Dakota Creek Industries Shipyard Facility

# **Sediment Sampling Data Report**

# Appendix C Laboratory Analytical Report for Sediment

**FINAL** 



December 18, 2006

Jessi Massingale Floyd Snider Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101-2341

### RE: Project: DCI Marina ARI Job No: KG06

Dear Jessi:

Please find enclosed the original chain of custody documentation (COC) and the final results for the samples from the project referenced above.

Thirteen sediment samples were received November 18, 2006 under ARI Job KG06. The cooler temperature measure by IR thermometer following ARI SOP was 4.0° C. Samples were received in good condition with no discrepancies in paperwork. On November 20<sup>th</sup>, emailed instructions were received to put four samples on hold until the Dioxin results were completed for all samples.

Samples were analyzed for Total Solids, Total Organic Carbon and Grainsize as requested. All laboratory QC met requirements. The Dioxin sample aliquots were submitted to Pace Analytical. The Pace report is included here in it's entirety.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Susan D. Dunnihoo Client Services Manager 206-695-6207 sue@arilabs.com

Enclosures

cc: Efile KG06

SD/sdrd

| ARI Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | Receipt Form                          | ANALYTICAL<br>RESOURCES<br>INCORPORATE |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|
| Tracking NO::       Date:       UNHOR         ARI Job No.:       AGG6       Lims NO::       06-23516         Preliminary Examination Phase:       I.       Were intact, properly signed and dated custody seals attached         To the outside of the cooler?       MA-Hand       Dette:       YES       NO         2.       Were custody papers included with the cooler       YES       NO         3.       Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4.       Complete custody form and attach all shipping documents       OK       NA         Cooler Accepted BY:       MA       Date:       IIMAGE       YES       NO         6.       Record Cooler Temperature       3.0       4.0       Cooler Accepted BY:       Time:       7.40         6.       Record Cooler Temperature       3.0       4.0       Cooler Accepted BY:       NO       9.0       4.0       Cooler Accepted BY:       NO       9.0       4.0       Cooler Temperature       3.0       4.0       Cooler Accepted BY:       NO       9.0       4.0       Cooler Accepted B | ARI Client: Flund Snider                     | Project Name:                         | T                                      |
| Preliminary Examination Phase:         1. Were intact, properly signed and dated custody seals attached<br>To the outside of the cooler?       Main Harman, Arman, Arman, Main, YES       NO         2. Were custody papers included with the cooler       YES       NO         3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:       Date:       Minode         Job Cooler Temperature         5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COC NO.:                                     | Delivered By: M                       | asimpale                               |
| Preliminary Examination Phase:         1. Were intact, properly signed and dated custody seals attached<br>To the outside of the cooler?       Main Harman, Arman, Arman, Main, YES       NO         2. Were custody papers included with the cooler       YES       NO         3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:       Date:       Minode         Job Cooler Temperature         5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tracking NO.:                                | Date:                                 | 10.                                    |
| Preliminary Examination Phase:         1. Were intact, properly signed and dated custody seals attached<br>To the outside of the cooler?       Main Harman, Arman, Arman, Main, YES       NO         2. Were custody papers included with the cooler       YES       NO         3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:       Date:       Minode         Job Cooler Temperature         5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARI Job No.:6666                             | Lims NO.: 06 - 23 40                  | 98 to 06-23510                         |
| To the outside of the cooler?       MA - Hand Deluted       YES       NO         2. Were custody papers included with the cooler       YES       NO         3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:       Date:       MO       Time:       7.46         Log-IN Phase:       S. Was a temperature blank include in the cooler?       YES       NO       NO         6. Record Cooler Temperature.       3.0       4.6       6.7       7.6       7.6         7. What kind of packing material was used?       YES       NO       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0                                                                 |                                              | · .                                   |                                        |
| 2. Were custody papers included with the cooler       YES       NO         3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                       |                                        |
| 3. Were custody papers properly filled out (ink, signed etc.)?       YES       NO         4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To the outside of the cooler?                | NIA-Hand Delu                         | VIL YES NO                             |
| 4. Complete custody forms and attach all shipping documents       OK       NA         Cooler Accepted BY:       Date:       UN       Time:       9.40         Log-IN Phase:       YES       NO       NO       NO       NO         6. Record Cooler Temperature       3.0       4.00       Cooler       NO       Cooler       Cooler Temperature       3.0       4.00       Cooler       Cooler       Cooler       NO       Cooler       Cooler       Cooler       Cooler       So       4.00       Cooler                                              | 2. Were custody papers included with the coo | ler                                   | YES NO                                 |
| Cooler Accepted BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                       |                                        |
| Log-IN Phase:       YES       NO         5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3.0       YES       NO         7. What kind of packing material was used?       Bubble Importance       Bubble Importance         8. Was sufficient ice used (if appropriate)?       YES       NO         9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       (If so, Preservation checklist must be attached)       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns       OK       NA                                                                             |                                              |                                       |                                        |
| Log-IN Phase:       YES       NO         5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3.0       YES       NO         7. What kind of packing material was used?       Bubble Importance       Bubble Importance         8. Was sufficient ice used (if appropriate)?       YES       NO         9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       (If so, Preservation checklist must be attached)       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                            | Cooler Accepted BY:                          | Date:/18/06                           | Time: <u>9:40</u>                      |
| 5. Was a temperature blank include in the cooler?       YES       NO         6. Record Cooler Temperature.       3.0,40%       -c         7. What kind of packing material was used?       Bubble broge broge         8. Was sufficient ice used (if appropriate)?       YES       NO         9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       (If so, Preservation checklist must be attached)       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO       NO         17. Notify Project Manager of any discrepancies or concerns       OK       NA                                                                                                                       |                                              |                                       |                                        |
| 6. Record Cooler Temperature.       3.0, 405 °C         7. What kind of packing material was used?       Bubble Wrap / bay         8. Was sufficient ice used (if appropriate)?       YES       NO         9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       (If so, Preservation checklist must be attached)       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                  | 2.154 3                                      | lor?                                  | VEC NO                                 |
| 7. What kind of packing material was used?       Bubble Migh / bay         8. Was sufficient ice used (if appropriate)?       YES         9. Were all bottles sealed in separate plastic bags?       YES         10. Did all bottles arrive in good condition (unbroken)?       YES         11. Were all bottle labels complete and legible?       YES         12. Did all bottle labels and tags agree with custody papers?       YES         13. Were all bottles used correct for the requested analyses?       YES         14. Do any of the analyses (bottles) require preservative?       (If so, Preservation checklist must be attached)         15. Were all VOA vials free of air bubbles?       YES         16. Was sufficient amount of sample sent in each bottle?       YES         17. Notify Project Manager of any discrepancies or concerns.       OK                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                       |                                        |
| 8. Was sufficient ice used (if appropriate)?       YES       NO         9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |                                        |
| 9. Were all bottles sealed in separate plastic bags?       YES       NO         10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                       |                                        |
| 10. Did all bottles arrive in good condition (unbroken)?       YES       NO         11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                       | $\sim$                                 |
| 11. Were all bottle labels complete and legible?       YES       NO         12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | -                                     | $\searrow$                             |
| 12. Did all bottle labels and tags agree with custody papers?       YES       NO         13. Were all bottles used correct for the requested analyses?       YES       NO         14. Do any of the analyses (bottles) require preservative?       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                       | $\sim$                                 |
| <ul> <li>13. Were all bottles used correct for the requested analyses?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                       | $\bigcirc$                             |
| 14. Do any of the analyses (bottles) require preservative?       YES       NO         (If so, Preservation checklist must be attached)       YES       NO         15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                       |                                        |
| (If so, Preservation checklist must be attached)YESNO15. Were all VOA vials free of air bubbles?YESNO16. Was sufficient amount of sample sent in each bottle?YESNO17. Notify Project Manager of any discrepancies or concerns.OKNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · ·                                    |                                       |                                        |
| 15. Were all VOA vials free of air bubbles?       YES       NO         16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       | YES NO                                 |
| 16. Was sufficient amount of sample sent in each bottle?       YES       NO         17. Notify Project Manager of any discrepancies or concerns.       OK       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                       |                                        |
| 17. Notify Project Manager of any discrepancies or concerns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                       | · · · ·                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1177                                         |                                       | 10-21)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u></u>                                      |                                       |                                        |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · ·                                        |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> 8</u>                                    |                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>e<sup>2</sup></u>                         | · · · · · · · · · · · · · · · · · · · | 9                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |                                        |

nan syamaniya samahanan waman wana karana di sana shudwaharanda Addiniya nana kara si sana sana a s

and the second second

### Sue Dunnihoo

From:Jessi Massingale [jessi.massingale@floydsnider.com]Sent:Monday, November 20, 2006 8:13 AMTo:Sue DunnihooSubject:DCI Sed Samples To Archive

Hi Sue,

I left you a voicemail this morning about four sediment samples that we would like to have archived at ARI until we receive the results of the dioxin testing.

Here are the four samples:

DCI06-7b DCI06-5b DCI06-4b DCI06-9a

Thank you

J

Jessi Massingale FLOYD|SNIDER Two Union Square 601 Union Street Suite 600 Seattle, WA 98101-2341 Tel: (206) 292-2078 Ext. 2157 Fax. (206) 652-7867

mailto:jessi.massingale@floydsnider.com

# Chain of Custody Record & Laboratory Analysis Request

|                                                        |                    | 03 9:40                                | 5                | 9:40                    | 2012111                |                                        |
|--------------------------------------------------------|--------------------|----------------------------------------|------------------|-------------------------|------------------------|----------------------------------------|
|                                                        | Data & Timo:       | HV4-                                   | Date & Time-     |                         | Date & Time:           |                                        |
| Company:                                               | Company:           | ~                                      | Company:         |                         |                        |                                        |
| Printed Name:                                          | Frinted Name:      | う してて 手の                               | E Susan          | MASSINGAU               | <u> </u>               |                                        |
| (Signature)                                            |                    | Machino                                |                  | 10 N N PAN N D          | Ĭ                      | 1                                      |
| Received by:                                           | Relinquished by:   |                                        |                  | and KANATH O            | (Signatuke)            | Comments/Special Instructions          |
|                                                        |                    |                                        |                  | 1301 Solimit            | <u> </u>               | De166 - 2a                             |
| ARCOMINE                                               |                    | <                                      | e<br>S           | Mulo Securio            | 1 antim                | DC106-50                               |
|                                                        |                    | <                                      | 01<br>2          | 1126 Section            | 1 901ENIA              | DC106-5a                               |
| ARCHIVE                                                |                    | <                                      |                  | 1150 Saluran            | 1 90 1011              | D2106 - 76                             |
|                                                        |                    | <                                      | 9<br>1<br>1<br>1 | 1202 Selumin            | IIIII de l             | Deroc - 7a                             |
|                                                        |                    | <                                      | S<br>Fi          | 1610 Sedmit             | 1 20171111             | Delob - 3a                             |
|                                                        |                    | <                                      | 507              | 538 Same                | 11171021538            | D(106-6a 1                             |
| ARCHINE                                                |                    | <                                      | ε<br>Ω           | 1641 Sediment           | 0014111                | Derolo- ga,                            |
|                                                        |                    | <                                      | 5                | 1228 Sectionat          | 1 20 1711              | DC106 - Sa                             |
|                                                        |                    | $\checkmark$ $\checkmark$ $\checkmark$ | 5                | 1351 Sediment           | 11117                  | 1000 - 1a                              |
|                                                        |                    | Tac<br>65<br>Dice                      | No. Containers   | Time Matrix             | Date                   | Sample ID                              |
|                                                        |                    |                                        | MASSINGALE       | ISSI MIRSSI             | Samplers:              | Client Project #:<br>DC { - J.\Q_v unc |
| Notes/Comments                                         | Analysis Requested |                                        |                  |                         |                        |                                        |
| 206-695-6200 206-695-6201 (fax)                        | 10°                | No. of Cooler<br>Coolers: Temps:       |                  |                         | 'n                     | Client contact:<br>JESSIMITSSINDALE    |
| 4611 South 134th Place, Suite 100<br>Tukwila. WA 98168 |                    | Date: 計<br>  /協 06 Present?            | 8402             | Phone:<br>12067292-2078 |                        | ARI Client Company:<br>FLUYD SKUDER    |
| Analytical Resources, Incorporated                     | دلا                | Page: of                               |                  | quested:                | Turn-around Requested: | ARI Assigned Number:                   |

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract. Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

1

Ş

÷.,

•••

# Chain of Custody Record & Laboratory Analysis Request

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.



Matrix: Sediment Data Release Authorized: Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-1a ARI ID: 06-23498 KG06A

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 69.50  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 1.32   |

RL Analytical reporting limit

U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06

Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-8a ARI ID: 06-23499 KG06B

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 71.10  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 1.27   |

RL Analytical reporting limit
U Undetected at reported detection limit



ŵ

Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-6a ARI ID: 06-23501 KG06D

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 81.90  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 0.560  |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-3a ARI ID: 06-23502 KG06E

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 75.50  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 0.448  |

RL Analytical reporting limit

U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized: Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-7a ARI ID: 06-23503 KG06F

| Analyte<br>          | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 55.10  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 1.48   |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-5a ARI ID: 06-23505 KG06H

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 34.80  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 4.96   |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06

Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-2a ARI ID: 06-23507 KG06J

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 78.30  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 0.641  |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-2-D ARI ID: 06-23508 KG06K

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 78.20  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 1.15   |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized: Reported: 12/01/06

Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-4a ARI ID: 06-23509 KG06L

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 11/20/06<br>112006#2 | EPA 160.3  | Percent | 0.01  | 67.00  |
| Total Organic Carbon | 11/29/06<br>112906#1 | Plumb,1981 | Percent | 0.020 | 0.883  |

RL Analytical reporting limit
U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte              | Date                 | Units   | Blank                |
|----------------------|----------------------|---------|----------------------|
| Total Solids         | 11/20/06<br>11/20/06 | Percent | < 0.01 U<br>< 0.01 U |
| Total Organic Carbon | 11/29/06             | Percent | < 0.020 U            |



Matrix: Sediment Data Release Authorized AL Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte              | Date     | Units   | LCS   | Spike<br>Added | Recovery |
|----------------------|----------|---------|-------|----------------|----------|
| Total Organic Carbon | 11/29/06 | Percent | 0.500 | 0.500          | 100.0%   |

### STANDARD REFERENCE RESULTS-CONVENTIONALS KG06-Floyd Snider



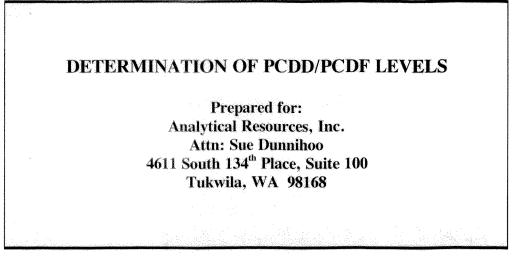
Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte/SRM ID                     | Date     | Units   | SRM  | True<br>Value | Recovery |
|------------------------------------|----------|---------|------|---------------|----------|
| Total Organic Carbon<br>NIST #8704 | 11/29/06 | Percent | 3.24 | 3.35          | 96.7%    |



Matrix: Sediment Data Release Authorized Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

| Analyte                  | Date     | Units   | Sample | Replicate(s)   | RPD/RSD |
|--------------------------|----------|---------|--------|----------------|---------|
| ARI ID: KG06H Client ID: | DC106-5a |         |        |                |         |
| Total Solids             | 11/20/06 | Percent | 34.80  | 34.10<br>33.60 | 1.8%    |
| Total Organic Carbon     | 11/29/06 | Percent | 4.96   | 4.58<br>4.90   | 4.2%    |




Matrix: Sediment Data Release Authorized Av Reported: 12/01/06 Project: DCL Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

| Analyte                  | Date     | Units   | Sample | Spike | Spike<br>Added | Recovery |
|--------------------------|----------|---------|--------|-------|----------------|----------|
| ARI ID: KG06H Client ID: | DC106-5a |         |        |       |                |          |
| Total Organic Carbon     | 11/29/06 | Percent | 4.96   | 9.44  | 4.78           | 93.78    |



Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444





This report contains 32 pages.

The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

**Client Project Number: KG06** 

**Client Purchase Order Number: NA** 

# **REPORT OF LABORATORY ANALYSIS**





REPORT OF: CHEMICAL ANALYSES

# PROJECT: PCDD/PCDF ANALYSES

DATE: December 7, 2006

ISSUED TO: Analytical Resources, Inc. Attn: Sue Dunnihoo 4611 South 134<sup>th</sup> Place Tukwila, WA 98168

REPORT NO: 06-1042387

### INTRODUCTION

This report presents the results from the analyses performed on thirteen samples submitted by a representative of Analytical Resources, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290.

### SAMPLE IDENTIFICATION

| Client ID                                                                                                                                                       | Sample Type                                              | Date Received                                            | Pace ID                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| 06-23498-KG06A DC106-1a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387001                                                         |
| 06-23499-KG06B DC106-8a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387002                                                         |
| 06-23500-KG06C DC106-9a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387003                                                         |
| 06-23501-KG06D DC106-6a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387004                                                         |
| 06-23502-KG06E DC106-3a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387005                                                         |
| 06-23503-KG06F DC106-7a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387006                                                         |
| 06-23504-KG06G DC106-7b                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387007                                                         |
| 06-23505-KG06H DC106-5a                                                                                                                                         | Sediment                                                 | 11/21/06                                                 | 1042387008                                                         |
| 06-23506-KG06H DC106-5b<br>06-23506-KG06J DC106-5b<br>06-23507-KG06J DC106-2a<br>06-23508-KG06K DC106-2-D<br>06-23509-KG06L DC106-4a<br>06-23510-KG06M DC106-4b | Sediment<br>Sediment<br>Sediment<br>Sediment<br>Sediment | 11/21/06<br>11/21/06<br>11/21/06<br>11/21/06<br>11/21/06 | 1042387009<br>1042387010<br>1042387011<br>1042387012<br>1042387013 |

### RESULTS

The results are included in the following:

Appendix A – Chain of Custody Documentation Appendix B – PCDD/PCDF Results

# **REPORT OF LABORATORY ANALYSIS**





### www.pacelabs.com REPORT OF: CHEMICAL ANALYSES

### PROJECT: PCDD/PCDF ANALYSES

DATE: December 7, 2006

**PAGE:** 2

**REPORT NO:** 06-1042387

### DISCUSSION

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 44-130%. All of the labeled standard recoveries obtained for the field samples were within the 40-135% target range for this method. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "E" where polychlorinated diphenyl ethers were present, or "I" where incorrect isotope ratios were obtained. The value reported for OCDD in sample DC106-4A was obtained from analysis of a dilution of the sample extract; the affected value was flagged "N2" on the results table.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results, found at the beginning of Appendix B, show the blanks to be free of PCDDs and PCDFs at the reporting limits, with the exception of a trace level of OCDD in Blank-11543. This was below the calibration range of the method. The OCDD levels reported for the associated field samples were higher than the OCDD in the blank by one or more orders of magnitude. These results indicate that the sample processing procedures did not significantly impact the results of the field sample analyses.

Laboratory and matrix spike samples were also prepared with the sample batches using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 83-138%, with relative percent differences (RPDs) generally from 0.1-17.7%. Somewhat variable results were obtained for the native OCDD in the matrix spike samples, due to the levels of this congener in the sample materials; this variability resulted in elevated RPD values (31.6-41.7%) for this congener in the matrix spike samples. Also, one labeled standard in DC106-3A-MSD was recovered below the target range; the affected value was flagged "P" on the results table.

# **REPORT OF LABORATORY ANALYSIS**





com REPORT OF: CHEMICAL ANALYSES

### PROJECT: PCDD/PCDF ANALYSES

DATE: December 7, 2006

**PAGE**: 3

**REPORT NO:** 06-1042387

### REMARKS

The sample extracts will be retained for a period of 15 days from the date of this report and then discarded unless other arrangements are made. The raw mass spectral data will be archived for a period of not less than one year. Questions regarding the data contained in this report may be directed to the author at the number provided below.

Pace Analytical Services, Inc.

