SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

PACIFIC CITY PARK 600 THIRD AVENUE SOUTHEAST PACIFIC, WASHINGTON

River and Floodplain Management Section Water and Land Resources Division

Note:

Some pages in this document have been purposely skipped or blank pages inserted so that this document will copy correctly when duplexed.

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

PACIFIC CITY PARK 600 THIRD AVENUE SOUTHEAST PACIFIC, WASHINGTON

Prepared for

River and Floodplain Management Section King County Water and Land Resources Division 201 South Jackson Street, Suite 600 Seattle, Washington 98104

Prepared by
Herrera Environmental Consultants, Inc.
2200 Sixth Avenue, Suite 1100
Seattle, Washington 98121
Telephone: 206-441-9080

In Conjunction with Aspect Consulting, LLC

June 4, 2019

Prepared for:

King County River and Floodplain Management Section King County Water and Land Resources Division

For comments or questions contact:

Chris Brummer, PE, LEG. 206-477-4655

Alternate Formats Available.

Call 206-477-4812 or **TTY 711**

CONTENTS

Ce	rtificate of	Licensed Hydrogeologist	iii
1.	Introduc	tion	1
	1.1. Gen	ieral Site Information	5
	1.2. Site	History	5
2.	Field inve	estigation	9
	2.1. Inve	estigation Methods	9
	2.1	1.1. Soil Sampling Methods	9
	2.1	1.2. Groundwater Sampling Methods	10
	2.1	1.3. Surface Water Sampling Methods	13
	2.1	1.4. Soil Vapor Monitoring Methods	13
	2.2. Inve	13	
	2.2	2.1. Subsurface Conditions	14
	2.2	2.2. Soil Analytical Results	31
	2.2	2.3. Groundwater Analytical Results	31
	2.2	2.4. Surface Water Analytical Results	32
	2.2	2.5. Soil Vapor Monitoring Results	32
	2.2	2.6. Data Quality Analysis	32
3.	Concept	37	
	3.1. Phys	37	
	3.2. Contaminant Nature and Extent		
	3.3. Fate	e and transport	38
4.	Conclusi	ions	43
5.	Referenc	ces	45
A	PPENDI(CES	
Ар	pendix A	Historical Aerial Photographs	
	pendix B	Site Grading Plan for Apartments at 4th Avenue Southeast	
Др	pendix C	Soil Boring Logs	

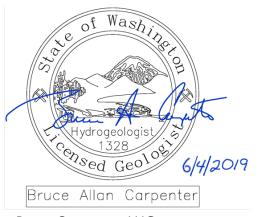
Appendix D

Appendix E

Appendix F

Laboratory Analytical Reports

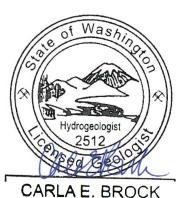
Soil Vapor Monitoring Data


Data Quality Assurance Review Memorandum

TABLES

Table 1.	Summary of Water Level Elevation Data from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington	49
Table 2.	Summary of Soil Sample Results, Pacific City Park Remedial Investigation, Pacific, Washington	51
Table 3.	Summary of Groundwater Sample Results from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington	75
Table 4.	Summary of Surface Water Sample Results, Pacific City Park Remedial Investigation, Pacific, Washington	79
Table 5.	Summary of Soil Vapor Monitoring Data, Pacific City Park Remedial Investigation, Pacific, Washington	82
Figure	ES	
Figure 1.	Vicinity Map, Pacific City Park, Pacific, Washington	2
Figure 2.	Site Map, Pacific City Park, Pacific, Washington	3
Figure 3.	Approximate Extent of Historical Dumping and Filling, Pacific City Park, Pacific, FigWashington	7
Figure 4.	Extent of Fill Soil Containing Refuse, and Soil Boring and Monitoring Well Locations, Pacific City Park, Pacific, Washington	11
Figure 5.	Wetlands, Stormwater Conveyance Features, and Surface Water Sample Locations, Pacific City Park, Pacific, Washington	15
Figure 6.	Soil Vapor Monitoring Locations, Pacific City Park, Pacific, Washington	17
Figure 7	Cross Section A-A', Pacific City Park, Pacific, Washington	19
Figure 8.	Groundwater Level Contour Map, December 21, 2018, Pacific City Park, Pacific, Washington	21
Figure 9.	Extent of Diesel- and Lube-oil Range Petroleum Hydrocarbons in Soil, Pacific City Park, Pacific, Washington	23
Figure 10.	Extent of Lead in Soil, Pacific City Park, Pacific, Washington	25
Figure 11.	Extent of Total Polychlorinated Biphenyls (PCBs) in Soil, Pacific City Park, Pacific, Washington	27
Figure 12.	Extent of Total Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) in Soil, Pacific City Park, Pacific, Washington	29
Figure 13.	Extent of Total and Dissolved Metals in Groundwater, Pacific City Park, Pacific, Washington	33
Figure 14.	Non-metals Contaminants of Concern in Groundwater, Pacific City Park, Pacific, Washington	35
Figure 15.	Extent of Soil and Groundwater Contamination Above Site Screening Levels, Pacific City Park, Pacific, Washington	41
King C	ountv	luna 2010

CERTIFICATE OF LICENSED HYDROGEOLOGIST


This document has been prepared under the supervision of a licensed hydrogeologist.

Bruce Carpenter, LHG

June 4, 2019

Date

or were. Brook

Carla Brock, LHG

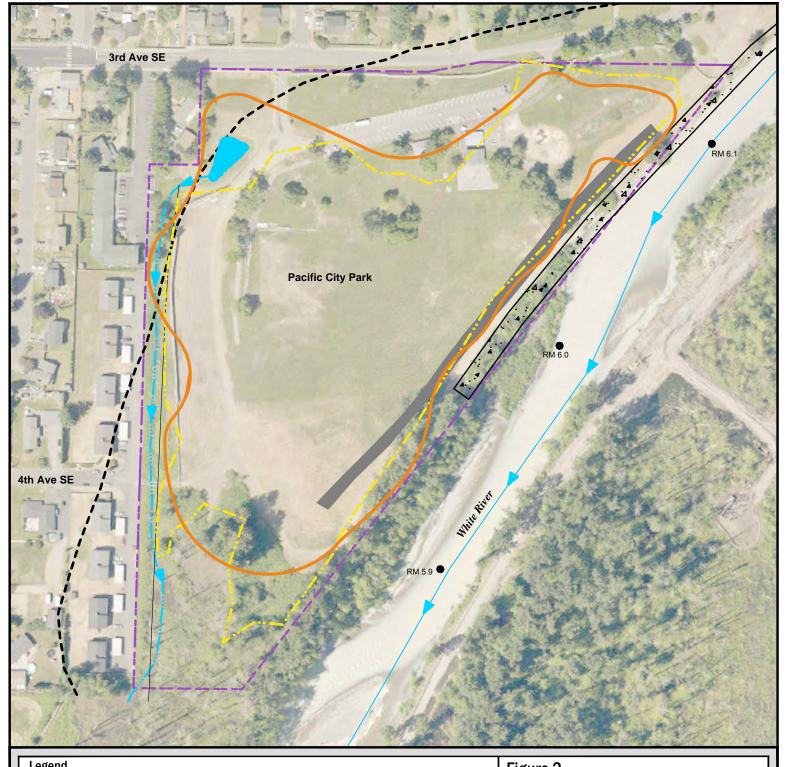
____ June 4, 2019

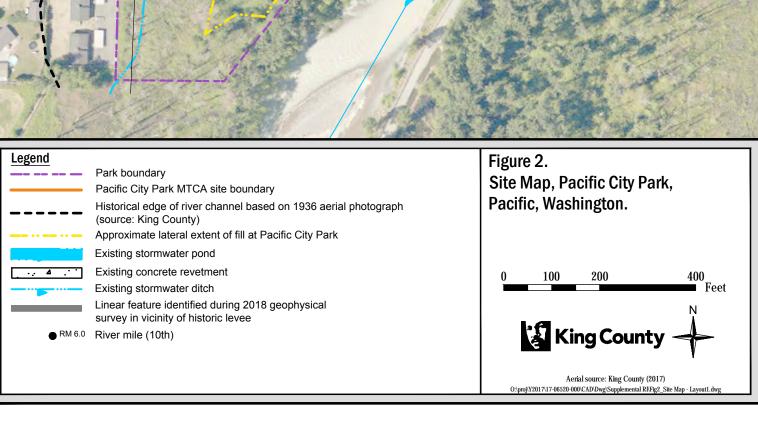
Name

Date

Name

1. INTRODUCTION


This Supplemental Remedial Investigation (SRI) report was completed for the Pacific City Park, located at 600 Third Avenue Southeast in the City of Pacific, Washington (herein referred to as the Site; Figure 1). The Site is located on a portion of a 43-acre parcel of land owned by King County and located on the existing right (west) bank of the White River (Figure 2). The Site was part of the river channel before it was filled with municipal waste and dredge spoils as an informal dumpsite and city dump between approximately 1921 and 1965. The King County Flood Control District is in the planning phase of the Right Bank Flood Protection project, which will extend through the Site. This report supplements the Remedial Investigation (RI) Report (Herrera 2019), submitted by King County to the Washington State Department of Ecology (Ecology), and presents the data and analysis of additional investigation work completed at the Site. Collectively, the information and data presented in the RI Report and this SRI Report meet the requirements of the Model Toxics Control Act (MTCA) Cleanup Regulation, Ch. 173-340 WAC for a remedial investigation: sufficient information and data has been collected to allow for the development and evaluation of cleanup action alternatives.


The supplemental RI was conducted to further evaluate the nature and extent of hazardous substances in soil and groundwater to the south-southwest of the Pacific City Park, which was identified as a data gap in the RI. The SRI included the installation and sampling of three additional groundwater monitoring wells; four soil borings; and collection of additional groundwater, soil, and surface water samples for laboratory analysis, along with soil vapor monitoring in the field. In addition, further historical research was conducted to evaluate potential sources of contaminants of potential concern (COPCs) to soil at the Site and in the Site vicinity. The SRI provides a summary of the fill history, as indicated through historical aerial photos and construction plans, and the results of the data collected to address RI data gaps, including an updated conceptual site model.

King County is requesting an opinion from Ecology, under the Voluntary Cleanup Program (VCP), on the sufficiency of the RI, as documented in the RI Report and this SRI Report, to meet the requirements of the MTCA Cleanup Regulations.

1.1. GENERAL SITE INFORMATION

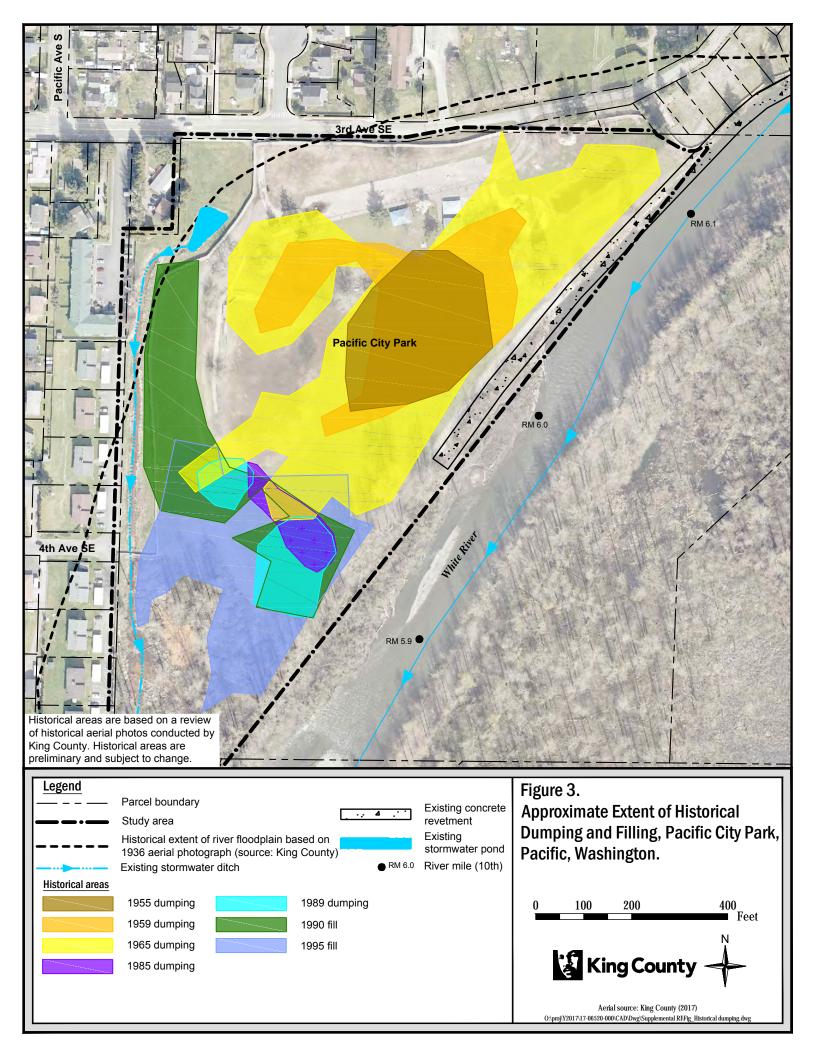
Site Name	Pacific City Park
Site Address	600 Third Avenue Southeast
Facility Site Identification number (FSID)	2160
King County Assessor's Parcel No.	3621049040
Cleanup Site ID	21
VCP Project Number	NW3204
Ecology Site Manager	Grant Yang

The project consultant is Mark Ewbank with Herrera Environmental Consultants, Inc. located at 2200 Sixth Avenue, Suite 1100, Seattle, Washington 98121. Telephone: 206-787-8217, and email: MEwbank@herrerainc.com.

Pacific City Park is owned by King County, with a portion, approximately 21 acres, leased to the City of Pacific for use as a city park. Chris Brummer, Supervising Engineer with the River and Floodplain Management Section of the King County Water and Land Resources Division, is the Site contact. His office is located at 201 South Jackson Street, Suite 600, Seattle, Washington, 98104. Telephone: 206-477-4655, and email: Chris.Brummer@kingcounty.gov.

1.2. SITE HISTORY

A thorough Site history was provided in the RI Report. However, additional information related to the fill history in the Site vicinity has been obtained and reviewed since the RI Report was prepared; a summary of that information is presented herein. Aerial photographs of the Site vicinity, taken between 1941 and 2011, were reviewed to evaluate the fill history (Appendix A). In addition, Shannon & Wilson completed a review of these historical aerial photographs for the Phase I Environmental Site Assessment (Shannon & Wilson 2015). Lastly, a site grading plan for development of the apartments located to the southwest of Pacific City Park in the 1980s was obtained and reviewed (City of Pacific 2019) (Appendix B).


The aerial photos show that the Site was an undeveloped floodplain from 1931 through 1944, surrounded by residential, agricultural and forested land. Historical aerial photographs dated 1931, 1936, 1955, 1959 and 1965 show ground disturbance and/or apparent debris at the Pacific City Park, consistent with its reported historical use as a dumpsite (Shannon & Wilson 2015). The 1955, 1957, 1959, and 1965 aerial photos indicate that the Site access road terminates in areas with apparent ground disturbance and debris indicative of dumping (Shannon & Wilson 2015). The Site appears to have been cleared and/or graded in the 1968 photo, with more extensive grading and development of the Pacific City Park apparent in the 1972 photo. The 1980 and 1985 aerial photographs show evidence of clearing, grading and/or filling activity to the

southwest of the park where construction of the 4th Avenue SE apartments is evident in the 1990 aerial photograph (Appendix A). A minimal amount of more recent dumping of yard/landscaping debris was also observed in the southern portion of the Pacific City Park in the 2000s, which was determined no relevant for investigative purposes.

The fill soil at the apartments along 4th Avenue SE was placed in 1988 by Kohl Excavating, during the grading and short plat development of Lots 3 and 4 in Fireside Addition #2 for construction of the apartment buildings (see Appendix B, Short Plat 87-PAC-3)(City of Pacific 2019; Flarity 2019). Short Plat 87-PAC-3 indicates that lots 3 and 4 were to be filled to a level above the 100-year flood level per information from Housing and Urban Development prior to construction of any buildings or utilities. No refuse was observed in explorations completed during the SRI in this area.

The results of the RI indicate that portions of Pacific City Park were filled with soil, and other portions of the Site were filled with a combination of soil and refuse. Figure 3 depicts the approximate extent of the historical dumping and filling at Pacific City Park, as interpreted through the review of historical aerial photographs, through the late 1990s. As depicted in Figure 2, the Site is defined by any location where one or more of the COPCs related to the historical dumpsite are present in Site media at concentrations exceeding the screening levels developed for the RI. The presence of fill soil alone, in the absence of COPCs, does not fall under the MTCA definition of a hazardous substance, and therefore is not part of the MTCA Site.

2. FIELD INVESTIGATION

Herrera staff collected soil samples from three push-probe borings and three new monitoring well borings completed near the south-southwest corner of the Site as part of this investigation. In addition, Herrera collected surface water samples from four locations within the stormwater pond and ditch on the Site; collected groundwater samples from nine existing and three new monitoring wells; and monitored landfill gas at three monitoring wells. The locations of the additional borings and monitoring wells were selected to further evaluate the extent of fill soil and the presence of COPCs in soil and groundwater to the south-southwest of the park (Figure 4). Prior to the start of the work, public and private utility locating services were contacted to locate and mark all underground utilities in the immediate vicinity of the proposed borings and wells.

2.1. Investigation Methods

The following subsections describe the investigation methods used to collect soil, groundwater, and surface water samples and to perform soil vapor monitoring. The work was conducted in accordance with the Sampling and Analysis Plan (Herrera 2018). The boring logs, including well construction details, are provided in Appendix C. The extent of fill soil containing refuse previously identified, and soil boring and monitoring well locations at the Site are depicted in Figure 4.

2.1.1. Soil Sampling Methods

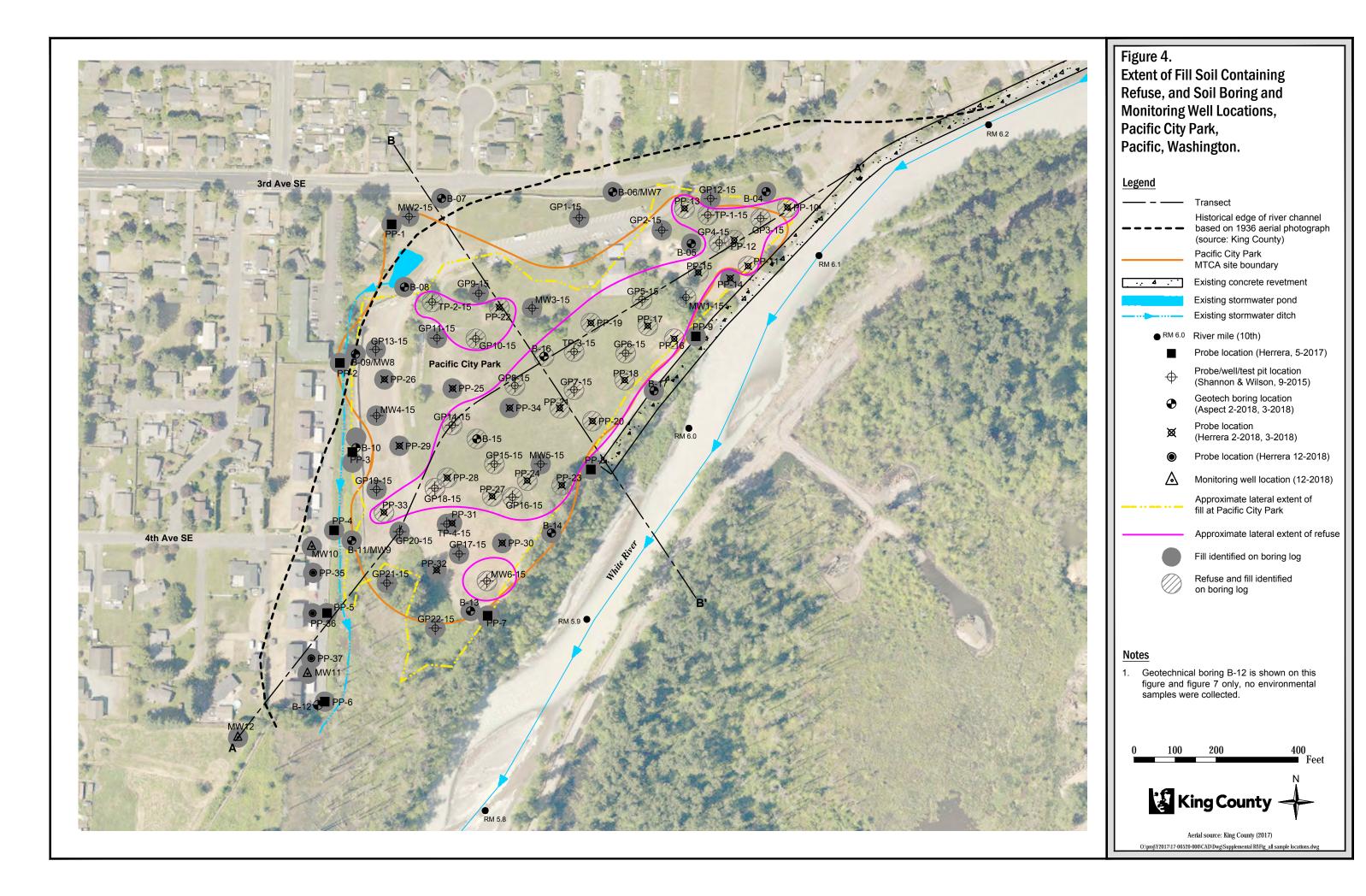
On December 17, 2018, Holocene Drilling, Inc. used a track mounted, hollow-stem auger drill rig to install three groundwater monitoring wells (MW-10, MW-11, and MW-12; Figure 4) to a total depth of 15 feet below ground surface (bgs). Soil samples were collected, classified, and screened according to the field sampling methods described in the RI Report. Two soil samples from each boring were collected for laboratory analysis based on the results of field screening and observed soil types.

The monitoring wells were drilled, constructed, and developed using the same field methods described in the RI Report for the previous well installations at the Site. One deviation from prior installations was that the top of each screen in the three new wells was installed to approximately 3 feet bgs to better facilitate soil vapor monitoring, which is shallower than in the previously installed monitoring wells. Each well was completed at the ground surface with a flush-mounted steel monument sealed in concrete.

On December 20, 2018, ESN Northwest used a truck mounted push-probe rig to complete three push probe borings (PP-35, PP-36, and PP-37). Soil samples were collected, classified, and screened according to the sample field sampling methods described in the RI Report. Two soil

samples from each boring were collected for laboratory analysis based on the results of field screening and observed soil types. Following soil sample collection, each push-probe boring was backfilled with bentonite chips and capped at the surface with asphalt cement to match the adjacent ground surface.

A total of 11 soil samples were submitted to OnSite Environmental, Inc. of Redmond, Washington (OnSite) for one or more of the following laboratory analyses to meet the objectives of the investigation:


- Gasoline-range total petroleum hydrocarbons (TPH) by Ecology Method NWTPH-Gx
- Diesel- and oil-range TPH by Ecology Method NWTPH-Dx, with silica gel cleanup
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by US Environmental Protection Agency (EPA) Method 8270D/SIM
- MTCA metals by EPA Methods 6010D/7471B
- Polychlorinated biphenyls (PCBs) by EPA Method 8082A

2.1.2. Groundwater Sampling Methods

On December 21, 2019, three Herrera staff collected groundwater samples from nine existing monitoring wells (MW-1 through MW-9) and three new monitoring wells (MW-10 through MW-12). The groundwater samples were hand delivered to OnSite for the following laboratory analyses:

- Gasoline-range TPH by Ecology Method NWTPH-Gx
- Diesel-and oil-range TPH by Ecology Method NWTPH-Dx
- Volatile organic compounds (VOCs) by EPA Method 8260C
- cPAHs by EPA Method 8270D/SIM
- Total MTCA metals by EPA Methods 200.8/7470A

The samples were collected by the low-flow purge method described in the SAP (Herrera 2018). Samples were held for potential analysis of PCBs pending the results of oil-range TPH analysis, but no oil-range petroleum hydrocarbons were detected so subsequent PCB analysis was not performed.

2.1.3. Surface Water Sampling Methods

On December 20, 2019, two Herrera staff collected surface water samples from four locations (SW1 through SW4) including the onsite stormwater pond and along the stormwater ditch, in conjunction with the December 2018 quarterly groundwater sampling event (see Figure 5). The surface water samples were submitted to Onsite for the following laboratory analyses:

- Gasoline-range TPH and BTEX by Ecology Method NWTPH-Gx/EPA Method 8021
- Diesel- and oil-range TPH by Ecology Method NWTPH-Dx
- Total MTCA metals by EPA Methods 6010C/200.8/7470A
- cPAHs by EPA Method 8270D/SIM
- VOCs by EPA Method 8260C
- Hardness by EPA Method 6010D/SM 2340B.

Samples were held for potential analysis of PCBs pending the results of oil-range TPH analysis, but no oil-range petroleum hydrocarbons were detected so subsequent PCB analysis was not performed.

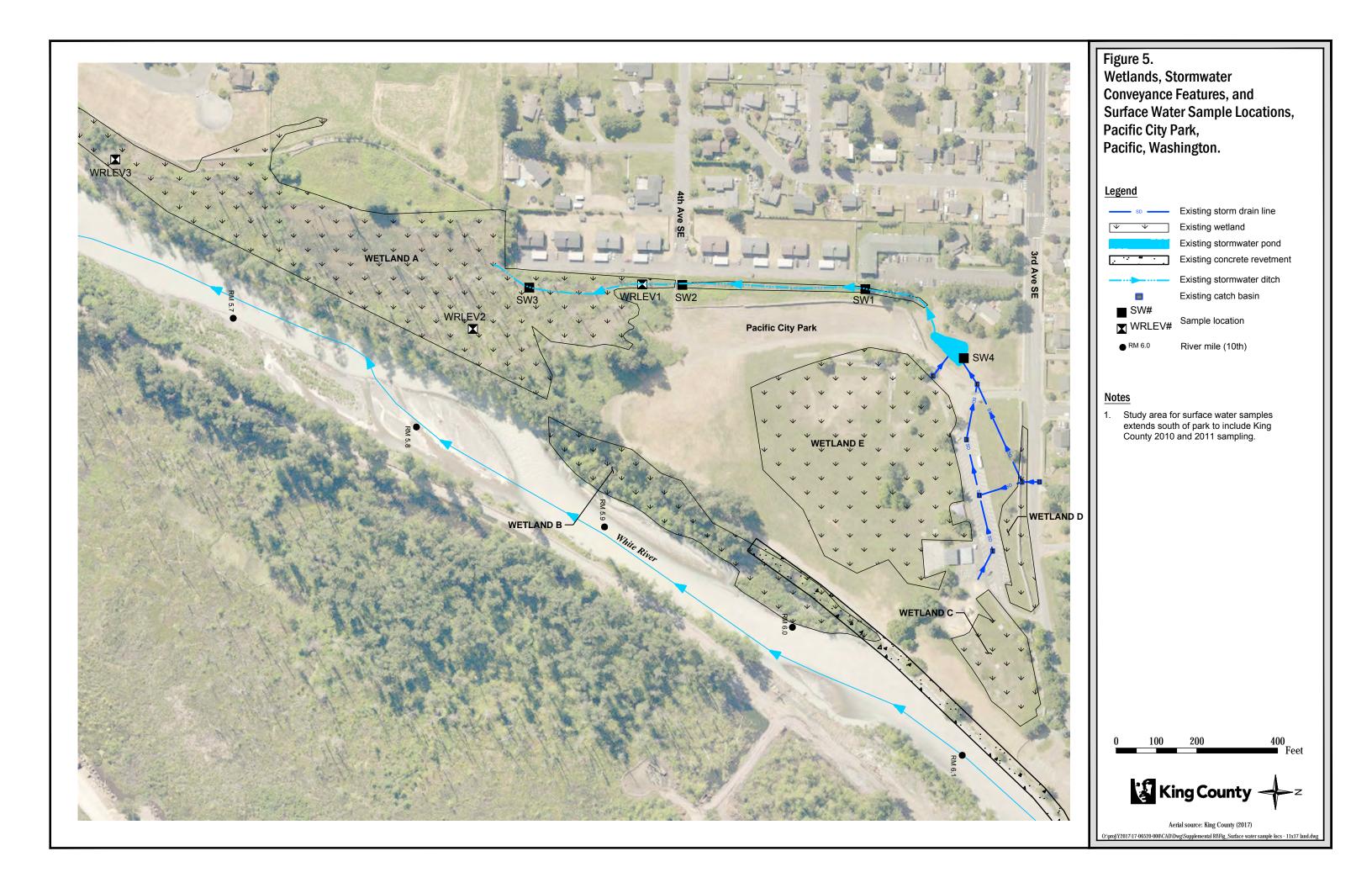
2.1.4. Soil Vapor Monitoring Methods

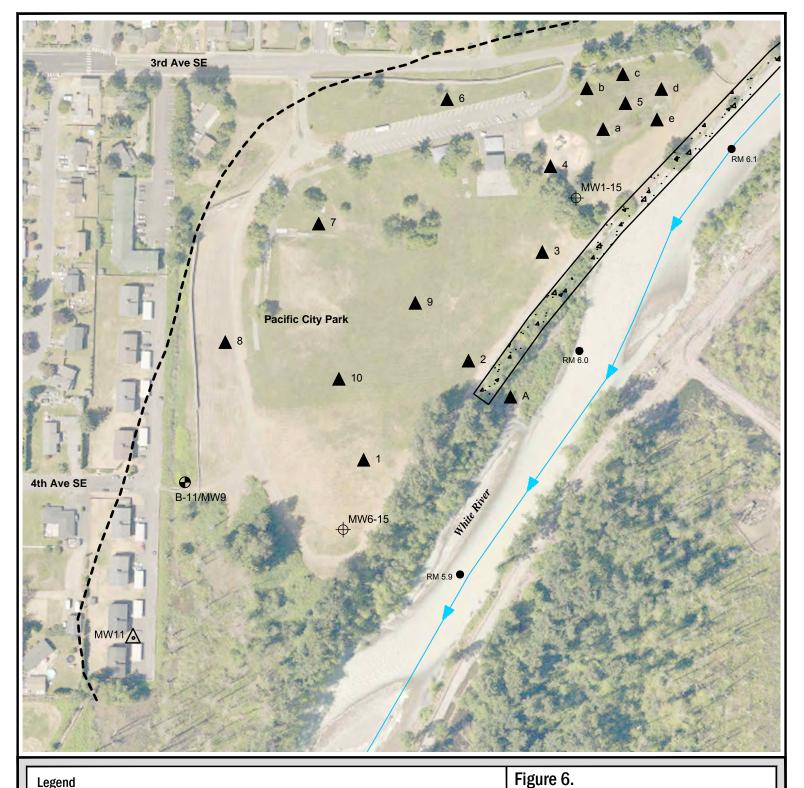
On December 21, 2018, during the quarterly groundwater sampling event, landfill gas monitoring was conducted at three locations (MW-6, MW-9, and MW-11) (Figure 6). These were the only wells where static groundwater elevations were below the top of the well screen. Landfill gas monitoring was performed using a Landtec Gas Analyzer & Extraction Monitor

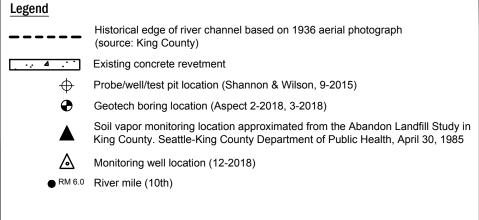
(GEM) 2000 Plus gas analyzer and extraction monitor that was calibrated by the supplier prior to use. The wells were purged during monitoring using an Aircheck Sampler pump by SKC, Ltd. at a rate of approximately 3,000 ml/min.

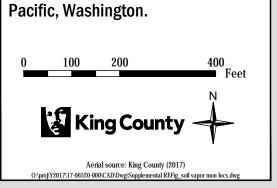
2.2. Investigation Results

The analytical results for samples collected as part of the SRI are compared to the Site Screening Levels (SSLs) developed in the RI Report based on current and potential future exposure pathways and receptors (Herrera 2019).

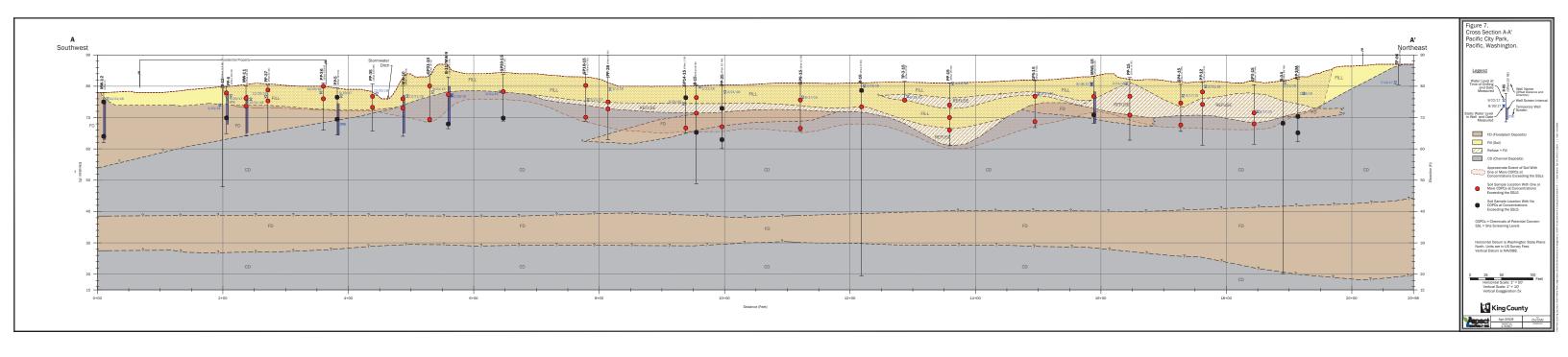

2.2.1. Subsurface Conditions

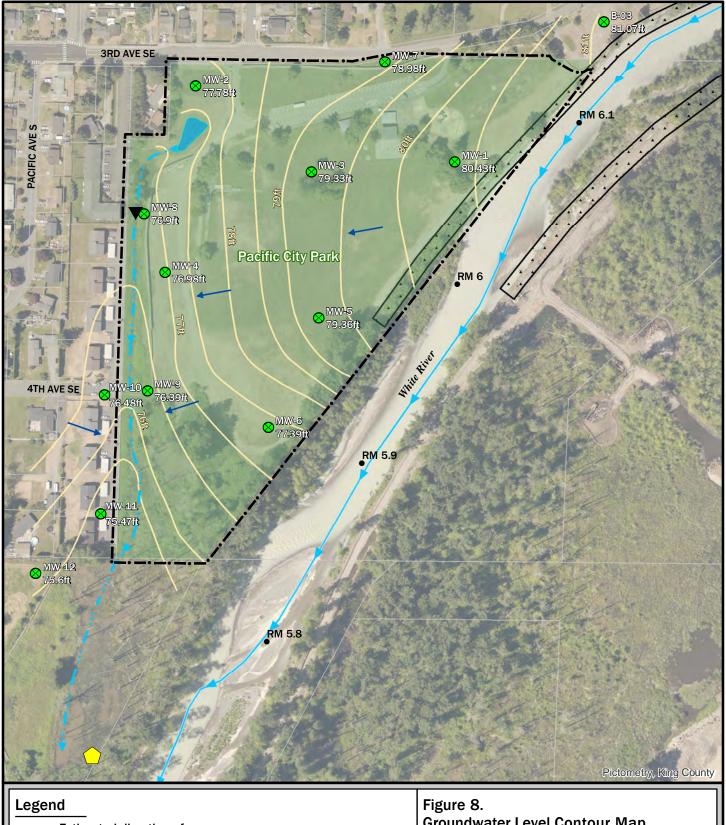

The soil observed in the borings completed for the SRI consisted of 4 to 7.5 feet of fill soil overlying native alluvial deposits, consisting primarily of sand and gravel with varying amounts of silt (see Appendix C). The fill material was identified by the presence of angular gravels resembling typical road base material, lighter or darker colored soil textures compared to deeper native soils, presence of man-made material, characteristics of the soil core sample material such as layering, and findings from previous borings completed at the Site. A thin layer of asphalt was observed at approximately 4.5 feet bgs in boring PP-36, and glass bottle fragments were observed near 1-foot bgs in MW-12. Despite the presence of some man-made material, refuse was not found in any of the six borings. Elevated photo ionization detector (PID) readings were noted between approximately 3 and 5.5 feet bgs in boring MW-10 during sample collection.

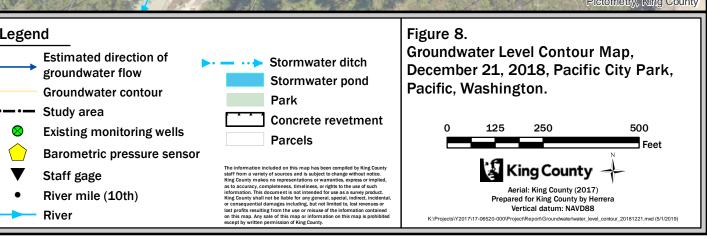

Thin peat layers were encountered near 6.5 feet bgs in well MW-12 and at the bottom of borings PP-35 and PP-36. Figure 7 provides a geologic cross section spanning from the northeast to the southwest through the Site that depicts the approximate extents of fill, refuse and fill, and native alluvial deposits, as well as locations where COPCs were detected in soil.

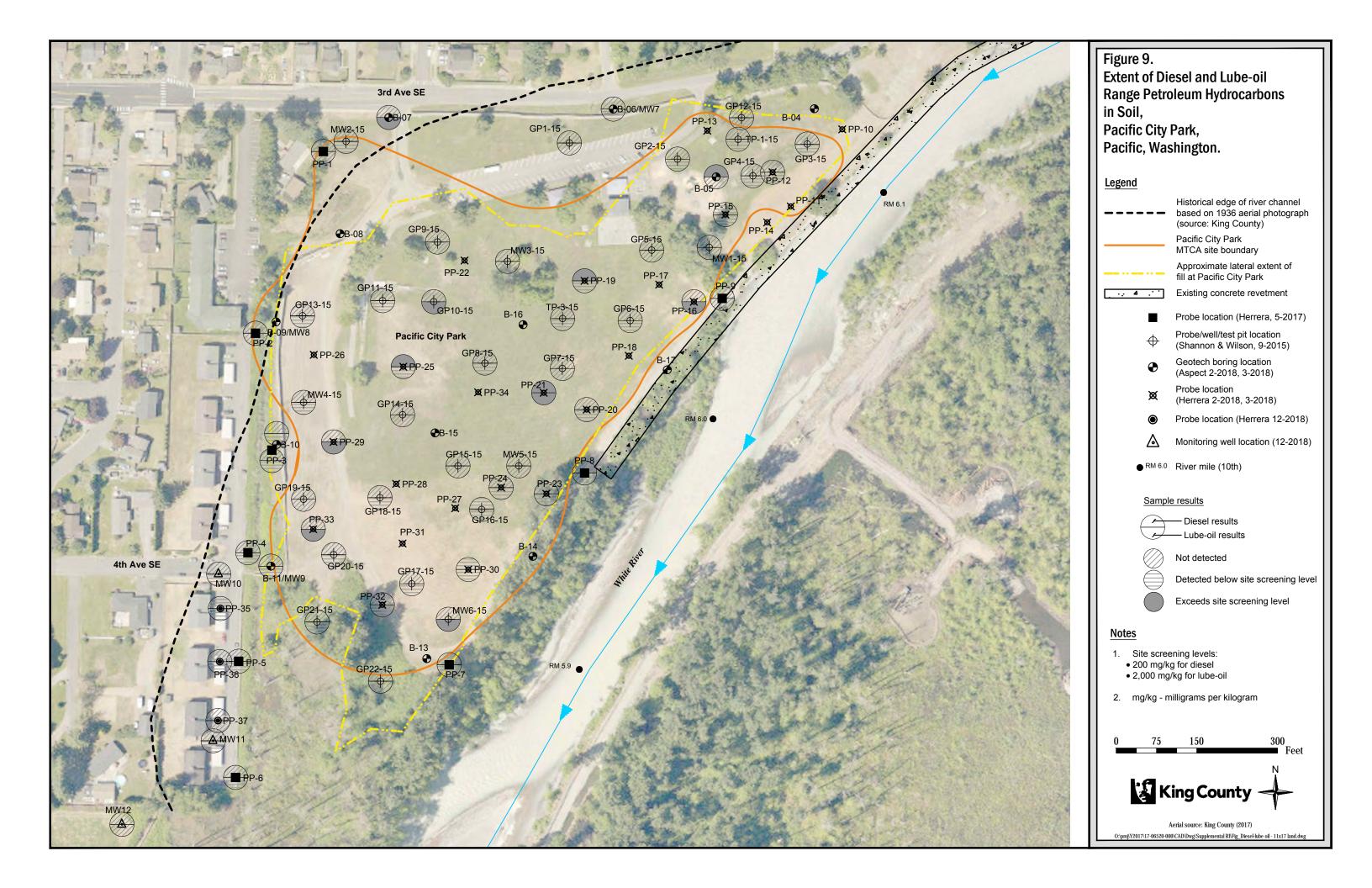

Groundwater measured at the time of drilling ranged from 3 feet bgs in well MW-12 to 7 feet bgs in well MW-10. Table 1 provides a summary of groundwater elevations measured during groundwater sampling conducted in December 2018, as well as during previous sampling events for the RI. Figure 8 depicts a contour map based on static water levels measured in MW-1 through MW-12 and B-03 during the December 2018 sampling event.

