	NS				
-			SILT with clay, brown to gray, dry, medium stiff.	2.0/2.0	21.5	MS	B-25 ((2)	\boxtimes	
10 -	ML				13.1	NS	-			
12 -			Becomes light brown.	5.0/5.0	<5	NS				
14 -	ML				<5	NS				

			PROJECT:	BORIN						
			Additional Soil and Groundwater Investigation	B-26	5					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	тос	C ELEVAT	ION:
			Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD:		measu DEPTH				РТН ТО И	
			Direct-Push	35						untered
OGGE	יעם חי		SAMPLING METHOD:		STARTE	ח:				
	DBT:		2.25-Inch Single Tube Sampler	1/28		.D.			28/19	
				-			n			
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			SILT; brown, slightly moist, medium stiff.							
	ML			2.0/2.0	<5	NS				
2 -			Oleveinensesien	2.0/2.0	<5	NS				
4 -	ML		Clay increasing.							
_			Clayey SILT, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
6 -				2.0/2.0	<5	NS				
8 -							B-26	(1)	\square	
- 10	ML			2.0/2.0	<5	NS				
_					<5	NS				
12 -				5.0/5.0	<5	мѕ				
14 -			Becomes moist.	-						
_	ML				<5	NS				
16 -			Sand increasing.	1	<5	NS				
- 18	ML			5.0/5.0						
-	SM		SAND with silt, brown, slightly moist, medium grained, medium dense.	-	<5	NS				
20 -			Clayey SILT lens, brown, slightly moist, medium stiff.		<5	NS				

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-26	5					
			LOCATION:	WELL I	D:					
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	HING:			EA	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	D88):	то	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ured	,			
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:
			Direct-Push	35				N	lot enc	ountered
LOGGE	D BY:		SAMPLING METHOD:		STARTE	D:			TE COMP	PLETED:
LW			2.25-Inch Single Tube Sampler	1/28				1	/28/19	
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -	ML									
				5.0/5.0						
-			SAND with silt, brown, slightly moist, medium	-	<5	NS				
04		eeeeee	grained, medium dense.							
24 -	SM									
-	OW				<5	NS				
26 -			SAND with trace silt, dark brown to gray, moist,	-						
		eeeeee	coarse grained, medium dense.							
_				5.0/5.0	<5	NS				
28 -	SM			0.0/0.0						
-					<5	NS				
20		eeeeee								
30 -			Clayey SILT lens, brown, moist, medium stiff.		1		1			
-	ML				<5	NS				
					-					
32 -		nenenenenenenen Referenenen	SAND with trace silt, dark brown to gray, moist,	-						
			coarse-grained, medium dense.	5.0/5.0						
-	SM		-		<5	MS				
34 -			December with	_						
	SM		Becomes wet.		<5	NS				
							J			

			PROJECT:	BORIN						
			Additional Soil and Groundwater Investigation	B-27						
			LOCATION: 5420 NW Fruit Valley Rd, Vancouver, WA.	WELL ID:						
			NORTH				-			
	DRILLING CONTRACTOR: NuStar Vancouver Annex Facility							EAS	STING:	
			DRILLING EQUIPMENT:	SURFA	CE ELE	V. (NAV	'D88):	тос	CELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth DRILLING METHOD:		measu DEPTH			0.5		
			Direct-Push	35					ртн то).8	WATER:
GGE	D BY:		SAMPLING METHOD:		STARTE	D:		DAT	E COM	PLETED:
.W			2.25-Inch Single Tube Sampler	1/28				1/	28/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
0			Asphalt	-						
- -			Clayey SILT with trace fine sand, brown, slightly moist, medium stiff.	2.0/2.0	<5	NS				
2 -				2.0/2.0	<5	NS				
4 -	ML			2.0/2.0	<5	NS	-			
-				2.0/2.0	<5	NS				
6 -	ML		Becomes gray.	2.0/2.0	97.2	MS	-			
•	ML		Becomes moist.	2.0/2.0	170	MS	B-27	(1)	\boxtimes	
8 -		1,0,0,0,0,0,0,0,0,0 1,0,0,0,0,0,0,0,0 1,0,0,0,0	Becomes slightly moist.	2.0/2.0	697	MS				
0 -					773	MS	B-27	(2)		
- 2 -	ML						-			
-				5.0/5.0	679	MS				
4 -					25	MS	-			
6 -	ML		Clayey SILT with trace fine sand, brown to gray, wet, medium stiff.		50	MS				
- 8			SAND with silt, brown, moist, medium grained, medium dense.	5.0/5.0	21	NS	-			
- 0			medium dense.		5.6	NS				
U -					<5	NS				

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-27	,					
			LOCATION:	WELL ID:						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EA	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA	CE ELE	V (NAV	D88) [.]	то	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	meası	ired	200).			
			DRILLING METHOD:	TOTAL	DEPTH	:		DE	PTH TO	WATER:
			Direct-Push	35				3	0.8	
LOGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DA	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/28				1	/28/19	
Elev. (feet)	NSCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
22 -										
				5.0/5.0						
-	SM				<5	NS				
~ 4										
24 -										
_					<5	NS				
					-					
26 -										
					_					
_				5.0/5.0	<5	NS				
28 -				5.0/5.0						
			Becomes gray.							
-					<5	NS				
~~										
30 -	SM									
_					<5	NS				
					Ū					
32 -		લ્લલલલલ સંસરાસસ	Becomes wet.							
			Decomes wet.	5.0/5.0						
-	SM				<5	NS				
34 -	SIVI									
<u> </u>					<5	NS				

			PROJECT:	BORIN	G ID:					
			Additional Soil and Groundwater Investigation	B-28						
			LOCATION:	WELL ID:						
			5420 NW Fruit Valley Rd, Vancouver, WA.	NA						
			DRILLING CONTRACTOR:	NORTH	IING:			EAS	STING:	
			NuStar Vancouver Annex Facility							
			DRILLING EQUIPMENT:	SURFA			'D88):	TO	C ELEVA	TION:
			Hand auger to 8', Geoprobe 7730 to depth	Not	measi	ured				
			DRILLING METHOD:	TOTAL	DEPTH	1:		DE	РТН ТО	WATER:
			Direct-Push	15				N	ot enc	ountered
OGGE	D BY:		SAMPLING METHOD:	DATE S	STARTE	D:		DA ⁻	TE COM	PLETED:
LW			2.25-Inch Single Tube Sampler	1/28				1	/28/19	
Elev. (feet)	USCS	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Sheen	Soil Sample		Sample Depth	Notes
ш 0			SILT: light brown dry modium stiff	Ď	Ξÿ	0,				
0	ML		SILT; light brown, dry, medium stiff.							
_			Becomes dark brown, slightly moist.	2.0/2.0	<5	NS				
-			Deserved dark brown, blightly molet.							
2 -						<u> </u>	1			
	ML									
-				2.0/2.0	<5	NS				
4 -	ML		SILT with clay, light brown, slightly moist, medium stiff.	2.0/2.0	<5	NS	-			
- 8				2.0/2.0	<5	NS				
0 -	ML		SILT with fine sand and trace clay, brown, slightly moist, medium stiff. Clay increasing.	2.0/2.0	<5	NS	B-28	(1)		
10 -							-			
_					<5	NS				
12 -	ML						-			
				5.0/5.0						
					<5	NS				
-										
-					<5	NS	1			
- 14						111.5	1			

APPENDIX D

LABORATORY ANALYTICAL REPORTS AND QUALITY ASSURANCE/QUALITY CONTROL REVIEW

1.0 INTRODUCTION

This attachment documents the results of a quality assurance/quality control (QA/QC) review of the analytical data for the soil and groundwater samples collected as part of the additional soil and groundwater investigation and subsequent groundwater monitoring event at the NuStar Terminals Operations Partnership (NuStar) Annex Terminal in Vancouver, Washington (the Facility). Soil and groundwater sample analyses were performed by accredited environmental laboratories; laboratories used during the investigation are listed in the table below. Copies of the laboratory reports are included in this attachment.

Report	Sampling Date	Event	Laboratory
ADB01017 Amended	1/28/19 – 2/7/19	Soil and grab groundwater investigation	Apex Labs- Portland, OR.
K1900833.01 1/29/19		Rush-turnaround samples for boring B-22.	ALS – Kelso, WA.
A9B0609	2/18/19	Groundwater monitoring event	Apex Labs - Portland, OR.

2.0 DATA VALIDATION

The QA review included examination and validation of the laboratory data packages for the following:

- Analytical preparation and quantitation methods
- Analytical method holding times
- Sample handling
- Chain of custody handling
- Detection and reporting limits
- Method blank detections
- Laboratory control samples, matrix spikes and surrogates to assess laboratory accuracy
- Laboratory control sample duplicates and matrix spike duplicates to assess laboratory precision
- Field duplicates to assess sampling and laboratory precision

The QA/QC review did not include a review of raw data.

2.1 DATA QUALIFIERS

Any data that is found to have possible bias or error was qualified and flagged. The flags used in the data table are below.

F-9 to F-20, L	Various laboratory notes regarding the hydrocarbon pattern on the NWTPH-Gx and NWTPH-Dx analysis; in general, the chromatograph patterns don't exactly match the standard and/or there is an overlap in hydrocarbon ranges in the samples. Note: while the hydrocarbon overlap was noted on the report tables, the data flags were not carried through to the tables as they don't indicate a quality issue for sample results.
Q-17	Relative percent difference (RPD) between original and duplicate is outside control limits.
Q-42	Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample and percent recovery or RPD was outside control limits.

3.0 ANALYTICAL METHODS

Soil and/or sample analyses included the following.

- Gasoline-range petroleum hydrocarbons (TPHg) by Method NWTPH-Gx;
- Diesel-range petroleum hydrocarbons (TPHd) and oil-range petroleum hydrocarbons (TPHo) by Method NWTPH-Dx with silica gel cleanup; and
- Benzene, toluene, ethylbenzene, and xylenes (collectively BTEX) by U.S. Environmental Protection Agency (EPA) Method 8260B.
- Diethylene glycol monomethyl ether (DGME) by modified Method 8270D.

4.0 QUALITY ASSURANCE OBJECTIONS AND REVIEW

The general QA objectives for this project were to develop and implement procedures for obtaining, evaluating, and confirming the usability of data of a specified quality for soil and groundwater concentration monitoring at the Facility. To collect such information, analytical data must have an appropriate degree of accuracy and reproducibility, samples collected must be representative of actual field conditions, and samples must be collected and analyzed using unbroken chain-of-custody procedures.

Reporting limits and analytical results for the samples were compared to Washington Department of Ecology MTCA Method A Cleanup Levels for each parameter. Precision, accuracy, representativeness, completeness, and comparability parameters used to indicate data quality are defined below.

4.1 HOLDING TIMES AND SAMPLE RECEIPT

The holding time is the minimum amount of time the sample can be stored before analytes start to degrade and are not representative of initial sampling concentrations. Holding times are defined by

analytical methods. The groundwater samples included in this QA/QC review were analyzed within the method recommended holding time.

Method Matri		Analyte	Preservative	Hold Time	
EPA 8260B	A 8260B Soil/ BTEX, MTBE a		Hydrochloric Acid (HCl) to	14 days	
111102000	Water	naphthalene	pH<2; No headspace; Glass	11 duy5	
NWTPH-Gx	Soil/	Gasoline Range	Hydrochloric Acid (HCl) to	14 days	
NW II II-UX	Water	Organics	pH<2; No headspace; Glass	14 uays	
NWTPH-Dx	Soil/	Diesel Range Organics	Hydrochloric Acid (HCl) to	14 days	
	Water	Dieser Kange Organics	pH<2; Amber glass container	14 uays	

Samples were received on ice below 4^oC by the analytical laboratory. Sampling containers arrived intact and unbroken to the laboratories. Groundwater samples to be analyzed for volatile organic compounds (VOCs) were received without headspace in VOA sampling containers. All chain-of-custodies were appropriately relinquished by the Cascadia Associates sampler and received by the intentional environmental laboratory. There were no major discrepancies found between the bottles and the chain of custodies received.

4.2 REPORTING LIMITS

Reporting limits are the lowest concentration an instrument is capable of accurately detecting an analyte. They are determined by the laboratory and are based on instrumentation capabilities, the matrix of field samples, sample preparation procedures and suggested reporting limits by the EPA or the Washington Department of Ecology. In some cases, the reporting limits may be raised due to high concentrations of analytes or matrix interferences. Detection limits were generally consistent with industry standards and regulatory standards. Reporting limits for individual samples varied based on the magnitude of the chemical impact.

4.3 METHOD BLANKS

A method- or laboratory-blank is a QC sample prepared by the laboratory from an analyte-free matrix and analyzed in an analytical batch along with environmental and other QC samples. It is used to assess laboratory contamination or background interferences. Analytes were not detected in the method blanks during the above-referenced analyses.

4.4 ACCURACY

Accuracy compares the accepted reference concentration of an analyte to the concentration determined analytically. Accuracy is measured as a percent recovery. This recovery must be within a certain range or control limit for the data in an analytical batch to be considered acceptable. The analytical laboratory provides QC samples and surrogates to help determine the accuracy and acceptability of the data reported. These QC samples and surrogates are discussed below.

4.4.1 Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control duplicate samples (LCSD) were analyzed by the laboratory to assess the accuracy of the analytical methods. A minimum of one set of LCS and LCSD was analyzed per analytical batch. The LCS and LCSD are prepared from an analyte-free matrix that is spiked with known levels of compounds of concern. The concentrations are measured and compared to the known spiked levels. This comparison is expressed as percent recovery. The percent recoveries for LCS and LCSD quality control samples were within method control limits.

4.4.2 Matrix Spikes

A matrix spike QC sample is used to assess the performance of the analytical method by determining potential matrix interferences. MS and MSD analyses are performed on one environmental sample per analytical batch. An MS sample uses an environmental sample that is spiked with known concentrations of analytes of interest. The MS is then prepared and analyzed with the same analytical procedures as environmental samples in the analytical batch. The resulting concentration of the MS is then compared to the known or true values plus the non-spiked environmental sample concentration. This comparison is expressed as a percent recovery. The percent recoveries for MS and MSD QC samples were within method control limits, with one exception:

An MS/MSD analysis was performed on water sample B-17-50 (batch A9B0107-26) and the % recovery or RPD for gasoline range organics, ethylbenzene, naphthalene and total xylenes was outside of control limits. Because the associated LCS/LCSD percent recovery for the sample batch was within acceptable limits, no data are flagged.

4.4.3 Surrogates

Surrogates are organic compounds that are similar in chemical composition to the analytes of interest but are not likely to be found in the environment. They are spiked at a known concentration into environmental and batch QC samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference, sample preparation efficiency and analysis performance on a sample-specific basis. Surrogate recoveries were within control limits. In some cases, the surrogate recovery was either estimated or not available due to sample dilution required for high analyte concentration and/or matrix interference.

4.5 PRECISION

Precision is measured by how close values of duplicate analyses are to each other. These duplicate analyses are prepared from separate aliquots of the same sample and are analyzed at the same (or similar) time. Precision in the field ensures that samples taken are representative of field concentrations; this is demonstrated by field duplicates. Analytical precision is the ability of the laboratory to reproduce results that are similar to each other; this is measured through duplicate

analysis of environmental and batch QC samples. Precision is estimated by the RPD between the original analysis and the duplicate analysis.

4.5.1 Laboratory Control Sample Duplicates

The analytical batch LCS concentration of an analyte is compared to the LCSD concentration of the same analyte. The RPD is calculated from these two concentrations; which must be below a certain percentage to be considered acceptable. The RPD values for the laboratory control samples of the same batch were within the method control limits.

4.5.2 Matrix Spikes

Like the LCS/LCSD, the MS/MSD analyte concentrations are also compared to each other and expressed as an RPD. The RPD values for analytical batch MS/MSD were within the control limit.

4.5.3 Field Duplicate

A field duplicate is a second field sample collected from a selected sample location. Field duplicate samples serve as a check on laboratory precision, sampling quality, as well as potential variability of the sample matrix. The field duplicate is analyzed and compared to the original sample to assess precision. This comparison can be expressed by the RPD between the original and duplicate samples. Application of RPD values is appropriate when the analyte result is five times greater than the reporting limit. Laboratory precision decreases as the analytical result approaches the reporting limit. Typically, one field duplicate is analyzed per 20 project samples during routine monitoring events; however, duplicates were inadvertently not collected from the February 2019 groundwater monitoring event.

5.0 CONCLUSION

The overall QA objectives have been met and the data are of adequate quality for use in this project.

<u>Apex Laboratories, LLC</u>

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Friday, April 5, 2019 Stephanie Salisbury Cascadia Associates 5820 SW Kelly Ave Unit B Portland, OR 97239

RE: A9B0107 - Nustar Vannex - 0060-001-005

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9B0107, which was received by the laboratory on 2/5/2019 at 2:25:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>ldomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

	Cooler Receip	t Information							
	(See Cooler Receipt Form for details)								
Cooler #1	5.6 degC	Cooler #2	4.1 degC						
Cooler #3 Cooler #5	2.8 degC 5.1 degC	Cooler #4	2.7 degC						

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Jusa A Jomenichini

Lisa Domenighini, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
5820 SW Kelly Ave Unit B	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97239	Project Manager: Stephanie Salisbury	A9B0107 - 04 05 19 0831

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-26	A9B0107-01	Soil	01/28/19 10:00	02/05/19 14:25
B-28	A9B0107-02	Soil	01/28/19 11:15	02/05/19 14:25
B-24	A9B0107-03	Soil	01/28/19 12:20	02/05/19 14:25
B-25-1	A9B0107-04	Soil	01/28/19 13:20	02/05/19 14:25
B-25-2	A9B0107-05	Soil	01/28/19 13:30	02/05/19 14:25
B-27	A9B0107-06	Soil	01/28/19 14:50	02/05/19 14:25
B-27-2	A9B0107-07	Soil	01/28/19 15:10	02/05/19 14:25
B-27 Water	A9B0107-08	Water	01/28/19 16:00	02/05/19 14:25
B-23	A9B0107-09	Soil	01/29/19 09:30	02/05/19 14:25
B-22	A9B0107-10	Soil	01/29/19 11:30	02/05/19 14:25
B-19	A9B0107-11	Soil	01/29/19 14:00	02/05/19 14:25
B-19-15	A9B0107-12	Water	01/29/19 14:40	02/05/19 14:25
B-19-30	A9B0107-13	Water	01/29/19 16:00	02/05/19 14:25
B-19-40	A9B0107-14	Water	01/30/19 09:30	02/05/19 14:25
B-19-50	A9B0107-15	Water	01/30/19 12:00	02/05/19 14:25
B-16-1	A9B0107-16	Soil	01/30/19 13:35	02/05/19 14:25
B-16-2	A9B0107-17	Soil	01/30/19 13:50	02/05/19 14:25
B-18-1	A9B0107-18	Soil	01/30/19 13:30	02/05/19 14:25
B-18-2	A9B0107-19	Soil	01/30/19 14:20	02/05/19 14:25
B-18-40	A9B0107-20	Water	01/31/19 08:30	02/05/19 14:25
B-18-50	A9B0107-21	Water	01/31/19 10:30	02/05/19 14:25
B-15	A9B0107-22	Soil	01/31/19 08:45	02/05/19 14:25
B-17-1	A9B0107-23	Soil	01/31/19 12:00	02/05/19 14:25
B-17-2	A9B0107-24	Soil	01/31/19 12:10	02/05/19 14:25
B-17-40	A9B0107-25	Water	01/31/19 14:00	02/05/19 14:25
B-17-50	A9B0107-26	Water	01/31/19 16:00	02/05/19 14:25
B-21-1	A9B0107-27	Soil	02/01/19 09:30	02/05/19 14:25
B-21-2	A9B0107-28	Soil	02/01/19 09:40	02/05/19 14:25
B-21-50	A9B0107-29	Water	02/01/19 12:00	02/05/19 14:25
B-21-60	A9B0107-30	Water	02/01/19 15:00	02/05/19 14:25
B-20-1	A9B0107-31	Soil	02/04/19 09:30	02/05/19 14:25
B-20-2	A9B0107-32	Soil	02/04/19 09:40	02/05/19 14:25

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates	Project:	Nustar Vannex	
5820 SW Kelly Ave Unit B	Project Number:	0060-001-005	<u>Report ID:</u>
Portland, OR 97239	Project Manager:	Stephanie Salisbury	A9B0107 - 04 05 19 0831

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-20-50	A9B0107-33	Water	02/04/19 12:30	02/05/19 14:25
B-20-60	A9B0107-34	Water	02/04/19 15:00	02/05/19 14:25
IDW	A9B0107-35	Soil	02/04/19 15:30	02/05/19 14:25
Trip Blank	A9B0107-36	Water	01/28/19 00:00	02/05/19 14:25

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland. OR 97239 AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL CASE NARRATIVE

Work Order: A9B0107

Analytical notes for Diethylene Glycol Monomethyl Ether (DGME) analysis:

A Gas Chromatograph/Mass Spectrometer (GCMS) screening method using a modification of EPA Method 8270D was developed to determine the presence or absence of DGME in soil and water matrices.

The water sample was extracted by EPA method 3510 with the exception of the addition of salt to aid in the extraction efficiency. The soil was extracted by EPA method 3546. A Laboratory Control Standard, Method Blank and a Sample Duplicate (soil only) were extracted with each batch. Although there is no established hold time for this analyte the recommended holding times established in EPA Method 8270 were exceeded.

The GCMS analysis used a single point calibration at the Reporting Limit (RL) to verify GC retention time and mass spectra for identification of the DGME. Each sample was compared directly to the RL standard and it was determined there was no DGME present at the reported RL.

Mark Zehr Organics Manager 3/22/2019

Amended Report Revision 1:

This report supersedes all previous reports.

At the client's request napthalene was added to the 8260 C Volatile list.

Lisa Domenighini Client Services Manager 4/5/19

Apex Laboratories

Aura A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting		Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-26 (A9B0107-01)						Ва		
Diesel	ND		27.3	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		54.6	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 70 %	Limits: 50-150 %	5 1	02/08/19	NWTPH-Dx/SG	
B-28 (A9B0107-02)				Matrix: Soil		Ва	tch: 9020417	
Diesel	ND		30.2	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		60.4	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	5 I	02/08/19	NWTPH-Dx/SG	
B-24 (A9B0107-03)				Matrix: Soil		Ba	tch: 9020417	
Diesel	ND		26.5	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		53.1	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 %	5 1	02/08/19	NWTPH-Dx/SG	
				Matrix: Soil		Batch: 9020417		
Diesel	5540		267	mg/kg dry	10	02/08/19	NWTPH-Dx/SG	
Oil	ND		534	mg/kg dry	10	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	5 10	02/08/19	NWTPH-Dx/SG	S-0.
B-25-2 (A9B0107-05RE1)				Matrix: Soil		Batch: 9020417		
Diesel	7650		259	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Oil	ND		518	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	5 10	02/09/19	NWTPH-Dx/SG	S-0.
B-27 (A9B0107-06RE1)				Matrix: Soil		Ва	tch: 9020417	
Diesel	6620		247	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Oil	ND		493	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	5 10	02/09/19	NWTPH-Dx/SG	S-0.
B-27-2 (A9B0107-07RE1)				Matrix: Soil		Ва	tch: 9020417	
Diesel	23700		595	mg/kg dry	25	02/09/19	NWTPH-Dx/SG	
Oil	ND		1190	mg/kg dry	25	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	5 25	02/09/19	NWTPH-Dx/SG	S-0.
B-23 (A9B0107-09)				Matrix: Soil		Ва	tch: 9020417	
Diesel	ND		25.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia</u>	Associate	S
5820 SW	Kelly Ave	Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-23 (A9B0107-09)				Matrix: Soil		Ва	tch: 9020417	
Oil	ND		50.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 66 %	Limits: 50-150 %	5 I	02/08/19	NWTPH-Dx/SG	
B-19 (A9B0107-11RE1)				Matrix: Soil		Ва	tch: 9020498	
Diesel	ND		27.8	mg/kg dry	1	02/09/19	NWTPH-Dx/SG	
Oil	ND		55.6	mg/kg dry	1	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 77 %	Limits: 50-150 %	5 1	02/09/19	NWTPH-Dx/SG	
3-16-1 (A9B0107-16RE1)				Matrix: Soil		Ва	tch: 9020498	
Diesel	27.8		26.1	mg/kg dry	1	02/09/19	NWTPH-Dx/SG	F-1 1
Oil	ND		52.2	mg/kg dry	1	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 86 %	Limits: 50-150 %	5 I	02/09/19	NWTPH-Dx/SG	
3-16-2 (A9B0107-17)				Matrix: Soil	Matrix: Soil		Batch: 9020417	
Diesel	483		26.0	mg/kg dry	1	02/07/19	NWTPH-Dx/SG	F-2
Oil	ND		52.0	mg/kg dry	1	02/07/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 70 %	Limits: 50-150 %	5 1	02/07/19	NWTPH-Dx/SG	
3-18-1 (A9B0107-18RE1)				Matrix: Soil	Matrix: Soil		Batch: 9020417	
Diesel	12800		552	mg/kg dry	25	02/09/19	NWTPH-Dx/SG	
Oil	ND		1100	mg/kg dry	25	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	overy: %	Limits: 50-150 %	5 25	02/09/19	NWTPH-Dx/SG	S-01
3-18-2 (A9B0107-19RE1)				Matrix: Soil		Ва	tch: 9020417	
Diesel	7460		251	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Oil	ND		501	mg/kg dry	10	02/09/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 72 %	Limits: 50-150 %	5 10	02/09/19	NWTPH-Dx/SG	S-05
3-15 (A9B0107-22)				Matrix: Soil		Ва	tch: 9020417	
Diesel	ND		28.2	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		56.5	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 78 %	Limits: 50-150 %	5 I	02/08/19	NWTPH-Dx/SG	
B-17-1 (A9B0107-23)				Matrix: Soil		Ва	tch: 9020417	
Diesel	ND		28.5	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		56.9	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

L	Diesel and/or Oil	nyurocarbor			i Silica G	ei cieanup		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-17-1 (A9B0107-23)		-		Matrix: Soil		Batch: 9020417		
Surrogate: o-Terphenyl (Surr)		Reco	very: 68 %	Limits: 50-150 %	5 1	02/08/19	NWTPH-Dx/SG	
 B-17-2 (A9B0107-24)				Matrix: Soil		Ba	itch: 9020417	
Diesel	323		30.6	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	F-13
Oil	ND		61.2	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	5 1	02/08/19	NWTPH-Dx/SG	
 В-21-1 (А9В0107-27)				Matrix: Soil		Ва	itch: 9020417	
Diesel	ND		27.1	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		54.3	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	1	02/08/19	NWTPH-Dx/SG	
 В-21-2 (А9В0107-28)				Matrix: Soil		Ba	itch: 9020417	
Diesel	ND		25.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		50.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	1	02/08/19	NWTPH-Dx/SG	
B-20-1 (A9B0107-31)				Matrix: Soil		Batch: 9020417		
Diesel	89.4		25.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		50.0	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 68 %	Limits: 50-150 %	1	02/08/19	NWTPH-Dx/SG	
B-20-2 (A9B0107-32)				Matrix: Soil		Ва	itch: 9020417	
Diesel	ND		27.4	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Oil	ND		54.7	mg/kg dry	1	02/08/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	5 1	02/08/19	NWTPH-Dx/SG	
DW (A9B0107-35)				Matrix: Soil		Ba	itch: 9020418	
Diesel	ND		25.0	mg/kg dry	1	02/07/19	NWTPH-Dx/SG	
Oil	ND		50.0	mg/kg dry	1	02/07/19	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SG	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

