January 8, 2014

Mr. Scott Koppelman AMLI Residential Partners 535 Pontius Avenue North, Suite 120 Seattle, Washington 98109

SUBJECT: GROUNDWATER MONITORING REPORT—FOURTH QUARTER 2013

Avtech Property

3400 Wallingford Avenue North

Seattle, Washington

Project Number: 0789-004-05

Mr. Koppelman:

SoundEarth Strategies, Inc. (SoundEarth) has prepared this report to present the results of the Fourth Quarter 2013 groundwater monitoring event (monitoring event) conducted at the Avtech Wallingford property located at 3400 Wallingford Avenue North in Seattle, Washington (the Property), as shown in Figure 1.

BACKGROUND

The Property covers 2.04 acres and spans portions of two city blocks on the north and south sides of North 34th Street (Figure 2). A two-story cookie factory was present on the northern portion of the Property in the early 1900s. Two furniture workshop buildings were constructed on the southern portion of the Property in the 1930s. Avtech Corporation replaced the cookie factory by 1973, and it occupied all of the remaining structures by the 1980s. During the course of its operations, Avtech used numerous chlorinated solvents (including trichloroethene [TCE]), non-halogenated solvents, petroleum hydrocarbons, paints, and various other electrical engineering-related chemical compounds typically found in the avionics production process.

SoundEarth conducted subsurface investigations at the Property in January and April 2012. The investigations included installing and sampling 15 groundwater monitoring wells (MW01 through MW15). Five of the wells were located along North 34th Street. Groundwater sampled from four of the five wells along North 34th Street (MW03, MW04, MW11, and MW12) contained concentrations of TCE exceeding the Washington State Model Toxics Control Act (MTCA) Method A cleanup level of 5 micrograms per liter (μ g/L). The highest concentrations of TCE were detected in well MW04, ranging from 110 μ g/L in January to 170 μ g/L in April. Groundwater samples collected from wells MW05 and MW06, which are located near the downgradient southeast portion of the Property, contained 1.9 to 3.3 μ g/L TCE in 2012. Additional rounds of groundwater monitoring were conducted in January, April, and August 2013. The highest concentrations of TCE have been detected in groundwater collected from well MW04, ranging from 85 to 290 μ g/L.

FIELD ACTIVITIES

The monitoring event was conducted on October 10, 11, and 28, 2013, to evaluate the environmental quality, flow direction, and gradient of groundwater beneath the site, and to establish conditions before conducting future remedial activities. The monitoring event included measuring depths to groundwater in monitoring wells MW01 through MW15. On October 10 and 11, groundwater samples were collected from monitoring well MW11, located along North 34th Street; wells MW05, MW06, and MW07, located on the downgradient parcels to the south of North 34th Street; and from MW09 in the Building 2 loading dock area. Monitoring well MW15 was inaccessible for sampling; MW15 was sampled on October 28.

Upon arrival at the Property on October 10, 2013, SoundEarth personnel opened monitoring wells MW01, MW02, MW04 through MW07, and MW09 through MW15. Monitoring wells MW03 and MW08 were inaccessible during sampling activities due to cars parked on the wells. Water levels were permitted to equilibrate with atmospheric pressure for a minimum of 15 minutes before groundwater level measurements were obtained. Groundwater levels were measured relative to the top of well casing to an accuracy of 0.01 feet using an electronic water level meter.

On October 10, 11, and 28, 2013, groundwater samples were collected from monitoring wells MW05 through MW07, MW09, MW11, and MW15 in accordance with the U.S. Environmental Protection Agency (EPA) Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). Purging and sampling of each monitoring well were performed using a bladder pump or peristaltic pump and dedicated polyethylene tubing at flow rates ranging from 46 to 108 milliliters per minute. The intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each monitoring well. During purging, water quality was monitored using a Quanta water quality meter equipped with a flow-through cell. The water quality parameters that were monitored and recorded included; temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each monitoring well was purged until a minimum subset of pH, specific conductivity, and dissolved oxygen and/or turbidity stabilized.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to Friedman & Bruya, Inc., of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis.

The groundwater samples were submitted for analysis of chlorinated solvents and other volatile organic compounds (VOCs) by EPA Method 8260C. Purge water generated during the monitoring event was placed in an appropriately labeled 55-gallon steel drum and temporarily stored on the Property pending receipt of analytical data and proper disposal.

RESULTS

Groundwater levels measured on October 10 and 11, 2013, ranged from 24.75 (MW10) to 44.59 (MW11) feet below the top of the monitoring well casings (Table 1). Using these measurements, the groundwater elevations were calculated and contoured, as shown on Figure 2. The groundwater contours indicate groundwater is generally flowing to the south-southeast with an average gradient of 0.07 feet per foot between wells MW10 and MW05.

Groundwater analytical results from the monitoring event are summarized below (also in Figure 3 and Table 1):

- Concentrations of TCE exceeding the MTCA Method A cleanup level of 5 μg/L were detected in groundwater collected from monitoring wells MW05, MW07, MW09, and MW11. The highest concentration of TCE detected was 43 μg/L in MW09.
- Concentrations of TCE in downgradient well MW05 has historically been below the MTCA Method A cleanup level. A TCE concentration of 8.2 μg/L was detected in well MW05. The well was resampled on October 28 to verify the exceedance; the second sample contained a TCE concentration of 8.4 μg/L.
- All other VOCs were below their respective laboratory reporting limits and/or MTCA Method A cleanup levels in the groundwater samples collected during the Third Quarter 2013 groundwater monitoring event.

DATA QUALITY REVIEW

SoundEarth performed a quality assurance/quality control (QA/QC) review of the analytical results, which included a review of accuracy and precision of the data supplied by the laboratory. All QA/QC criteria are acceptable for the groundwater samples, and the analytical results are considered usable to meet the project objectives. Copies of the laboratory analytical reports are provided as Attachment A.

