Stantec

Stantec Consulting Services, Inc. 11130 Northeast 33rd Place, Suite 200 Bellevue, Washington 98004 (858) 751-1200

December 18, 2018 File: 185751153

Attention: Mr. Randy Lewis

Director of Environmental and Engineering Services Port of Grays Harbor 111 South Wooding Street Aberdeen, Washington 78520

Reference: Limited Phase II Environmental Site Assessment Terminal 3 Site Hoquiam, Washington

Dear Mr. Lewis,

On behalf of the Port of Grays Harbor (the "Port"), Stantec has prepared the following report describing the results of soil assessment activities conducted at the Proposed Terminal 3 property (the "Site") located in Hoquiam, Grays Harbor County, Washington (*Figure 1*). We understand that the Site is being considered for a long-term lease and redevelopment as a potash export facility.

Scope of Work

- Prepared a site-specific Health and Safety Plan (HASP);
- Notified One Call, a municipal underground utility location service, to identify subsurface municipal utilities located in the public right-of-way in the vicinity of the Site;
- Supervised the advancement of seven soil boreholes (B-11 through B-17), at the locations shown on *Figure 3*;
- Collected soil samples and logged the lithology of soil samples during drilling operations;
- Laboratory analysis for dioxins and furans of soil samples collected at selected depths in each borehole; and,
- Prepared this report, which includes our findings and conclusions.

Background

The Site is approximately 200 acres in size and is located on Airport Way between Paulson Road and South Adams Street near the Hoquiam Municipal Airport. Based on information provided in the Phase I Environmental Site Assessment (ESA) Report of the Site prepared by BergerABAM dated July 2017, the Site was occupied by a foundry for pulp and paper equipment (Lamb Grays Harbor Company) and a log storage and export facility (Former Rayonier). Currently, the majority of the Site is vacant with a log storage and wood chipping facility (Willis Enterprises) occupying most of the southeast portion of the Site. The City of Hoquiam operates an inert waste landfill on the east portion of the Site and there is a former wastewater pond on the southwest portion of the Site. A whisky distillery currently occupies the northeast portion of the Site.

December 18, 2018 Mr. Randy Lewis Page 2 of 6

Reference: Phase II Environmental Site Assessment

The Phase I ESA identified three former uses of the Site as Recognized Environmental Concerns (RECs):

- Former Rayonier log export facility;
- Former Lamb Grays Harbor Company foundry, and;
- The City of Hoquiam inert waste landfill.

A Phase II ESA soil and groundwater investigation of the identified REC areas was conducted in August/September 2017. Three permanent groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed in March 2018 to investigate groundwater conditions at the Site. One well (MW-4) had been installed previously. Three additional monitoring wells (MW-5, MW-6, and MW-7) were installed in June 2018 to investigate groundwater conditions of the Site. There are currently seven permanent ground monitoring wells on the Site. During the June 2018 investigation, 10 direct-push soil borings were completed and two surface water samples were collected from drainage ditches at the northwest portion of the Site planned for redevelopment. The area of investigation and a summary of soil sampling results are presented in *Figure 2*.

Dioxin and furan analysis of the 10 soil samples collected in June 2018 indicated Total Toxic Equivalency (TEQ min) dioxin and furan concentrations ranging from 0.19 nanograms per kilogram (ng/kg) to 67.8 ng/kg. Five of the soil samples exceeded the Washington Department of Ecology Model Toxics Control Act (MTCA) Method B Soil Cleanup Level (CUL) for dioxins/furans of 12.8 ng/kg. No explanation for the distribution of the dioxin/furan concentrations was offered in the July 2018 Phase II report. The report concluded:

"Dioxins/furans in soil could result from historical burning of wood or wood waste associated with the mill operations. Additionally, the site was filled using dredge material from Grays Harbor and the Chehalis River navigation channel. There is the potential that the dioxins/furans present in site soil could be from the dredge material placed at the site resulting from historical operations of pulp and paper mills in the area".

The previous Phase II ESAs did not investigate the wooded areas along the north and east sides of the former log storage area where rig access was restricted. The Port retained Stantec to collect additional soil samples in these areas which area within the footprint of potential future development. Additional samples were proposed along the central drainage channel to delineate dioxin/furan concentrations previously identified.

Subsurface Investigation

Drilling

A Site-specific HASP was prepared to address potential hazards during the proposed drilling activities. Stantec personnel and subcontractors were required to acknowledge the HASP prior to the field work.

All field activities and soil descriptions were completed by a Washington State Licensed Geologist and Hydrogeologist (WA LG/LHG No. 674).

December 18, 2018 Mr. Randy Lewis Page 3 of 6

Reference: Phase II Environmental Site Assessment

Utility Clearance

One Call was notified of the subsurface investigation work a minimum of 48 hours prior to drilling as required by law. One Call notified local utility companies of the planned work in order to identify subsurface municipal utilities located in the public right-of-way. The subsurface investigation work was conducted entirely within the Site boundary avoiding any municipal rights-of way. No utilities were identified in the immediate vicinity of any of the soil borings.

Soil Boring Advancement

On October 10 and 11, 2018, boreholes B-11, B-12, B-13, B-14, B-15, and B-17 were advanced to depths of 16 feet below ground surface (bgs) in the locations depicted on *Figure 3*. Boring B-16 was located in a wooded area on the east side of the former log storage area and was completed to a depth of 8 feet bgs. Probe refusal was encountered at 8' bgs due to dense wood fragments at this depth. Drilling operations were contracted to Environmental Services Network Northwest, Inc. (ESN). ESN also conducted the drilling and monitoring well installation during BergerABAM's June 2018 Phase II subsurface investigation. All borings were completed using a limited-access Power Probe 9100-P direct-push probe rig. The soil was logged continuously and examined for the presence of discoloration, odor, and/or sheen.

Subsurface material encountered in B-11, B-12, and B-17, in the cleared former log storage yard consisted of up to 4 feet of imported gravel and coarse railroad ballast-type rock fill material overlying dark gray silty sand with organic material and wood fragments that appeared to be native soil. The native soil consisted of interbedded layers of silty sand, sandy silt, and silt with organic material typical of near shore estuary deposits. The shallow soils in the wooded or relatively undisturbed areas (B-13, B-14, B-15, and B-16) consisted of orange-colored hydric soil and dark gray silt to a depth of 4 to 5 feet bgs and underlain by the interbedded silty sands and silt. The soil was saturated below approximately 7 feet bgs in most of the borings. No evidence of discoloration, sheen, or odor was noted during the screening of the soil samples. No groundwater samples were collected as part of the investigation.

All equipment was decontaminated between borings using high-pressure steam cleaning equipment. Sampling equipment was decontaminated prior to the collection of each sample with a solution of Alconox® detergent and water and rinsed with clean water to prevent cross-contamination between boreholes.

Following collection of soil samples, the soil borings were backfilled with bentonite to surface.

Soil Sampling

Soil samples were collected from the 4' long plastic sleeve in accordance with United States Environmental Protection Agency (EPA) Method 5035A. Relatively undisturbed soils were collected from the center of the split-spoon using a syringe-type sampler. The samples were then placed directly into 40-mililiter vials preserved with methanol supplied by the analytical laboratory. Additional soil was collected and placed

December 18, 2018 Mr. Randy Lewis Page 4 of 6

Reference: Phase II Environmental Site Assessment

directly into clean 4-ounce glass jars. Care was taken to obtain representative soil samples and to place the soils directly and quickly into the sample container to minimize loss of volatile constituents.

The threads of the sample jars were wiped clean of soil particles that would interfere with an airtight seal, and a Teflon-lined screw closure lid was immediately placed on the jars. The sample jars were labeled with borehole name, depth, type of analysis, date, and time of sampling and placed in a cooler on ice for subsequent transport under chain-of-custody (COC) protocol to ESN's analytical laboratory, an Ecology-accredited fix-based environmental laboratory located in Olympia, Washington. EPA recommended protocols for sample management, including COC procedures and documentation, were observed during all sampling activities.

The remaining soil was used for soil type classification and field screening analysis for petroleum hydrocarbon impacts. Field screening consisted of visual observations of potential hydrocarbon contamination and headspace analysis for volatile organic vapors. Headspace testing for volatile organic vapors was completed using a photoionization detector (PID) which monitors volatile vapors given off by the sampled soil. A sample of the soil matrix was placed in a re-sealable plastic bag and allowed to equilibrate for approximately ten minutes. The probe of the PID was used to pierce the plastic and was extended into the headspace above the soil surface. The greatest vapor reading obtained during the next 60 seconds was then recorded. Prior to use, the PID was calibrated to known concentrations of isobutylene, in accordance with the manufacturer's specifications.

A total of 24 soil samples were collected and submitted for laboratory analysis. In borings B-11, B-12, B-13, B-14, B-15, and B-17, laboratory soil samples were collected from depths of 3', 6', 9', and 15' bgs. In boring B-16, laboratory soil samples were collected from depths of 2', 5', and 8' bgs.

Analytical Methods and Sample Results

Soil Samples

All soil samples were analyzed for the following:

• Dioxins and Furans by EPA Method 8290A.

The sample collected from the 11' bgs depth in B-11 was also submitted for analysis of:

• Phenols using EPA Method 8270.

Dioxin/furan concentrations in soil samples were below Ecology's MTCA Method B Cleanup Levels for dioxins/furans in soil with the exception of those listed in the table below. The certified analytical laboratory report and COC documentation is provided as *Appendix A* and is summarized in *Table 1* and on *Figures 2 and 3*.

December 18, 2018 Mr. Randy Lewis Page 5 of 6

Reference: Phase II Environmental Site Assessment

Sample Name	Sample Date	Sample Depth (feet bgs)	PID Reading (ppm)	Total TEQ (ng/kg)					
B-12 (3')	10/11/18	3	2	15.0					
B-13 (3')	10/11/18	3	4	20.3					
B-13 (9')	10/11/18	9	2	20.1					
B-14 (9')	10/11/18	9	3	24.8					
B-14 (15')	10/11/18	15	3	13.0					
B-16 (2')	10/11/18	2	2	15.0					
MTCA Method B Sc	MTCA Method B Soil Cleanup Level (Total TEQ min)								

Nanogram/kilogram or pg/g

Summary and Conclusions

A total of seven soil borings were completed in the northwest portion of the Site as part of this Phase II subsurface investigation. Boring locations were selected to delineate the lateral and horizontal extent of dioxin/furans impacts identified in the July 2018 Phase II ESA conducted by BergerABAM and to investigate areas within the footprint of potential future development. Preliminary plans for the main storage building show that it would extend along the existing railroad line that forms the northern boundary of the Site. Borings B-13, B-14, B-15, and B-16 all lie within this potential building's footprint and represent areas where shallow soils would likely be exposed during building construction.

Of the 24 soil samples collected, six had dioxin/furan concentrations above the MTCA Method B Soil CUL of 12.8 ng/kg. Concentrations of dioxin above the CUL were detected to a depth of 9' bgs in B-13, to a depth of at least 15' bgs in B-14, and in the shallow soils at B-16 (2') all within the potential footprint of the storage building. Dioxin was also detected at the 3' depth in B-12 which is located near the western boundary of the Site and outside of the potential building footprints. The highest detected dioxin concentrations were located in B-13, B-14, and B-16 in the wooded area near the railroad tracks that appears to have been outside of the historically occupied portions of the Site. Neither the former equipment foundry (Lamb Grays Harbor Property) nor the former log storage yard for the Rayonier mill appears to have used this portion of the Site as part of their historical operations. In addition, this area appears to be covered with native vegetation and does not appear to have received imported dredge material based on the review of Site operations.

December 18, 2018 Mr. Randy Lewis Page 6 of 6

Reference: Phase II Environmental Site Assessment

Limitations

This report has been prepared for the exclusive use of the Port of Grays Harbor as it pertains to potential development on the Terminal 3 site in Hoquiam, Washington. The findings and conclusions rendered in this report are opinions based primarily on laboratory testing of soil samples collected during this project. This report does not reflect subsurface variations which may exist between sampling points. These variations cannot be anticipated, nor can they be entirely accounted for even with exhaustive additional testing.

All work has been performed with the degree of skill generally exercised by practicing engineers and geologists in the environmental field. Stantec makes no other warranty, either expressed or implied, concerning the conclusions and professional advice which is contained within the body of this report.

If you have any questions regarding this report, please contact the undersigned.

Regards,

STANTEC CONSULTING SERVICES INC.

Greg McCormick, LG Senior Geologist Phone: (425) 922-6392 Greg.mccormick@stantec.com Marc Sauze PE Principal Engineer Phone: (425) 894-2329 Marc.sauze@stantec.com

Attachments: Table 1 – Dioxins/Furans in Soil Figure 1 – Site Location Map Figure 2 – Investigation Area and Soil Sampling Results Figure 3 – Horizontal Delineation of Dioxins/Furans Attachment A – Laboratory Analytical Report and Chain-of-Custody Documentation

TABLE 1

Design with community in mind

TABLE 1: DIOXINS/FURANS IN SOIL¹

PROPOSED TERMINAL 3 EXPORT FACILITY HOQUIAM, WASHINGTON

	Depth (feet		DIOXINS/I	URANS (ng/kg)	
	below the ground			Total TEQ of	
Sample Identification	surface)	Date	2,3,7,8 - TCDD	dioxins/furans	
B-1-7'	7	6/25/2018	4.51	14.1	
B-2-6'	6	6/25/2018	1.51	67.8	
B-3-6'	6	6/25/2018	5.55	17.7	
B-4-8'	8	6/25/2018	2.92	9.89	
B-5A-7.5'	7.5	6/25/2018	3.61	10.8	
B-6-7'	7	6/25/2018	<0.446	0.106	
B-7-7'	7	6/25/2018	4.4	13	
B-8-6'	6	6/25/2018	<0.4	1.22	
B-9-7'	7	6/25/2018	<0.431	0.19	
B-10-6'	6	6/25/2018	4.42	13.9	
B-11-3'	3	10/11/2018	<0.453	0.0	
B-11-6'	6	10/11/2018	3.98	12.4	
B-11-9'	9	10/11/2018	<0.441	0.0521	
B-11-15'	15	10/11/2018	2.41	3.21	
B-12-3'	3	10/11/2018	4.4	15	
B-12-6'	6	10/11/2018	<0.488	0.00762	
B-12-9'	9	10/11/2018	3.11	8.89	
B-12-15'	15	10/11/2018	<0.406	0.0420	
B-13-3'	3	10/11/2018	<0.457	20.3	
B-13-6'	6	10/11/2018	<0.429	0.965	
B-13-9'	9	10/11/2018	5.7	20.1	
B-13-15'	15	10/11/2018	3.45	6.80	
B-14-3'	3	10/11/2018	3.42	6.42	
B-14-6'	6	10/11/2018	<0.411	3.06	
B-14-9'	9	10/11/2018	11.1	24.8	
B-14-15'	15	10/11/2018	3.04	13.0	
B-15-3'	3	10/11/2018	<0.435	0.556	
B-15-6'	6	10/11/2018	2.06	4.33	
B-15-9'	9	10/11/2018	<0.424	2.82	
B-15-15'	15	10/11/2018	4.2	8.77	
B-16-2'	2	10/11/2018	5.03	15.0	
B-16-5'	5	10/11/2018	3.3	9.18	
B-16-8'	8	10/11/2018	1.59	3.14	
B-17-3'	3	10/11/2018	<0.448	0.0	

Table continued on next page

B-17-6'	6	10/11/2018	<0.485	0.00224
B-17-9'	9	10/11/2018	5.22	9.33
B-17-15'	15	10/11/2018	<0.364	0.132
MTCA Meth	od A Soil Cleanup Leve	NE	NE	
MTCA Meth	od B Soil Cleanup Leve	12.8	12.8	
MTCA Meth	od C Soil Cleanup Leve	16.8	16.8	

Notes:

¹ Chemical Analysis was performed by Ceres Analytical Laboratory, Inc. The laboratory report and chain-of-custody is included as Appendix C

²Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. Cancer values are used unless otherwise noted. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

^{*}The MTCA Method C industrial clean up level is listed because the MTCA Method A industrial clean up level is not established.