AMENDED REPORT

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	esel and/or Oil H	yurocarbons D	y NW IPH	-Dx with Silica	Gel Colu	nin Cleanu	h	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-27 Water (A9B0107-08)				Matrix: Wate	er	Ва	atch: 9020393	
Diesel	0.109		0.0800	mg/L	1	02/07/19	NWTPH-Dx/SGC	F-18
Oil	ND		0.160	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 88 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-19-15 (A9B0107-12)				Matrix: Wate	er	Ba	atch: 9020393	
Diesel	ND		0.0755	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	у: 86 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-19-30 (A9B0107-13)			Matrix: V			Ba	atch: 9020393	
Diesel	ND		0.0784	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 88 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-19-40 (A9B0107-14)			Matrix: Wate	er Batch: 9020393				
Diesel	ND		0.0769	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.154	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 84 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-19-50 (A9B0107-15)				Matrix: Wate	er	Batch: 9020393		
Diesel	ND		0.0800	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.160	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 87%	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-18-40 (A9B0107-20)				Matrix: Wate	er	Ba	atch: 9020393	
Diesel	ND		0.0792	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.158	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 84 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-18-50 (A9B0107-21)				Matrix: Wate	er	Ba	atch: 9020393	
Diesel	ND		0.0784	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recover	y: 81 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-17-40 (A9B0107-25)				Matrix: Wate	er	Ва	atch: 9020393	
Diesel	0.233		0.0769	mg/L	1	02/07/19	NWTPH-Dx/SGC	F-13

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates
5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

D	iesel and/or Oil Hy	drocarbons by	NWTPH	-Dx with Silica	Gel Colu	mn Cleanu	р	
	Sample	Detection R	eporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-17-40 (A9B0107-25)				Matrix: Wate	er	Ba	Batch: 9020393	
Oil	ND		0.154	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	84 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-17-50 (A9B0107-26)				Matrix: Wate	er	Ba	itch: 9020393	
Diesel	0.397		0.0808	mg/L	1	02/07/19	NWTPH-Dx/SGC	F-13
Oil	ND		0.162	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	84 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-21-50 (A9B0107-29)				Matrix: Wate	er	Ba	itch: 9020393	
Diesel	ND		0.0784	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	88 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-21-60 (A9B0107-30)				Matrix: Wate	er	Ва	ntch: 9020393	
Diesel	ND		0.0777	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.155	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	90 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-20-50 (A9B0107-33)				Matrix: Wate	r	Ва	ntch: 9020393	
Diesel	0.214		0.0833	mg/L	1	02/07/19	NWTPH-Dx/SGC	F-18
Oil	ND		0.167	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	86 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	
B-20-60 (A9B0107-34)				Matrix: Wate	er	Ba	itch: 9020393	
Diesel	ND		0.0800	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Oil	ND		0.160	mg/L	1	02/07/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery:	96 %	Limits: 50-150 %	1	02/07/19	NWTPH-Dx/SGC	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

AMENDED REPORT

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-26 (A9B0107-01)				Matrix: Soil		Ba	atch: 9020408	
Gasoline Range Organics	ND		8.16	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-28 (A9B0107-02)			Matrix: Soil Batch: 9020408					
Gasoline Range Organics	ND		8.95	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-24 (A9B0107-03)			Matrix: Soil Batch: 9020408					
Gasoline Range Organics	ND		7.19	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 107 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-25-1 (A9B0107-04)				Matrix: Soil		Batch: 9020408		
Gasoline Range Organics	10.8		7.28	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	F-09
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 109 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-25-2 (A9B0107-05)				Matrix: Soil		Ba	atch: 9020408	
Gasoline Range Organics	88.6		7.39	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	F-0
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 122 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-27 (A9B0107-06RE1)				Matrix: Soil		Ва	atch: 9020449	
Gasoline Range Organics	1910		36.3	mg/kg dry	250	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 123 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-27-2 (A9B0107-07)			Matrix: Soil Batch: 9020408					
Gasoline Range Organics	11500		299	mg/kg dry	2000	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-27 Water (A9B0107-08)				Matrix: Wate	r	Ba	atch: 9020404	
Gasoline Range Organics	0.161		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia</u>	Associates
5820 SW	Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-27 Water (A9B0107-08)				Matrix: Wate	er	Batch: 9020404		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 110 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-23 (A9B0107-09)				Matrix: Soil		Ba	ntch: 9020408	
Gasoline Range Organics	ND		7.26	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	106 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-19 (A9B0107-11)				Matrix: Soil		Ba	itch: 9020408	
Gasoline Range Organics	ND		7.59	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	108 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	Ι	02/06/19	NWTPH-Gx (MS)	
B-19-15 (A9B0107-12)				Matrix: Water		Batch: 9020429		
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 97 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-19-30 (A9B0107-13)				Matrix: Water		Batch: 9020429		
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 99 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-19-40 (A9B0107-14)				Matrix: Wate	er	Ba	ntch: 9020429	
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 97 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-19-50 (A9B0107-15)		Ma		Matrix: Wate	er	Ba	ntch: 9020429	
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 98 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-16-1 (A9B0107-16)				Matrix: Soil		Ba	ntch: 9020408	
Gasoline Range Organics	ND		7.80	mg/kg dry	50	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	106 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-16-1 (A9B0107-16)				Matrix: Soil		Ba	atch: 9020408	
Surrogate: 1,4-Difluorobenzene (Sur)		Recovery	v: 93 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-16-2 (A9B0107-17)				Matrix: Soil		Batch: 9020449		
Gasoline Range Organics	1900		34.2	mg/kg dry	200	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	107 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			114 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-18-1 (A9B0107-18)				Matrix: Soil		Ва	atch: 9020449	
Gasoline Range Organics	5100		77.7	mg/kg dry	500	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 98 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-18-2 (A9B0107-19)			Matrix: Soil			Batch: 9020449		
Gasoline Range Organics	10800		307	mg/kg dry	2000	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	101 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-18-40 (A9B0107-20)				Matrix: Water		Batch: 9020429		
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	100 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-18-50 (A9B0107-21)				Matrix: Wate	r	Ва	atch: 9020429	
Gasoline Range Organics	0.154		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	102 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-15 (A9B0107-22)				Matrix: Soil		Ba	atch: 9020449	
Gasoline Range Organics	ND		7.94	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	107 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-17-1 (A9B0107-23)			Matrix: Soil		Ва	atch: 9020449		
Gasoline Range Organics	ND		9.32	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	109 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates
5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-17-2 (A9B0107-24)				Matrix: Soil		Ва	atch: 9020449	
Gasoline Range Organics	38.7		8.72	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	112 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-17-40 (A9B0107-25)				Matrix: Wate	er	Ва	atch: 9020429	
Gasoline Range Organics	0.187		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	100 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-17-50 (A9B0107-26)				Matrix: Wate	er	Ba	atch: 9020429	
Gasoline Range Organics	0.741		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	Q-42
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	102 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-21-1 (A9B0107-27)		Matrix: Soil Batch: 9020449						
Gasoline Range Organics	ND		8.11	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 90 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			90 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-21-2 (A9B0107-28)				Matrix: Soil		Ва	atch: 9020449	
Gasoline Range Organics	10.5		6.56	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 111 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-21-50 (A9B0107-29)				Matrix: Wate	ər	Ba	atch: 9020429	
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 98 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	1	02/06/19	NWTPH-Gx (MS)	
B-21-60 (A9B0107-30)			Matrix: Water Batch: 9020429					
Gasoline Range Organics	ND		0.100	mg/L	1	02/06/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 96 %	Limits: 50-150 %	1	02/06/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	Ι	02/06/19	NWTPH-Gx (MS)	
				Matrix: Soil		R	atch: 9020449	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (B	enzene tl	nrough Naphtha	alene) by	NWTPH-G	x	
n	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-20-1 (A9B0107-31)				Matrix: Soil		Ва	atch: 9020449	
Gasoline Range Organics	302		6.96	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	140 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-20-2 (A9B0107-32RE1)				Matrix: Soil		Ва	atch: 9020511	
Gasoline Range Organics	35.1		7.84	mg/kg dry	50	02/09/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	111 %	Limits: 50-150 %	1	02/09/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %	50-150 %	1	02/09/19	NWTPH-Gx (MS)	
B-20-50 (A9B0107-33)				Matrix: Water Batch: 9020429		atch: 9020429		
Gasoline Range Organics	2.47		0.100	mg/L	1	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	104 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			132 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
B-20-60 (A9B0107-34)				Matrix: Wate	ər	Ва	atch: 9020429	
Gasoline Range Organics	ND		0.100	mg/L	1	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	<i>: 98 %</i>	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	
IDW (A9B0107-35)				Matrix: Soil		Batch: 9020449		V-15
Gasoline Range Organics	ND		8.36	mg/kg dry	50	02/07/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	107 %	Limits: 50-150 %	1	02/07/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	1	02/07/19	NWTPH-Gx (MS)	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

		BTEX Con	npounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
rip Blank (A9B0107-36)				Matrix: Wate	er	Ba	tch: 9020404	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 101 %	Limits: 80-120 %	5 1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	02/06/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Select	ed Volatile O	rganic Com	pounds by EPA	8260C				
	Sample	Detection	Reporting	* * •	D 1 ·	Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
B-27 Water (A9B0107-08)				Matrix: Wate	r	Batch: 9020404			
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C		
Ethylbenzene	1.19		0.500	ug/L	1	02/06/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C		
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Xylenes, total	8.58		1.50	ug/L	1	02/06/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	1	02/06/19	EPA 8260C		
Toluene-d8 (Surr)			98 %	80-120 %	1	02/06/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	02/06/19	EPA 8260C		
			Matrix: Wate	r	Batch: 9020429				
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C		
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	1	02/06/19	EPA 8260C		
Toluene-d8 (Surr)			104 %	80-120 %	1	02/06/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	02/06/19	EPA 8260C		
 3-19-30 (A9B0107-13)				Matrix: Wate	r	Ва	tch: 9020429		
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C		
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	02/06/19	EPA 8260C		
Toluene-d8 (Surr)			104 %	80-120 %	1	02/06/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/06/19	EPA 8260C		
B-19-40 (A9B0107-14)		Matrix: Water		r	Batch: 9020429				
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C		
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C		

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Selec		riganic Con	pounds by EPA	4 02000			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-19-40 (A9B0107-14)				Matrix: Wate	Matrix: Water		ch: 9020429	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/06/19	EPA 8260C	
B-19-50 (A9B0107-15)				Matrix: Wate	er	Bat	ch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/06/19	EPA 8260C	
B-18-40 (A9B0107-20)				Matrix: Water		Bat	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	0.981		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	4.58		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	02/06/19	EPA 8260C	
B-18-50 (A9B0107-21)		-		Matrix: Wate	er	Bat	ch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	1.94		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	2.30		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	1.48		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	9.72		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %		02/06/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates

5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-18-50 (A9B0107-21)				Matrix: Wate	r	Bat	tch: 9020429	
Surrogate: 4-Bromofluorobenzene (Surr)		Recover	ry: 98%	Limits: 80-120 %	1	02/06/19	EPA 8260C	
				Matrix: Wate	r	Batch: 9020429		
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	0.816		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	2.61		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 102 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/06/19	EPA 8260C	
3-17-50 (A9B0107-26)				Matrix: Wate	r	Bat	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	5.08		0.500	ug/L	1	02/06/19	EPA 8260C	Q-4
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	11.0		2.00	ug/L	1	02/06/19	EPA 8260C	Q-4
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	5.74		1.50	ug/L	1	02/06/19	EPA 8260C	Q-4
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 101 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	02/06/19	EPA 8260C	
3-21-50 (A9B0107-29)				Matrix: Wate	r	Bat	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 102 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/06/19	EPA 8260C	
3-21-60 (A9B0107-30)				Matrix: Wate	r	Bat	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/06/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates

5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Select	ted Volatile Org	anic Con	pounds by EPA	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
3-21-60 (A9B0107-30)				Matrix: Wate	r	Ва	tch: 9020429	
Ethylbenzene	ND		0.500	ug/L	1	02/06/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/06/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/06/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/06/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	102 %	Limits: 80-120 %	1	02/06/19	EPA 8260C	
Toluene-d8 (Surr)			102 %	80-120 %	1	02/06/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/06/19	EPA 8260C	
				Matrix: Wate	r	Ва	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/07/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/07/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/07/19	EPA 8260C	
Naphthalene	ND		3.00	ug/L	1	02/07/19	EPA 8260C	R-0
Toluene	ND		1.00	ug/L	1	02/07/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/07/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits: 80-120 %	1	02/07/19	EPA 8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	02/07/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/07/19	EPA 8260C	
3-20-60 (A9B0107-34)				Matrix: Wate	r	Ва	tch: 9020429	
Benzene	ND		0.200	ug/L	1	02/07/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/07/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/07/19	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	02/07/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/07/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/07/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits: 80-120 %	1	02/07/19	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	02/07/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	02/07/19	EPA 8260C	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Q. 1	Deteri	Dama (Def		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-26 (A9B0107-01)				Matrix: Soil		Ba	tch: 9020408	
Benzene	ND		16.3	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		40.8	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		81.6	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		163	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		81.6	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		122	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/06/19	5035A/8260C	
B-28 (A9B0107-02)				Matrix: Soil		Ba	tch: 9020408	
Benzene	ND		17.9	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		44.7	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		89.5	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		179	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		89.5	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		134	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/06/19	5035A/8260C	
 B-24 (A9B0107-03)				Matrix: Soil		Bat	tch: 9020408	
Benzene	ND		14.4	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		35.9	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		71.9	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		144	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		71.9	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		108	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/06/19	5035A/8260C	
 B-25-1 (A9B0107-04)				Matrix: Soil		Ba	Batch: 9020408	
Benzene	ND		14.6	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		36.4	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		72.8	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		146	ug/kg dry	50	02/06/19	5035A/8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia	Associate	S
5820 SW	Kelly Ave	Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Selected Volatile Organic Compounds by EPA 5035A/8260C								
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
3-25-1 (A9B0107-04)				Matrix: Soil		Ba	tch: 9020408		
Toluene	ND		72.8	ug/kg dry	50	02/06/19	5035A/8260C		
Xylenes, total	ND		109	ug/kg dry	50	02/06/19	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	02/06/19	5035A/8260C		
Toluene-d8 (Surr)			98 %	80-120 %	1	02/06/19	5035A/8260C		
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	02/06/19	5035A/8260C		
3-25-2 (A9B0107-05)				Matrix: Soil		Ba	tch: 9020408		
Benzene	ND		14.8	ug/kg dry	50	02/06/19	5035A/8260C		
Ethylbenzene	ND		36.9	ug/kg dry	50	02/06/19	5035A/8260C		
Methyl tert-butyl ether (MTBE)	ND		73.9	ug/kg dry	50	02/06/19	5035A/8260C		
Naphthalene	394		148	ug/kg dry	50	02/06/19	5035A/8260C		
Toluene	ND		73.9	ug/kg dry	50	02/06/19	5035A/8260C		
Xylenes, total	ND		111	ug/kg dry	50	02/06/19	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	02/06/19	5035A/8260C		
Toluene-d8 (Surr)			96 %	80-120 %	1	02/06/19	5035A/8260C		
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/06/19	5035A/8260C		
B-27 (A9B0107-06RE1)				Matrix: Soil		Ba	tch: 9020449		
Benzene	ND		72.5	ug/kg dry	250	02/07/19	5035A/8260C		
Ethylbenzene	1890		181	ug/kg dry	250	02/07/19	5035A/8260C		
Methyl tert-butyl ether (MTBE)	ND		363	ug/kg dry	250	02/07/19	5035A/8260C		
Naphthalene	11200		725	ug/kg dry	250	02/07/19	5035A/8260C		
Toluene	ND		363	ug/kg dry	250	02/07/19	5035A/8260C		
Xylenes, total	11100		544	ug/kg dry	250	02/07/19	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	02/07/19	5035A/8260C		
Toluene-d8 (Surr)			96 %	80-120 %	1	02/07/19	5035A/8260C		
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/07/19	5035A/8260C		
- 3-27-2 (А9В0107-07)				Matrix: Soil		Ba	tch: 9020408		
Benzene	ND		597	ug/kg dry	2000	02/06/19	5035A/8260C		
Ethylbenzene	71200		1490	ug/kg dry	2000	02/06/19	5035A/8260C		
Methyl tert-butyl ether (MTBE)	ND		2990	ug/kg dry	2000	02/06/19	5035A/8260C		
Naphthalene	168000		5970	ug/kg dry	2000	02/06/19	5035A/8260C		
Toluene	ND		2990	ug/kg dry	2000	02/06/19	5035A/8260C		
Xylenes, total	573000		4480	ug/kg dry	2000	02/06/19	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	02/06/19	5035A/8260C		
Toluene-d8 (Surr)			102 %	80-120 %	1	02/06/19	5035A/8260C		

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia	Associates	<u>.</u>
5820 SW	Kelly Ave	Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
3-27-2 (A9B0107-07)				Matrix: Soil		Bat	tch: 9020408	
Surrogate: 4-Bromofluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
B-23 (A9B0107-09)				Matrix: Soil		Bat	tch: 9020408	
Benzene	ND		14.5	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		36.3	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		72.6	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		145	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		72.6	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		109	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/06/19	5035A/8260C	
3-19 (A9B0107-11)	9 (A9B0107-11)			Matrix: Soil		Bat	tch: 9020408	
Benzene	ND		15.2	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		38.0	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		75.9	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		152	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		75.9	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		114	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	02/06/19	5035A/8260C	
3-16-1 (A9B0107-16)				Matrix: Soil	Batch: 9020408			
Benzene	ND		15.6	ug/kg dry	50	02/06/19	5035A/8260C	
Ethylbenzene	ND		39.0	ug/kg dry	50	02/06/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		78.0	ug/kg dry	50	02/06/19	5035A/8260C	
Naphthalene	ND		156	ug/kg dry	50	02/06/19	5035A/8260C	
Toluene	ND		78.0	ug/kg dry	50	02/06/19	5035A/8260C	
Xylenes, total	ND		117	ug/kg dry	50	02/06/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recon	very: 98 %	Limits: 80-120 %	1	02/06/19	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/06/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/06/19	5035A/8260C	
3-16-2 (A9B0107-17)				Matrix: Soil		Bat	tch: 9020449	
Benzene	ND		68.3	ug/kg dry	200	02/07/19	5035A/8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia</u>	<u>Associates</u>
5820 SW	Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

	Selected	volatile Organi	c Compo	unds by EPA 50	35A/826	00		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-16-2 (A9B0107-17)				Matrix: Soil		Batch: 9020449		
Ethylbenzene	ND		171	ug/kg dry	200	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		342	ug/kg dry	200	02/07/19	5035A/8260C	
Naphthalene	1530		683	ug/kg dry	200	02/07/19	5035A/8260C	
Toluene	ND		342	ug/kg dry	200	02/07/19	5035A/8260C	
Xylenes, total	ND		513	ug/kg dry	200	02/07/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	1	02/07/19	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	02/07/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	02/07/19	5035A/8260C	
B-18-1 (A9B0107-18)				Matrix: Soil		Ba	tch: 9020449	
Benzene	295		155	ug/kg dry	500	02/07/19	5035A/8260C	
Ethylbenzene	24500		388	ug/kg dry	500	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		777	ug/kg dry	500	02/07/19	5035A/8260C	
Naphthalene	60700		1550	ug/kg dry	500	02/07/19	5035A/8260C	
Toluene	ND		777	ug/kg dry	500	02/07/19	5035A/8260C	
Xylenes, total	88700		1170	ug/kg dry	500	02/07/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 99%	Limits: 80-120 %	1	02/07/19	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/07/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			111 %	80-120 %	1	02/07/19	5035A/8260C	
B-18-2 (A9B0107-19)				Matrix: Soil		Ba	tch: 9020449	
Benzene	4050		615	ug/kg dry	2000	02/07/19	5035A/8260C	
Ethylbenzene	98000		1540	ug/kg dry	2000	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		3070	ug/kg dry	2000	02/07/19	5035A/8260C	
Naphthalene	111000		6150	ug/kg dry	2000	02/07/19	5035A/8260C	
Toluene	67600		3070	ug/kg dry	2000	02/07/19	5035A/8260C	
Xylenes, total	524000		4610	ug/kg dry	2000	02/07/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 97 %	Limits: 80-120 %	1	02/07/19	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/07/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	02/07/19	5035A/8260C	
 B-15 (A9B0107-22)				Matrix: Soil		Ba	tch: 9020449	
Benzene	ND		15.9	ug/kg dry	50	02/07/19	5035A/8260C	
Ethylbenzene	ND		39.7	ug/kg dry	50	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		79.4	ug/kg dry	50	02/07/19	5035A/8260C	
Naphthalene	ND		159	ug/kg dry	50	02/07/19	5035A/8260C	
Toluene	ND		79.4	ug/kg dry	50	02/07/19	5035A/8260C	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia	Associate	S
5820 SW	Kelly Ave	Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 5035A/8260C										
A 1.	Sample	Detection	Reporting	TT .	D'1 -	Date	Maine			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
B-15 (A9B0107-22)				Matrix: Soil		Bat	tch: 9020449			
Xylenes, total	ND		119	ug/kg dry	50	02/07/19	5035A/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	02/07/19	5035A/8260C			
Toluene-d8 (Surr)			96 %	80-120 %	1	02/07/19	5035A/8260C			
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/07/19	5035A/8260C			
3-17-1 (A9B0107-23)				Matrix: Soil		Bat	tch: 9020449			
Benzene	ND		18.6	ug/kg dry	50	02/07/19	5035A/8260C			
Ethylbenzene	ND		46.6	ug/kg dry	50	02/07/19	5035A/8260C			
Methyl tert-butyl ether (MTBE)	ND		93.2	ug/kg dry	50	02/07/19	5035A/8260C			
Naphthalene	ND		186	ug/kg dry	50	02/07/19	5035A/8260C			
Toluene	ND		93.2	ug/kg dry	50	02/07/19	5035A/8260C			
Xylenes, total	ND		140	ug/kg dry	50	02/07/19	5035A/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99%	Limits: 80-120 %	1	02/07/19	5035A/8260C			
Toluene-d8 (Surr)			96 %	80-120 %	1	02/07/19	5035A/8260C			
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	02/07/19	5035A/8260C			
B-17-2 (A9B0107-24)				Matrix: Soil		Bat	tch: 9020449			
Benzene	ND		17.4	ug/kg dry	50	02/07/19	5035A/8260C			
Ethylbenzene	ND		43.6	ug/kg dry	50	02/07/19	5035A/8260C			
Methyl tert-butyl ether (MTBE)	ND		87.2	ug/kg dry	50	02/07/19	5035A/8260C			
Naphthalene	ND		174	ug/kg dry	50	02/07/19	5035A/8260C			
Toluene	ND		87.2	ug/kg dry	50	02/07/19	5035A/8260C			
Xylenes, total	ND		131	ug/kg dry	50	02/07/19	5035A/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	02/07/19	5035A/8260C			
Toluene-d8 (Surr)			96 %	80-120 %	1	02/07/19	5035A/8260C			
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	02/07/19	5035A/8260C			
3-21-1 (A9B0107-27)				Matrix: Soil		Bat	tch: 9020449			
Benzene	ND		16.2	ug/kg dry	50	02/07/19	5035A/8260C			
Ethylbenzene	ND		40.5	ug/kg dry	50	02/07/19	5035A/8260C			
Methyl tert-butyl ether (MTBE)	ND		81.1	ug/kg dry	50	02/07/19	5035A/8260C			
Naphthalene	ND		162	ug/kg dry	50	02/07/19	5035A/8260C			
Toluene	ND		81.1	ug/kg dry	50	02/07/19	5035A/8260C			
Xylenes, total	ND		122	ug/kg dry	50	02/07/19	5035A/8260C			
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	02/07/19	5035A/8260C			
Toluene-d8 (Surr)			104 %	80-120 %	1	02/07/19	5035A/8260C			
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	02/07/19	5035A/8260C			

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

	ANALYTICAL SAMPLE RESULTS	
Portland, OR 97239	Project Manager: Stephanie Salisbury	A9B0107 - 04 05 19 0831
5820 SW Kelly Ave Unit B	Project Number: 0060-001-005	<u>Report ID:</u>
Cascadia Associates	Project: <u>Nustar Vannex</u>	

	Selected	Volatile Orga	nic Compo	unds by EPA 50	35A/826	0C		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-21-2 (A9B0107-28)				Matrix: Soil		Ba	tch: 9020449	
Benzene	ND		13.1	ug/kg dry	50	02/07/19	5035A/8260C	
Ethylbenzene	ND		32.8	ug/kg dry	50	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		65.6	ug/kg dry	50	02/07/19	5035A/8260C	
Naphthalene	ND		131	ug/kg dry	50	02/07/19	5035A/8260C	
Toluene	ND		65.6	ug/kg dry	50	02/07/19	5035A/8260C	
Xylenes, total	ND		98.3	ug/kg dry	50	02/07/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	02/07/19	5035A/8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	02/07/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/07/19	5035A/8260C	
B-20-1 (A9B0107-31)				Matrix: Soil		Batch: 9020449		
Benzene	ND		13.9	ug/kg dry	50	02/07/19	5035A/8260C	
Ethylbenzene	ND		34.8	ug/kg dry	50	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		69.6	ug/kg dry	50	02/07/19	5035A/8260C	
Naphthalene	ND		348	ug/kg dry	50	02/07/19	5035A/8260C	R-02
Toluene	ND		69.6	ug/kg dry	50	02/07/19	5035A/8260C	
Xylenes, total	ND		104	ug/kg dry	50	02/07/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	wery: 99%	Limits: 80-120 %	1	02/07/19	5035A/8260C	
Toluene-d8 (Surr)			92 %	80-120 %	1	02/07/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	02/07/19	5035A/8260C	
B-20-2 (A9B0107-32RE1)				Matrix: Soil		Ва	tch: 9020511	
Benzene	ND		15.7	ug/kg dry	50	02/09/19	5035A/8260C	
Ethylbenzene	ND		39.2	ug/kg dry	50	02/09/19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		78.4	ug/kg dry	50	02/09/19	5035A/8260C	
Naphthalene	ND		157	ug/kg dry	50	02/09/19	5035A/8260C	
Toluene	ND		78.4	ug/kg dry	50	02/09/19	5035A/8260C	
Xylenes, total	ND		118	ug/kg dry	50	02/09/19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-120 %	1	02/09/19	5035A/8260C	
Toluene-d8 (Surr)			96 %	80-120 %	1	02/09/19	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	02/09/19	5035A/8260C	
IDW (A9B0107-35)				Matrix: Soil		Ba	tch: 9020449	V-15
Benzene	ND		16.7	ug/kg dry	50	02/07/19	5035A/8260C	
Ethylbenzene	ND		41.8	ug/kg dry	50	02/07/19	5035A/8260C	
Methyl tert-butyl ether (MTRE)	ND		83.6	ug/kg dry	50	02/07/19	5035A/8260C	