Naturn t

Scott C. Unze Project Manager, HRMS (612) 607-6383





Pace Analytical® www.pacelabs.com

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans

| Number | Compound(s)         | TEF   |
|--------|---------------------|-------|
| 4      |                     | 1 00  |
| 1      | 2,3,7,8-TCDD        | 1.00  |
| 2      | 1,2,3,7,8-PeCDD     | 0.50  |
| 3      | 1,2,3,6,7,8-HxCDD   | 0.1   |
| 4      | 1,2,3,7,8,9-HxCDD   | 0.1   |
| 5      | 1,2,3,4,7,8-HxCDD   | 0.1   |
| 6      | 1,2,3,4,6,7,8-HpCDD | 0.01  |
| 7      | OCDD                | 0.001 |
| 8      | * Total - TCDD      | 0.0   |
| 9      | * Total - PeCDD     | 0.0   |
| 10     | * Total - HxCDD     | 0.0   |
| 11     | * Total - HpCDD     | 0.0   |
|        |                     |       |
| 12     | 2,3,7,8-TCDF        | 0.10  |
| 13     | 1,2,3,7,8-PeCDF     | 0.05  |
| 14     | 2,3,4,7,8-PeCDF     | 0.5   |
| 15     | 1,2,3,6,7,8-HxCDF   | 0.1   |
| 16     | 1,2,3,7,8,9-HxCDF   | 0.1   |
| 17     | 1,2,3,4,7,8-HxCDF   | 0.1   |
| 18     | 2,3,4,6,7,8-HxCDF   | 0.1   |
| 19     | 1,2,3,4,6,7,8-HpCDF | 0.01  |
| 20     | 1,2,3,4,7,8,9-HpCDF | 0.01  |
| 21     | OCDF                | 0.001 |
| 22     | * Total - TCDF      | 0.0   |
| 23     | * Total - PeCDF     | 0.0   |
| 24     | * Total - HxCDF     | 0.0   |
| 25     | * Total - HpCDF     | 0.0   |
| ~~     |                     |       |

\*Excluding the 2,3,7,8-substituted congeners.

Reference: 1989 ITEFs

**REPORT OF LABORATORY ANALYSIS** 





Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Appendix A

# **REPORT OF LABORATORY ANALYSIS**



CUSTODY TRANSFER 11/20/06

Analytical Protocol: PSDDA

Special Instructions:



Laboratory: Pace Analytical, Inc. Lab Contact: Scott Unze Lab Address: 1700 Elm St. Minneapolis, MN 55414 Phone: 612-607-1700 Fax: ARI Client: Floyd Snider Project ID: DCL ARI PM: Sue Dunnihoo Phone: 206-695-6207 Fax: 206-695-6201

> Requested Turn Around: 12/04/06 Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

| ARI ID          | Client ID/<br>Add'l ID | Sampled  | Matrix   | Bottles                                                                                                        | Analyses       |       | *   |
|-----------------|------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------|----------------|-------|-----|
| 06-23498-KG06A  | DC106-1a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                | C     | )0( |
| 06-23499-KG06B  | DC106-8a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 00Ż |
| 06-23500-KG06C  | DC106-9a               | 11/17/06 | Sediment | nnin meneren bilan kalan ginan gina kan gina kan yain kan yang kan yang pendakan kan yang kan yang kan kan yan | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 003 |
| 06-23501-KG06D  | DC106-6a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 004 |
| 06-23502-KG06E  | DC106-3a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 005 |
| 06-23503-KG06F  | DC106-7a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 006 |
| 06-23504-KG06G  | DC106-7b               | 11/17/06 | Sediment | ne die netwoorden waarde gevoerde die oog op oor oor                                                           | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                | 4     | 007 |
| 06-23505-KG06H  | DC106-5a               | 11/17/06 | Sediment |                                                                                                                | Dioxins/Furans | (Sub) |     |
| Special Instruc | tions: 8290            |          |          |                                                                                                                |                |       | 008 |

| Carrier      |    |       |           | Airbill | Mennya Manjarahan yang kang kanan kanang kanan yang kanang kanan kanan kanan kanan kanan kanan kanan kanan kan |          |       | Date   |     |
|--------------|----|-------|-----------|---------|----------------------------------------------------------------------------------------------------------------|----------|-------|--------|-----|
| Relinguished | by |       | Company   |         | ]                                                                                                              | Date     |       | Time   |     |
| Received by  |    | 1. VI | Company   | Pace-   | MN                                                                                                             | Date 1/2 | 1/04  | Time 4 | :50 |
|              |    | V (   | Subcontra |         | ody Form -<br>1 of 2                                                                                           | KG06     | 7=1.5 | °C     |     |

### SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 11/20/06



j.

| Laboratory: Pace Analytical, Inc.<br>Lab Contact: Scott Unze |                                      |          | ARI Client: Floyd Snider<br>Project ID: DCL-MARINA |                |       |     |  |
|--------------------------------------------------------------|--------------------------------------|----------|----------------------------------------------------|----------------|-------|-----|--|
| ARI Sample ID                                                | Client Sample ID/<br>Add'l Sample ID | Sampled  | Matrix Bottle:                                     | a Analyses     |       |     |  |
| 06-23506-KG06I                                               | DC106-5b                             | 11/17/06 | Sediment                                           | Dioxins/Furans | (Sub) |     |  |
| Special Instruc                                              | tions: 8290                          |          |                                                    |                |       | 009 |  |
| Q6-23507-KG06J                                               | DC106-2a                             | 11/17/06 | Sediment                                           | Dioxins/Furans | (Sub) |     |  |
| Special Instruc                                              | tions: 8290                          |          |                                                    |                |       | 010 |  |
| 06-23508-KG06K                                               | DC106-2-D                            | 11/17/06 | Sediment                                           | Dioxins/Furans | (Sub) |     |  |
| Special Instruc                                              | tions: 8290                          |          |                                                    |                |       | 011 |  |
| 06-23509-KG06L                                               | DC106-4a                             | 11/17/06 | Sediment                                           | Dioxins/Furans | (Sub) |     |  |
| Special Instruct                                             | tions: 8290                          |          |                                                    |                |       | 012 |  |
| 06-23510-KG06M                                               | DC106-4b                             | 11/17/06 | Sediment                                           | Dioxins/Furans | (Sub) | ł.  |  |
| Special Instruct                                             | tions: 8290                          |          |                                                    |                |       | OB  |  |

| Carrier         | Airbill |      | Date |
|-----------------|---------|------|------|
| Relinquished by | Company | Date | Time |
| Received by     | Company | Date | Time |

Subcontractor Custody Form - **KG06** Page 2 of 2



Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Appendix B







Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Blank Analysis Results

Client - Analytical Resources Inc.

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg | <b>EMPC</b><br>ng/Kg                                               | <b>LRL</b><br>ng/Kg                       | Internal<br>Standards                                                                                | ng's<br>Added                | Percent<br>Recovery  |
|----------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | ND<br>ND             |                                                                    | 0.200<br>0.200                            | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                          | 2.00<br>2.00<br>2.00         | 102<br>51<br>92      |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>ND             | ्रावने स्वतं त्राव्यं त्राव्यं त्राव्यं                            | 0.200<br>0.200                            | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                                  | 2.00<br>2.00<br>2.00         | 97<br>98<br>97       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | ND<br>ND<br>ND       | معہ این فور میں این ا                                              | 0.980<br>0.980<br>0.980                   | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C                              | 2.00<br>2.00<br>2.00         | 99<br>100<br>95      |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | ND<br>ND             | water land a field with                                            | 0.980<br>0.980                            | 1,2,3,4,7,8-HxCDD-13C<br>1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C | 2.00<br>2.00<br>2.00<br>2.00 | 82<br>90<br>86<br>76 |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | ND<br>ND<br>ND       | 400 AND; 100 AND AND<br>300 AND 400 AND 400<br>300 AND 400 AND 400 | 0.980<br>0.980<br>0.980                   | 1,2,3,4,7,6,9-hpCDF-13C<br>1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                       | 2.00<br>2.00<br>4.00         | 80<br>96             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | ND<br>ND             | المعارضة بالله المراجع                                             | 0.980<br>0.980                            | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                            | 2.00<br>2.00                 | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | ND<br>ND<br>ND<br>ND |                                                                    | 0.980<br>0.980<br>0.980<br>0.980<br>0.980 | 2,3,7,8-TCDD-37Cl4                                                                                   | 0.20                         | 50                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | ND<br>ND<br>ND       |                                                                    | 0.980<br>0.980<br>0.980                   | Total 2,3,7,8-TCDD<br>Equivalence: 0.0025 ng/Kg<br>(Using ITE Factors)                               |                              |                      |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | ND<br>ND             | ator 600 (00 80) 400                                               | 0.980<br>0.980                            |                                                                                                      |                              |                      |
| OCDF<br>OCDD                                                               | ND<br>2.5            |                                                                    | 2.000<br>2.000 J                          |                                                                                                      |                              |                      |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

LRL = Lower Reporting Limit

J = Concentration detected is below the calibration range

P = Recovery outside of target range

A = Detection Limit based on signal-to-noise measurement

I = Interference E = PCDE Interference ND = Not Detected NA = Not Applicable NC = Not Calculated

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Blank Analysis Results

Client - Analytical Resources Inc.

| Native<br>Isomers                                                          | <b>Conc</b><br>ng/Kg | <b>EMPC</b><br>ng/Kg                                                      | <b>LRL</b><br>ng/Kg              | Internal<br>Standards                                                                            | ng's<br>Added                        | Percent<br>Recovery   |
|----------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|
| 2,3,7,8-TCDF<br>Total TCDF                                                 | ND<br>ND             | अन्य की स्वर कर हते                                                       | 0.099<br>0.099                   | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                      | 2.00<br>2.00<br>2.00                 | 103<br>90<br>105      |
| 2,3,7,8-TCDD<br>Total TCDD                                                 | ND<br>ND             | भारत मध्य संपत्र क्रिक संपत्                                              | 0.099<br>0.099                   | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C                              | 2.00<br>2.00<br>2.00<br>2.00         | 108<br>124<br>93      |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                          | ND<br>ND<br>ND       | बड़ा का आत का अब<br>कार का मार का आ                                       | 0.500<br>0.500<br>0.500          | 1,2,3,6,7,8-HxCDF-13C<br>2,3,4,6,7,8-HxCDF-13C<br>1,2,3,7,8,9-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 94<br>100<br>91<br>95 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                             | ND<br>ND             | unan dipi man baka pang<br>unan bah man ang man                           | 0.500<br>0.500                   | 1,2,3,6,7,8-HxCDD-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,7,8,9-HpCDF-13C                      | 2.00<br>2.00<br>2.00<br>2.00         | 92<br>93<br>72        |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                | ND<br>ND<br>ND       | waa kaip kaip dar 100.<br>Hele dan ante wat alter<br>waa kaip pak kan ala | 0.500<br>0.500<br>0.500          | 1,2,3,4,6,7,8-HpCDD-13C<br>OCDD-13C                                                              | 2.00<br>4.00                         | 101<br>88             |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                           | ND<br>ND             | pana, angk ngan talak silak<br>pana salak ngan pana                       | 0.500<br>0.500                   | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13C                                                        | 2.00<br>2.00                         | NA<br>NA              |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD | ND<br>ND<br>ND<br>ND |                                                                           | 0.500<br>0.500<br>0.500<br>0.500 | 2,3,7,8-TCDD-37Cl4                                                                               | 0.20                                 | 78                    |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                  | ND<br>ND<br>ND       | unde gene gene war wer                                                    | 0.500<br>0.500<br>0.500          | Total 2,3,7,8-TCDD<br>Equivalence: 0.00 ng/Kg<br>(Using ITE Factors)                             |                                      |                       |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                         | ND<br>ND             | سرت من من من من من                                                        | 0.500<br>0.500                   |                                                                                                  |                                      |                       |
| OCDF<br>OCDD                                                               | ND<br>ND             | ann ann ann ann ann                                                       | 0.990<br>0.990                   |                                                                                                  |                                      |                       |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

LRL = Lower Reporting Limit

J = Concentration detected is below the calibration range

P = Recovery outside of target range

A = Detection Limit based on signal-to-noise measurement

I = Interference E = PCDE Interference ND = Not Detected NA = Not Applicable NC = Not Calculated \* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F61<br>BAL<br>19.3<br>37.1<br>12.1<br>09/1<br>F61 | 2387001<br>130B_11<br>g<br>g<br>0/2006                        | 6A DC106-1A<br>F61130B_16          | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed | Solid<br>NA<br>11/17/20<br>11/21/20<br>11/21/20<br>12/01/20 | 06                                                  |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                      | <b>EMPC</b><br>ng/Kg                                          | <b>LRL</b><br>ng/Kg                | Internal<br>Standards                                                |                                                             | ng's<br>Added                                       | Percent<br>Recovery |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.64<br>6.30                                              | 100 W M M M M                                                 | 0.160 J<br>0.160                   | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-             | 2                                                           | 2.00<br>2.00<br>2.00                                | 110<br>49<br>102    |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>4.70                                                | साम प्रित स्वरू स्वर्थ स्वर्थ<br>साम स्वरू स्वरू सेन स्वरू    | 0.270 A<br>0.160                   | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDF            | 13C<br>13C                                                  | 2.00<br>2.00<br>2.00                                | 105<br>113<br>110   |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>ND<br>3.10                                          | 407 MM 500 400 MM<br>MO 506 MM 500 400                        | 0.820<br>0.820<br>0.820 J          | 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF          | =-13C<br>=-13C<br>=-13C                                     | 2.00<br>2.00<br>2.00                                | 99<br>94<br>95      |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>0.96                                                | 400 MIC 000 Alle and                                          | 0.820<br>0.820 J                   | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpCI         | D-13C<br>DF-13C                                             | 2.00<br>2.00<br>2.00                                | 91<br>89<br>72      |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                                                                             | ND<br>ND                                                  | nije state repo dan mal<br>mal pop min wa spo.                | 0.820<br>0.820                     | 1,2,3,4,7,8,9-HpCl<br>1,2,3,4,6,7,8-HpCl<br>OCDD-13C                 |                                                             | 2.00<br>2.00<br>4.00                                | 59<br>72<br>61      |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                              | ND<br>ND<br>5.00                                          | साल 507 की 509 की<br>200 का रेज का साथ<br>साथ प्रथा की का साथ | 0.820<br>0.820<br>0.820            | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCD[                                |                                                             | 2.00<br>2.00                                        | NA<br>NA            |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>1.40<br>ND<br>14.00                                 |                                                               | 0.820<br>0.820 J<br>0.820<br>0.820 | 2,3,7,8-TCDD-370                                                     | 214                                                         | 0.20                                                | 47                  |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 3.10<br>ND<br>9.30                                        |                                                               | 0.820 J<br>0.820<br>0.820          | Total 2,3,7,8-TCD<br>Equivalence: 0.62<br>(Using ITE Factors         | ng/Kg                                                       |                                                     |                     |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 20.00<br>74.00                                            | ****                                                          | 0.820<br>0.820                     |                                                                      |                                                             |                                                     |                     |
| OCDF<br>OCDD                                                                                                                                                                       | 6.50<br>180.00                                            |                                                               | 1.600 J<br>1.600                   |                                                                      |                                                             | Martin - at submitted and an apple - specific as an |                     |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

 ${\sf J}$  = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No....1042387

# **REPORT OF LABORATORY ANALYSIS**



1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

# Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank.ID | 1042<br>F611<br>BAL<br>52.0<br>22.8<br>40.2<br>09/10<br>F611 | 387002<br>30B_14<br>g<br>g<br>)/2006         | B DC106-8A<br>F61130B_16         | Dilution N<br>Collected 1<br>Received 1<br>Extracted 1                                 | Solid<br>NA<br>1/17/2006<br>1/21/2006<br>1/21/2006<br>12/01/2006                                               | 5<br>5                       |                         |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                         | EMPC<br>ng/Kg                                | <b>LRL</b><br>ng/Kg              | Internal<br>Standards                                                                  | و                                                                                                              | ng's<br>Added                | Percent<br>Recovery     |   |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.65<br>4.70                                                 | میں      | 0.052 A<br>0.050 A               | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13<br>2,3,4,7,8-PeCDF-13       | C                                                                                                              | 2.00<br>2.00<br>2.00<br>2.00 | 120<br>86<br>126<br>105 |   |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | 0.16<br>4.60                                                 | भेदा स्वतः स्वतः स्वतः स्वत                  | 0.083 JA<br>0.050                | 1,2,3,7,8-PeCDD-13                                                                     | 3C<br>13C                                                                                                      | 2.00<br>2.00                 | 130<br>99               | 1 |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | 2.30<br>1.50<br>12.00                                        | سخه مود وی این می                            | 0.250<br>0.250<br>0.250          | 1,2,3,6,7,8-HxCDF-<br>2,3,4,6,7,8-HxCDF-<br>1,2,3,7,8,9-HxCDF-<br>1,2,3,4,6,7,8-HxCDD- | 13C<br>13C<br>13C<br>13C                                                                                       | 2.00<br>2.00<br>2.00<br>2.00 | 109<br>110<br>97<br>93  |   |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | 1.40<br>10.00                                                | یعه بونه های تحک می<br>چه بونه های تحک می    | 0.250<br>0.250                   | 1,2,3,6,7,8-HxCDD-<br>1,2,3,4,6,7,8-HpCD<br>1 2 3,4,7,8,9-HpCD                         | -13C<br>F-13C<br>F-13C                                                                                         | 2.00<br>2.00<br>2.00         | 88<br>71<br>52          |   |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                                                                             | 3.10<br>1.50                                                 | ین که دی در در در در<br>در در در در در در در | 0.250<br>0.250                   | 1,2,3,4,6,7,8-HpCD<br>OCDD-13C                                                         | D-13C                                                                                                          | 2.00<br>4.00                 | 81<br>69                |   |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                              | 2.40<br>0.88<br>69.00                                        | میں ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے ہوتے  | 0.250<br>0.250 J<br>0.250        | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD                                                  | -13C                                                                                                           | 2.00<br>2.00                 | NA<br>NA                |   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | 2.70<br>13.00<br>6.20<br>150.00                              |                                              | 0.250<br>0.250<br>0.250<br>0.250 | 2,3,7,8-TCDD-37CI                                                                      | 4                                                                                                              | 0.20                         | 87                      |   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 39.00<br>2.70<br>170.00                                      |                                              | 0.250<br>0.250<br>0.250          | Total 2,3,7,8-TCDD<br>Equivalence: 11 ng<br>(Using ITE Factors                         | ı/Kg                                                                                                           |                              |                         |   |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 310.00<br>900.00                                             |                                              | 0.280 A<br>0.250                 |                                                                                        |                                                                                                                |                              |                         |   |
| OCDF<br>OCDD                                                                                                                                                                       | 110.00<br>2500.00                                            |                                              | 0.500<br>0.500                   | from a susceptibility of specify addressed to be and the big specific strategy and     | 1999 and a first second se |                              |                         |   |
| p                                                                                                                                                                                  | and there is                                                 |                                              |                                  |                                                                                        | R  = Low                                                                                                       | er Reportinc                 | i Limit                 |   |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit | = Interference E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**



1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>SMT<br>10.3<br>3.0<br>10.0<br>09/1<br>F612 | 2387003-R<br>206A_05<br>g<br>g<br>0/2006        | 6C DC106-9A<br>F61206A_16          | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed                                  | Solid<br>NA<br>11/17/20<br>11/21/20<br>12/04/20<br>12/06/20 | 06                                                                                                              |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                       | <b>EMPC</b><br>ng/Kg                            | <b>LRL</b><br>ng/Kg                | Internal<br>Standards                                                                                 |                                                             | ng's<br>Added                                                                                                   | Percent<br>Recovery           |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.31<br>5.20                                               | ψα του του του μου<br>φαι του του μου           | 0.200 J<br>0.200                   | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130                                                                  | 2                                                           | 2.00<br>2.00<br>2.00                                                                                            | 110<br>94<br>108              |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>ND                                                   | ایمک میں میں بغیر چاپ<br>جس میں میں میں میں میں | 0.200<br>0.200                     | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                                              | 13C<br>13C                                                  | 2.00<br>2.00                                                                                                    | 113<br>130 +                  |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>ND<br>5.90                                           | 2014 AN AN AN AN AN AN                          | 1.000<br>1.000<br>1.000            | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI<br>1,2,3,7,8,9-HxCDI<br>1,2,3,4,7,8-HxCDI | =-13C<br>=-13C<br>=-13C                                     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00                                                                            | 103<br>97<br>104<br>101<br>94 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>ND                                                   | بولم. مقدّ برای وجه حمد<br>جمل کور برای کور حمد | 1.000<br>1.000                     | 1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC                                           | D-13C<br>DF-13C                                             | 2.00<br>2.00<br>2.00<br>2.00                                                                                    | 97<br>94<br>85                |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                        | ND<br>ND                                                   | 1.5                                             | 1.000 E<br>1.000<br>1.000          | 1,2,3,4,6,7,8-HpC<br>OCDD-13C                                                                         | DD-13C                                                      | 2.00<br>2.00<br>4.00                                                                                            | 110<br>99                     |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                   | ND<br>6.00                                                 | 494 (446 page 1660 page                         | 1.000<br>1.000                     | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCDI                                                                 |                                                             | 2.00<br>2.00                                                                                                    | NA<br>NA                      |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>ND<br>ND<br>4.60                                     | وي من من من من من من من                         | 1.000<br>1.000<br>1.000<br>1.000 J | 2,3,7,8-TCDD-370                                                                                      | 214                                                         | 0.20                                                                                                            | 84                            |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 6.80<br>1.10<br>20.00                                      | *****                                           | 1.000<br>1.000 J<br>1.000          | Total 2,3,7,8-TCD<br>Equivalence: 0.46<br>(Using ITE Factors                                          | ng/Kg                                                       |                                                                                                                 |                               |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 17.00<br>31.00                                             |                                                 | 1.000<br>1.000                     |                                                                                                       |                                                             |                                                                                                                 |                               |
| OCDF<br>OCDD                                                                                                                                                                       | 19.00<br>160.00                                            |                                                 | 2.000<br>2.000                     | 1 1                                                                                                   | 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                    | anders men have a final the manufacture of the second second second second second second second second second s |                               |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**





Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracte<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 104:<br>F61<br>BAL<br>d 30.1<br>24.7<br>22.7<br>09/1<br>F61 | 2387004<br>130B_13<br>g<br>g<br>0/2006                            | 6D DC106-6A<br>F61130B_16          | Matrix<br>Dilution<br>Collected<br>Received                                    | Solid<br>NA<br>11/17/20<br>11/21/20<br>11/21/20<br>12/01/20 | 006                                          |                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                 | <b>Conc</b><br>ng/Kg                                        | EMPC<br>ng/Kg                                                     | <b>LRL</b><br>ng/Kg                | Internal<br>Standards                                                          | ang                     | ng's<br>Added                                | Percent<br>Recovery                                                                                            |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                        | 0.43<br>4.50                                                | میکر بیکه می کمه بی<br>اور می کمه می                              | 0.140 JA<br>0.088                  | 2,3,7,8-TCDF-13(<br>2,3,7,8-TCDD-13(<br>1,2,3,7,8-PeCDF-                       | 0                                                           | 2.00<br>2.00<br>2.00                         | 114<br>48<br>102                                                                                               |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                        | 0.43<br>12.00                                               | 999 900 90,300 96.                                                | 0.250 JA<br>0.088                  | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                                           | 13C<br>•13C                                                 | 2.00<br>2.00                                 | 115<br>114<br>105                                                                                              |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                 | 0.96<br>2.30<br>33.00                                       | مده منه این خود این<br>این شده این خود این<br>این شور این خود این | 0.440 J<br>0.440<br>0.440          | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>2,3,4,6,7,8-HxCD<br>1,2,3,7,8,9-HxCD   | F-13C<br>F-13C<br>F-13C                                     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 99<br>107<br>99<br>93                                                                                          |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                    | 5.10<br>20.00                                               |                                                                   | 0.440<br>0.440                     | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC | D-13C<br>DF-13C                                             | 2.00<br>2.00<br>2.00<br>2.00                 | 93<br>90<br>80<br>72                                                                                           |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                       | 3.20<br>10.00                                               | 9.7                                                               | 0.440 E<br>0.440<br>0.440          | 1,2,3,4,6,7,8-HpC<br>0CDD-13C                                                  |                                                             | 2.00<br>2.00<br>4.00                         | 92<br>94                                                                                                       |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                  | 2.80<br>360.00                                              | 200 mil 00 kie ko                                                 | 0.440<br>0.440                     | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCD                                           |                                                             | 2.00<br>2.00                                 | NA<br>NA                                                                                                       |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                        | 8.90<br>61.00<br>21.00<br>220.00                            |                                                                   | 0.440<br>0.480 A<br>0.440<br>0.440 | 2,3,7,8-TCDD-370                                                               | CI4                                                         | 0.20                                         | 47                                                                                                             |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                         | 180.00<br>7.20<br>650.00                                    |                                                                   | 0.440<br>0.440<br>0.440            | Total 2,3,7,8-TCD<br>Equivalence: 38 n<br>(Using ITE Factor                    | g/Kg                                                        |                                              |                                                                                                                |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                | 1100.00<br>2000.00                                          | میں بڑی عند میں میں                                               | 1.100 A<br>0.440                   |                                                                                |                                                             |                                              |                                                                                                                |
| OCDF<br>OCDD                                                                                                                                                                      | 150.00<br>10000.00                                          |                                                                   | 0.880<br>0.880                     |                                                                                |                                                             |                                              | and a second |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**



1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

# Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>SMT<br>12.4<br>17.2<br>10.3<br>09/10<br>F612 | 387005-R<br>06A_06<br>g<br>g<br>)/2006                                                                                              | 661206A_16                                                    | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed                                                                                            | Solid<br>NA<br>11/17/200<br>11/21/200<br>12/04/200<br>12/06/200 | )6<br>)6                                                     |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                         | <b>EMPC</b><br>ng/Kg                                                                                                                | <b>LRL</b><br>ng/Kg                                           | Internal<br>Standards                                                                                                                                           |                                                                 | ng's<br>Added                                                | Percent<br>Recovery                                                                                             |
| 2,3,7,8-TCDF<br>Total TCDF<br>2,3,7,8-TCDD<br>Total TCDD<br>1,2,3,7,8-PeCDF                                                                                                        | ND<br>0.25<br>ND<br>14.00<br>ND<br>ND                        |                                                                                                                                     | 0.190<br>0.190 J<br>0.190<br>0.190<br>0.190<br>0.970<br>0.970 | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI | C<br>13C<br>13C<br>13C<br>F-13C<br>F-13C<br>F-13C               | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 107<br>95<br>106<br>111<br>127<br>98<br>94<br>98                                                                |
| 2,3,4,7,8-PeCDF<br>Total PeCDF<br>1,2,3,7,8-PeCDD<br>Total PeCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                         | ND<br>ND<br>8.30<br>ND<br>ND                                 |                                                                                                                                     | 0.970<br>0.970<br>0.970<br>0.970<br>0.970<br>0.970            | 1,2,3,7,8,9-HxCDI<br>1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,6,7,8-HpC<br>0,0DD-13C                       | F-13C<br>D-13C<br>D-13C<br>DF-13C<br>DF-13C<br>DF-13C           | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>4.00         | 98<br>93<br>88<br>90<br>80<br>101<br>93                                                                         |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                              | ND<br>ND<br>3.70                                             | یک کی ک                                                                                            | 0.970<br>0.970<br>0.970 J                                     | 1,2,3,4-TCDD-13(<br>1,2,3,7,8,9-HxCD                                                                                                                            | C<br>D-13C                                                      | 2.00<br>2.00                                                 | NA<br>NA                                                                                                        |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>1.20<br>ND<br>18.00                                    | age (data ter) ann afog<br>San afog (data ter) ann<br>agu afog (data ter) ann<br>agu afog (data ter) ann<br>agu afog (data ter) ann | 0.970<br>0.970 J<br>0.970<br>0.970                            | 2,3,7,8-TCDD-37                                                                                                                                                 | Cl4                                                             | 0.20                                                         | 87                                                                                                              |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 3.60<br>ND<br>8.40                                           | *****                                                                                                                               | 0.970 J<br>0.970<br>0.970                                     | Total 2,3,7,8-TCE<br>Equivalence: 0.47<br>(Using ITE Factor                                                                                                     | 7 ng/Kg                                                         |                                                              |                                                                                                                 |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 18.00<br>48.00                                               |                                                                                                                                     | 0.970<br>0.970                                                |                                                                                                                                                                 |                                                                 |                                                              |                                                                                                                 |
| OCDF<br>OCDD                                                                                                                                                                       | 5.60<br>130.00                                               | age ean die dei nas<br>an die die dei nas<br>an die dei dei nas<br>an die dei dei nas                                               | 1.900 J<br>1.900                                              | and any local of an and the state of the baselines of the state of the state of the state of the state of the st                                                |                                                                 | a an 10 anns an 1970, anns anns agus anns an 1971 an 1       | and was a stand of the stand of t |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis EMPC values were excluded from the TEQ calculations. LRL = Lower Reporting Limit | = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>P612<br>BAL<br>61.0<br>50.5<br>30.2<br>11/0<br>P612 | 2387006<br>202B_06<br>g<br>g<br>5/2006                                  | 6F DC106-7A                               | Dilution NA<br>Collected 11<br>Received 11<br>Extracted 11                                   | olid<br>A<br>/17/2006<br>/21/2006<br>/21/2006<br>/02/2006 19:45 |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                    | <b>LRL</b><br>ng/Kg                       | Internal<br>Standards                                                                        | ng's<br>Added                                                   | Percent<br>Recovery    |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 1.30<br>11.00                                               | par den wer paar nan-<br>nen wer wer wer and an                         | 0.066<br>0.066                            | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C                                  | 2.00<br>2.00<br>2.00                                            | 105<br>44<br>90        |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | 20.00                                                       | 0.18                                                                    | 0.110 IA<br>0.066                         | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13                           | 2.00<br>2.00                                                    | 94<br>104<br>111       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | 0.56<br>1.40<br>17.00                                       | φτα παια της γίας του<br>που της του από του<br>φύα που του πού πού που | 0.330 J<br>0.330 J<br>0.330               | 1,2,3,6,7,8-HxCDF-13<br>2,3,4,6,7,8-HxCDF-13<br>1,2,3,7,8,9-HxCDF-13                         | C 2.00<br>C 2.00<br>C 2.00                                      | 101<br>107<br>96<br>97 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | 1.10<br>10.00                                               | ***                                                                     | 0.330 J<br>0.330                          | 1,2,3,4,7,8-HxCDD-13<br>1,2,3,6,7,8-HxCDD-13<br>1,2,3,4,6,7,8-HpCDF-<br>1,2,3,4,7,8,9-HpCDF- | C 2.00<br>13C 2.00                                              | 96<br>81<br>70         |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                        | 2.50<br>1.50<br>2.40                                        | ۵۵ می او                            | 0.330<br>0.330 J<br>0.330                 | 1,2,3,4,6,7,8-HpCDD-<br>OCDD-13C                                                             | 13C 2.00<br>4.00                                                | 90<br>81               |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                   | 0.94<br>70.00                                               | 100 00 00 00 00                                                         | 0.330 J<br>0.330                          | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13                                                     | 2.00<br>3C 2.00                                                 | NA<br>NA               |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | 2.10<br>14.00<br>4.80<br>90.00                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                  | 0.330<br>0.330<br>0.330<br>0.330<br>0.330 | 2,3,7,8-TCDD-37Cl4                                                                           | 0.20                                                            | 42                     |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 40.00<br>2.50<br>140.00                                     |                                                                         | 0.330<br>0.330<br>0.330                   | Total 2,3,7,8-TCDD<br>Equivalence: 11 ng/Kg<br>(Using ITE Factors)                           | <b>)</b>                                                        |                        |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 330.00<br>840.00                                            |                                                                         | 0.330<br>0.330                            |                                                                                              |                                                                 |                        |
| OCDF<br>OCDD                                                                                                                                                                       | 70.00<br>3100.00                                            | and 400 fee per per ann                                                 | 0.660<br>0.660                            |                                                                                              |                                                                 |                        |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

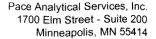
LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected


NA = Not Applicable


NC = Not Calculated

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**





Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>SMT<br>17.6<br>41.1<br>10.4<br>09/1<br>F612 | 2387007-R<br>206A_07<br>g<br>g<br>0/2006                                         | 6G DC106-7B<br>F61206A_16 | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed                | Solid<br>NA<br>11/17/20<br>11/21/20<br>12/04/20<br>12/06/20 | 06                           |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                             | <b>LRL</b><br>ng/Kg       | Internal<br>Standards                                                               |                                                             | ng's<br>Added                | Percent<br>Recovery                                                                                             |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.55<br>2.70                                                | करों मेंदन कर कहा हुए मुद्दा<br>अंग मेंदन के के कुछ कुछ                          | 0.190 J<br>0.190          | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-1                           | ;                                                           | 2.00<br>2.00<br>2.00         | 99<br>90<br>97                                                                                                  |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>2.10                                                  | الات 100 ( 100 ( 100 ( 100 )<br>چې الله الله الله الله الله الله الله الل        | 0.190<br>0.190            | 2,3,4,7,8-PeCDF-1<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDF                          | 13C<br>13C                                                  | 2.00<br>2.00<br>2.00<br>2.00 | 101<br>113<br>101                                                                                               |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>ND<br>5.40                                            | مون مون الله مون مون<br>مون مون الله الله مون<br>مون مون الله مون مون            | 0.970<br>0.970<br>0.970   | 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                         | -13C<br>-13C                                                | 2.00<br>2.00<br>2.00<br>2.00 | 88<br>93<br>91                                                                                                  |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>ND                                                    | من بین که بین می<br>جن بین جرد بین می                                            | 0.970<br>0.970<br>0.970   | 1,2,3,4,7,8-HxCDE<br>1,2,3,6,7,8-HxCDE<br>1,2,3,4,6,7,8-HxCDE<br>1,2,3,4,6,7,8-HpCE | )-13C<br>)-13C                                              | 2.00<br>2.00<br>2.00<br>2.00 | 90<br>85<br>81                                                                                                  |
| 1,2,3,4,7,8-HxCDF                                                                                                                                                                  | 1.00                                                        | 3.9                                                                              | 0.970 E<br>0.970 J        | 1,2,3,4,7,8,9-HpCI<br>1,2,3,4,6,7,8-HpCI<br>0CDD-13C                                | DF-13C                                                      | 2.00<br>2.00<br>2.00<br>4.00 | 69<br>90<br>88                                                                                                  |
| 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                                                        | 1.50<br>ND                                                  | المواد المالة المواد المواد<br>المواد المالة المواد المواد المواد                | 0.970 J<br>0.970          | 1,2,3,4-TCDD-13C                                                                    |                                                             | 2.00                         | NA                                                                                                              |
| Total HxCDF<br>1,2,3,4,7,8-HxCDD                                                                                                                                                   | 32.00<br>1.10                                               |                                                                                  | 0.970<br>0.970 J          | 1,2,3,7,8,9-HxCDD<br>2,3,7,8-TCDD-37C                                               |                                                             | 2.00<br>0.20                 | NA<br>81                                                                                                        |
| 1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                                              | 8.40<br>2.20<br>49.00                                       | बात पण गांव इंग वंद<br>एवं की का प्राप्त का प्राप्त<br>वंदा को प्राप्त दांव राज- | 0.970<br>0.970 J<br>0.970 |                                                                                     |                                                             |                              |                                                                                                                 |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 23.00<br>2.00<br>79.00                                      | الله، وعلم الله الله الله الله الله الله الله ال                                 | 0.970<br>0.970 J<br>0.970 | Total 2,3,7,8-TCDI<br>Equivalence: 6.2 n<br>(Using ITE Factors                      | g/Kg                                                        |                              |                                                                                                                 |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 220.00<br>580.00                                            | and gift one has set                                                             | 0.970<br>0.970            |                                                                                     | · /                                                         |                              |                                                                                                                 |
| OCDF<br>OCDD                                                                                                                                                                       | 54.00<br>2200.00                                            |                                                                                  | 1.900<br>1.900            |                                                                                     |                                                             |                              | 11111111 1 41111 1 4111 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 411 1 4 |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

- A = Detection Limit based on signal-to-noise measurement
- J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>SMT<br>28.6<br>65.0<br>10.0<br>09/1<br>F612 | 2387008-R<br>206A_08<br>g<br>g<br>0/2006                                                                    | 6H DC106-5A<br>F61206A_16                         | Dilution N<br>Collected 1<br>Received 1<br>Extracted 1                                                          | Solid<br>IA<br>1/17/2006<br>1/21/2006<br>2/04/2006<br>2/06/2006 13:41 |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                                                        | LRL<br>ng/Kg                                      | Internal<br>Standards                                                                                           | ng's<br>Added                                                         | Percent<br>Recovery  |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 1.4<br>24.0                                                 | गोल का प्रमुप्ते नेक केल.<br>पुग्य मंत्री का प्रदा होत.                                                     | 0.200<br>0.200                                    | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-130                                                     | 2.00<br>2.00<br>C 2.00                                                | 97<br>90<br>79       |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>12.0                                                  | یون چین کم روی ورو<br>این کم روی می                                                                         | 0.250 A<br>0.200                                  | 2,3,4,7,8-PeCDF-130<br>1,2,3,7,8-PeCDD-130<br>1,2,3,4,7,8-HxCDF-1                                               | C 2.00<br>C 2.00                                                      | 78<br>91<br>96       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | 1.2<br>1.3<br>16.0                                          | and with the sea with the                                                                                   | 1.000 J<br>1.000 J<br>1.000                       | 1,2,3,4,7,8-HxCDF-1<br>1,2,3,6,7,8-HxCDF-1<br>2,3,4,6,7,8-HxCDF-1<br>1,2,3,7,8,9-HxCDF-1<br>1,2,3,4,7,8-HxCDD-1 | 3C2.003C2.003C2.00                                                    | 89<br>88<br>84<br>99 |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | 1.0<br>9.7                                                  | 400 400 AD AD AD AD                                                                                         | 1.000 J<br>1.000                                  | 1,2,3,6,7,8-HxCDD-1<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                               | 3C 2.00<br>-13C 2.00                                                  | 83<br>73<br>57       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                                   | 1.4<br>1.4<br>2.0<br>ND                                     | میت دوله هره بین بین<br>مرد مرد بین بین بین می<br>بین مرد مرد بین می می                                     | 1.000 J<br>1.000 J<br>1.000 J<br>1.000 J<br>1.000 | 1,2,3,4,6,7,8-HpCDD<br>OCDD-13C<br>1,2,3,4-TCDD-13C                                                             | 2.00<br>2.00<br>4.00<br>2.00                                          | 84<br>82<br>NA       |
| Total HxCDF                                                                                                                                                                        | 60.0                                                        | 000 WE WE WE WE                                                                                             | 1.000                                             | 1,2,3,7,8,9-HxCDD-1                                                                                             |                                                                       | NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | 1.8<br>10.0<br>2.5<br>48.0                                  | *****                                                                                                       | 1.000 J<br>1.000<br>1.000 J<br>1.000              | 2,3,7,8-TCDD-37Cl4                                                                                              | 0.20                                                                  | 85                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 29.0<br>1.3<br>100.0                                        | میں میں اور اور میں اور | 1.000<br>1.000 J<br>1.000                         | Total 2,3,7,8-TCDD<br>Equivalence: 7.2 ng/ł<br>(Using ITE Factors)                                              | Kg                                                                    |                      |
| 1,2,3,4,6,7,8-ÀpCDD<br>Total HpCDD                                                                                                                                                 | 180.0<br>400.0                                              |                                                                                                             | 1.000<br>1.000                                    |                                                                                                                 |                                                                       |                      |
| OCDF<br>OCDD                                                                                                                                                                       | 29.0<br>1800.0                                              | میت شد می می می می می                                                                                       | 2.000<br>2.000                                    |                                                                                                                 |                                                                       |                      |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers) EMPC = Estimated Maximum Possible Concentration

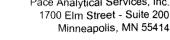
A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis


EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit I = Interference E = PCDE Interference S = Saturated signal ND = Not Detected NA = Not Applicable NC = Not Calculated

= See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**





Tel: 612-607-1700 Fax: 612- 607-6444

## Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>P613<br>BAL<br>65.4<br>58.7<br>27.0<br>11/0<br>P613 | 2387009<br>202B_09<br>g<br>5/2006                                   | 6I DC106-5B<br>P61202B_17              | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed | Solid<br>NA<br>11/17/200<br>11/21/200<br>11/21/200<br>12/02/200 | 6<br>6                       |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                | <b>LRL</b><br>ng/Kg                    | Internal<br>Standards                                                |                                                                 | ng's<br>Added                | Percent<br>Recovery |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.74<br>14.00                                               | مان معن بعن عن من من<br>معن علي معد علي تحد                         | 0.100 A<br>0.074                       | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-1            |                                                                 | 2.00<br>2.00<br>2.00         | 99<br>58<br>90      |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>12.00                                                 | موت روی کور بور دور<br>موت روی کور بور                              | 0.190 A<br>0.074                       | 2,3,4,7,8-PeCDF-1<br>1,2,3,7,8-PeCDD-1<br>1,2,3,4,7,8-HxCDF          | 3C<br>3C                                                        | 2.00<br>2.00<br>2.00<br>2.00 | 93<br>103<br>112    |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>0.49<br>3.30                                          | من جو من من جو بنی<br>میں وی مان کر میں بین                         | 0.370<br>0.370 J<br>0.370              | 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF          | -13C<br>-13C                                                    | 2.00<br>2.00<br>2.00<br>2.00 | 110<br>105<br>98    |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>3.80                                                  | میں علی اور میں اور             | 0.370<br>0.370                         | 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,4,6,7,8-HpCD         | -13C<br>-13C<br>0F-13C                                          | 2.00<br>2.00<br>2.00         | 97<br>98<br>73      |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                                                                             | ND<br>ND                                                    | مارد محمد باست المالة محمد<br>مارد المالة محمد المالة المحمد الم    | 0.370<br>0.370                         | 1,2,3,4,7,8,9-HpCE<br>1,2,3,4,6,7,8-HpCE<br>OCDD-13C                 |                                                                 | 2.00<br>2.00<br>4.00         | 49<br>68<br>44      |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                              | ND<br>ND<br>2.00                                            |                                                                     | 0.370<br>0.370<br>0.370                | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD                                |                                                                 | 2.00<br>2.00                 | NA<br>NA            |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>0.68<br>0.46<br>8.10                                  |                                                                     | 0.370<br>0.370 J<br>0.370 J<br>0.370 J | 2,3,7,8-TCDD-37C                                                     | 14                                                              | 0.20                         | 53                  |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 1.40<br>ND<br>3.80                                          |                                                                     | 0.370 J<br>0.370<br>0.370              | Total 2,3,7,8-TCDE<br>Equivalence: 0.62<br>(Using ITE Factors        | ng/Kg                                                           |                              |                     |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 9.00<br>33.00                                               |                                                                     | 0.370<br>0.370                         |                                                                      |                                                                 |                              |                     |
| OCDF<br>OCDD                                                                                                                                                                       | 2.20<br>78.00                                               | (an de la mar estat)<br>an anti-anti-anti-anti-anti-anti-anti-anti- | 0.740 J<br>0.740                       |                                                                      | anthonous data a data a suma and other data data a              |                              |                     |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

 ${\rm J}$  = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

| = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

# Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>SMT<br>12.2<br>21.8<br>9.51<br>09/1<br>F612 | 2387010-R<br>206A_09<br>g<br>g<br>0/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6J DC106-2A<br>F61206A_16    | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Solid<br>NA<br>11/17/20<br>11/21/20<br>12/04/20<br>12/06/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06                                                                                                             |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>LRL</b><br>ng/Kg          | Internal<br>Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng's<br>Added                                                                                                  | Percent<br>Recovery                      |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | ND<br>ND                                                    | ્વેણ જેવે તેમ વિત્ર પ્રાપ્ત<br>તેમ જાગ વેણ તેમ પ્રાપ્ત                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21<br>0.21                 | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130<br>1,2,3,7,8-PeCDF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C<br>13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00<br>2.00<br>2.00                                                                                           | 103<br>89<br>105                         |
| 2,3,7,8-TCDD <sup>-</sup><br>Total TCDD                                                                                                                                            | ND<br>ND                                                    | जिन पोल सार प्रकृत देखा.<br>पानी, पॉल सार क्यूनी आह                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.21<br>0.21                 | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00<br>2.00<br>2.00                                                                                           | 109<br>128<br>98                         |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>ND<br>ND                                              | 20) 100 - 100 - 100 - 100<br>20) 100 - 100<br>200 - | 1.10<br>1.10<br>1.10         | 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,4,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =-13C<br>=-13C<br>=-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00<br>2.00<br>2.00<br>2.00<br>2.00                                                                           | 93<br>95<br>92<br>94                     |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>ND                                                    | ana ang ang ang ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10<br>1.10                 | 1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D-13C<br>DF-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00<br>2.00<br>2.00                                                                                           | 91<br>89<br>77                           |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                        | ND<br>ND<br>ND                                              | سین کرد زمین می این<br>میں بعث عمی میں این<br>میں توجه این میں این                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10<br>1.10<br>1.10         | 1,2,3,4,6,7,8-HpC<br>OCDD-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DD-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00<br>4.00                                                                                                   | 101<br>91                                |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                   | ND<br>ND                                                    | ann ann ann ain aig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10<br>1.10                 | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00<br>2.00                                                                                                   | NA<br>NA                                 |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>ND<br>ND<br>ND                                        | aga an an an an an<br>an an an an an<br>an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.10<br>1.10<br>1.10<br>1.10 | 2,3,7,8-TCDD-370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20                                                                                                           | 86                                       |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | ND<br>ND<br>ND                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.10<br>1.10<br>1.10         | Total 2,3,7,8-TCD<br>Equivalence: 0.03<br>(Using ITE Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 ng/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                          |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 2.0<br>4.1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.10 J<br>1.10 J             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                          |
| OCDF<br>OCDD                                                                                                                                                                       | ND<br>14.0                                                  | ant ann an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.10<br>2.10                 | <ul> <li>V. And an an excession of an excession of a second sec<br/>second second sec</li></ul> | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 | مر المربق ال | 11 - Mari 1 - 1000 (11 - 11 - 11 - 1000) |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

E = PCDE Interference S = Saturated signal ND = Not Detected NA = Not Applicable NC = Not Calculated \* = See Discussion

LRL = Lower Reporting Limit

I = Interference

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>P612<br>BAL<br>14.1<br>22.2<br>11.0<br>11/0<br>P612 | 2387011<br>202B_11<br>g<br>g<br>5/2006                         | 6K DC106-2-D<br>• P61202B_17       | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed         | Solid<br>NA<br>11/17/20<br>11/21/20<br>11/21/20<br>12/02/20 | 06                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                           | <b>LRL</b><br>ng/Kg                | Internal<br>Standards                                                        | 1994                                                        | ng's<br>Added                        | Percent<br>Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | ND<br>ND                                                    | میں خود میں ہیں۔<br>میں نوا میں میں ہیں                        | 0.180<br>0.180                     | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130                                         | 0                                                           | 2.00                                 | 99<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | ND<br>ND                                                    | ena vita tuti Data wati<br>atau vita tuti Data wati            | 0.180<br>0.180                     | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                     | 13C<br>13C                                                  | 2.00<br>2.00<br>2.00                 | 95<br>101<br>112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | ND<br>ND<br>ND                                              |                                                                | 0.910<br>0.910<br>0.910            | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>2,3,4,6,7,8-HxCD<br>1,2,3,7,8,9-HxCD | F-13C<br>F-13C<br>F-13C                                     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 113<br>106<br>104<br>101<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | ND<br>ND                                                    | 100 000 100 000 000<br>100 000 000 000 000                     | 0.910<br>0.910                     | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>1,2,3,4,6,7,8-HpC                    | D-13C<br>DF-13C                                             | 2.00<br>2.00                         | 99<br>97<br>87<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                        | ND<br>ND<br>ND                                              | دیک جند کمی کی<br>میں ایک جنوب کری تھی<br>جنوب کری کری کری کری | 0.910<br>0.910<br>0.910            | 1,2,3,4,7,8,9-HpC<br>1,2,3,4,6,7,8-HpC<br>OCDD-13C                           |                                                             | 2.00<br>2.00<br>4.00                 | 76<br>84<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                   | ND<br>ND                                                    | and, this shot up and                                          | 0.910<br>0.910                     | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCD                                         |                                                             | 2.00<br>2.00                         | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | ND<br>ND<br>ND<br>1.0                                       |                                                                | 0.910<br>0.910<br>0.910<br>0.910 J | 2,3,7,8-TCDD-370                                                             | C14                                                         | 0.20                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | ND<br>ND<br>1.3                                             | *****                                                          | 0.910<br>0.910<br>0.910 J          | Total 2,3,7,8-TCD<br>Equivalence: 0.08<br>(Using ITE Factor                  | 7 ng/Kg                                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 5.0<br>20.0                                                 | alan alan juga alah alah alah                                  | 0.910<br>0.910                     |                                                                              |                                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OCDF<br>OCDD                                                                                                                                                                       | 2.2<br>35.0                                                 | یک ایک ایک ایک ایک ایک ایک ایک ایک ایک ا                       | 1.800 J<br>1.800                   |                                                                              |                                                             |                                      | NATION AND ADDRESS OF ADDRES |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

 $\mathbf{J}$  = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

## Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracte<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>P612<br>BAL<br>d 56.0<br>30.8<br>38.7<br>11/0<br>P612 | 387012<br>202B_12<br>g<br>5/2006                                                                                                                                                                                                  | 6L DC106-4A<br>• P61202B_17        | Matrix<br>Dilution<br>Collected<br>Received<br>Extracted<br>Analyzed                                  | Solid<br>NA<br>11/17/20<br>11/21/20<br>11/21/20<br>12/03/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06                                                                                                              |                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                 | <b>Conc</b><br>ng/Kg                                          | EMPC<br>ng/Kg                                                                                                                                                                                                                     | LRL<br>ng/Kg                       | Internal<br>Standards                                                                                 | 1000 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng's<br>Added                                                                                                   | Percent<br>Recovery                                                                                             |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                        | 0.70<br>14.00                                                 | क्षेत्र कुल उठा केले करने<br>प्रथ्न कर तथा कि करने                                                                                                                                                                                | 0.052<br>0.052                     | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130<br>1,2,3,7,8-PeCDF-                                              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00<br>2.00<br>2.00                                                                                            | 103<br>45<br>85                                                                                                 |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                        | 0.51<br>100.00                                                | une any min ina any                                                                                                                                                                                                               | 0.085 A<br>0.052                   | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDI                                             | 13C<br>13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00<br>2.00<br>2.00                                                                                            | 88<br>97<br>107                                                                                                 |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                 | 2.50<br>11.00<br>120.00                                       | مده شود است است.<br>شره موه شده است.<br>مره مع شک آمی است.                                                                                                                                                                        | 0.260<br>0.260<br>0.260            | 1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI<br>1,2,3,7,8,9-HxCDI                                           | =-13C<br>=-13C<br>=-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00<br>2.00<br>2.00                                                                                            | 99<br>100<br>97<br>98                                                                                           |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                    | 7.50<br>46.00                                                 | میں ایک میکی میں بین                                                                                                                                                                                                              | 0.260<br>0.260                     | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC                      | D-13C<br>DF-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00<br>2.00<br>2.00<br>2.00                                                                                    | 93<br>83<br>72                                                                                                  |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                                                                                                       | 28.00                                                         | 19                                                                                                                                                                                                                                | 0.260<br>0.260 E<br>0.260          | 1,2,3,4,6,7,8-HpC<br>OCDD-13C                                                                         | DD-13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00<br>4.00                                                                                                    | 99<br>96                                                                                                        |
| 1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                                                  | 16.00<br>1800.00                                              | an ak ak ak ak                                                                                                                                                                                                                    | 0.260<br>0.260                     | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCDI                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00<br>2.00                                                                                                    | NA<br>NA                                                                                                        |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                        | 28.00<br>330.00<br>49.00<br>850.00                            |                                                                                                                                                                                                                                   | 0.260<br>0.280 A<br>0.260<br>0.260 | 2,3,7,8-TCDD-370                                                                                      | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20                                                                                                            | 41                                                                                                              |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                         | 1000.00<br>36.00<br>4700.00                                   |                                                                                                                                                                                                                                   | 0.760 A<br>0.260<br>0.260          | Total 2,3,7,8-TCD<br>Equivalence: 190<br>(Using ITE Factor                                            | ng/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                 |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                | 6100.00<br>10000.00                                           | میں ایک میں ای<br>ایک میں ایک میں | 1.400 A<br>0.260                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                 |
| OCDF<br>OCDD                                                                                                                                                                      | 1000.00<br>53000.00                                           |                                                                                                                                                                                                                                   | 0.520<br>26.000 N2                 | و محمد و م | and a set of the set o | na se antigan de la construcción de | an mang manage and de a state a |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

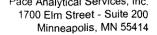
LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected


NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**





Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Analysis Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>P612<br>BAL<br>62.5<br>40.5<br>37.2<br>11/0<br>P612 | 2387013<br>202B_13<br>g<br>g<br>5/2006                                          | 6M DC106-4B                      | Received 11<br>Extracted 11                                          |                            |                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------|
| Native<br>Isomers                                                                                                                                                                  | <b>Conc</b><br>ng/Kg                                        | <b>EMPC</b><br>ng/Kg                                                            | <b>LRL</b><br>ng/Kg              | Internal<br>Standards                                                | ng's<br>Added              | Percent<br>Recovery                                                                     |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                         | 0.83<br>17.00                                               | <b>著 河 接 省 李</b>                                                                | 0.080 A<br>0.054                 | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C          | 2.00<br>2.00<br>2.00       | 94<br>49<br>82                                                                          |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                         | 64.00                                                       | 0.22                                                                            | 0.120 IA<br>0.054                | 2,3,4,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13   | 2.00<br>2.00               | 83<br>92<br>108                                                                         |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                  | 1.40<br>20.00                                               | 0.33                                                                            | 0.270 I<br>0.270<br>0.270        | 1,2,3,6,7,8-HxCDF-13<br>2,3,4,6,7,8-HxCDF-13<br>1,2,3,7,8,9-HxCDF-13 | C 2.00<br>C 2.00<br>C 2.00 | 103<br>102<br>88                                                                        |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                     | 1.10<br>24.00                                               | कार सुर मार्थ के कर्म<br>प्रथ, साम होन को का                                    | 0.270 J<br>0.270                 | 1,2,3,4,7,8-HxCDD-13<br>1,2,3,6,7,8-HxCDD-13<br>1,2,3,4,6,7,8-HpCDF- | C 2.00<br>13C 2.00         | 94<br>93<br>70                                                                          |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                                                                             | 1.60<br>1.60                                                | ann ann ann ann ann ann                                                         | 0.270<br>0.270                   | 1,2,3,4,7,8,9-HpCDF-<br>1,2,3,4,6,7,8-HpCDD-<br>OCDD-13C             |                            | 56<br>72<br>45                                                                          |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                              | 2.30<br>0.69<br>34.00                                       | 900 peri 1909 1904 1900<br>1905 men 2004 1900 (peri<br>1906 1906 1906 1906 1905 | 0.270<br>0.270 J<br>0.270        | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-13                             | 2.00<br>2.00               | NA<br>NA                                                                                |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                         | 1.80<br>11.00<br>3.90<br>76.00                              | ****                                                                            | 0.270<br>0.270<br>0.270<br>0.270 | 2,3,7,8-TCDD-37Cl4                                                   | 0.20                       | 46                                                                                      |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                          | 54.00<br>2.00<br>160.00                                     |                                                                                 | 0.270<br>0.270<br>0.270          | Total 2,3,7,8-TCDD<br>Equivalence: 8.3 ng/Kg<br>(Using ITE Factors)  | g                          |                                                                                         |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                                 | 220.00<br>580.00                                            | iya dan min dan dan<br>man man iyan dan iyan                                    | 0.270<br>0.270                   |                                                                      |                            |                                                                                         |
| OCDF<br>OCDD                                                                                                                                                                       | 81.00<br>1900.00                                            | an ar in an                                 | 0.540<br>0.540                   |                                                                      |                            | 1 (1010) - 1010 <sup>-00</sup> (1010) - 10 <sup>1</sup> (1010) - 10 <sup>1</sup> (1010) |

Results reported on a dry weight basis

Conc = Concentration (Totals include 2,3,7,8-substituted isomers)

EMPC = Estimated Maximum Possible Concentration

A = Detection Limit based on signal-to-noise measurement

J = Concentration detected is below the calibration range

B = Less than 10 times higher than method blank level

P = Recovery outside of target range

Nn = Value obtained from additional analysis

EMPC values were excluded from the TEQ calculations.

LRL = Lower Reporting Limit

I = Interference

E = PCDE Interference

S = Saturated signal

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

\* = See Discussion

Report No....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

#### Method 8290 Laboratory Control Spike Results

Client - Analytical Resources Inc.

| Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | U61<br>10.0<br>09/1<br>U61 | 9,2006               | U61130A_01        | Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                       | Solid<br>NA<br>11/21/20<br>11/29/20<br>BAL | 06<br>06 18:25                       |                        |
|---------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------|----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|------------------------|
| Native<br>Isomers                                                                                       | <b>Qs</b><br>(ng)          | <b>Qm</b><br>(ng)    | %<br>Rec.         | Internal<br>Standards                                                            |                                            | ng's<br>Added                        | Percent<br>Recovery    |
| 2,3,7,8-TCDF                                                                                            | 0.20                       | 0.19                 | 93                | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130<br>1,2,3,7,8-PeCDF-                         | 2                                          | 2.00<br>2.00<br>2.00                 | 104<br>51<br>92        |
| 2,3,7,8-TCDD                                                                                            | 0.20                       | 0.18                 | 92                | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCDI                        | 13C<br>13C                                 | 2.00<br>2.00<br>2.00                 | 97<br>104<br>99        |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                      | 1.00<br>1.00               | 1.10<br>1.02         | 110<br>102        | 1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI<br>1,2,3,7,8,9-HxCDI                      | =-13C<br>=-13C<br>=-13C                    | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 108<br>103<br>97<br>82 |
| 1,2,3,7,8-PeCDD                                                                                         | 1.00                       | 0.93                 | 93                | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC | D-13C<br>DF-13C                            | 2.00<br>2.00<br>2.00<br>2.00         | 102<br>87<br>77        |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                                             | 1.00<br>1.00<br>1.00       | 0.96<br>1.00<br>1.00 | 96<br>100<br>100  | 1,2,3,4,6,7,8-HpC<br>0CDD-13C                                                    | DD-13C                                     | 2.00<br>2.00<br>4.00                 | 81<br>91               |
| 1,2,3,7,8,9-HxCDF                                                                                       | 1.00                       | 1.00                 | 100               | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCDI                                            |                                            | 2.00<br>2.00                         | NA<br>NA               |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                             | 1.00<br>1.00<br>1.00       | 1.03<br>1.08<br>1.09 | 103<br>108<br>109 | 2,3,7,8-TCDD-370                                                                 | 214                                        | 0.20                                 | 47                     |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                              | 1.00<br>1.00               | 1.09<br>1.13         | 109<br>113        |                                                                                  |                                            |                                      |                        |
| 1,2,3,4,6,7,8-HpCDD                                                                                     | 1.00                       | 1.02                 | 102               |                                                                                  |                                            |                                      |                        |
| OCDF<br>OCDD                                                                                            | 2.00<br>2.00               | 2.00<br>1.85         | 100<br>93         |                                                                                  |                                            |                                      |                        |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

\* = See Discussion

Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**

1700 Elm Street - Suite 200 Minneapolis, MN 55414

Pace Analytical

Tel: 612-607-1700 Fax: 612- 607-6444

# Method 8290 Laboratory Control Spike Results

Client - Analytical Resources Inc.

| Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | F612<br>20.2<br>09/1<br>F612 | 0/2006               | F61206A_16       | Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By | Solid<br>NA<br>12/04/200<br>12/06/200<br>SMT |                                      |                      |
|---------------------------------------------------------------------------------------------------------|------------------------------|----------------------|------------------|------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------|
| Native<br>Isomers                                                                                       | <b>Qs</b><br>(ng)            | <b>Qm</b><br>(ng)    | %<br>Rec.        | Internal<br>Standards                                      |                                              | ng's<br>Added                        | Percent<br>Recovery  |
| 2,3,7,8-TCDF                                                                                            | 0.20                         | 0.18                 | 91               | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130<br>1,2,3,7,8-PeCDF-   | 2                                            | 2.00<br>2.00<br>2.00                 | 94<br>84<br>101      |
| 2,3,7,8-TCDD                                                                                            | 0.20                         | 0.19                 | 97               | 2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-<br>1,2,3,4,7,8-HxCD   | 13C<br>13C                                   | 2.00<br>2.00<br>2.00                 | 104<br>122<br>94     |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                      | 1.00<br>1.00                 | 1.04<br>1.02         | 104<br>102       | 1,2,3,6,7,8-HxCD<br>2,3,4,6,7,8-HxCD<br>1,2,3,7,8,9-HxCD   | F-13C<br>F-13C<br>F-13C                      | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 92<br>98<br>93<br>94 |
| 1,2,3,7,8-PeCDD                                                                                         | 1.00                         | 0.89                 | 89               | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>1,2,3,4,6,7,8-HpC  | D-13C<br>DF-13C                              | 2.00<br>2.00<br>2.00<br>2.00         | 90<br>92<br>80       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                  | 1.00<br>1.00<br>1.00         | 0.96<br>0.97<br>0.98 | 96<br>97<br>98   | 1,2,3,4,7,8,9-HpC<br>1,2,3,4,6,7,8-HpC<br>OCDD-13C         | DD-13C                                       | 2.00<br>2.00<br>4.00                 | 102<br>95            |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                  | 1.00                         | 0.96                 | 96<br>96         | 1,2,3,4-TCDD-13<br>1,2,3,7,8,9-HxCD                        | C<br>D-13C                                   | 2.00<br>2.00                         | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                             | 1.00<br>1.00<br>1.00         | 0.97<br>1.02<br>1.00 | 97<br>102<br>100 | 2,3,7,8-TCDD-37                                            | Cl4                                          | 0.20                                 | 75                   |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                              | 1.00<br>1.00                 | 1.00<br>1.09         | 100<br>109       |                                                            |                                              |                                      |                      |
| 1,2,3,4,6,7,8-HpCDD                                                                                     | 1.00                         | 0.90                 | 90               |                                                            |                                              |                                      |                      |
| OCDF<br>OCDD                                                                                            | 2.00<br>2.00                 | 1.66<br>1.83         | 83<br>92         |                                                            |                                              | ga a anda anala 100 tato             |                      |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

\* = See Discussion

Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

## Method 8290 Spike Sample Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>10.3<br>09/1<br>F612 | 2387003-R-<br>206A_12<br>g<br>0/2006 | C DC106-9A-<br>MS<br>F61206A_16 | MS<br>Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                                                         | Solid<br>NA<br>12/04/20<br>12/06/20<br>SMT | 06<br>06 16:58                       |                            |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------|
| Native<br>Isomers                                                                                                             | <b>Qs</b><br>(ng)                    | <b>Qm</b><br>(ng)                    | %<br>Rec.                       | Internal<br>Standards                                                                                                    |                                            | ng's<br>Added                        | Percent<br>Recovery        |
| 2,3,7,8-TCDF                                                                                                                  | 0.20                                 | 0.23                                 | 117                             | 2,3,7,8-TCDF-13(<br>2,3,7,8-TCDD-13(                                                                                     | 2                                          | 2.00<br>2.00                         | 104<br>85                  |
| 2,3,7,8-TCDD                                                                                                                  | 0.20                                 | 0.24                                 | 121                             | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                                                                 | 13C<br>13C                                 | 2.00<br>2.00<br>2.00                 | 101<br>104<br>119          |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                                            | 1.00<br>1.00                         | 1.33<br>1.28                         | 133<br>128                      | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>2,3,4,6,7,8-HxCD                                                                 | F-13C<br>F-13C                             | 2.00<br>2.00<br>2.00                 | 96<br>88<br>94             |
| 1,2,3,7,8-PeCDD                                                                                                               | 1.00                                 | 1.15                                 | 115                             | 1,2,3,7,8,9-HxCD<br>1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>1,2,3,4,6,7,8-HxCD<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC | D-13C<br>D-13C<br>DF-13C                   | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 92<br>95<br>83<br>88<br>82 |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                        | 1.00<br>1.00                         | 1.12<br>1.22<br>1.23                 | 112<br>122<br>123               | 1,2,3,4,6,7,8-HpC<br>1,2,3,4,6,7,8-HpC<br>OCDD-13C                                                                       |                                            | 2.00<br>2.00<br>4.00                 | 103<br>97                  |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                        | 1.00<br>1.00                         | 1.23                                 | 123                             | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCD                                                                                     |                                            | 2.00<br>2.00                         | NA<br>NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                                                   | 1.00<br>1.00<br>1.00                 | 1.22<br>1.30<br>1.30                 | 122<br>130<br>130               | 2,3,7,8-TCDD-37                                                                                                          | CI4                                        | 0.20                                 | 85                         |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                                                    | 1.00<br>1.00                         | 1.32<br>1.39                         | 132<br>139                      |                                                                                                                          |                                            |                                      |                            |
| 1,2,3,4,6,7,8-HpCDD                                                                                                           | 1.00                                 | 1.31                                 | 131                             |                                                                                                                          |                                            |                                      |                            |
| OCDF<br>OCDD                                                                                                                  | 2.00<br>2.00                         | 2.35<br>4.72                         | 117<br>236                      |                                                                                                                          |                                            |                                      |                            |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range of 40-135%

X = Background subtracted value

E = PCDE Interference

Nn = Value obtained from additional analysis

NA = Not Applicable .

\* = See Discussion

Report No....1042387

## **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

## Method 8290 Spike Sample Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>F612<br>10.3<br>09/1<br>F612 | 2387003-R-<br>206A_13<br>g<br>0/2006 | C DC106-9A-<br>MSD<br>F61206A_16 | MSD<br>Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                | Solid<br>NA<br>12/04/20<br>12/06/20<br>SMT  | 06<br>06 17:47                       |                            |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------|
| Native<br>Isomers                                                                                                             | <b>Qs</b><br>(ng)                    | <b>Qm</b><br>(ng)                    | %<br>Rec.                        | Internal<br>Standards                                                            |                                             | ng's<br>Added                        | Percent<br>Recovery        |
| 2,3,7,8-TCDF                                                                                                                  | 0.20                                 | 0.21                                 | 103                              | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130                                             | 2                                           | 2.00<br>2.00                         | 99<br>87                   |
| 2,3,7,8-TCDD                                                                                                                  | 0.20                                 | 0.21                                 | 104                              | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                         | 13C<br>13C                                  | 2.00<br>2.00<br>2.00                 | 102<br>106<br>123          |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                                            | 1.00<br>1.00                         | 1.16<br>1.10                         | 116<br>110                       | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI                      | F-13C<br>F-13C                              | 2.00<br>2.00<br>2.00                 | 97<br>90<br>94             |
| 1,2,3,7,8-PeCDD                                                                                                               | 1.00                                 | 0.97                                 | 97                               | 1,2,3,7,8,9-HxCDI<br>1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC | F-13C<br>D-13C<br>D-13C<br>DF-13C<br>DF-13C | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 91<br>94<br>86<br>89<br>77 |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                        | 1.00<br>1.00                         | 0.99<br>1.09                         | 99<br>109                        | 1,2,3,4,7,8,9-HpC<br>1,2,3,4,6,7,8-HpC<br>OCDD-13C                               | DD-13C                                      | 2.00<br>2.00<br>4.00                 | 102<br>94                  |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                        | 1.00<br>1.00                         | 1.09<br>1.08                         | 109<br>108                       | 1,2,3,4-TCDD-130<br>1,2,3,7,8,9-HxCDI                                            |                                             | 2.00<br>2.00                         | NA<br>NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                                                   | 1.00<br>1.00<br>1,00                 | 1.09<br>1.14<br>1.13                 | 109<br>114<br>113                | 2,3,7,8-TCDD-370                                                                 | 214                                         | 0.20                                 | 86                         |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                                                    | 1.00<br>1.00                         | 1.15<br>1.24                         | 115<br>124                       |                                                                                  |                                             |                                      |                            |
| 1,2,3,4,6,7,8-HpCDD                                                                                                           | 1.00                                 | 1.16                                 | 116                              |                                                                                  |                                             |                                      |                            |
| OCDF<br>OCDD                                                                                                                  | 2.00<br>2.00                         | 1.97<br>3.44                         | 98<br>172                        |                                                                                  |                                             |                                      |                            |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range of 40-135%

X = Background subtracted value

E = PCDE Interference

Nn = Value obtained from additional analysis

NA = Not Applicable \* = See Discussion Report No....1042387

# **REPORT OF LABORATORY ANALYSIS**

|                                                                                                                                                                                                                     |                                                                                |                                                                                                          |                                                                        |                                                               |                              |                                                          | Pace Analyti<br>1700 Elm S<br>Minnea | Pace Analytical Services, Inc.<br>1700 Elm Street - Suite 200<br>Minneapolis, MN 55414 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|
| Paci                                                                                                                                                                                                                | áce Analytical                                                                 | <u>a</u> /"                                                                                              |                                                                        |                                                               |                              |                                                          |                                      | Tel: 612-607-1700<br>Fax: 612- 607-6444                                                |
|                                                                                                                                                                                                                     |                                                                                |                                                                                                          | Method 8290 Spike Sample Results<br>Client - Analytical Resources Inc. | od 8290 Spike Sample Re<br>Client - Analytical Resources Inc. | <b>le Results</b><br>es Inc. |                                                          |                                      |                                                                                        |
| Client Sample ID<br>Lab Sample ID<br>MS ID<br>MSD ID                                                                                                                                                                | 06-23500-KG06C DC106-9A<br>1042387003-R<br>1042387003-R-MS<br>1042387003-R-MSD | C106-9A                                                                                                  | Sample Filename<br>MS Filename<br>MSD Filename                         | F61206A<br>F61206A<br>F61206A                                 | iA_05<br>iA_12<br>iA_13      | Dry Weights<br>Sample Amount<br>MSD Amount<br>MSD Amount | int 10.0 g<br>10.0 g<br>10.0 g       |                                                                                        |
| Analyte                                                                                                                                                                                                             | Sample Conc.<br>ng/Kg                                                          | MS/MSD Qs<br>(ng)                                                                                        | Qs MS Qm<br>(ng)                                                       | MSD Qm<br>(ng)                                                | RPD                          | Background Su<br>MS % Rec. M                             | Subtracted<br>MSD % Rec.             | RPD                                                                                    |
| 2,3,7,8-TCDF<br>2,3,7,8-TCDD                                                                                                                                                                                        | 0.306                                                                          | 0.20                                                                                                     | 0.23<br>0.24                                                           | 0.21                                                          | 13.2<br>15.7                 | 116<br>121                                               | 101<br>104                           | 13.3<br>15.7                                                                           |
| 2,3,4,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                                                                                                                                  |                                                                                |                                                                                                          | 1.33                                                                   | 1.16                                                          | 13.5<br>15.4                 | 133                                                      | 116<br>110                           | 13.5<br>15.4                                                                           |
| 1,2,3,7,8-PeCDD                                                                                                                                                                                                     | 0.000                                                                          | 0.0                                                                                                      | 1.15                                                                   | 0.97<br>0.99                                                  | 17.7<br>12.0                 | 115<br>110                                               | 97<br>98                             | 17.7<br>12.1                                                                           |
| 1,2,3,6,7,8-HxCDF                                                                                                                                                                                                   |                                                                                | 80                                                                                                       | 1.22                                                                   | 1.09                                                          |                              | 122                                                      | 109                                  | 11.1<br>10 5                                                                           |
| 2,3,4,6,7,8-HXCDF<br>1,2,3,7,8,9-HxCDF                                                                                                                                                                              | 0.000                                                                          | <br>                                                                                                     | 1.24                                                                   | 1.08                                                          | 13.5                         | 124                                                      | 108                                  | 13.4                                                                                   |
| 1,2,3,4,7,8-HxCDD<br>1 2 3 6 7 8-HxCDD                                                                                                                                                                              |                                                                                | 1.00                                                                                                     | 1.22                                                                   | 1.09                                                          | 12.0<br>13.1                 | 122<br>130                                               | 109<br>114                           | 12.0                                                                                   |
| 1,2,3,7,8,9-HXCDD                                                                                                                                                                                                   |                                                                                | 0.0                                                                                                      | 1.30                                                                   | 1.13                                                          | 14.0<br>14.0                 | 130<br>125                                               | 113<br>108                           | 14.0<br>14.8                                                                           |
| 1,2,3,4,0,7,8,9-HpCDF                                                                                                                                                                                               |                                                                                | 00.<br>00.0                                                                                              | 1.39                                                                   | 124                                                           | 12.1                         | 138                                                      | 122                                  | 12.2                                                                                   |
| 1,2,3,4,6,7,8-HpCDD<br>OCDF<br>OCDD                                                                                                                                                                                 | 17.324<br>19.029<br>157.926                                                    | 2.00<br>2.00<br>2.00                                                                                     | 1.31<br>2.35<br>4.72                                                   | 1.10<br>1.97<br>3.44                                          | 17.7<br>31.6                 | 108                                                      | 9 0 0<br>0 0 0<br>0 0                | 51.6<br>51.6                                                                           |
| <b>Definitions</b><br>MS = Matrix Spike<br>MSD = Matrix Spike Duplicate<br>Qm = Quantity Measured<br>Qs = Quantity Spiked<br>Qs = Quantity Spiked<br>% Rec. = Percent Recovery<br>RPD = Relative Percent Difference | erence                                                                         | CDD = Chlorinated<br>CDF = Chlorinated<br>T = Tetra<br>Pe = Penta<br>Hx = Hexa<br>Hp = Hepta<br>O = Octa | rinated dibenzo-p-dioxin<br>rinated dibenzo-p-furan                    | F                                                             |                              |                                                          |                                      |                                                                                        |



> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Spike Sample Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>U61<br>30.5<br>09/1<br>U61 | 2387005-M<br>201A_13<br>g<br>9/2006 | SE DC106-3A-I<br>S<br>U61201A_16 | MS<br>Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                                 | Solid<br>NA<br>11/21/20<br>12/01/20<br>BAL |                                      |                            |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------|
| Native<br>Isomers                                                                                                             | <b>Qs</b><br>(ng)                  | <b>Qm</b><br>(ng)                   | %<br>Rec.                        | Internal<br>Standards                                                                            |                                            | ng's<br>Added                        | Percent<br>Recovery        |
| 2,3,7,8-TCDF                                                                                                                  | 0.20                               | 0.20                                | 99                               | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130                                                             | 2                                          | 2.00<br>2.00                         | 92<br>41<br>83             |
| 2,3,7,8-TCDD                                                                                                                  | 0.20                               | 0.20                                | 101                              | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                                         | 13C<br>13C                                 | 2.00<br>2.00<br>2.00                 | 86<br>89<br>87             |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                                            | 1.00<br>1.00                       | 1.18<br>1.04                        | 118<br>104                       | 1,2,3,4,7,8-HxCD<br>1,2,3,6,7,8-HxCD<br>2,3,4,6,7,8-HxCD<br>1,2,3,7,8,9-HxCD<br>1,2,3,4,7,8-HxCD | F-13C<br>F-13C<br>F-13C                    | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 87<br>89<br>87<br>88<br>72 |
| 1,2,3,7,8-PeCDD                                                                                                               | 1.00                               | 0.96                                | 96                               | 1,2,3,6,7,8-HxCD<br>1,2,3,4,6,7,8-HxCD<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC                 | D-13C<br>DF-13C                            | 2.00<br>2.00<br>2.00<br>2.00         | 83<br>72<br>67             |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                        | 1.00<br>1.00                       | 1.00<br>1.08                        | 100<br>108<br>107                | 1,2,3,4,6,7,8-HpC<br>0CDD-13C                                                                    | DD-13C                                     | 2.00<br>4.00                         | 70<br>76                   |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                        | 1.00<br>1.00                       | 1.07<br>1.04                        | 104                              | 1,2,3,4-TCDD-13(<br>1,2,3,7,8,9-HxCD                                                             |                                            | 2.00<br>2.00                         | NA<br>NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                                                   | 1.00<br>1.00<br>1.00               | 1.07<br>1.15<br>1.14                | 107<br>115<br>114                | 2,3,7,8-TCDD-37                                                                                  | CI4                                        | 0.20                                 | 40                         |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                                                    | 1.00<br>1.00                       | 1.23<br>1.14                        | 123<br>114                       |                                                                                                  |                                            |                                      |                            |
| 1,2,3,4,6,7,8-HpCDD                                                                                                           | 1.00                               | 1.73                                | 173                              |                                                                                                  |                                            |                                      |                            |
| OCDF<br>OCDD                                                                                                                  | 2.00<br>2.00                       | 2.45<br>7.62                        | 123<br>381                       |                                                                                                  |                                            |                                      |                            |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range of 40-135%

X = Background subtracted value

E = PCDE Interference

Nn = Value obtained from additional analysis

NA = Not Applicable \* = See Discussion Report No.....1042387

# **REPORT OF LABORATORY ANALYSIS**



> Tel: 612-607-1700 Fax: 612- 607-6444

### Method 8290 Spike Sample Results

Client - Analytical Resources Inc.

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL Date<br>CCal Filename(s)<br>Method Blank ID | 1042<br>U61<br>30.3<br>09/1<br>U61 | 2387005-M3<br>201A_14<br>g<br>9/2006 | SE DC106-3A-<br>SD<br>U61201A_16 | MSD<br>Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                                                            | Solid<br>NA<br>11/21/20<br>12/01/20<br>BAL | 06<br>06 15:14                       |                            |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------|
| Native<br>Isomers                                                                                                             | <b>Qs</b><br>(ng)                  | <b>Qm</b><br>(ng)                    | %<br>Rec.                        | Internal<br>Standards                                                                                                        |                                            | ng's<br>Added                        | Percent<br>Recovery        |
| 2,3,7,8-TCDF                                                                                                                  | 0.20                               | 0.20                                 | 98                               | 2,3,7,8-TCDF-130<br>2,3,7,8-TCDD-130                                                                                         | 2                                          | 2.00<br>2.00                         | 106<br>38 P                |
| 2,3,7,8-TCDD                                                                                                                  | 0.20                               | 0.19                                 | 97                               | 1,2,3,7,8-PeCDF-<br>2,3,4,7,8-PeCDF-<br>1,2,3,7,8-PeCDD-                                                                     | 13C<br>13C                                 | 2.00<br>2.00<br>2.00                 | 92<br>98<br>99             |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                                                                            | 1.00<br>1.00                       | 1.18<br>1.05                         | 118<br>105                       | 1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>2,3,4,6,7,8-HxCDI                                                                  | F-13C<br>F-13C                             | 2.00<br>2.00<br>2.00                 | 97<br>101<br>100           |
| 1,2,3,7,8-PeCDD                                                                                                               | 1.00                               | 0.96                                 | 96                               | 1,2,3,7,8,9-HxCDI<br>1,2,3,4,7,8-HxCDI<br>1,2,3,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HxCDI<br>1,2,3,4,6,7,8-HpC<br>1,2,3,4,7,8,9-HpC | D-13C<br>D-13C<br>DF-13C                   | 2.00<br>2.00<br>2.00<br>2.00<br>2.00 | 99<br>82<br>96<br>82<br>78 |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                        | 1.00<br>1.00                       | 0.98<br>1.09<br>1.05                 | 98<br>109<br>105                 | 1,2,3,4,6,7,8-HpC<br>OCDD-13C                                                                                                | DD-13C                                     | 2.00<br>4.00                         | 78<br>90                   |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF                                                                                        | 1.00<br>1.00                       | 1.04                                 | 103                              | 1,2,3,4-TCDD-13(<br>1,2,3,7,8,9-HxCDI                                                                                        |                                            | 2.00<br>2.00                         | NA<br>NA                   |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                                                                   | 1.00<br>1.00<br>1.00               | 1.05<br>1.14<br>1.12                 | 105<br>114<br>112                | 2,3,7,8-TCDD-370                                                                                                             | C14                                        | 0.20                                 | 38                         |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                                                                                    | 1.00<br>1.00                       | 1.17<br>1.15                         | 117<br>115                       |                                                                                                                              |                                            |                                      |                            |
| 1,2,3,4,6,7,8-HpCDD                                                                                                           | 1.00                               | 1.47                                 | 147                              |                                                                                                                              |                                            |                                      |                            |
| OCDF<br>OCDD                                                                                                                  | 2.00<br>2.00                       | 2.21<br>4.99                         | 110<br>250                       |                                                                                                                              |                                            |                                      |                            |