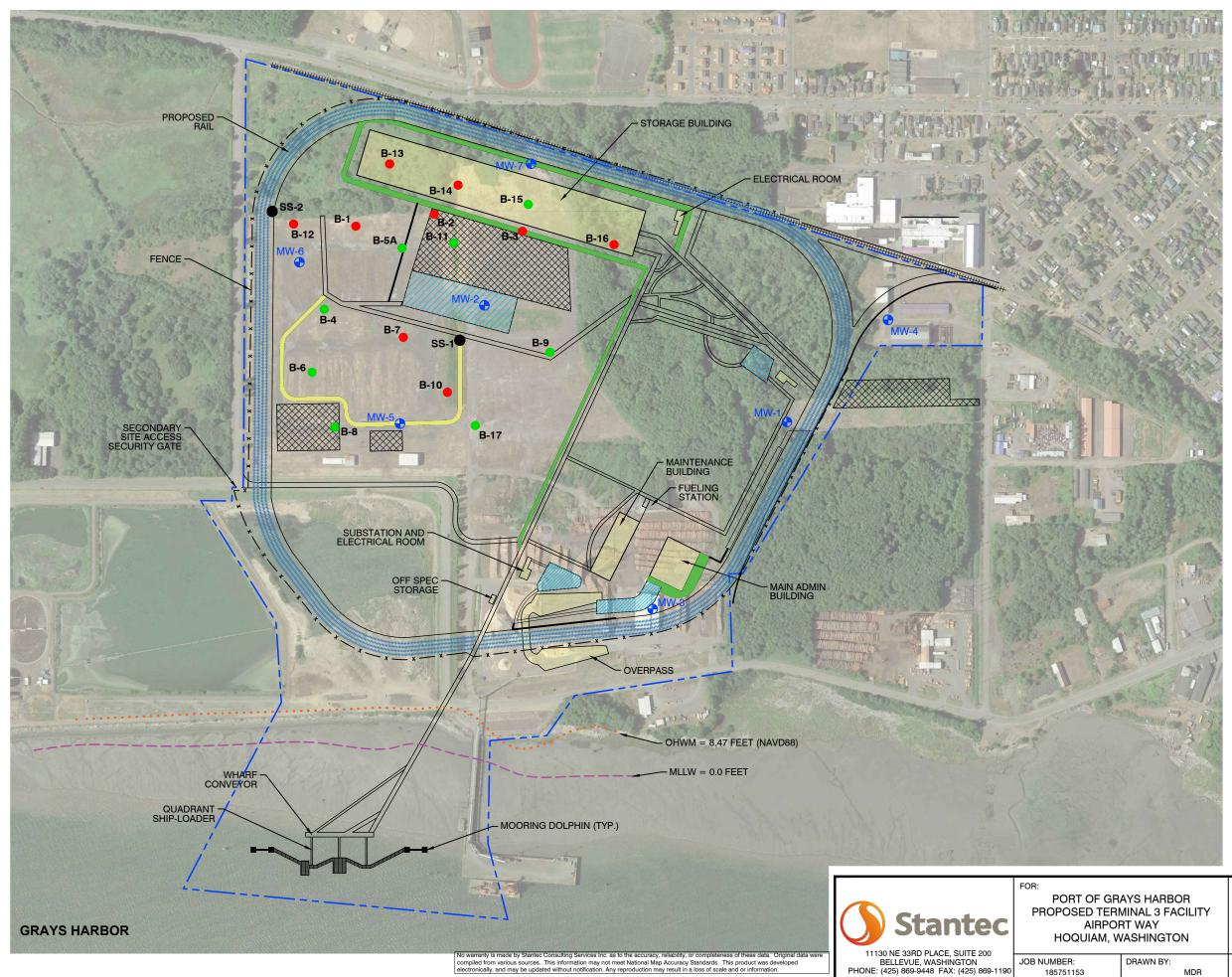
Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits.

24.8

Shaded value indicates the Total TEQ concentration exceeds the MTCA Method B Cleanup Level of 12.8 ng/kg.

NE = Not established

<0.4 = The analyte was not detected. The associated numerical value is the sample quantitation limit. ng/kg = nanogram per kilogram - equivalent to pg/g concentration.



FIGURES

Design with community in mind

FILEPATH:V:\1857\active\Secor\CADD_00 OTHER OFFICES\01-REDMOND\PORT OF GRAYS HARBOR\FIG-1_SITE LOC.dwg | Layout Tab: Layout1 | Drafter: MiRamirez | Dec 10, 2018 at 16:23

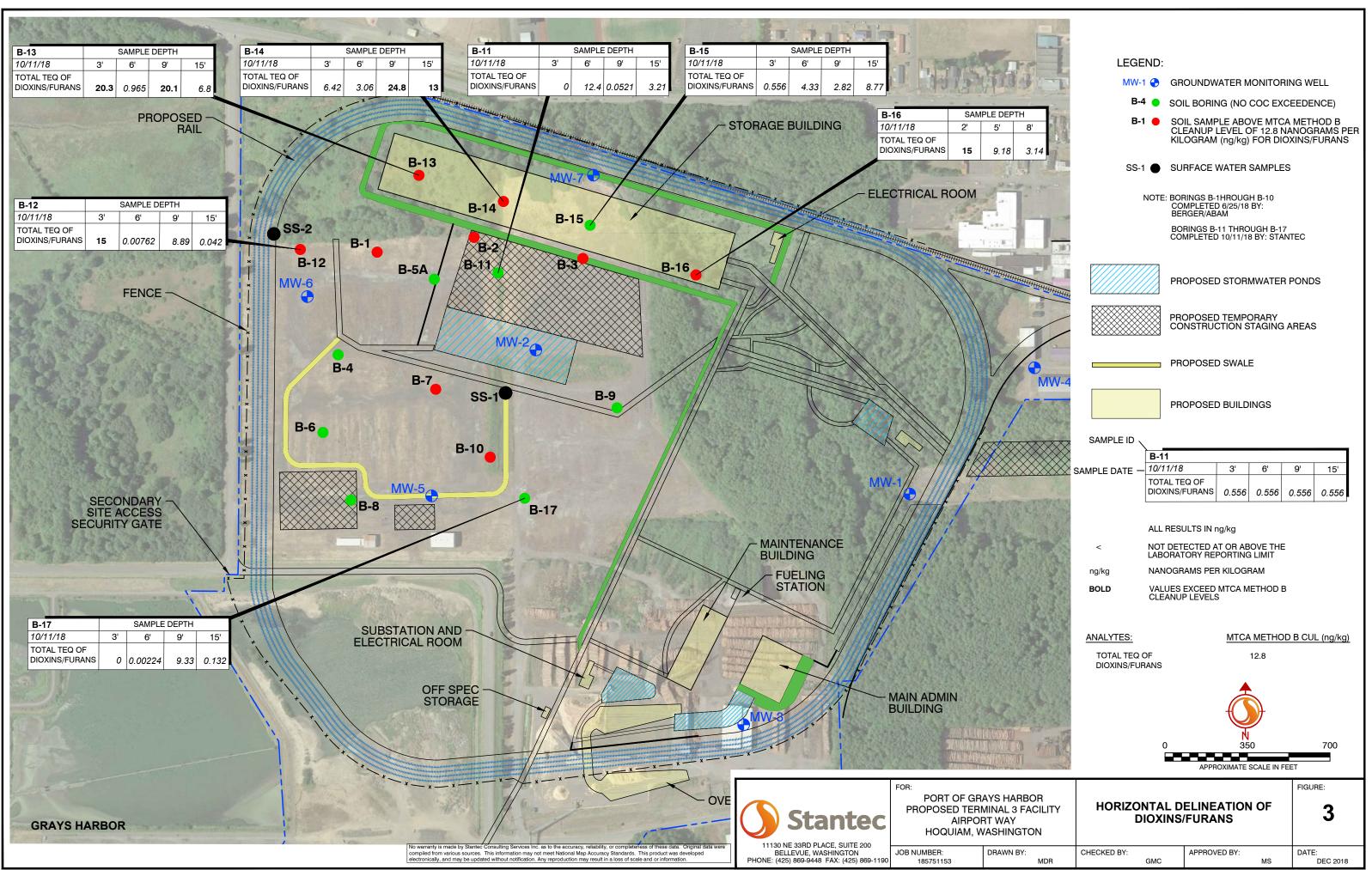
FILEPATH:C:\Users\miramirez\Documents\STANTEC JOBS\PORT OF GRAYS HARBOR\FIG-2 SITE MAP.dwg | Layout Tab: FIG-2 SITE MAP | Drafter: MiRamirez | Dec 17, 2018 at 14:37

LEGEND:

- B-4 SOIL BORING (NO COC EXCEEDENCE)
- B-1 SOIL SAMPLE ABOVE MTCA METHOD B CLEANUP LEVEL OF 12.8 NANOGRAMS PER KILOGRAM (ng/kg) FOR DIOXINS/FURANS
- SS-1 SURFACE WATER SAMPLES
- NOTE: BORINGS B-1HROUGH B-10 COMPLETED 6/25/18 BY: BERGER/ABAM
 - BORINGS B-11 THROUGH B-17 COMPLETED 10/11/18 BY: STANTEC

PROPOSED STORMWATER PONDS

PROPOSED TEMPORARY CONSTRUCTION STAGING AREAS


PROPOSED SWALE

PROPOSED BUILDINGS

IARBOR . 3 FACILITY Y NGTON	INVESTIGATIO SOIL SAMPI	DN AREA AND E RESULTS)	FIGURE: 2
N BY:	CHECKED BY:	APPROVED BY:		DATE:
MDR	GMC		MS	DEC 2018

FILEPATH:C:\Users\miramirez\Documents\STANTEC JOBS\PORT OF GRAYS HARBOR\FIG-2 SITE MAP.dwg | Layout Tab: FIG-3 SITE BORING DATA | Drafter: MiRamirez | Dec 17, 2018 at 14:40

ATTACHMENT A

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

Design with community in mind

CERES Analytical Laboratory, Inc.

4919 Windplay Dr. Suite 1, El Dorado Hills, CA 95762

Ceres ID: 12395

October 30, 2018

ESN Northwest, Inc. 1210 Eastside Street SE Olympia, WA 98501

The following report contains the results for the twenty-seven soil samples and one aqueous sample received on October 16, 2018. These samples were analyzed for tetra through octa chlorinated dibenzo-p-dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

This work was authorized under the Project Name: Terminal 3.

Soil sample results are reported on a dry weight basis.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

um Hos

James M. Hedin Director of Operations/CEO <u>jhedin@ceres-lab.com</u>

Section I: Sample Inventory

Ceres Sample ID: 12395-001	<u>Sample ID</u> B-11 0-3'	Date Received 10/16/2018	Collection Date &Time 10/11/2018 12:35
12395-002	B-11 3-6'	10/16/2018	10/11/2018 12:40
12395-003	B-11 6-9'	10/16/2018	10/11/2018 12:45
12395-004	B-11 15'	10/16/2018	10/11/2018 12:55
12395-005	B-12 0-3'	10/16/2018	10/11/2018 11:30
12395-006	B-12 3-6'	10/16/2018	10/11/2018 11:35
12395-007	B-12 6-9'	10/16/2018	10/11/2018 11:40
12395-008	B-12 15'	10/16/2018	10/11/2018 11:45
12395-009	B-13 0-3'	10/16/2018	10/11/2018 3:10
12395-010	B-13 3-6'	10/16/2018	10/11/2018 3:15
12395-011	B-13 6-9'	10/16/2018	10/11/2018 3:20
12395-012	B-13 15'	10/16/2018	10/11/2018 3:30
12395-013	B-14 0-3'	10/16/2018	10/11/2018 1:55
12395-014	B-14 3-6'	10/16/2018	10/11/2018 2:10
12395-015	B-14 6-9'	10/16/2018	10/11/2018 2:15
12395-016	B-14 15'	10/16/2018	10/11/2018 2:30
12395-017	B-15 0-3'	10/16/2018	10/11/2018 3:30
12395-018	B-15 3-6'	10/16/2018	10/11/2018 3:35
12395-019	B-15 6-9'	10/16/2018	10/11/2018 3:45
12395-020	B-15 15'	10/16/2018	10/11/2018 4:00
12395-021	B-16 2'	10/16/2018	10/11/2018 4:50
12395-022	B-16 5'	10/16/2018	10/11/2018 4:55
12395-023	B-16 8'	10/16/2018	10/11/2018 5:00
12395-024	B-17 0-3'	10/16/2018	10/11/2018 10:00
12395-025	B-17 3-6'	10/16/2018	10/11/2018 10:05
12395-026	B-17 6-9'	10/16/2018	10/11/2018 10:10
12395-027	B-17 15'	10/16/2018	10/11/2018 10:20
12395-028	Decon Water	10/16/2018	10/11/2018 5:30

Section II: Data Summary

-	Quality Assurance Sample Method Blank			QC Batch #: 1877 Matrix: Soil			Date Received: NA Date Extracted: 10/18/2018 ZB-5MS Analysis: 10/19/2018		
Project ID:	Terminal 3		Sam		: 10.00 g				
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.361	0.172	0.500		13C-2378-TCDD	106	40-135		
12378-PeCDD	DL= 0.825	0.327	2.50		13C-12378-PeCDD	61.0	40-135		
123478-HxCDD	DL= 0.761	0.327	2.50		13C-123478-HxCDD	66.3	40-135		
123678-HxCDD	DL= 0.704	0.655	2.50		13C-123678-HxCDD	79.6	40-135		
123789-HxCDD	DL= 0.714	0.315	2.50		13C-1234678-HpCDD	69.4	40-135		
1234678-HpCDD	DL= 1.52	0.409	2.50		13C-OCDD	78.0	40-135		
OCDD	DL= 1.77	1.01	5.00		13C-2378-TCDF	90.5	40-135		
2,3,7,8-TCDF	DL= 0.316	0.0886	0.500		13C-12378-PeCDF	60.9	40-135		
12378-PeCDF	DL= 0.666	0.412	2.50		13C-23478-PeCDF	59.3	40-135		
23478-PeCDF	DL= 0.676	0.422	2.50		13C-123478-HxCDF	96.7	40-135		
123478-HxCDF	DL= 0.741	0.518	2.50		13C-123678-HxCDF	117	40-135		
123678-HxCDF	DL= 0.568	0.533	2.50		13C-234678-HxCDF	78.4	40-135		
234678-HxCDF	DL= 1.06	0.319	2.50		13C-123789-HxCDF	67.7	40-135		
123789-HxCDF	DL= 1.50	0.425	2.50		13C-1234678-HpCDF	82.7	40-135		
1234678-HpCDF	DL= 0.820	0.279	2.50		13C-1234789-HpCDF	77.7	40-135		
1234789-HpCDF	DL= 1.21	0.378	2.50						
OCDF	DL= 2.66	0.461	5.00						
Totals	Conc. (pg/g)	E	МРС		CRS				
Total TCDD	DL= 0.361				37Cl4-2378-TCDD	99.3	40-135		
Total PeCDD	DL= 0.825								
Total HxCDD	DL= 0.761				DL - Signifies Non-Detect	(ND) at samp	ble specific detection	limit.	
Total HpCDD	DL= 1.52				EMPC - Estimated Maximu	um Possible	Concentration due to	ion abundance	
Total TCDF	DL= 0.316				ratio failure.				
Total PeCDF	DL= 0.676				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	DL= 1.50				(b) - TEQ based on (2005)	World Healt	h Organization (WHC) Toxic	
Total HpCDF	DL= 1.21		Equivalent Factors.						

Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/g

Analyst: JMH

Reviewed by: BS

Quality Assurance Samples Laboratory Control Samples Project ID: Terminal 3			QC Batch #: 1877 Matrix: Soil Sample Size: 10.00 g			Date Received: NA Date Extracted: 10/18/2018 ZB-5MS Analysis: 10/19/2018		
Analyte	LCS1 % Rec.	LCS2 % Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)	
2,3,7,8-TCDD	110	112	1.27	13C-2378-TCDD	110	126	40-135	
12378-PeCDD	108	109	0.65	13C-12378-PeCDD	99.9	111	40-135	
123478-HxCDD	124	99.8	15.29	13C-123478-HxCDD	63.2	92.6	40-135	
123678-HxCDD	98	117	12.50	13C-123678-HxCDD	98.7	77.9	40-135	
123789-HxCDD	133	131	1.07	13C-1234678-HpCDD	77.8	118	40-135	
1234678-HpCDD	111	114	1.89	13C-OCDD	75.8	107	40-135	
OCDD	110	116	3.75	13C-2378-TCDF	104	99.7	40-135	
2,3,7,8-TCDF	121	122	0.58	13C-12378-PeCDF	83.0	96.0	40-135	
12378-PeCDF	114	115	0.62	13C-23478-PeCDF	82.8	91.7	40-135	
23478-PeCDF	109	112	1.92	13C-123478-HxCDF	104	133	40-135	
123478-HxCDF	118	123	2.93	13C-123678-HxCDF	119	123	40-135	
123678-HxCDF	98.8	99.8	0.71	13C-234678-HxCDF	80.6	84.5	40-135	
234678-HxCDF	107	109	1.31	13C-123789-HxCDF	63.9	83.3	40-135	
123789-HxCDF	110	112	1.27	13C-1234678-HpCDF	76.1	103	40-135	
1234678-HpCDF	102	104	1.37	13C-1234789-HpCDF	78.3	106	40-135	
1234789-HpCDF	101	104	2.07					
OCDF	110	117	4.36					
				CRS				
				37Cl4-2378-TCDD	101	127	40-135	
				(a) Limits based on me	thod acceptance c	riteria.		