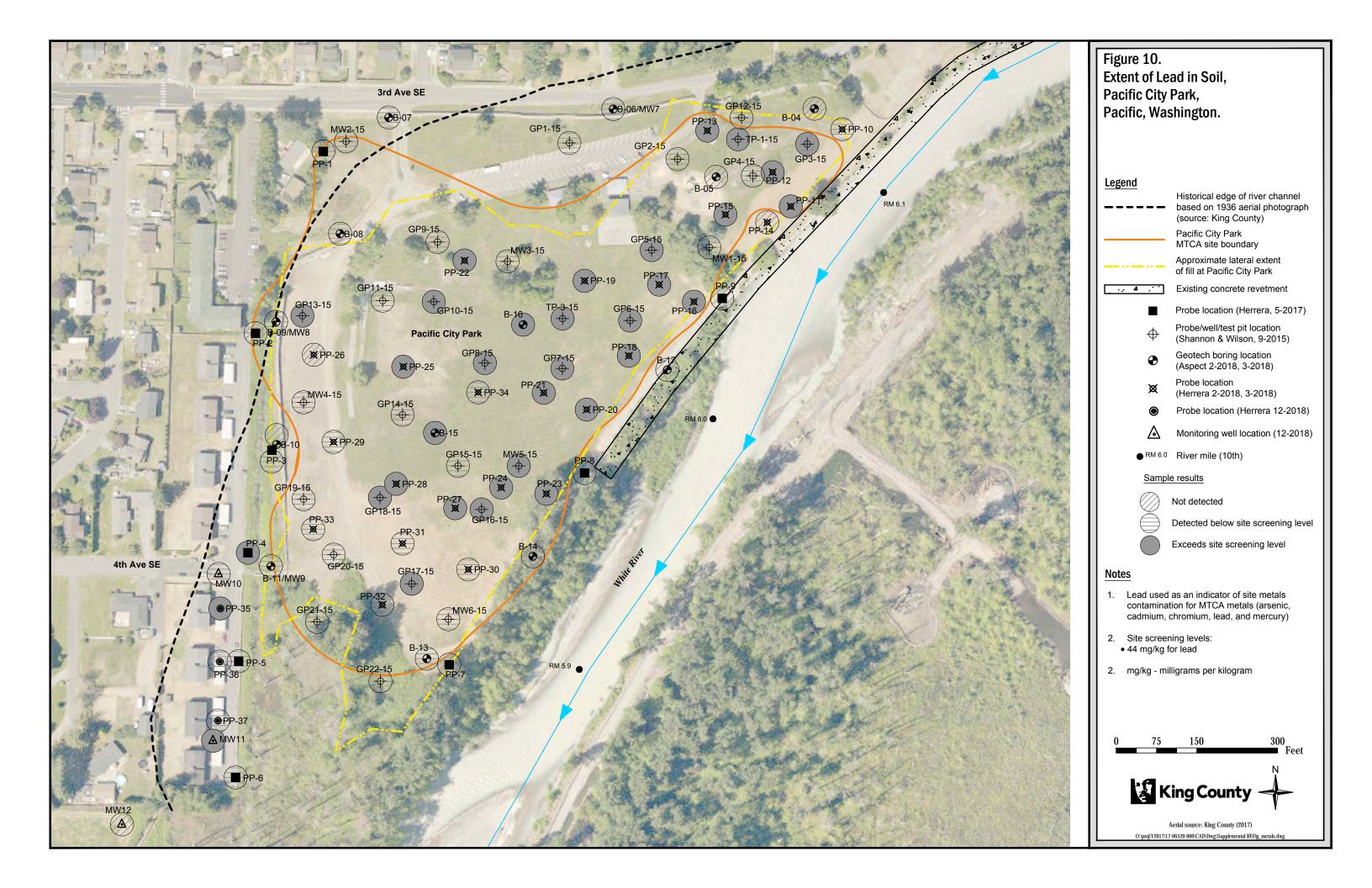
The direction of groundwater water flow at the Site is influenced by the stormwater drainage ditch located along the west side of the park. The surface water elevation in the stormwater ditch, measured on a staff gage adjacent to the west of MW-8 on December 21, 2018, was 0.17 feet lower than the static water level measured in the well. This, along with other static groundwater level measurements from the wells, indicates that the groundwater flow direction was to the west-southwest toward the ditch and to the southeast toward the ditch for areas located west of the Park boundary (Figure 8).

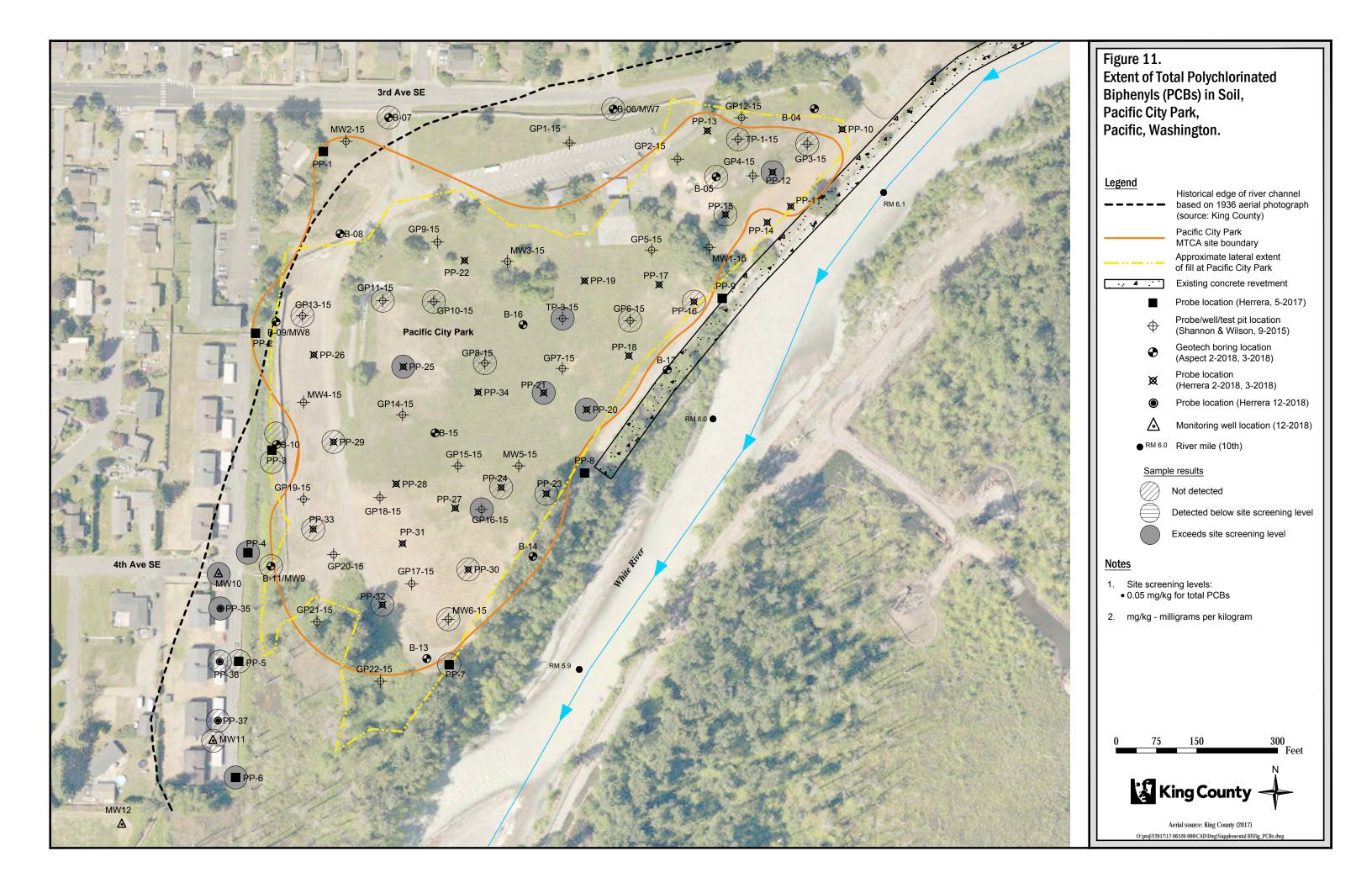


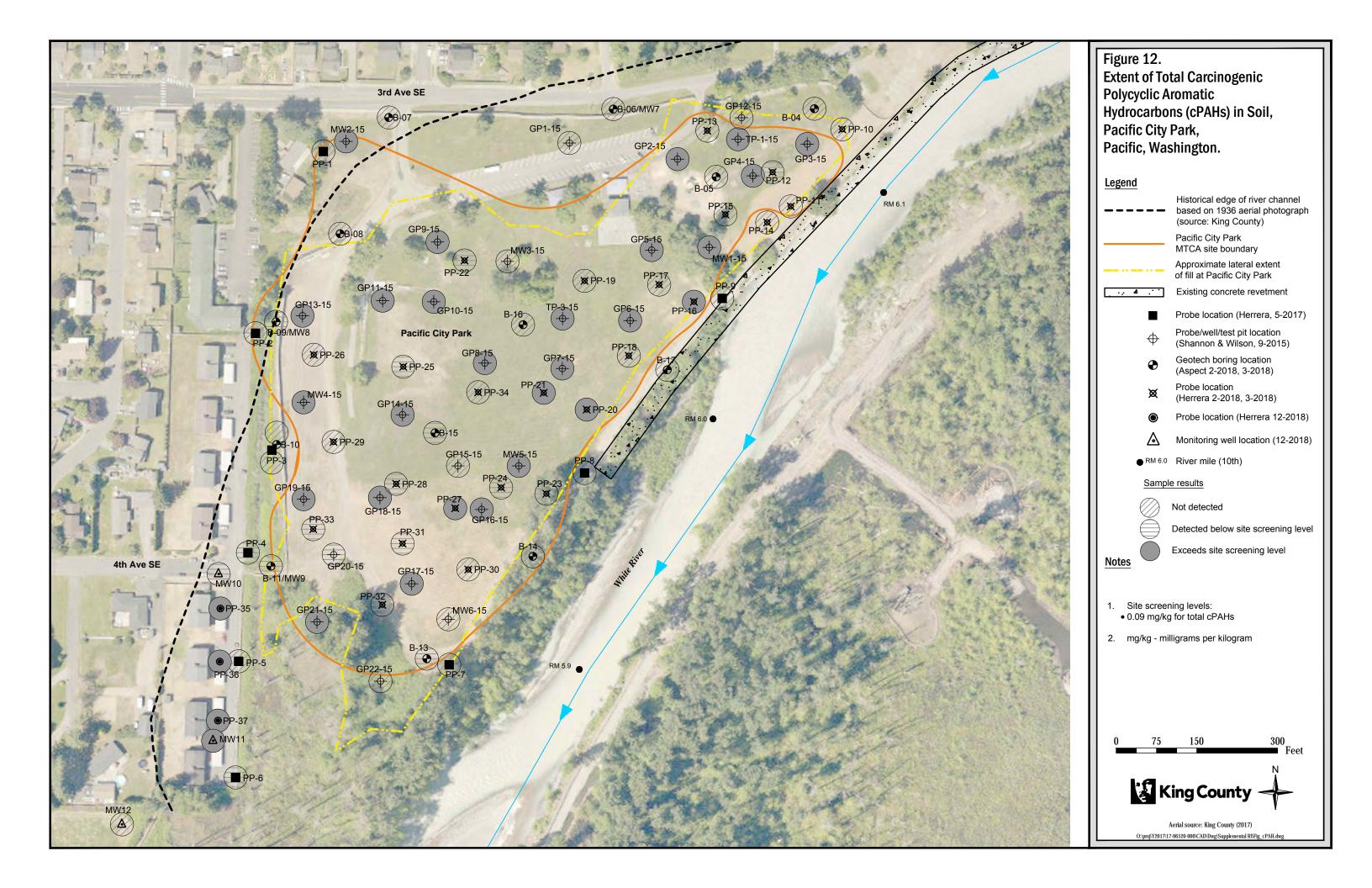





Soil Vapor Monitoring Locations,


Pacific City Park,





2.2.2. Soil Analytical Results

A comprehensive summary of soil analytical data for RI samples is presented in Table 2. Figures 9 through 12 depict the extent of diesel- and lube oil-range TPH, lead, PCBs, and total cPAHs in soil. Concentrations of the COPCs were not detected in soil above the SSLs during the SRI, with the following exceptions:

- Gasoline-range petroleum hydrocarbons were detected in soil at boring MW-10, at a concentration of 110 milligrams/kilogram [mg/kg], which is slightly above the SSL of 100 mg/kg.
- The MTCA metals cadmium, lead and mercury were detected above SSLs in one or both soil samples collected from boring PP35 (Table 2).
- Total PCBs were detected above the SSL of 0.05 mg/kg in samples collected from borings MW-10 and PP35 at concentrations of 0.13 and 0.23 mg/kg, respectively.
- Concentrations of total cPAHs were detected above the SSL of 0.02 mg/kg in samples collected at five locations (MW-10, MW-11, PP35, PP36, and PP-37) at concentrations ranging from 0.021 to 0.787 mg/kg (Table 2).

2.2.3. Groundwater Analytical Results

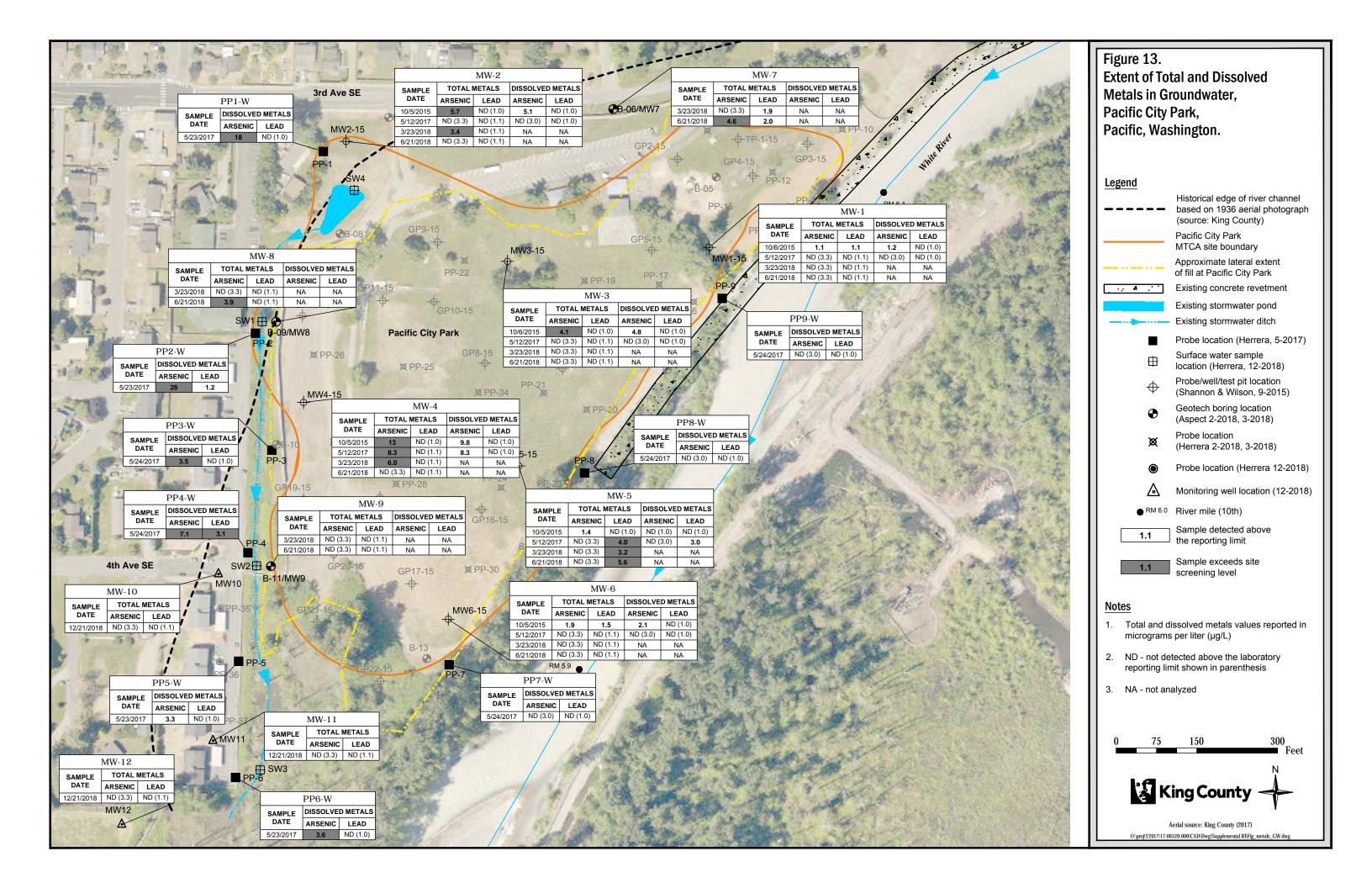
A summary of groundwater analytical results for samples collected from monitoring wells is presented in Table 3. Figures 13 and 14 depict the extent of total and dissolved metals, and non-metals COPCs in groundwater, respectively. The groundwater analytical data for the December 2018 sampling did not identify concentrations of TPH or cPAHs above the SSLs. Of the five MTCA metals, only total arsenic was detected above the SSL of 3.3 micrograms per liter (μ g/L) in wells MW-4 and MW-7, at concentrations of 4.5 and 11.0 μ g/L, respectively.

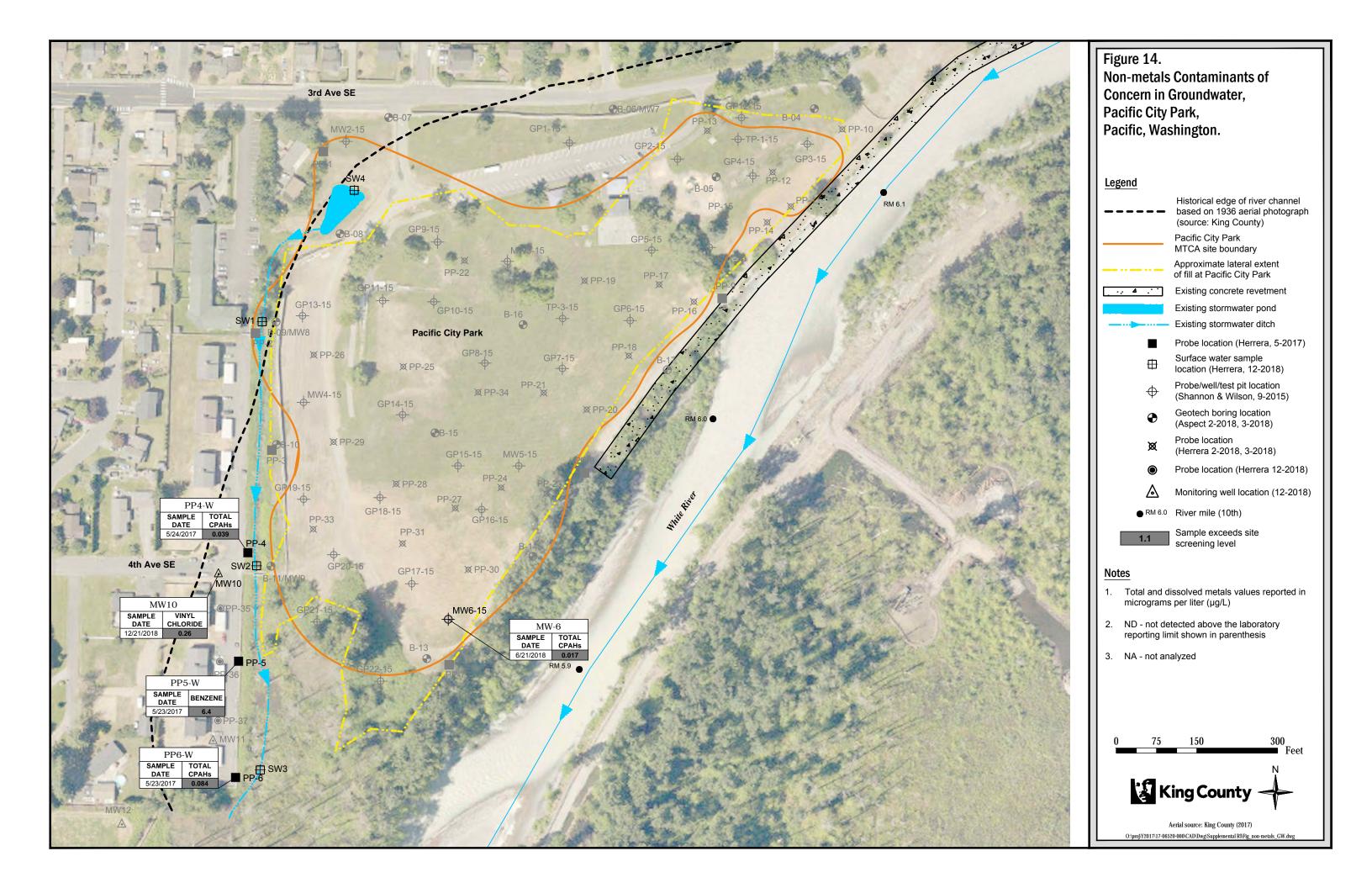
Three VOCs were detected in the groundwater samples collected in December 2018. Vinyl chloride was detected at a concentration of 0.26 μ g/L in the groundwater sample collected from well MW-10 which exceeds the SSL of 0.02 μ g/L (Table 3). Two other VOCs, (cis) 1,2-dichloroethene (in MW-3) and chlorobenzene (in samples from MW-4 and MW-9), were detected in groundwater below the SSLs. No other VOCs were detected above the SSLs in any of the samples.

As reported in the RI Report, concentrations of benzene were detected above the SSL in a groundwater grab sample collected from boring PP-5 in 2017 (Herrera, 2019). However, the analytical data for groundwater samples collected from permanent monitoring wells MW-10 and MW_11, located in the vicinity of boring PP-5, did not identify benzene in groundwater above laboratory reporting limits (Table 3).

2.2.4. Surface Water Analytical Results

A summary of surface water analytical results for samples from the onsite stormwater pond and ditch is presented in Table 4. Surface water analytical results were compared to the groundwater SSLs protective of surface water. No petroleum hydrocarbons, total MTCA metals, cPAHs, or VOCs were detected above the SSLs in any of the samples.


2.2.5. Soil Vapor Monitoring Results


A summary of soil vapor monitoring results is presented in Table 5. No methane (CH₄) or hydrogen sulfide (H₂S) were measured in soil gas at wells MW-6, MW-9, or MW-11 during the December 2018 sampling event. Based on these results and previous monitoring conducted and discussed in the RI report, it does not appear that the Site is producing or releasing landfill gas.

2.2.6. Data Quality Analysis

Laboratory analyses for the December 2018 investigation were performed by OnSite Environmental, of Redmond, Washington, an Ecology-accredited laboratory. Laboratory reports and chain of custody forms are provided in Appendix D, and data quality assurance review was completed by Herrera for all analyses performed (see memorandum included in Appendix E). Data were validated based on the following:

- Sample custody, preservation, holding times, and completeness
- Laboratory reporting limits
- Method blank analysis
- Laboratory control sample analysis
- Surrogate compound analysis
- Matrix spike analysis
- Laboratory duplicate analysis.

3. CONCEPTUAL SITE MODEL

The conceptual site model has been updated from the RI Report based on the results of the supplemental RI, including groundwater and surface water sampling and soil vapor monitoring completed during the fourth quarter of 2018. The results of the RI indicate that portions of Pacific City Park were filled with soil, and other portions were filled with a combination of soil and refuse (Figure 3). The sources of COPCs consist of fill soil mixed with refuse, where analytical testing indicated the presence of TPH, PCBs and VOCs, and fill soil containing ubiquitous, low concentrations of metals and total cPAHs. The Pacific City Park Site can be defined by any location where COPCs related to the historical dumpsite are present in media at concentrations exceeding the SSLs. The SSL exceedances found off-property, to the southwest, are interpreted to be attributable to the grading and filling completed during construction of the 4th Avenue SE apartments in 1988 and not associated with fill at the historical dumpsite.

3.1. PHYSICAL CONDITIONS

The soil and groundwater conditions observed in the supplemental RI explorations are consistent with those documented in the RI across the Site. The subsurface soil consists of 4 to 7.5 feet of fill soil, composed of silt, sand and gravel, overlying native alluvial sediments. Except for some surficial glass debris at boring MW-12, there was no refuse observed in the supplemental RI explorations. Cross section A-A' was updated to incorporate the findings of the supplemental RI explorations and is included as Figure 7.

Based on December 2018 water level measurements, groundwater flow was towards the southwest on the east side of the stormwater ditch and to the southeast on the west side of the stormwater ditch (Figure 8). Based on these measurements, groundwater appears to discharge seasonally to the stormwater ditch. Additional water level measurements taken during groundwater sampling events planned in March, June, and September 2019 will be used to further characterize the groundwater flow characteristics around the stormwater ditch. The data will be presented in technical memorandums that will be submitted by King County to Ecology.

3.2. CONTAMINANT NATURE AND EXTENT

The Site is defined by any location where COPCs related to the historical dumpsite are present at concentrations exceeding the SSLs. The Site boundary is depicted on Figure 2. The supplemental RI was conducted to evaluate the extent of fill soil and the presence of COPCs in soil and groundwater to the south-southwest. The following subsections include updated descriptions of the known distribution of concentrations of COPCs to the south-southwest of the Site based on

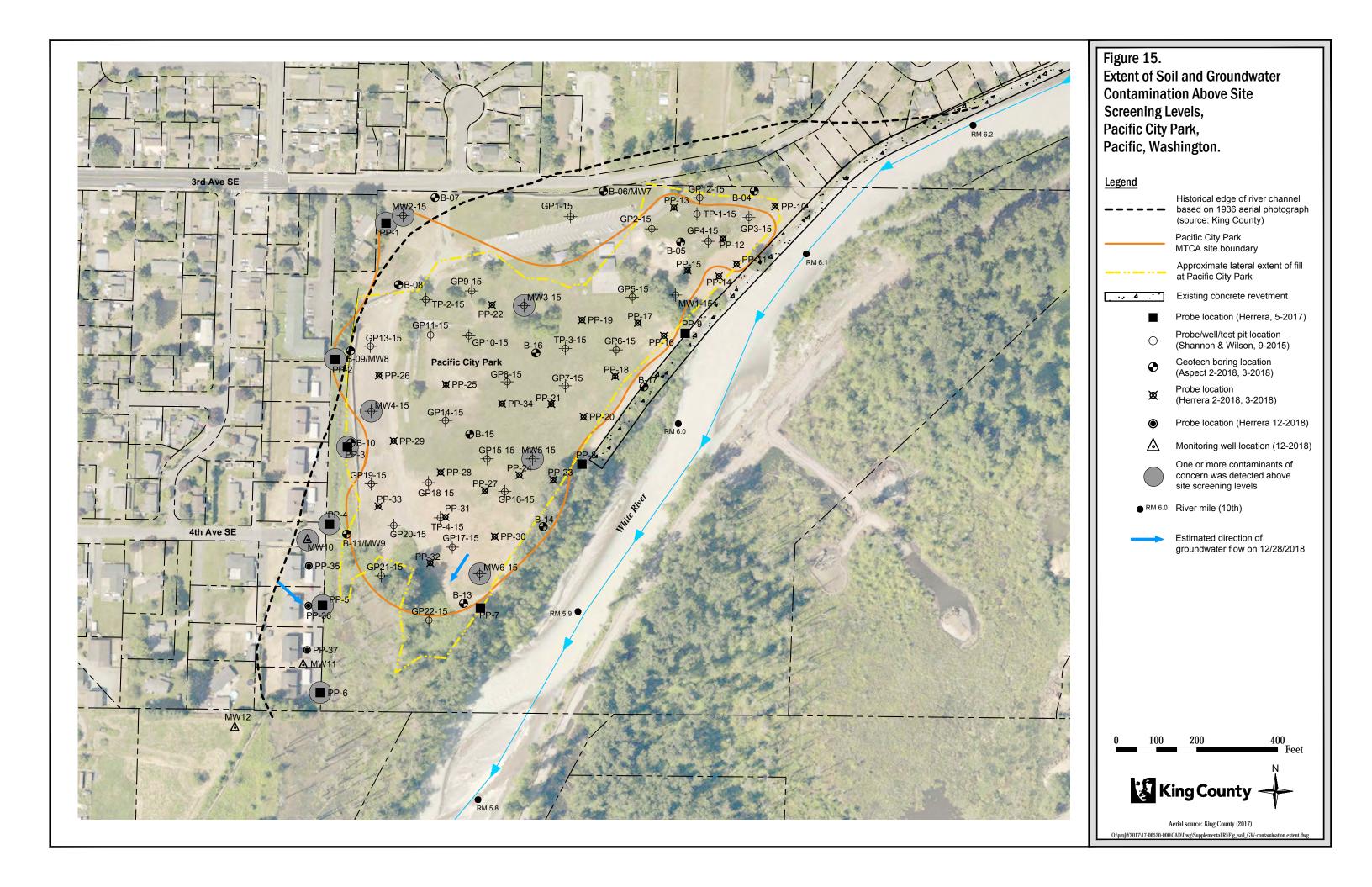
the supplemental RI and December 2018 groundwater and surface water sampling results. Figure 15 depicts the extent of soil and groundwater contamination exceeding SSLs.

The extent and quality of fill soil beyond the property boundary to the south-southwest was refined through the advancement of soil borings PP-35, PP-36, and PP-37 and installation of monitoring wells MW-10, MW-11, and MW-12. The quality of fill soil in the supplemental RI explorations is consistent with the quality of fill soil encountered outside those portions of the Site where refuse is located. The primary COPCs in fill soil at concentrations exceeding SSLs at the supplemental RI explorations consist of lead and total cPAHs. The secondary chemicals detected in soil in supplemental RI explorations are PCBs, which are co-located with concentrations of total cPAHs and lead in soil.

The results for groundwater samples collected from monitoring wells MW-10, MW-11 or MW-12, installed to the southwest of the property boundary during the supplemental RI, did not identify metals or total cPAHs at concentrations above the SSLs (Table 3). Benzene was detected above the SSL in a groundwater grab sample collected from push probe boring PP-5 in 2017, and based on this, was previously identified as a COPC in groundwater. However, the results of the supplemental RI did not identify benzene in groundwater samples collected from wells MW-10, MW-11 or MW-12.

Vinyl chloride was detected above the SSL in the groundwater sample collected from well MW-10 in December 2018. Vinyl chloride was not detected in surface water samples collected from the stormwater ditch in 2018 and has not been previously detected in groundwater, although it was detected in surface water samples collected from the stormwater ditch in December 2010 and January 2011. The monitoring wells installed as part of the supplemental RI will be sampled quarterly for at least four quarters and the seasonal fluctuations in groundwater levels, flow direction, and contaminant presence and concentrations will be evaluated to support selection and implementation of the final cleanup remedy.

Consistent with June and October 2018 surface water sampling results, there were no SSL exceedances for Site COPCs in surface water samples collected from the drainage ditch along the west side of the Site (locations SW-1, SW-2 and SW-3) in December 2018.


3.3. FATE AND TRANSPORT

The results of the supplemental RI are consistent with the fate and transport conclusions in the RI report. Concentrations of COPCs in soil are highest in the east-central portion of the Site, where the thickest amount of dumpsite refuse has been observed. Outside of the areas where dumpsite refuse has been placed, fill soil contains ubiquitous, low concentrations of total cPAHs and lead. Despite the relatively high concentrations of primary COPCs (including metals, total cPAHs, TPH and PCBs) and the presence of secondary chemicals (including chlorinated solvents, pentachlorophenol and pesticides) in the areas where dumpsite refuse has been placed, there are relatively few detections of any of the COPCs in groundwater. Locally, groundwater

discharges as surface water to the stormwater ditch, but regionally it flows from the White River to the west-southwest.

Groundwater samples collected from monitoring wells located downgradient, to the west-southwest of the dumpsite refuse, including (from north to south) wells MW-8, MW-4, MW-9, MW-10 and MW-11, do not contain concentrations of the primary COPCs above the SSLs. In addition, concentrations of arsenic were detected below the state background level of 5 μ g/l, except at well MW-4 where arsenic slightly exceeds the background level. This data indicates that leaching of contaminants from the dumpsite is not affecting groundwater quality at concentrations that pose a risk to human health or the environment.

4. CONCLUSIONS

The remedial investigation for the Site is documented in the RI report (Herrera, 2019) and this supplemental RI report, which together have been prepared in accordance with the Remedial Investigation Checklist Guidance (Ecology 2016) and meet the requirements of MTCA Cleanup Regulations to characterize the nature and extent of contamination at the Site to enable the development, evaluation and selection of a remedial alternative.

Portions of Pacific City Park, located landward of a 1919 levee and concrete revetment on the White River, were filled as a King County refuse dump between approximately 1921 and 1965. The historical information reviewed as part of the RI, including aerial photographs and construction plans for development of surrounding properties, together with the field observations and analytical data from the RI, have been relied upon to establish the fill history at the Site. The sources of COPCs consist of fill soil mixed with refuse, where analytical testing indicated the presence of TPH, PCBs and VOCs, and fill soil containing ubiquitous, low concentrations of metals and total cPAHs. Based on the RI, the Pacific City Site is defined by any location where COPCs related to the historical dumpsite are present in media at concentrations exceeding the screening levels developed for the RI.

The RI has sufficiently characterized the lateral and vertical extent of COPCs in fill soil associated with the historical dumpsite on the property for the purpose of developing and evaluating remedial alternatives for the Site. Based on the results of the RI and groundwater samples collected from MW-10, MW-11 and MW-12, where concentrations of the COPCs associated with the historical dumpsite have not been detected above the SSLs, the nature and extent of primary COPCs in groundwater has been characterized sufficiently for the purpose of developing and evaluating remedial alternatives for the Site.

5. REFERENCES

City of Pacific. 2019. Short Plat 87-PAC-3 record document obtained by Herrera Environmental Consultants, Inc. from the City of Pacific, Washington.

Flarity, Wanda. 2019. Personal communication with George Iftner, Herrera Environmental Consultants, Inc., and Wanda Flarity, City of Pacific, regarding the site development history of apartment buildings located on Lots 3 and 4 of Fireside Addition #2 located north and south of 4th Avenue SE, Pacific, Washington.

Herrera. 2018. Sampling and Analysis Plan, Environmental Exploration, Pacific Park/Dumpsite, Pacific, Washington. Prepared for Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. February 13.

Herrera. 2019. Remedial Investigation Report, Pacific City Park, Pacific, Washington. Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. January 4.

S&W. 2015. Phase I Environmental Site Assessment, Pacific City Park Site, Pacific, Washington. Prepared for King County Water and Land Resources Division, River and Floodplain Management Section, by Shannon and Wilson, Inc., Seattle, Washington, May 11, 2015.

TABLES

		Water Level Elevatio Remedial Investigat		
Monitoring Well Identification	Measurement Date	Reference Elevation (feet) ^a	Depth to Water (feet)	Water Level Elevation (feet)
	5/12/17		2.33	80.83
	3/23/18		2.84	80.32
MW-1	6/21/18	83.16	3.12	80.04
	9/26/18		5.8	77.36
	12/21/18		2.73	80.43
	5/12/17		1.37	78.48
	3/23/18		1.81	78.04
MW-2	6/21/18	79.85	2.32	77.53
	9/26/18		3.68	76.17
	12/21/18		2.07	77.78
	5/12/17		0.4	79.61
	3/23/18		0.55	79.46
MW-3	6/21/18	80.01	1.27	78.74
	9/26/18		3.01	77.00
	12/21/18		0.68	79.33
	5/12/17		2.73	77.41
MW-4	3/23/18		3.09	77.05
	6/21/18	80.14	3.53	76.61
	9/26/18		4.54	75.60
	12/21/18		3.16	76.98
	5/12/17		1.6	79.80
	3/23/18		2.26	79.14
MW-5	6/21/18	81.40	2.38	79.02
	9/26/18		4.8	76.60
	12/21/18		2.04	79.36
	5/12/17		5.71	78.10
	3/23/18		6.65	77.16
MW-6	6/21/18	83.81	6.6	77.21
	9/26/18		8.53	75.28
	12/21/18		6.42	77.39
	3/23/18		0.32	79.50
MW-7 ^b	6/21/18	70.00	0.78	79.04
	9/26/18	79.82	2.68	77.14
	12/21/18		0.84	78.98
	3/23/18		2.63	77.32
A MAZ Ob	6/21/18	70.05	3.12	76.83
MW-8 ^b	9/26/18	79.95	4.2	75.75
	12/21/18	[3.05	76.90

		ary of Water Level El Remedial Investigat		
Monitoring Well Identification	Measurement Date	Reference Elevation (feet) ^a	Depth to Water (feet)	Water Level Elevation (feet)
	3/23/18		5.85	76.74
NAVA Ob	6/21/18	02.50	6.02	76.57
MW-9 ^b	9/26/18	82.59	6.98	75.61
	12/21/18		6.2	76.39
MW-10	12/21/18	79.14	2.71	76.43
MW-11	12/21/18	79.52	4.05	75.47
MW-12	12/21/18	78.11	2.51	75.60
	3/23/18		5.52	80.60
	6/21/18	00.10	5.41	80.71
B-03 ^c	9/26/18	86.12	8.3	77.82

5.05

81.07

12/21/18

^a Reference elevation is the top of protective casing (North American Vertical Datum 1988 [NAVD 88])

b MW-7, MW-8, and MW-9 correspond to probe borings B-06, B-09, and B-11, respectively.

^c Standing water level measurement only at boring location B-03. No groundwater sample was collected.

					Table 2. Su	ımmary of S	Soil Sample	Results, Pa	acific City P	Park Remed	ial Investi	gation, Pac	ific, Washir	ngton.					
Analytical						-	•			Location	•	-	-						
Parameter	GP-:	1-15	GP-	2-15	GP-	3-15	GP-	4-15		GP-5-15		GP-	6-15	GP-	7-15		Site Screening		
Sample Date	9/17	7/15	9/1	7/15	9/17	7/15	9/17/15 9/17/15 9/1		9/17/15 9/17/15			9/17/15			Level ^a				
Depth (feet)	5.0	13.5	4.5	14.0	9.0	12.5	5.0	13.0	5.0	13.0	13 dup	7.5	14.0	5.0	14.0	5.0	14.5	14.5 dup	(mg/kg)
Petroleum Hydrocarl	bons (mg/	kg)																	
Gasoline Range Organics	ND (2.96)	ND (3.44)	ND (3.19)	ND (3.13)	ND (3.33)	ND (7.99)	ND (2.87)	ND (3.41)	ND (4.31)	ND (3.20)	ND (3.60)	ND (5.40)	ND (3.35)	ND (3.79)	ND (3.74)	ND (3.05)	ND (3.65)	ND (3.25)	100
Diesel Range Organics	ND (23.0)	ND (25.1)	ND (19.8)	ND (21.2	ND (24.4)	ND (38.9)	ND (23.8)	ND (25.0)	ND (23.7)	ND (23.2)	ND (21.9)	ND (33.7)	ND (22.5)	ND (19.1)	ND (22.2)	ND (22.9)	ND (24.9)	ND (24.7)	200
Lube Oil Range Organics	ND (57)	ND (63)	75	ND (53)	ND (61)	275	182	ND (63)	ND (59)	ND (58)	ND (55)	217	ND (56)	ND (48)	ND (56)	119	ND (62)	ND (62)	2,000
Volatile Organic Com	npounds b	y EPA 8260) (mg/kg)																
Benzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.001
Toluene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.024
Ethylbenzene	ND (0.018)	ND (0.021)	ND (0.019)	ND (0.019)	ND (0.013)	ND (0.048)	ND (0.017)	ND (0.020)	ND (0.026)	ND (0.019)	ND (0.022)	ND (0.032)	ND (0.020)	ND (0.023)	ND (0.022)	ND (0.018)	ND (0.022)	ND (0.020)	0.014
Total Xylenes	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.52
Acetone	-	-	_	_	-	-	-	_	-	_	-	-	-	-	_	-	_	_	2.07
2-Butanone	-	-	-	-	-	-	-	_	-	_	-	-	-	-	_	-	-	_	1.38
Carbon Disulfide	-	-	-	_	-	-	-	_	-	_	-	-	-	-	_	-	-	-	0.27
Cis-1,2-Dichloroethene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.005
Chlorobenzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.051
Methylene Chloride	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.005
p-Isopropyltoluene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.229
Styrene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.120
Tetrachloroethene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.032)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	0.023	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.0013
Trichloroethene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	0.001
1,2,4-Trimethylbenzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	ND (0.015)	ND (0.013)	NA
Total Metals by EPA	6010D/74	71B (mg/k	g)																
Arsenic	1.7	1.4	3.1	2.9	3.4	102	3.8	1.4	7.6	2.3	4.0	50	2.2	6.1	2.4	12	5.9	3.3	20
Barium	23	15	38	21	24	154	36	17	85	23	19	631	23	148	17	224	50	36	41.3
Cadmium	ND (0.17)	ND (0.18)	0.25	ND (0.20)	ND (0.20)	3.8	0.20	ND (0.21)	1.4	ND (0.19)	ND (0.18)	37	ND (0.19)	0.79	ND (0.18)	0.71	ND (0.20)	ND (0.20)	1
Chromium	9.8	13	18	17	11	143	12	11	20	12	14	115	9.7	23	9.59	17	20	15	48
Lead	1.3	1.2	22	1.4	22	2,780	19	1.3	45	1.9	2.0	2,180	1.5	63	1.5	370	3.2	2.1	25
Mercury	ND (0.29)	ND (0.30)	ND (0.23)	ND (0.29)	ND (0.30)	0.55	ND (0.28)	ND (0.32)	ND (0.30)	ND (0.28)	ND (0.27)	9.1	ND (0.30)	2.5	ND (0.28)	ND (0.29)	ND (0.30)	ND (0.29)	0.07
Selenium	1.2	1.3	1.5	1.2	1.1	1.2	1.5	1.1	1.6	1.1	1.4	1.7	1.1	1.3	1.1	1.9	1.5	1.0	10
Silver	ND (0.087)	ND (0.091)	ND (0.084)	ND (0.098)	ND (0.10)	2.5	ND (0.093)	ND (0.11)	0.12	ND (0.095)	ND (0.092)	2.6	ND (0.096)	0.14	ND (0.09)	0.14	ND (0.10)	ND (0.10)	0.61
Polychlorinated Biph	enyls (PCE	Bs) by EPA	8082A (mg	g/kg)															
Total PCBs	-	-	-	-	-	ND (0.20)	-	-	-	-	_	ND (0.17)	-	-	-	ND (0.11)	-	-	0.05
Semi-Volatile Organi	ic Compou	nds by EPA	4 827 <u>0D/</u> SI	iM (mg/kg)															
Acenapthene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.156
Acenaphthylene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	NA
Anthracene	ND (0.089)	ND (0.101)	0.091	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	7.134
Benzyl Alcohol	ND (0.111)	ND (0.126)	ND (0.108)	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	NA