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range of 40-135%

X = Background subtracted value

E = PCDE Interference

Nn = Value obtained from additional analysis

NA = Not Applicable \* = See Discussion Report No.....1042387

## **REPORT OF LABORATORY ANALYSIS**

| 5                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                               |                                        |                                                      | Pace Analy<br>1700 Elm<br>Minn                                               | Pace Analytical Services, Inc.<br>1700 Elm Street - Suite 200<br>Minneapolis, MN 55414 |
|------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pac                                                  | ace Analytical                                                             | al™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                               |                                        |                                                      | ц.                                                                           | Tel: 612-607-1700<br>Fax: 612- 607-6444                                                |
|                                                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method 8290 Spike Sample Results<br>Client - Analytical Resources Inc.  | od 8290 Spike Sample Re<br>Client - Analytical Resources Inc                                                  | <b>ole Results</b><br>ces Inc.         |                                                      |                                                                              |                                                                                        |
| Client Sample ID<br>Lab Sample ID<br>MS ID<br>MSD ID | 06-23502-KG06E DC106-3A<br>1042387005-R<br>1042387005-MS<br>1042387005-MSD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Filename<br>MS Filename<br>MSD Filename                          | F61200<br>U6120<br>U6120                                                                                      | F61206A_06<br>U61201A_13<br>U61201A_14 | Dry Weights<br>Sample Amo<br>MSD Amount<br>MSD Amour | Dry Weights<br>Sample Amount 10.3 g<br>MS Amount 25.2 g<br>MSD Amount 25.1 g |                                                                                        |
| Analyte                                              | Sample Conc.<br>ng/Kg                                                      | MS/MSD Qs<br>(ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS Qm<br>(ng)                                                           | MSD Qm<br>(ng)                                                                                                | RPD                                    | Backgrot<br>MS % Rec.                                | Background Subtracted<br>Rec. MSD % Rec.                                     | RPD                                                                                    |
| 2,3,7,8-TCDF<br>2.3,7,8-TCDD                         | 00000                                                                      | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20                                                                    | 0.20<br>0.19                                                                                                  | 0.7<br>3.6                             | 99<br>101                                            | 98<br>97                                                                     | 0.7<br>3.6                                                                             |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                   | 000.0                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18                                                                    | 1.18                                                                                                          | 0.2                                    | 118<br>104                                           | 118<br>105                                                                   | 0.2                                                                                    |
| 1,2,3,7,8-PeCDD                                      | 0.000                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96                                                                    | 0.96                                                                                                          | 0.5                                    | 96                                                   | 96                                                                           | 0.5                                                                                    |
| 1,2,3,4,7,8-HxCDF<br>1 2 3 6 7 8-HxCDF               | 000.0                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                    | 0.98<br>1.09                                                                                                  | 2.1<br>0.3                             | 100                                                  | 98<br>109                                                                    | 2.1                                                                                    |
| 2,3,4,6,7,8-HxCDF                                    | 00000                                                                      | 00.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07                                                                    | 1.05                                                                                                          | 1.2                                    | 107                                                  | 105                                                                          | 1,2                                                                                    |
| 1,2,3,4,7,8-HXCDD                                    |                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07                                                                    | 1.05                                                                                                          | - 0                                    | 107                                                  | 105                                                                          | - 00                                                                                   |
| 1,2,3,6,7,8-HxCDD                                    | 1.219<br>0.000                                                             | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15                                                                    | 1.14                                                                                                          | 0.7<br>0.7                             | 112                                                  | 111                                                                          | 2.0                                                                                    |
| 1,2,3,4,6,7,8-HpCDF                                  |                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.23                                                                    | 1.17                                                                                                          | 0.4                                    | 11                                                   | 108                                                                          | 5.3                                                                                    |
| 1,2,3,4,7,8,9-HpCDF                                  | 0.000                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.14                                                                    | 1.15                                                                                                          | 1.1                                    | 114                                                  | 115                                                                          | 22.3                                                                                   |
| OCDF<br>OCDF                                         | ****                                                                       | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.45<br>7.62                                                            | 2.21<br>4.99                                                                                                  | 10.5                                   | 115                                                  | 103<br>91                                                                    | 11.2<br>83.8                                                                           |
| Definitions                                          |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | والمستقرب |                                        |                                                      |                                                                              |                                                                                        |
| MS = Matrix Spike<br>MSD = Matrix Spike Duplicate    | plicate                                                                    | CDD = Chlorine CDF | CDD = Chlorinated dibenzo-p-dioxin<br>CDF = Chlorinated dibenzo-p-furan | <u> </u>                                                                                                      |                                        |                                                      |                                                                              |                                                                                        |
| Qm = Quantity Measured                               | pa                                                                         | T = Tetra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                                                                                               |                                        |                                                      |                                                                              |                                                                                        |
| Us = Quantity Spiked<br>% Rec. = Percent Recovery    | very                                                                       | Hx = Hexa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                                                                                               |                                        |                                                      |                                                                              |                                                                                        |
| RPD = Relative Percent Difference                    | t Difference                                                               | Hp = Hepta<br>O = Octa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                                                                                               |                                        |                                                      |                                                                              |                                                                                        |

T = Tetra Pe = Penta Hx = Hexa Hp = Hepta O = Octa

Analytical Resources, Incorporated Analytical Chemists and Consultants

Client: Floyd Snider

Project No.: KG06

Date: <u>12/14/06</u>

Client Project: DCL- Marina

### **Case Narrative**

- 1. Nine samples were received on November 18, 2006, and were in good condition.
- 2. The samples were submitted for grain size analysis according to Puget Sound Estuary Protocols (PSEP) methodology.
- 3. The triplicate was chosen on one sample from another job, which is reported in the attached QA summary.
- 4. PSEP methodology calls for between 5 to 25 grams of sediment passing the #230 sieve for the pipette portion of the analysis.
- 5. The data is provided in summary tables and plots.
- 6. There were no other noted anomalies in the samples or methods on this project.

Approved by:\_ Title:

ANALYTICAL RESOURCES INCORPORATED

> Floyd Snider DCL-Marina

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

|                        | F        |                         | <del>.</del> – | r –            | _              |          | _        |          | T        | T        | 1        | T -      | <b>—</b>  | , <b></b> - |
|------------------------|----------|-------------------------|----------------|----------------|----------------|----------|----------|----------|----------|----------|----------|----------|-----------|-------------|
| ay                     | 10       | 1.00                    | 2.2            | 1.9            | 2.2            | 3.4      | 3.4      | 1.3      | 4.3      | 8.9      | 13.5     | 1.5      | 1.6       | 5.2         |
| Clay                   | 6        | 2.00                    | 3.0            | 3.0            | 3.0            | 4.5      | 4.3      | 1.9      | 5.7      | 11.9     | 18.3     | 2.1      | 2.2       | 6.9         |
|                        | 8        | 3.90                    | 4.4            | 4.4            | 4.4            | 5.6      | 5.2      | 2.3      | 7.5      | 14.5     | 22.0     | 2.6      | 2.8       | 8.0         |
| It                     | 7        | 7.80                    | 6.0            | 6.2            | 6.2            | 6.9      | 6.4      | 2.8      | 9.8      | 18.3     | 28.3     | 3.2      | 3.6       | 10.4        |
| Silt                   | 9        | 15.60                   | 8.8            | . 0.6          | 9.2            | 8.6      | 8.5      | 3.4      | 12.7     | 24.2     | 35.6     | 4.0      | 4.6       | 13.0        |
|                        | 5        | 31.00                   | 13.4           | 14.1           | 14.0           | 10.2     | 11.4     | 4.7      | 16.4     | 35.7     | 52.1     | 4.9      | 5.7       | 17.1        |
| Very Fine<br>Sand      | 4        | #230<br>(62)            | 21.0           | 22.2           | 22.0           | 11.7     | 14.5     | 6.3      | 20.1     | 56.4     | 59.8     | 10.2     | 8.3       | 27.6        |
| Fine Sand              | £        | #120<br>(125)           | 42.1           | 43.3           | 42.8           | 16.1     | 18.3     | 10.7     | 26.3     | 79.6     | 71.6     | 12.3     | 11.2      | 42.1        |
| Medium<br>Sand         | 2        | #60<br>(250)            | 77.1           | 77.9           | 77.5           | 28.4     | 29.2     | 27.1     | 36.7     | 92.0     | 83.7     | 21.0     | 22.6      | 59.4        |
| Coarse<br>Sand         | 4        | #35 (500)               | 96.5           | 96.6           | 96.9           | 43.0     | 51.3     | 40.8     | 50.5     | 95.9     | 89.7     | 38.4     | 56.3      | 68.4        |
| Very<br>Coarse<br>Sand | 0        | #18<br>(1000)           | 98.6           | 98.7           | 0.66           | 49.9     | 64.1     | 20.3     | 60.7     | 97.8     | 93.6     | 50.2     | 73.7      | 72.9        |
|                        | -1       | #10<br>(2000)           | 99.5           | 99.3           | 99.7           | 59.5     | 70.6     | 60.9     | 72.6     | 99.4     | 96.8     | 58.6     | 84.6      | 78.0        |
| Gravel                 | -2       | #4                      | 100.0          | 99.8           | 100.0          | 82.9     | 80.1     | 73.8     | 90.0     | 100.0    | 100.0    | 70.5     | 95.4      | 87.8        |
|                        | -3       | 3/8"                    | 100.0          | 100.0          | 100.0          | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0     | 100.0       |
| Sample No.             | Phi Size | Sieve Size<br>(microns) | RS-02-111406-C | RS-02-111406-C | RS-02-111406-C | DC106-1a | DC106-8a | DC106-6a | DC106-3a | DC106-7a | DC106-5a | DC106-2a | DC106-2-D | DC106-4a    |

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Ì

KG06



Floyd Snider DCL-Marina Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

| Total<br>Fines         | 4        | <230<br>(<62)           | 21.0           | 22.2           | 22.0           | 11.7     | 14.5     | 6.3      | 20.1     | 56.4     | 59.8     | 10.2     | 8.3       | 27.6     |
|------------------------|----------|-------------------------|----------------|----------------|----------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|
|                        | < 10     | <1.0                    | 2.2            | 1.9            | 2.2            | 3.4      | 3.4      | 1.3      | 4.3      | 8.9      | 13.5     | 1.5      | 1.6       | 5.2      |
| Clay                   | 9 to 10  | 2.0-1.0                 | 0.8            | 1.1            | 0.8            | 11       | 1.0      | 0.6      | 1.5      | 2.9      | 4.8      | 0.6      | 0.6       | 1.6      |
|                        | 8 to 9   | 3.9-2.0                 | 1.5            | 1.5            | 1.4            | 1.1      | 0.9      | 0.4      | 1.8      | 2.6      | 3.7      | 0.5      | 0.6       | 1.1      |
| Very Fine<br>Silt      | 7 to 8   | 7.8-3.9                 | 1.5            | 1.7            | 1.7            | 1.3      | 1.2      | 0.5      | 2.3      | 3.8      | 6.2      | 0.6      | 0.8       | 2.4      |
| Fine Silt              | 6 to 7   | 15.6-7.8                | 2.8            | 2.9            | 3.0            | 1.6      | 2.0      | 0.7      | 2.9      | 5.9      | 7.4      | 0.8      | 6.0       | 2.6      |
| Medium<br>Silt         | 5 to 6   | 31.0-15.6               | 4.6            | 5.1            | 4.8            | 1.7      | 2.9      | 1.3      | 3.7      | 11.5     | 16.5     | 0.9      | 1.1       | 4.1      |
| Coarse Silt            | 4 to 5   | 62.5-31.0               | 7.6            | 8.1            | 8.0            | 1.5      | 3.1      | 1.6      | 3.7      | 20.7     | 7.7      | 5.3      | 2.7       | 10.5     |
| Very Fine<br>Sand      | 3 to 4   | 120-230<br>(125-62)     | 21.1           | 21.1           | 20.8           | 4.4      | 3.9      | 4.4      | 6.2      | 23.1     | 11.8     | 2.2      | 2.9       | 14.5     |
| Fine Sand              | 2 to 3   | 60-120<br>(250-125)     | 35.0           | 34.6           | 34.7           | 12.2     | 10.9     | 16.4     | 10.4     | 12.5     | 12.1     | 8.7      | 11.4      | 17.3     |
| Medium<br>Sand         | 1 to 2   | 35-60<br>(500-250)      | 19.4           | 18.7           | 19.4           | 14.7     | 22.1     | 13.7     | 13.8     | 3.9      | 6.0      | 17.4     | 33.7      | 9.0      |
| Coarse<br>Sand         | 0 to 1   | 18-35<br>(1000-500)     | 2.1            | 2.1            | 2.1            | 6.8      | 12.8     | 9.5      | 10.1     | 1.9      | 3.9      | 11.8     | 17.3      | 4.5      |
| Very<br>Coarse<br>Sand | -1 to 0  | 10 to 18<br>(2000-1000) | 0.9            | 0.6            | 0.7            | 9.7      | 6.5      | 10.6     | 11.9     | 1.6      | 3.3      | 8.4      | 10.9      | 5.2      |
| Gravel                 | 1        | > #10<br>(2000)         | 0.5            | 0.7            | 0.3            | 40.5     | 29.4     | 39.1     | 27.4     | 0.6      | 3.2      | 41.4     | 15.4      | 22.0     |
| Sample No.             | Phi Size | Sieve Size<br>(microns) | RS-02-111406-C | RS-02-111406-C | RS-02-111406-C | DC106-1a | DC106-8a | DC106-6a | DC106-3a | DC106-7a | DC106-5a | DC106-2a | DC106-2-D | DC106-4a |

Notes to the Testing: 1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

KG06



÷ :

# DATA QUALIFIERS FOR PHYSICAL ANALYSES

- SM Indicates that the sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with moisture content, porosity, and saturation calculations that assume only water is present. It can also cause particles to adhere to one another, causing errors in grain size distribution analyses.
- SS Indicates that the sample was not appropriate for the method requested because it did not contain the proportion of "fines" required to perform the pipette portion of the analysis.
- W Indicates that the amount of sample in some pipette readings was below the level required for accurate weighing, resulting in negative weights, which were adjusted to eliminate the negative value.
- F Indicates that the samples were frozen prior to particle size determination.

ļ

QA SUMMARY

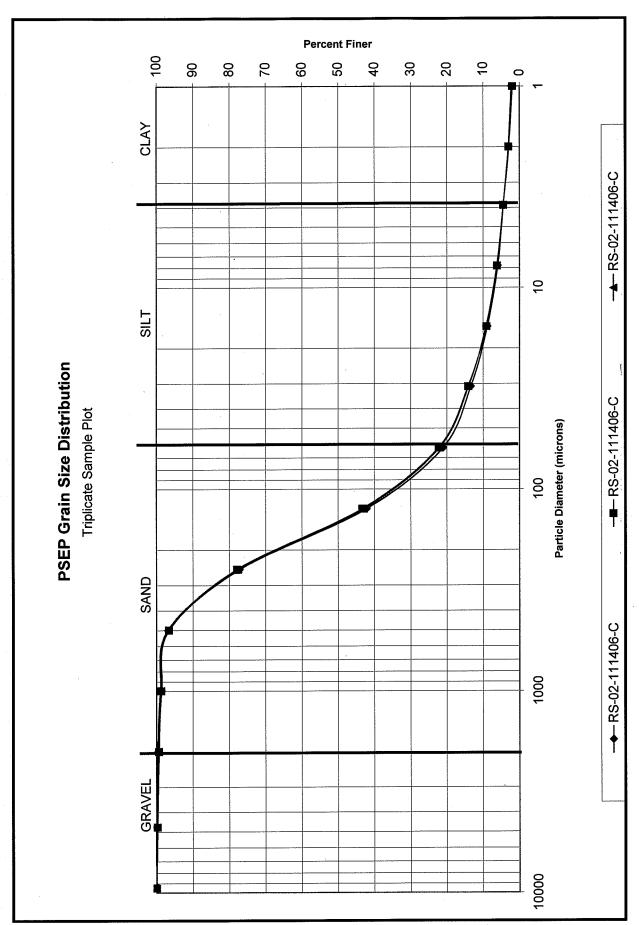


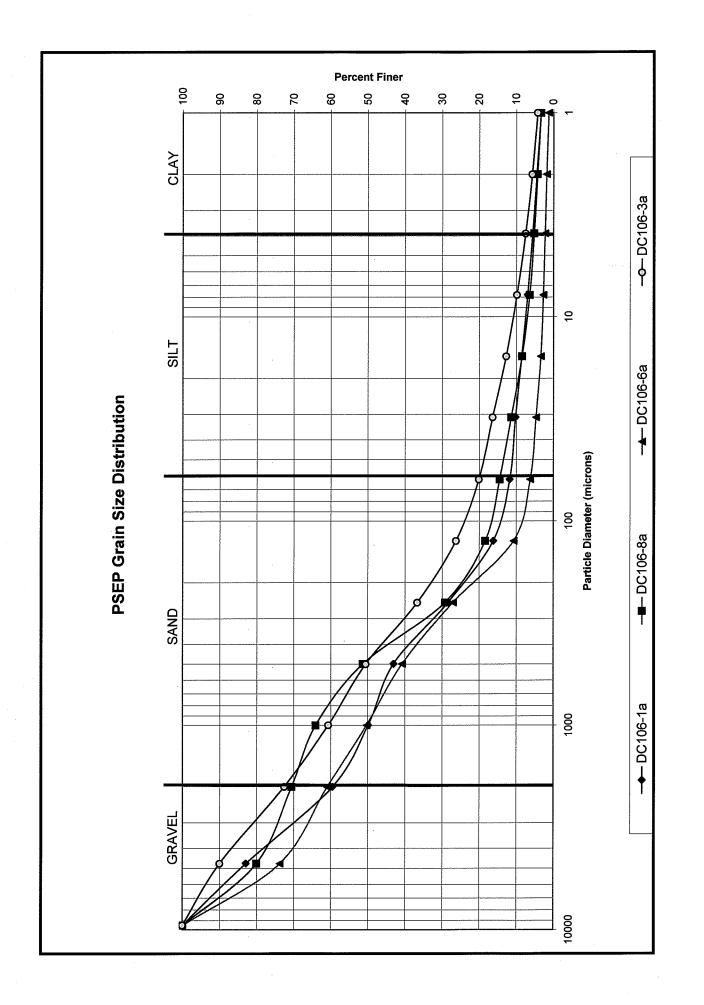
| DCL-Marina   | KG06 -1                   | 1 of 1                       |  |
|--------------|---------------------------|------------------------------|--|
| Project No.: | Batch No.:                | Page:                        |  |
| Floyd Snider | KF99 G                    | RS-02-111406-C               |  |
| PROJECT:     | ARI Triplicate Sample ID: | Client Triplicate Sample ID: |  |

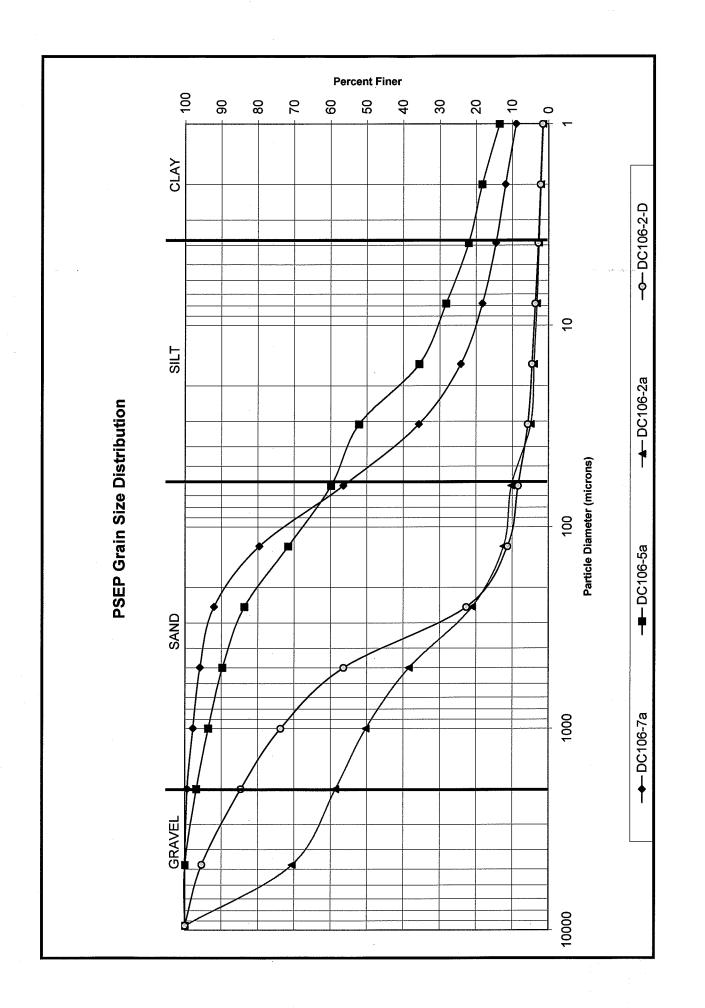
|                                          | 10           | 2.2          | 1.9          | 2.2           | 2.13   | 0.17  | 7.99 |  |
|------------------------------------------|--------------|--------------|--------------|---------------|--------|-------|------|--|
|                                          | 6            | 3.0          | 3.0          | 3.0           | 2.99   | 0.04  | 1.38 |  |
|                                          | 8            | 4.4          | 4.4          | 4.4           | 4.44   | 0.00  | 0.10 |  |
|                                          | 2            | 6.0          | 6.2          | 6.2           | 6.11   | 0.11  | 1.87 |  |
|                                          | 9            | 8.8          | 0.6          | 9.2           | . 9.02 | 0.20  | 2.21 |  |
| lize                                     | 5            | 13.4         | 14.1         | 14.0          | 13.83  | 0.40  | 2.90 |  |
| Relative Standard Deviation, By Phi Size | 4            | 21.0         | 22.2         | 22.0          | 21.76  | 0.65  | 2.98 |  |
| lard Deviatio                            | m            | 42.1         | 43.3         | 42.8          | 42.73  | 0.60  | 1.39 |  |
| lative Stand                             | 2            | 77.1         | 77.9         | 77.5          | 77.50  | 0.39  | 0.50 |  |
| Re                                       | 1            | 96.5         | 96.6         | 96.9          | 96.68  | 0.20  | 0.21 |  |
|                                          | 0            | 98.6         | 98.7         | 99.0          | 98.76  | 0.18  | 0.18 |  |
|                                          | -۱           | 99.5         | 99.3         | 99.7          | 99.52  | 0.17  | 0.17 |  |
|                                          | -2           | 100.0        | 99.8         | 100.0         | 99.92  | 0.14  | 0.14 |  |
|                                          | <del>،</del> | 100.0        | 100.0        | 100.0         | AN     | AN    | AN   |  |
|                                          | Sample ID    | S-02-111406- | S-02-111406- | :S-02-111406- | AVE    | STDEV | %RSD |  |