4919 Windplay Dr.Suite 1, El Donado Hills, CA 95762

EPA Method 8290A

Client Sampl	e ID: B-11 0-3'								
Project ID:	Terminal 3			•	12395-001		Date Receive		
			QC	Batch #:			Date Extracte		
	cted: 10/11/2018 cted: 12:35		Matrix: Soil Sample Size: 10.41 g % Solids: 95.8		ZB-5MS Analysi				
Time Cone	cieu. 12.35		Sam	Jie Size.	10.41 g % Solid	5. 95.0	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.453	0.172	0.502		13C-2378-TCDD	113	40-135		
12378-PeCDD	DL= 0.555	0.327	2.51		13C-12378-PeCDD	87.7	40-135		
123478-HxCDD	DL= 1.44	0.327	2.51		13C-123478-HxCDD	117	40-135		
123678-HxCDD	DL= 1.92	0.655	2.51		13C-123678-HxCDD	89.5	40-135		
123789-HxCDD	DL= 1.61	0.315	2.51		13C-1234678-HpCDD	104	40-135		
1234678-HpCDD	DL= 1.88	0.409	2.51		13C-OCDD	66.6	40-135		
OCDD	DL= 2.86	1.01	5.02		13C-2378-TCDF	112	40-135		
2,3,7,8-TCDF	DL= 0.342	0.0886	0.502		13C-12378-PeCDF	84.6	40-135		
12378-PeCDF	DL= 0.668	0.412	2.51		13C-23478-PeCDF	73.9	40-135		
23478-PeCDF	DL= 0.723	0.422	2.51		13C-123478-HxCDF	126	40-135		
123478-HxCDF	DL= 0.882	0.518	2.51		13C-123678-HxCDF	133	40-135		
123678-HxCDF	DL= 0.877	0.533	2.51		13C-234678-HxCDF	106	40-135		
234678-HxCDF	DL= 1.31	0.319	2.51		13C-123789-HxCDF	76.0	40-135		
123789-HxCDF	DL= 2.24	0.425	2.51		13C-1234678-HpCDF	84.4	40-135		
1234678-HpCDF	DL= 1.10	0.279	2.51		13C-1234789-HpCDF	97.0	40-135		
1234789-HpCDF	DL= 1.24	0.378	2.51						
OCDF	DL= 2.60	0.461	5.02						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	DL= 0.453				37Cl4-2378-TCDD	124	40-135		
Total PeCDD	DL= 0.555								
Total HxCDD	DL= 1.92				DL - Signifies Non-Detect (ND) at samp	le specific detection l	imit.	
Total HpCDD	DL= 1.88				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.342				ratio failure.				
Total PeCDF	DL= 0.723				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 2.24				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.24				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/g

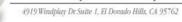
Analyst: JMH

Reviewed by: BS

Client Sample	e ID: B-11 3-6'							
Project ID:	Terminal 3			•	12395-002			d: 10/16/2018
	-1-1 40/44/0040		QC	Batch #:			Date Extracte	
Date Collected:10/11/2018Matrix:Time Collected:12:40Sample Size:			e: 52 3	ZB-5MS Analysi Q-225 Analysi				
	cieu. 12.40		Jani	JIE 0126.	19.11 g // Solid	3. 02.0	Q-225 Analysi	3. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.98	0.172	0.501		13C-2378-TCDD	108	40-135	
12378-PeCDD	4.18	0.327	2.50		13C-12378-PeCDD	80.1	40-135	
123478-HxCDD	2.91	0.327	2.50		13C-123478-HxCDD	88.1	40-135	
123678-HxCDD	5.87	0.655	2.50		13C-123678-HxCDD	74.5	40-135	
123789-HxCDD	12.5	0.315	2.50		13C-1234678-HpCDD	92.5	40-135	
1234678-HpCDD	115	0.409	2.50		13C-OCDD	70.1	40-135	
OCDD	897	1.01	5.01		13C-2378-TCDF	98.6	40-135	
2,3,7,8-TCDF	1.00	0.0886	0.501		13C-12378-PeCDF	71.9	40-135	
12378-PeCDF	DL= 0.995	0.412	2.50		13C-23478-PeCDF	63.8	40-135	
23478-PeCDF	DL= 0.968	0.422	2.50		13C-123478-HxCDF	94.4	40-135	
123478-HxCDF	3.27	0.518	2.50		13C-123678-HxCDF	91.2	40-135	
123678-HxCDF	DL= 1.21	0.533	2.50		13C-234678-HxCDF	80.8	40-135	
234678-HxCDF	DL= 1.57	0.319	2.50		13C-123789-HxCDF	85.4	40-135	
123789-HxCDF	DL= 1.76	0.425	2.50		13C-1234678-HpCDF	66.7	40-135	
1234678-HpCDF	28.0	0.279	2.50		13C-1234789-HpCDF	41.5	40-135	
1234789-HpCDF	DL= 1.67	0.378	2.50					
OCDF	84.7	0.461	5.01					
Totals	Conc. (pg/g)	EMF	°C		CRS			
Total TCDD	22.1				37Cl4-2378-TCDD	118	40-135	
Total PeCDD	25.3							
Total HxCDD	91.9				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	212				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	36.0	39.	4		ratio failure.			
Total PeCDF	16.8				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	46.7				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	113				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

12.4 pg/g



Client Sample	e ID: B-11 6-9'	-				-			
Project ID:	Terminal 3			•	12395-003		Date Receive	d: 10/16/2018	
			QC	Batch #	-		Date Extracted: 10/18/2018		
Date Collected: 10/11/2018 Matrix Time Collected: 12:45 Sample Size		Matrix:		a. 50.4	ZB-5MS Analysi				
	cted: 12:45		Samp	Die Size:	17.09 g % Solid	S: 59.1	Q-225 Analysi	S: NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.441	0.172	0.495		13C-2378-TCDD	98.5	40-135		
12378-PeCDD	DL= 1.05	0.327	2.48		13C-12378-PeCDD	86.3	40-135		
123478-HxCDD	DL= 1.54	0.327	2.48		13C-123478-HxCDD	92.6	40-135		
123678-HxCDD	DL= 1.89	0.655	2.48		13C-123678-HxCDD	74.3	40-135		
123789-HxCDD	DL= 1.66	0.315	2.48		13C-1234678-HpCDD	99.5	40-135		
1234678-HpCDD	4.75	0.409	2.48		13C-OCDD	64.1	40-135		
OCDD	15.2	1.01	4.95		13C-2378-TCDF	101	40-135		
2,3,7,8-TCDF	DL= 0.484	0.0886	0.495		13C-12378-PeCDF	61.5	40-135		
12378-PeCDF	DL= 0.503	0.412	2.48		13C-23478-PeCDF	63.5	40-135		
23478-PeCDF	DL= 0.412	0.422	2.48		13C-123478-HxCDF	108	40-135		
123478-HxCDF	DL= 0.934	0.518	2.48		13C-123678-HxCDF	114	40-135		
123678-HxCDF	DL= 0.966	0.533	2.48		13C-234678-HxCDF	82.2	40-135		
234678-HxCDF	DL= 1.52	0.319	2.48		13C-123789-HxCDF	87.4	40-135		
123789-HxCDF	DL= 1.72	0.425	2.48		13C-1234678-HpCDF	69.1	40-135		
1234678-HpCDF	DL= 1.36	0.279	2.48		13C-1234789-HpCDF	83.3	40-135		
1234789-HpCDF	DL= 1.39	0.378	2.48						
OCDF	DL= 1.92	0.461	4.95						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	3.31				37Cl4-2378-TCDD	105	40-135		
Total PeCDD	DL= 1.05								
Total HxCDD	9.48				DL - Signifies Non-Detect	(ND) at samp	le specific detection I	imit.	
Total HpCDD	8.74				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.484				ratio failure.				
Total PeCDF	DL= 0.503				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 1.72				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.39				Equivalent Factors.				

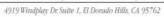
Total Toxic Equivalency (TEQ min.) (b):

0.0521 pg/g

Client Sampl	e ID: B-11 15'								
Project ID:	Terminal 3			•	12395-004			d: 10/16/2018	
QC Batch Date Collected: 10/11/2018 Matri							d: 10/18/2018		
	cted: 10/11/2018		Samn	Matrix: le Size:		s. 58 9	ZB-5MS Analysi Q-225 Analysi		
	Cieu. 12.00		Oamp	10 0120.	10.37 g 7 1 COlla	3. 00.0	Q-225 Analysi	3. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	2.41	0.172	0.500		13C-2378-TCDD	113	40-135		
12378-PeCDD	DL= 0.799	0.327	2.50		13C-12378-PeCDD	65.9	40-135		
123478-HxCDD	DL= 1.10	0.327	2.50		13C-123478-HxCDD	90.7	40-135		
123678-HxCDD	DL= 1.31	0.655	2.50		13C-123678-HxCDD	73.8	40-135		
123789-HxCDD	7.07	0.315	2.50		13C-1234678-HpCDD	104	40-135		
1234678-HpCDD	8.78	0.409	2.50		13C-OCDD	76.3	40-135		
OCDD	20.9	1.01	5.00		13C-2378-TCDF	94.1	40-135		
2,3,7,8-TCDF	DL= 0.415	0.0886	0.500		13C-12378-PeCDF	55.0	40-135		
12378-PeCDF	DL= 1.24	0.412	2.50		13C-23478-PeCDF	62.4	40-135		
23478-PeCDF	DL= 0.980	0.422	2.50		13C-123478-HxCDF	109	40-135		
123478-HxCDF	DL= 0.702	0.518	2.50		13C-123678-HxCDF	129	40-135		
123678-HxCDF	DL= 0.624	0.533	2.50		13C-234678-HxCDF	89.1	40-135		
234678-HxCDF	DL= 1.00	0.319	2.50		13C-123789-HxCDF	87.6	40-135		
123789-HxCDF	DL= 1.27	0.425	2.50		13C-1234678-HpCDF	82.1	40-135		
1234678-HpCDF	DL= 1.40	0.279	2.50		13C-1234789-HpCDF	96.2	40-135		
1234789-HpCDF	DL= 1.62	0.378	2.50						
OCDF	DL= 2.35	0.461	5.00						
Totals	Conc. (pg/g)	EMI	PC		CRS				
Total TCDD	13.3				37Cl4-2378-TCDD	124	40-135		
Total PeCDD	7.47								
Total HxCDD	32.3				DL - Signifies Non-Detect	ND) at samp	le specific detection l	limit.	
Total HpCDD	16.7				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	2.36				ratio failure.				
Total PeCDF	DL= 1.24				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 1.27				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.62				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

3.21 pg/g



Client Sampl	e ID: B-12 0-3'							
Project ID:	Terminal 3			•	12395-005			d: 10/16/2018
		QC Batch #: 1877					Date Extracte	
	Date Collected: 10/11/2018 Matrix Time Collected: 11:30 Sample Size		Matrix:		a. 57.4	ZB-5MS Analysi		
	cted: 11:30		Samp	Die Size:	17.55 g % Solid	S: 57.1	Q-225 Analysi	S: NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	4.40	0.172	0.499		13C-2378-TCDD	116	40-135	
12378-PeCDD	4.99	0.327	2.50		13C-12378-PeCDD	86.1	40-135	
123478-HxCDD	3.51	0.327	2.50		13C-123478-HxCDD	84.5	40-135	
123678-HxCDD	7.71	0.655	2.50		13C-123678-HxCDD	79.9	40-135	
123789-HxCDD	14.6	0.315	2.50		13C-1234678-HpCDD	94.4	40-135	
1234678-HpCDD	99.0	0.409	2.50		13C-OCDD	71.4	40-135	
OCDD	761	1.01	4.99		13C-2378-TCDF	118	40-135	
2,3,7,8-TCDF	0.911	0.0886	0.499		13C-12378-PeCDF	55.4	40-135	
12378-PeCDF	DL= 0.652	0.412	2.50		13C-23478-PeCDF	70.8	40-135	
23478-PeCDF	2.00	0.422	2.50	J	13C-123478-HxCDF	113	40-135	
123478-HxCDF	6.24	0.518	2.50		13C-123678-HxCDF	110	40-135	
123678-HxCDF	DL= 1.49	0.533	2.50		13C-234678-HxCDF	77.0	40-135	
234678-HxCDF	DL= 2.37	0.319	2.50		13C-123789-HxCDF	91.0	40-135	
123789-HxCDF	DL= 2.39	0.425	2.50		13C-1234678-HpCDF	73.7	40-135	
1234678-HpCDF	42.9	0.279	2.50		13C-1234789-HpCDF	77.7	40-135	
1234789-HpCDF	DL= 2.07	0.378	2.50					
OCDF	112	0.461	4.99					
Totals	Conc. (pg/g)	EMP	oc		CRS			
Total TCDD	33.7				37Cl4-2378-TCDD	115	40-135	
Total PeCDD	28.1	32.	1					
Total HxCDD	74.6				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	210				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	49.8	59.3	2		ratio failure.			
Total PeCDF	40.6				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	73.3				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic			
Total HpCDF	142				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

15.0 pg/g

Client Sample	e ID: B-12 3-6"								
Project ID:	Terminal 3			•	12395-006			d: 10/16/2018	
			QC	Batch #:			Date Extracte		
	cted: 10/11/2018 cted: 11:35		Sami	Matrix: ole Size:		e: 00 2	ZB-5MS Analysi Q-225 Analysi		
	cieu. 11.55		Jann	JIE 0126.	10.30 g 78 301 4	3. 30.2	Q-225 Analysi	3. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.488	0.172	0.505		13C-2378-TCDD	97.5	40-135		
12378-PeCDD	DL= 0.791	0.327	2.53		13C-12378-PeCDD	86.9	40-135		
123478-HxCDD	DL= 0.779	0.327	2.53		13C-123478-HxCDD	106	40-135		
123678-HxCDD	DL= 0.871	0.655	2.53		13C-123678-HxCDD	70.5	40-135		
123789-HxCDD	DL= 0.805	0.315	2.53		13C-1234678-HpCDD	98.2	40-135		
1234678-HpCDD	DL= 1.68	0.409	2.53		13C-OCDD	66.0	40-135		
OCDD	25.4	1.01	5.05		13C-2378-TCDF	116	40-135		
2,3,7,8-TCDF	DL= 0.365	0.0886	0.505		13C-12378-PeCDF	61.6	40-135		
12378-PeCDF	DL= 0.869	0.412	2.53		13C-23478-PeCDF	67.1	40-135		
23478-PeCDF	DL= 0.799	0.422	2.53		13C-123478-HxCDF	128	40-135		
123478-HxCDF	DL= 0.762	0.518	2.53		13C-123678-HxCDF	131	40-135		
123678-HxCDF	DL= 0.941	0.533	2.53		13C-234678-HxCDF	99.9	40-135		
234678-HxCDF	DL= 1.03	0.319	2.53		13C-123789-HxCDF	105	40-135		
123789-HxCDF	DL= 1.29	0.425	2.53		13C-1234678-HpCDF	86.6	40-135		
1234678-HpCDF	DL= 1.34	0.279	2.53		13C-1234789-HpCDF	91.2	40-135		
1234789-HpCDF	DL= 1.66	0.378	2.53						
OCDF	DL= 3.42	0.461	5.05						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	DL= 0.484				37Cl4-2378-TCDD	109	40-135		
Total PeCDD	DL= 0.791								
Total HxCDD	DL= 0.871				DL - Signifies Non-Detect ((ND) at samp	le specific detection	imit.	
Total HpCDD	DL= 1.68				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.365				ratio failure.				
Total PeCDF	DL= 0.869				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	DL= 1.29				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.66				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.00762 pg/g

Analyst: JMH

Reviewed by: BS

Client Sampl	e ID: B-12 6-9'							
Project ID:	Terminal 3			•	12395-007			d: 10/16/2018
			QC	Batch #:				d: 10/18/2018
	cted: 10/11/2018 cted: 11:40		Sam	Matrix: ple Size:		e: 50.0	ZB-5MS Analysi	
Time Cone	cied. 11.40		Sam	Die Size.	16.99 g % Solid	5. 59.9	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.11	0.172	0.491		13C-2378-TCDD	112	40-135	
12378-PeCDD	2.68	0.327	2.46		13C-12378-PeCDD	93.4	40-135	
123478-HxCDD	DL= 1.92	0.327	2.46		13C-123478-HxCDD	50.6	40-135	
123678-HxCDD	6.07	0.655	2.46		13C-123678-HxCDD	93.1	40-135	
123789-HxCDD	10.5	0.315	2.46		13C-1234678-HpCDD	106	40-135	
1234678-HpCDD	67.4	0.409	2.46		13C-OCDD	73.1	40-135	
OCDD	501	1.01	4.91		13C-2378-TCDF	117	40-135	
2,3,7,8-TCDF	0.951	0.0886	0.491		13C-12378-PeCDF	71.8	40-135	
12378-PeCDF	DL= 0.825	0.412	2.46		13C-23478-PeCDF	74.2	40-135	
23478-PeCDF	DL= 0.691	0.422	2.46		13C-123478-HxCDF	121	40-135	
123478-HxCDF	2.87	0.518	2.46		13C-123678-HxCDF	128	40-135	
123678-HxCDF	DL= 0.965	0.533	2.46		13C-234678-HxCDF	92.2	40-135	
234678-HxCDF	DL= 1.56	0.319	2.46		13C-123789-HxCDF	95.1	40-135	
123789-HxCDF	DL= 1.84	0.425	2.46		13C-1234678-HpCDF	75.9	40-135	
1234678-HpCDF	21.9	0.279	2.46		13C-1234789-HpCDF	92.7	40-135	
1234789-HpCDF	DL= 1.68	0.378	2.46					
OCDF	48.0	0.461	4.91					
Totals	Conc. (pg/g)	EMF	°C		CRS			
Total TCDD	15.5				37Cl4-2378-TCDD	126	40-135	
Total PeCDD	21.8							
Total HxCDD	86.8				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	137				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	22.1	23.	9		ratio failure.			
Total PeCDF	12.1				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	30.7				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	62.1				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