			Tal	ble 2 (con	tinued).	Summar	y of Soil S	ample Res	sults, Pacif	ic City Pa	rk Remed	ial Investi	gation, Pa	cific, Wash	nington.				
									Sample	Location									
Analytical Parameter	GP-	1-15	GP-	2-15	GP-	3-15	GP-	4-15		GP-5-15		GP-	6-15	GP-	7-15		GP-8-15		Site Screening
Sample Date	9/1	7/15	9/1	7/15	9/17	7/15	9/1	7/15		9/17/15		9/1	7/15	9/1	7/15		Levela		
Depth (feet)	5.0	13.5	4.5	14.0	9.0	12.5	5.0	13.0	5.0	13.0	13 dup	7.5	14.0	5.0	14.0	5.0	14.5	14.5 dup	(mg/kg)
Semi-Volatile Organic C	ompounds	by EPA 827	70D/SIM (m	g/kg) (conti	nued)														
Bis(2-Ethylhexyl) Phthalate	ND (0.111)	ND (0.126)	ND (0.108)	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	0.111
Butyl Benzylphthalate	ND (0.111)	ND (0.126)	ND (0.108)	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	0.033
Dibutyl Phthalate	ND (0.111)	ND (0.126)	0.13	ND (0.116)	ND (0.119)	ND (0.195)	0.12	ND (0.120)	0.28	ND (0.117)	ND (0.112)	0.17	ND (0.122)	ND (0.103)	ND (0.115)	0.13	ND (0.136)	ND (0.129)	0.17
Di-N-Octyl Phthalate	ND (0.111)	ND (0.126)	ND (0.108)	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	800
Fluoranthene	ND (0.089)	ND (0.101)	0.13	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.15	ND (0.097)	ND (0.083)	ND (0.092)	0.11	ND (0.109)	ND (0.103)	0.296
Fluorene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.080
1-Methylnaphthalene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.236
2-Methylnaphthalene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.236
Naphthalene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.236
4-Nitrophenol	ND (0.553)	ND (0.630)	ND (0.538)	ND (0.578)	ND (0.594)	ND (0.974)	ND (0.566)	ND (0.602)	ND (0.571)	ND (0.586)	ND (0.560)	ND (0.843)	ND (0.608)	ND (0.517)	ND (0.576)	ND (0.594)	ND (0.681)	ND (0.643)	NA
p-Cresol	ND (0.111)	ND (0.126)	ND (0.108)	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	8,000
Pentachlorophenol	ND (0.111)	ND (0.126)	0.20	ND (0.116)	ND (0.119)	ND (0.195)	ND (0.113)	ND (0.120)	ND (0.114)	ND (0.117)	ND (0.112)	ND (0.169)	ND (0.122)	ND (0.103)	ND (0.115)	ND (0.119)	ND (0.136)	ND (0.129)	0.17
Phenanthrene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.0067
Phenol	ND (0.221)	ND (0.252)	ND (0.215)	ND (0.231)	ND (0.238)	ND (0.389)	ND (0.226)	ND (0.241)	ND (0.228)	ND (0.234)	ND (0.224)	ND (0.337)	ND (0.243)	ND (0.207)	ND (0.230)	ND (0.237)	ND (0.272)	ND (0.257)	0.757
Pyrene	ND (0.089)	ND (0.101)	0.16	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.29	ND (0.097)	ND (0.083)	ND (0.092)	0.11	ND (0.109)	ND (0.103)	0.546
Carcinogenic Polycyclic	Aromatic I	Hydrocarbo	ns (cPAHs) k	by EPA 8270	D/SIM (mg/k	cg)													
Benzo(a)anthracene	ND (0.089)	ND (0.101)	0.14	ND (0.093)	0.11	0.19	0.12	0.11	0.13	0.11	0.10	0.62	ND (0.097)	0.11	ND (0.092)	0.13	ND (0.109)	ND (0.103)	0.0067
Benzo(a)pyrene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	0.28	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.93	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	0.55	0.23	0.01
Benzo(b)fluoranthene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.51	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.012
Benzo(j,k)fluoranthene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.19	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.012
Chrysene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	0.25	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	ND (0.103)	0.0067
Dibenz(a,h)anthracene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	53	0.018
Indeno(1,2,3-cd)pyrene	ND (0.089)	ND (0.101)	ND (0.086)	ND (0.093)	ND (0.095)	ND (0.156)	ND (0.091)	ND (0.096)	ND (0.091)	ND (0.094)	ND (0.090)	ND (0.135)	ND (0.097)	ND (0.083)	ND (0.092)	ND (0.095)	ND (0.109)	62	0.035
Total cPAHs (TEQ) ^b	ND (0.08)	ND (0.091)	0.087	ND (0.084)	0.092	0.36	0.089	0.093	0.091	0.091	0.087	1.1	ND (0.088)	0.082	ND (0.083)	0.094	0.60	0.27	0.020
Herbicides by EPA 8151	A (mg/kg)																		
2,4-DB	ND (0.029)	ND (0.031)	ND (0.026)	ND (0.030)	ND (0.030)	ND (0.051)	ND (0.029)	ND (0.032)	ND (0.030)	ND (0.030)	ND (0.029)	ND (0.042)	ND (0.030)	ND (0.026)	ND (0.029)	ND (0.030)	ND (0.034)	ND (0.032)	640
2,4,5-T	ND (0.059)		ND (0.052)	ND (0.059)	ND (0.059)	ND (0.102)	ND (0.058)	ND (0.065)	ND (0.061)	ND (0.050	ND (0.058)	ND (0.085)	ND (0.059)	ND (0.051)	ND (0.059)	ND (0.060)	ND (0.068)	ND (0.064)	800
Bentazon		ND (0.063)	ND (0.052)	ND (0.059)	ND (0.059)	ND (0.102)	ND (0.058)	ND (0.065)	ND (0.061)	ND (0.050	ND (0.058)	ND (0.085)	ND (0.059)	ND (0.051)	ND (0.059)	ND (0.060)	ND (0.068)	ND (0.064)	2,400
Chloramben		ND (0.025)	23	ND (0.024)	ND (0.024)	ND (0.041)	25	ND (0.026)	24	ND (0.024)	ND (0.023)	ND (0.034)	ND (0.024)	ND (0.021)	ND (0.023)	26	ND (0.027)	ND (0.025)	1,200
Chlorthal-dimethyl		ND (0.031)	ND (0.026)	ND (0.030)	ND (0.030)	ND (0.051)	ND (0.029)	ND (0.032)	ND (0.030)	ND (0.030)	ND (0.029)	ND (0.042)	ND (0.030)	ND (0.026)	ND (0.029)	ND (0.030)	ND (0.034)	ND (0.032)	800
Dalapon			ND (0.021)	ND (0.024)	ND (0.024)	ND (0.041)	ND (0.023)	ND (0.026)	ND (0.024)	ND (0.024)	ND (0.023)	ND (0.034)	ND (0.024)	ND (0.021)	ND (0.023)	ND (0.024)	ND (0.027)	ND (0.025)	2,400
· ·	ND (0.059)		ND (0.052)	ND (0.059)	ND (0.059)	ND (0.102)	ND (0.058)	ND (0.065)	ND (0.061)	ND (0.050	ND (0.058)	ND (0.085)	ND (0.059)	ND (0.051)	ND (0.059)	ND (0.060)	ND (0.068)	ND (0.064)	80
Picloram		ND (0.063)	ND (0.052)	ND (0.059)	ND (0.059)	ND (0.102)	ND (0.058)	ND (0.065)	ND (0.061)	ND (0.050	ND (0.058)	ND (0.085)	ND (0.059)	ND (0.051)	ND (0.059)	ND (0.060)	ND (0.068)	ND (0.064)	5,600
		ND (0.025)	ND (0.021)	ND (0.024)	ND (0.024)	ND (0.041)	ND (0.023)	ND (0.026)	ND (0.024)	ND (0.024)	ND (0.023)	ND (0.034)	ND (0.024)	ND (0.021)	ND (0.023)	ND (0.024)	ND (0.027)	ND (0.025)	640

			Tal	ole 2 (cont	tinued).	Summar	y of Soil S	ample Re	sults, Pacif	ic City Par	k Remed	ial Investi	gation, Pa	cific, Wash	nington.				
									Sample	Location									
Analytical Parameter	GP-	1-15	GP-	2-15	GP-3	3-15	GP-	4-15		GP-5-15		GP-	6-15	GP-	7-15		GP-8-15		Site Screening
Sample Date	9/1	7/15	9/17	7/15	9/17	7/15	9/1	7/15		9/17/15		9/1	7/15	9/1	7/15		9/17/15		Level ^a
Depth (feet)	5.0	13.5	4.5	14.0	9.0	12.5	5.0	13.0	5.0	13.0	13 dup	7.5	14.0	5.0	14.0	5.0	14.5	14.5 dup	(mg/kg)
Organochlorine Pesticio	les by EPA	8081(mg/kg	g)																
4,4'-DDD	ND (0.023)	ND (0025)	ND (0.021)	ND (0.023)	ND (0.023)	ND (0.039)	ND (0.023)	ND (0.025)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.031)	ND (0.023)	0.074	ND (0.023)	ND (0.023)	ND (0.026)	ND (0.025)	0.01
4,4'-DDE	ND (0.023)	ND (0025)	ND (0.021)	ND (0.023)	ND (0.023)	ND (0.039)	ND (0.023)	ND (0.025)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.031)	ND (0.023)	ND (0.199)	ND (0.023)	ND (0.023)	ND (0.026)	ND (0.025)	0.01
Cis-Chlordane (alpha)	ND (0.011)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.020)	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.016)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.012)	ND (0.013)	ND (0.013)	0.01
Endosulfan I	ND (0.011)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.020)	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.016)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.012)	ND (0.013)	ND (0.013)	0.005
Endosulfan II	ND (0.023)	ND (0025)	ND (0.021)	ND (0.023)	ND (0.023)	ND (0.039)	ND (0.023)	ND (0.025)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.031)	ND (0.023)	0.063	ND (0.023)	ND (0.023)	ND (0.026)	ND (0.025)	0.01
Endosulfan Sulfate	ND (0.023)	ND (0025)	ND (0.021)	ND (0.023)	ND (0.023)	ND (0.039)	ND (0.023)	ND (0.025)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.031)	ND (0.023)	ND (0.199)	ND (0.023)	ND (0.023)	ND (0.026)	ND (0.025)	NA
Gamma-Chlordane	ND (0.011)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.020)	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.016)	ND (0.012)	ND (0.010)	ND (0.011)	ND (0.012)	ND (0.013)	ND (0.013)	0.01
Methoxychlor	ND (0.057)	ND (0.062)	ND (0.051)	ND (0.058)	ND (0.059)	ND (0.100)	ND (0.058)	ND (0.063)	ND (0.058)	ND (0.060)	ND (0.056)	ND (0.079)	ND (0.058)	ND (0.050)	ND (0.057)	ND (0.057)	ND (0.064)	ND (0.063)	0.01

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

Native Soil Fill/Refuse

			Table 2 (c	ontinued).	Summary	of Soil Sam	ple Results,	Pacific City	Park Remed	ial Investiga	tion, Pacific,	Washingto	n.			
								Sample Location	on							
Analytical Parameter	GP-	9-15	GP-1	LO-15	GP-1	11-15	GP-1	L2- 1 5	GP-1	L3- 1 5		GP-14-15		GP-1	L5- 1 5	Site Screening
Sample Date	9/1	7/15	9/1	7/15	9/1 ⁻	7/15	9/1	8/15	9/2	1/15		9/21/15		9/2	1/15	Level ^a
Depth (feet)	5.0	12.5	4.5	13.0	4.5	14.5	4.0	13.5	4.5	13.5	3.5	13.5	13.5 dup	6.0	14.0	(mg/kg)
Petroleum Hydrocarbor	ns (mg/kg)															
Gasoline Range Organics	ND (2.98)	ND (3.30)	ND (4.64)	ND (3.48)	ND (2.85)	ND (6.73)	ND (3.03)	ND (3.34)	ND (3.30)	ND (2.98)	ND (2.98)	ND (2.98)	ND (2.98)	ND (2.98)	ND (2.98)	100
Diesel Range Organics	ND (25)	ND (25)	ND (27)	ND (24)	ND (21)	ND (36)	ND (23)	ND (25)	ND (22)	ND (27)	ND (20)	ND (34)	ND (27)	ND (25)	ND (26)	200
Lube Oil Range Organics	ND (62)	ND (63)	3,840	ND (60)	103	ND (91)	ND (58)	ND (63)	462	ND (68)	ND (50)	ND (86)	ND (66)	ND (64)	ND (65)	2,000
Volatile Organic Compo	ounds by EPA 8	8260 (mg/kg)														
Benzene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.001
Toluene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.024
Ethylbenzene	ND (0.018)	ND (0.020)	ND (0.028)	ND (0.021)	ND (0.017)	ND (0.040)	ND (0.018)	ND (0.020)	ND (0.020)	ND (0.024)	ND (0.021)	ND (0.037)	ND (0.024)	ND (0.027)	ND (0.022)	0.014
Total Xylenes	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.52
Acetone	-	_	-	-	-	_	_	_	_	_	-	_	_	_	_	2.07
2-Butanone	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	1.38
Carbon Disulfide	-	_	-	_	-	_	-	-	_	_	-	_	_	-	_	0.27
Cis-1,2-dichloroethene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.005
Chlorobenzene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.051
Methylene Chloride	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.005
p-Isopropyltoluene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.229
Styrene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	0.120
Tetrachlorethene	ND (0.012)	ND (0.013)	ND (0.019)	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.0013
Trichloroethene	ND (0.012)	ND (0.013)	0.066	ND (0.014)	ND (0.011)	ND (0.027)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.025)	ND (0.016)	ND (0.018)	ND (0.015)	0.001
1,2,4-Trimethylbenzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	NA
Total Metals by EPA 60:	10D/7471B (m	g/kg)														
Arsenic	1.9	2.7	39.7	1.2	2.5	3.0	2.8	1.2	3.4	3.3	2.9	7.7	4.6	2.5	1.7	20
Barium	29	59	232	31	33	72	27	18	40	73	36	95	103	42	32	41.3
Cadmium	ND (0.18)	ND (0.22)	8.3	ND (0.19)	ND (0.16)	ND (0.28)	ND (0.20)	ND (0.20)	0.19	ND (0.22)	0.19	ND (0.30)	ND (0.24)	0.39	ND (0.21)	1
Chromium	18	21	314	14	14	22	13	14	19	24	13	23	32	18	12	48
Lead	8.3	3.6	3,320	2.06	<mark>40</mark>	4.3	3.5	1.3	424	4.3	20	5.2	6.2	15	1.6	25
Mercury	ND (0.28)	ND (0.30)	ND (0.31)	ND (0.30)	ND (0.25)	ND (0.45)	ND (0.29)	ND (0.31)	ND (0.26)	ND (0.33)	ND (0.28)	ND (0.46)	ND (0.31)	ND (0.33)	ND (0.30)	0.07
Selenium	0.74	1.7	0.96	1.0	0.80	1.4	1.4	0.89	0.99	2.1	0.96	3.2	2.5	0.66	0.83	10
Silver	ND (0.091)	ND (0.109)	1.99	ND (0.093)	ND (0.080)	ND (0.14)	ND (0.10)	ND (0.099)	ND (0.091)	ND (0.11)	ND (0.093)	ND (0.15)	ND (0.12)	ND (0.12)	ND (0.11)	0.61
Polychlorinated Biphen	yls (PCBs) by I ∣	EPA 8082A (mg					1							<u> </u>		
Total PCBs		_	ND (0.13)	_	ND (0.11)	_	_	_	ND (0.11)	_	-	_	_	_	_	0.05
Semi-Volatile Organic C									I					T		1
Acenapthene	ND (0.095)	ND (0.108)	29.2	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.156
Acenaphthylene 	ND (0.095)	ND (0.108)	0.13	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	NA - 111
Anthracene	ND (0.095)	ND (0.108)	106	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	7.134
Benzyl Alcohol	ND (0.119)	ND (0.135)	ND (0.138)	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	NA 0.111
Bis(2-Ethylhexyl) Phthalate	ND (0.119)	ND (0.135)	1.6	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	0.17	ND (0.139)	0.12	0.25	ND (0.142)	0.15	ND (0.134)	0.111

lune 201

			Table 2 (c	ontinued).	Summary	of Soil Sam	ple Results,	Pacific City	Park Remed	ial Investiga	tion, Pacific,	Washingtor	n.			
								Sample Location	on							
Analytical Parameter	GP-	9-15	GP-1	LO-15	GP-1	11-15	GP-1	L2-15	GP-1	.3-15		GP-14-15		GP-1	.5-15	Site
Sample Date	9/1	7/15	9/17	7/15	9/1	7/15	9/1	8/15	9/2	1/15		9/21/15		9/2:	1/15	Screening Level ^a
Depth (feet)	5.0	12.5	4.5	13.0	4.5	14.5	4.0	13.5	4.5	13.5	3.5	13.5	13.5 dup	6.0	14.0	(mg/kg)
Semi-Volatile Organic Co	ompounds by	EPA 8270D/SI	IM (mg/kg) (co	ontinued)												
Butyl Benzylphthalate	ND (0.119)	ND (0.135)	ND (0.138)	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	0.033
Di-N-Octyl Phthalate	ND (0.119)	ND (0.135)	ND (0.138)	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	0.17
Dibutyl Phthalate	ND (0.119)	ND (0.135)	0.18	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	800
Fluoranthene	ND (0.095)	ND (0.108)	365	0.11	ND (0.085)	0.19	ND (0.095)	ND (0.100)	0.14	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.296
Fluorene	ND (0.095)	ND (0.108)	37.5	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.080
2-Methylnaphthalene	ND (0.095)	ND (0.108)	3.1	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.236
1-Methylnaphthalene	ND (0.095)	ND (0.108)	6.1	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.236
Naphthalene	ND (0.095)	ND (0.108)	4.4	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.00002)	ND (0.00002)	ND (0.00004)	ND (0.110)	ND (0.00003)	ND (0.00002)	0.236
4-Nitrophenol	ND (0.595)	ND (0.68)	1.4	ND (0.633)	ND (0.528)	ND (0.899)	ND (0.592)	ND (0.622)	ND (0.546)	ND (0.693)	ND (0.576)	ND (0.910)	ND (0.711)	ND (0.732)	ND (0.672)	NA
p-Cresol	ND (0.119)	ND (0.135)	ND (0.138)	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	8,000
Pentachlorophenol	ND (0.119)	ND (0.135)	ND (0.138)	ND (0.127)	ND (0.106)	ND (0.180)	ND (0.118)	ND (0.124)	ND (0.109)	ND (0.139)	ND (0.115)	ND (0.182)	ND (0.142)	ND (0.146)	ND (0.134)	0.17
Phenanthrene	ND (0.095)	ND (0.108)	317	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.100)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.0067
Phenol	ND (0.238)	ND (0.270)	ND (0.276)	ND (0.253)	ND (0.211)	ND (0.360)	ND (0.237)	ND (0.249)	ND (0.218)	ND (0.277)	ND (0.231)	ND (0.364)	ND (0.284)	ND (0.293)	ND (0.269)	0.757
Pyrene	ND (0.095)	ND (0.108)	345	ND (0.101)	ND (0.085)	0.19	ND (0.095)	ND (0.100)	0.13	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.546
Carcinogenic Polycyclic	Aromatic Hyd	rocarbons (cP	AHs) by EPA 82	270D/SIM (mg,	/kg)											
Benzo(a)anthracene	0.11	0.12	164	ND (0.10)	0.11	0.20	ND (0.095)	ND (0.092)	0.13	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.0067
Benzo(a)pyrene	ND (0.095)	0.24	91	0.213	ND (0.085)	0.59	ND (0.095)	ND (0.092)	ND (0.087)	0.45	ND (0.092)	0.64	0.54	ND (0.117)	ND (0.108)	0.01
Benzo(b)fluoranthene	ND (0.095)	ND (0.108)	186	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.092)	0.23	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.012
Benzo(j,k)fluoranthene	ND (0.095)	ND (0.108)	28	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.092)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.012
Chrysene	ND (0.095)	ND (0.108)	193	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.092)	ND (0.087)	ND (0.111)	ND (0.092)	ND (0.146)	ND (0.114)	ND (0.117)	ND (0.108)	0.0067
Dibenz(a,h)anthracene	ND (0.095)	ND (0.108)	62	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.092)	ND (0.087)	ND (0.111)	ND (0.095)	ND (0.146)	53	ND (0.117)	ND (0.108)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.095)	ND (0.108)	53	ND (0.101)	ND (0.085)	ND (0.144)	ND (0.095)	ND (0.092)	ND (0.087)	ND (0.111)	ND (0.095)	ND (0.146)	62	ND (0.117)	ND (0.108)	0.035
Total cPAHs (TEQ) ^b	0.092	0.25	213	0.25	0.083	0.66	ND (0.86)	ND (0.090)	0.10	0.48	ND (0.083)	0.64	0.58	ND (0.117)	ND (0.108)	0.020
Herbicides by EPA 8151	A (mg/kg)															
2,4-DB	ND (0.030)	ND (0.033)	ND (0.034)	ND (0.032)	ND (0.027)	ND (0.047)	ND (0.031)	ND (0.031)	ND (0.028)	ND (0.034)	ND (0.028)	ND (0.046)	ND (0.036)	ND (0.036)	ND (0.033)	640
2,4,5-T	ND (0.061)	ND (0.067)	ND (0.068)	ND (0.064)	ND (0.054)	ND (0.093)	ND (0.062)	ND (0.062)	ND (0.056)	ND (0.068)	ND (0.057)	ND (0.092)	ND (0.071)	ND (0.073)	ND (0.067)	800
Bentazon	ND (0.061)	ND (0.067)	ND (0.068)	ND (0.064)	ND (0.054)	ND (0.093)	ND (0.062)	ND (0.062)	ND (0.056)	ND (0.068)	ND (0.057)	ND (0.092)	ND (0.071)	ND (0.073)	ND (0.067)	2,400
Chloramben	ND (0.024)	ND (0027)	ND (0.027)	ND (0.025)	ND (0.022)	ND (0.037)	ND (0.025)	ND (0.025)	ND (0.022)	ND (0.027)	ND (0.023)	ND (0.037)	ND (0.028)	ND (0.029)	ND (0.027)	1,200
Chlorthal-dimethyl	ND (0.030)	ND (0.033)	ND (0.034)	ND (0.032)	ND (0.027)	ND (0.047)	ND (0.031)	ND (0.031)	ND (0.028)	ND (0.034)	ND (0.028)	ND (0.046)	ND (0.036)	ND (0.036)	ND (0.033)	800
Dalapon	ND (0.024)	ND (0027)	ND (0.027)	ND (0.025)	ND (0.022)	ND (0.037)	ND (0.025)	ND (0.025)	ND (0.022)	ND (0.027)	ND (0.023)	ND (0.037)	ND (0.028)	ND (0.029)	ND (0.027)	2,400
Dinoseb	ND (0.061)	ND (0.067)	ND (0.068)	ND (0.064)	ND (0.054)	ND (0.093)	ND (0.062)	ND (0.062)	ND (0.056)	ND (0.068)	ND (0.057)	ND (0.092)	ND (0.071)	ND (0.073)	ND (0.067)	80
Picloram	ND (0.061)	ND (0.067)	ND (0.068)	ND (0.064)	ND (0.054)	ND (0.093)	ND (0.062)	ND (0.062)	ND (0.056)	ND (0.068)	ND (0.057)	ND (0.092)	ND (0.071)	ND (0.073)	ND (0.067)	5,600
Silvex	ND (0.024)	ND (0027)	ND (0.027)	ND (0.025)	ND (0.022)	ND (0.037)	ND (0.025)	ND (0.025)	ND (0.022)	ND (0.027)	ND (0.023)	ND (0.037)	ND (0.028)	ND (0.029)	ND (0.027)	640

			Table 2 (c	ontinued).	Summary	of Soil Sam	ple Results,	Pacific City	Park Remedi	ial Investiga	tion, Pacific,	Washingto	n.			
								Sample Location	on							
Analytical Parameter	GP-9	9-15	GP-1	LO-15	GP-1	1-15	GP-1	.2-15	GP-1	3-15		GP-14-15		GP-1	L5-15	Site Screening
Sample Date	9/17	7/15	9/1	7/15	9/17	7/15	9/18	3/15	9/21	L/15		9/21/15		9/2:	1/15	Level ^a
Depth (feet)	5.0	12.5	4.5	13.0	4.5	14.5	4.0	13.5	4.5	13.5	3.5	13.5	13.5 dup	6.0	14.0	(mg/kg)
Organochlorine Pesticid	es by EPA 808	31 (mg/kg)														
4,4'-DDD	ND (0.024)	ND (0.027)	ND (0.026)	ND (0.024)	ND (0.022)	ND (0.038)	0	ND (0.024)	ND (0.021)	ND (0.027)	ND (0.021)	ND (0.034)	ND (0.027)	ND (0.027)	ND (0.025)	0.01
4,4'-DDE	ND (0.024)	ND (0.027)	ND (0.026)	ND (0.024)	ND (0.022)	ND (0.038)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.027)	ND (0.021)	ND (0.034)	ND (0.027)	ND (0.027)	ND (0.025)	0.01
Cis-Chlordane (alpha)	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.012)	ND (0.011)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.014)	ND (0.011)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.012)	<i>0</i> .01
Endosulfan I	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.012)	ND (0.011)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.014)	ND (0.011)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.012)	<i>0</i> .005
Endosulfan II	ND (0.024)	ND (0.027)	ND (0.026)	ND (0.024)	0.056	ND (0.038)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.027)	ND (0.021)	ND (0.034)	ND (0.027)	ND (0.027)	ND (0.025)	0.01
Endosulfan Sulfate	ND (0.024)	ND (0.027)	ND (0.026)	ND (0.024)	0.060	ND (0.038)	ND (0.024)	ND (0.024)	ND (0.021)	ND (0.027)	ND (0.021)	ND (0.034)	ND (0.027)	ND (0.027)	ND (0.025)	NA
Gamma-Chlordane	ND (0.012)	ND (0.013)	ND (0.013)	ND (0.012)	ND (0.011)	ND (0.019)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.014)	ND (0.011)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.012)	0.01
Methoxychlor	ND (0.059)	ND (0.066)	ND (0.065)	ND (0.060)	0.127	ND (0.094)	ND (0.060)	ND (0.059)	ND (0.053)	ND (0.067)	ND (0.053)	ND (0.085)	ND (0.066)	ND (0.069)	ND (0.062)	0.01

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table	2 (continu	ed). Summ	nary of Soil	Sample Res	ults, Pacific	: City Park F	Remedial In	vestigation	, Pacific, W	ashington.				
								Sample	Location								
Analytical Parameter	GP-1	.6-15		GP-17-15		GP-1	.8-15	GP-1	9-15	GP-2	20-15	GP-2	21-15		GP-22-15		Site Screening
Sample Date	9/2:	1/15		9/21/15		9/21	1/15	9/2:	L/15	9/2:	1/15	9/2:	1/15		9/22/15		Level ^a
Depth (feet)	8.0	13.5	7.0	14.5	7 dup	3.0	14.0	5.0	14.5	5.5	14.0	4.0	14.0	1.5	3.0	3.0 dup	(mg/kg)
Petroleum Hydrocarbo	ns (mg/kg)																
Gasoline Range Organics	ND (4.83)	ND (3.95)	ND (4.2)	ND (3.9)	ND (3.8)	ND (3.5)	ND (3.7)	ND (3.1)	ND (4.7)	ND (3.3)	ND (3.6)	3.7	ND (4.0)	ND (3.5)	ND (3.6)	ND (2.7)	100
Diesel Range Organics	72	ND (25)	ND (27.2)	ND (20.2)	ND (23.9)	ND (20.3)	ND (23.6)	ND (20.7)	ND (24.8)	ND (19.7)	ND (20.8)	ND (23.3)	ND (21.8)	ND (21.4)	ND (20.4)	ND (19.3)	200
Lube Oil Range Organics	427	ND (63)	70	ND (51)	401	302	ND (59)	ND (52)	ND (62)	285	ND (52)	728	ND (55)	ND (53)	ND (51)	ND (48)	2,000
Sum of Diesel and Lube Oil Range Organics	499	-	70	-	401	302	-	-	-	285	_	728	_	-	_	-	2,000
Volatile Organic Compo	ounds by EPA	8260 (mg/kg	g)														
Benzene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.001
Toluene	0.022	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.024
Ethylbenzene	ND (0.029)	ND (0.024)	ND (0.025)	ND (0.023)	ND (0.023)	ND (0.021)	ND (0.022)	ND (0.019)	ND (0.028)	ND (0.020)	ND (0.022)	ND (0.020)	ND (0.024)	ND (0.021)	ND (0.022)	ND (0.016)	0.014
Total Xylenes	0.029	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.52
Acetone	-	-	-	-	-	_	_	-	_	-	-	-	-	-	-	-	2.07
2-Butanone	-	-	-	_	-	-	-	-	_	-	-	-	_	-	-	-	1.38
Carbon Disulfide	-	-	-	_	-	-	_	_	_	-	-	-	_	-	-	-	0.27
Cis-1,2-dichloroethene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.005
Chlorobenzene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.051
Methylene Chloride	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	0.020	ND (0.013)	0.015	0.014	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.005
p-Isopropyltoluene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	0.13	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.229
Styrene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	0.120
Tetrachlorethene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.0013
Trichloroethene	ND (0.019)	ND (0.016)	ND (0.017)	ND (0.016)	ND (0.015)	ND (0.014)	ND (0.015)	ND (0.012)	ND (0.019)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.016)	ND (0.014)	ND (0.014)	ND (0.010)	0.001
1,2,4-Trimethylbenzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	ND (0.015)	ND (0.015)	ND (0.012)	NA
Total Metals by EPA 60	10D/7471B (mg/kg)			I						I		T		I		
Arsenic	18.5	1.8	8.7	2.0	5.7	5.2	5.6	3.5	2.7	4.0	1.9	2.6	2.8	3.8	3.8	4.0	20
Barium	78	26	52	22	38	47	25	44	38	32	21	40	27	46	44	44	41.3
Cadmium	1.9	ND (0.198)	0.36	ND (0.19)	3.2	0.32	ND (0.18)	ND (0.18)	ND (0.20)	ND (0.17)	ND (0.18)	0.23	ND (0.20)	ND (0.17)	ND (0.19)	ND (0.18)	1
Chromium	57	13	16	12	19	18	56	22	17	19	11	22	14	18	19	19	48
Lead	552	2.2	49	2.6	<mark>39</mark>	60	5.7	5.4	2.2	19.6	2.3	18	3.4	5.1	4.1	5.5	25
Mercury	ND (0.42)	ND (0.29)	ND (0.31)	ND (0.26)	ND (0.29)	ND (0.24)	ND (0.26)	ND (0.24)	ND (0.28)	ND (0.27)	ND (0.27)	ND (0.25)	ND (0.28)	0.38	ND (0.25)	ND (0.25)	0.07
Selenium	ND (0.63)	0.89	1.5	0.99	1.5	1.1	0.90	1,1	0.86	1.2	0.9	0.85	0.78	1.7	1.6	1.8	10
Silver	0.18	ND (0.10)	ND (0.117)	ND (0.095)	ND (0.102)	ND (0.091)	ND (0.090)	ND (0.088)	ND (0.099)	ND (0.085)	ND (0.092)	ND (0.095)	ND (0.099)	ND (0.084)	ND (0.097)	ND (0.091)	0.61
Polychlorinated Biphen												<u> </u>					0.05
Total PCBs	0.42	- FDA 8270D	- /CINA (()	_	_	-	-	-	-	_	_	-	_	_	_	-	0.05
Semi-Volatile Organic C					ND (0.100)	ND (0.005)	ND (0.005)	ND (0.000)	ND (0.400)	ND (0.005)	ND (0.000)	ND (0.001)	NID (0.000)	NB (0.000)	ND (0.000)	ND (0.000)	0.150
Acenapthene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.156
Acenaphthylene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	NA 7.12.4
Anthracene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	0.13	0.15	ND (0.086)	ND (0.092)	ND (0.090)	7.134
Benzyl Alcohol	ND (0.166)	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	ND (0.107)	ND (0.119)	ND (0.108)	ND (0.128)	ND (0.106)	ND (0.115)	ND (0.114)	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	NA

			Table	2 (continu	ed). Summ	nary of Soil	Sample Res	sults, Pacific	: City Park I	Remedial In	vestigation	, Pacific, W	ashington.				
								Sample	Location								
Analytical Parameter	GP-1	L6-15		GP-17-15		GP-1	L8-15	GP-1	.9-15	GP-2	20-15	GP-2	21-15		GP-22-15		Site
Sample Date	9/23	1/15		9/21/15		9/2	1/15	9/2:	1/15	9/2:	1/15	9/2	1/15		9/22/15		Screening Level ^a
Depth (feet)	8.0	13.5	7.0	14.5	7 dup	3.0	14.0	5.0	14.5	5.5	14.0	4.0	14.0	1.5	3.0	3.0 dup	(mg/kg)
Bis (2-Ethylhexyl) Phthalate	2.5	ND (0.121)	ND (0.139)	ND (0.113)	1.09	ND (0.107)	0.38	ND (0.108)	ND (0.128)	0.21	ND (0.115)	2.76	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	0.111
Semi-Volatile Organic C	Compounds b	y EPA 8270D	/SIM (mg/kg)	(continued)													
Butyl Benzylphthalate	0.17	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	ND (0.107)	ND (0.119)	0.27	ND (0.128)	ND (0.106)	ND (0.115)	0.18	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	0.033
Dibutyl Phthalate	ND (0.166)	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	ND (0.107)	ND (0.119)	ND (0.108)	ND (0.128)	ND (0.106)	ND (0.115)	ND (0.114)	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	0.17
Di-N-Octyl Phthalate	ND (0.166)	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	0.17	ND (0.119)	ND (0.108)	ND (0.128)	ND (0.106)	ND (0.115)	ND (0.114)	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	800
Fluoranthene	0.15	ND (0.097)	ND (0.111)	ND (0.091)	0.13	0.11	ND (0.095)	ND (0.086)	ND (0.102)	0.096	ND (0.092)	0.25	0.13	ND (0.086)	ND (0.092)	ND (0.090)	0.296
Fluorene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.080
2-Methylnaphthalene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.236
1-Methylnaphthalene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.236
Naphthalene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.236
4-Nitrophenol	ND (0.831)	ND (0.605)	ND (0.694)	ND (0.566)	ND (0.622)	ND (0.533)	ND (0.596)	ND (0.539)	ND (0.638)	ND (0.530)	ND (0.575)	ND (0.571)	ND (0.575)	ND (0.540)	ND (0.575)	ND (0.565)	NA
p-Cresol	ND (0.166)	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	ND (0.107)	ND (0.119)	ND (0.108)	ND (0.128)	ND (0.106)	ND (0.115)	ND (0.114)	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	8,000
Pentachlorophenol	ND (0.166)	ND (0.121)	ND (0.139)	ND (0.113)	ND (0.124)	ND (0.107)	ND (0.119)	ND (0.108)	ND (0.128)	ND (0.106)	ND (0.115)	ND (0.114)	ND (0.115)	ND (0.108)	ND (0.115)	ND (0.113)	0.17
Phenanthrene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	0.11	0.13	ND (0.086)	ND (0.092)	ND (0.090)	0.0067
Phenol	ND (0.333)	ND (0.242)	ND (0.278)	ND (0.226)	ND (0.249)	ND (0.213)	ND (0.238)	ND (.216)	ND (0.255)	ND (0.212)	ND (0.230)	0.57	ND (0.230)	ND (0.216)	ND (0.230)	ND (0.226)	0.757
Pyrene	0.19	ND (0.097)	0.13	ND (0.091)	0.14	0.12	ND (0.095)	ND (0.086)	ND (0.102)	0.090	ND (0.092)	0.23	0.11	ND (0.086)	ND (0.092)	ND (0.090)	0.546
Carcinogenic Polycyclic	Aromatic Hy	drocarbons	(cPAHs) by EP	A 8270D/SIM	(mg/kg)												
Benzo(a)anthracene	0.21	ND (0.097)	0.19	ND (0.091)	ND (0.100)	0.16	ND (0.095)	ND (0.086)	ND (0.102)	0.13	ND (0.092)	0.16	0.12	ND (0.086)	ND (0.092)	ND (0.090)	0.0067
Benzo(a)pyrene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	0.17	ND (0.086)	0.28	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.01
Benzo(b)fluoranthene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	0.19	0.17	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.012
Benzo(j,k)fluoranthene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.012
Chrysene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	0.095	ND (0.095)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	0.23	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.0067
Dibenz(a,h)anthracene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.009)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.133)	ND (0.097)	ND (0.111)	ND (0.091)	ND (0.100)	ND (0.085)	ND (0.009)	ND (0.086)	ND (0.102)	ND (0.085)	ND (0.092)	ND (0.091)	ND (0.092)	ND (0.086)	ND (0.092)	ND (0.090)	0.035
Total cPAHs (TEQ) ^b	0.13	ND (0.088)	0.10	ND (0.082)	ND (0.090)	0.089	0.54	0.091	0.32	0.086	ND (0.083)	0.096	0.091	ND (0.078)	ND (0.083)	ND (0.081)	0.020
Herbicides by EPA 8151	A (mg/kg)	I		I	I						I	<u> </u>	T	I			
2,4-DB	ND (0.041)	ND (0.031)	ND (0.035)	ND (0.029)	ND (0.031)	ND (0.027)	ND (0.030)	ND (0.027)	ND (0.032)	ND (0.027)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.027)	ND (0.029)	ND (0.028)	640
2,4,5-T	ND (0.082)	ND (0.063)	ND (0.071)	ND (0.057)	ND (0.063)	ND (0.055)	ND (0.059)	ND (0.055)	ND (0.064)	ND (0.054)	ND (0.058)	ND (0.059)	ND (0.059)	ND (0.055)	ND (0.058)	ND (0.056)	800
Bentazon	ND (0.082)	ND (0.063)	ND (0.071)	ND (0.057)	ND (0.063)	ND (0.055)	ND (0.059)	ND (0.055)	ND (0.064)	ND (0.054)	ND (0.058)	ND (0.059)	ND (0.059)	ND (0.055)	ND (0.058)	ND (0.056)	2,400
Chloramben	ND (0.033)	ND (0.025)	ND (0.028)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.024)	ND (0.022)	ND (0.026)	ND (0.022)	ND (0.023)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.022)	1,200
Chlorthal-dimethyl	ND (0.041)	ND (0.031)	ND (0.035)	ND (0.029)	ND (0.031)	ND (0.027)	ND (0.030)	ND (0.027)	ND (0.032)	ND (0.027)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.027)	ND (0.029)	ND (0.028)	800
Dalapon	ND (0.033)	ND (0.025)	ND (0.028)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.024)	ND (0.022)	ND (0.026)	ND (0.022)	ND (0.023)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.022)	2,400
Dinoseb	ND (0.082)	ND (0.063)	ND (0.071)	ND (0.057)	ND (0.063)	ND (0.055)	ND (0.059)	ND (0.055)	ND (0.064)	ND (0.054)	ND (0.058)	ND (0.059)	ND (0.059)	ND (0.055)	ND (0.058)	ND (0.056)	80
Picloram	ND (0.082)	ND (0.063)	ND (0.071)	ND (0.057)	ND (0.063)	ND (0.055)	ND (0.059)	ND (0.055)	ND (0.064)	ND (0.054)	ND (0.058)	ND (0.059)	ND (0.059)	ND (0.055)	ND (0.058)	ND (0.056)	5,600
Silvex	ND (0.033)	ND (0.025)	ND (0.028)	ND (0.023)	ND (0.025)	ND (0.022)	ND (0.024)	ND (0.022)	ND (0.026)	ND (0.022)	ND (0.023)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.022)	640

			Table	2 (continu	ed). Summ	nary of Soil	Sample Res	sults, Pacific	: City Park I	Remedial In	vestigation	, Pacific, W	ashington.				
								Sample	Location								
Analytical Parameter	GP-1	.6-15		GP-17-15		GP-1	.8-15	GP-1	.9-15	GP-2	.0-15	GP-2	21-15		GP-22-15		Site Screening
Sample Date	9/22	1/15		9/21/15		9/21	1/15	9/2:	1/15	9/2:	1/15	9/2:	1/15		9/22/15		Level ^a
Depth (feet)	8.0	13.5	7.0	14.5	7 dup	3.0	14.0	5.0	14.5	5.5	14.0	4.0	14.0	1.5	3.0	3.0 dup	(mg/kg)
Organochlorine Pestici	des by EPA 80																
4,4'-DDD	ND (0.029)	ND (0.025)	ND (0.027)	ND (0.021)	ND (0.025)	ND (0.021)	ND (0.022)	ND (0.020)	ND (0.023)	ND (0.019)	ND (0.023)	ND (0.022)	ND (0.021)	ND (0.021)	ND (0.020)	ND (0.022)	0.01
4,4'-DDE	ND (0.029)	ND (0.025)	ND (0.027)	ND (0.021)	ND (0.025)	ND (0.021)	ND (0.022)	ND (0.020)	ND (0.023)	ND (0.019)	ND (0.023)	ND (0.022)	ND (0.021)	ND (0.021)	ND (0.020)	ND (0.022)	0.01
Endosulfan I	ND (0.015)	ND (0.012)	ND (0.013)	ND (0.011)	ND (0.013)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Endosulfan II	ND (0.029)	ND (0.025)	ND (0.027)	ND (0.021)	ND (0.025)	ND (0.021)	ND (0.022)	ND (0.020)	ND (0.023)	ND (0.019)	ND (0.023)	ND (0.022)	ND (0.021)	ND (0.021)	ND (0.020)	ND (0.022)	0.005
Cis-Chlordane (alpha)	ND (0.015)	ND (0.012)	ND (0.013)	ND (0.011)	ND (0.013)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Endosulfan Sulfate	ND (0.029)	ND (0.025)	ND (0.027)	ND (0.021)	ND (0.025)	ND (0.021)	ND (0.022)	ND (0.020)	ND (0.023)	ND (0.019)	ND (0.023)	ND (0.022)	ND (0.021)	ND (0.021)	ND (0.020)	ND (0.022)	NA
Gamma-Chlordane	ND (0.015)	ND (0.012)	ND (0.013)	ND (0.011)	ND (0.013)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Methoxychlor	ND (0.073)	ND (0.062)	ND (0.067)	ND (0.052)	ND (0.064)	ND (0.052)	ND (0.054)	ND (0.051)	ND (0.057)	ND (0.047)	ND (0.057)	ND (0.056)	ND (0.052)	ND (0.053)	ND (0.0500)	ND (0.054)	0.01

