

SITE CHARACTERIZATION AND CONTAMINATED SOIL REMEDIATION REPORT

Pace Industries Oil Release April 26, 1999

Located At: 2119 Mildred Street W. Fircrest, Washington May 5, 1999

Prepared For:

Metal Marine Pilot, Inc. Wood Freeman Autopilot 2119 Mildred Street W. Firerest, Washington

Prepared By:

Creative Environmental Technologies, Inc.

PO Box 1803 Tacoma, Washington 98401-1803 (253) 627-3347

Table Of Contents

1.0	Introduction 3
2.0	Site Description and Limits of the Contamination
3.0	Geologic Conditions
4.0	Contaminated Soil Removal5
5.0	Soil Sampling
6.0	Analytical Results6
7.0	Conclusions 8
	ndix A -Site Location Map, Site Map, Sample Location Map, Plat Drawing, graphs of Site
Appe	ndix B - Analytical Results, Chromatographs, Chains of Custody

1.0 Introduction

Creative Environmental Technologies, Inc. (CETI) was retained by Metal Marine Pilot, Inc. and Mr. Michael Freeman to supervise the remedial activities for an oil / water waste product release on to the north end of Metal Marines property by Pace Industries, a local metal fabricator.

Pace Industries uses a special lubricating paraffin oil in their machining process (MSDS sheets attached). This oil is collected in several areas throughout their facility. One of these collection areas discharges from the rear of Pace's building in an underground four inch PVC piping system. This piping system runs along the southern end of Pace's building and discharges into a holding system for treatment prior to disposal into the City of Firerest sanitary sewer system. Along this piping is a clean out that protrudes at a 45 degree angle out of the ground. This is the point of release. CETI was told by Jeff Bartunek, Pace's casting / maintenance manager & CPD Safety Director, that the system backed up and the pressure blew the cap of the clean out. At this time it is unclear the amount of oil / water released.

The release was noticed by Pace and Metal Marine employees Monday morning April 26, 1999. Pace immediately implemented a cleanup action by pumping all standing fluid from Paces's property and Metal Marines Property into 55 gallon drums. The exact amount of waste product versus standing water collected is unknown. The released material pooled in the general vicinity of the release point then flowed following the natural gradient to the east. Prior to the release, Metal Marine trenched an area along their eastern property boundary to collect surface storm water and channel it for storm water runoff control. The released material followed the storm water trench for approximately two hundred feet along Metal Marine's eastern property boundary. Pace recovered all the water and released product from the trench line. It is unclear if the trench line had standing water prior to the release.

CETI identified oil range hydrocarbon contamination in the surface and sub-surface soils at the site during a site walk approximately 24 hours following the release. Foss Environmental Services was initially contacted by Pace following the collection of the standing water. CETI technicians samples the soil prior to the remedial activity and following the remedial activity by Foss. The sample results from this first round of sampling indicated further remedial activity would be required. At CETI's request, Pace contacted a local environmental contracted, Clean Service, to complete the remedial activity. CETI supervised the remedial activity and collected samples following the removal of all soil impacted by the release on Metal Marine's property. There still exists contamination on Pace's property directly adjacent to Metal Marine's property. This area was fenced impeding remedial activities.

2.0 Site Description and Limits of the Contamination

Metal Marine's property is located in the City of Fircrest, in Pierce County, Washington at 2119 Mildred Street West. The property has been owned by the Freeman family for over fifty years. It covers approximately 10 acres fronting Mildred street. Pace Puget occupies the property directly adjacent to the north of Metal Marine. The piping system where the release occurred runs along the southern end of Pace's building approximately twenty four (24) inches from Metal Marines property line (Figure 2). The release point is inside a fenced area. The gradient of the immediate area adjacent to the release point slopes to the south onto Metal Marine's property then slopes to the east.

The released material pooled in a twenty by thirty (approximate) foot area before flowing down-slope to the east. The flow limited the horizontal extent of contamination to a path twenty to forty inches wide. The material released was a milky white, emulsified oil / water waste product. The color of the material helped in tracing the flow. There were several hay bails placed on the northeast corner of Metal Marines property prior to the release directly in the path of the flow. These hay bails acted at a barrier and significantly reduced the amount of contamination along the eastern storm water trench.

The horizontal extent of contamination was observed along Metal Marine's eastern storm water ditch line. On site sampling indicated clean up levels outlined by MTCA¹ (Model Toxic Control Act) were not exceeded in surface and sub-surface soils past two hundred feet from the northeast property corner of Metal Marine's property and the start of the eastern ditch line.

Generally, vertical extent of contamination was observed from the surface to twenty four inches below ground surface (BGS). Where the contamination pooled, the vertical extent of contamination was greater.

¹ The Model Toxic Control Act (MTCA) Cleanup Regulations sets requirements for allowable petroleum and other potentially harmful constituents and there clean up limits in surface and sub-surface soils and groundwater in the state of Washington. These limits are found in Washington Administrative Code (WAC) 173-340.

3.0 Geologic Conditions

In the area where the released occurred, the soil consisted of light to medium gray silt and glacial till sand with few rounded coarse to fine gravels. According to Mr. Freeman, the majority of the surface soils have been imported over the past 15 years.

4.0 Contaminated Soil Removal

Remedial activities were started on April 27, 1999 and finished on April 29, 1999, on soil contaminated by the release from Pace Puget on April 19, 1990, and identified by CETI through on-site soil sampling. Soil was removed along Metal Marine's northern property line and along the eastern storm water ditch. Approximately eighty cubic tons of contaminated soil were excavated and removed from the property.

On April 27, 1999, Foss Environmental Services started excavating contaminated soils by hand but soon learned that the contamination was greater than first thought. CETI was on site sampling soils and recommended that Clean Service be hired to excavate the remaining contaminated soil. A track hoe was delivered on April 28, 1999 by Clean Service. Under CETI's supervision, soils that were screened by CETI and found to contain hydrocarbons exceeding MTCA limits were excavated and trucked off-site for disposal. The soil was disposed of at TPS, a local hydrocarbon contaminated soil disposal facility.

The area most significantly contaminated was near the release point where the contaminate had pooled. Soil was excavated in this area to a depth of twenty four to thirty six inches BGS. This excavated area was approximately twenty feet by thirty feet. The path the released material followed along the northern property boundary, approximately one hundred sixty feet to the hay bails on the northeast corner of the property was excavated to six inches BGS. Twelve to eighteen inches of soil was excavated in an area fifteen feet by twenty feet around the hay bail location. The storm water ditch following the eastern property line was the final area excavated. The ditch started on the northeast corner of the property and runs the entire eastern length of the property. CETI screened the ditch bottom and found oil contamination exceeding the MTCA limits for approximately 200 feet along the ditch line. Six to twelve inches of soil was removed from the bottom and side walls of the ditch, removing all contamination.

Confirmatory samples were collected from the excavated areas. These samples showed no levels of oil exceeding the MTCA limits.

5.0 Soil Sampling

CETI collected soils samples from the excavation area along the perimeter and the bottom of the excavated areas. Soil collection depths followed the final excavation depth and varied through out the area (Figure 2 - Soil Sample Location Map)

Soil sampling procedures followed the Washington State Department Of Ecology Toxics Cleanup Program Guidance on Sampling and Data Analysis Methods, Publication Number 94-49. The soil samples were collected from the excavation using a stainless steel sampling spoon. Select soil was placed in a EPA approved 4 oz glass sample collection jar with a TeflonTM lined lid. All samples were stored in a cooler at 40° F. to maintain and preserve the integrity of the sample until delivered to the laboratory for analysis.

The soil samples were submitted to Spectra laboratories for analysis between April 27 and April 29, 1999. Analysis performed was for Total Petroleum Hydrocarbons- diesel extended (WTPH-D Extended).

6.0 Analytical Results

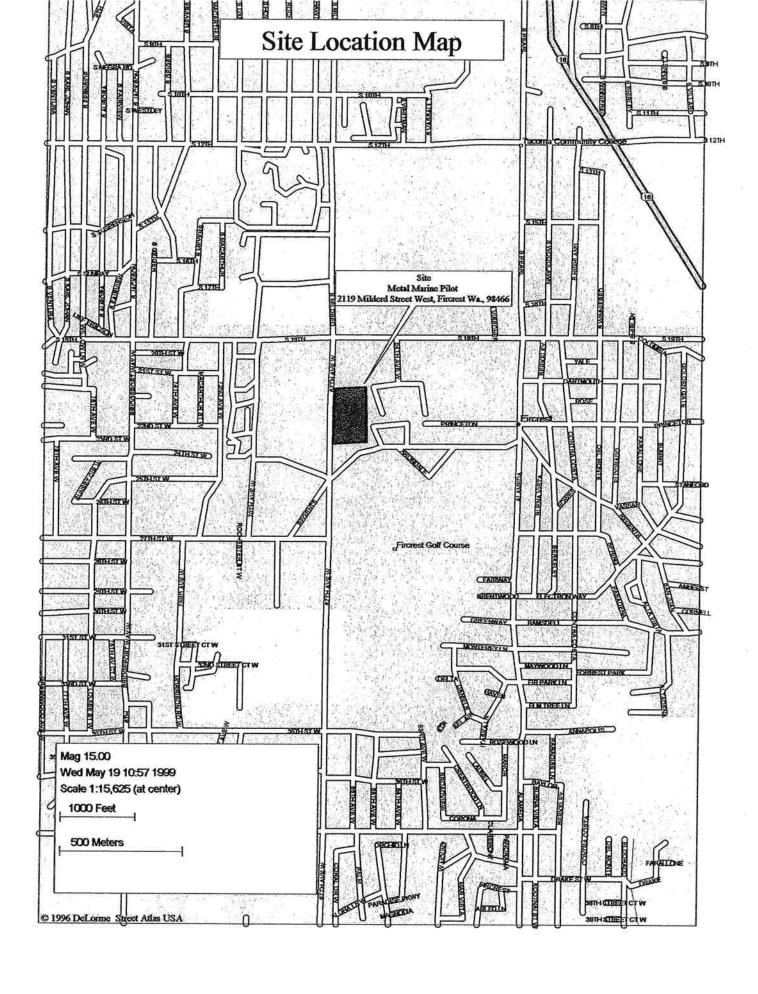
Washington administrative code (WAC) 173-340-745 Method A sets an action level (maximum allowable limit) of 200 ppm (mg/kg) petroleum hydrocarbon oils in soil.

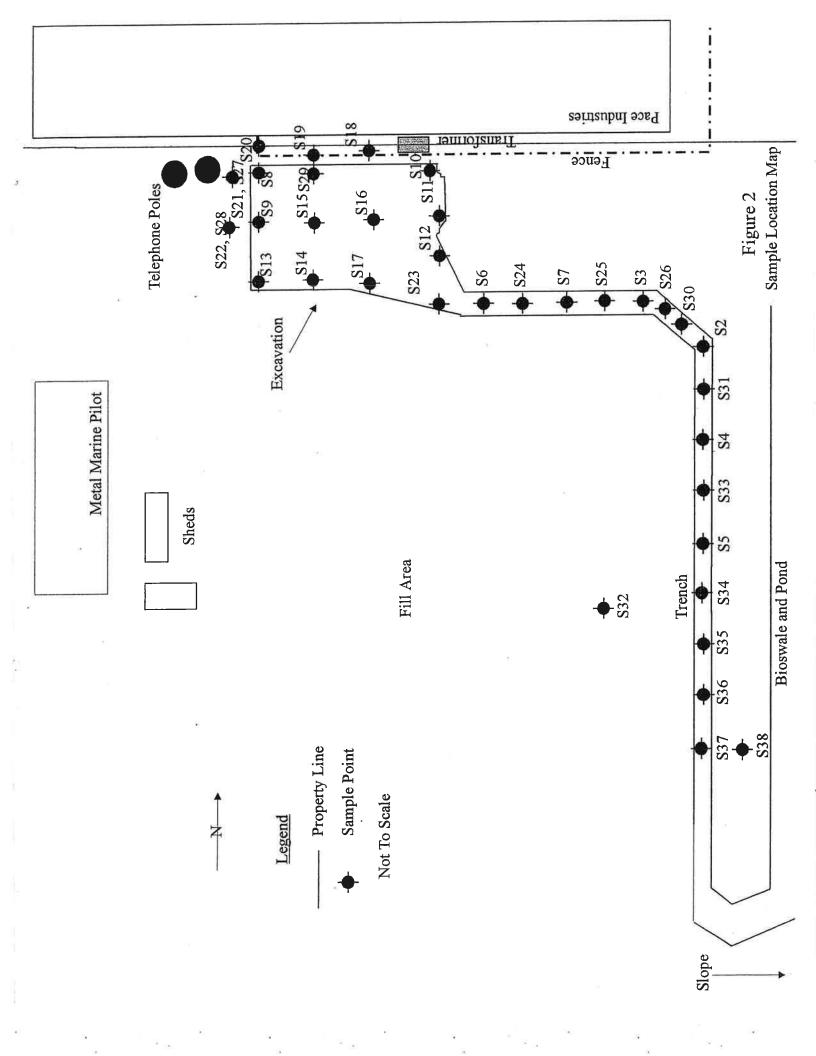
Soil Analysis
Heavy Oil Release Excavation
Method: WTPH-418 1

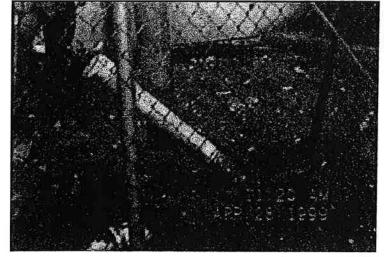
Sample ID	Sample Location	Heavy Oils (ppm)	Action Level«
S1-42799	Release Point	14,000	200 ppm
S2-42799	Trench Following Hay Bails	1,000	200 ppm
S3-42799	Release Path Before Hay Bails	81,000	200 ppm
S4-42799	30' Following Hay Bails	3,900	200 ppm
S5-42799	60' Following Hay Bails	1,800	200 ppm
S6-42799	Beginning Of Flow After Pooling	1,400	200 ppm
S7-42799	Release Path Before Hay Bails	1,100	200 ppm
S10-42899	Northeast Corner of Excavation	<100	200 ppm
S11-42899	East Wall of Excavation	<100	200 ppm
S12-42899	Southeast Corner of Excavation	<100	200 ppm

Sample ID	Sample Location	Heavy Oils (ppm)	Action Level
S13-42899	Southwest Corner of Excavation	<100	200 ppm
S14-42899	South Wall of Excavation (West)	1,100	200 ppm
S15-42899	Bottom of Excavation (West)	<100	200 ppm
S16-42899	Bottom of Excavation (East)	<100	200 ppm
S17-42899	South Wall of Excavation (East)	<100	200 ppm
S23-42899	Release Path 90' Before Hay Bails	<100	200 ppm
S24-42899	Release Path 60' Before Hay Bails	<100	200 ppm
S25-42899	Release Path 30' Before Hay Bails	<100	200 ppm
S26-42899	Soil Beneath Hay Bales	<100	200 ppm
S27-42899	Northwest Corner of Excavation	<100	200 ppm
S28-42899	West Wall of Excavation	<100	200 ppm
S29-42899	Below Pipe Break at Release Point	5,800	200 ppm
S30-43099	Soil Beneath Hay Bales	<100	200 ppm
S31-43099	20' Following Hay Bales	<100	200 ppm
S32-43099	Blank	<100	200 ppm
S33-43099	50' Following Hay Bales	<100	200 ppm
S34-43099	80' Following Hay Bales	<100	200 ppm
S35-43099	110' Following Hay Bales	<100	200 ppm
S36-43099	140' Following Hay Bales	<100	200 ppm
S37-43099	170' Following Hay Bales	<100	200 ppm
S38-43099	20' Down Gradient East of S37	<100	200 ppm

Analytical results for samples taken in contaminated soil excavation August 5, 1998


7.0 Conclusions


Based on the results of the laboratory soil analysis, on site soil screening and on site observations, it is CETI's opinion that the remaining subsurface soils located in the area identified during the site delineation on Metal Marine's property following the remedial activity, are free of petroleum hydrocarbons. Pace Industries property immediately adjacent to Metal Marines norther property boundary were the release originated, is still heavily contaminated. Sub-surface soil samples in this area (samples location S-29) revealed oil range hydrocarbon levels exceeding 5000 mg/Kg (parts per million). Current MTCA method A limits are 200 mg/Kg (ppm). If the contaminated soil is left, there is a strong possibility that the contaminate will migrate across property lines and re-contaminate Metal Marines Property. CETI has advised Metal Marine to adamantly pursue the removal of all contaminated soil by Pace Industries, that is posing an immediate threat to Metal Marine's property.

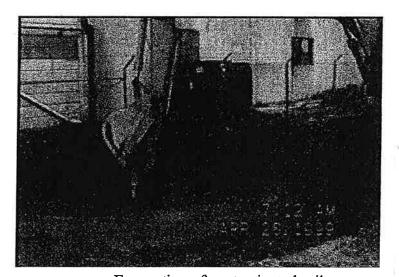

Creative Environmental Technologies, Inc. extends its appreciation for the opportunity to provide environmental services on this project. If there are any questions regarding this report please do not hesitate to contact us.

Respectfully Submitted,
To a second seco
By:
20
Stephen Spencer
Creative Environmental Technologies, Inc.
Approved By:
John R. Spencer, BBA, LLB
President
Creative Environmental Technologies, Inc

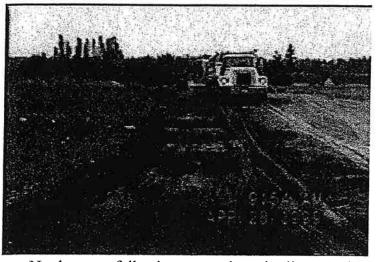
Appendix A - Site Location Map, Site Map, Sample Location Map, Plat Drawing, Photographs of Site

Clean Out - Source Of Contamination

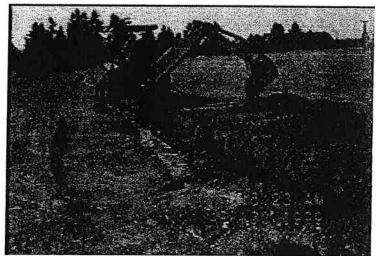
Below Clean Out - Leaking Piping System


Removal of contaminated surface soil

Removal of surface water and contaminate



Clean out and sub-surface piping



Excavation of contaminated soil

Site Photographs Pace Industries Soil Clean up Metal Marine Pilot, Inc Site 2119 Mildred Street W.

Norther area following contaminated soil removal

Eastern ditch line during contaminated soil removal

Eastern ditch line following contaminated soil removal

Site Photographs
Pace Industries Soil Clean up
Metal Marine Pilot, Inc Site
2119 Mildred Street W.

Appendix B - Analytical Results, Chromatographs, Chains of Custody

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

April 29, 1999

Creative Environmental Technologies, Inc.

P.O. Box 1803

Tacoma, WA 98401

Attn: Steven Spencer

Project: Metal Marine 103-1

Sample Matrix: Soil

Date Sampled: 4-28-99

Date Received: 4-28-99

Date Analyzed: 4-28-99

Spectra Project: S904-210

RUSH

WTPH-D EXTENDED

Spectra #	Sample ID:		WTPH-D mg/Kg dry wt.	Heavy Oils mg/Kg dry wt.	Surrogate Recovery p-Terphenyl
1977	S1	•	<25	14,000	114%
1978	S2		<25	1,000	117%
1979	S3		74	81,000	109%
1980	S4		<25	3,900	118%
1981	S5		<25	1,800	112%
1982	S6		<25	1,400	117%
1983	S7		<25	1,100	115%
Method Blank			<25	<100	125%

SPECTRA LABORATORIES, INC.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

April 30, 1999

Creative Environmental Technologies, Inc.

PO Box 1803

Tacoma, WA 98401

Attn: Steven Spencer

PO #103-1

Project: Marine Metal Sample Matrix: Soil Date Sampled: 4-28-99 Date Received: 4-28-99

Date Analyzed: 4-29-99 Spectra Project: S904-225

RUSH

WTPH-D EXTENDED

Spectra #	Sample ID:	WTPH-D mg/Kg dry wt.	Heavy Oils mg/Kg dry wt.	(9)	Surrogate Recovery p-Terphenyl
2015	S10-42899	<25	<100		123%
2016	S11-42899	<25	<100		127%
2017	S12-42899	<25	<100		136%
2018	S13-42899	<25	<100		132%
2019	S14-42899	<25	1,100		132%
2020	S15-42899	<25	<100		132%
2021	S16-42899	<25	<100		132%
2022	S17-42899	<25	<100		127%
2023	S23-42899	<25	<100		129%
2024	S24 -42899	<25	<100		128%
2025	S25 -42899	<25	<100		129%
2026	S26-42899	<25	<100		131%
2027	S27-42899	<25	<100		130%
2028	S28-42899	<25	<100		128%
2029	S29-42899	<25	5,800		127%
Method Blank		<25	<100		139%

SPECTRA LABORATORIES, INC.

Michael Deckert, Chemist

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

May 4, 1999

Creative Environmental Technologies, Inc.

P.O. Box 1803

Tacoma, WA 98401

Attn: Steven Spencer

Project: Metal Marine Sample Matrix: Soil

Date Sampled: 4-30-99

Date Received: 4-30-99

Date Analyzed: 4-30-99

Spectra Project: S904-248

RUSH

WTPH-D EXTENDED

Spectra #	Sample ID:	WTPH-D mg/Kg dry wt.	Heavy Oils mg/Kg dry wt.	Surrogate Recovery
2104	S30-43099	<25	<100	139%
2105	S31-43099	<25	<100	140%
2106	S32-43099	<25	<100	140%
2107	S33-43099	<25	<100	135%
2108	S34-43099	<25	<100	133%
2109	S35-43099	<25	<100	138%
2110	S36-43099	<25	<100	136%
2111	S37-43099	<25	<100	137%
2112	S38-43099	<25	<100	135%
Method Blank		<25	<100	99%

SPECTRA LABORATORIES, INC.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850

March 29, 1999

Pace Industries Puget Division 2101 Mildred St. W. Tacoma, WA 98466

Attn: Jeff

Sample ID: Effluent Grab

Project: Wastewater Monitoring

Sample Matrix: Water Date Sampled: 3-17-99 Date Received: 3-17-99 Spectra Project: S903-175

Spectra #1237

pН

5.58

Total Phenols, mg/L

< 0.05

Total Petroleum Hydrocarbons, mg/L

1.3

Fats, Oil and Grease, mg/L

8

pH testing performed by EPA Method 150.1 Total Phenols testing performed by EPA Method 420.1 Total Petroleum Hydrocarbons testing performed by EPA Method 418.1 Fats, Oil and Grease testing performed by EPA Method 413.2

SPECTRA LABORATORIES, INC.

2221 Ross Way •

Tacoma, WA 98421

(253) 272-4850

March 29, 1999

Pace Industries Puget Division 2101 Mildred St. W. Tacoma, WA 98466

Attn: Jeff

Sample ID: Effluent Comp.

Project: Wastewater Monitoring

Sample Matrix: Water Date Sampled: 3-17-99 Date Received: 3-17-99 Spectra Project: S903-175

Spectra #1238

Total Recoverable Metals, mg/L

Lead (Pb) < 0.04

Copper (Cu) < 0.01

Zinc (Zn) 0.26

Total Recoverable Metals testing performed by EPA Method 200.7

SPECTRA LABORATORIES, INC.

2221 Ross Way •

Tacoma, WA 98421

(253) 272-4850

March 29, 1999

Pace Industries Puget Division 2101 Mildred St. W. Tacoma, WA 98466

Attn: Jeff

METHOD BLANK

Date Analyzed: 3-18-99 Spectra Project: S903-175 Applies to Spectra #1238

Total Recoverable Metals, mg/L

Lead

(Pb)

< 0.04

Copper

(Cu)

< 0.01

Zinc

(Zn)

< 0.006

Total Recoverable Metals testing performed by EPA Method 200.7

SPECTRA LABORATORIES, INC.

2221 Ross Way

Tacoma, WA 98421

(253) 272-4850

March 29, 1999

Pace Industries Puget Division

2101 Mildred St. W. Tacoma, WA 98466

Attn: Jeff

EPA Method: 418.1 Sample Matrix: Water Spectra Project: S903-175 Applies to Spectra #1237

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

MS/MSD

Spiked Sample: Method Blank

Units: mg/L

Date Analyzed: 3-24-99

Compound	Sample	Spike	Spike	%	Dup.	Dup.	%
	<u>Result</u>	<u>Amount</u>	<u>Result</u>	Recovery	<u>Result</u>	<u>Recovery</u>	<u>RPD</u>
ТРН	< 0.5	5.92	4.90	83	5.15	87	5

METHOD BLANK

Date Extracted: 3-26-99

Date Analyzed: 3-26-99

Total Petroleum Hydrocarbons, mg/L

< 0.5

SPECTRA LABORATORIES, INC.

2221 Ross Way

Tacoma, WA 98421

• (253) 272-4850

March 29, 1999

Pace Industries Puget Division 2101 Mildred St. W. Tacoma, WA 98466

EPA Method 413.2 Sample Matrix: Water Spectra Project: S903-175

Applies to Spectra #1237

Attn: Jeff

OIL AND GREASE QUALITY CONTROL RESULTS

MS/MSD

Spiked Sample: Method Blank

Date Analyzed: 3-24-99

Units: mg/L

Compound	Sample	Spike	Spike	%	Dup.	Dup.	%
	<u>Result</u>	<u>Amount</u>	<u>Result</u>	<u>Recovery</u>	<u>Result</u>	<u>Recovery</u>	RPD
Oil and Grease	< 0.5	5.92	5.12	86.5	5.55	93.7	8

METHOD BLANK

Date Extracted: 3-26-99

Date Analyzed: 3-26-99

Oil and Grease, mg/L

< 0.5

SPECTRA LABORATORIES, INC.

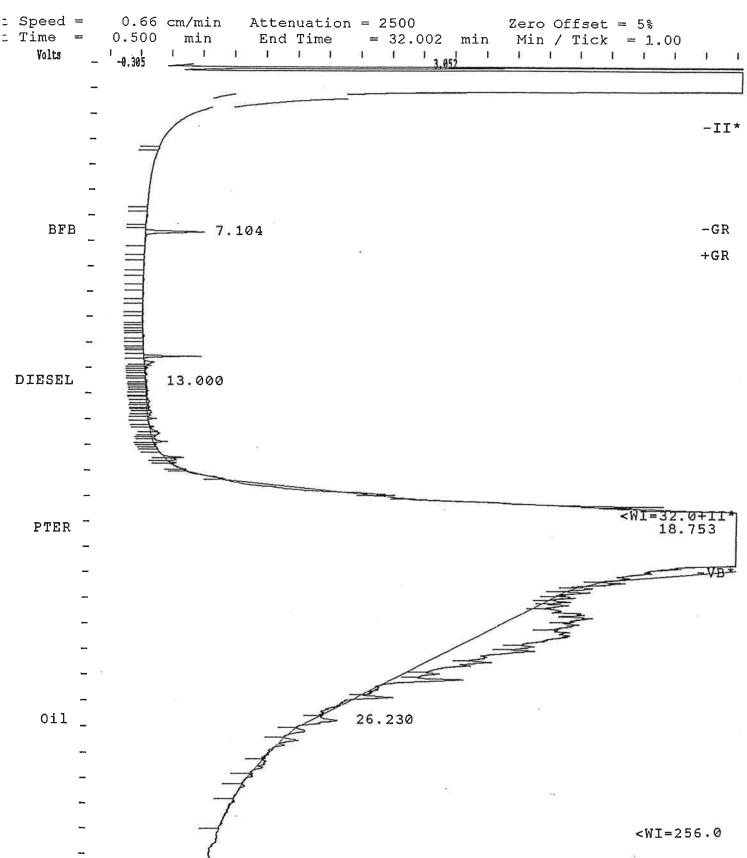
CHAIN OF CUSTUL

SPECTRA Laboratories, Inc.

ZZZI KOSS Waj				• (2							25:	3) S ——	12	-98	38										_	\				Y						
CLIENT: PAC	E IN	dustr	ies		HYDROCARBONS					ORGANICS					TO	CLP	D-L	IST		METALS			The other								RE	TUP				
PROJECT: WAG CONTACT: Jed PHONE: PURCHASE ORD SAMPLE ID	DER #:	TIME	MATRIX	NUMBER OF CONTAINERS	WTPH-HCID	BTEXWTPH-G	втех	WTPH-G	WIFH-0 TPH (7, 1/2,)	F.O.G. 413.1/413.2 (1/2)	8250 VOA	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	8082 PCB	TCLP METALS (8)	TCLP-VOA	TCLP 8270 SEMI-VOA	TCLP PEST.	TCLP HERB.	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	TOTALLEAD	pH 9040/9045	TOX 9020/9076	TOC 9060/PSEP	FLASH POINT	SOLIDS (SPECIFY)	T. Phenolellick			NORMAL / RUSH		Fee	app
Eff. comp	T				Ē				×	X	-														7					1		1				
Eff comp	3-14/1	13:20	2																			1														
																															1			l		_
																							*									-		-		
0-20-0										-																								$\ \cdot\ $		
												×																						╟		-0.4
SPECIAL INSTRI	UCTIONS	/COMME	NTS:						SIC	ANE	TUF	RE							PR	INT	ED	NAN	ΛE					СО	MP	ANY	,			ATE		TII
J. meta SAMPlan t/or 1	/s: p	b, Cu,	ZN . Hef	/	REI	LINQU	-	-4	1	19	1/	Tue.	t	5	2		1	E	K	luc	, ,	170	,			14.	is	gu.	AI	24	n fs		3-	17		13:
SAMPLO	pres	0,0			RE	LINQU		-	20	2/	· /	72	12	pro			1	1	ch	L	22,	-//	4 6	' <u>, </u>			9	0	C.X	/	ور		3/1	7:	7.5	1
on 511	e				RE	CEIVE	D BY															-										1			+	
	*00					/men	t Ter	ms: N	et 30	days	. Pa	st du	ne ac	ccou	nts s	ubje	ct to	18%	6 pe	r anr	num	inte	rest.	Cus	tom	—— ег ас	gree	s to	pay	all c	osts	of coll	ection	n inclu	ıding i	easc

****** Star Chromatography Software ******* Version 4.0 ********* : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00 LA5 -II* BFB 7.109 -GR +GR <WI=4.0 <WI=32.0 DIESEL 13.000 +II* PTER -19.481 -VB* Oil _ 26.230 <WI=256.0

ple ID : 1977ms ceti jection Date: 28-APR-99 1:28 PM Calculation Date: 28-APR-99 2:00 PM rator : MD Detector Type: ADCB (10 Volts) :kstation: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz trument : Varian Star #2 nnel : B = FID-BRun Time : 32.002 min ******* Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% rt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.003,052 Volts -II* GAS 5.000 -GR BFB 7.109 +GR DIESEL 13.000 <WI=32.0+II* PTER -18.541 -VB* <WI=256.0 Oil 26.230


le ID : 1977msd ceti ction Date: 28-APR-99 2:07 PM Calculation Date: 28-APR-99 2:39 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00 Volts -II* GAS 5.000 -GR BFB 7.106 +GR 13.000 DIESEL <WI=32.0+II* PTER 18.730 -VB* Oil 26.230 <WI=256.0

jection Date: 28-APR-99 2:47 PM Calculation Date: 28-APR-99 3:19 PM rator : MD Detector Type: ADCB (10 Volts) kstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz
Run Time : 32.002 min ******* Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Time = 0.500 min End Time = 32.002 min Min / Tick = 1.003.052 -II* BFB -GR 7.108 +GR <WI=4.0 <WI=32.0 DIESEL 13.000 +II* PTER -18.631 -VB* Oil 26.230

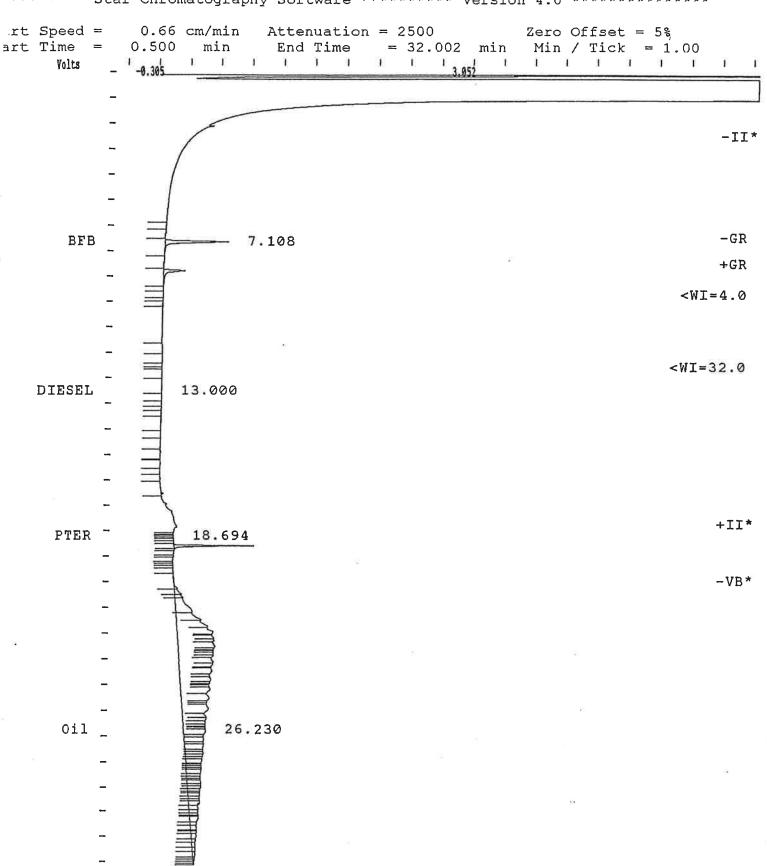
ple ID : 1978 ceti

le ID : 1979 ceti ction Date: 28-APR-99 3:26 PM Calculation Date: 28-APR-99 3:58 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min

****** Star Chromatography Software ******** Version 4.0 **********

aple ID : 1980 ceti

jection Date: 28-APR-99 4:05 PM Calculation Date: 28-APR-99 4:38 PM


rator : MD Detector Type: ADCB (10 Volts)

rkstation: MS-DOS 6

Bus Address : 22

Sample Rate : 10.00 Hz strument : Varian Star #2 innel : B = FID-B Run Time : 32.002 min

******* Star Chromatography Software ******* Version 4.0 **********

le ID : 1981 ceti :tion Date: 28-APR-99 4:45 PM Calculation Date: 28-APR-99 5:17 PM itor : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min '***** Star Chromatography Software ******* Version 4.0 ********** Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00Volts -II* BFB 7.114 -GR +GR <WI=4.0<WI=32.0 DIESEL 13.000 +II* PTER -18.584 -VB* Oil _ 26.230

ple ID : 1982 ceti jection Date: 28-APR-99 5:24 PM Calculation Date: 28-APR-99 5:57 PM rator : MD Detector Type: ADCB (10 Volts) :kstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz nnel : B = FID-BRun Time : 32.002 min '****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% irt Time = 0.500 minEnd Time = 32.002 min Min / Tick = 1.001 1 1 1 1 1 1 1 3.052 1 1 1 1 1 Volts -II* -GR BFB 7.111 +GR <WI=4.0 <WI=32.0 DIESEL 13.000 +II* PTER 19.136 -VB* Oil 26.230

le ID : 1983 ceti ction Date: 28-APR-99 6:04 PM Calculation Date: 28-APR-99 6:36 PM itor : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz :ument : Varian Star #2 : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% -II* -GR BFB 7.109 +GR <WI=4.0 <WI=32.0 DIESEL 13.000 +II* PTER -18.717 -VB* Oil _ 26.230

hod File : C:\STAR\WD4.MTH ple ID : mblk soil 4-29-99 Calculation Date: 29-APR-99 3:54 PM 'ection Date: 29-APR-99 3:22 PM Detector Type: ADCB (10 Volts) erator : MD Bus Address : 22 rkstation: MS-DOS 6 Sample Rate : 10.00 Hz trument : Varian Star #2 nnel : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ****** Version 4.0 ********** 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Speed = art Time = 0.500 min End Time = 32.002 min Min / Tick = 1.003.052 Volts -II* -GR BFB _ 8.303 +GR <WI=128.0 DIESEL _ 14.250 +II* +GR Oil ~ 26.730

ample ID : 2015 ceti ijection Date: 29-APR-99 4:01 PM Calculation Date: 29-APR-99 4:33 PM erator : MD Detector Type: ADCB (10 Volts) rkstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz iannel : B = FID-B Run Time : 32.002 min ******* Star Chromatography Software ******* Version 4.0 ********** art Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Time = 0.500 minEnd Time = 32.002 min Min / Tick = 1.00- '-0.305 3.052 Volts 1 1 -II* BFB 8.304 -GR <WI=128GA DIESEL 14.250 +II* PTER 20.857 +GR Oil 26.730

in File : C:\STAR\MODULE22\wtphd027.RUN

∍thod File : C:\STAR\WD4.MTH

ple ID : 2016ceti jection Date: 29-APR-99 4:41 PM Calculation Date: 29-APR-99 5:13 PM Detector Type: ADCB (10 Volts) rator : MD kstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min nnel ****** Star Chromatography Software ******* Version 4.0 ********** 0.66 cm/min Attenuation = 2500 Zero Offset = 5% rt Speed = End Time = 32.002 min Min / Tick = 1.00 rt Time = 0.500 min 3.052 ľ L Volts -II* -GR BFB 8.303 <WI=128G8 14.250 DIESEL +II* +GR Oil ' 26.730

le ID : 2017 ceti ction Date: 29-APR-99 5:20 PM Calculation Date: 29-APR-99 5:52 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% : Time = End Time = 32.002 min Min / Tick = 1.000.500 min 3.052 Volts 1 1 1 1 1 -II* -GR BFB 8.300 <WI=128GB DIESEL 14.250 +II* +GR Oil -26.730

aple ID : 2018 ceti jection Date: 29-APR-99 6:00 PM Calculation Date: 29-APR-99 6:32 PM rator : MD Detector Type: ADCB (10 Volts) rkstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz nnel : B = FID-BRun Time : 32.002 min ******* Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Time = 0.500 minEnd Time = 32.002 min Min / Tick = 1.00 3.052 Volts -II* -GR BFB 8.297 <WI=12898 DIESEL 14.250 +II+VB* PTER -20.865+GR Oil 26.730

le ID : 2019 ceti ction Date: 30-APR-99 1:09 AM Calculation Date: 30-APR-99 1:42 AM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz nel : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** t Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% End Time = 32.002 min Min / Tick = 1.00t Time = 0.500 min 1 1 1 1 1 3.052 1 } Volts 1 1 1 1 1 -II* -GR BFB - 8.294 <WI=128GB DIESEL 14.250 +II+VB* +GR Oil 26.730

ple ID : 2020 ceti jection Date: 29-APR-99 6:39 PM Calculation Date: 29-APR-99 7:11 PM rator : MD Detector Type: ADCB (10 Volts) :kstation: MS-DOS 6 Bus Address : 22 trument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min nnel ******* Star Chromatography Software ******* Version 4.0 ********** Zero Offset = 5% rt Speed = 0.66 cm/min Attenuation = 2500 irt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.001 1 1 1 1 3.052 Volts -II* -GR BFB -8.295 <WI=128G8 DIESEL 14.250 +II+VB* PTER - 20.976 +GR Oil 26.730

le ID : 2021 ceti ction Date: 29-APR-99 7:18 PM Calculation Date: 29-APR-99 7:50 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz nel : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** 0.66 cm/min Attenuation = 2500 Zero Offset = 5% -II* -GR BFB - 8.293 <WI=128GB DIESEL 14.250 +II+VB* +GR Oil 26.730

od file . C. Sink Woi.Hin

uple ID : 2022 ceti jection Date: 29-APR-99 7:57 PM Calculation Date: 29-APR-99 8:29 PM rator : MD Detector Type: ADCB (10 Volts) rkstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz B = FID-Bnnel Run Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00Volts -II* -GR BFB <WI=12898 DIESEL 14.250 +II* +GR Oil 7 26.730

le ID : 2023 ceti ction Date: 29-APR-99 8:36 PM Calculation Date: 29-APR-99 9:08 PM ator : MD station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 **********

0.500 min

5.500

14.250

26.730

-8.293

t Speed =

Time =

Volts

GAS -

BFB

DIESEL

Oil `

Detector Type: ADCB (10 Volts) 0.66 cm/min Attenuation = 2500 Zero Offset = 5% End Time = 32.002 min Min / Tick = 1.00min End 11.... 3.052 -II* -GR +GR <WI=128.0 +II* +GR

uple ID : 2024 ceti jection Date: 29-APR-99 9:15 PM Calculation Date: 29-APR-99 9:48 PM rator : MD Detector Type: ADCB (10 Volts) _kstation: MS-DOS_6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% End Time = 32.002 min Min / Tick = 1.00art Time = 0.500 min 3.052 1 1 1 1 1 1 1 Volts -II* -GR BFB - 8.290 <WI=128GB DIESEL 14.250 +II* +GR Oil -26.730

le ID : 2025 ceti ction Date: 29-APR-99 9:54 PM Calculation Date: 29-APR-99 10:27 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz B = FID-BRun Time : 32.002 min ***** Star Chromatography Software ******* Version 4.0 ********** : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% Time = 0.500 min End Time = 32.002 min Min / Tick = 1.003.052 1 1 Volts -II* -GR BFB 8.292 <WI=12898 DIESEL 14.250 +II+VB* +GR Oil 26.730

ple ID : 2026 ceti jection Date: 29-APR-99 10:34 PM Calculation Date: 29-APR-99 11:06 PM Detector Type: ADCB (10 Volts) rator : MD ckstation: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz strument : Varian Star #2 Run Time : 32.002 min : B = FID-Bnnel ****** Star Chromatography Software ******* Version 4.0 ********* Zero Offset = 5% rt Speed = 0.66 cm/min Attenuation = 2500 art Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00Volts -II* GAS -5.500 -GR BFB _ 8.291 +GR <WI=128.0 DIESEL 14.250 +II* +GR Oil -26.730

le ID : 2027 ceti ction Date: 29-APR-99 11:13 PM Calculation Date: 29-APR-99 11:45 PM ator : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 rument : Varian Star #2 Sample Rate : 10.00 Hz nel : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% 0.500 min End Time = 32.002 min Min / Tick = 1.00 : Time = Volts ~II* -GR BFB 8.292 <WI=12898 DIESEL 14.250 +II* +GR

ple ID : 2028 ceti jection Date: 29-APR-99 11:52 PM Calculation Date: 30-APR-99 0:24 AM rator : MD Detector Type: ADCB (10 Volts) .kstation: MS-DOS 6 Bus Address : 22 strument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-Banel Run Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% irt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00End 11me 3.052 Volts -II* -GR BFB 8.292 <WI=12898 DIESEL 14.250 +II* +GR Oil -26.730

Le ID : 2029 ceti ction Date: 30-APR-99 0:31 AM Calculation Date: 30-APR-99 1:03 AM itor : MD station: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz rument : Varian Star #2 Run Time : 32.002 min : B = FID-B

Detector Type: ADCB (10 Volts) : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% -II* -GR BFB 8.293 <WI=12898 14.250 DIESEL +II* +GR

ple ID : 2104 ceti jection Date: 30-APR-99 6:11 PM Calculation Date: 30-APR-99 6:43 PM rator : MD Detector Type: ADCB (10 Volts) :kstation: MS-DOS 6 Bus Address : 22 *trument : Varian Star #2 Sample Rate : 10.00 Hz nnel : B = FID-BRun Time : 32.002 min 0.66 cm/min Attenuation = 2500 Zero Offset = 5% ort Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00- -0.305 Volts -II* -GR BFB _ 8.301 <WI=128GA DIESEL 13.750 **+**至至* PTER*_ -19.400 19.400

Le ID : 2105 ceti :tion Date: 30-APR-99 6:51 PM Calculation Date: 30-APR-99 7:23 PM itor : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 :ument : Varian Star #2 Sample Rate : 10.00 Hz B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** : Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00 -II* -GR BFB 8.297 <WI=128G8 DIESEL -13.750 **∓**₽₽* ∓K₽ PTER*_ 19.397 19.397

ple ID : 2100 ceti 2/06 jection Date: 30-APR-99 7:31 PM Calculation Date: 30-APR-99 8:03 PM rator : MD Detector Type: ADCB (10 Volts) :kstation: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz trument : Varian Star #2 nnel : B = FID-BRun Time : 32.002 min ******* Star Chromatography Software ******* Version 4.0 ********** 0.66 cm/min Attenuation = 2500 rt Speed = Zero Offset = 5% rt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00 3.052 - 1-0.305 -II* BFB 8.297 -GR <WI=128GA DIESEL ' 13.750 **平望聚*** PTER*_ 19.400 19.400 ±Ã₽

- - - C. (DIAK (WD4.MTH

tion Date: 30-APR-99 8:10 PM Calculation Date: 30-APR-99 8:43 PM Detector Type: ADCB (10 Volts) itor : MD Bus Address : 22 :tation: MS-DOS 6 :ument : Varian Star #2 Sample Rate : 10.00 Hz Run Time : 32.002 min B = FID-B***** Star Chromatography Software ******* Version 4.0 ********** 0.66 cm/min Attenuation = 2500 Zero Offset = 5% . Speed = End Time = 32.002 min Min / Tick = 1.00. Time = 0.500 min 1 1 1 1 1 Volts -II* -GR BFB 8.295 <WI=12598 DIESEL 13.750 **≠**₽₽* ∓K₽ PTER -

od File : C:\STAR\WD4.MTH

.e ID : 2107 ceti

.1100 1110 . 0. (51111(11) ple ID : 2108 ceti jection Date: 30-APR-99 8:50 PM Calculation Date: 30-APR-99 9:22 PM Detector Type: ADCB (10 Volts) rator : MD Bus Address : 22 :kstation: MS-DOS 6 Sample Rate : 10.00 Hz strument: Varian Star #2 Run Time : 32.002 min nel : B = FID-B****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% art Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00- -0.305 Volts -II* -GR BFB 8.294 <WI=12898 13.750 DIESEL -II* +GR PTER -

le ID : 2109 ceti tion Date: 30-APR-99 9:30 PM Calculation Date: 30-APR-99 10:02 PM itor : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz :ument : Varian Star #2 : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******** Version 4.0 ********** 0.66 cm/min Attenuation = 2500 . Speed = Zero Offset = 5% Time =0.500 min End Time = 32.002 min Min / Tick = 1.003.052 I _1): Volts -II* -GR BFB -8.295 <WI=128G8 DIESEL 13.750 **∓**₽₽* ¥₽¥ PTER*_ 19.386 19.386

ple ID : 2110 ceti jection Date: 30-APR-99 10:09 PM Calculation Date: 30-APR-99 10:42 PM rator : MD Detector Type: ADCB (10 Volts) .kstation: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz strument : Varian Star #2 B = FID-BRun Time : 32.002 min nnel ******* Star Chromatography Software ******* Version 4.0 ********** Zero Offset = 5% rt Speed = 0.66 cm/min Attenuation = 2500 rt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.001 1 1 1 1 1 1 1 3.052 Volts -II* -GR BFB 8.295 <WI=128GB DIESEL 13.750 -II+VB* PTER -19:414 +GR

: 2111 ceti Le ID ction Date: 30-APR-99 10:49 PM Calculation Date: 30-APR-99 11:21 PM itor : MD Detector Type: ADCB (10 Volts) station: MS-DOS 6 Bus Address : 22 cument : Varian Star #2 Sample Rate : 10.00 Hz : B = FID-BRun Time : 32.002 min '***** Star Chromatography Software ******* Version 4.0 ********** 0.66 cm/min Attenuation = 2500 : Speed = Zero Offset = 5% : Time = 0.500 min End Time = 32.002 min Min / Tick = 1.003.052 Volts -II* -GR BFB - 8.293 <WI=128G8 DIESEL 13.750 **≠**₽₽**+** ∓K₽ PTER*_ 19.393 19.393

hod File : C:\STAR\WD4.MTH ple ID : 2112 ceti ection Date: 3-MAY-99 3:58 PM Calculation Date: 3-MAY-99 4:31 PM rator : MD Detector Type: ADCB (10 Volts) kstation: MS-DOS 6 Bus Address : 22 Sample Rate : 10.00 Hz crument : Varian Star #2 : B = FID-BRun Time : 32.002 min ****** Star Chromatography Software ******* Version 4.0 ********** rt Speed = 0.66 cm/min Attenuation = 2500 Zero Offset = 5% rt Time = 0.500 min End Time = 32.002 min Min / Tick = 1.00Volts -II* -GR BFB _ 8.289 <WI=12898 DIESEL 13.750 -II* PTER -+GR

CHAIN OT CUSTOUY

SPECTRA Laboratories, Inc.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838

PAGE ______ of _____

1-624-1

							-1 0.		ı a	л (. —) J	12-	-90.	<i>-</i> 00						ر ۾													
CLIENT: Metal	Marin	e p:1	ot/CE	TI	L	HYD	ROC	ARB	ONS	3		OI	RG/	ANIC	cs		TC	CLP	D-LI	ST	M	ETA	ALS					ОТН	HER					RETURN
PROJECT:				R.	Γ							ß		П	F.	T		1		T	Ta	T	T	Γ	Ī		Γ		П	T	T	Г	î	
CONTACT: Jan	et Fre	en-cln-	Daily	TAINE			1			N		VENT			R PES				δ V		P/DC/	₹										16	<u> </u>	DIODOOF
PHONE:(253)		102		FCO		면 보				1/413		R SOI	δ	270	윙	1	TS (8)		SEMI-		ALS IC	ALS G		بم	976	SEP	E	ECIFY				AOSI		DISPOSE
PURCHASE ORD	ER #:			NUMBER OF CONTAINERS	WTPH-HCID	BTEX/WTPH-G	ع ار	? 모		F.O.G. 413.1/413.2	VOA	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	80	TCLP METALS (8)	۸٥ ۲	ICLP 8270 SEMI-VOA	TCLP HEBB	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	LEA	pH 9040/9045	020/90	060/P	P P P	S (SP				MAL (Fee applies
SAMPLE ID	DATE	TIME	MATRIX	NS S	WTP	BTE	WTPH-G	WTPH-D	TPH	F.O.G	8260 VOA	8260	8270	PAHVI	8080	8082 PCB	걸	TCLP-VOA			TOT	TOT	TOTAL LEAD	용 표	TOX 9020/9076	TOC 9060/PSEP	FLASH POINT	SOLIDS (SPECIFY)				NORMAL ((RUSH)		LAB ID
S1-42699	1.7600	21.40	Suil		Г		T	T	X	\exists					T	T	T	Ŧ	T	T	T	T	H	Ė	1	İ		H		\pm	\pm	F	旨	
31 42011	4.00.1	3,40	1110	\vdash	H	-	+	+		\dashv	\dashv	-	-	+	+	-	+		+	+	1	-	-	L	X	-	-	-		+	+	_	_	
															_																			
					_	-	-			_		_	_		4	4	_		_	_	L	_												
																																		
																					T						Т			1	\top			
								T		\neg				7	\dashv	\forall	\top	1	\dagger	1	✝	T		H	-				+		+	\vdash	-	
				П	H		\dagger	\vdash		\dashv			-	+	+	+	+	+	+	+	╁	+	-	\vdash	-		-	-	-	+	+		_	
				-	-		-	\vdash		\dashv	-	-	-	+	-	+	+	+	+	-	╀	-		L	-	_	_			4	_		<u> </u>	
					-		-	-		-	_	_	4	1	4	4	_	+			\perp				_									
3					L											\perp																		
SPECIAL INSTRU									SIG	NAT	URI	E						—— Р	RIN	TED	NA	ME					CC	MP	ANY		T	D/	ATE	TIME
cell # 60	6 213	73 (Jone	r)	250		_		7	7	Ť					\pm					_			_							_			THAIC
call bo	th 7	anct	- acd		10.000=00	NQUIS		1	18	2	1	_	.) 			-	F.	int ar	2.	4	<u>C</u>	av	Wi	ve		(モ	\mathcal{T}_{i}	T_			4. 2	6.90	4:40
CETT					REC	EIVED	BY	1	120	41	2	X	10	1-1	1	/	275	98	IE		111	51	_		5	00	7	1 00	7					4:41
	- wi		0		REL	NQUIS	HED B	4	/																7				4					7.71
Ne s	bac		•		REC	EIVED	ВҮ																								+			
	WWC	¥.			Payı	nent 1	erms	: Net	30 d	ays.	Pasi	t due	aco	count	ts su	ıbjec	t to 1	18% r	oer a	ทกบท	n inte	rest	. Cus	stom	er ar	oree	s to	nav	all co	ete c	of colla	otion	inglesel	ng reasonable
L					attor	ney's	fees a	and a	ll oth	er as	ssoc	iated	l cos	sts of	coll	lectio	n re	gardi	ess c	of wh	ethei	suit	is fil	ed.	-, u	9100	5 10	pay .	an ct	JOIO (n cone	ะแบก	n iciua)	ny reasonable

CHAIN of CUSTODY

SPECTRA Laboratories, Inc.

1		
PAGE	of	

OUTUE A F					_		_											_																		
	TI				L	HYE	ORC	CAI	RBC	NS			OF	RG/	ANI	cs		Т	CLF	P D-	LIS	Т	М	ETA	LS					OTI	HER	ı				RETURN
PROJECT: Me	tal Ma	vine!	163-1	SE						T	1							Г		Г		Γ	Г	Г	1	ī			F	Γ	Г	\Box		Т	-	
CONTACT: 5 1	ine Sp	encer		AINEF	1						-1		ENTS			PEST				۲ ۲			DCP ADCP	3												
PHONE: 622	+ - 33	47		CONT		اق					13.2		SOLVI	× ×		LOR		<u>®</u>		MI-VC			S ICP	SGFA				<u>a</u>		٤				12	3	DISPOSE
PURCHASE ORI				NUMBER OF CONTAINERS	WTPH-HCID	втех/мтрн-с		ភ្	₽		F.O.G. 413.1/413.2	VOA	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	E)CB	TCLP METALS (8)	VOA	TCLP 8270 SEMI-VOA	TCLP PEST.	HERB.	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	TOTAL LEAD	pH 9040/9045	TOX 9020/9076	TOC 9060/PSEP	FLASH POINT	SOLIDS (SPECIFY)				HODIAN (PRICE		Fee applies
SAMPLE ID	DATE	TIME	MATRIX	NOME	WTP	BEX	BTEX	WTPH-G	MAP	HE.	F.O.G	8260 VOA	8260 (8270 (PAH/F	8080	8082 PCB	TCLP	TCLP-VOA	TCLP	TCLP	TCLP HERB.	TOTAL	TOTAL	TOTAL	PH 904	TOX 90	TOC 9(FLASH	SOLID				NOON		LAB ID
SI	4.2799		Soil	1	Γ					X	7	\Box														Γ						T	T	Ť	1-	
52	1		1	1						1	7																	-					+	+	$\dashv\vdash$	
53										1																								+	╁	
5年4										1	1	1					_						r									\dashv	+	+	1	
55				П							1																					H	-	\dagger	╢	
56				П	Г			T		1	1												Н									\dashv	_	+	╢	
57	V		V	V		П				1	1	1																					+	+	+	
	· ·			7	r			7		4	7		1			\dashv		_													\vdash	\dashv	+	+		
						П		T	1	+	1		7	7		T	-							_		H						+	+	+	\parallel	
					r			7		\dagger	+	7	1	1	1	1					-		-	-		-						+	+	+	₩	
	LIOTIONIO			닉	H	Ш							_				_		Ш	_			_			L,							\perp	L		
SPECIAL INSTR	UCTIONS/(COMME	VIS:		Ĺ		_	_	5	ign	IAT	URI	Ξ_							PRI	INT	ED	NAN	ΛE					СО	MP.	ANY	<u>, </u>		[DATE	TIME
					REL	INQUI	SHED	BY (X	K	Y	1			-	-	F	· · ·	7 -	, (7		. 1		1		, _E	_ ~~		-	-	T	<u> </u>	2000	aina
					REC	EIVED	BY				/ 	7	 n/	b	e e			<u> </u>	$\overline{\bigcirc}$	1_	T_		مر پر	\overline{M}	<u>he</u>		_	<u> </u>	<u></u>	<u> </u>	~~	24		4.7	1890	9:08
					REL	INQUIS	SHED	BY	ijk.				7 (-1	1		-			/	/	. د. ۱	/\ /	٠٢				71/	1	-23.57	1.6	24	\dashv	16	*)-7	97.18
×			REC	EIVED	BY				_									_				- 311		1		-					-	_				
					Pay	ment	Terr	ns: N	Vet 3	0 da	vs.	Pasi	due	acc	coun	ıts sı	ubie	ct to	18%	é ne	r ann	num	inter	oet	Cun	tom	or 0~	F0.0			- II					ng reasonable
					atto	ney's	s fee	s an	d all	othe	er as	soci	ated	cos	sts o	f coll	lecti	on r	enar	diac.	e of	whe	thar	enit	ie fil	-1011)6	a ag	1005	i to	pay	all Co)SIS (ot colle	ectic	n includi	ng reasonable

CHAIN OF CUSTODY

SPECTRA Laboratories, Inc.

١	1
PAGE	of

CLIENT: CET	I					HYDF	ROCA	RBC	NS	T		DRG	ANI	CS		Т	CLP	D-L	IST	Т	ME	TAI	s					OTH	HER				1	PI	TURN
PROJECT: May	ine m	etal	9	တ္က			T	П	T	T	T	T		Ι.					T	\exists							1					_	4	1/1	LIONIN
CONTACT: Ster				AINER	1						ENTS			PEST				4		-	9	5											Ш	832	
PHONE: 627	-334	7		SONT		ıσ		3		7.61	SOLVI	\X		ILOR		(8)		DA-IMI			S ICP	SGFA			_	۵		٤				7		DIS	SPOSE
PURCHASE ORD	ER #: /(03-1		NUMBER OF CONTAINERS	WTPH-HCID	BTEXWTPH-G	ပ္	WTPH-D €× 7.	3	R260 VOA	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	8	TCLP METALS (8)	VOA	TCLP 8270 SEMI-VOA	EST.	ĘBB.	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	LEAD	0/9045	TOX 9020/9076	TOC 9060/PSEP	POINT	SOLIDS (SPECIFY)				NORMAN, RIICH	\bigvee	Fee	applies
SAMPLE ID	DATE	TIME	MATRIX	NCM	WTP	BTEX	WTPH-G	WTP	표	8260 VOA	8260 (8270 \$	PAH/P	9080	8082 PCB	TCLP	TCLP-VOA	TCLP 8	TCLP PEST.	TCLP HERB.	TOTAL	TOTAL	TOTAL LEAD	pH 9040/9045	TOX 90	TOC 90	FLASH POINT	SOLIDS				NO BIN	炸		AB ID
C10-42899	4/28		Soil		Γ			X	T	T	T	Ī						T	Ť	Ī	Ï	T	٦								Ŧ	+	1-		
S11-42899										1									+	1	1									\vdash	+	-	╁		
S12-42899										T								1	T	1										\exists		+	╁		
SB-42899								1											T	1		T								+	+	+	╁		
514-42899																		1	1	1	1				7							+	╁	-	
SIS-42899																			T	1	1		7							1		-	╁		-
516-42899										T								+	1	1	1	1			7					7.	+	╁	╁	-	
517-42899										T								T	T	1	1			1						+		+	╁		
S23-42899										T										1	1	1	7							1	-	-	╁		
524-42899	IJ		7					y												1	1	1			1					\forall	1		╟		
SPECIAL INSTRU	JCTIONS/	СОММЕ	NTS:					s	IGN	\TUI	RE	-						PRIN	ITE	D N	AM	<u>-</u> -		T			CO	MP/	ANY		$\frac{1}{1}$		ATE	T	TIME
										~	7	>			=	_					_		_	_									AIL		IIVIE
					-	NQUISH	-	1	1	<u></u>		_	<u></u> -	_	-	71	16-	12	\subseteq	av	11	~ 11	~			4	9	LI				4.2	2.9	9 4	:50
						EIVED B		E		/	-2	.v	21		_	1)	12	ri	17	يسلم				_(200	7	L.						4.50
					RELI	NQUISH	ED BY			2.103																•							8 3		- 0
20				REC	EIVED B	′																													
		nent Te ney's fe	rms: l	Net 30	0 day	s. Pa	st du	e ac	coun	its si	ubjed	ct to	18%	per a	เกกน	ım in	tere	est. (Cust	ome	r agı	rees	to p	ay a	all co	osts o	of colle	ection	n inclu	ding r	easonable				

CHAIN of CUSTODY

SPECTRA Laboratories, Inc.

PAGE 2 of 2

								·																												
CLIENT: CET	I					HYD	RO	CAF	BON	18		0	RG	ANI	cs		TO	CLP	D-L	LIST	-	М	ΞΤΑ	LS	Г				OT!	HEF	₹			7	F	ETURN
PROJECT: MAG	une M	<u>etal</u>	103	ဖြ	Γ	П	T	T	Т	T	Γ					T				1	=								Г	_	ГТ	-	Ŧ	ㅓ		ACUS CARLOTTERS
CONTACT:	eug S	RENC	el	AINE	1							ENTS			PEST				Y S			/DCP	\$													-3
PHONE: 62				8	1	ர			TX /	113.2		SOLV	Ą	٥	LG HO		(8)		MI-V			S ICP	S GF			ဖ	يو		F			1	20		(D	ISPOSE
PURCHASE ORD	ER#: /	1-2(NUMBER OF CONTAINERS	WTPH-HCID	втехмтрн-с		ပ္	5	F.O.G. 413.1/413.2	Į Į	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	CB CB	TCLP METALS (8)	VOA	TCLP 8270 SEMI-VOA	PEST.	HERB.	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	LEAD	0/9045	TOX 9020/9076	TOC 9060/PSEP	FLASH POINT	SOLIDS (SPECIFY)				12		Fe	e applies
SAMPLE ID	DATE	TIME	MATRIX	NUMB	WTP	BTEX	ВТЕХ	WTPH-G	M PH-D	F.O.G.	8260 VOA	8260 (8270 8	PAH/P	8080	8082 PCB	TCLP	TCLP-VOA	TCLP (TCLP PEST.	TCLP HERB.	TOTAL	TOTAL	TOTAL LEAD	pH 9040/9045	TOX 90	TOC 90	FLASH	SOLIDS				NODEWAY / DISCU			LAB ID
S25-42899	4/28		Soil		Γ	П	T)										Ī		Ī	Ī							_				Ŧ	+	7		
526-42899																				7			-									-	t	╬		
527-42899																T																1	\dagger	11		
528-42799					Γ												\exists		7		\dashv											+	+	╂		
529-42899	J'	U						7							٦	7	1	1	+	٦										\vdash	+	+	╂	-		
	*		æ					1											7		7											+	+	╁		
					Г										7	7				+	1			٦		7				_	80	+	+	╂		
					Г		+	┰		\vdash					-	7	+		\dashv	+	1	-		\dashv		\dashv		-			+	-	+	┨├		
					H		\dagger	+	+						7	1	+	+	+	+	-	-		\dashv				-			-	+	+	╂		
2					-		+	-	H	\vdash	\vdash			_	+	-	-	-	+	+	\dashv		-	\dashv	_	-	-			_	-	+	+	┨├		
ODEOLAL INCTOL	IOTIONIO!				느		_	_L	L		_					_		_	_		_													⅃Ĺ		
SPECIAL INSTRU	ICTIONS/0	COMME	NIS:		L				SIC	ANE	ΓUR	E			-				PRI	NTE	ED N	VAN	1E					СО	MP	ANY	1		Г	DATE		TIME
					REL	INQUIS	HED	BY		#	1	R	3		•		F	1//	+=				A					_	<u></u>	7			d. 6	ر د (1150
					REC	EIVED	BY		X	b .	7			17			1		- 1 2	7,	· ·	· ·	المارين	1		(_	21		4					41.50
					RELI	NQUIS	HED	ву					-	1,				_			1	7~				-	27	5	<u>(() - </u>	1. 14	1		_/_	20	71	4.50
			REC	EIVED	BY																		1				-			+			+			
		Payr	nent '	Term	s: No	et 30	days.	Pas	t due	ace	coun	its su	ubjec	et to	18%	per	annı	um i	inter	est.	Cust	tome	r ag	rees	to p	pay a	all c	osts o	of coll	ectio	n incl	 uding	reasonable			

CHAIN OF CUSTODY

SPECTRA Laboratories, Inc.

	l i
PAGE	1 of

CLIENT: CE	TT					LIVD			2011	_	_								_		-	_			_			_							
						HYD	HO	JARI	SON	S	L	0	HG/	ANIC	CS		TO	CLP	D-L	IST.		M	ΞΤΑ	LS	L				OTH	HER	l				RETURN
PROJECT: Met	al Ma	vive		ERS	1		1	_				2			ST.							٩									П			7	
CONTACT: S Le	re so	eveev		TAIN				+	إ	ابم		LVEN.			A PE				VO A			SP/DC	FAA										1	\parallel	NICEOCE
PHONE: 627		47		FCO		ΰ		6		1/413.		R SOI	VOA	270	임		TS (8)		SEMI			ALS IC	ALS G		2	920	SEP	ᆫ	든				RUS		DISPOSE
PURCHASE ORD	ER #:			NUMBER OF CONTAINERS	WTPH-HCID	втех/мтрн-G		رِ چ		413.	δ	윉	SEM!-	NA-8	JRG.	B B	META	δ	8270	PEST.	FRB	MET,	MET/	LEAD	0/904	20/90	J60/P	Pol	S (SPI				AL.	l F	ee applies
SAMPLE ID	DATE	TIME	MATRIX	NCM	WTP	BTEX	EX	WTPH-G	¥	F.O.G. 413.1/413.2	8260 VOA	8260 CHLOR SOLVENTS	8270 SEMI-VOA	PAH/PNA-8270	8080 ORG. CHLOR PEST.	8082 PCB	TCLP METALS (8)	TCLP-VOA	TCLP 8270 SEMI-VOA	TCLP PEST.	TCLP HERB.	TOTAL METALS ICP/DCP	TOTAL METALS GFAA	TOTAL LEAD	pH 9040/9045	TOX 9020/9076	TOC 9060/PSEP	FLASH POINT	SOLIDS (SPECIFY)				NORMAL (RUSH		LAB ID
530-43099	4.30.99	_	Soil	$\lceil \rceil$	I			\top_{λ}			Г				T					Ī		Г											T	<u> </u>	-
521-43099	1	ō	1					1												-													-	1	
532-43099																																			
527-43099				Ш																														\parallel	
534-43099																																			
535-43099				Ш																															
536-43099																																			
537-43099	1		1	V																													T		
538-43099	V		4	1																												1	T		
																												155							
SPECIAL INSTRU	ICTIONS/0	COMME	NTS:						SIG	TAN	UR	E			11000			1	PRII	NTE	D I	VAN	1E					СО	MP	ANY	,	Ť	D	ATE	TIME
					REL	INQUIS	HED I	3Y	A	X	1	_)		1			,		^				\exists		_					\pm	n 6		
					REC	EIVED	BY	1			-			.	1	7	F	VI	42 R1	(ف	اعدا	Mi	M	2	('	K	/	_	}_	_	-	4.3	0.99	12:27
Need:						INQUIS		Z BY	7	LO	u.	0	Δ	0	LL	-	m	A	RI	1	7	41	2	7	-		Y	000	Œ.	10		-	1-:	10-99	12:30
Ch	CONIC	409	15	REC	EIVED	ву				-		-			1					-				+			-				-	-			
	Payı	ment T	erm	s: Ne	t 30 c	lays.	Pas	t due	acc	coun	ts st	ubjed	et to	18%	per	ann	um i	inter	est.	Cus	tome	er ag	rees	to p	pay i	all co	osts o	of coll	ection	n includii	ng reasonable				