August 12, 2019

Mr. Dale Myers Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98008

SUBJECT: SECOND QUARTER 2019 SUMMARY REPORT

SKS Shell Station Site

3901 Southwest Alaska Street

Seattle, Washington

Project Number: 0914-001

Dear Mr. Myers:

SoundEarth Strategies, Inc. (SoundEarth) is pleased to present the Washington State Department of Ecology (Ecology) with a status report for the Second Quarter 2019 post-cleanup compliance and reporting activities for the SKS Shell Station Site (SKS Site; Figure 1). The construction phase of the cleanup for the SKS Site was implemented in 2015 under the Prospective Purchaser Consent Decree (PPCD) #13-2-27556-2, entered on July 29, 2013. Remediation of petroleum-contaminated soil and groundwater, as well as post-cleanup groundwater monitoring has been performed in accordance with the PPCD and Chapter 173-340 of the Washington Administrative Code. Cleanup and development activities at the SKS Site included dewatering, extensive soil excavation, and the installation of a vapor barrier to eliminate the potential vapor intrusion exposure pathway in the mixed-use building constructed on the property. Cleanup of the SKS Site has been coordinated with remedial activities conducted at the adjacent Huling Brothers Property and Kennedy Family Limited Partnership Property, which are being managed separately under the Voluntary Cleanup Program (ID #NW2715).

SECOND QUARTER 2019 SUMMARY

Second Quarter groundwater sampling was conducted on June 6 and 7, 2019, for 13 on-property and offproperty compliance wells. Well MW103 in the intersection northeast of the SKS Site was not sampled due to an insufficient volume of water in the well.

The Second Quarter groundwater sampling event is the 14th such event since cleanup was completed in 2015, and the 9th consecutive event in which all wells in the network work were sampled. SoundEarth uploaded Environmental Information Management (EIM) analytical and location data for the Fourth Quarter data, which was then approved by Ecology August 12, 2019.

Data from the June 2019 sampling event is tabulated below. Washington State Model Toxics Control Act Method A exceedances are highlighted in red and bolded:

Second Quarter 2019 Groundwater Analytical Results

		Analytical Results (micrograms per liter)					
Well ID	Sample Date	GRPH	Benzene	DRPH			
MW101	06/06/19	<100	<1	<50			
MW102	06/06/19	<100	<1	61			
MW104	06/06/19	210	<1	750			
MW105	06/06/19	<100	<1	96			
MW108	06/06/19	<100	<100 <1				
MW109	06/06/19	<100	<1	140			
MW110	06/06/19	<100	<1	91			
MW111	06/06/19	<100	<1	84			
MW112	06/06/19	<100	<1	59			
MW113	06/06/19	<100	<1	89			
RW03	06/07/19	410	<1	680			
RW04	06/07/19	240	<1	470			
RW05	06/06/19	<100	<1	99			
MTCA Method A C	Cleanup Level	1,000/800	5	500			

NOTES:

RED denotes indicates concentration exceeds MTCA Method A cleanup level.

< = not detected above the laboratory reporting limit

DRPH = diesel-range petroleum hydrocarbons

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

Please see the attached Groundwater Monitoring Report—Second Quarter 2019, for a more detailed discussion of the results and overall decreasing groundwater concentration trends for the SKS Site over the past four years.

PLANNED THIRD QUARTER 2019 ACTIVITIES

SoundEarth plans to conduct Third Quarter 2019 groundwater sampling in September 2019. Groundwater levels and analytical data trends will continue to be evaluated.

PROJECT SCHEDULE

The following summarizes the work conducted to date and the current schedule for anticipated reporting and monitoring work at the SKS Site.

Cleanup Plan Task	Status: Date
UST Fuel Removal and Station Shutdown	Conducted: July 2013
Installation of Shoring for UST removal	Conducted: November 2013
UST System Cleaning and Removal	Conducted: December 2013
Submit UST Removal Report	Conducted: January 2014
Permitting for Wells	Conducted: May 2014
Master Use Permit	Conducted: June 2014
Install Dewatering Wells (8 Wells)	Conducted: July 2014

Cleanup Plan Task

Install West Bounding Well MW107 (post demolition)

SKS Site Demolition and Hoist Removal Construct Dewatering System in ROW Wells

Operate Dewatering System

Contaminated Soil Excavation and Confirmation Sampling

Removal of Three Previously Unknown USTs Backfill Excavation and Install Membrane Barrier

Install Compliance Wells MW108, MW109, and MW110

Prepare Interim Cleanup Action Report

First Quarter Post Cleanup Groundwater Monitoring

Submit preliminary Cleanup Action Report Notice of Intent to Decommission Wells

Groundwater Elevation Study

Revised Agency-Review Cleanup Action Report

Alaska St. well closure technical meeting

Well Installation of MW113 Well Installation of MW111 Well Installation of MW112

Well Decommissioning (RW06-RW09, MW107)

Contingent ChemOx Injection*

Groundwater Monitoring (Quarterly)

Status: Date

Conducted: October 2014

Conducted: October-November 2014

Conducted: March 2015 Conducted: March-June 2015 Conducted: March-May 2015 Conducted: March 2015

Conducted: August-September 2015

Conducted: September 2015

Conducted: December-February 2016

Conducted: March 2016 Conducted: October 2016 Conducted: May 2017 In Progress: 2017-2018 Conducted: January 2018 Conducted: May 2018 Conducted: March 2018 Conducted: October 2018 Conducted: March 2019 Conducted: December 2018

Pending: 2020 Ongoing: 2019–2021

* = to be determined ChemOx = Chemical Oxidant ROW = right-of-way SKS Site = SKS Shell Station Site UST = underground storage tank

CLOSING

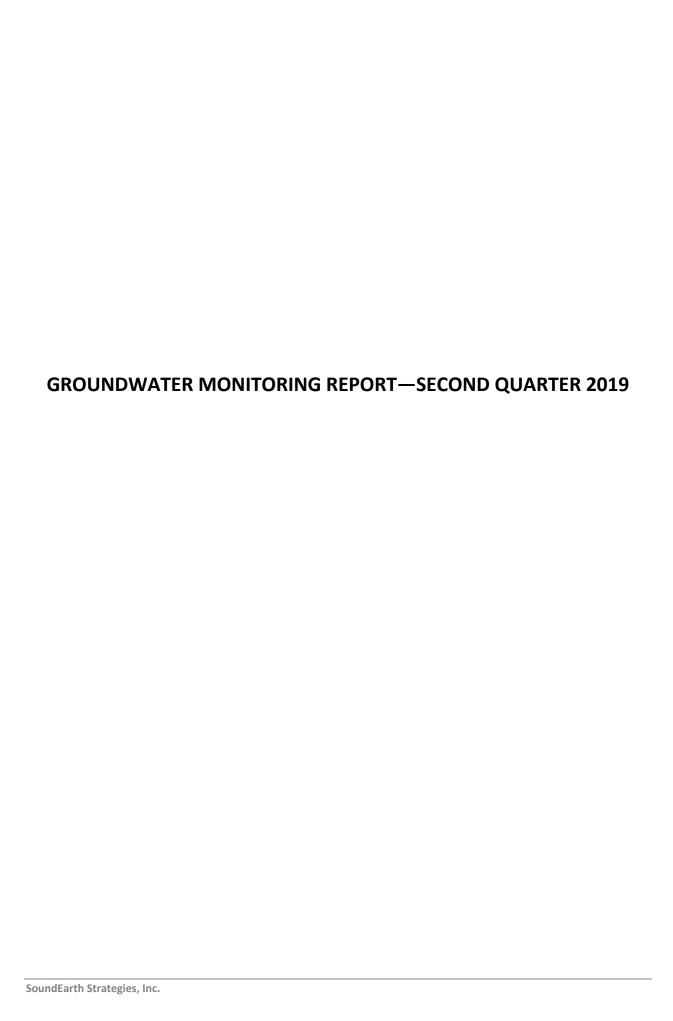
Please let me know if you would like to meet on-site or at your office to discuss any of the specific remedial activities. If you have any questions about the schedule and the cleanup activities, please contact Rob Roberts at 206-306-1900.

Respectfully,

SoundEarth Strategies, Inc.

Rob Roberts

Ryan K. Bixby, LG Senior Scientist Managing Principal


Attachment: Groundwater Monitoring Report—Second Quarter 2019

cc: Mr. Phil Carmody, GID Mr. Jason Sweatt, GID

Mr. William Joyce, Joyce Ziker Parkinson, PLLC

Mr. Dave Cook, Aspect Consulting

CER/RKB:rt/cms

August 12, 2019

Mr. Phil Carmody LMI West Seattle Holdings, LLC 125 High Street High Street Tower, 24th Floor Boston, Massachusetts 02110

SUBJECT: GROUNDWATER MONITORING REPORT—SECOND QUARTER 2019

SKS Shell Station Site

3901 Southwest Alaska Street

Seattle, Washington

Project Number: 0914-001

Dear Mr. Carmody:

SoundEarth Strategies, Inc. (SoundEarth) has prepared this report to present the results of the Second Quarter 2019 groundwater monitoring event conducted at the SKS Shell Station Site located generally at 3901 Southwest Alaska Street in Seattle, Washington (SKS Site), as shown on Figure 1. The groundwater monitoring event was conducted to evaluate the long-term effectiveness of the cleanup activities completed on and beneath the SKS Site that are being performed pursuant to the Cleanup Action Plan under Prospective Purchase Consent Decree #13-2-27556-2, entered on July 29, 2013.

BACKGROUND

The SKS Site was developed as a gasoline station and an automotive repair facility in 1934. In 1950, the original 1934 gasoline fueling equipment was removed and two 4,000-gallon underground storage tanks (USTs) were installed. The pump island and service station office were removed in 1961 and replaced with a new pump island, relocated to the locations shown on Figure 2. An additional 8,000-gallon UST was installed in 1974. The 1950-vintage USTs were removed in 1984 and replaced with one 10,000-gallon UST and two 12,000-gallon USTs. Over time, leaded and unleaded gasoline and diesel fuel have been used and stored in various USTs at the SKS Site. In December 2013, the three 1984-vintage USTs and the 1974vintage UST were decommissioned and removed from the SKS Site.

SoundEarth conducted remedial activities on the SKS Site in 2015 as part of the Whittaker multifamily/mixed use development. Remedial activities included lot-line to lot-line remedial excavation of petroleum-contaminated soil to approximately 29.5 feet below ground surface (bgs; 240 feet North American Vertical Datum 1988 [NAVD88]), right-of-way (ROW) dewatering to facilitate removal of contaminated water, and vapor barrier installation. Approximately 9,755 tons of petroleum-contaminated soil were removed from the SKS Site.

On September 1, 2015, monitoring wells MW108 through MW110 were installed in the basement/parking garage level of the building now located on the SKS Site to complete compliance groundwater monitoring.

On March 16, 2018, monitoring well MW113 was installed west of the SKS Site at the former Howden-Kennedy Funeral Home parcel (Kennedy Property) in the basement/parking garage level of the building (Figure 2). This well was installed to assess the lateral extent of groundwater impacts to the southwest of the SKS Site and to confirm that no residual groundwater contamination remains on the Kennedy Property. This well was also installed to provide groundwater elevation information for the evaluation of the reversal in groundwater flow direction at the SKS Site.

On October 3, 2018, monitoring well MW111 was installed in the Southwest Alaska Street sidewalk on the northeastern portion of the SKS Site. On March 1, 2019, MW112 was installed in Southwest Alaska Street approximately 26 feet east of MW111. These wells were installed to evaluate groundwater flow direction and gradient, natural attenuation, the potential for plume expansion or contraction, and to evaluate whether future chemical injections are warranted.

FIELD ACTIVITIES

The Second Quarter monitoring event was conducted on June 6 and 7, 2019, to evaluate the long-term effectiveness of cleanup activities. Groundwater sampling was conducted on a total of 13 on-property and off-property compliance wells. The monitoring event included measuring depths to groundwater and sampling monitoring wells MW108 through MW110 and MW113 located in the building parking garage; wells MW101, MW102, MW104, MW105, and RW03 through RW05, located within the Fauntleroy Way Southwest ROW; and wells MW111 and MW112, located within the Southwest Alaska Street ROW. Consistent with the First Quarter 2019 monitoring event, remediation wells RW01 and RW02 were not included in this monitoring event, based on a telephone discussion between Dale Myers of Ecology and Rob Roberts of SoundEarth prior to the Third Quarter 2017 groundwater sampling event.

Upon arrival at the SKS Site, SoundEarth personnel opened the monitoring wells and permitted water levels to equilibrate with atmospheric pressure for a minimum of 30 minutes before groundwater level measurements were obtained. Groundwater levels were measured relative to the top of well casing to an accuracy of 0.01 feet using an electronic water level meter. Monitoring well MW103 was observed to contain less than 0.05 feet of water and was therefore not sampled.

Groundwater samples were collected from monitoring wells MW101, MW102, MW104, MW105, and MW108 through MW113 and remediation wells RW03 through RW05, in accordance with the US Environmental Protection Agency (EPA) *Low-Flow (Minimal Drawdown) Ground-Water Procedures* (April 1996). Purging and sampling of each monitoring well were performed using a peristaltic pump and dedicated polyethylene tubing at flow rates ranging from 100 to 160 milliliters per minute. The intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen, if well screen was submerged, in each monitoring well. During purging, water quality was monitored using a YSI water quality meter equipped with a flow-through cell. The water quality parameters that were monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each monitoring well was purged until a minimum subset of pH, specific conductivity, and dissolved oxygen and/or turbidity stabilized. Monitoring wells MW104 and MW108 were purged dry while filling the flow-through cell. Therefore, a grab sample was collected from each of these wells once the wells had recharged to their initial groundwater levels. The low recharge rates observed during purging at wells MW104 and MW108 are similar to conditions observed during previous events.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to Friedman & Bruya, Inc., of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis.

The groundwater samples were submitted for analysis of gasoline-range petroleum hydrocarbons (GRPH) by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Gx; benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B; and diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively) by Method NWTPH-Dx.

Purge water generated during the monitoring event was placed in an appropriately labeled 55-gallon steel drum and temporarily stored on the SKS Site pending receipt of analytical data and proper disposal.

RESULTS

Groundwater Elevations and Flow Direction

Groundwater elevations measured on June 6, 2019, ranged from approximately 241.46 (MW102 in the Fauntleroy Way Southwest ROW) to 239.82 (MW109 in the building parking garage) feet NAVD88 (Table 1). Historical groundwater measurements have indicated that groundwater at the Fauntleroy Way Southwest and Southwest Alaska Street intersection consistently flowed at a moderate gradient of 0.015 feet per foot to the north-northeast. However, groundwater elevation data collected more recently since 2017 indicate a groundwater flow direction to the west at an average gradient of approximately 0.014 feet per foot along the Fauntleroy Way Southwest property edge. During Second Quarter 2019, the observed gradient was 0.0092 feet per foot, with a groundwater flow direction to the west-southwest beneath the eastern side of the SKS Site. Groundwater elevations are relatively flat on the eastern side of the SKS Site beneath the building. Groundwater elevations measured in wells MW108, MW109, and MW110, located within the parking garage adjacent to the building footings along the northern and eastern sides of the building, are approximately 0.25 foot lower than elevations measured in wells MW104, MW111, MW112, and RW03 through RW05, which are located outside of the building footings along the northern and eastern sides of the building. Figure 2 provides a rose diagram showing the groundwater flow directions and gradients prior to the remedial excavation, as well as the groundwater flow directions and gradients from all sampling events conducted after the remedial excavation. The change in groundwater flow observed during 2017 through Second Quarter 2019 is likely due to the footing drains and associated sub-slab drainage system that were installed between July and September 2015 for the underground parking garage, as discussed in the Conclusions section. Groundwater on the eastern side of the SKS Site beneath the Fauntleroy Way Southwest and Southwest Alaska Street ROWs appears to have reversed its flow direction due to the lower groundwater elevations observed in the vicinity of the building footings.

Groundwater Chemical Analytical Results

Groundwater analytical results from the monitoring event are summarized below (Figure 3; Table 1). The analytical results for groundwater samples collected from MW101, MW102, MW105, MW109 through MW113, RW04, and RW05 were below Washington State Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) for the chemicals of concern at the SKS Site, including GRPH, DRPH, ORPH, and BTEX. Data from the Second Quarter 2019 sampling event are tabulated in Table A below.

Table A, Second Quarter 2019 Groundwater Analytical Results

		Analytical Results (micrograms per liter)					
Well ID	Sample Date	GRPH	Benzene	DRPH			
MW101	06/06/19	<100	<1	<50			
MW102	06/06/19	<100	<1	61			
MW103	Insuffici	ent water colui	nn to sampl	е			
MW104	06/06/19	210	<1	750			
MW105	06/06/19	<100	<1	96			
MW108	06/06/19	<100	<1	590			
MW109	06/06/19	<100	<1	140			
MW110	06/06/19	<100	<1	91			
MW111	06/06/19	<100	<1	84			
MW112	06/06/19	<100	<1	59			
MW113	06/06/19	<100	<1	89			
RW03	06/07/19	410	<1	680			
RW04	06/07/19	240	<1	470			
RW05	06/06/19	<100	<1	99			
MTCA Method A	Cleanup Level	1,000/800	5	500			

NOTES

Red indicates concentration exceeds MTCA Method A cleanup level.

< = not detected above the laboratory reporting limit

DRPH = diesel-range petroleum hydrocarbons

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

A summary of the analytical results for the primary chemicals of concern for the SKS Site, including GRPH, benzene, and DRPH, is provided below:

- Gasoline-Range Petroleum Hydrocarbons. GRPH concentrations in groundwater samples collected from all sampled wells were below the MTCA Method A CUL of 800 micrograms per liter (µg/L) for GRPH. GRPH concentrations detected in wells MW104 and RW04 during the Second Quarter 2019 sampling event were generally similar to the concentrations detected in these wells during the First Quarter 2019 groundwater sampling event. The groundwater sample collected from RW03 contained 410 µg/L of GRPH, which is lower than the concentrations detected in this well during Second Quarter 2018 (730 µg/L) and First Quarter 2019 (1,700 µg/L).
- **Benzene.** The groundwater samples collected from all sampled monitoring wells were below the laboratory reporting limit for benzene.
- **Diesel-Range Petroleum Hydrocarbons.** DRPH concentrations in groundwater samples collected from wells MW101, MW102, MW105, MW109 through MW113, RW04, and RW05 were below the MTCA Method A CUL of 500 μg/L for DRPH. The groundwater samples collected from wells MW104, MW108, and RW03 contained DRPH concentrations of 750, 590, and 680 μg/L, respectively, exceeding the MTCA Method A CUL. The DRPH concentrations in wells MW104 and RW03 were generally similar to concentrations detected in these wells during Second Quarter 2018 and First Quarter 2019.

The DRPH concentration of 590 mg/kg in the sample collected from well MW108 during Second Quarter 2019 is lower than the DRPH concentration of 680 μ g/L detected in this well during First Quarter 2019. These DRPH concentrations are anomalous compared with previous DRPH concentrations in this well. Prior to First Quarter 2019, concentrations had not exceeded the CUL in well MW108 during any monitoring events. Additional groundwater monitoring will be completed at MW108 to evaluate whether this concentration represents a trend.

As shown in the attached Charts 1 through 6, which summarize trends in GRPH and benzene concentrations in monitoring wells MW104, MW108, MW109, MW110, RW03, and RW04 since 2011, GRPH and benzene in the four monitoring wells during Second Quarter 2019 are significantly lower than concentrations observed before the remedial excavation was completed. Aside from well RW03, GRPH and benzene concentrations in all six wells have remained below laboratory reporting limits or the MTCA Method A CULs since First Quarter 2017. Figure 4 includes trend charts as well as data comparison tables from the six ROW monitoring wells. The tables on Figure 4 illustrate that ROW groundwater concentrations were either non-detect for GRPH and benzene before and after the 2015 excavation (MW101 through MW103 and MW105), or that concentrations are significantly reduced (RW02 and RW04).

A copy of the laboratory analytical report is provided as Attachment A.