8.89 pg/g

Client Sampl	e ID: B-12 15'								
Project ID:	Terminal 3			•	12395-008		Date Receive	d: 10/16/2018	
			QC	Batch #:			Date Extracted		
	cted: 10/11/2018		Same	Matrix: ole Size:		a , 66 6	ZB-5MS Analysi		
Time Cone	cted: 11:45		Sam	ne size:	15.21 g % Solid	S: 00.0	Q-225 Analysi	S: NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.406	0.172	0.494		13C-2378-TCDD	112	40-135		
12378-PeCDD	DL= 0.816	0.327	2.47		13C-12378-PeCDD	101	40-135		
123478-HxCDD	DL= 1.04	0.327	2.47		13C-123478-HxCDD	93.0	40-135		
123678-HxCDD	DL= 1.10	0.655	2.47		13C-123678-HxCDD	89.6	40-135		
123789-HxCDD	DL= 1.05	0.315	2.47		13C-1234678-HpCDD	97.5	40-135		
1234678-HpCDD	3.77	0.409	2.47		13C-OCDD	83.7	40-135		
OCDD	14.4	1.01	4.94		13C-2378-TCDF	118	40-135		
2,3,7,8-TCDF	DL= 0.464	0.0886	0.494		13C-12378-PeCDF	103	40-135		
12378-PeCDF	DL= 0.579	0.412	2.47		13C-23478-PeCDF	102	40-135		
23478-PeCDF	DL= 0.491	0.422	2.47		13C-123478-HxCDF	125	40-135		
123478-HxCDF	DL= 0.429	0.518	2.47		13C-123678-HxCDF	124	40-135		
123678-HxCDF	DL= 0.468	0.533	2.47		13C-234678-HxCDF	111	40-135		
234678-HxCDF	DL= 0.499	0.319	2.47		13C-123789-HxCDF	96.1	40-135		
123789-HxCDF	DL= 0.745	0.425	2.47		13C-1234678-HpCDF	75.6	40-135		
1234678-HpCDF	DL= 1.03	0.279	2.47		13C-1234789-HpCDF	111	40-135		
1234789-HpCDF	DL= 0.909	0.378	2.47						
OCDF	DL= 1.12	0.461	4.94						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	2.28				37Cl4-2378-TCDD	124	40-135		
Total PeCDD	DL= 0.816								
Total HxCDD	11.4				DL - Signifies Non-Detect ((ND) at samp	le specific detection I	imit.	
Total HpCDD	7.93				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.464				ratio failure.				
Total PeCDF	DL= 0.579				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 0.745				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.03				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.0420 pg/g

Analyst: JMH

Reviewed by: BS

Client Sampl	e ID: B-13 0-3'							
Project ID:	Terminal 3			•	12395-009			d: 10/16/2018
			QC	Batch #:	-		Date Extracte	
Date Colle Time Colle	cted: 10/11/2018		Same	Matrix: ole Size:		a , 70.2	ZB-5MS Analysi	
Time Cone	cted. 3.10		Sam	Jie Size.	14.19 g % Solid	5. 70.2	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.457	0.172	0.502		13C-2378-TCDD	92.6	40-135	
12378-PeCDD	5.29	0.327	2.51		13C-12378-PeCDD	99.6	40-135	
123478-HxCDD	DL= 0.789	0.327	2.51		13C-123478-HxCDD	86.1	40-135	
123678-HxCDD	91.3	0.655	2.51		13C-123678-HxCDD	87.3	40-135	
123789-HxCDD	7.63	0.315	2.51		13C-1234678-HpCDD	98.7	40-135	
1234678-HpCDD	159	0.409	2.51		13C-OCDD	62.2	40-135	
OCDD	253	1.01	5.02		13C-2378-TCDF	119	40-135	
2,3,7,8-TCDF	0.960	0.0886	0.502		13C-12378-PeCDF	102	40-135	
12378-PeCDF	4.41	0.412	2.51		13C-23478-PeCDF	110	40-135	
23478-PeCDF	6.64	0.422	2.51		13C-123478-HxCDF	128	40-135	
123478-HxCDF	3.16	0.518	2.51		13C-123678-HxCDF	123	40-135	
123678-HxCDF	2.98	0.533	2.51		13C-234678-HxCDF	119	40-135	
234678-HxCDF	2.88	0.319	2.51		13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.630	0.425	2.51		13C-1234678-HpCDF	105	40-135	
1234678-HpCDF	35.6	0.279	2.51		13C-1234789-HpCDF	124	40-135	
1234789-HpCDF	DL= 0.581	0.378	2.51					
OCDF	11.8	0.461	5.02					
Totals	Conc. (pg/g)	EMF	ос О		CRS			
Total TCDD	5.60				37Cl4-2378-TCDD	96.5	40-135	
Total PeCDD	41.4							
Total HxCDD	354				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	276				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	71.1				ratio failure.			
Total PeCDF	164				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	248				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic			
Total HpCDF	97.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

20.3 pg/g

-	Quality Assurance Sample Method Blank Project ID: Terminal 3		QC	Batch #			Date Receive Date Extracte ZB-5MS Analysi	d: 10/20/2018	
Project ID:	Terminal 3		Sam		: 10.00 g		,		
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.400	0.172	0.500		13C-2378-TCDD	109	40-135		
12378-PeCDD	DL= 1.15	0.327	2.50		13C-12378-PeCDD	101	40-135		
123478-HxCDD	DL= 1.05	0.327	2.50		13C-123478-HxCDD	59.3	40-135		
123678-HxCDD	DL= 0.987	0.655	2.50		13C-123678-HxCDD	100	40-135		
123789-HxCDD	DL= 0.980	0.315	2.50		13C-1234678-HpCDD	92.1	40-135		
1234678-HpCDD	DL= 0.746	0.409	2.50		13C-OCDD	92.1	40-135		
OCDD	DL= 2.19	1.01	5.00		13C-2378-TCDF	103	40-135		
2,3,7,8-TCDF	DL= 0.391	0.0886	0.500		13C-12378-PeCDF	93.1	40-135		
12378-PeCDF	DL= 0.753	0.412	2.50		13C-23478-PeCDF	83.8	40-135		
23478-PeCDF	DL= 0.741	0.422	2.50		13C-123478-HxCDF	128	40-135		
123478-HxCDF	DL= 0.481	0.518	2.50		13C-123678-HxCDF	128	40-135		
123678-HxCDF	DL= 0.503	0.533	2.50		13C-234678-HxCDF	98.0	40-135		
234678-HxCDF	DL= 0.690	0.319	2.50		13C-123789-HxCDF	94.3	40-135		
123789-HxCDF	DL= 0.884	0.425	2.50		13C-1234678-HpCDF	103	40-135		
1234678-HpCDF	DL= 0.704	0.279	2.50		13C-1234789-HpCDF	103	40-135		
1234789-HpCDF	DL= 0.955	0.378	2.50						
OCDF	DL= 2.59	0.461	5.00						
Totals	Conc. (pg/g)	E	МРС		CRS				
Total TCDD	DL= 0.400				37Cl4-2378-TCDD	107	40-135		
Total PeCDD	DL= 1.15								
Total HxCDD	DL= 1.05				DL - Signifies Non-Detect (ND) at sam	ple specific detection	limit.	
Total HpCDD	DL= 0.746				EMPC - Estimated Maximu	ım Possible	Concentration due to	ion abundance	
Total TCDF	DL= 0.391				ratio failure.				
Total PeCDF	DL= 0.753				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	DL= 0.884			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	DL= 0.955				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/g

Analyst: JMH

Reviewed by: BS

Laboratory C				#: 1878 ix: Soil ze: 10.00 g		Date Received: NA Date Extracted: 10/20/2018 ZB-5MS Analysis: 10/21/2018		
Analyte	LCS1 % Rec.	LCS2 % Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)	
2,3,7,8-TCDD	116	118	1.21	13C-2378-TCDD	111	123	40-135	
12378-PeCDD	109	109	0.00	13C-12378-PeCDD	112	113	40-135	
123478-HxCDD	124	116	4.71	13C-123478-HxCDD	69.8	74.8	40-135	
123678-HxCDD	123	120	1.75	13C-123678-HxCDD	105	119	40-135	
123789-HxCDD	126	127	0.56	13C-1234678-HpCDD	93.7	61.4	40-135	
1234678-HpCDD	122	114	4.79	13C-OCDD	81.9	95.8	40-135	
OCDD	117	120	1.79	13C-2378-TCDF	113	114	40-135	
2,3,7,8-TCDF	120	124	2.32	13C-12378-PeCDF	94.4	101	40-135	
12378-PeCDF	127	128	0.55	13C-23478-PeCDF	101	109	40-135	
23478-PeCDF	116	113	1.85	13C-123478-HxCDF	126	132	40-135	
123478-HxCDF	119	117	1.20	13C-123678-HxCDF	131	117	40-135	
123678-HxCDF	108	103	3.35	13C-234678-HxCDF	100	92.0	40-135	
234678-HxCDF	111	109	1.29	13C-123789-HxCDF	97.0	105	40-135	
123789-HxCDF	120	118	1.19	13C-1234678-HpCDF	100	98.4	40-135	
1234678-HpCDF	102	101	0.70	13C-1234789-HpCDF	99.5	108	40-135	
1234789-HpCDF	105	104	0.68					
OCDF	125	126	0.56					
				CRS				
				37Cl4-2378-TCDD	111	128	40-135	
				(a) Limits based on met	thod acceptance c	riteria.		

Client Sample	e ID: B-13 3-6'							
Project ID:	Terminal 3			•	12395-010		Date Receive	d: 10/16/2018
			QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Same	Matrix: ole Size:		e , 50.7	ZB-5MS Analysi	
	cieu. 5.15		Sam	Jie Size.	19.69 g % Solid	5. 30.7	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.429	0.172	0.501		13C-2378-TCDD	100	40-135	
12378-PeCDD	DL= 0.507	0.327	2.51		13C-12378-PeCDD	126	40-135	
123478-HxCDD	DL= 0.760	0.327	2.51		13C-123478-HxCDD	71.1	40-135	
123678-HxCDD	7.18	0.655	2.51		13C-123678-HxCDD	74.0	40-135	
123789-HxCDD	DL= 0.757	0.315	2.51		13C-1234678-HpCDD	106	40-135	
1234678-HpCDD	14.0	0.409	2.51		13C-OCDD	67.7	40-135	
OCDD	45.4	1.01	5.01		13C-2378-TCDF	114	40-135	
2,3,7,8-TCDF	0.560	0.0886	0.501		13C-12378-PeCDF	108	40-135	
12378-PeCDF	DL= 0.636	0.412	2.51		13C-23478-PeCDF	98.9	40-135	
23478-PeCDF	DL= 0.665	0.422	2.51		13C-123478-HxCDF	128	40-135	
123478-HxCDF	DL= 0.481	0.518	2.51		13C-123678-HxCDF	118	40-135	
123678-HxCDF	DL= 0.564	0.533	2.51		13C-234678-HxCDF	95.2	40-135	
234678-HxCDF	DL= 0.697	0.319	2.51		13C-123789-HxCDF	94.0	40-135	
123789-HxCDF	DL= 0.905	0.425	2.51		13C-1234678-HpCDF	92.0	40-135	
1234678-HpCDF	3.71	0.279	2.51		13C-1234789-HpCDF	116	40-135	
1234789-HpCDF	DL= 0.771	0.378	2.51					
OCDF	DL= 2.50	0.461	5.01					
Totals	Conc. (pg/g)	EMF	°C		CRS			
Total TCDD	DL= 0.429				37Cl4-2378-TCDD	115	40-135	
Total PeCDD	DL= 0.507							
Total HxCDD	28.6				DL - Signifies Non-Detect ((ND) at samp	le specific detection I	imit.
Total HpCDD	24.3				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	8.06				ratio failure.			
Total PeCDF	9.20				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	16.1				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic			
Total HpCDF	8.91				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

0.965 pg/g

Analyst: JMH

Client Sample	e ID: B-13 6-9'	-						
Project ID:	Terminal 3			•	12395-011			d: 10/16/2018
			QC	Batch #:				d: 10/20/2018
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 19.4 g % Solids: 51.6				ZB-5MS Analysi	
Time Colle	cieu. 5.20		Sam	Jie Size.	19.4 9 % 3010	5. 51.0	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	5.70	0.172	0.500		13C-2378-TCDD	110	40-135	
12378-PeCDD	4.25	0.327	2.50		13C-12378-PeCDD	126	40-135	
123478-HxCDD	3.24	0.327	2.50		13C-123478-HxCDD	83.9	40-135	
123678-HxCDD	15.2	0.655	2.50		13C-123678-HxCDD	88.0	40-135	
123789-HxCDD	16.2	0.315	2.50		13C-1234678-HpCDD	109	40-135	
1234678-HpCDD	169	0.409	2.50		13C-OCDD	75.8	40-135	
OCDD	1,370	1.01	5.00		13C-2378-TCDF	125	40-135	
2,3,7,8-TCDF	0.941	0.0886	0.500		13C-12378-PeCDF	109	40-135	
12378-PeCDF	1.99	0.412	2.50	J	13C-23478-PeCDF	116	40-135	
23478-PeCDF	3.48	0.422	2.50		13C-123478-HxCDF	130	40-135	
123478-HxCDF	11.7	0.518	2.50		13C-123678-HxCDF	116	40-135	
123678-HxCDF	3.11	0.533	2.50		13C-234678-HxCDF	111	40-135	
234678-HxCDF	6.42	0.319	2.50		13C-123789-HxCDF	97.8	40-135	
123789-HxCDF	DL= 1.78	0.425	2.50		13C-1234678-HpCDF	90.0	40-135	
1234678-HpCDF	116	0.279	2.50		13C-1234789-HpCDF	121	40-135	
1234789-HpCDF	5.51	0.378	2.50					
OCDF	207	0.461	5.00					
Totals	Conc. (pg/g)	EMP	oc		CRS			
Total TCDD	38.5				37Cl4-2378-TCDD	126	40-135	
Total PeCDD	33.0							
Total HxCDD	135				DL - Signifies Non-Detect (ND) at samp	le specific detection	imit.
Total HpCDD	323				EMPC - Estimated Maximu	im Possible	Concentration due to	ion abundance
Total TCDF	86.9	89.4	4		ratio failure.			
Total PeCDF	63.9				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	171				(b) - TEQ based on (2005)	World Healt	h Organization (WHC) Toxic
Total HpCDF	306				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

20.1 pg/g

Client Sample	e ID: B-13 15'							
Project ID:	Terminal 3			•	12395-012		Date Receive	
	-1-1 40/44/0040		QC	Batch #:			Date Extracted	
Time Colle	cted: 10/11/2018		Samr	Matrix: ole Size:		e: 55 3	ZB-5MS Analysi Q-225 Analysi	
	cieu. 0.00		Oann	//0120.		3. 00.0	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.45	0.172	0.502		13C-2378-TCDD	92.7	40-135	
12378-PeCDD	2.47	0.327	2.51	J	13C-12378-PeCDD	107	40-135	
123478-HxCDD	DL= 0.940	0.327	2.51		13C-123478-HxCDD	84.5	40-135	
123678-HxCDD	DL= 0.984	0.655	2.51		13C-123678-HxCDD	87.2	40-135	
123789-HxCDD	7.18	0.315	2.51		13C-1234678-HpCDD	111	40-135	
1234678-HpCDD	9.69	0.409	2.51		13C-OCDD	81.6	40-135	
OCDD	31.7	1.01	5.02		13C-2378-TCDF	130	40-135	
2,3,7,8-TCDF	DL= 0.274	0.0886	0.502		13C-12378-PeCDF	94.2	40-135	
12378-PeCDF	DL= 0.539	0.412	2.51		13C-23478-PeCDF	106	40-135	
23478-PeCDF	DL= 0.424	0.422	2.51		13C-123478-HxCDF	135	40-135	
123478-HxCDF	DL= 0.545	0.518	2.51		13C-123678-HxCDF	124	40-135	
123678-HxCDF	DL= 0.647	0.533	2.51		13C-234678-HxCDF	112	40-135	
234678-HxCDF	DL= 0.724	0.319	2.51		13C-123789-HxCDF	114	40-135	
123789-HxCDF	DL= 0.846	0.425	2.51		13C-1234678-HpCDF	77.8	40-135	
1234678-HpCDF	5.97	0.279	2.51		13C-1234789-HpCDF	133	40-135	
1234789-HpCDF	DL= 1.07	0.378	2.51					
OCDF	DL= 2.97	0.461	5.02					
Totals	Conc. (pg/g)	EM	PC		CRS			
Total TCDD	11.8				37Cl4-2378-TCDD	105	40-135	
Total PeCDD	14.1							
Total HxCDD	36.7				DL - Signifies Non-Detect	(ND) at samp	le specific detection I	imit.
Total HpCDD	19.4				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	8.16	9.2	2		ratio failure.			
Total PeCDF	DL= 0.539				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	3.78				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	9.74				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

6.80 pg/g

Client Sampl	e ID: B-14 0-3'							
Project ID:	Terminal 3	(•	12395-013		Date Receive	d: 10/16/2018
			QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Same	Matrix: ole Size:		c , 74.0	ZB-5MS Analysi	
Time Cone	cted. 1.55		Sam	Jie Size.	13.3 g % Solid	5. 74.9	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.42	0.172	0.502		13C-2378-TCDD	87.2	40-135	
12378-PeCDD	2.67	0.327	2.51		13C-12378-PeCDD	104	40-135	
123478-HxCDD	DL= 0.898	0.327	2.51		13C-123478-HxCDD	88.6	40-135	
123678-HxCDD	DL= 0.929	0.655	2.51		13C-123678-HxCDD	81.8	40-135	
123789-HxCDD	2.87	0.315	2.51		13C-1234678-HpCDD	76.6	40-135	
1234678-HpCDD	3.73	0.409	2.51		13C-OCDD	55.6	40-135	
OCDD	16.7	1.01	5.02		13C-2378-TCDF	130	40-135	
2,3,7,8-TCDF	DL= 0.408	0.0886	0.502		13C-12378-PeCDF	97.2	40-135	
12378-PeCDF	DL= 0.430	0.412	2.51		13C-23478-PeCDF	112	40-135	
23478-PeCDF	DL= 0.282	0.422	2.51		13C-123478-HxCDF	93.5	40-135	
123478-HxCDF	DL= 0.504	0.518	2.51		13C-123678-HxCDF	91.1	40-135	
123678-HxCDF	DL= 0.612	0.533	2.51		13C-234678-HxCDF	88.4	40-135	
234678-HxCDF	DL= 0.676	0.319	2.51		13C-123789-HxCDF	93.1	40-135	
123789-HxCDF	DL= 0.737	0.425	2.51		13C-1234678-HpCDF	79.2	40-135	
1234678-HpCDF	DL= 1.18	0.279	2.51		13C-1234789-HpCDF	94.4	40-135	
1234789-HpCDF	DL= 1.34	0.378	2.51					
OCDF	DL= 1.81	0.461	5.02					
Totals	Conc. (pg/g)	EMP	с С		CRS			
Total TCDD	29.0				37Cl4-2378-TCDD	109	40-135	
Total PeCDD	7.78							
Total HxCDD	18.5				DL - Signifies Non-Detect ((ND) at samp	le specific detection I	imit.
Total HpCDD	9.23				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	1.40	3.52	2		ratio failure.			
Total PeCDF	DL= 0.430				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	DL= 0.737				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	DL= 1.34				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

6.42 pg/g

Analyst: JMH

Client Sample	e ID: B-14 3-6'							
Project ID:	Terminal 3			•	12395-014			d: 10/16/2018
	-1-1 40/44/0040		QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Samr	Matrix: ole Size:				
	cicu. 2.10		Uan		13.74 9 70 00114	3. 00.0	Q-225 Analysi	3. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.411	0.172	0.500		13C-2378-TCDD	97.0	40-135	
12378-PeCDD	DL= 1.27	0.327	2.50		13C-12378-PeCDD	120	40-135	
123478-HxCDD	DL= 1.38	0.327	2.50		13C-123478-HxCDD	86.7	40-135	
123678-HxCDD	8.34	0.655	2.50		13C-123678-HxCDD	89.2	40-135	
123789-HxCDD	10.5	0.315	2.50		13C-1234678-HpCDD	96.6	40-135	
1234678-HpCDD	67.2	0.409	2.50		13C-OCDD	73.0	40-135	
OCDD	557	1.01	5.00		13C-2378-TCDF	126	40-135	
2,3,7,8-TCDF	0.963	0.0886	0.500		13C-12378-PeCDF	106	40-135	
12378-PeCDF	DL= 0.932	0.412	2.50		13C-23478-PeCDF	117	40-135	
23478-PeCDF	DL= 0.895	0.422	2.50		13C-123478-HxCDF	134	40-135	
123478-HxCDF	DL= 0.837	0.518	2.50		13C-123678-HxCDF	125	40-135	
123678-HxCDF	DL= 0.891	0.533	2.50		13C-234678-HxCDF	120	40-135	
234678-HxCDF	DL= 0.903	0.319	2.50		13C-123789-HxCDF	131	40-135	
123789-HxCDF	DL= 1.04	0.425	2.50		13C-1234678-HpCDF	111	40-135	
1234678-HpCDF	22.9	0.279	2.50		13C-1234789-HpCDF	104	40-135	
1234789-HpCDF	DL= 1.08	0.378	2.50					
OCDF	49.4	0.461	5.00		-			
Totals	Conc. (pg/g)	EMF	°C		CRS			
Total TCDD	38.2				37Cl4-2378-TCDD	120	40-135	
Total PeCDD	12.4							
Total HxCDD	71.0				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	154				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	24.3				ratio failure.			
Total PeCDF	10.2				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	29.6				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic			
Total HpCDF	63.0				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

3.06 pg/g

Client Sampl	e ID: B-14 6-9'							
Project ID:	Terminal 3	C		•	12395-015			d: 10/16/2018
			QC	Batch #:				d: 10/20/2018
Time Colle	cted: 10/11/2018		Sami	Matrix: ole Size:		e: 56 8	ZB-5MS Analysi Q-225 Analysi	
Time Cone	2.15		Jann	JIE 3126.		3. 30.0	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	11.1	0.172	0.497		13C-2378-TCDD	102	40-135	
12378-PeCDD	5.82	0.327	2.49		13C-12378-PeCDD	121	40-135	
123478-HxCDD	3.14	0.327	2.49		13C-123478-HxCDD	68.0	40-135	
123678-HxCDD	18.2	0.655	2.49		13C-123678-HxCDD	63.9	40-135	
123789-HxCDD	20.6	0.315	2.49		13C-1234678-HpCDD	93.4	40-135	
1234678-HpCDD	200	0.409	2.49		13C-OCDD	73.7	40-135	
OCDD	1,740	1.01	4.97		13C-2378-TCDF	124	40-135	
2,3,7,8-TCDF	0.813	0.0886	0.497		13C-12378-PeCDF	99.9	40-135	
12378-PeCDF	DL= 0.492	0.412	2.49		13C-23478-PeCDF	97.9	40-135	
23478-PeCDF	DL= 0.468	0.422	2.49		13C-123478-HxCDF	125	40-135	
123478-HxCDF	4.52	0.518	2.49		13C-123678-HxCDF	98.0	40-135	
123678-HxCDF	1.41	0.533	2.49	J	13C-234678-HxCDF	98.9	40-135	
234678-HxCDF	0.779	0.319	2.49	J	13C-123789-HxCDF	101	40-135	
123789-HxCDF	DL= 0.764	0.425	2.49		13C-1234678-HpCDF	102	40-135	
1234678-HpCDF	38.5	0.279	2.49		13C-1234789-HpCDF	113	40-135	
1234789-HpCDF	3.02	0.378	2.49					
OCDF	127	0.461	4.97					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	48.8	53.2			37Cl4-2378-TCDD	112	40-135	
Total PeCDD	30.7	34.9)					
Total HxCDD	195				DL - Signifies Non-Detect ((ND) at samp	le specific detection	limit.
Total HpCDD	464				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	62.3	64.3	1		ratio failure.			
Total PeCDF	24.3	28.3			(a) - Lower control limit - U	pper control	limit	
Total HxCDF	72.8				(b) - TEQ based on (2005)	World Healt	h Organization (WHC) Toxic
Total HpCDF	154				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

24.8 pg/g

Client Sampl	e ID: B-14 15'								
Project ID:	Terminal 3			•	12395-016			d: 10/16/2018	
			QC	Batch #:			Date Extracte		
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 17.5 g % Solids: 57.2				ZB-5MS Analysi		
Time Cone	cieu. 2.30		Sam	Jie Size.	17.5 g % 3010	5. 07.2	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	3.04	0.172	0.495		13C-2378-TCDD	121	40-135		
12378-PeCDD	3.36	0.327	2.48		13C-12378-PeCDD	83.6	40-135		
123478-HxCDD	2.88	0.327	2.48		13C-123478-HxCDD	77.9	40-135		
123678-HxCDD	5.97	0.655	2.48		13C-123678-HxCDD	79.4	40-135		
123789-HxCDD	9.37	0.315	2.48		13C-1234678-HpCDD	96.6	40-135		
1234678-HpCDD	75.7	0.409	2.48		13C-OCDD	68.5	40-135		
OCDD	629	1.01	4.95		13C-2378-TCDF	109	40-135		
2,3,7,8-TCDF	0.990	0.0886	0.495		13C-12378-PeCDF	71.1	40-135		
12378-PeCDF	DL= 0.612	0.412	2.48		13C-23478-PeCDF	71.0	40-135		
23478-PeCDF	1.58	0.422	2.48	J	13C-123478-HxCDF	108	40-135		
123478-HxCDF	5.78	0.518	2.48		13C-123678-HxCDF	115	40-135		
123678-HxCDF	4.26	0.533	2.48		13C-234678-HxCDF	81.3	40-135		
234678-HxCDF	6.22	0.319	2.48		13C-123789-HxCDF	75.1	40-135		
123789-HxCDF	DL= 1.64	0.425	2.48		13C-1234678-HpCDF	69.8	40-135		
1234678-HpCDF	159	0.279	2.48		13C-1234789-HpCDF	97.8	40-135		
1234789-HpCDF	DL= 1.21	0.378	2.48						
OCDF	143	0.461	4.95						
Totals	Conc. (pg/g)	EMF	oc		CRS				
Total TCDD	19.3				37Cl4-2378-TCDD	128	40-135		
Total PeCDD	24.1								
Total HxCDD	54.4				DL - Signifies Non-Detect (ND) at samp	le specific detection l	imit.	
Total HpCDD	141				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	55.7				ratio failure.				
Total PeCDF	59.2				(a) - Lower control limit - Upper control limit				
Total HxCDF	118				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	299				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

13.0 pg/g

Client Sampl	e ID: B-15 0-3'	-				-			
Project ID:	Terminal 3			•	12395-017		Date Receive		
			QC	Batch #:			Date Extracte		
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 18.96 g % Solids: 52.7				ZB-5MS Analysis: 10/22/2018 Q-225 Analysis: NA		
Time Cone	cieu. 5.50		Sam	JIE JIZE.	18.90 g 78 3010	5. 52.7	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.435	0.172	0.501		13C-2378-TCDD	105	40-135		
12378-PeCDD	DL= 0.655	0.327	2.50		13C-12378-PeCDD	80.6	40-135		
123478-HxCDD	DL= 1.11	0.327	2.50		13C-123478-HxCDD	65.4	40-135		
123678-HxCDD	DL= 1.16	0.655	2.50		13C-123678-HxCDD	94.4	40-135		
123789-HxCDD	DL= 1.12	0.315	2.50		13C-1234678-HpCDD	108	40-135		
1234678-HpCDD	39.1	0.409	2.50		13C-OCDD	83.1	40-135		
OCDD	351	1.01	5.01		13C-2378-TCDF	107	40-135		
2,3,7,8-TCDF	DL= 0.432	0.0886	0.501		13C-12378-PeCDF	80.9	40-135		
12378-PeCDF	DL= 0.778	0.412	2.50		13C-23478-PeCDF	76.1	40-135		
23478-PeCDF	DL= 0.744	0.422	2.50		13C-123478-HxCDF	102	40-135		
123478-HxCDF	DL= 0.978	0.518	2.50		13C-123678-HxCDF	121	40-135		
123678-HxCDF	DL= 0.923	0.533	2.50		13C-234678-HxCDF	89.8	40-135		
234678-HxCDF	DL= 1.32	0.319	2.50		13C-123789-HxCDF	92.1	40-135		
123789-HxCDF	DL= 1.60	0.425	2.50		13C-1234678-HpCDF	89.5	40-135		
1234678-HpCDF	5.53	0.279	2.50		13C-1234789-HpCDF	115	40-135		
1234789-HpCDF	DL= 1.41	0.378	2.50						
OCDF	13.7	0.461	5.01						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	DL= 0.435				37Cl4-2378-TCDD	109	40-135		
Total PeCDD	DL= 0.655								
Total HxCDD	12.3				DL - Signifies Non-Detect (ND) at samp	le specific detection I	imit.	
Total HpCDD	88.7				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.432				ratio failure.				
Total PeCDF	2.76				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	7.63				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	14.8				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.556 pg/g

4919 Windplay Dr. Suite 1, El Dorado Hills, CA 95762

EPA Method 8290A

Client Sample	e ID: B-15 3-6'							
Project ID:	Terminal 3			•	12395-018		Date Receive	
			QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 13.06 g % Solids: 76.5				ZB-5MS Analysi Q-225 Analysi	
	cieu. 5.55		Jani			5. 70.5	Q-225 Analysi	3. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.06	0.172	0.501		13C-2378-TCDD	96.9	40-135	
12378-PeCDD	1.97	0.327	2.50	J	13C-12378-PeCDD	101	40-135	
123478-HxCDD	DL= 1.90	0.327	2.50		13C-123478-HxCDD	96.8	40-135	
123678-HxCDD	DL= 1.97	0.655	2.50		13C-123678-HxCDD	80.1	40-135	
123789-HxCDD	DL= 1.90	0.315	2.50		13C-1234678-HpCDD	98.2	40-135	
1234678-HpCDD	14.2	0.409	2.50		13C-OCDD	59.9	40-135	
OCDD	88.2	1.01	5.01		13C-2378-TCDF	110	40-135	
2,3,7,8-TCDF	0.919	0.0886	0.501		13C-12378-PeCDF	92.3	40-135	
12378-PeCDF	DL= 0.712	0.412	2.50		13C-23478-PeCDF	96.5	40-135	
23478-PeCDF	DL= 0.570	0.422	2.50		13C-123478-HxCDF	116	40-135	
123478-HxCDF	DL= 0.647	0.518	2.50		13C-123678-HxCDF	109	40-135	
123678-HxCDF	DL= 0.698	0.533	2.50		13C-234678-HxCDF	101	40-135	
234678-HxCDF	DL= 0.811	0.319	2.50		13C-123789-HxCDF	93.0	40-135	
123789-HxCDF	DL= 1.13	0.425	2.50		13C-1234678-HpCDF	85.3	40-135	
1234678-HpCDF	3.50	0.279	2.50		13C-1234789-HpCDF	104	40-135	
1234789-HpCDF	DL= 0.978	0.378	2.50					
OCDF	DL= 3.02	0.461	5.01					
Totals	Conc. (pg/g)	EMF	УC		CRS			
Total TCDD	11.4				37Cl4-2378-TCDD	114	40-135	
Total PeCDD	8.64	10.	4					
Total HxCDD	26.6				DL - Signifies Non-Detect ((ND) at samp	le specific detection I	imit.
Total HpCDD	29.9				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	1.89				ratio failure.			
Total PeCDF	DL= 0.712				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	5.52		(b) - TEQ based on (2005) World Health Organization (WHO) Toxic) Toxic
Total HpCDF	9.13		Equivalent Factors.					

Total Toxic Equivalency (TEQ min.) (b):

4.33 pg/g

Analyst: JMH

Reviewed by: BS

-	surance Sampl hod Blank	e	QC	QC Batch #: 1879 Matrix: Soil			Date Received: NA Date Extracted: 10/22/2018 ZB-5MS Analysis: 10/28/2018					
Project ID:	Terminal 3		Sam		: 10.00 g							
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers				
2,3,7,8-TCDD	DL= 0.422	0.172	0.500		13C-2378-TCDD	96.6	40-135					
12378-PeCDD	DL= 1.34	0.327	2.50		13C-12378-PeCDD	110	40-135					
123478-HxCDD	DL= 1.57	0.327	2.50		13C-123478-HxCDD	73.9	40-135					
123678-HxCDD	DL= 1.88	0.655	2.50		13C-123678-HxCDD	76.3	40-135					
123789-HxCDD	DL= 1.69	0.315	2.50		13C-1234678-HpCDD	84.3	40-135					
1234678-HpCDD	DL= 1.11	0.409	2.50		13C-OCDD	89.7	40-135					
OCDD	DL= 1.59	1.01	5.00		13C-2378-TCDF	93.7	40-135					
2,3,7,8-TCDF	DL= 0.420	0.0886	0.500		13C-12378-PeCDF	108	40-135					
12378-PeCDF	DL= 0.842	0.412	2.50		13C-23478-PeCDF	94.6	40-135					
23478-PeCDF	DL= 0.875	0.422	2.50		13C-123478-HxCDF	111	40-135					
123478-HxCDF	DL= 1.29	0.518	2.50		13C-123678-HxCDF	93.4	40-135					
123678-HxCDF	DL= 1.59	0.533	2.50		13C-234678-HxCDF	76.6	40-135					
234678-HxCDF	DL= 1.94	0.319	2.50		13C-123789-HxCDF	83.6	40-135					
123789-HxCDF	DL= 2.18	0.425	2.50		13C-1234678-HpCDF	83.4	40-135					
1234678-HpCDF	DL= 0.803	0.279	2.50		13C-1234789-HpCDF	83.4	40-135					
1234789-HpCDF	DL= 1.19	0.378	2.50									
OCDF	DL= 1.58	0.461	5.00									
Totals	Conc. (pg/g)	E	МРС		CRS							
Total TCDD	DL= 0.422				37Cl4-2378-TCDD	93.6	40-135					
Total PeCDD	DL= 1.34											
Total HxCDD	DL= 1.88				DL - Signifies Non-Detect	(ND) at sam	ole specific detection	limit.				
Total HpCDD	DL= 1.11				EMPC - Estimated Maximu	ım Possible	Concentration due to	ion abundance				
Total TCDF	DL= 0.420				ratio failure.							
Total PeCDF	DL= 0.875				(a) - Lower control limit - U	pper control	limit					
Total HxCDF	DL= 2.18			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic								
Total HpCDF	DL= 1.19				Equivalent Factors.			Equivalent Factors.				