WORK PLANNED

SoundEarth will conduct a monitoring event at the Property in First Quarter 2014, the results of which will be included in a groundwater monitoring report.

CLOSING

SoundEarth appreciates this opportunity to provide AMLI Residential Partners with environmental consulting services. Please call either of the undersigned at (206) 306-1900 if you have any questions or comments regarding the content of this report.

Respectfully,

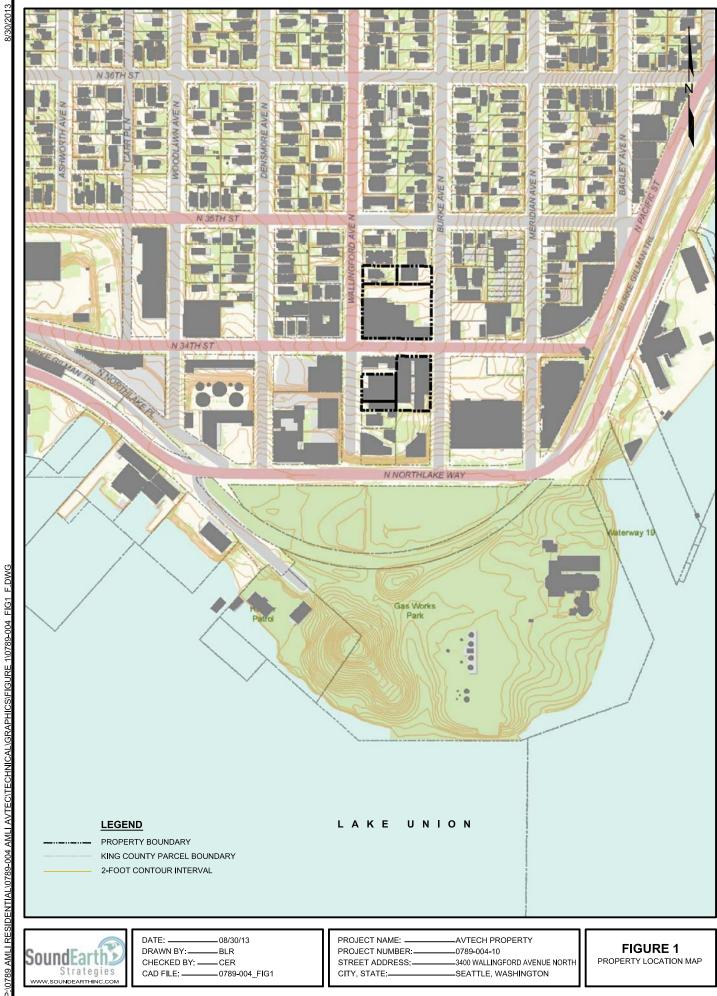
SoundEarth Strategies, Inc.

Krista Garrett Staff Geologist **Associate Scientist**

Attachments:

Figure 1, Property Location Map

Figure 2, Groundwater Contour Map (October 10 and 11, 2013)

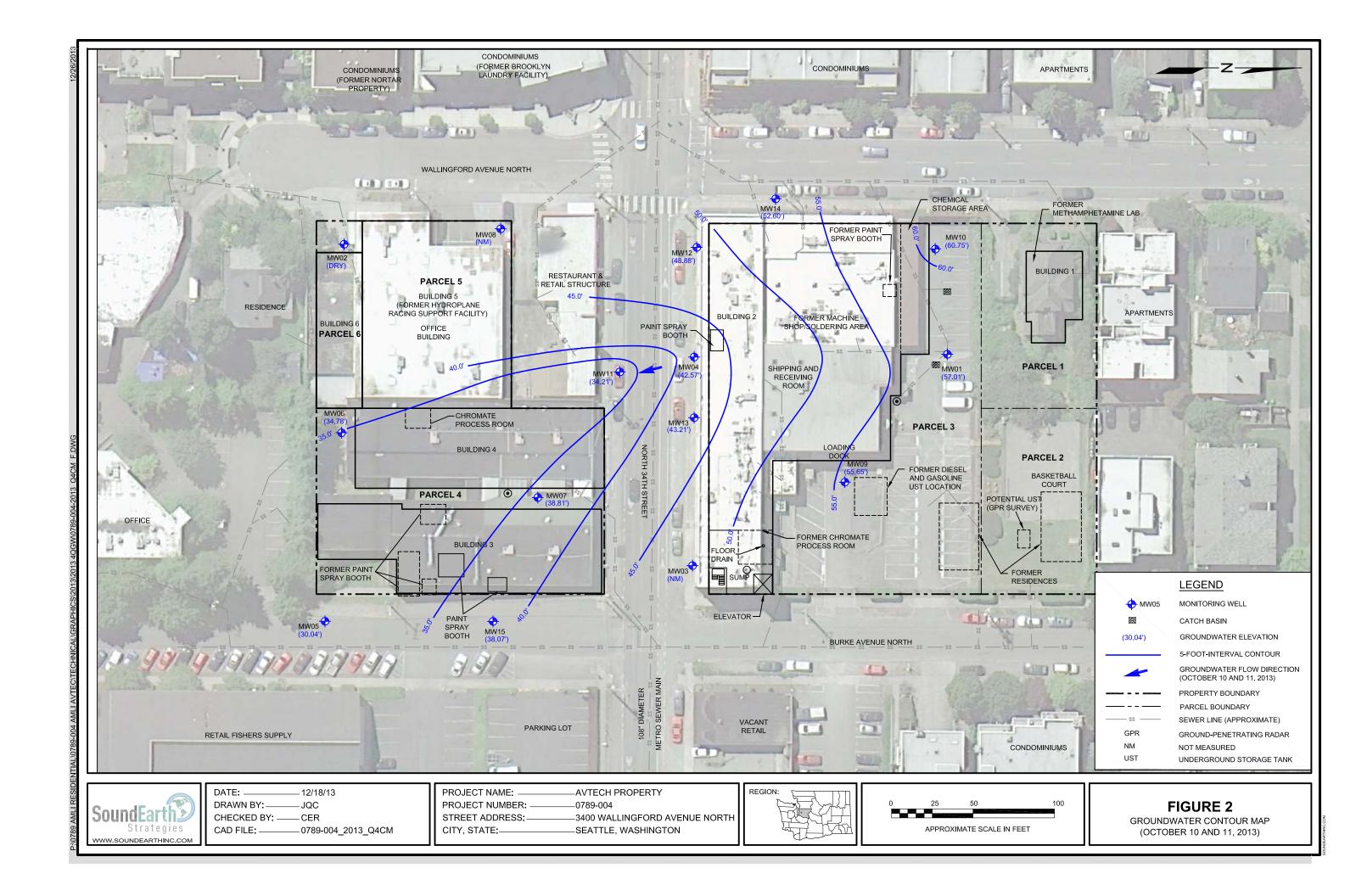

Figure 3, Groundwater TCE Results Table 1, Summary of Groundwater Data

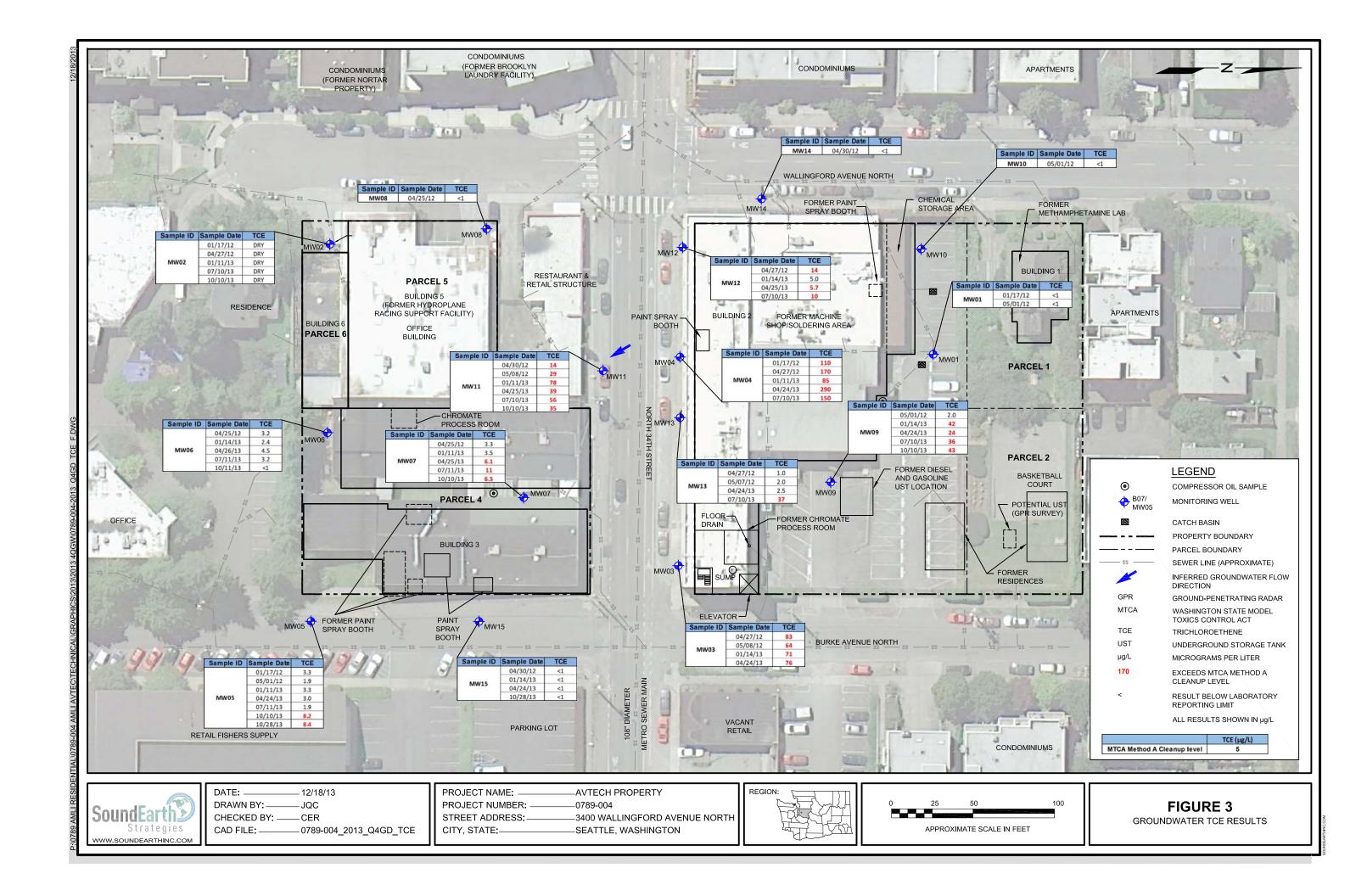
A, Laboratory Analytical Reports

Friedman & Bruya, Inc. #310220 Friedman & Bruya, Inc. #310534

KKG:CER/mdb:hsb

FIGURES SoundEarth Strategies, Inc.