DATA VALIDATION

SoundEarth contracted with Validata, LLC to conduct a Stage 2A-level quality assurance/quality control (QA/QC) review of the analytical results. The data were reviewed using the guidance and QC criteria documented in the EPA's National Functional Guidelines for Organic Superfund Data Review (2017). The quality control requirements that were reviewed included sample receipt, handling, and holding times; recoveries for method blanks, surrogates, spikes, and field duplicates; and reporting limits.

Results. The DRPH results for groundwater samples collected from wells MW102, MW104, MW105, MW108, MW109, MW110, MW111, MW112, MW113, RW03, RW04, and RW05, and the ORPH result for the groundwater sample collected from MW104 were qualified as estimated (J) since the laboratory reported the diesel and/or oil range results as "x", indicating that the chromatographic pattern does not match the standard. All other QA/QC criteria were confirmed to be acceptable for the groundwater samples, and the analytical results are considered to be acceptable for use. A copy of the data validation report is provided as Attachment B.

Following data validation, the groundwater data were uploaded to Ecology's Environmental Information Management system on June 26, 2019 and confirmed by Ecology as successfully uploaded on August 12, 2019.

CONCLUSIONS

Petroleum hydrocarbons (GRPH, DRPH, ORPH, and BTEX) were either not detected above laboratory reporting limits or detected at concentrations less than MTCA Method A CULs in 10 of the 13 wells sampled for groundwater at the SKS Site during the Second Quarter 2019 monitoring event. The three wells in which MTCA Method A CUL exceedances were encountered included:

 Remediation well RW03, which contained a concentration of DRPH exceeding the MTCA Method A CUL.

- Monitoring well MW104, which contained a concentration of DRPH exceeding the MTCA Method A CUL.
- Monitoring well MW108, which contained a concentration of DRPH slightly exceeding the MTCA Method A CUL.

Wells RW03 and MW104 are both located in the Fauntleroy Way southwest sidewalk. Well MW108 is located in the building parking garage near the northwestern corner of the SKS Site.

Although concentrations of GRPH and/or DRPH remain in exceedance of CULs at wells RW03 and MW104, analytical data trends indicate that concentrations of these contaminants have decreased significantly between December 2016 and June 2019. It is recommended that groundwater monitoring continue to further assess the natural attenuation of petroleum hydrocarbons at these well locations and to confirm the degradation trends. The DRPH concentrations exceeding the MTCA cleanup level in on-property well MW108 during First and Second Quarters 2019 are anomalously high compared to DRPH concentrations detected in this well since sampling began in First Quarter 2016. Prior to First Quarter 2019, MW108 had not previously exhibited an exceedance of the applicable cleanup levels for any contaminants of concern. The DRPH detections were flagged by the laboratory as not representative of the diesel fuel standard. This data and associated trends will be reevaluated following subsequent groundwater monitoring events. At this time, the analytical groundwater data and monitoring trends indicate that no additional treatment is warranted.

The historical groundwater flow direction was documented to be north—northeast prior to development, but based on the most recent groundwater elevations, the flow direction has changed to the west (see Rose Diagrams in Figure 2). As shown on Figures 5 and 6, the building is equipped with a sub-slab drainage system that should (based on location) intercept groundwater at the southern and western boundaries of the new sub-grade parking levels. The two-level parking garage includes a grid-work of sub-slab drains and vertical wall footing drains that lead to a 300-foot-long, 6-foot-internal-diameter stormwater retention pipe located beneath the eastern side of the building (Figure 5). The southwestern portion of the parking garage was constructed approximately 28 feet bgs, and the current building footing drain system appears to be intercepting that groundwater beneath the SKS Site and the entire Whittaker property. During Second Quarter 2019, groundwater flow direction was measured to be toward the west-southwest on the eastern side of the SKS Site, with relatively consistent groundwater elevations on the western side of the SKS Site beneath the building. SoundEarth is currently analyzing whether the building drainage system is affecting the groundwater elevation and flow direction at the northeast corner of the Whittaker property.

During March 2018, monitoring well MW113 was installed in the parking garage beneath the building on the Kennedy Property to the west of the SKS Site. GRPH, DRPH, ORPH, and BTEX were all below the applicable MTCA Method A CULs in groundwater samples collected from this well during 2018 and First and Second Quarters 2019, indicating that the change in groundwater flow direction has not impacted groundwater to the west of the SKS Site.

SCHEDULE

SoundEarth will conduct a monitoring event of the well network at the SKS Site in Third Quarter 2019; the results will be included in a groundwater monitoring report.

RECOMMENDATION

SoundEarth recommends the decommissioning of wells MW101 and MW102, which are located on the east side of, and within, Fauntleroy Way, respectively. Groundwater samples collected from these wells have not contained concentrations of GRPH, DRPH, ORPH, or BTEX exceeding the applicable laboratory reporting limits and/or CULs since sampling was first conducted in 2012. Additionally, a significant redevelopment and mass excavation is occurring on the property to the east, near these wells. Furthermore, sampling of well MW102 is very difficult and costly to sample because it is located in the Alaska Street/Fauntleroy Way intersection, presenting safety concerns, creating obstructions to traffic flow in a major arterial, and affecting access to an adjacent Rapid Ride Metro bus stop.

CLOSING

SoundEarth appreciates this opportunity to provide LMI West Seattle Holdings, LLC, with environmental consulting services. Please call Rob Roberts at 206-306-1900 if you have any questions or comments regarding the content of this report.

Rob Roberts

Senior Scientist

Respectfully,

SoundEarth Strategies, Inc.

lan Tort

Clare Tochilin, LG **Associate Geologist**

Ryan K. Bixby, LG **Managing Principal**

Figure 1, Property Location Map Attachments:

Figure 2, Groundwater Elevation Contour Map (June 6, 2019)

Figure 3, 2019 Q2 Groundwater Analytical Data

Figure 4, GRPH and Benzene Concentration Trends in Groundwater

Figure 5, Sub-Slab Drainage Plan with Cross Section Location

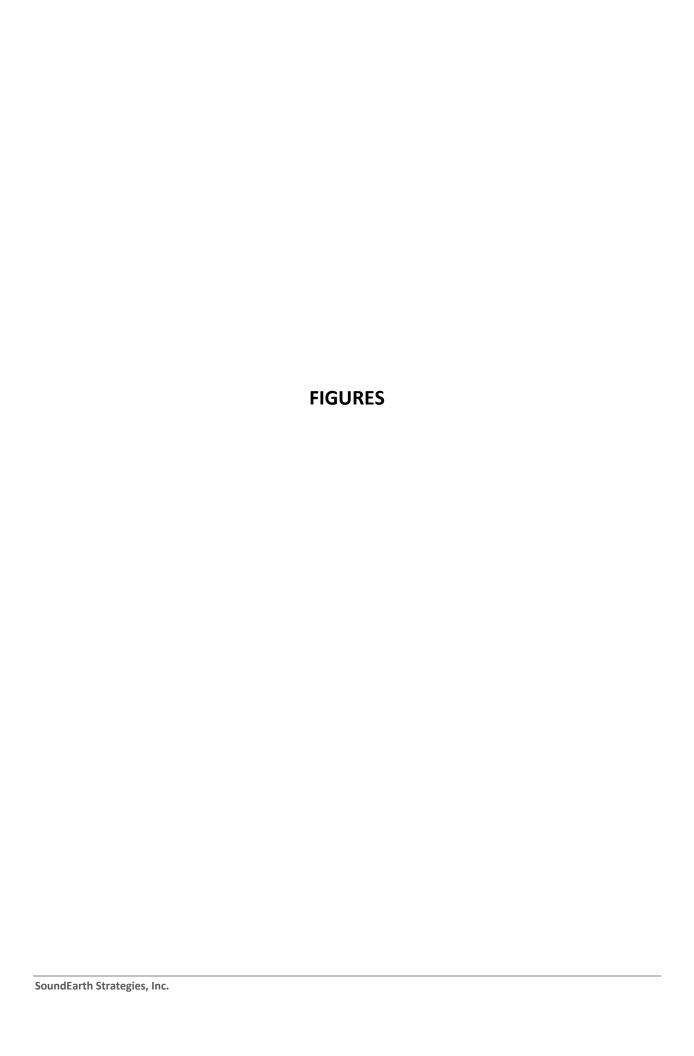
Figure 6, Cross Section A-A'

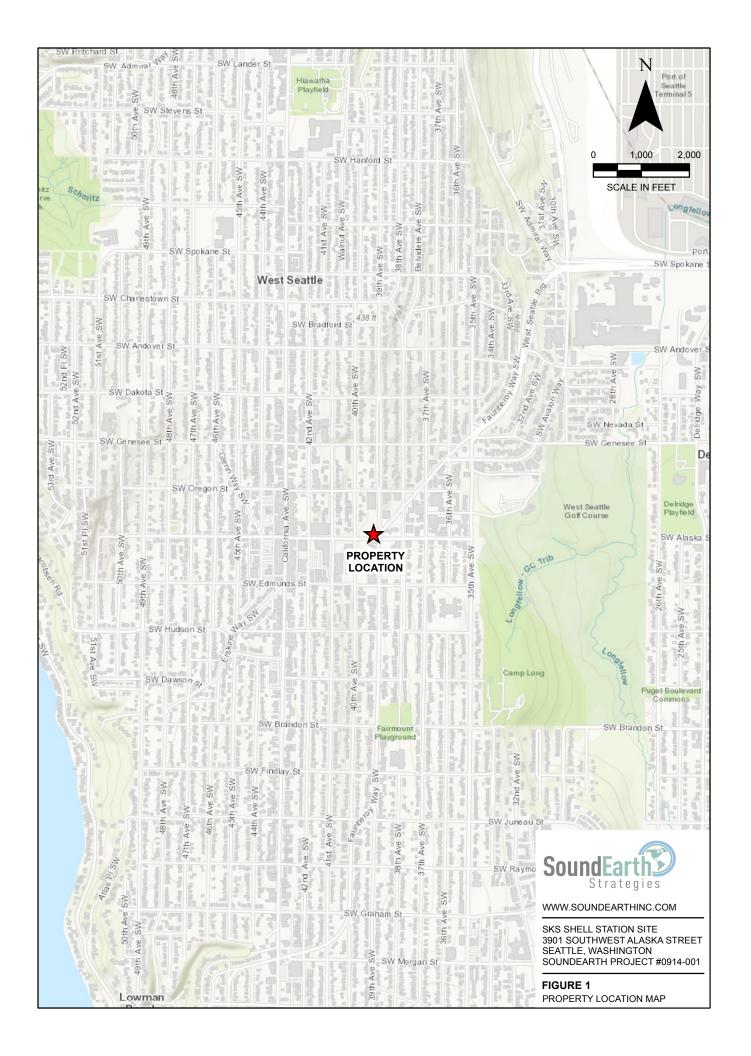
Table 1, Summary of Groundwater Data

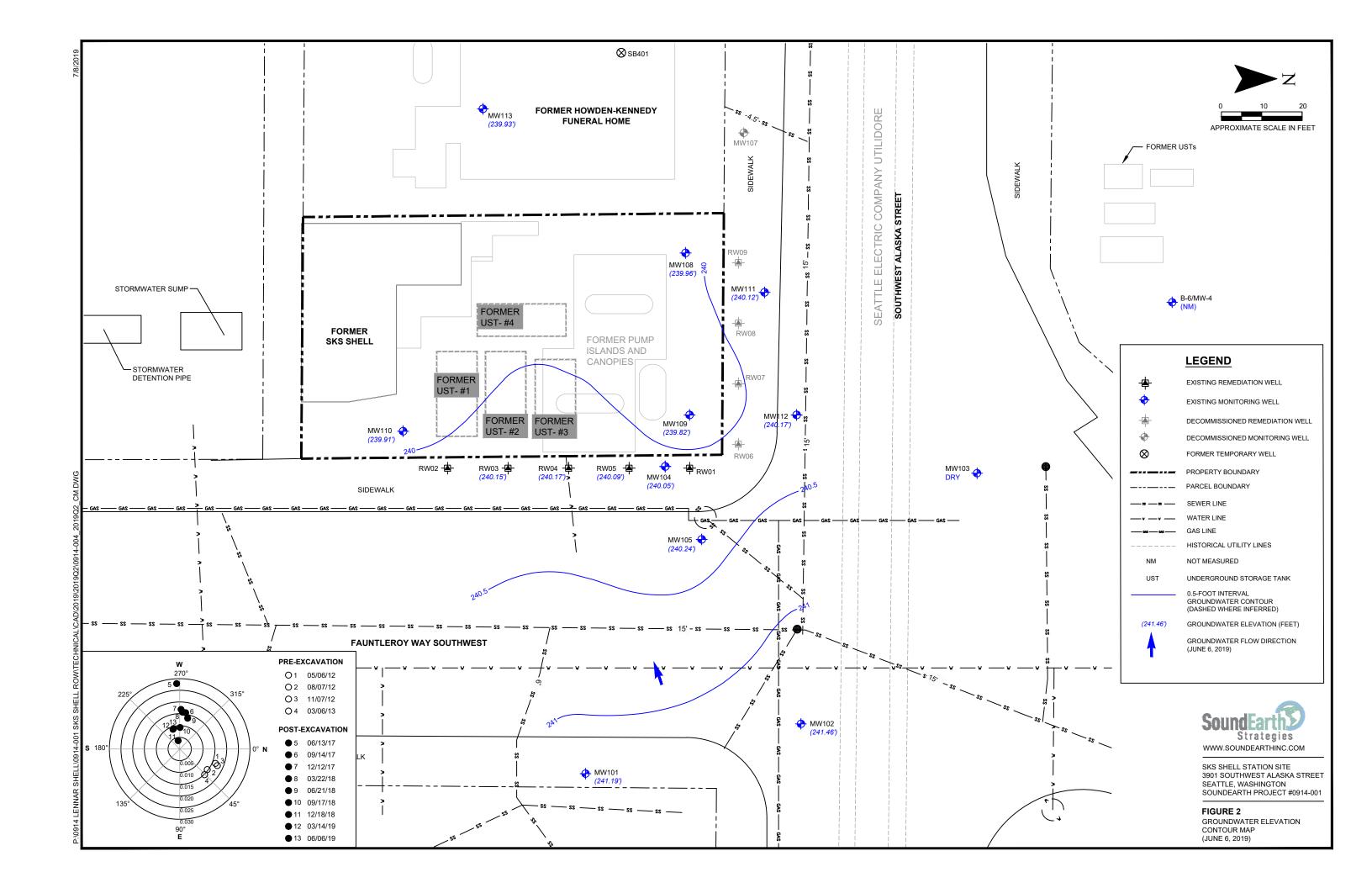
Chart 1, GRPH and Benzene Concentrations—MW104

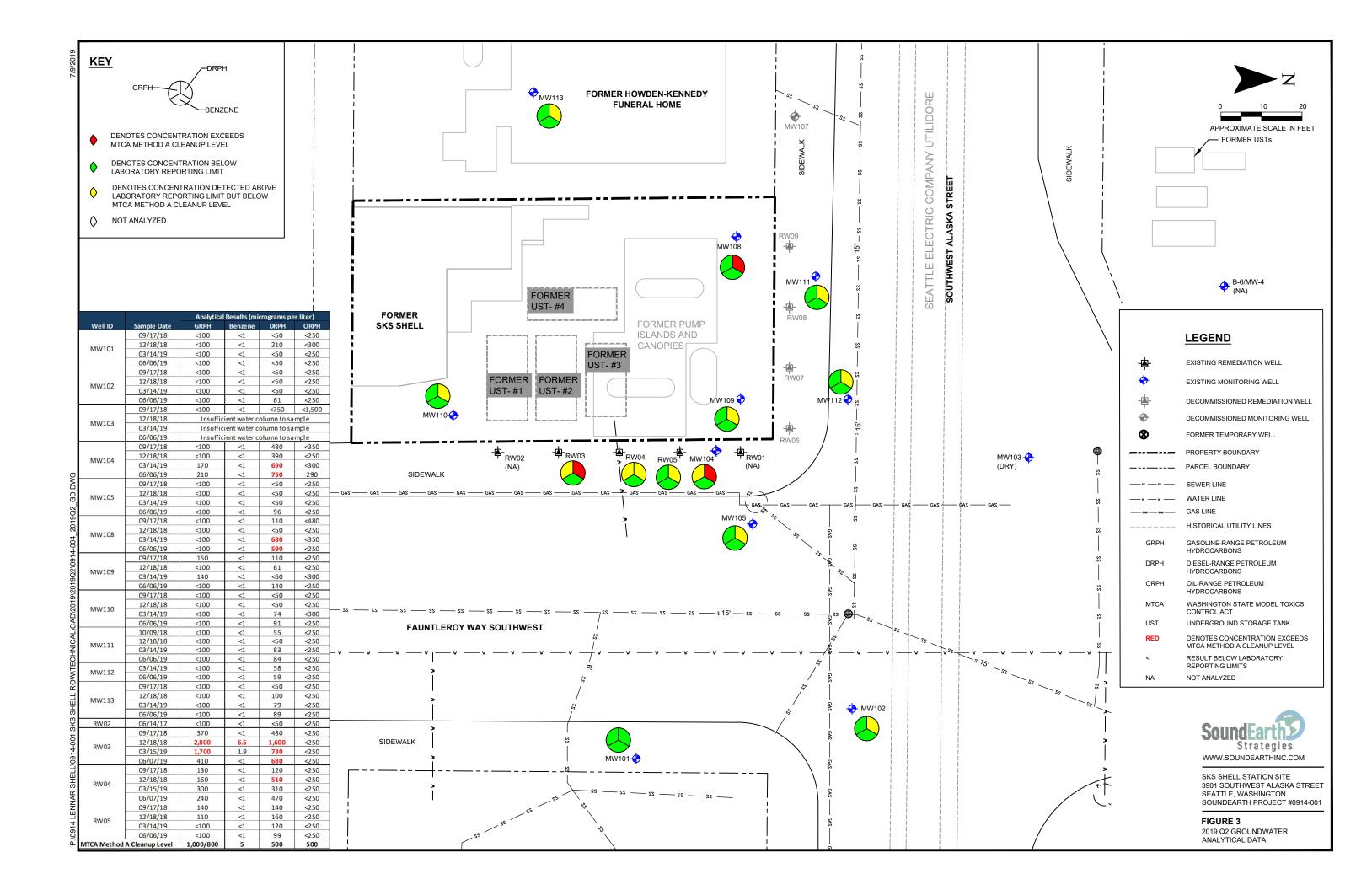
Chart 2, GRPH and Benzene Concentrations—GLMW01/MW109

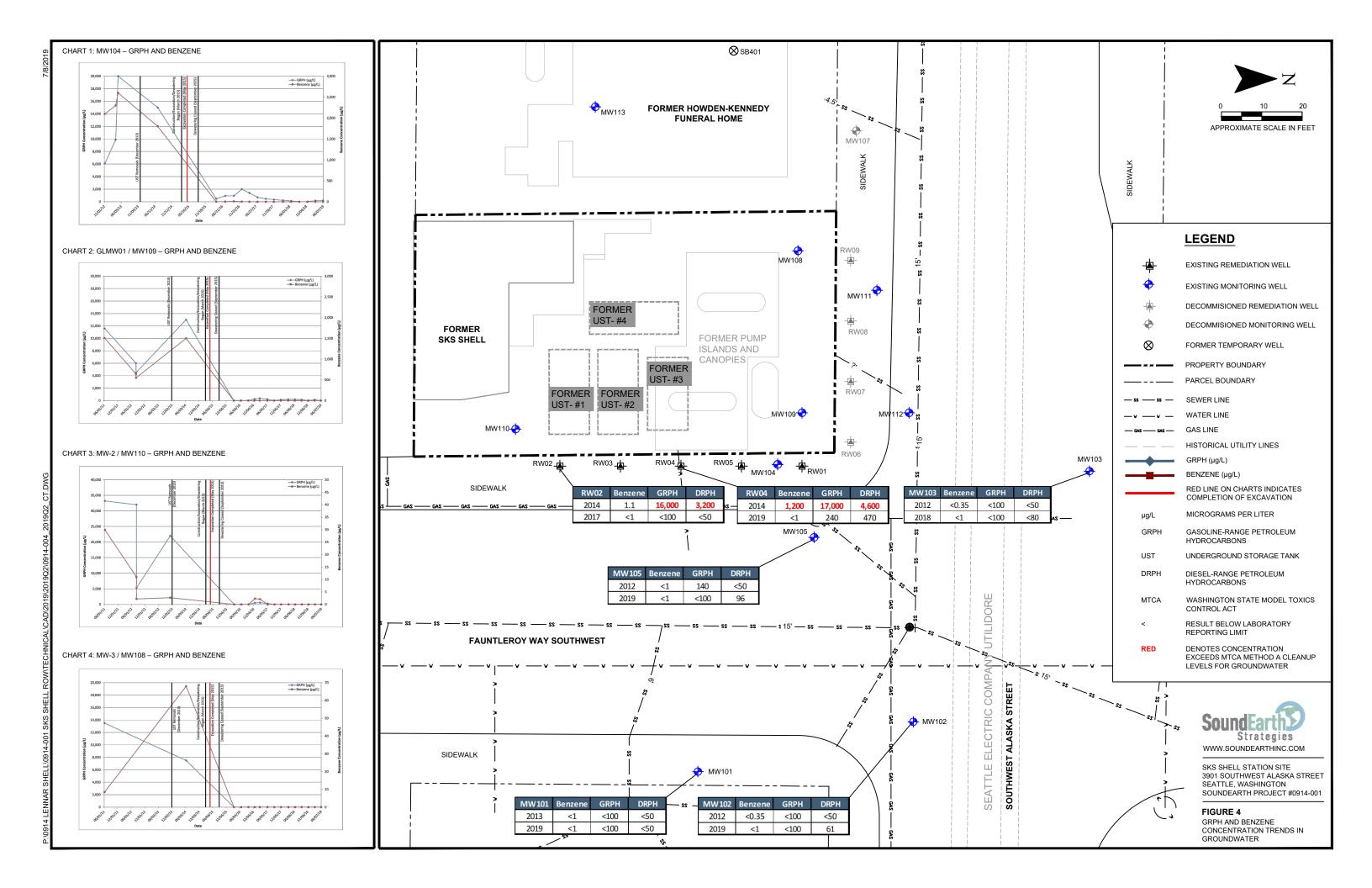
Chart 3, GRPH and Benzene Concentrations—MW110/MW-2

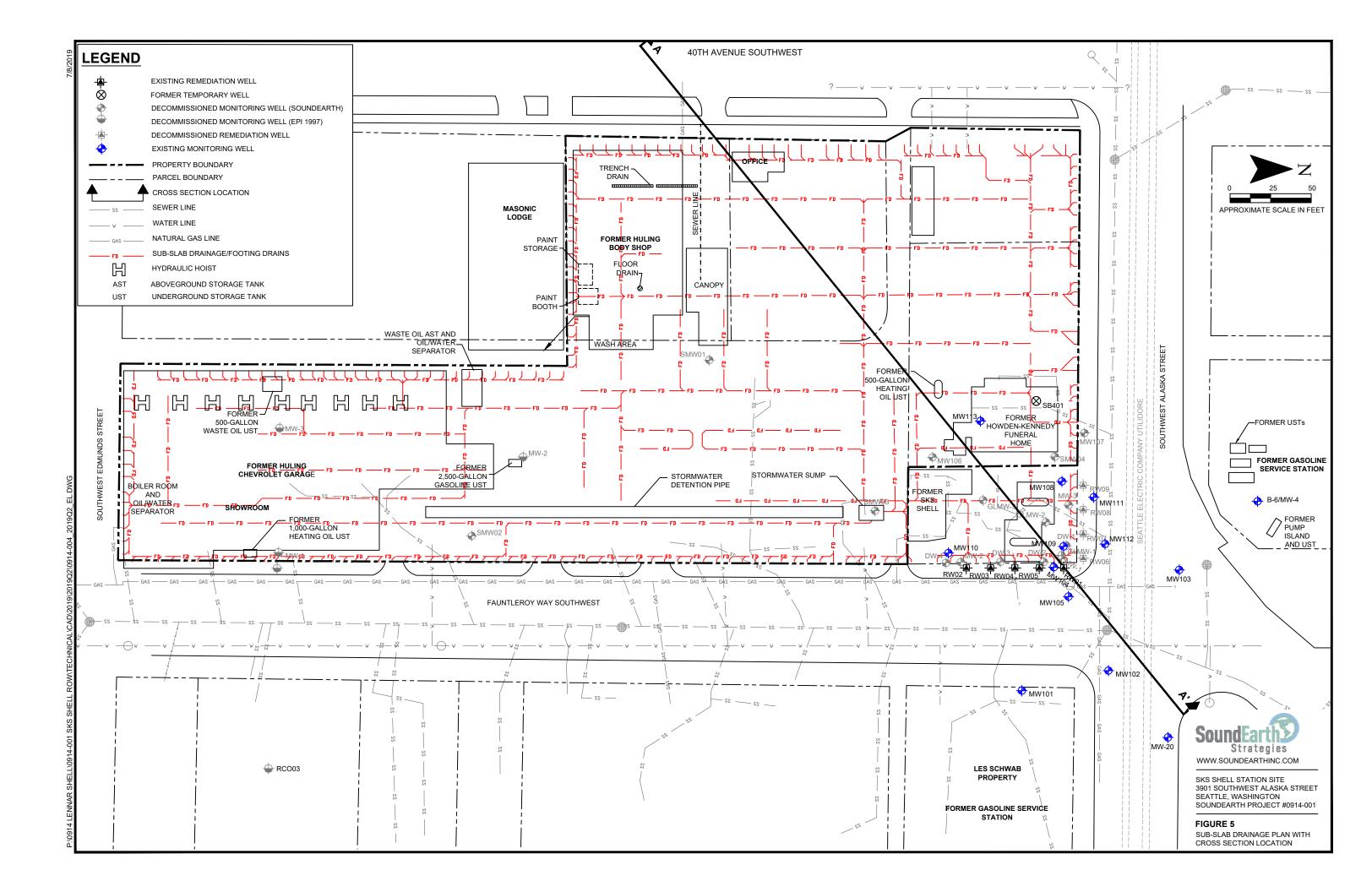

Chart 4, GRPH and Benzene Concentrations—MW-3/MW108


Chart 5, GRPH and Benzene Concentrations—RW03 Chart 6, GRPH and Benzene Concentrations—RW04


A, Laboratory Analytical Report


Friedman & Bruya, Inc. #906144 amended B, Data Validation Report Validata, LLC #906144 amended


CJT/CER:dnm/cms



Strategies www.soundearthinc.com

SKS SHELL STATION SITE 3901 SOUTHWEST ALASKA STREET SEATTLE, WASHINGTON SOUNDEARTH PROJECT #0914-001

FIGURE 6 CROSS SECTION A-A'

P-10044 I ENNAR SHELLY0044-004 SKS SHELL ROWATECHNICALYCAD/201902/0044-004 201902 3

TABLE SoundEarth Strategies, Inc.

Table 1 Summary of Groundwater Data SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

										Analytical Re	esults (μg/L)		T			_
		Top of Well	Depth to Groundwater	Relative Groundwater					Total					DRPH with Silica		ORPH with Silica
Well ID	Sample Date	Casing	(feet below TOC)	Elevation ⁽¹⁾⁽⁷⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Xylenes ⁽³⁾	MTBE ⁽³⁾	EDC ⁽³⁾	EDB ⁽³⁾	DRPH ⁽²⁾	Gel ⁽⁴⁾	ORPH ⁽²⁾	Gel ⁽⁴⁾
	08/06/12	<u> </u>	24.39	245.15	<100	<0.35	<1	<1	<3	<1	<1	<1				
	04/01/13		24.67	244.87	<100	<1	<1	<1	<3				<50		<250	
	06/14/17		25.80	243.74	<100	<1	<1	<1	<3				<50		<250	
	09/13/17		26.91	242.63	<100	<1	<1	<1	<3				<60		<300	
MW101	12/12/17	269.54	27.62	241.92	<100	<1	<1	<1	<3				<50		<250	
IVIVVIOI	03/22/18 06/21/18	209.34	27.20 27.34	242.34 242.20	<100 <100	<1 <1	<1 <1	<1 <1	<3 <3				<60 <50		<300 <250	
	09/17/18		28.07	241.47	<100	<1	<1	<1	<3				<50		<250	
	12/18/18		28.55	240.99	<100	<1	<1	<1	<3				210		<300	
	03/14/19		28.02	241.52	<100	<1	<1	<1	<3				<50		<250	
	06/06/19		28.35	241.19	<100	<1	<1	<1	<3				<50		<250	
	11/07/12		25.41	243.65	<100	<0.35	<1	<1	<3	<1	<1	<1	100	<50	<250	<250
	06/13/17		25.42	243.64	<100	<1	<1	<1	<3				<50		<250	
	09/13/17		26.54	242.52	<100	<1	<1	<1	<3				<50		<250	
	12/12/17		27.15	241.91	<100	<1	<1	<1	<3				<50		<250	
MW102	03/22/18 06/22/18	269.06	26.69 27.37	242.37 241.69	<100 <100	<1 <1	<1 <1	<1 <1	<3 <3				<65 <50		<320 <250	
	09/17/18		27.37	241.69	<100	<1	<1	<1	<3				<50 <50		<250	
	12/18/18		28.25	240.81	<100	<1	<1	<1	<3				<50		<250	
	03/14/19		27.50	241.56	<100	<1	<1	<1	<3				<50		<250	
	06/06/19		27.60	241.46	<100	<1	<1	<1	<3				61 ^x		<250	
	11/07/12		27.80	241.75	<100	<0.35	<1	<1	<3	<1	<1	<1	130	<50	<250	<250
	06/13/17		28.56	240.99	<100	<1	<1	<1	<3				<60		<300	
	09/13/17		29.12	240.43	<100	<1	<1	<1	<3				140 ^x		<375	
	12/12/17		29.29	240.26	<100	<1	<1	<1	<3				120		<250	
MW103 ⁽⁸⁾	03/22/18 06/21/18	269.55	29.14 29.45	240.41 240.10	<100	<1	<1	<1	<3	Insufficient water of			<80		<400	
	09/17/18		29.45	239.89	<100	<1	<1	<1	<3				<750		<1,500	
	12/18/18		Dry													
	03/14/19		Dry													
	06/06/19		29.70	239.85						Insufficient water	column to sample					
	11/07/12		24.41	244.94	6,100	2,100	10	120	418	<1	<1	<1	4,000		<250	
	03/06/13		23.24	246.11	9,900	2,300	110	470	870				1,900 ^x		<250	
	04/01/13		23.37	245.98	20,000	2,600	140	640	1,300					540 ^x		<250
	06/12/14 03/17/16	269.35	25.50 26.41	243.85 242.94	15,000 480	1,800 1.2	120 1.8	480 2.2	1,330 5.7			<0.01	14,000 ^x 1,200 ^x		250 ^x <300	
	05/17/16	203.33	25.16	242.94	940	2.5	2.0	3.0	9.5				3,200		<250	
	09/28/16		25.55	243.80	940	7.2	<1	3.7	7.4				4,000 [×]		340 ^x	
	12/23/16		27.28	242.07	2,000	2.1	2.1	17	27				16,000	180 ^x	380 ^x	<250
MW104	03/17/17		27.55	241.80	1,400	<1	<1	8.5	10				7,900	290 ^x	<400	<400
14144 TO4	06/15/17	-	27.92	241.45	700	<1	<1	4.0	3.1				3,000	370 ^x	<250	<250
	09/14/17		28.21	241.16	460	<1	<1	1.3	<3				2,200	230 ^x	<300	<250
	12/12/17		28.86	240.51	340	<1	1.1	1.3	<3				780 ^x		<350	
	03/22/18	269.37	28.88	240.49	220	<1	<1	<1	<3 <3				590 ^x		<250	
	06/21/18 09/17/18	203.37	28.96 29.27	240.41 240.10	130 <100	<1 <1	<1 <1	<1 <1	<3				720 480		<350 <350	
	12/18/18		29.02	240.35	<100	<1	<1	<1	<3				390		<250	-
	03/14/19		29.25	240.12	170	<1	<1	<1	<3				690 ^x		<300	
	06/06/19		29.32	240.05	210	<1	<1	<1	<3				750 ^x		290 ^x	
	12/13/12		24.25	245.05	140	<1	<1	<1	<3				820 ^x	<50	<250	<250
	03/06/13		23.33	245.97	<100	<0.35	<1	<1	<3				61 ^x		<250	
	06/13/17		27.36	241.94	<100	<1	<1	<1	<3				<50		<250	
	09/13/17		27.96	241.34	<100	<1	<1	<1	<3				<60		<300	
MW105	12/12/17 03/22/18	269.30	28.41 28.45	240.89	<100 <100	<1 <1	<1 <1	<1 <1	<3 <3				<50 <65		<250 <320	
	03/22/18	200.00	28.45	240.85 240.74	<100	<1	<1	<1	<3				<50		<320 <250	
	09/17/18		28.96	240.74	<100	<1	<1	<1	<3				<50		<250	
	12/18/18		28.90	240.40	<100	<1	<1	<1	<3				<50		<250	
	03/14/19		28.66	240.64	<100	<1	<1	<1	<3				<50		<250	
	06/06/19		29.06	240.24	<100	<1	<1	<1	<3				96 ^x		<250	
RW02	07/16/14	268.60			16,000	1.1	2.5	380	1,400				3,200 ^x		<250	
	06/14/17	(-)	27.22	241.38	<100	<1	<1	<1	<3				<50		<250	
MTCA Method A Cleanu	up Levels for Ground	water ⁽⁵⁾			1,000/800 ⁽⁶⁾	5	1,000	700	1,000	20	5	0.01	500	500	500	500

P-\0914 Lennar Shell\0914-001 SKS Shell R0W\7echnical\7ables\2019\02 GW\0914-001 SKS_2019\02 GW\0914-001 SKS_2019GW2Q_F

Table 1 Summary of Groundwater Data SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

				5.1.0						Analytical Re	sults (μg/L)			 		1
		Top of Well	Depth to Groundwater	Relative Groundwater					Total					DRPH with Silica		ORPH with Silica
Well ID	Sample Date	Casing	(feet below TOC)	Elevation ⁽¹⁾⁽⁷⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Xylenes ⁽³⁾	MTBE ⁽³⁾	EDC ⁽³⁾	EDB ⁽³⁾	DRPH ⁽²⁾	Gel ⁽⁴⁾	ORPH ⁽²⁾	Gel ⁽⁴⁾
	03/17/16		26.23	-	2,300	41	6.9	51	260				1,400 [×]		<250	
	06/24/16		25.40		1,600	27	4.4	27	59				3,600		<250	
	09/28/16		25.71		1,100	6.7	<1	20	45				2,400 ^x		<300	
	12/23/16		26.77		9,000	470	16	380	750				11,000	720 ^x	<300	<300
	03/02/17		27.22		4,900	150	<10	220	190				11,000 ^x	880 ^x	<250	<250
	06/14/17 09/14/17		27.91 28.30	241.59 241.20	1,300 560	7.0 2.8	<1 1.3	32 15	11 4.5				1,500 690 ^x	320 ^x 140 ^x	<250 <300	<250 <300
RW03	12/12/17		28.82	240.68	2,500	8.8	17	39	170				1,000*		<300	
	03/22/18		28.85	240.65	2,100	3.0	5.2	29	140				760 [×]		<250	
	06/22/18	269.50	28.94	240.56	730	<1	2.3	31	34				740 ^x		<250	
	09/17/18		29.28	240.22	370	<1	<11	11	15				430		<250	
	12/18/18		29.05	240.45	2,800	6.5	5.0	75	250				1,600		<250	
	03/15/19		29.05	240.45	1,700	1.9	1.7	46	140				730 ^x		<250	
	06/07/19		29.35	240.15	410	<1	<1	14	4.3				680 ^x		<250	
	07/16/14		 27.62	241.60	17,000	1,200	270	360	1,700				4,600 ^x		270 ^x	
	06/14/17 09/14/17		27.62 27.93	241.60 241.29	790 400	2.5 6.4	<1 <1	16 26	<3 21				400 330 ^x		<250 <250	
	12/12/17		28.55	241.29	360	3.0	1.1	12	5.2				200 ^x		<300	
DIC.	03/22/18	200.22	28.57	240.65	450	1.5	<1	14	<3				500 ^x		<250	
RW04	06/21/18	269.22	28.60	240.62	360	<1	2.6	4.8	4.5				400 ^x		<250	
	09/17/18		29.08	240.14	130	<1	<1	1.5	<3				120		<250	
	12/18/18		28.74	240.48	160	<1	<1	1.1	<3				510		<250	
	03/15/19		28.76	240.46	300	<1	<1	1.9	<3				310 ^x		<250	
	06/07/19		29.05	240.17	240	<1	<1	<1	<3				470 ^x		<250	
	06/14/17		27.64	241.45	400	<1	<1	4.4	<3				470		<250	
	09/14/17		27.91	241.18	280	<1	1.2	1.5	<3				300 ^x		<300	
	12/12/17		28.54	240.55	230	<1	1.3	1.5	<3				170 ^x		<300	
RW05	03/22/18 06/21/18	269.09	28.56 28.63	240.53 240.46	180 140	<1	<1 1.4	1.4	<3 <3				140 180 ^x		<260 <250	
	09/17/18		28.96	240.13	140	<1	<1	2.1	<3				140		<250	
	12/18/18		28.75	240.34	110	<1	<1	1.4	<3				160 ^x		<250	
	03/14/19		28.74	240.35	<100	<1	<1	<1	<3				120 ^x		<250	
	06/06/19		29.00	240.09	<100	<1	<1	<1	<3				99 ^x		<250	
RW07	07/16/14				1,600	110	8.3	8.3	17				1,100 ^x		<250	
RW09	07/16/14				2,600	10	18	70	34				700 ^x		<250	
	03/17/16		5.52		<100	<1	<1	<1	<3				93 ^x		<300	
	06/24/16		3.33		<100	<1	<1	<1	<3				<50		<250	
	09/28/16		3.85 6.56		<100 <100	<1	<1 <1	<1 <1	<3 <3				<60 94 ^x	 <70	<300 <350	<350
	12/23/16 03/03/17		6.64		<100	<1	<1	<1	<3				<80	<70 <80	<400	<400
	06/14/17		7.06	240.77	<100	<1	<1	<1	<3				140 ^x		<250	
B 414/4 C C	09/14/17		6.69	241.14	<100	<1	<1	<1	<3				160 ^x		<250	
MW108	12/12/17		7.70	240.13	<100	<1	<1	<1	<3				<50		<250	
	03/23/18		7.44	240.39	<100	<1	<1	<1	<3				71 ^x		<250	
	06/21/18	247.83	7.75	240.08	<100	<1	<1	<1	<3				150 ^x		<450	
	09/17/18		7.83	240.00	<100	<1	<1	<1	<3				110		<480	
	12/18/18		7.98	239.85	<100	<1	<1	<1	<3				<50		<250	
	03/14/19		7.78	240.05	<100	<1	<1	<1	<3				680 ^x		<350	
	06/06/19 03/17/16		7.87 5.42	239.96	<100 <100	<1 <1	<1 <1	<1 <1	<3 <3				590 ^x 97 ^x		<250 <250	
	03/1//16		3.35		<100	<1	<1	<1	<3				160 ^x		<250 <250	
	09/28/16		3.96		<100	<1	<1	<1	<3				260 ^x		<250	
	12/23/16		6.59		250	<1	<1	<1	<3				430 ^x	<50	<250	<250
	03/03/17		6.70		370	<1	<1	1.2	<3				490 ^x	55 ^x	<250	<250
	06/14/17		6.87	241.05	220	<1	<1	<1	<3				330		<250	
MW109	09/14/17		6.84	241.08	<100	<1	<1	<1	<3				140 ^x		<300	
255	12/12/17		7.69	240.23	150	<1	1.1	<1	<3				<50		<250	
	03/23/18		7.75	240.17	190	<1	<1	1.1	<3				110 ^x		<250	
	06/21/18	247.92	7.87	240.05	190	<1	1.2	<1	<3				200		<250	
	09/17/18		8.05	239.87	150	<1	<1	1.8	<3				110 ^x		<250	
	12/18/18 03/14/19		7.61 7.94	240.31 239.98	<100 140	<1 <1	<1 <1	<1 <1	<3 <3				61 ^x <60		<250 <300	
	03/14/19		7.94 8.10	239.98	<100	<1	<1	<1	<3	-			140 ^x		<250	
	up Levels for Ground	(5)	0.20		1,000/800 ⁽⁶⁾	5	1,000	700	1,000	20	5	0.01	500	500	500	500

P\0914 Lennar Shell(0914-001 SKS Shell ROW\Technica\\Table\3\2019\02 GW\0914-001_SKS_2019GW2Q_F

Table 1 **Summary of Groundwater Data** SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

										Analytical Re	sults (μg/L)					
Well ID	Sample Date	Top of Well Casing	Depth to Groundwater (feet below TOC)	Relative Groundwater Elevation ⁽¹⁾⁽⁷⁾	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾	MTBE ⁽³⁾	EDC ⁽³⁾	EDB ⁽³⁾	DRPH ⁽²⁾	DRPH with Silica Gel ⁽⁴⁾	ORPH ⁽²⁾	ORPH with Silica Gel ⁽⁴⁾
	03/17/16		5.70		<100	<1	<1	<1	<3				<50		<250	
	06/24/16		3.56		<100	<1	<1	<1	<3				100 ^x		<250	
	09/28/16		4.19		<100	<1	<1	<1	<3				590 ^x		440 ^x	
	12/23/16		6.96		500	2.3	<1	9.7	18				1,200	68 ^x	<300	<300
	03/03/17		7.57		570	2.1	<1	9.3	4.7				1,000 ^x	110 ^x	<250	<250
	06/14/17		7.78	240.43	260	<1	<1	2.0	<3				520		<250	
MW110	09/14/17		7.44	240.77	<100	<1	<1	<1	<3				150 ^x		<250	
10100110	12/12/17		8.02	240.19	<100	<1	<1	<1	<3				99 ^x		<250	
	03/23/18		8.05	240.16	<100	<1	<1	<1	<3				73 ^x		<250	
	06/21/18	248.21	8.15	240.06	<100	<1	<1	<1	<3				96 ^x		<250	
	09/17/18		8.40	239.81	<100	<1	<1	<1	<3				<50		<250	
	12/18/18		7.98	240.23	<100	<1	<1	<1	<3				<50		<250	
	03/14/19		8.20	240.01	<100	<1	<1	<1	<3				74 ^x		<300	
	06/06/19		8.30	239.91	<100	<1	<1	<1	<3				91 ^x		<250	
	10/09/18		30.51	240.11	<100	<1	<1	<1	<3				55 ^x		<250	
MW111	12/18/18	270.62	29.90	240.72	<100	<1	<1	<1	<3				<50		<250	
10100111	03/14/19	270.02	30.15	240.47	<100	<1	<1	<1	<3				83 ^x		<250	
	06/06/19		30.50	240.12	<100	<1	<1	<1	<3				84 ^x		<250	
MW112	03/14/19	269.32	28.88	240.44	<100	<1	<1	<1	<3				58 ^x		<250	
10100112	06/06/19	203.32	29.15	240.17	<100	<1	<1	<1	<3				59 ^x		<250	
	03/23/18		7.68	240.38	<100	<1	<1	<1	<3				93 ^x		<250	
	06/21/18		7.81	240.25	<100	<1	<1	<1	<3				71 ^x		<250	
MW113	09/17/18	248.06	8.05	240.01	<100	<1	<1	<1	<3				<50		<250	
IVIVVIIJ	12/18/18	240.00	7.58	240.48	<100	<1	<1	<1	<3	-			100 ^x		<250	
	03/14/19		7.98	240.08	<100	<1	<1	<1	<3	-		-	79 ^x		<250	
	06/06/19		8.13	239.93	<100	<1	<1	<1	<3	-			89 ^x		<250	
MTCA Method A Clean	up Levels for Ground	lwater ⁽⁵⁾			1,000/800 ⁽⁶⁾	5	1,000	700	1,000	20	5	0.01	500	500	500	500

NOTES:

 $\textbf{Red} \ \text{indicates concentrations exceeding MTCA Method A cleanup levels for groundwater}.$

Samples analyzed by Friedman & Bruya, Inc. of Seattle, Washington.

2011 Samples analyzed for G-Logics by Fremont Analytical of Seattle, Washington.

2012 Samples analyzed by Friedman & Bruya, Inc. of Seattle, Washington. $^{(1)}$ Elevation reference datum North American Vertical Datum of 1988 (Dowl HKM November 2012).

⁽²⁾Analyzed by Method NWTPH-Gx (gasoline) and NWTPH-Dx (diesel and oil).

⁽³⁾Analyzed by EPA Method 8260B, 8260C, or 8021B.

⁽⁴⁾Analyzed by Method NWTPH-Dx; sample extracts passed through a silica gel column prior to analysis.

(5) MTCA Cleanup Regulation, Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

 $^{(6)}$ 1,000 µg/L when benzene is not present and 800 µg/L when benzene is present.

⁽⁷⁾Top of well casing elevations for MW108, MW109, MW110, and MW113 are estimated based on parking garage design elevations.

⁽⁸⁾MW103 elevated detection limits due to low sample volume. Laboratory Note:

^xThe sample chromatographic pattern does not resemble the fuel standard used for quantitation. Concentration is estimated.

-- = not analyzed, not measured

< = not detected above the laboratory reporting limit μg/L = micrograms per liter

DRPH = diesel-range petroleum hydrocarbons

EDB = 1,2 dibromoethane

EDC = 1,2 dichloroethane

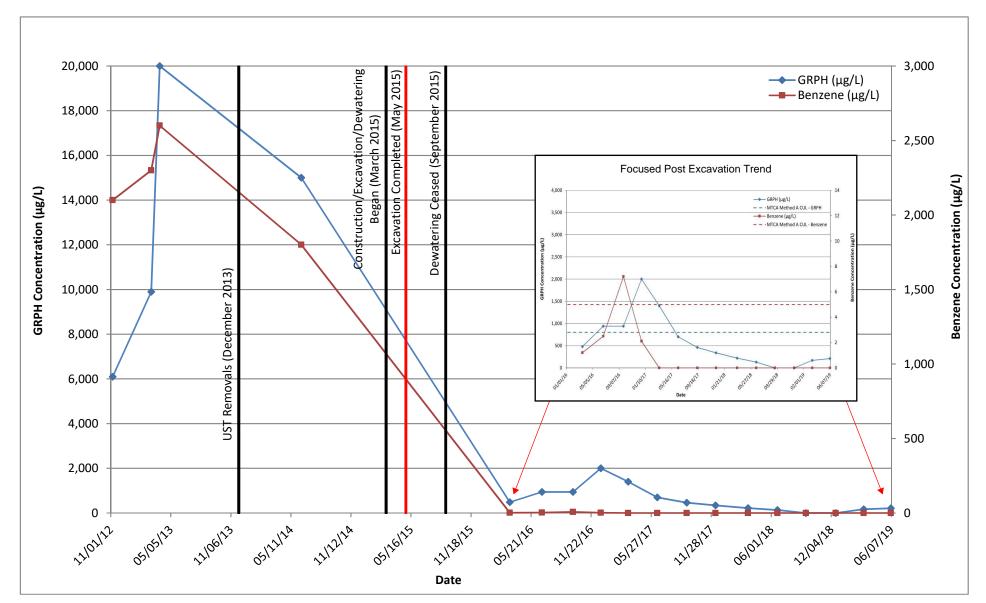
EPA = US Environmental Protection Agency GRPH = gasoline-range petroleum hydrocarbons

MTBE = methyl tertiary-butyl ether


MTCA = Washington State Model Toxics Control Act

3 of 3

NWTPH = Northwest Total Petroleum Hydrocarbon ORPH = oil-range petroleum hydrocarbons


TOC = top of casing elevation

P:\0914 Lennar Shell\0914-001 SKS Shell ROW\Technical\Tables\2019\Q2 GW\0914-001_SKS_2019GW2Q_F

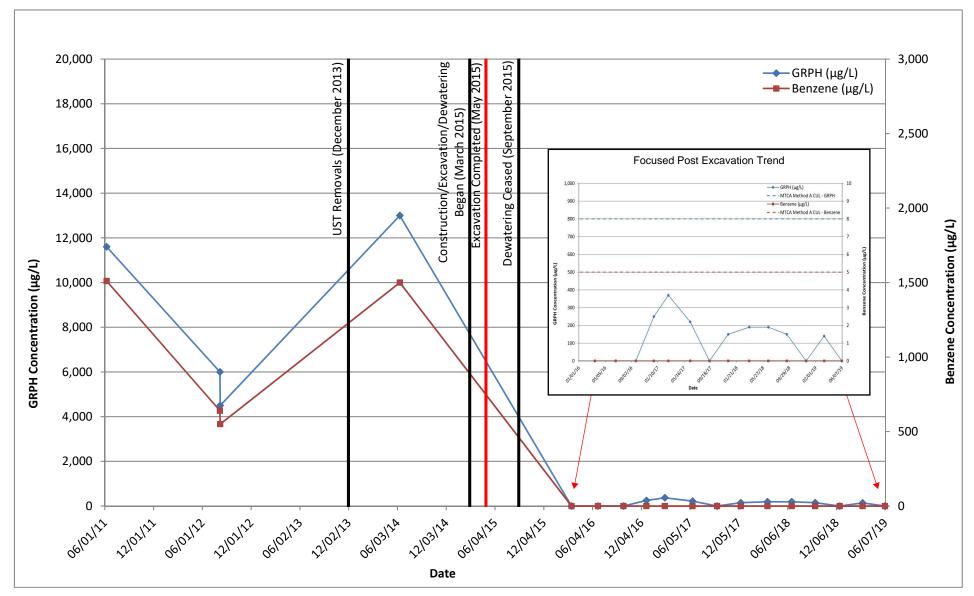


Chart 1 GRPH and Benzene Concentrations - MW104 SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

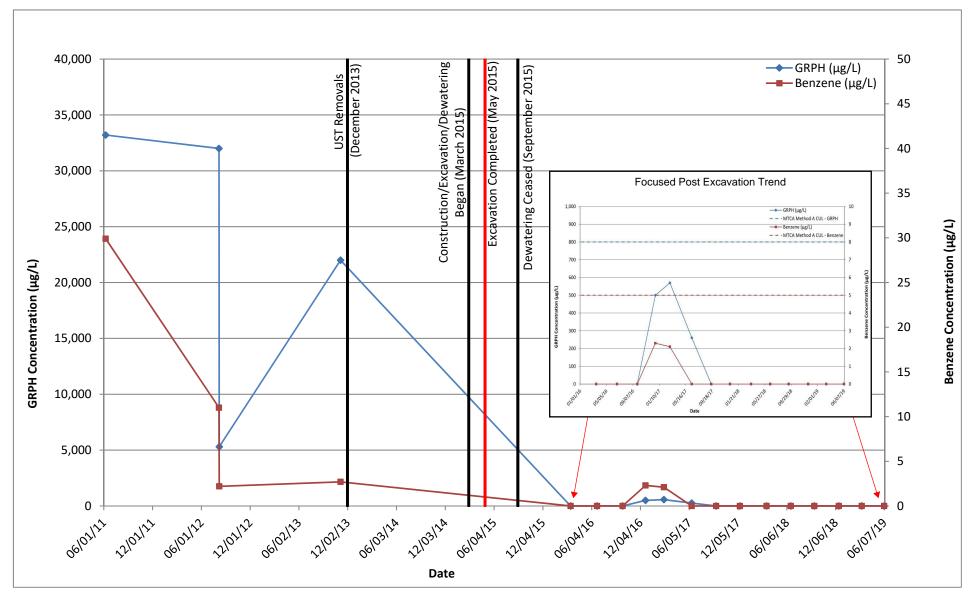


Chart 2 GRPH and Benzene Concentrations - GLMW01/MW109 SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

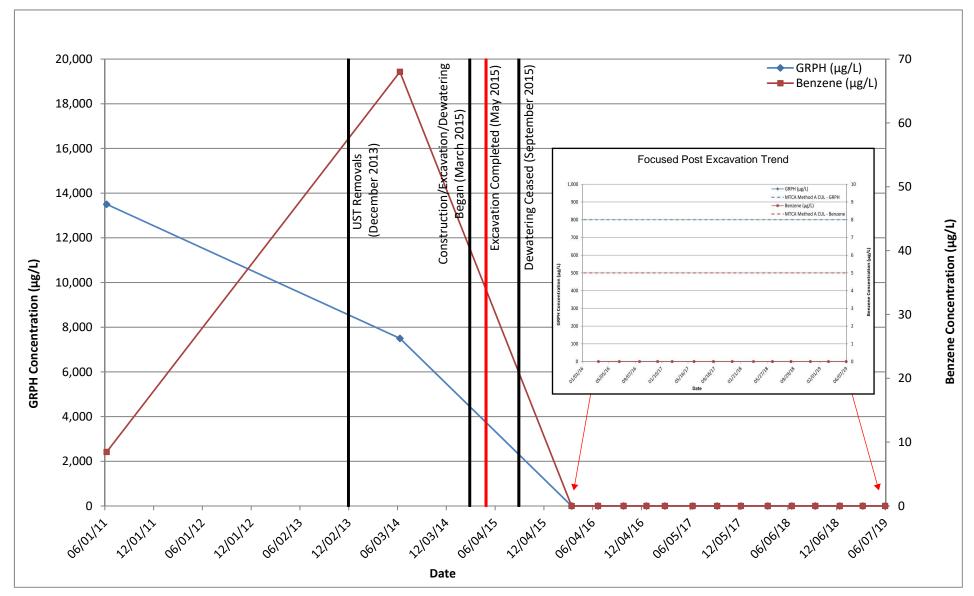


Chart 3 GRPH and Benzene Concentrations - MW110/MW-2 SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

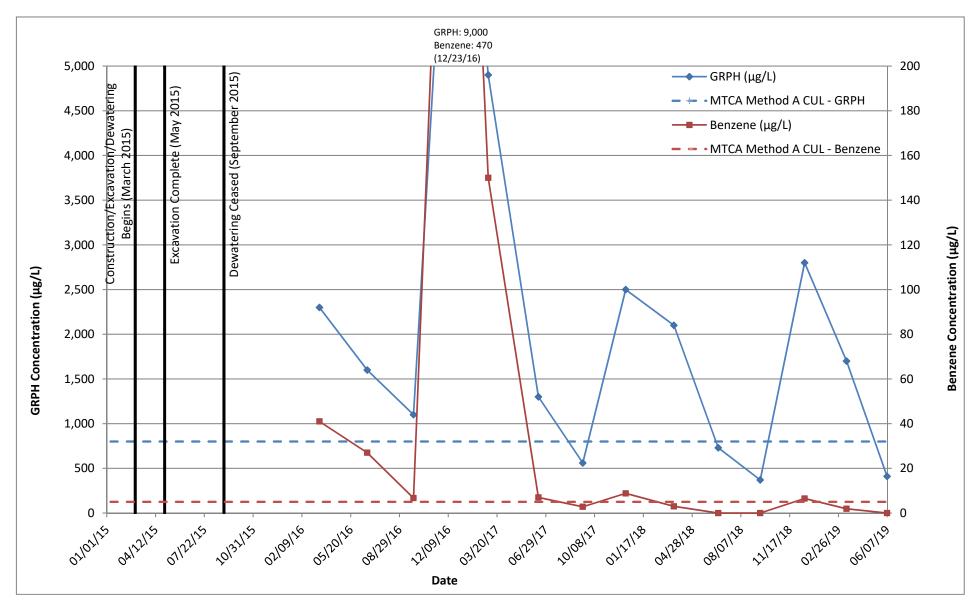


Chart 4 GRPH and Benzene Concentrations - MW-3/MW108 SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

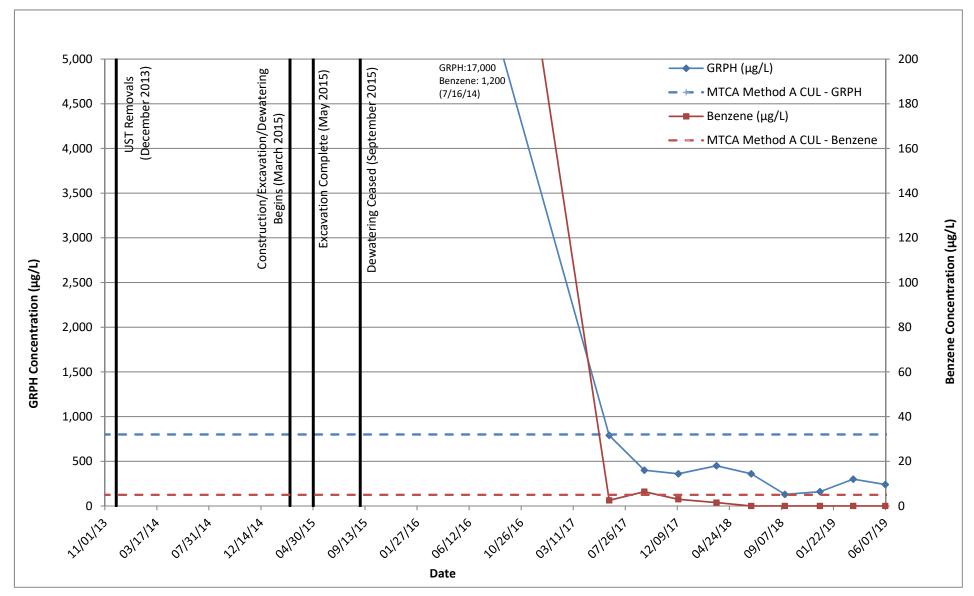


Chart 5 GRPH and Benzene Concentrations - RW03 SKS Shell Station 3501 SW Alaskan Street Seattle, Washington

Chart 6 GRPH and Benzene Concentrations - RW04 SKS Shell Station 3501 SW Alaskan Street Seattle, Washington

ATTACHMENT A LABORATORY ANALYTICAL REPORT

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 17, 2019

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included is the amended report from the testing of material submitted on June 7, 2019 from the SOU_0914-001_ 20190607, F&BI 906144 project. Samples MW108-20190606 and MW104-20190606 were qualified as not being indicative of diesel.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Jonathan Loeffler, Clare Tochilin SOU0613R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 13, 2019

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on June 7, 2019 from the SOU 0914-001_20190607, F&BI 906144 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Jonathan Loeffler, Clare Tochilin

SOU0613R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 7, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0914-001_ 20190607, F&BI 906144 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
906144 -01	MW112-20190606
906144 -02	MW113-20190606
906144 -03	MW109-20190606
906144 -04	MW110-20190606
906144 -05	MW108-20190606
906144 -06	RW05-20190606
906144 -07	MW111-20190606
906144 -08	MW105-20190606
906144 -09	MW102-20190606
906144 -10	MW101-20190606
906144 -11	MW104-20190606
906144 -12	RW04-20190607
906144 -13	RW03-20190607
906144 -14	MW99-20190607

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/11/19 Date Analyzed: 06/11/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW112-20190606 906144-01	<1	<1	<1	<3	<100	97
MW113-20190606 906144-02	<1	<1	<1	<3	<100	96
MW109-20190606 906144-03	<1	<1	<1	<3	<100	94
MW110-20190606 906144-04	<1	<1	<1	<3	<100	98
MW108-20190606 906144-05	<1	<1	<1	<3	<100	96
RW05-20190606 906144-06	<1	<1	<1	<3	<100	96
MW111-20190606 906144-07	<1	<1	<1	<3	<100	97
MW105-20190606 906144-08	<1	<1	<1	<3	<100	96
MW102-20190606 906144-09	<1	<1	<1	<3	<100	98
MW101-20190606 906144-10	<1	<1	<1	<3	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/11/19 Date Analyzed: 06/11/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW104-20190606	<1	<1	<1	<3	210	93
RW04-20190607	<1	<1	<1	<3	240	94
RW03-20190607	<1	<1	14	4.3	410	96
MW99-20190607 906144-14	<1	<1	14	4.4	410	96
Method Blank 09-1293 MB	<1	<1	<1	<3	<100	99

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/10/19 Date Analyzed: 06/10/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25}\text{)}}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW112-20190606 906144-01	59 x	<250	99
MW113-20190606 906144-02	89 x	<250	97
MW109-20190606 906144-03	140 x	<250	97
MW110-20190606 906144-04	91 x	<250	101
MW108-20190606 906144-05	590 x	<250	92
RW05-20190606 906144-06	99 x	<250	96
MW111-20190606 906144-07	84 x	<250	97
MW105-20190606 906144-08 1/1.2	96 x	<250	99
MW102-20190606 906144-09	61 x	<250	93
MW101-20190606 906144-10	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/10/19 Date Analyzed: 06/10/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}-C_{36})}$	Surrogate (% Recovery) (Limit 47-140)
Laboratory ID	(010-025)	(025-036)	(Lillit 47-140)
MW104-20190606 906144-11	750 x	290 х	93
RW04-20190607	470 x	<250	100
RW03-20190607	680 x	<250	96
MW99-20190607 906144-14	700 x	<250	96
Method Blank 09-1357 MB	<50	<250	106

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906144-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

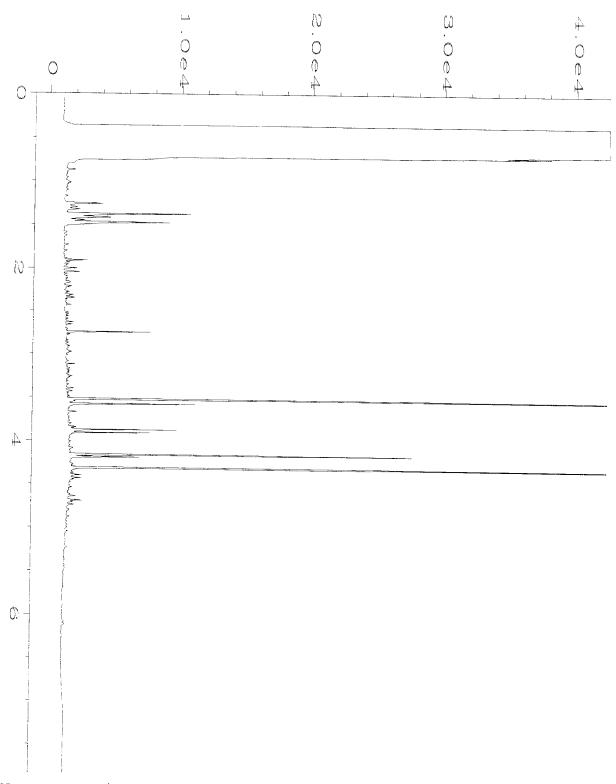
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	98	72 - 122
Ethylbenzene	ug/L (ppb)	50	96	73-126
Xylenes	ug/L (ppb)	150	94	74-118
Gasoline	ug/L (ppb)	1,000	83	69-134

ENVIRONMENTAL CHEMISTS

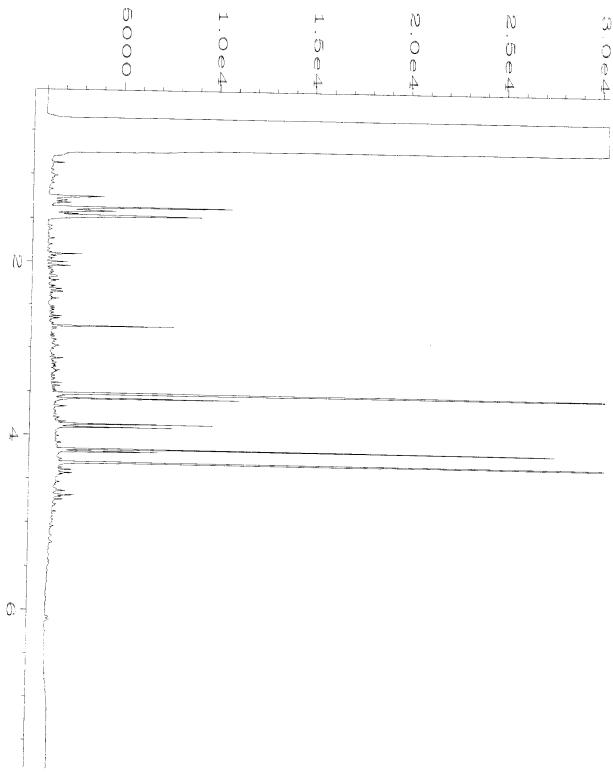
Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

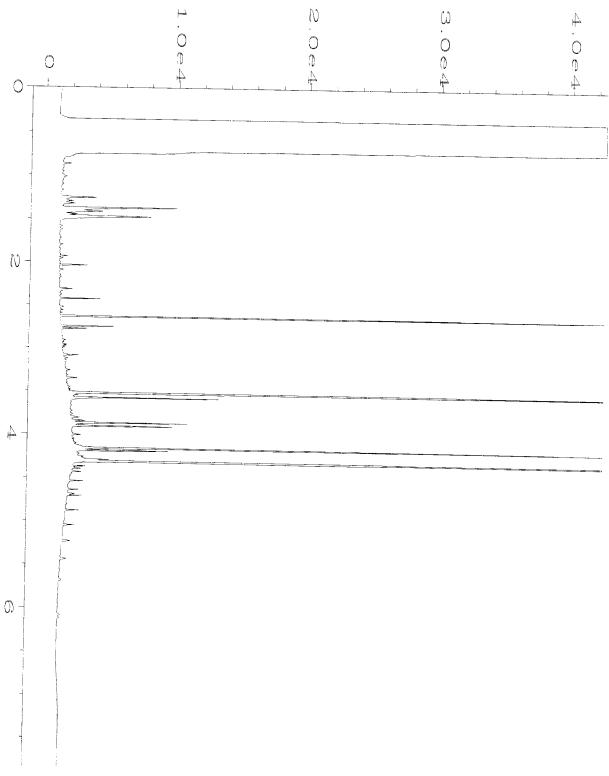
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

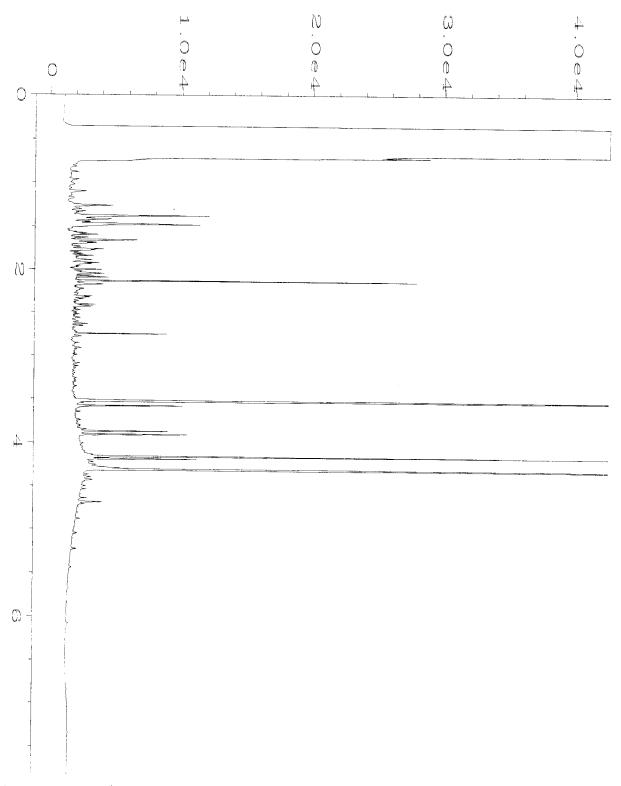

Laboratory Code: Laboratory Control Sample

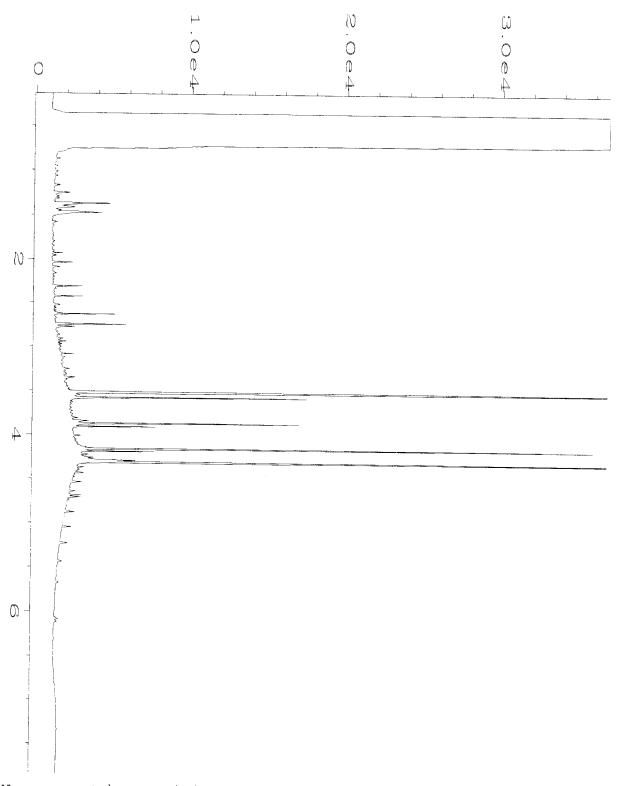
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	108	61-133	20

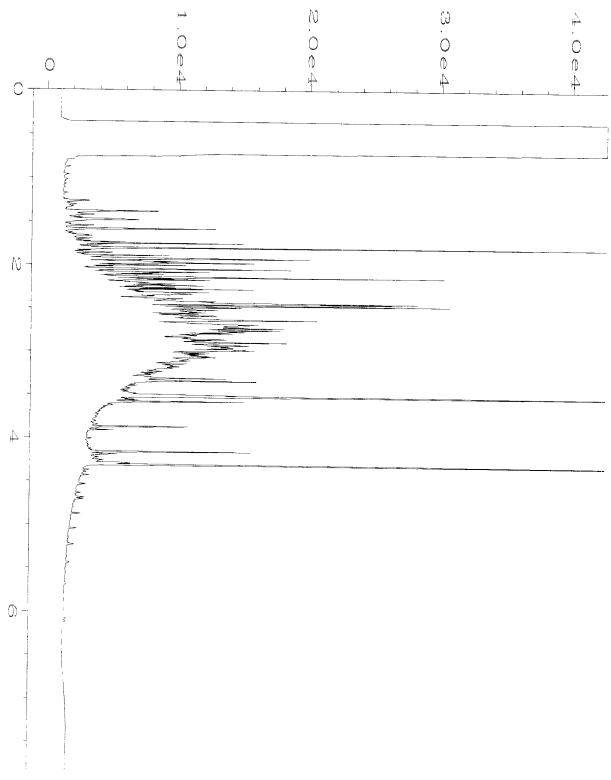

ENVIRONMENTAL CHEMISTS

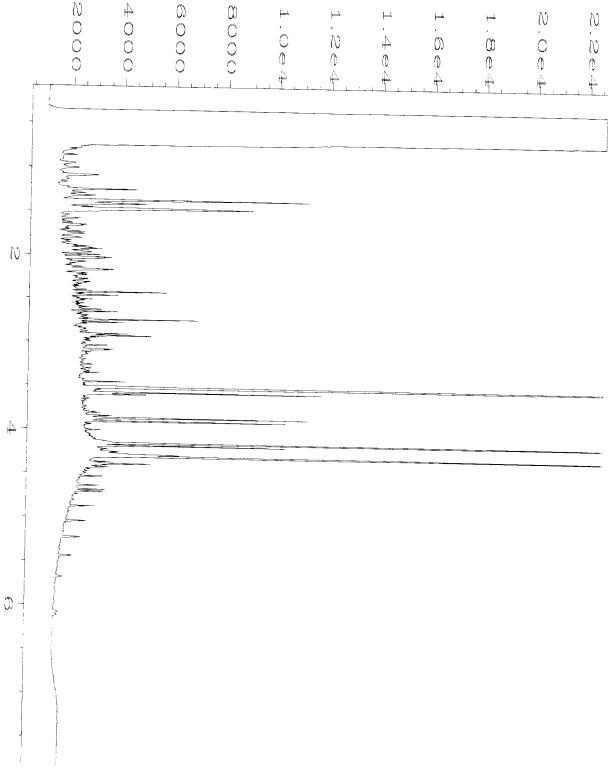
Data Qualifiers & Definitions

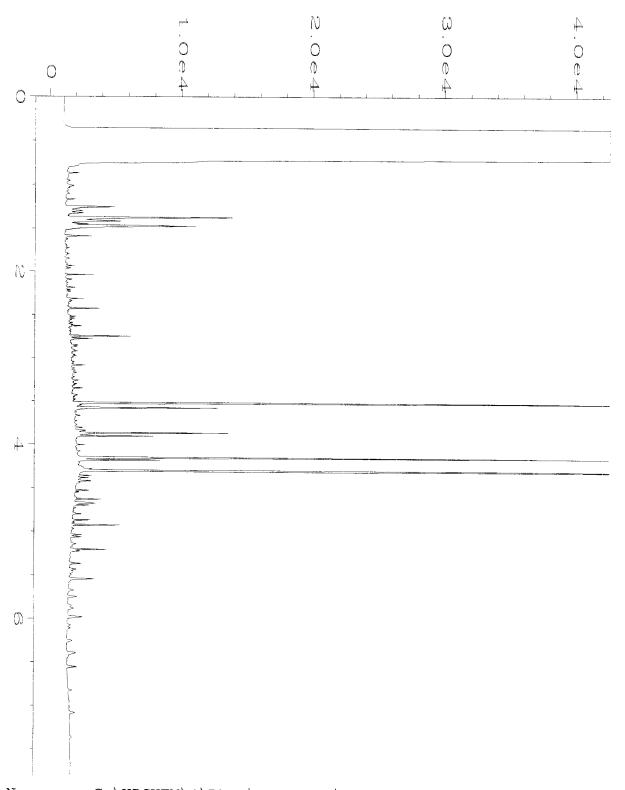

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- $\rm jl$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

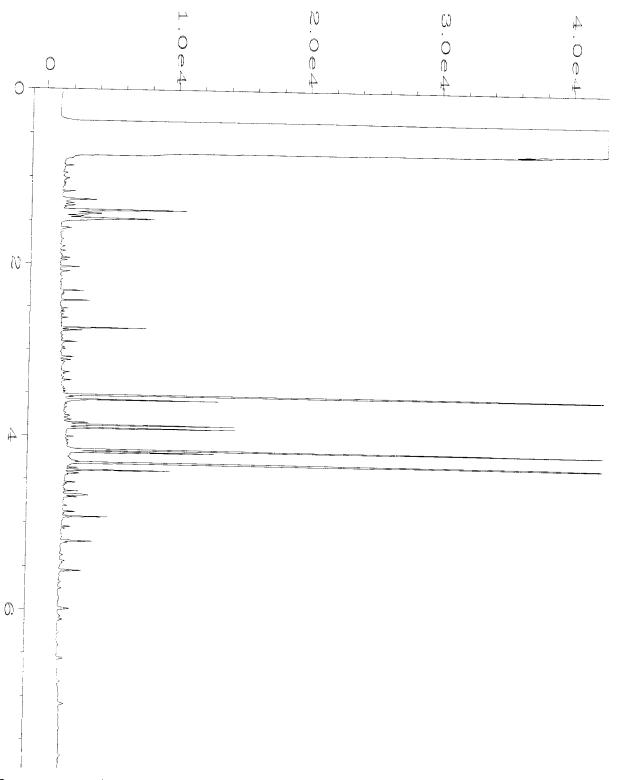

```
: C:\HPCHEM\4\DATA\06-10-19\041F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                                : 41
Sample Name
                 : 906144-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
                : 10 Jun 19 04:37 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:49 AM
                                               Analysis Method : DEFAULT.MTH
```

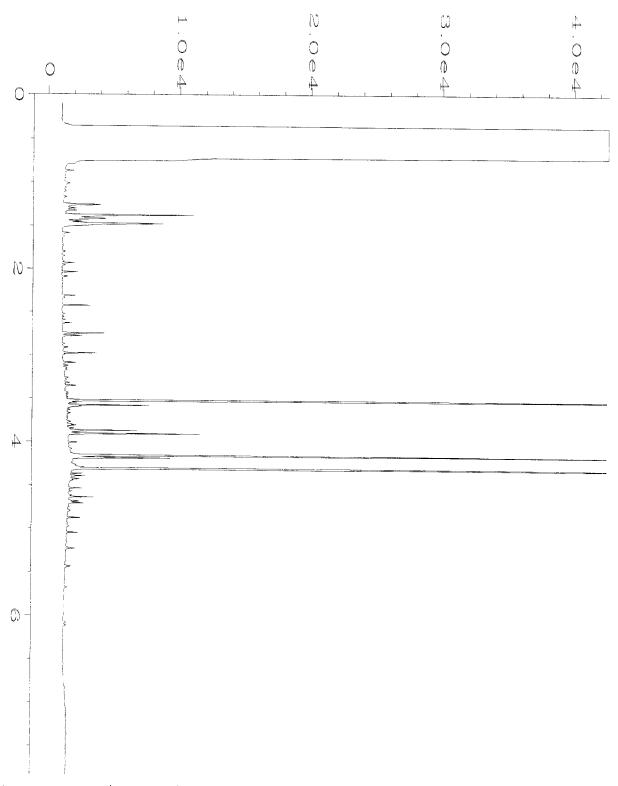


```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\041F1501.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                                : 41
Sample Name
                : 906144-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
             : 10 Jun 19
                             04:37 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                            09:49 AM
                                               Analysis Method : DEFAULT.MTH
```

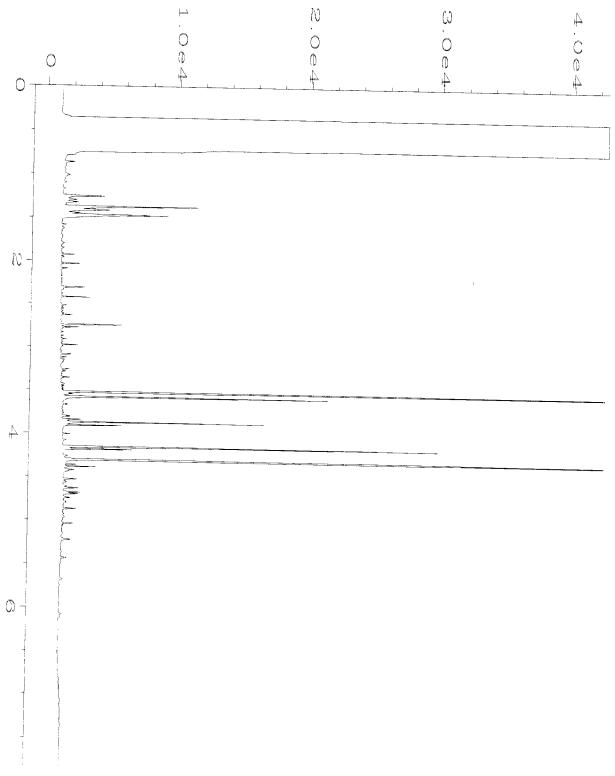


```
Data File Name
                 : C:\HPCHEM\4\DATA\06-10-19\042F1501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 42
Sample Name
                 : 906144-02
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                             : 15
Acquired on
              : 10 Jun 19
                             04:50 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                             09:49 AM
                                               Analysis Method : DEFAULT.MTH
```

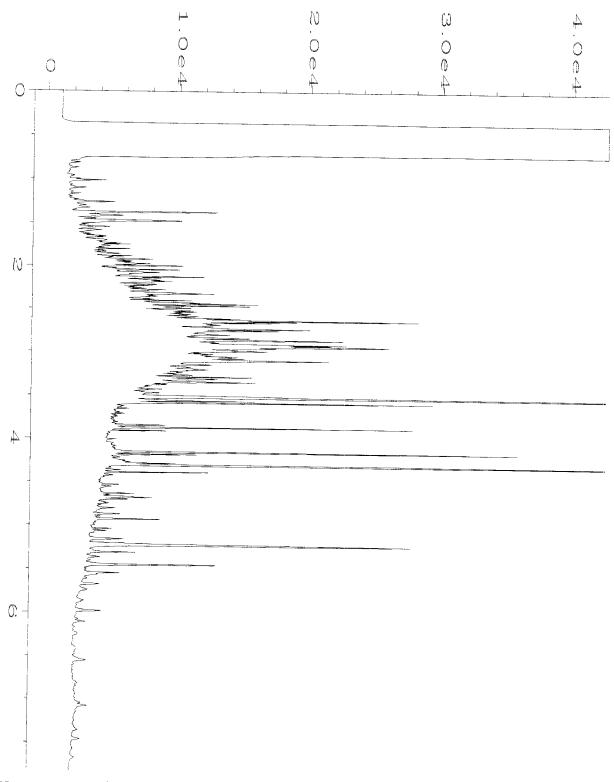


```
: C:\HPCHEM\4\DATA\06-10-19\043F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 43
Sample Name
                 : 906144-03
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                             : 15
Acquired on
             : 10 Jun 19 05:02 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:49 AM
                                               Analysis Method : DEFAULT.MTH
```

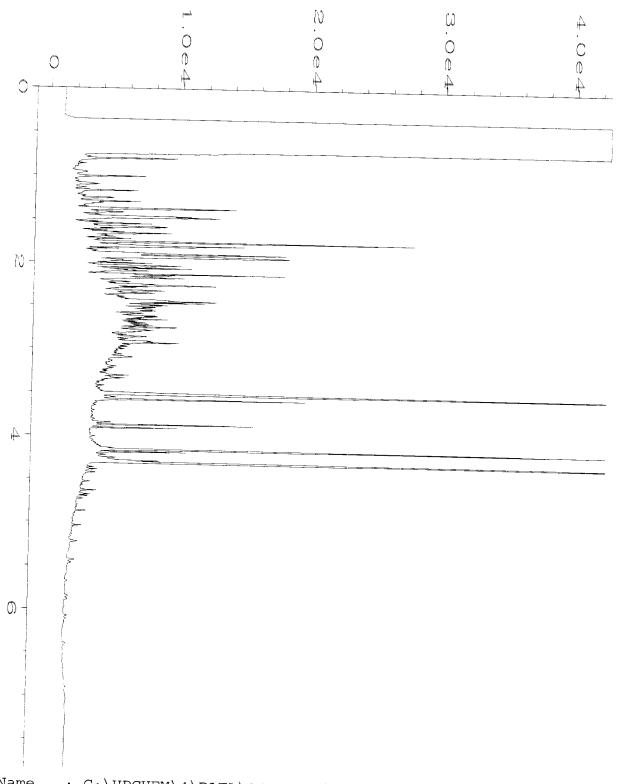


```
: C:\HPCHEM\4\DATA\06-10-19\044F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
Sample Name
                 : 906144-04
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
             : 10 Jun 19 05:15 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:50 AM
                                               Analysis Method : DEFAULT.MTH
```

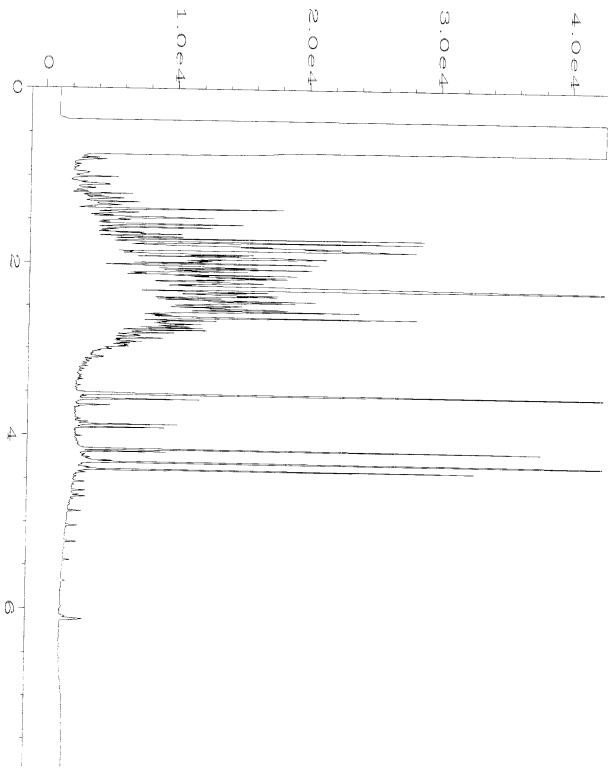


```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\045F1501.D
Operator
                 : TL
                                              Page Number
Instrument
                 : GC#4
                                              Vial Number
Sample Name
                : 906144-05
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 15
Acquired on
            : 10 Jun 19 05:27 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:50 AM
                                              Analysis Method : DEFAULT.MTH
```

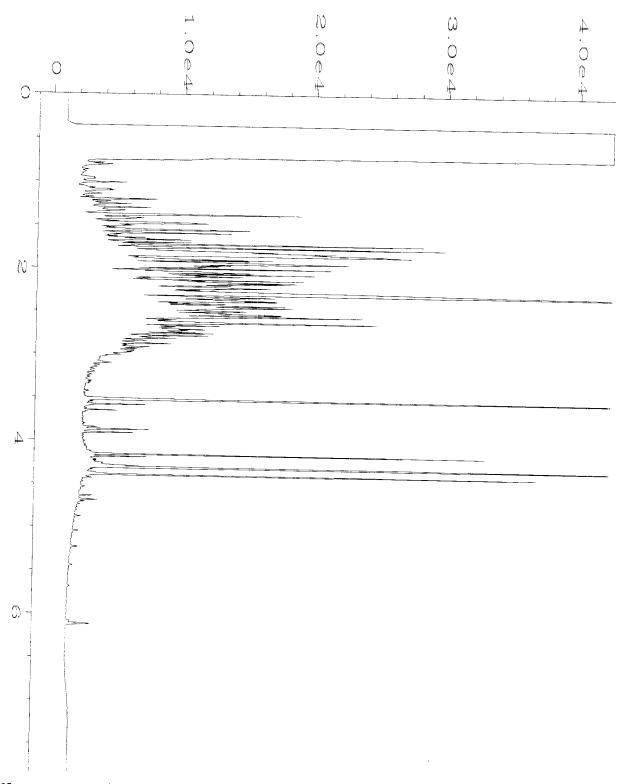


```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\046F1501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 46
Sample Name
                : 906144-06
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
             : 10 Jun 19
                            05:40 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                            09:50 AM
                                              Analysis Method : DEFAULT.MTH
```

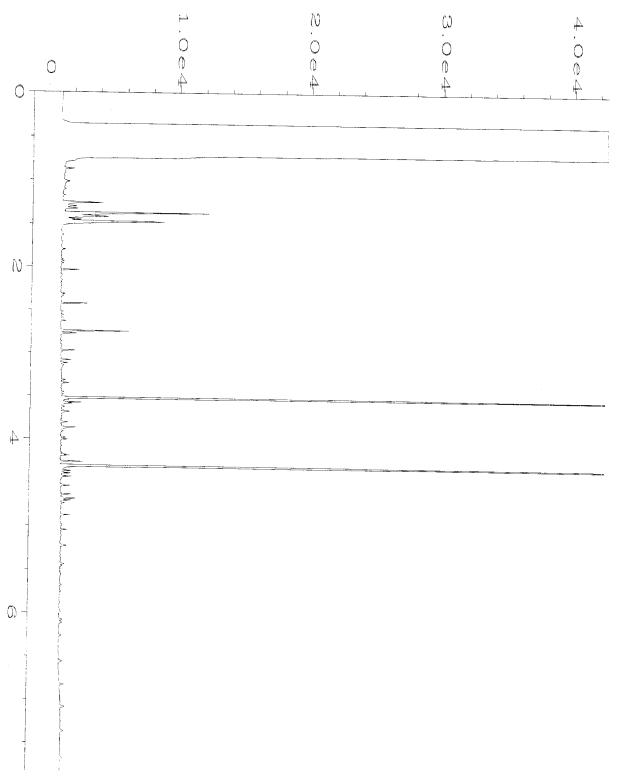


```
Data File Name
                 : C:\HPCHEM\4\DATA\06-10-19\047F1501.D
Operator
                 : TL
                                                 Page Number
                                                                   : 1
Instrument
                 : GC#4
                                                 Vial Number : 47
Injection Number : 1
Sample Name
                 : 906144-07
Run Time Bar Code:
                                                 Sequence Line : 15
              : 10 Jun 19 05:52 PM
Acquired on
                                                 Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:50 AM
                                                 Analysis Method : DEFAULT.MTH
```

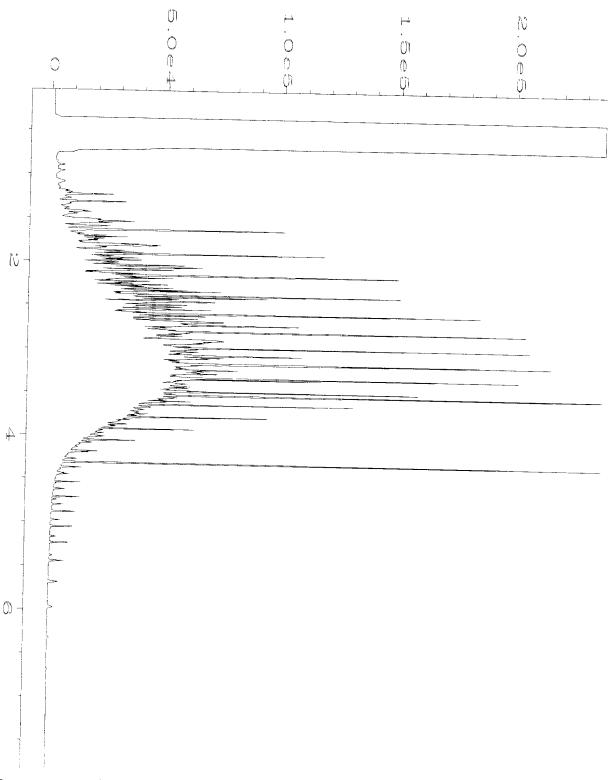


```
Data File Name
                 : C:\HPCHEM\4\DATA\06-10-19\048F1501.D
Operator
                 : TL
                                                Page Number
Instrument
                                                                 : 1
                 : GC#4
                                                Vial Number
Sample Name
                                                                 : 48
                 : 906144-08
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                               : 15
Acquired on
                : 10 Jun 19
                              06:05 PM
                                                Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                             09:51 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-10-19\049F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                               : 1
Instrument
                 : GC#4
                                              Vial Number
Sample Name
                : 906144-09
                                               Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 15
Acquired on
             : 10 Jun 19 06:17 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\050F1501.D
Operator
                 : TL
                                               Page Number
Instrument
                                                               : 1
                 : GC#4
                                               Vial Number
                                                               : 50
Sample Name
                : 906144-10
                                               Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 15
Acquired on
             : 10 Jun 19 06:30 PM
                                              Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                             09:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\051F1501.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
Sample Name
                : 906144-11
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
              : 10 Jun 19 06:42 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-10-19\052F1501.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
Sample Name
                                                               : 52
                : 906144-12
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
             : 10 Jun 19
                             06:55 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                             09:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-10-19\053F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                                 : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                 : 53
Sample Name
                 : 906144-13
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 15
Acquired on
             : 10 Jun 19
                             07:07 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19
                             09:52 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\06-10-19\054F1501.D
Operator
                 : TL
                                                Page Number
                                                                  : 1
Instrument
                 : GC#4
                                                Vial Number
                                                                  : 54
Sample Name
                 : 906144-14
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                                : 15
Acquired on
                : 10 Jun 19 07:19 PM
                                                Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:52 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-10-19\038F1501.D
Data File Name
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                                : 38
Sample Name
                 : 09-1357 mb
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 15
Acquired on
                : 10 Jun 19 04:00 PM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:47 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\06-10-19\003F0401.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                                Vial Number
Sample Name
                : 500 Dx 57-78E
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                               : 4
Acquired on
                : 10 Jun 19 08:29 AM
                                               Instrument Method: DX.MTH
Report Created on: 11 Jun 19 09:47 AM
                                               Analysis Method : DEFAULT.MTH
```

90614	<u>4</u>
Send Report t	o: Rob Roberts, cc: Jon Loeffler, Clare Tochilin
Company	SoundEarth Strategies, Inc.

Address

Phone #

2811 Fairview Avenue E, Suite 2000

Fax#

206-306-1907

City, State, ZIP Seattle, Washington 98102

206-306-1900

SAMPLE CHAIN OF CUSTODY

REMARKS

SAMPLERS (signature) PROJECT NAME/NO. SKS SHELL / 0914-001 0914-001

ME, 06-07-19

Page # TURNAROUND TIME Standard (2 Weeks) Rush charges authorized by:

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

											ANALY	SES REQ	UESTE	D
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	CVOCs by 8260C			Notes
MW112-20190606	MWIIZ	40.000	012:0	6/4/19	1634	W	4	Χ	X	X				
MW112-20190606 MW113-20190606	MWII3	_	02 T	616119	1045			\times	λ	X				
MW109-20190606	MW109	_		6/6/19				X	X	X				
MW110-20190606	MWIIO	_	04	6/11/19	1210			X	X	X				
MW108-20190606	HWIOB	_	05	6/6/19	1225			X	X	X				
12W05-20190606	RWOS	_	06	6/6/19	1224			X	X	X				
MW111-20190606	Mwll	_	07	4/4/19	1305			X	X	X				
MW105-20190606	MNIOS	-	98	6/4/19				X	X					
UN102-20190606	1			6/6/19	1454			X	X	X				
MW101-2019 0606	jolnim	_	10	44119	1455	1	1	X	<u> </u>	X	S	ample	s rec	eived at <u>/</u> -°C

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Andrey Mihniak	SES	617/19	1238
Received by:	DA VO	FeBT	6-7-19	12-38
Relinquished by:				_
Received by:		·		1

FORMS\COC\COC.DOC

Fax (206) 283-5044

9	0	6	l	44	
	_				

Phone # 206-306-1900 Fax #___

SAMPLE CHAIN OF CUSTODY MF 06-07-19

Send Report to: Rob Roberts, cc: Jon Loeffler, Clare Tochilin

Company_____SoundEarth Strategies, Inc.

Address_____2811 Fairview Avenue E, Suite 2000

City, State, ZIP___Seattle, Washington 98102

206-306-1907

PROJECT NAME/NO. PO #

SKS SHELL / 0914-001 0914-001

REMARKS

Page # _____ of ____
TURNAROUND TIME
Standard (2 Weeks)
RUSH_____
Rush charges authorized by:

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

								ANALYSES REQUESTED							
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	CVOCs by 8260C			Not	es
MW 104-2014 0606	MW104		1123)	6/6/19	1515	W	4	λ	X	X					
MW 10420140606 RW04-20140607	RWOH	~	12		1034	1		X	X	X					
PW03-20190607 MW99-20190607	LW 03	_	13	6/7/19	1134			X	X	X					
MN99-20190607			W	4/7/19	1200	7	7	7	X	X					
				1											
				#	MO	0/17	- a			<u> </u>					
						14	17_								
												Sam	ples re	ceived a	<u> </u>

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE/	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Ardrey Michnial	SES	6/7/19	1238
Received by:	- 0000	FOBI	6-7-19	12.38
Relinquished by:				,
Received by:				

ATTACHMENT B DATA VALIDATION REPORT

DATA VALIDATION REPORT

SKS SHELL Second Quarter 2019

Prepared for:

Sound Earth Strategies, Inc. 2811 Fairview Ave East, Suite 2000 Seattle, Washington 98102

Prepared by:

Validata, LLC 3346 NE 178th St. Lake Forest Park, Washington 98155

PROJECT NARRATIVE

Data Validation

This report summarizes the results of the summary level validation (Stage 2A) performed on water samples for the SKS Shell sampling project. A complete list of samples is provided in the Sample Index. Samples were analyzed by Friedman & Bruya, Inc. laboratory, Seattle, Washington. The analytical methods are listed below:

Sample Index

SW8021B/NWTPH-Gx	C. Jensen
NW/TDU Dv	C. Iongon
NW IFH-DX	C. Jensen
	NWTPH-Dx

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *USEPA National Functional Guidelines for Organic Data Review* (EPA, 1999 & 2008).

The goal of data validation is to assign data assessment qualifiers for assistance in data interpretation. Results assigned as estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. For results assigned an R, the data are rejected and should not be used for site evaluation purposes. Unqualified data implies the data meet the data quality objectives as stated in the documents and methods referenced above. A summary of the data qualifiers used in validation are included in Appendix A. The summary of Qualified Data are provided in Appendix B. All validation worksheets are provided in Appendix C.

SAMPLE INDEX

SDG	Sample ID	Lab Sample ID	BTEX	NWTPH-Gx	NWTPH-
					Dx
906144	MW112-20190606	906144-01	X	X	X
906144	MW113-20190606	906144-02	X	X	X
906144	MW109-20190606	906144-03	X	X	X
906144	RW03-20190607	906144-13	X	X	X
906144	RW04-20190607	906144-12	X	X	X
906144	RW05-20190606	906144-06	X	X	X
906144	MW101-20190606	906144-10	X	X	X
906144	MW99-20190607	906144-14	X	X	X
906144	MW102-20190606	906144-09	X	X	X
906144	MW108-20190606	906144-05	X	X	X
906144	MW105-20190606	906144-08 1/1.2	X	X	X
906144	MW110-20190606	906144-04	X	X	X
906144	MW104-20190606	906144-11	X	X	X
906144	MW111-20190606	906144-07	X	X	X

DATA VALIDATION REPORT

Volatile Organic Compounds - Method SW8021B - Benzene, Toluene, Ethylbenzene, Xylenes

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Friedman & Bruya, Inc. laboratory, Seattle, Washington. Refer to the Sample Index for a complete list of samples.

SDG	NUMBER OF SAMPLES	VALIDATION LEVEL
906144	14	STAGE 2A

DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables for a Stage 2A review. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

HARDCOPY VERIFICATION

Sample IDs and results reported in the data summary spreadsheet were verified (10% verification) by comparing the spreadsheet with the laboratory data package. Ten percent (10%) of the laboratory QC results were also verified.

TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
Laboratory Blanks	Field Duplicates
Field Blanks	Target Analyte List
Surrogate Compounds	Reporting Limits
Laboratory Control Samples (LCS)	Reported Results

Sample Receipt, Preservation, and Holding Times

The validation guidance documents state that the cooler temperatures should be within an advisory temperature range of 0° to 6°C. For volatiles analysis, no action is taken if the cooler temperature is<10°C. If the cooler temperature is>10°C, associated sample results are estimated (J/UJ-1). With the exceptions noted below, the laboratory received the sample coolers within the advisory temperature range.

SDG 906144: The cooler temperatures were within the recommended temperature range.

Method and Field Blanks

The method blanks were all reported as undetected for target compounds.

Surrogate Compounds

Surrogates were added to all samples. All surrogate recoveries were within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples were not specifically analyzed for this dataset. The laboratory demonstrated precision and accuracy through the analysis of laboratory control and laboratory control sample duplicate samples (LCS/LCSD) with acceptable results.

Field Duplicates

For water samples, the RPD control limit is 20% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the absolute difference between the sample and replicate must be less than 1x the RL.

SDG 906144: Sample pair MW99-20190607/RW03-20190607 were identified as a field duplicate pair. Field precision was acceptable as summarized below. Field data are not qualified for duplicate precision exceedance.

Sample ID	lab ID	analyte	906144-13	906144-14	RPD
MW99-20190607	906144-14	benzene	0	0	0%
RW03-20190607	904166-13	toluene	0	0	0%
		ethyl benzene	14	14	0%
		xylenes	4.3	4.4	0%

Target Analyte List

A sampling plan was not available for review.

Reporting Limits

The laboratory reporting limits were sufficiently below the MTCA Method A cleanup levels provided in appendix B.

Reported Results

Reported results were considered acceptable.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS recovery values. Precision was acceptable as demonstrated by the LCS and field duplicate RPD values. All data are acceptable for use.

DATA VALIDATION REPORT TPH as Gasoline Range Organics - Method NWTPH-Gx

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Friedman & Bruya, Inc. laboratory, Seattle, Washington. Refer to the Sample Index for a complete list of samples.

SDG	NUMBER OF SAMPLES	VALIDATION LEVEL
906144	14	STAGE 2A

DATA PACKAGE COMPLETENESS

With the exception noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

HARDCOPY VERIFICATION

Sample IDs and results reported in the data summary spreadsheet were verified (10% verification) by comparing the spreadsheet the laboratory data package. Ten percent (10%) of the laboratory QC results were also verified.

TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding	Matrix Spikes/Matrix Spike Duplicates
Times	(MS/MSD)
Laboratory Blanks	Field Duplicates
Field Blanks	Target Analyte List
Surrogate Compounds	Reporting Limits
Laboratory Control Samples (LCS)	Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in the validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 0°C-6°C and samples must be analyzed within 14 days. For volatiles analysis, no action is taken if the cooler temperature is <10°C. If the cooler temperature is >10°C, associated sample results are estimated (J/UJ-1). The following exceptions were noted during validation:

SDG 906144: The cooler temperatures were within the recommended temperature range.

Method and Field Blanks

The method blanks were all reported as undetected for target compounds.

Surrogate Compounds

Surrogates were added to all samples. All surrogate recoveries were within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples were not specifically analyzed for this dataset. The laboratory demonstrated precision and accuracy through the analysis of laboratory control and laboratory control duplicate samples (LCS/LCSD) with acceptable results.

Field Duplicates

For water samples, the RPD control limit is 20% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the absolute difference between the sample and replicate must be less than 1x the RL.

SDG 906144: Sample pair MW99-20190607/RW03-20190607 were identified as a field duplicate pair. Field precision was acceptable as summarized below. Field data are not qualified for duplicate precision exceedance.

Sample ID	lab ID	analyte	906144-13	906144-14	RPD
MW99-20190607	906144-14	GRO	410	410	0%
RW03-20190607	904166-13				

Target Analyte List

A sampling plan was not available for review.

Reporting Limits

The laboratory reporting limits were sufficiently below the MTCA Method A cleanup levels provided in appendix B.

Reported Results

Results reported were deemed acceptable.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate and LCS recovery values. Precision was acceptable as demonstrated by the LCS and laboratory and field duplicate RPD values. All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Diesel Range, Motor Oil - Method NWTPH-Dx

This report documents the review of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. Friedman & Bruya, Inc. laboratory, Seattle, Washington. Refer to the Sample Index for a complete list of samples.

SDG	NUMBER OF SAMPLES	VALIDATION LEVEL
906144	14	STAGE 2A

DATA PACKAGE COMPLETENESS

With the exception noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative if applicable.

HARDCOPY VERIFICATION

Sample IDs and results reported in the data summary spreadsheet were verified (10% verification) by comparing the spreadsheet the laboratory data package. Ten percent (10%) of the laboratory QC results were also verified.

TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
Laboratory Blanks	Field Duplicates
Field Blanks	Target Analyte List
Surrogate Compounds	Reporting Limits
Laboratory Control Samples (LCS)	Reported Results

Sample Preservation and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 0°C - 6°C and be extracted within 7 days for aqueous samples and 14 days for soil samples. Sample extracts must be analyzed within 40 days of extraction.

SDG 906144: The cooler temperatures were within the recommended temperature range.

Method and Field Blanks

The method blanks were all reported as undetected for target compounds. Field blanks were not submitted with this sampling event.

Surrogate Compounds

Surrogates were added to all samples. All surrogate recoveries were within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples were not specifically analyzed for this dataset. The laboratory demonstrated precision and accuracy through the analysis of laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) with acceptable results.

Field Duplicates

For water samples, the RPD control limit is 20% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the absolute difference between the sample and replicate must be less than 1x the RL.

SDG 906144: Sample pair MW99-20190607/RW03-20190607 were identified as a field duplicate pair. Field precision was acceptable as summarized below. Field data are not qualified for duplicate precision exceedance.

Sample ID	lab ID	analyte	906144-13	906144-14	RPD
MW99-20190607	906144-14	Diesel Range	680	700	2.9%
RW03-20190607	904166-13	Motor Oil	0	0	0

Target Analyte List

A sampling plan was not available for review.

Reporting Limits

The laboratory reporting limits were sufficiently below the MTCA Method A cleanup levels provided in appendix B.

Reported Results

SDG 906144: All samples with the exception of MW101-20190606 (which was undetected for diesel range C10-C25) were qualified as estimated (J+) and reason code 2 since the laboratory reported the diesel results as "x" indicating the chromatographic pattern does not match the standard. For motor oil, sample MW104-20190606 was qualified as estimated (J+) and reason code 2 to indicate the chromatographic pattern does not match the standard.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD recovery values. Precision was also acceptable as demonstrated by the LCS/LCSD and laboratory and field duplicate relative percent difference values. The data were qualified due to sample versus fuel reference material not matching, as indicated by the laboratory. All data, as reported, are acceptable for use.

DATA QUALIFIER REASON CODES

Sample Handling 1			
Instrument Performance Instru		Code	Reason for Qualification
Instrument Performance 24 Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass) Instrument Performance 5B Instrument Performance 5B Calibration (CCV, CCAL; RF, %D, %R) Instrument Performance 5C Use bias flags (H,L)1 where appropriate 1 Use bias flags (H,L)1 where appropriate 1 Lab Blank Contamination (EQuipment Rinsate, Trip Blank, etc.) Blank Contamination 6 Lab Blank Contamination (Equipment Rinsate, Trip Blank, etc.) Precision and Accuracy 8 Matrix Spike (MS and/or MSD) Recoveries 1 Use bias flags (H,L)1 where appropriate 1 Use bias flags (H,L)1 where appropriate 2 Use bias flags (H,L)1 where appropriate 3 Use bias flags (H,L)1 where appropriate 4 Use bias flags (H,L)1 where appropriate 4 Use bias flags (H,L)1 where appropriate 4 Use bias flags (H,L)1 where appropriate 5 Use bias flags (H,L)1 where appropriate 6 Use bias flags (H,L)1 where appropriate 7 Use bias flags (H,L)1 where appropriate 8 Use bias flags (H,L)1 where appropriate 8 Use bias flags (H,L)1 where appropriate 9 Use bias flags (H,L)1 where appropriate 1 Use bias flags (H,L)1 where appropriate 2 Use bias flags (H,L)1 where appropriate 3 Use bias flags (H,L)1 where appropriate 3 Use bias flags (H,L)1 where appropriate 4 Use bias flags (H,L)1 where appropriate 5 Use bias flags (H,L)1 where appropriate 6 Use fighter 6 Use flags (H,L)1 where appropriate 6 Use fighter 6 Use flags (H,L)1 where 4 Use 6	Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler)
Instrument Performance 5A	Instrument Performance	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin
Instrument Performance 5B Calibration Verification (CCV, CCAL; RF, %D, %R) Use bias flags (H,L)1 where appropriate Instrument Performance 5C Initial Calibration Verification (ICV %D, %R) Use bias flags (H,L)1 where appropriate Blank Contamination 7 Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) Blank Contamination 6 Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L)1 for negative instrument blanks Precision and Accuracy 8 Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L)1 where appropriate Precision and Accuracy 9 Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate) Precision and Accuracy 10 Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)1 where appropriate Precision and Accuracy 12 Reference Material Use bias flags (H,L)1 where appropriate Precision and Accuracy 13 Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)1 where appropriate Interferences 16 ICP/ICP-MS Serial Dilution Percent Difference Interferences 17 ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)1 where appropriate Interferences 19 Internal Standard Performance (i.e., area, retention time, recovery) Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences 23 Bias from Matrix Interference (i.e., diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 20 Calibration Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., oin ratio, retention time, relative abundance, etc.) Miscellaneous 14 Other (See DV report for details)			
Instrument Performance Instrument Performance Instrument Performance Instrument Performance SC Initial Calibration Verification (ICV V, CCAL; RF, %D, %R) Use bias flags (H,L)1 where appropriate Blank Contamination Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) Blank Contamination Equipment Rinsate, Trip Blank, etc.) Use low bias flag (L)1 for negative instrument blanks Precision and Accuracy Interferences Interfer	Instrument Performance	5A	Initial Calibration (RF, %RSD, r2)
Use bias flags (H,L)1 where appropriate	Instrument Performance	5B	
Instrument Performance Blank Contamination Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) Blank Contamination Characteristics of the State of St			
Blank Contamination 7 Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) Blank Contamination 6 Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L)I for negative instrument blanks Precision and Accuracy 8 Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L)I where appropriate Precision and Accuracy 9 Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate) Precision and Accuracy 10 Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)I where appropriate Precision and Accuracy 12 Reference Material Use bias flags (H,L)I where appropriate Precision and Accuracy 13 Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)I where appropriate Interferences 16 ICP/ICP-MS Perial Dilution Percent Difference Interferences 17 ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)I where appropriate Interferences 19 Internal Standard Performance (i.e., area, retention time, recovery) Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences 23 Bias from Matrix Interference (i.e., diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 20 Calibration Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 14 Other (See DV report for details)	Instrument Performance	5C	
Blank Contamination 7			
Precision and Accuracy Is a Surrogate Spike Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)1 where appropriate Use bias flags (H,L)1 where appropriate Precision and Accuracy Interferences Interfe	The second secon	7	
Precision and Accuracy I2 Reference Material Use bias flags (H,L)1 where appropriate Precision and Accuracy I3 Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)1 where appropriate Precision and Accuracy I3 Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)1 where appropriate Interferences I6 ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)1 where appropriate Interferences Interferences I9 Internal Standard Performance (i.e., area, retention time, recovery) Interferences I22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences I3 Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) Identification and Quantitation Identification and Quantitation Identification and Quantitation Accuracy Ia Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation Interference (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous I1 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Other (See DV report for details)	Blank Contamination	6	
Precision and Accuracy Precision and Precision Accuracy Precision and Precision Accuracy Precision and Precision Accuracy Precision and Precision Accuracy Precision Accuracy Precision and Precision Accuracy Precision Acc			
Precision and Accuracy Precision and Precision and Accuracy Precision and Precision a	Precision and Accuracy	8	
Precision and Accuracy Precision and Precision and Accuracy Precision and Precision a			Use bias flags (H,L)1 where appropriate
Use bias flags (H,L)1 where appropriate Reference Material Use bias flags (H,L)1 where appropriate			
Precision and Accuracy Precision and Accuracy Is Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)1 where appropriate Interferences Inter	Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes)
Precision and Accuracy Precision and Accuracy Is Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)1 where appropriate Interferences Inter			Use bias flags (H,L)1 where appropriate
Precision and Accuracy Interferences Interference (i.e., area, retention time, recovery) Interferences Interference (i.e., chemical and/or matrix) Interferences Identification and Quantitation Interference Interference (i.e., chemical and/or matrix) Interferences Interference (i.e., chemical and/or matrix) Interference (i.e., chemica	Precision and Accuracy	12	Reference Material
Use bias flags (H,L)1 where appropriate Interferences 16 ICP/ICP-MS Serial Dilution Percent Difference Interferences 17 ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)1 where appropriate Interferences 19 Internal Standard Performance (i.e., area, retention time, recovery) Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences 23 Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 3 2nd column confirmation (RPD or %D) Identification and Quantitation 4 Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation 25 Compound Identification Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			Use bias flags (H,L)1 where appropriate
Use bias flags (H,L)1 where appropriate Interferences 16 ICP/ICP-MS Serial Dilution Percent Difference Interferences 17 ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)1 where appropriate Interferences 19 Internal Standard Performance (i.e., area, retention time, recovery) Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences 23 Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 3 2nd column confirmation (RPD or %D) Identification and Quantitation 4 Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation 25 Compound Identification Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)	Precision and Accuracy	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards)
Interferences Interference (i.e., area, retention time, recovery) Interferences Interferences Interferences Interference (i.e., area, retention time, recovery) Interferences Interferences Interference (i.e., area, retention time, recovery) Interferences Interference (i.e., chemical and/or matrix) Interference (i.e. diphenyl eter, PCB/pesticides) Interference (i.e. diphenyl eter, PCB/pesticides) Interference (i.e. diphenyl eter, PCB/pesticides) Interference (i.e. diphenyl eter, PCB/pestici			Use bias flags (H,L)1 where appropriate
Use bias flags (H,L)1 where appropriate Interferences 19 Internal Standard Performance (i.e., area, retention time, recovery) Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) Interferences 23 Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 3 2nd column confirmation (RPD or %D) Identification and Quantitation 4 Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation 20 Calibration Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			
Interferences 19	Interferences	17	ICP/ICP-MS Interference Check Standard Recovery
Interferences 22 Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)			Use bias flags (H,L)1 where appropriate
Interferences 23 Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) Identification and Quantitation 2 Chromatographic pattern in sample does not match pattern of calibration standard Identification and Quantitation 3 2nd column confirmation (RPD or %D) Identification and Quantitation 4 Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation 20 Calibration Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			
Identification and Quantitation2Chromatographic pattern in sample does not match pattern of calibration standardIdentification and Quantitation32nd column confirmation (RPD or %D)Identification and Quantitation4Tentatively Identified Compound (TIC) (associated with NJ only)Identification and Quantitation20Calibration Range or Linear Range ExceededIdentification and Quantitation25Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)Miscellaneous11A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)Miscellaneous14Other (See DV report for details)			
Identification and Quantitation32nd column confirmation (RPD or %D)Identification and Quantitation4Tentatively Identified Compound (TIC) (associated with NJ only)Identification and Quantitation20Calibration Range or Linear Range ExceededIdentification and Quantitation25Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)Miscellaneous11A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)Miscellaneous14Other (See DV report for details)			
Identification and Quantitation 4 Tentatively Identified Compound (TIC) (associated with NJ only) Identification and Quantitation 20 Calibration Range or Linear Range Exceeded Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			Chromatographic pattern in sample does not match pattern of calibration standard
Identification and Quantitation20Calibration Range or Linear Range ExceededIdentification and Quantitation25Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)Miscellaneous11A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)Miscellaneous14Other (See DV report for details)	Identification and Quantitation	3	2nd column confirmation (RPD or %D)
Identification and Quantitation20Calibration Range or Linear Range ExceededIdentification and Quantitation25Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)Miscellaneous11A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)Miscellaneous14Other (See DV report for details)			
Identification and Quantitation20Calibration Range or Linear Range ExceededIdentification and Quantitation25Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)Miscellaneous11A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)Miscellaneous14Other (See DV report for details)	Identification and Quantitation	4	Tentatively Identified Compound (TIC) (associated with NL only)
Identification and Quantitation 25 Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			
Miscellaneous 11 A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)	The state of the s		
reextractions, etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			
etc. Associated with "R" and "DNR" only) Miscellaneous 14 Other (See DV report for details)			
Miscellaneous 14 Other (See DV report for details)			
	Miscellaneous	14	
Method UC information not provided	Miscellaneous	26	Method QC information not provided

DATA VALIDATION CRITERIA

Volatile Organic Compounds by Gas Chromatography-Mass Spectroscopy (GC-MS) (Based on NFG 1999 & 2008 and SW-846 Method 8260, analyzed by SW8021B)

QC Element	Acceptance Criteria	Source of Criteri a	Action for Non-Conformance	Reason Code	Discussion and Comments
	1	Blanks		1	
Method Blank (MB)	MB: One per matrix per batch (of ≤ 20 sample) No TICs present	NFG (2) Method (3)	U (pos) if result is < 5X or 10X action level R (pos) TICs using 10X rule	7	10X action level for methylene chloride, acetone, & 2-butanone. 5X for all other target analytes Hierarchy of blank review: #1 - Review MB, qualify as needed #2 - Review TB, qualify as needed #3 - Review FB, qualify as needed Note: Actions as per NFG 1999
Trip Blank (TB)	No detected compounds > MDL	NFG (2) Method (3)	U (pos) if result is < 5X or 10X action level	6	
Field Blank (FB)	No detected compounds > MDL	NFG (2) Method (3)	U (pos) if result is < 5X or 10X action level	6	
			and Accuracy		
LCS/LCSD (recovery)	One per matrix per batch (of ≤ 20 samples)	Method (3))	J (pos) if %R > UCL J (pos)/UJ (ND) if %R < LCL J (pos)/R (ND)%R < 10%	10 (H,L)4	No action if only one spike %R is outside criteria when LCSD is analyzed, unless one recovery is <10%. QAPP may have overriding accuracy limits.
LCS/LCSD RPD	If LCSD analyzed RPD < lab limits	Method (3)	J (pos)	9	Qualify all associated samples. QAPP may have overriding precision limits.
Reference Material (RM, SRM, or CRM)	Result ±20% of the 95% confidence interval of the true value for analytes	Standar d review	J (pos)/UJ (ND) if < LCL J (pos) if > UCL	12 (H,L)4	QAPP may have overriding accuracy limits. Some manufacturers may have different RM control limits
Surrogates	Added to all samples Within ethod/laboratory control limits	NFG (1) Method (3)	J (pos) if %R >UCL J (pos)/UJ (ND) if %R <lcl J (pos)/R (ND) if <10%</lcl 	13 (H,L)4	No action if there are 4+ surrogates and only 1 outlier. Qualify all compounds if qualification is required.
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	NFG (1) Method (3)	J (pos) if > 200% J (pos)/UJ (ND) if < 50% J (pos)/R (ND) if < 25% if RT >30 seconds use PJ	19	Qualify compounds quantified using particular internal standard
MS/MSD (recovery)	One per matrix per batch (of ≤ 20 samples) Use method acceptance criteria/laboratory limits	NFG (1) Method (3)	J (pos) %R > UCL J (pos)/UJ (ND) if both %R < LCL J (pos)/R (ND) if both %R < 10% J (pos)/UJ (ND) if one > UCL & one < LCL, with no bias	8 (H,L)4	No action if only one spike %R is outside criteria. No action if parent concentration is >4x the amount spiked. Qualify parent sample only.
MS/MSD (RPD)	One per matrix per batch (of ≤ 20 samples) Use method acceptance criteria/laboratory limits	NFG (1) Method (3)	J (pos) If RPD > control limit	9	Qualify parent sample only
Field Duplicates	Solids: RPD < 50% OR difference < 2X RL (for results < 5X RL) Aqueous: RPD < 35%	Standar d review	J (pos)/UJ (ND) Qualify only parent and field duplicate samples	9	Use project limits if specified

	OR difference < 1X					
	RL (for results < 5X RL)					
		Compou	ınd	Identification and Quantitation	!	
Retention Time Relative Ion Intensities	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	NFG (1) Method (3)		U (pos) if identification criteria not met	25	
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NFG (1) Method (3)		NJ TIC R (pos) if common laboratory contaminants	4	Common laboratory contaminants: aldol condensation products, solvent preservatives, and reagent contaminants
Calibration Range	Results greater than highest calibration standard	Standar d review		Qualify J (pos)	20	If result from dilution analysis is not reported.
Dilutions, Reextraction s and/or Reanalyses	Report only one result per analyte	Standar d review		Report best result	11	Best value reported

¹ National Functional Guidelines for Organic Data Review, June, 2008 (pos): Positive Result 2 National Functional Guidelines for Organic Data Review, Oct, 1999 (ND): Non-detect 3 Method SW846 8260C Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) 4 NFG 2013 suggests using "+/-" to indicate bias; validation uses "H" = high bias indicated; "L" = low bias indicated.

DATA VALIDATION CRITERIA

Validation Guidelines for Total Petroleum Hydrocarbons-Gasoline Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Gx, June 1997, Wa DOE & Oregon DEQ)

QC Element	Acceptance Criteria	Action for Non-Conformance	Reason	Discussion and
Sample Handlir	ng	1	Code	Comments
Cooler Temperature & Preservation	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6°C	1	
Holding Time	Waters: 14 days preserved 7 days unpreserved Solids: 14 Days	J(+)/UJ(-) if hold times exceeded $J(+)/R(-)$ if exceeded $> 3X$	1	Professional Judgement
Instrument Per				
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: r2 ≥0.990 If used, RSD of response factors ≤20%	Narrate if fewer than 5 calibration levels or if %R >15% J(+)/UJ(-) if r2 <0.990 J(+)/UJ(-) if %RSD > 20% 5A Mid-range Calibration Check Std. Analyzed before and after each analysis shift & every 20 samples. Recovery range 80% to 120%	5A	
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 80% to 120%	Narrate if frequency not met. J(+)/UJ(-) if %R < 80% J(+) if %R >120%	5B	
Blank Contamin				
Method Blank	At least one per batch (≤10 samples)	U (at the RL) if sample result is $<$ RL & $<$ 5X blank result. U (at reported sample value) if sample result is \ge RL and $<$ 5X blank result	7	
Trip Blank (if required by project)	No results >RL	Action is same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned.	18	
Field Blanks (if required by project)	No results >RL	remaining in field blank after method and trip blank qualifiers are assigned.	6	
Precision and A				
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) if both %R > upper control limit (UCL) J(+)/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked.	8	Use Professional Judgement if only one %R outlier
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (≤10 samples) RPD ≤ lab control limit	J(+) if RPD > lab control limits	9	
LCS (not required by method)	%R within lab control limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10%	10	Professional Judgement
Surrogates	1,4-difluorobenzene added to all samples (inc. QC samples). %R = 50-150%	J(+)/UJ(-) if %R < LCL J(+) if %R >UCL J(+)/R(-) if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits.	13	Professional Judgement
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J(+)	2	
Field Duplicates	Use project control limits, if stated in QAPP default: water: RPD < 35% solids: RPD < 50%	Narrate outliers If required by project, qualify with J(+)/UJ(-)	9	
Compound ID a				I
Two analyses for one sample (e.g., dilution)	Report only one result per analyte	best value chosen	11	

DATA VALIDATION CRITERIA

Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range (Based on EPA National Functional Guidelines as applied to criteria in NWTPH-Dx, June 1997, Wa DOE & Oregon DEQ)

QC Element	Acceptance Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments
Sample Handli				1
Cooler Temperature & Preservation	4°C±2°C Water: HCl to pH < 2	J(+)/UJ(-) if greater than 6 deg. C	1	
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J(+)/UJ(-) if hold times exceeded $J(+)/R(-)$ if exceeded $> 3X$	1	Professional Judgement
Instrument Per		1.	,	
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: r2≥0.990 If used, RSD of response factors ≤20%	Narrate if fewer than 5 calibration levels or if %R >15% J(+)/UJ(-) if r2 <0.990 J(+)/UJ(-) if %RSD > 20%	5A	
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 85% to 115%	Narrate if frequency not met. J(+)/UJ(-) if %R < 85% J(+) if %R >115%	5B	
Blank Contam	, ·			
Method Blank	At least one per batch (≤20 samples) Method Blank No results >R	U (at the RL) if sample result is < RL & < 5X blank result. 7 U (at reported sample value) if sample result is ≥ RL and < 5X blank result	7	
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.	6	
Precision and A				
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J(+) if both %R > upper control limit (UCL) J(+)/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked.	8	Use Professional Judgement if only one %R outlier
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (≤10 samples) RPD ≤ lab control limit	J(+) if RPD > lab control limits	9	
LCS (not required by method)	%R within lab control limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10%	10	Professional Judgement
Surrogates	2-fluorobiphenyl, p-terphenyl, o- terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL J(+)/R(-) if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits	13	Professional Judgement
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J(+)	2	
Field Duplicates	Use project control limits, if stated in QAPP default: water: RPD < 35% solids: RPD < 50%	Narrate (Use Professional Judgement to qualify)	9	
	and Calculation			
Two analyses for one sample (dilution)	Report only one result per analyte	all results that should not be reported.	11	

APPENDIX B QUALIFIED DATA SUMMARY TABLE

]			
lib	Sample Date	GRPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethyl- benzene ⁽³⁾	Total Xylenes ⁽³⁾	DRPH ⁽²⁾	validation qualifier	ORPH ⁽²⁾	validation qualifier
MW101	6/06/19	<100	<1	<1	<1	<3	<50	-	<250	
MW102	6/06/19	<100	<1	<1	<1	<3	61x	J+, 2	<250	
MW104	6/06/19	210	<1	<1	<1	<3	750x	J+, 2	290x	J+,2
MW105	6/06/19	<100	<1	<1	<1	<3	96x	J+, 2	<250	
RW03	6/07/19	410	<1	<1	14	4.3	580 x	J+, 2	<250	
RW04	6/07/19	240	<1	<1	<1	<3	470x	J+, 2	<250	
RW05	6/06/19	<100	<1	<1	<1	<3	99x	J+, 2	<250	
MW108	6/06/19	<100	<1	<1	<1	<3	590x	J+, 2	<250	
MW109	6/06/19	<100	<1	<1	<1	<3	140x	J+, 2	<250	
MW99	6/07/19	410	<1	<1	14	4.4	700 x	J+, 2	<300	
MW113	6/06/19	<100	<1	<1	<1	<3	89x	J+, 2	<250	
MW112	6/06/19	<100	<1	<1	<1	<3	59x	J+, 2	<250	
MW111	6/06/19	<100	<1	<1	<1	<3	84x	J+, 2	<250	
MW110	6/06/19	<100	<1	<1	<1	<3	91x	J+, 2	<250	
MTCA GW criteria		1,000/800(6)	5	1,000	700	1,000	500		500	

Real indicates concentrations exceeding MTCA Method A cleanup levels for groundwater.

Samples analyzed by Friedman & Bruya, Inc. of Seattle, Washington.

(2) Analyzed by Method NWTPH-Gx (gasoline) and NWTPH-Dx (diesel and oil).

⁽³⁾Analyzed by EPA Method 8260B or 8260C.

(4) Analyzed by Method NWTPH-Dx; sample extracts passed through a silica gel column prior to analysis.

(5) MTCA Cleanup Regulation, Method A Cleanup Levels, Table 720-1 of Section 900 of

Chapter 173-340 of the Washington Administrative Code, revised November 2007.

 $^{(6)}1,\!000~\mu\text{g/L}$ when benzene is not present and 800 $\mu\text{g/L}$ when benzene is present.

Laboratory Note:

*The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Validation qualifiers

J+ numerical value is the approximate concentration

Validation Codes

2 Chromatographic pattern in sample does not match pattern of calibration standard

DRPH = diesel-range petroleum hydrocarbons

EPA = U.S. Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

APPENDIX C DATA VALIDATION CHECKLISTS

VALIDATION WORKSHEET

Method: Date Reviewed		·DP	<u>)</u>	. 19	 1	o. 7 -			_						S	DG:_ Review	<u> </u>	(6) Jenso	<u>4</u> (1
Sample Collector The following of	data val	lidation	areas	were	reviev	ved:	17													
Sample Identification	MW112. 20190606	MW13- 2019 0406	20140606	MW110 , 20150606 +	MW108: 20 1706000	6	mw111.20170606	MW105-201901006	MW 102-20140666	14 W. 01 . 2019 1606	1444/104-20196406=	Mugy- 20 170667	RW13- 2019/107-E	mu99-20190607 =	15	16	17	18	19	20
Validation Criteria	MC	KK	2	M.	M	2	3	3	3	Ž	XXXXX	3	2	X						
Sample results	A													ب_						
Holding Times	À													-4		200				
Completion	12																			
Method Blanks	A													∇						
LCS	A													اهـ						
duplicate RPD															201 1222					
MS/MSD:				-									- 2							
Note:X = Criteria	ı were e	valuate	d and n	ot met.	A = 0	 Criteria	were e	valuate	ed and	met. N	 = Data	was no	ot avail	able fo	r revie	w. NA	= Not	applic	able.	
Comments:				**************************************														epp	10.70.	
3N /	1.12.	14	le.	 +./'	9									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	-				
Mip !	0.1	19	9											,		-2-1002-1				
m (6.10	1.19	j																	
k —																				
x- dresel	fra	Hen	n V	Wf	MU	In	 ι.												-	
dionel	Ty.	W,	11A	m	1/1	1-	117	- Ho	3 1	10	אנו	// / A	4	1158	- 1/)	1	114	,		
VICE		70	7	1		<u>- </u>	116	<i>t</i> '''	<i>/ v</i>	<u>/ </u>	<u> </u>	7	4 '	0	7	1-//	U/			
									W. 48											
moil		7		7	w	V	<u>'U </u>					- 11								
														~~~~						

	1		_	-Oe1		VA	LIDA	ATIO	N W	ORKS	HEE	T								
Method:	THE	X	1	PH	6V	0									S	DG:	<u> </u>	61	46	1
Date Reviewed			1.19		, /				-						F	Review	ver: C	Jense	en /	
Sample Collectory The following			(p.1	1.19		0.7.	19													
Sample	1	2	3	4	5	6 _	7	8	9	10	11	12.	13	14	15	16	17	18	19	20
Identification	1	MW113. 2019 0406	90	1	MW108: 20 170400	2			9	-		12+	7		ŧ	10	17	10	1	20
	Ö	3	9	8	2	00	Š	RO	5	60	0	9	10	0						
	36	0	20	3	27	2	3	70	0 (	101	3	8	1	$\mathcal{O}$						
	8	2	7	5		5	9	2	2	. 0	60	0)	5	79						
	20190606	7	2019060	2019060	3	Ruos - 2019 deo	MW11120170404	MW105-20190406	Maw 102-20190661	20190606	20196601	2012066	70190105	t006/02-66mm						
	0	3	6	1	. '	, ,	,		10	` . ]	·			, ,						
		á	5	~	8	N	, =	3	7	4	2	7	Ĺ	79						
	MW112	3	MUSTON	mullo	$\exists$	9	5	71	3	M WI O	MANIUY.	March -	3 %	20						
Validation	3	3	3	3	3	. \$	3	3	3	3	ষ	3	3	3						
Criteria	M	$\Xi$	3	3	Ž	9	3	3	3	3	3	2	RW182-	_						
Sample results	A																			
Holding Times	A													<b>√</b>						
Completion	A																			
Method Blanks	A													7						
LCS	A													<b>-</b>						
duplicate RPD	A									-										
MS/MSD:																				
Note:X = Criteria	a were e	valuate	d and n	ot met	A = (	l Criteria	were e	valuate	d and	met. N	= Data	was no	ot avai	able fo	r revie	w. NA	= Not	applica	able.	
Comments:																				
Al	66	.19	C	4.7	.19	;													***	
then	10	111	9		•															
mh	1 1	1	9	77.860				***				<del></del>			<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>					
1	( )	( (			-		<del></del>													
			************						1111											
											5500000 Feb.									and the same of th
																		<del></del>		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										*******										
														· · · · · · · · · · · · · · · · · · ·						

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/11/19 Date Analyzed: 06/11/19

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW112-20190606 906144-01	<1	<1	<1	<3	<100	97
MW113-20190606 906144-02	<1	<1	<1	<3	<100	96
MW109-20190606 906144-03	<1	<1	<1	<3	<100	94
MW110-20190606 906144-04	<1	<1	<1	<3	<100	98
MW108-20190606 906144-05	<1	<1	<1	<3	<100	96
RW05-20190606 906144-06	<1	<1	<1	<3	<100	96
$\underset{906144-07}{\text{MW111-20190606}}$	<1	<1	<1	<3	<100	97
MW105-20190606 906144-08	<1	<1	<1	<3	<100	96
MW102-20190606 906144-09	<1	<1	<1	<3	<100	98
MW101-20190606 906144-10	<1	<1	<1	<3	<100	96

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/11/19 Date Analyzed: 06/11/19

#### RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline Range	Surrogate (% Recovery) (Limit 52-124)
MW104-20190606 906144-11	<1	<1	<1	<3	210	93
RW04-20190607	<1	<1	<1	<3	240	94
RW03-20190607	<1	<1	14	4.3	410	96
MW99-20190607 906144-14	<1	<1	14	4.4	410	96
Method Blank 09-1293 MB	<1	<1	<1	<3	<100	99

#### **ENVIRONMENTAL CHEMISTS**

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/10/19 Date Analyzed: 06/10/19

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{( ext{C}_{10} ext{-} ext{C}_{25})} \qquad rac{ ext{Mod}}{ ext{C}_{10} ext{-} ext{C}_{25}}$	otor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 47-140)
MW112-20190606 906144-01	59 x J+, 2	<250	99
MW113-20190606 906144-02	89 x Jt /2	<250	97
MW109-20190606 906144-03	140 x J+ , 2	<250	97
MW110-20190606 906144-04	91 x J+ ,2	<250	101
MW108-20190606 906144-05	590 x J+ /		92
RW05-20190606 906144-06	99 x J+ 2	<250	96
MW111-20190606 906144-07	84 x Jt , 2	<250	97
MW105-20190606 906144-08 1/1.2	$96 \times J + 2$	<250	99
MW102-20190606 906144-09	$61 \times \mathcal{H}$ , 2	<250	93
MW101-20190606 906144-10	<50	<250	100

revised of vegular le 18.19

#### **ENVIRONMENTAL CHEMISTS**

70 V

Date of Report: 06/13/19 Date Received: 06/07/19

Project: SOU_0914-001_ 20190607, F&BI 906144

Date Extracted: 06/10/19 Date Analyzed: 06/10/19

# RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	Motor Oil Range (C ₂₅ -C ₃₆ )	Surrogate (% Recovery) (Limit 47-140)
MW104-20190606 906144-11	750 x J+	2 290 x	93
RW04-20190607		2 <250	100
RW03-20190607		- 12 <250	96
MW99-20190607 906144-14	700 x J4	- ₁ 2 <250	96
Method Blank	<50	<250	106

reside 6/8/9

44190b

SAMPLE CHAIN OF CUSTODY

ME, 06-07-19

Send Report to: Rob Roberts, cc. Jon Loeffler, Clare Tochilin SoundEarth Strategies, Inc.

2811 Fairview Avenue E, Suite 2000 Seattle, Washington 98102 City, State, ZIP_ Address

Company

206-306-1907

Fax#

206-306-1900

Phone #

0914-001 SKS SHELL / 0914-001 SAMPLERS (signature) PROJECT NAME/NO. REMARKS

Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL Standard (2 Weeks) RUSH Page#

Return samples Will call with instructions Dispose after 30 days

ANALYSES REQUESTED	CAOCs by 8260C									Do y The more more and all	a source tellinge
ANA	BTEX by 8021B		×	×						×	X
	xĐ-H4TWN	×		X			< <	×	×	<b>*</b>	X
	xG-H4TWN	×	X	X	X	X	×	X	X	X	X
	# of Jars	エ									-7
	Matrix	3									7
	Time Sampled	ીલ્કન	Shol	1125	1210	1225	1224	1305	1359	4541 1119	1455
	Date Sampled	LEVI 11/10 CX	611913	6/6/19	P1/1/6)	1/0/19	1011/19)	1/1/1/2	6/11/9	6/10/18	191119
	Lab ID	CAID	7 60	1 %	Off.	0.5	90	7,0	80	ğ	1 9)
	Sample		1		1	١	,	ì	١	ł	ı
	Sample Location	MWIZ	MW113	MMING	Olimin	71W10B	RWCS	)    m)/i	21213	20mm	Jam/D/
	Sample ID	401090905711 N/M		NW109-20190606 12W/09	NW110-20140606 MW110	MW (08 - 20190606	12W05-26190604	N W 111-26/90604	MW 105-20190600 MM105	501 NN 102-201906 John 102	14w 101-2019 0606

Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West Fax (206) 283-5044 Ph. (206) 285-8282

FORMS\COC\COC.DOC

A STANDATTIRE /	PRINT NAME	COMPANY	DATE 1	TIME
DIGINAL CITY		7 /		3
Relinquished by:	Andrea Mirman		8521 1/1/10	38
Received by:	**	TERT	g831 61-23	6000
The state of the s	000			
Relinquished by:				
Received by:				
The state of the s				

441996

ME 06-07-19 SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature) Send Report to: Rob Roberts, cc. Jon Loeffler, Clare Tochilin

PROJECT NAME/NO.

SKS SHELL / 0914-001 REMARKS

2811 Fairview Avenue E, Suite 2000

Seattle, Washington 98102

City, State, ZIP_

Phone #_

SoundEarth Strategies, Inc.

Company.

Address

0914-001

TURNAROUND TIME

Standard (2 Weeks)

PO#

RUSH

Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days

Return samples Will call with instructions

Will call with instructions	ANALYSES REQUESTED	F-Dx F-Gx 8021B 8260C
		# 0
and the state of t		
		Date
Z		,c q
206-306-1907		S. da da
Fax # 200		Semple
206-306-1900		

Notes									eceived at 4 °C	
									ples 1	$\perp$
CAOC® PA 8500C									San	
BTEX by 8021B	×	>	X	>					<i> </i>	
, NWTPH-Gx	×	$\times$		$\times$						
NWTPH-Dx	X	X	<b>X</b>	メ						
# of Jars	7			->			1	1		
Matrix	Š			ラ			112	1700		
Time Sampled	1515	1034	1134	1200			1 0 M			
Date Sampled	6/6/19	6/7/19	6/7/19	6/1/19		,	#L			
Lab	(FR)	万三	હ	3						
Sample Depth	)	J	)	/						
Sample Location	HOI MY	RMOH	Rw 03							
Sample ID	NW 16420140606	RW64-26190607	2W03-20190607	MN 99- 20,90607						
	Sample Sampled Time Time # of # of CVOC® BY S260C  Location Depth ID Sampled Sampled Matrix Jars RYTPH-CX  NWTPH-CX  NWTPH-CX	Sample Lab Date Time Matrix # of CVOCs by 8260C  Tip O CVOCs by 8260C  AWTPH-Gx  AWTPH	Sample Lab Date Depth ID Sampled Sampled Sampled Matrix Jars HH-Dx         # of NWTPH-Cx         CVOCs by 8260C           - 11pA U/6 19 1515 W H X X         W H X X X         X X X	Sample Lab Date Time Matrix # of CVOCs by 8260C  - 11 P.D	Sample Lab Date Time Matrix # of CVOCs by 8260C  - 11 PA 6/6/19   5/5 W 4 X X X X X X X X X X X X X X X X X X	Sample Lab Date Time Matrix # of CVOCs by 8260C  - 11 P. Sampled Sampled Matrix Jars HTEX by 8021B  - 12 [6/7/19 15/5 W 4 X X X X X X X X X X X X X X X X X X	Sample Lab Date Time Matrix # of Depth ID Sampled Sampled Matrix # of Depth ID Sampled Sampled Matrix Jars HTEX by 8021B  - 12   C/7/    1034	Sample Lab Date Time Matrix # of Warrix Jars HPH-Dx WWTPH-Cx MWTPH-Cx MWTPH-Dx MWTPH	Sample Lab Date Time Matrix # of CVOCs by 8260C  Lip C/7/19 155 W Y NWTPH-Cx  12 C/7/19 1034   X X X X X X X X X X X X X X X X X X	Sample Lab Date Time Matrix # of Depth ID Sampled Sampled Matrix Jars Hof Depth ID Sampled Sampled Sampled Matrix Jars Hof Depth ID Sampled Sampled Natrix Jars Depth Dx NWTPH-Cx NWTPH-Cx NWTPH-Dx NWTPH-Cx NWTPH-Dx NWTPH

Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West Fax (206) 283-5044 Ph. (206) 285-8282

FORMS\COC\COC.DOC

TIME )238 61-4-7 DATE COMPANY Fe82 SES PRINT NAME 2dre SIGNATURE Relinquished by: Relinguished by Received by: Received by: