

TECHNICAL MEMORANDUM

TO: Raymond Burdick – Vulcan Inc. (by email)

FROM: Thaddeus Cline, P.E., L.G., L.H.G., Principal Civil Engineer/Hydrogeologist

Clifford T. Schmitt, L.G., L.H.G., Principal Hydrogeologist

DATE: October 16, 2018

RE: SUMMARY OF RESULTS FROM SUBSURFACE INVESTIGATIONS

BLOCK 38 WEST

500 THROUGH 536 WESTLAKE AVENUE NORTH

SEATTLE, WASHINGTON FARALLON PN: 397-019

Farallon Consulting, L.L.C. (Farallon) has prepared this Technical Memorandum on behalf of Lakefront Investors IX LLC (Lakefront Investors) to summarize the results of subsurface investigations completed to date at the property at 500 through 536 Westlake Avenue North in Seattle, Washington (herein referred to as Block 38 West). Block 38 West comprises the western half of the block between Mercer Street to the north, Westlake Avenue North to the west, Republican Street to the South, and a north-south trending block-bisecting alley to the east (Figures 1 and 2).

Farallon conducted two phases of environmental subsurface investigation work at Block 38 West. The first subsurface investigation commenced on July 21, 2014 and entailed installing a 55-foot deep monitoring well, monitoring well FMW-130, outside the existing building in the loading dock area and collecting reconnaissance groundwater and groundwater samples. The second subsurface investigation commenced on August 20, 2018 and entailed drilling at 11 locations in Block 38 West to depths of up to 50 feet below ground surface (bgs) (i.e., below the floor elevation of the lowest level of the existing building or below the pavement outside the lowest level, approximately 10 feet below street level), collecting soil and reconnaissance groundwater samples, installing and sampling five new monitoring wells (monitoring wells FMW-132 through FMW-136), and collecting groundwater samples at existing monitoring well FMW-130. The objective of the subsurface investigations conducted in 2014 and 2018 was to obtain lithologic, hydrologic, and analytical data to support planning for the redevelopment of Block 38 West.

Soil at Block 38 West was observed during the 2014 and 2018 subsurface investigations to consist of a sequence of silt, silty sand, and sandy silt with variable gravel and organic material content in fill and recent natural deposits to depths of up to about 15 feet bgs. Underlying these shallow deposits are dense glacially consolidated outwash deposits of silt, sand, and sandy silt with variable gravel content. At a depth of approximately 30 feet bgs, a dense sand with minor silt was encountered to the maximum depth explored of approximately 60 feet bgs. Shallowest groundwater was encountered between 5 and 9 feet bgs. Groundwater elevations measured in wells screened in the shallowest water-bearing unit during the 2018 subsurface investigation indicate a southerly groundwater flow direction.

No specific uses or features of Block 38 West have been confirmed as potential sources of hazardous substances released to soil or groundwater. However, constituents of potential concern (COPCs) at Block 38 West were identified based on known historical uses of Block 38 West and vicinity. Soil and groundwater samples collected during the Subsurface Investigations were analyzed for the following COPCs:

- Total petroleum hydrocarbons as gasoline-range organics;
- Total petroleum hydrocarbons as diesel-range organics (DRO) and oil-range organics;
- Benzene, toluene, ethylbenzene, and xylenes;
- Volatile organic compounds, including chlorinated volatile organic compounds;
- Polycyclic aromatic hydrocarbons and other semi-volatile organic constituents, including carcinogenic polycyclic aromatic hydrocarbons (cPAHs);
- Napthalenes; and
- Metals (i.e., arsenic, cadmium, chromium, mercury, and lead).

Results of laboratory analysis of soil and groundwater samples collected during the 2014 and 2018 subsurface investigations for COPCs are presented in Tables 1 through 4. A total of 27 soil samples and 11 groundwater samples were analyzed for petroleum constituents. A total of 7 soil samples and 11 groundwater samples were analyzed for volatile organic compounds. A total of 19 soil samples and 7 groundwater samples were analyzed for cPAHs and/or napthalenes. A total of 15 soil samples were analyzed for metals.

At some locations sampled during the 2014 and 2018 subsurface investigations, COPCs were detected in soil or groundwater samples at concentrations exceeding Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels specified in Chapter 173-340 of the Washington Administrative Code and were identified for purposes of the 2014 and 2018 subsurface investigations as constituents of concern (COCs). The COCs identified for soil at Block 38 West are:

- Total petroleum hydrocarbons as oil-range organics;
- Total napthalenes; and

• Total cPAHs.