Apex Laboratories

Naphthalene

Methyl tert-butyl ether (MTBE)

Assa A Zomenighini

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

02/07/19

02/07/19

5035A/8260C

5035A/8260C

50

50

ug/kg dry

ug/kg dry

83.6

167

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 5035A/8260C									
	Sample Detection		ection Reporting	Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
IDW (A9B0107-35)				Matrix: Soil		Batch: 9020449		V-15	
Toluene	ND		83.6	ug/kg dry	50	02/07/19	5035A/8260C		
Xylenes, total	ND		125	ug/kg dry	50	02/07/19	5035A/8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	5 1	02/07/19	5035A/8260C		
Toluene-d8 (Surr)			97 %	80-120 %	5 I	02/07/19	5035A/8260C		
4-Bromofluorobenzene (Surr)			106 %	80-120 %	5 I	02/07/19	5035A/8260C		

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

TCLP Volatile Organic Compounds by EPA 1311/8260C								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
IDW (A9B0107-35)				Matrix: Soil		Ba	tch: 9020529	
Benzene	ND		0.0125	mg/L	50	02/11/19	1311/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 98 %	Limits: 80-120 %	6 1	02/11/19	1311/8260C	
Toluene-d8 (Surr)			115 %	80-120 %	6 I	02/11/19	1311/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 I	02/11/19	1311/8260C	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

Diethylene glycol monomethyl ether (DGME) Screen by 8270M								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-27 (A9B0107-06)				Matrix: Soil		Bat	tch: 9030808	х
Diethylene glycol monomethyl ether (DGME)	ND		10500	ug/kg dry	40	03/19/19	EPA 8270Dm	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	v: 252 %	Limits: 37-122 %	40	03/19/19	EPA 8270Dm	S-05
2-Fluorobiphenyl (Surr)			93 %	44-115 %	40	03/19/19	EPA 8270Dm	S-05
Phenol-d6 (Surr)			70 %	33-122 %	40	03/19/19	EPA 8270Dm	S-05
2-Fluorophenol (Surr)			62 %	35-115 %	40	03/19/19	EPA 8270Dm	S-05
2,4,6-Tribromophenol (Surr)			55 %	39-132 %	40	03/19/19	EPA 8270Dm	S-05
B-27 Water (A9B0107-08RE1)				Matrix: Wate	er	Bat	ch: 9030798	R-04, X
Diethylene glycol monomethyl ether (DGME)	ND		18.7	ug/L	4	03/19/19	EPA 8270Dm	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ry: 88 %	Limits: 44-120 %	4	03/19/19	EPA 8270Dm	
2-Fluorobiphenyl (Surr)			74 %	44-120 %	4	03/19/19	EPA 8270Dm	
Phenol-d6 (Surr)			50 %	10-120 %	4	03/19/19	EPA 8270Dm	
2-Fluorophenol (Surr)			65 %	19-120 %	4	03/19/19	EPA 8270Dm	
2,4,6-Tribromophenol (Surr)			102 %	43-140 %	4	03/19/19	EPA 8270Dm	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

Г

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

٦

AMENDED REPORT

<u>Cascadia Associates</u>		Proj	ect: <u>Nustar Vanne</u>	<u>ex</u>					
5820 SW Kelly Ave Unit B		;	Report ID:						
Portland, OR 97239	lisbury	A9B0107 - 04 05 19 0831							
		ANALYTI	CAL SAMPLE RES	SULTS					
TCLP Extraction by EPA 1311 (ZHE)									
	Sample	Detection	Reporting	Date					

Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
IDW (A9B0107-35)				Matrix: So	il	Bat	tch: 9020523	
TCLP ZHE Extraction	PREP			N/A	1	02/10/19	EPA 1311 ZHE	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

F

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-26 (A9B0107-01)				Matrix: Soil		Ba	tch: 9020395	
% Solids	71.7		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-28 (A9B0107-02)				Matrix: Soil		Ba	tch: 9020395	
% Solids	65.1		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-24 (A9B0107-03)				Matrix: Soil		Ba	tch: 9020395	
% Solids	71.4		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-25-1 (A9B0107-04)				Matrix: Soil		Ba	tch: 9020395	
% Solids	72.9		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-25-2 (A9B0107-05)				Matrix: Soil		Ba	tch: 9020395	
% Solids	76.0		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-27 (A9B0107-06)				Matrix: Soil		Ba	tch: 9020395	
% Solids	71.4		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-27-2 (A9B0107-07)				Matrix: Soil		Ba	tch: 9020395	
% Solids	74.1		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-23 (A9B0107-09)				Matrix: Soil		Ba	tch: 9020395	
% Solids	71.9		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-19 (A9B0107-11)				Matrix: Soil		Ba	tch: 9020395	
% Solids	70.5		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-16-1 (A9B0107-16)				Matrix: Soil		Bat	tch: 9020395	
% Solids	71.2		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-16-2 (A9B0107-17)				Matrix: Soil		Bat	tch: 9020395	
% Solids	66.5		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-18-1 (A9B0107-18)				Matrix: Soil Batch: 9		tch: 9020395		
% Solids	76.5		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-18-2 (A9B0107-19)				Matrix: Soil		Ba	tch: 9020395	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-18-2 (A9B0107-19)				Matrix: Soil		Ba	tch: 9020395	
% Solids	70.8		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-15 (A9B0107-22)				Matrix: Soil		Ba	tch: 9020395	
% Solids	70.0		1.00	% by Weight	1	02/07/19		
B-17-1 (A9B0107-23)				Matrix: Soil		Ba	tch: 9020395	
% Solids	68.3		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-17-2 (A9B0107-24)				Matrix: Soil		Ba	tch: 9020395	
% Solids	65.1		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-21-1 (A9B0107-27)				Matrix: Soil		Ba	tch: 9020395	
% Solids	69.3		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-21-2 (A9B0107-28)				Matrix: Soil		Ba	tch: 9020395	
% Solids	72.7		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-20-1 (A9B0107-31)				Matrix: Soil		Ba	tch: 9020395	
% Solids	76.4		1.00	% by Weight	1	02/07/19	EPA 8000C	
B-20-2 (A9B0107-32)				Matrix: Soil Batch: 9020395				
% Solids	72.5		1.00	% by Weight	1	02/07/19	EPA 8000C	
IDW (A9B0107-35)				Matrix: Soil		Ba	tch: 9020395	
% Solids	74.8		1.00	% by Weight	1	02/07/19	EPA 8000C	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: <u>Nustar Vannex</u> Project Number: **0060-001-005** Project Manager: **Stephanie Salisbury**

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diese	l and/or Oi	l Hydrocar	bons by N	WTPH-C	Dx with A	cid/Silica	Gel Clea	nup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020417 - EPA 3546 w	/SG+Acid (I	NWTPH)					Soil					
Blank (9020417-BLK1)		Prepared:	02/06/19 13:	15 Analyze	d: 02/07/1	9 23:24						
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg we	t 1							
Oil	ND		50.0	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Recov	very: 100 %	Limits: 50-	150 %	Di	lution: 1x					
LCS (9020417-BS1)		Prepared:	02/06/19 13:	:15 Analyze	d: 02/07/1	9 23:44						
NWTPH-Dx/SG												
Diesel	112		25.0	mg/kg we	t 1	125		89	76-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 98 %	Limits: 50-	150 %	Di	lution: 1x					
Duplicate (9020417-DUP1)		Prepared:	02/06/19 13:	:15 Analyze	d: 02/08/1	9 00:24						
QC Source Sample: B-26 (A9B)	<u>)107-01)</u>											
<u>NWTPH-Dx/SG</u> Diesel	ND		27.4	ma/ka dm	. 1		ND				30%	
Oil	ND ND		27.4 54.7	mg/kg dry			ND ND				30%	
Surr: o-Terphenyl (Surr)	ND	Reco	54.7 wery: 93 %	mg/kg dry Limits: 50-		Di	lution: 1x				50%	
Duplicate (9020417-DUP2)		Dranaradi	02/06/10 12	15 Analyza	4. 02/08/1	0.02.04						
		Plepaleu.	02/06/19 13:	.15 Analyze	u. 02/08/1	9 03.04						
<u>QC Source Sample: B-20-2 (A9)</u> <u>NWTPH-Dx/SG</u>	<u>B0107-32)</u>											
Diesel	ND		27.3	mg/kg dry	/ 1		21.1			***	30%	
Oil	ND		54.6	mg/kg dry			ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 66 %	Limits: 50-		Di	lution: 1x					
Batch 9020418 - EPA 3546 w	/SG+Acid (I	NWTPH)					Soil					
Blank (9020418-BLK1)		Prepared:	02/06/19 13:	18 Analvze	d: 02/06/1	9 23:23						
NWTPH-Dx/SG		· r ··· · ·										
Diesel	ND		25.0	mg/kg we	t 1							
Oil	ND		50.0	mg/kg we								
Surr: o-Terphenyl (Surr)		Reco	wery: 87 %	Limits: 50-		Di	lution: 1x					
LCS (9020418-BS1)		Prenared	02/06/19 13:	18 Analuze	d· 02/06/1	9 23-45						

Apex Laboratories

Ausa A Zomenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diese	l and/or Oi	l Hydrocar	bons by	NWTPH-C)x with Ac	id/Silica	Gel Clea	nup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020418 - EPA 3546 w/	SG+Acid (I	NWTPH)					Soil					
LCS (9020418-BS1)		Prepared	: 02/06/19 13:	18 Analyz	ed: 02/06/1	9 23:45						
NWTPH-Dx/SG												
Diesel	108		25.0	mg/kg w	et 1	125		87	76-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 87 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (9020418-DUP1)		Prepared	: 02/06/19 13:	18 Analyz	ed: 02/07/1	9 00:30						
QC Source Sample: IDW (A9B0	107-35)											
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg d	ry 1		14.0			***	30%	
Oil	ND		50.0	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 69 %	Limits: 50	-150 %	Dilı	ution: 1x					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diese	l and/or Oi	l Hydrocar	bons by l	WTPH-	Dx with Ac	cid/Silica	Gel Clea	nup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020498 - EPA 3546 w/	/SG+Acid (I	NWTPH)					Soil					
Blank (9020498-BLK1)		Prepared	: 02/08/19 12	:09 Analyz	ed: 02/08/1	19 23:36						
NWTPH-Dx/SG		-										
Diesel	ND		25.0	mg/kg w	et 1							
Oil	ND		50.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 92 %	Limits: 50	150 %	Dili	ution: 1x					
LCS (9020498-BS1)		Prepared	: 02/08/19 12	:09 Analyz	ed: 02/08/1	19 23:57						
NWTPH-Dx/SG		-										
Diesel	103		25.0	mg/kg w	et 1	125		82	76-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50	150 %	Dili	ution: 1x					
Duplicate (9020498-DUP1)		Prepared	: 02/08/19 12	:09 Analyz	ed: 02/09/1	19 00:41						
QC Source Sample: B-19 (A9B0	107-11RE1)											
NWTPH-Dx/SG	<u>.</u>											
Diesel	ND		27.6	mg/kg dr	y 1		ND				30%	
Oil	ND		55.1	mg/kg dr			ND				30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 75 %	Limits: 50	150 %	Dilt	ution: 1x					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil	Hydrocarbo	ons by N	NTPH-Dx	with Silic	ca Gel Co	lumn Cle	anup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020393 - EPA 3510C	(Fuels/Acid	Ext.) w/Silio	a Gel				Wat	er				
Blank (9020393-BLK1)		Prepared	: 02/06/19 07:	20 Analyz	ed: 02/07/1	9 11:04						
NWTPH-Dx/SGC		-		-								
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 86 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (9020393-BS1)		Prepared	: 02/06/19 07:	20 Analyz	ed: 02/07/1	9 11:27						
NWTPH-Dx/SGC												
Diesel	0.359		0.0800	mg/L	1	0.500		72	58-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS Dup (9020393-BSD1)		Prepared	: 02/06/19 07:	20 Analyz	ed: 02/07/1	9 11:50						Q-1
NWTPH-Dx/SGC		-										
Diesel	0.364		0.0800	mg/L	1	0.500		73	58-115%	1	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 85 %	Limits: 50	-150 %	Dili	ution: 1x					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene) I	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020404 - EPA 5030B							Wat	er				
Blank (9020404-BLK1)		Prepared	: 02/06/19 11:	26 Analyz	zed: 02/06/1	9 13:15						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 107 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
LCS (9020404-BS3)		Prepared	: 02/06/19 11:	26 Analyz	zed: 02/06/1	9 12:48						
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	0.438		0.100	mg/L	1	0.500		88	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 105 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					
Duplicate (9020404-DUP1)		Prepared	: 02/06/19 13:	06 Analyz	zed: 02/06/1	9 17:21						
QC Source Sample: B-27 Water (A9B0107-08)										
NWTPH-Gx (MS)												
Gasoline Range Organics	0.162		0.100	mg/L	1		0.161			0.9	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 109 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ons (Benz	zene thro	ugh Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020408 - EPA 5035A							Soil					
Blank (9020408-BLK1)		Prepared	: 02/06/19 10	:00 Analyz	zed: 02/06/1	9 13:22						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	0-150 %		"					
LCS (9020408-BS2)		Prepared	: 02/06/19 10	:00 Analyz	zed: 02/06/1	9 12:55						
NWTPH-Gx (MS)												
Gasoline Range Organics	23.1		5.00	mg/kg w	vet 50	25.0		92	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
Duplicate (9020408-DUP1)		Prepared	: 01/28/19 10	:00 Analyz	zed: 02/06/1	9 19:49						
QC Source Sample: B-26 (A9B01	<u>07-01)</u>											
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	ND		7.99	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 106 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					
Duplicate (9020408-DUP2)		Prepared	: 01/30/19 13	:35 Analyz	zed: 02/07/1	9 00:17						T-0
QC Source Sample: B-16-1 (A9B)	<u>)107-16)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		7.67	mg/kg d			ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 106 %	Limits: 5		Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			95 %	50	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note		
Batch 9020429 - EPA 5030B							Wat	er						
Blank (9020429-BLK1)		Prepared	: 02/06/19 16:	45 Analyz	ed: 02/06/1	9 18:11								
NWTPH-Gx (MS)														
Gasoline Range Organics	ND		0.100	mg/L	1									
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 97 %	Limits: 50)-150 %	Dilı	ution: 1x							
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"							
LCS (9020429-BS2)		Prepared	: 02/06/19 16:	45 Analyz	ed: 02/06/1	9 17:42								
NWTPH-Gx (MS)														
Gasoline Range Organics	0.489		0.100	mg/L	1	0.500		98	80-120%					
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 97 %	Limits: 50)-150 %	Dilı	ution: 1x							
1,4-Difluorobenzene (Sur)			91 %	50	-150 %		"							
Duplicate (9020429-DUP1)		Prepared	: 02/06/19 18:	03 Analyz	ed: 02/06/1	9 19:07								
QC Source Sample: B-19-15 (A9B	0107-12)													
NWTPH-Gx (MS)														
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 99 %	Limits: 50	-150 %	Dilt	ution: 1x							
1,4-Difluorobenzene (Sur)			100 %	50	-150 %		"							
Duplicate (9020429-DUP2)		Prepared	: 02/06/19 18:	03 Analyz	ed: 02/06/1	9 22:55								
<u>QC Source Sample: B-17-50 (A9B</u> <u>NWTPH-Gx (MS)</u>	0107-26)													
Gasoline Range Organics	1.23		0.100	mg/L	1		0.741			49	30%	Q-17		
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 98 %	Limits: 50	-150 %	Dilt	ution: 1x							
1,4-Difluorobenzene (Sur)			90 %	50	-150 %		"							

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	Hydrocarbo	ons (Benz	ene throu	ugh Naph	thalene)	by NWTF	'H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020449 - EPA 5035A							Soil					
Blank (9020449-BLK1)		Prepared	: 02/07/19 10	:00 Analyz	ed: 02/07/1	9 12:46						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 104 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			95 %	50)-150 %		"					
LCS (9020449-BS2)		Prepared	: 02/07/19 10	:00 Analyz	ed: 02/07/1	9 12:19						
NWTPH-Gx (MS)												
Gasoline Range Organics	23.3		5.00	mg/kg w	vet 50	25.0		93	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
Duplicate (9020449-DUP1)		Prepared	: 01/30/19 13	:50 Analyz	ed: 02/07/1	9 13:40						
QC Source Sample: B-16-2 (A9B))107-17)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1680		35.9	mg/kg d	ry 200		1900			12	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 102 %	Limits: 50)-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			109 %	50)-150 %		"					
Duplicate (9020449-DUP2)		Prepared	: 02/05/19 19	:00 Analyz	ed: 02/07/1	9 19:03						v
QC Source Sample: IDW (A9B01 NWTPH-Gx (MS)	<u>07-35)</u>											
Gasoline Range Organics	ND		8.03	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 50		Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50)-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range Hy	drocarbo	ons (Benz	ene throu	ugh Naph	thalene) b	by NWTP	H-Gx							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes				
Batch 9020511 - EPA 5035A							Soil									
Blank (9020511-BLK1)		Prepared: 02/08/19 15:00 Analyzed: 02/08/19 17:00														
NWTPH-Gx (MS)																
Gasoline Range Organics	ND		3.33	mg/kg w	et 50											
Surr: 4-Bromofluorobenzene (Sur)		Recover	ry: 102 %	Limits: 50	-150 %	Dilı	ution: 1x									
1,4-Difluorobenzene (Sur)			94 %	50	-150 %		"									
LCS (9020511-BS2)		Prepared: (02/08/19 15:	00 Analyz	ed: 02/08/19	9 16:34										
NWTPH-Gx (MS)																
Gasoline Range Organics	22.3		5.00	mg/kg w	et 50	25.0		89	80-120%							
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 94 %	Limits: 50	-150 %	Dilı	ution: 1x									
1,4-Difluorobenzene (Sur)			92 %	50	-150 %		"									

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Ē

AMENDED REPORT

Project: <u>Nustar Vannex</u> Project Number: **0060-001-005** Project Manager: **Stephanie Salisbury**

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

				BTEX	Compou	inds by E	PA 8260C	;					
Analyte		Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020404 - E	PA 5030B							Wat	er				
Blank (9020404-BL)	K1)		Prepared	: 02/06/19 11:	26 Analyz	ed: 02/06/1	9 13:15						
EPA 8260C													
Benzene		ND		0.200	ug/L	1							
Toluene		ND		1.00	ug/L	1							
Ethylbenzene		ND		0.500	ug/L	1							
Xylenes, total		ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenz	ene (Surr)		Reco	very: 102 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobe	nzene (Surr)			102 %	80	-120 %		"					
LCS (9020404-BS1)			Prepared	: 02/06/19 11:	26 Analyz	ed: 02/06/1	9 11:54						
EPA 8260C			1										
Benzene		19.4		0.200	ug/L	1	20.0		97	80-120%			
Toluene		19.0		1.00	ug/L	1	20.0		95	80-120%			
Ethylbenzene		20.0		0.500	ug/L	1	20.0		100	80-120%			
Xylenes, total		60.5		1.50	ug/L	1	60.0		101	80-120%			
Surr: 1,4-Difluorobenz	ene (Surr)		Reco	overy: 99 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobe	nzene (Surr)			98 %	80	-120 %		"					
Duplicate (9020404-	DUP1)		Prepared	: 02/06/19 13:	06 Analyz	ed: 02/06/1	9 17:21						
QC Source Sample: EPA 8260C	B-27 Water (A9	B0107-08)										
Benzene		ND		0.200	ug/L	1		ND				30%	
Toluene		ND		1.00	ug/L ug/L	1		ND				30%	
Ethylbenzene		1.09		0.500	ug/L ug/L	1		1.19			9	30%	
Xylenes, total		8.12		1.50	ug/L ug/L	1		8.58			6	30%	
Surr: 1,4-Difluorobenz	ana (Surr)	0.12		very: 103 %	Limits: 80			ution: 1x	-	-	0	5070	
Toluene-d8 (Surr			Reco	99 %		-120 %	Diii	uion: 1x "					
) nzene (Surr)			99 % 98 %		-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selec	cted Volati	le Organi	c Compo	unds by E	EPA 82600	<u> </u>				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 9020404 - EPA 5030B							Wate	er				
3lank (9020404-BLK1)		Prepared	: 02/06/19 11:	26 Analyz	ed: 02/06/19	9 13:15						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
LCS (9020404-BS1)		Prepared	: 02/06/19 11:	26 Analyz	ed: 02/06/19	9 11:54						
EPA 8260C												
Benzene	19.4		0.200	ug/L	1	20.0			80-120%			
Ethylbenzene	20.0		0.500	ug/L	1	20.0			80-120%			
Methyl tert-butyl ether (MTBE)	20.9		1.00	ug/L	1	20.0		104	80-120%			
Naphthalene	18.5		2.00	ug/L	1	20.0		92	80-120%			
Toluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
Xylenes, total	60.5		1.50	ug/L	1	60.0		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Duplicate (9020404-DUP1)		Prepared	02/06/19 13:	06 Analyz	ed: 02/06/19	9 17:21						
<u>QC Source Sample: B-27 Water (A</u> EPA 8260 <u>C</u>	<u> 49B0107-08</u>)										
Benzene	ND		0.200	ug/L	1		ND				30%	
Ethylbenzene	1.09		0.500	ug/L	1		1.19			9	30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	ND		2.00	ug/L	1		1.69			***	30%	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sele	cted Volati	le Organi	c Compo	unds by E	PA 8260	с				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020404 - EPA 5030B							Wat	er				
Duplicate (9020404-DUP1)		Prepared	: 02/06/19 13:	:06 Analyz	ed: 02/06/1	9 17:21						
QC Source Sample: B-27 Water (A	A9B0107-08	<u>)</u>										
Xylenes, total	8.12		1.50	ug/L	1		8.58			6	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sele	cted Volatil	e Organi	c Compo	unds by E	PA 8260	C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020429 - EPA 5030B							Wat	er				
Blank (9020429-BLK1)		Prepared	02/06/19 16:	45 Analyz	ed: 02/06/1	9 18:11						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (9020429-BS1)		Prepared	02/06/19 16:	45 Analyz	ed: 02/06/1	9 17:14						
EPA 8260C												
Benzene	20.2		0.200	ug/L	1	20.0		101	80-120%			
Ethylbenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Methyl tert-butyl ether (MTBE)	20.0		1.00	ug/L	1	20.0		100	80-120%			
Naphthalene	17.7		2.00	ug/L	1	20.0		89	80-120%			
Toluene	19.9		1.00	ug/L	1	20.0		100	80-120%			
Xylenes, total	60.0		1.50	ug/L	1	60.0		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Duplicate (9020429-DUP1)		Prepared	02/06/19 18:	03 Analyz	ed: 02/06/1	9 19:07						
QC Source Sample: B-19-15 (A9B	0107-12)											
<u>EPA 8260C</u>												
Benzene	ND		0.200	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	ND		2.00	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sele	cted Volati	le Organi	c Compo	unds by E	EPA 8260	C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9020429 - EPA 5030B							Wat	er				
Duplicate (9020429-DUP1)		Prepared	: 02/06/19 18:	03 Analyz	ed: 02/06/1	9 19:07						
QC Source Sample: B-19-15 (A9B	<u>0107-12)</u>											
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80)-120 %		"					
Duplicate (9020429-DUP2)		Prepared	: 02/06/19 18:	03 Analyz	ed: 02/06/1	9 22:55						
QC Source Sample: B-17-50 (A9B	<u>0107-26)</u>											
EPA 8260C												
Benzene	ND		0.200	ug/L	1		ND				30%	
Ethylbenzene	8.90		0.500	ug/L	1		5.08			55	30%	Q-17
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	22.0		2.00	ug/L	1		11.0			66	30%	Q-17
Toluene	ND		1.00	ug/L	1		ND				30%	
Xylenes, total	9.79		1.50	ug/L	1		5.74			52	30%	Q-17
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 AMENDED REPORT

Project: <u>Nustar Vannex</u> Project Number: **0060-001-005** Project Manager: **Stephanie Salisbury**

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selected	l Volatile C	Organic Co	ompound	ls by EPA	5035A/82	260C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020408 - EPA 5035A							Soil					
Blank (9020408-BLK1)		Prepared	02/06/19 10	:00 Analyze	ed: 02/06/1	9 13:22						
<u>5035A/8260C</u>												
Benzene	ND		6.67	ug/kg we	t 50							
1,2-Dibromoethane (EDB)	ND		33.3	ug/kg we	t 50							
1,2-Dichloroethane (EDC)	ND		16.7	ug/kg we	t 50							
Ethylbenzene	ND		16.7	ug/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg we	et 50							
Naphthalene	ND		66.7	ug/kg we	t 50							
Toluene	ND		33.3	ug/kg we	t 50							
Xylenes, total	ND		50.0	ug/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					
LCS (9020408-BS1)		Prepared	02/06/19 10	:00 Analyze	ed: 02/06/1	9 12:24						
5035A/8260C												
Benzene	1000		10.0	ug/kg we	t 50	1000		100	80-120%			
1,2-Dibromoethane (EDB)	1070		50.0	ug/kg we	t 50	1000		107	80-120%			
1,2-Dichloroethane (EDC)	982		25.0	ug/kg we	t 50	1000		98	80-120%			
Ethylbenzene	955		25.0	ug/kg we	t 50	1000		95	80-120%			
Methyl tert-butyl ether (MTBE)	1040		50.0	ug/kg we	et 50	1000		104	80-120%			
Naphthalene	850		100	ug/kg we	t 50	1000		85	80-120%			
Toluene	916		50.0	ug/kg we	t 50	1000		92	80-120%			
Xylenes, total	2770		75.0	ug/kg we	t 50	3000		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80-	120 %		"					
Duplicate (9020408-DUP1)		Prepared	01/28/19 10	:00 Analyze	ed: 02/06/1	9 19:49						
QC Source Sample: B-26 (A9B010	<u>)7-01)</u>											
<u>5035A/8260C</u>				_			. –					
Benzene	ND		16.0	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND		79.9	ug/kg dry	y 50		ND				30%	

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 AMENDED REPORT

Project: <u>Nustar Vannex</u> Project Number: **0060-001-005** Project Manager: **Stephanie Salisbury** A9

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selected	Volatile C	Organic Co	mpound	ls by EPA	5035A/82	260C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020408 - EPA 5035A							Soil					
Duplicate (9020408-DUP1)		Prepared: 0	01/28/19 10	:00 Analyze	ed: 02/06/1	9 19:49						
QC Source Sample: B-26 (A9B01	<u>07-01)</u>											
1,2-Dichloroethane (EDC)	ND		39.9	ug/kg dry	y 50		ND				30%	
Ethylbenzene	ND		39.9	ug/kg dry	y 50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		79.9	ug/kg dry	50		ND				30%	
Naphthalene	ND		160	ug/kg dry	y 50		ND				30%	
Toluene	ND		79.9	ug/kg dry	y 50		ND				30%	
Xylenes, total	ND		120	ug/kg dry	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 100 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					
Duplicate (9020408-DUP2)		Prepared: (01/30/19 13	:35 Analyze	ed: 02/07/1	9 00:17						T-0 2
QC Source Sample: B-16-1 (A9B0	<u>107-16)</u>											
<u>5035A/8260C</u>												
Benzene	ND		15.3	ug/kg dry	y 50		ND				30%	
1,2-Dibromoethane (EDB)	ND		76.7	ug/kg dry	y 50		ND				30%	
1,2-Dichloroethane (EDC)	ND		38.4	ug/kg dry	y 50		ND				30%	
Ethylbenzene	ND		38.4	ug/kg dry	y 50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		76.7	ug/kg dry	y 50		ND				30%	
Naphthalene	ND		153	ug/kg dry	50		ND				30%	
Toluene	ND		76.7	ug/kg dry	50		ND				30%	
Xylenes, total	ND		115	ug/kg dry	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 100 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			108 %	80-	120 %		"					
Matrix Spike (9020408-MS1)		Prepared: 0	01/30/19 13	:35 Analyze	ed: 02/07/1	9 00:44						T-0 2
QC Source Sample: B-16-1 (A9B))107-16)											
5035A/8260C												
Benzene	1520		15.6	ug/kg dry	50	1560	ND	97	77-121%			
1,2-Dibromoethane (EDB)	1670		78.0	ug/kg dry	50	1560	ND	107	78-122%			
1,2-Dichloroethane (EDC)	1420		39.0	ug/kg dry	50	1560	ND	91	73-128%			

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selected	d Volatile C	rganic Co	mpound	ls by EPA	5035A/8	260C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020408 - EPA 5035A							Soil	l				
Matrix Spike (9020408-MS1)		Prepared	: 01/30/19 13:	35 Analyze	d: 02/07/1	9 00:44						Т-0
QC Source Sample: B-16-1 (A9B0	<u>107-16)</u>											
Ethylbenzene	1470		39.0	ug/kg dry	50	1560	ND	94	76-122%			
Methyl tert-butyl ether (MTBE)	1600		78.0	ug/kg dry	50	1560	ND	103	73-125%			
Naphthalene	1420		156	ug/kg dry	50	1560	ND	91	62-129%			
Toluene	1400		78.0	ug/kg dry		1560	ND	90	77-121%			
Xylenes, total	4320		117	ug/kg dry		4680	ND	92	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selected	d Volatile O	rganic Co	mpound	s by EPA	5035A/82	260C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020449 - EPA 5035A							Soil					
Blank (9020449-BLK1)		Prepared	: 02/07/19 10:	00 Analyze	ed: 02/07/1	9 12:46						
5035A/8260C												
Benzene	ND		6.67	ug/kg we	t 50							
1,2-Dibromoethane (EDB)	ND		33.3	ug/kg we	t 50							
1,2-Dichloroethane (EDC)	ND		16.7	ug/kg we	t 50							
Ethylbenzene	ND		16.7	ug/kg we	t 50							
Isopropylbenzene	ND		33.3	ug/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg we	t 50							
Naphthalene	ND		66.7	ug/kg we	t 50							
Toluene	ND		33.3	ug/kg we								
1,2,4-Trimethylbenzene	ND		33.3	ug/kg we								
1,3,5-Trimethylbenzene	ND		33.3	ug/kg we								
Xylenes, total	ND		50.0	ug/kg we								
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-		Dilt	ution: 1x					
Toluene-d8 (Surr)			, 99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					
LCS (9020449-BS1)		Prepared	: 02/07/19 10:	00 Analyze	ed: 02/07/19	9 11:52						
5035A/8260C												
Benzene	1000		10.0	ug/kg we	t 50	1000		100	80-120%			
1,2-Dibromoethane (EDB)	1070		50.0	ug/kg we	t 50	1000		107	80-120%			
1,2-Dichloroethane (EDC)	941		25.0	ug/kg we	t 50	1000		94	80-120%			
Ethylbenzene	973		25.0	ug/kg we	t 50	1000		97	80-120%			
Isopropylbenzene	945		50.0	ug/kg we	t 50	1000		95	80-120%			
Methyl tert-butyl ether (MTBE)	1040		50.0	ug/kg we	t 50	1000		104	80-120%			
Naphthalene	907		100	ug/kg we	t 50	1000		91	80-120%			
Toluene	932		50.0	ug/kg we		1000		93	80-120%			
1,2,4-Trimethylbenzene	934		50.0	ug/kg we		1000		93	80-120%			
1,3,5-Trimethylbenzene	915		50.0	ug/kg we		1000			80-120%			
Xylenes, total	2850		75.0	ug/kg we		3000			80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80-			ution: 1x					
Toluene-d8 (Surr)		-1000	96 %		120 %	Dim	"					
4-Bromofluorobenzene (Surr)			103 %		120 %		"					

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD		
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	No	tes
Batch 9020449 - EPA 5035A							Soil						
Duplicate (9020449-DUP1)		Prepared	: 01/30/19 13:	:50 Analyze	ed: 02/07/1	9 13:40							
QC Source Sample: B-16-2 (A9B0	107-17)												
<u>5035A/8260C</u>													
Benzene	ND		71.7	ug/kg dry	200		ND				30%		
1,2-Dibromoethane (EDB)	ND		359	ug/kg dry	200		ND				30%		
1,2-Dichloroethane (EDC)	ND		179	ug/kg dry	200		ND				30%		
Ethylbenzene	ND		179	ug/kg dry	200		96.0			***	30%		
Isopropylbenzene	1110		359	ug/kg dry	200		1230			10	30%		
Methyl tert-butyl ether (MTBE)	ND		359	ug/kg dry	200		ND				30%		
Naphthalene	1390		717	ug/kg dry	/ 200		1530			10	30%		
Toluene	ND		359	ug/kg dry	200		ND				30%		
1,2,4-Trimethylbenzene	12700		359	ug/kg dry	200		14100			10	30%		
1,3,5-Trimethylbenzene	13400		359	ug/kg dry	200		14400			8	30%		
Xylenes, total	ND		538	ug/kg dry	200		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-	120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			96 %	80-	120 %		"						
4-Bromofluorobenzene (Surr)			111 %	80-	120 %		"						
Duplicate (9020449-DUP2)		Prepared	: 02/05/19 19:	:00 Analyze	ed: 02/07/1	9 19:03							V-
QC Source Sample: IDW (A9B01	07- <u>35)</u>												
<u>5035A/8260C</u>													
Benzene	ND		16.1	ug/kg dry	y 50		ND				30%		
1,2-Dibromoethane (EDB)	ND		80.3	ug/kg dry	y 50		ND				30%		
1,2-Dichloroethane (EDC)	ND		40.1	ug/kg dry	y 50		ND				30%		
Ethylbenzene	ND		40.1	ug/kg dry	y 50		ND				30%		
Isopropylbenzene	ND		80.3	ug/kg dry	y 50		ND				30%		
Methyl tert-butyl ether	ND		80.3	ug/kg dry	y 50		ND				30%		
(MTBE)													
Naphthalene	ND		161	ug/kg dry			ND				30%		
Toluene	ND		80.3	ug/kg dry			ND				30%		
1,2,4-Trimethylbenzene	83.3		80.3	ug/kg dry	50		121			37	30%	Q-05	
1,3,5-Trimethylbenzene	ND		80.3	ug/kg dry	50		ND				30%		
Xylenes, total	ND		120	ug/kg dry	y 50		ND				30%		

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selecte	d Volatile C	rganic Co	mpound	ls by EPA	5035A/82	260C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020449 - EPA 5035A							Soil					
Duplicate (9020449-DUP2)		Prepared	: 02/05/19 19:	00 Analyzed	d: 02/07/1	9 19:03						V-I
QC Source Sample: IDW (A9B01	07- <u>35)</u>											
Surr: Toluene-d8 (Surr)		Rec	overy: 97 %	Limits: 80-1	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80-1	20 %		"					
Matrix Spike (9020449-MS1)		Prepared	: 02/05/19 19:	00 Analyze	d: 02/07/1	9 19:29						V-
QC Source Sample: IDW (A9B01) 5035A/8260C	<u>07-35)</u>											
Benzene	1600		16.7	ug/kg dry	50	1670	ND	95	77-121%			
1,2-Dibromoethane (EDB)	1740		83.6	ug/kg dry	50	1670	ND	104	78-122%			
1,2-Dichloroethane (EDC)	1450		41.8	ug/kg dry	50	1670	ND	87	73-128%			
Ethylbenzene	1570		41.8	ug/kg dry	50	1670	ND	94	76-122%			
Isopropylbenzene	1550		83.6	ug/kg dry	50	1670	ND	93	68-134%			
Methyl tert-butyl ether (MTBE)	1680		83.6	ug/kg dry	50	1670	ND	101	73-125%			
Naphthalene	1760		167	ug/kg dry	50	1670	ND	105	62-129%			
Toluene	1500		83.6	ug/kg dry	50	1670	ND	89	77-121%			
1,2,4-Trimethylbenzene	1680		83.6	ug/kg dry	50	1670	121	93	75-123%			
1,3,5-Trimethylbenzene	1540		83.6	ug/kg dry	50	1670	ND	92	73-124%			
Xylenes, total	4740		125	ug/kg dry	50	5020	ND	92	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 97 %	Limits: 80-1	20 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-1	20 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: <u>Nustar Vannex</u> Project Number: **0060-001-005** Project Manager: **Stephanie Salisbury**

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selected	d Volatile C	organic Co	mpound	ls by EPA	5035A/82	260C			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD Limit	Notes
Batch 9020511 - EPA 5035A							Soil				
Blank (9020511-BLK1)		Prepared	: 02/08/19 15:	:00 Analyze	ed: 02/08/1	9 17:00					
5035A/8260C											
Benzene	ND		6.67	ug/kg we	t 50					 	
Ethylbenzene	ND		16.7	ug/kg we	t 50					 	
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg we	t 50					 	
Naphthalene	ND		66.7	ug/kg we	t 50					 	
Toluene	ND		33.3	ug/kg we	t 50					 	
Xylenes, total	ND		50.0	ug/kg we	t 50					 	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-	120 %	Dilı	ution: 1x				
Toluene-d8 (Surr)			99 %	80-	120 %		"				
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"				
LCS (9020511-BS1)		Prepared	: 02/08/19 15:	:00 Analyze	ed: 02/08/1	9 16:07					
<u>5035A/8260C</u>											
Benzene	964		10.0	ug/kg we	t 50	1000		96	80-120%	 	
Ethylbenzene	1000		25.0	ug/kg we	t 50	1000		100	80-120%	 	
Methyl tert-butyl ether (MTBE)	966		50.0	ug/kg we	t 50	1000		97	80-120%	 	
Naphthalene	1030		100	ug/kg we	t 50	1000		103	80-120%	 	
Toluene	974		50.0	ug/kg we	t 50	1000		97	80-120%	 	
Xylenes, total	2900		75.0	ug/kg we	t 50	3000		97	80-120%	 	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80-	120 %	Dili	ution: 1x				
Toluene-d8 (Surr)			100 %	80-	120 %		"				
4-Bromofluorobenzene (Surr)			103 %	80-	120 %		"				

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP	Volatile Or	ganic Co	ompound	s by EPA	1311/826	0C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020529 - EPA 1311/503	B TCLP	Volatiles					Wat	er				
Blank (9020529-BLK1)		Prepared:	02/11/19 10:	00 Analyz	zed: 02/11/1	9 12:20						TCLI
<u>1311/8260C</u>												
Benzene	ND		0.0125	mg/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	wery: 97 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			117 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
LCS (9020529-BS2)		Prepared:	02/11/19 10:	00 Analyz	zed: 02/11/1	9 11:52						TCLI
<u>1311/8260C</u>												
Benzene	0.867		0.0125	mg/L	50	1.00		87	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	wery: 94 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			113 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Matrix Spike (9020529-MS1)		Prepared:	02/11/19 12:	13 Analyz	zed: 02/11/1	9 14:14						
<u>QC Source Sample: IDW (A9B01(1311/8260C</u>	<u>17-35)</u>											
Benzene	1.10		0.0125	mg/L	50	1.00	ND	110	70-130%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 101 %	Limits: 8		Dili	ution: 1x					
Toluene-d8 (Surr)			106 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Diethylen	e glycol m	onometh	yl ether (DGME) So	reen by 8	8270M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030798 - EPA 3510C (A	cid Extra	ction)					Wat	er				
Blank (9030798-BLK1)		Prepared	: 03/15/19 06:	38 Analy	zed: 03/19/1	9 10:07						
EPA 8270Dm												
Diethylene glycol monomethyl ether (DGME)	ND		4.55	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 105 %	Limits: 4	4-120 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			94 %	4	4-120 %		"					
Phenol-d6 (Surr)			69 %	1	0-120 %		"					
2-Fluorophenol (Surr)			78 %	1	9-120 %		"					
2,4,6-Tribromophenol (Surr)			98 %	4.	3-140 %		"					
LCS (9030798-BS2)		Prepared	: 03/15/19 06:	38 Analy	zed: 03/19/1	9 14:56						
EPA 8270Dm												
Diethylene glycol monomethyl ether (DGME)	DET		5.00	ug/L	1	20.0		10 5	50-150%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 102 %	Limits: 4	4-120 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			93 %	4	4-120 %		"					
Phenol-d6 (Surr)			69 %	1	0-120 %		"					
2-Fluorophenol (Surr)			75 %	1	9-120 %		"					
2,4,6-Tribromophenol (Surr)			93 %	4	3-140 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

		Diethylen	e glycol m	onomethy	/I ether (l	DGME) So	creen by 8	270M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9030808 - EPA 3546							Soil					
Blank (9030808-BLK1)		Prepared	: 03/15/19 11:	24 Analyze	ed: 03/19/19	9 10:42						
EPA 8270Dm												
Diethylene glycol monomethyl ether (DGME)	ND		182	ug/kg we	et 1							
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 86 %	Limits: 37	-122 %	Dil	ution: 1x					
2-Fluorobiphenyl (Surr)			87 %	44-	115 %		"					
Phenol-d6 (Surr)			73 %	33-	122 %		"					
2-Fluorophenol (Surr)			70 %	35-	115 %		"					
2,4,6-Tribromophenol (Surr)			78 %	39-	-132 %		"					
LCS (9030808-BS1)		Prepared	: 03/15/19 11:	24 Analyzo	ed: 03/19/19	9 14:19						
EPA 8270Dm		1										
Diethylene glycol monomethyl ether (DGME)	DET		800	ug/kg we	et 4	800		89	50-150%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 93 %	Limits: 37	-122 %	Dil	ution: 4x					
2-Fluorobiphenyl (Surr)			99 %	44-	115 %		"					
Phenol-d6 (Surr)			74 %	33-	122 %		"					
2-Fluorophenol (Surr)			71 %	35-	115 %		"					
2,4,6-Tribromophenol (Surr)			67 %	39-	-132 %		"					
Duplicate (9030808-DUP1)		Prepared	: 03/15/19 11:	24 Analyze	ed: 03/19/19	9 11:57						
<u>QC Source Sample: B-27 (A9B010</u> EPA 8270Dm	<u>7-06)</u>											
Diethylene glycol monomethyl	ND		10400	ug/kg dr	y 40		ND				30%	
ether (DGME)		D	221.67		100.07	· · ·						~ ~ -
urr: Nitrobenzene-d5 (Surr)		Reco	very: 231 %	Limits: 37		Dil	ution: 40x					S-05
2-Fluorobiphenyl (Surr)			84 %		-115 %		"					S-05
Phenol-d6 (Surr)			40 %		122 %		"					S-05
2-Fluorophenol (Surr)			56 %		-115 %		"					S-05
2,4,6-Tribromophenol (Surr)			43 %	39-	132 %		"					S-05

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020395 - Total Solids ((Dry Weigh	nt)					Soil					
Duplicate (9020395-DUP4)		Prepared	: 02/06/19 08:	07 Analyz	zed: 02/07/1	9 08:53						
QC Source Sample: B-16-1 (A9B EPA 8000C	<u>0107-16)</u>											
% Solids	71.5		1.00	% by We	ght 1		71.2			0.4	10%	
Duplicate (9020395-DUP5)		Prepared	: 02/06/19 08:	07 Analyz	zed: 02/07/1	9 08:53						
QC Source Sample: IDW (A9B01	107-35)											
<u>EPA 8000C</u> % Solids	74.8		1.00	% by We	ght 1		74.8			0.06	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Cascadia Associates 5820 SW Kelly Ave Unit B Portland, OR 97239

AMENDED REPORT

Project Number: 0060-001-005

Project:

Report ID: Project Manager: Stephanie Salisbury A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

Nustar Vannex

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Acid/Silica Gel Cleanup												
Prep: EPA 3546 w/	SG+Acid (NWT	<u>PH)</u>			Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 9020417												
A9B0107-01	Soil	NWTPH-Dx/SG	01/28/19 10:00	02/06/19 13:15	10.21g/5mL	10g/5mL	0.98					
A9B0107-02	Soil	NWTPH-Dx/SG	01/28/19 11:15	02/06/19 13:15	10.16g/5mL	10g/5mL	0.98					
A9B0107-03	Soil	NWTPH-Dx/SG	01/28/19 12:20	02/06/19 13:15	10.55g/5mL	10g/5mL	0.95					
A9B0107-04RE1	Soil	NWTPH-Dx/SG	01/28/19 13:20	02/06/19 13:15	10.28g/5mL	10g/5mL	0.97					
A9B0107-05RE1	Soil	NWTPH-Dx/SG	01/28/19 13:30	02/06/19 13:15	10.16g/5mL	10g/5mL	0.98					
A9B0107-06RE1	Soil	NWTPH-Dx/SG	01/28/19 14:50	02/06/19 13:15	11.36g/5mL	10g/5mL	0.88					
A9B0107-07RE1	Soil	NWTPH-Dx/SG	01/28/19 15:10	02/06/19 13:15	11.34g/5mL	10g/5mL	0.88					
A9B0107-09	Soil	NWTPH-Dx/SG	01/29/19 09:30	02/06/19 13:15	11.43g/5mL	10g/5mL	0.88					
A9B0107-17	Soil	NWTPH-Dx/SG	01/30/19 13:50	02/06/19 13:15	11.57g/5mL	10g/5mL	0.86					
A9B0107-18RE1	Soil	NWTPH-Dx/SG	01/30/19 13:30	02/06/19 13:15	11.84g/5mL	10g/5mL	0.85					
A9B0107-19RE1	Soil	NWTPH-Dx/SG	01/30/19 14:20	02/06/19 13:15	11.26g/5mL	10g/5mL	0.89					
A9B0107-22	Soil	NWTPH-Dx/SG	01/31/19 08:45	02/06/19 13:15	10.12g/5mL	10g/5mL	0.99					
A9B0107-23	Soil	NWTPH-Dx/SG	01/31/19 12:00	02/06/19 13:15	10.29g/5mL	10g/5mL	0.97					
A9B0107-24	Soil	NWTPH-Dx/SG	01/31/19 12:10	02/06/19 13:15	10.04g/5mL	10g/5mL	1.00					
A9B0107-27	Soil	NWTPH-Dx/SG	02/01/19 09:30	02/06/19 13:15	10.63g/5mL	10g/5mL	0.94					
A9B0107-28	Soil	NWTPH-Dx/SG	02/01/19 09:40	02/06/19 13:15	11.6g/5mL	10g/5mL	0.86					
A9B0107-31	Soil	NWTPH-Dx/SG	02/04/19 09:30	02/06/19 13:15	10.62g/5mL	10g/5mL	0.94					
A9B0107-32	Soil	NWTPH-Dx/SG	02/04/19 09:40	02/06/19 13:15	10.08g/5mL	10g/5mL	0.99					
Batch: 9020418												
A9B0107-35	Soil	NWTPH-Dx/SG	02/04/19 15:30	02/06/19 13:18	10.84g/5mL	10g/5mL	0.92					
Batch: 9020498												
A9B0107-11RE1	Soil	NWTPH-Dx/SG	01/29/19 14:00	02/08/19 12:09	10.2g/5mL	10g/5mL	0.98					
A9B0107-16RE1	Soil	NWTPH-Dx/SG	01/30/19 13:35	02/08/19 12:09	10.77g/5mL	10g/5mL	0.93					

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup

Prep: EPA 3510C (I	uels/Acid Ext.	.) w/Silica Gel			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020393							
A9B0107-08	Water	NWTPH-Dx/SGC	01/28/19 16:00	02/06/19 07:20			1.00
A9B0107-12	Water	NWTPH-Dx/SGC	01/29/19 14:40	02/06/19 07:20			0.94
A9B0107-13	Water	NWTPH-Dx/SGC	01/29/19 16:00	02/06/19 07:20			0.98
A9B0107-14	Water	NWTPH-Dx/SGC	01/30/19 09:30	02/06/19 07:20			0.96
A9B0107-15	Water	NWTPH-Dx/SGC	01/30/19 12:00	02/06/19 07:20			1.00
A9B0107-20	Water	NWTPH-Dx/SGC	01/31/19 08:30	02/06/19 07:20			0.99

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ш

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project: <u>Nustar Vannex</u> Project Number: **0060-001-005**

Project Manager: Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

Prep: EPA 35100	(Fuels/Acid Ext.) w/Silica Gel			Sample	Default	RL Prej
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9B0107-21	Water	NWTPH-Dx/SGC	01/31/19 10:30	02/06/19 07:20			0.98
A9B0107-25	Water	NWTPH-Dx/SGC	01/31/19 14:00	02/06/19 07:20			0.96
A9B0107-26	Water	NWTPH-Dx/SGC	01/31/19 16:00	02/06/19 07:20			1.01
A9B0107-29	Water	NWTPH-Dx/SGC	02/01/19 12:00	02/06/19 11:20			0.98
A9B0107-30	Water	NWTPH-Dx/SGC	02/01/19 15:00	02/06/19 11:20			0.97
A9B0107-33	Water	NWTPH-Dx/SGC	02/04/19 12:30	02/06/19 11:20			1.04
A9B0107-34	Water	NWTPH-Dx/SGC	02/04/19 15:00	02/06/19 11:20			1.00

	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020404							
A9B0107-08	Water	NWTPH-Gx (MS)	01/28/19 16:00	02/06/19 13:06	5mL/5mL	5mL/5mL	1.00
Batch: 9020429							
A9B0107-12	Water	NWTPH-Gx (MS)	01/29/19 14:40	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-13	Water	NWTPH-Gx (MS)	01/29/19 16:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-14	Water	NWTPH-Gx (MS)	01/30/19 09:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-15	Water	NWTPH-Gx (MS)	01/30/19 12:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-20	Water	NWTPH-Gx (MS)	01/31/19 08:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-21	Water	NWTPH-Gx (MS)	01/31/19 10:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-25	Water	NWTPH-Gx (MS)	01/31/19 14:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-26	Water	NWTPH-Gx (MS)	01/31/19 16:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-29	Water	NWTPH-Gx (MS)	02/01/19 12:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-30	Water	NWTPH-Gx (MS)	02/01/19 15:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-33	Water	NWTPH-Gx (MS)	02/04/19 12:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-34	Water	NWTPH-Gx (MS)	02/04/19 15:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020408			-	-			
A9B0107-01	Soil	NWTPH-Gx (MS)	01/28/19 10:00	01/28/19 10:00	5.64g/5mL	5g/5mL	0.89
A9B0107-02	Soil	NWTPH-Gx (MS)	01/28/19 11:15	01/28/19 11:15	6.12g/5mL	5g/5mL	0.82
A9B0107-03	Soil	NWTPH-Gx (MS)	01/28/19 12:20	01/28/19 12:20	6.74g/5mL	5g/5mL	0.74
A9B0107-04	Soil	NWTPH-Gx (MS)	01/28/19 13:20	01/28/19 13:20	6.32g/5mL	5g/5mL	0.79
A9B0107-05	Soil	NWTPH-Gx (MS)	01/28/19 13:30	01/28/19 13:30	5.67g/5mL	5g/5mL	0.88
A9B0107-07	Soil	NWTPH-Gx (MS)	01/28/19 15:10	01/28/19 15:10	5.9g/5mL	5g/5mL	0.85

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) by	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9B0107-09	Soil	NWTPH-Gx (MS)	01/29/19 09:30	01/29/19 09:30	6.56g/5mL	5g/5mL	0.76
A9B0107-11	Soil	NWTPH-Gx (MS)	01/29/19 14:00	01/29/19 14:00	6.45g/5mL	5g/5mL	0.78
A9B0107-16	Soil	NWTPH-Gx (MS)	01/30/19 13:35	01/30/19 13:35	6.09g/5mL	5g/5mL	0.82
Batch: 9020449							
A9B0107-06RE1	Soil	NWTPH-Gx (MS)	01/28/19 14:50	01/28/19 14:50	6.67g/5mL	5g/5mL	0.75
A9B0107-17	Soil	NWTPH-Gx (MS)	01/30/19 13:50	01/30/19 13:50	6.24g/5mL	5g/5mL	0.80
A9B0107-18	Soil	NWTPH-Gx (MS)	01/30/19 13:30	01/30/19 13:30	5.25g/5mL	5g/5mL	0.95
A9B0107-19	Soil	NWTPH-Gx (MS)	01/30/19 14:20	01/30/19 14:20	6.27g/5mL	5g/5mL	0.80
A9B0107-22	Soil	NWTPH-Gx (MS)	01/31/19 08:45	01/31/19 08:45	6.16g/5mL	5g/5mL	0.81
A9B0107-23	Soil	NWTPH-Gx (MS)	01/31/19 12:00	01/31/19 12:00	5.23g/5mL	5g/5mL	0.96
A9B0107-24	Soil	NWTPH-Gx (MS)	01/31/19 12:10	01/31/19 12:10	6.37g/5mL	5g/5mL	0.79
A9B0107-27	Soil	NWTPH-Gx (MS)	02/01/19 09:30	02/01/19 09:30	6.12g/5mL	5g/5mL	0.82
A9B0107-28	Soil	NWTPH-Gx (MS)	02/01/19 09:40	02/01/19 09:40	7.35g/5mL	5g/5mL	0.68
A9B0107-31	Soil	NWTPH-Gx (MS)	02/04/19 09:30	02/04/19 09:30	6.05g/5mL	5g/5mL	0.83
A9B0107-35	Soil	NWTPH-Gx (MS)	02/04/19 15:30	02/05/19 19:00	5g/5mL	5g/5mL	1.00
Batch: 9020511							
A9B0107-32RE1	Soil	NWTPH-Gx (MS)	02/04/19 09:40	02/04/19 09:40	5.8g/5mL	5g/5mL	0.86
		BTE	EX Compounds by E	EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020404			1	1			
A9B0107-36	Water	EPA 8260C	01/28/19 00:00	02/06/19 13:06	5mL/5mL	5mL/5mL	1.00
		Selected Vola	tile Organic Compo	unds by EPA 8260C	;		
Prep: EPA 5030B					Sample	Default	RL Prep
-	M-4 .	M. (1 1	S 1 1	Dura	Initial/Final	Initial/Final	Factor
Lab Number	Matrix	Method	Sampled	Prepared	initiai/1 iliai	muai/1 mai	1 40101
Batch: 9020404	XX <i>X</i> /	EDA 02(0C	01/20/10 16 00	00/06/10 10 05	5 X /5 X	5 X /5 X	1.00
A9B0107-08	Water	EPA 8260C	01/28/19 16:00	02/06/19 13:06	5mL/5mL	5mL/5mL	1.00
Batch: 9020429							

01/29/19 14:40

01/29/19 16:00

01/30/19 09:30

01/30/19 12:00

Apex Laboratories

A9B0107-12 A9B0107-13

A9B0107-14

A9B0107-15

Ausa A Zomenighini

Water

Water

Water

Water

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5mL/5mL

5mL/5mL

5mL/5mL

5mL/5mL

5mL/5mL

5mL/5mL

5mL/5mL

5mL/5mL

02/06/19 18:03

02/06/19 18:03

02/06/19 18:03

02/06/19 18:03

1.00

1.00

1.00

1.00

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239 Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9B0107-20	Water	EPA 8260C	01/31/19 08:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-21	Water	EPA 8260C	01/31/19 10:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-25	Water	EPA 8260C	01/31/19 14:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-26	Water	EPA 8260C	01/31/19 16:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-29	Water	EPA 8260C	02/01/19 12:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-30	Water	EPA 8260C	02/01/19 15:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-33	Water	EPA 8260C	02/04/19 12:30	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00
A9B0107-34	Water	EPA 8260C	02/04/19 15:00	02/06/19 18:03	5mL/5mL	5mL/5mL	1.00

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020408							
A9B0107-01	Soil	5035A/8260C	01/28/19 10:00	01/28/19 10:00	5.64g/5mL	5g/5mL	0.89
A9B0107-02	Soil	5035A/8260C	01/28/19 11:15	01/28/19 11:15	6.12g/5mL	5g/5mL	0.82
A9B0107-03	Soil	5035A/8260C	01/28/19 12:20	01/28/19 12:20	6.74g/5mL	5g/5mL	0.74
A9B0107-04	Soil	5035A/8260C	01/28/19 13:20	01/28/19 13:20	6.32g/5mL	5g/5mL	0.79
A9B0107-05	Soil	5035A/8260C	01/28/19 13:30	01/28/19 13:30	5.67g/5mL	5g/5mL	0.88
A9B0107-07	Soil	5035A/8260C	01/28/19 15:10	01/28/19 15:10	5.9g/5mL	5g/5mL	0.85
A9B0107-09	Soil	5035A/8260C	01/29/19 09:30	01/29/19 09:30	6.56g/5mL	5g/5mL	0.76
A9B0107-11	Soil	5035A/8260C	01/29/19 14:00	01/29/19 14:00	6.45g/5mL	5g/5mL	0.78
A9B0107-16	Soil	5035A/8260C	01/30/19 13:35	01/30/19 13:35	6.09g/5mL	5g/5mL	0.82
Batch: 9020449							
A9B0107-06RE1	Soil	5035A/8260C	01/28/19 14:50	01/28/19 14:50	6.67g/5mL	5g/5mL	0.75
A9B0107-17	Soil	5035A/8260C	01/30/19 13:50	01/30/19 13:50	6.24g/5mL	5g/5mL	0.80
A9B0107-18	Soil	5035A/8260C	01/30/19 13:30	01/30/19 13:30	5.25g/5mL	5g/5mL	0.95
A9B0107-19	Soil	5035A/8260C	01/30/19 14:20	01/30/19 14:20	6.27g/5mL	5g/5mL	0.80
A9B0107-22	Soil	5035A/8260C	01/31/19 08:45	01/31/19 08:45	6.16g/5mL	5g/5mL	0.81
A9B0107-23	Soil	5035A/8260C	01/31/19 12:00	01/31/19 12:00	5.23g/5mL	5g/5mL	0.96
A9B0107-24	Soil	5035A/8260C	01/31/19 12:10	01/31/19 12:10	6.37g/5mL	5g/5mL	0.79
A9B0107-27	Soil	5035A/8260C	02/01/19 09:30	02/01/19 09:30	6.12g/5mL	5g/5mL	0.82
A9B0107-28	Soil	5035A/8260C	02/01/19 09:40	02/01/19 09:40	7.35g/5mL	5g/5mL	0.68
A9B0107-31	Soil	5035A/8260C	02/04/19 09:30	02/04/19 09:30	6.05g/5mL	5g/5mL	0.83
A9B0107-35	Soil	5035A/8260C	02/04/19 15:30	02/05/19 19:00	5g/5mL	5g/5mL	1.00

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland, OR 97239

Б

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

		Selected Volatile	Organic Compound	ls by EPA 5035A/82	260C		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9B0107-32RE1	Soil	5035A/8260C	02/04/19 09:40	02/04/19 09:40	5.8g/5mL	5g/5mL	0.86
		TCLP Volatile	Organic Compound	s by EPA 1311/8260)C		
Prep: EPA 1311/503	0B TCLP Volat	iles_			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020529 A9B0107-35	Soil	1311/8260C	02/04/19 15:30	02/11/19 12:13	5mL/5mL	5mL/5mL	1.00
		Diethylene glycol	monomethyl ether ([OGME) Screen by 8	270M		
Prep: EPA 3510C (A	cid Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
<u>Batch: 9030798</u> A9B0107-08RE1	Water	EPA 8270Dm	01/28/19 16:00	03/15/19 06:38	1070mL/5mL	1000mL/5mL	0.94
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9030808			Ĩ	ľ			
A9B0107-06	Soil	EPA 8270Dm	01/28/19 14:50	03/15/19 11:24	10.71g/2mL	10g/2mL	0.93
		TCL	P Extraction by EPA	1311 (ZHE)			
Prep: EPA 1311 TCI	_P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020523 A9B0107-35	Soil	EPA 1311 ZHE	02/04/19 15:30	02/10/19 17:20	20.03g/400mL	25g/500mL	NA
			Percent Dry We	ight			
Prep: Total Solids (E	Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020395			*	*			
A9B0107-01	Soil	EPA 8000C	01/28/19 10:00	02/06/19 08:07			NA
A9B0107-02	Soil	EPA 8000C	01/28/19 11:15	02/06/19 08:07			NA
A9B0107-03	Soil	EPA 8000C	01/28/19 12:20	02/06/19 08:07			NA
A9B0107-04	Soil	EPA 8000C	01/28/19 13:20	02/06/19 08:07			NA

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates	Project: Nusta	tar Vannex	
5820 SW Kelly Ave Unit B	Project Number: 0060-)-001-005	<u>Report ID:</u>
Portland, OR 97239	Project Manager: Steph	hanie Salisbury	A9B0107 - 04 05 19 0831

SAMPLE PREPARATION INFORMATION

Percent Dry Weight							
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9B0107-05	Soil	EPA 8000C	01/28/19 13:30	02/06/19 08:07			NA
A9B0107-06	Soil	EPA 8000C	01/28/19 14:50	02/06/19 08:07			NA
A9B0107-07	Soil	EPA 8000C	01/28/19 15:10	02/06/19 08:07			NA
A9B0107-09	Soil	EPA 8000C	01/29/19 09:30	02/06/19 08:07			NA
A9B0107-11	Soil	EPA 8000C	01/29/19 14:00	02/06/19 08:07			NA
A9B0107-16	Soil	EPA 8000C	01/30/19 13:35	02/06/19 08:07			NA
A9B0107-17	Soil	EPA 8000C	01/30/19 13:50	02/06/19 08:07			NA
A9B0107-18	Soil	EPA 8000C	01/30/19 13:30	02/06/19 08:07			NA
A9B0107-19	Soil	EPA 8000C	01/30/19 14:20	02/06/19 08:07			NA
A9B0107-22	Soil	EPA 8000C	01/31/19 08:45	02/06/19 08:07			NA
A9B0107-23	Soil	EPA 8000C	01/31/19 12:00	02/06/19 08:07			NA
A9B0107-24	Soil	EPA 8000C	01/31/19 12:10	02/06/19 08:07			NA
A9B0107-27	Soil	EPA 8000C	02/01/19 09:30	02/06/19 08:07			NA
A9B0107-28	Soil	EPA 8000C	02/01/19 09:40	02/06/19 08:07			NA
A9B0107-31	Soil	EPA 8000C	02/04/19 09:30	02/06/19 08:07			NA
A9B0107-32	Soil	EPA 8000C	02/04/19 09:40	02/06/19 08:07			NA
A9B0107-35	Soil	EPA 8000C	02/04/19 15:30	02/06/19 08:07			NA

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland. OR 97239 AMENDED REPORT

Project:Nustar VannexProject Number:0060-001-005Project Manager:Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-09 Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product. The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component. F-11 F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation F-18 Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product. F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs. **O-05** Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level. RPD between original and duplicate sample is outside of established control limits. **O-17** Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis. Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. **O-42** (Refer to the QC Section of Analytical Report.) R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample. Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis. R-04 S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference. Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference. S-05 T-02 This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated. TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 9020523. Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of V-15 sampling. Х See Case Narrative.

Apex Laboratories

Assa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B

Portland, OR 97239

Project: Nustar Vannex

Project Number: 0060-001-005 Project Manager: Stephanie Salisbury <u>Report ID:</u> A9B0107 - 04 05 19 0831

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported
- RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Aura A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Cascadia Associates

5820 SW Kelly Ave Unit B Portland, OR 97239 Project: <u>Nustar Vannex</u>

Project Number: 0060-001-005 Project Manager: Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 5820 SW Kelly Ave Unit B Portland. OR 97239 AMENDED REPORT

 Project:
 Nustar Vannex

 Project Number:
 0060-001-005

 Project Manager:
 Stephanie Salisbury

<u>Report ID:</u> A9B0107 - 04 05 19 0831

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation		
Soil Water	EPA 8270Dm EPA 8270Dm		Diethylene glycol monomethyl ether (D(Diethylene glycol monomethyl ether (D(6267 6267	NonNELAC NonNELAC		
	All reported analytes are included in Apex Laboratories' current ORELAP scope.						

Secondary Accreditations

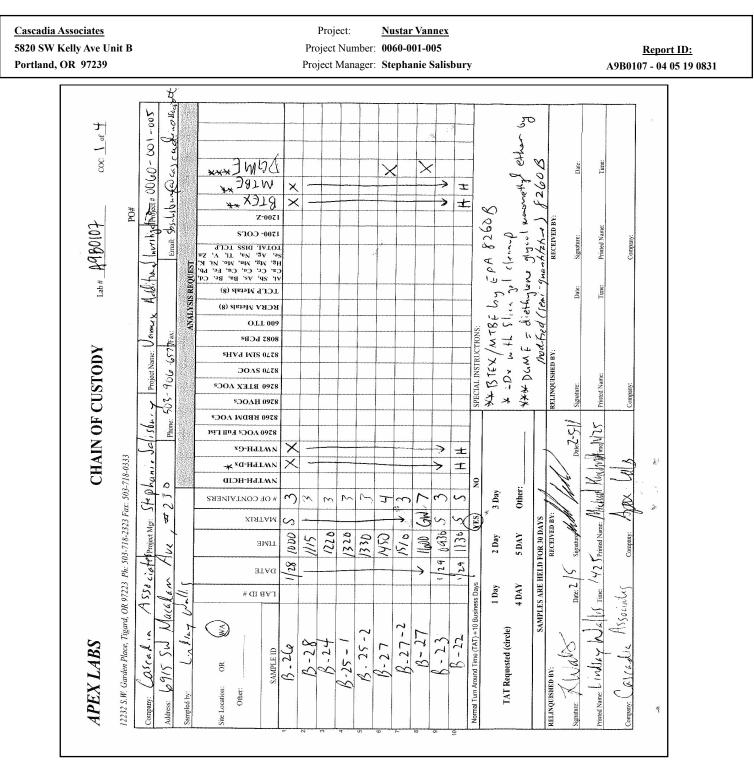
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

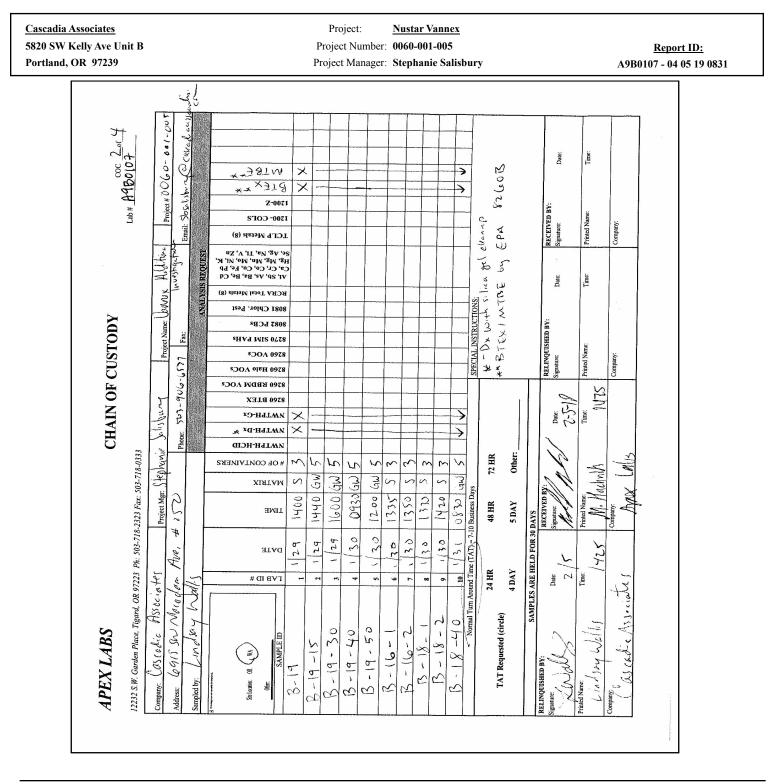
Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

Aura A Zomenighini

Lisa Domenighini, Client Services Manager

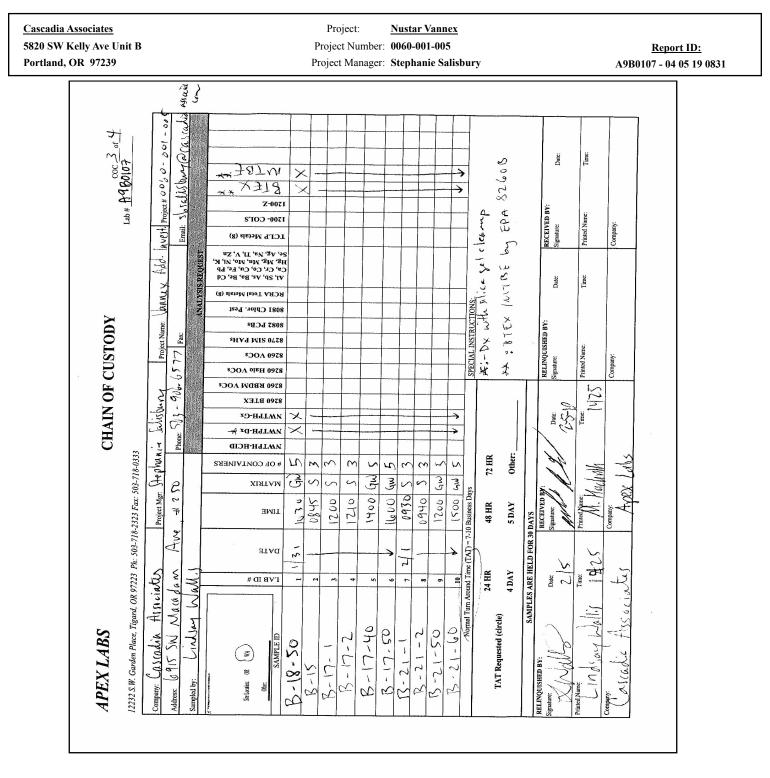
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Apex Laboratories

Ausa A Zomenighini

Apex Laboratories, LLC

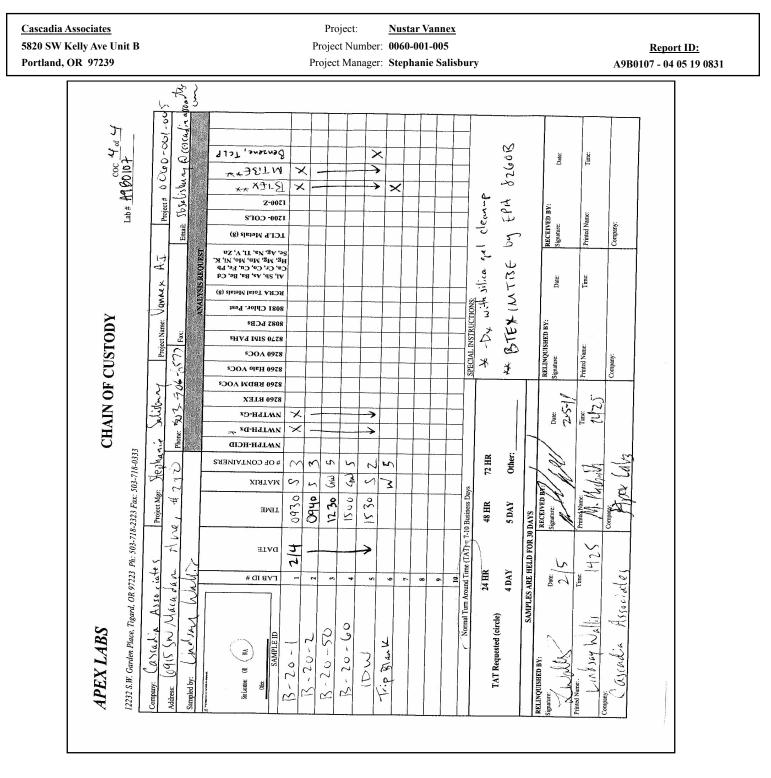
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Apex Laboratories

Assa A Zomenighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Apex Laboratories

Assa A Zomenighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Wednesday, March 6, 2019 Stephanie Salisbury Cascadia Associates 6915 SW Macadam, Suite 250 Portland, OR 97219

RE: A9B0609 - Nustar Vannex - 0060-001-005

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9B0609, which was received by the laboratory on 2/19/2019 at 4:04:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>ldomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

	Cooler Receip	t Information					
(See Cooler Receipt Form for details)							
cooler#1	3.5 degC	Cooler#2	3.8 degC				
Cooler#3	2.4 degC						

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Ausa A Jomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION						
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
MW-6	A9B0609-01	Water	02/18/19 09:10	02/19/19 16:04		
MW-5D	A9B0609-02	Water	02/18/19 09:50	02/19/19 16:04		
MW-5	A9B0609-03	Water	02/18/19 10:10	02/19/19 16:04		
MW-4	A9B0609-04	Water	02/18/19 11:00	02/19/19 16:04		
MW-9	A9B0609-05	Water	02/18/19 11:40	02/19/19 16:04		
MW-8D	A9B0609-06	Water	02/18/19 12:10	02/19/19 16:04		
MW-8	A9B0609-07	Water	02/18/19 12:40	02/19/19 16:04		
MW-3	A9B0609-08	Water	02/18/19 13:40	02/19/19 16:04		
MW-7	A9B0609-09	Water	02/19/19 08:00	02/19/19 16:04		
MW-10	A9B0609-10	Water	02/19/19 08:40	02/19/19 16:04		
MW-11	A9B0609-11	Water	02/19/19 09:30	02/19/19 16:04		
MW-1	A9B0609-12	Water	02/19/19 09:55	02/19/19 16:04		
MW-2	A9B0609-13	Water	02/19/19 10:40	02/19/19 16:04		
Trip Blank#1962	A9B0609-14	Water	02/18/19 00:00	02/19/19 16:04		

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250		-	umber: 006				<u>Report</u>	
Portland, OR 97219		-	-	phanie Salisbury			A9B0609 - 03 06	5 19 1228
		ANALYTICA	AL SAMI	PLE RESULTS				
Dies	el and/or Oil Hy	/drocarbons by	/ NWTPH	-Dx with Silica	Gel Colu	mn Cleanu	p	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-6 (A9B0609-01)				Matrix: Wate	ər	Ва	atch: 9021153	
Diesel	2.15		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	F-20
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	:: 68 %	Limits: 50-150 %	5 1	03/02/19	NWTPH-Dx/SGC	
MW-5D (A9B0609-02)				Matrix: Wate	er	Ba	atch: 9021153	
Diesel	ND		0.0748	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	»: 72 %	Limits: 50-150 %	5 1	03/02/19	NWTPH-Dx/SGC	
MW-5 (A9B0609-03)				Matrix: Water Batch: 902		atch: 9021153		
Diesel	1.06		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	F-18
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 72 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
MW-4 (A9B0609-04)				Matrix: Wate	ər	Ва	atch: 9021153	
Diesel	ND		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 79 %	Limits: 50-150 %	5 1	03/02/19	NWTPH-Dx/SGC	
				Matrix: Wate	er	Ва	atch: 9021153	
Diesel	ND		0.0748	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 80 %	Limits: 50-150 %	5 1	03/02/19	NWTPH-Dx/SGC	
MW-8D (A9B0609-06)				Matrix: Wate	ər	Ва	atch: 9021153	
Diesel	ND		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>:</i> : 78 %	Limits: 50-150 %	5 I	03/02/19	NWTPH-Dx/SGC	
MW-8 (A9B0609-07)				Matrix: Wate	ər	Ba	atch: 9021153	
Diesel	ND		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>:</i> 72 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
MW-3 (A9B0609-08)				Matrix: Wate	ər	Ba	atch: 9021153	
Diesel	ND		0.0755	mg/L	1	03/02/19	NWTPH-Dx/SGC	

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup								
	Sample	Detection R	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-3 (A9B0609-08)				Matrix: Water		Batch: 9021153		
Oil	ND		0.151	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 73 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
				Matrix: Water		Batch: 9021153		
Diesel	ND		0.0748	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 81 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
				Matrix: Water		Batch: 9021153		
Diesel	ND		0.0748	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 63 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
MW-11 (A9B0609-11)				Matrix: Water		Batch: 9021153		
Diesel	ND		0.0748	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.150	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 75 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
MW-1 (A9B0609-12)				Matrix: Water		Batch: 9021153		
Diesel	ND		0.0762	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Oil	ND		0.152	mg/L	1	03/02/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 68 %	Limits: 50-150 %	1	03/02/19	NWTPH-Dx/SGC	
			Matrix: Water		Batch: 9021153			
Diesel	ND		0.0755	mg/L	1	03/01/19	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	03/01/19	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 54 %	Limits: 50-150 %	1	03/01/19	NWTPH-Dx/SGC	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-6 (A9B0609-01)				Matrix: Wate	er	Ba	atch: 9020940	
Gasoline Range Organics	18.2		1.00	mg/L	10	02/21/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	1	02/21/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	5 1	02/21/19	NWTPH-Gx (MS)	
MW-5D (A9B0609-02RE1)				Matrix: Wate	er	Ba	atch: 9021007	
Gasoline Range Organics	0.165		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	5 1	02/22/19	NWTPH-Gx (MS)	
MW-5 (A9B0609-03)				Matrix: Wate	ər	Ва	atch: 9020940	
Gasoline Range Organics	29.2		1.00	mg/L	10	02/21/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 %	1	02/21/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	02/21/19	NWTPH-Gx (MS)	
MW-4 (A9B0609-04)				Matrix: Wate	ər	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	5 1	02/22/19	NWTPH-Gx (MS)	
MW-9 (A9B0609-05)				Matrix: Wate	ər	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	5 1	02/22/19	NWTPH-Gx (MS)	
MW-8D (A9B0609-06)				Matrix: Wate	ər	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 107 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	02/22/19	NWTPH-Gx (MS)	
MW-8 (A9B0609-07)				Matrix: Wate	ər	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.		Limits: 50-150 %		02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	5 1	02/22/19	NWTPH-Gx (MS)	
MW-3 (A9B0609-08)				Matrix: Wate	er	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	

Apex Laboratories

Ausa A Jomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Project Number:	0060-001-005	Damas t ID.
	0000 001 000	<u>Report ID:</u>
Project Manager:	Stephanie Salisbury	A9B0609 - 03 06 19 1228
	Project Manager	Project Manager: Stephanie Salisbury

ANALYTICAL SAMPLE RESULTS

Gasor	пе капуе пу		enzene ti	nrough Naphtha	lierie) by	INVVIPE-G	X	
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-3 (A9B0609-08)				Matrix: Wate	r	Ba	atch: 9020987	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	107 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	02/22/19	NWTPH-Gx (MS)	
MW-7 (A9B0609-09)				Matrix: Wate	r	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	106 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	02/22/19	NWTPH-Gx (MS)	
				Matrix: Wate	r	Ва	atch: 9020987	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	107 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	1	02/22/19	NWTPH-Gx (MS)	
MW-11 (A9B0609-11)				Matrix: Wate	r	Ва	atch: 9021036	
Gasoline Range Organics	0.727		0.100	mg/L	1	02/24/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	106 %	Limits: 50-150 %	1	02/24/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	02/24/19	NWTPH-Gx (MS)	
MW-1 (A9B0609-12)				Matrix: Wate	r	Ва	atch: 9021007	
Gasoline Range Organics	ND		0.100	mg/L	1	02/22/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	105 %	Limits: 50-150 %	1	02/22/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	1	02/22/19	NWTPH-Gx (MS)	
MW-2 (A9B0609-13)				Matrix: Wate	r	Ва	atch: 9020940	
Gasoline Range Organics	ND		0.100	mg/L	1	02/21/19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 91%	Limits: 50-150 %	1	02/21/19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	02/21/19	NWTPH-Gx (MS)	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

ANALYTICAL SAMPLE RESULTS

		BTEX Cor	mpounds b	y EPA 8260C				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank#1962 (A9B0609-14)				Matrix: Wate	ər	Bat	tch: 9020940	
Benzene	ND		0.200	ug/L	1	02/21/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/21/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/21/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/21/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 112 %	Limits: 80-120 %	6 1	02/21/19	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	5 I	02/21/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	5 I	02/21/19	EPA 8260C	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219			umber: 006	<u>star Vannex</u> 50-001-005 phanie Salisbury			<u>Report</u> A9B0609 - 03 0		
		ANALYTICA	AL SAMI	PLE RESULTS					
	Select	ted Volatile Org	anic Con	pounds by EPA	A 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
IW-6 (A9B0609-01)				Matrix: Wate	r	Ba	tch: 9020940		
Benzene	249		2.00	ug/L	10	02/21/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10	02/21/19	EPA 8260C		
Toluene	40.8		10.0	ug/L	10	02/21/19	EPA 8260C		
Xylenes, total	577		15.0	ug/L	10	02/21/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	1	02/21/19	EPA 8260C		
Toluene-d8 (Surr)			103 %	80-120 %	1	02/21/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	02/21/19	EPA 8260C		
/W-6 (A9B0609-01RE1)		Matrix: Water					Batch: 9020940		
Ethylbenzene	1740		50.0	ug/L	100	02/21/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	: 111 %	Limits: 80-120 %	1	02/21/19	EPA 8260C		
Toluene-d8 (Surr)			104 %	80-120 %	1	02/21/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	02/21/19	EPA 8260C		
IW-5D (A9B0609-02RE1)				Matrix: Wate	r	Ba	tch: 9021007		
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C		
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C		
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C		
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 99 %	Limits: 80-120 %	1	02/22/19	EPA 8260C		
Toluene-d8 (Surr)			98 %	80-120 %	1	02/22/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	02/22/19	EPA 8260C		
IW-5 (A9B0609-03)				Matrix: Wate	r	Ba	tch: 9020940		
Benzene	ND		2.00	ug/L	10	02/21/19	EPA 8260C		
Ethylbenzene	187		5.00	ug/L	10	02/21/19	EPA 8260C		
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10	02/21/19	EPA 8260C		
Toluene	ND		10.0	ug/L	10	02/21/19	EPA 8260C		
Xylenes, total	1060		15.0	ug/L	10	02/21/19	EPA 8260C		
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:		Limits: 80-120 %		02/21/19	EPA 8260C		
Toluene-d8 (Surr)			105 %	80-120 %		02/21/19	EPA 8260C		
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	02/21/19	EPA 8260C		
				Matrix: Wate	r	Ba	tch: 9020987		
1W-4 (A9B0609-04)									
IW-4 (A9B0609-04) Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C		

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219		Proje Project 1 Project M		<u>Report</u> A9B0609 - 03 0				
	Select			pounds by EPA	8260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-4 (A9B0609-04)		Matrix: Water		r	Bat	tch: 9020987		
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene Xylenes, total	ND ND		1.00 1.50	ug/L ug/L	1	02/22/19 02/22/19	EPA 8260C EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 105 %	Limits: 80-120 %	1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	02/22/19	EPA 8260C	
MW-9 (A9B0609-05)				Matrix: Wate	r	Bat	tch: 9020987	
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 107 %	Limits: 80-120 %	1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/19	EPA 8260C	

MW-8D (A9B0609-06)				Matrix: Water		Bat	ch: 9020987
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	02/22/19	EPA 8260C
Toluene-d8 (Surr)			98 %	80-120 %	1	02/22/19	EPA 8260C
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/19	EPA 8260C
MW-8 (A9B0609-07)				Matrix: Water		Bat	ch: 9020987
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107 %	Limits: 80-120 %	1	02/22/19	EPA 8260C
· · ·	ND				1		

98 %

99 %

Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

02/22/19

02/22/19

EPA 8260C

EPA 8260C

80-120 %

80-120 %

1

1

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u>	Project: <u>Nustar Vannex</u>								
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	Report ID:							
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228							
	ANALYTICAL SAMPLE RESULTS								
Selected Volatile Organic Compounds by EPA 8260C									

	00100		<u>j</u>					
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-3 (A9B0609-08)				Matrix: Wate	ər	Ва	tch: 9020987	
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 107 %	Limits: 80-120 %	1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	5 1	02/22/19	EPA 8260C	
 MW-7 (A9B0609-09)				Matrix: Wate	ər	Ва	tch: 9020987	
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 105 %	Limits: 80-120 %	1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/19	EPA 8260C	
MW-10 (A9B0609-10)				Matrix: Wate	ər	Ва	tch: 9020987	
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	5 1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/19	EPA 8260C	
MW-11 (A9B0609-11)				Matrix: Wate	ər	Ва	tch: 9021036	
Benzene	1.62		0.200	ug/L	1	02/24/19	EPA 8260C	
Ethylbenzene	83.0		0.500	ug/L	1	02/24/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/24/19	EPA 8260C	
Toluene	1.76		1.00	ug/L	1	02/24/19	EPA 8260C	
Xylenes, total	65.2		1.50	ug/L	1	02/24/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 98 %	Limits: 80-120 %	5 1	02/24/19	EPA 8260C	
T 1 10 (C)			00.07	00 120 0/	· ,	02/24/10	ED4 02(0C	

99 %

Toluene-d8 (Surr)

Apex Laboratories

Ausa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

02/24/19

EPA 8260C

1

80-120 %

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

ANALYTICAL SAMPLE RESULTS

	Select	ed Volatile Org	anic Corr	npounds by EPA	A 8260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11 (A9B0609-11)				Matrix: Wate	r	Bat	tch: 9021036	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	»: 99 %	Limits: 80-120 %	1	02/24/19	EPA 8260C	
				Matrix: Wate	er	Bat	tch: 9021007	
Benzene	ND		0.200	ug/L	1	02/22/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/22/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/22/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/22/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	02/22/19	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/22/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/19	EPA 8260C	
 MW-2 (A9B0609-13)				Matrix: Wate	er	Bat	tch: 9020940	
Benzene	ND		0.200	ug/L	1	02/21/19	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	02/21/19	EPA 8260C	
Methyl tert-butyl ether (MTBE)	1.21		1.00	ug/L	1	02/21/19	EPA 8260C	
Toluene	ND		1.00	ug/L	1	02/21/19	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	02/21/19	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits: 80-120 %	1	02/21/19	EPA 8260C	
Toluene-d8 (Surr)			105 %	80-120 %	1	02/21/19	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	02/21/19	EPA 8260C	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9021153 - EPA 3510C	(Fuels/Acid	Ext.) w/Silic	a Gel				Wat	er				
Blank (9021153-BLK1)		Prepared	: 02/28/19 07:	18 Analyz	ed: 03/01/1	9 23:45						
NWTPH-Dx/SGC												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50)-150 %	Dilt	ution: 1x					
LCS (9021153-BS1)		Prepared	: 02/28/19 07:	18 Analyz	ed: 03/02/1	9 00:05						
NWTPH-Dx/SGC												
Diesel	0.384		0.0800	mg/L	1	0.500		77	58-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 89 %	Limits: 50)-150 %	Dili	ution: 1x					
LCS Dup (9021153-BSD1)		Prepared	: 02/28/19 07:	18 Analyz	ed: 03/02/1	9 00:25						Q-19
NWTPH-Dx/SGC												
Diesel	0.415		0.0800	mg/L	1	0.500		83	58-115%	8	20%	
Surr: o-Terphenyl (Surr)		Reco	overy: 87 %	Limits: 50	0-150 %	Dili	ution: 1x					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020940 - EPA 5030B							Wat	er				
Blank (9020940-BLK1)		Prepared	02/21/19 08:	30 Analy	zed: 02/21/1	9 11:12						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			109 %	5	0-150 %		"					
LCS (9020940-BS2)		Prepared	02/21/19 08:	30 Analy	zed: 02/21/1	9 10:45						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.486		0.100	mg/L	1	0.500		97	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (9020940-DUP1)		Prepared	02/21/19 10:	19 Analyz	zed: 02/21/1	9 14:24						
QC Source Sample: MW-6 (A9B0	<u>)609-01)</u>											
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	17.3		1.00	mg/L	10		18.2			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020987 - EPA 5030B							Wat	er				
Blank (9020987-BLK1)		Prepared	02/22/19 08:	00 Analy	zed: 02/22/1	9 10:31						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	. 1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 105 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	5	0-150 %		"					
LCS (9020987-BS2)		Prepared	02/22/19 08:	00 Analy	zed: 02/22/1	9 10:03						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.430		0.100	mg/L	, 1	0.500		86	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 101 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	5	0-150 %		"					
Duplicate (9020987-DUP1)		Prepared	02/22/19 09:	58 Analy	zed: 02/22/1	9 12:00						
QC Source Sample: MW-4 (A9B)	<u>)609-04)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	. 1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 107 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9021007 - EPA 5030B Water												
Blank (9021007-BLK1) Prepared: 02/22/19 14:37 Analyzed: 02/22/19 18:01												
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 106 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					
LCS (9021007-BS2)		Prepared	02/22/19 14:	37 Analyz	zed: 02/22/1	9 17:34						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.440		0.100	mg/L	1	0.500		88	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 100 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9021036 - EPA 5030B Water												
Blank (9021036-BLK1) Prepared: 02/23/19 18:30 Analyzed: 02/23/19 21:18												
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					
LCS (9021036-BS2)		Prepared:	02/23/19 18:	30 Analyz	zed: 02/23/1	9 20:51						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.454		0.100	mg/L	1	0.500		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 101 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	Nustar Vannex	
6915 SW Macadam, Suite 250	Project Number:	0060-001-005	Report ID:
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 9020940 - EPA 5030B							Wat	er				
Blank (9020940-BLK1)		Prepared	: 02/21/19 08:	30 Analyz	ed: 02/21/19	9 11:12						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 109 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
LCS (9020940-BS1)		Prepared	02/21/19 08:	30 Analvz	ed: 02/21/19	9 10:17						
EPA 8260C		1										
Benzene	21.2		0.200	ug/L	1	20.0		106	80-120%			
Toluene	19.7		1.00	ug/L	1	20.0		98	80-120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		102	80-120%			
Xylenes, total	60.4		1.50	ug/L	1	60.0		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 105 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	-120 %		"					
Duplicate (9020940-DUP1)		Prepared	02/21/19 10:	19 Analyz	ed: 02/21/19	9 14:24						
QC Source Sample: MW-6 (A9B06	09-01)											
EPA 8260C	<u> </u>											
Benzene	236		2.00	ug/L	10		249			5	30%	
Toluene	41.7		10.0	ug/L	10		40.8			2	30%	
Ethylbenzene	2120		5.00	ug/L	10		2120			0.09	30%	Е
Xylenes, total	582		15.0	ug/L	10		577			0.9	30%	
urr: 1,4-Difluorobenzene (Surr)		Recon	very: 105 %	Limits: 80)-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			105 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Matrix Spike (9020940-MS1)		Prenared	02/21/19 10:	10 Analyz	red: 02/21/10	0.16.13						

EPA 8260C

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	Nustar Vannex	
6915 SW Macadam, Suite 250	Project Number:	0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020940 - EPA 5030B							Wat	er				
Matrix Spike (9020940-MS1)		Prepared	: 02/21/19 10:	19 Analyz	ed: 02/21/1	9 16:13						
QC Source Sample: MW-2 (A9B0	<u>609-13)</u>											
Benzene	23.3		0.200	ug/L	1	20.0	ND	116	79-120%			
Toluene	21.1		1.00	ug/L	1	20.0	ND	105	80-121%			
Ethylbenzene	22.2		0.500	ug/L	1	20.0	ND	111	79-121%			
Xylenes, total	64.9		1.50	ug/L	1	60.0	ND	108	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	-120 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selec	ted Volati	le Organi	c Compo	unds by E	EPA 8260	C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9020940 - EPA 5030B							Wat	er				
Blank (9020940-BLK1)		Prepared:	02/21/19 08:	30 Analyz	ed: 02/21/1	9 11:12						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 109 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			104 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80)-120 %		"					
LCS (9020940-BS1)		Prepared:	02/21/19 08:	30 Analyz	ed: 02/21/1	9 10:17						
EPA 8260C												
Benzene	21.2		0.200	ug/L	1	20.0		106	80-120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		102	80-120%			
Methyl tert-butyl ether (MTBE)	17.9		1.00	ug/L	1	20.0		90	80-120%			
Toluene	19.7		1.00	ug/L	1	20.0		98	80-120%			
Xylenes, total	60.4		1.50	ug/L	1	60.0		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80)-120 %		"					
Duplicate (9020940-DUP1)		Prepared:	02/21/19 10:	19 Analyz	ed: 02/21/1	9 14:24						
QC Source Sample: MW-6 (A9B0	609-01)											
EPA 8260C												
Benzene	236		2.00	ug/L	10		249			5	30%	
Ethylbenzene	2120		5.00	ug/L	10		2120			0.09	30%	Е
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Toluene	41.7		10.0	ug/L	10		40.8			2	30%	
Xylenes, total	582		15.0	ug/L	10		577			0.9	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			105 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u>	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 9020940 - EPA 5030B							Wat	er				
Duplicate (9020940-DUP1)		Prepared	: 02/21/19 10:	19 Analyz	ed: 02/21/1	9 14:24						
QC Source Sample: MW-6 (A9B06 Surr: 4-Bromofluorobenzene (Surr)	<u>509-01)</u>	Reco	overy: 95 %	Limits: 80)-120 %	Dilı	ution: 1x					
Matrix Spike (9020940-MS1)		Prepared	: 02/21/19 10:	19 Analyz	ed: 02/21/1	9 16:13						
QC Source Sample: MW-2 (A9B06	<u> 09-13)</u>											
EPA 8260C												
Benzene	23.3		0.200	ug/L	1	20.0	ND	116	79-120%			
Ethylbenzene	22.2		0.500	ug/L	1	20.0	ND	111	79-121%			
Methyl tert-butyl ether (MTBE)	20.7		1.00	ug/L	1	20.0	1.21	98	71-124%			
Toluene	21.1		1.00	ug/L	1	20.0	ND	105	80-121%			
Xylenes, total	64.9		1.50	ug/L	1	60.0	ND	108	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 105 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	-120 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selec	ted Volati	le Organi	c Compo	unds by I	EPA 8260	C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9020987 - EPA 5030B							Wat	er				
Blank (9020987-BLK1)		Prepared:	02/22/19 08:	00 Analyz	ed: 02/22/1	9 10:31						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 107 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80)-120 %		"					
LCS (9020987-BS1)		Prepared:	02/22/19 08:	00 Analyz	ed: 02/22/1	9 09:36						
EPA 8260C												
Benzene	18.4		0.200	ug/L	1	20.0		92	80-120%			
Ethylbenzene	20.1		0.500	ug/L	1	20.0		101	80-120%			
Methyl tert-butyl ether (MTBE)	19.6		1.00	ug/L	1	20.0		98	80-120%			
Toluene	18.8		1.00	ug/L	1	20.0		94	80-120%			
Xylenes, total	59.0		1.50	ug/L	1	60.0		98	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			96 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80)-120 %		"					
Duplicate (9020987-DUP1)		Prepared:	02/22/19 09:	58 Analyz	ed: 02/22/1	9 12:00						
QC Source Sample: MW-4 (A9B0	<u>)609-04)</u>											
EPA 8260C												
Benzene	ND		0.200	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 106 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %	80)-120 %		"					

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9020987 - EPA 50	30B						Wat	er				
Duplicate (9020987-DUP1)	Prepared	: 02/22/19 09::	58 Analy	zed: 02/22/1	9 12:00						
QC Source Sample: MW-4 Surr: 4-Bromofluorobenzene	· · · ·	Reco	very: 102 %	Limits: 8	80-120 %	Dilı	ution: 1x					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

	Selected Volatile Organic Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9021007 - EPA 5030B							Wat	er				
Blank (9021007-BLK1)		Prepared	: 02/22/19 14:	37 Analyz	ed: 02/22/1	9 18:01						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.500	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
Methyl tert-butyl ether	ND		1.00	ug/L	1							
(MTBE)												
Naphthalene	ND		2.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (9021007-BS1)		Prepared	: 02/22/19 14:	37 Analyz	ed: 02/22/1	9 17:07						
EPA 8260C		1		<u> </u>								
Benzene	18.4		0.200	ug/L	1	20.0		92	80-120%			
1,2-Dibromoethane (EDB)	19.6		0.500	ug/L	1	20.0		98	80-120%			
1,2-Dichloroethane (EDC)	20.6		0.500	ug/L	1	20.0		103	80-120%			
Ethylbenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Isopropylbenzene	19.3		1.00	ug/L	1	20.0		96	80-120%			
Methyl tert-butyl ether (MTBE)	19.5		1.00	ug/L	1	20.0		98	80-120%			
Naphthalene	16.5		2.00	ug/L	1	20.0		83	80-120%			
Toluene	18.5		1.00	ug/L	1	20.0			80-120%			
1,2,4-Trimethylbenzene	18.9		1.00	ug/L ug/L	1	20.0			80-120%			
1,3,5-Trimethylbenzene	18.7		1.00	ug/L	1	20.0			80-120%			
Xylenes, total	58.2		1.50	ug/L ug/L	1	60.0			80-120%			
Surr: 1,4-Difluorobenzene (Surr)	50.2		overy: 97 %	Limits: 80			ution: 1x	21	0.0 120/0			
Toluene-d8 (Surr)		Rec	96 %		-120 %	Dili	unon: 1x "					
10iuene-a8 (Surr) 4-Bromofluorobenzene (Surr)			90 % 99 %		-120 %		"					

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

QUALITY CONTROL (QC) SAMPLE RESULTS

	Selected Volatile Organic Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9021036 - EPA 5030B							Wate	er				
Blank (9021036-BLK1)		Prepared:	: 02/23/19 18:	30 Analyz	ed: 02/23/19	21:18						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80	7-120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			99 %	86	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	86	0-120 %		"					
LCS (9021036-BS1)		Prepared:	: 02/23/19 18:3	30 Analyz	ed: 02/23/19	20:24						
EPA 8260C												
Benzene	18.3		0.200	ug/L	1	20.0		91	80-120%			
Ethylbenzene	19.4		0.500	ug/L	1	20.0		97	80-120%			
Methyl tert-butyl ether (MTBE)	19.7		1.00	ug/L	1	20.0		98	80-120%			
Naphthalene	16.7		2.00	ug/L	1	20.0		84	80-120%			
Toluene	18.2		1.00	ug/L	1	20.0		91	80-120%			
Xylenes, total	57.5		1.50	ug/L	1	60.0		96	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80)-120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	Nustar Vannex	
6915 SW Macadam, Suite 250	Project Number:	0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A9B0609 - 03 06 19 1228

SAMPLE PREPARATION INFORMATION

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup									
Prep: EPA 3510C	(Fuels/Acid Ext.) w/Silica Gel			Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 9021153										
A9B0609-01	Water	NWTPH-Dx/SGC	02/18/19 09:10	02/28/19 07:18			0.94			
A9B0609-02	Water	NWTPH-Dx/SGC	02/18/19 09:50	02/28/19 07:18			0.94			
A9B0609-03	Water	NWTPH-Dx/SGC	02/18/19 10:10	02/28/19 07:18			0.94			
A9B0609-04	Water	NWTPH-Dx/SGC	02/18/19 11:00	02/28/19 07:18			0.94			
A9B0609-05	Water	NWTPH-Dx/SGC	02/18/19 11:40	02/28/19 07:18			0.94			
A9B0609-06	Water	NWTPH-Dx/SGC	02/18/19 12:10	02/28/19 07:32			0.94			
A9B0609-07	Water	NWTPH-Dx/SGC	02/18/19 12:40	02/28/19 07:32			0.94			
A9B0609-08	Water	NWTPH-Dx/SGC	02/18/19 13:40	02/28/19 07:32			0.94			
A9B0609-09	Water	NWTPH-Dx/SGC	02/19/19 08:00	02/28/19 07:32			0.94			
A9B0609-10	Water	NWTPH-Dx/SGC	02/19/19 08:40	02/28/19 07:32			0.94			
A9B0609-11	Water	NWTPH-Dx/SGC	02/19/19 09:30	02/28/19 07:32			0.94			
A9B0609-12	Water	NWTPH-Dx/SGC	02/19/19 09:55	02/28/19 13:34			0.95			
A9B0609-13	Water	NWTPH-Dx/SGC	02/19/19 10:40	02/28/19 13:34			0.94			

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx								
Prep: EPA 5030B					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 9020940									
A9B0609-01	Water	NWTPH-Gx (MS)	02/18/19 09:10	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00		
A9B0609-03	Water	NWTPH-Gx (MS)	02/18/19 10:10	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00		
A9B0609-13	Water	NWTPH-Gx (MS)	02/19/19 10:40	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00		
Batch: 9020987									
A9B0609-04	Water	NWTPH-Gx (MS)	02/18/19 11:00	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-05	Water	NWTPH-Gx (MS)	02/18/19 11:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-06	Water	NWTPH-Gx (MS)	02/18/19 12:10	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-07	Water	NWTPH-Gx (MS)	02/18/19 12:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-08	Water	NWTPH-Gx (MS)	02/18/19 13:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-09	Water	NWTPH-Gx (MS)	02/19/19 08:00	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
A9B0609-10	Water	NWTPH-Gx (MS)	02/19/19 08:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00		
Batch: 9021007									
A9B0609-02RE1	Water	NWTPH-Gx (MS)	02/18/19 09:50	02/22/19 17:00	5mL/5mL	5mL/5mL	1.00		
A9B0609-12	Water	NWTPH-Gx (MS)	02/19/19 09:55	02/22/19 17:00	5mL/5mL	5mL/5mL	1.00		
Batch: 9021036									
A9B0609-11	Water	NWTPH-Gx (MS)	02/19/19 09:30	02/23/19 19:12	5mL/5mL	5mL/5mL	1.00		

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228

SAMPLE PREPARATION INFORMATION

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx

		BT	EX Compounds by E	PA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020940							
A9B0609-14	Water	EPA 8260C	02/18/19 00:00	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00
		Selected Vo	latile Organic Compo	unds by EPA 8260C	;		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9020940							
A9B0609-01	Water	EPA 8260C	02/18/19 09:10	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00
A9B0609-01RE1	Water	EPA 8260C	02/18/19 09:10	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00
A9B0609-03	Water	EPA 8260C	02/18/19 10:10	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00
A9B0609-13	Water	EPA 8260C	02/19/19 10:40	02/21/19 10:19	5mL/5mL	5mL/5mL	1.00
Batch: 9020987							
A9B0609-04	Water	EPA 8260C	02/18/19 11:00	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-05	Water	EPA 8260C	02/18/19 11:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-06	Water	EPA 8260C	02/18/19 12:10	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-07	Water	EPA 8260C	02/18/19 12:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-08	Water	EPA 8260C	02/18/19 13:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-09	Water	EPA 8260C	02/19/19 08:00	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
A9B0609-10	Water	EPA 8260C	02/19/19 08:40	02/22/19 09:58	5mL/5mL	5mL/5mL	1.00
Batch: 9021007							
A9B0609-02RE1	Water	EPA 8260C	02/18/19 09:50	02/22/19 17:00	5mL/5mL	5mL/5mL	1.00
A9B0609-12	Water	EPA 8260C	02/19/19 09:55	02/22/19 17:00	5mL/5mL	5mL/5mL	1.00
Batch: 9021036							
A9B0609-11	Water	EPA 8260C	02/19/19 09:30	02/23/19 19:12	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u>	Project:	Nustar Vannex
6915 SW Macadam, Suite 250	Project Number:	0060-001-005
Portland, OR 97219	Project Manager:	Stephanie Salisbury

<u>Report ID:</u> A9B0609 - 03 06 19 1228

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- **E** Estimated Value. The result is above the calibration range of the instrument.
- F-18 Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.
- F-20 Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219

Project: Nustar Vannex

Project Number: 0060-001-005 Project Manager: Stephanie Salisbury <u>Report ID:</u> A9B0609 - 03 06 19 1228

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported
- RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219

Project: Nustar Vannex

Project Number: 0060-001-005 Project Manager: Stephanie Salisbury <u>Report ID:</u> A9B0609 - 03 06 19 1228

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

ascadia Associat	tes	Project:	<u>Nustar Vannex</u>	
15 SW Macada	m, Suite 250	Project Number:	0060-001-005	<u>Report ID:</u>
ortland, OR 972	219	Project Manager:	Stephanie Salisbury	A9B0609 - 03 06 19 1228
		LABORATORY ACCRED	TATION INFOR	MATION
Scope of Ce	s and analytes repor ertification, with the	rtification ID: OR100062 (Primar ted from work performed at Apex Labor e <u>exception</u> of any analyte(s) listed below	atories are included	
<u>Apex Labo</u> Matrix	oratories Analysis	TNI_ID	Analyte	TNI_ID Accreditation
		All reported analytes are included in Apex	Laboratories' current C	RELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

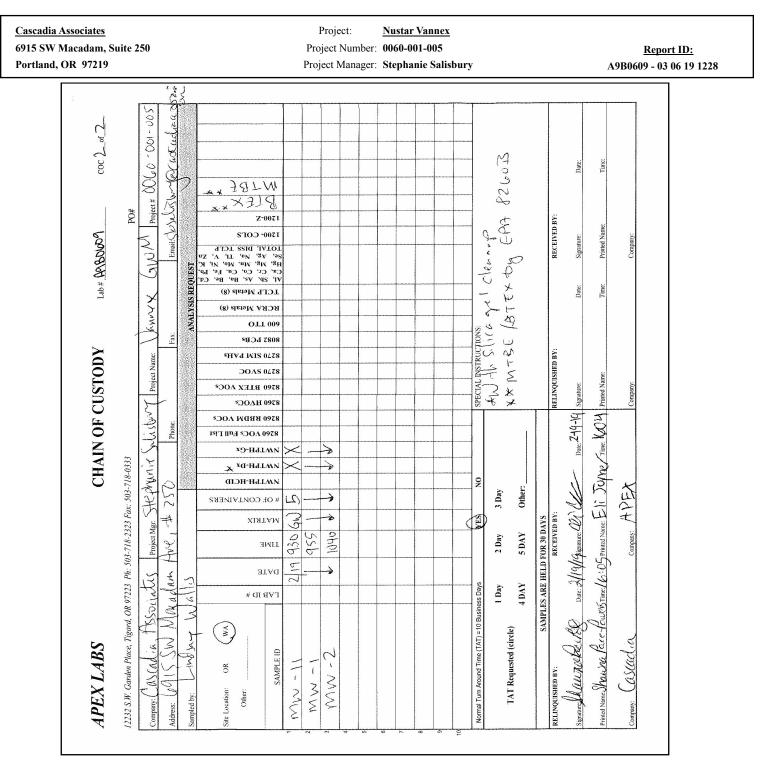
Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

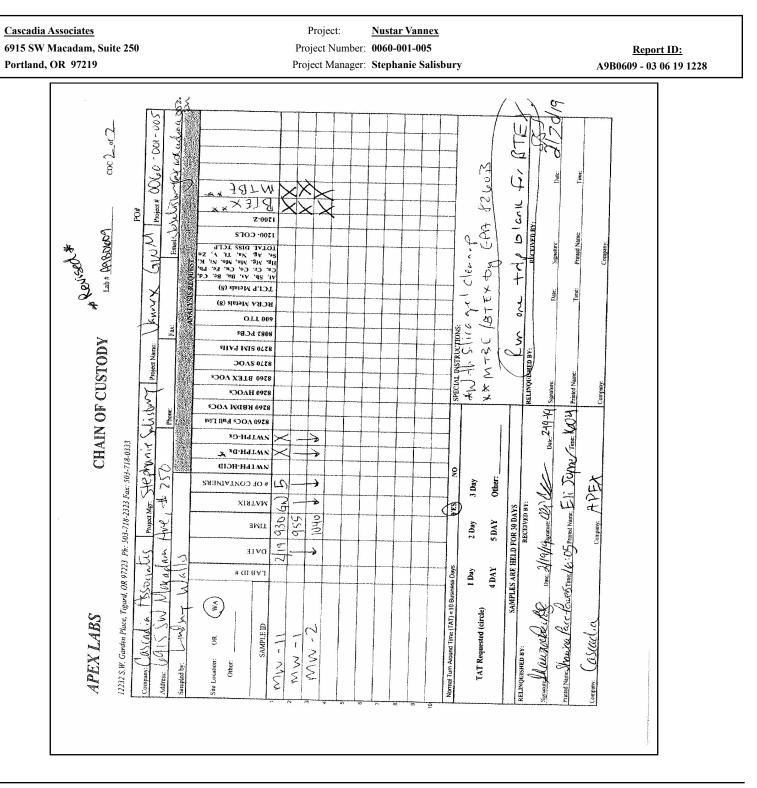
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>


Cascadia Associates Project: Nustar Vannex 6915 SW Macadam, Suite 250 Project Number: 0060-001-005 **Report ID:** Portland, OR 97219 Project Manager: Stephanie Salisbury A9B0609 - 03 06 19 1228 RU may a Casta Mean 0060-005 coc 1 of 2 Date: Time JST M × -> D EPA P260 Project # sbidut YJI S 7 #04 Z-0071 ab # A980009 RECEIVED BY STOD -0071 Printed Name Smail: AL, Sb, As, Ba, Ba, C Ca, Cr, Co, Cu, Fe, I Hg, Mg, Ma, Ma, Mo, W, Se, Ag, Wa, Wa, Ho, V, Signature: NCM 21-1-10-12 VZ K K 4d ANALYSIS REQUEST 62 TCLP Metals (8) Lime: Date RUNCH BIEX/WIGE RCRA Metals (8) OJ.I. 009 SPECIAL INSTRUCTIONS: ** W. T. S. I.C. X. ax 8085 bCBs CHAIN OF CUSTODY SHVA WIS 0228 Name ELINQUISHED BY: DOAS 0228 Project ? Printed Namu 8260 BTEX VOCs Date: 2-19-19 Signature \$DOAH 0978 Jahilburg 8260 RBDM VOCs Time 16:04 Printed Name, EN DYN& Time, 1004 1SIT IInd SOOA 0978 xo-HdLMN 2232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 Hedwin "". ×O-HALMN 5 **ШЭН-НАТИМ** Ş Other: 3 Day APEX # OF CONTAINERS 5 Date: 2/19/19/5ignature: 4. KES WATRIX RECEIVED BY: 5 > SAMPLES ARE HELD FOR 30 DAYS Project Mgr. 1240 140 950 1210 910 1010 11 00 1340 SHO 5 DAY X00 2 Day Ŧ TIME 2/18 5 2 DATE TJJdene ter > 2 N NAMINAL 4 DAY 1 Day # UI 8VI Turn Around Time (TAT) = 10 Business rywrachale-Powers $\left(\mathbb{A} \right)$ OSCabin TAT Requested (circle) DX VV 35 4PEX LABS , 0 C18 - MW SAMPLE UD 20 MW - 5T ナーくうい M MW -5 5 915 J- MW OR - NI M -MW NN2' - MW RELINQUISHED BY: MW 00 5 Site Location: Other: sampled by: vddreec.

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>



Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-005	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A9B0609 - 03 06 19 1228
Client: <u>Cascadia</u> Project/Project #: <u>Vannex</u> <u>Delivery Info</u> : Date/time received: <u>2-19-19</u> Delivered by: Apex <u>Client</u> <u>Cooler Inspection</u> Date/time in	APEX LABS COOLER RECEIPT FORM Associates Element WO#: A O060 -001 -005 0 By: ESSFedExUPSSwiftSenvoy 1spected: 2-19-19 @ 1645 By: ES X No Custody seals? Yes	SDSOther
	No Custody seals? Yes	No <u>X</u>
Cooler Temperature (°C) 3.5 Received on ice? (Y/N) Y Temp. blanks? (Y/N) Y Ice type: (Gel/Real/Other) Leal Condition: 6w/l Cooler out of temp? (Y/N) Possible r If some coolers are in temp and some Out of temperature samples form initi Samples Inspection: Date/time insp All samples intact? Yes X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	amples? Yes/No/NA
Bottle labels/COCs agree? Yes Not on COC	io / Comments: (5) Trip Blanks #	1962 provident
COC/container discrepancies form init Containers/volumes received appropria	iated? Yes No NA ✓ nte for analysis? Yes X No Comments:	
Do VOA vials have visible headspace? Comments		
Water samples: pH checked: Yes_/No Comments: <u></u>	$\frac{NA_{pH} appropriate? Yes_No_NA_{nA_{pH}}}{0 _2 Ambers PH_7}$	
Additional information:		
Labeled by: Witness:	Cooler Inspected by: See Project Co	ontact Form:

Apex Laboratories

Assa A Zomenighini

Stephanie Salisbury Cascadia Associates, LLC 6915 SW Macadam Ave. Suite 250 Portland, OR 97219

Laboratory Results for: Vannex Additional Investigation

Dear Stephanie,

Enclosed is the revised report for the sample(s) submitted to our laboratory January 30, 2019. For your reference, these analyses have been assigned our service request number **K1900833**.

Results for Naphthalene added per client request.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

Mark Harris Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Apex Companies, LLCProject:Vannex Additional InvestigationSample Matrix:Ground Water

Service Request: K1900833 Date Received: 01/30/2019

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

One ground water sample was received for analysis at ALS Environmental on 01/30/2019. The sample was received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Semivoa GC:

Method NWTPH-Dx, Diesel and Residual Range Organics - Silica Gel Treated 2/04/19: Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

noe D. Dan

Approved by

Date 04/23/2019

SAMPLE DETECTION SUMMARY

CLIENT ID: B-22							
Analyte	Results	Flag	MDL	MRL	Units	Method	
Gasoline Range Organics-NWTPH	18800			12500	ug/L	NWTPH-Gx	
Benzene	17	D	0.31	2.5	ug/L	8260C	
Toluene	18	D	0.27	2.5	ug/L	8260C	
Ethylbenzene	2200	D	2.5	25	ug/L	8260C	
m,p-Xylenes	2500	D	5.5	25	ug/L	8260C	
Diesel Range Organics (DRO)	500	L	11	250	ug/L	NWTPH-Dx	

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Apex Companies, LLCProject:Vannex Additional Investigation

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K1900833-001	B-22	1/29/2019	1200

CHAIN OF CUSTODY

Lab #_____

COC ____of_

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 PO# Project Mgr: Stephanie Selisburg Project Name: Vannex Additional Worktigetperoject # ascadia Associates Company; 6915 SW Macadam Are #252 Phone: 503-906-6577 Fax: Email: Spsalisbury@cascadicascuity un \sim Address: Indson Wallis Sampled by: ANALYSIS REQUEST ų v P G L # OF CONTAINERS 8260 VOCs Full List 8260 RBDM VOCs 8260 BTEX VOCs 12 8270 SVOC 8270 SIM PAHs RCRA Metals (8) Site Location: OR TCLP Metals (8) NWTPH-HCID * . ¥/ 8260 HVOCs NWTPH-Dx NWTPH-Gx 1200- COLS 8082 PCBs Other: 600 TTO # × MATRIX g Bre 1200-Z DATE TIME LAB 7 Š SAMPLE ID Х B-22 5 \times GW 1/29 1200 SPECIAL INSTRUCTIONS: * Dx with silico get Clearp ** BTEX and MTRE by \$260B Normal Turn Around Time (TAT) = 10 Business Days YES NO 1 Day 2 Day 3 Day **TAT Requested (circle)** 4 DAY 5 DAY Other: RING TAT SAMPLES ARE HELD FOR 30 DAYS RELINQUISHED BY: RECEIVED BY: RECEIVED BY: **RELINQUISHED BY:** 1/30/1° \$ignature: Date: 1-30-19 Date 3010 Date: 30/17 Signature Signature: Signature: Time:()753 P. Time: 1015 Printed Name: KIVStevMMiterime: 753 Printed Nam Printed Name: WWW. M. Printed N Time: company: Cascadia 11.8-11 Company: Company: Company:

ALS	\$												РС	MI	î.
	Λ		h	Cooler]	Receip	t and]	Pres	ervat	ion F	orm					
Client	CASE	ASIA 0	4SSOCIATE	er			Se	rvice	Reque	st K19	\hat{O}	833			
Received:_	1-30-1	9	Opened:	1-30-	-19		1	4	-	loaded		<u>)-19</u> 1	Ву:{	150	
1. Sample:	s were recei	ived via?	USPS	Fed Ex	UP	s I	DHL	PL	$X \subset$	Courier	Hand	d Delivered			
2. Sample	s were rece	ived in: (cii	rcle) 🤇	Cooler	Box	En	velop	е	Othe	r				NA	
3. Were <u>c</u>	ustody seals	s on coolers	s?	NA Y	Ń	$\mathbf{)}$	If yes	s, how	many	and whe	re?	,,,		<u></u>	
If prese	nt, were cu	stody seals	intact?	Y	N		If	presen	it, were	e they sig	gned and o	lated?		Y	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor		nometer ID	C	ooler/(NA	•	Tracking Nu	mber	(NA	Filed
4.7	4.7	33	31	-0.)	Ĩ,	, eO	<u> </u>								<u> </u>
					ļ	<u></u>					<u> </u>				<u> </u>
		 			┨		+								+
					<u> </u>		+						·		
4. Packir	g material:	Inserts	Baggies	Bubble W	ran G	el Pack	<u>د ما</u>	Tet Ice	Drv	Ice S	leeves				- <u>↓</u>
	-		y filled out		-				, 2.,				NA	$\langle \hat{\mathbf{Y}} \rangle$	N
			- od conditio				? Inc	dicate	in the i	table bel	ow.		NA	$\check{\mathbf{Y}}$	N
	-	If ap	plicable, tis	ssue sampl	es were	received		Froze			Thawed	Thawed		\sim	
	-	-	lete (i.e ana			,							NA	(\underline{Y})	Ν
			s agree with		-		-		-	ies in th	e table on	page 2.	NA	Ì	N
			ntainers and							- 1.			NA	Ý	N
			tles (see SM					-	e pH?	Indicate	e in the tab	ole below	(NA)	~	N
			without head	ispace? In	dicate i	n the tat	ble be	low.					NA	$\langle \mathbf{Y} \rangle$	N
12. Was	C12/Res no	egative?								··	····		(NA)	Y	N
	Sample ID	on Bottle			Samp	e ID on C	:oc			an a		Identified by	<u>.</u>		
													<u> </u>	···· ··· ··· ·························	
					·					l				······	
	Sample	. 15		tle Count ttle Type	Out of	Head- space B	roko	рH	Pa	agent	Volume added	Reagent L Number		Initials	Time
	Sample) ID	BOL	me tyhe	Tiemp	space D	UNE	hu -	<u>ne</u>	ayen	auueu	- HOUDE	•		
					+						<u> </u>				
	_				\uparrow				<u> </u>		1	<u> </u>			

Notes, Discrepancies, & Resolutions:_

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 32

Analytical Report

Client:	Apex Companies, LLC	Service Request:	K1900833
Project:	Vannex Additional Investigation/	Date Collected:	01/29/19 12:00
Sample Matrix:	Ground Water	Date Received:	01/30/19 10:15
Sample Name: Lab Code:	B-22 K1900833-001	Units: Basis:	e

Volatile Organic Compounds

Analysis Method:	8260C
Prep Method:	EPA 5030B

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Methyl tert-Butyl Ether	ND U	2.5	5	01/30/19 14:55	1/30/19	
Benzene	17 D	2.5	5	01/30/19 14:55	1/30/19	
Toluene	18 D	2.5	5	01/30/19 14:55	1/30/19	
Ethylbenzene	2200 D	25	50	01/30/19 15:21	1/30/19	
m,p-Xylenes	2500 D	25	50	01/30/19 15:21	1/30/19	
o-Xylene	ND U	2.5	5	01/30/19 14:55	1/30/19	
Naphthalene	ND U	10	5	01/30/19 14:55	1/30/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Dibromofluoromethane	111 D	73 - 122	01/30/19 14:55	
Toluene-d8	116 D	65 - 144	01/30/19 14:55	
4-Bromofluorobenzene	103 D	68 - 117	01/30/19 14:55	

Analytical Report **Client:** Apex Companies, LLC Service Request: K1900833 Date Collected: 01/29/19 12:00 **Project:** Vannex Additional Investigation Sample Matrix: Ground Water Date Received: 01/30/19 10:15 Sample Name: B-22 Units: ug/L Lab Code: K1900833-001 Basis: NA Volatile Petroleum Products Method for Soil and Water for the Northwest

Analysis Method:NWTPH-GxPrep Method:None

Analyte Name	Result		MRL	Dil.	Date Anal	yzed	Q
Gasoline Range Organics-NWTPH	18800		12500	50	01/30/19 1	5:10	
Surrogate Name		% Rec	Control Limits	D	ate Analvzed	Q	
1,4-Difluorobenzene		91	50 - 150	0	1/30/19 15:10		

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client:	Apex Companies, LLC	Service Request:	K1900833
Project:	Vannex Additional Investigation/	Date Collected:	01/29/19 12:00
Sample Matrix:	Ground Water	Date Received:	01/30/19 10:15
Sample Name:	B-22	Units:	ug/L
Lab Code:	K1900833-001	Basis:	NA

Diesel and Residual Range Organics - Silica Gel Treated

Analysis Method:	NWTPH-Dx
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Diesel Range Organics (DRO)	500 L	250	1	02/04/19 12:59	1/30/19	
Residual Range Organics (RRO)	ND U	490	1	02/04/19 12:59	1/30/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	85	50 - 150	02/04/19 12:59	
n-Triacontane	81	50 - 150	02/04/19 12:59	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Apex Companies, LLCProject:Vannex Additional Investigation/Sample Matrix:Ground Water

Service Request: K1900833

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds

Analysis Method:	8260C
Extraction Method:	EPA 5030B

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68 - 117	73 - 122	65 - 144
Batch QC	K1900813-002	104	111	115
B-22	K1900833-001	103 D	111 D	116 D
Batch QC MS	KWG1900546-1	105	107	120
Batch QC DMS	KWG1900546-2	108	111	117
Lab Control Sample	KWG1900546-3	110	109	117
Method Blank	KWG1900546-4	106	108	114

QA/QC Report

Client: Project: Sample Matrix:	Apex Companies, Vannex Addition, Ground Water		tion/			Date Date	ce Request Collected: Received: Analyzed:	N/A N/A		
						Date	Extracted:	01/3	0/19	
			Duplicate M	Iatrix Spil	ke Summa	ry				
			Volatile (Organic Co	ompounds					
Sample Name:	Batch QC						Units:	ug/L		
Lab Code:	K1900813-002						Basis:	NA		
Analysis Method:	8260C									
Prep Method:	EPA 5030B									
			Matrix S KWG1900	-	Γ	Duplicate Ma KWG1900	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methyl tert-Butyl Eth		10.8	10.0	108	10.5	10.0	105	54-126	3	30
Benzene	ND U	10.8	10.0	108	10.1	10.0	101	63-144	7	30
Toluene	ND U	10.9	10.0	109	9.91	10.0	99	71-136	10	30
Ethylbenzene	ND U	11.2	10.0	112	9.98	10.0	100	66-136	12	30
m,p-Xylenes	ND U	21.4	20.0	107	19.6	20.0	98	67-135	9	30
o-Xylene	ND U	10.5	10.0	105	9.80	10.0	98	67-127	6	30
Naphthalene	ND U	8.86	10.0	89	9.14	10.0	91	52-147	3	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Apex Companies, LLC	Service Request: K1900833
Project:	Vannex Additional Investigation/	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KWG1900546-4	Units: ug/L Basis: NA

Volatile Organic Compounds

Analysis Method:	8260C
Prep Method:	EPA 5030B

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Methyl tert-Butyl Ether	ND U	0.50	1	01/30/19 13:36	1/30/19	
Benzene	ND U	0.50	1	01/30/19 13:36	1/30/19	
Toluene	ND U	0.50	1	01/30/19 13:36	1/30/19	
Ethylbenzene	ND U	0.50	1	01/30/19 13:36	1/30/19	
m,p-Xylenes	ND U	0.50	1	01/30/19 13:36	1/30/19	
o-Xylene	ND U	0.50	1	01/30/19 13:36	1/30/19	
Naphthalene	ND U	2.0	1	01/30/19 13:36	1/30/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Dibromofluoromethane	108	73 - 122	01/30/19 13:36	
Toluene-d8	114	65 - 144	01/30/19 13:36	
4-Bromofluorobenzene	106	68 - 117	01/30/19 13:36	

QA/QC Report

Client: Project: Sample Matrix:	Apex Companies, LLC Vannex Additional Invest Ground Water	0		Service Request: Date Analyzed: Date Extracted:	K1900833 01/30/19 01/30/19
			rol Sample Summary Organic Compounds		
		v olatile v	Organic Compounds		
Analysis Method:	8260C			Units:	ug/L
Prep Method:	EPA 5030B			Basis:	NA
				Analysis Lot:	KWG1900545
			Lab Control Sample KWG1900546-3		
Analyte Name		Result	Spike Amount	% Rec	% Rec Limits
Benzene		8.24	10.0	82	69-124
Ethylbenzene		7.79	10.0	78	67-121
m,p-Xylenes		15.8	20.0	79	69-121
Methyl tert-Butyl Eth	er	10.2	10.0	102	54-126
Naphthalene		7.94	10.0	79	64-126
o-Xylene		8.43	10.0	84	71-119
Toluene		7.98	10.0	80	69-124

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Apex Companies, LLCProject:Vannex Additional InvestigationSample Matrix:Ground Water

Service Request: K1900833

SURROGATE RECOVERY SUMMARY

Volatile Petroleum Products Method for Soil and Water for the Northwest

Analysis Method:	NWTPH-Gx
Extraction Method:	None

	1,4-Difluorobenzene		
Sample Name	Lab Code	50-150	
B-22	K1900833-001	91	
Method Blank	KQ1901263-05	89	
Lab Control Sample	KQ1901263-03	95	
Duplicate Lab Control Sample	KQ1901263-04	93	

	Analytical Repor	t
Client:	Apex Companies, LLC	Service Request: K1900833
Project:	Vannex Additional Investigation	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	KQ1901263-05	Basis: NA

Volatile Petroleum Products Method for Soil and Water for the Northwest

Analysis Method:	NWTPH-Gx
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Ana	lyzed	Q
Gasoline Range Organics-NWTPH	ND U	250	1	01/30/19 1	3:06	
Surrogate Name	% Rec	Control Limits	Da	te Analyzed	Q	
1,4-Difluorobenzene	89	50 - 150	01	/30/19 13:06		

QA/QC Report

Client:	Apex Companies, LLC	Service Request:	K1900833				
Project:	Vannex Additional Investigation	Date Analyzed:	01/30/19				
Sample Matrix:	Ground Water	Date Extracted:	NA				
Duplicate Lab Control Sample Summary Volatile Petroleum Products Method for Soil and Water for the Northwest							

Analysis Method:	NWTPH-Gx					Uni	its:	ug	;/L	
Prep Method:	None					Bas	sis:	NA	A	
		Analysis Lot:			62					
		Lab Control Sample KQ1901263-03		Duplicate Lab Control Samp KQ1901263-04			ıple			
			Spike			Spike		% Rec		RPD
Analyte Name		Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Gasoline Range Organ	nics-NWTPH	488	500	98	491	500	98	80-119	<1	30

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Apex Companies, LLCProject:Vannex Additional Investigation/Sample Matrix:Ground Water

SURROGATE RECOVERY SUMMARY

Diesel and Residual Range Organics - Silica Gel Treated

Analysis Method:	NWTPH-Dx				
Extraction Method:	EPA 3510C				

		n-Triacontane	o-Terphenyl	
Sample Name	Lab Code	50 - 150	50 - 150	
B-22	K1900833-001	81	85	

Service Request: K1900833

ba ALS Environmenta

QA/QC Report

Client:Apex Companies, LLCProject:Vannex Additional Investigation/Sample Matrix:Water

SURROGATE RECOVERY SUMMARY

Diesel and Residual Range Organics - Silica Gel Treated

Analysis Method:	NWTPH-Dx
Extraction Method:	EPA 3510C

		n-Triacontane	o-Terphenyl	
Sample Name	Lab Code	50 - 150	50 - 150	
Lab Control Sample	KWG1900543-1	88	92	
Duplicate Lab Control Sample	KWG1900543-2	96	103	
Method Blank	KWG1900543-3	92	93	

Service Request: K1900833

	Analytical Report						
Client:	Apex Companies, LLC	Service Request: K1900833					
Project:	Vannex Additional Investigation/	Date Collected: NA					
Sample Matrix:	Water	Date Received: NA					
Sample Name:	Method Blank	Units: ug/L					
Lab Code:	KWG1900543-3	Basis: NA					

Diesel and Residual Range Organics - Silica Gel Treated

Analysis Method:	NWTPH-Dx
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Diesel Range Organics (DRO)	ND U	250	1	02/04/19 12:37	1/30/19	
Residual Range Organics (RRO)	ND U	490	1	02/04/19 12:37	1/30/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	93	50 - 150	02/04/19 12:37	
n-Triacontane	92	50 - 150	02/04/19 12:37	

QA/QC Report

Client:	Apex Compa	Apex Companies, LLC			S	ervice Reque	st: K1900833			
Project:	Vannex Addi	Vannex Additional Investigation/				D	:	02/04/19		
Sample Matrix:	Water					D	ate Extracted	l:	01/30/19	
		Diesel	Duplicate L and Residua		-	·	ted			
Analysis Method:	NWTPH-Dx					U	nits:		ug/L	
Prep Method:	EPA 3510C					В	asis:		NA	
						Α	nalysis Lot:		KWG19006	16
Lab Control Sample KWG1900543-1		Dup	Duplicate Lab Control Sample KWG1900543-2		le					
Analvte Name		Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits		R L

		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1300	1600	82	1480	1600	93	46-140	13	30
Residual Range Organics (RRO)	713	800	89	784	800	98	45-159	9	30

APPENDIX E FIELD SAMPLING FORMS

Vannex GWN Project: Nustar Client: Sampler: IN

Date: 2/18/19 Permit:

Product Well ID: Time: DTP: DTW: Notes: Thickness: 758 18.42 MW-10 MW - 6 0808 16.99 -0809 MW-7 11.41 MW-5D 0813 6.43 --MW-5 0814 16.70 MW-8 0817 28 MW-80 0818 7.59 ____ -NW-9 0820 19.13 -MW-02 0827 28.04 6832 30.04 Mow -4 0835 28.94 Mw-3 -0837 nw-11 17.27 0840 16.51 nhw-1 _ -

				Well ID:	MW	-(0		Job Number:			
N/Z	Casc	adia		Client:	Nust	-aR		Date:	2/18	(19	
	Associate	uulu		Project:		'X Gluk	1	Sampler:	LW		
	Associate	es, LLC		Weather:	OVE	cast,	30%	Time In/Out:	0850	10925	
			0	21	WELL						
		Flush-mount/	Shick-up		Well Diamete	er:	24	Depth to Free	Product:	-	
Monument Ty	pe:	Other:			Well Depth:		-	Free Product	Thickness:	-	
Monument Co	ndition:		A		Depth to Wat	er:	18.01	Water Colum	n Length:	_	
Well Cap Lock		Yes (No)			Screened Inte		10.01	Purge Volume		~	
Comments:	Flesent.				Screencering			r uige volume			
Purge Volume	= (Water He	ight) X (Multin	lier) X (# Casir	volumes)							
Water height			1-inch well =		2-inch = 0.16	2	4-inch = 0.65	3	1 gal = 3.785 li	ters	
Water neight	indiciplicity (B	ui).	1 11011 11011		PURGIN				U.		
Purge Method	l:	24			Pump Intake	Depth:		ms	-		
Sampling Met	hod:	1	F		Tubing Mater	rial & Type:	ID	PI	NEW	/ DEDICATED	
	Volume	Cumulative								1	
Time	Purged	Volume	DTW	Purge Rate	рН	Temp	Cond	DO	ORP	Clarity/Colo	
TITIC	(liters)	Purged	(btc)	(L/min)	P. 1	(°C)	(µS/cm)	(ppm)	(mV)	Other Remar	
		(liters)			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	1	
			15 01								
0857			18.01	0.2	6.48	11.55	743	10.05	-24.7	Clea	
0900			18.22	1	6.51	11.85	749	5.34	- 76.0	1	
0903			18.35		6.51	12.12	751	3.64	-44.6		
			18.48					2.95	.44.5		
0906					6.51	12.11	751			d d	
1909			18.59		6.51	11.85	747	2.61	-46.9		
0912			18.722	4	651	11.82	746	2.58	-47.7	\checkmark	
0											
			1.1.1								
			- 14								
		L	I		PURGIN	IG DATA					
Sample ID:		MW	- (0	Sampling Flo	ow Rate:	0.3		Analytical La		Apr	
Sample Time:			910	Final Depth		18	. 81	Did Well Dew		NS	
No. of Contain	ners/Type	Prese	rvative	Analysis/Me	thod	Field Filtered	Filter Size	MS/MSD	Duplicate ID		
BV	YONL	t	121	J	OCC	N					
			+21	-	PLI	N					
24				-	FILT						
					1						
						NAL COMMEN	TS				
			× 41.	N		INAL CUIVIIVIEN	13				

MA	less in the			Well ID:	mw-	1		Job Number:	21.001	
	Case	cadia		Client:	1 Al	istak	1	Date:	2/81	[9
2	Associat	es, LLC		Project: Weather:	Brere		WN DOF	Sampler: Time In/Out:	0930/	1000
		0		weather.	WELL			Thine myout.	10950/	1008
		Flush-mount/	Stick-up		Well Diamete	er:	211	Depth to Free	Product:	
Monument T	ype:	Other:	Λ		Well Depth:		-	Free Product Thickness:		
Monument C	ondition:	8	Vd	<i>,</i>	Depth to Wa	ter:	16.48	Water Colum	n Length:	
Well Cap Loc	k Present: (Yes No	·····.		Screened Int	erval:		Purge Volume	:	-
Comments:			A				A			2.52
Purge Volum	e = (Water He	eight) X (Multip								
Water height	multipliers (g	gal):	1-inch well =	0.041	2-inch = 0.16		4-inch = 0.65	3	1 gal = 3.785 lit	ers
Purge Metho	d.		PP		PURGIN Pump Intake	G DATA	1	15		
Sampling Me			LF		Tubing Mate			DPE	NEW	/ DEDICATED
		Cumulative						I E		,
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remark
		(interoy			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
0937			16148	0.2	7.28	11.57	294	17.6 (-59.6	e lear
1940			16.51	1	7.5	12.80	294	3.57	-70.)	
943			(6,50		7.05		307	3.02	-30.7	
0946					6.99	12.68	010	2.57		
			16.49					1	-20.9	f • •
0949			16.48		6.99	12.56		2.20	-18.6	· · · · · · · · · · · · · · · · · · ·
0952	2		16.47	L	6.98	12.53	376	2.08	-17.9	*
	- and -									
Sample ID:		14		Complin - Fl	PURGIN	G DATA	7	Analistadiat	aratar ::	N H SOIL
Sample ID: Sample Time:	:	Inn -	50	Sampling Flov Final Depth to		10.4		Analytical Lab Did Well Dewa		- TY TX
No. of Contai		Preser		Analysis/Met		Field Filtered		MS/MSD	Duplicate ID	123
ZVI	your	471		1/	015	N	-			
5	110		.]		TOH	N				
		1 pro	(1.4				1.7
_	<u> </u>									
				1. 1.						
				NO	TES/ADDITIO	NAL COMMEN	IS			-
		de la								
	22									

				WELL	MONITORIN	G DATA SHE	ET			
				Well ID:	mw.	5		Job Number:		
1	Case	adia		Client:	NUL	tak		Date:	2/18	119
-	Associate			Project:	Van	nex c		Sampler:	IW	
and an and the				Weather:	aver		30	Time In/Out:	1000	11025
			(au)		WELL I					
nument T	ype:	Flush-mount/	Stick-up		Well Diamete	r:	24	Depth to Free		
		Other:			Well Depth:			Free Product T		~
nument C		The No	- + -		Depth to Wat		17.al	Water Column		
	k Present:	Pas No			Screened Inte	rval:	-	Purge Volume:		
nments:		· 1 ·) · / / · / · · · · ·	1: \\\//!! C :	N/ 1 N	r - 1		1			
	e = (Water He multipliers (g	ight) X (Multip	1-inch well =	and the second	2-inch = 0.162	,	4-inch = 0.65	2	1 gal = 3.785 li	tors
ter neight	multipliers (g	,al):	I-inch weil =	0.041	PURGING		4-11101 - 0.03	5	1 Bai - 2.102 II	
ge Metho	d:	20)		Pump Intake [MS	Sec. Sec. 4	-	
npling Me			LF		Tubing Mater		LDI	>E	NEW	/ DEDICATED
	Volume	Cumulative								
Time	Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1000			17.94	0.2	6.78	12.78	424	3.44	-20.7	Clear
			18.48	1	675	13.34	436	2.26	-35.6	1
1003			19.74			1 .	444		-51.(
000	,			-	6.74	1.3.63		(.90		
009			20.04		6.74	13.55	444	1.92	-55.1	- 4
								-		
										, 4
					1.12					
				Takik.						
1										
				*						
				-						
					PURGIN	G DATA				
nple ID:		min	1-5	Sampling Flo	w Rate:	0.		Analytical Labo		Avex
nple Time			1010	Final Depth t		20.0		Did Well Dewa		No
	ners/Type	Prese	rvative	Analysis/Me	thod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
5	× youl	tto	2	V	200	2				
21	KIC	1	21	-	TAT	N				
							4			
							-			
10	_						-c			
				NC	DTES/ADDITION	AL COMINENT	3			
1	-	-					_			
die hi	The second	1	1.0		-			1	- 85.	

						NG DATA SHI	EET			
MA		Tie State		Well ID:	MW			Job Number:		
	Case	adia		Client:	Nus			Date:	21.8	· · · · · · · · · · · · · · · · · · ·
2	Associate	es, LLC		Project:	4	-	wM	Sampler:	Lu)
				Weather:	Overo	DATA	20° F	Time In/Out:	1230	1110
		Flushmount	/Stick-up		Well Diamet		2"	Depth to Free	Product:	
Aonument T	ype:		Stick-up		Well Depth:		l	Free Product		
Assument C		Other:	1		· · · · · · · · · · · · · · · · · · ·		2 - 1			
Monument C		20	Dod		Depth to Wa		30.01	Water Columr		
Vell Cap Loci	(Present:	Yag No	4		Screened Int	erval:	~	Purge Volume	:	
Comments:	a = ()Mator Ho	ight) V (Multin	lior\ V (# Casir	(a) (alumas)		r			-	
	multipliers (g		olier) X (# Casir 1-inch well =		2-inch = 0.16	2	4-inch = 0.65	2	1 gal = 3.785 lit	orc
vater neight	munipilers (g	di).	1-Inch wen -	0.041	PURGIN		4-inch = 0.65	5	1 gal = 5.765 III	.ers
urge Metho	d:	F	P		Pump Intake		1	NS		
ampling Met	hod:		LF		Tubing Mate		11	SPE	NEW	/ DEDICATED
	Volume	Cumulative								
Time	Purged	Volume	DTW	Purge Rate	pН	Temp	Cond	DO	ORP	Clarity/Color
	(liters)	Purged (liters)	(btc)	(L/min)		(°C)	(µS/cm)	(ppm)	(mV)	Other Remarks
		(+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1046			30.or	. 6.2	6.44	12.08				Clear
					6.32	12.67	166	11.52	66.7	LITAK
1049			30.02				167	10.30	79.1	
1052			30.02	2	6.23	13.((168	10.22	102.9	
1055			30.02		6.21	13.15	168	9.57	108.9	V
1058			30.02	V	6.20	13.31	168	141	118.2	• /
1101			3003		6.19	13.35	167	6.80	1230	
1104			3003		6.19	13.38	167	6.40	124.4	
1107			30.04	•	6.19	13.36	167	6.21	125.1	V
										<u>.</u> .
	26						2.1.1		h	
					PURGIN	r				~
ample ID:				Sampling Flov		0.	2	Analytical Labo		APRX
ample Time: o. of Contair		Prese	<u>.</u>	Final Depth to Analysis/Met		30.0 Field Filtered		Did Well Dewa MS/MSD	ater: Duplicate ID	NO
	leis/Type	riesel 1 /							Duplicate ID	
CX	10		21	(H	N				
SX	Your	L L	151	VC	S	M		a second a definition of the second		· · · · · · · · · · · · · · · · · · ·
				NO						
1				NO	ILS/AUDIIIO	NAL COMMENT	3			the second s
	the fragment framework	an an a subscription of the second								
						1. 31				
						12				

		<u></u>		Well ID:	Mw.	IG DATA SHE		Job Number:		
VIZ	Casc	adia		Client:	NV	ISTAR		Date:	2.118	19
	Associate	uuiu		Project:	J.	innex	GWM	Sampler:	L	\mathcal{N}
	Associate	S, LLC		Weather:	oven	SAL I	36°F	Time In/Out:	11201	1150
		<u> </u>			WELL	DATĂ		1		
Ionument Ty	/ne:	Flushemount/	Stick-up		Well Diamete	er:	211	Depth to Free	Product:	
	/F = .	Other:			Well Depth:		-	Free Product	Thickness:	-
1onument C	ondition:	Q	Dod		Depth to Wat	er:	19.20	Water Colum	n Length:	
/ell Cap Lock	Present:	Yes No)		Screened Inte	erval:	_	Purge Volume	:	-
omments:										
		ight) X (Multipl			, ,					
/ater height	multipliers (ga	al):	1-inch well =	0.041	2-inch = 0.162	the second s	4-inch = 0.65	3	1 gal = 3.785 li	ters
urge Metho	4.	DP	,		PURGING Pump Intake I		1	15		
ampling Met			LF	-	Tubing Mater		10	07	NEW	/ DEDICATED
		Cumulative						r c		,
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µ S/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
		(11013)			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1124			19.20	0.2	6.28	12.67	109	11.01	137.0	Cleur
· /				0.2				1.		
1127			19.18		6.29	12.43	90	10.17	1378	
1130			19,19		6.28	13.17	87	9.98	141.4	P
1133			19.19		6.28	13.23	85	9.71	142.1	
1136		X	19.18		6.28	13:30	86	9.61	144.1	
in the second					DUDCIN	CDATA				
ample ID:		m	w-4	Sampling Flow	PURGIN	O.Z		Analytical Lab	oratory:	Anei
imple Tb.				Final Depth to		19.	20	Did Well Dewi		KY 2X
o. of Contair		Preser		Analysis/Met		Field Filtered		MS/MSD	Duplicate ID	
34	. YOAL	H	U	5 1 /)(1	P				
24	10	ŀ	+21	T	344	N				
								· · · · · · · · · · · · · · · · · · ·		
				NC		AL COMMENT				*
				NO	TLS/ADDITION		15			

					_		IG DATA SH				
	Sec.	A STAN		Well ID):	Mh	1-8D		Job Number:		
A A	Casc	adia		Client:		NVII	TAR		Date:	2/18/	19
	Associate	es, LLC		Project		Vonn		wM	Sampler:	LW	
- management		A		Weath	er: .	WELL	cost,	30°F	Time In/Out:	1150	1222
		Fluse-mount/	Stick up			Well Diamete		211	Depth to Free	Draduate	
/lonument Ty	pe:		заск-ир		1	+	1.	- 6	Free Product		
	1	Other:	- t			Well Depth:					
Nonument Co		000	1001		-	Depth to Wat		17.79	Water Columr		-
Vell Cap Lock	Present:	A ROAD				Screened Inte	erval:	~	Purge Volume		
comments:											
		ight) X (Multip			nes)	2 in the 0.101		A inch O CE	2	1 . 1 - 2 705 14	
Vater height i	nultipliers (g	ai):	1-inch well =	0.041		2-inch = 0.162 PURGIN		4-inch = 0.65	3	1 gal = 3.785 lit	ers
urge Method	:	00)			Pump Intake I		M	<		
ampling Met		1.1	I.F			Tubing Mater		LD		NEW	/ DEDICATED
	Volume	Cumulative								*	00000
Time	Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge (L/m		pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
						+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	•
1157			17.79	0.	2	6.94	12.00	94	3.27	5023	clear
1200			17.77			2.15	11.54	92	(41	105.0	1
						7.21		-	1.57		
1203			17.78	\vdash		1	11.68			1078	
1206			17.79	4		7.32	11.82	- 93	9.08	96.3	
	-			- 1							
						PURGIN	G DATA				. <u></u> .
ample ID:		mw.	-90	Sampli	ng Flo	w Rate:	0.	2	Analytical Lab	oratory:	Aper
ample Time:			210			o Water:	17.7	9	Did Well Dew		No
lo. of Contain	ers/Type	Preser		Analysi	is/Met	thod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
3×4	onl	H	15		VI	265	7				
2 1/	14	11	71	-	77	24	N				
				*							
Sec.			1				-				
		í		1	NC	DTES/ADDITION	AL COMMEN	TS			
2.5.5											

		1000-1405 OL 101-101-		Well ID:		NG DATA SHI		Job Number:		
-	0	1.		Client:	Nu			Date:	2/18	119
	Case	adia		Project:			wy	Sampler:	LALA	
	Associat	es, LLC		Weather:	aver	Cinet -	(WA)	Time In/Out:	1220	(1300
				weddher.	WELL			Time iny out.		11300
		Flush-mount	/Stick-up		Well Diamete		24	Depth to Free	Product:	
Monument Ty	/pe:	Other:	Stick up		Well Depth:		C	Free Product		
	1	ouner.					10 50			~
Monument Co			1 vad		Depth to Wa		17.89	Water Colum		_
Well Cap Lock	Present:	Yes No	0		Screened Inte	erval:	<u> </u>	Purge Volume	e:	
Comments:										
		eight) X (Multip								
Water height	multipliers (g	gal):	1-inch well =	0.041	2-inch = 0.16		4-inch = 0.65	3	1 gal = 3.785 li	iters
Durne Marti	4.	-	2		PURGIN			the		
Purge Method		P	1		Pump Intake					
Sampling Met	nou.	Cumulative	LF		Tubing Mater	пагостуре:		Dr.E	(NEW	/ DEDICATED
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Colc Other Remai
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	•47-20 mV	
1224			17.89	0.3	6.06	12.49	70	6.44	106.5	clfak
1717			19.80		4			1000		UTUN.
1611			11.0		6.00	12.55	70	6.19	1(9.5	
1230			20.90	J	5.97		70	7.26	137.1	
1233	*		21.40	0.15	5.97	12.30	70	747	139.7	
1236			22.51	0.1	5.99	12.28	78	7.47	139.(
			-				5			a na a ta a ta ana ana a
		L			PURGIN	G DATA				
Sample ID:		MIA	1-8	Sampling Flo	and the second se	0,	1	Analytical Lab	oratory:	Mar
Sample Time:		12		Final Depth t		22.	19	Did Well Dewa		ND
No. of Contain	ers/Type	Preser	vative	Analysis/Met	hod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
2×	11	H	21	ا جرنے	>1	N				
7.1.	12.1	<u>├</u>			0 (. 1				
<u> </u>	INC	t	TC	$- \mathbf{V}$	UC	PP-				
				=						
				NC	DIES/ADDITION	NAL COMMENT	5			
2										

				WELL	MONITORIN	G DATA SHI	EET			
	Section 2	1987 - 19 P		Well ID:	MW	1-3		Job Number:		
A A	Case	adia		Client:	NNS-			Date:	2/8/1	19
-	Associate	es, LLC		Project:			wm	Sampler:	ilw	1.055
	and a second			Weather:	DJerc		28	Time In/Out:	315	1355
			101		WELL I		A			
/onument Ty	pe:	Flosh mount,	Stick-up		Well Diamete	r:	24	Depth to Free		
		Other:	1		Well Depth:			Free Product	Thickness:	
Monument Co	ondition: 🔶		20		Depth to Wat	er:	291.55	Water Columr	n Length:	
Vell Cap Lock	Present:	Yes <table-cell></table-cell>			Screened Inte	rval:		Purge Volume	:	
Comments:										
		ight) X (Multip	lier) X (# Casir	ig Volumes)						
Vater height	multipliers (g	al):	1-inch well =	0.041	2-inch = 0.162		4-inch = 0.65	3	1 gal = 3.785 lit	ters
			7		PURGING					
urge Method		P			Pump Intake [m	NEW	
ampling Met		Cumulative	LE		Tubing Materi	ar & Type:		1 (c	ALE VAL	/ DEDICATED
	Volume	Volume	DTW	Purge Rate		Temp	Cond	DO	ORP	Clarity/Color
Time	Purged (liters)	Purged	(btc)	(L/min)	рН	(°C)	(µS/cm)	(ppm)	(mV)	Other Remarks
	(inters)	(liters)								
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1323			29.65	0.2	6.25	13.57	(90	6.71	126.1	Clear
1326			29.91	0.2	6.29	13.65	191	6.04	59.5	,
1329			29.91	6.15	6.28	13.77	186	4.15	53.7	
				0.15		13.78		2.83		
1332			29.91	0.13	6.27		184	1	55.0	/
133)			29.91		6.27	13.77	182	2.98	57.5	
1378			29.91		6.26	13.78	180	189	59.4	
		1 m				_				
	· · ·									
			•	-						
		4	-		PURGING					
ample ID:		mw.	-3	Sampling Flo		0.15		Analytical Lab		HPex
ample Time:		130		Final Depth t		29.9	Cites Cine	Did Well Dewa		NO
lo. of Contain				Analysis/Met	nod		Filter Size	MS/MSD	Duplicate ID	
28	1C Pul	He	21		.1-1	N				(
340	pul		RI	L	locs	N	-			
			·····							
				,						
				NC	TES/ADDITION	IAL COMMENT	ſS			
										1.00

	La		A	Well ID:	mw	- 7		Job Number:		
MA	Case	adia		Client:	Nusta			Date:	2/19	119
	Case	adia		Project:		4 Gul	pt -	Sampler:	ĹW	
	Associate	es, LLC		Weather:	OVERCA	4	>°F	Time In/Out:	730/	810
1 143		~	2		WELL					
		Flush-mount/	/Stick-up	X	Well Diamete	er:	24	Depth to Free	Product:	
Monument Ty	ype:	Other:			Well Depth:			Free Product		_
Monument Co	andition:		1		Depth to Wat	or:	11.51	Water Column		-
			602							
Well Cap Lock	(Present:	Yes No			Screened Inte	ervai:	<u>^</u>	Purge Volume		
Comments:	- /\ A /atam	iaht) V (Multin	lier) V /# Cosir		T					
Water height		eight) X (Multip	1-inch well =	and the second	2-inch = 0.16	2	4-inch = 0.65	2	1 gal = 3.785 li	tors
water neight	multipliers (391):	1-Inch well =	0.041	PURGIN		4-inch = 0.65	3	1 gai = 3.785 li	lers
Purge Metho	d:	P	0		Pump Intake		/	ns		
Sampling Met			F		Tubing Mater			PL	NEW	/ DEDICATED
1 0		Cumulative			0			1-6		,
Time	Volume Purged	Volume	DTW	Purge Rate	nU	Temp	Cond	DO	ORP	Clarity/Colo
Time	(liters)	Purged	(btc)	(L/min)	рН	(°C)	(µS/cm)	(ppm)	(mV)	Other Remai
	(incro)	(liters)			Sec. 1					
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
747			11.5	0.2	6.60	12.71	505	5.62	98.4	CLAR
750			1154	1	6.55	13.22	513	2.64	49.1	1
			1150		1 ~1	13.44			28.4	
753			11.58		6.54		516	2.30	,	
756			11.62		6.54	13.46	1	1.34	24.2	¥
759			11.64		6.54	12.47	516	1.30	22.7	(
802			11.68		6.54	12.48	515	1.22	22.4	
002			11.40		6.17	19.48	217	1. 60	00-	
0- m.										
			1		PURGIN					1
Sample ID:			<u>v-7</u>	Sampling Flo			.2	Analytical Lab		Aprx
Sample Time:			00	Final Depth t		Field Filtered		Did Well Dew		NO
No. of Contain			rvative	Analysis/Met		riela Filtered	Filter Size	MS/MSD	Duplicate ID	
	Idal		HZI	V V	5	N,				
2×		H	21	T	PH	N	-			
									I	
								1.		
		1		INC	DTES/ADDITIO	NAL COMMENT	rs		I	
			_							
	the second s	and the second se		and the second se				and the second sec	and the second se	

-	las aim	San		Well ID:	MN			Job Number:		
	Casc	adia		Client:	Nusi	The second s		Date:	2/19	119
2	Associate	s, LLC		Project: Weather:	Vann			Sampler: Time In/Out:	1.822	alerice
Contraction of the second				weather.	WELLI		0	Time myOut.	Dra	18200
		Flush-mount/	Stick-up		Well Diamete		٤"	Depth to Free	Product:	
Aonument Ty	/pe:	Other:	1		Well Depth:		-	Free Product 1	hickness:	-
Monument Co	ondition:	an	X		Depth to Wat	er:	18.39	Water Column	Length:	
Vell Cap Lock	Present:	YERK			Screened Inte	rval:	-	Purge Volume	:	-
Comments:										
			lier) X (# Casin						2.1.	
Vater height	multipliers (ga	al):	1-inch well = ().041	2-inch = 0.162		4-inch = 0.65	3	1 gal = 3.785 l	iters
urge Method	d:	ŀ	20		Pump Intake I			M		
Sampling Met			TF	10.00	Tubing Mater		LE	WE	NEW	/ DEDICATED
	Volume	Cumulative				3.1.1.1.1				
Time	Purged	Volume Purged	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
	(liters)	(liters)	(500)				(po) (m)	(5511)	(1117)	
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
2825			18.37	0.15	6.51	12.47	110	10.24	33.7	clear
0828		4	18.35	1	6.37	12.27	85	9.44	65.4	8
831			18.36		6.32	12.32	79	9.10	81.7	
834			18.36		6.28	12.50	77	878	100.6	d
837			1123(1	124	17.68	72	8.75	106.9	1
	1000	N	18.36		6.28		74	PIA	107.9	
840			18.30	NV.	0.28	12.66	74	0-07	10/9	
NN 72 4										
			12.							
							,			
	off i									
							1.00			
			A Distance		PURGING	G DATA			30	
ample ID:		MV		Sampling Flov		0,	15	Analytical Labo		APIX
ample Time: No. of Contair		0		Final Depth to		<u>\</u> .	3 Filter Size	Did Well Dewa		NO
NO. OF CONTAIN	ers/Type	Preser	vative	Analysis/Met		Field Filtered	Filter Size	MS/MSD	Duplicate ID	
<u></u>	TUM	11	IICA	- Fr	M	N			and the second	
2	XIC	- H	C(5-1-1-	IPH	14				
										
E.										
				NO	TES/ADDITION	IAL COMMENT	S			

	Same in	112		Well ID:	MU	v-11		Job Number:		
	Casc	adia		Client:		ytar		Date:	2/19	19
	Associate	es, LLC		Project:		hntx	GwM	Sampler:	in	00/
and the second second		-		Weather:	Rai	JATA	-	Time In/Out:	9101	935
		Flush-mount/	Stick-up		Well Diamete		2"	Depth to Free	Product	~
Monument Ty	/pe:	Other:			Well Depth:		-	Free Product		
Monument Co	andition:	otilet.	0.1		Depth to Wa	tor	17.20	Water Colum	The second second	~
Well Cap Lock	/	Yes No	Ded		Screened Inte		17.29	Purge Volume		
Comments:	i resent.	<u>FC3 110</u>			Screened ind	erval.	-	Fulge volume		
	e = (Water He	ight) X (Multip	lier) X (# Casir	ng Volumes)						
Water height	multipliers (g	al):	1-inch well ≐	0.041	2-inch = 0.16	2	4-inch = 0.65	53	1 gal = 3.785 l	iters
					PURGIN					
Purge Method		- FP			Pump Intake		N	1S		
Sampling Met	hod:	Cumulative	LF		Tubing Mate	rial & Type: T	L	DPE	NEW)/ DEDICATED
There	Volume	Volume	DTW	Purge Rate		Temp	Cond	DO	ORP	Clarity/Co
Time	Purged (liters)	Purged	(btc)	(L/min)	pH	(°C)	(µS/cm)	(ppm)	(mV)	Other Rem
	((liters)			+/-0.1	10.5.90	150	105	100.00	
9.2			17 26	6.10		+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
917			17.35			13.47	186	4.50	48.5	ele
920			17.36		6.51	14.10	179	1.44	38.7	
923			17.36		6.51	14.11	179	1.36	37.1	
926			17.36	N'	6.50	14.13	179	1.26	35.2	V
			65 B			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		· · · · · · · · · · · · · · · · · · ·		
1	•									
2										
1.1	20. 20				PURGIN	G DATA				
Sample ID:		Mu		Sampling Flo		0.15		Analytical Lab		AP.
Sample Time:			30	Final Depth		17.36	370	Did Well Dewa	V	16
No. of Contair	ners/Type	Preser	vative	Analysis/Me	1	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
KX1	6	, P	ru -	TY		N.		I		
3)	CYDAL	HC	1		VOCS	N				
						1				
						2				
	1.1	1. 1. 1	- ME - M							
	-			N	OTES/ADDITIO	NAL COMMENT	rs			

		1.1.1		Well ID:	Mu	1-1		Job Number:		
Cascadia				Client:	Nust			Date:	2/19	
				Project:			M	Sampler:	211	
Associates, LLC			Project: Vannex Gu Weather: Rain, 46°			Time In/Out:		940	940 / 1010	
						DATA		Time injout.	1 -140	17010
		Flush-moun	/Stick-up		Well Diamete	er:	Zu	Depth to Free	Product:	
Monument Condition:		Other:			Well Depth:			Free Product Thickness:		
		(Yes) No good			Depth to Water: Screened Interval:		16.43			
							10.95			+
Comments:					Screened ind			Pulge volume	2:	
Purge Volume	e = (Water He	eight) X (Multi	olier) X (# Casi	ng Volumes)	T					
Water height					2-inch = 0.16	2	4-inch = 0.65	3	1 gal = 3.785	litors
				0.011	PURGIN		4-11101 - 0.03	5	1 gai - 5.765	inters
Purge Metho	d:		PP		Pump Intake Depth:		M			
Sampling Met	hod:		IF		Tubing Mater		1	DPE	NEW	/ DEDICATED
	Volume	Cumulative								
Time	Purged	Volume	DTW	Purge Rate	рН	Temp	Cond	DO	ORP	Clarity/Co
	(liters)	Purged	(btc)	(L/min)		(°C)	(µS/cm)	(ppm)	(mV)	Other Rem
		(liters)			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
943			16.44	DIC				+/-U.5 ppm		
			1	0.15		13.68	2	188	8	cea
946			16.45		6.53		4	141	124-11	
949			16.45		6.44	14		0,70	86	
952			16.48		28	1 95	234	1000	88.6	
955			1 1		/	7	233	p 1 1	-	1
958			16.45		V		· · · ·	0.61	89.7	<u></u>
150			164	V	6.31	13.94	233	56	90.9	N/
		L			BUE SU	DAT				
Sample ID:			1 1	Sampling Flou	PURGING		0,15	Analytical		1.00
Sample Time:		MW-t		Sampling Flow				Analytical Labo		MANO NO
No. of Containers/Type		Preservative		Final Depth to Water: Analysis/Method		Field Filtered Filter Size		Did Well Dewater: MS/MSD Duplicate		100
21.1					/// /	k	THE JILE		Duplicate ID	APTITUMED CONTINUES
Skyon		10		V	4					
XX		HU		1	plt	IV	Constant and the second se	MANAGEMENT CHOOSE AND THE PROPERTY OF		
		3								
			1.1.2							
				NOT	ES/ADDITION	AL COMMENT	S			

					-	IG DATA SHI	EET				
n.L	No. of Street	200 . S	Well ID:			mw-2			Job Number:		
Cascadia Associates, LLC				Client: Nust				Date:	2/19/ Ln	19	
				Project:		Write C	IWM	Sampler:	La	/	
and the second		~		Weather:	Rain	140		Time In/Out:	1020/	1110	
		Elush moult	Stickup		Well Diamete		2"	Depth to Free	Product		
Monument Type: O		Flush-mount/Stick-up Other:				:1.		Depth to Free Product: Free Product Thickness:			
					Well Depth:						
Monument Condition:		food			Depth to Water:		27.94	Water Column Length:			
Well Cap Lock	Present:	Yes No			Screened Inte	erval:	-	Purge Volume	:	~	
Comments:	() 4 ()	·							_		
Water height r		ight) X (Multip	1-inch well =		2-inch = 0.16	2	4-inch = 0.65	3	1 gal = 3.785 li	tors	
	nutupilers (g	ai).	1-IIICII Well -	0.041	PURGIN		4-inch = 0.05		1 gai - 5.765 li	*	
Purge Method	:		PP		Pump Intake			MS			
Sampling Method:		1 F			Tubing Material & Type:		LDPE		NEW, / DEDICAT		
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remark	
					+/-0.1	+/-0.5 ° C	+/-5%	+/-0.5 ppm	+/-20 mV		
1027			27.94	0.15	6.11	13.85	182	5.46	119.1	clea	
1030	· ·	-	27.99	1	6.09	13.89	183	4.09	127.6	1	
1033			28.00		6.07	13.9	185	3.53			
						13.94	107	1.92	125.7		
1036			28.00		6.06		101				
1039			25.01	V	6.01	13.94	189	1.69	127.6		
1642			28.01		6.05	13.98	192	1.14	130.1		
1245			28.01		6.04	13.99	193	1.09	131.7	/	
1048			28.01		6.04	13.99	192	1.01	132.7	V	
1070			20.01	1.3.4					100.1		
				10.00							
	,										
					1						
										9	
		1			I PURGIN	G DATA					
Sample ID:		M	W-2	Sampling Flo		0.	15	Analytical Lab	oratory:	Anex	
Sample Time:		1010		Final Depth t		Water:			id Well Dewater:		
No. of Containers/Type		Preservative		Analysis/Met	hod	Field Filtered		MS/MSD Duplicate ID			
ZXIL		HCI		7	PH	N	-				
ZXYDAI		Lui		\/	065	N	-				
71	1-INL	F	101	V V		,					
				and the series	N. 1					,	
									· ·		
1											
				NC	TES/ADDITIO	NAL COMMEN	TS				
						1		-			
		-	-								