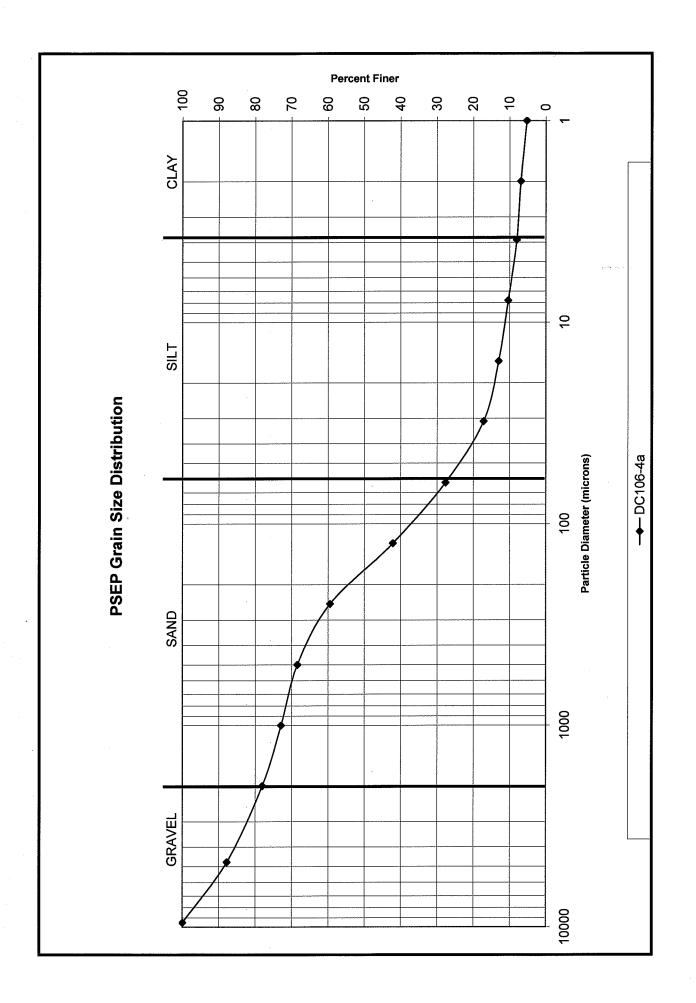
The Triplicate Applies To The Following Samples

| Pipette<br>Portion (5.0-<br>25.0a) | 8.3            | 8.7            | 8.5            | 6.1        | 7.4        | 7.9        | 10.0       | 16.8       | 13.6       | 13.0       | 10.3       | 12.8       |
|------------------------------------|----------------|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Data<br>Qualifiers                 |                |                |                |            |            |            |            |            |            |            |            |            |
| QA Ratio<br>(95-105)               | 100.5          | 6.66           | 99.6           | 98.9       | 100.1      | 99.5       | 99.5       | 99.4       | 100.0      | 104.8      | 101.5      | 102.7      |
| Date Complete                      | 12/13/2006     | 12/13/2006     | 12/13/2006     | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 | 12/13/2006 |
| Date Extracted                     | 12/6/2006      | 12/6/2006      | 12/6/2006      | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  | 12/6/2006  |
| Date Sampled                       | 11/17/2006     | 11/17/2006     | 11/17/2006     | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 | 11/17/2006 |
| Client ID                          | RS-02-111406-C | RS-02-111406-C | RS-02-111406-C | DC106-1a   | DC106-8a   | DC106-6a   | DC106-3a   | DC106-7a   | DC106-5a   | DC106-2a   | DC106-2-D  | DC106-4a   |


\* ARI Internal QA limits = 95-105%


Notes to the Testing:


1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.


KG06

ANALYTICAL RESOURCES INCORPORATED











December 21, 2006

Jessi Massingale Floyd Snider Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101-2341

#### RE: Project: DCI Marina ARI Job No: KJ09

Dear Jessi:

Please find enclosed the original chain of custody documentation (COC) and the final results for the samples from the project referenced above.

Thirteen sediment samples were received November 18, 2006 under ARI Job KG06. The cooler temperature measure by IR thermometer following ARI SOP was 4.0° C. Samples were received in good condition with no discrepancies in paperwork. On November 20<sup>th</sup>, emailed instructions were received to put four samples on hold until the Dioxin results were completed for all samples.

On December 18<sup>th</sup>, ARI was instructed to complete the analysis of the four hold samples on a rush basis. Analyses were completed with no incidents and results are reported.

An electronic copy of this report as well as all supporting raw data will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

futur

Susan D. Dunnihoo Client Services Manager 206-695-6207 sue@arilabs.com

Enclosures

cc: Efile KJ09

SD/sdrd

| <b>Analysis Request</b> |  |
|-------------------------|--|
| & Laboratory            |  |
| y Record &              |  |
| ain of Custody          |  |
| ч                       |  |

| Analytical Resources, Incorporated | Analytical Chemists and Consultants<br>4611 South 134th Place, Suite 100 | 1006-695-6200 206-695-6201 (fax)      | Notes/Comments       |                                    |                       |               |               |                |               |             |             |               |             |               |              | Received by:                     | (Signature)                     |                  | Company:         | Date & Time:                  |
|------------------------------------|--------------------------------------------------------------------------|---------------------------------------|----------------------|------------------------------------|-----------------------|---------------|---------------|----------------|---------------|-------------|-------------|---------------|-------------|---------------|--------------|----------------------------------|---------------------------------|------------------|------------------|-------------------------------|
|                                    |                                                                          | Iler 4°E                              | Analysis Requested   |                                    |                       |               |               |                |               |             |             |               |             |               |              | Relinquished by:<br>(Simmetrico) | (organization)<br>Printed Name: |                  | Company:         | Date & Time:                  |
| Page: of                           | Date: 17 Ice                                                             | No. of I Cooler<br>Coolers: I Temps:  |                      |                                    | 59<br>101             |               | >             | >              | >             | >           | >           | >             | >           | ~             |              |                                  | Juna Court                      | MUNUHAD M        | ANT              | 04:7 R                        |
|                                    | Phyne:<br>(206) 292 - 2078                                               |                                       |                      | ESSI MASSINAALE                    | Matrix No. Containers | Sediment 3    | Sectiment 3   | Sediment 3     | Sectiment 3   | Sedennerf 3 | Sectiment 3 | Sedument 3    | Sectiment 3 | Sedument 3    | Sectiment 3  | 0 M 1 / / M/ N/ 1/ 0 (Signature) | Printed Name:                   |                  | Company:         | $\frac{Date & Time:}{11 18}$  |
| Turn-around Requested:             |                                                                          |                                       |                      | Samplers:<br>JESS1 M               | Date Time             | 11117/06 1351 | 11/17/02/1228 | 1701 30 121111 | 11/11/02/1538 | OIGI SOFLIN | 111796 1203 | 11117106 1150 | 9711 90HLIM | alli doffilli | 1117/00/1301 | Relinquished by:<br>(Signatuke)  | 1                               | JESSI MASSINGALE | Company:<br>P[S] | Date & Time:<br>11/18/06 9:40 |
| ARI Assigned Number:               | ARI Client Company: SUI DED                                              | Client Contact:<br>JESSI M RSSINDIALE | Client Project Name: | Client Project #:<br>DC( - Mav une | Sample ID             | DC108-10      | DC106 - Sa    | DCIO6-ga       | DC106-62      | DC106-3a    | Derole - 7a | Delove - 76   | DC106 - 501 | DCNOW SD      | DCIO6-2a     | Comments/Special Instructions    |                                 |                  |                  |                               |

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client. Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

|                                                       | _                      |
|-------------------------------------------------------|------------------------|
| Chain of Custody Record & Laboratory Analysis Request | Turn-around Requested: |
| Chain of Custody Record                               | ARI Assigned Number:   |

Page:

| Analytical Resources, Incorporated | 4611 South 134th Place, Suite 100     | икили, иму 90100<br>206-695-6200 206-695-6201 (fax) | Notes/Comments       |                               |                                 |                          |                            |                       |  |  |  | Received by:<br>(Signature)                               | Printed Name: | Company: | Date & Time:                                                                         |
|------------------------------------|---------------------------------------|-----------------------------------------------------|----------------------|-------------------------------|---------------------------------|--------------------------|----------------------------|-----------------------|--|--|--|-----------------------------------------------------------|---------------|----------|--------------------------------------------------------------------------------------|
| ه<br>لک                            | Present? V                            | Cooler<br>Temps:                                    | Analysis Requested   | 257                           | es<br>XI (]                     |                          |                            |                       |  |  |  | Relinquished by:<br>(Signature)                           |               | Company: | Date & Time:                                                                         |
| Page:                              | Date:<br>11 1 1 24 OL                 | No. of<br>Coolers:                                  |                      | S                             | 9<br> ml                        | >                        |                            | V V                   |  |  |  | WINN                                                      | COMININO 3    | ART      | 06 9:40                                                                              |
| านเก-สา                            | Phone:<br>(206)292-2078               | SALE                                                |                      | Samplers:<br>JESSI MASSINGALE | Date Time Matrix No. Containers | 11/17/06/1311 Section/ 3 | 11/17/06/14399 Sectiment 3 | 11/17/06/430 Sedime 3 |  |  |  | Received by:<br>(Signature) LDM. M.M.W.W.L.C. (Signature) | I MASSI U     | S<br>S   | $\frac{\text{Date & time:}}{11/18/C6}$ $9.40$ $\frac{\text{Date & time:}}{11/18/C6}$ |
| KG06                               | ARI Client Company:<br>FLOVD SNI 1002 | Client Contact:<br>JESSI MASSINGAUE                 | Client Project Name: | Client Project #: Marth B     | Sample ID                       | DC106-2-D                | DC106-4a                   | DC106 - 410           |  |  |  |                                                           |               |          |                                                                                      |

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

| The second se<br>Second second second<br>Second second |                                                                                                                                                                                                                                  |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                       | аранан саранан саранан<br>Саранан саранан сарана |                         |
| Coolar Pac                                                                                                                                                                                                                                                                                                                                            | aint Corre                                                                                                                                                                                                                       |                         |
| Cooler Rec                                                                                                                                                                                                                                                                                                                                            | eipt Form                                                                                                                                                                                                                        | ANALYTICAL<br>RESOURCES |
| Flored Spiela                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | INCORPORATED            |
| ARI Client:Flund Snider                                                                                                                                                                                                                                                                                                                               | Project Name:                                                                                                                                                                                                                    | DCI                     |
|                                                                                                                                                                                                                                                                                                                                                       | Delivered By:                                                                                                                                                                                                                    | resimpal                |
| Fracking NO.:<br>ARI Job No.:KG-G-G                                                                                                                                                                                                                                                                                                                   | Date:(1/1                                                                                                                                                                                                                        | 18/02                   |
| ARI Job No.:                                                                                                                                                                                                                                                                                                                                          | Lims NO.: $06 - 256$                                                                                                                                                                                                             | 198 70 06-23510         |
| 'reliminary Examination Phase:                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                  |                         |
| 1. Were intact, properly signed and dated custody s                                                                                                                                                                                                                                                                                                   | seals attached                                                                                                                                                                                                                   |                         |
| To the outside of the cooler?                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  |                         |
| 2. Were custody papers included with the cooler                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  | YES NO                  |
| 3. Were custody papers properly filled out (ink, sign                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                         |
| 4. Complete custody forms and attach all shipping c                                                                                                                                                                                                                                                                                                   | documents                                                                                                                                                                                                                        | ak NA                   |
| Cooler Accepted BY:                                                                                                                                                                                                                                                                                                                                   | Date:////////                                                                                                                                                                                                                    | 16 Time: 9:40           |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
| .og-IN Phase:                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | ~~                      |
| 5. Was a temperature blank include in the cooler?                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                         |
| 6. Record Cooler Temperature                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                         |
| 7. What kind of packing material was used?                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  |                         |
| 8. Was sufficient ice used (if appropriate)?                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                         |
| 9. Were all bottles sealed in separate plastic bags?                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                  |                         |
| 10. Did all bottles arrive in good condition (unbroken)                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                  |                         |
| 11. Were all bottle labels complete and legible?                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  | $\bigcirc$              |
| 12. Did all bottle labels and tags agree with custody pa                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | YES NO                  |
| 13. Were all bottles used correct for the requested ana                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                  | (YES) NO                |
| 14. Do any of the analyses (bottles) require preservativ                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                         |
| (If so, Preservation checklist must be attached)                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |                         |
| 15. Were all VOA vials free of air bubbles?                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                  | ···· YES NO             |
| 16. Was sufficient amount of sample sent in each bottle                                                                                                                                                                                                                                                                                               | e?                                                                                                                                                                                                                               | YES NO                  |
| 17. Notify Project Manager of any discrepancies or con                                                                                                                                                                                                                                                                                                | ncerns                                                                                                                                                                                                                           | OK NA                   |
| voler Opened By: Much Tragon                                                                                                                                                                                                                                                                                                                          | Date: 11/20/06                                                                                                                                                                                                                   | Time12-30               |
| plain any discrepancies or negative responses:                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
| 2                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                         |
| L6F Cooler Receipt Form                                                                                                                                                                                                                                                                                                                               | 5. ×                                                                                                                                                                                                                             | Revision7(1/10/01)      |

and the state of the

## Sue Dunnihoo

From:Jessi Massingale [jessi.massingale@floydsnider.com]Sent:Monday, November 20, 2006 8:13 AMTo:Sue DunnihooSubject:DCI Sed Samples To Archive

Hi Sue,

I left you a voicemail this morning about four sediment samples that we would like to have archived at ARI until we receive the results of the dioxin testing.

Here are the four samples:

DCI06-7b DCI06-5b DCI06-4b DCI06-9a

Thank you

J

Jessi Massingale FLOYD|SNIDER

Two Union Square 601 Union Street Suite 600 Seattle, WA 98101-2341 Tel: (206) 292-2078 Ext. 2157 Fax. (206) 652-7867

mailto:jessi.massingale@floydsnider.com

### Sue Dunnihoo

From: Jessi Massingale [jessi.massingale@floydsnider.com]

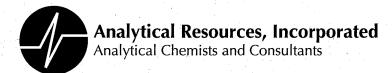
Sent: Monday, December 18, 2006 10:25 AM

To: Sue Dunnihoo

Subject: RE: Data

Hi Sue,

I realized last week that the dioxin analysis was ran for all samples including those that on the ARI COC we stated to be held. Which is fine, but I just realized that those samples weren't analyzed for TOC,TS, or GS. There are four samples, DCI06-4B, DCI06-5B, DCI06-7B, and DCI06-9A.


Is there anyway we can get the TOC,TS, and GS ran on these ASAP? I am working on the data report to Ecology. Thank you.

Jessi

From: Sue Dunnihoo [mailto:sue@arilabs.com] Sent: Monday, December 18, 2006 10:20 AM To: Jessi Massingale Subject: Data

Sorry about the delay. - Sue

Susan D. Dunnihoo 206-695-6207



Client: Floyd Snider

Project No.: KJ09

Client Project: DCI: DCL-Marina

#### Case Narrative

- 1. Four samples were submitted for grain size analysis according to PSEP methodology.
- 2. The samples were run in a single batch, and sample DC106-7b was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 3. Sample DC106-9a was sand and contained fewer than the required 5 grams in the pipette portion of the analysis. When this occurs, we generally run the samples anyway, and flag the data. Our balance has a capacity of about 200 g (by 0.0001), and a sample size that would give 5 grams of fines could not be split and stay within the capacity of the balance.
- 4. Samples DC106-7b, DC106-5b and DC106-4b contained woody matter, which may have broken down during the sieving process, affecting grain size analysis.
- 5. Sample DC106-4b contained abundant shells and shell fragments.
- 6. Sample DC106-7b had a fuel odor.
- 7. The data is provided in summary tables and plots.
- 8. There were no other noted anomalies in this project.

Approved by: <u>*Taylor Mikenzje*</u> Title: Lead Technician

Date: 12/21/00



::

# DATA QUALIFIERS FOR PHYSICAL ANALYSES

- SM Indicates that the sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with moisture content, porosity, and saturation calculations that assume only water is present. It can also cause particles to adhere to one another, causing errors in grain size distribution analyses.
- SS Indicates that the sample was not appropriate for the method requested because it did not contain the proportion of "fines'" required to perform the pipette portion of the analysis.
- W Indicates that the amount of sample in some pipette readings was below the level required for accurate weighing, resulting in negative weights, which were adjusted to eliminate the negative value.
- F Indicates that the samples were frozen prior to particle size determination.

ł,

Floyd Snider DCI: DCL-Marina Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

| ·                      | 1        | T                       | τ-       | T        | <u>т</u> | -        | 1        | -        |
|------------------------|----------|-------------------------|----------|----------|----------|----------|----------|----------|
| Clay                   | 10       | 1.00                    | 8.0      | 8.0      | 8.2      | AN       | 13.9     | 4.4      |
| D                      | 6        | 2.00                    | 10.9     | 10.6     | 10.9     | NA       | 19.6     | 6.5      |
|                        | 8        | 3.90                    | 13.5     | 13.1     | 13.3     | NA       | 24.9     | 8.4      |
| tt                     | 7        | 7.80                    | 16.6     | 16.3     | 16.5     | NA       | 31.6     | 11.1     |
| Silt                   | 9        | 15.60                   | 22.4     | 22.0     | 22.3     | AN       | 40.4     | 14.9     |
|                        | 5        | 31.00                   | 35.4     | 34.4     | 34.8     | AN       | 52.5     | 20.6     |
| Very Fine<br>Sand      | 4        | #230<br>(62)            | 56.9     | 57.0     | 58.2     | 0.2      | 64.4     | 27.8     |
| Fine Sand              | e        | #120<br>(125)           | 77.1     | 77.7     | 79.5     | 0.3      | 77.5     | 37.9     |
| Medium<br>Sand         | 2        | #60<br>(250)            | 90.6     | 90.7     | 92.6     | 18.9     | 89.8     | 52.4     |
| Coarse<br>Sand         | ۱ ا      | #35 (500)               | 95.6     | 95.2     | 97.2     | 97.0     | 93.9     | 59.2     |
| Very<br>Coarse<br>Sand | 0        | #18<br>(1000)           | 97.2     | 96.9     | 98.7     | 99.9     | 96.4     | 62.7     |
|                        | -1       | #10<br>(2000)           | 97.9     | 97.7     | 99.6     | 100.0    | 98.6     | 67.3     |
| Gravel                 | -2       | #4                      | 98.0     | 98.2     | 100.0    | 100.0    | 100.0    | 75.6     |
|                        | ę-       | 3/8"                    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
| Sample No.             | Phi Size | Sieve Size<br>(microns) | DC106-7b | DC106-7b | DC106-7b | DC106-9a | DC106-5b | DC106-4b |

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

KJ09

Floyd Snider DCI: DCL-Marina

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

| Clay         Clay           8         8 to 9         9 to 10         < 10           9         3.9-2.0         2.0-1.0         < 1.0           2.6         2.8         8.0            2.5         2.7         8.0            2.4         2.7         8.0            1.9         5.7         13.9            1.9         2.1         4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | -        |                         |          |          |          | -        | -        |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------------------|----------|----------|----------|----------|----------|----------|
| Very<br>Bardel         Very<br>Sand<br>Sand         Coarse<br>Sand         Medium<br>Sand         Fine Site<br>Sand         Medium<br>Sand         Fine Site<br>Sand         Very Fine<br>Site         Very Fine<br>Site         Very Fine<br>Site         Clay           >-1         -1100         0101         1102         2103         3104         4105         5106         6107         7108         8109         91010           >#10         101018         18-35         35-60         60-120         120-230         625-31.0         310-15.6         5105         7108         8109         91010           2000         1000-500         (500-500)         (250-125)         (125-62)         10.15.6         15.6-7.8         78-39         3.9-2.0         2.0-1.0           2000         2001         100         11.6         4.9         13.5         20.2         21.5         13.0         5.7         3.2         2.8         2.1.0           21         0.1         1.6         4.6         13.1         20.7         22.6         13.7         2.6         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>Fines         | 4        | <230<br>(<62)           | 56.9     | 57.0     | 58.2     | 0.2      | 64.4     | 27.8     |
| Very<br>Bardel         Very<br>Sand<br>Sand         Very<br>Sand         Very Fine<br>Sand         Very Fine         V                                                                                                                                                      |                        | < 10     | <1.0                    | 8.0      | 8.0      | 8.2      | AN       | 13.9     | 4.4      |
| Very<br>Bavel         Very<br>Sand         Coarse<br>Sand         Medium<br>Sand         Fine Sand         Very Fine<br>Sand         Very Fine         Very Fine         Very | Clay                   | 9 to 10  | 2.0-1.0                 | 2.8      | 2.7      | 2.7      | AN       | 5.7      | 2.1      |
| Very<br>Bardel         Very<br>Sand<br>Sand         Very<br>Sand         Medium<br>Sand         Fine Sand<br>Sand         Very Fine<br>Sand         Medium<br>Sitt         Fine Sitt         Medium<br>Sitt         Fine Sitt         Fine Sitt         Medium         Fine Sitt         Medium         Fine Sitt         Fine Sitt         Medium         Fine Sitt                                                                                                                                                                                                                                                                                            |                        | 8 to 9   | 3.9-2.0                 | 2.6      | 2.5      | 2.4      | AN       | 5.3      | 1.9      |
| Very<br>Bavel         Very<br>Sand         Very<br>Sand         Very Fine<br>Sand         Wery Fine<br>Sand         Medium<br>Sand           > -1         -1 to 0         0 to 1         1 to 2         2 to 3         3 to 4         4 to 5         5 to 6         5 to 6           > #10         0 to 18         18.35         35-60         60-120         120-230         62.5-31.0         31.0-15.6           > #10         10 to 18         18.35         35-60         60-120         (125-62)         62.5-31.0         31.0-15.6           2000         (1000-500)         (500-250)         (550-125)         (125-62)         62.5-31.0         31.0-15.6           21         0.7         1.6         4.9         13.1         20.7         22.6         13.0           23         0.9         1.7         4.5         13.1         20.7         22.6         12.4           0.0         0.1         2.9         78.1         18.7         0.0         NA         NA           14.4         2.2         2.5         4.1         12.3         12.1         12.1           14.4         2.2         2.5         4.1         12.3         12.1         12.1           14.5         10.1         12.5 <td>Very Fine<br/>Silt</td> <td>7 to 8</td> <td>7.8-3.9</td> <td>3.1</td> <td>3.2</td> <td>3.2</td> <td>AN</td> <td>6.7</td> <td>2.6</td>                                                                                                                                                                                                                                                                                                                                      | Very Fine<br>Silt      | 7 to 8   | 7.8-3.9                 | 3.1      | 3.2      | 3.2      | AN       | 6.7      | 2.6      |
| Very<br>Bavel         Very<br>Sand         Coarse<br>Sand         Medium<br>Sand         Fine Sand         Very Fine<br>Sand         Coarse Sit           > -1         -1 to 0         0 to 1         1 to 2         2 to 3         3 to 4         4 to 5           > #10         10 to 18         18.35         35-60         60-120         120-230         62.5-31.0           2000)         (2000-1000)         (1000-500)         (500-250)         (250-125)         (125-62)         62.5-31.0           21         0.7         1.6         4.9         13.5         20.2         21.5           23         0.9         1.7         4.5         13.1         20.7         22.6           0.0         0.1         2.9         78.1         18.7         0.0         NA           14.4         2.2         2.5         4.1         12.3         13.0         11.9           32.7         4.6         3.5         6.8         14.5         10.1         7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fine Silt              | 6 to 7   | 15.6-7.8                | 5.8      | 5.7      | 5.8      | AN       | 8.8      | 3.9      |
| Very<br>Gravel         Very<br>Sand<br>Sand         Coarse<br>Sand         Medium<br>Sand         Fine Sand<br>Sand         Very Fine<br>Sand           >-1         -1 to 0         0 to 1         1 to 2         2 to 3         3 to 4           >+10         -1 to 0         0 to 1         1 to 2         2 to 3         3 to 4           >#10         10 to 18         18-35         55-60         60-120         120-230           (2000)         (2000-1000)         (100-500)         (500-250)         (250-125)         (125-62)           21         0.7         1.6         4.9         13.5         20.2           23         0.9         1.7         4.5         13.1         20.7           0.0         0.1         2.9         78.1         18.7         0.0           1.4         2.2         2.5         4.1         12.3         13.0           1.4         2.2         2.5         4.1         12.3         13.0           3.2.7         4.6         3.5         6.8         14.5         10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Medium<br>Silt         | 5 to 6   | 31.0-15.6               | 13.0     | 12.4     | 12.5     | AN       | 12.1     | 5.6      |
| Very<br>Gravel         Very<br>Sand         Coarse<br>Sand         Medium<br>Sand         Fine Sand           >-1         -1 to 0         0 to 1         1 to 2         2 to 3           >+10         -1 to 0         0 to 1         1 to 2         2 to 3           >#10         10 to 18         18-35         35-60         60-120           (2000)         (2000-1000)         (1000-500)         (500-250)         (250-125)           21         0.7         1.6         4.9         13.5           23         0.9         1.7         4.5         13.1           0.0         0.1         2.9         78.1         18.7           32.7         4.6         3.5         6.8         14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coarse Silt            | 4 to 5   | 62.5-31.0               | 21.5     | 22.6     | 23.4     | AN       | 11.9     | 7.2      |
| Very<br>Gravel         Very<br>Sand<br>Sand         Very<br>Sand         Medium<br>Sand           > -1         -1 to 0         0 to 1         1 to 2           > #10         10 to 18         18-35         35-60           (2000)         (2000-1000)         (1000-500)         (500-250)           2.1         0.7         1.6         4.9           2.3         0.9         1.7         4.5           0.4         0.8         1.6         4.6           0.0         0.1         2.9         78.1           1.4         2.2         2.5         4.1           32.7         4.6         3.5         6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Very Fine<br>Sand      | 3 to 4   | 120-230<br>(125-62)     | 20.2     | 20.7     | 21.3     | 0.0      | 13.0     | 10.1     |
| Very<br>Gravel         Very<br>Coarse         Coarse         N           >-1         -100         0 to 1         1           >+10         -1 to 0         0 to 1         1           >+10         10 to 18         18-35         1           2000         (2000-1000)         (1000-500)         1           2:1         0.7         1.6         1           2:3         0.9         1.7         1           0.4         0.8         1.6         1           1:4         2.2         2.5         1           32.7         4.6         3.5         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fine Sand              | 2 to 3   | 60-120<br>(250-125)     | 13.5     | 13.1     | 13.1     | 18.7     | 12.3     | 14.5     |
| Very         Very           Gravel         Coarse           Sand         >-1           >-1         -1 to 0           > #10         10 to 18           (2000)         (2000-1000)           2.1         0.7           2.1         0.7           2.3         0.9           0.4         0.8           0.0         0.1           1.4         2.2           32.7         4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Medium                 | 1 to 2   | 35-60<br>(500-250)      | 4.9      | 4.5      | 4.6      | 78.1     | 4.1      | 6.8      |
| Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coarse<br>Sand         | 0 to 1   | 18-35<br>(1000-500)     | 1.6      | 1.7      | 1.6      | 2.9      | 2.5      | 3.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Very<br>Coarse<br>Sand | -1 to 0  | 10 to 18<br>(2000-1000) | 0.7      | 0.9      | 0.8      | 0.1      | 2.2      | 4.6      |
| Sample No.<br>Phi Size<br>Sieve Size<br>(microns)<br>DC106-7b<br>DC106-7b<br>DC106-9a<br>DC106-5b<br>DC106-4b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gravel                 | 1        | > #10<br>(2000)         | 2.1      | 2.3      | 0.4      | 0.0      | 1.4      | 32.7     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample No.             | Phi Size | Sieve Size<br>(microns) | DC106-7b | DC106-7b | DC106-7b | DC106-9a | DC106-5b | DC106-4b |

Notes to the Testing: 1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

KJ09

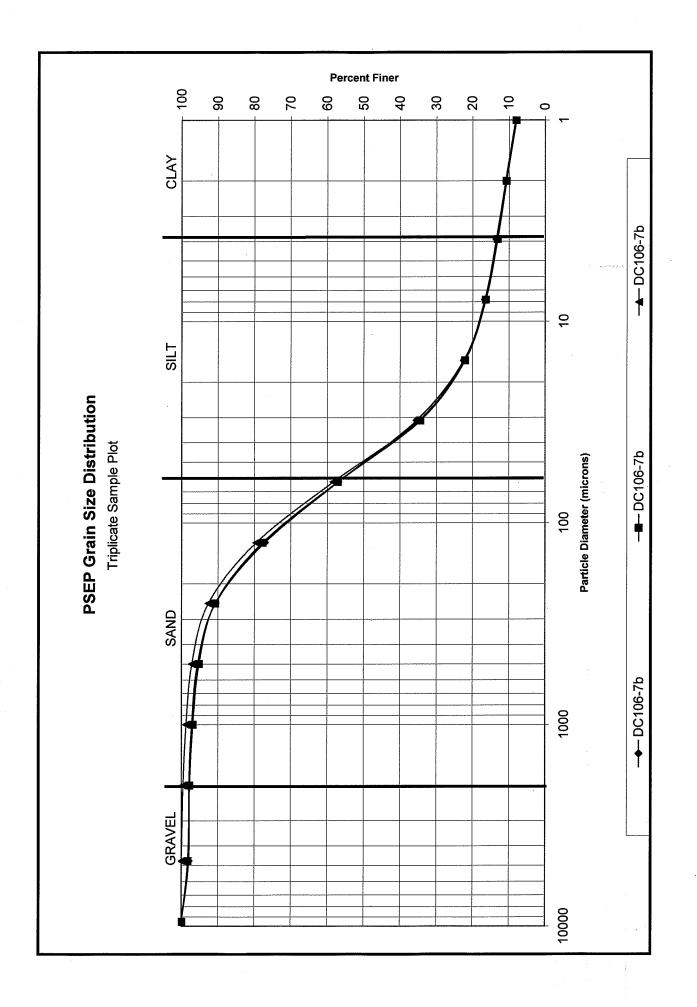
QA SUMMARY

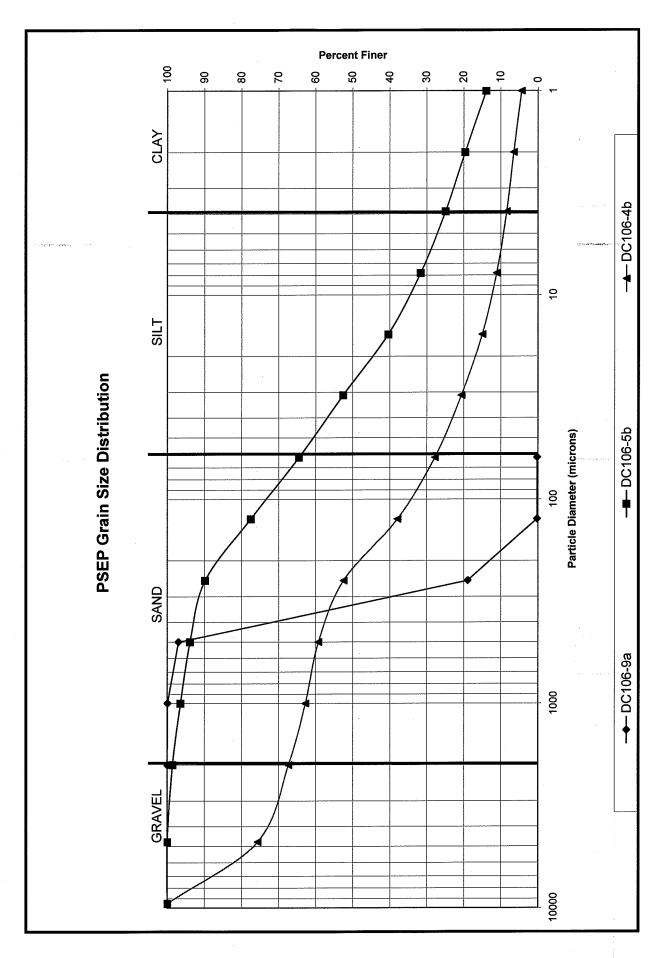
| DCI: DCL-Marina | KJ09 -1                   | 1 of 1                       |
|-----------------|---------------------------|------------------------------|
| Project No.:    | Batch No.:                | Page:                        |
| Floyd Snider    | KJ09 B                    | DC106-7b                     |
| PROJECT:        | ARI Triplicate Sample ID: | Client Triplicate Sample ID: |

| v Phi Size |
|------------|
| á          |
| Deviation, |
| Standard   |
| Relative   |

|              | <del>.</del> |          |          |       | T     |      | - |
|--------------|--------------|----------|----------|-------|-------|------|---|
| 10           | 8.0          | 8.0      | 8.2      | 8.06  | 0.09  | 1.14 |   |
| 6            | 10.9         | 10.6     | 10.9     | 10.81 | 0.14  | 1.34 |   |
| 8            | 13.5         | 13.1     | 13.3     | 13.28 | 0.18  | 1.38 |   |
| <u> </u>     | 16.6         | 16.3     | 16.5     | 16.45 | 0.14  | 0.85 |   |
| 9            | 22.4         | 22.0     | 22.3     | 22.23 | 0.18  | 0.82 |   |
| 3            | 35.4         | 34.4     | 34.8     | 34.87 | 0.52  | 1.49 |   |
| 4            | 56.9         | 57.0     | 58.2     | 57.37 | 0.73  | 1.27 |   |
| e            | 77.1         | 7.77     | 79.5     | 78.08 | 1.23  | 1.58 |   |
| 2            | 90.6         | 90.7     | 92.6     | 91.32 | 1.11  | 1.21 |   |
| <del></del>  | 92.6         | 95.2     | 97.2     | 95.97 | 1.04  | 1.08 |   |
| 0            | 97.2         | 96.9     | 98.7     | 97.59 | 0.99  | 1.02 |   |
| <del>.</del> | 97.9         | 97.7     | 9.66     | 98.41 | 1.02  | 1.03 |   |
| -2           | 98.0         | 98.2     | 100.0    | 98.73 | 1.10  | 1.12 |   |
| -3           | 100.0        | 100.0    | 100.0    | NA    | NA    | AN   |   |
| Sample ID    | DC106-7b     | DC106-7b | DC106-7b | AVE   | STDEV | %RSD |   |

The Triplicate Applies To The Following Samples


| Client ID | Date Sampled | Date Extracted | Date Complete | QA Ratio<br>(95-105) | Data<br>Qualifiers | Pipette<br>S Portion (5.0-<br>35.0a) |
|-----------|--------------|----------------|---------------|----------------------|--------------------|--------------------------------------|
| DC106-7b  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 102.4                |                    | 16.7                                 |
| DC106-7b  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 102.1                |                    | 17.0                                 |
| DC106-7b  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 101.6                |                    | 17.0                                 |
| DC106-9a  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 100.1                | SS                 | 0.3                                  |
| DC106-5b  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 101.2                |                    | 14.9                                 |
| DC106-4b  | 11/17/2006   | 12/19/2006     | 12/21/2006    | 102.2                |                    | 17.4                                 |
|           |              |                |               |                      |                    |                                      |


\* ARI Internal QA limits = 95-105%

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

60ry





 $e^{-i\omega t} + i h \phi (\omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0} + \omega t_{0} + \omega t_{0} + \ldots + \omega t_{0} + \omega t_{0}$ 



Matrix: Sediment Data Release Authorized (A Reported: 12/21/06

Project: DCI Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-9a ARI ID: 06-25045 KJ09A

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 12/18/06<br>121806#1 | EPA 160.3  | Percent | 0.01  | 95.80  |
| Total Organic Carbon | 12/20/06<br>122006#1 | Plumb,1981 | Percent | 0.020 | 0.239  |

RL Analytical reporting limit
U Undetected at reported detection limit

#### Soil Sample Report-KJ09



Matrix: Sediment Data Release Authorized: Reported: 12/21/06

Project: DCI Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-7b ARI ID: 06-25046 KJ09B

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 12/18/06<br>121806#1 | EPA 160.3  | Percent | 0.01  | 57.20  |
| Total Organic Carbon | 12/20/06<br>122006#1 | Plumb,1981 | Percent | 0.020 | 1.06   |

RL Analytical reporting limit
U Undetected at reported detection limit

Soil Sample Report-KJ09



Matrix: Sediment Data Release Authorized H Reported: 12/21/06 Project: DCI Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-5b ARI ID: 06-25047 KJ09C

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 12/18/06<br>121806#1 | EPA 160.3  | Percent | 0.01  | 42.90  |
| Total Organic Carbon | 12/20/06<br>122006#1 | Plumb,1981 | Percent | 0.020 | 2.88   |

RL Analytical reporting limit

U Undetected at reported detection limit



Matrix: Sediment Data Release Authorized Reported: 12/21/06 Project: DCI Event: DCL-MARINA Date Sampled: 11/17/06 Date Received: 11/18/06

Client ID: DC106-4b ARI ID: 06-25048 KJ09D

| Analyte              | Date                 | Method     | Units   | RL    | Sample |
|----------------------|----------------------|------------|---------|-------|--------|
| Total Solids         | 12/18/06<br>121806#1 | EPA 160.3  | Percent | 0.01  | 59.60  |
| Total Organic Carbon | 12/20/06<br>122006#1 | Plumb,1981 | Percent | 0.020 | 3.43   |

RL Analytical reporting limit

U Undetected at reported detection limit

#### METHOD BLANK RESULTS-CONVENTIONALS KJ09-Floyd Snider



Matrix: Sediment Data Release Authorize Reported: 12/21/06 Project: DCI Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte              | Date     | Units   | Blank     |
|----------------------|----------|---------|-----------|
| Total Solids         | 12/18/06 | Percent | < 0.01 U  |
| Total Organic Carbon | 12/20/06 | Percent | < 0.020 U |

#### LAB CONTROL RESULTS-CONVENTIONALS KJ09-Floyd Snider



Matrix: Sediment Data Release Authorized Reported: 12/21/06

Project: DCI Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte              | Date     | Units   | LCS   | Spike<br>Added | Recovery |
|----------------------|----------|---------|-------|----------------|----------|
| Total Organic Carbon | 12/20/06 | Percent | 0.476 | 0.500          | 95.2%    |

#### Soil Lab Control Report-KJ09

#### STANDARD REFERENCE RESULTS-CONVENTIONALS KJ09-Floyd Snider



Matrix: Sediment Data Release Authorized: Reported: 12/21/06 Project: DCI Event: DCL-MARINA Date Sampled: NA Date Received: NA

| Analyte/SRM ID                     | Date     | Units   | SRM  | True<br>Value | Recovery |
|------------------------------------|----------|---------|------|---------------|----------|
| Total Organic Carbon<br>NIST #8704 | 12/20/06 | Percent | 3.35 | 3.35          | 100.0%   |

#### REPLICATE RESULTS-CONVENTIONALS KJ09-Floyd Snider



Matrix: Sediment Data Release Authorized Reported: 12/21/06

| Analyte                  | Date     | Units   | Sample | Replicate(s)   | RPD/RSD |
|--------------------------|----------|---------|--------|----------------|---------|
| ARI ID: KJ09B Client ID: | DC106-7b |         |        |                |         |
| Total Solids             | 12/18/06 | Percent | 57.20  | 56.10<br>57.10 | 1.1%    |
| Total Organic Carbon     | 12/20/06 | Percent | 1.06   | 1.10<br>1.24   | 8.3%    |

#### Soil Replicate Report-KJ09

#### MS/MSD RESULTS-CONVENTIONALS KJ09-Floyd Snider



Matrix: Sediment Data Release Authorized: Reported: 12/21/06

| Analyte                  | Date     | Units   | Sample | Spike | Spike<br>Added | Recovery |
|--------------------------|----------|---------|--------|-------|----------------|----------|
| ARI ID: KJ09B Client ID: | DC106-7b |         |        |       |                |          |
| Total Organic Carbon     | 12/20/06 | Percent | 1.06   | 2.12  | 1.17           | 90.9%    |