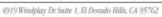
Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/g

Analyst: JMH

Reviewed by: BS

		#: 1879 ix: Soil ze: 10.00 g		Date Received: NA Date Extracted: 10/22/2018 ZB-5MS Analysis: 10/28/2018		
LCS2 6 Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)	
115	1.22	13C-2378-TCDD	109	110	40-135	
111	1.26	13C-12378-PeCDD	120	95.5	40-135	
116	1.21	13C-123478-HxCDD	98.5	85.0	40-135	
118	1.21	13C-123678-HxCDD	90.6	87.6	40-135	
124	4.11	13C-1234678-HpCDD	103	85.5	40-135	
112	1.25	13C-OCDD	105	87.6	40-135	
112	5.46	13C-2378-TCDF	118	97.4	40-135	
125	2.30	13C-12378-PeCDF	109	89.3	40-135	
122	0.58	13C-23478-PeCDF	106	93.6	40-135	
120	4.88	13C-123478-HxCDF	115	133	40-135	
110	0.00	13C-123678-HxCDF	111	113	40-135	
106	0.67	13C-234678-HxCDF	104	91.1	40-135	
106	0.67	13C-123789-HxCDF	101	89.6	40-135	
114	2.53	13C-1234678-HpCDF	105	91.5	40-135	
98.4	1.14	13C-1234789-HpCDF	93.9	93.2	40-135	
95.4	4.73					
113	4.25					
		CRS				
		37Cl4-2378-TCDD	107	105	40-135	
			(a) Limits based on met	(a) Limits based on method acceptance of	(a) Limits based on method acceptance criteria.	



Client Sampl	e ID: B-15 6-9'	-							
Project ID:	Terminal 3			•	: 12395-019			d: 10/16/2018	
			QC	Batch #:			Date Extracte		
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 12.83 g % Solids: 77.8				ZB-5MS Analysis: 10/28/2018 Q-225 Analysis: NA		
Time Cone	cieu. 5.45		Sam	JIE JIZE.	. 12.05 9 // 3010	5. <i>11</i> .0	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.424	0.172	0.501		13C-2378-TCDD	114	40-135		
12378-PeCDD	1.95	0.327	2.51	J	13C-12378-PeCDD	100	40-135		
123478-HxCDD	DL= 1.00	0.327	2.51		13C-123478-HxCDD	91.9	40-135		
123678-HxCDD	DL= 1.02	0.655	2.51		13C-123678-HxCDD	87.9	40-135		
123789-HxCDD	4.83	0.315	2.51		13C-1234678-HpCDD	88.0	40-135		
1234678-HpCDD	27.4	0.409	2.51		13C-OCDD	75.7	40-135		
OCDD	139	1.01	5.01		13C-2378-TCDF	92.7	40-135		
2,3,7,8-TCDF	DL= 0.453	0.0886	0.501		13C-12378-PeCDF	100	40-135		
12378-PeCDF	DL= 0.975	0.412	2.51		13C-23478-PeCDF	98.8	40-135		
23478-PeCDF	DL= 0.958	0.422	2.51		13C-123478-HxCDF	124	40-135		
123478-HxCDF	DL= 0.973	0.518	2.51		13C-123678-HxCDF	99.5	40-135		
123678-HxCDF	DL= 1.28	0.533	2.51		13C-234678-HxCDF	89.9	40-135		
234678-HxCDF	DL= 1.43	0.319	2.51		13C-123789-HxCDF	90.3	40-135		
123789-HxCDF	DL= 1.75	0.425	2.51		13C-1234678-HpCDF	89.4	40-135		
1234678-HpCDF	6.42	0.279	2.51		13C-1234789-HpCDF	111	40-135		
1234789-HpCDF	DL= 2.35	0.378	2.51						
OCDF	12.7	0.461	5.01						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	DL= 0.424				37Cl4-2378-TCDD	110	40-135		
Total PeCDD	5.17								
Total HxCDD	31.3				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.	
Total HpCDD	54.7				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.453				ratio failure.				
Total PeCDF	DL= 0.975				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	7.86				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	18.7				Equivalent Factors.				

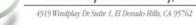
Total Toxic Equivalency (TEQ min.) (b):

2.82 pg/g

Client Sample	e ID: B-15 15'								
Project ID:	Terminal 3			•	12395-020			d: 10/16/2018	
	-1-1 40/44/0040		QC	Batch #:			Date Extracte		
Time Colle	cted: 10/11/2018		Matrix: Soil Sample Size: 16.52 g % Solids: 60.9				ZB-5MS Analysi Q-225 Analysi		
	cicu. 4.00		Uann	510 0120.	10.32 g 70 COnd	3. 00.0	Q-225 Analysi	3. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	4.20	0.172	0.497		13C-2378-TCDD	107	40-135		
12378-PeCDD	3.38	0.327	2.49		13C-12378-PeCDD	91.8	40-135		
123478-HxCDD	DL= 1.05	0.327	2.49		13C-123478-HxCDD	91.5	40-135		
123678-HxCDD	DL= 1.11	0.655	2.49		13C-123678-HxCDD	84.1	40-135		
123789-HxCDD	7.66	0.315	2.49		13C-1234678-HpCDD	83.7	40-135		
1234678-HpCDD	16.4	0.409	2.49		13C-OCDD	70.8	40-135		
OCDD	104	1.01	4.97		13C-2378-TCDF	92.1	40-135		
2,3,7,8-TCDF	0.969	0.0886	0.497		13C-12378-PeCDF	102	40-135		
12378-PeCDF	DL= 0.712	0.412	2.49		13C-23478-PeCDF	110	40-135		
23478-PeCDF	DL= 0.667	0.422	2.49		13C-123478-HxCDF	131	40-135		
123478-HxCDF	DL= 0.572	0.518	2.49		13C-123678-HxCDF	101	40-135		
123678-HxCDF	DL= 0.768	0.533	2.49		13C-234678-HxCDF	91.5	40-135		
234678-HxCDF	DL= 0.911	0.319	2.49		13C-123789-HxCDF	91.5	40-135		
123789-HxCDF	DL= 1.01	0.425	2.49		13C-1234678-HpCDF	83.1	40-135		
1234678-HpCDF	13.1	0.279	2.49		13C-1234789-HpCDF	90.3	40-135		
1234789-HpCDF	DL= 1.31	0.378	2.49						
OCDF	14.5	0.461	4.97		-				
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	26.2				37Cl4-2378-TCDD	113	40-135		
Total PeCDD	26.6								
Total HxCDD	35.8				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.	
Total HpCDD	34.7				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	64.5				ratio failure.				
Total PeCDF	13.1				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	13.6				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	25.5				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

8.77 pg/g



Client Sampl	e ID: B-16 2'							
Project ID:	Terminal 3	(•	12395-021			d: 10/16/2018
			QC	Batch #:			Date Extracte	
	cted: 10/11/2018		Same	Matrix:		o. 57.1	ZB-5MS Analysi	
Time Colle	cieu. 4.50		Sam	ole Size:	17.71 g % Solid	5. 57.1	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	5.03	0.172	0.495		13C-2378-TCDD	114	40-135	
12378-PeCDD	4.86	0.327	2.47		13C-12378-PeCDD	114	40-135	
123478-HxCDD	2.34	0.327	2.47	J	13C-123478-HxCDD	94.2	40-135	
123678-HxCDD	9.07	0.655	2.47		13C-123678-HxCDD	94.4	40-135	
123789-HxCDD	16.3	0.315	2.47		13C-1234678-HpCDD	92.4	40-135	
1234678-HpCDD	98.5	0.409	2.47		13C-OCDD	68.9	40-135	
OCDD	667	1.01	4.95		13C-2378-TCDF	104	40-135	
2,3,7,8-TCDF	0.701	0.0886	0.495		13C-12378-PeCDF	105	40-135	
12378-PeCDF	DL= 0.605	0.412	2.47		13C-23478-PeCDF	97.6	40-135	
23478-PeCDF	1.59	0.422	2.47	J	13C-123478-HxCDF	106	40-135	
123478-HxCDF	DL= 1.18	0.518	2.47		13C-123678-HxCDF	97.1	40-135	
123678-HxCDF	DL= 1.45	0.533	2.47		13C-234678-HxCDF	92.5	40-135	
234678-HxCDF	DL= 1.38	0.319	2.47		13C-123789-HxCDF	83.8	40-135	
123789-HxCDF	DL= 1.83	0.425	2.47		13C-1234678-HpCDF	78.7	40-135	
1234678-HpCDF	55.4	0.279	2.47		13C-1234789-HpCDF	95.8	40-135	
1234789-HpCDF	DL= 1.31	0.378	2.47					
OCDF	74.6	0.461	4.95					
Totals	Conc. (pg/g)	EMP	эc		CRS			
Total TCDD	29.2				37Cl4-2378-TCDD	122	40-135	
Total PeCDD	31.8							
Total HxCDD	115				DL - Signifies Non-Detect (ND) at samp	le specific detection l	imit.
Total HpCDD	192				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	18.9	22.	7		ratio failure.			
Total PeCDF	15.4				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	38.0				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	117				Equivalent Factors.			

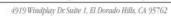
Total Toxic Equivalency (TEQ min.) (b):

15.0 pg/g

Client Sampl	e ID: B-16 5'								
Project ID:	Terminal 3			•	12395-022			d: 10/16/2018	
			QC	Batch #:			Date Extracte		
Time Colle	cted: 10/11/2018		Same	Matrix: ole Size:		e: 60.4	ZB-5MS Analysis: 10/28/2018 Q-225 Analysis: NA		
Time Colle	cieu. 4.55		Sam	JIE SIZE.	10.31 g // 301u	5. 00.4	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	3.30	0.172	0.502		13C-2378-TCDD	106	40-135		
12378-PeCDD	3.48	0.327	2.51		13C-12378-PeCDD	108	40-135		
123478-HxCDD	DL= 1.30	0.327	2.51		13C-123478-HxCDD	72.6	40-135		
123678-HxCDD	5.50	0.655	2.51		13C-123678-HxCDD	74.2	40-135		
123789-HxCDD	10.1	0.315	2.51		13C-1234678-HpCDD	82.8	40-135		
1234678-HpCDD	51.6	0.409	2.51		13C-OCDD	77.7	40-135		
OCDD	330	1.01	5.02		13C-2378-TCDF	90.0	40-135		
2,3,7,8-TCDF	0.924	0.0886	0.502		13C-12378-PeCDF	93.0	40-135		
12378-PeCDF	DL= 0.812	0.412	2.51		13C-23478-PeCDF	100	40-135		
23478-PeCDF	DL= 0.633	0.422	2.51		13C-123478-HxCDF	134	40-135		
123478-HxCDF	DL= 0.724	0.518	2.51		13C-123678-HxCDF	90.8	40-135		
123678-HxCDF	DL= 1.21	0.533	2.51		13C-234678-HxCDF	80.9	40-135		
234678-HxCDF	DL= 1.29	0.319	2.51		13C-123789-HxCDF	81.7	40-135		
123789-HxCDF	DL= 1.57	0.425	2.51		13C-1234678-HpCDF	78.2	40-135		
1234678-HpCDF	12.8	0.279	2.51		13C-1234789-HpCDF	84.8	40-135		
1234789-HpCDF	DL= 1.62	0.378	2.51						
OCDF	31.9	0.461	5.02						
Totals	Conc. (pg/g)	EMP	о.		CRS				
Total TCDD	17.9				37Cl4-2378-TCDD	111	40-135		
Total PeCDD	20.5								
Total HxCDD	69.3				DL - Signifies Non-Detect (ND) at samp	le specific detection l	imit.	
Total HpCDD	110				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	19.2	20.8	8		ratio failure.				
Total PeCDF	8.96				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	21.2				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic	
Total HpCDF	38.0				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

9.18 pg/g



Client Sample	e ID: B-16 8'							
Project ID:	Terminal 3			•	12395-023			d: 10/16/2018
			QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Same	Matrix: ole Size:		5 4 6	ZB-5MS Analysi	
Time Colle	cied. 5.00		Sam	Jie Size.	18.37 g % Solid	5. 04.0	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.59	0.172	0.499		13C-2378-TCDD	96.0	40-135	
12378-PeCDD	DL= 1.58	0.327	2.49		13C-12378-PeCDD	101	40-135	
123478-HxCDD	DL= 1.53	0.327	2.49		13C-123478-HxCDD	81.3	40-135	
123678-HxCDD	3.69	0.655	2.49		13C-123678-HxCDD	79.6	40-135	
123789-HxCDD	6.18	0.315	2.49		13C-1234678-HpCDD	101	40-135	
1234678-HpCDD	31.3	0.409	2.49		13C-OCDD	95.0	40-135	
OCDD	226	1.01	4.99		13C-2378-TCDF	85.4	40-135	
2,3,7,8-TCDF	0.759	0.0886	0.499		13C-12378-PeCDF	95.9	40-135	
12378-PeCDF	DL= 1.38	0.412	2.49		13C-23478-PeCDF	83.8	40-135	
23478-PeCDF	DL= 1.42	0.422	2.49		13C-123478-HxCDF	125	40-135	
123478-HxCDF	DL= 0.792	0.518	2.49		13C-123678-HxCDF	96.0	40-135	
123678-HxCDF	DL= 1.02	0.533	2.49		13C-234678-HxCDF	92.8	40-135	
234678-HxCDF	DL= 1.04	0.319	2.49		13C-123789-HxCDF	93.0	40-135	
123789-HxCDF	DL= 1.23	0.425	2.49		13C-1234678-HpCDF	97.2	40-135	
1234678-HpCDF	9.64	0.279	2.49		13C-1234789-HpCDF	107	40-135	
1234789-HpCDF	DL= 1.35	0.378	2.49					
OCDF	21.1	0.461	4.99					
Totals	Conc. (pg/g)	EMP	с С		CRS			
Total TCDD	6.40				37Cl4-2378-TCDD	101	40-135	
Total PeCDD	5.07							
Total HxCDD	41.8				DL - Signifies Non-Detect	ND) at samp	le specific detection l	imit.
Total HpCDD	63.6				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	13.9	15.3	3		ratio failure.			
Total PeCDF	DL= 1.42				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	13.7				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	27.4				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

3.14 pg/g

Client Sample	e ID: B-17 0-3'								
Project ID:	Terminal 3			•	: 12395-024			d: 10/16/2018	
			QC	Batch #:				d: 10/22/2018	
	cted: 10/11/2018 cted: 10:00		Same	Matrix: ole Size:		e: 92.2	ZB-5MS Analysi Q-225 Analysi		
	cied. 10.00		Sam	JIE SIZE.		3. 03.2	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.448	0.172	0.497		13C-2378-TCDD	100	40-135		
12378-PeCDD	DL= 1.10	0.327	2.49		13C-12378-PeCDD	103	40-135		
123478-HxCDD	DL= 1.66	0.327	2.49		13C-123478-HxCDD	86.1	40-135		
123678-HxCDD	DL= 1.93	0.655	2.49		13C-123678-HxCDD	82.4	40-135		
123789-HxCDD	DL= 1.76	0.315	2.49		13C-1234678-HpCDD	104	40-135		
1234678-HpCDD	DL= 1.25	0.409	2.49		13C-OCDD	82.3	40-135		
OCDD	DL= 2.23	1.01	4.97		13C-2378-TCDF	104	40-135		
2,3,7,8-TCDF	DL= 0.474	0.0886	0.497		13C-12378-PeCDF	92.3	40-135		
12378-PeCDF	DL= 0.640	0.412	2.49		13C-23478-PeCDF	88.6	40-135		
23478-PeCDF	DL= 0.524	0.422	2.49		13C-123478-HxCDF	130	40-135		
123478-HxCDF	DL= 0.511	0.518	2.49		13C-123678-HxCDF	115	40-135		
123678-HxCDF	DL= 0.614	0.533	2.49		13C-234678-HxCDF	108	40-135		
234678-HxCDF	DL= 0.653	0.319	2.49		13C-123789-HxCDF	90.7	40-135		
123789-HxCDF	DL= 0.963	0.425	2.49		13C-1234678-HpCDF	94.5	40-135		
1234678-HpCDF	DL= 0.922	0.279	2.49		13C-1234789-HpCDF	96.5	40-135		
1234789-HpCDF	DL= 1.22	0.378	2.49						
OCDF	DL= 2.64	0.461	4.97						
Totals	Conc. (pg/g)	EMF	УC		CRS				
Total TCDD	DL= 0.448				37Cl4-2378-TCDD	110	40-135		
Total PeCDD	DL= 1.10								
Total HxCDD	DL= 1.93				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.	
Total HpCDD	DL= 1.25				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.474				ratio failure.				
Total PeCDF	DL= 0.640				(a) - Lower control limit - U	pper control	limit		
Total HxCDF	DL= 0.963				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 1.22				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/g

Client Sample	e ID: B-17 3-6'								
Project ID:	Terminal 3			•	12395-025			d: 10/16/2018	
			QC	Batch #:				d: 10/22/2018	
	cted: 10/11/2018 cted: 10:05		Same	Matrix: ole Size:		e: 91 /	ZB-5MS Analysi Q-225 Analysi		
	cieu. 10.03		Sam	Jie Size.	12.4 g % Solid	5. 01.4	Q-225 Analysi	5. NA	
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.485	0.172	0.496		13C-2378-TCDD	112	40-135		
12378-PeCDD	DL= 1.02	0.327	2.48		13C-12378-PeCDD	111	40-135		
123478-HxCDD	DL= 2.07	0.327	2.48		13C-123478-HxCDD	77.7	40-135		
123678-HxCDD	DL= 2.23	0.655	2.48		13C-123678-HxCDD	78.6	40-135		
123789-HxCDD	DL= 2.10	0.315	2.48		13C-1234678-HpCDD	86.8	40-135		
1234678-HpCDD	DL= 1.69	0.409	2.48		13C-OCDD	69.3	40-135		
OCDD	7.45	1.01	4.96		13C-2378-TCDF	122	40-135		
2,3,7,8-TCDF	DL= 0.481	0.0886	0.496		13C-12378-PeCDF	112	40-135		
12378-PeCDF	DL= 0.941	0.412	2.48		13C-23478-PeCDF	107	40-135		
23478-PeCDF	DL= 0.855	0.422	2.48		13C-123478-HxCDF	123	40-135		
123478-HxCDF	DL= 0.660	0.518	2.48		13C-123678-HxCDF	104	40-135		
123678-HxCDF	DL= 0.814	0.533	2.48		13C-234678-HxCDF	93.9	40-135		
234678-HxCDF	DL= 0.856	0.319	2.48		13C-123789-HxCDF	82.7	40-135		
123789-HxCDF	DL= 1.04	0.425	2.48		13C-1234678-HpCDF	68.4	40-135		
1234678-HpCDF	DL= 1.23	0.279	2.48		13C-1234789-HpCDF	95.6	40-135		
1234789-HpCDF	DL= 1.17	0.378	2.48						
OCDF	DL= 3.04	0.461	4.96						
Totals	Conc. (pg/g)	EMF	°C		CRS				
Total TCDD	DL= 0.485				37Cl4-2378-TCDD	98.3	40-135		
Total PeCDD	DL= 1.02								
Total HxCDD	DL= 2.23				DL - Signifies Non-Detect ((ND) at samp	le specific detection	imit.	
Total HpCDD	DL= 1.69				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.481				ratio failure.				
Total PeCDF	DL= 0.941				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 1.04				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	6.78				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b):

0.00224 pg/g

Client Sampl	e ID: B-17 6-9'	-						
Project ID:	Terminal 3			•	12395-026			d: 10/16/2018
			QC	Batch #:			Date Extracte	
	cted: 10/11/2018 cted: 10:10		Same	Matrix: ole Size:		e: 66 9	ZB-5MS Analysi Q-225 Analysi	
	cted. 10.10		Sam	Jie Size.	14.99 9 % 3011u	5. 00.0	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	5.22	0.172	0.500		13C-2378-TCDD	80.1	40-135	
12378-PeCDD	2.52	0.327	2.52		13C-12378-PeCDD	103	40-135	
123478-HxCDD	DL= 1.68	0.327	2.52		13C-123478-HxCDD	65.6	40-135	
123678-HxCDD	3.10	0.655	2.52		13C-123678-HxCDD	62.8	40-135	
123789-HxCDD	6.58	0.315	2.52		13C-1234678-HpCDD	82.8	40-135	
1234678-HpCDD	34.7	0.409	2.52		13C-OCDD	71.7	40-135	
OCDD	242	1.01	5.00		13C-2378-TCDF	94.6	40-135	
2,3,7,8-TCDF	0.690	0.0886	0.500		13C-12378-PeCDF	95.6	40-135	
12378-PeCDF	DL= 0.694	0.412	2.52		13C-23478-PeCDF	95.4	40-135	
23478-PeCDF	DL= 0.602	0.422	2.52		13C-123478-HxCDF	133	40-135	
123478-HxCDF	DL= 0.751	0.518	2.52		13C-123678-HxCDF	85.4	40-135	
123678-HxCDF	DL= 1.28	0.533	2.52		13C-234678-HxCDF	93.4	40-135	
234678-HxCDF	DL= 1.02	0.319	2.52		13C-123789-HxCDF	71.1	40-135	
123789-HxCDF	DL= 1.77	0.425	2.52		13C-1234678-HpCDF	79.6	40-135	
1234678-HpCDF	13.1	0.279	2.52		13C-1234789-HpCDF	88.8	40-135	
1234789-HpCDF	DL= 1.51	0.378	2.52					
OCDF	17.7	0.461	5.00					
Totals	Conc. (pg/g)	EMF	°C		CRS			
Total TCDD	10.9				37Cl4-2378-TCDD	92.4	40-135	
Total PeCDD	12.6							
Total HxCDD	50.3				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	73.0				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	10.5	13.	7		ratio failure.			
Total PeCDF	7.71				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	16.8				(b) - TEQ based on (2005)	World Health	h Organization (WHO) Toxic
Total HpCDF	30.5				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

9.33 pg/g

Client Sampl	e ID: B-17 15'							
Project ID:	Terminal 3			•	12395-027			d: 10/16/2018
			QC	Batch #:			Date Extracte	
	cted: 10/11/2018		Same	Matrix: ole Size:		e: 80.0	ZB-5MS Analysi Q-225 Analysi	
Time Cone	cieu. 10.20		Sam	JIE JIZE.	. 12.31 g // 3010	5. 00.9	Q-225 Analysi	5. NA
Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.364	0.172	0.494		13C-2378-TCDD	113	40-135	
12378-PeCDD	DL= 1.05	0.327	2.47		13C-12378-PeCDD	126	40-135	
123478-HxCDD	DL= 1.74	0.327	2.47		13C-123478-HxCDD	71.9	40-135	
123678-HxCDD	DL= 1.95	0.655	2.47		13C-123678-HxCDD	67.6	40-135	
123789-HxCDD	DL= 1.80	0.315	2.47		13C-1234678-HpCDD	89.5	40-135	
1234678-HpCDD	8.37	0.409	2.47		13C-OCDD	71.1	40-135	
OCDD	51.1	1.01	4.94		13C-2378-TCDF	109	40-135	
2,3,7,8-TCDF	DL= 0.437	0.0886	0.494		13C-12378-PeCDF	112	40-135	
12378-PeCDF	DL= 0.432	0.412	2.47		13C-23478-PeCDF	124	40-135	
23478-PeCDF	DL= 0.385	0.422	2.47		13C-123478-HxCDF	120	40-135	
123478-HxCDF	DL= 0.649	0.518	2.47		13C-123678-HxCDF	107	40-135	
123678-HxCDF	DL= 0.687	0.533	2.47		13C-234678-HxCDF	93.9	40-135	
234678-HxCDF	DL= 0.760	0.319	2.47		13C-123789-HxCDF	83.6	40-135	
123789-HxCDF	DL= 1.02	0.425	2.47		13C-1234678-HpCDF	85.9	40-135	
1234678-HpCDF	3.08	0.279	2.47		13C-1234789-HpCDF	96.5	40-135	
1234789-HpCDF	DL= 0.742	0.378	2.47					
OCDF	6.47	0.461	4.94					
Totals	Conc. (pg/g)	EMF	УC		CRS			
Total TCDD	DL= 0.364				37Cl4-2378-TCDD	117	40-135	
Total PeCDD	DL= 1.05							
Total HxCDD	12.8				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	16.8				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.437				ratio failure.			
Total PeCDF	DL= 0.432				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	2.84				(b) - TEQ based on (2005)	World Healt	h Organization (WHC) Toxic
Total HpCDF	8.90				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

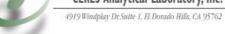
0.132 pg/g

Quality Assurance Sample Method Blank			QC	Batch #: Matrix:	1876 Aqueous		Date Received: NA Date Extracted: 10/24/ ZB-5MS Analysis: 10/30/					
Project ID:	Terminal 3		Samp		0.500 L							
Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers				
2,3,7,8-TCDD	DL= 9.74	0.887	10.0		13C-2378-TCDD	101	40-135					
12378-PeCDD	DL= 12.4	2.56	50.0		13C-12378-PeCDD	97.9	40-135					
123478-HxCDD	DL= 27.0	3.08	50.0		13C-123478-HxCDD	80.0	40-135					
123678-HxCDD	DL= 26.4	5.29	50.0		13C-123678-HxCDD	88.3	40-135					
123789-HxCDD	DL= 26.1	13.1	50.0		13C-1234678-HpCDD	87.3	40-135					
1234678-HpCDD	DL= 21.5	5.15	50.0		13C-OCDD	90.5	40-135					
OCDD	DL= 28.7	8.50	100		13C-2378-TCDF	80.4	40-135					
2,3,7,8-TCDF	DL= 9.26	0.733	10.0		13C-12378-PeCDF	73.9	40-135					
12378-PeCDF	DL= 21.7	2.96	50.0		13C-23478-PeCDF	72.0	40-135					
23478-PeCDF	DL= 21.7	5.40	50.0		13C-123478-HxCDF	92.0	40-135					
123478-HxCDF	DL= 10.5	3.93	50.0		13C-123678-HxCDF	75.9	40-135					
123678-HxCDF	DL= 13.0	2.94	50.0		13C-234678-HxCDF	71.2	40-135					
234678-HxCDF	DL= 13.4	4.32	50.0		13C-123789-HxCDF	74.5	40-135					
123789-HxCDF	DL= 14.8	4.70	50.0		13C-1234678-HpCDF	64.6	40-135					
1234678-HpCDF	DL= 17.4	4.24	50.0		13C-1234789-HpCDF	77.2	40-135					
1234789-HpCDF	DL= 17.9	5.74	50.0									
OCDF	DL= 46.6	11.7	100									
Totals	Conc. (pg/L)	EMF	ъс		CRS							
Total TCDD	DL= 9.74				37Cl4-2378-TCDD	108	40-135					
Total PeCDD	DL= 12.4											
Total HxCDD	DL= 27.0				DL - Signifies Non-Detect ((ND) at samp	ble specific detection	limit.				
Total HpCDD	DL= 21.5				EMPC - Estimated Maximu	um Possible	Concentration due to	ion abundance				
Total TCDF	DL= 9.26				ratio failure.							
Total PeCDF	DL= 21.7				(a) - Lower control limit - U	pper control	limit					
Total HxCDF	DL= 14.8				(b) - TEQ based on (2005)	World Healt	h Organization (WHC	D) Toxic				
Total HpCDF	DL= 17.9				Equivalent Factors.							

Total Toxic Equivalency (TEQ min.) (b):

0.0 pg/L

Analyst: JMH


Reviewed by: BS

Laboratory C	Quality Assurance Samples Laboratory Control Samples roject ID: Terminal 3 LCS1 LCS			• #: 1876 •ix: Aqueous ze: 0.500 L		Date Received: NA Date Extracted: 10/24/2018 ZB-5MS Analysis: 10/30/2018					
Analyte		LCS2 % Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)				
2,3,7,8-TCDD	116	99.4	10.90	13C-2378-TCDD	128	118	40-135				
12378-PeCDD	101	104	2.07	13C-12378-PeCDD	118	89.1	40-135				
123478-HxCDD	101	104	0.70	13C-123478-HxCDD	87.3	117	40-135				
123678-HxCDD	116	107	5.71	13C-123678-HxCDD	95.1	127	40-135				
123789-HxCDD	113	93	13.73	13C-1234678-HpCDD	92.3	94.4	40-135				
1234678-HpCDD	97	123	16.71	13C-OCDD	83.0	103	40-135				
OCDD	108	113	3.20	13C-2378-TCDF	110	92.4	40-135				
2,3,7,8-TCDF	116	101	9.78	13C-12378-PeCDF	87.1	85.3	40-135				
12378-PeCDF	107	113	3.86	13C-23478-PeCDF	98.1	85.3	40-135				
23478-PeCDF	98.2	90.2	6.01	13C-123478-HxCDF	120	115	40-135				
123478-HxCDF	106	107	0.66	13C-123678-HxCDF	116	101	40-135				
123678-HxCDF	99	96.6	1.74	13C-234678-HxCDF	88.2	110	40-135				
234678-HxCDF	100	99.8	0.14	13C-123789-HxCDF	85.1	103	40-135				
123789-HxCDF	104	109	3.32	13C-1234678-HpCDF	89.4	96.0	40-135				
1234678-HpCDF	92.6	106	9.54	13C-1234789-HpCDF	76.9	91.3	40-135				
1234789-HpCDF	91.2	90.2	0.78								
OCDF	79.5	100	16.15								
				CRS							
				37Cl4-2378-TCDD	119	123	40-135				
				(a) Limits based on me	thod acceptance	criteria.					

Client Sample	e ID: Decon Water							
Project ID:	Terminal 3			•	12395-028			d: 10/16/2018
Dete Celle	ata da 10/11/0010		QC	Batch #:			Date Extracte	
Time Colle	cted: 10/11/2018		Sam	ple Size:	Aqueous 0.492 L		ZB-5MS Analysi Q-225 Analysi	
	0.00		oum		0.402 -		Q 220 Analysi	5. 17/1
Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 8.90	0.887	10.2		13C-2378-TCDD	70.6	40-135	
12378-PeCDD	DL= 36.6	2.56	50.8		13C-12378-PeCDD	45.9	40-135	
123478-HxCDD	DL= 34.8	3.08	50.8		13C-123478-HxCDD	50.6	40-135	
123678-HxCDD	283	5.29	50.8		13C-123678-HxCDD	54.8	40-135	
123789-HxCDD	383	13.1	50.8		13C-1234678-HpCDD	39.7	40-135	
1234678-HpCDD	3,460	5.15	50.8		13C-OCDD	35.8	40-135	
OCDD	23,600	8.50	102		13C-2378-TCDF	57.0	40-135	
2,3,7,8-TCDF	DL= 8.05	0.733	10.2		13C-12378-PeCDF	37.4	40-135	
12378-PeCDF	DL= 19.8	2.96	50.8		13C-23478-PeCDF	37.9	40-135	
23478-PeCDF	DL= 19.4	5.40	50.8		13C-123478-HxCDF	52.5	40-135	
123478-HxCDF	DL= 29.4	3.93	50.8		13C-123678-HxCDF	50.3	40-135	
123678-HxCDF	DL= 31.2	2.94	50.8		13C-234678-HxCDF	48.1	40-135	
234678-HxCDF	DL= 30.3	4.32	50.8		13C-123789-HxCDF	45.8	40-135	
123789-HxCDF	DL= 43.8	4.70	50.8		13C-1234678-HpCDF	40.7	40-135	
1234678-HpCDF	1,540	4.24	50.8		13C-1234789-HpCDF	39.2	40-135	
1234789-HpCDF	DL= 46.6	5.74	50.8					
OCDF	2,040	11.7	102					
Totals	Conc. (pg/L)	EMF	°C		CRS			
Total TCDD	DL= 8.90				37Cl4-2378-TCDD	131	40-135	
Total PeCDD	DL= 36.6							
Total HxCDD	2,710				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	8,450				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundand
Total TCDF	DL= 8.05				ratio failure.			
Total PeCDF	376				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	1,310				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	3,380				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):

93.2 pg/L

Section VI: Sample Tracking

CLIENT: ESN Northwest 1210 Eastside Street SE, Suite 200 ADDRESS: Olympia, WA 98501 PHONE: Image: Client PROJECT #: PROJECT MANAGER: Collector: DATE of collection: DATE of collection:		nınenta															C	H	A	N	-0)F-	·Cl	USTO	DY	' RE	ECC	DR	D
PHONE:	NORTHWEST, INC. Y Service	es Netw	ork			1																							
PHONE:	CLIENT: ESN No	orthwe	st											DA	TE:		1	21	1-1	\$			ΡΑ	GE	1	OF	7		
PHONE:	1210 Ea	astside	Street		te 200													, 1		To.	C		١	2	1		-		-
Sample Number Depth Time Type With the set of the se	ADDRESS: Olympi	a, WA	9850	1										PR	OJE	CII	NAI î	VIE:		e		IA	-	2					-
Sample Number Depth Time Type With the set of the se	PHONE:				· ~^·)								LO	CAT	ION	<u>ا</u> : ۱	HC	Chi	Lic	M	\	4	<u>H</u>					_
Sample Number Depth Time Type With the second secon	CLIENT PROJECT #				PROJEC	Т МА	NAG	ER: _						СС	DLLE	стс	R:		V						DA1 COL	re of Lection	N: 10	+11-	-18
1. \S 1 0.2 235 > 4002 x x 2. \S_1 5. \S_1 1245 x x 3. \S_1 6. \S_12 1 x x 4. \S_1 15 725 x x x 5. \S_12 0.1 15 725 x x x 6. \S_12 0.2 130 x x x 7. \S_12 1.1 145 x x x 8. \S_12 1.5 145 x x x 9. \S_13 1.5 145 x x x 10. \S_13 5. \S_10 x x x 11. \S_14 0.4 35 x x x 12. \S_14 0.4 35 x x x 13. \S_14 0.4 325 x x x 14. \S_15 1.1 15 155 1.1 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16	Comple Number	Danéh	Time		Container	AMALY	E H ^{CR} O	Sel Ca	sine	2-32-50 C-32-50	Sled A	01010 01010							PUM Suite	Suit	/		/	$\angle / /$			-	otal Number Containers	boratory ote Number
1. 0.5 0.2 0.6 0.		-			il N=Z	$\mathbb{P}^{\mathbb{N}}$	<u> </u>	ŶŶ	<u> </u>		<u> </u>	<u> </u>		<u>%</u> %	<u> </u>		<u> </u>	<u>⁄ (6)</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>		2	Å		,			ĕ €	<u>s</u> e
3. B-11 (b-1) 1285 Image: state of the state		2-1	1711	1	9,00			$\left \right $				┿	+				\rightarrow	-	-	-		-						-	
4. B-11 155 7255 1130 5. G-12 O-2 1130 1100 1100 6. G-12 G-14 1155 1145 1100 1100 8. G-13 O-3 S/0 11000 11000 11000 11000 11000<			1290			++						+-				+	+		-			\checkmark					-	-	-
5. G-12 O-2 I/30 I/10 6. G-12 G-4 I/35 I/10 I/10 7. G-12 G-4 I/10 I/10 I/10 I/10 8. G-13 O-3 S/0 I/10 I/10 I/10 I/10 9. G-13 O-3 S/0 I/10 I/10 I/10 I/10 10. G-13 G-4 S/0 I/10 I/10 I/10 I/10 11. G-13 G-4 S/0 I/10 I/10 I/10 I/10 12. G-13 I/15 I/10 I/10 I/10 I/10 I/10 13. G-14 I/10 I/10 I/10 I/10 I/10 I/10 14. G-14 I/10 I/10 I/10 I/10 I/10 I/10 I/10 I/10 15. G-14 I/10		15	1295							+		+		-			\rightarrow	-	+		+	Ŵ						-	
6. B-12 3-14 1135 7. B-12 15 1145 9. B-13 0-3 30 10. B-13 3-6 315 11. B-13 6-9 320 12. B-14 0-3 155 13. B-14 0-3 155 14. B-14 0-3 155 15. B-14 0-3 155 15. B-14 0-3 155 16. B-14 15 730 17. B-15 0-3 330 18. B-15 0-3 330 18. B-15 0-3 330 18. B-15 0-3 330 18. B-15 0-3 330 19. B-15 0-3 330 10. B-16 0-3 155 10. B-16 0-3 15		0.7	122		+		_			+		+	-				+		-+	-		_							
7. \$\vee V_1 Z_1 \$\vee V_1 \$\vee V_1\$ \$\vee V_1 \$\vee V_1\$ \$\vee V_1\$ <td></td> <td></td> <td>1 Col. 10</td> <td>1 1</td> <td></td> <td>$\left \right$</td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td>+-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			1 Col. 10	1 1		$\left \right $		$\left \right $				+-					-		-	-					_				
8. G-1Z 15 145 1 1 9. G-13 O-3 50 1 1 1 10. G-13 5-6 315 1 1 1 1 11. G-13 1.6 315 1 <td>7 0-12</td> <td>5-0</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	7 0-12	5-0					_			-		-					-		-	-	+							_	
9. 3-13 0-3 30 10. 3-13 3-6 315 11. 5-13 6-4 320 12. 5-13 15 320 13. 5-14 0-3 155 14. 6-14 3-6 Z15 15. 6-14 15 Z30 16. 5-14 15 Z30 17. 6-15 0-3 330 18. 6-15 3-10 335 RELINQUISHED BY (Signature) DATE/TIME SAMPLE RECEIPT LABORATORY NOTES: RELINQUISHED BY (Signature) DATE/TIME SAMPLE RECEIPT LABORATORY NOTES:		0	1190			┼╌┼╴		$\left \right $				+	1		\neg	+		\rightarrow	-+	-+							-		
10. B-13 3-6 315 Image: state of the state o		0.7	Zin							-		+	+				-		-	+									
11. 6-13 6-13 320 1 <td< td=""><td>- Contraction of the second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>+</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- Contraction of the second se										1	+				-				-	+								
12. 3-3 3-5 30 10		S G	222									+					+			-	+		-						
13. G-14 G-3 155 Image: State of the state o		0-7	770									+					-		\neg			-							
14. 3-14 3-10 10	13. 2-14	1-2				$\left \right $						+	1					1	+	-									\neg
15. 3-14 6-9 215 1				l ii								+	-			+									P				
17. 330 17. <td></td> <td>10-9</td> <td>715</td> <td></td> <td>+</td> <td></td>		10-9	715															+											
17. 330 17. <td>16. 0-14</td> <td>15</td> <td>770</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	16. 0-14	15	770																			-							
18. 3-10 3-5 3-10 3-5 10-10 RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME SAMPLE RECEIPT LABORATORY NOTES: Interview Interview Interview Interview	17. 8.15	1-3	220									+				-+													
RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME SAMPLE RECEIPT LABORATORY NOTES:												1				+	+		\neg							-			
TOTAL NUMBER OF CONTAINERS					RECE	IVED BY	/ (Signa	ture)		 D	ATE/TI	ME		II		SA	MPL	E RE	CEIPT		~ 1			LABORATOR	YNOT	ES:			
MARTINAR MISIS Jam MAR 10/10/18 11:25 CHAIN OF CUSTODY SEALS Y/N/NA STD THT	0.10	-			1 7			,		1	r		тот	AL NU	JMBE	R OF	CON	TAIN	ERS							^	a		
	(IPMROX (U	NO0		M51	8 Jan	m /	7R	A	-/	is/14	1811.	25	СНА	IN OF	CUST	ODY	SEAL	.S Y/I	N/NA					STI) T	TH	F		
RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME SEALS INTACT? Y/N/NA	RELINQUISHED BY Signatu	re)	ĎA	TE/TIME	ŘECE	IVED BY	r (Signa	ture)		D	ATE/TI	ME															l		
RECEIVED GOOD COND./COLD) GOO	D CO	ND./	COLE)										
NOTES: Turn Around Time: 24 HR 48 HR 5 DAY 1210 Eastside Street SE, Suite 200 Phone: 360-459-4670 Website: www.esnnw.com	1210 Eastside Street SE Sui	te 200								Phon	e. 360	459-1		E2:										Turn Around		_			

	menta		-														CH		IN·	-0	F-	Cl	JS.	TO	D	Y R	EC	OR	D
NORTHWEST, INC. V Servic	es Netw	ork																											
CLIENT: ESN N	Jorthwe	est											_	DAT	ГE: _	0-	<u> </u>	-KB				PA	GE _	2		_ OF	_2	•	_
ADDRESS: _ 1210 H Olymj	Eastsid	e Stree	t SE, Su	ite 200										PRC		TN	۵MF		TO	17	ni	A.	1_	3					
Olymp	pia, W	4 985	01					_					-				1		15	<u>A</u> .				Δ					-
PHONE:)								-	LOC	CATIO	ON:		10	4U	Lia	IV	-1-	w	7		ATE OF	11	1-11	R
CLIENT PROJECT #	:			PROJEC	TM								_	COL	LEC	TOR	l:		V							OLLECTIO	ON: _	10-	<u>ii a</u>
Sample Number	Depth	Time	Sample Type	Container Type	AND	4' 18H'	jiesel 63	oil soline	100-376		errivolo	210 210 210 210 20	0 00	81	and the second	S Mero	ASPESS	81 M	e suit	e suite	AN AN	A.			ES			Total Number of Containers	Laboratory Note Number
1. 85	10-9	345		402			Ť	Ť	Ť	/ /	Ń		Ĩ		Ť	Ť	Í	Í	ŀ			Í							
2. 815	15	ú00	1	100																1									
3. B-110	7	450																		1								\square	
4. B-110	6	455																											
5. B-16	B	50																		T									
6. B-17	1-2	in	1																										
7. B-17	2-10	1005																											\square
8. 3-17	In-q	lini																											
9. B-17	15	IDZO																		1								\square	
10. Decon Water		H		1								1								7									
11.														1.1						Ŷ									
12.	1																												
13.																													
14.													-																
15.																											5		
16.																													
17.																_													
18.		ļ										-																	Ц
RELINQUISHED BY (Signatu	ire)	DAT	TE/TIME	RECE	IVED	BY (Sigr	ature)	١	DATE	E/TIM						IPLE R						LABO	RATO	RY NO)TES:			
CANDALL	no71	n.	-15.10			y ll		la.	hel	18	1:2			AL NUI									6	51	D	T	AT	•	
RELINQUISHED BY Signatu	re)	DAT	TE/TIME	RECE	IVED	BY (Sigr	o nature	$\frac{\gamma}{\gamma}$			E/TIM			LS INTA				/ 14/ 14/	~				*			1	• [
	-1		,			(0					,			EIVED				LD											
													NOT	ES:									Turn	Aroun	nd Time	e: 24 H	R 48 H	-IR 51	DAY
1210 Eastside Street SE, Sui	te 200								Pho	ne: 3	360-4	59-46	570											-	W	ebsite:	www.e	esnnw	.com

Sample Receipt Check List Logged by: _____(initials)

Ceres ID: 12395		Date/Time:
Client Project ID: Teminal 3		
		Received Temp: 3.9 °C
Chain of Custody Relinquished by signed?		Acceptable: (Y/ N (Y/ N
Chain of Custody Received by signed?		(Y)/ N
	D (9	<u> </u>
Custody Seals?	Present?	Y / N
	Intact?	Y / N
	NA:	NA
Unlabeled / Illegible Samples		Y/N
Proper Containers:		(y/ N
Preservation Acceptable (Chemical or Temperatu	<u>re)</u> ?	(y)/ N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH: <u>井えてら</u>		Y / N / NA Y / N
List COC discrepancies: Dacon Water 10/11/18 5:30		
Jejeliele		
List Damaged Samples:	_	
Je 10/16/18		

Section VII: Qualifiers/Abbreviations

J	Concentration found below the lower quantitation limit but greater than zero.
В	Analyte present in the associated Method Blank.
Е	Concentration found exceeds the Calibration range of the HRGC/HRMS.
D	This analyte concentration was calculated from a dilution.
Х	The concentration found is the estimated maximum possible concentration due to chlorinated diphenyl ethers present in the sample.
н	Recovery limits exceeded. See cover letter.
*	Results taken from dilution.
I	Interference. See cover letter.
Conc.	Concentration Found
DL	Calculated Detection Limit
ND	Non-Detect
% Rec.	Percent Recovery

ESN NORTHWEST CHEMISTRY LABORATORY

Stantec TERMINAL 3 PROJECT Client Project #185751074 Hoquiam, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Analytical Results	Analysis of Semivolatile Organic Compounds in											
,	RL	MTH BLK	LCS	B-11								
Date extracted		11/07/18	11/07/18	11/07/18								
Date analyzed	(mg/kg)	11/07/18	11/07/18	11/07/18								
Pyridine	1.0	nd		nd								
Aniline	1.0	nd		nd								
Phenol	1.0	nd	117%	nd								
2-Chlorophenol	1.0	nd		nd								
Bis (2-chloroethyl) ether	1.0	nd		nd								
,3-Dichlorobenzene	1.0	nd		nd								
,4-Dichlorobenzene	1.0	nd	115%	nd								
,2-Dichlorobenzene	1.0	nd		nd								
Benzyl alcohol	1.0	nd		nd								
Hexacholorethane	1.0	nd		nd								
N-Nitroso-di-n-propylamine	1.0	nd	114%	nd								
,4-Methylphenol (m,p-cresol)	1.0	nd		nd								
2-Methylphenol (o-cresol)	1.0	nd		nd								
Bis (2-chloroisopropyl) ether	5.0	nd		nd								
Vitrobenzene	1.0	nd		nd								
sophorone	1.0	nd		nd								
2-Nitrophenol	5.0	nd	83%	nd								
2,4-Dimethylphenol	1.0	nd		nd								
Bis (2-chloroethoxy) methane	1.0	nd		nd								
2,4-Dichlorophenol	5.0	nd		nd								
,2,4-Trichlorobenzene	1.0	nd	110%	nd								
Naphthalene	1.0	nd	110/0	nd								
-Chloroaniline	5.0	nd		nd								
Hexachlorobutadiene	1.0	nd	104%	nd								
-Chloro-3-methylphenol	5.0	nd	10470	nd								
• •		nd	10070	nd								
2-Methylnapthalene	1.0											
-Methylnapthalene	1.0	nd		nd								
Hexachlorocyclopentadiene	1.0	nd	1220/	nd								
2,4,6-Trichlorophenol	5.0	nd	123%	nd								
2,4,5-Trichlorophenol	5.0	nd		nd								
2-Chloronaphthalene	1.0	nd		nd								
2-Nitroaniline	5.0	nd		nd								
,4-Dinitrobenzene	5.0	nd		nd								
Acenaphthylene	0.1	nd		nd								
,3-Dinotrobenzene	5.0	nd		nd								
Dimethylphthalate	1.0	nd		nd								
2,6-Dinitrotoluene	1.0	nd		nd								
,2-Dinitrobenzene	1.0	nd		nd								
Acenaphthene	0.1	nd	100%	nd								
2,4-Dinitrophenol	5.0	nd		nd								
2,4-Dinitrotoluene	1.0	nd	104%	nd								
-Nitrophenol	5.0	nd	125%	nd								
Dibenzofuran	1.0	nd		nd								
2,3,4,6-Tetrachlorophenol	1.0	nd		nd								
2,3,5,6-Tetrachlorophenol	1.0	nd		nd								
Fluorene	0.1	nd		nd								

ESN NORTHWEST CHEMISTRY LABORATORY

Stantec TERMINAL 3 PROJECT Client Project #185751074 Hoquiam, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Semivolatile Organic Compounds in Soil by Method 8270

Analytical Results	RL	MTH BLK	LCS	B-11
Date extracted		11/07/18	11/07/18	11/07/18
Date analyzed	(mg/kg)	11/07/18	11/07/18	11/07/18
5				
4-Chlorophenylphenylether	1.0	nd		nd
Diethylphthalate	1.0	nd		nd
4-Nitroaniline	5.0	nd		nd
4,6-Dinitro-2-methylphenol	5.0	nd		nd
N-nitrosodiphenylamine	1.0	nd		nd
Azobenzene	1.0	nd		nd
4-Bromophenylphenylether	1.0	nd		nd
Hexachlorobenzene	1.0	nd		nd
Pentachlorophenol	5.0	nd	50%	nd
Phenanthrene	0.1	nd		nd
Anthracene	0.1	nd		nd
Carbazole	1.0	nd		nd
Di-n-butylphthalate	1.0	nd		nd
Fluoranthene	0.1	nd		nd
Pyrene	0.1	nd	98%	nd
Butylbenzylphthalate	1.0	nd		nd
Bis(2-ethylhexyl) adipate	1.0	nd		nd
Benzo(a)anthracene	0.1	nd		nd
Chrysene	0.1	nd		nd
Bis (2-ethylhexyl) phthalate	1.0	nd		nd
Di-n-octyl phthalate	1.0	nd	104%	nd
Benzo(b)fluoranthene	0.1	nd		nd
Benzo(k)fluoranthene	0.1	nd		nd
Benzo(a)pyrene	0.1	nd	57%	nd
Dibenzo(a,h)anthracene	0.1	nd		nd
Benzo(ghi)perylene	0.1	nd		nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd
Surrogate recoveries				
2-Fluorophenol		61%	92%	63%
Phenol-d6		21%	9270 90%	79%
Nitrobenzene-d5		2170 84%	99%	88%
2-Fluorobiphenyl		89%	99%	97%
2,4,6-Tribromophenol		39%	74%	53%
4-Terphenyl-d14		113%	107%	117%

Data Qualifiers and Analytical Commentsnd - not detected at listed reporting limitsAcceptable Recovery limits:2-Flurophenol: 10-135 %Phenol - d5: 10-135 %2,4,6- tribromophenol: 29-159%Nitrobenzene - d5: 20-120 %2-Flurobiphenyl: 50-150%p-Terphenyl-d14: 50-150%Acceptable RPD limit: 35%