The COCs identified for groundwater at Block 38 West are:

- Total petroleum hydrocarbons as gasoline-range organics;
- Benzene:
- DRO; and
- Total naphthalenes.

Based on the results of the 2014 and 2018 subsurface investigations, the nature and extent of contamination at Block 38 West is shown on Figure 3 for soil and Figure 4 for groundwater. Soil and groundwater impacted with COCs at concentrations exceeding MTCA cleanup levels occur within the top approximately 10 to 20 feet bgs. Approximately 75,600 tons of soil is estimated to be impacted by COPCs, less than about 10 percent of which is estimated to contain COCs at concentrations exceeding MTCA cleanup levels. Redevelopment construction will entail excavation to approximately 35 feet bgs to the property boundaries. The cleanup action to be conducted concurrently with redevelopment construction excavation will result in the removal of all soil containing COCs at concentrations exceeding MTCA cleanup levels and the removal of the shallow water-bearing zone from Block 38 West. Impacted soil will necessitate management during redevelopment construction and disposal at facilities permitted to receive these types of impacted soil.

Attachments: Figure 1, Vicinity Map

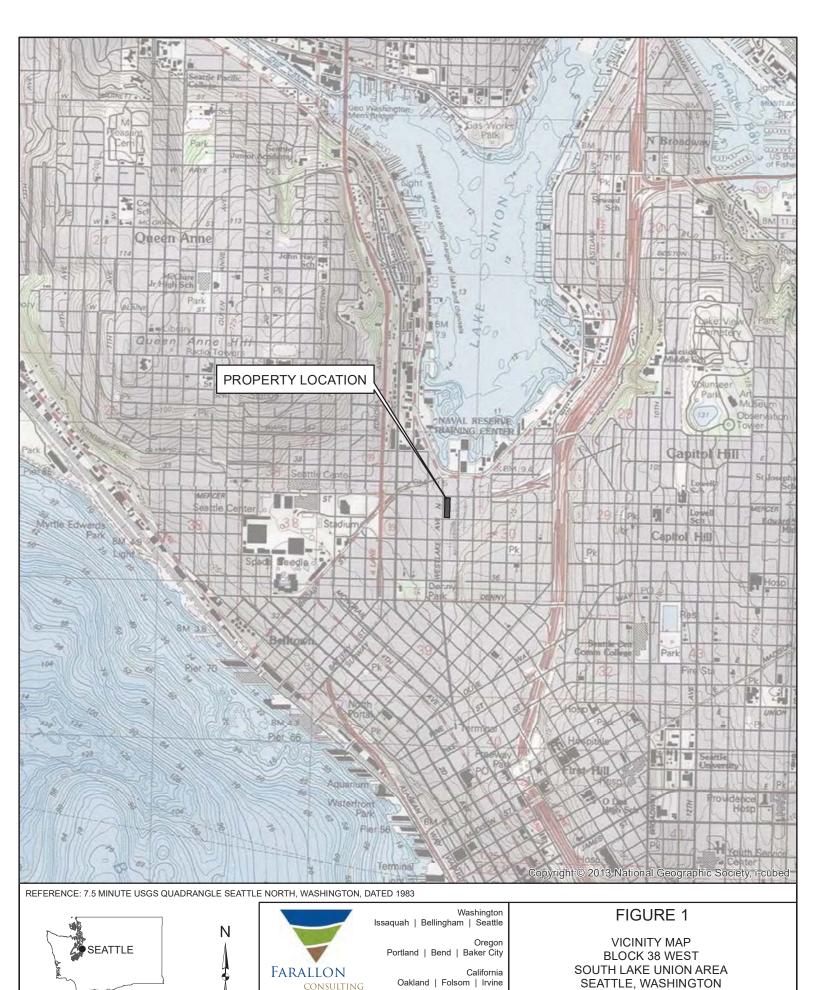
Figure 2, *Property Map*

Figure 3, Soil Sample Analytical Results Figure 4, Groundwater Analytical Results

Table 1, Soil Analytical Results for TPH and BTEX

Table 2, Soil Analytical Results for PAHs

Table 3, Groundwater Analytical Results for TPH and BTEX

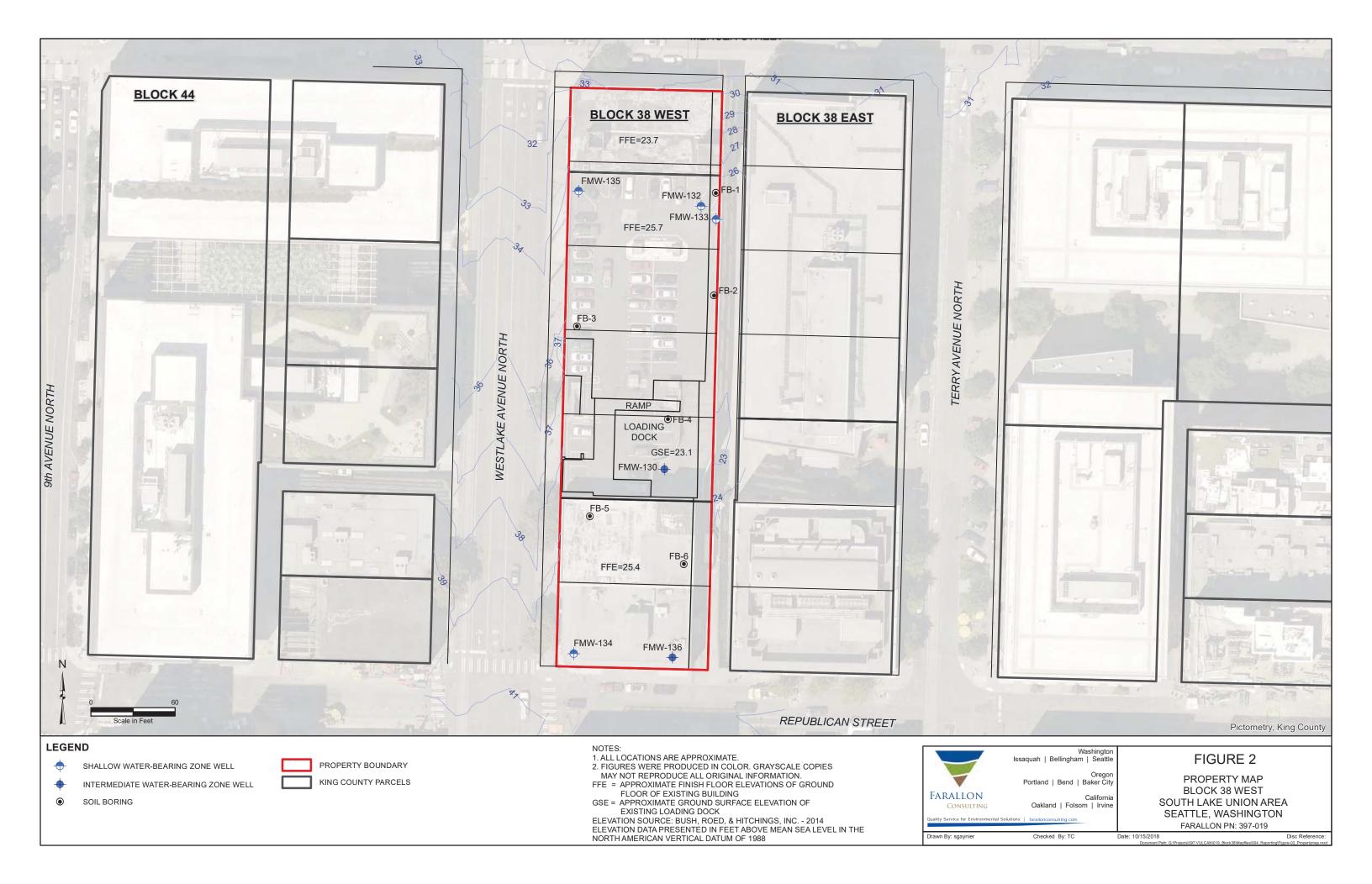

Table 4, Groundwater Analytical Results for PAHs

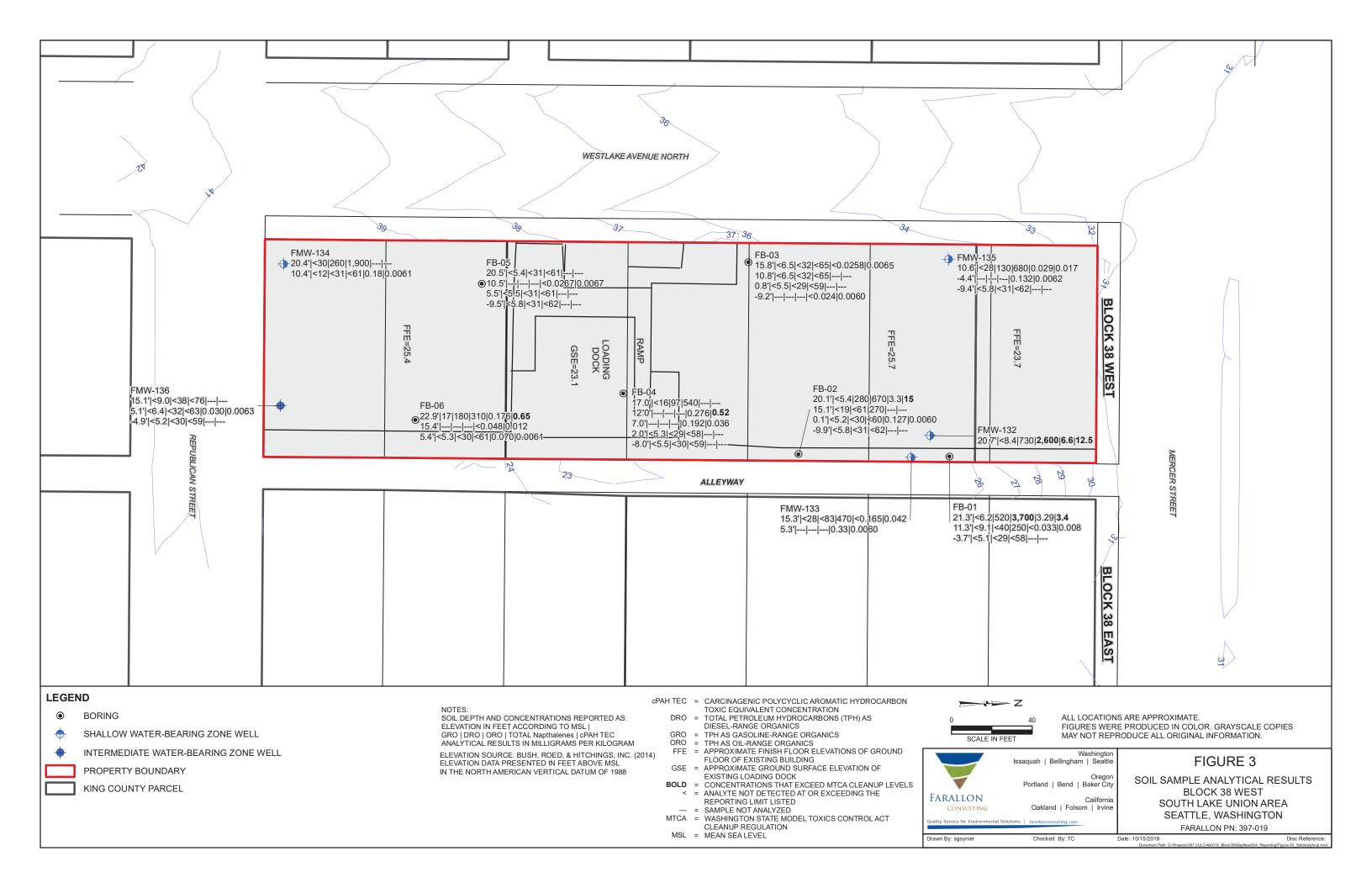
TC/CTS:tlc

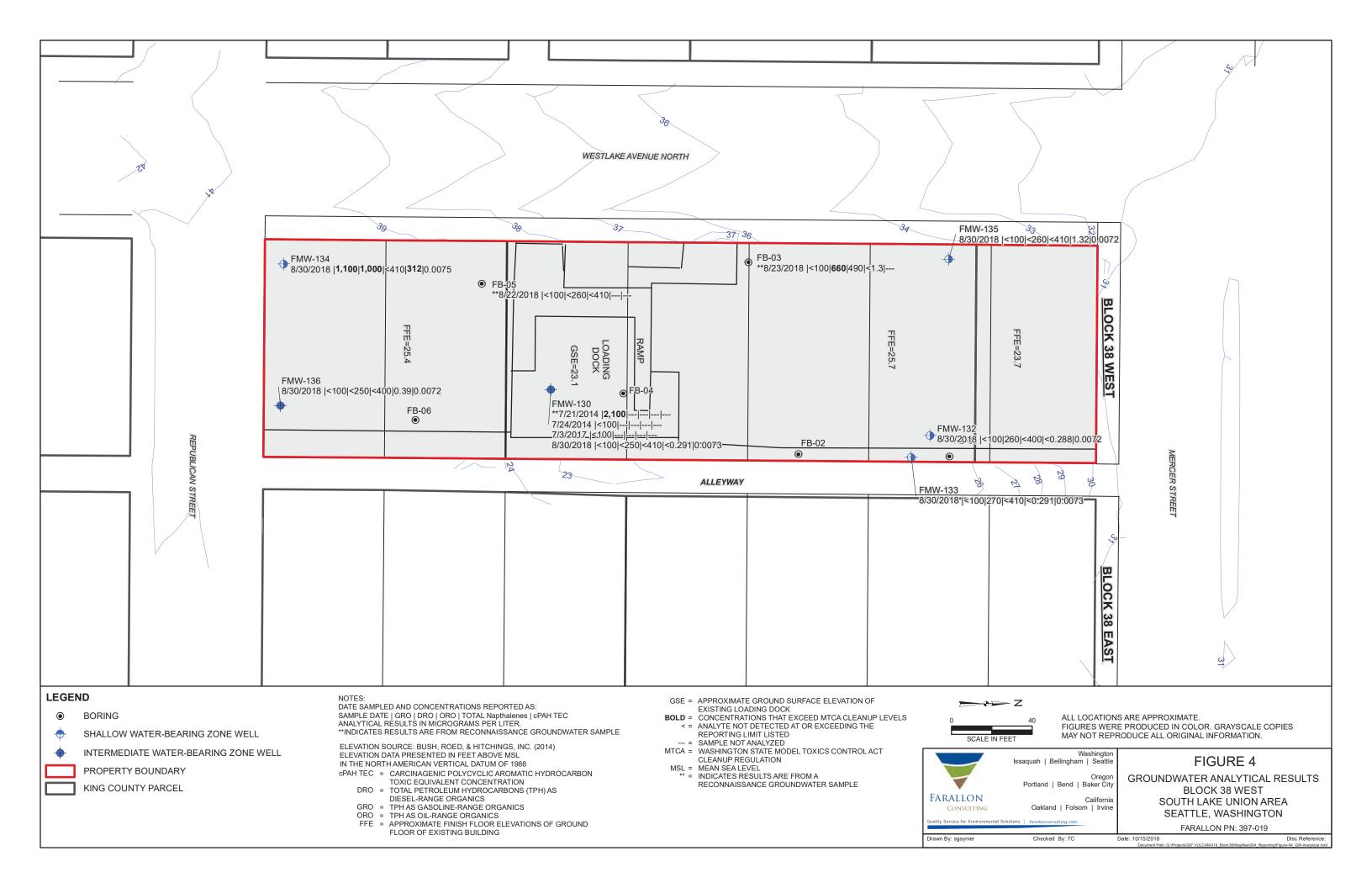
FIGURES

SUMMARY OF RESULTS FROM SUBSURFACE INVESTIGATIONS
Block 38 West
500 Through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019


Quality Service for Environmental Solutions | farallonconsulting.com


2,000


FARALLON PN: 397-019

Drawn By: jjones Checked By: BJ Date: 9/28/2018 Disc Reference:

Document Path: Q:\Projects\397 VULCAN\019_Block38\Mapfiles\004_Reporting\Figure-01_SiteVicinity.mxd

TABLES

SUMMARY OF RESULTS FROM SUBSURFACE INVESTIGATIONS
Block 38 West
500 Through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

Table 1 Soil Analytical Results for TPH and BTEX Block 38 West Seattle, Washington

Farallon PN: 397-019

					Analytical Results (milligrams per kilogram)												
	Sample Sample Depth Elevation			NWTI	PH-Dx ²	NWTPH-Dx v	vith Silica Gel ²	NWTPH-Gx ³	EPA Method 8021B ⁴								
Sample Location	Sample Identification	(feet) ¹	(feet MSL) ¹	Sample Date	DRO	ORO	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes				
	FB-01-5.0-082118	5.0	21.3	8/21/2018	520	3,700	510 N	1,100	< 6.2	< 0.020	< 0.062	< 0.062	< 0.124				
FB-01	FB-01-15.0-082118	15.0	11.3	8/21/2018	< 40	250	< 40	< 81	< 9.1	< 0.020	< 0.091	< 0.091	< 0.182				
	FB-01-30.0-082118	30.0	-3.7	8/21/2018	< 29	< 58			< 5.1	< 0.020	< 0.051	< 0.051	< 0.102				
	FB-02-5.0-082018	5.0	20.1	8/20/2018	280 N	670			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108				
FB-02	FB-02-10.0-082018	10.0	15.1	8/20/2018	< 61	270			< 19	< 0.037	< 0.19	< 0.19	< 0.38				
FB-02	FB-02-25.0-082018	25.0	0.1	8/20/2018	< 30	< 60			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104				
	FB-02-35.0-082018	35.0	-9.9	8/20/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
	FB-03-10.0-082318	10.0	15.8	8/23/2018	< 32	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130				
FB-03	FB-03-15.0-082318	15.0	10.8	8/23/2018	< 32	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130				
	FB-03-25.0-082318	25.0	0.8	8/23/2018	< 29	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
	FB-04-5.0-082118	5.0	17.0	8/21/2018	97 N	540			< 16	< 0.033	< 0.16	< 0.16	< 0.32				
FB-04	FB-04-20.0-082118	20.0	2.0	8/21/2018	< 29	< 58			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106				
	FB-04-30.0-082118	30.0	-8.0	8/21/2018	< 30	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
	FB-05-5.0-082218	5.0	20.5	8/22/2018	< 31	< 61			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108				
FB-05	FB-05-20.0-082218	20.0	5.5	8/22/2018	< 31	< 61			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110				
	FB-05-35.0-082218	35.0	-9.5	8/22/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
FB-06	FB-06-2.5-082218	2.5	22.9	8/22/2018	180	310			17 T	< 0.024	< 0.12	< 0.12	< 0.24				
TD-00	FB-06-20.0-082218	20.0	5.4	8/22/2018	< 30	< 61			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106				
FMW-132	FMW-132-5.0-082418	5.0	20.7	8/24/2018	730	2,600			< 8.4	< 0.020	< 0.084	< 0.084	< 0.168				
FMW-133	FMW-133-10.0-082418	10.0	15.3	8/24/2018	< 83	470			< 28	< 0.057	< 0.28	< 0.28	< 0.56				
FMW-134	FMW-134-5.0-082318	5.0	20.4	8/23/2018	260	1,900			< 30	< 0.059	< 0.30	< 0.30	< 0.60				
1 1 1 1 1 1 1 3 4	FMW-134-15.0-082318	15.0	10.4	8/23/2018	< 31	< 61			< 12	< 0.023	< 0.12	< 0.12	< 0.24				
FMW-135	FMW-135-15.0-082418	15.0	10.6	8/24/2018	130	680			< 28	< 0.055	< 0.28	< 0.28	< 0.56				
1'1V1 VV -133	FMW-135-35.0-082418	35.0	-9.4	8/24/2018	< 31	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116				
	FMW-136-10.0-082218	10.0	15.1	8/22/2018	< 38	< 76			< 9.0	< 0.020	< 0.090	< 0.090	< 0.18				
FMW-136	FMW-136-20.0-082218	20.0	5.1	8/22/2018	< 32	< 63			< 6.4	< 0.020	< 0.064	< 0.064	< 0.128				
	FMW-136-30.0-082218	30.0	-4.9	8/22/2018	< 30	< 59			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104				
MTCA Method	d A Cleanup Levels for Soi	2,000	2,000	2,000	2,000	30/1006	0.03	7	6	9							

NOTEC.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

MSL = mean sea level

N = hydrocarbons in the oil-range are impacting the diesel result

ORO = TPH as oil-range organics

T = the sample chromatogram is not similar to a typical gas

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

⁻ denotes sample not analyzed

¹Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by Northwest Method NWTPH-Dx. Results denoted as analyzed by NWTPH-Dx with silica gel were analyzed using a sample extract treated with sulfuric acid/silica gel cleanup procedure.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

Table 2 **Soil Analytical Results for PAHs** Block 38 West Seattle, Washington Farallon PN: 397-019

													Analytical	Results (mi	lligrams per	kilogram) ²								
										Non-Carcin	ogenic PAH	S								Carcinog	enic PAHs			
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Elevation (feet MSL) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene] cl T
FB-01	FB-01-5.0-082118	5.0	21.3	8/21/2018	0.99	1.1	1.2	3.29	0.46	0.32	1.0	1.9	4.8	0.46	5.4	6.8	2.5	2.6	2.9	0.76	3.1	0.45	1.6	<u> </u>
	FB-01-15.0-082118	15.0	11.3	8/21/2018	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	0
FB-02	FB-02-5.0-082018	5.0	20.1	8/20/2018	1.1	0.86	1.3	3.3	1.4	0.45	3.3	8.5	18	1.3	12	25	11	9.8	12	3.5	9.7	1.6	8.0	<u> </u>
	FB-02-25.0-082018	25.0	0.1	8/20/2018	0.083	0.020	0.024	0.127	0.027	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.
FB-03	FB-03-10.0-082318	10.0	15.8	8/23/2018	< 0.0086	< 0.0086	< 0.0086	< 0.0258	< 0.0086	< 0.0086	< 0.0086	< 0.0086	0.011	< 0.0086	0.015	0.012	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	0.
	FB-03-35.0-082318	35.0	-9.2	8/23/2018	< 0.0080	< 0.0080	< 0.0080	< 0.024	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.015	< 0.0080	0.017	0.017	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.
FB-04	FB-04-10.0-082118	10.0	12.0	8/21/2018	0.12	0.057	0.099	0.276	0.21	0.045	0.29	0.21	0.97	0.22	1.0	1.1	0.36	0.67	0.47	0.18	0.95	0.041	0.19	<u> </u>
	FB-04-15.0-082118	15.0	7.0	8/21/2018	0.052	0.048	0.092	0.192	0.049	< 0.0082	0.029	0.018	0.078	0.043	0.16	0.1	0.027	0.027	0.025	0.0099	0.028	< 0.0082	0.017	0
FB-05	FB-05-15.0-082218	15.0	10.5	8/22/2018	< 0.0089	< 0.0089	< 0.0089	< 0.0267	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.
	FB-06-2.5-082218	2.5	22.9	8/22/2018	0.087	0.044	0.045	0.176	0.13	0.042	0.20	0.35	0.81	0.094	0.89	1.1	0.49	0.47	0.52	0.17	0.50	0.054	0.34	<u> </u>
FB-06	FB-06-10.0-082218	10.0	15.4	8/22/2018	< 0.016 H	< 0.016 H	< 0.016 H	< 0.048	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	0.020 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	< 0.016 H	0
	FB-06-20.0-082218	20.0	5.4	8/22/2018	0.070	< 0.0081	< 0.0081	0.070	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	0.
FMW-132	FMW-132-5.0-082418	5.0	20.7	8/24/2018	2.0	2.0	2.6	6.6	1.5	0.10	3.3	4.4	15	0.84	18	27	9.4	11	10	2.9	13	1.4	4.1	
FMW-133	FMW-133-10.0-082418	10.0	15.3	8/24/2018	< 0.055	< 0.055	< 0.055	< 0.165	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	0
	FMW-133-20.0-082418	20.0	5.3	8/24/2018	0.25	0.035	0.042	0.33	0.021	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.
FMW-134	FMW-134-15.0-082318	15.0	10.4	8/23/2018	0.14	0.012	0.028	0.18	0.014	< 0.0081	< 0.0081	< 0.0081	< 0.0081	0.016	0.021	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	0.
FMW-135	FMW-135-15.0-082418	15.0	10.6	8/24/2018	0.029	< 0.022	< 0.022	0.029	0.039	< 0.022	< 0.022	< 0.022	0.042	< 0.022	0.068	0.073	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	0
	FMW-135-30.0-082418	30.0	-4.4	8/24/2018	0.12	0.012	< 0.0082	0.132	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	0.
FMW-136	FMW-136-20.0-082218	20.0	5.1	8/22/2018	0.030	< 0.0084	< 0.0084	0.030	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	0.
MTCA Method	A Cleanup Level for Soil 6							5	4,8007	NE	24,000 ⁷	NE	3,2007	3,2007	NE	2,400 ⁷								<u></u>
MTCA Method Celsius ⁸	B Levels for Soil Protective of	of Groundw	ater Vadose @ 2	25 Degrees	4.46	NE	NE	NE	97.9	NE	2,270	NE	631	101	NE	655								
MTCA Method B Levels for Soil Protective of Groundwater Vadose @ 13 Degrees Celsius ⁸					4.45	NE	NE	NE	97.9	NE	NE	NE	NE	101	NE	655								

MTCA Method B Levels for Soil Protective of Groundwater Saturated⁸ NOTES:

Results in \boldsymbol{bold} denote concentrations exceeding applicable cleanup levels.

0.236

NE

NE

NE

4.98

NE

114

NE

31.6

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Total cPAHs TEC^{4,5} 3.4 0.008 15 0.0060 0.0065 0.0060 0.52 0.036 0.0067 0.65 0.012 0.0061 12.5 0.042 0.0060 0.0061 0.017 0.0062 0.0063 0.1

H = sample analyzed outside of holding time

MSL = mean sea level

NE = not established

PAHs = polycyclic aromatic hydrocarbons TEC = toxic equivalent concentration

5.12

NE

32.8

 $[\]leq$ denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

Washington State Department of Ecology Cleanup Levels and Risk Calculations, under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Standard Method B Formula Values for Soil (Unrestricted Land Use) -

Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

⁸Washington State Cleanup Levels and Risk Calculations under the Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet updated September 2015,

https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Table 3 Groundwater Analytical Results for TPH and BTEX Block 38 West Seattle, Washington

Farallon PN: 397-019

			Screened			Analytical F	Results (microgra	ams per liter)					
Sample Location	Sample Date	Sample Identification	Interval (feet MSL) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴			
			Reconnais	ssance Boring G	Groundwater Sar	nples							
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	660	490	< 100	< 1.0	< 1.0	< 1.0	< 2.0			
FB-05	8/22/2018	FB-05-082218	8.5 to 3.5	< 260	< 410	< 100	< 1.0	< 1.0	< 1.0	< 2.0			
FMW-130	7/21/2014	F-MW-130-GW1-072114	7.2 to 2.2			2,100	5.1	7.5	2.2	6.7			
Monitoring Well Groundwater Samples													
	7/24/2014	F-MW-130-072414				< 100	< 1.0	< 1.0	< 1.0	< 2.0			
FMW-130	7/3/2017	FMW-130-070317	-22.8 to -32.8			< 100	< 0.20	< 1.0	< 0.20	< 0.60			
	8/30/2018	FMW-130-083018		< 250	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60			
FMW-132	8/30/2018	FMW-132-083018	20.7 to 15.7	260	< 400	< 100	< 0.20	< 1.0	< 0.20	< 0.60			
FMW-133	8/30/2018	FMW-133-083018	18.8 to 13.8	270	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60			
FMW-134	8/30/2018	FMW-134-083018	13.4 to 8.4	1,000 M	< 410	1,100 Z	< 1.0	< 5.0	< 1.0	< 3.0			
FMW-135	8/30/2018	FMW-135-083018	18.6 to 13.6	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60			
FMW-136	8/30/2018	FMW-136-083018	-4.9 to -14.9	< 250	< 400	< 100	< 0.20	< 1.0	< 0.20	< 0.60			
			· · · · · ·	Potable Wate	r Sample								
Potable Well	8/21/2018	POTABLE-082118	Unknown				< 0.20	< 1.0	< 0.20	< 0.60			
MTCA Method A Clea	anup Level for Gr	oundwater ⁵		500	500	800/1,000 ⁶	5	1,000	700	1,000			

NOTES:

Results in **bold** denote concentrations above applicable cleanup levels.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

M = hydrocarbons in the gasoline-range are impacting the diesel result

ORO = TPH as oil-range organics

Z = the gasoline result is mainly attributed to a single peak (naphthalene)

< denotes analyte not detected at or above the reporting limit listed.

⁻ denotes sample not analyzed.

¹In feet above mean sea level using North American Vertical Datum of 1988.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁵Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative

⁶Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

Table 4 Groundwater Analytical Results for PAHs Block 38 West Seattle, Washington Farallon PN: 397-019

				Analytical Results (micrograms per liter) ²																				
								ľ	Non-Carcin	ogenic PAH	S		`			Carcinogenic PAHs								
Sample Location	Sample Date	Sample Identification	Screened Interval (feet MSL) ¹	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}	
	Reconnaissance Boring Groundwater Samples																							
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	< 1.3			< 1.3																	
									Monitor	ing Well Gr	oundwater	Samples												
FMW-130	8/30/2018	FMW-130-083018	-22.8 to -32.8	< 0.097	< 0.097	< 0.097	< 0.291	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.097	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	0.0073	
FMW-132	8/30/2018	FMW-132-083018	20.7 to 15.7	< 0.096	< 0.096	< 0.096	< 0.288	0.40	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072	
FMW-133	8/30/2018	FMW-133-083018	18.8 to 13.8	< 0.097	< 0.097	< 0.097	< 0.291	0.38	< 0.097	< 0.097	< 0.0097	< 0.097	0.098	< 0.097	< 0.097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	0.0073	
FMW-134	8/30/2018	FMW-134-083018	13.4 to 8.4	290	10	12	312	8.3	0.12	< 0.099	< 0.0099	< 0.099	1.6	0.48	< 0.099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.0075	
FMW-135	8/30/2018	FMW-135-083018	18.6 to 13.6	0.35	0.68	0.29	1.32	0.39	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072	
FMW-136	8/30/2018	FMW-136-083018	-4.9 to -14.9	0.39	< 0.096	< 0.096	0.39	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072	
										Potable Wa	ter Sample													
Potable Well	8/21/2018	POTABLE-082118	Unknown	< 1.0			< 1.0																	
MTCA Method A Cleanup Level for Groundwater ⁶							160	960 ⁷	NE	4,800 ⁷	NE	640 ⁷	640 ⁷	NE	480 ⁷		•						0.1	

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

< denotes analyte not detected at or exceeding the reporting limit listed.

[—] denotes sample not analyzed.

¹In feet above mean sea level using North American Vertical Datum of 1988.

²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM. FB-03 and Potable Well samples analyzed by EPA Method 8260C.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.