DATE: --08/30/13 DRAWN BY:-_BLR CHECKED BY: -_CER -0789-004_FIG1 CAD FILE: -

PROJECT NAME: AVTECH PROPERTY PROJECT NUMBER:--0789-004-10 _3400 WALLINGFORD AVENUE NORTH STREET ADDRESS: -SEATTLE, WASHINGTON CITY, STATE:

FIGURE 1

PROPERTY LOCATION MAP

TABLE

Table 1
Summary of Groundwater Data
Avtech Property
3400 Wallingford Avenue North
Seattle, Washington

												A a li .u	tical Desi	.la. //1.	١								
												Anaiyi	tical Resu	li ts (μg/L _.)								
Sample ID and TOC Elevation	Sample G Date		Groundwater Elevation ⁽²⁾ (feet)	DRPH ⁽³⁾	ORPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	Vinyl Chloride ⁽⁴⁾	cis-1,2-DCE ⁽⁴⁾	TCE ⁽⁴⁾	PCE ⁽⁴⁾	MTBE ⁽⁴⁾	Naphthalene ⁽⁴⁾	Dissolved Chromium ⁽⁵⁾	Dissolved Arsenic ⁽⁵⁾	Dissolved Selenium ⁽⁵⁾	Dissolved Silver ⁽⁵⁾	Dissolved Cadmium ⁽⁵⁾	Dissolved Barium ⁽⁵⁾	Dissolved Lead ⁽⁵⁾	Dissolved Mercury ⁽⁶⁾
MW01	01/17/12	27.59	56.85	<50	<250	< 0.35	<1	<1	<3	<0.2 ^{pr}	<1	<1	<1	<1	<1	1.58	1.43	<1	<1	<1	3.94	<1	<0.1
84.44	05/01/12	25.02	59.42							<0.2	<1	<1	<1							-			
	01/11/13	26.25	58.19																				
	04/25/13	24.75	59.69																				
		25.55	58.89																				
	07/10/13																			1		-	+
A 414/02	10/10/13	27.43	57.01																				
MW02	01/17/12	DRY																					
69.73	04/27/12	DRY																					
	01/11/13 04/25/13	DRY DRY																					
	04/23/13	DRY																					
	10/10/13	DRY									-												
MW03	01/17/12	DRY																					
75.48	04/27/12	31.18	44.30							<0.2	2.2	83	<1										
75.40	05/08/12	31.06	44.42							<0.2	1.9	64	<1			1.69	1.44	<1	<1	<1	11.9	<1	<0.1
	01/14/13	31.78	43.70							<0.2	1.7	71	<1										
	04/24/13	30.96	44.52							<0.2	1.8	76	<1										
	07/10/13		I .	Inaccessible								.1											
	10/10/13										Inacces												
MW04	01/17/12	36.70	42.77			< 0.35	<1	<1	<3	<0.2 ^{pr}	<1	110	<1	<1	<1	18.6	<1	<1	<1	<1	4.33	<1	<0.1
79.47	04/27/12	36.09	43.38							<0.2	<1	170	<1					_					
	01/11/13	36.44	43.03							<0.2	<1	85	<1										
	04/24/13	35.93	43.54							<0.2	<1	290	<1										
	07/10/13	36.15	43.32							<0.2	<1	150	<1										
	10/10/13	36.90	42.57																				
MW04 (Field Dup)	01/17/12	36.70	42.77			<0.35	<1	<1	<3	<0.2 ^{pr}	<1	120	<1	<1	<1	18.6	<1	<1	<1	<1	4.65	<1	<0.1
79.47	04/27/12	36.09	43.38							<0.2	<1	170	<1										
MW05	01/17/12	24.90	30.71			<0.35	<1	<1	<3	<0.2 ^{pr}	<1	3.3	<1	<1	<1	<1	5.31	3.55	<1	<1	22.6	<1	<0.1
55.61	05/01/12	23.40	32.21							<0.2	<1	1.9	<1										
	01/14/13	24.34	31.27							<0.2	<1	3.3	<1										
	04/24/13	22.86	32.75							<0.2	<1	3.0	<1										
	07/10/13	23.71	31.90							<0.2	<1	1.9	<1										
	10/10/13	25.57	30.04							<0.2	1.1	8.2	<1							-			
	10/28/13									<0.2	1.1	8.4	<1										
MW06	04/25/12	31.84	36.55							<0.2	<1	3.2	<1										
68.39	01/14/13	31.86	36.53							<0.2	<1	2.4	<1										
	04/26/13	30.85	37.54							<0.2	<1	4.5	<1										
	07/11/13	32.01	36.38							<0.2	<1	3.2	<1										
	10/11/13	33.61	34.78							<0.2	<1	<1	<1										
MTCA Method A Clea	nup Level for	r Groundwater ⁽⁷⁾		500	500	5	1,000	700	1,000	0.2	NE	5	5	20	160	50	5	NE	NE	5	NE	15	2

P:\0789 AMLI Residentia\0789-004 AMLI Avtec\Technica\\Tables\GW\2013 Q4\0789-004-03_2013_Q4_GW_F.vlsx

Table 1 Summary of Groundwater Data Avtech Property 3400 Wallingford Avenue North Seattle, Washington

												Analy	tical Post	ılts (μg/L	1								
												Anaiy	ticai Kest	iits (μg/L		(5)_		-		<u> </u>			
Sample ID and TOC Elevation	Sample Groundwa	Depth to Groundwater ⁽¹⁾ (feet)	Groundwater Elevation ⁽²⁾ (feet)	ОКРН ⁽³⁾	ORPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	Vinyl Chloride ⁽⁴⁾	cis-1,2-DCE ⁽⁴⁾	TCE ⁽⁴⁾	PCE ⁽⁴⁾	MTBE ⁽⁴⁾	Naphthalene ⁽⁴⁾	Dissolved Chromium ⁽⁵⁾	Dissolved Arsenic ⁽⁵⁾	Dissolved Selenium ⁽⁵⁾	Dissolved Silver ⁽⁵⁾	Dissolved Cadmium ⁽⁵⁾	Dissolved Barium ⁽⁵⁾	Dissolved Lead ⁽⁵⁾	Dissolved Mercury ⁽⁶⁾
MW07	04/25/12	37.43	39.35							<0.2	<1	3.3	<1										
76.78	01/11/13	37.59	39.19	-						<0.2	<1	3.5	<1					-					
	04/25/13	36.52	40.26	-						<0.2	<1	6.1	<1					-					
	07/11/13	36.97	39.81	-						<0.2	<1	11	<1										
	10/10/13	37.97	38.81							<0.2	<1	6.5	<1			-							
MW08	04/25/12	37.86	38.75							<0.2	<1	<1	<1					-					
76.61	01/11/13	37.34	39.27	-							-												
	04/25/13		<u>, </u>					,		•	Inacces	sible					,		•				-
	07/10/13										Inacces	sible											
	10/10/13										Inacces	sible											
MW09	05/01/12	23.19	57.98							<0.2	<1	2.0	<1										
81.17	01/14/13	24.00	57.17							<0.2	1.5	42	<1										
	04/24/13	22.87	58.30	-						<0.2	<1	24	<1							-			
	07/10/13	23.65	57.52							<0.2	<1	36	<1										
	10/10/13	25.52	55.65							<0.2	1.5	43	<1										
MW10	05/01/12	21.90	63.60							<0.2	<1	<1	<1										
85.50	01/11/13	22.56	62.94								-												
	04/25/13	21.49	64.01																				
	07/10/13	22.63	62.87																				
	10/10/13	24.75	60.75																				
MW11	04/30/12	44.56	34.24							<0.2	<1	14	<1										
78.80	05/08/12	44.52	34.28							<0.2	<1	29	<1										
	01/11/13	44.74	34.06							<0.2	<1	78	<1										
	04/25/13	43.56	35.24							<0.2	<1	39	<1					-					-
	07/10/13	43.90	34.90							<0.2	<1	56	<1					-					-
	10/10/13	44.59	34.21	-						<0.2	<1	35	<1										
MW12	04/27/12	32.81	49.02							<0.2	<1	14	<1										-
81.83	01/14/13	33.30	48.53							<0.2	<1	5.0	<1	-									
	04/25/13	32.76	49.07							<0.2	<1	5.7	<1					-					
	07/10/13	33.08	48.75							<0.2	<1	10	<1					-					
	10/10/13	32.95	48.88																				
MW13	04/27/12	34.97	43.97							<0.2	<1	1.0	<1										
78.94	05/07/12	34.94	44.00							<0.2	<1	2.0	<1										
	04/24/13	34.88	44.06							<0.2	<1	2.5	<1										
	07/10/13 10/10/13	35.15	43.79							<0.2	<1	37	<1										
MW14	04/30/12	35.73 29.99	43.21 54.61							<0.2	<1	<1	<1	1							1		-
	04/30/12	30.95	54.61							<0.2	<1	<1	<1										
84.60		30.95	53.05													-							
	04/25/13	30.56	54.04								Inacces	1											
	07/10/13 10/10/13	30.56	54.04								-												
			32.00											1			-	1	1		-		-
MTCA Method A Clea	nup Level foi	r Groundwater (*/		500	500	5	1,000	700	1,000	0.2	NE	5	5	20	160	50	5	NE	NE	5	NE	15	2

P:\0789 AMLI Residential\0789-004 AMLI Avtec\Technica\Tables\GW\2013 Q4\0789-004-03_2013_Q4_GW_F.xlsx

Table 1 Summary of Groundwater Data Avtech Property 3400 Wallingford Avenue North Seattle, Washington

												Analyt	tical Resu	lts (µg/L)									
Sample ID and TOC Elevation	Sample Date	Depth to Groundwater ⁽¹⁾ (feet)	Groundwater Elevation ⁽²⁾ (feet)	О КРН ⁽³⁾	ORPH ⁽³⁾	Benzene ⁽⁴⁾	Toluene ⁽⁴⁾	Ethylbenzene ⁽⁴⁾	Total Xylenes ⁽⁴⁾	Vinyl Chloride ⁽⁴⁾	cis-1,2-DCE ⁽⁴⁾	TCE ⁽⁴⁾	PCE ⁽⁴⁾	MTBE ⁽⁴⁾	Naphthalene ⁽⁴⁾	Dissolved Chromium ⁽⁵⁾	Dissolved Arsenic ⁽⁵⁾	Dissolved Selenium ⁽⁵⁾	Dissolved Silver ⁽⁵⁾	Dissolved Cadmium ^(s)	Dissolved Barium ⁽⁵⁾	Dissolved Lead ^(s)	Dissolved Mercury ⁽⁶⁾
MW15	04/30/12	27.37	38.72							<0.2	<1	<1	<1	-						-			
66.09	01/14/13	27.76	38.33						-	<0.2	<1	<1	<1							-			
	04/24/13	26.69	39.40						-	<0.2	<1	<1	<1										
	07/10/13				Inaccessible																		
	10/28/13	28.02	38.07							<0.2	<1	<1	<1										
MTCA Method A Clea	nup Level fo	r Groundwater ⁽⁷⁾		500	500	5	1,000	700	1,000	0.2	NE	5	5	20	160	50	5	NE	NE	5	NE	15	2

NOTES:

Red denotes concentrations exceeding the MTCA Method A Cleanup Level.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

TOC elevations surveyed by Triad Associates on May 3, 2012.

Laboratory Note:

-- = not analyzed/not measured

< = not detected at a concentration exceeding the laboratory reporting limit

μg/L = micrograms per liter

1,2-DCE = 1,2-dichloroethene

DRPH = diesel-range petroleum hydrocarbons

EPA = U.S. Environmental Protection Agency

MTBE = methyl tertiary-butyl ether

MTCA = Washington State Model Toxics Control Act

NE = no MTCA Method A cleanup level established for this analyte

ORPH = oil-range petroleum hydrocarbons

PCE = tetrachloroethene

 ${\sf TCE} = {\sf trichloroethene}$

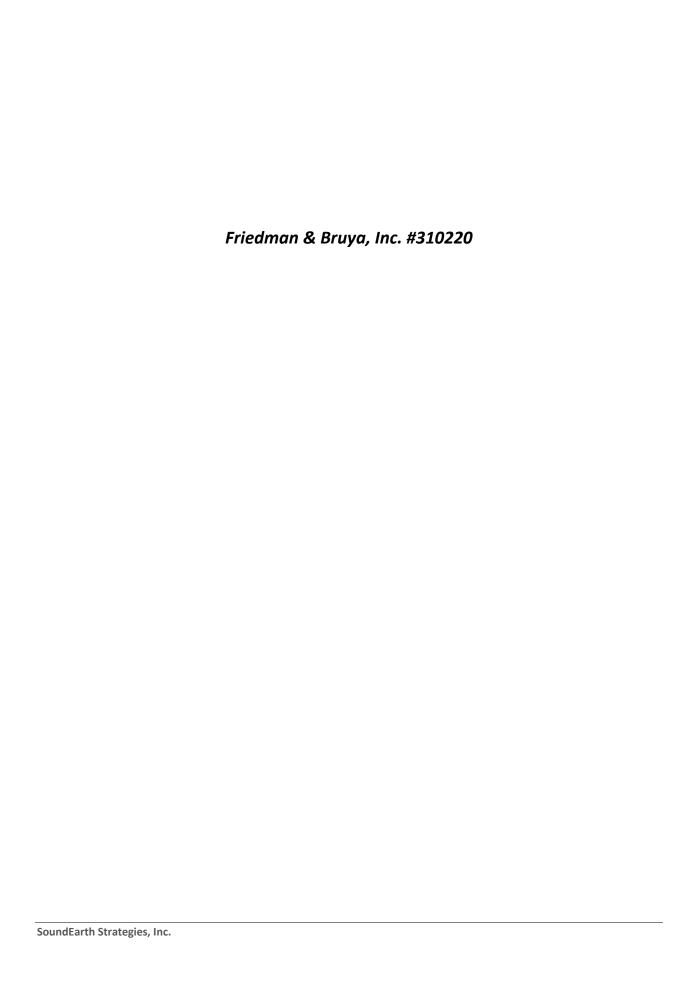
TOC = top of casing elevation

 $[\]ensuremath{^{(1)}}\textsc{Measured}$ in feet below a fixed spot on the top of the well casing rim.

 $^{^{(2)}\}mbox{Elevation}$ datum NAVD 88, Seattle BM#2609CC 58A at 60.344' and BM#2609CC 55A at 32.066'.

⁽³⁾Analyzed by Northwest Total Petroleum Hydrocarbon Method NWTPH-Dx.

⁽⁴⁾ Analyzed by EPA Method 8260C. All other 8260C analytes were not detected above the laboratory reporting limit.


 $^{^{\}rm (5)}\!\mbox{Analyzed}$ by EPA Method 6020 or 200.8.

⁽⁶⁾Analyzed by EPA Method 1631E.

⁽⁷⁾MTCA Cleanup Regulation, Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 340 of Title 173 of the Washington Administrative Code, revised November 2007.

^{pr}Sample received with incorrect preservation. Results should be considered an estimate.

ATTACHMENT A LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 22, 2013

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr. Roberts:

Included are the results from the testing of material submitted on October 11, 2013 from the SOU_0789-003-04_20131011, F&BI 310220 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures SOU1022R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 11, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0789-003-04_20131011, F&BI 310220 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
310220 -01	MW05-20131010
310220 -02	MW06-20131011
310220 -03	MW07-20131010
310220 -04	MW09-20131010
310220 -05	MW11-20131010

Chloroethane in the 8260C matrix spike, laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW05-20131010	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 10/11/13 Project: SOU_0789-003-04_20131011, F&BI 310220

Lab ID: Date Extracted: 10/14/13 310220-01 Date Analyzed: 10/14/13 Data File: 101418.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzen e	105	60	133

Concentration ug/L (ppb) Vinyl chloride <0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 1,1-Dichloroethane <1

cis-1,2-Dichloroethene 1.1
1,2-Dichloroethane (EDC) <1
1,1,1-Trichloroethane <1
Trichloroethene 8.2
Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW06-20131011	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 10/11/13 Project: SOU_0789-003-04_20131011, F&BI 310220

Lab ID: Date Extracted: 10/14/13 310220-02 Date Analyzed: 10/14/13 Data File: 101419.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	106	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride <0.2 Chloroethane <1 1,1-Dichloroethene <1

Methylene chloride < 5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene <1 Tetrachloroethene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW07-20131010	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 10/11/13 Project: SOU_0789-003-04_20131011, F&BI 310220

Lab ID: Date Extracted: 10/14/13 310220-03 Date Analyzed: 10/14/13 Data File: 101420.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	103	60	133

6.5

<1

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride < 5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene <1 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW09-20131010	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 10/11/13 Project: SOU_0789-003-04_20131011, F&BI 310220

Lab ID: Date Extracted: 10/14/13 310220-04 Date Analyzed: 10/14/13 Data File: 101421.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: JS

<1

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	105	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1 cis-1,2-Dichloroethene 1.5 1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Trichloroethene 43

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW11-20131010	Client:	SoundEarth Strategies
-------------------	---------------	---------	-----------------------

Date Received: 10/11/13 Project: SOU_0789-003-04_20131011, F&BI 310220

Lab ID: Date Extracted: 10/14/13 310220-05 Date Analyzed: 10/14/13 Data File: 101422.D Matrix: Instrument: Water GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	105	60	133

Concentration Compounds: ug/L (ppb) Vinyl chloride <0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride <5 trans-1,2-Dichloroethene <1 1,1-Dichloroethane <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies

Date Received: Not Applicable Project: SOU_0789-003-04_20131011, F&BI 310220

10/14/13 Lab ID: Date Extracted: 03-2054 mb Date Analyzed: 10/14/13 Data File: 101414.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

<1

<1

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 10/22/13 Date Received: 10/11/13

Project: SOU_0789-003-04_20131011, F&BI 310220

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 310220-05 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	91	36-166
Chloroethane	ug/L (ppb)	50	<1	162 vo	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	83	60-136
Methylene chloride	ug/L (ppb)	50	<5	91	67-132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	84	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	84	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	86	71-127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	92	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	77	60-146
Trichloroethene	ug/L (ppb)	50	35	88 b	66-135
Tetrachloroethene	ug/L (ppb)	50	<1	92	10-226

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	94	91	50-154	3
ug/L (ppb)	50	168 vo	164 vo	58-146	2
ug/L (ppb)	50	89	87	67-136	2
ug/L (ppb)	50	96	94	39-148	2
ug/L (ppb)	50	92	90	68-128	2
ug/L (ppb)	50	90	89	79-121	1
ug/L (ppb)	50	92	90	80-123	2
ug/L (ppb)	50	96	94	73-132	2
ug/L (ppb)	50	87	86	83-130	1
ug/L (ppb)	50	96	93	80-120	3
ug/L (ppb)	50	98	95	76-121	3
	Units ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 94 ug/L (ppb) 50 168 vo ug/L (ppb) 50 89 ug/L (ppb) 50 96 ug/L (ppb) 50 92 ug/L (ppb) 50 90 ug/L (ppb) 50 92 ug/L (ppb) 50 96 ug/L (ppb) 50 87 ug/L (ppb) 50 96	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 50 94 91 ug/L (ppb) 50 168 vo 164 vo ug/L (ppb) 50 89 87 ug/L (ppb) 50 96 94 ug/L (ppb) 50 92 90 ug/L (ppb) 50 92 90 ug/L (ppb) 50 92 90 ug/L (ppb) 50 96 94 ug/L (ppb) 50 87 86 ug/L (ppb) 50 96 93	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 50 94 91 50-154 ug/L (ppb) 50 168 vo 164 vo 58-146 ug/L (ppb) 50 89 87 67-136 ug/L (ppb) 50 96 94 39-148 ug/L (ppb) 50 92 90 68-128 ug/L (ppb) 50 90 89 79-121 ug/L (ppb) 50 92 90 80-123 ug/L (ppb) 50 96 94 73-132 ug/L (ppb) 50 87 86 83-130 ug/L (ppb) 50 96 93 80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

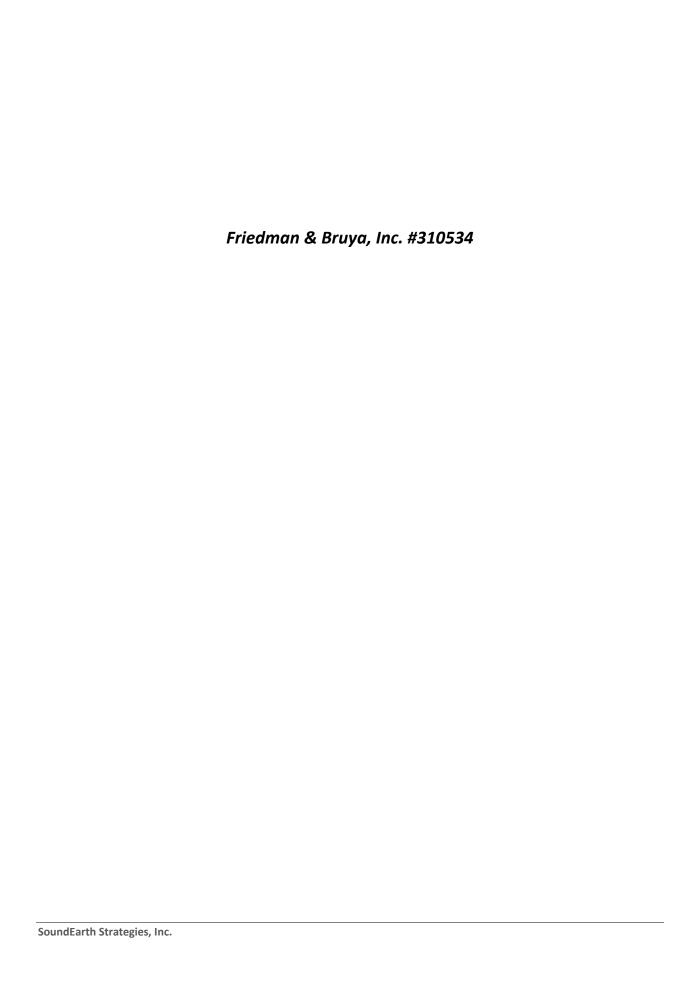
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY ME10-11-13

VZ

Send Report To Rob Roberts	SAMPLERS (signature)		Page # of
Company Sound Earth Stratesies	PROJECT NAME/NO. Avtech Property	PO#	TURNAROUND TIME Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue East, Suite 2000	0789-003-04		Rush charges authorized by:
City, State, ZIP Seattle, WA 98102	REMARKS	CEMON /	SAMPLE DISPOSAL Dispose after 30 days
Phone # 206, 306, 1900 Fax # 306, 1907	·	GEMSY/ N	☐ Return samples ☐ Will call with instructions
			•

								F			ANAI	YSE	SREC	OUES	TED	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270				Notes
mw05-20131010	mwos	28	OI A-D	10/10/13	161/2	Water	4					-		/		
mw06-20131011	mwor	36	02 T	10/11/13	1153	water	4									
mw07-2013/010	m W07			10/10/13	1303	Water	4									
mw09-20131010	mwoq	28	04	0/10/13	1137	Water	. 4					•		/		
mw11 - 20131010	mwii	47	05	10/10/13	1455	Water	4							~		
						//										
						17			-							
						V										


Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-Ph. (206) 285-8282

Fax (206) 283-5044

•				
SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Larry Namba	SES	10/11/13	1330
Received by:	Nhan Phan	FIBI	10/11/13	
Relinquished by: Received by:				
Accepted by	j			

FORMS\COC\SESGEMSR1.DOC (Revision 1)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 5, 2013

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr. Roberts:

Included are the results from the testing of material submitted on October 28, 2013 from the SOU_0789-004-02_20131028, F&BI 310534 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures
SOU1105R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 28, 2013 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0789-004-02_20131028, F&BI 310534 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
310534-01	MW05-20131028
310534-02	MW15-20131028

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW05-20131028	Client:	SoundEarth Strategies
Date Received:	10/28/13	Project:	SOU_0789-004-02_20131028, F&BI 310534
Date Extracted:	10/30/13	Lab ID:	310534-01
Date Analyzed:	10/30/13	Data File:	103032.D
Matrix:	Water	Instrument:	GCMS7
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	1.1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	8.4
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW15-20131028	Client:	SoundEarth Strategies
Date Received:	10/28/13	Project:	SOU_0789-004-02_20131028, F&BI 310534
Date Extracted:	10/30/13	Lab ID:	310534-02
Date Analyzed:	10/30/13	Data File:	103033.D
Matrix:	Water	Instrument:	GCMS7
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
-------------------	--------------	---------	-----------------------

Date Received: Not Applicable Project: SOU_0789-004-02_20131028, F&BI 310534

- -

10/30/13 Lab ID: Date Extracted: 03-2214 mb Date Analyzed: 10/30/13 Data File: 103010.D Matrix: Water Instrument: GCMS7 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

<1

<1

<1

<1

Concentration Compounds: ug/L (ppb) Vinyl chloride < 0.2 Chloroethane <1 1,1-Dichloroethene <1 Methylene chloride < 5 trans-1,2-Dichloroethene <1 1.1-Dichloroethane <1 cis-1,2-Dichloroethene <1

1,2-Dichloroethane (EDC)

1,1,1-Trichloroethane

Trichloroethene

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Date of Report: 11/05/13 Date Received: 10/28/13

Project: SOU_0789-004-02_20131028, F&BI 310534

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 310566-01 (Matrix Spike)

,	/			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	96	50-150
Chloroethane	ug/L (ppb)	50	<1	104	50-150
1,1-Dichloroethene	ug/L (ppb)	50	<1	95	50-150
Methylene chloride	ug/L (ppb)	50	<5	84	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	94	50-150
1,1-Dichloroethane	ug/L (ppb)	50	<1	96	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	94	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	97	50-150
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	96	50-150
Trichloroethene	ug/L (ppb)	50	<1	92	50-150
Tetrachloroethene	ug/L (ppb)	50	<1	88	50-150

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	99	99	70-130	0
Chloroethane	ug/L (ppb)	50	111	111	70-130	0
1,1-Dichloroethene	ug/L (ppb)	50	98	98	70-130	0
Methylene chloride	ug/L (ppb)	50	90	89	70-130	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	96	96	70-130	0
1,1-Dichloroethane	ug/L (ppb)	50	96	96	70-130	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	96	96	70-130	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	94	94	70-130	0
1,1,1-Trichloroethane	ug/L (ppb)	50	97	97	70-130	0
Trichloroethene	ug/L (ppb)	50	94	94	70-130	0
Tetrachloroethene	ug/L (ppb)	50	91	91	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ME 10/28/13

·V/

Send Report To Rob Roberts	SAMPLERS (signature)	
Company Sound Earth Strategies.	PROJECT NAME/NO. Amli-Auteon-Walling Road	PO #
Address 2811 Fairview Avenue East, Suite 2000	0789-004-02	
City, State, ZIP Seattle, WA 98102	REMARKS .	CEMON
Phone # 206, 306, 1960 Fax # 206, 306, 1907		GEMS Y ,

<u> </u>	
Ξ,	of
- 1	TURNAROUND TIME
	Standard (2 Weeks)
	□ RUSH
	Rush charges authorized by:
	SAMPLE DISPOSAL
	Dispose after 30 days
	☐ Return samples
١	Will call with instructions

	<u> </u>										ANAI	YSE	S REC	QUES	TED	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals	פתפכ		Notes
MW05-20131028	mw05	28	OI A-D	10/28/13	/325	water	4									
MW15-20131028	mwis	31	02A5	10/28/13	1205	under	4							V		
											-					
															· · · · ·	·
															î	
														-		
													[
L1				l	·				ı	1	- 1	i	1			

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-

Ph. (206) 285-8282

Fax (206) 283-5044

Redinquished by: Recognitiby: Cel Michael Edihl Relinquished by:	COMPANY DATE TI	PRINT NAME	SIGNATURE
Midal Fahl Fahr	SFS 10/28/13 \$:4	Larry Namba	- day Miles
- January.	ELO III	Michael Edhl	macing
Received by:			

FORMS\COC\SESGEMSR1.DOC (Revision 1)

Samples received at _____°C