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

Native Soil Fill/Refuse

		Table :	2 (continued)	. Summary o	of Soil Sampl	e Results, Pa	cific City Park	Remedial Inve	estigation, Pa	acific, Washir	ngton.			
							Sample Location	n						
Analytical Parameter	MW-	-1-15	MW-	2-15	MW	-3-15	MW	-4-15	MW	-5-15		MW-6-15		Site
Sample Date	9/18	8/15	9/18	3/15	9/1	8/15	9/2	2/15	9/2	2/15		9/22/15		Screening Level ^a
Depth (feet)	6.0	12.0	3.0	13	6.5	15.0	6.0	14.5	5.0	12.5	5.5	5.5 dup	14.0	(mg/kg)
Petroleum Hydrocarbons (mg/kg	g)													
Gasoline Range Organics	ND (2.7)	ND (3.3)	ND (3.3)	ND (5.5)	ND (3.88)	ND (3.69)	ND (2.66)	ND (4.89)	ND (3.79)	ND (3.57)	ND (3.59)	ND (4.29)	ND (3.88)	100
Diesel Range Organics	ND (24.0)	ND (23.9)	ND (21.9)	ND (37.8)	ND (23)	ND (26)	ND (22)	ND (29)	ND (24)	ND (24)	ND (20)	ND (20)	ND (20)	200
Lube Oil Range Organics	ND (60)	ND (60)	137	ND (95)	ND (59)	ND (64)	1,250	ND (74)	ND (61)	ND (61)	ND (50)	4,080	ND (51)	2,000
Volatile Organic Compounds by	EPA 8260 (mg/l	kg)												
Benzene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.001
Toluene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.024
Ethylbenzene	ND (0.016)	ND (0.020)	ND (0.020)	ND (0.033)	ND (0.023)	ND (0.022)	ND (0.016)	ND (0.029)	ND (0.023)	ND (0.021)	ND (0.022)	ND (0.023)	ND (0.026)	0.014
Total Xylenes	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.52
Acetone	-	-	_	-	-	-	-	_	-	-	-	-	-	2.07
2-Butanone	_	-	_	_	_	_	_	_	-	_	-	_	_	1.38
Carbon Disulfide	-	-	_	-	-	-	-	_	-	-	-	-	-	0.27
Cis-1,2-dichloroethene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.005
Chlorobenzene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.051
Methylene Chloride	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.005
p-Isopropyltoluene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.229
Styrene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	0.120
Tetrachlorethene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.0013
Trichloroethene	ND (0.011)	ND (0.013)	ND (0.013)	ND (0.022)	ND (0.016)	ND (0.015)	ND (0.011)	ND (0.020)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.016)	ND (0.017)	0.001
1,2,4-Trimethylbenzene	ND (0.012)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.030)	ND (0.012)	ND (0.014)	ND (0.017)	ND (0.013)	ND (0.014)	ND (0.022)	ND (0.013)	NA
Total Metals by EPA 6010D/7471	LB (mg/kg)													
Arsenic	3.7	2.7	3.1	8.1	3.8	1.6	4	4.5	4.6	2.2	3.5	3.3	3.9	20
Barium	31	20	28	74	17	27	45	80	98	30	39	29	28	41.3
Cadmium	0.44	ND (0.20)	ND (0.17)	ND (0.28)	ND (0.21)	ND (0.23)	ND (0.19)	ND (0.25)	5.4	ND (0.19)	ND (0.17)	ND (0.19)	ND (0.17)	1
Chromium	17	14	15	22	12	12	26	21	24	15	18	12	13	48
Lead	41.1	3.4	23	4.9	1.3	1.5	19	3.8	56	7.7	12	14	2.0	25
Mercury	ND (0.26)	ND (0.28)	ND (0.24)	ND (0.44)	ND (0.30)	ND (0.32)	ND (0.28)	ND (0.34)	ND (0.27)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.28)	0.07
Selenium	1.1	1.0	0.89	2.35	0.86	0.98	1.2	2.5	1.6	1.3	1.5	1.1	1.4	10
Silver	ND (0.094)	ND (0.10)	ND (0.084)	ND (0.14)	ND (0.10)	ND (0.11)	ND (0.094)	ND (0.13)	ND (0.092)	ND (0.094)	ND (0.087)	ND (0.095)	ND (0.087)	0.61
Polychlorinated Biphenyls (PCBs) by EPA 8082A	(mg/kg)												
Total PCBs	-	_	-	_	-	_	_	_	-	_	-	ND (0.11)	_	0.05
Semi-Volatile Organic Compoun	ds by EPA 8270	D/SIM (mg/kg)												
Acenapthene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.093	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.156
Acenaphthylene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	ND (0.092)	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	NA
Anthracene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.84	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	7.134
Benzyl Alcohol	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	NA
Bis (2-Ethylhexyl) Phthalate	ND (0.118)	ND (0.122)	0.12	0.33	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	0.111

June 2019

		Table	2 (continued)	. Summary o	of Soil Sampl	e Results, Pac	ific City Park	Remedial Inve	estigation, Pa	cific, Washir	ngton.			
							Sample Location	n						
Analytical Parameter	MW	-1-15	MW-	2-15	MW-	-3-15	MW	/-4-15	MW	-5-15		MW-6-15		Site Screening
Sample Date	9/1	8/15	9/18	/15	9/1	8/15	9/2	22/15	9/2	2/15		9/22/15		Level ^a
Depth (feet)	6.0	12.0	3.0	13	6.5	15.0	6.0	14.5	5.0	12.5	5.5	5.5 dup	14.0	(mg/kg)
Semi-Volatile Organic Compoun	ds by EPA 8270	D/SIM (mg/kg)	(continued)											
Butyl Benzylphthalate	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	0.033
Dibutyl Phthalate	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	0.14	ND (0.154)	0.14	0.15	0.13	0.16	0.14	0.17
Di-N-Octyl Phthalate	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	800
Fluoranthene	ND (0.094)	ND (0.098)	0.16	ND (0.152)	ND (0.099)	ND (0.108)	0.47	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	0.11	ND (0.094)	0.296
Fluorene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.18	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.080
1-Methylnaphthalene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.18	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.236
2-Methylnaphthalene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.16	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.236
Naphthalene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	ND (0.092)	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.236
4-Nitrophenol	ND (0.590)	ND (0.612)	ND (0.570)	ND (0.952)	ND (0.618)	ND (0.618)	0.80	ND (0.0445)	ND (0.036)	ND (0.038)	ND (0.553)	ND (0.594)	ND (0.588)	NA
p-Cresol	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	8,000
Pentachlorophenol	ND (0.118)	ND (0.122)	ND (0.114)	ND (0.190)	ND (0.124)	ND (0.135)	ND (0.114)	ND (0.154)	ND (0.120)	ND (0.121)	ND (0.111)	ND (0.118)	ND (0.119)	0.17
Phenanthrene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.82	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.0067
Phenol	ND (0.236)	ND (0.245)	ND (0.228)	ND (0.381)	ND (0.247)	ND (0.270)	ND (0.229)	ND (0.308)	ND (0.241)	ND (0.241)	ND (0.221)	ND (0.235)	ND (0.238)	0.757
Pyrene	ND (0.094)	ND (0.098)	0.15	ND (0.152)	ND (0.099)	ND (0.108)	0.72	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.546
Carcinogenic Polycyclic Aromatic	Hydrocarbons	(cPAHs) by EPA	8270D/SIM (mg	/kg)	-			•						
Benzo(a)anthracene	0.13	ND (0.098)	0.14	ND (0.152)	ND (0.099)	ND (0.108)	0.33	ND (0.123)	0.13	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.0067
Benzo(a)pyrene	ND (0.094)	ND (0.098)	ND (0.091)	0.52	ND (0.099)	ND (0.108)	0.20	0.27	0.17	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.01
Benzo(b)fluoranthene	ND (0.094)	ND (0.098)	0.26	ND (0.152)	ND (0.099)	ND (0.108)	0.35	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.012
Benzo(j,k)fluoranthene	ND (0.094)	ND (0.098)	0.11	ND (0.152)	ND (0.099)	ND (0.108)	ND (0.092)	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.012
Chrysene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	0.30	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.0067
Dibenz(a,h)anthracene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	ND (0.008)	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.094)	ND (0.098)	ND (0.091)	ND (0.152)	ND (0.099)	ND (0.108)	ND (0.008)	ND (0.123)	ND (0.096)	ND (0.097)	ND (0.089)	ND (0.095)	ND (0.094)	0.035
Total cPAHs (TEQ) ^b	0.093	ND (0.089)	0.10	0.58	ND (0.089)	ND (0.098)	0.28	0.27	0.18	ND (0.087)	ND (0.080)	ND (0.085)	ND (0.086)	0.020
Herbicides by EPA 8151A (mg/kg		,				, ,		1	•	, ,	,		,	
2,4-DB	ND (0.028)	ND (0.030)	ND (0.028)	ND (0.047)	ND (0.031)	ND (0.034)	ND (0.028)	ND (0.037)	ND (0.030)	ND (0.032)	ND (0.027)	0.022	0.019	640
2,4,5-T	ND (0.056	ND (0.059	ND (0.056	ND (0.094	ND (0.063)	ND (0.054)	ND (0.056)	ND (0.074)	ND (0.061)	ND (0.063)	ND (0.054)	0.071	ND (0.028)	800
Bentazon	ND (0.056	ND (0.059	ND (0.056	ND (0.094	ND (0.063)	ND (0.068)	ND (0.056)	ND (0.074)	ND (0.061)	ND (0.063)	ND (0.054)	0.071	ND (0.028)	2,400
Chloramben	ND (0.030	ND (0.024)	ND (0.030	ND (0.034)	ND (0.025)	ND (0.008)	ND (0.030)	ND (0.030)	ND (0.001)	ND (0.003)	ND (0.034)	0.029	0.021	1,200
Chlorthal-dimethyl	ND (0.028)	ND (0.024)	ND (0.022)	ND (0.038) ND (0.047)	ND (0.023)	ND (0.027) ND (0.034)	ND (0.022)	ND (0.030)	ND (0.024)	ND (0.023) ND (0.032)	ND (0.022)	0.029	0.021	800
Dalapon	ND (0.028)	ND (0.030)	ND (0.028)	ND (0.047) ND (0.038)	ND (0.031) ND (0.025)	ND (0.034) ND (0.027)	ND (0.028)	ND (0.037)	ND (0.030) ND (0.024)	ND (0.032) ND (0.025)	ND (0.027)	0.022	0.019	2,400
Dinoseb	ND (0.023)	ND (0.024)	ND (0.022) ND (0.056	ND (0.038) ND (0.094	ND (0.025) ND (0.056	ND (0.027) ND (0.068)	ND (0.022) ND (0.056)	ND (0.030)	ND (0.024) ND (0.061)	ND (0.023) ND (0.063)	ND (0.022) ND (0.054)	0.029	0.021	80
									ND (0.061) ND (0.061)					
Picloram	ND (0.056)	ND (0.059)	ND (0.056)	ND (0.094)	ND (0.063)	ND (0.068)	ND (0.056)	ND (0.074)		ND (0.063)	ND (0.054)	0.040 0.022	0.028	5,600 640
Silvex	ND (0.023	ND (0.024	ND (0.022	ND (0.038	ND (0.031)	ND (0.034)	ND (0.028)	ND (0.037)	ND (0.030)	ND (0.032)	ND (0.027)	0.022	0.019	040

		Table	2 (continued)	. Summary o	of Soil Sampl	e Results, Pa	cific City Park	Remedial Inve	stigation, Pa	cific, Washir	ngton.			
							Sample Location	n						
Analytical Parameter	MW-	-1-15	MW-	-2-15	MW	-3-15	MW	/-4-15	MW	-5-15		MW-6-15		Site Screening
Sample Date	9/18	8/15	9/18	3/15	9/1	8/15	9/2	2/15	9/2	2/15		9/22/15		Level ^a
Depth (feet)	6.0	12.0	3.0	13	6.5	15.0	6.0	14.5	5.0	12.5	5.5	5.5 dup	14.0	(mg/kg)
Organochlorine Pesticides by EP	A 8081 (mg/kg)													
4,4'-DDD	ND (0.024)	ND (0.023)	ND (0.022)	ND (0.035)	ND (0.024)	ND (0.025)	ND (0.020)	ND (0.030)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.021)	0.01
4,4'-DDE	ND (0.024)	ND (0.023)	ND (0.022)	ND (0.035)	ND (0.024)	ND (0.025)	ND (0.020)	ND (0.030)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.021)	0.01
Cis-Chlordane (alpha)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.018)	ND (0.012)	ND (0.013)	ND (0.010)	ND (0.015)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.011)	0.01
Endosulfan I	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.018)	ND (0.012)	ND (0.013)	ND (0.010)	ND (0.015)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.011)	0.005
Endosulfan II	ND (0.024)	ND (0.023)	ND (0.022)	ND (0.035)	ND (0.024)	ND (0.025)	ND (0.020)	ND (0.030)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.021)	0.01
Endosulfan Sulfate	ND (0.024)	ND (0.023)	ND (0.022)	ND (0.035)	ND (0.024)	ND (0.025)	ND (0.020)	ND (0.030)	ND (0.023)	ND (0.024)	ND (0.022)	ND (0.023)	ND (0.021)	NA
Gamma-Chlordane	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.018)	ND (0.012)	ND (0.013)	ND (0.010)	ND (0.015)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.012)	ND (0.011)	0.01
Methoxychlor	ND (0.059)	ND (0.058)	ND (0.054)	ND (0.088)	ND (0.059)	ND (0.063)	ND (0.049)	ND (0.075)	ND (0.058)	ND (0.060)	ND (0.056)	ND (0.058)	ND (0.053)	0.01

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

	Table 2 (conti	inued). Summary	of Soil Sample Res	ults, Pacific City Par	k Remedial Investigation	on, Pacific, Washington.		
				Sample Lo	ocation			
Analytical Parameter	MW	/-10	M	V-11	MW-12	TP-1-15	TP-3-15	
Sample Date	12/1	7/18	12/	17/18	12/17/18	9/23/15	9/23/15	Site Screening Level ^a
Depth (feet)	4	7	4	6.5	3	5.5	6.0	(mg/kg)
Petroleum Hydrocarbons (mg/kg)								
Gasoline Range Organics	110	ND (7.2)	ND (3.9)	_	ND (5.2)	ND (5.83)	ND (3.66)	100
Diesel Range Organics	ND (37)	ND (29)	ND (32)	ND (29)	ND (33)	ND (27)	ND (24)	200
Lube Oil Range Organics	130	ND (59)	170	ND (58)	ND (66)	895	267	2,000
Volatile Organic Compounds by EPA 8260 (mg/kg))		-					
Benzene	_	_	_	_	_	ND (0.023)	ND (0.015)	0.001
Toluene	_	_	_	_	_	ND (0.023)	ND (0.015)	0.024
Ethylbenzene		_	_	_	_	ND (0.035)	ND (0.022)	0.014
Total Xylenes		_	_	_	_	ND (0.023)	ND (0.015)	0.52
Acetone	_	_	_	_	_	-	-	2.07
2-Butanone	_	_	_	_	_	_	_	1.38
Carbon Disulfide	_	_	_	_	-	-	_	0.27
Cis-1,2-dichloroethene	-		-	_	-	ND (0.023)	ND (0.015)	0.005
Chlorobenzene	_		-	_	-	ND (0.023)	ND (0.015)	0.051
Methylene Chloride	_	-	_	_	-	ND (0.023)	ND (0.015)	0.005
p-Isopropyltoluene	-	-	-	-	-	ND (0.023)	ND (0.015)	0.229
Styrene	-	-	-	-	-	ND (0.015)	ND (0.015)	0.120
Tetrachlorethene	-	-	-	-	-	ND (0.023)	ND (0.015)	0.0013
Trichloroethene	-	_	-	_	-	ND (0.023)	ND (0.015)	0.001
1,2,4-Trimethylbenzene	-	_	-	_	-	ND (0.015)	ND (0.015)	NA
Total Metals by EPA 6010D/7471B (mg/kg)								
Arsenic	ND (15)	-	ND (12)	ND (12)	ND (13)	5.2	17	20
Barium	_	_	-	_	-	78	315	41.3
Cadmium	ND (0.73)	_	ND (0.58)	ND (0.58)	ND (0.66)	0.61	1.4	1
Chromium	29	_	31	9.9	11	22	30	48
Lead	21	_	32	ND (5.8)	ND (6.6)	88	364	25
Mercury	ND (0.36)	_	ND (0.29)	ND (0.29)	ND (0.33)	ND (0.35)	ND (0.30)	0.07
Selenium	-	_	-	-	-	1.0	1.2	10
Silver	-	-	-	-	-	0.20	0.47	0.61
Polychlorinated Biphenyls (PCBs) by EPA 8082A (n	ng/kg)							
Total PCBs	ND (0.073)	0.13	ND (0.058)	ND (0.058)	-	ND (0.13)	0.23	0.05
Semi-Volatile Organic Compounds by EPA 8270D/			•					
Acenapthene	-	_	-	_	-	ND (0.110)	ND (0.098)	0.156
Acenaphthylene	_	_	-	_	-	ND (0.110)	ND (0.098)	NA
Anthracene	_	-	-	_	-	ND (0.110)	ND (0.098)	7.134
Benzyl Alcohol	-	-	-	-	-	ND (0.138)	ND (0.122)	NA
Bis (2-Ethylhexyl) Phthalate	_	_	_	_	_	ND (0.138)	ND (0.122)	0.111

	Table 2 (cont	inued). Summary	y of Soil Sample Res	sults, Pacific City Par	k Remedial Investigation	on, Pacific, Washington.		
				Sample L	ocation			
Analytical Parameter	MW	/-10	M	W-11	MW-12	TP-1-15	TP-3-15	
Sample Date	12/1	7/18	12/	/17/18	12/17/18	9/23/15	9/23/15	Site Screening Level ^a
Depth (feet)	4	7	4	6.5	3	5.5	6.0	(mg/kg)
Semi-Volatile Organic Compounds by EPA 8270D/S	SIM (ma/ka)2(continu	ed)						
Butyl Benzylphthalate		_	_	_	_	ND (0.138)	ND (0.122)	0.033
Dibutyl Phthalate		_	_	_	_	0.31	0.14	0.17
Di-N-Octyl Phthalate		_	_	_	_	ND (0.138)	ND (0.122)	800
Fluoranthene	_	_	_	_	_	ND (0.110)	0.15	0.296
Fluorene	_	_	_	_	_	ND (0.110)	ND (0.098)	0.080
1-Methylnaphthalene	_	_	_	_	_	ND (0.110)	ND (0.098)	0.236
2-Methylnaphthalene	_	_	_	_	_	ND (0.110)	ND (0.098)	0.236
Naphthalene		_	_	_	_	ND (0.110)	ND (0.098)	0.236
4-Nitrophenol		_	_	_	_	0.041	0.049	NA NA
p-Cresol	_	_	_	_	_	ND (0.138)	ND (0.122)	8,000
Pentachlorophenol	_	_	_	_	_	ND (0.138)	ND (0.122)	0.17
Phenanthrene	_	_	_	_	_	ND (0.110)	ND (0.098)	0.0067
Phenol	_	_	_	_	_	ND (0.276)	ND (0.244)	0.757
Pyrene	_	_	_	_	_	ND (0.110)	0.14	0.546
Carcinogenic Polycyclic Aromatic Hydrocarbons (c	PAHs) by EPA 8270D/S	· SIM (mg/kg)				112 (0.220)	,	0.570
Benzo(a)anthracene	0.012	_	0.040	ND (0.008)	ND (0.009)	0.16	ND (0.098)	0.0067
Benzo(a)pyrene	0.016	_	0.049	0.065	ND (0.009)	ND (0.110)	ND (0.098)	0.01
Benzo(b)fluoranthene	0.021	_	0.060	0.020	ND (0.009)	ND (0.110)	0.22	0.012
Benzo(j,k)fluoranthene	ND (0.005)	_	0.020	ND (0.008)	ND (0.009)	ND (0.110)	ND (0.098)	0.012
Chrysene	0.022	_	0.051	ND (0.008)	ND (0.009)	ND (0.110)	ND (0.098)	0.0067
Dibenz(a,h)anthracene	ND (0.005)	_	0.009	0.008	ND (0.009)	ND (0.110)	ND (0.098)	0.018
Indeno(1,2,3-cd)pyrene	0.012	_	0.037	0.037	ND (0.009)	ND (0.110)	ND (0.098)	0.035
Total cPAHs (TEQ) ^b	0.022	_	0.066	0.07	ND (0.007)	0.10	0.099	0.020
Herbicides by EPA 8151A (mg/kg)					` '			
2,4-DB	_	_	_	_	_	0.024	ND (0.015)	640
2,4,5-T	_	_	_	_	_	ND (0.034)	ND (0.031)	800
Bentazon	_	_	_	_	_	ND (0.034)	ND (0.031)	2,400
Chloramben	_	_	_	_	-	0.077	0.11	1,200
Chlorthal-dimethyl	_	_	_	_	-	0.024	ND (0.015)	800
Dalapon	_	_	_	_	-	0.077	0.11	2,400
Dinoseb	_	_	_	_	-	0.045	0.032	80
Picloram	_	_	_	_	_	0.045	0.032	5,600
Silvex	_	_	_	_	_	0.024	ND (0.015)	640

	Table 2 (con	tinued). Summary	of Soil Sample Res	ults, Pacific City Par	k Remedial Investigatio	n, Pacific, Washington.		
				Sample Lo	ocation			
Analytical Parameter	M	W-10	MV	V-11	MW-12	TP-1-15	TP-3-15	
Sample Date	12/	/17/18	12/:	17/18	12/17/18	9/23/15	9/23/15	Site Screening Level ^a
Depth (feet)	4	7	4	6.5	3	5.5	6.0	(mg/kg)
Organochlorine Pesticides by EPA 8081 (mg/kg)								
4,4'-DDD	-	_	_	_	-	ND (0.024)	ND (0.023)	0.01
4,4'-DDE	_	_	_	_	-	ND (0.024)	ND (0.023)	0.01
Cis-Chlordane (alpha)	-	_	-	_	-	ND (0.012)	ND (0.012)	0.01
Endosulfan I	-	_	-	-	-	ND (0.012)	ND (0.012)	0.005
Endosulfan II	-	_	-	_	-	ND (0.024)	ND (0.023)	0.01
Endosulfan Sulfate	-	_	-	_	-	ND (0.024)	ND (0.023)	NA
Gamma-Chlordane	-	_	-	-	-	ND (0.012)	ND (0.012)	0.01
Methoxychlor	_	_	-	_	_	ND (0.059)	ND (0.058)	0.01

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Tal	ble 2 (con	tinued). S	Summary (of Soil Sar	nple Resu	lts, Pacific	City Park	Remedial	Investigat	tion, Pacif	ic, Washin	ngton.				
									Sample	Location									
Analytical Parameter	PI	P1	PI	P2	PF	23	PI	P4		P5	P	P6	Р	P7	P	P8	PI	9	Site
Sample Date		/2017		/2017	5/24/		5/24/	/2017	5/23,	/2017	5/23	/2017		/2017	5/24,		5/24/		Screening Level ^a
Depth (feet)	2.0	10	2.5	10	2.5	10	3.0	10	2.5	10	2.0	10	0	10	0.5	10	0	10	(mg/kg)
Petroleum Hydrocarboi	ns by Metho	ds NWTPH-0	Gx and NWT	PH-Dx (mg/	'kg)								-						
Gasoline	ND (6.9)	ND (8.0)	ND (7.8)	ND (9.0)	ND (6.6)	ND (7.0)	ND (7.4)	ND (7.1)	ND (7.0)	ND (8.1)	ND (5.7)	ND (9.7)	ND (6.6)	ND (7.8)	ND (6.1)	ND (9.6)	ND (5.6)	ND (7.0)	100
Diesel Range Organics	ND (31)	ND (33)	ND (33)	ND (36)	ND (31)	ND (31)	ND (54)	ND (55)	ND (68)	ND (34)	ND (29)	ND (37)	ND (31)	ND (31)	ND (28)	ND (36)	ND (26)	ND (31)	200
Lube Oil Range Organics	ND (62)	ND (67)	ND (66)	ND (73)	140	ND (62)	500	570	620	ND (67)	62	ND (75)	63	ND (63)	ND (57)	ND (71)	ND (52)	ND (62)	2,000
Volatile Organic Compo	ounds by EP	A 8260C (mg	J/kg)																
Benzene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.001
Toluene	0.019	0.020	0.025	0.019	ND (0.006)	0.016	0.016	0.011	ND (0.006)	0.016	0.010	0.008	ND (0.007)	0.022	0.014	0.021	0.014	0.015	0.024
Ethylbenzene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.014
Total Xylenes	ND (0.002)	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.002)	ND (0.003)	ND (0.002)	ND (0.003)	ND (0.002)	ND (0.003)	ND (0.002)	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.003)	ND (0.003)	0.52
Acetone	ND (0.011)	0.051	0.071	0.088	0.058	0.028	ND (0.011)	0.051	ND (0.012)	0.046	0.011	0.10	ND (0.014)	0.019	0.027	0.016	ND (0.013)	0.015	2.07
2-Butanone	ND (0.006)	0.012	0.019	0.023	0.013	ND (0.006)	ND (0.006)	0.007	ND (0.006)	0.013	ND (0.005)	0.025	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.006)	ND (0.006)	1.38
Carbon Disulfide	ND (0.002)	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.002)	ND (0.002)	ND (0.002)	ND (0.001)	ND (0.006)	0.002	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.27
Cis-1,2-dichloroethene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.005
Chlorobenzene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.051
Methylene Chloride	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.014)	ND (0.012)	ND (0.012)	ND (0.011)	ND (0.013)	ND (0.012)	ND (0.013)	ND (0.001)	ND (0.015)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.012)	0.005
p-Isopropyltoluene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.069)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.057)	ND (0.001)	0.229
Styrene	0.019	0.020	0.025	0.019	ND (0.006)	0.016	0.016	0.011	ND (0.006)	0.016	0.010	0.008	ND (0.007)	0.022	0.014	0.021	0.014	0.015	0.120
Tetrachloroethene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.0013
Trichloroethene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.001
1,2,4-Trimethylbenzene	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.002)	0.012	ND (0.001)	NA				
Total Metals by EPA 60:	10D/7471B ((mg/kg)		I			.	I	.	T.		ı		T		ı			
Arsenic	ND (12)	ND (13)	ND (13)	ND (15)	ND (13)	ND (12)	ND (13)	ND (12)	ND (13)	ND (13)	ND (12)	ND (15)	ND (12)	ND (13)	ND (11)	ND (14)	ND (10)	ND (12)	20
Cadmium	ND (0.62)	ND (0.67)	ND (0.66)	ND (0.73)	ND (0.63)	ND (0.62)	ND (0.63)	ND (0.62)	ND (0.65)	ND (0.67)	ND (0.58)	ND (0.74)	ND (0.61)	ND (0.63)	ND (0.57)	ND (0.71)	ND (0.52)	ND (0.62)	1
Chromium	20	13	11	11	27	9.5	29	13	23	13	29	14	12	11	13	13	25	14	48
Lead	8.9	ND (6.7)	ND (6.6)	ND (7.3)	25	ND (6.2)	84	ND (6.2)	27	ND (6.7)	9.7	ND (7.4)	ND (6.1)	ND (6.3)	ND (5.7)	ND (7.1)	ND (5.2)	ND (6.2)	25
Mercury	ND (0.31)	ND (0.33)	ND (0.33)	ND (0.36)	ND (0.31)	ND (0.31)	ND (0.32)	ND (0.31)	ND (0.33)	ND (0.34)	ND (0.29)	ND (0.37)	ND (0.31)	ND (0.31)	ND (0.28)	ND (0.36)	ND (0.26)	ND (0.31)	0.07
Polychlorinated Biphen	yls (PCBs) b	y EPA 8082A	(mg/kg)									I	<u> </u>	1	1	I	<u> </u>		
Total PCBs	-	-	-	_	ND (0.063)	-	0.18	ND (0.062)	ND (0.065)	-	0.12	_	ND (0.061)	_	-	_	-	-	0.05
Semi-Volatile Organic C	Compounds	by EPA 8270	D/SIM (mg/	kg)				I		T.		ı		ı		T.			
Acenapthene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.156
Acenaphthylene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	NA
Anthracene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.009	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	7.134
Benzyl Alcohol	ND (0.210)	ND (0.220)	ND (0.220)	ND (0.240)	ND (0.210)	ND (0.210)	ND (0.210)	ND (0.210)	ND (0.220)	ND (0.220)	ND (0.190)	ND (0.250)	ND (0.200)	ND (0.210)	0.70	ND (0.240)	ND (0.170)	ND (0.210)	NA
Bis (2-Ethylhexyl) Phthalate	0.052	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	0.111
Butyl Benzylphthalate	ND (0.041)	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	0.033
Dibutyl Phthalate	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.24)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.19)	ND (0.25)	ND (0.20)	ND (0.21)	ND (0.19)	ND (0.24)	ND (0.17)	ND (0.21)	0.17

			Tal	ble 2 (con	tinued). S	Summary o	of Soil Sar	nple Resu	lts, Pacific	City Park	Remedial	Investiga	tion, Pacif	ic, Washin	gton.				
									Sample	Location									
Analytical Parameter	P	P1	PI	P2	PI	P3	P	P4	PI	P5	P	P6	P	P7	PI	P8	P	P9	Site Screening
Sample Date	5/23,	/2017	5/23/	/2017	5/24/	/2017	5/24,	/2017	5/23/	/2017	5/23,	/2017	5/24,	/2017	5/24,	/2017	5/24,	/2017	Level ^a
Depth (feet)	2.0	10	2.5	10	2.5	10	3.0	10	2.5	10	2.0	10	0	10	0.5	10	0	10	(mg/kg)
Semi-Volatile Organic C	Compounds	by EPA 8270	D/SIM (mg/	kg) (continu	ıed)														
Di-N-Octyl Phthalate	ND (0.041)	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	800
Fluoranthene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.042	ND (0.008)	ND (0.009)	ND (0.009)	0.013	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.296
Fluorene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.080
1-Methylnaphthalene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.236
2-Methylnaphthalene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.017	0.010	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	0.236
Naphthalene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.236
4-Nitrophenol	ND (0.041)	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	NA
p-Cresol	ND (0.041)	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	8,000
Pentachlorophenol	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.24)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.19)	ND (0.25)	ND (0.20)	ND (0.21)	ND (0.19)	ND (0.24)	ND (0.17)	ND (0.21)	0.17
Phenanthrene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.028	0.011	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.0067
Phenol	ND (0.041)	ND (0.045)	ND (0.044)	ND (0.048)	ND (0.042)	ND (0.041)	ND (0.042)	ND (0.041)	ND (0.044)	ND (0.045)	ND (0.039)	ND (0.050)	ND (0.041)	ND (0.042)	ND (0.038)	ND (0.047)	ND (0.035)	ND (0.041)	0.757
Pyrene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.046	ND (0.008)	ND (0.009)	ND (0.009)	0.015	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.546
Carcinogenic Polycyclic	Aromatic H	ydrocarbons	s (cPAHs) by	EPA 8270D	/SIM (mg/kg	J)													
Benzo(a)anthracene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.029	ND (0.008)	ND (0.009)	ND (0.009)	0.008	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.0067
Benzo(a)pyrene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.034	ND (0.008)	ND (0.009)	ND (0.009)	0.012	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.01
Benzo(b)fluoranthene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.042	ND (0.008)	ND (0.009)	ND (0.009)	0.016	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.012
Benzo(j,k)fluoranthene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.014	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.012
Chrysene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.037	0.014	ND (0.009)	ND (0.009)	0.012	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.0067
Dibenz(a,h)anthracene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.008)	ND (0.009)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.008)	0.027	ND (0.008)	ND (0.009)	ND (0.009)	0.009	ND (0.010)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.007)	ND (0.008)	0.035
Total cPAHs (TEQ)b	ND (0.006)	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.006)	ND (0.006)	0.046	0.006	ND (0.007)	ND (0.007)	0.016	ND (0.008)	ND (0.006)	ND (0.006)	ND (0.006)	ND (0.007)	ND (0.005)	ND (0.006)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table 2 (c	ontinued). S	Summary of S	oil Sample R	esults, Pacifi	c City Park Re	emedial Inves	stigation, Pac	ific, Washing	iton.			
Analytical							Sample	Location							
Parameter	PF	210	PF	11		PP12		PP13	PP	14	PP	215	PP	16	Site
Sample Date	2/2	8/18	2/2	8/18		2/21/18		2/21/18	2/28	3/18	2/21	1/18	2/28	3/18	Screening Level ^a
Depth (feet)	11	17	5	10	2	7	10	10	5	12	6	12	1	11	(mg/kg)
Petroleum Hydrocarb	ons by Method	NWTPH-Dx (m	g/kg)										-		
Diesel Range Organics	-	_	-	_	ND (31)	ND (130)	ND (32)	_	-	-	81	_	ND (320)	-	200
Lube Oil Range Organics	-	-	-	_	69	800	82	_	-	_	550	-	3,200	-	2,000
Sum of Diesel and Lube Oil Range Organics	-	_	-	_	69	800	82	-	-	-	631	_	3,200	-	2,000
Volatile Petroleum Pr	oducts Includin	g Gasoline, Ben	zene, Toluene, E	thylbenzene, an	nd Total Xylenes	(BTEX) by NW	ГРН-GX (mg/kg)					-		
Gasoline	-	_	-	_	-	_	_	_	-	_	-	_	ND (5.3)	_	100
Benzene	-	_	-	_	-	_	_	_	-	_	_	_	ND (0.020)	_	0.001
Toluene	-	-	-	_	-	_	_	-	-	_	_	_	ND (0.053)	_	0.024
Ethylbenzene	-	_	-	_	-	_	_	-	-	-	-	_	ND (0.053)	_	0.014
Total Xylenes	-	_	-	-	-	_	-	-	-	-	-	_	ND (0.11)	_	0.52
Total Metals by EPA 6	6010D/7471B (n	ng/kg)													
Arsenic	ND (16)	ND (12)	19	ND (13)	ND (12)	16	ND (13)	ND (12)	ND (12)	ND (13)	ND (15)	24	ND (11)	ND (12)	20
Cadmium	ND (0.82)	ND (0.62)	1.7	0.72	ND (0.62)	4.1	ND (0.64)	3.5	ND (0.62)	ND (0.65)	0.79	1.0	ND (0.53)	1.2	1
Chromium	22	15	39	36	15	31	25	29	12	11	22	34	20	24	48
Lead	15	ND (6.2)	840	480	8.8	500	30	330	ND (6.2)	ND (6.5)	75	270	17	200	25
Mercury	ND (0.41)	ND (0.31)	0.41	1.2	ND (0.31)	0.76	ND (0.32)	ND (0.31)	ND (0.31)	ND (0.32)	ND (0.38)	ND (0.30)	ND (0.27)	ND (0.31)	0.07
Polychlorinated Bipho	enyls (PCBs) by	EPA 8082A (mg	/kg)												
Total PCBs	-	_	-	_	ND (0.062)	0.29	ND (0.064)	-	-	-	ND (0.076)	_	ND (0.053)	-	0.05
Carcinogenic Polycyc	lic Aromatic Hy	drocarbons (cPA	Hs) by EPA 827	0D/SIM (mg/kg)										
Benzo(a)anthracene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	0.008	0.010	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	0.20	0.12	0.0067
Benzo(a)pyrene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	0.015	0.011	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	0.058	0.10	0.01
Benzo(b)fluoranthene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	0.016	0.014	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	0.086	0.15	0.012
Benzo(j,k)fluoranthene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.036)	0.049	0.012
Chrysene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	0.014	0.013	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	0.060	0.11	0.0067
Dibenz(a,h)anthracene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.010)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.036)	0.015	0.018
Indeno(1,2,3-cd)pyrene	ND (0.011)	ND (0.008)	ND (0.009)	ND (0.008)	0.012	ND (0.010)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.010)	ND (0.008)	0.036	0.069	0.035
Total cPAHs (TEQ) ^b	ND (0.008)	ND (0.006)	ND (0.007)	ND (0.006)	0.020	0.015	ND (0.007)	ND (0.006)	ND (0.006)	ND (0.007)	ND (0.008)	ND (0.060)	0.094	0.14	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table 2 (con	tinued). Sum	mary of Soil S	ample Results	, Pacific City F	Park Remedial	Investigation,	Pacific, Wash	ington.			
Analytical							Sample Location	1						
Parameter		PP17			PP18			PP19			PI	P20		Site Screening
Sample Date		2/28/18			2/28/18			2/21/18			2/2	8/18		Level ^a
Depth (feet)	1	5	10	3	5	10	7	10	15	2	5	10	15	(mg/kg)
Petroleum Hydrocarb	ons by Method	NWTPH-Dx (mg/	kg)											
Diesel Range Organics	-	_	_	-	_	_	400	_	_	ND (29)	ND (200)	ND (32)	ND (58)	200
Lube Oil Range Organics	-	_	_	-	_	_	370	_	_	380	1,300	95	320	2,000
Sum of Diesel and Lube Oil Range Organics	-	_	_	-	_	_	770	_	_	380	1,300	95	320	2,000
Volatile Petroleum Pr	oducts Including	Gasoline, Benze	ne, Toluene, Ethy	lbenzene, and To	otal Xylenes (BTE	X) by NWTPH-GX	((mg/kg)							
Gasoline	-	_	_	-	-	-	_	_	-	-	_	_	_	100
Benzene	-	_	_	-	_	_	_	_	_	_	_	_	_	0.001
Toluene	_	_	_	-	_	_	_	_	_	-	_	-	-	0.024
Ethylbenzene	_	_	_	-	_	_	_	_	_	_	_	_	_	0.014
Total Xylenes	_	_	_	_	_	_	-	_	_	_	_	_	-	0.52
Total Metals by EPA 6	010D/7471B (m	g/kg)												
Arsenic	19	ND (12)	ND (12)	ND (12)	ND (20)	ND (13)	ND (13)	ND (12)	ND (12)	ND (12)	ND (15)	ND (13)	ND (14)	20
Cadmium	4.0	4.5	1.6	2.4	3.1	1.2	ND (0.63)	0.95	3.2	ND (0.58)	3.7	ND (0.64)	ND (0.70)	1
Chromium	57	59	24	63	39	40	17	30	17	15	53	22	15	48
Lead	7,300	380	29	130	230	97	82	340	96	28	630	270	330	25
Mercury	ND (0.32)	ND (0.30)	ND (0.29)	ND (0.31)	ND (0.49)	ND (0.33)	ND (0.32)	ND (0.29)	ND (0.30)	ND (0.29)	ND (0.37)	ND (0.32)	ND (0.35)	0.07
Polychlorinated Biphe	enyls (PCBs) by E	PA 8082A (mg/k	g)	_			_					_		
Total PCBs	_	_	_	_	_	_	-	_	_	ND (0.058)	0.74	ND (0.064)	ND (0.070)	0.05
Carcinogenic Polycycl	ic Aromatic Hyd	rocarbons (cPAH	s) by EPA 8270D	/SIM (mg/kg)										
Benzo(a)anthracene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	0.0080	0.23	ND (0.043)	ND (0.046)	0.0067
Benzo(a)pyrene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	0.013	0.22	ND (0.043)	ND (0.046)	0.01
Benzo(b)fluoranthene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	0.023	0.20	ND (0.043)	ND (0.046)	0.012
Benzo(j,k)fluoranthene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0077)	ND (0.098)	ND (0.043)	ND (0.046)	0.012
Chrysene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	0.019	0.37	ND (0.043)	ND (0.046)	0.0067
Dibenz(a,h)anthracene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.0077)	ND (0.098)	ND (0.043)	ND (0.046)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.013)	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	0.013	0.12	ND (0.043)	ND (0.046)	0.035
Total cPAHs (TEQ) ^b	ND (0.007)	ND (0.006)	ND (0.006)	ND (0.006)	ND (0.010)	ND (0.007)	ND (0.006)	ND (0.006)	ND (0.006)	0.018	0.29	ND (0.032)	ND (0.035)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table 2 (cor	ntinued). Sumi	mary of Soil S	ample Results	, Pacific City P	ark Remedial	Investigation	Pacific, Wash	ington.			
Analytical							Sample Location							
Parameter		PF	21			PP22			PF	23		PF	24	Site Screening
Sample Date						2/21/18			2/2	8/18		2/2	8/18	Level ^a
Depth (feet)	2	6	10	15	4	9	13	2	5	10	15	7	10	(mg/kg)
Petroleum Hydrocarb	ons by Method	NWTPH-Dx (mg/	kg)											
Diesel Range Organics	57	150	1,800	110	-	_	_	ND (29)	_	_	_	ND (35)		200
Lube Oil Range Organics	540	960	10,000	1,200	-	-	-	200	-	-	-	130	_	2,000
Sum of Diesel and Lube Oil Range Organics	597	1,110	11,800	1,310	-	-	-	200	-	-	-	130	-	2,000
Volatile Petroleum Pro	oducts Including	Gasoline, Benze	ne, Toluene, Eth	ylbenzene, and To	tal Xylenes (BTE	X) by NWTPH-GX	(mg/kg)							
Gasoline	-	_	39	_	-	_	_	ND (13)	_	_	_	ND (7.5)	_	100
Benzene	_	_	ND (0.024)	-	-	-	-	ND (0.025)	-	-	-	ND (0.020)	_	0.001
Toluene	_	-	ND (0.12)	-	-	-	-	ND (0.13)	-	-	-	ND (0.075)	_	0.024
Ethylbenzene	_	_	ND (0.12)	-	_	_	-	ND (0.13)	-	_	-	ND (0.075)	_	0.014
Total Xylenes	_	_	ND (0.24)	_	-	_	_	ND (0.26)	_	_	_	ND (0.15)	_	0.52
Total Metals by EPA 6	010D/7471B (m	g/kg)												
Arsenic	ND (13)	17	ND (16)	ND (14)	ND (13)	ND (12)	ND (12)	ND (12)	ND (11)	ND (13)	ND (15)	ND (14)	ND (12)	20
Cadmium	0.90	27	6.2	ND (1.4)	ND (0.64)	ND (0.61)	2.4	ND (0.59)	ND (0.55)	ND (0.67)	ND (0.76)	2.3	ND (0.58)	1
Chromium	30	74	23	20	9.9	9.9	36	19	15	13	18	18	10	48
Lead	740	2,800	180	ND (14)	ND (6.4)	ND (6.1)	270	460	97	ND (6.7)	220	480	ND (5.8)	25
Mercury	0.87	ND (0.51)	ND (0.410	ND (0.68)	ND (0.32)	ND (0.31)	ND (0.29)	ND (0.29)	ND (0.27)	ND (0.34)	ND (0.38)	ND (0.35)	ND (0.29)	0.07
Polychlorinated Biphe	nyls (PCBs) by E	PA 8082A (mg/k	g)											
Total PCBs	0.52	0.27	1.33	ND (0.14)	-	_	_	ND (0.059)	_	_	_	ND (0.069)	_	0.05
Carcinogenic Polycycl	c Aromatic Hyd	rocarbons (cPAH	s) by EPA 8270E)/SIM (mg/kg)										
Benzo(a)anthracene	0.076	0.14	0.90	ND (0.018)	0.056	ND (0.004)	ND (0.008)	0.012	0.18	ND (0.009)	ND (0.010)	ND (0.018)	ND (0.008)	0.0067
Benzo(a)pyrene	0.062	0.13	0.85	ND (0.018)	0.064	ND (0.004)	ND (0.008)	0.011	0.044	ND (0.009)	ND (0.010)	ND (0.018)	ND (0.008)	0.01
Benzo(b)fluoranthene	0.11	0.22	1.3	ND (0.018)	0.088	ND (0.004)	ND (0.008)	0.017	0.10	ND (0.009)	ND (0.010)	0.031	ND (0.008)	0.012
Benzo(j,k)fluoranthene	0.033	0.077	0.30	ND (0.018)	0.029	ND (0.004)	ND (0.008)	ND (0.0078)	ND (0.015)	ND (0.009)	ND (0.010)	ND (0.018)	ND (0.008)	0.012
Chrysene	0.097	0.18	1.0	ND (0.018)	0.086	ND (0.004)	ND (0.008)	0.017	0.044	ND (0.009)	ND (0.010)	0.035	ND (0.008)	0.0067
Dibenz(a,h)anthracene	0.010	0.024	0.19	ND (0.018)	0.017	ND (0.004)	ND (0.008)	ND (0.0078)	0.019	ND (0.009)	ND (0.010)	ND (0.018)	ND (0.008)	0.018
Indeno(1,2,3-cd)pyrene	0.040	0.11	0.71	ND (0.018)	0.051	ND (0.004)	ND (0.008)	0.0082	0.026	ND (0.009)	ND (0.010)	ND (0.018)	ND (0.008)	0.035
Total cPAHs (TEQ) ^b	0.090	0.19	1.2	ND (0.014)	0.089	ND (0.006)	ND (0.006)	0.0059	0.078	ND (0.007)	ND (0.008)	0.016	ND (0.006)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table 2 (c	ontinued). S	Summary of S	Soil Sample R	esults, Pacifi	c City Park R	emedial Inve	stigation, Pac	ific, Washing	gton.			
							Sample	Location							
Analytical Parameter		PP25		PP	26	PP	27	PF	28		PP29		PP	30	Site Screening
Sample Date		2/21/18		2/2:	1/18	2/28	3/18	3/1	L/18		3/1/18		2/28	8/18	Level ^a
Depth (feet)	7	13	17	11	17	7	10	8	10	3	5	10	5	10	(mg/kg)
Petroleum Hydrocarbo	ns by Method	NWTPH-Dx (m	g/kg)												
Diesel Range Organics	-	1,400	49	-	-	-	-	-	_	ND (280)	_	_	71	_	200
Lube Oil Range Organics	-	1,200	130	-	_	-	_	-	-	5,900	_	_	630	_	2,000
Sum of Diesel and Lube Oil Range Organics	-	2,600	179	-	_	-	_	-	_	5,900	_	_	701	_	2,000
Volatile Petroleum Pro	ducts Includin	g Gasoline, Ben	zene, Toluene, I	Ethylbenzene, aı	nd Total Xylenes	(BTEX) by NW	ГРН-GX (mg/kg	1)							
Gasoline	-	400	ND (15)	_	_	_	_	-	_	_	_	_		_	100
Benzene	-	ND (0.026)	ND (0.15)	_	_	-	_	_	_	_	_	_		_	0.001
Toluene	_	ND (0.13)	ND (0.15)	_	_	-	_	-	_	_	_	_		_	0.024
Ethylbenzene	_	ND (0.13)	ND (0.15)	_	_	-	_	-	_	_	_	_		_	0.014
Total Xylenes	_	ND (0.13)	ND (0.15)	_	_	_	_	_	_	_	_	_		_	0.52
Total Metals by EPA 60)10D/7471B (n	ng/kg)													
Arsenic	ND (14)	ND (17)	ND (19)	ND (12)	ND (15)	ND (15)	ND (12)	ND (13)	ND (12)	ND (11)	ND (13)	ND (13)	ND (13)	ND (11)	20
Cadmium	ND (0.68)	1.9	ND (0.93)	ND (0.58)	ND (0.77)	0.88	ND (0.61)	ND (0.63)	ND (0.62)	ND (0.56)	ND (0.66)	ND (0.66)	0.83	ND (0.57)	1
Chromium	13	38	28	21	15	28	12	25	23	25	15	16	16	14	48
Lead	8.8	140	ND (9.3)	ND (5.8)	ND (7.7)	180	ND (6.1)	49	6.8	8.8	ND (6.5)	ND (6.6)	31	ND (5.7)	25
Mercury	ND (0.34)	ND (0.42)	ND (0.47)	ND (0.29)	ND (0.39)	ND (0.36)	ND (0.30)	ND (0.31)	ND (0.31)	ND (0.28)	ND (0.32)	ND (0.33)	ND (0.32)	ND (0.28)	0.07
Polychlorinated Bipher	ryls (PCBs) by	EPA 8082A (mg	/kg)	_		_		_	_				_		
Total PCBs	-	1.36	ND (0.093)	-	_	-	_	-	_	ND (0.056)	_	_	ND (0.064)	_	0.05
Carcinogenic Polycyclic	c Aromatic Hy	drocarbons (cPA	AHs) by EPA 827	70D/SIM (mg/kg	J)										
Benzo(a)anthracene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	0.036	ND (0.008)	ND (0.008)	0.011	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.0067
Benzo(a)pyrene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	0.038	ND (0.008)	ND (0.008)	0.010	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.01
Benzo(b)fluoranthene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	0.049	ND (0.008)	ND (0.008)	0.0084	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.012
Benzo(j,k)fluoranthene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	0.014	ND (0.008)	ND (0.008)	ND (0.0083)	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.012
Chrysene	ND (0.009)	0.012	ND (0.012)	ND (0.008)	ND (0.010)	0.051	ND (0.008)	ND (0.008)	0.011	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.0067
Dibenz(a,h)anthracene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	ND (0.0097)	ND (0.008)	ND (0.008)	ND (0.0083)	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.009)	ND (0.011)	ND (0.012)	ND (0.008)	ND (0.010)	0.025	ND (0.008)	ND (0.008)	ND (0.0083)	ND (0.038)	ND (0.009)	ND (0.009)	ND (0.085)	ND (0.008)	0.035
Total cPAHs (TEQ) ^b	ND (0.007)	0.008	ND (0.009)	ND (0.006)	ND (0.008)	0.051	ND (0.006)	ND (0.006)	0.013	ND (0.029)	ND (0.007)	ND (0.007)	ND (0.064)	ND (0.006)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table	2 (contin	ued). Sum	mary of So	il Sample R			Park Rem	edial Inves	tigation, Pa	acific, Wasl	hington.			I
								Sample	Location								Site Screening Level ^a (mg/kg)
Analytical Parameter	P	P31		PP32			PP33		P	P34	PI	P35	PI	P36	PP	37	
Sample Date	3/	1/18		3/1/18			3/1/18		3/	1/18	12/2	20/18	12/2	20/18	12/2	0/18	
Depth (feet)	3	11	4	7	10	3	5	10	8	15	4	7.5	1	5	1.5	5	
Petroleum Hydrocarbo	ns by Metho	d NWTPH-Dx ((mg/kg)														
Diesel Range Organics	-	_	-	ND (60)	-	ND (750)	-	-	-	-	ND (120)	58	ND (30)	ND (42)	29	-	200
Lube Oil Range Organics	-	_	-	650	-	12,000	-	-	-	-	730	210	190	670	ND (57)	-	2,000
Sum of Diesel and Lube Oil Range Organics	-	-	-	650	-	12,000	-	_	-	-	730	268	190	670	29	-	2,000
Volatile Petroleum Pro	ducts Includi	ng Gasoline, B	enzene, Tolue	ene, Ethylbe	nzene, and To	otal Xylenes (I	BTEX) by NW	TPH-GX (mg	g/kg)								
Gasoline	_	-	-	_	ND (13)	ND (12)	-	_	-	-	ND (4.1)	_	ND (5.5)	ND (7.0)	ND (6.3)		100
Benzene	_	_	-	_	ND (0.026)	ND (0.024)	-	_	-	-	-	_	_	_	_	-	0.001
Toluene	-	_	-	-	ND (0.13)	ND (0.12)	-	-	-	-	-	_	-	-	-	-	0.024
Ethylbenzene	_	_	-	_	ND (0.13)	ND (0.12)	-	-	-	-	_	_	_	_	-	-	0.014
Total Xylenes	-	-	-	_	ND (0.26)	ND (0.24)	_	_	-	_	-	_	-	-	-	_	0.52
Total Metals by EPA 60	10D/7471B ((mg/kg)		_													
Arsenic	ND (11)	ND (12)	ND (12)	ND (12)	ND (12)	ND (11)	ND (12)	ND (13)	ND (12)	-	ND (12)	ND (12)	ND (12)	ND (13)	ND (11)	-	20
Cadmium	ND (0.56)	ND (0.62)	ND (0.62)	ND (0.61)	ND (0.61)	ND (0.56)	ND (0.59)	ND (0.67)	ND (0.61)	-	1.3	ND (0.60)	ND (0.60)	ND (0.63)	ND (0.57)	-	1
Chromium	21	12	16	15	20	17	19	13	12	-	38	26	38	36	21	-	48
Lead	12	ND (6.2)	12	15	ND (6.1)	8.1	7.3	ND (6.7)	6.1	-	580	28	9.9	11	10	-	25
Mercury	ND (0.28)	ND (0.31)	ND (0.31)	ND (0.31)	ND (0.31)	ND (0.28)	ND (0.30)	ND (0.34)	ND (0.30)	_	0.31	ND (0.30)	ND (0.30)	ND (0.32)	ND (0.28)	-	0.07
Polychlorinated Biphen	yls (PCBs) b	y EPA 8082A (n	ng/kg)		T-		T-			1						T-	
Total PCBs	_	_	-	ND (0.061)	ND (0.061)	ND (0.056)	_	-	-	_	0.23	ND (0.060)	ND (0.060)	ND (0.063)	ND (0.057)	ND (0.062)	0.05
Carcinogenic Polycyclic	Aromatic H	ydrocarbons (c	PAHs) by EPA	A 8270D/SIN	/l (mg/kg)												
Benzo(a)anthracene	ND (0.008)	ND (0.008)	0. 010	0.038	ND (0.008)	ND (0.075)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.009)	0.19	0.23	0.010	ND (0.017)	0.014	0.60	0.0067
Benzo(a)pyrene	ND (0.008)	ND (0.008)	0.011	0.036	ND (0.008)	ND (0.075)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.009)	0.35	0.084	0.016	0.018	0.016	0.57	0.01
Benzo(b)fluoranthene	0.0093	ND (0.008)	0.024	0.051	ND (0.008)	0.14	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.009)	0.38	0.12	0.017	0.020	0.019	0.76	0.012
Benzo(j,k)fluoranthene	ND (0.008)	ND (0.008)	ND (0.008)	0.013	ND (0.008)	ND (0.075)		ND (0.009)		i	0.11	0.062	ND (0.008)	ND (0.017)	ND (0.008)	0.24	0.012
Chrysene	ND (0.008)	ND (0.008)	0.015	0.055	ND (0.008)	0.19	ND (0.008)	ND (0.009)			0.24	0.83	0.019	0.026	0.020	0.64	0.0067
Dibenz(a,h)anthracene	ND (0.008)	ND (0.008)	ND (0.008)	0.009	ND (0.008)	ND (0.075)	ND (0.008)	ND (0.009)			0.053	0.015	ND (0.008)	ND (0.017)	ND (0.008)	0.086	0.018
Indeno(1,2,3-cd)pyrene	ND (0.008)	ND (0.008)	0.0095	0.025	ND (0.008)	ND (0.075)	ND (0.008)	ND (0.009)		ND (0.009)	0.26	0.045	0.012	ND (0.017)	0.011	0.42	0.035
Total cPAHs (TEQ) ^b	0.006	ND (0.006)	0.016	0.050	ND (0.006)	0.068	ND (0.006)	ND (0.007)	ND (0.006)	ND (0.007)	0.452	0.141	0.021	0.024	0.028	0.787	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

			Table 2	(continue	d). Summa	ary of Soil	Sample Re	sults, Pacifi	c Park City	Park Rer	nedial	Investigat	ion, Pacific,	Washingt	ton.			
								Sar	nple Locatio	า								
Analytical Parameter	B-04	B-	05		B-06			B-07			B-08		B-0	9	B-10	B-	-11	Site Screening
Sample Date	2/21/18	2/20	0/18		2/22/18			2/27/18			2/26/18	8	2/22,	′18	2/26/18	2/2	6/18	Level ^a
Depth (feet)	12.5	7.5	12.5	2.5	10	12.5	2.5	7.5	12.5	5	7.5	12.5	5	15	7.5	2.5	12.5	(mg/kg)
Petroleum Hydrocarbons	by Method	NWTPH-Dx	(mg/kg)															
Diesel Range Organics	-	440	_	ND (31)	ND (31)	ND (32)	ND (150)	ND (310)	ND (33)	_	_	-	-	_	ND (30)	ND (33)	_	200
Lube Oil Range Organics	-	ND (220)	-	150	ND (61)	130	4,400	1,800	180	-	-	-	-	-	88	380	-	2,000
Sum of Diesel and Lube Oil Range Organics ^b	-	See footnote	_	150	_	130	4,400	1,800	180	-	-	-	-	_	88	380	-	2,000
Volatile Petroleum Produ	cts Including	g Gasoline, B	enzene, Tolu	ene, Ethylbe	nzene, and To	otal Xylenes	(BTEX) by NV	NTPH-GX (mg	/kg)		•							•
Gasoline	-	_	-	_	-	_	-	-	_	_	_	-	-	_	-	-	_	100
Benzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001
Toluene	-	-	-	-	_	_	-	-	_	-	_	-	_	-	-	-	-	0.024
Ethylbenzene	-	-	_	-	_	_	-	_	_	-	-	-	_	_	-	-	-	0.014
Total Xylenes	_	-	_	-	_	_	-	_	_	_	-	_	_	_	_	-	_	0.52
Total Metals by EPA 6010	D/7471B (m	ng/kg)																
Arsenic	ND (13)	ND (12)	ND (13)	ND (12)	ND (13)	ND (13)	ND (12)	ND (12)	ND (13)	ND (14)	-	ND (13)	ND (15)	ND (16)	ND (12)	ND (13)	ND (12)	20
Cadmium	ND (0.64)	ND (0.60)	ND (0.63)	0.75	ND (0.61)	ND (0.64)	ND (0.58)	ND (0.62)	ND (0.66)	ND (0.69)	-	ND (0.67)	ND (0.77)	ND (0.78)	ND (0.59)	ND (0.65)	ND (0.60)	1
Chromium	16	430	11	13	13	11	15	14	10	16	-	18	16	24	8.0	16	13	48
Lead	ND (6.4)	ND (6.0)	ND (6.3)	20	ND (6.1)	ND (6.4)	6.0	ND (6.2)	ND (6.6)	6.9	-	ND (6.7)	20	ND (7.8)	ND (5.9)	15	ND (6.0)	25
Mercury	ND (0.32)	ND (0.30)	ND (0.32)	ND (0.31)	ND (0.31)	ND (0.32)	ND (0.29)	ND (0.31)	ND (0.33)	ND (0.35)	-	ND (0.34)	ND (0.39)	ND (0.39)	ND (0.29)	ND (0.32)	ND (0.30)	0.07
Polychlorinated Biphenyl	s (PCBs) by	EPA 8082A (r	ng/kg)															
Total PCBs	_	ND (0.060)	_	ND (0.062)	_	ND (0.064)	ND (0.058)	ND (0.062)	ND (0.066)	_	-	_	_	_	ND (0.059)	ND (0.26)	_	0.05
Carcinogenic Polycyclic A	romatic Hyd	drocarbons (d	PAHs) by EP	A 8270D/SIN	1 (mg/kg)													
Benzo(a)anthracene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	_	ND (0.009)	ND (0.010)	ND (0.010)	ND (0.008)	0.016	ND (0.008)	0.0067
Benzo(a)pyrene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	-	ND (0.009)	ND (0.010)	ND (0.010)	ND (0.008)	0.019	ND (0.008)	0.01
Benzo(b)fluoranthene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	_	ND (0.009)	0.011	ND (0.010)	ND (0.008)	0.053	ND (0.008)	0.012
Benzo(j,k)fluoranthene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	-	ND (0.009)	ND (0.010)	ND (0.010)	ND (0.008)	0.014	ND (0.008)	0.012
Chrysene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	-	ND (0.009)	0.012	ND (0.010)	ND (0.008)	0.035	ND (0.008)	0.0067
Dibenz(a,h)anthracene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	_	ND (0.009)	ND (0.010)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.009)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.009)	ND (0.039)	ND (0.041)	ND (0.009)	ND (0.009)	_	ND (0.009)	ND (0.010)	ND (0.010)	ND (0.008)	0.017	ND (0.008)	0.035
Total cPAHs (TEQ) ^c	ND (0.006)	ND (0.006)	ND (0.006)	ND (0.006)	ND (0.006)	ND (0.007)	ND (0.029)	ND (0.031)	ND (0.007)	ND (0.007)	_	ND (0.007)	0.008	ND (0.008)	ND (0.006)	0.030	ND (0.006)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

		Tab	le 2 (continued). Summary of	f Soil Sample R	esults, Pacific P	ark City Park R	emedial Investi	igation, Pacific,	Washington.			
Analytical						Sample	Location						
Parameter	B-	13	В-	14		B-15			B-16		B-	17	Site Screening
Sample Date	2/23	3/18	2/21	L/18		2/21/18			2/23/18		2/20	0/18	Level ^a
Depth (feet)	7.5	15	5	10	5	7.5	15	2.5	7.5	17.5	10	15	(mg/kg)
Petroleum Hydrocarb	ons by Method N\	WTPH-Dx (mg/kg)	1										
Diesel Range Organics	_	_	-	_	-	_	_	-	_	_	-	_	200
Lube Oil Range Organics	-	_	-	_	_	_	_	-	_	_	-	_	2,000
Volatile Petroleum Pr	oducts Including G	Gasoline, Benzene,	Toluene, Ethylben	zene, and Total Xy	lenes (BTEX) by N	WTPH-GX (mg/kg)						
Gasoline	_	_	-	_	-	_	_	-	_	_	-	_	100
Benzene	-	_	-	_	-	_	_	-	_	_	-	_	0.001
Toluene	_	_	-	_	_	_	_	_	_	-	_	_	0.024
Ethylbenzene	-	-	-	_	-	-	-	-	-	-	-	-	0.014
Total Xylenes	-	_	-	-	-	_	_	-	_	_	-	_	0.52
Total Metals by EPA 6	010D/7471B (mg/	/kg)											
Arsenic	ND (17)	ND (13)	ND (13)	ND (12)	ND (17)	ND (15)	ND (13)	ND (14)	ND (12)	ND (13)	ND (12)	ND (11)	20
Cadmium	ND (0.84)	ND (0.66)	ND (0.67)	ND (0.62)	1.3	ND (0.76)	ND (0.67)	ND (0.71)	1.6	ND (0.66)	ND (0.61)	ND (0.54)	1
Chromium	24	8.9	23	17	35	31	17	18	28	16	23	9.6	48
Lead	12	ND (6.6)	31	33	75	49	ND (6.7)	9.2	68	ND (6.6)	ND (6.1)	ND (5.4)	25
Mercury	ND (0.42)	ND (0.33)	ND (0.34)	ND (0.31)	ND (0.43)	ND (0.38)	ND (0.34)	ND (0.36)	ND (0.29)	ND (0.33)	ND (0.31)	ND (0.27)	0.07
Polychlorinated Biphe	enyls (PCBs) by EP	A 8082A (mg/kg)											
Total PCBs	-	_	-	-	-	_	_	_	_	-	-	_	0.05
Carcinogenic Polycycl	ic Aromatic Hydro	ocarbons (cPAHs) l	oy EPA 8270D/SIM	(mg/kg)									
Benzo(a)anthracene	ND (0.011)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.0067
Benzo(a)pyrene	ND (0.011)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.01
Benzo(b)fluoranthene	0.014	ND (0.009)	ND (0.009)	ND (0.008)	0.014	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.012
Benzo(j,k)fluoranthene	ND (0.011)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.012
Chrysene	0.016	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.0067
Dibenz(a,h)anthracene	ND (0.011)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.018
Indeno(1,2,3-cd)pyrene	ND (0.011)	ND (0.009)	ND (0.009)	ND (0.008)	ND (0.012)	ND (0.010)	ND (0.009)	ND (0.010)	ND (0.008)	ND (0.009)	ND (0.008)	ND (0.007)	0.035
Total cPAHs (TEQ) ^c	0.009	ND (0.007)	ND (0.007)	ND (0.006)	0.010	ND (0.008)	ND (0.007)	ND (0.007)	ND (0.006)	ND (0.067)	ND (0.006)	ND (0.006)	0.020

BOLD values detected above the reporting limit.

Shaded values exceed the site screening level

^a Refer to Table 6 "Proposed Site Screening Levels for Soil" for notes on how each screening level was selected.

ND = not detected above laboratory reporting limits (shown in parentheses)

– = not analyzed or not applicable

b Total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) toxicity equivalency (TEQ) concentration was calculated using one-half the reporting limit for compounds that were not detected above the reporting limit.

^c The gas chromatogram for sample B06_7.5 indicates weathered diesel fuel, so the reported concentration was compared to the SSL for diesel. mg/kg = milligrams per kilogram

				Tab	le 3. Sum	mary of	Groundwat	ter Sampl	e Results fron	n Monitorii	ng Wells, Pac	ific City I	Park Ren	nedial Inv	estigation	, Pacific,	Washing	gton.				
											Analytical Param	eter (µg/L)										
		Petrole	um Hydroc	arbons				Volatile C	Organic Compound	ds					Total Metals				D	issolved Me	tals	
Sample Location	Sample Date	GRO	DRO	Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	(cis) 1,2- Dichloroethene	1,4-Dichloro benzene	Chlorobenzene	Vinyl chloride	Arsenic	Cadmium	Chromium	Lead	Mercury	Arsenic	Cadmium	Chromium	Lead	Mercury
Site Screeni Level (µg/L)	-	1,000	500	500	0.44	57	29	1,000	16		100	0.02	3.3	4.4	50	2.5	0.5	3.3	4.4	50	2.5	0.5
	10/6/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	1.1	ND (0.20)	ND (0.50)	1.1	ND (0.10)	1.2	ND (0.20)	ND (0.50)	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-1	3/23/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
IVIVV-T	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	5.7	ND (0.20)	2.3	ND (1.0)	ND (0.10)	5.1	ND (0.20)	1.6	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (270)	ND (440)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
NAV 2	3/23/18	ND (110)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	3.4	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-2	6/21/18	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.9	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	10/6/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	4.1	ND (0.20)	2.8	ND (1.0)	ND (0.10)	4.8	ND (0.20)	1.5	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
1	3/23/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	0.22	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-3	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	0.35	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	0.30	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	5.7	ND (0.20)	13	ND (0.20)	2.7	ND (1.0)	ND (0.10)	9.8	ND (0.20)	1.5	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	1.5	ND (0.20)	8.3	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	8.3	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18	ND (110)	ND (270)	ND (440)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	1.1	ND (0.20)	6.0	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-4	6/21/18	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (250)	ND (410)	0.22	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	4.6	ND (0.20)	14	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	3.7	ND (0.20)	11	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	1.4	ND (0.20)	0.52	ND (1.0)	ND (0.10)	ND (1.0)	ND (0.20)	ND (0.5)	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	4.0	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	3.0	ND (0.50)
	3/23/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	3.2	ND (0.50)	NA	NA	NA	NA	NA
MW-5	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	5.6	ND (0.50)	NA	NA	NA	NA	NA
					ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	1.9	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)		ND (3.3)		ND (11)	1.5	ND (0.50)	NA	NA	NA	NA	NA
	10/5/15			ND (100)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)		ND (0.20)	0.74	1.5	ND (0.10)	2.1		ND (0.50)	ND (1.0)	ND (0.10)
					ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)			ND (11)		ND (0.50)			ND (10)	ND (1.0)	ND (0.50)
					ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)		ND (3.3)		ND (11)		ND (0.50)	NA	NA	NA	NA	NA
MW-6					ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)			ND (11)	i e	ND (0.50)	NA	NA	NA	NA	NA
				-	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	0.20	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
					ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	İ		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA

			Т	able 3 (c	ontinued)	. Sumn	nary of Grou	ndwater	Sample Resul	ts from Mo	nitoring Wel	ls, Pacific	City Pa	rk Remed	ial Investi	gation, l	Pacific, W	/ashingt	on.			
											Analytical Param	eter (µg/L)										
		Petrole	eum Hydro	carbons				Volatile C	rganic Compoun	ds					Total Metals				D	issolved Meta	als	
Sample	Sample	222							(cis) 1,2-	1,4-Dichloro	411	Vinyl			a. .							
Location	Date	GRO	DRO	Lube Oil	Benzene	loluene	Ethylbenzene	Xylenes	Dichloroethene	benzene	Chlorobenzene	chloride	Arsenic	Cadmium	Chromium	Lead	Mercury	Arsenic	Cadmium	Chromium	Lead	Mercury
Site Screei	_														_							
Level (µg/		1,000	500	500	0.44	57	29	1,000	16	NA	100	0.02	3.3	4.4	50	2.5	0.5	3.3	4.4	50	2.5	0.5
	3/23/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	1.9	ND (0.50)	NA	NA	NA	NA	NA
MW-7	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.6	ND (4.4)	ND (11)	2.0	ND (0.50)	NA	NA	NA	NA	NA
10100 /	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	5.5	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (270)	ND (440)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.5	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	3/23/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (1.1)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	3.9	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-8	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	3/23/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-9	9/26/18	ND (100)	ND (250)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.38	ND (0.20)	3.6	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.43	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)		NA	NA	NA	NA	NA
MW-10	12/21/18	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	0.26	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)		NA	NA	NA	NA	NA
MW-11	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	i e		NA NA	NA NA	NA	NA NA
		` /	` ′	`			` '		` '	`	` '					` '						
MW-12	12/21/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA

Note: MW7, MW8, and MW9 correspond to borings B06, B09, and B11

BOLD values detected above the reporting limit.

Shaded values exceed site criteria.

cPAHs (TEQ) = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency

DRO = Diesel range organics

PCBs = Polychlorinated biphenyls

GRO = Gasoline range organics

 μ g/L = micrograms per liter

NA = not analyzed or not applicable

ND = not detected above laboratory reporting limits shown in parentheses

				Field Parameters							Analytical Parame	eter (ug/l)			
	-			Tiela Farameters								Aromatic Hydroca	rhons (cPAHs)		
Sample Location	Sample Date	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pH (std units)	Turbidity (NTU)	Total PCBs	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(j,k) fluoranthene	Benzo(a) pyrene	Indeno(1,2,3- cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs (TEQ)
Site Screen	ing Level (μg/L)	NA	NA	NA	NA	NA	0.05	0.01	0.016	0.01	0.01	0.01	0.01	0.01	0.015
	10/6/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.076)
	5/12/17	9.0	3.28	98	6.84	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
N 4\A / 1	3/23/18	6.9	4.67	97	6.94	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
MW-1	6/21/18	11.3	1.69	77	6.79	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	9/26/18	14.2	2.76	113	6.64	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	7.9	4.35	93	4.45	1.0	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	11.9	2.47	296	6.58	Clear	NA	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0075)
NAVA / 2	3/23/18	9.8	0.66	328	6.54	Clear	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-2	6/21/18	13.7	3.28	270	6.33	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	15.8	0.23	276	6.30	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	11.5	0.38	314	4.38	30.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	10/6/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	10.9	0.69	332	7.08	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	3/23/18	8.1	0.50	332	7.01	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-3	6/21/18	12.8	0.11	281	7.08	Clear	NA	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0073)
	9/26/18	14.5	0.12	322	6.65	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	12/21/18	10.1	0.09	414	4.75	85.6	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	11.5	0.19	348	6.60	Clear	NA	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0072)
	3/23/18	9.1	0.55	307	6.15	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-4	6/21/18	15.4	2.05	309	6.62	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	20.4	1.47	325	6.10	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	11.8	0.21	351	4.55	9.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	9.5	1.06	156	7.08	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
N 40 47 E	3/23/18	6.7	0.47	129	6.69	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-5	6/21/18	11.6	0.08	126	7.44	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	15.3	0.26	193	6.90	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	10.0	0.45	182	5.14	5.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	10.2	0.25	132	6.25	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/23/18	6.9	0.73	161	5.95	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
MW-6	6/21/18	12.4	0.14	154	6.69	Clear	NA	0.014	0.014	0.012	0.012	0.011	0.012	0.011	0.017
	9/26/18	15.1	0.44	341	6.25	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	11.0	0.17	206	3.90	3.2	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	' '							, ,	' '		, ,	' '	, ,	, ,	' '

	Table 3 (continued). Summary of Groundwater Sample Results, Pacific City Park Remedial Investigation, Pacific, Washington. Field Parameters Analytical Parameter (μg/L)														
				Field Parameters							Analytical Param	eter (µg/L)			
										Carcin	ogenic Polycyclic	Aromatic Hydroca	rbons (cPAHs)		
Sample Location	Sample Date	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pH (std units)	Turbidity (NTU)	Total PCBs	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(j,k) fluoranthene	Benzo(a) pyrene	Indeno(1,2,3- cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs (TEQ)
Site Screer	ning Level (µg/L)	NA	NA	NA	NA	NA	0.05	0.01	0.016	0.01	0.01	0.01	0.01	0.01	0.015
	3/23/18	6.9	0.52	127	6.94	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
MW-7	6/21/18	16.2	0.12	137	6.59	Clear	NA	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0072)
IVI VV - /	9/26/18	16.2	0.49	151	6.47	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	8.8	0.23	188	4.41	9.7	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/23/18	10.8	0.45	400	6.62	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-8	6/21/18	13.4	2.44	384	6.24	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
IVI VV - 8	9/26/18	16.4	0.61	325	6.56	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	11.8	0.72	340	6.66	59	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	3/23/18	10.5	0.42	294	6.22	Clear	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
NAVA / O	6/21/18	11.5	2.65	240	6.58	Clear	NA	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0074)
MW-9	9/26/18	14.5	0.60	249	6.41	Clear	NA	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0074)
	12/21/18	12.3	0.33	323	6.74	23	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-10	12/21/18	12.9	0.29	291	6.83	24	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-11	12/21/18	11.6	2.01	409	6.81	8.5	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-12	12/21/18	8.3	2.26	265	6.34	9	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)

Note: MW7, MW8, and MW9 correspond to borings B06, B09, and B11

BOLD values detected above the reporting limit.

Shaded values exceed site criteria.

cPAHs (TEQ) = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency

DRO = Diesel range organics

PCBs = Polychlorinated biphenyls

GRO = Gasoline range organics

μg/L = micrograms per liter

NA = not analyzed or not applicable

ND = not detected above laboratory reporting limits shown in parentheses

NR = not reported

												Sample I	dentificati	on										
	WRI	EV1-Dra	inage Dit	tch	WR	LEV2-Upst	ream Wet	tland	WRLE	V3-Downs	tream Wet	land		SW1			SW2			SW3		S	W4	SSLª
Parameter	12/8/10	1/4/11	2/28/11	3/10/11	12/8/10	1/4/11	2/28/11	3/10/11	12/8/10	1/4/11	2/28/11	3/10/11	6/29/18	10/9/18	12/20/18	6/29/18	10/9/18	12/20/18	6/29/18	10/9/18	12/20/18	10/9/18	12/20/18	
Field Parameters	•				•						•													
Temp (°C)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.2	12.2	9.7	14.7	12.3	10.5	14.3	12.9	10.5	12.9	11.5	NA
DO (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.62	1.2	1.24	1.84	0.36	1.28	1.12	0.8	0.59	0.65	2.53	NA
Cond (µS/cm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	153.7	204	209	170	208	182	178	151	180	179	182	NA
pH (std units)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.73	6.84	7.07	6.84	6.74	6.88	6.94	6.65	6.94	6.69	7.10	NA
Turbidity (NTU)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.72	Clear	12.5	10.76	Clear	25	12.33	Clear	11.5	Clear	11.2	NA
Conventional Para	meters (mg	/L)																						
TKN	1.75	1.58	0.997	0.772	0.31	3.23	2.54	0.202	1.48	1.63	0.954	1.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrate+Nitrite	ND (0.01)	ND	ND	ND	ND	ND (0.01)	ND	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.04)	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen		(0.01)	(0.04)	(0.04)	(0.01)		(0.01)					(0.04)												
TP	0.136	0.134	0.132	0.134	0.115	0.142	0.070	0.035	0.162	0.205	0.170	0.196	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OP	ND (0.02)	0.049	0.026	0.086	0.007	0.016	0.024	0.025	ND (0.005)	0.014	0.024	0.060	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hardness (mg CaCO3/L)	125	141	86.6	64.6	47.8	39	22	26.9	113	125	90.5	88	66	62	85	71	51	77	74	51	69	45	69	NA
Petroleum Hydroc	arbons (µg/	L)													_			_			_			
GRO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	1,000
DRO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (250)	ND (250)	ND (260)	ND (260)	ND (260)	ND (270)	ND (260)	ND (260)	ND (250)	ND (250)	ND (260)	500
Lube Oil RO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (410)	ND (410)	ND (410)	ND (420)	ND (420)	ND (420)	ND (420)	ND (410)	ND (400)	ND (400)	ND (410)	500
Volatile Organic Co	ompounds ((μg/L)																						
Benzene	ND (0.2)	ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	0.44
Toluene	ND (0.2)	ND	NA	NA	0.551	0.5	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.1	ND (1.0)	ND (1.0)	ND (1.0)	F-7
Ethylbenzene	ND (0.2)	(0.2) ND	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.30)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	57
Xylenes	ND (0.2)	(0.2) ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.40)	ND (0.40)	ND (0.40)	(0.20) ND (0.40)	ND (0.40)	ND (0.40)	(0.20) ND (0.40)	ND (0.40)	ND (0.40)	(0.20) ND (0.40)	ND (0.40)	1,000
Acetone	ND (2)	ND (2)	NA	NA	ND (2)	ND (2)	NA	NA	ND (4)	ND (2)	NA	NA	ND (5.0)	ND (5.0)	ND (7.0)	<u> </u>	ND (5.0)	ND (7.0)	ND (5.0)	ND (5 0)	ND (7.0)	ND (5.0)	ND (7.0)	7,200
(cis)1,2- Dichloroethene	ND (0.2)	ND (0.2)	NA	NA		ND (0.2)	NA	NA NA	ND (0.2)	ND (0.2)	NA NA	NA			ND (0.20)			ND (0.20)	ND (0.20)		ND (0.20)		ND (0.20)	
Chlorobenzene	ND (0.2)	(0.2) ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.2)	ND (0.2)	NA	NA	ND (0.20)	ND (0.20)	ND (0.20)	1	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	1	ND (0.20)	100
Vinyl Chloride	0.0308	0.0371	NA	NA	ND (0.01)	ND (0.01)	NA	NA	ND (0.01)	ND (0.02)	NA	NA	ND (0.20)	ND (0.20)	ND (0.20)		ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	0.02

												Sample I	dentificati	on										
	WRI	EV1-Dra	inage Dit	ch	WR	LEV2-Upst	ream Wet	tland	WRLE	EV3-Downs	stream We	•		SW1			SW2			SW3		S	W4	SSLª
Parameter	12/8/10	l		l	12/8/10	· ·	2/28/11	3/10/11	12/8/10	1/4/11	2/28/11	3/10/11	6/29/18	10/9/18	12/20/18	6/29/18	10/9/18	12/20/18	6/29/18	10/9/18	12/20/18		12/20/18	
Total Metals (µg/L))											1						1	1					
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (3.3)	ND (3.3)	ND (3.3)	ND (3.3)	ND (3.3)	ND (3.3)	ND (3.3)	3.3				
Cadmium	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (4.4)	ND (4.4)	ND (4.4)	ND (4.4)	ND (4.4)	ND (4.4)	ND (4.4)	4.4				
Calcium	37,900	42,600	25,600	18,700	14,300	11,900	6,450	7,790	35,400	39,900	28,500	26,300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	ND (1)	1.08	ND (1)	ND (1)	0.32	ND (1)	ND (1)	ND (0.2)	ND (1)	ND (1)	ND (1)	ND (1)	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	74				
Copper	ND (0.4)	ND (0.4)	ND (2)	ND (2)	ND (0.4)	ND (2)	ND (2)	ND (2)	ND (0.4)	ND (0.4)	ND (2)	ND (2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,300
Iron	NA	NA	NA	6,850	NA	NA	NA	2,240	NA	NA	NA	8,580	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,000
Lead	ND (0.1)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.1)	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	2.5				
Magnesium	7,370	8,500	5,520	4,330	2,930	2,280	1,440	1,820	6,090	6,200	4,700	5,390	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	0.50
Dissolved Metals (¡	μg/L)																							
Chromium	ND (1)	1.12	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (0.2)	ND (1)	ND (1)	ND (1)	ND (1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	74
Copper	ND (0.4)	ND (2)	ND (2)	ND (2)	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	ND (0.4)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,300
Lead	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.1)	ND (0.1)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.5
Zinc	6.72	4.89	3.42	3.17	ND (2.5)	ND (2.5)	ND (0.5)	2.82	2.5	ND (2.5)	ND (2.5)	ND (2.5)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50
Carcinogenic Polyc	yclic Arom	atic Hydi	ocarbons	(μg/L)																				
Benzo(a) anthracene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Benzo(b) fluoranthene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Benzo(j,k) fluoranthene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Benzo(a) pyrene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Chrysene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.016
Indeno(1,2,3- cd)pyrene	ND (0.0094)	ND (0.0096)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Dibenz(a,h) anthracene	ND (0.0094)	ND (0.0096	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0098)	ND (0.010)	ND (0.010)	ND (0.011)	0.01
Total cPAHs TEQ ^b	ND (0.0071)	ND (0.0072	NA	NA	ND (0.0071)	ND (0.0072)	NA	NA	ND (0.0071)	ND (0.0072)	NA	NA	ND (0.008)	ND (0.008)	NA	ND (0.008)	ND (0.007)	NA	ND (0.008)	ND (0.007)	NA	ND (0.008)	NA	0.085

				iab	1001) + 01	iniucu).	Julilli	iary or se	iiiacc vv	ater Sam	ipic itesu		dentificati		Calai IIIV	congani	on, Pacific, Was	iiiigtoii.					
	WRI	LEV1-Dra	inage Di	tch	WR	LEV2-Ups	ream We	tland	WRLE	V3-Downs	stream We	<u> </u>		SW1			SW2		SW3		SV	V4	SSLa
Parameter	12/8/10	1/4/11	2/28/11	3/10/11	12/8/10	1/4/11	2/28/11	3/10/11	12/8/10	1/4/11	2/28/11	3/10/11	6/29/18	10/9/18	12/20/18	6/29/18	10/9/18 12/20/	18 6/29/18	10/9/18	12/20/18	10/9/18	12/20/18	
Semivolatile Organ	ic Compou	nds (µg/	L)					•	•						•	•							
2-Methylphenol	ND (0.024)	ND (0.024)	NA	NA	0.539	0.307	NA	NA	0.113	0.0574	NA	NA	NA			NA		NA					NA
4-Methylphenol	ND (0.047)	ND (0.048)	NA	NA	1.55	0.197	NA	NA	ND (0.047)	ND (0.048)	NA	NA	NA			NA		NA					NA
Acenaphthene	ND (0.0189)	ND (0.0096	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0189)	ND (0.0095)	NA	NA	NA			NA		NA					30
Acenaphthylene	ND (0.0094)	ND (0.0096	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	ND (0.0094)	ND (0.0095)	NA	NA	NA			NA		NA					NA
Benzoic Acid	1	1.9	NA	NA	1.75	0.909	NA	NA	ND (0.472)	1.55	NA	NA	NA			NA		NA					NA
Benzyl Alcohol	ND (0.094)	ND (0.096)	NA	NA	0.263	0.21	NA	NA	0.225	ND (0.095)	NA	NA	NA			NA		NA					NA
Butyl Benzyl Phthalate	0.102	ND (0.048)	NA	NA	ND (0.047)	0.092	NA	NA	ND (0.047)	ND (0.048)	NA	NA	NA			NA		NA					1.0
Bis(2-Ethylhexyl) phthalate	0.99	NS (0.26)	NA	NA	0.488	0.23	NA	NA	ND (0.472)	1.77	NA	NA	NA			NA		NA					1.0
Diethyl Phthalate	ND (0.024)	ND (0.024)	NA	NA	0.026	ND (0.024)	NA	NA	ND (0.472)	ND (0.024)	NA	NA	NA			NA		NA					NA
Di-n-butyl Phthalate	0.176	0.14	NA	NA	0.134	0.14	NA	NA	0.149	0.126	NA	NA	NA			NA		NA					8
Naphthalene	ND (0.0189)	0.0241	NA	NA	ND (0.0094)	0.013	NA	NA	0.0231	0.0338	NA	NA	NA			NA		NA					4,710

Bold values detected above the reporting limit

Shaded values exceed the site screening level

μg/L = micrograms per liter

NA = not analyzed

June 2019

ND = not detected above laboratory reporting limits shown in parentheses

SSL = site screening levels

^a Refer to Table 7 "Proposed Site Screening Levels for Groundwater and Surface Water" for notes on how each screening level was selected.

b Total carcinogenic polycyclic aromatic hydrocarbon (cPAHs) toxic equivalency (TEQ) concentration was calculated using one-half the reporting limit for compounds that were not detected above the reporting limit.

mg/L = milligrams per liter

						Tabl	e 5. S	Summ	ary of S	Soil Vapo	r Monito	oring Da	ıta, Pac	ific City	Park R	emedial In	vestigat	ion, Pacific	c, Washin	gton.					
														Sample 1	Identifica	tion ^a									
	1	2	3	4	5	6	7	8	9	10	a	b	С	d	е	MW6	MW9	MW6	MW9	MW1	MW6	MW9	MW6	MW9	MW11
Sample Date								10	/23/1984	ı						3/23	/18	6/21	./18		9/26/18			12/21/18	
Parameter																									
Methane (% Vol)	Trace	0	0	0	0.3	0	0	0	NA	0	0.4	Trace	0.2	Trace	Trace	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Trace Gas ^b (ppm)	0.1	0.3	-0.1	0	6.2	0	0	NA	0	-0.1	0	0	0	0.1	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
H2S (ppm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

^a Samples 1 through 10, and a through e by King County 1984. Samples MW6 and MW9 by Herrera 2018.

NA = not analyzed

ppm = parts per million

H₂S = hydrogen sulfide

b Trace gases include any organic or inorganic gases with an ionization potential <10.2 electron volts (eV) detected by photo-ionization detector (PID).

APPENDIX A

Historical Aerial Photographs



APPENDIX B

Site Grading Plan for Apartments at 4th Avenue Southeast

CITY OF PACIFIC

COUNTY OF KING

100 - 3rd AVENUE SOUTHEAST

PACIFIC, WASHINGTON 98047

PHONE (206) 833-2660

May 11, 1987

Kohl Excavating 3330 East Valley Highway Renton, WA 98055

RE: Short Plat 87-PAC-3

Dear Sirs:

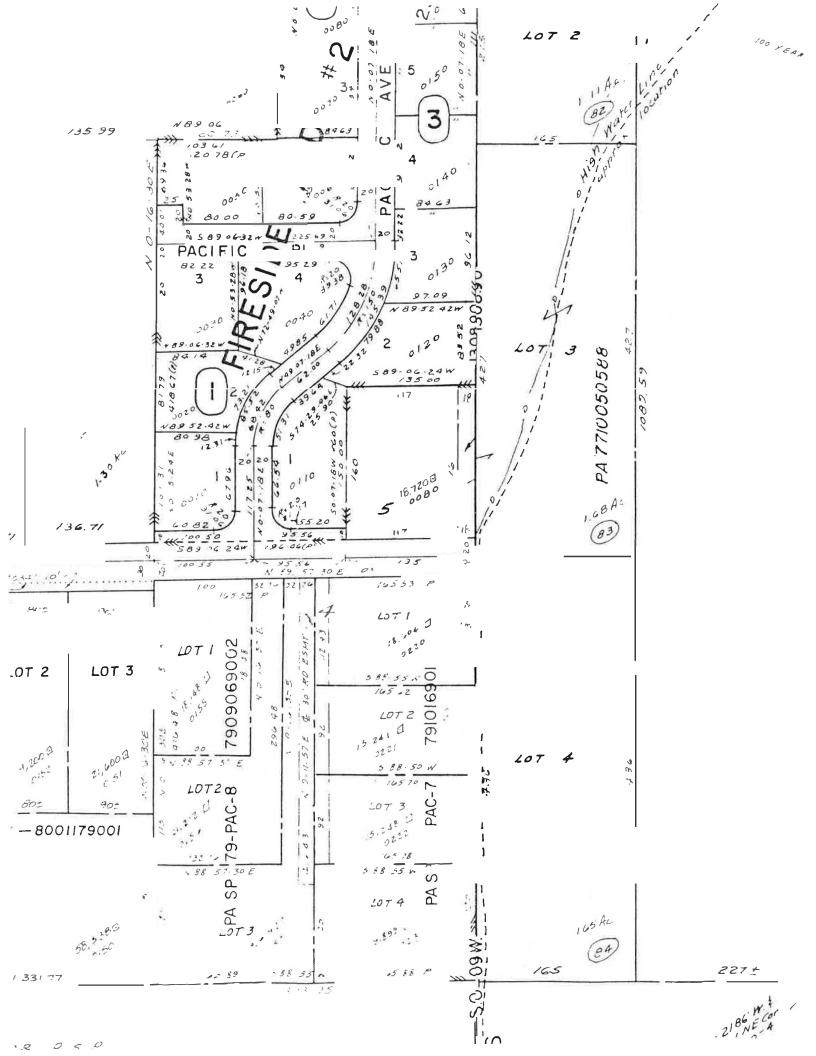
Please be advised that Council granted preliminary plat approval for the above noted short plat subject to the following conditions for final plat approval.

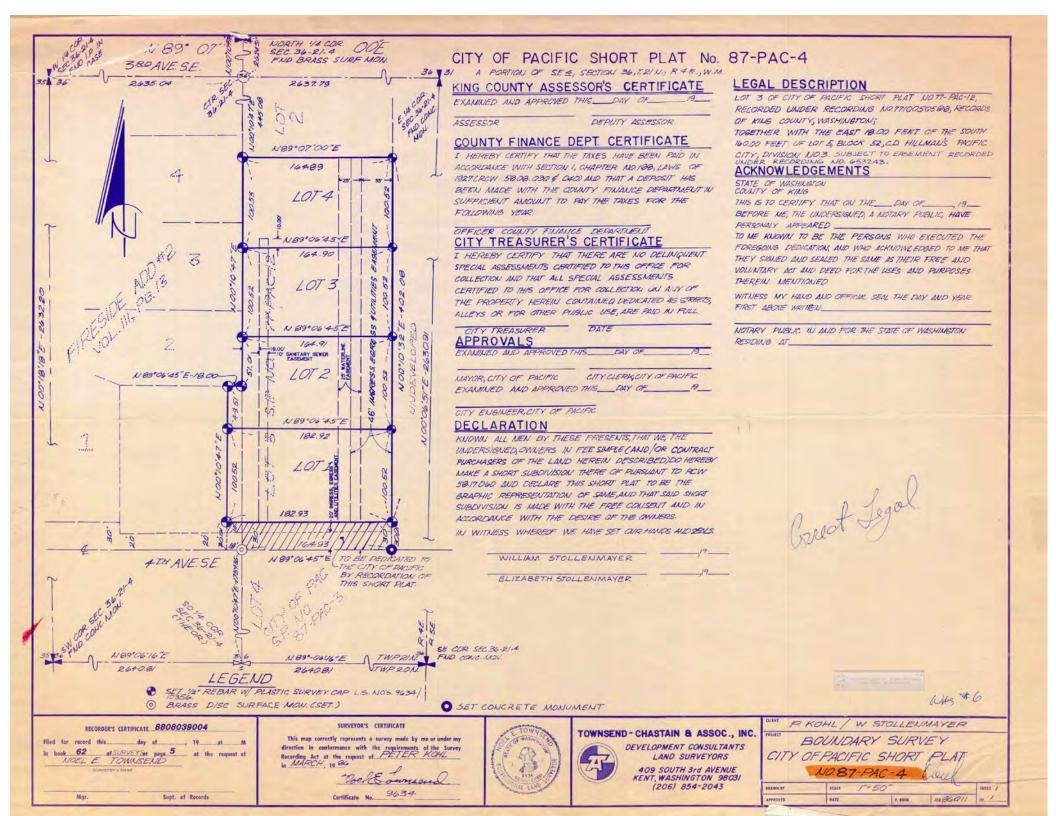
- 1) An 8-inch water main be extended from Fireside Addition No. 2 plat east to the easterly property line of the proposed short plat then southerly along the 30 foot access easement to the south end of the property. A fitting shall be provided at the location to be approved by the City Engineer for future extension.
- 2) The north 30 feet of the existing property be dedicated to the city for road and utilities.
- 3) A 30 foot easement be provided along the easterly property line for ingress, egress, and utilities and appropriate fire truck turnaround.
- 4) Fourth Avenue SE be improved to city standards from the terminus of the existing curb and gutter street section by Fireside Addition No. 2 plat east to the east property line of the proposed short plat culminating in a turnaround.
- 5) The 8-inch sanitary sewer main be extended along 4th Avenue SE and south along the 30 foot access and utility easement to provide service to the southerly lots of the proposed short plat. Department of Ecology and Metro approvals will be required prior to city approval for construction.
- 6) A no-protest agreement be signed with the city for the formation of a future LID to construct sidewalks along 4th Avenue SE. (Copy enclosed)

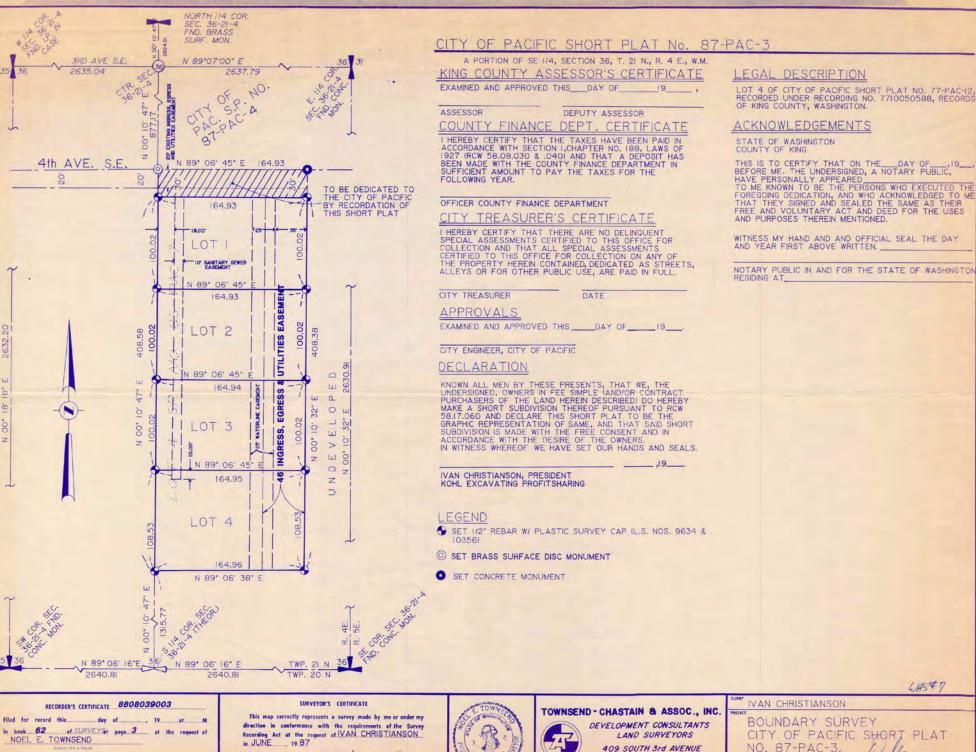
Page 2 Kohl Excavating Short Plat 87-PAC-3 May 11, 1987

- 7) Fire protection be provided by means of the installation of fire hydrants as necessary to the satisfaction and approval of the City Fire Marshall.
- 8) The site be filled to a level above the 100 year HUD level prior to construction of any buildings or utilities without negative impact to adjacent properties. Developer shall obtain all necessary flood control permits with the County prior to City approval for construction.
- 9) Street lights are to be provided at the time of construction by the property owner.
- 10) Type I landscaping shall be provided along the west side of the properties.

You now have 18 months in which to complete the above conditions and submit for final plat approval. Should you have any questions or need additional information please contact our city engineer, Ron Garrow at 838-2868.


Sincerely,


Margaret J. Pullar, CMC


City(Clerk

MJP/s

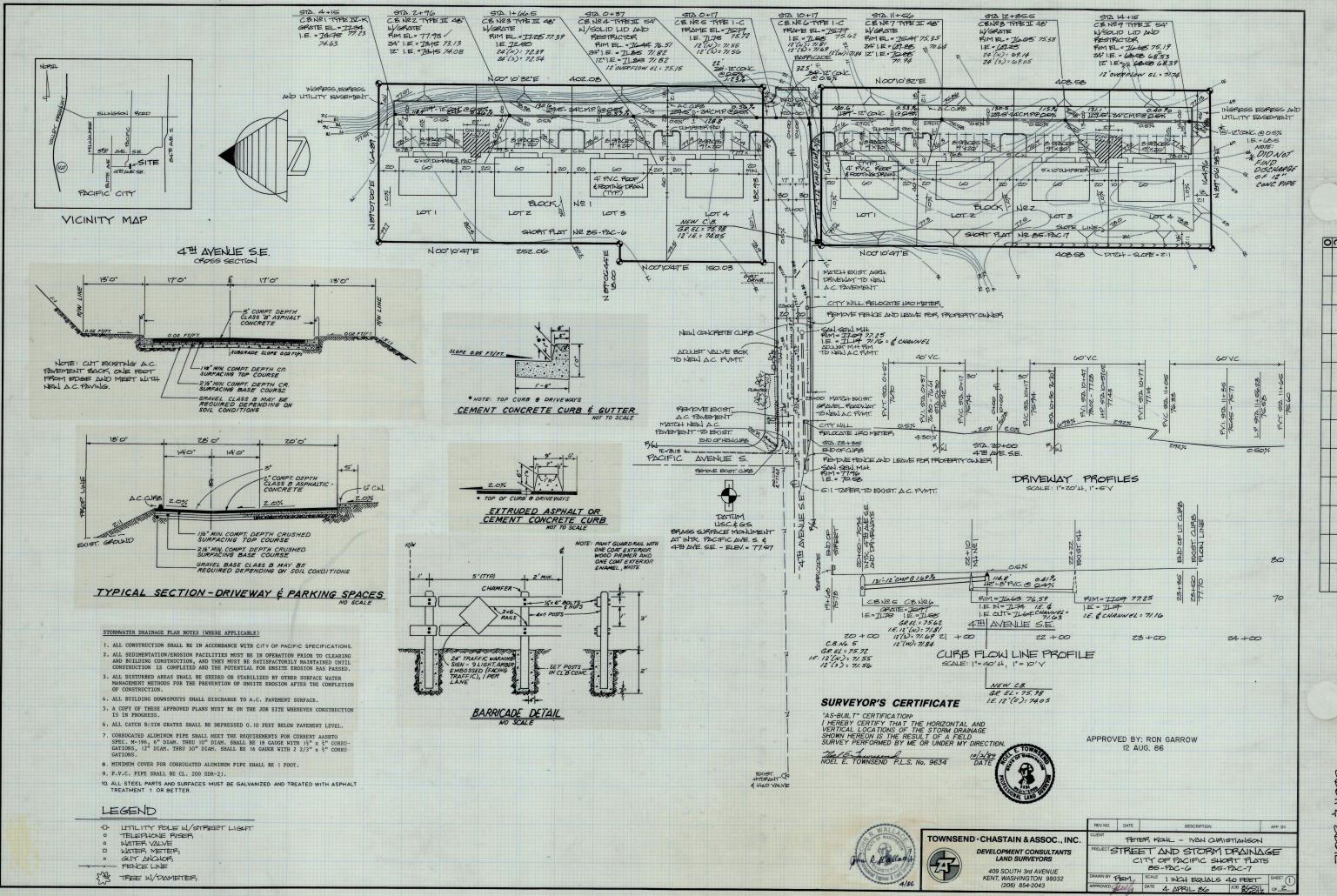
cc: Ron Garrow

The Townend

Certificate No. 9634

Mgr.

Supt. of Records


WHS#7 BOUNDARY SURVEY CITY OF PACIFIC SHORT PLAT NO. 87-PAC-3 DRAWN BY GGP SCALE 1" = 50"

F. 800K

JOB 86012 OF.

DATE 6/1987

KENT, WASHINGTON 98032 (206) 854-2043

APPENDIX C

Soil Boring Logs

SOIL BORING AND MONITORING WELL CONSTRUCTION RECORD

Monitor	MW-10	
	pth: _15	
Sheet	1 of 1	

HERRERA	
Project Name: Pacific Park	Drilling Contractor: Holocene Drilling
Project Number: 17-06520-000	Drilling Method: Hollow Stem Auger
Client: King County	Sampling Method: 18 inch split spoon
Location: Corner of 4th Avenue SE	Ground Elevation:
HEC Rep.: George Iftner	Air Monitoring (y/n): Yes
Start/End Date: <u>12/17/2018</u>	Instrument(s): Photoionization Detector (PID)
Screen: <u>3' - 15' bgs</u>	Institutient(s). Thotolonization beteeto (11b)

(ppm)	Sample Type, Interval	% Recovery	Depth (feet, BGS)	Water Level (feet)	Soil Group	Soil Description	Coi	itoring Well nstruction Detail
					AC	Asphalt underlain by gravel base course	Flush —	KI
			1		GP-GM	Gray-brown sandy GRAVEL with silt, FILL, damp.	mount	
						, , , , , , , , , , , , , , , , , , , ,	Concrete	
			2				00	
					GP	Gray-brown sandy GRAVEL trace silt, poor recovery,	Hydrated-	
20	18-inch Split	10%	3			FILL, damp.	Bentonite chips	
20	Spoon	10%	4		SM	Gray very silty SAND with gravel and roots, FILL,	Cilips	
	18-inch		- T		Jivi	moist. Soil sample MW10-4 collected at 8:55.		
41	Split Spoon	80%	5					
	Эроон			5.0	SP	Dark brown fine to medium SAND trace silt, FILL, wet.		
	18-inch		6					
2	Split Spoon	60%				With wood fragments at 6.5 feet.	12/20	.
			7			Soil sample MW10-7 collected at 9:10.	sand filter	
	18-inch Split Spoon		8		GP	Dark gray-brown sandy GRAVEL trace silt	pack	
0	-Spoon-	60%			a.	(small wood fragments), NATIVE, wet.		
	18-inch		9]	(critaii vood raginorito), ra tri 2, troti		
0	Split Spoon	50%				2" lense of dark gray fine to medium SAND		
			10					
	18-inch Split		4.4					
0	-Spoon-	85%-	_ 11		SP	Dark brown-black fine to medium SAND trace silt. wet.		
	18-inch		12		35	Dark brown-black line to medium SAND trace siit, wet.	O imah	
0	Split Spoon	95%					2-inch —— diameter	
	Spoon	0 2 1 0	13		ML	Dark gray SILT, wet.	schedule 40	
	18-inch				SW	Dark brown-black medium SAND, wet.	PVC 10-slot well screen	
00	Split Spoon	65%	14				3'- 1 5'	
	3,000,11				ML	Dark gray SILT, wet.	Thusadad	
			15		SP	Brown-black fine to medium SAND in shoe.	Threaded — cap	

Notes:

- Last sample 13 feet to 14.5 feet, drilled out bottom to set screen from 3 feet to 15 feet.
- Bottom of exploration at 16 feet.

SOIL BORING AND MONITORING WELL CONSTRUCTION RECORD

Monitori	MW-11	
Total de	pth: <u>15</u>	feet
Sheet _	1 of 1	

Project Name: Pacific Park	Drilling Contractor: Holocene Drilling
Project Number: 17-06520-000	Drilling Method: Hollow Stem Auger
Client: King County	Sampling Method: 18 inch split spoon
Location: Corner of 4th Avenue SE South Apartment	Ground Elevation:
HEC Rep.: George Iftner	Air Monitoring (y/n): Yes
Start/End Date: <u>12/17/2018</u>	Instrument(s): Photoionization Detector (PID)
Screen: <u>3' - 15' bgs</u>	instrument(s). i notolomization betector (FID)

PID Reading (ppm)	Sample Type, Interval	% Recovery	Depth (feet, BGS)	Water Level (feet)	Soil Group	Soil Description		itoring Well nstruction Detail
					AC	Asphalt underlain by gravel base course	Flush ———	
			1		GP-GM	Gray-brown sandy GRAVEL with silt, FILL, damp.	mount	
	18-inch		-			, , , , , , , , , , , , , , , , , , , ,	Concrete	
0	Split Spoon	100%	2				Concrete	
	Эрооп						Hydrated —	
	18-inch		3				Bentonite	
0	Split Spoon	0					chips	
			44					
	18-inch Split				SM	Dark brown silty fine to medium SAND, trace gravel,		
0	Split Spoon	50%	5			FILL, moist. Soil sample MW11-4 collected at 10:45.		
	401		6		SP	Dark brown-black fine to medium SAND, trace		
	18-inch Split	50%	0		3P	silt, (roots), NATIVE, moist. Soil sample		
"	Split Spoon	50%	7			MW11-6.5 collected at 11:00.		
	18-inch		· '	7.0		WWII-0.5 conected at 11.00.		
0	Split Spoon	20	8	1.0				
	-Spoon-	=	· -					
	18-inch		9					
0	Split Spoon	60%						
	Оросп		10		GP	Dark brown rounded GRAVEL with sand, wet.		
	18-inch				SP	Dark brown-black fine to medium SAND, trace		
00	Split Spoon	10%	11			gravel, wet.		
	-							
	18-inch		12		GP	Dark brown-black fine to medium sandy GRAVEL,	2-inch —	
0	Split Spoon	10%	40			Trace silt, wet.	diameter schedule 40	
			13			5 11 11 16 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	PVC 10-slot	
	18-inch Snlit	750/	14		SP	Dark brown-black fine to medium SAND, trace	well screen	
0	Split Spoon	75%				gravel, wet.	3'- 15'	
			15				Threaded —	
			то				сар	

Notes

- Last sample 13 feet to 14.5 feet, drilled out bottom to set screen from 3 feet to 15 feet.
- Bottom of exploration at 16 feet.

SOIL BORING AND MONITORING WELL CONSTRUCTION RECORD

Monitoring Well MW-12
Total depth: 15 feet
Sheet 1 of 1

MERRERA	Olicet 1 of 1
Project Name: Pacific Park	Drilling Contractor: Holocene Drilling
Project Number: <u>17-06520-000</u>	Drilling Method: Hollow Stem Auger
Client: King County	Sampling Method: 18 inch split spoon
Location: NE corner of King County parcel, South of 508 4th Ave SE	Ground Elevation:
HEC Rep.: George Iftner	Air Monitoring (y/n): Yes
Start/End Date: 12/17/2018	Instrument(s): Photoionization Detector (PID)
Screen: 3' - 15' bgs	instrument(s). Thotolomzation Detector (FID)

PID Reading (ppm)	Sample Type, Interval	% Recovery	Depth (feet, BGS)	Water Level (feet)	Soil Group	Soil Description	Con	toring Well struction Detail
0	18-inch Split Spoon	95%	1		SM	Grass, then brown sandy fine to medium GRAVEL with silt, (glass bottle fragments) FILL, damp.	Flush ————————————————————————————————————	Ž X
	18-inch Split Spoon	0%	2		SM	Dark brown silty fine to medium SAND, FILL, damp to Wet.	Concrete	
	18-inch		3	3.0		Soil sample MW12-3 collected at 14:00.	Hydrated	
0	Split Spoon 18-inch	70%_	5		SM	Dark black-brown silty fine-to medium SAND, NATIVE, wet.		
0	Split Spoon	80%	6		PT	Dark black-brown peat layer, wet.		
0	18-inch Split Spoon	70%	7		SP	Black-brown fine to medium SAND, trace silt, wet.		
0	18-inch Split Spoon	50%	9					
0	18-inch Split	80%	10		PT	4-inch thick dark black-brown peat layer, wet.		
	Spoon-		11		SP	Black-brown fine to medium SAND, trace silt, wet.		
0	Split Spoon	80%	12		ML	Dark gray SILT, wet.	2-inch ——	
0	18-inch Split Spoon	65%	13		SM	Dark gray silty fine to medium SAND, wet.	diameter schedule 40 PVC 10-slot	
0	18-inch Split Spoon	95%	14			Soil sample MW12-14 collected at 14:30.	well screen 3'- 15' Threaded ——	
			15				cap	

Notes:

- Last sample 13 feet to 14.5 feet, drilled out bottom to set screen from 3 feet to 15 feet.
- Bottom of exploration at 16 feet.

 Boring ID
 PP35

 Total depth
 15 feet

 Sheet
 1
 of
 1

Project name	Pacific Park	Drilling Co	ntractor ESN	Drilling method Pu	sh-probe rig
Project numbe	r <u>17-06520-000</u>	Location	In front of apartment building	Sampling method	5 ft core with plastic liner
Client King	County	At 502 4th	Ave. SE	Air monitoring (Y/N)	Yes
HEC rep.	George Iftner	Date I	December 20, 2018	Instrument(s)	Photoionization detector

	Sample		Water	Depth		
PID	type,	%	level	(feet,	Soil	Soil description
(ppm)	interval	recovery	(feet)	BGS)	group	
					AC	Asphalt underlain by gravel base course
				1	GP-GM	Gray-brown sandy GRAVEL with silt, FILL, damp.
	T.C				GM	Gray-brown silty GRAVEL with sand, FILL, damp.
	5-foot	00		2		
0	core with	80		3		
	liner		•	3	SM	Dark gray fine to medium silty SAND with gravel, FILL, moist to wet.
	IIIICI		<u>▼</u> 3.6	4	SIVI	Static water level 3.6 feet. Soil sample PP35-4 collected at 10:50.
			3.0			2" layer of brown crushed GRAVEL at 4.3 feet.
				5	SP-SM	Dark gray-brown gravelly fine to medium SAND with silt, FILL, wet.
					51 51/1	Dank gray of own graveny fine to integratin of fixed with one, 1 122, wear
				6		
					GP	Light brown sandy GRAVEL trace silt, FILL, wet.
	5-foot			7	SP-SM	Dark gray-brown gravelly fine to medium SAND with silt, NATIVE, wet.
0	core	60				Soil sample PP35-7.5 collected at 11:00.
	with			8		
	liner					
				9		
				10		
				11		
	~ c			1.2		
	5-foot	4.5		12		
0	core	45		12		
	with			13		
	liner			14	GP	Dark gray-brown fine to medium GRAVEL with brown-black medium
				14	Or	sand, trace silt, wet.
				15	ML	Silt with peat in bottom of sampler.
				13	IVIL	Backfilled borehole with bentonite chips.
						Buckfilled colonies with contonice emps.

 Boring ID
 PP36

 Total depth
 15 feet

 Sheet
 1
 of
 1

Project name	Pacific Park	Drilling Co	ntractor ESN	Drilling method Pu	sh-probe rig
Project numbe	r <u>17-06520-000</u>	Location	In front of apartment building	Sampling method	5 ft core with plastic liner
Client King	County	At 504 4 th	Ave. SE	Air monitoring (Y/N)	Yes
HEC rep.	George Iftner	Date I	December 20, 2018	Instrument(s)	Photoionization detector

	0		10/	D : 11		
PID	Sample type,	%	Water level	Depth (feet,	Soil	
(ppm)	interval	recovery	(feet)	BGS)	group	Soil description
,		,	` ′	,	AC	Asphalt underlain by gravel base course.
				1	GP-GM	Gray-brown sandy GRAVEL trace silt, FILL, damp.
					GM	Brown very silty GRAVEL with sand, FILL, damp. Soil sample PP36-1
	5-foot			2		collected at 9:40.
0	core	80				
	with			3		
	liner		▼			Static water level 3.4 feet.
			<u>▼</u> 3.4	4	ML	Light brown SILT with sand, FILL, wet.
			0	•	1,122	
				5	AC	3" layer of asphalt at 4.5 feet bgs.
					ML	Same SILT as above, FILL, wet. Soil sample PP36-5 collected at 9:55.
				6	1,122	Same Sizi as assis, 1122, went son sample 1100 c concerts at 7100
					SP	Brown-black fine to medium SAND trace silt, NATIVE, wet.
	5-foot			7	51	Brown stack thie to median strike trace shift with 12, were
0	core	60		,		
	with	00		8		
	liner			0		
	IIIICI			9		
				,	GP	Dark brown fine to medium rounded GRAVEL trace silt, wet.
				10	OI .	Dark brown time to incutain rounded GRAVEE trace sin, wet.
				10		
				11		
				11		
	5-foot			12		
0		45		12		
U	core with	43		13		
	liner			13	ML	Gray-brown SILT, wet.
	imer			14	WIL	Gray-brown StL1, wet.
				14		
				15		Deat in bettern of complete
				13		Peat in bottom of sampler. Backfilled borehole with bentonite chips.
						Backfilled dorenole with bentonite chips.

Boring ID PP37
Total depth 15 feet
Sheet 1 of 1

Project name Pacific Park	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>17-06520-000</u>	Location In front of apartment building	Sampling method 5 ft core with plastic liner
Client King County	At 504 4 th Ave. SE	Air monitoring (Y/N) Yes
HEC rep. George Iftner	Date December 20, 2018	Instrument(s) Photoionization detector

_	Sample		Water	Depth	_	
PID (ppm)	type, interval	% recovery	level (feet)	(feet, BGS)	Soil group	Soil description
,		•		,	AC	Asphalt underlain by gravel base course.
				1	GP-GM	Black-brown to gray-brown sandy GRAVEL with silt, FILL, damp.
	5-foot			2	SM	Soil sample PP37-1.5 collected at 8:50. Dark brown silty fine to medium SAND trace gravel, FILL, damp.
0	core	80			SIVI	Dark brown sitty time to medium SAND trace graver, FILL, damp.
	with	00		3		
	liner					
			<u>▼</u> 4.0	4		Static water level 4.0 feet.
			4.0			0.11 1 PP27.5 11 4 1 4 0 05
				5		Soil sample PP37-5 collected at 9:05. Color change to dark gray-brown.
				6		Color change to dark gray-brown.
					SP	Brown-black fine to medium SAND trace silt, NATIVE, wet (with
	5-foot			7		small piece of charcoal).
0	core	60				
	with liner			8		
	imer			9		
				10		
				11		
	5-foot			12	GP	Dark gray-green and brown sandy fine to medium rounded GRAVEL
0	core	45		12	GI	trace silt, wet.
	with			13		
	liner					
				14		
				15		
				13		Backfilled borehole with bentonite chips.
						Bucklined objenote with benkomic emps.

APPENDIX D

Laboratory Analytical Reports

December 28, 2018

Mark Ewbank Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-188

Dear Mark:

Enclosed are the analytical results and associated quality control data for samples submitted on December 18, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 28, 2018 Samples Submitted: December 18, 2018 Laboratory Reference: 1812-188

Project: 17-06520-000

Case Narrative

Samples were collected on December 17, 2018 and received by the laboratory on December 18, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx Analysis

The chromatogram for sample MW10-4 is similar to mineral spirits with diesel.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 1812-188 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW10-4						
Laboratory ID:	12-188-01						
Gasoline	110	11	NWTPH-Gx	12-26-18	12-26-18	Z	
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	92	57-129					
Client ID:	MW11-4						
Laboratory ID:	12-188-03						
Gasoline	ND	3.9	NWTPH-Gx	12-26-18	12-26-18		
Surrogate:	Percent Recovery	Control Limits					
Fluorobenzene	79	57-129					
Client ID:	MW12-3						
Laboratory ID:	12-188-05						
Gasoline	ND	5.2	NWTPH-Gx	12-26-18	12-26-18		
Surrogate:	Percent Recovery	Control Limits			_	•	
Fluorobenzene	79	57-129					

Laboratory Reference: 1812-188 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226S1					
Gasoline	ND	5.0	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	<i>57-129</i>				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	12-223-01									
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						83 82	57-129			

Laboratory Reference: 1812-188 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-4					
Laboratory ID:	12-188-01					
Diesel Range Organics	ND	37	NWTPH-Dx	12-19-18	12-19-18	U1
Lube Oil Range Organics	130	73	NWTPH-Dx	12-19-18	12-19-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	67	50-150				
Client ID:	MW11-4					
Laboratory ID:	12-188-03					
Diesel Range Organics	ND	32	NWTPH-Dx	12-19-18	12-19-18	U1
Lube Oil Range Organics	170	58	NWTPH-Dx	12-19-18	12-19-18	0.
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	MW12-3					
Laboratory ID:	12-188-05					
Diesel Range Organics	ND	33	NWTPH-Dx	12-19-18	12-19-18	
Lube Oil Range Organics	ND	66	NWTPH-Dx	12-19-18	12-19-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				

Laboratory Reference: 1812-188 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1219S1					
Diesel Range Organics	ND	25	NWTPH-Dx	12-19-18	12-19-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	12-19-18	12-19-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Result		Spike Level		Result I	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-187-03										
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	4	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	Ą	NA	NA	NA	
Surrogate:											
o-Terphenyl						<i>75</i>	59	50-150			

Laboratory Reference: 1812-188

Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

Cilic. Ingreg (ppin)			Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-4					
Laboratory ID:	12-188-01					
Arsenic	ND	15	EPA 6010D	12-20-18	12-20-18	
Cadmium	ND	0.73	EPA 6010D	12-20-18	12-20-18	
Chromium	29	0.73	EPA 6010D	12-20-18	12-20-18	
Lead	21	7.3	EPA 6010D	12-20-18	12-20-18	
Mercury	ND	0.36	EPA 7471B	12-21-18	12-21-18	
Client ID:	MW11-4					
Laboratory ID:	12-188-03					
Arsenic	ND	12	EPA 6010D	12-20-18	12-20-18	
Cadmium	ND	0.58	EPA 6010D	12-20-18	12-20-18	
Chromium	31	0.58	EPA 6010D	12-20-18	12-20-18	
Lead	32	5.8	EPA 6010D	12-20-18	12-20-18	
Mercury	ND	0.29	EPA 7471B	12-21-18	12-21-18	
Client ID:	MW12-3					
Laboratory ID:	12-188-05					
Arsenic	ND	13	EPA 6010D	12-20-18	12-20-18	
Cadmium	ND	0.66	EPA 6010D	12-20-18	12-20-18	
Chromium	11	0.66	EPA 6010D	12-20-18	12-20-18	
Lead	ND	6.6	EPA 6010D	12-20-18	12-20-18	
Mercury	ND	0.33	EPA 7471B	12-21-18	12-21-18	

Laboratory Reference: 1812-188

Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1220SM1					
Arsenic	ND	10	EPA 6010D	12-20-18	12-20-18	
Cadmium	ND	0.50	EPA 6010D	12-20-18	12-20-18	
Chromium	ND	0.50	EPA 6010D	12-20-18	12-20-18	
Lead	ND	5.0	EPA 6010D	12-20-18	12-20-18	
Laboratory ID:	MB1221S2					
Mercury	ND	0.25	EPA 7471B	12-21-18	12-21-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-18	88-05									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		ı	NA	NA	NA	20	
Chromium	8.10	8.70	NA	NA		ı	NA	NA	7	20	
Lead	ND	ND	NA	NA		l	NA	NA	NA	20	
Laboratory ID:	12-20	00-10									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	12-18	88-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.7	98.4	100	100	ND	98	98	75-125	1	20	
Cadmium	46.1	46.5	50.0	50.0	ND	92	93	75-125	1	20	
Chromium	110	110	100	100	8.10	102	102	75-125	0	20	
Lead	225	230	250	250	ND	90	92	75-125	2	20	
Laboratory ID:	12-20	00-10									
Mercury	0.585	0.583	0.500	0.500	0.0428	108	108	80-120	0	20	

Laboratory Reference: 1812-188

Project: 17-06520-000

cPAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-4					
Laboratory ID:	12-188-01					
Benzo[a]anthracene	0.012	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Chrysene	0.022	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[b]fluoranthene	0.021	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[a]pyrene	0.016	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Indeno(1,2,3-c,d)pyrene	0.012	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270D/SIM	12-20-18	12-21-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	40 - 117				
Pyrene-d10	82	38 - 119				
Terphenyl-d14	<i>7</i> 9	47 - 135				

Laboratory Reference: 1812-188 Project: 17-06520-000

cPAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW11-4					
Laboratory ID:	12-188-03					
Benzo[a]anthracene	0.040	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Chrysene	0.051	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[b]fluoranthene	0.060	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo(j,k)fluoranthene	0.020	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[a]pyrene	0.049	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Indeno(1,2,3-c,d)pyrene	0.037	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Dibenz[a,h]anthracene	0.0088	0.0078	EPA 8270D/SIM	12-20-18	12-21-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	<i>79</i>	40 - 117				
Pyrene-d10	76	38 - 119				
Terphenyl-d14	72	47 - 135				

Laboratory Reference: 1812-188 Project: 17-06520-000

cPAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW12-3					
Laboratory ID:	12-188-05					
Benzo[a]anthracene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Chrysene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[a]pyrene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270D/SIM	12-20-18	12-21-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	40 - 117				
Pyrene-d10	85	38 - 119				
Terphenyl-d14	83	47 - 135				

Laboratory Reference: 1812-188 Project: 17-06520-000

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1220S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Chrysene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	12-20-18	12-21-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	40 - 117				
Pyrene-d10	90	38 - 119				
Terphenyl-d14	89	47 - 135				

Laboratory Reference: 1812-188 Project: 17-06520-000

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-18	88-05									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0799	0.0804	0.0833	0.0833	ND	96	97	55 - 132	1	20	
Chrysene	0.0742	0.0742	0.0833	0.0833	ND	89	89	51 - 126	0	20	
Benzo[b]fluoranthene	0.0781	0.0748	0.0833	0.0833	ND	94	90	45 - 133	4	21	
Benzo(j,k)fluoranthene	0.0710	0.0751	0.0833	0.0833	ND	85	90	49 - 131	6	24	
Benzo[a]pyrene	0.0823	0.0827	0.0833	0.0833	ND	99	99	50 - 127	0	21	
Indeno(1,2,3-c,d)pyrene	0.0771	0.0780	0.0833	0.0833	ND	93	94	45 - 133	1	22	
Dibenz[a,h]anthracene	0.0698	0.0716	0.0833	0.0833	ND	84	86	46 - 132	3	20	
Surrogate:											
2-Fluorobiphenyl						<i>78</i>	86	40 - 117			
Pyrene-d10						80	81	38 - 119			
Terphenyl-d14						<i>78</i>	78	47 - 135			

Laboratory Reference: 1812-188 Project: 17-06520-000

% MOISTURE

Date Analyzed: 12-19-18

Client ID	Lab ID	% Moisture
MW10-4	12-188-01	31
MW11-4	12-188-03	14
MW12-3	12-188-05	25

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Z The sample chromatogram is similar to mineral spirits with diesel.

ND - Not Detected at PQL

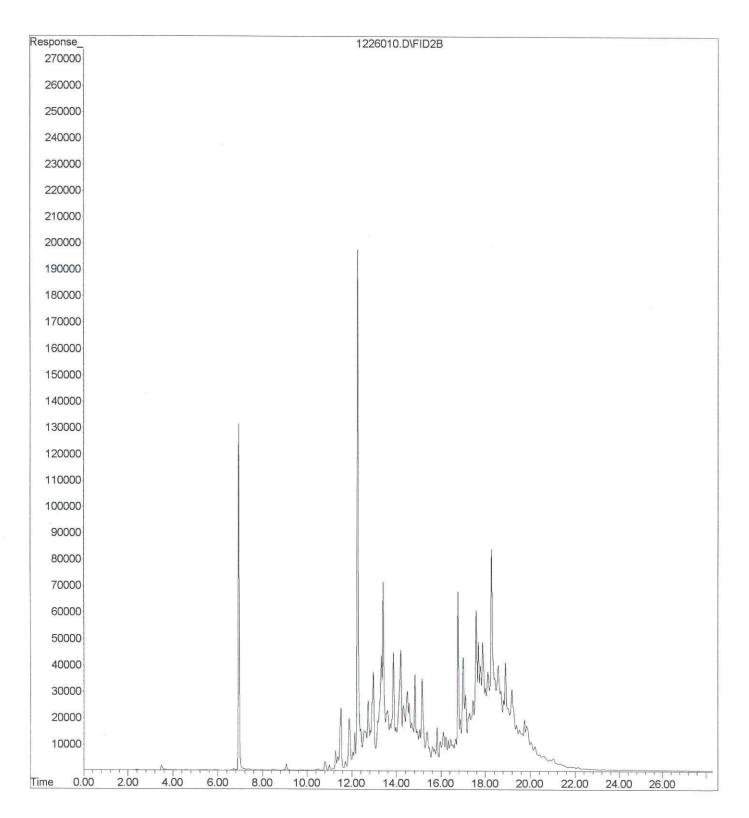
PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page of

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number:								er: 12-188															
Project	Phone: (425) 883-3881 • www.onsite-env.com ny: HERRERA Number: -06520 - 000 Name: CITIC PWY. Manager: WK EWDWK d by: If Mey		Days [andard (7 Days) (other)	1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM	Hs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	and grease) 1664A	CKK115 by 82700/51M		% Moisture	
Lab ID	Sample Identification	Sample	1	Matrix	2	Ž	N	/	2	9 5		Se	PA	PC	ò	ō	ਹ	D	٥ /	2 1		C	++	1	
2	MW10-4	12/17/	9:10	Soil	+		,	V	V		-	+							V		- 1	4	+	X	7
3	MW10-7 MW11-4		101,45		フ フ							+									1			V	1
4	MW 11-6,5		11:00		2				V		+													6	4
5	MW 12-3		14:00		2			/	/										1		\			χ	j
6	My 12-14	1	14:30	4	2																				
7	Trip Blank.	V	X	Water																					
	ý.																								
							-														\perp				
Poline	signature Lunch C Luttura		Company	1			Date	1 1	10	Time	27		mmer		-				n c I) -	0.0	0			
Recei	of the s	_	Herrero	NA	1		12/	18/	110	121	47	- 4	loll	l l	ne	4	OV	^	PCI	55 1	pe	vo	ing		
Relin	quished			YOU	à		12	1-1	10	101		- 1	140	re	Su	H,	5,	-				0 1			
Rece	ved							* 41	1										, W	nW	VI-	6,5,			
Relin	quished								-	7 (a)			N	r W	112	2-	- 12	1.							
Rece	ved								Data Package: Standard ☐ Level III ☐ Level IV ☐																
			Reviewed/Date									Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐													


File : X:\BTEX\DARYL\DATA\D181226\1226010.D

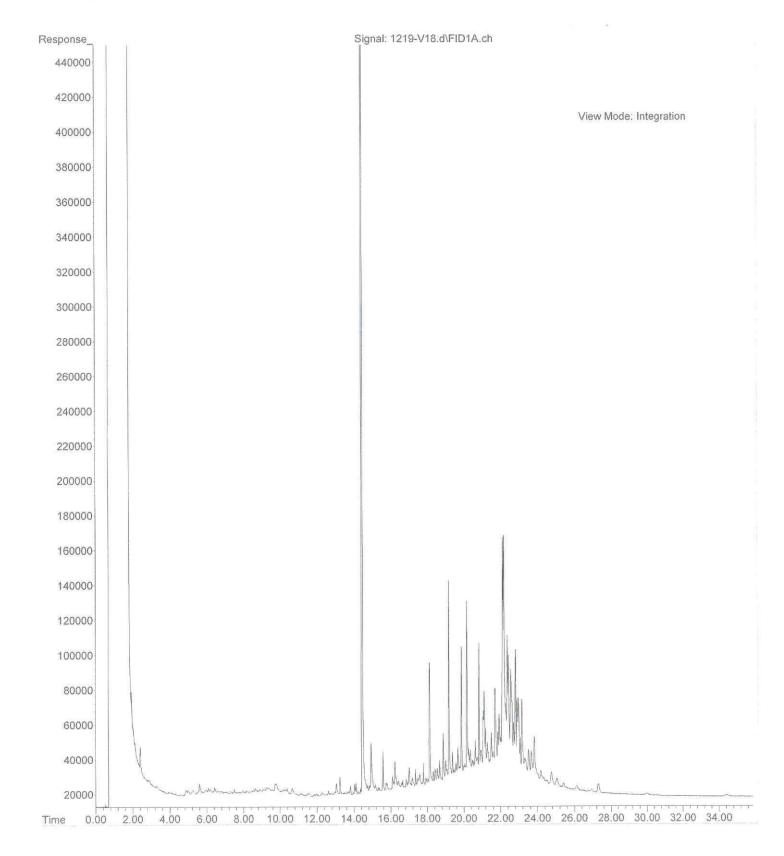
Operator

Acquired : 26 Dec 2018 16:21 using AcqMethod 181220G.M

Instrument : Daryl
Sample Name: 12-188-01s

Misc Info : Vial Number: 10

:C:\msdchem\2\data\V181219\1219-V18.d

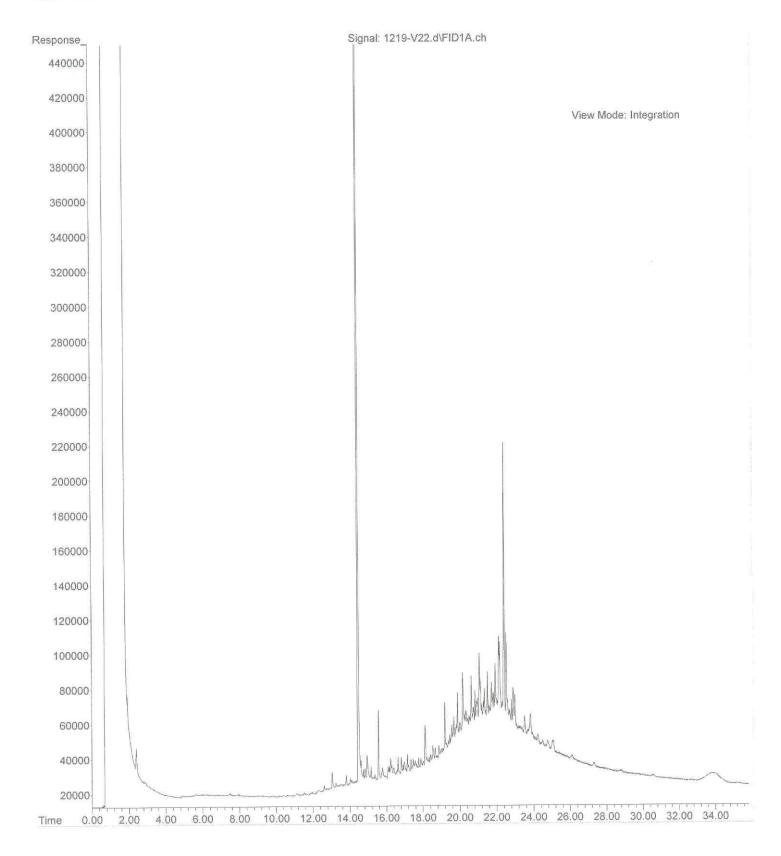

Operator : JT

Acquired : 19 Dec 2018 19:08 using AcqMethod V180601F.M

Instrument : Vigo

Sample Name: 12-188-01

Misc Info : Vial Number: 18



:C:\msdchem\2\data\V181219\1219-V22.d File

Operator : JT
Acquired : 19 Dec 2018 21:48 using AcqMethod V180601F.M
Instrument : Vigo

Vigo Sample Name: 12-188-03

Misc Info : Vial Number: 22

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 9, 2019

Mark Ewbank Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-188B

Dear Mark:

Enclosed are the analytical results and associated quality control data for samples submitted on December 18, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 17-06520-000

Case Narrative

Samples were collected on December 17, 2018 and received by the laboratory on December 18, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx Analysis

Sample MW10-7 was extracted and analyzed outside of hold time.

NWTPH-Dx Analysis

Samples MW10-7 and MW11-6.5 were extracted and analyzed outside of hold time.

PAHs EPA 8270D/SIM Analysis

Sample MW11-6.5 was extracted and analyzed outside of hold time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-7					
Laboratory ID:	12-188-02					
Gasoline	ND	7.2	NWTPH-Gx	1-2-19	1-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	<i>85</i>	57-129				

Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0102S1					
Gasoline	ND	5.0	NWTPH-Gx	1-2-19	1-2-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	57-129				

Analyte	Res	sult	Spike	Level	Source Result	Pero Reco		Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	12-18	38-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						85	84	<i>57-129</i>			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-7					
Laboratory ID:	12-188-02					
Diesel Range Organics	ND	29	NWTPH-Dx	1-3-19	1-3-19	
Lube Oil Range Organics	ND	59	NWTPH-Dx	1-3-19	1-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	MW11-6.5					
Laboratory ID:	12-188-04					
Diesel Range Organics	ND	29	NWTPH-Dx	1-3-19	1-3-19	
Lube Oil Range Organics	ND	58	NWTPH-Dx	1-3-19	1-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Elogo
	nesuit	PQL	wethou	Frepareu	Allalyzeu	Flags
METHOD BLANK						
Laboratory ID:	MB0103S1					
Diesel Range Organics	ND	25	NWTPH-Dx	1-3-19	1-3-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	1-3-19	1-3-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-25	50-33								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range Organics	77.5	66.6	NA	NA		NA	NA	15	NA	
Surrogate:										
o-Terphenyl						70 80	50-150			

PCBs EPA 8082A

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW10-4					
Laboratory ID:	12-188-01					
Aroclor 1016	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1221	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1232	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1242	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1248	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1254	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Aroclor 1260	ND	0.073	EPA 8082A	1-3-19	1-7-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	84	39-130				
Client ID:	MW10-7					
Laboratory ID:	12-188-02					
Aroclor 1016	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1221	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1232	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1242	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1248	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1254	0.13	0.059	EPA 8082A	1-3-19	1-7-19	
Aroclor 1260	ND	0.059	EPA 8082A	1-3-19	1-7-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	78	39-130				
Client ID:	MW11-4					
Laboratory ID:	12-188-03					
Aroclor 1016	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1221	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1232	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1242	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1248	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1254	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1260	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Surrogate:	Percent Recovery	Control Limits				

DCB

39-130

83

PCBs EPA 8082A

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW11-6.5					
Laboratory ID:	12-188-04					
Aroclor 1016	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1221	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1232	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1242	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1248	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1254	ND	0.058	EPA 8082A	1-3-19	1-7-19	
Aroclor 1260	ND	0.058	EPA 8082A	1-3-19	1-7-19	

Surrogate: Percent Recovery Control Limits DCB 39-130 83

Project: 17-06520-000

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0103S1					
Aroclor 1016	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1221	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1232	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1242	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1248	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1254	ND	0.050	EPA 8082A	1-3-19	1-3-19	
Aroclor 1260	ND	0.050	EPA 8082A	1-3-19	1-3-19	

Surrogate: Percent Recovery Control Limits
DCB 91 39-130

Analyte	Re	sult	Spike	Level	Source Result	_	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-2	49-01									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.341	0.317	0.500	0.500	ND	68	63	45-118	7	15	
Surrogate:											
DCB						65	64	39-130			

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW11-6.5					
Laboratory ID:	12-188-04					
Arsenic	ND	12	EPA 6010D	1-3-19	1-3-19	
Cadmium	ND	0.58	EPA 6010D	1-3-19	1-3-19	
Chromium	9.9	0.58	EPA 6010D	1-3-19	1-3-19	
Lead	ND	5.8	EPA 6010D	1-3-19	1-3-19	
Mercury	ND	0.29	EPA 7471B	1-4-19	1-4-19	

TOTAL METALS EPA 6010D/7471B **QUALITY CONTROL**

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0103SM1					
Arsenic	ND	10	EPA 6010D	1-3-19	1-3-19	
Cadmium	ND	0.50	EPA 6010D	1-3-19	1-3-19	
Chromium	ND	0.50	EPA 6010D	1-3-19	1-3-19	
Lead	ND	5.0	EPA 6010D	1-3-19	1-3-19	
Laboratory ID:	MB0104S1					
Mercury	ND	0.25	EPA 7471B	1-4-19	1-4-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-2	55-13									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	34.1	31.6	NA	NA			NA	NA	8	20	
Lead	ND	ND	NA	NA			NA	NA	NA	20	
Laboratory ID:	12-2	55-13									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	12-2	55-13									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	97.4	97.6	100	100	ND	97	98	75-125	0	20	
Cadmium	44.5	45.8	50.0	50.0	ND	89	92	75-125	3	20	
Chromium	127	129	100	100	34.1	93	95	75-125	1	20	
Lead	224	229	250	250	ND	90	92	75-125	2	20	
Laboratory ID:	12-2	55-13									
Mercury	0.530	0.524	0.500	0.500	0.0150	103	102	80-120	1	20	

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW11-6.5					
Laboratory ID:	12-188-04					
Benzo[a]anthracene	ND	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Chrysene	ND	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo[b]fluoranthene	0.020	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo(j,k)fluoranthene	ND	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo[a]pyrene	0.065	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Indeno(1,2,3-c,d)pyrene	0.037	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Dibenz[a,h]anthracene	0.0084	0.0078	EPA 8270D/SIM	1-4-19	1-7-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	40 - 117				
Pyrene-d10	98	38 - 119				
Terphenyl-d14	89	47 - 135				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0104S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	40 - 117				
Pyrene-d10	83	38 - 119				
Terphenyl-d14	80	47 - 135				

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-2	68-07									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0569	0.0597	0.0833	0.0833	ND	68	72	55 - 132	5	20	
Chrysene	0.0548	0.0571	0.0833	0.0833	ND	66	69	51 - 126	4	20	
Benzo[b]fluoranthene	0.0609	0.0608	0.0833	0.0833	ND	73	73	45 - 133	0	21	
Benzo(j,k)fluoranthene	0.0585	0.0626	0.0833	0.0833	ND	70	75	49 - 131	7	24	
Benzo[a]pyrene	0.0649	0.0667	0.0833	0.0833	ND	78	80	50 - 127	3	21	
Indeno(1,2,3-c,d)pyrene	0.0582	0.0606	0.0833	0.0833	ND	70	73	45 - 133	4	22	
Dibenz[a,h]anthracene	0.0565	0.0586	0.0833	0.0833	ND	68	70	46 - 132	4	20	
Surrogate:											
2-Fluorobiphenyl						69	<i>75</i>	40 - 117			
Pyrene-d10						61	65	38 - 119			
Terphenyl-d14						58	61	47 - 135			

% MOISTURE

Date Analyzed: 1-3-19

Client ID	Lab ID	% Moisture
MW10-7	12-188-02	15
MW11-6.5	12-188-04	14

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page of

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		urnaround Req (in working da			La	bora	tory	Nu	mb	er:	12	- "	18	8							
	San 2 D	(Check One) me Day [Days [andard (7 Days) (other) Time d Sampled	1 Day 3 Days Matrix	1 2 2 2 2 Number of Containers		NWTPH-GXBTEX NWTPH-GX	Acid / SG Clean-up)	Volatiles 8260C			Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)			Organopriodis Pesticides 82700/SIM	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	CLANG BY 8270 USIM		S S Moisture
																		_	+		
Signature		Company				Date,	1	Time	9		Comme	-		-	-						
Relinquished Hewse JHTVer	1	Herrero	3			2/18	18	10	:22		Hol	d	all.	fo	·V	PC	B5	De.	nd	ing	
Received		(ONF.			12/1	1/18	12	10	7	Dr	140	c. l	L-	*			- 1		8	
Relinquished					ď		1 - 0				LIN	re	3 N C	17	′		4		~ ~		
Received							1+				He	old	M	WI	6- 8	t, V	hW	VI-	615,	t _s	,
Relinquished											N	n lk	/12	/	14.	(Ø 9	dde	d 1/2	12.D	3 (STA
Received					1						Data Pa						1000000				
Reviewed/Date	Reviewed/Date										Chroma	togran	ns with	final i	report	☐ Ele	ectronic	Data [Delivera	ables (EDI	Ds)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 3, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-229

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-229

Project: 17-06520-000

Samples were collected on December 20, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Case Narrative

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010D/7471B Analysis

The duplicate RPD for Lead is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP35-4					
Laboratory ID:	12-229-01					
Gasoline	ND	4.1	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	57-129				
Client ID:	PP36-5					
Laboratory ID:	12-229-03					
Gasoline	ND	7.0	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	57-129				
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Gasoline	ND	5.5	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	57-129				
Client ID:	PP37-1.5					
Laboratory ID:	12-229-05					
Gasoline	ND	6.3	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				·
Fluorobenzene	75	57-129				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226S2					
Gasoline	ND	5.0	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	<i>57-129</i>				

Analyte	Res	sult	Spike	Level	Source Result	Pero Reco		Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	12-22	28-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N.	A	NA	NA	30	
Surrogate:											
Fluorobenzene						75	68	57-129			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	PP35-4	i QL	Wethou	riepareu	Anaryzeu	i iags
Laboratory ID:	12-229-01					
Diesel Range Organics	ND	120	NWTPH-Dx	12-26-18	12-26-18	U1
Lube Oil	730	58	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	PP36-5					
Laboratory ID:	12-229-03					
Diesel Range Organics	ND	42	NWTPH-Dx	12-26-18	12-26-18	U1
Lube Oil	670	63	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Diesel Range Organics	ND	30	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil	190	60	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	PP37-1.5					
Laboratory ID:	12-229-05					
Diesel Range Organics	29	28	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	57	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits			·	
o-Terphenyl	87	50-150				

Laboratory Reference: 1812-229 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB1226S1					
Diesel Range Organics	ND	25	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	50	NWTPH-Dx	12-26-18	12-26-18	_
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-2	22-02								
	ORIG	DUP								
Diesel Range Organics	35.3	29.7	NA	NA		NA	NA	17	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						90 87	50-150			

Laboratory Reference: 1812-229 Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

omo. mg/rtg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP35-4					
Laboratory ID:	12-229-01					
Arsenic	ND	12	EPA 6010D	12-26-18	12-26-18	
Cadmium	1.3	0.58	EPA 6010D	12-26-18	12-26-18	
Chromium	38	0.58	EPA 6010D	12-26-18	12-26-18	
Lead	580	5.8	EPA 6010D	12-26-18	12-26-18	
Mercury	0.31	0.29	EPA 7471B	12-26-18	12-26-18	
Client ID:	PP36-5					
Laboratory ID:	12-229-03					
Arsenic	ND	13	EPA 6010D	12-26-18	12-26-18	
Cadmium	ND	0.63	EPA 6010D	12-26-18	12-26-18	
Chromium	36	0.63	EPA 6010D	12-26-18	12-26-18	
_ead	11	6.3	EPA 6010D	12-26-18	12-26-18	
Mercury	ND	0.32	EPA 7471B	12-26-18	12-26-18	
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Arsenic	ND	12	EPA 6010D	12-26-18	12-26-18	
Cadmium	ND	0.60	EPA 6010D	12-26-18	12-26-18	
Chromium	38	0.60	EPA 6010D	12-26-18	12-26-18	
Lead	9.9	6.0	EPA 6010D	12-26-18	12-26-18	
Mercury	ND	0.30	EPA 7471B	12-26-18	12-26-18	
Client ID:	PP37-1.5					
Laboratory ID:	12-229-05					
Arsenic	ND	11	EPA 6010D	12-26-18	12-26-18	
Cadmium	ND	0.57	EPA 6010D	12-26-18	12-26-18	
Chromium	21	0.57	EPA 6010D	12-26-18	12-26-18	
Lead	10	5.7	EPA 6010D	12-26-18	12-26-18	
Mercury	ND	0.28	EPA 7471B	12-26-18	12-26-18	

Laboratory Reference: 1812-229 Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B **QUALITY CONTROL**

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226SM2					
Arsenic	ND	10	EPA 6010D	12-26-18	12-26-18	
Cadmium	ND	0.50	EPA 6010D	12-26-18	12-26-18	
Chromium	ND	0.50	EPA 6010D	12-26-18	12-26-18	
Lead	ND	5.0	EPA 6010D	12-26-18	12-26-18	
Laboratory ID:	MB1226S1					
Mercury	ND	0.25	EPA 7471B	12-26-18	12-26-18	

					Source	Do	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result		overy	Limits	RPD	Limit	Flags
DUPLICATE							,				
Laboratory ID:	12-2	28-02									
	ORIG	DUP									
Arsenic	16.0	14.5	NA	NA		ا	NA	NA	10	20	
Cadmium	ND	ND	NA	NA		ı	NA	NA	NA	20	
Chromium	42.1	34.7	NA	NA		ı	NA	NA	19	20	
Lead	33.9	24.6	NA	NA		l	NA	NA	32	20	K
Laboratory ID:	12-19	95-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX ORIVEO											
MATRIX SPIKES	40.0	00.00									
Laboratory ID:		28-02	140	1400		140	1400				
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	104	110	100	100	16.0	88	94	75-125	6	20	
Cadmium	44.9	44.8	50.0	50.0	ND	90	90	75-125	0	20	
Chromium	137	153	100	100	42.1	95	111	75-125	11	20	
Lead	272	251	250	250	33.9	95	87	75-125	8	20	
Laboratory ID:	12-1	95-01									
Mercury	0.521	0.524	0.500	0.500	0.0100	102	103	80-120	1	20	

Laboratory Reference: 1812-229 Project: 17-06520-000

TCLP METALS EPA 1311/6010D/7470A

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Arsenic	ND	0.40	EPA 6010D	1-3-19	1-3-19	
Barium	0.33	0.20	EPA 6010D	1-3-19	1-3-19	
Cadmium	ND	0.020	EPA 6010D	1-3-19	1-3-19	
Chromium	ND	0.020	EPA 6010D	1-3-19	1-3-19	
Lead	ND	0.20	EPA 6010D	1-3-19	1-3-19	
Mercury	ND	0.0050	EPA 7470A	1-3-19	1-3-19	
Selenium	ND	0.40	EPA 6010D	1-3-19	1-3-19	
Silver	ND	0.040	EPA 6010D	1-3-19	1-3-19	

Laboratory Reference: 1812-229 Project: 17-06520-000

TCLP METALS EPA 1311/6010D/7470A **QUALITY CONTROL**

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0103TM1					
Arsenic	ND	0.40	EPA 6010D	1-3-19	1-3-19	
Barium	ND	0.20	EPA 6010D	1-3-19	1-3-19	
Cadmium	ND	0.020	EPA 6010D	1-3-19	1-3-19	
Chromium	ND	0.020	EPA 6010D	1-3-19	1-3-19	
Lead	ND	0.20	EPA 6010D	1-3-19	1-3-19	
Selenium	ND	0.40	EPA 6010D	1-3-19	1-3-19	
Silver	ND	0.040	EPA 6010D	1-3-19	1-3-19	
Laboratory ID:	MB0103T1					
Mercury	ND	0.0050	EPA 7470A	1-3-19	1-3-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-2	29-04									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		ı	NA	NA	NA	20	
Barium	0.326	0.322	NA	NA		1	NA	NA	1	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		ľ	NA	NA	NA	20	
Laboratory ID:	12-2	29-04									
Mercury	ND	ND	NA	NA		l	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:		29-04									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	3.93	4.22	4.00	4.00	ND	98	105	75-125	7	20	
Barium	4.13	4.13	4.00	4.00	0.326	95	95	75-125	0	20	
Cadmium	1.86	1.87	2.00	2.00	ND	93	94	75-125	1	20	
Chromium	3.96	3.99	4.00	4.00	ND	99	100	75-125	1	20	
Lead	9.31	9.32	10.0	10.0	ND	93	93	75-125	0	20	
Selenium	4.31	4.17	4.00	4.00	ND	108	104	75-125	3	20	
Silver	0.932	0.938	1.00	1.00	ND	93	94	75-125	1	20	
Laboratory ID:	12-2	29-04									
Mercury	0.0469	0.0460	0.0500	0.0500	ND	94	92	75-125	2	20	

Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-229

Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP35-4					
Laboratory ID:	12-229-01					
Benzo[a]anthracene	0.19	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Chrysene	0.24	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[b]fluoranthene	0.38	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo(j,k)fluoranthene	0.11	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[a]pyrene	0.35	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	0.26	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Dibenz[a,h]anthracene	0.053	0.0077	EPA 8270D/SIM	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	40 - 117				
Pyrene-d10	62	38 - 119				
Terphenyl-d14	58	47 - 135				

Laboratory Reference: 1812-229 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP36-5					
Laboratory ID:	12-229-03					
Benzo[a]anthracene	ND	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Chrysene	0.026	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[b]fluoranthene	0.020	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[a]pyrene	0.018	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.017	EPA 8270D/SIM	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	40 - 117				
Pyrene-d10	74	38 - 119				
Terphenyl-d14	72	47 - 135				

Laboratory Reference: 1812-229 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Benzo[a]anthracene	0.010	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Chrysene	0.019	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[b]fluoranthene	0.017	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[a]pyrene	0.016	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	0.012	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270D/SIM	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	40 - 117				
Pyrene-d10	66	38 - 119				
Terphenyl-d14	65	47 - 135				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP37-1.5					
Laboratory ID:	12-229-05					
Benzo[a]anthracene	0.014	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Chrysene	0.020	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[b]fluoranthene	0.019	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Benzo[a]pyrene	0.016	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	0.011	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.0076	EPA 8270D/SIM	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	40 - 117				
Pyrene-d10	74	38 - 119				
Terphenyl-d14	73	47 - 135				
Indeno(1,2,3-c,d)pyrene Dibenz[a,h]anthracene Surrogate: 2-Fluorobiphenyl Pyrene-d10	ND Percent Recovery 75 74	0.0076 Control Limits 40 - 117 38 - 119		_	_	

Laboratory Reference: 1812-229 Project: 17-06520-000

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

0 0				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB1227S1						
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Chrysene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	12-27-18	12-27-18		
Surrogate:	Percent Recovery	Control Limits					
2-Fluorobiphenyl	76	40 - 117					
Pyrene-d10	80	38 - 119					
Terphenyl-d14	<i>7</i> 9	47 - 135					

Laboratory Reference: 1812-229 Project: 17-06520-000

cPAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

					Percent Recovery		Recovery		RPD	
Analyte	Re	sult	Spike	Level			Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB1227S1									
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0771	0.0780	0.0833	0.0833	93	94	64 - 132	1	15	
Chrysene	0.0711	0.0731	0.0833	0.0833	85	88	64 - 127	3	15	
Benzo[b]fluoranthene	0.0721	0.0739	0.0833	0.0833	87	89	57 - 128	2	15	
Benzo(j,k)fluoranthene	0.0747	0.0754	0.0833	0.0833	90	91	62 - 130	1	15	
Benzo[a]pyrene	0.0801	0.0814	0.0833	0.0833	96	98	62 - 125	2	15	
Indeno(1,2,3-c,d)pyrene	0.0737	0.0749	0.0833	0.0833	88	90	55 - 130	2	15	
Dibenz[a,h]anthracene	0.0712	0.0729	0.0833	0.0833	85	88	58 - 129	2	15	
Surrogate:										
2-Fluorobiphenyl					<i>75</i>	80	40 - 117			
Pyrene-d10					78	81	38 - 119			
Terphenyl-d14					77	77	47 - 135			

Laboratory Reference: 1812-229 Project: 17-06520-000

% MOISTURE

Date Analyzed: 12-26-18

Client ID	Lab ID	% Moisture
PP35-4	12-229-01	14
PP36-5	12-229-03	21
PP36-1	12-229-04	17
PP37-1.5	12-229-05	12

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

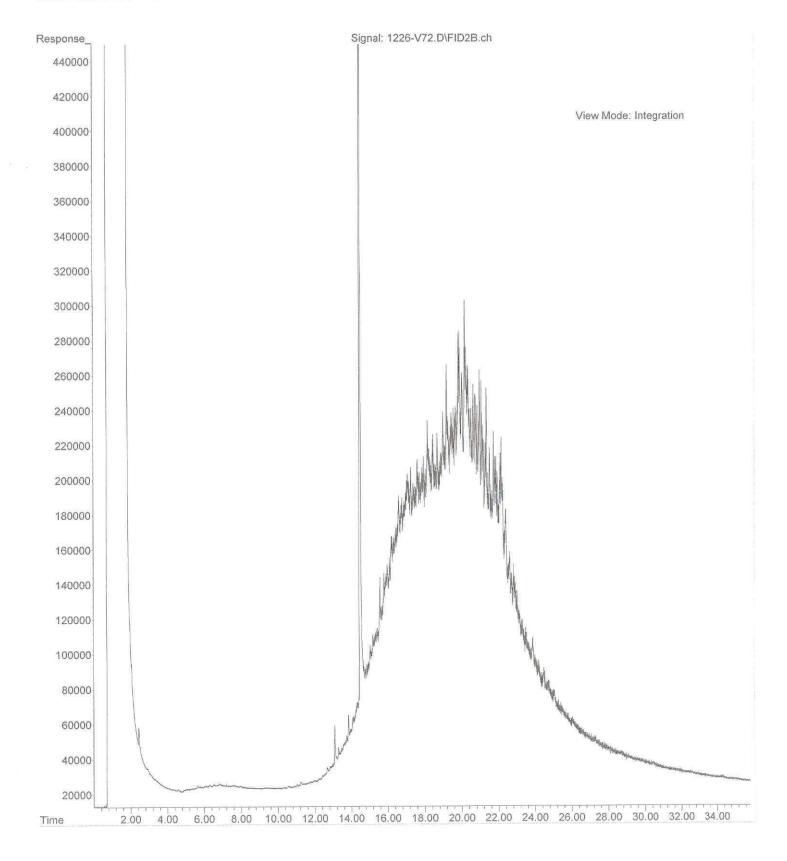
PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

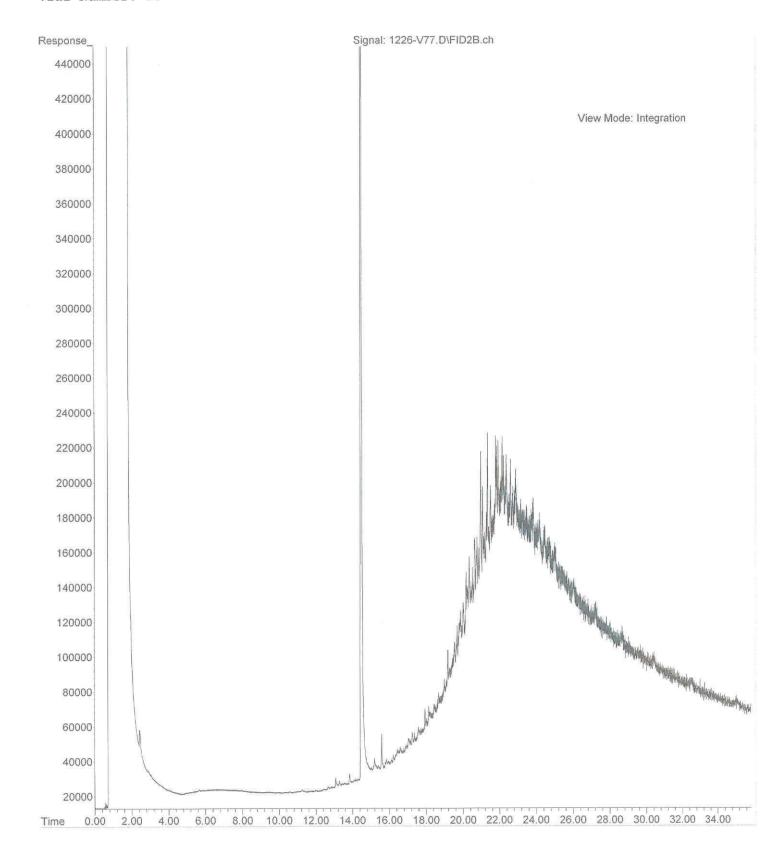
OnSite Environmental Inc.

Chain of Custody

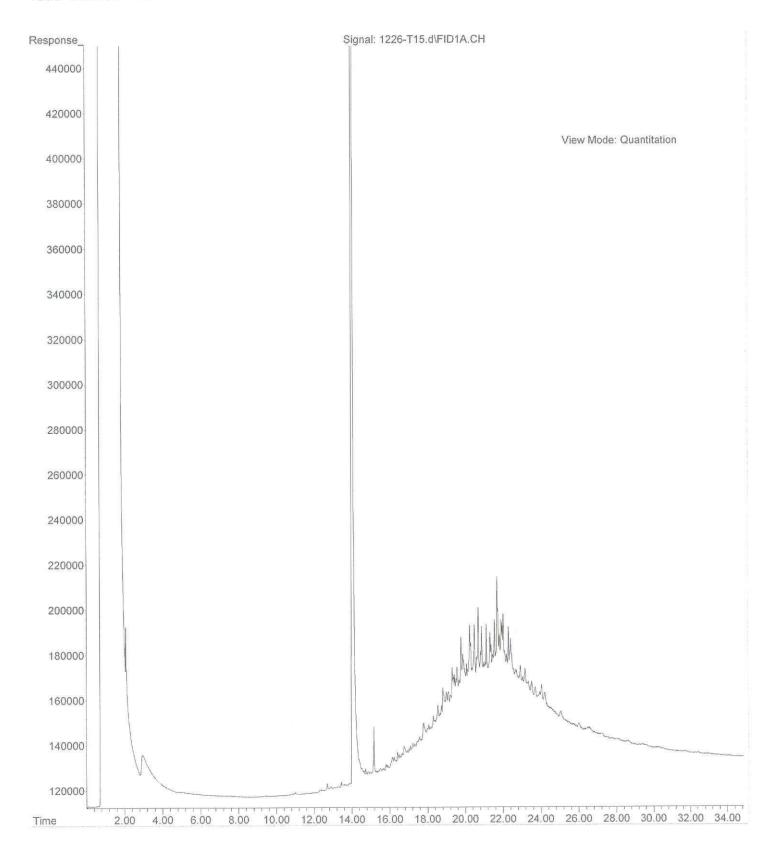
Page of


Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Lá	aboı	rato	ry N	lumk	oer:	•	12	- 2	2	9							
Phone: (425) 883-3881 • www.onsite-env.com Company: HERERA Project Number: 17 - 06520 - 000 Project Name: 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other) Date Time Sampled Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NW PH-DX (Acid / SG Clean-up) Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals HEM (oil and grease) 1664A	04145			% Moisture
1 PP35-4	12/20/18 10:50 Soil	2			1										\checkmark		V	/		X
3 PP36-5	1 11200	2														,				
	09155	2			/												V			X
4 PP36-1	09:40	2			1										V		V	1		X
S PP37-1,5	08,50	2			V										/		V			X
6 PP37-5	09:05	2																		
7 Trip Blank.	1 - water	.)																		
		,																		
Signature	Company			Date	-	Ti	ime		Com	ments	s/Spec	ial Ins	tructio	ns						Maria
Received Survey Control Received	Herreva Specis			12/2		8 1	65 E		Pl	oli	l.	For	V	P	LB	W	na	lys	317	7
Relinquished	speedy			12/	21/19	q	13:0	55	D	0,	di	W	1/1	V	X	Y	03	ul	12	2
Received WALL Liseen OSE				12	21]	18 1	35	55] 1/			7	J	•	J/ V					//
Relinquished				(\perp			2.2											
Received									Data	Pack	age:	Standa	ard [Le	vel III	☐ Le	vel IV			
Reviewed/Date	Reviewed/Date			·					Chro	mato	grams	with fi	nal re	port [Elec	tronic [Data De	eliverabl	es (EDI)s) 🗌

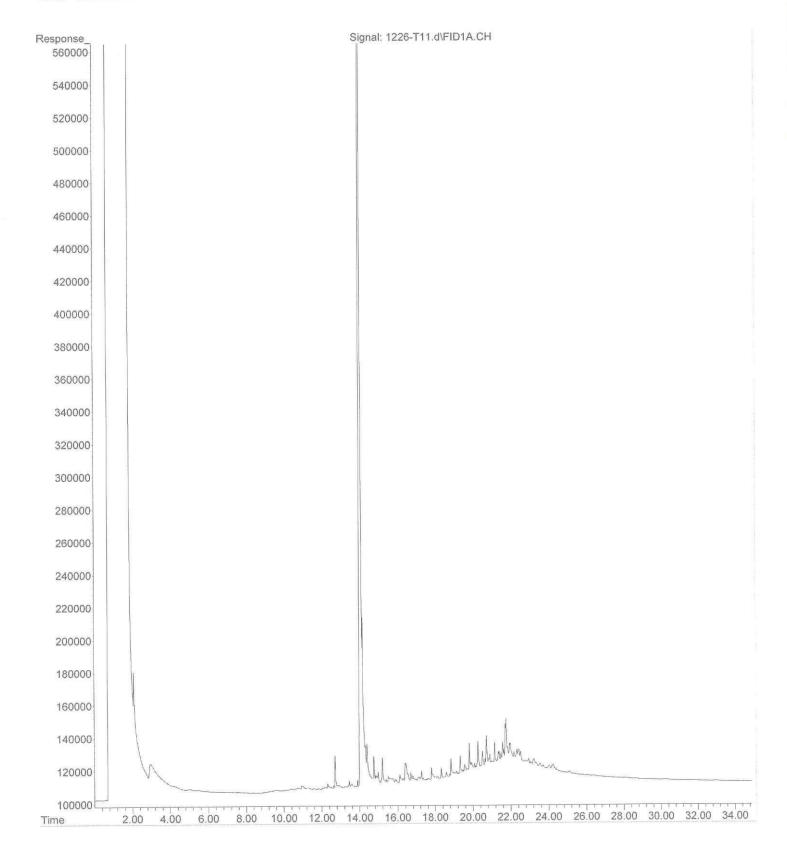
File :X:\DIESELS\VIGO\DATA\V181226.SEC\1226-V72.D


Operator : JT

Acquired : 26 Dec 2018 21:27 using AcqMethod V180601F.M


Instrument : Vigo Sample Name: 12-229-01

File :X:\DIESELS\VIGO\DATA\V181226.SEC\1226-V77.D
Operator : JT
Acquired : 27 Dec 2018 00:46 using AcqMethod V180601F.M
Instrument : Vigo
Sample Name: 12-229-03


File :X:\DIESELS\TERI\DATA\T181226\1226-T15.d
Operator : JT
Acquired : 26 Dec 2018 19:00 using AcqMethod T180110F.M
Instrument : Teri
Sample Name: 12-229-04

:X:\DIESELS\TERI\DATA\T181226\1226-T11.d File

Operator : JT Acquired : 26 Dec 2018 16:09 using AcqMethod T180110F.M

Instrument : Teri Sample Name: 12-229-05

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 15, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-229B

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 17-06520-000

Case Narrative

Samples were collected on December 20, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

Per client request, sample PP35-7.5 was extracted and analyzed outside of hold time.

Total Metals EPA 6010D/7471B Analysis

The duplicate RPD for Lead is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

PAHs EPA 8270D/SIM Analysis

Per client request, samples PP35-7.5 and PP37-5 were extracted and analyzed outside of hold time.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	PP35-7.5			•	•	
Laboratory ID:	12-229-02					
Diesel Range Organics	58	30	NWTPH-Dx	1-4-19	1-8-19	N
Lube Oil Range Organics	210	61	NWTPH-Dx	1-4-19	1-8-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0104S1					
Diesel Range Organics	ND	25	NWTPH-Dx	1-4-19	1-4-19	
Lube Oil Range Organics	ND	50	NWTPH-Dx	1-4-19	1-4-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	01-00)1-06								
	ORIG	DUP								
Diesel Range Organics	120	82.0	NA	NA		NA	NA	38	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						90 90	50-150			

Project: 17-06520-000

PCBs EPA 8082A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP35-4					
Laboratory ID:	12-229-01					
Aroclor 1016	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	0.23	0.058	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.058	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	64	39-130				
Client ID:	PP35-7.5					
Laboratory ID:	12-229-02					
Aroclor 1016	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	56	39-130				
Client ID:	PP36-5					
Laboratory ID:	12-229-03					
Aroclor 1016	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.063	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	51	39-130				

Project: 17-06520-000

PCBs EPA 8082A

Matrix: Soil

A L	D	201	BB . (1 1	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP36-1					
Laboratory ID:	12-229-04					
Aroclor 1016	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.060	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	45	39-130				
Client ID:	PP37-1.5					
Laboratory ID:	12-229-05					
Aroclor 1016	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.057	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	50	39-130				
Client ID:	PP37-5					
Laboratory ID:	12-229-06					
Aroclor 1016	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.062	EPA 8082A	1-14-19	1-14-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	48	39-130				

Project: 17-06520-000

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0114S1					
Aroclor 1016	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1221	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1232	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1242	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1248	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1254	ND	0.050	EPA 8082A	1-14-19	1-14-19	
Aroclor 1260	ND	0.050	EPA 8082A	1-14-19	1-14-19	
0	D D	0				

Surrogate: Percent Recovery Control Limits DCB 83 39-130

Analyte	Re	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB01	I14S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.414	0.381	0.500	0.500	N/A	83	76	56-124	8	18	
Surrogate:											
DCB						80	79	39-130			

Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP35-7.5					
Laboratory ID:	12-229-02					
Arsenic	ND	12	EPA 6010D	1-7-19	1-7-19	
Cadmium	ND	0.60	EPA 6010D	1-7-19	1-7-19	
Chromium	26	1.2	EPA 6010D	1-7-19	1-7-19	
Lead	28	6.0	EPA 6010D	1-7-19	1-7-19	
Mercury	ND	0.30	EPA 7471B	1-7-19	1-7-19	

Project: 17-06520-000

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0107SM1					
Arsenic	ND	10	EPA 6010D	1-7-19	1-7-19	
Cadmium	ND	0.50	EPA 6010D	1-7-19	1-7-19	
Chromium	ND	1.0	EPA 6010D	1-7-19	1-7-19	
Lead	ND	5.0	EPA 6010D	1-7-19	1-7-19	
Laboratory ID:	MB0107S1					
Mercury	ND	0.25	EPA 7471B	1-7-19	1-7-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-02	22-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		ı	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		ı	NA	NA	NA	20	
Chromium	31.3	32.5	NA	NA		ı	NA	NA	4	20	
Lead	ND	ND	NA	NA		l	NA	NA	NA	20	
Laboratory ID:	01-02	21-01									
Mercury	ND	ND	NA	NA		l	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-02	22-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	89.6	87.1	100	100	ND	90	87	75-125	3	20	
Cadmium	42.5	42.5	50.0	50.0	ND	85	85	75-125	0	20	
Chromium	123	127	100	100	31.3	92	96	75-125	3	20	
Lead	238	238	250	250	ND	95	95	75-125	0	20	
Laboratory ID:	01-0:	21-01									
Mercury	0.554	0.564	0.500	0.500	0.0389	103	105	80-120	2	20	

Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
PP35-7.5					
12-229-02					
0.24	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.83	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.12	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.062	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.084	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.045	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
0.015	0.0081	EPA 8270D/SIM	1-4-19	1-7-19	
Percent Recovery	Control Limits				
84	40 - 117				
93	38 - 119				
88	47 - 135				
	PP35-7.5 12-229-02 0.24 0.83 0.12 0.062 0.084 0.045 0.015 Percent Recovery 84 93	PP35-7.5 12-229-02 0.24 0.0081 0.83 0.0081 0.12 0.0081 0.062 0.0081 0.045 0.0081 0.015 0.0081 Percent Recovery Control Limits 84 40 - 117 93 38 - 119	PP35-7.5 12-229-02 0.24 0.0081 EPA 8270D/SIM 0.83 0.0081 EPA 8270D/SIM 0.12 0.0081 EPA 8270D/SIM 0.062 0.0081 EPA 8270D/SIM 0.045 0.0081 EPA 8270D/SIM 0.015 0.0081 EPA 8270D/SIM Percent Recovery Control Limits 84 40 - 117 93 38 - 119	Result PQL Method Prepared PP35-7.5 12-229-02	Result PQL Method Prepared Analyzed PP35-7.5 12-229-02

Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PP37-5					
Laboratory ID:	12-229-06					
Benzo[a]anthracene	0.60	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Chrysene	0.64	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo[b]fluoranthene	0.76	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo(j,k)fluoranthene	0.24	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Benzo[a]pyrene	0.57	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Indeno(1,2,3-c,d)pyrene	0.42	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Dibenz[a,h]anthracene	0.086	0.0083	EPA 8270D/SIM	1-4-19	1-7-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	40 - 117				
Pyrene-d10	94	38 - 119				
Terphenyl-d14	86	47 - 135				

Project: 17-06520-000

CPAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0104S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Chrysene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	1-4-19	1-4-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	40 - 117				
Pyrene-d10	83	38 - 119				
Terphenyl-d14	80	47 - 135				

Project: 17-06520-000

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	12-20	68-07									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0569	0.0597	0.0833	0.0833	ND	68	72	55 - 132	5	20	
Chrysene	0.0548	0.0571	0.0833	0.0833	ND	66	69	51 - 126	4	20	
Benzo[b]fluoranthene	0.0609	0.0608	0.0833	0.0833	ND	73	73	45 - 133	0	21	
Benzo(j,k)fluoranthene	0.0585	0.0626	0.0833	0.0833	ND	70	75	49 - 131	7	24	
Benzo[a]pyrene	0.0649	0.0667	0.0833	0.0833	ND	78	80	50 - 127	3	21	
Indeno(1,2,3-c,d)pyrene	0.0582	0.0606	0.0833	0.0833	ND	70	73	45 - 133	4	22	
Dibenz[a,h]anthracene	0.0565	0.0586	0.0833	0.0833	ND	68	70	46 - 132	4	20	
Surrogate:											
2-Fluorobiphenyl						69	<i>7</i> 5	40 - 117			
Pyrene-d10						61	65	38 - 119			
Terphenyl-d14						58	61	47 - 135			

Project: 17-06520-000

% MOISTURE

Date Analyzed: 12-26-18&1-7-19

Client ID	Lab ID	% Moisture
PP35-7.5	12-229-02	17
PP37-5	12-229-06	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

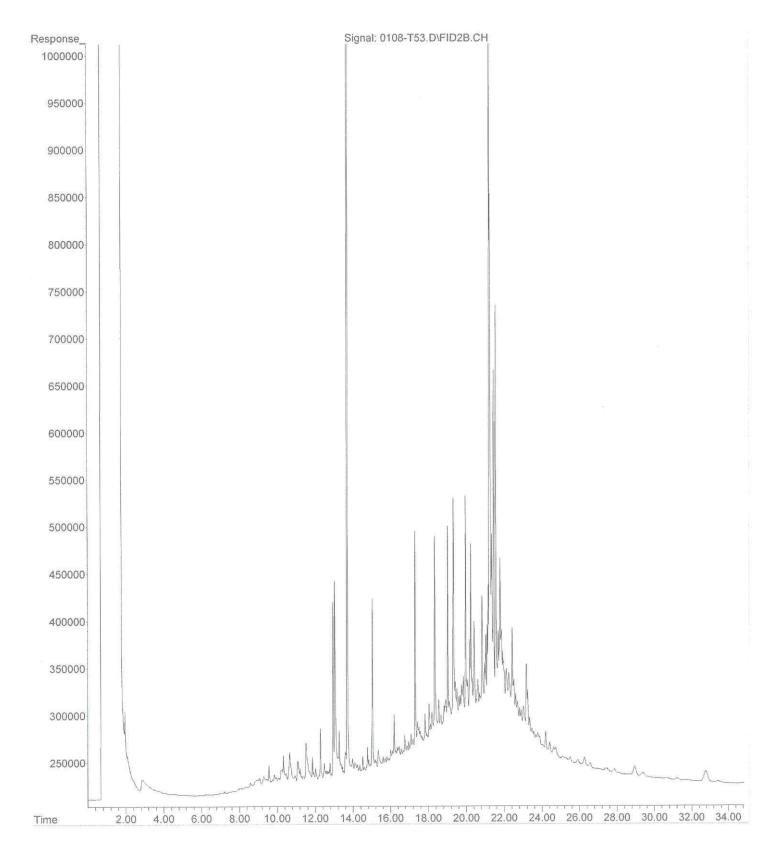
OnSite Environmental Inc.

Chain of Custody

Page of

	14648 NE 9	oratory Testing Services 5th Street • Redmond, WA 98052	Tı	irnaround Req in working da	uest ys)		La	abo	rate	ory	Num	ber:	•	12		22	29									
Project	Number: 0652 Name: CIA-C Manager: Edge J d by: There	Park.	Sar 2 D Date Sampled	ays [- ndard (7 Days) (other)	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	I CLP Metals HEM (oil and grease) 1664A		Crans		V Marian	% Moisture
ì	PP35-	4	///	8 10:50		2			1						Ø				,	/		V	/			X
9	PP35 -	7.5	1	11:00	1	2			((X)					$\langle X \rangle$				(Ø,	,	(3)		(2
3	PP 36.	-5		09155		2			/	$\sqrt{}$				(X							V				X
4	PP36-	-		09:40		2			1	$\sqrt{}$					\bigcirc					V		V	1			X
5	PP37-	-1,5		08,50		2			V	\checkmark				(X					/		V	1	Ш		X
6	PP37-	5		09:05	V	2								($\widehat{\mathbb{X}}$,						(>			C	Q
7	Trip Bl	ank.	4		Water	1																				
																								\sqcup	_	
						Ц																	_	\sqcup		
													0-		±-10-	!-!	Lanton									
Relino	uished	Signature Level charles		Company	1041			Date	20/		Time 1620	277			its/Sp					, D			0	+	`	
Recei	**************************************	surge agrees	/	so eco	14			140	17.11	18	10-1		Pl	ol	K	4	OV	9	46	6	W	ha	ly	51	5	
Relin	quished	m		50ecd				12	124		13:		b	OA	-d	1/	11		1	W	Y	es	in	et.	2	
Rece	Received Wall Liseu			05	E			-		_	139		1		,0	("	7	1	-)/ (,	,			11	
Relin	quished			> "				7		'			6	Sp	dole	<u>e</u> d	1/4	11	9.	Di	3(ST	A)	0.		
Rece	ved												Data	a Pac	kage	: Sta	ndar	d □	Lev	el III] Le	evel I\	1			
Revie	wed/Date		Reviewed/Date					Chromatograms with final report Electronic Data Deliverables (EDDs)																		

:C:\msdchem\1\data\T190108.SEC\0108-T53.D File


File :C:\msdchem\1\data\T190108.SEC\0108-T53.D

Operator : JT

Acquired : 08 Jan 2019 9:43 using AcqMethod T190108F.M

Instrument : Teri

Sample Name: 12-229-02

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 3, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-233

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 1812-233

Project: 17-06520-000

Case Narrative

Samples were collected on December 20, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Laboratory Reference: 1812-233 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

Date	Date	
Prepared	Analyzed	Flags
12-26-18	12-26-18	
12-26-18	12-26-18	
12-26-18	12-26-18	
12-26-18	12-26-18	
•		
	12-26-18 12-26-18	Prepared Analyzed 12-26-18 12-26-18 12-26-18 12-26-18 12-26-18 12-26-18

Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-233 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226W1					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	<i>7</i> 9	66-117				

	_				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										_
Laboratory ID:	12-23	33-01								
	ORIG	DUP								_
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										_

Fluorobenzene 85 66-117 80

Laboratory Reference: 1812-233 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	SW2					
Laboratory ID:	12-233-02					
Diesel Range Organics	ND	0.27	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	SW3					
Laboratory ID:	12-233-03					
Diesel Range Organics	ND	0.25	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	SW4					
Laboratory ID:	12-233-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

Laboratory Reference: 1812-233 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	nesuit	FQL	Wethou	Fiepaieu	Allalyzeu	i iags
Laboratory ID:	MB1226W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	12-26-18	12-26-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-23	33-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N/	4	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N/	4	NA	NA	NA	
Surrogate:											
o-Terphenyl						86	91	50-150			

Laboratory Reference: 1812-233

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 97 75-127 97 Toluene-d8 80-127 4-Bromofluorobenzene 100 78-125

Laboratory Reference: 1812-233

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW2					
Laboratory ID:	12-233-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW2					
Laboratory ID:	12-233-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 93 75-127 Toluene-d8 94 80-127 4-Bromofluorobenzene 99 78-125

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW3					
Laboratory ID:	12-233-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW3					
Laboratory ID:	12-233-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 96 75-127 100 Toluene-d8 80-127 4-Bromofluorobenzene 106 78-125

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW4					
Laboratory ID:	12-233-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW4					
Laboratory ID:	12-233-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery				-	

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 95 75-127
Toluene-d8 96 80-127
4-Bromofluorobenzene 102 78-125

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	12-233-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	12-233-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 97 75-127 99 Toluene-d8 80-127 4-Bromofluorobenzene 106 78-125

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Onits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1227W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-233

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB1227W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit
Dibromofluoromethane 96 75-127
Toluene-d8 96 80-127
4-Bromofluorobenzene 103 78-125

Laboratory Reference: 1812-233 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB12	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.85	9.60	10.0	10.0	99	96	62-129	3	15	
Benzene	10.1	9.88	10.0	10.0	101	99	77-127	2	15	
Trichloroethene	10.2	9.63	10.0	10.0	102	96	70-120	6	15	
Toluene	10.5	9.88	10.0	10.0	105	99	82-123	6	15	
Chlorobenzene	10.6	9.97	10.0	10.0	106	100	79-120	6	15	
Surrogate:										
Dibromofluoromethane					94	101	<i>75-127</i>			
Toluene-d8					93	95	80-127			
4-Bromofluorobenzene					101	100	78-125			

Laboratory Reference: 1812-233 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A

omio. ug/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
Arsenic	ND	3.3	EPA 200.8	12-28-18	12-28-18	
Cadmium	ND	4.4	EPA 200.8	12-28-18	12-28-18	
Chromium	ND	11	EPA 200.8	12-28-18	12-28-18	
Lead	ND	1.1	EPA 200.8	12-28-18	12-28-18	
Mercury	ND	0.50	EPA 7470A	1-2-19	1-2-19	
Client ID:	SW2					
Laboratory ID:	12-233-02					
Arsenic	ND	3.3	EPA 200.8	12-28-18	12-28-18	
Cadmium	ND	4.4	EPA 200.8	12-28-18	12-28-18	
Chromium	ND	11	EPA 200.8	12-28-18	12-28-18	
Lead	ND	1.1	EPA 200.8	12-28-18	12-28-18	
Mercury	ND	0.50	EPA 7470A	1-2-19	1-2-19	
Client ID:	SW3					
Laboratory ID:	12-233-03					
Arsenic	ND	3.3	EPA 200.8	12-28-18	12-28-18	
Cadmium	ND	4.4	EPA 200.8	12-28-18	12-28-18	
Chromium	ND	11	EPA 200.8	12-28-18	12-28-18	
Lead	ND	1.1	EPA 200.8	12-28-18	12-28-18	
Mercury	ND	0.50	EPA 7470A	1-2-19	1-2-19	
Client ID:	SW4					
Laboratory ID:	12-233-04					
Arsenic	ND	3.3	EPA 200.8	12-28-18	12-28-18	
Cadmium	ND	4.4	EPA 200.8	12-28-18	12-28-18	
Chromium	ND	11	EPA 200.8	12-28-18	12-28-18	
Lead	ND	1.1	EPA 200.8	12-28-18	12-28-18	
Mercury	ND	0.50	EPA 7470A	1-2-19	1-2-19	

Laboratory Reference: 1812-233 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1228WM1					
Arsenic	ND	3.3	EPA 200.8	12-28-18	12-28-18	
Cadmium	ND	4.4	EPA 200.8	12-28-18	12-28-18	
Chromium	ND	11	EPA 200.8	12-28-18	12-28-18	
Lead	ND	1.1	EPA 200.8	12-28-18	12-28-18	
Laboratory ID:	MB0102W1					
Mercury	ND	0.50	EPA 7470A	1-2-19	1-2-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-17	75-06									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	12-23	30-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	12-17	75-06									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	233	234	222	222	ND	105	106	75-125	1	20	
Cadmium	225	224	222	222	ND	101	101	75-125	0	20	
Chromium	205	208	222	222	ND	92	94	75-125	2	20	
Lead	214	217	222	222	ND	96	98	75-125	2	20	
Laboratory ID:	12-23	30-01									
Mercury	11.7	11.6	12.5	12.5	ND	94	93	75-125	1	20	

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	21 - 110				
Pyrene-d10	76	19 - 111				
Terphenyl-d14	<i>75</i>	32 - 137				

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
SW2					
12-233-02					
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Percent Recovery	Control Limits				
65	21 - 110				
80	19 - 111				
81	32 - 137				
	SW2 12-233-02 ND ND ND ND ND ND ND ND Percent Recovery 65 80	SW2 12-233-02 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 Percent Recovery Control Limits 65 21 - 110 80 19 - 111	SW2 12-233-02 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 65 21 - 110 80 19 - 111	SW2 12-233-02 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 65 21 - 110 80 19 - 111	Result PQL Method Prepared Analyzed SW2 12-233-02 12-233-02 12-26-18 12-26-18 ND 0.010 EPA 8270D/SIM 12-26-18 12-26-18 Percent Recovery Control Limits 65 21 - 110 80 19 - 111 19 - 111

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW3					
Laboratory ID:	12-233-03					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	21 - 110				
Pyrene-d10	<i>7</i> 9	19 - 111				
Terphenyl-d14	79	32 - 137				

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
SW4					
12-233-04					
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Percent Recovery	Control Limits				
76	21 - 110				
71	19 - 111				
86	32 - 137				
	SW4 12-233-04 ND ND ND ND ND ND ND ND ND Percent Recovery 76 71	SW4 12-233-04 ND 0.011 ND 0.011 ND 0.011 ND 0.011 ND 0.011 ND 0.011 Percent Recovery Control Limits 76 21 - 110 71 19 - 111	SW4 12-233-04 ND 0.011 EPA 8270D/SIM Percent Recovery Control Limits 76 21 - 110 71 19 - 111	SW4 12-233-04 ND 0.011 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 76 21 - 110 71 19 - 111	Result PQL Method Prepared Analyzed SW4 12-233-04 12-26-18 12-27-18 ND 0.011 EPA 8270D/SIM 12-26-18 12-27-18 Percent Recovery Control Limits 76 21 - 110 71 19 - 111

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1226W1					
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Percent Recovery	Control Limits				
37	21 - 110				
<i>7</i> 9	19 - 111				
79	32 - 137				
	MB1226W1 ND ND ND ND ND ND ND ND ND Percent Recovery 37 79	ND 0.010 Percent Recovery Control Limits 37 21 - 110 79 19 - 111	MB1226W1 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 37 21 - 110 79 19 - 111	Result PQL Method Prepared MB1226W1 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 37 21 - 110 79 19 - 111	MB1226W1 ND 0.010 EPA 8270D/SIM 12-26-18 12-26-18 Percent Recovery Control Limits 37 21 - 110 79 19 - 111

Laboratory Reference: 1812-233 Project: 17-06520-000

cPAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

3					1	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	R	lecc	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB12	26W1									
	SB	SBD	SB	SBD	S	В	SBD				
Benzo[a]anthracene	0.501	0.514	0.500	0.500	10	00	103	57 - 127	3	15	
Chrysene	0.462	0.468	0.500	0.500	9	2	94	51 - 120	1	15	
Benzo[b]fluoranthene	0.486	0.502	0.500	0.500	9	7	100	54 - 124	3	17	
Benzo(j,k)fluoranthene	0.478	0.484	0.500	0.500	9	6	97	50 - 127	1	18	
Benzo[a]pyrene	0.514	0.526	0.500	0.500	10	03	105	50 - 120	2	16	
Indeno(1,2,3-c,d)pyrene	0.507	0.524	0.500	0.500	10	01	105	46 - 132	3	20	
Dibenz[a,h]anthracene	0.493	0.505	0.500	0.500	9	9	101	49 - 129	2	18	
Surrogate:											
2-Fluorobiphenyl					6	64	60	21 - 110			
Pyrene-d10					8	31	81	19 - 111			
Terphenyl-d14					8	33	82	32 - 137			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

	1		1
Page	(of	(

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	abo	rato	ory	Num	ber	:	1	2	- 2	23	3								
Project Name: Project Name: Project Manager: Company: Project Name: Paufic Pauk Project Manager: Cevrale If then Sampled by: Company: Comp	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM	is 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals HEM (vil and greace) 16644		TAH)			% Moisture
ab ID Sample Identification	Sampled Sampled Matrix	-	N N	N N	NZ /	NN.	N N	EDE	Sen	PA	PC	Org	Org	-S	Tota	Tots	전 별		O,	-		% V
	12/20/18/15:00 water				V	V	V	_								V		1	4	_		
$\frac{3}{5}$ $\frac{5}{8}$	1 14:15 1	12			V	$\sqrt{}$	V									V		V	4	_	_	
3 SW3	13:40	12			V	V	V									V		V	4			
4 SW4	13:00	12			V	V	1									1		ì	4			
5 Trip Blank	* >	+	5				V															
Signature	Company			Date	1		Time			mmer	CONTRACTOR OF STREET	ATTENDED BY	2000		STATE OF THE PERSON NAMED IN		0					
Received W	Heweva			12/	20/	18	165	10)	Ho	ld	5	an	PI	RA	4	Or		PC	35 W		
Received	spledy			11	211	18	10:				=		1/2	اما	N	1	1 1	V	01	.1-	1-	
Relinquished M	speedy				121		13:55				Pt		di	rv	7	1	74.	Y	es	M	19	-
Received WCACI LIZED	OSE			19	21	18	139	55							,							
Relinquished																						
Received						. 9			Da	ta Pad	ckage	e: Sta	andar	rd 🗆	Le	vel III		evel l	V 🗆			
Reviewed/Date	Reviewed/Date								Ch	romat	ograr	ns wi	th fina	al rep	ort [Elec	tronic	Data I	Deliver	ables (E	DDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

January 31, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-233B

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 31, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-233B

Project: 17-06520-000

Case Narrative

Samples were collected on December 20, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: January 31, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-233B Project: 17-06520-000

HARDNESS EPA 200.7/SM 2340B

Matrix: Water

Units: mg eqt. CaCO3/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	12-233-01					
Hardness	85	2.0	200.7/SM 2340B	1-30-19	1-30-19	
Client ID:	SW2					
Laboratory ID:	12-233-02					
Hardness	77	1.0	200.7/SM 2340B	1-30-19	1-30-19	
Client ID:	SW3					
Laboratory ID:	12-233-03					
Hardness	69	1.0	200.7/SM 2340B	1-30-19	1-30-19	
Client ID:	SW4					
Laboratory ID:	12-233-04					
Hardness	69	1.0	200.7/SM 2340B	1-30-19	1-30-19	

Date of Report: January 31, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-233B Project: 17-06520-000

HARDNESS EPA 200.7/SM 2340B **QUALITY CONTROL**

Matrix: Water

Units: mg eqt. CaCO3/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0130WH1					
Hardness	ND	1.0	200.7/SM 2340B	1-30-19	1-30-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-2	33-01									
	ORIG	DUP									
Hardness	84.6	87.0	١	IA	NA	l	NA	NA	3	20	
MATRIX SPIKES											
Laboratory ID:	12-2	33-01									
	MS	MSD	MS	MSD		MS	MSD				
Hardness	220	222	132	132	84.6	103	104	75-125	1	20	
SPIKE BLANK											
Laboratory ID:	SB013	30WH1									
	S	B	5	SB			SB				
Hardness	12	28	1	32	NA	!	97	80-120	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

	1	1
Page	of	(

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Lal	bora	atory	/ Nu	mbe	r:	1	2	- 2	23	3						Out the Country of th	
Phone: (425) 883-3881 • www.onsite-env.com Company: HERRER Project Number: 17 66520 - 060 Project Name: Paufic Park Project Manager: Served Ifther Sampled by: GIFTHER, K. BUSS ab ID Sample Identification	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other) Date Sampled Matrix 12/20/18/15/00 Wuffer	Number of Containers	NWTPH-HCID	NWIPH-GX/BTEX	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	ELD ETA OUT (Waters Only) Semivolatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)			MIS/Q0	erbicides 8151A	Total RCRA Metals	TCLP Metals	HEM (oil and grease) 1664A	< CPAHS	(A) (A) (A) HARONESS		% Moisture
Simpling	Company	1		Date		Time			Commer	ate/Sn	leina	Inetri	etion	•						
Received Signature Received Signature	Hewera speedy		l	2/2	1/18	16	:47)		THE RESERVE AND ADDRESS.				-	fo	n	PC	B5	12	
Received Relinquished Relinquished	Speedy OSE				21/18		55 55	ò	\otimes	Po lad	deo		28	110	1. P	3 (5 D	AUS		-
Received			+			+		D							el III 🗆					\neg
Reviewed/Date	Reviewed/Date							C	hromat	ogran	ns wit	th fina	ıl repo	ort 🗌	Electro	nic Dat	ta Delive	erables (E	DDs)	

January 3, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1812-235

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on December 21, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-235

Project: 17-06520-000

Case Narrative

Samples were collected on December 21, 2018 and received by the laboratory on December 21, 2018. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Laboratory Reference: 1812-235 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	12-235-01					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Client ID:	MW-2					
Laboratory ID:	12-235-02					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Client ID:	MW-3					
Laboratory ID:	12-235-03					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Client ID:	MW-4					
Laboratory ID:	12-235-04					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	66-117				
Client ID:	MW-5					
Laboratory ID:	12-235-05					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Client ID:	MW-6					
Laboratory ID:	12-235-06					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				

Laboratory Reference: 1812-235 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					
Laboratory ID:	12-235-07					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	66-117				
Client ID:	MW-8					
Laboratory ID:	12-235-08					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Client ID:	MW-9					
Laboratory ID:	12-235-09					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	66-117				
Client ID:	MW-10					
Laboratory ID:	12-235-10					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	66-117				
Client ID:	MW-11					
Laboratory ID:	12-235-11					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	66-117				
Client ID:	MW-12					
Laboratory ID:	12-235-12					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				

Laboratory Reference: 1812-235 Project: 17-06520-000

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1226W1					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	66-117				
Laboratory ID:	MB1226W2					
Gasoline	ND	100	NWTPH-Gx	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				•
Fluorobenzene	79	66-117				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-23	33-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						85	80	66-117			
Laboratory ID:	12-23	33-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						80	80	66-117			

Laboratory Reference: 1812-235 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	12-235-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	MW-2					
Laboratory ID:	12-235-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	MW-3					
Laboratory ID:	12-235-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND -	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Oliona ID.	BANA/ A					
Client ID:	MW-4					
Laboratory ID:	12-235-04	0.00	NW/TDLL D.	10.07.10	10.07.10	
Diesel Range Organics	ND ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND 15	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	MW-5					
Laboratory ID:	12-235-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND ND	0.26 0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DX	12-21-10	12-21-10	
o-Terphenyl	99	50-150				
о тагрпанут	<i>33</i>	JU-1JU				
Client ID:	MW-6					
Laboratory ID:	12-235-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
, - ,	-					

Laboratory Reference: 1812-235 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

onits. Ing/L (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7			•	-	
Laboratory ID:	12-235-07					
Diesel Range Organics	ND	0.27	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW-8					
Laboratory ID:	12-235-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
/						
Oli e d ID	BB14 G					
Client ID:	MW-9					
Laboratory ID:	12-235-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	MW-10					
Laboratory ID:	12-235-10					
Diesel Range Organics	ND	0.27	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits	IVV II II DX	12 27 10	12 27 10	
o-Terphenyl	106	50-150				
o respiretty:	700	30 130				
Client ID:	MW-11					
Laboratory ID:	12-235-11					
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	MW-12					
	12-235-12					
Laboratory ID:		0.06	NIM/TOLL Dec	10.07.10	10.07.10	
Diesel Range Organics	ND	0.26	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

Laboratory Reference: 1812-235 Project: 17-06520-000

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flogo
METHOD BLANK	nesuit	FQL	Method	Fiepaieu	Allalyzeu	Flags
_	MD4007M0					
Laboratory ID:	MB1227W2					
Diesel Range Organics	ND	0.25	NWTPH-Dx	12-27-18	12-27-18	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-23	35-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						91 96	50-150			
Laboratory ID:	12-23	35-12								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate: o-Terphenyl						98 103	50-150			

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

omis. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	12-235-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	12-235-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 98 75-127 80-127 Toluene-d8 99 4-Bromofluorobenzene 98 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte		PQL	Method	Date	Date	
	Result			Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	12-235-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	12-235-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery					

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 92 75-127
Toluene-d8 98 80-127
4-Bromofluorobenzene 105 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte		PQL	Method	Date	Date	
	Result			Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	12-235-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	0.30	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	12-235-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits		<u> </u>		

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 89 75-127
Toluene-d8 93 80-127
4-Bromofluorobenzene 98 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	12-235-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	12-235-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	3.7	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 97 75-127 Toluene-d8 98 80-127 4-Bromofluorobenzene 107 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte		PQL	Method	Date	Date	
	Result			Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	12-235-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	12-235-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 96 75-127 99 Toluene-d8 80-127 4-Bromofluorobenzene 104 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte		PQL	Method	Date	Date	
	Result			Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	12-235-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	12-235-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 100 75-127 97 Toluene-d8 80-127 4-Bromofluorobenzene 105 78-125

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					
Laboratory ID:	12-235-07					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					
Laboratory ID:	12-235-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits		-	-	

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 89 75-127

Toluene-d8 94 80-127

4-Bromofluorobenzene 100 78-125

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	12-235-08					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	12-235-08					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits	-	-		

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 94 75-127
Toluene-d8 98 80-127
4-Bromofluorobenzene 107 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	12-235-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	12-235-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	0.43	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 91 75-127 Toluene-d8 95 80-127 4-Bromofluorobenzene 104 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte		PQL	Method	Date	Date	
	Result			Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	12-235-10					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	0.26	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	12-235-10					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery					

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 94 75-127
Toluene-d8 95 80-127
4-Bromofluorobenzene 102 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	12-235-11					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Analyte				Date	Date	
	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	12-235-11					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit Dibromofluoromethane 92 75-127
Toluene-d8 97 80-127
4-Bromofluorobenzene 103 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	12-235-12					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Analyte				Date	Date	
	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	12-235-12					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 94 75-127 103 Toluene-d8 80-127 4-Bromofluorobenzene 105 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte	Result	PQL	Method	Date	Date	
				Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	12-235-13					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
lodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	12-235-13					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 89 75-127

Toluene-d8 97 80-127

4-Bromofluorobenzene 105 78-125

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Onits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1227W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloromethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Vinyl Chloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Acetone	ND	7.0	EPA 8260C	12-27-18	12-27-18	
Iodomethane	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Carbon Disulfide	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methylene Chloride	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Vinyl Acetate	ND	1.0	EPA 8260C	12-27-18	12-27-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Butanone	ND	5.0	EPA 8260C	12-27-18	12-27-18	
Bromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chloroform	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Benzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Trichloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Dibromomethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromodichloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Toluene	ND	1.0	EPA 8260C	12-27-18	12-27-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	12-27-18	12-27-18	

Date of Report: January 3, 2019 Samples Submitted: December 21, 2018 Laboratory Reference: 1812-235

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1227W1					
1,1,2-Trichloroethane	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
Tetrachloroethene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Hexanone	ND	2.0	EPA 8260C	12-27-18	12-27-18	
Dibromochloromethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Chlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Ethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
m,p-Xylene	ND	0.40	EPA 8260C	12-27-18	12-27-18	
o-Xylene	ND ND	0.40	EPA 8260C	12-27-18	12-27-18	
Styrene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromoform	ND	1.0	EPA 8260C	12-27-18	12-27-18	
Isopropylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Bromobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Propylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
tert-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trimethylbenzene	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
sec-Butylbenzene	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
p-Isopropyltoluene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,4-Dichlorobenzene	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dichlorobenzene	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
n-Butylbenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260C	12-27-18	12-27-18	
1,2,4-Trichlorobenzene	ND ND	0.20	EPA 8260C	12-27-18	12-27-18	
Hexachlorobutadiene	ND ND	1.0	EPA 8260C	12-27-18	12-27-18	
Naphthalene	ND ND	1.0	EPA 8260C	12-27-18	12-27-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	12-27-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits	LFA 02000	12-21-10	12-21-10	
Duroyale.	i ercent necovery	JUINIUI LIIIIIS				

Laboratory Reference: 1812-235 Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB12	27W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.85	9.60	10.0	10.0	99	96	62-129	3	15	
Benzene	10.1	9.88	10.0	10.0	101	99	77-127	2	15	
Trichloroethene	10.2	9.63	10.0	10.0	102	96	70-120	6	15	
Toluene	10.5	9.88	10.0	10.0	105	99	82-123	6	15	
Chlorobenzene	10.6	9.97	10.0	10.0	106	100	79-120	6	15	
Surrogate:										
Dibromofluoromethane					94	101	<i>75-127</i>			
Toluene-d8					93	95	80-127			
4-Bromofluorobenzene					101	100	78-125			

Laboratory Reference: 1812-235 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A

• ", "				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	12-235-01					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-2					
Laboratory ID:	12-235-02					
Arsenic	6.5	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
_ead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-3					
_aboratory ID:	12-235-03					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
_ead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-4					
Laboratory ID:	12-235-04					
· · · · · · · · · · · · · · · · · · ·		3.3	EPA 200.8	1-2-18	1-2-18	
Arsenic	11 ND	3.3 4.4				
Cadmium Chromium	ND ND	4.4 11	EPA 200.8 EPA 200.8	1-2-18	1-2-18	
	ND ND	1.1	EPA 200.8 EPA 200.8	1-2-18 1-2-18	1-2-18 1-2-18	
Lead						
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A

omo. ug/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	12-235-05					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	1.5	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-6					
Laboratory ID:	12-235-06					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
_ead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-7					
Laboratory ID:	12-235-07					
Arsenic	4.5	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-8					
Laboratory ID:	12-235-08					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A

omo. ug/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	12-235-09					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-10					
Laboratory ID:	12-235-10					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
Client ID:	MW-11					
Laboratory ID:	12-235-11					
Arsenic	3.5	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	
•						
Client ID:	MW-12					
Laboratory ID:	12-235-12					
Arsenic	6.2	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	

Laboratory Reference: 1812-235 Project: 17-06520-000

TOTAL METALS EPA 200.8/7470A **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0102WM1					
Arsenic	ND	3.3	EPA 200.8	1-2-18	1-2-18	
Cadmium	ND	4.4	EPA 200.8	1-2-18	1-2-18	
Chromium	ND	11	EPA 200.8	1-2-18	1-2-18	
Lead	ND	1.1	EPA 200.8	1-2-18	1-2-18	
Laboratory ID:	MB0102W1					
Mercury	ND	0.50	EPA 7470A	1-2-18	1-2-18	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-26	62-05									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		١	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		l	NA	NA	NA	20	
Laboratory ID:	12-23	30-01									
Mercury	ND	ND	NA	NA		ا	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	12-26	62-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	233	228	222	222	ND	105	103	75-125	2	20	
Cadmium	237	218	222	222	ND	107	98	75-125	8	20	
Chromium	225	218	222	222	ND	101	98	75-125	3	20	
Lead	224	214	222	222	ND	101	96	75-125	5	20	
Laboratory ID:	12-23	30-01									
Mercury	11.7	11.6	12.5	12.5	ND	94	93	75-125	1	20	

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-1					
12-235-01					
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Percent Recovery	Control Limits				
54	21 - 110				
63	19 - 111				
66	32 - 137				
	MW-1 12-235-01 ND ND ND ND ND ND ND ND ND Percent Recovery 54 63	MW-1 12-235-01 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 Percent Recovery Control Limits 54 21 - 110 63 19 - 111	MW-1 12-235-01 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 54 21 - 110 63 19 - 111	Result PQL Method Prepared MW-1 12-235-01 12-235-01 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 54 21 - 110 63 19 - 111	Result PQL Method Prepared Analyzed MW-1 12-235-01 12-235-01 12-26-18 12-27-18 ND 0.010 EPA 8270D/SIM 12-26-18 12-27-18 Percent Recovery Control Limits 54 21 - 110 63 19 - 111

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-2					
12-235-02					
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Percent Recovery	Control Limits				
67	21 - 110				
67	19 - 111				
73	32 - 137				
	MW-2 12-235-02 ND ND ND ND ND ND ND ND ND Percent Recovery 67 67	MW-2 12-235-02 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 Percent Recovery Control Limits 67 21 - 110 67 19 - 111	MW-2 12-235-02 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 67 21 - 110 67 19 - 111	Result PQL Method Prepared MW-2 12-235-02 12-235-02 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 67 21 - 110 67 19 - 111	Result PQL Method Prepared Analyzed MW-2 12-235-02 12-235-02 12-26-18 12-27-18 ND 0.010 EPA 8270D/SIM 12-26-18 12-27-18 Percent Recovery Control Limits 67 21 - 110 67 19 - 111 19 - 111 10 - 11

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-3					_
12-235-03					
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Percent Recovery	Control Limits				
66	21 - 110				
69	19 - 111				
<i>75</i>	32 - 137				
	MW-3 12-235-03 ND ND ND ND ND ND ND ND Percent Recovery 66 69	MW-3 12-235-03 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 Percent Recovery Control Limits 66 21 - 110 69 19 - 111	MW-3 12-235-03 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 66 21 - 110 69 19 - 111	Result PQL Method Prepared MW-3 12-235-03 12-235-03 12-26-18 12-26-18 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 66 21 - 110 69 19 - 111	Result PQL Method Prepared Analyzed MW-3 12-235-03 ND 0.010 EPA 8270D/SIM 12-26-18 12-27-18 Percent Recovery Control Limits 66 21 - 110 69 19 - 111 11

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	12-235-04					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	53	21 - 110				
Pyrene-d10	68	19 - 111				
Terphenyl-d14	70	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	12-235-05					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	21 - 110				
Pyrene-d10	70	19 - 111				
Terphenyl-d14	68	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	12-235-06					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	21 - 110				
Pyrene-d10	76	19 - 111				
Terphenyl-d14	77	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7					_
Laboratory ID:	12-235-07					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	21 - 110				
Pyrene-d10	71	19 - 111				
Terphenyl-d14	70	32 - 137				
• •						

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8					
Laboratory ID:	12-235-08					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	21 - 110				
Pyrene-d10	66	19 - 111				
Terphenyl-d14	68	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	12-235-09					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	21 - 110				
Pyrene-d10	<i>75</i>	19 - 111				
Terphenyl-d14	<i>75</i>	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-10					
12-235-10					
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
ND	0.010	EPA 8270D/SIM	12-26-18	12-27-18	
Percent Recovery	Control Limits				
63	21 - 110				
72	19 - 111				
72	32 - 137				
	MW-10 12-235-10 ND ND ND ND ND ND ND ND ND Percent Recovery 63 72	MW-10 12-235-10 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 ND 0.010 Percent Recovery Control Limits 63 21 - 110 72 19 - 111	MW-10 12-235-10 ND 0.010 EPA 8270D/SIM Percent Recovery Control Limits 63 21 - 110 72 19 - 111	Result PQL Method Prepared MW-10 12-235-10 ND 0.010 EPA 8270D/SIM 12-26-18 Percent Recovery Control Limits 63 21 - 110 72 19 - 111	Result PQL Method Prepared Analyzed MW-10 12-235-10 ND 0.010 EPA 8270D/SIM 12-26-18 12-27-18 Percent Recovery Control Limits 63 21 - 110 72 19 - 111

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

· ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	12-235-11					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	21 - 110				
Pyrene-d10	67	19 - 111				
Terphenyl-d14	77	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	12-235-12					
Benzo[a]anthracene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Chrysene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[b]fluoranthene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Benzo[a]pyrene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Indeno(1,2,3-c,d)pyrene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270D/SIM	12-26-18	12-27-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	21 - 110				
Pyrene-d10	70	19 - 111				
Terphenyl-d14	73	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1226W1					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Chrysene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	12-26-18	12-26-18	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	37	21 - 110				
Pyrene-d10	<i>79</i>	19 - 111				
Terphenyl-d14	79	32 - 137				

Laboratory Reference: 1812-235 Project: 17-06520-000

cPAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level		Reco	very	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB12	26W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzo[a]anthracene	0.501	0.514	0.500	0.500	-	100	103	57 - 127	3	15	
Chrysene	0.462	0.468	0.500	0.500		92	94	51 - 120	1	15	
Benzo[b]fluoranthene	0.486	0.502	0.500	0.500		97	100	54 - 124	3	17	
Benzo(j,k)fluoranthene	0.478	0.484	0.500	0.500		96	97	50 - 127	1	18	
Benzo[a]pyrene	0.514	0.526	0.500	0.500	-	103	105	50 - 120	2	16	
Indeno(1,2,3-c,d)pyrene	0.507	0.524	0.500	0.500	-	101	105	46 - 132	3	20	
Dibenz[a,h]anthracene	0.493	0.505	0.500	0.500		99	101	49 - 129	2	18	
Surrogate:											
2-Fluorobiphenyl						64	60	21 - 110			
Pyrene-d10						81	81	19 - 111			
Terphenyl-d14						83	82	32 - 137			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page _____ of ______

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		rnaround Rec in working da			La	abo	rato	ory	Nun	nbe	er:	1	2-	2	3 3)						9	
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One))												_								
Company: Hervera Project Number:	☐ Sam	ne Day	1 Day										İ		8270D/SIM								
17-010520-000	☐ 2 Da	ays	3 Days					Clean-up)						081B	ss 8270	8151A				2			
Project Name: Paull'u Park	Star	ndard (7 Days)		SIS				SG		3 8260C	EDB EPA 8011 (Waters Only)	SIM (SIM v-level)		Organochlorine Pesticides 8081B	Organophosphorus Pesticides	Chlorinated Acid Herbicides 8151A			1664A	32			
Project Manager? FUDVOL I CHILLY				of Containers		TEX		Acid /	္	Volatiles	1 (Wate	8270D/ I PAHS) SIM (lov		ne Pesti	horus P	cid Her	etals	letals	grease)	N			
Sampled by: Brianna Blund kyle Bliss	(other)				NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	NWTPH-Dx (Volatiles 8260C	Halogenated Volatiles	PA 801	olatiles ow-leve 8270D/	PCBs 8082A	ochlorir	dsoydo	nated A	Total RCRA Metals	Total MTCA Metals	HEM (oil and grease) 1664A	Y			sture
ab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTP	NWTP	NWTPH-Gx	NWTP	Volatil	Halog	EDB E	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs	Organ	Organ	Chlori	Total F	Total	HEM	STATE OF THE PROPERTY OF THE P			% Moisture
1 MW-1	12.21.1	81205	ground	11			X	X	X									X		X			
2 MW-2		1025		11			X	X	X									X		χ			
3 MW-3		ILKS		11			X	X	X									X		X			
4 MW-4		1415		11			X	X	X									X		X			
S MW-S		1250		И			Χ	X	X									X		X			
6 MW-6		1335		11			X	X	X									X		X			
7 MW-7		1115		11			X	X	X									X		X			
8 MW-8		1430		11			χ	X	X									X		X			
9 MW-9		1540		11			X	X	X									X		X			
10 MM-10	/	1330		11			X	X	X									X		X			
Signature	(Company				Date			Time			Comm			nest reality			75					
Relinquished MaMMMT	5	Herr	evol			12	21	18	1	72	4	406	1 fo	rP	CR	5	pe	ndi	ng	DX	ana	ly	815
Received MCALL L'YELL		08	E			12 0	21/1	8	17	21													
Relinquished																							
Received																							
Relinquished																							
Received												Data P	ackag	e: St	andar	rd 🗌	Lev	/el III	Lev	el IV	1		
Reviewed/Date		Reviewed/Da	ate							¢		Chrom	atogra	ms wi	th fina	al rep	ort [Elect	ronic Da	ata Deli	verables	(EDD	s) 🗌

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	Turnaround Request (in working days) Laboratory Number: 12-235																							
Phone: (425) 883-3881 • www.onsite-env.com Company: HUVWA Project Number: 17-010520-066 Project Name: Project Manager: Lybyal Jawa Wyl Bliss Sample Identification	Same 2 Day Stand		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)		ne Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	OPARK loy 8270				% Moisture
11 mw-11	12.21.18	1146	groung	11			X	X	X					7				X			X				
12 MW-12	V	1010	V	11			X	X	X									X			X				
13 trip blank	1271.18		Water						X																
																								7	
																							1	1	
																							\top	\top	
Signature	Co	ompany				Date			Time					/Speci											
Relinquished MaMMUMA	A f	Herry	eva	J		12	Di.	18	1	72	1	Ho	ld -	for	PU	Bs	Pt	eno	tin	9	DX	au	nal	Lys	813
Received WALL LISEUN		05	E			12	21)	18	17	a							•								
Relinquished																									
Received																									
Relinquished																									
Received												Data	Pack	age: S	tanda	ırd 🗌	Le	vel III		Level	IV 🗆				\neg
Reviewed/Date		Reviewed/Da	ite							Chromatograms with final report ☐ Electronic Data Deliverables (EDDs)					Ds) [1									

APPENDIX E

Data Quality Assurance Review Memorandum

Herrera Environmental Consultants, Inc.

Internal Memorandum

Date: February 08, 2019

To: Project File 17-06520-000

Copy To:

From: Gina Catarra

Subject: Data Quality Assurance Review of the Pacific Park/Dumpsite Data

This memorandum presents a review of data quality for 5 soil samples and 12 groundwater samples collected from the Pacific Park/Dumpsite property on December 17 and 21, 2018. OnSite Environmental, Inc. (OnSite), of Redmond, Washington analyzed the samples for

- Gasoline-range petroleum hydrocarbons (TPH-G) by Ecology's NWPTH-Gx method
- Diesel- and lube oil-range petroleum hydrocarbons by Ecology's NWTPH-Dx method
- Volatile organic compounds (VOCs) by EPA method 8260C
- Polycyclic aromatic hydrocarbons (PAHs) by EPA method 8270D/SIM
- Polychlorinated biphenyls (PCBs) by EPA method 8082A
- Total Model Toxics Control Act (MTCA) metals (arsenic, cadmium, chromium, lead, and mercury) by EPA 6010D/7471B

Results for the following samples were validated.

Sample ID	Lab Ref. No.	Date Collected	Analyses
MW10-4	1812-188	12/17/18	Gx, Dx, metals, cPAHs, PCBs
MW10-7	1812-188	12/17/18	Gx, Dx, PCBs
MW11-4	1812-188	12/17/18	Gx, Dx, metals, cPAHs, PCBs
MS11-6.5	1812-188	12/17/18	Dx, metals, cPAHs, PCBs
MW12-3	1812-188	12/17/18	Gx, Dx, metals, cPAHs, PCBs
MW-1	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs

Sample ID	Lab Ref. No.	Date Collected	Analyses
MW-2	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-3	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-4	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-5	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-6	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-7	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-8	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-9	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-10	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-11	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs
MW-12	1812-234	12/21/18	Gx, Dx, VOCs, metals, cPAHs

The laboratory's performance was reviewed in accordance with quality control (QC) criteria established in the *Pacific Park/Dumpsite Environmental and Economic Assessment Sampling and Analysis Plan* (SAP) (Herrera 2017), by the laboratory, and in the specified methods.

Quality control data summaries submitted by the laboratory were reviewed; raw data were not submitted by the laboratory. Data qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below, followed by definitions of data qualifiers.

Custody, Preservation, Holding Times, and Completeness—Acceptable with Qualification

The samples were properly preserved and sample custody was maintained from sample collection to receipt at the laboratory. With the exceptions below, samples were analyzed within the required method holding times. The laboratory reports were complete and contained results for all samples and tests requested on the chain-of-custody (COC) forms.

Samples MW10-7 and MW11-6.5 were extracted outside of holding time as noted in the table below because anlaysis was added one day outside of the 14 day holding time criterion. All results have been qualified as estimated (J or UJ), as noted in the table below.

Sample ID	Parameter	Reason for Qualification	Qualifier
MW10-7	Gx, Dx	Holding time exceeded	UJ
MW11-6.5	Dx, cPAHs	Holding time exceeded	J or UJ

Laboratory Reporting Limits—Acceptable

The laboratory reporting limits were reasonable for the specified methods and were below relevant comparison criteria. No data were qualified based on laboratory reporting limits.

Method Blank Analysis—Acceptable

Method blanks were analyzed at the required frequency. Method blanks did not contain levels of target analytes above the laboratory reporting limits.

Laboratory Control Sample Analysis—Acceptable

Blank spike (BS) or blank spike/blank spike duplicate (BS/BSD) samples were analyzed for gasoline/BTEX and cPAHs. The percent recovery values met the criteria established by the laboratory.

Surrogate Spike Analysis—Acceptable

Surrogate compounds were added to all samples and laboratory QC samples for all NWTPH-Gx, NWTPH-Dx, VOCs, cPAHs, and PCBs analyses. All surrogate percent recoveries met the control limits specified by the laboratory or method.

Matrix Spike Analysis—Acceptable

Matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed for cPAHs, PCBs and metals. The percent recovery values met the control limits established by the methods.

Laboratory Duplicate Analysis—Acceptable

Laboratory duplicate samples were analyzed for metals; MS/MSD samples were analyzed for cPAHs and PCBs. The relative percent difference (RPD) was calculated for each analyte where both duplicate values were greater than five times the reporting limit (RL). The difference between duplicate values was calculated if the detected compound concentration was less than five times the RL in either the sample or the duplicate. The relative percent difference (RPD) values or difference values met the control limits established by the laboratory or specified method, except as noted below.

DEFINITION OF DATA QUALIFIERS

The following are data qualifier definitions applied for this project.

Data Qualifier	Definition
J	Value is an estimate based on analytical results
R	Value is rejected based on analytical results
U	Value is below the reporting limit
UJ	Value is below the reporting limit and is an estimate based on analytical results

REFERENCES

Herrera. 2017. Pacific Park/Dumpsite Environmental and Economic Assessment, Pacific, Washington, Sampling and Analysis Plan. Prepared by Herrera Environmental Consultants for River and Floodplain Management Section, King County Water and Land Resources Division. April 2017.

APPENDIX F

Soil Vapor Monitoring Data

Pacific Park Gas Monitoring Data Sheet

Gas Probe ID: $MW 6$	
Sample ID: NA	
Total Casing Volume (cc): 618 cc/ff x 6.42 = 3,970 (1 Well Vol	

Canister ID: Initial Canister Pressure: Final Canister Pressure:

NA

NA

NA

Field Personnel: _G. Iftner____

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time	CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H ₂ S (ppmv)
0_	0	3000	O sec	0,0	5.8	11.9	0
1/4	o 993_	3000	Zo sec	6,0	[0.[406	0
1/2	01,986	3000	46 sec	0,6	10.1	3.8	0
3/4	02,979	3000	60 sec	0,0	10,1	2.9	0
1	03,970	3000	80 sec	0.0	1001	2,7	∂
1 1/4	04.965		00 sec	0.0	10,1	2.7	Ô
1 1/2	0 5,958	3000	120 sec	0.0	10,1	2,6	0
1 3/4	06,951	3000	146 sec	0,0	10,1	2,6	0
2	07.940	3000	/60 sec	0,0	10,1	2,6	0
2 1/4	0	3000	sec				
2 1/2	0	3000	sec				
2 3/4	0	3000	sec				
3	0	3000	sec				

Comments: Static WL = 6.42' 3,970 (1 well vol.)/8,000 ml/min (purged by SKC) = 1,32 min = 80 Seconds
Barometric pressure = 30.20" Hg.

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter

Pacific Park Gas Monitoring Data Sheet

Gas Probe ID: Sample ID: NA

MW 9

Date & Time: 12/21/18 19 15:00

Canister ID:

NA

Initial Canister Pressure:

NA

Final Canister Pressure:

NA

Total Casing Volume (cc): 618 ccfft, x6.2=3,830 (1 well vul)

Field Personnel: _G. Iftner_

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Ti	me	CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H₂S (ppmv)
0	0	3000	0	sec	0.0	0,2	19.9	0,6
1/4	0 957.5	3000	19	sec	0,0	0,6	19.6	0.0
1/2	0 19/5	3000	38	sec	0.0	0.2	20,5	000
3/4	02,873	3000	57	sec	0.0	0,2	2015	0.0
· 1	03,830	3000	7-6	sec	0.0	002	20.5	0.0
1 1/4	04,788	3000	95	sec	0.0	0.2	20.5	0.0
1 1/2	05,745	3000	114	sec	0,0	0.2	20,5	0.0
1 3/4	06,703	3000	133	sec	000	0.2	20.5	0.0
2	07,660	3000	152	sec	0.0	0.2	20.5	0,0
2 1/4	0	3000		sec				
2 1/2	0	3000		sec			90	
2 3/4	0	3000	•	sec				101 14
3	0	3000		sec				59

Comments: Static WL = 6.2' 3,830cc/3,000 m1/mn = 1.28 min = 76 seconds

Burnettic pressure = 30.21

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter

Pacific Park Gas Monitoring Data Sheet

Gas Probe ID: Sample ID: NA 12/21/8 11:00 AM.

Canister ID: Initial Canister Pressure:

Final Canister Pressure:

NA NA

NA

Total Casing Volume (cc): 618 cc/ ++ x 4.05 = 2,500 cc = 1 well vol.

Field Personnel: _G. Iftner_____

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time	CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H₂S (ppmv)
0	0	3000	sec	0,0	2,0	17.5	0.0
1/4	\$625	3000	12 sec	0.0	2.2	15,4	0.0
1/2	81,250	3000	25 sec	0.0	2,2	15.3	0.0
3/4	\$1,875	3000	37 sec	0.0	2,2	15.3	0.0
1	\$2,500	3000	50 sec	0.0	2,2	15.3	0.0
1 1/4	\$3,125	3000	62 sec	0,0	2,3	15.3	0.0
1 1/2	83,750	3000	75 sec	0.0	2.4	15.3	0.0
1 3/4	ø 4,375	3000	87 sec	0.0	2,4	15.3	0,0
2	\$5,000	3000	100 sec	0,0	2,4	15,3	0,0
2 1/4	Ø	3000	sec				
2 1/2	ø	3000	sec				
2 3/4	ø	3000	sec				
3	0	3000	sec				

Comments: 5+Wic WL = 4.05 ' ZSOD/3 voo m/min(skc purge rate) = 0.83 min = 50 seconds.

12-13 seconds / 74 well 101.

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter