Oakland | Folsom | Irvine

REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 SARGENT BOULEVARD ABERDEEN, WASHINGTON VCP Identification No. SW1161

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 525-006

For: Lakeside Industries, Inc. 6505 226th Place Southeast Issaquah, Washington 98027

Revised August 2019

Prepared by:

Eric Buer, L.G., L.H.G., P.G. Senior Hydrogeologist

Gru F. Buc

Reviewed by:

J. Riley Conkin, L.G., L.H.G. Principal Geologist

Eric Finn Buer

EXECUTIVE SUMMARY

Farallon Consulting, L.L.C. (Farallon) has prepared this revised Remedial Investigation/Feasibility Study Report on behalf of Lakeside Industries, Inc. (Lakeside Industries) to provide the results of the Remedial Investigation (RI) and Feasibility Study (FS) pertaining to the Lakeside Industries property at 2400 Sargent Boulevard in Aberdeen, Washington (herein referred to as the Site). The Site was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program in April 2011 and assigned Voluntary Cleanup Program Identification No. SW1161 by Ecology. Based on the results of the completed RI and FS, Farallon requests that Ecology issue an opinion that the preferred cleanup action alternative, Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, be selected as the final cleanup action alternative.

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) and its implementing regulations in Chapter 173-340 of the Washington Administrative Code (WAC 173-340), comprises the area where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels. The initial phase of the RI was conducted by Farallon in January 2009. Additional phases of the RI were conducted in 2011, 2013, and 2017 to further delineate identified contamination and to gather data needed to develop, evaluate, and recommend a final cleanup action alternative for the Site. During the RI, total petroleum hydrocarbons as gasoline-, diesel-, and oil-range organics; benzene; ethylbenzene; naphthalene compounds; carcinogenic polycyclic aromatic hydrocarbons; and the metals arsenic, cadmium, lead, and mercury were detected at concentrations exceeding preliminary cleanup levels, defined herein as MTCA Method A levels, in soil and/or groundwater at the Site. These compounds have been retained as constituents of concern for the Site. Based on the results of the RI, soil and shallow groundwater have been retained as media of concern at the Site.

The RI identified confirmed source areas in shallow soil and localized areas of shallow groundwater at the Site. The vast majority of source areas of petroleum products identified at the Site are associated with the historical bulk fuel facility operations by Chevron USA Inc. (Chevron) during the period from 1922 through 1985 during which the Site was operated as a bulk fuel facility. The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers Incorporated (GeoEngineers) on behalf of Chevron, the results of which were documented in the Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington dated July 9, 1984, prepared by GeoEngineers (1984) (1984 Hydrogeologic Report). The subsurface investigation was conducted prior to the enactment of MTCA and any of its cleanup regulations. The 1984 Hydrogeologic Report concluded that the results of the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron prior to Lakeside Industries acquisition of the Site in 1985. According to Lakeside Industries, a review of historical aerial photographs, and the 1984 Hydrogeologic Report, the Site was largely unpaved, with the exception of the foundation concrete pads for the bulk fuel aboveground storage tanks and several building structures, during Chevron's operation of the Site from 1922 through 1985.

Lakeside Industries subsequently capped the entire Site with asphalt pavement upon purchase of the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Results of the Site characterization activities completed through 2013 and the evaluation and selection of the preferred cleanup action for the Site were presented initially in the *Remedial Investigation and Feasibility Study Report*, *Lakeside Industries Aberdeen Site* dated June 2015 prepared by Farallon (2015) (2015 RI/FS Report) that was submitted to Ecology. Following review of the 2015 RI/FS Report, Ecology requested that Lakeside Industries collect additional soil analytical data to further assess subsurface conditions along the southern property boundary proximate to and north of the existing retaining wall and riprap embankment. The purpose of the additional soil sampling was to confirm and bound the lateral and vertical extent of soil contamination exceeding MTCA cleanup levels at the Site. Ecology also requested that Lakeside Industries further evaluate the hydraulic implications of installing an environmental sheet pile wall along the southern property boundary that was identified by Ecology as an element of the preferred cleanup alternative under consideration for the Site. Specifically, Ecology requested further evaluation of the sheet pile wall to ensure that it would provide the required permanence and protectiveness to prevent/minimize releases to surface water and/or sediment of contaminated media in excess of cleanup levels based on potential current and/or future exposure pathways.

Farallon performed hydraulic characterization of the Site, including rising and falling head tests to test shallow aquifer conductivity and a tidal study to evaluate the hydraulic connection between the south-adjacent Chehalis River and shallow groundwater on the Site. Hydraulic and tidal study data indicate that changes in Chehalis River stage have no impact on shallow groundwater flow direction or gradient, and that the conductivity of the shallow aquifer is very low yield. Furthermore, the studies confirm that the groundwater to surface water pathway is not complete at the Site; therefore, surface water is not a medium of concern.

Following completion of the additional characterization requested by Ecology in 2015, Farallon performed an FS based on the results of the RI to develop and evaluate a selection of potential cleanup action alternatives under the criteria established under MTCA (WAC 173-340-350). Four cleanup action alternatives were evaluated, including a no action alternative; two alternatives with institutional controls, containment and/or limited source removal; and a complete soil source removal alternative. The preferred cleanup action alternative selected in the FS was Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls.

Cleanup Alternative 3 includes limited source removal to the maximum extent practicable at confirmed source areas where groundwater exceeds preliminary cleanup levels and the application of institutional controls and engineering controls, including installation of an approximately 700-foot sealed sheet pile wall to contain contaminated soil that will remain in-place and prevent potential migration and exposure to contaminated media while monitored natural attenuation takes place. Specifically, installation of the 700-foot sheet pile wall provides an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels that to the maximum extent practicable will remain in-place proximate to the southern Site

boundary adjacent to the Chehalis River. Based on the results of the RI, migration of contaminated soil to surface water and/or sediment in the Chehalis River along the southern Site boundary has not occurred because of the concrete retaining wall and underlying native silt. However, the current concrete retaining wall on the southern Site boundary is limited to the western half of the southern Site boundary and does not currently provide full coverage of the confirmed source areas exceeding MTCA cleanup levels on the eastern portion of the Site. Potential future exposure scenarios requiring evaluation for the FS, such as mobilization and migration of contaminated soil or groundwater remaining in-place along the southern Site boundary to surface water and/or sediment in the Chehalis River, were considered and incorporated into the preferred cleanup alternative in the FS, as directed by Ecology. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

Cleanup Alternative 3 satisfies MTCA threshold criteria as specified in WAC 173-340-360(2)(a); meets additional requirements specified in WAC 173-340-360(2)(b); meets expectations for cleanup action alternatives as specified in WAC 173-340-370 for facilities adjacent to surface water requiring active measures be taken to remediate, contain, and prevent/minimize releases to surface water of contaminated media in excess of cleanup levels to the maximum extent practicable; and provides the greatest degree of permanence and protectiveness and the highest MTCA Composite Benefit Score that is technically practicable. A disproportionate cost analysis was performed to compare Cleanup Alternative 3 to Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels. The disproportionate cost analysis demonstrated that the additional cost associated with Cleanup Alternative 4, more than seven times the cost of Cleanup Alternative 3, resulted in negligible additional environmental benefit since the MTCA Composite Benefit scores for both cleanup action alternatives are essentially equivalent. Based on the results of the disproportionate costs analysis, Cleanup Alternative 3 was selected as the preferred cleanup action alternative because it provides the highest degree of permanence considering current and future Site conditions to the maximum extent practicable.

Farallon, on behalf Lakeside Industries, requests that Ecology issue an opinion that the preferred cleanup action alternative, Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, be selected as the final cleanup action and that implementation of the final cleanup action likely will result in a No Further Action determination for the Site. Following receipt of Ecology's opinion, the final cleanup action will be implemented in accordance with the provisions identified in this FS. The selected cleanup action alternative for the Site will be documented in a Cleanup Action Plan that will be prepared in accordance with WAC 173-340-380. Following Ecology approval of the final Cleanup Action Plan, the limited source removal excavations and sheet pile wall construction are expected to take approximately 1 month to complete. Documentation of the final cleanup action will be submitted to Ecology in a final Cleanup Action Report.

TABLE OF CONTENTS

EXECUTIVE SUMMERY i				
TAB	LE OF	F CONTENTS	iv	
ACR	ONYM	MS AND ABBREVIATIONS	viii	
1.0	INT	RODUCTION	1-1	
	1.1	RI/FS OBJECTIVES AND PURPOSE	1-2	
	1.2	RI/FS REPORT ORGANIZATION	1-3	
2.0	SITE	E DESCRIPTION AND BACKGROUND	2-1	
	2.1	SITE DESCRIPTION AND OPERATIONAL HISTORY	2-1	
	2.2	ADJACENT PROPERTY USE	2-2	
	2.3	GEOLOGY AND HYDROGEOLOGY		
	2.4	PREVIOUS INVESTIGATION – GEOENGINEERS 1984	2-3	
3.0	REM	MEDIAL INVESTIGATION SCOPE OF WORK	3-1	
	3.1	INITIAL REMEDIAL INVESTIGATION PHASE – JANUARY 200	19 3-1	
	3.2	REMEDIAL INVESTIGATION – APRIL TO DECEMBER 2011	3-1	
		3.2.1 Borings and Reconnaissance Soil and Groundwater Sampling		
		3.2.2 Monitoring Well Installation, Development, and Surveying		
		3.2.3 Groundwater Monitoring and Sampling	3-2	
		3.2.4 Tidal Study		
	3.3	TEST PIT INVESTIGATION AND GROUNDWATER SAMPLING		
		– MARCH 2012	3-3	
	3.4	ADDITIONAL WELL INSTALLATION AND GEOPROBE		
		INVESTIGATION – APRIL TO AUGUST 2013	3-3	
	3.5	HYDRAULIC EVALUATION – AUGUST 2016		
	3.6	SUPPLEMENTAL SUBSURFACE INVESTIGATION – MAY 2017	7 . 3-4	
		3.6.1 Borings and Reconnaissance Soil Sampling	3-4	
		3.6.2 Groundwater Monitoring Event	3-5	
4.0	REM	MEDIAL INVESTIGATION RESULTS	4-1	
	4.1	PHYSICAL SITE FEATURES	4-1	
	4.2	GEOLOGY AND HYDROGEOLOGY	4-1	
		4.2.1 Geology	4-2	
		4.2.2 Hydrogeology	4-2	
		4.2.3 Tidal Study	4-2	
	4.3	HYDRAULIC EVALUATION RESULTS		
	4.4	SOIL AND GROUNDWATER ANALYTICAL RESULTS	4-4	
		4.4.1 Gasoline/Benzene Source Areas	4-4	
		4.4.2 Diesel and Oil Source Areas	4-5	
		4.4.3 Polycyclic Aromatic Hydrocarbons	4-7	

		4.4.4 Metals	4-8		
	4.5	TERRESTRIAL ECOLOGICAL RISK EVALUATION	4-8		
5.0	CON	ICEPTUAL SITE MODEL	5-1		
	5.1	CONSTITUENTS OF CONCERN	5-1		
	5.2	CONFIRMED AND SUSPECTED SOURCES OF COCS	5-1		
	5.3	CONTAMINANT FATE AND TRANSPORT	5-3		
	5.4	EXPOSURE ASSESSMENT	5-4		
		5.4.1 Soil Pathway	5-4		
		5.4.2 Groundwater Pathway	5-4		
		5.4.3 Soil Vapor Pathway			
	5.5	SUMMARY OF CONCEPTUAL SITE MODEL	5-5		
6.0	TECHNICAL ELEMENTS6-1				
	6.1	APPLICABLE OR RELEVANT AND APPROPRIATE			
		REQUIREMENTS	6-1		
	6.2	CONSTITUENTS OF CONCERN	6-1		
		6.2.1 Soil	6-2		
		6.2.2 Groundwater			
	6.3	CONFIRMED SOURCE AREAS	6-2		
	6.4	AFFECTED MEDIA	6-3		
	6.5	CLEANUP STANDARDS	6-3		
		6.5.1 Cleanup Levels	6-3		
		6.5.2 Points of Compliance	6-4		
7.0	FEASIBILITY STUDY7-1				
	7.1	EVALUATION OF FEASIBLE REMEDIATION TECHNOLOGI	ES 7-1		
		7.1.1 Retained Technologies	7-2		
		7.1.2 Rejected Technologies			
	7.2	CLEANUP ACTION ALTERNATIVES	7-6		
		7.2.1 Cleanup Alternative 1—No Action	7-7		
		7.2.2 Cleanup Alternative 2—Institutional and Engineered Contro	ols,		
		Containment, and Monitored Natural Attenuation	7-7		
		7.2.3 Cleanup Alternative 3—Source Area Excavation, Containm	ient,		
		Monitored Natural Attenuation, Institutional and Engineere	d		
		Controls	7-9		
		7.2.4 Cleanup Alternative 4—Complete Excavation of Soil			
		Exceeding Preliminary Cleanup Levels			
	7.3	CLEANUP ACTION ALTERNATIVES EVALUATION	7-13		
		7.3.1 Evaluation Process			
		7.3.2 Evaluation Results			
		7.3.3 Disproportionate Cost Analysis			
	7.4	PREFERRED CLEANUP ACTION ALTERNATIVE			
	7.5	IMPLEMENTATION			
	7.6	COMPLIANCE MONITORING	7-25		

	7.7 7.8	RESTORATION TIME FRAME7-26
	7.9	
8.0	BII	BLIOGRAPHY8-1
9.0	LI	MITATIONS9-1
		FIGURES
Figure	1	Site Location Map
Figure	2	Historical Features and Sampling Location Map
Figure	3	Cross Section A-A'
Figure	4	Groundwater Elevation Contour Map – May 2, 2017
Figure	5	Site Plan Showing GRO/Benzene Analytical Results for Soil
Figure	6	Site Plan Showing Total DRO and ORO Analytical Results for Soil
Figure	7	Site Plan Showing GRO and Benzene Analytical Results in Groundwater
Figure	8	Site Plan Showing DRO and ORO Analytical Results in Groundwater
Figure	9	Site Plan Showing Primary Elements of Cleanup Alternative 3
		TABLES
Table	1	Summary of Petroleum Storage Tanks
Table 2	2	Groundwater Elevations
Table 3	3	Summary of Soil Analytical Results – Total Petroleum Hydrocarbons
Table 4	4	Summary of Soil Analytical Results – Polycyclic Aromatic Hydrocarbons
Table :	5	Summary of Soil Analytical Results – Metals
Table (6	Summary of Reconnaissance Groundwater Analytical Results – Total Petroleum Hydrocarbons
Table '	7	Summary of Groundwater Analytical Results – Total Petroleum Hydrocarbons
Table 8	8	$Summary\ of\ Groundwater\ Analytical\ Results-Polycyclic\ Aromatic\ Hydrocarbons$
Table 9	9	Summary of Groundwater Analytical Results – Metals
Table	10	Cleanup Technology Screening
Table	11	Summary of Cleanup Alternative Evaluation
Table	12	Summary of Cleanup Alternative Cost Estimates

CHART

Chart 1 Cleanup Alternative Cost Estimates Supporting Information

APPENDICES

Appendix A	Historical Site Drawings and 1984 Hydrogeologic Report
Appendix B	Boring Logs, Test Pit Logs, and Monitoring Well Completion Diagrams
Appendix C	Aquifer Testing Data
Appendix D	Tidal Study Data
Appendix E	Laboratory Analytical Reports
Appendix F	Terrestrial Ecological Evaluation Forms
Appendix G	Inadvertent Discovery Plan

ACRONYMS AND ABBREVIATIONS

ARARs applicable or relevant and appropriate requirements

ASTs aboveground storage tanks

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CAP Cleanup Action Plan

Chevron USA Inc.

COCs constituents of concern

COPCs constituents of potential concern
DCA Disproportionate Cost Analysis

DRO total petroleum hydrocarbons as diesel-range organics

Ecology Washington State Department of Ecology

EPA U.S. Environmental Protection Agency

Farallon Farallon Consulting, L.L.C.

FS Feasibility Study

GRO total petroleum hydrocarbons as gasoline-range organics

μg/l micrograms per liter

mg/kg milligrams per kilogram

EMMP Environmental Media Management Plan

MNA Monitored natural attenuation

MTCA Washington State Model Toxics Control Act Cleanup Regulation

NOAA National Oceanic and Atmospheric Administration
ORO total petroleum hydrocarbons as oil-range organics

PAHs polycyclic aromatic hydrocarbons

PLPs potentially liable persons
PQL practical quantitation limit

RI Remedial Investigation

RI/FS Report Remedial Investigation/Feasibility Study Report

SAP Sampling and Analysis Plan

Site Lakeside Industries Property, 2400 Sargent Boulevard, Aberdeen,

Washington

TEE Terrestrial Ecological Evaluation

USTs underground storage tanks

VCP Voluntary Cleanup Program

VOCs volatile organic compounds

WAC Washington Administrative Code

2015 RI/FS Report Remedial Investigation and Feasibility Study Report, Lakeside Industries

Aberdeen Site dated June 2015 prepared by Farallon Consulting, L.L.C.

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this revised Remedial Investigation/Feasibility Study Report (RI/FS Report) on behalf of Lakeside Industries, Inc. (Lakeside Industries) to provide the results of the Remedial Investigation (RI) and Feasibility Study (FS) completed for the Lakeside Industries property at 2400 Sargent Boulevard in Aberdeen, Washington (herein referred to as the Site) (Figure 1). The initial phase of the RI conducted by Farallon in January 2009 identified a release of petroleum-based products to soil and groundwater from sources at the Site. Additional phases of the RI were conducted in 2011, 2013, and 2017 to further delineate identified contamination and to gather data needed to develop, evaluate, and recommend a final cleanup action alternative for the Site. The Site was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Plan (VCP) in April 2011 and assigned VCP Identification No. SW1161 by Ecology.

Concentrations of petroleum products detected in RI soil and groundwater samples exceeded the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) cleanup levels, as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The vast majority of source areas of petroleum products identified at the Site are associated with the historical bulk fuel facility operations by Chevron USA Inc. (Chevron). The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers Incorporated (GeoEngineers) on behalf of Chevron, the results of which were documented in the Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington dated July 9, 1984, prepared by GeoEngineers (1984) (1984 Hydrogeologic Report) (Appendix A). The subsurface investigation was conducted prior to the enactment of MTCA and any of its cleanup regulations. During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron. Lakeside Industries purchased the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Results of the initial phase of the RI were provided in the Technical Memorandum regarding Remedial Investigation–Initial Phase Summary, Lakeside Industries Facility, Aberdeen, Washington dated March 26, 2009, prepared by Farallon (2009). Results of the Site characterization activities completed through 2013 and the evaluation and selection of the preferred cleanup action for the Site initially were presented in the *Remedial Investigation and Feasibility Study Report, Lakeside Industries Aberdeen Site* (2015 RI/FS Report) dated June 2015 prepared by Farallon (2015) that was submitted to Ecology.

Following review of the 2015 RI/FS Report, Ecology requested that Lakeside Industries collect additional soil analytical data to further assess subsurface conditions along the southern property boundary proximate to and north of the existing retaining wall and riprap embankment. The purpose of the additional soil sampling was to confirm and bound the lateral and vertical extent of soil contamination exceeding MTCA cleanup levels at the Site. Ecology also requested that

Lakeside Industries further evaluate the hydraulic implications of installing an environmental sheet pile wall along the southern property boundary that was identified as an element of the preferred cleanup alternative under consideration for the Site. Specifically, Ecology requested further evaluation of the sheet pile wall to ensure that it would provide the required permanence and protectiveness to prevent/minimize releases to surface water and/or sediment of contaminated media in excess of cleanup levels based on potential current and/or future exposure pathways.

The RI has been performed as an independent remedial action in accordance with MTCA, as established in WAC 173-340-515. Subsequent phases of the RI/FS were conducted in accordance with WAC 173-340-350 under the Ecology VCP.

1.1 RI/FS OBJECTIVES AND PURPOSE

The primary objectives of the RI included identifying the constituents of potential concern (COPCs) and media of concern at the Site; identifying the potential source(s) of the release(s) of COPCs; identifying the nature and extent of the COPCs in the identified media of concern; and developing and refining the conceptual site model. The overall objective of the RI was to collect and evaluate sufficient information to support the development of feasible cleanup alternatives for the Site in accordance with WAC 173-340-360 through 173-340-390. The RI completed by Farallon and summarized in this report provides sufficient data to evaluate potentially feasible remediation technologies and select a final remedial action in accordance with MTCA requirements in the FS.

The RI involved the following work elements:

- Sampling and analysis of soil and groundwater to identify the COPCs and media of concern;
- Conducting subsurface investigations to evaluate potential source(s) of the release(s) of COPCs;
- Characterizing the nature and extent of COPCs in the identified media of concern;
- Conducting a Terrestrial Ecological Evaluation (TEE) to evaluate the potential for COPCs to adversely affect terrestrial ecological receptors;
- Identifying applicable or relevant and appropriate requirements (ARARs) for the Site to enable identification of appropriate cleanup standards for potential cleanup actions; and
- Complying with the requirements of WAC 173-340-350.

The purpose of the FS is to develop and evaluate cleanup action alternatives to facilitate selection of a permanent cleanup action in accordance with WAC 173-340-350(8). The FS was conducted to screen available remediation technologies and identify a set of technically feasible and practicable cleanup action alternatives for evaluation in accordance with the requirements for cleanup actions established in WAC 173-340-360(2) and expectations for cleanup action alternatives as specified in WAC 173-340-370 for facilities adjacent to surface water requiring active measures be taken to remediate, contain, and prevent/minimize releases to surface water of

contaminated media in excess of cleanup levels to the maximum extent practicable that provides the greatest degree of permanence and protectiveness and the highest MTCA Composite Benefit Score that is technically practicable. The selected cleanup action alternative approved by Ecology for the Site will be documented in a Cleanup Action Plan (CAP) that will be prepared in accordance with WAC 173-340-380.

1.2 RI/FS REPORT ORGANIZATION

The RI/FS Report has been prepared to meet the general requirements of WAC 173-340-350(7) and (8), and has been organized into the following sections:

- Section 2—Site Description and Background. This section provides a description of the Site and summarizes the Site history, adjacent property use, geology, hydrogeology, and previous environmental investigation conducted at the Site by others.
- Section 3—Remedial Investigation Scope of Work. This section provides a description of the RI field program completed at the Site by Farallon between 2009 and 2017. This section also includes a discussion of the TEE requirement under MTCA.
- Section 4—Remedial Investigation Results. This section provides the results of the RI performed at the Site. Included is a discussion of RI findings related to the Site physical features, geology, and hydrogeology; a description and evaluation of the confirmed and suspected source areas; and a Site-specific TEE.
- Section 5—Conceptual Site Model. This section provides a summary of the conceptual site model derived from the results of the RI performed at the Site. Included is a discussion of the confirmed and suspected source areas, the constituents of concern (COCs), affected media, fate and transport characteristics of the releases of hazardous substances, and the preliminary exposure assessment.
- Section 6—Technical Elements. This section identifies the cleanup action objectives and ARARs for the Site, and includes a description of the COCs, media of concern, and cleanup standards, including cleanup levels for potential exposure pathways and points of compliance.
- **Section 7—Feasibility Study.** This section provides a summary of the scope of work and results of the FS. This section also summarizes the screening and overview of the evaluation of potential remediation technologies, selection of the preferred cleanup action alternative for implementation at the Site, and the rationale for its recommendation.
- **Section 9—Bibliography.** This section lists the documents used in preparing this report.
- **Section 10—Limitations.** This section provides the standard limitations for the RI/FS as performed by Farallon.

2.0 SITE DESCRIPTION AND BACKGROUND

The Lakeside Industries facility is located at 2400 Sargent Boulevard in Aberdeen, Washington (Figure 1). The Site is bounded by the Chehalis River and Elliott Slough on the southern, western, and eastern sides, respectively, and by a frontage road and State Route 12 to the north. The Site is approximately 3.5 miles upstream of the Chehalis River confluence with Grays Harbor, which is an estuarine bay of the Pacific Ocean on the west coast of Washington (Figure 2).

2.1 SITE DESCRIPTION AND OPERATIONAL HISTORY

The Site is located in Section 10, Township 17, Range 9, in Grays Harbor County, Washington and is 8.6 acres in area (Figure 1). The Site has been owned by Lakeside Industries since 1985 and has been operated as a hot-mix asphalt batch plant since that time. Prior to Lakeside Industries' ownership, the Site was owned and operated by Chevron as a bulk fuel facility between 1922 and 1985. Locations of significant historical Site features prior to the Site being acquired by Lakeside Industries are depicted on Figure 2.

Historical bulk fuel facility operations by Chevron included off-loading of fuel from barges, and storage and distribution of various petroleum products. Features identified as part of the operational history of the Site by Chevron include at least 19 aboveground storage tanks (ASTs) with an estimated total storage capacity exceeding four million gallons, aboveground and underground product piping, fuel loading racks, wash racks, a barrel steamer area, a boiler room, and garage buildings (Figure 2). A summary of the former Chevron ASTs is provided in Table 1, including tank locations, approximate tank capacities, and petroleum products stored such as gasoline, diesel fuel, kerosene, light fuel oil, heating oil, and distillates. Two underground storage tanks (USTs) containing heating oil and waste oil, respectively, were also present at the facility during the period of Chevron operations. The waste oil UST was removed in 1988. The unused heating oil UST is proximate to the northeastern corner of the current office building (Figure 2).

The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers on behalf of Chevron. The subsurface investigation was conducted at the Site prior to the enactment of MTCA and any of its cleanup regulations. The results of the subsurface investigation were documented in the 1984 Hydrogeologic Report prepared by GeoEngineers (Appendix A). During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2). Additional details pertaining to Chevron operations, including the locations of former site features such as ASTs, aboveground and underground product piping, fuel loading racks, wash racks, a barrel steamer area, a boiler room, and garage buildings, are provided on a series of historical drawings included in Appendix A that were used in the compilation of historical features shown on Figure 2 and in Table 1.

According to Lakeside Industries, a review of historical aerial photographs, and the 1984 Hydrogeologic Report, the Site was largely unpaved, with the exception of the foundation concrete pads for the bulk fuel ASTs and several building structures, during Chevron's operation of the Site from 1922 through 1985. Lakeside Industries subsequently capped the entire Site with asphalt pavement upon purchase of the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Lakeside Industries' current operations at the Site include operation of a hot-mix asphalt batch plant, maintenance garage, and office facility (Figure 2). A list of the ASTs, USTs, and associated petroleum products currently stored and used by Lakeside Industries at the Site is provided in Table 1 and is summarized below:

- A series of ASTs in the central part of the Site, identified as the Asphalt Tank Farm, that are mainly used to store asphalt cement for the hot-mix asphalt batch plant. The Asphalt Tank Farm area is paved and includes a concrete secondary spill containment berm.
- A series of ASTs on the western side of the Site, identified as the Diesel Tank Farm, mainly
 used to store diesel fuel for vehicle refueling, and to a lesser extent, used oil and antifreeze.
 The Diesel Tank Farm area is underlain by a concrete slab and includes a concrete
 secondary spill containment berm.
- A series of ASTs inside the shop building, identified as the Mechanics Shop, used to store small volumes of engine oil, hydraulic oil, heat transfer oil, and used oil.

A minor spill of diesel fuel occurred on the western side of the Site on October 3, 1989 as a result of overfilling an AST within the Diesel Tank Farm containment area (Figure 2). The spill report filed for the incident stated that a quantity of diesel fuel ranging from 50 to 100 gallons was released to the ground surface and affected surface soil in a localized area on and adjacent to the property. According to Ecology records, the cleanup of the diesel fuel and excavation of affected shallow surface soil were completed on the same day that the spill occurred, including backfilling the excavated area with clean fill.

2.2 ADJACENT PROPERTY USE

The Site is a triangular-shaped property bounded on the east by Elliott Slough and on the south and west by the Chehalis River. Figure 2 depicts surrounding facilities, buildings, and streets. A Weyerhaeuser lumber mill is located to the south, across the Chehalis River. The Grays Harbor County Courthouse and the Bayview Redi Mix cement plant are across Elliott Slough to the east. BNSF Railway Company tracks and State Route 12 are north-adjacent. Farther north, across State Route 12, is undeveloped forested land owned by the Washington State Department of Transportation and various private owners.

2.3 GEOLOGY AND HYDROGEOLOGY

According to geologic mapping conducted by the Washington Division of Geology and Earth Resources, the Site is underlain by Quaternary alluvium and undifferentiated glacial outwash

deposits (Washington State Department of Natural Resources 1987). The alluvium consists of sand, silt, and gravel deposited in streambeds and fans. The undifferentiated outwash deposits consist of recessional and pro-glacial stratified sand and gravel, locally containing silt and clay. The Chehalis River is 115 miles long and drains an area of 2,660 square miles, of which approximately 85 percent is forest land and approximately 10 percent is agricultural land (Green, et al. 2009). The Chehalis River is tidally influenced in the Site vicinity.

The general subsurface stratigraphy encountered in the RI borings consisted of a fill layer comprising sand with varying amounts of silt and gravel to depths ranging from 6 to 10 feet below ground surface (bgs) underlain by native silt. The silt extends to the maximum depth drilled of approximately 20 feet bgs.

A shallow unconfined groundwater-bearing zone was encountered at depths ranging from 3 to 10 feet bgs within the fill layer in the RI borings. Shallow groundwater beneath the Site flows primarily to the south, toward the Chehalis River. However, a concrete retaining wall, present along the western half of the Site's southern shoreline and the underlying native silt layer, acts as a barrier to shallow groundwater flow in the central part of the Site. The tidal study conducted during the RI confirmed that tidal changes in the Chehalis River have no influence on shallow groundwater levels and flow beneath the Site, likely due to the presence of the concrete retaining wall and the native silt interval underlying the entire Site (see Section 4.2, Geology and Hydrogeology).

2.4 PREVIOUS INVESTIGATION – GEOENGINEERS 1984

A subsurface investigation was conducted at the Site in 1984 prior to the enactment of MTCA and any of its cleanup regulations, and was reported in the 1984 Hydrogeologic Report prepared for Chevron by GeoEngineers (1984). According to the 1984 Hydrogeologic Report, the purpose of the subsurface investigation was to determine the nature and extent of potential subsurface contamination at the Site in anticipation of the potential sale of the Site by Chevron. A copy of the 1984 Hydrogeologic Report is included in Appendix A.

The subsurface investigation included the advancement and sampling of 16 test pits across the Site using a backhoe, and the installation and sampling of monitoring wells at each of the test pit locations (Figure 2). The general stratigraphy encountered in the test pits was a fill unit ranging in thickness from 1.5 to 7 feet underlain by native clayey silt, organic silt, and peat. A shallow perched groundwater-bearing zone was encountered at depths of 1 to 3 feet bgs in the fill unit. Groundwater contours developed using water level measurements from the Site monitoring wells for June 1, 1984 indicated a southerly flow direction toward the Chehalis River. GeoEngineers also noted little or no variation in water levels during repetitive groundwater level measurements in two monitoring wells on the south-central portion of the Site during large tidal changes in the adjacent Chehalis River. Based these data, GeoEngineers concluded that the shallow perched groundwater-bearing zone was not in direct hydraulic connection with the Chehalis River.

During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit

locations. Specifically, petroleum-contaminated soil was observed in soil samples collected from test pits 1, 3, 5, 6, 7, 8, 9, 11, 13, and 18 (Figure 2).

Four soil samples were selected from several of the test pit locations for laboratory analysis for one or more of the following analytes: pentachlorophenol; polycyclic aromatic hydrocarbons (PAHs); halogenated hydrocarbons reported as the sum of the halogens bromide, chloride, fluoride, and iodide; and total metals arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, and silver.

Concentrations of halogenated hydrocarbons ranging from 15 milligrams per kilogram (mg/kg) to 57 mg/kg were detected in three soil samples. Pentachlorophenol was detected at a concentration of 0.022 mg/kg in one soil sample. PAHs were detected in all four soil samples tested.

Two soil samples were analyzed for total metals. Maximum concentrations of detected metals included: arsenic at 7.3 mg/kg; lead at 40 mg/kg; barium at 70 mg/kg, chromium at 32 mg/kg, copper at 59 mg/kg, and mercury at 0.07 mg/kg. Extractable Partition Toxicity testing also was performed on the two soil samples for metals. Lead was the only metal detected, at a concentration of 200 micrograms per liter (ug/l).

The monitoring wells were sampled for the presence of floating petroleum product or light non-aqueous phase liquid (LNAPL). LNAPL was not observed during sampling in any of the monitoring wells. No groundwater samples were collected for laboratory analysis.

The 1984 Hydrogeologic Report concluded the following:

- The presence of petroleum hydrocarbon–contaminated soil in several of the test pits indicated that petroleum hydrocarbons have leaked into the ground during past operations of the facilities by Chevron;
- The shallow groundwater at the Site probably is contaminated by low concentrations of dissolved hydrocarbons, but it was highly unlikely that it was a threat to local groundwater supplies since it was unlikely that any water wells are located down-gradient from the tank yard; and
- The test results for the soil samples indicated no specific toxicity hazards as defined by Ecology at the time of investigation; however, the potential presence and migration of hydrocarbon vapors may present a hazard at the Site.

3.0 REMEDIAL INVESTIGATION SCOPE OF WORK

The RI was conducted by Farallon at the Site in accordance with the provisions of WAC 173-340-350(7) to evaluate whether releases of COPCs associated with historical and current operations have impacted soil or groundwater quality at the Site. The RI was conducted in several phases, with Site hydrogeological and soil and groundwater chemical analytical data from the early phases being used to refine the scope of later phases of the RI. This section presents a brief summary of the RI field activities.

3.1 INITIAL REMEDIAL INVESTIGATION PHASE – JANUARY 2009

The initial phase of the RI was conducted by Farallon in January 2009 to evaluate environmental conditions and potential contaminant source areas associated with historical property use as a petroleum bulk fuel facility by Chevron and/or current operations. Borings B1 through B16 were advanced and sampled using a direct-push drill rig as part of the initial field investigation. Each boring was advanced to a maximum depth of 12 feet bgs, with the exception of boring B3, which was advanced to a maximum depth of 20 feet bgs. The boring locations are shown on Figure 2. Boring logs are provided in Appendix B.

At least one soil sample collected from the vadose zone and a reconnaissance groundwater sample collected from each boring were submitted for laboratory analysis by one or more of the analytical methods identified below:

- Total petroleum hydrocarbons as gasoline-range organics (GRO) by Northwest Method NWTPH-Gx;
- benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8021B or EPA Method 8260B;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel-range and as oil-range organics (DRO and ORO, respectively) by Northwest Method NWTPH-Dx;
- Resource Conservation and Recovery Act metals by EPA Methods 6010B/7471A; and
- PAHs by EPA Method 8270D/SIM.

Three soil samples with detectable concentrations of GRO and/or BTEX were submitted for laboratory analysis for Resource Conservation and Recovery Act metals. Four soil samples with detectable concentrations of DRO and/or ORO were submitted for laboratory analysis for PAHs. Four soil samples and four reconnaissance groundwater samples collected from borings completed in the vicinity of former or current chemical and product storage areas, vehicle maintenance areas, and/or the vehicle wash rack were submitted for laboratory analysis for VOCs.

3.2 REMEDIAL INVESTIGATION – APRIL TO DECEMBER 2011

The following sections describe the RI activities conducted at the Site in 2011.

3.2.1 Borings and Reconnaissance Soil and Groundwater Sampling

Borings B17 through B35 (19 borings) were drilled at the Site in April 2011 using a direct-push drill rig to collect reconnaissance groundwater and soil samples (Figure 2). The purpose of the borings was to further evaluate potential source areas identified during the 2009 initial phase of the RI, and to establish locations for the installation of groundwater monitoring wells. Reconnaissance soil and groundwater samples collected from the 19 borings were used to assess the lateral and vertical extent of COPCs at potential source areas at the Site and to select monitoring well locations to characterize and monitor groundwater quality in and around identified source areas, and to bound the cross- and down-gradient extent of the source areas.

Borings B36 through B44 (nine borings) were drilled in July 2011 using a direct-push drill rig to collect additional soil and reconnaissance groundwater samples (Figure 2). The purpose of the additional borings was to evaluate areas along historical Chevron aboveground product piping corridors and former Chevron operational areas, and to obtain subsurface hydrogeological and chemical data from the northern, up-gradient portion of the Site.

3.2.2 Monitoring Well Installation, Development, and Surveying

Monitoring wells MW-1 through MW-17 were drilled, installed, and developed in July 2011 using a direct-push drill rig. The monitoring well locations were selected based on soil and reconnaissance groundwater sampling analytical results from the earlier phases of investigation at the Site, and to provide representative characterization of shallow groundwater across the majority of the Site. The monitoring well locations are shown on Figures 2 and 3. Boring logs and well construction details for the monitoring wells are presented in Appendix B.

3.2.3 Groundwater Monitoring and Sampling

The monitoring wells were used to evaluate shallow groundwater flow direction, potential Chehalis River and Elliot Slough tidal influence and interaction with groundwater, and potential water quality impacts by Site COPCs. Table 2 provides the groundwater elevation data collected during monitoring events at the Site.

Groundwater monitoring wells MW-1 through MW-17 were sampled in August 2011 to provide analytical data representative of the shallow groundwater-bearing zone at the Site. Groundwater samples from the monitoring wells were analyzed for the Site COPCs identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

3.2.4 Tidal Study

A tidal study was conducted at the Site on December 7 and 8, 2011. Groundwater elevations were recorded in monitoring wells MW-6, MW-7, MW-8, MW-9, and MW-10 using pressure transducers and electronic data loggers during a full tidal cycle over an approximately 25-hour period. Surface water elevations were obtained for the Chehalis River from nearby National Oceanic and Atmospheric Administration Aberdeen Tidal Station No. 9441187 for the same time period to compare to the Site groundwater elevation data.

3.3 TEST PIT INVESTIGATION AND GROUNDWATER SAMPLING – MARCH 2012

Test pits TP1 and TP2 were excavated with a backhoe on March 21, 2012 to evaluate the construction, depth, and foundation embedment characteristics of the concrete retaining wall present along the western half of the southern Site boundary. Test pit logs are provided in Appendix B.

Seventeen groundwater monitoring wells were gauged and sampled in March 2012 to provide additional hydrogeological and analytical data representative of the shallow groundwater-bearing zone at the Site. Groundwater samples from the monitoring wells were analyzed for Site COPCs by the analytical methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

3.4 ADDITIONAL WELL INSTALLATION AND GEOPROBE INVESTIGATION – APRIL TO AUGUST 2013

Two phases of remedial investigation boring and monitoring well installation were conducted at the Site in 2013. Boring B45 was advanced in the southeastern portion of the Site in April 2013 using a direct-push drill rig to collect soil samples (Figure 2). The purpose of boring B45 was to evaluate potential impacts to soil in the southeastern portion of the Site, east of the eastern terminus of the concrete retaining wall. Based on analytical results from boring B45 soil samples, borings B46 through B54 were drilled and sampled in August 2013 to further evaluate impacts to soil in the southeastern portion of the Site where petroleum hydrocarbon contamination was identified.

Monitoring well MW-18 was installed proximate to prior boring B45 in April 2013 using a direct-push drill rig. The purpose of monitoring well MW-18 was to evaluate potential impacts to groundwater associated with concentrations of DRO, ORO, and benzene detected in soil samples collected from boring B45. Monitoring wells MW-19 through MW-21 were installed in August 2013 to delineate the lateral extent of petroleum hydrocarbons that were identified in the shallow groundwater sample collected from monitoring well MW-18.

3.5 HYDRAULIC EVALUATION – AUGUST 2016

A topographic survey of the Site was conducted in August 2016 by Berglund, Schmidt & Associates, Inc. of Hoquiam, Washington, a Washington State-licensed surveying firm. The survey information was used to document the bathymetry of the intertidal zone in the adjoining Chehalis River immediately south of the existing retaining wall and riprap barrier along the southern side of the Site to further refine the conceptual Site model and Site-specific hydrogeology.

Falling and rising head aquifer tests (slug tests) were performed at monitoring wells MW-6 through MW-10, MW-12, and MW-18 to evaluate the hydraulic conductivity of the shallow groundwater-bearing zone at the Site. The purpose of the slug testing was to: 1) evaluate the hydraulic properties of aquifer materials in the Site subsurface; 2) further assess the potential influence on hydraulic conditions associated with installing an environmental sheet pile wall along the southern boundary

of the Site; and 3) evaluate whether other factors should be considered in the design of the environmental sheet pile wall.

Slug testing is a method of estimating hydraulic properties of aquifer materials in the vicinity of the well being tested by measuring the water-level recovery in the well after a near instantaneous change in hydraulic head (i.e., injecting or withdrawing a mass [slug] beneath the groundwater surface). Hydraulic conductivity proximate to the tested monitoring wells was assessed by measuring water level versus time data after the slug had been added or removed. Slug testing was performed at the Site in general accordance with ASTM International (ASTM) Standard D4043-96e1, Standard Guide for Selection of Aquifer Test Method in Determining of Hydraulic Properties by Well Techniques, and ASTM Standard D4044-96 (2002), Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers.

The slug tests were performed using a 1.5-inch-diameter by 3-foot-long weighted polyvinyl chloride slug. The slug tests were set up by collecting an initial depth to water measurement and suspending a pre-programed data logger in the test well at a depth of approximately 1 foot above the bottom of well using a stainless-steel cable. The falling head test was conducted first in each well by quickly dropping the slug, suspended from a polyethylene rope, to a depth below the water level in the well. Once the falling head test was completed as demonstrated by a stabilized water level in the monitoring well, the rising head test was initiated by quickly removing the slug.

The data were processed to estimate hydraulic conductivity values using AQTESOLV Version 4.50 software using the Bouwer and Rice solution for unconfined aquifer conditions. The hydraulic conductivity values from the rising and falling head tests for each well were averaged to estimate an average value for the well. The hydraulic conductivity data are summarized in Table C-1 in Appendix C. Plots of water level displacement versus time, and pertinent test input and output data also are provided in Appendix C. Because the falling head test data from monitoring wells MW-8, MW-12, and MW-18 were inconclusive, only the rising head data were used for estimating hydraulic conductivity in the vicinity of these wells.

3.6 SUPPLEMENTAL SUBSURFACE INVESTIGATION – MAY 2017

The following sections provide a summary of the RI activities completed at the Site in 2017, including supplemental subsurface Site characterization and a groundwater monitoring event.

3.6.1 Borings and Reconnaissance Soil Sampling

Borings B55 through B61 were drilled at the Site in May 2017 using direct-push drilling methods to collect subsurface soil samples. The purpose of the borings was to further refine and bound the vertical extent of soil contamination exceeding MTCA cleanup levels in the areas proximate to the concrete retaining wall along the southern Site boundary adjacent to the Chehalis River.

The seven borings were drilled to a total depth of 20 feet bgs. The boring locations are shown on Figure 2. Boring logs are provided in Appendix B. At least two soil samples were collected from each boring location, including at least one collected from the native silt material underlying the

Site. The soil samples were submitted for laboratory analysis for GRO, BTEX, DRO, and ORO by the methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009. Select soil samples collected from the base of borings or from areas that exhibited field indications of petroleum hydrocarbon contamination also were submitted for laboratory analysis for carcinogenic PAHs by EPA Method 8270D/SIM.

3.6.2 Groundwater Monitoring Event

Groundwater monitoring wells MW-1 through MW-21 were gauged and sampled in May 2017 to provide additional groundwater flow and quality data to further characterize the shallow groundwater-bearing zone at the Site. Groundwater samples were submitted for laboratory analysis for GRO, BTEX, DRO, and ORO by the methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

4.0 REMEDIAL INVESTIGATION RESULTS

The following sections describe the physical features at the Site, the geologic and hydrogeologic conditions encountered during completion of the RI, and the findings of the soil and groundwater characterization activities.

4.1 PHYSICAL SITE FEATURES

Historical drawings and diagrams depicting historical Site features associated with the 1922 to 1985 Chevron petroleum bulk fuel facility operations were reviewed and evaluated as part of the RI for the Site. The historical Site features associated with the former Chevron petroleum bulk fuel facility are depicted on Figure 2. Historical and active ASTs and USTs associated with the Site are listed in Table 1. The vast majority of sources of soil and groundwater contamination identified at the Site are the result of suspected releases associated with the historical operation of the former bulk fuel facility for over 60 years by Chevron. The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers on behalf of Chevron. According to the 1984 Hydrogeologic Report, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2).

A concrete retaining wall is present along the western half of the southern Site boundary, adjacent to the Chehalis River. The location of the retaining wall is shown on Figure 2. Test pits TP1 and TP2 were excavated adjacent to the retaining wall in March 2012. The purpose of the test pit excavations was to evaluate the depth and nature of construction of the concrete retaining wall, its footing, and its relationship to the subsurface stratigraphy. The base of the retaining wall footing was encountered at approximately 4 feet bgs in test pits TP1 and TP2. The underlying native silt was encountered at approximately 3.5 feet bgs in both test pits TP1 and TP2, representing a retaining wall footing embedment of approximately 0.5 foot into the native silt. Groundwater was observed seeping into the test pit excavations at a depth of 5.7 feet bgs. Based on stabilized groundwater depths in nearby monitoring wells MW-6 and MW-9, saturated subsurface soils are likely to occur at approximately 2 to 3 feet bgs. Test pit observations established that the retaining wall footing is embedded into the native silt, and below the depth of saturated soils. These data indicate that the retaining wall and underlying native silt act as a physical barrier to the lateral migration of COPCs in shallow soil and groundwater toward the surface water in the adjacent Chehalis River.

4.2 GEOLOGY AND HYDROGEOLOGY

This section discusses the results of the RI regarding the Site geology, hydrogeology, and tidal influence on Site groundwater.

4.2.1 Geology

Subsurface stratigraphy at the Site includes a shallow fill layer of sand with varying amounts of silt and gravel encountered from the ground surface to depths ranging from approximately 3.5 to 10 feet bgs. The fill layer is underlain primarily by silt, and to a lesser extent silty sand, with minor peat interbeds in localized areas to the total depth explored of 20 feet bgs at boring B3. Figure 3 provides a geological cross section that depicts the stratigraphic relationships of the identified subsurface materials.

4.2.2 Hydrogeology

An unconfined shallow groundwater-bearing zone is present within the fill layer at depths ranging from 1 to 9 feet bgs at the Site. Groundwater elevations for the shallow groundwater-bearing zone were contoured using the May 2017 groundwater-level measurement data collected by Farallon (Table 2). The groundwater elevation contour map developed using the May 2017 water level data is provided on Figure 4. Based on the groundwater elevation data, groundwater within the shallow groundwater-bearing zone is interpreted to flow predominantly from the upland areas toward the Chehalis River to the south. The hydraulic gradient is interpreted to be between approximately 0.025 to 0.035 foot/foot at the Site. A localized area in the east-central part of the Site, represented by monitoring wells MW-3, MW-4, and MW-5, is interpreted to have a more-shallow hydraulic gradient, between approximately 0.0011 to 0.0039 foot/foot to the south. Slug testing performed in August 2016 estimated a geometric mean hydraulic conductivity for the Site of 5.89 x 10⁻⁵ centimeters per second in the shallow water bearing zone.

Field observations during drilling and installation of monitoring wells MW-18 through MW-21 indicated that the monitoring wells constructed in this area yielded only nominal volumes of groundwater before being purged dry and required extended periods of time to recharge. The estimated rate of recharge was less than 0.01 gallons per minute based on field measurements, which is consistent with the relatively low transmissivity of the silt and silty sand encountered in the groundwater-bearing zone. Groundwater elevations in monitoring wells MW-18 through MW-21 were observed to remain consistent during construction and development regardless of tidal stage in the adjacent Chehalis River. No groundwater seeps were observed in the intertidal areas proximate to the well installation area.

4.2.3 Tidal Study

Surface water elevations recorded for the Chehalis River at the National Oceanic and Atmospheric Administration Aberdeen Tidal Station No. 9441187 during the 25-hour period of the 2011 tidal study fluctuated by a maximum of approximately 10 feet. The largest changes in groundwater elevation recorded during the tidal study ranged from approximately 0.15 foot in monitoring well MW-9 to approximately 0.23 foot in monitoring well MW-10. The groundwater elevation recorded in monitoring well MW-6 displayed approximately 0.06 foot fluctuation. Water level data recorded in monitoring wells MW-7 and MW-8 indicated no response. Based on the tidal study, there appears to be no connection between the shallow groundwater-bearing zone at the Site and the surface water of the Chehalis River. Hydrographs depicting monitoring well groundwater

elevations and the Chehalis River surface water elevation recorded for the tidal study are provided in Appendix D.

4.3 HYDRAULIC EVALUATION RESULTS

The hydraulic conductivity values derived from the slug testing described in Section 3.5, Hydraulic Evaluation – August 2016, were used to estimate potential groundwater flow rates adjacent to an environmental sheet pile wall to be installed along approximately 700 feet of the southern Site boundary. The geometric mean of the hydraulic conductivity values for all the test wells was 5.89 x 10⁻⁵ centimeters per second for the shallow water-bearing zone at the Site. Groundwater seepage velocity was estimated for the Site using the Site-wide hydraulic conductivity value, September 26, 2013 hydraulic gradient, and an assumed effective porosity of 0.25 for silty sands to be approximately 8.5 feet per year.

The average estimated hydraulic conductivity values for the four wells tested along the proposed sheet pile wall alignment (MW-6, MW-9, MW-12, and MW-18) ranged from 7.75 x 10⁻⁶ to 7.13 x 10⁻⁵ centimeters per second (0.16 to 1.5 gallons per day per square foot). The geometric mean of the average hydraulic conductivity for these four wells is 2.90 x 10⁻⁵ centimeters per second (0.62 gallon per day per square foot).

Using the minimum average estimated hydraulic conductivity value of 0.16 gallon per day per square foot, an assumed saturated aquifer thickness along the river bank of 6 feet, and an assumed horizontal hydraulic gradient of 0.035 foot/foot based on September 2013 water level measurements (see Section 4.2, Geology and Hydrogeology), the estimated minimum groundwater flow rate at the proposed sheet pile wall is 22 gallons per day, or 0.015 gallon per minute. This estimate is consistent with previous observations of well recharge proximate to the proposed sheet pile wall.

Using the maximum average estimated hydraulic conductivity value of 1.5 gallons per day per square foot, an assumed saturated aquifer thickness along the river bank of 8.5 feet, and an assumed horizontal hydraulic gradient of 0.035 foot/foot, the estimated maximum groundwater flow rate at the proposed sheet pile wall is 300 gallons per day, or 0.21 gallon per minute.

Using the geometric mean of the average estimated hydraulic conductivity value of 0.62 gallon per day per square foot, an assumed saturated aquifer thickness along the river bank of 7.25 feet (the average of the 6-foot and 8.5-foot values assumed above), and an assumed horizontal hydraulic gradient of 0.035 foot/foot, the estimated mean groundwater flow rate at the proposed sheet pile wall is 100 gallons per day, or 0.07 gallon per minute.

The minimum and maximum groundwater flow rates were used in the design of the proposed environmental sheet pile wall and hydraulic control system discussed in Section 7.2, Cleanup Action Alternatives.

4.4 SOIL AND GROUNDWATER ANALYTICAL RESULTS

Based on the historical uses of the Site, it was anticipated that COPCs would consist of petroleum fuels and related constituents and additives, and that these releases of COPCs were likely to have affected shallow soil and groundwater at the Site. These constituents were subsequently confirmed in Site soil and groundwater samples, and the RI has sufficiently delineated their occurrence at the Site to support selection of a feasible and final cleanup alternative consistent with all MTCA requirements. The past operational features and activities likely responsible for the presence of the COPCs identified at the Site are described in Section 5.5, Summary of Conceptual Site Model.

Soil sample analytical results for GRO and benzene are shown on Figure 5. Soil sample analytical results for total DRO and ORO are shown on Figure 6. Groundwater analytical results for GRO and benzene are shown on Figure 7. Groundwater analytical results for DRO and ORO are shown on Figure 8. The soil sample analytical results for petroleum hydrocarbons, PAHs, and metals are provided in Tables 3, 4, and 5, respectively. Table 6 presents petroleum hydrocarbon analytical results for the reconnaissance groundwater samples collected from the borings at the Site. Analytical results for the groundwater samples collected from monitoring wells at the Site are provided in Tables 7, 8, and 9 for petroleum hydrocarbons, PAHs, and metals, respectively. Laboratory analytical reports are provided in Appendix E.

The confirmed source areas identified at the Site with concentrations of COPCs exceeding MTCA cleanup levels are limited to shallow soil within the fill horizon with the exception of four localized areas of groundwater contamination. A description of the confirmed source areas in soil and groundwater defined by the specific COPCs detected is provided below.

4.4.1 Gasoline/Benzene Source Areas

Three localized source areas with GRO and/or benzene in soil at concentrations exceeding MTCA Method A cleanup levels were identified in the east-central and southeastern portions of the Site. Groundwater samples collected from monitoring wells on the western portion of the Site and areas outside the identified GRO/benzene source areas at the Site were reported either non-detect at the laboratory PQLs or less than the MTCA Method A cleanup levels for GRO and benzene (Figure 7; Table 7).

4.4.1.1 Central Gasoline and Benzene Source Area

The approximate areal extent of GRO and/or benzene in soil at concentrations exceeding MTCA Method A cleanup levels in the central portion of the Site is bounded by borings B18, B19, and B22 to the north; borings B11, B17, and B14 to the east; borings B1, B2, and B41 to the west; and borings MW-4 and MW-9 to the south (Figure 5). The highest concentrations of GRO and benzene were detected in a soil sample collected from 4 feet bgs in boring B3, which was advanced proximate to the western side of former Chevron gasoline Tank No. 16 (Figure 5). Metals, including lead, arsenic, cadmium, and mercury, also were detected at concentrations exceeding the MTCA Method A cleanup levels in the soil sample collected from 2 feet bgs in boring B3 (Table 5). The concentration of 1,500 mg/kg lead in soil at boring B3 is indicative of a potential historical release of leaded

gasoline. According to the 1984 Hydrogeologic Report, petroleum-contaminated soil was observed at test pits 4, through 9, and 11, which were advanced proximate to the former Chevron Tank Nos. 14 and 16 (Figure 5).

GRO and benzene were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring well MW-1 in the northeastern portion of the east-central GRO/benzene source area. Benzene was detected at a concentration of 11 micrograms per liter (µg/l) in the groundwater sample collected from monitoring well MW-6 on May 3, 2017 in the east-central GRO/benzene source area. These data are consistent with the petroleum-contaminated soil observed at test pits 1 and 9 advanced during the 1984 subsurface investigation (Figures 5 and 7). All other groundwater samples collected from the central source area monitoring wells, including MW-4, MW-5, MW-6, MW-7, and MW-9, were reported non-detect at the laboratory PQL (Figure 7).

4.4.1.2 Southeast Gasoline and Benzene Source Area

Another localized source area with GRO and benzene in soil at concentrations exceeding MTCA Method A cleanup levels was identified in the southeastern portion of the Site. The area containing GRO and benzene in soil in this area is bounded by borings B46 through B49 to the north, borings B51 and B12 to the east, boring B54 to the west, and boring B52 and the Chehalis River to the south (Figure 5). Historical features in this portion of the Site include three former gasoline ASTs north and northeast of the source area and multiple conveyance and product distribution lines operated by Chevron (Figure 2). These data are consistent with the petroleum-contaminated soil observed at test pit 3 advanced during the 1984 subsurface investigation in this source area (Figure 5).

Groundwater samples collected from monitoring wells MW-18 and MW-20 in the southeast GRO/benzene source area exceeded the MTCA Method A cleanup level for groundwater of 5 μ g/l (Figure 7).

4.4.1.3 Boring B57 Source Area

GRO and benzene were detected at concentrations of 350 and 0.076 mg/kg, respectively, in the soil sample collected from boring B57 at a depth of 9 feet bgs. GRO and benzene were reported non-detect at the laboratory PQL in the soil sample collected from boring B57 at depths of 14 and 19 feet bgs. GRO and benzene were reported non-detect at the laboratory PQL in the groundwater samples collected from monitoring well MW-11, west-adjacent to boring B57. The source area comprises a small, isolated volume of shallow soil contamination between 9 and 14 feet bgs proximate to Chevron Tank No. 12, which formerly stored gasoline (Figure 5). The shallow contamination identified at this source area is bounded by boring B58 to the east, boring B6 to the northeast, and boring B5 to the northwest (Figure 5).

4.4.2 Diesel and Oil Source Areas

Three source areas with total DRO and ORO at concentrations exceeding the MTCA Method A cleanup level have been identified at the Site, including a large area in the central portion of the

Site; a slightly smaller area in the western portion of the Site; and a localized area in the southeastern portion of the Site (Figure 6). DRO and ORO were reported non-detect at the laboratory PQL in groundwater samples collected from monitoring wells outside the diesel and oil source areas and on the up-gradient portion of the Site (Figure 6).

4.4.2.1 Central Diesel and Oil Source Area

The DRO and ORO source area in the central portion of the Site generally is bounded by borings B34, B22, and B44 to the north; borings B19, B10, MW-1, and B13 to the east; borings B2, B4, B7, and B5 to the west; and the retaining wall to the south. Approximately half of the central DRO and ORO source area is comingled with the east-central GRO/benzene source area. These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9 and 11 during the 1984 subsurface investigation (Figure 6).

The highest concentrations of DRO/ORO were detected in a soil sample collected from 4 feet bgs in boring B9 advanced proximate to the former Chevron fuel loading rack area and heating oil tanks in the northeastern portion of the source area (Figure 6). During the May 2017 groundwater monitoring event, combined dissolved phase concentrations of DRO and ORO were detected at concentrations ranging from 580 to 770 μ g/l in groundwater samples collected from monitoring wells MW-6, MW-7, and MW-11, slightly exceeding the MTCA Method A cleanup level of 500 μ g/l (Figure 8; Table 7).

4.4.2.2 West Diesel and Oil Source Area

A smaller DRO/ORO source area is present proximate to former Chevron Tank Nos. 8 and 9¹ on the western side of the Site, which were used to store fuel oil (Table 1, Figure 6). The highest concentrations of DRO/ORO were detected in a soil sample collected from 3.5 feet bgs in boring MW-13 advanced proximate to the western side of former Tank No. 8, which was used to store approximately 1.4 million gallons of fuel oil (Figure 6; Table 1). These data are consistent with the petroleum-contaminated soil observed at test pit 13 advanced during the 1984 subsurface investigation on the eastern side of former Chevron fuel oil Tank No. 8 (Figure 6).

DRO and ORO were detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected in 2011 and 2012 from monitoring well MW-17 on the western end of the Site and in monitoring well MW-12 on the southwestern portion of the Site in 2017, both of which are proximate to former Chevron Tank No. 8, which was used to store fuel oil (Figure 8). The combined concentration of dissolved DRO and ORO detected in the groundwater sample collected from monitoring well MW-15 on May 5, 2017 exceeded the MTCA Method A cleanup level; previous samples collected from monitoring well MW-15 in August 2011 and April 2012 were reported non-detect at the laboratory PQL.

¹ Table 1 presents tanks used on the Site. Tanks used by Standard Oil/Chevron 1922 through 1985 are identified by Tank Numbers (Tank Nos.) 8 through 26. Tanks used by Lakeside Industries 1985 to present are identified by area (e.g. Asphalt Tank Farm), and Tank Nos. 1 and 2.

Groundwater samples collected from the remaining monitoring wells in the west Site source area were reported either non-detect at the laboratory PQL or less than the MTCA Method A cleanup level for DRO and ORO.

4.4.2.3 Southeast Diesel and Oil Source Area

A third source area containing DRO and ORO at concentrations exceeding MTCA Method A soil and groundwater cleanup levels was identified in the southeastern portion of the Site, which is commingled with the GRO source in this area. The presence of DRO and ORO in this source area is bounded by borings B46 through B48 to the north; borings B50 and B51 to the east; borings B45 and B54 to the west, and boring B52 and the Chehalis River to the southeast and south, respectively (Figure 6).

DRO and ORO were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels in monitoring wells MW-18 through MW-20. This area is down-gradient of former Chevron AST No. 18, which was used to store approximately 900,000 gallons of light fuel oil and was proximate to numerous former product conveyance pipes used by Chevron (Figure 2). These data are consistent with the petroleum-contaminated soil observed at test pit 3 advanced during the 1984 subsurface investigation (Figure 8).

4.4.3 Polycyclic Aromatic Hydrocarbons

Selected soil and groundwater samples collected at the Site were tested for the presence of PAHs. Tables 4 and 8 provide summaries of the PAH analytical results for soil and groundwater samples, respectively. PAHs are commonly found as constituent compounds within petroleum hydrocarbon fuels, and the PAHs that were reported in Site soil and groundwater samples were consistent with that interpretation.

In general, PAHs were reported at low concentrations less than MTCA cleanup levels in the soil samples analyzed. 2-methylnapthalene and 1-methylnapthalene were reported at concentrations of 230 and 120 mg/kg, respectively, in the soil sample collected from boring B9 at a depth of 4 feet bgs (Table 4). These naphthalene-related compounds exceed the MTCA Method A soil cleanup level for naphthalene of 5 mg/kg. The soil sample collected from boring B9 containing methylnaphthalenes also had relatively high DRO and ORO concentrations, consistent with the PAHs being part of a fuel hydrocarbon mixture.

Ecology recommends evaluating environmental concentrations of carcinogenic PAHs using a total toxic equivalent concentration that is using calculated using the toxicity equivalency factor methodology developed by EPA (Ecology 2015). The toxic equivalent concentration reported for soil samples collected from borings B1, B8, B9, and B14 exceeded the MTCA Method A soil cleanup level. DRO and ORO also were detected at concentrations that exceeded MTCA cleanup levels in soil samples collected from borings B1, B8, B9, and B14. Carcinogenic PAHs were reported non-detect at the laboratory PQL in soil samples collected from depths of 14 to 19 feet bgs in the samples collected from borings B55 through B61 in 2017.

Groundwater samples from monitoring wells MW-4, MW-5, MW-6, MW-7, MW-9, and MW-12 were analyzed for PAHs. PAHs were not detected at concentrations exceeding MTCA Method A cleanup levels.

Based on the consistent association of PAHs with elevated concentrations of DRO and ORO in soil, DRO and ORO are considered indicator contaminants for the presence of PAHs that will be used to guide environmental decision-making at the Site.

4.4.4 Metals

Two soil samples collected from the Site contained metals at reported concentrations exceeding their respective MTCA Method A cleanup levels (Table 5). The soil sample collected at 4 feet bgs from boring B3 in the central source area contained arsenic, cadmium, lead, and mercury at concentrations exceeding MTCA cleanup levels. Lead was detected at a concentration of 1,500 mg/kg in the soil sample collected from boring B3 at a depth of 4 feet bgs. The soil sample from boring B3 at a depth of 4 feet bgs also contained the highest reported concentration of GRO and benzene at the Site, in addition to the metals (Table 3). The association of the high reported lead concentration, GRO, and benzene in soil at the boring B3 location demonstrates that the lead is likely associated with a release of leaded gasoline from former Chevron gasoline Tank No. 16 (Figure 5).

Arsenic was detected at a concentration of 46 mg/kg in a soil sample collected from boring MW-9 at a depth of 3 feet bgs, which exceeds both the MTCA Method A cleanup level and the natural background concentration for arsenic in soil. Detected concentrations of cadmium, chromium, and lead in the soil sample collected from boring MW-9 at a depth of 3 feet bgs were consistent with Washington State natural background concentrations for metals in soil. Because this soil sample did not have any compounds other than metals reported at concentrations suggesting Site-related contamination at this location and the concentrations of metals other than arsenic are within the expected naturally occurring range, the arsenic present also is likely naturally occurring.

Groundwater samples from monitoring wells MW-4, MW-5, MW-6, and MW-9 were analyzed for metals. With the exception of barium, all other metals were reported non-detect at the laboratory PQL (Table 9). Barium was detected at a maximum concentration of 140 μ g/l, which is less than the National Primary Drinking Water Standard Maximum Contaminant Level of 2,000 μ g/l.

4.5 TERRESTRIAL ECOLOGICAL RISK EVALUATION

A TEE is required by WAC 173-340-7490 at any site where there has been a release of a hazardous substance to soil. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

The Site is excluded from a TEE because the preferred cleanup alternative meets the requirements of WAC 173-340-7491(1)(b). Specifically, all residual contaminated soil will be covered by physical barriers (such as buildings or pavement) that prevent exposure to plants and wildlife, and institutional controls will be used to manage said contamination. No further consideration of terrestrial ecological impacts is required under MTCA. VCP TEE forms documenting the exclusion are provided in Appendix F.

5.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived from the results of the RI conducted at the Site. Included in this section is a discussion of the COCs, confirmed and suspected source areas, affected media, contaminant fate and transport characteristics of the released hazardous substances, and a preliminary exposure assessment. The conceptual site model is used as a basis for developing technically feasible cleanup alternatives and selecting a preferred cleanup action in accordance with applicable MTCA regulations.

5.1 CONSTITUENTS OF CONCERN

The Site has been operated as a hot-mix asphalt batch plant since 1985 by Lakeside Industries but was owned and operated by Chevron USA, Inc. as a bulk fuel facility between 1922 and 1985. Historical bulk fuel facility operations by Chevron between 1922 and 1985 likely included offloading of fuel from barges, and storage and distribution of various petroleum products. Features identified as part of the operational history of the Site include numerous ASTs with an estimated total storage capacity exceeding four million gallons, aboveground product piping, fuel loading racks, a barrel steamer, wash racks, and storage sheds (Figure 2). Lakeside Industries capped the entire Site with asphalt in 1985. The COPCs included in the RI as defined in the Work Plan were based on the historical uses of the property.

The COCs that will be considered in the development of cleanup action alternatives for the Site are those COPCs confirmed to be present at concentrations that exceed the preliminary screening levels identified in the RI. Preliminary screening levels for the RI are the MTCA Method A and B cleanup levels for soil and groundwater. The COCs identified for the Site are provided in Section 6.2, Constituents of Concern, and the corresponding preliminary cleanup levels are provided in Section 6.5, Cleanup Standards. Soil and groundwater have been confirmed as the only affected media at the Site.

5.2 CONFIRMED AND SUSPECTED SOURCES OF COCS

The concentrations of GRO, DRO, ORO, and associated petroleum compounds detected in soil and groundwater are attributed to releases associated with the long-term operation of the bulk fuel storage and distribution facility by Chevron at the property. The 1984 Hydrogeologic Report concluded that the results of the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron prior to Lakeside Industries acquisition of the Site in 1985. The identified distribution of COCs at the Site indicates that the sources are likely the result of multiple releases during Chevron's prior operations of the bulk fueling facility.

A minor spill of diesel fuel during Lakeside's operations occurred on October 3, 1989 as a result of overfilling of an AST within the containment area on the western side of the Site. The spill report filed for the incident indicated that a quantity of diesel fuel ranging from 50 to 100 gallons was released to the ground surface and affected surface soil in a localized area on and adjacent to the property. According to Ecology records, the cleanup of the diesel fuel and excavation of

affected shallow surface soil were completed on the same day, including backfilling the excavated area with clean fill.

Confirmed sources of COCs released to the environment at the Site that were identified during the RI include:

- Confirmed GRO/benzene source area in the central portion of the Site comprises a broad area of shallow soil contamination caused by surface releases from former Chevron ASTs and associated product conveyance piping, including but not limited to former Chevron Tank Nos. 14 and 16 used to store gasoline with a combined total storage capacity of over 1,000,000 gallons, former Chevron Tank Nos. 24 through 26 in the northeastern portion of the Site, the former garage, the former fuel loading rack, and/or wash racks operated by Chevron (Figure 5; Table 1). These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9, and 11, which were advanced during the 1984 subsurface investigation proximate to the former Chevron Tanks No. 14 and No. 16 (Figure 5).
- Confirmed GRO/benzene source area in the southeastern portion of the Site comprises a localized area of soil and groundwater contamination approximately centered on monitoring well MW-18 that is attributable to releases associated with the north-adjacent former Chevron product conveyance piping and/or prior operation of the two eastern-most former gasoline storage tanks east of Tank No. 18 (Figures 2, 5, and 7). These data are consistent with the petroleum-contaminated soil observed at test pit 3, which was advanced during the 1984 subsurface investigation proximate to the former Chevron product conveyance piping in this source area (Figures 2 and 5).
- Confirmed GRO/benzene source in the south-central portion of the Site proximate to boring B57 comprises an isolated volume of shallow soil contamination at approximately 9 feet bgs proximate to the former Chevron Tank No. 12, which was used to store gasoline.
- Confirmed DRO/ORO source area in the central portion of the Site comprises a broad area of shallow soil contamination attributable to surface releases from multiple ASTs and associated product conveyance piping formerly used by Chevron to store diesel, light fuel oil, and distillates; the former barrel wash area; the former fuel loading rack; former garage buildings; and/or wash racks shown on Figure 6. These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9, and 11, which were advanced during the 1984 subsurface investigation proximate to this source area (Figure 6).
- Confirmed DRO/ORO source area in the western portion of the Site comprises an area of shallow soil contamination attributable to surface releases from the operation by Chevron of the former boiler room and/or operation of former ASTs and associated product conveyance piping, including Tank Nos. 8 and 9 used to store fuel oil with capacities of 1,430,000 and 36,000 gallons, respectively (Figure 6; Table 1). These data are consistent with the petroleum-contaminated soil observed at test pit 13 advanced during the 1984 subsurface investigation on the eastern side of former Chevron fuel oil Tank No. 8 (Figure 6).
- Confirmed DRO/ORO source area in the southeastern portion of the Site comprises an area
 of shallow soil and groundwater contamination proximate to monitoring well MW-18

(Figures 6 and 8). Contamination in this area is attributable to surface releases from the operation of the former product conveyance piping by Chevron in the southeastern portion of the Site and/or prior operation of Tank No. 18 that was used to store light fuel oil. These data are consistent with the petroleum-contaminated soil observed at test pit 3, which was advanced during the 1984 subsurface investigation proximate to the former Chevron product conveyance piping in this source area (Figures 2 and 5).

5.3 CONTAMINANT FATE AND TRANSPORT

The following potential routes of migration of the COCs are considered for development of the cleanup action alternatives in the FS:

- Leaching from soil to groundwater;
- Lateral and vertical transport in groundwater;
- Discharge from groundwater to surface water and/or sediment;
- Migration from soil to surface water and/or sediment; and
- Volatilization from soil vapor, soil, and groundwater to ambient air.

The releases of COCs to soil have migrated through the vadose zone by a combination of gravity and infiltration of precipitation. With the exception of one low-level detection of benzene, COCs detected at concentrations exceeding screening levels are limited to depths ranging from 2 to 9 feet bgs within the fill layer at the Site. The impact to the shallow groundwater-bearing zone is limited and groundwater screening level exceedances were detected only in monitoring wells MW-1 in the east-central portion of the Site; monitoring wells MW-6 and MW-7 in the central portion of the Site; monitoring wells MW-11, MW-12, and MW-17 adjacent to the AST containment area and proximate to former Chevron Tank No. 8 in the western portion of the Site; and monitoring wells MW-18 through MW-20 in the southeastern portion of the Site. Based on the results of the RI, migration of contaminated soil to surface water and/or sediment in the Chehalis River along the southern Site boundary has not occurred. Potential future upset conditions such as a 100-year storm event or liquefaction and mobilization during an earthquake causing mass erosion of the river bank and subsequent mobilization and migration of contaminated soil along the southern Site boundary to surface water and/or sediment have been evaluated and incorporated into the FS to address this potential route of migration at the Site.

During the 2017 groundwater monitoring and sampling event, combined concentrations of DRO and ORO slightly exceeding the MTCA Method A cleanup level were detected for the first time in monitoring well MW-15 in the western portion of the Site. The groundwater flow direction of the shallow groundwater-bearing zone is generally to the south toward the Chehalis River. The western half of the southern Site boundary is bounded by a concrete retaining wall that extends to 4 feet bgs and is keyed into the underlying native silt, which is present to a depth of at least 20 feet bgs, the maximum depth explored during the RI (Figure 3). Supplemental Site characterization sampling in 2017 demonstrated that COCs are not present at concentrations exceeding MTCA Method A cleanup levels in the native silt underlying the Site.

Based on the findings of the 2011 tidal study, the retaining wall present on the western half of the Southern Site boundary and native silt underlying the entire Site act to prevent or substantively limit hydraulic communication between the shallow groundwater-bearing zone on the Site and the tidally influenced Chehalis River. Monitoring wells MW-15 and MW-17 are located outside and west of the concrete retaining wall, and monitoring wells MW-18 through MW-20 are east of the retaining wall. No sheen or other evidence of seepage of COCs attributable to the Site into the Chehalis River has been observed during evaluation of this potential route of migration during multiple monitoring events. Further, the 2011 tidal study confirmed Site groundwater flow, gradient, and elevation are not influenced by Chehalis River water levels. Currently, the entire site is paved with asphalt and/or concrete building slabs, which provide a physical barrier to potential soil vapors volatilizing to ambient and/or indoor air.

5.4 EXPOSURE ASSESSMENT

The following sections present the evaluation and conclusions pertaining to the potential human health and ecological risk at the Site. This section identifies current and potential future exposure scenarios that will assist in the selection of appropriate final cleanup levels and a final cleanup action alternative.

5.4.1 Soil Pathway

The exposure pathways for shallow soil include direct contact and atmospheric transport via the soil to vapor pathway. The direct contact pathway includes direct contact (dermal contact and/or ingestion) with soil beneath the Site. The depth of contamination is less than 15 feet bgs, with the majority of contamination being present in the depth interval from 2 to 9 feet bgs within the fill layer at the Site. The entire site is currently paved with asphalt. As a result, direct contact with soil would require excavation activities to encounter levels of the COCs that could pose a human health risk. Since the entire Site is capped with asphalt, there currently are no direct exposure routes to terrestrial ecological receptors. However, the potential for future development of a soil exposure pathway through potential erosion and migration of contaminated soil to surface water and/or sediment in the adjacent Chehalis River proximate to the southern Site boundary could pose a human health and/or ecological risk. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining inplace to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake. The potential for future development of a soil to surface water and/or sediment exposure pathway at the Site was evaluated and is addressed in the preferred cleanup alternative through source removal excavation and containment by the installation of a sheet pile wall along the southern Site boundary.

5.4.2 Groundwater Pathway

Potential exposure pathways for groundwater include the direct contact pathway, which comprises both dermal contact and ingestion pathways, and transfer of groundwater contamination to surface water and/or sediment. Direct contact with groundwater would require excavation through the existing asphalt cover to encounter levels of COCs that could pose a human health risk. As

discussed above, there is no evidence that discharge of contaminated groundwater attributed to the sources identified on the Site to the Chehalis River is occurring. However, the potential for future development of groundwater to surface pathways through migration of contaminated groundwater and/or saturated soil proximate to the southern Site boundary could pose a human health and/or ecological risk.

There are no groundwater supply wells at or in the vicinity of the Site that are used for potable water supply. The 2016 Site hydraulic evaluation and observations made during monitoring well installation and development indicate subsurface hydraulic conductivity within the shallow groundwater-bearing zone is low and potential groundwater yield is less than 0.5 gallon per minute. Since there is no practical use of groundwater in the Site vicinity, an exposure pathway via groundwater ingestion is unlikely to present a potential risk to human health. The results of the hydraulic and tidal studies, including low hydraulic conductivity in the shallow aquifer, negligible groundwater influence as a result in changes to Chehalis River stage, and the absence of riverbank seeps, confirm that the groundwater to surface water pathway currently is not complete at the Site. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake. The potential for future development of a groundwater to surface water exposure pathway at the Site was evaluated and is addressed in the preferred cleanup alternative through containment by the installation of the proposed sheet pile wall along the southern Site boundary.

5.4.3 Soil Vapor Pathway

The concentrations of GRO and BTEX in shallow soil and groundwater at the Site are relatively low and limited in extent. Short-term exposure to vapors could result if future construction workers encounter contaminated soil and/or groundwater. Ecology guidance for evaluating soil vapor intrusion into structures (Ecology 2009) presents screening levels for groundwater and soil vapor that could result in vapor intrusion exposure risks. The presence of benzene concentrations in groundwater exceeding 24 μ g/l beneath a building structure has the potential to result in adverse risk via vapor intrusion to indoor air. The benzene concentrations detected in groundwater ranged from 10 to 65 μ g/l. However, there are no structures in which vapors could accumulate near the current localized areas of GRO and BTEX contamination. GRO and BTEX vapors entering the atmosphere would be rapidly diluted by ambient air, volatilized, and photodegraded to levels that are not anticipated to present an exposure risk to human health or the environment. Further, the proposed source removal excavations of the localized areas of GRO and BTEX contaminated soil exceeding MTCA Method A cleanup levels and the anticipated monitored natural attenuation of residual concentrations of GRO and BTEX will eliminate the potential vapor intrusion exposure pathway at the Site.

5.5 SUMMARY OF CONCEPTUAL SITE MODEL

Based on the results of the RI field program, historical information confirming releases of petroleum hydrocarbons to subsurface soil and shallow groundwater across the Site as a result of

Chevron's operation of the bulk fuel facility prior to Lakeside Industries' ownership, Lakeside Industries' operations and history of a minor spill, and Farallon's previous experience at similar project sites, the vast majority of source areas identified at the Site are consistent with multiple releases associated with the long-term operation of the former bulk fuel storage and distribution facility at the Site by Chevron. Chevron's operations at the Site included the storage and distribution of petroleum products in excess of 4,000,000 gallons for a period of over 60 years (Table 1). In comparison, Lakeside Industries' operations at the Site since 1985 have included relatively limited use of petroleum products (less than 80,000 gallons stored on the Site at any given time), of which the majority is specifically related to the hot-mix asphalt batch plant operations (Table 1). The petroleum products used by Lakeside Industries are stored and managed in discrete areas of the Site such as the Asphalt Tank Farm and Diesel Tank Farm, both of which include secondary containment to prevent releases to the subsurface. In addition, the entire Site was paved by Lakeside Industries in 1985 prior to commencing operations to prevent the infiltration of potential surface releases of petroleum products and/or stormwater runoff to the subsurface beneath the Site. Further, the 1984 Hydrogeologic Report concluded that the results of the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2; Appendix A).

Based on the available data, Farallon's opinion is that the vast majority of contamination present at the Site, including the source areas identified in Section 4.4, Soil and Groundwater Analytical Results, with concentrations of COCs exceeding MTCA Method A cleanup levels in both soil and the shallow perched groundwater-bearing zone, is the result of surface releases to the largely unpaved ground surface from ASTs, aboveground product piping, fuel loading racks, wash racks, the barrel steamer area, the boiler room, and/or the garage buildings during Chevron operations. Based on a review of available records the only spill identified during Lakeside Industries' period of operations was a minor spill of diesel fuel that occurred on October 3, 1989 as a result of overfilling an AST within the Diesel Tank Farm containment area on the western side of the Site, which according to Ecology records was cleaned up on the same day of the release.

Potential routes of migration of the COCs that may also have contributed to the observed distribution of contamination include leaching from soil to groundwater, and lateral and vertical transport in the shallow groundwater-bearing zone. The vertical retaining wall present along approximately half of the southern Site boundary and the presence of the native silt underlying the entire Site provide physical barriers mitigating the potential migration and discharge of contaminated soil and/or groundwater to surface water or sediments in the adjacent Chehalis River (Figure 3). Further, the lack of groundwater contamination exceeding cleanup levels within the identified source areas, with the exception of localized areas proximate to monitoring wells MW-1, MW-12 and MW-17, MW-6 and MW-7, and MW-18/MW-21, is consistent with an older, attenuating groundwater dissolved-phase plume (Figures 7 and 8; Table 7).

The confirmed GRO/benzene source area in the central portion of the Site comprises a broad area of shallow soil contamination caused by surface releases from former ASTs and associated product conveyance piping operated by Chevron, including but not limited to Tank Nos. 14 and 16 used to store gasoline with a combined total storage capacity of over 1,000,000 gallons, the former garage, the former fuel loading rack, and/or wash racks (Figure 5; Table 1).

The confirmed GRO/benzene source area in the southeastern portion of the Site comprises a localized area of soil and groundwater contamination approximately centered on monitoring well MW-18 that is attributable to releases associated with the north-adjacent former product conveyance piping and/or prior operation of the two eastern-most former gasoline storage tanks east of Tank No. 18 (Figures 2, 5, and 7). The confirmed GRO/benzene source area centered on boring B57 in the south-central portion of the Site comprises a small, isolated volume of shallow soil contamination between 9 and 14 feet bgs proximate to Chevron Tank No. 12, which formerly stored gasoline (Figures 2, 5, and 7).

The 1984 Hydrogeologic Report and the results of the RI confirm that release(s) of GRO/benzene occurred from the historical bulk fuel facilities operated by Chevron, including multiple ASTs used to store gasoline and the associated product conveyance piping in the northeastern and southeastern portions of the Site. Additional potential sources of the GRO/benzene releases in the northeast source area include the garage building, the fuel loading rack, and/or wash racks operated by Chevron that were located in the east-central portion of the Site (Figure 2).

The confirmed DRO/ORO source area in the central portion of the Site comprises a broad area of shallow soil contamination attributable to surface releases from multiple ASTs and associated product conveyance piping formerly used to store diesel, light fuel oil, and distillates; the former barrel wash area; the former fuel loading rack; former garage buildings; and/or wash racks operated by Chevron (Figure 6).

The confirmed DRO/ORO source area in the western portion of the Site comprises an area of shallow soil contamination attributable to surface releases from the operation of the former boiler room and/or operation of former ASTs and associated product conveyance piping operated by Chevron, including Tank Nos. 8 and 9 used to store fuel oil with capacities of 1,430,000 and 36,000 gallons, respectively (Figure 6; Table 1).

The confirmed DRO/ORO source area in the southeastern portion of the Site comprises an area of shallow soil and groundwater contamination proximate to the location of monitoring well MW-18 (Figures 6 and 8). Contamination in this area is attributable to surface releases from the operation of the former product conveyance piping in the southeastern portion of the Site and/or prior operation of Tank No. 18 that was used to store light fuel oil.

6.0 TECHNICAL ELEMENTS

This section provides a summary and discussion of the ARARs, COCs, affected media, and cleanup standards including cleanup levels and points of compliance. The conceptual site model and RI technical elements are used as a basis for developing technically feasible cleanup alternatives and selecting a preferred cleanup action in accordance with applicable MTCA regulations.

6.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

The primary ARARs related to the RI/FS for the Site include:

- MTCA, Chapter 70.105D of the Revised Code of Washington, and WAC 173-340;
- Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2016);
- Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Ecology 2010);
- Washington State Solid Waste Management Laws and Regulations, Chapter 70.95 of the Revised Code of Washington, WAC 173-351, and WAC 173-304;
- MTCA Cleanup Levels and Risk Calculations II Update;
- The Washington State Dangerous Waste Regulation, WAC 173-303;
- Water Quality Standards for Groundwater of the State of Washington (WAC 173-200);
- Water Quality Standards for Surface Waters of the State of Washington (WAC 173-201A); and
- Protection of Upper Aquifer Zones (WAC 173-154).

These primary ARARs are anticipated to be the most applicable to the RI/FS because they provide the framework for the remedial action, including applicable and relevant regulatory guidelines, cleanup standards, waste disposal criteria, references for additional ARARs, and standards for documentation of the remedial action.

Other applicable ARARs for the Site include:

- The Occupational Safety and Health Act, Part 1910 of Title 29 of the Code of Federal Regulations;
- Safety Standards for Construction Work, WAC 296-155; and
- Accreditation of Environmental Laboratories, WAC 173-50.

6.2 CONSTITUENTS OF CONCERN

The COCs are defined as the chemicals that were reported at concentrations exceeding applicable MTCA cleanup levels. Provided below are the COCs identified by medium of concern.

6.2.1 Soil

The COCs reported in RI soil samples at concentrations exceeding MTCA Method A cleanup levels include GRO, DRO, ORO, benzene, ethylbenzene, naphthalene compounds (identified as 1-methylnapthalene and 2-methylnapthalene), carcinogenic PAHs (quantified as a total toxic equivalent concentration), arsenic, cadmium, lead, and mercury. Therefore, these compounds have been retained as COCs for the Site.

6.2.2 Groundwater

The COCs reported in RI groundwater samples at concentrations exceeding MTCA Method A cleanup levels include GRO, DRO, ORO, and benzene. Therefore, these compounds have been retained as COCs for the Site.

6.3 CONFIRMED SOURCE AREAS

Based on review of the 1984 Hydrogeologic Report, historical chemical use and storage practices at the Site, and on evaluation of soil and groundwater analytical data, the confirmed source areas for the COCs have been identified as follows:

- Petroleum hydrocarbons and associated compounds (GRO, DRO, ORO, benzene, ethylbenzene, and PAHs) identified in soil and groundwater samples are suspected to have originated at former ASTs, USTs, and product pipelines associated with historical operation of the Site by Chevron as a bulk fuel facility.
- Lead identified in the soil sample collected from boring B3 at a depth of 4 feet bgs is likely associated with a release of leaded gasoline during Chevron's operations. Arsenic, cadmium, and mercury concentrations in the same soil sample also are suspected to be associated with a release of leaded gasoline. Arsenic, cadmium, chromium, and lead detected in the soil sample collected from boring MW-9 at a depth of 3 feet bgs likely are naturally occurring based on the concentrations reported.
- Specific and discrete leaks, spills, and/or equipment issues and incidents that resulted in the releases of petroleum hydrocarbons, related compounds, and potentially metals are unknown.

The COCs and affected media were investigated during the RI. The current distribution of Site COCs in soil and groundwater is consistent with the conceptual Site model described above. The areas with the highest COC concentrations are the source areas that have been delineated in the central portion of the Site, the western portion of the Site, and the southeastern portion of the Site.

Based on the RI data for the Site, the nature and extent of COCs have been sufficiently characterized to support an FS for the selection and design of a permanent and final cleanup action alternative protective of human health and the environment in full compliance with MTCA requirements.

6.4 AFFECTED MEDIA

Soil and groundwater have been confirmed as affected media of concern at the Site. GRO, DRO, ORO, benzene, ethylbenzene, naphthalene compounds, carcinogenic PAHs, arsenic, cadmium, lead, and mercury were reported at concentrations that exceeded the MTCA Method A cleanup levels in Site soil samples. GRO, DRO, ORO, and benzene have been identified at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring wells at the Site.

Indoor air was assessed as a potential medium of concern because of the GRO and benzene detected in Site soil and groundwater samples. However, because of the relatively limited extent of benzene-affected soil, the lack of detected benzene concentrations and one low-level detection of GRO in groundwater within 100 feet of the occupied structure on the Site, the few current Site buildings, and the primarily outdoor nature of work conducted at the Site associated with the operation of an asphalt batch plant, indoor air has not been retained as a medium of concern at the Site.

Laboratory analytical results for groundwater samples collected from Site monitoring wells were used to delineate the extent of COCs in groundwater. Completion of the tidal study and field observations and monitoring conducted in the southeastern portion of the Site have shown that there is no hydraulic communication between the shallow water-bearing zone and the adjacent Chehalis River. Groundwater monitoring and sampling indicate that COCs at concentrations exceeding MTCA cleanup levels have not migrated off the Site, and that surface water of the Chehalis River is not a medium of concern for the Site.

6.5 CLEANUP STANDARDS

As defined in WAC 173-340-700, cleanup standards include establishing cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Site have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

6.5.1 Cleanup Levels

The cleanup levels are the concentrations of COCs that are to be met for each medium of concern at the points of compliance defined for the Site. The preliminary cleanup levels for COCs in soil and groundwater are presented below.

6.5.1.1 Soil

The preliminary cleanup levels for soil at the Site are the MTCA Method A cleanup levels. The preliminary cleanup levels for the COCs in soil are:

- o 30 mg/kg for GRO when benzene is present;
- o 2,000 mg/kg for DRO and ORO combined;
- o 0.03 mg/kg for benzene;
- o 6 mg/kg for ethylbenzene;

- 5 mg/kg for naphthalene and related compounds;
- o 0.1 mg/kg for total toxic equivalent PAHs;
- 20 mg/kg for arsenic;
- o 2 mg/kg for cadmium;
- o 250 mg/kg for lead; and
- o 2 mg/kg for mercury.

6.5.1.2 Groundwater

The preliminary cleanup levels for groundwater at the Site are the MTCA Method A cleanup levels for groundwater. The preliminary cleanup levels for COCs in groundwater are as follows:

- 0 800 μg/l for GRO when benzene is present;
- ο 500 μg/l for DRO and ORO combined; and
- o $5 \mu g/l$ for benzene.

6.5.2 Points of Compliance

The points of compliance are the locations at which preliminary cleanup levels for the COCs in each medium of concern must be attained to meet the requirements of MTCA and support issuance of a No Further Action determination from Ecology for the Site. The points of compliance for the Site were established in accordance with WAC 173-340-740(6) for soil, and WAC 173-340-720(8) for groundwater.

6.5.2.1 Soil

The point of compliance for soil for the Site was established in accordance with WAC 173-340-740(6) to be protective of the direct contact, groundwater, and vapor intrusion exposure pathways. Use of the standard point of compliance for soil throughout the Site is not possible because of the localized areas of petroleum contamination that will remain in soil following completion of the source removal excavations proposed under the preferred cleanup alternative selected in the FS.

The disproportionate cost analysis completed in the FS supports and confirms the use of a conditional point of compliance at the Site because the entire Site is covered with a physical barrier of pavement, concrete, and/or clean overburden preventing direct contact and effectively eliminating the soil vapor to indoor air exposure pathway. In addition, all remaining contamination anticipated in soil will be contained within the 8.6 acre-property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site. The disproportionate cost analysis is presented in Section 7.3.3, Disproportionate Cost Analysis.

6.5.2.2 Groundwater

The standard point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth that potentially could be impacted by the COCs throughout the Site. This groundwater interval consists of the shallow groundwater-bearing zone at the Site. As described in the preferred cleanup alternative selected in the FS, it is anticipated that the proposed source removal excavations and monitored natural attenuation will result in the attainment of MTCA cleanup levels for the shallow groundwater-bearing zone at the standard point of compliance in a reasonable restoration time frame.

7.0 FEASIBILITY STUDY

The purpose of the FS is to develop and evaluate cleanup action alternatives to facilitate selection of a preferred cleanup action at the Site in accordance with WAC 173-340-350(8). The FS is intended to provide sufficient information to select a preferred cleanup action under the Ecology VCP. The selected final cleanup action will be documented in a CAP to be prepared to guide the cleanup action at the Site.

The FS includes screening of potentially feasible remedial technologies and development of a range of Site-wide cleanup alternatives ranging from no additional cleanup action through a permanent Site-wide cleanup that achieves the cleanup standards identified in Section 6, Technical Elements, in the shortest possible restoration time frame without reliance on institutional or engineered controls. The cleanup alternatives are evaluated with respect to threshold and other requirements for cleanup actions set forth in MTCA.

This FS evaluates four cleanup alternatives according to criteria provided in MTCA (WAC 173-340-360[2], Minimum Requirements for Cleanup Actions). In accordance with WAC 173-340-350(8)(c)(ii), the FS includes one permanent cleanup action alternative, as defined in WAC 173-340-200, to serve as a baseline against which other alternatives are evaluated for the purpose of assessing whether the cleanup action selected is permanent to the maximum extent practicable.

The FS identifies a preferred cleanup alternative for the Site in conformance with WAC 173-340-360 through WAC 173-340-390. The preferred cleanup alternative is considered to present the highest degree of permanence and protectiveness considering current and potential future conditions to the maximum extent practicable according to the provisions of WAC 173-340-360(3)(e), Disproportionate Cost Analysis (DCA). The DCA uses a semi-quantitative procedure per WAC 173-340-360(3)(e)(ii), and guidance outlined in Ecology (2009) to compare the cost of implementation with the environmental benefit to be achieved and to identify which permanent cleanup alternative is more practicable under MTCA.

7.1 EVALUATION OF FEASIBLE REMEDIATION TECHNOLOGIES

Farallon performed a preliminary screening of potential remediation technologies typically applied to sites contaminated with the same, or comparable, COCs in order to eliminate technologies that did not meet the minimum requirements of implementability, effectiveness, and cost and to identify those technologies that would be most favorable for application considering current and potential future conditions at the Site.

Response actions, cleanup technologies, and process options considered potentially effective and implementable in the context of Site physical and chemical conditions are presented in Table 10. The technologies were evaluated primarily with respect to implementability and effectiveness. The technologies were also evaluated with respect to cost relative to other process options considered for the affected environmental media (e.g., soil and groundwater). Relative cost is based on published sources and professional judgment, and is used to further distinguish technologies with similar implementability and effectiveness. If a technology is equally implementable and effective,

the lower relative cost technology is preferred. Technology process options were evaluated and then screened using a scoring methodology from 0 (least favorable) to 3 (most favorable). Technology evaluation scores were summed, enabling a general ranking of technologies for application at the Site.

Treatment technologies considered included in-situ and ex-situ physical, chemical, and biological techniques. Containment technologies considered include physical barriers such as constructed covers or caps, and vertical barriers such as a sheet pile barrier, the existing wall, or a slurry wall. Source removal by excavation, soil disposal at an approved landfill, institutional controls, and engineered controls were also considered.

Conditions at the Site that influence the evaluation of implementability and effectiveness include:

- Active Site operation as a hot-mix asphalt batch plant;
- Shallow groundwater conditions;
- Proximity to the Chehalis River at the southern Site boundary;
- Massive concrete foundations at the locations of the former ASTs;
- Presence of subsurface utilities;
- Fine-grained lithology of low hydraulic transmissivity limiting potential effectiveness of injection and extraction in-situ treatment technologies; and
- Multiple source areas with commingled COCs adjacent to existing Site structures.

7.1.1 Retained Technologies

Table 10 provides results of the implementability, effectiveness, and cost evaluation for a wide range of cleanup technologies, and identifies those most favorable for Site conditions to be retained for inclusion in Site-wide cleanup alternatives in Section 7.2, Cleanup Action Alternatives. Cleanup alternatives were then evaluated according to MTCA threshold and other requirements defined in WAC 173-340-360(2) and 173-340-370 in Section 7.3.2, Evaluation Results. The highest ranked technologies to be incorporated into Site-wide cleanup alternatives are summarized below.

7.1.1.1 Institutional and Engineered Controls

Institutional controls are measures undertaken to limit or prohibit activities that may interfere with the integrity of a cleanup action or that could result in adverse exposure to hazardous substances at the Site and are implemented in accordance with WAC 173-340-440. While institutional controls are non-engineered measures, engineered controls refer to components of containment and/or other systems that are designed and constructed to prevent, or limit the movement of, or the exposure to, hazardous substances.

Institutional and engineered controls could include: an environmental covenant prohibiting the domestic use of shallow groundwater at the Site; provisions for long-term compliance monitoring of groundwater to demonstrate that natural attenuation is occurring;

implementation and ongoing maintenance of physical barriers to mitigate direct contact with hazardous constituents; and an environmental media management plan to govern the handling of impacted media during future maintenance or development projects. Specifically, to meet the expectations described in WAC 173-340-370, installation of the proposed environmental sheet pile wall provides an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. Institutional and engineered controls can be effective protective measures preventing exposure to impacted soil and groundwater and are considered to be readily implementable at the Site at a lower cost than active cleanup technologies.

7.1.1.2 Monitored Natural Attenuation

Natural attenuation relies on natural processes to attenuate concentrations of hazardous constituents in soil and/or groundwater. While natural attenuation occurs at most contaminated sites, there are optimal subsurface conditions that must exist to effectively and completely remediate a site within a reasonable restoration time frame.

Monitored natural attenuation (MNA) is the process of monitoring these conditions to ensure that natural attenuation continues to occur until remediation is complete. MNA is considered an effective means of reducing risk to human health and the environment at some sites and especially when risk of exposure is low and when a longer restoration time frame is acceptable. MNA is considered a potentially applicable component for cleanup of soil and groundwater at the Site.

7.1.1.3 Soil Technologies

Excavation and Landfill Disposal

Excavation of impacted soil and disposal at an appropriately engineered and permitted facility is an effective approach to reducing risk to human health and the environment. Excavation and landfill disposal employs standard construction practices and readily-available construction and earthmoving equipment. Subtitle D-permitted landfills are designed to securely manage non-hazardous soil over the long term. Excavation may require shoring to protect existing structures or alternatively demolishing existing structures and rebuilding them upon completion of cleanup.

Dewatering is required when excavating below groundwater. Excavation wastewater may require treatment prior to discharge or disposal off of the Site sufficient to satisfy discharge permit requirements (see below). Excavations would be backfilled with suitable imported material placed according to geotechnical specifications required for resurfacing according to future site use plans. Excavation and landfill disposal of soil from the selected source areas is considered to be a quick, effective, and implementable technology at the Site.

Physical Barriers and Constructed Covers

Physical barriers such as pavement covers or caps over contaminated areas are considered effective for limiting exposure to impacted soil and for reducing rainwater infiltration that could mobilize soil contamination from soil to groundwater. Capping systems consist of impervious surfaces such as floor slabs or exterior paved surfaces suitable for vehicle traffic and a range of other uses. Capping systems typically require periodic inspections, maintenance, and implementation of protective measures when breached for subsurface maintenance or construction activities. Physical barriers and constructed cover are considered implementable and effective technologies for application at the Site.

7.1.1.4 Groundwater Technologies

Physical Barriers and Constructed Covers

Surface caps to minimize infiltration into contaminated soil are considered effective at reducing the volume and movement of contaminated groundwater. Capping systems for reducing infiltration may include impervious surfaces such as floor slabs, exterior paving, and/or other surface improvements that reduce infiltration and physical disturbance of the subsurface. Capping systems typically require periodic inspections, maintenance, and implementation of protective measures when breached for subsurface maintenance or construction activities. Physical barriers and constructed cover are considered implementable and effective technologies for application at the Site.

Source Containment

Vertical subsurface barriers, such as a sheet pile barrier system or retaining wall system between the operational area of the Site and the Chehalis River, are considered to be effective at limiting migration of contaminated groundwater and/or soil. The existing concrete retaining wall, which is keyed into the underlying silt at the Site, currently is acting as a barrier between shallow groundwater and the Chehalis River along the western half of the southern Site boundary (Figure 3). However, the eastern half of the southern Site boundary, including the confirmed source area in the southeastern portion of the Site proximate to monitoring well MW-18 attributed to releases from former Chevron operations, currently does not have a vertical barrier system such as the concrete retaining wall to prevent potential migration of contaminated media to surface water (Figures 5 through 8). Future potential exposure scenarios, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, include flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

A sheet pile barrier wall can be readily installed along the entire length of the affected portion of the Site with concentrations of COCs exceeding cleanup levels in soil and/or shallow groundwater without disturbing the existing retaining wall, and would provide a more permanent measure of protection since sheet piles can be driven deeper into the underlying silt and can be extended along the entire length of the shoreline past the existing

retaining wall with minimal other disturbance to the Site. Installation of the sheet pile wall meets the expectations specified in WAC 173-34-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River to the maximum extent practicable.

Disposal to Sanitary Sewer

Contaminated groundwater removed from the subsurface or excavations that meets local discharge requirements may be discharged to the sanitary sewer. Discharge to the sanitary sewer is an implementable and effective technology for managing limited quantities of contaminated groundwater at the Site.

7.1.2 Rejected Technologies

Table 10 also identifies cleanup technologies that have been eliminated from further consideration for application at the Site because they are not amenable, or are less suited to Site-specific conditions, than other technologies and/or performed less well in the FS when evaluated with regard to implementability, effectiveness, and/or cost considerations.

7.1.2.1 In-Situ Technologies

In-situ technologies rely on injection and distribution of materials in the subsurface or changing subsurface conditions through application of heat, air, or other reagents to remediate COCs. These technologies include bioventing, enhanced bioremediation, chemical oxidation, soil flushing, soil vapor extraction, and thermal remediation (Table 10). Farallon's analysis indicates that the fine-grained lithology and low transmissivity of the subsurface soil at the Site will make implementation of in-situ treatments more difficult and more costly than other remedial technologies.

In-situ technologies utilizing injections or thermal treatments will require dense treatment point arrays, potentially multiple rounds of treatment, and may damage underground utilities. Furthermore in-situ technologies are also most effective remediating lighter fraction petroleum COCs such as GRO and BTEX, and are less effective at remediating heavier fraction petroleum COCs such as DRO, ORO, and cPAHs.

Because most GRO exceedances are comingled with heavier fraction petroleum hydrocarbons that also exceed MTCA cleanup levels, soil or groundwater treated in-situ for GRO and BTEX would likely require additional cleanup actions to address residual heavy fraction petroleum hydrocarbon contamination. This approach of partial treatment for GRO and BTEX followed by separate cleanup actions to address DRO and ORO would perform much less favorably in terms of technical feasibility, practicability, and cost effectiveness than selecting a technology that comprehensively treats all petroleum hydrocarbons present. Therefore, in-situ treatments for soil and groundwater were not carried forward in the FS.

7.1.2.2 Ex-Situ Technologies

Ex-situ technologies remove contaminated media for treatment. Ex-situ technologies include biopiles or bioreaction, slurry phase biological remediation, incineration, thermal desorption, air stripping, advanced oxidation processes, and disposal at licensed facilities. Farallon's analysis eliminated several ex-situ technologies including biological, physical, and chemical treatments that were determined to be difficult to implement at the Site, less effective at achieving cleanup levels within a reasonable timeframe, and/or less cost effective than other available technologies. Specific ex-situ technologies that were not carried forward in the FS are identified in Table 10.

7.1.2.3 Soil Improvement Containment Systems

Construction of a slurry wall to contain groundwater on the Site was not carried forward in the FS (Table 10). Installation of a slurry wall may compromise the existing concrete retaining wall along the western half of the southern Site boundary that is already acting as a barrier between contaminated Site groundwater and/or soil and the Chehalis River (Figure 4). A completed slurry wall is not expected to perform as well as a sheet pile wall to contain groundwater, while requiring significantly more ground disturbance to install, which could create potential preferential pathways for migration of contaminated Site groundwater and/or soil to surface water or sediment in the Chehalis River.

7.2 CLEANUP ACTION ALTERNATIVES

The most favorable cleanup technologies derived from the technology screening were used to develop a suite of Site-wide cleanup action alternatives (herein referred to as Cleanup Alternatives) for cleanup of the affected media of concern at the Site. Based on Site-specific conditions, the most practicable cleanup approach for the Site will include a limited source removal action, containment, institutional and engineered controls, and long-term monitoring to confirm that natural attenuation of residual COCs is occurring in soil and groundwater. Institutional and engineered controls will be required where COCs remain in media at concentrations exceeding applicable preliminary cleanup levels following completion of active remediation.

A total of four cleanup alternatives were developed for the Site:

- Cleanup Alternative 1: No Action;
- Cleanup Alternative 2: Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation;
- Cleanup Alternative 3: Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls; and
- Cleanup Alternative 4: Complete Excavation of Soil Exceeding Preliminary Cleanup Levels.

A description of the components of each cleanup alternative follows. Summary cost estimates developed for the four cleanup alternatives are provided in Table 11 with more detail provided in Table 12.

7.2.1 Cleanup Alternative 1—No Action

The No Action alternative assumes that no additional remedial action will occur at the Site. No additional monitoring will occur, and no protective institutional or engineered controls will be implemented. While existing paved surfaces, buildings, and the retaining wall functioning as containment measures would remain in-place for the foreseeable future, there will be no restrictions to their removal, maintenance, modification, or replacement. COCs would remain in soil and groundwater at concentrations exceeding preliminary cleanup levels until attenuated naturally over the long term, but no monitoring would be conducted to evaluate and document the attenuation process.

Cleanup Alternative 1 is retained for evaluation in the FS as adverse risk to terrestrial ecological receptors has not been identified with current Site conditions and the potential for adverse risk from direct contact exposure to COCs by human receptors is considered to be low under current Site conditions.

7.2.1.1 Implementation

Residual concentrations of COCs would be contained beneath the existing pavement surfaces and buildings for the foreseeable future and contamination migration from soil to groundwater and via groundwater transport would be limited by the existing impervious surfaces by the existing retaining wall keyed into the underlying native silt and, to a lesser extent, by the subsurface stratigraphy in the area east of the retaining wall. However, since the retaining wall is not laterally contiguous on the eastern portion of the Site where COCs are present in soil and shallow groundwater at concentrations exceeding the MTCA cleanup levels, future human health and/or ecological exposure could occur along the southern, down-gradient Site boundary under upset conditions. For example, potential flooding and/or bank erosion caused by a 100-year storm event or earthquake could cause migration of contaminated soil and/or groundwater remaining in-place to surface water or sediment in the adjacent river. Groundwater at the Site currently is not used, and future use of shallow groundwater is not anticipated at the Site. While the Site will be operated for the foreseeable future as a hot-mix asphalt batch plant, it is possible that the Site could be redeveloped by the current property owner, or another future property owner, for other uses according to zoning, shoreline, and other local, state, and federal rules and regulations. Future human health and/or ecological exposure could occur during future excavation activities and/or during redevelopment.

7.2.1.2 Time Frame and Estimated Cost

There is no time frame associated with Cleanup Alternative 1. The cost for implementing Cleanup Alternative 1 is \$0.

7.2.2 Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation

Cleanup Alternative 2 assumes environmental protection from exposure to COCs remaining above preliminary cleanup levels, until attenuated naturally, would be realized by use of institutional and engineered controls and containment measures. Containment would be realized with the existing

impervious surfaces, the existing retaining wall keyed into the underlying native silt, and by the subsurface stratigraphy in the area east of the retaining wall.

A sheet pile barrier with sealed seams would be installed along the upland face of the existing retaining wall to a depth of up to 25 feet and would extend about 300 feet beyond the eastern end of the existing retaining wall to encompass the entire portion of the southern Site boundary where COCs remain at concentrations exceeding preliminary cleanup levels adjacent to the Chehalis River. The full length of the proposed sheet pile wall would be approximately 700 feet. The sheet pile barrier system would include installation of a drainage system along the northern (up-gradient) face of the barrier at the interface of the fill layer and the underlying silt to reduce hydrostatic pressure build-up behind the sheet pile barrier. The sheet pile barrier system would address current exposure pathways and future potential exposure scenarios, including flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

Groundwater discharge from the drainage system would be treated above ground using granular activated carbon prior to discharge to the municipal sanitary sewer system at the Site. COCs would remain in soil and groundwater at concentrations exceeding preliminary cleanup levels until attenuated naturally over the long term. A groundwater monitoring program would be implemented to evaluate the efficacy of natural attenuation and to document trends of COC concentrations and geochemical parameters affecting attenuation.

7.2.2.1 Implementation

Institutional and engineered controls would be implemented per WAC 173-340-440 and would include an environmental covenant recorded on the property deed. The environmental covenant would include the following:

- o A Compliance Monitoring Plan and an associated SAP for performance, protection, and confirmational monitoring per WAC 173-340-410.
- o A groundwater restriction placed on use of shallow groundwater for domestic use.
- o Stipulated requirements for inspections and maintenance of the existing cover and retaining wall systems at an 18-month frequency for 5 years.
- O An approximately 700-foot-long sheet pile wall installed and driven into the underlying silt to a total depth of approximately 25 feet bgs to provide permanent containment to the maximum extent practicable of contaminated soil and/or hydraulic control of groundwater exceeding MTCA cleanup levels along the southern boundary of the Site adjacent to the Chehalis River. Installation of the sheet pile wall meets the expectations specified in WAC 173-34-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. For purposes of this FS, the total installed area of sheet pile shoring is approximately 2,000 square feet.

- Stipulated monitoring and maintenance requirements for testing up to 15 groundwater monitoring wells for indicator COCs and natural attenuation geochemical parameters at an 18-month frequency for 5 years and for evaluation of natural attenuation. The environmental covenant will reference and require the implementation of a Groundwater Monitoring Plan, including a Sampling and Analysis Plan (SAP) developed per WAC 173-340-810.
- o Implementation of an Environmental Media Management Plan (EMMP) to govern the handling of potentially contaminated environmental media during future redevelopment or utility work, as necessary, and including general worker protective measures. The EMMP will include a SAP developed per WAC 173-340-810.

7.2.2.2 Time Frame and Estimated Cost

The sheet pile barrier and drainage modification elements of Cleanup Alternative 2 will be constructed over the course of 1 to 2 months. Other elements of Cleanup Alternative 2 will be implemented over the course of 5 years. The environmental covenant to be attached to the property deed would be developed over the course of up to 6 months and institutional and engineered controls will be implemented until COC preliminary cleanup levels have been demonstrated to have been achieved. For the purposes of this FS, monitoring and maintenance activities are assumed to be completed in Year 5.

The estimated cost to complete Cleanup Alternative 2 is summarized below from Table 12:

Capital Cost: \$1,135,000
Ongoing Periodic and Future Costs: \$194,800
Total: \$1,330,000

(Estimated range: \$931,000 to \$2,000,000)

7.2.3 Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls

Cleanup Alternative 3 assumes environmental protection from exposure to COCs remaining at concentrations exceeding preliminary cleanup levels would be realized by removal of soil in the three primary areas where residual concentrations of COCs in soil and groundwater are confirmed at concentrations that exceed preliminary cleanup levels and can be readily accessed to perform simple source removal excavations. Cleanup Alternative 3 also includes use of institutional and engineered controls, containment measures, and monitored natural attenuation as described above for Cleanup Alternative 2.

7.2.3.1 Implementation

Institutional and engineered controls would be implemented per WAC 173-340-440, and would include an environmental covenant recorded on the property deed. Institutional and engineering controls would be consistent with those implemented under Cleanup Alternative 2, including installation of the sheet pile barrier and associated drainage control system. It is assumed that the environmental covenant would include the elements described under Cleanup Alternative 2.

Assumptions for source area excavation include the following:

- A Compliance Monitoring Plan and an associated SAP will be prepared for performance, protection, and confirmational monitoring per WAC 173-340-410.
- Prior to excavation, surface paving in localized areas will require removal to the extent practicable. For purposes of the FS, it is assumed that this will entail removal of about 5,400 square feet of asphalt.
- Soil will be excavated to depths up to approximately 12 feet bgs to remove soil with concentrations of COCs exceeding MTCA cleanup levels in the three defined excavation areas shown on Figure 9:
 - West Area—The West Area is proximate to boring B40 and monitoring well MW-17 where DRO and ORO were detected in soil and groundwater samples at concentrations exceeding preliminary cleanup levels;
 - O Central Area—The East-Central Area is proximate to monitoring well MW-1 where benzene was detected in a soil sample and benzene and GRO were detected in groundwater samples at concentrations exceeding preliminary cleanup levels; and
 - O Southeast Area—The Southeast Area is proximate to borings B45, B50, B53, and B61 and monitoring wells MW-18 through MW-21 where GRO, DRO, ORO, and benzene were detected in soil and groundwater samples at concentrations exceeding preliminary cleanup levels.
- Temporary dewatering will be required where excavation occurs below groundwater. Depth to groundwater varies seasonally between the ground surface and 10 feet bgs.
- An approximately 700-foot-long sheet pile wall will be installed and driven into the underlying silt to a total depth of approximately 25 feet bgs to provide permanent containment to the maximum extent practicable of contaminated soil and/or hydraulic control of groundwater exceeding MTCA cleanup levels along the southern boundary of the Site adjacent to the Chehalis River. Installation of the sheet pile wall meets the expectations specified in WAC 173-340-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. For purposes of this FS, the total installed area of sheet pile shoring is approximately 2,000 square feet.
- Excavated soil containing COCs at concentrations exceeding preliminary cleanup levels will require off-Site disposal at a Subtitle D landfill and/or an approved facility authorized to dispose of petroleum-contaminated soil. For purposes of this FS, it is assumed that approximately 3,100 tons of soil will be trucked off-Site for disposal at the Republic Services facility in Klickitat County, Washington.

- Extracted groundwater collected during excavation dewatering will require disposal. For purposes of this FS, it is assumed that approximately 70,000 gallons of wastewater will be pretreated prior to discharge to the City of Aberdeen sanitary sewer system.
- Excavations will be backfilled and surfaces restored to provide a physical barrier over areas containing residual levels of COCs and enabling the Site to continue to be used as a hot-mix asphalt batch plant. For purposes of this FS, it is assumed that 3,100 tons of backfill material will be imported, placed, and compacted and approximately 17,600 square feet of area will require paving.

7.2.3.2 Time Frame and Estimated Cost

The source removal excavation elements of Cleanup Alternative 3 will be implemented over the course of up to about 1 month. The environmental covenant to be recorded would be developed over the course of up to 6 months, and long-term institutional and engineered controls will be implemented until COC preliminary cleanup levels have been demonstrated to have been achieved at the defined points of compliance. For the purposes of this FS, monitoring, inspections, and maintenance activities are assumed to be completed in Year 5.

The estimated cost to complete Cleanup Alternative 3 is summarized below from Table 12:

Capital Cost: \$2,110,000
Ongoing Periodic and Future Costs: \$204,800
Total: \$2,310,000

(Estimated range: \$1,620,000 to \$3,470,000)

7.2.4 Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels

Cleanup Alternative 4 assumes environmental protection from exposure to COCs remaining at concentrations exceeding preliminary cleanup levels would be accomplished by removal of all soil at the Site with concentrations of COCs exceeding preliminary cleanup levels. While Cleanup Alternative 4 includes compliance monitoring, it does not require implementation of institutional or engineered controls, protective containment measures, or a long-term environmental media monitoring program. In accordance with WAC 173-340-350(8)(c)(ii), Cleanup Alternative 4 is a permanent cleanup action alternative, as defined in WAC 173-340-200, and serves as a baseline against which other alternatives can be evaluated for the purpose of determining whether a preferred cleanup action is permanent to the maximum extent practicable.

7.2.4.1 Implementation

It is assumed that Cleanup Alternative 4 would include the following elements:

o A Compliance Monitoring Plan and an associated SAP will be prepared for performance, protection, and confirmational monitoring per WAC 173-340-410.

- o The hot-mix asphalt batch plant facility will be moved temporarily to an alternate location until cleanup work is completed.
- Excavation will occur in areas where there are current facility structures. For the purposes of this FS, it is assumed that the 8,300-square-foot, half two-story, half one-story office and shop building will be demolished and then replaced after cleanup is completed. It is assumed that approximately 800 lineal feet, or about 90 percent, of the existing retaining wall will be demolished during excavation activities and replaced prior to backfilling. Other structures will either be demolished or temporarily moved prior to initiation of cleanup and then replaced upon completion of cleanup.
- O Prior to excavation, surface paving and former tank foundations will require removal. For purposes of the FS, it is assumed that this will entail removal of 76,500 square feet of asphalt and 2,520 tons of concrete, including concrete from the existing retaining wall.
- O Soil will be excavated to depths up to 12 feet bgs where concentrations of COCs exceed preliminary cleanup levels and will occur over a large area of the Site where releases associated with over 60 years of historical operation of the former bulk fuel facility occurred. Excavation will occur in those areas of the Site depicted on Figures 5 and 6 where concentrations of COCs exceed preliminary cleanup levels plus additional areas as needed for excavation side sloping.
- o Dewatering will be required where excavation occurs below groundwater. Depth to groundwater varies seasonally between the ground surface and 10 feet bgs.
- Excavated soil containing concentrations of COCs exceeding preliminary cleanup levels will require off-Site disposal at a Subtitle D landfill and/or an approved facility authorized to manage petroleum-contaminated soil. For purposes of this FS, it is assumed that approximately 47,100 tons of soil will be trucked off the Site and disposed at the Republic Services facility in Klickitat County, Washington.
- Extracted groundwater collected during excavation dewatering will require disposal. For purposes of this FS, it is assumed that approximately 150,000 gallons of wastewater will be pretreated prior to discharge to the City of Aberdeen sanitary sewer system.
- Excavations will be backfilled and surfaces restored to enable the Site to return to use as a hot-mix asphalt batch plant. For purposes of this FS, it is assumed that 47,100 tons of backfill material will be imported, placed, and compacted and approximately 230,000 square feet of area will require paving.
- o It is assumed that the hot-mix asphalt batch plant facility will be moved back to the Site and that the office and shop building, demolished to enable excavation, will be replaced. Temporarily moved structures will be re-installed.

7.2.4.2 Time Frame and Estimated Cost

Cleanup Alternative 4 will be implemented over the course of up to about 12 months. The estimated cost to complete Cleanup Alternative 4 is summarized below from Table 12:

 Capital Cost:
 \$16,300,000

 Ongoing Periodic and Future Costs:
 \$130,000

 Total:
 \$16,400,000

(Estimated range: \$11,500,000 to \$24,600,000)

7.3 CLEANUP ACTION ALTERNATIVES EVALUATION

This section presents the evaluation of Cleanup Alternatives 1 through 4 summarized above. The evaluation was performed with respect to the requirements set forth in MTCA under WAC 173-340-350 through 173-340-370. The cleanup alternatives evaluation considered results of the RI and Site-specific conditions including the nature and extent of COCs and the exposure assessment presented in Section 5, Conceptual Site Model. The evaluation of cleanup alternatives also considered current facility structures and operations. This section presents a summary of the evaluation process per MTCA, the results of the evaluation, and the results of a DCA completed for the Site.

7.3.1 Evaluation Process

The FS considered the requirements under WAC 173-340-350 and the criteria defined in WAC 173-340-360 for screening of potentially feasible cleanup alternatives for the Site. A cleanup alternative must satisfy the following threshold criteria as specified in WAC 173-340-360(2)(a):

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

In addition to meeting the threshold criteria, cleanup actions under MTCA must also meet the following additional requirements specified in WAC 173-340-360(2)(b):

- Provide for a reasonable restoration time frame based on the factors provided in WAC 173-340-360(4)(b);
- Use permanent solutions to the maximum extent practicable based on the criteria defined in WAC 173-340-360(3)(f); and
- Consider public concerns raised during public comment on the CAP (WAC 173-340-600).

The factors used to evaluate the reasonableness of the restoration time frame per WAC 173-340-360(4)(b) include:

• Potential risks posed by the Site to human health and the environment;

- Practicability of achieving a shorter restoration time frame;
- Current use of the Site, surrounding areas, and associated resources that are or may be affected by releases from the Site;
- Availability of alternative water supplies;
- Likely effectiveness and reliability of institutional controls;
- Ability to control and monitor migration of hazardous substances from the Site;
- Toxicity of the hazardous substances at the Site; and
- Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions.

The criteria used to evaluate the degree of permanence to the maximum extent practicable per WAC 173-340-360(3)(f) include:

- Protectiveness: Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced; the time required to reduce risk at the facility and attain cleanup standards, and risks at the Site resulting from implementing the alternative; and improvement of overall environmental quality.
- Permanence: The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of the waste treatment process, and the characteristics and quantity of treatment residuals generated.
- Effectiveness over the long term: Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time that hazardous substances are expected to remain on the Site at concentrations that exceed preliminary cleanup levels, and the magnitude of residual risk with the alternative in place. The following types of cleanup action components may be used as a guide, in descending order, when assessing the relative degree of long-term effectiveness: reuse or recycling; destruction or detoxification; immobilization or solidification; disposal on- or off-Site in an engineered, lined, and monitored facility; isolation or containment with attendant engineered controls on the Site; and institutional controls and monitoring.
- Management of short-term risks: The risk to human health and the environment associated
 with the alternative during construction and implementation, and the effectiveness of
 measures that will be taken to manage such risks. This criterion includes risks to workers
 and customers at businesses adjoining the Site resulting from implementation of the
 cleanup alternative.
- Technical and administrative implementability: Ability to be implemented, including consideration of whether the alternative is technically feasible, administrative and regulatory requirements, permitting, scheduling, size, complexity, monitoring

requirements, access for construction operations and monitoring, and integration with the business operations at the Site and adjoining business operations.

- Consideration of public concerns: Whether the community has concerns regarding the
 alternative and, if so, the extent to which the alternative addresses those concerns. This
 process includes concerns from individuals, community groups, local governments, federal
 and state agencies, or any other organization that may have an interest in or knowledge of
 the Site.
- Cost: The cost to implement the alternative, including the cost of construction and anticipated long-term costs. Long-term costs include operation and maintenance, monitoring, and reporting costs.

The expectations specified in WAC 173-340-370 for facilities adjacent to a surface water body requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels were used to evaluate the cleanup alternatives anticipating contaminated media remaining in-place proximate to the southern Site boundary adjacent to the Chehalis River.

7.3.2 Evaluation Results

The results of the evaluation for each alternative are summarized in Table 11 and described below.

7.3.2.1 Threshold Criteria

Protect Human Health and the Environment

According to the exposure assessment presented in Section 5, Conceptual Site Model, the two types of exposure risk associated with the presence of COCs at the Site are terrestrial ecological risk and human health risk. Because the Site qualifies for a TEE exclusion based on WAC 173-340-7491, mitigating the potential human health risk associated with exposure to COCs in soil and groundwater at the Site will be the primary objective of any cleanup action implemented.

Cleanup Alternatives 2 through 4 satisfy the MTCA criterion for protection of human health and the environment. Under Cleanup Alternative 1, No Action, subsurface contamination would continue to attenuate naturally over time and existing containment structures would provide a level of protection but there are no provisions for either institutional or engineered controls to ensure maintenance of the containment elements, to further limit exposure to COCs in the event of a future potential upset condition, or to monitor natural attenuation.

Cleanup Alternative 2 (Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation) provides additional protection by use of containment measures and institutional and engineered controls ensuring that future monitoring and maintenance activities are conducted to limit exposure to COCs in soil and groundwater. Cleanup Alternative 3 (Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls) and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels) include the institutional and engineered

controls identified for Cleanup Alternative 2 and provide additional protection by source area excavation.

Comply with Cleanup Standards

Active remedial measures in Cleanup Alternatives 3 and 4 are designed to ultimately achieve cleanup standards within a reasonable restoration time frame by excavation and dewatering of source areas (Cleanup Alternative 3) or by excavation and dewatering of all areas with COCs exceeding preliminary cleanup levels (Cleanup Alternative 4). Compliance with cleanup standards would occur via natural attenuation processes under Alternative 3 but over a longer period of time. Natural attenuation processes under Cleanup Alternatives 1 and 2 would require a much longer period of time to achieve cleanup standards.

Comply with State and Federal Laws

Along with the preliminary cleanup levels selected per MTCA, numerous laws and associated regulations influence how any particular remedial action is implemented. Applicable chemical-specific, location-specific, and action-specific state and federal laws are listed in Section 6, Technical Elements. Permitting by agencies, substantive standards promulgated by state and local agencies, best management practices, workplace safety, and off-Site waste disposal practices are a few of the aspects that must be formally addressed in the design and implementation phases of a cleanup action to ensure compliance with applicable laws. While Cleanup Alternative 1 does not comply with MTCA, the other cleanup alternatives possess features that can be designed and implemented in compliance with state and federal laws including MTCA.

Provide for Compliance Monitoring

Compliance monitoring per WAC 173-340-410 refers to the collection, analysis, and reporting of environmental data to determine the short- and long-term effectiveness of a cleanup action and whether protection is being achieved in accordance with cleanup objectives. A Compliance Monitoring Plan will be developed in conjunction with the CAP, which will include standard field techniques and laboratory analytical methods in a SAP. Cleanup Alternatives 2 through 4 include comprehensive compliance monitoring programs to fulfill this requirement.

7.3.2.2 Other Requirements

Provide for a Reasonable Restoration Time Frame

Restoration time frame is the time needed to meet cleanup standards (i.e., to meet all preliminary cleanup levels in all media at all points of compliance). MTCA places a preference on those alternatives that can be implemented in a shorter period of time while equivalent in other respects. Under MTCA, eight factors are used to determine whether a cleanup action provides for a reasonable restoration time frame (Section 7.3.1, Evaluation Process). Cleanup Alternative 2 (Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation), Cleanup Alternative 3 (Source Area Excavation,

Containment, Monitored Natural Attenuation, Institutional and Engineered Controls), and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels), offer a reasonable restoration time frame under MTCA.

The restoration time frame for Alternatives 1 and 2 are the longest and would rely on attaining cleanup standards for affected media through natural attenuation. Cleanup Alternatives 3 and 4 use soil excavation to remove source material. Cleanup Alternative 4 would remove all material with COC concentrations exceeding preliminary cleanup levels. For purposes of this FS, the restoration time frame for groundwater with Cleanup Alternatives 3 and 4 is assumed to be within 5 years of completing remedial action construction. The restoration time frame for soil with Cleanup Alternative 3 after removal of source areas is estimated to be several to many years, as COCs are naturally attenuated; however, the removal of source material is expected to significantly reduce the period required to achieve cleanup standards compared to Alternatives 1 and 2. Further, the contaminated soil remaining in-place would be managed through the recording of an Environmental Covenant on relevant portions of the Site. The restoration time frame for soil with Cleanup Alternative 4 is the duration of remedial action construction as all soil with COCs at concentrations exceeding preliminary cleanup levels will be removed; this period has been estimated in the FS to be approximately 12 months.

Longer multi-year restoration time frames associated with soil in Cleanup Alternatives 2 and 3 and with groundwater in Cleanup Alternatives 2 through 4 are considered reasonable based on the following:

- O Potential risks posed by the Site to human health and the environment will be low after implementing cleanup actions. An environmental covenant to be implemented with Cleanup Alternatives 2 and 3 requires protective measures that would effectively and reliably limit exposure to residual contamination.
- Practicable active remedial measures that could achieve a shorter restoration time frame than Cleanup Alternative 2 are limited, and are included in Cleanup Alternative 3.
- Resources associated with the Site are not known to be affected by releases at the Site under current conditions.
- Shallow groundwater is not used at the Site and municipal water is provided to this
 area of the city. Contamination from the Site is sufficiently bounded and has not
 migrated off the property.
- o Institutional controls included in Cleanup Alternatives 2 and 3 are effective and reliable for mitigating potential adverse exposure to COCs exceeding preliminary cleanup levels. Cleanup Alternative 4 is sufficiently protective that institutional controls are not required.
- O Cleanup Alternatives 2 and 3 provide for adequate control and monitoring of potential migration of COCs from the Site. As media containing COCs exceeding preliminary cleanup levels will be removed with Cleanup Alternative 4, additional controls and monitoring are not required.

- o Measures are employed in Cleanup Alternatives 2 and 3 to prevent adverse toxic exposure to residual weathered petroleum products.
- Weathered petroleum products, under favorable conditions, are amenable to degradation with natural processes.

7.3.2.3 Use Permanent Solutions to the Maximum Extent Practicable

MTCA specifies that when a cleanup action is selected, preference be given to actions that are permanent to the maximum extent practicable. Multiple approaches to cleanup are possible for the Site. Under MTCA, seven factors are used to determine whether a cleanup action provides for a reasonable restoration time frame (Section 7.3.1, Evaluation Process). Active treatment approaches such as those in Alternative 3 (Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls) and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels) offer the greatest degree of permanence by actively reducing the mass of contaminants at the source areas to achieve cleanup standards in a reasonable restoration time frame.

Per WAC 173-340-360(3)(f), the following criteria were considered for evaluation of permanence to the maximum extent practicable. Table 11 summarizes the results of the evaluation, which uses a scoring methodology for each of the seven components of this criterion on a scale of 1 to 10, with 10 being most favorable and 1 being least favorable. A mathematically derived MTCA Composite Benefit Score is presented in Table 11 as described in the table notes for use in the DCA. The derived scores and the DCA are further described in Section 7.3.3, Disproportionate Cost Analysis.

Protectiveness

Cleanup Alternative 1—No Action, will not provide additional protection beyond that provided by the existing containment systems comprised of pavement, the retaining wall, and the native underlying silt and does not include a protective covenant or environmental monitoring. Cleanup standards will be achieved over the course of many years by natural attenuation processes.

Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would not accelerate the achievement of cleanup standards but provides for monitoring of natural attenuation processes and additional environmental and public health protection via an environmental restrictive covenant. The existing containment systems would be retained and supplemented with a sheet pile barrier to provide permanent protection from future mobilization and migration to the adjacent surface water body to the maximum extent practicable.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, provides the same protective measures and monitoring of COC concentrations in shallow groundwater as Cleanup Alternative 2 but adds excavation of source areas, which will reduce groundwater exposure risk and restoration time frame for groundwater to approximately 5 years. In addition, all remaining

contamination anticipated in soil exceeding MTCA cleanup levels will be contained at the southern Site boundary by the sheet pile barrier wall and within the 8.6-acre property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site.

Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, is the most protective cleanup alternative and will achieve cleanup standards over the short term and provides for confirmational groundwater monitoring.

Permanence

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would limit mobility of COCs with the existing pavement and retaining wall containment systems supplemented with a sheet pile barrier (Cleanup Alternative 2) until concentrations are permanently reduced by natural attenuation processes.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, permanently reduces the volume of hazardous substances with source excavation in areas where groundwater concentrations exceed cleanup levels. Cleanup Alternative 3 relies on containment systems to reduce mobility of residual COCs until naturally attenuated. Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, permanently reduces volume of hazardous substances with mass excavation when all areas where COCs exceed preliminary cleanup levels are removed and is considered to provide the highest degree of permanence.

Effectiveness Over the Long Term

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, provide effectiveness over the long term with use of the existing pavement cover, retaining wall, and underlying silt to contain COCs on the Site until naturally attenuated.

Cleanup Alternative 2 provides for supplemental engineered and institutional controls and compliance monitoring. Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, effectively reduces Site risks by source excavation and disposal at a permitted facility and use of containment systems supplemented by engineered and institutional controls and compliance monitoring. Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, effectively reduces Site risk with mass excavation in all areas where COCs exceed preliminary cleanup levels and is considered to provide the highest degree of long-term effectiveness.

Management of Short-Term Risks

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, presents low short-term risk during implementation and primarily during construction of the sheet pile

barrier under Cleanup Alternative 2. Excavation and off-Site disposal elements of Cleanup Alterative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, and Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels are considered to present more short-term risks related to construction and off-Site transport of hazardous materials although these elements of the cleanup actions can be effectively managed.

Technical and Administrative Implementability

Cleanup Alternative 1—No Action is readily implementable. Implementation of Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would include activities such as establishing and recording an environmental restrictive covenant, and implementing periodic inspection, maintenance, and monitoring tasks. Implementation of Cleanup Alternatives 1 and 2 has no or negligible impacts on Site business operations although some impact may occur during construction of the sheet pile barrier element of Cleanup Alternative 2.

Implementation of Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, would not involve technically complex field activities or administrative complications, although there will be modest impacts to Site business operations during the period of source removal and backfilling as well as construction of the sheet pile barrier.

Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, would require extensive administrative and logistical coordination to complete, as well as significant prolonged disruption to operations at the Site, including halting and relocating the hot-mix asphalt batch plant operations, demolishing and rebuilding multiple existing structures, removing large reinforced concrete foundations for former ASTs, expanding excavation of source areas, extending periods of hauling and increased truck traffic on local roads, and managing relatively large quantities of wastewater during the excavation period. Cleanup Alternative 4 is, therefore, considered the least implementable cleanup alternative.

Consideration of Public Concerns

Concentrations of COCs exceeding preliminary cleanup levels are limited to discrete areas on the Site, which is an active hot-mix asphalt batch plant operation with controlled access. There currently is no complete pathway for exposure via direct contact for the public, and implementation of construction activities would include measures to prevent public exposure to hazardous materials. Cleanup alternatives would address potential public concerns with regard to residual levels of COCs at the Site and with regard to excavation and transport of petroleum-contaminated soil to an off-Site disposal facility.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, will result in a modest increase in hauling traffic on public roadways for a limited period of time. Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, will result in extensive and

prolonged hauling traffic on public roadways over the course of the excavation work, which is estimated to require approximately 12 months to complete, as well as during hot-mix asphalt batch plant relocation.

Cost

Estimated costs for implementation of the four cleanup alternatives are summarized in Table 12, Summary of Cleanup Alternative Cost Estimates. The estimated cost for implementing Alternative 1—No Action is \$0. The estimated cost for implementing Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation (\$1,330,000, ranging between \$931,000 to \$2,000,000) is substantially lower than the estimated costs for implementation of active remedial measures.

The estimated cost for implementing Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls (\$2,310,000, ranging between \$1,620,000 and \$3,470,000) includes excavation and shoring to protect existing structures, and treatment and disposal of wastewater collected during excavation de-watering. The estimated cost for implementing Cleanup Alternative 4—Mass Excavation (\$16,400,000, ranging between \$11,500,000 and \$24,600,000) includes a large volume excavation including temporarily relocating the hot-mix asphalt batch plant facility, demolition and rebuilding of the existing structures, removal of the former AST foundations and demolition and replacement of approximately 90 percent of the retaining wall. Approximately 47,100 tons of soil would be disposed of off-Site and replaced with imported material before restoring the Site for continued operation as a hot-mix asphalt batch plant.

7.3.3 Disproportionate Cost Analysis

The purpose of the DCA is to facilitate selection of the cleanup alternative that provides the highest degree of permanence to the maximum extent practicable. The following cleanup alternatives were considered for the DCA:

- Cleanup Alternative 1—No Action;
- Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation:
- Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls; and
- Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels.

The DCA for the Site was conducted according to the methodology provided by Ecology (2009) and per WAC 173-340-360(3)(e). The cleanup alternative evaluation presented in Table 11 is provided in a format suggested by Ecology (2009). Table 11 presents a quantitative assessment of the MTCA criteria for permanence to the maximum extent practicable (WAC 173-340-360[3][f]).

A numeric score ranging from 0 to 10 was assigned for each of the criteria based on best professional judgment. The higher the score, the more favorable the evaluation criterion is under MTCA. The criteria scores were weighted according to Ecology (2009) suggestions and as indicated in Table 11.

A MTCA Composite Benefit Score was calculated for each alternative by summing the mathematical product of the criterion score times the weighting factor, which provided the quantitative measure of environmental benefit that would be realized with implementation of a cleanup alternative. For example, if the weighting factors for the six criteria are Protectiveness at 30 percent, Permanence at 20 percent, Long-Term Effectiveness at 20 percent, Short-Term Effectiveness at 10 percent, Implementability at 10 percent, and Public Concerns at 10 percent, if scores for each of these criteria were 7.5, 7, 6, 3, 7, and 6, respectively, the MTCA Composite Benefit Score is calculated as: (7.5)*(0.3)+(7)*(0.2)+(6)*(0.2)+(3)*(0.1)+(7)*(0.1)+(6)*(0.1) = 6.45. A score of 6.45 represents moderate environmental benefit on a scale of 0 to 10, with 10 having the highest environmental benefit.

Table 11 summarizes the basis for the scoring and the estimated costs for the four cleanup alternatives. Chart 1 graphically presents the results of the DCA. The red bars on Chart 1 indicate the environmental benefit offered by each cleanup alternative as measured by the MTCA Composite Benefit Score using the left vertical axis of the graph. The blue bars reflect the estimated cost for each alternative using the right vertical axis of the graph. The incremental benefit of implementing an alternative can be discerned relative to the incremental cost of implementation.

Implementing Cleanup Alternative 1 results in a MTCA Composite Benefit Score of 5.5. By spending about \$1,330,000 to implement Cleanup Alternative 2, the MTCA Composite Benefit Score will rise to 6.2, an increase of about 13 percent (i.e., about \$102,300 per percent increase in benefit estimated by the MTCA Composite Benefit Score).

Implementing Cleanup Alternative 3 entails an investment of approximately \$2,310,000 resulting in a MTCA Composite Benefit Score of 7.8, an increase of about 42 percent over Cleanup Alternative 1 (No Action) and about a 26 percent increase over Cleanup Alternative 2 (i.e., about \$55,000 and \$38,000 per percent increase in benefit estimated by the MTCA Composite Benefit Score, respectively).

Implementing Cleanup Alternative 4 will cost about seven times the estimated cost for Cleanup Alternative 3 for an approximately equivalent MTCA Composite Benefit Score (i.e., about \$16,00,000 for a negligible change in MTCA Composite Benefit Score). The negligible increase in environmental benefits provided by Cleanup Alternative 4 compared to Cleanup Alternative 3, as demonstrated by the respective MTCA Composite Benefit Scores of each cleanup alternative, is clearly substantial and disproportionate to the benefits and costs incurred, estimated to be more than \$14,000,000.

Implementing Cleanup Alternative 3 offers the greatest environmental benefit estimated by the MTCA Composite Benefit Score for the unit costs incurred of the cleanup alternatives evaluated. Cleanup Alternative 3 offers the highest degree of permanence to the maximum extent practicable

of the four cleanup alternatives evaluated. Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, is therefore selected as the preferred cleanup alternative for application at this Site.

7.4 PREFERRED CLEANUP ACTION ALTERNATIVE

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, is the preferred cleanup action alternative. The rationale for selecting Cleanup Alternative 3 as the preferred cleanup action alternative is based on the results of the evaluation presented in Section 7.3, Cleanup Action Alternatives Evaluation. The Cleanup Action Alternatives Evaluation was conducted per the requirements set forth in MTCA under WAC 173-340-350 through 173-340–370, and based on Farallon's best professional judgment for implementing cleanup technologies at the Site. The results of the FS cleanup alternative evaluation are presented in Table 11. Figure 9 depicts the primary elements that would be implemented as part of Cleanup Alternative 3 on a Site map.

The preferred cleanup action alternative, Cleanup Alternative 3, satisfies MTCA threshold criteria as specified in WAC 173-340-360(2)(a) and meets additional requirements specified in WAC 173-340-360(2)(b) and expectations specified in WAC 173-340-370 for a facility adjacent to a surface water body defined in Section 7.3.1, Evaluation Process. Of the four alternatives evaluated, Cleanup Alternative 3 is considered to offer the highest degree of protectiveness and permanence to the maximum extent practicable, as it received the highest MTCA Composite Benefit Score (i.e., environmental benefit under MTCA) for permanence to the maximum extent practicable per WAC 173-340-360(3)(f) and Ecology (2009): 7.8 on a scale of 0 to 10, with 10 representing the highest degree of permanence under MTCA. The basis for the MTCA Composite Benefit Score derived for Cleanup Alternative 3 is summarized below:

- Protectiveness is considered favorable, with a score of 8 out of 10 reflecting a high degree
 of protectiveness with source excavation and the containment system components.
 Engineered controls provide for periodic inspection and maintenance of the containment
 systems. Institutional control in the form of an environmental covenant limits future
 exposure and a groundwater monitoring program will enable evaluation of natural
 attenuation processes over time.
- Permanence is considered favorable, with a score of 8 out of 10 resulting from the source area excavations and disposal at a permitted off-Site disposal facility and reliance on permanent and reliable containment systems to limit future mobility instead of permanent destruction on the Site.
- Long-Term Effectiveness is considered favorable, with a score of 7 out of 10 based on reliance on containment and natural attenuation processes and the associated environmental covenant and periodic inspections and repairs of the containment systems outside of source excavation areas.
- Short-Term Risk Management is considered favorable, with a score of 7 out of 10 with low risk and impact to facility operations associated with the source area excavations.

- Implementability is considered favorable, with a score of 8 out of 10 since limited source excavation, paving, and institutional and engineered controls are readily implementable and will occur in areas with low impact to facility operations.
- Public Concerns are considered favorable, with a score of 9 out of 10 as a result of anticipated public perception of minimal impacts during excavation work.

Cleanup Alternative 3 meets the requirements set forth in WAC 173-340-370, Expectations for Cleanup Action Alternatives, specifically for a facility adjacent to a surface water body. Cleanup Alternative 3 minimizes reliance on long-term management and control of residual contamination with source excavation. Use of containment systems limit mobility and future exposure to residual levels of COCs in the shallow soil mitigates future risks where removal is impracticable. Institutional controls in the form of an environmental covenant, including restrictions on use of Site groundwater, maintenance of engineered controls, a compliance groundwater monitoring program, and requirements for protective measures during future subsurface activities at the Site, will provide additional protection.

Cleanup Alternative 3 relies on natural attenuation processes in areas where COCs at concentrations exceeding preliminary cleanup levels will remain in soil after limited source area excavation. Cleanup measures to be implemented for groundwater where active cleanup measures are considered impracticable are consistent with WAC 173-340-370(7) because: 1) source control is achieved by source excavation; 2) safeguards will be implemented to reduce the risk of exposure to residual levels of COCs at the Site; and 3) compliance groundwater monitoring will be performed to enable the evaluation of efficacy of natural attenuation and estimation of the time frame for COC concentrations to attain preliminary cleanup levels.

Cleanup Alternative 1—No Action presents no cost and relies on existing containment measures. Cleanup Alternative 1, however, is not considered to satisfy the threshold requirements for cleanup under MTCA. Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, and Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels also meet MTCA requirements. Cleanup Alternative 2 has a lower MTCA Composite Benefit Score than Cleanup Alternative 3. The MTCA Composite Benefit Score for Cleanup Alternative 4 is equivalent to Cleanup Alternative 3. Cleanup Alternative 2, while approximately 60 percent the cost of Cleanup Alternative 3, is not considered permanent to the maximum extent practicable. Cleanup Alternative 4 is so disruptive to Site operations that it is considered technically impracticable and offers only marginal additional environmental benefit while costing approximately seven times as much as Cleanup Alternative 3. The added environmental benefits associated with Cleanup Alternative 4 are clearly disproportionate to the potential costs incurred, as demonstrated by Section 7.3, Disproportionate Cost Analysis, and added public concerns associated with the extensive relocations and hauling requirements of complete excavation.

7.5 IMPLEMENTATION

Technical elements, including preliminary cleanup levels and points of compliance for the remedial action at the Site, are described in Section 6, Technical Elements. Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, practicably achieves preliminary cleanup levels protective of human health direct contact exposure to COCs at the standard point of compliance in a reasonable restoration time frame. Implementation of Cleanup Alternative 3 includes the following primary elements:

- Preparation and submittal of a draft Compliance Monitoring Plan and an associated SAP for performance, protection, and confirmational monitoring per WAC 173-340-410.
- Containment using the existing pavement, buildings, and retaining wall keyed into native silt material. Installation of an approximately 700-foot-long permanent sheet pile wall, including along approximately 660 feet of the southern Site boundary, supplemented with engineered controls to protect against future migration of contaminated media to the adjacent surface water and/or sediment, including periodic inspections and repairs;
- Limited source area excavation and off-Site disposal of contaminated soil at a permitted landfill;
- Monitored natural attenuation of groundwater through Year 5; and
- Institutional controls consisting of an environmental covenant restricting future groundwater use, stipulating physical barrier cover system inspections and maintenance requirements, and referring to and requiring implementation of a Compliance Groundwater Monitoring Plan and an EMMP to govern the handling of potentially contaminated environmental media during future construction work requiring excavation in areas of residual contamination.

Implementation of Cleanup Alternative 3 is described in Section 7.2.3, Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls. Details of implementation of the selected cleanup alternative will be developed further in a CAP per WAC 173-340-380.

The estimated cost to complete Cleanup Alternative 3 is summarized below from Table 12 and is estimated to be \$2,310,000 and within a range of \$1,620,000 to \$3,470,000.

7.6 COMPLIANCE MONITORING

During excavation, compliance monitoring will be conducted in accordance with a Compliance Monitoring Plan as specified in WAC 173-340-410 and will include protection, performance, and confirmational soil sampling. The post-remediation, Groundwater Monitoring Plan will include up to 15 groundwater monitoring wells sampled at 18-month intervals through Year 5 following the source area excavations (Figure 9).

7.7 INADVERTENT DISCOVERIES

Excavation areas identified under the preferred cleanup action alternative are primarily located on portions of the Site where fill previously was placed. Therefore, the potential for an inadvertent discovery of cultural resources and/or human skeletal remains is very low. Farallon has prepared an Ecology Inadvertent Discovery Plan (Appendix G) that will be provided to field staff and contractors and followed in the event of an inadvertent discovery during construction.

7.8 RESTORATION TIME FRAME

As indicated in Section 7.3.2, Evaluation Results, and in Table 11, Summary of Cleanup Alternative Evaluation, preliminary groundwater cleanup standards are expected to be attained within approximately 5 years of source area excavations. Achievement of soil cleanup standards outside of the source area excavations will occur over multiple years as natural attenuation processes occur. All remaining contamination anticipated in soil will be contained within the 8.6-acre property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site. The restoration time frame is considered to be reasonable under MTCA, as additional protective controls, inspections, and monitoring will be employed, off-Site effects of COCs have not been identified, and cleanup levels will be attained for shallow groundwater in a reasonable restoration time frame.

As indicated in Section 7.2.3.2, Time Frame and Estimated Cost, the active excavation elements of Cleanup Alternative 3 will be implemented over the period of approximately 1 month. The environmental covenant to be attached to the property deed would be developed over the course of up to 6 months, and long-term institutional and engineered controls will be implemented until COC preliminary cleanup levels have been demonstrated to have been achieved. For the purposes of this FS, monitoring, inspections, and maintenance activities are assumed to be completed in Year 5.

7.9 CONTINGENCY ACTIONS

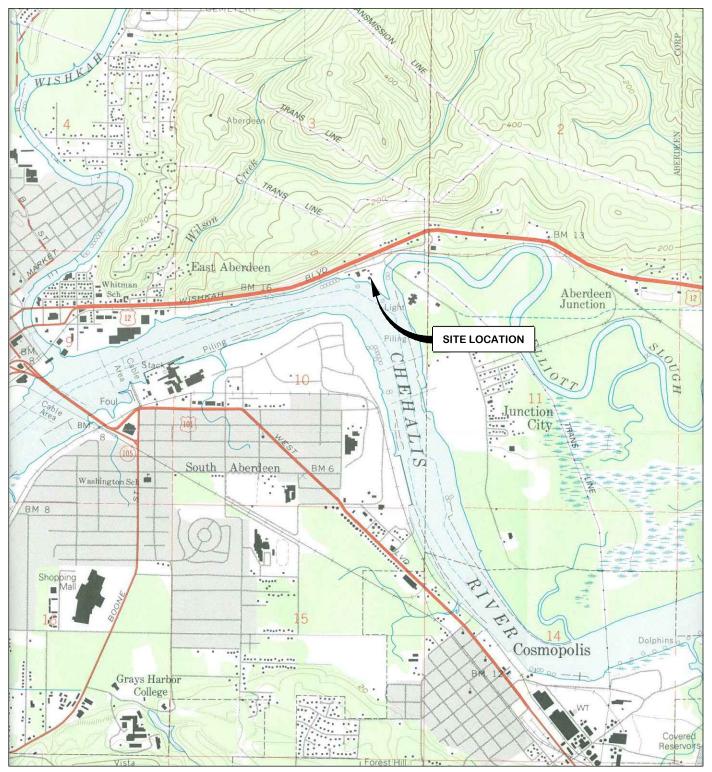
The decision process for evaluating whether modifications to the selected cleanup approach are warranted, and the monitoring requirements that will be implemented to document effectiveness, will be provided in the CAP and the associated Compliance Monitoring Plan. The primary contingency action trigger will be non-compliance with applicable groundwater cleanup levels in groundwater samples collected from the groundwater monitoring well network by the end of Year 5, as set forth the in the CAP.

8.0 BIBLIOGRAPHY

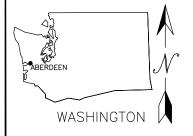
- Farallon Consulting, L.L.C. (Farallon). 2009. Technical Memorandum Regarding Remedial Investigation—Initial Phase Summary Lakeside Industries Facility, Aberdeen, Washington. From Carla E. Brock, L.G. and J. Riley Conkin. To James Hatch, Lakeside Industries. March 26.
- ——. 2010. Telephone Conversation Regarding City of Aberdeen Water Supply Between Akos Fekete and Mike Randich, Aberdeen Water Department. November 19.
- ———. 2015. Remedial Investigation and Feasibility Study Report, Lakeside Industries Aberdeen Site, Aberdeen, Washington. June 2015.
- GeoEngineers, Incorporated. 1984. Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington. July 9.
- Grays Harbor County. No Date. Geographic Information Systems, GIS Mapping. http://www.ghc-gis.org/info/GIS/Index.html>. (November 16, 2010.)
- Green, Joel, Ph.D., Don Loft, B.A., and Randy Lehr, Ph.D. 2009. *State-of-the-River Report for the Chehalis River Basin*, 2006-2009. Prepared for Washington State Department of Ecology, Grays Harbor College, and the Confederated Tribes of the Chehalis Reservation. September 14.
- Johnson, P.C., and R.A. Ettinger. 1991. "Heuristic Model for Predicting the Intrusion of Contaminant Vapors into Buildings." *Environmental Science & Technology* 25 (no. 8): 1445-1452.
- U.S. Census Bureau. 2010. American Fact Finder, Aberdeen City, Washington. http://factfinder.census.gov/home/saff/main.html?_lang=en. (November 19, 2010.)
- U.S. Department of Commerce. 2000. *United States Census 2000*. U.S. Department of Commerce. Washington, D.C.
- U.S. Geological Survey. 1957. 7.5-Minute Quadrangle Aberdeen, Washington. Photo revised 1994.
- Washington State Department of Ecology (Ecology). 2001. *Guidelines for Preparation of Quality Assurance Project Plans for Environmental Studies*. Publication No. 01-03-003. February.
- ——. 2003. *Well Logs*. Well Log Imaging Internet Version 1.0. February 12, 2003. http://apps.ecy.wa.gov/welllog/>. (November 19, 2010.)
- ———. 2009. Disproportionate Cost Analysis (DCA) Outline. June.

-. 2010. Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. Revised February 2016. October. -. 2016. Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057. June. -. 2015. Evaluating the Human Health Toxicity of Carcinogenic PAHs (cPAHs) Using Toxicity Equivalency Factors (TEFs). Implementation Memorandum #10 from Mr. Jeff Johnson, Information and Policy Section Toxics Cleanup Program. April 20. Washington State Department of Natural Resources. 1987. Geologic Map of Washington -Southwest Quadrant. Prepared by Timothy J. Walsh, Michael A. Korosec, William M. Phillips, Robert L. Logan, and Henry W. Schasse. Washington Division of Geology and Earth Resources Geologic Map GM-34. Western Regional Climate Center. No Date. Historical Climate Data. http://www.wrcc.dri.edu. (November 19, 2010.) -. No Date. Seattle University of Washington (457478), Period of Record Monthly Climate Summary, 1971 to 2000 Monthly Climate Summary.

http://www.wrcc.dri.edu/CLIMATEDATA.html. (November 19, 2010.)


9.0 LIMITATIONS

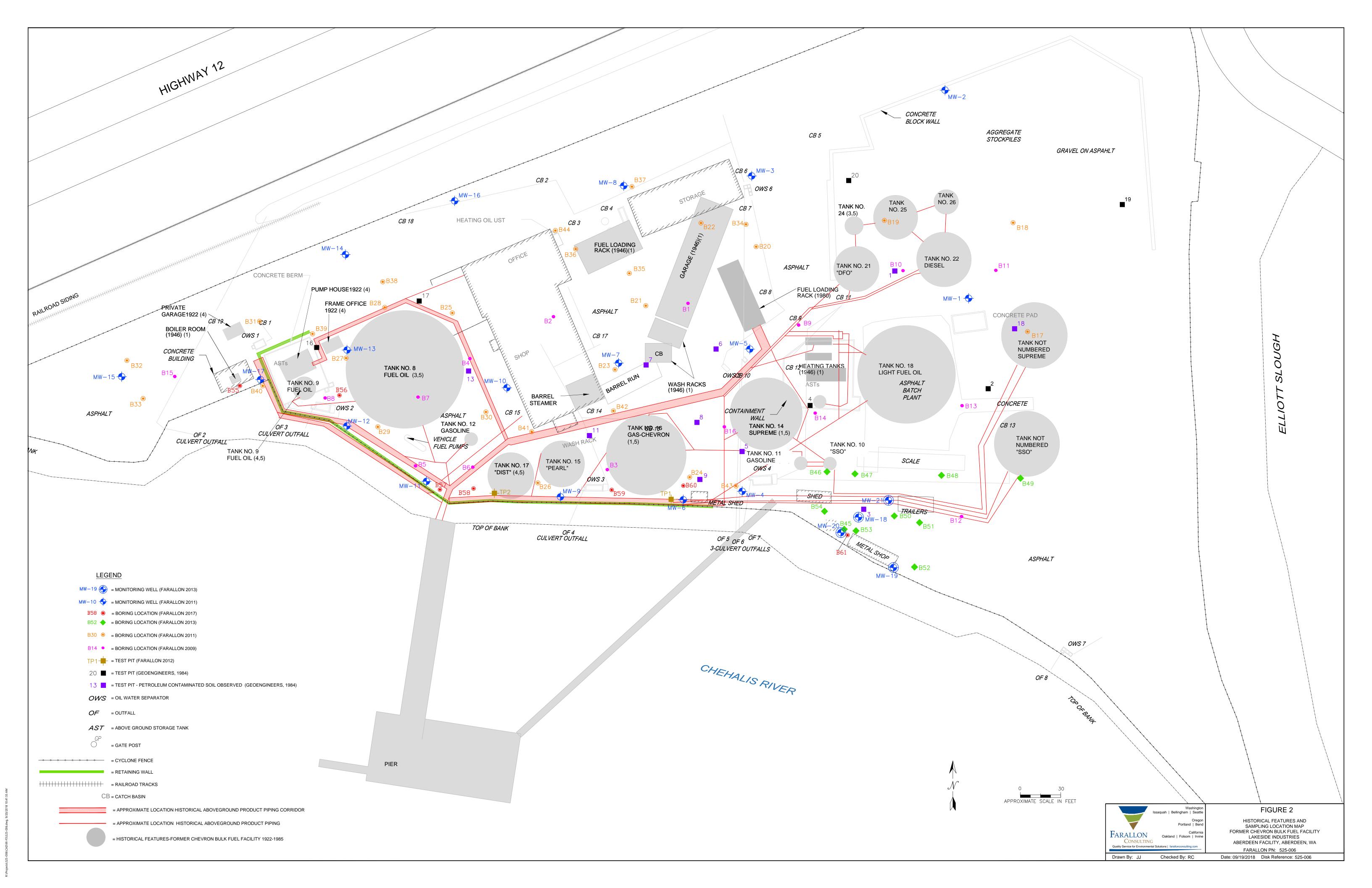
The conclusions and recommendations contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations.

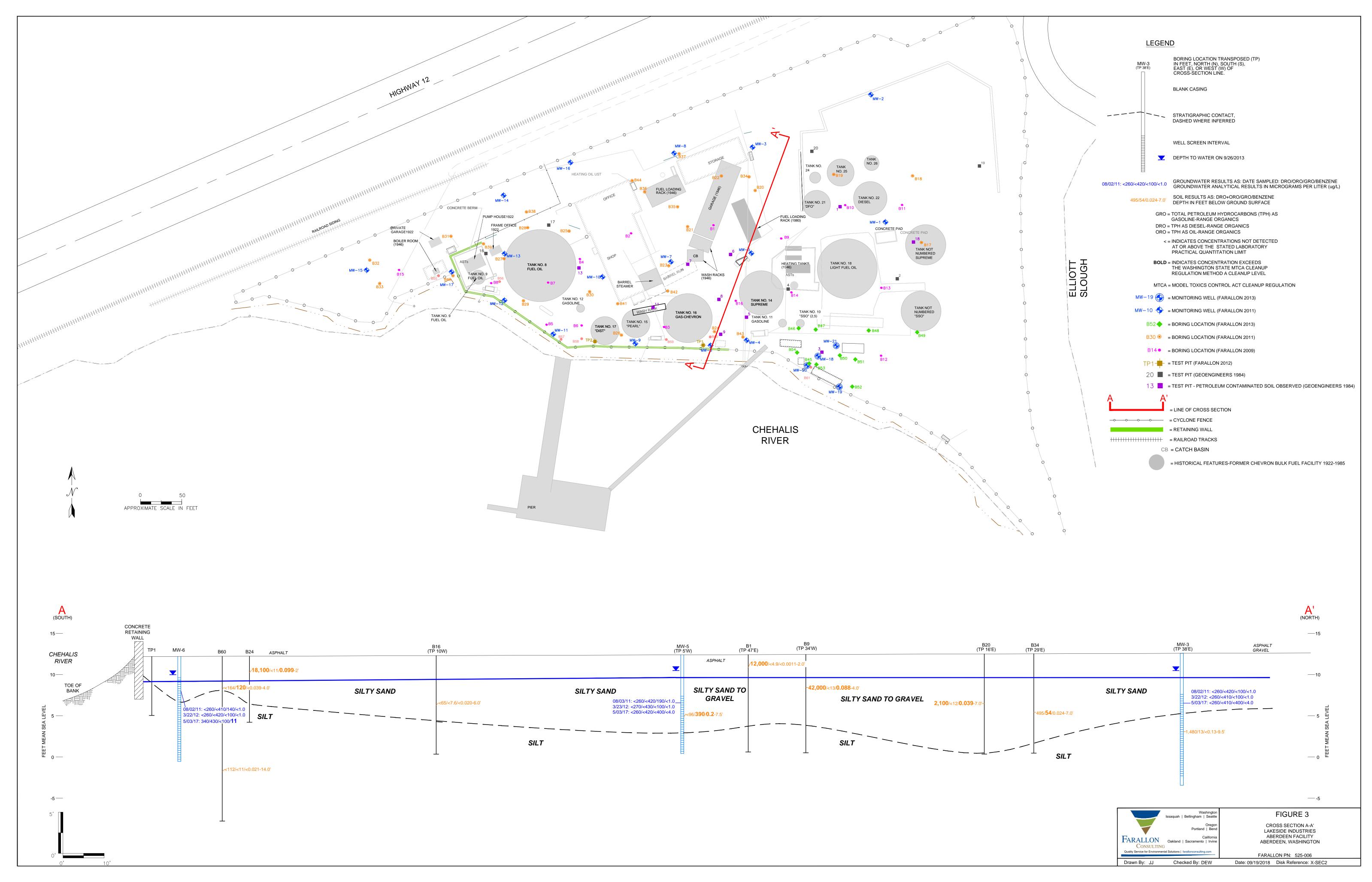

Certain information used by Farallon in this report/assessment has been obtained, reviewed, and evaluated from various sources believed to be reliable, including the local health districts, fire departments, Ecology, and Lakeside Industries. Although Farallon's conclusions, opinions, and recommendations are based in part on such information, Farallon's services did not include the verification of its accuracy or authenticity. Should such information prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

FIGURES

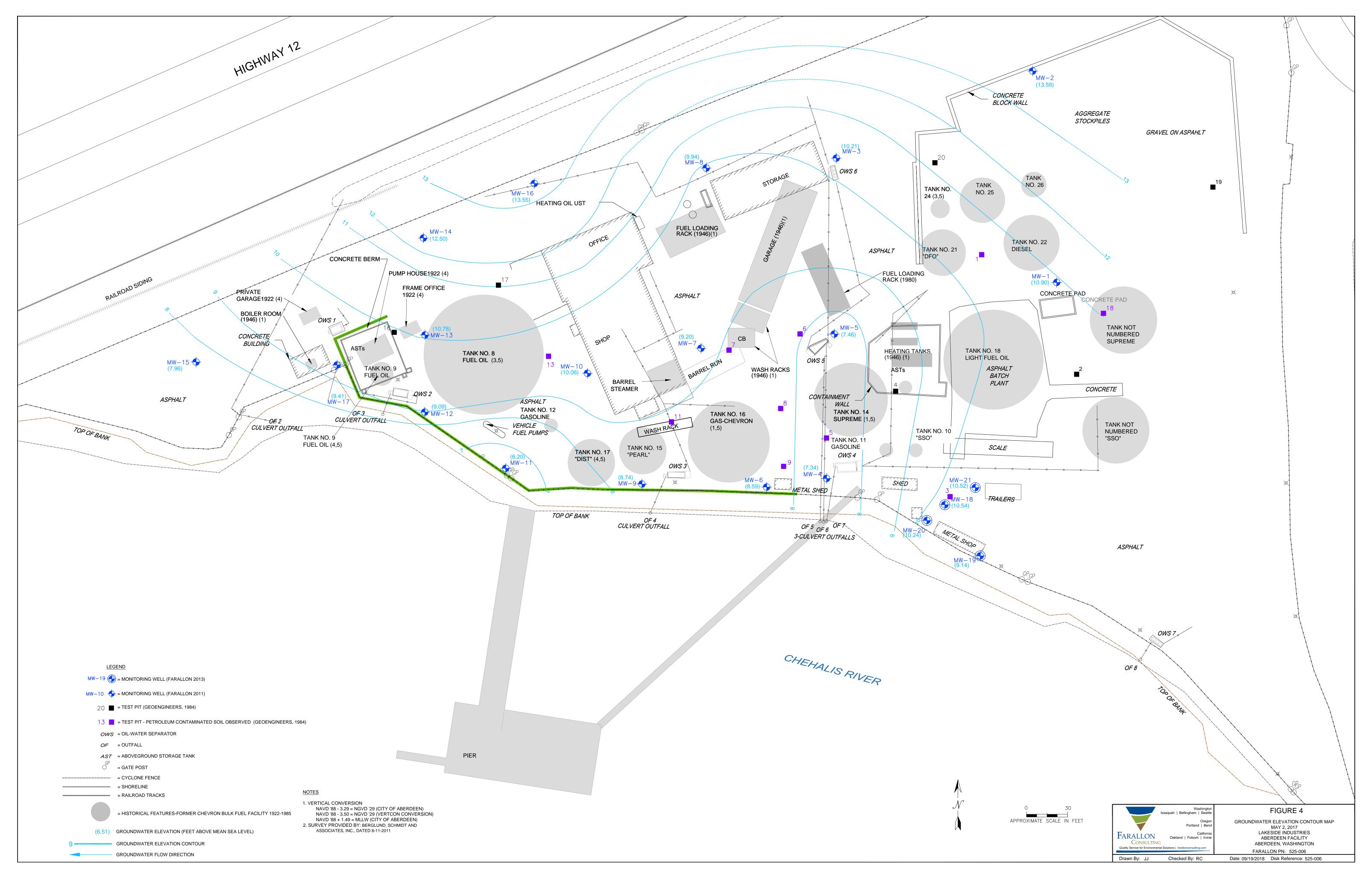
LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

REFERENCE: 7.5 MINUTE USGS QUADRANGLE ABERDEEN, WASHINGTON. DATED 1957 AND PHOTOREVISED 1994

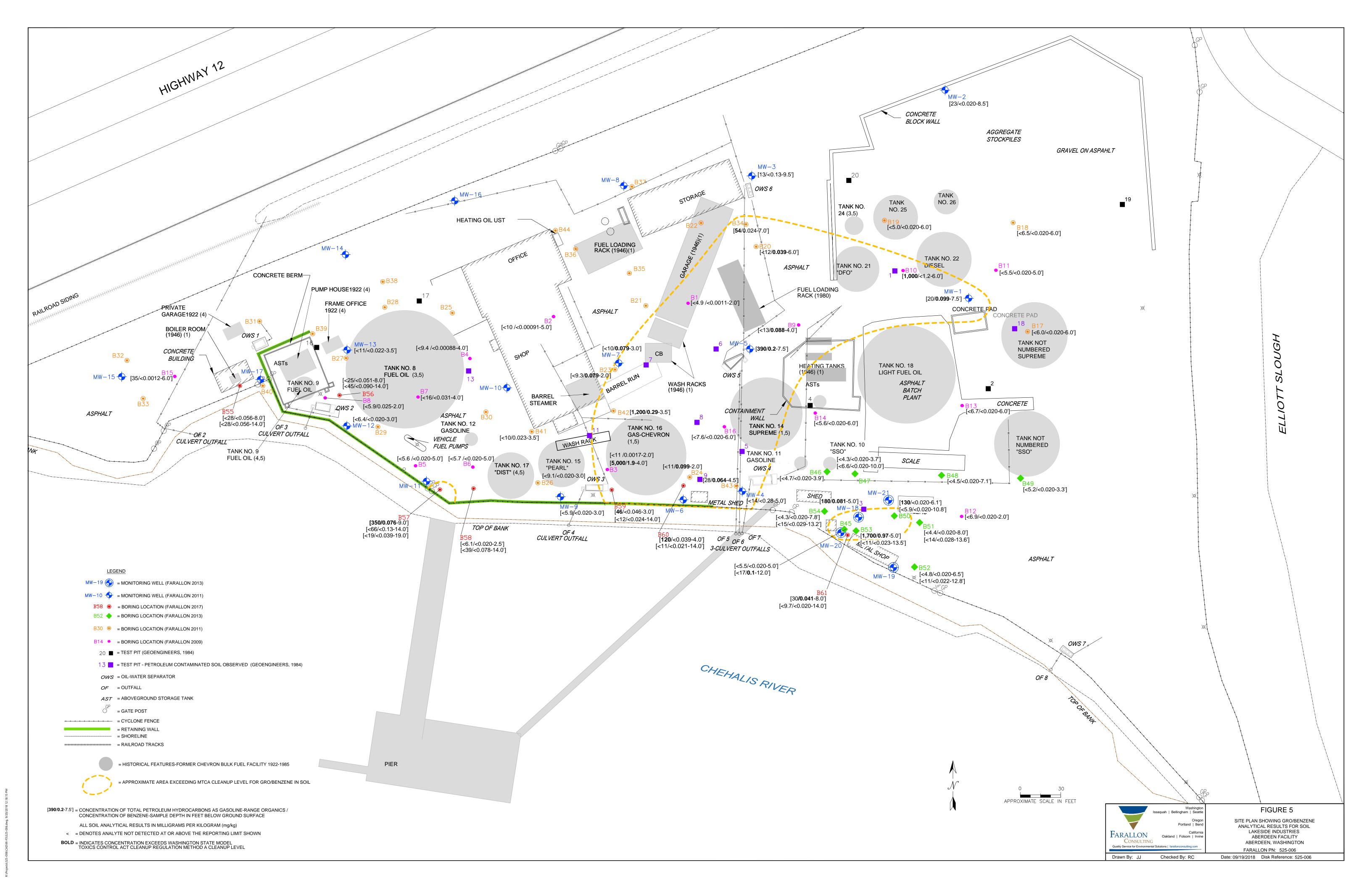


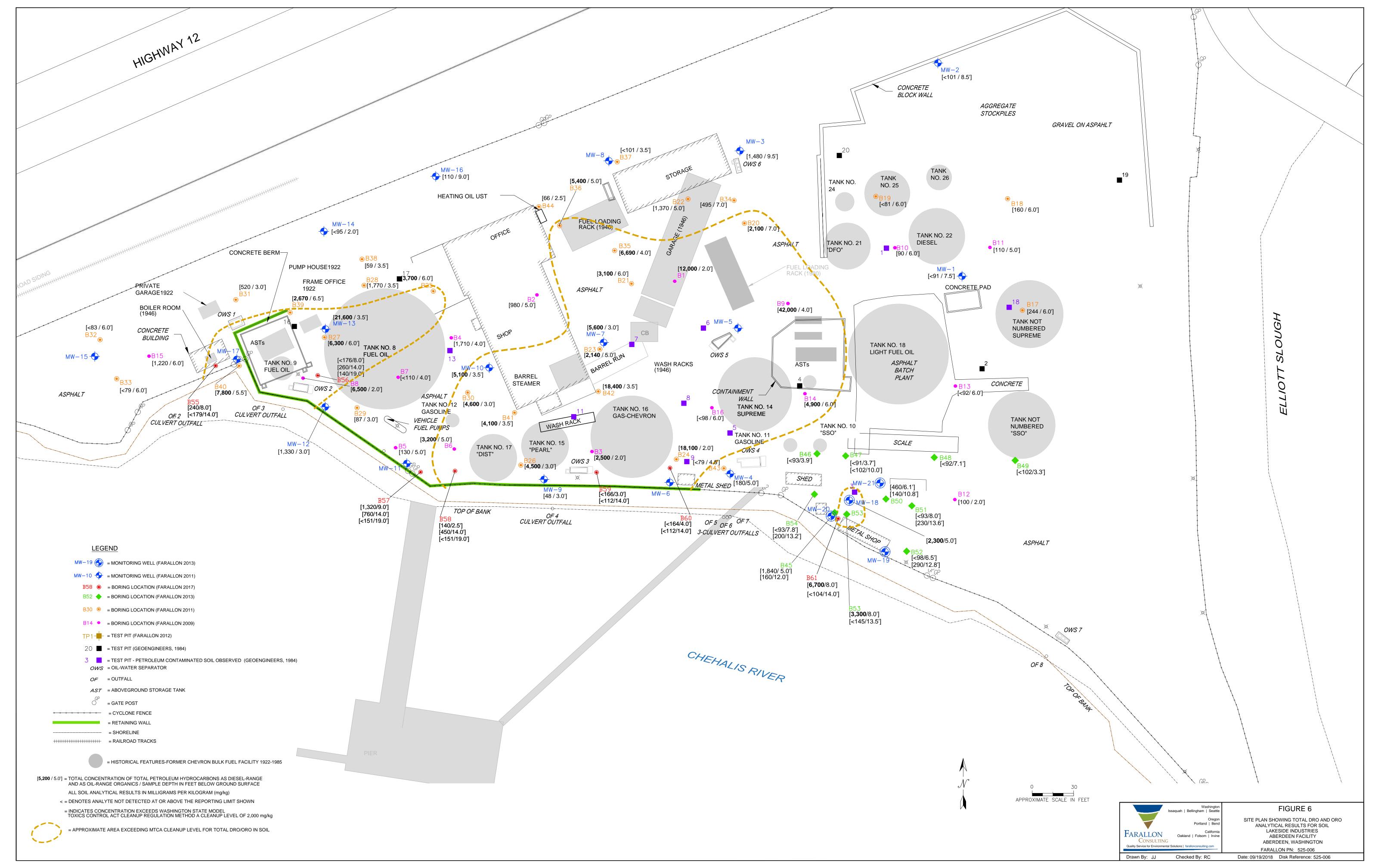

FIGURE 1

SITE LOCATION MAP LAKESIDE INDUSTRIES ABERDEEN FACILITY ABERDEEN, WASHINGTON

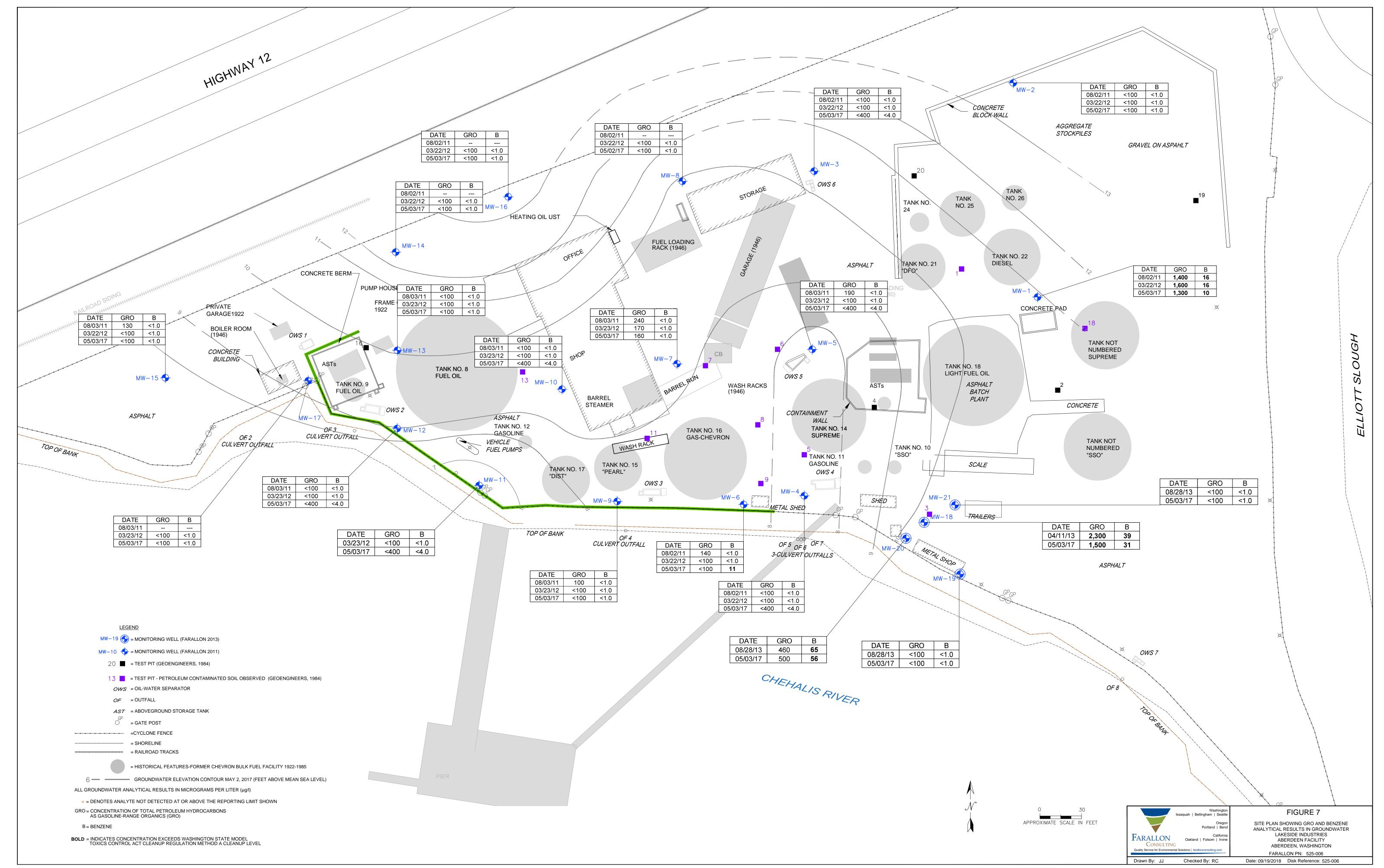

FARALLON PN: 525-006

Date: 4/3/2015 Disk Reference: 525006

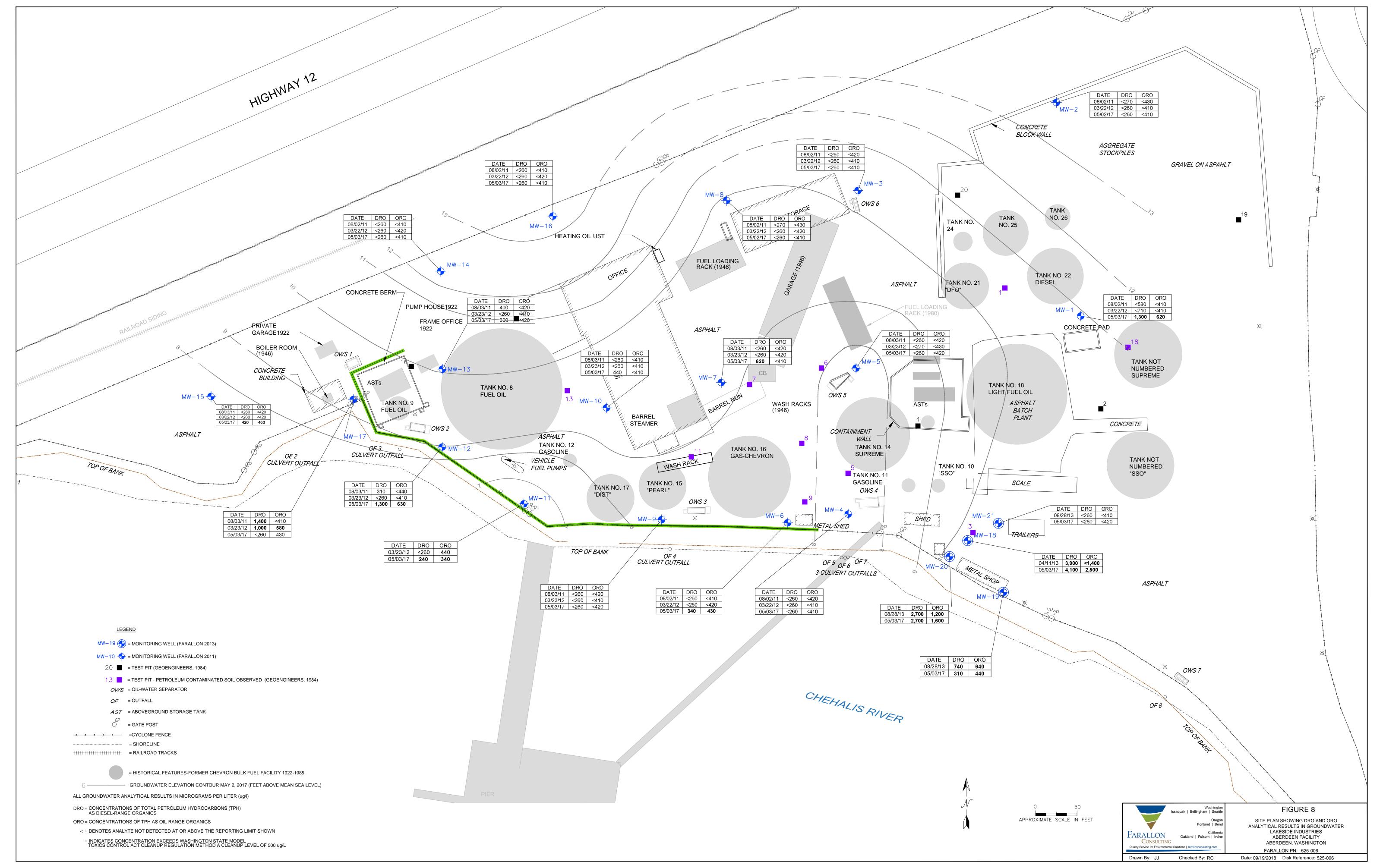


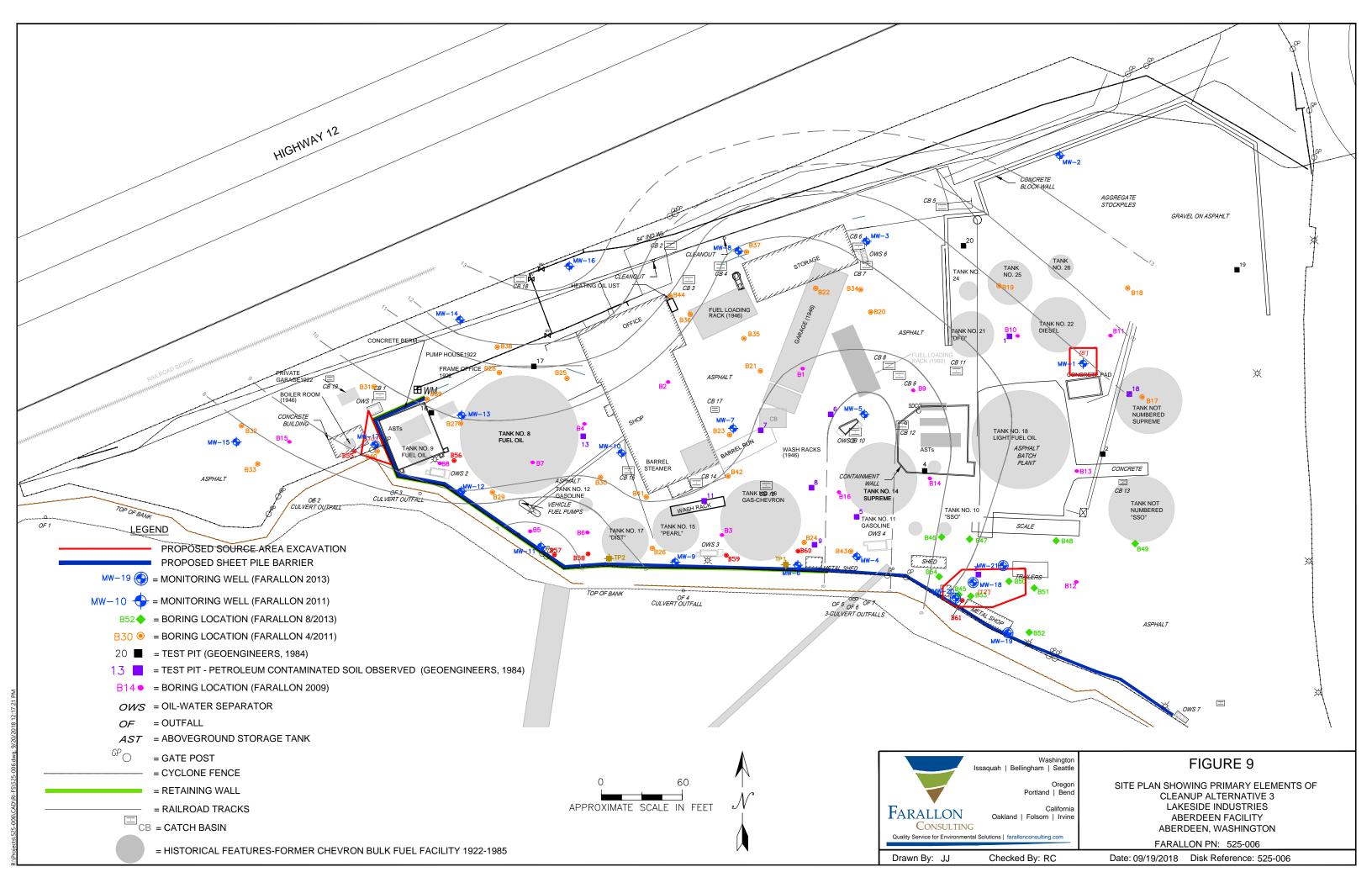


R:\Projects\525-006\CAD\RI-FS\X-Sec.dwg,9/28/2018 2:25:53 PM



R:\Projects\525-006\CAD\RI-FS\525-006.dwg, 9/20/2018 12:17:52 PM




Projects\525-006\CAD\RI-FS\525-006.dwg, 9/20/2018 1:04:06 PM

rojects\525-006\CAD\RI-FS\525-006.dwg, 9/20/2018 12:16:41 PM

jects\525-006\CAD\RI-FS\525-006.dwg, 9/20/2018 12:16:56 PM

TABLES

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Table 1 **Summary of Petroleum Storage Tanks Lakeside Industries Aberdeen Facility**

Aberdeen, Washington Farallon PN: 525-006

Tank Identification	Type (AST/UST)	Approximate Volume (Gallons)	Product	Location	In Use	Date Closed	Closure Method			
Tank No. 8	AST	1,430,000	Fuel Oil	West	No	Early 1980s	Removed			
Tank No. 9	AST	36,000	Fuel Oil	West (current diesel tank farm)	No	Early 1980s	Removed			
Tank No. 10	AST	19,500	"SSO"	South Central	No	Early 1980s	Removed			
Tank No. 11	AST	19,500	Gasoline	South Central	No	Early 1980s	Removed			
Tank No. 12	AST	20,000	Gasoline	Southwest	No	Early 1980s	Removed			
Tank No. 14	AST	567,000	Supreme	South Central	No	Early 1980s	Removed			
Tank No. 15	AST	185,000	Kerosene ("Pearl")	Southwest	No	Early 1980s	Removed			
Tank No. 16	AST	500,000	Gasoline	South Central	No	Early 1980s	Removed			
Tank No. 17	AST	160,000	"DIST"	Southwest	No	Early 1980s	Removed			
Tank No. 18	AST	905,058	Light Fuel Oil	East	No	Early 1980s	Removed			
Tank No. 21	AST	186,480	"DFO"	Northeast	No	Early 1980s	Removed			
Tank No. 22	AST	186,480	Diesel	Northeast	No	Early 1980s	Removed			
Tank No. 24	AST	19,500	Unknown	Northeast	No	Early 1980s	Removed			
Tank No. 25	AST	190,000	Unknown	Northeast	No	Early 1980s	Removed			
Tank No. 26	AST	36,000	Unknown	Northeast	No	Early 1980s	Removed			
Unknown	AST	20,000	Supreme	East (east of Tank No. 18)	No	Early 1980s	Removed			
Unknown	AST	20,000	"SSO"	Southeast (SE of Tank No. 18)	No	Early 1980s	Removed			
Unknown	Unknown	5,500	Heating Oil	East Central (NW of Tank No. 18)	No	Early 1980s	Removed			
Unknown	Unknown	5,500	Heating Oil	East Central (NW of Tank No. 18)	No	Early 1980s	Removed			
TOTALS	19	4,511,518	Standard Oil Company/Chevron 1922-1985							
	AST	12,000	Asphalt Cement		Yes	-	N/A			
	AST	10,000	Asphalt Cement		Yes	-	N/A			
	AST	10,000	Asphalt Cement		Yes	-	N/A			
	AST	10,000	Emulsified Asphalt		No	2018	Removed			
Asphalt Tank Farm	AST	8,000	Emulsified Asphalt	East	Yes	-	N/A			
	AST	2,500	Anti-Strip		No	Unknown	Removed			
	AST	275	Diesel Fuel		Yes	-	N/A			
	OE	250	Heat Transfer Oil		Yes					
	OE	55	Heat Transfer Oil		Yes					
	AST	15,000	Diesel Fuel		No	2018	Removed			
	AST	12,000	Diesel Fuel		No	2018	Removed			
	AST	5,000	Diesel Fuel		Yes	-	N/A			
Diesel Tank Farm	AST	4,000	Gasoline	West	No	Unknown	Unknown			
	AST	1,000	Used Oil		Yes	-	N/A			
	AST	140	Anti-freeze		No	2017	Removed			
	AST	140	Anti-freeze		No	2017	Removed			
	AST	250	Used Oil		Yes	-	N/A			
Markani Ci	AST	250	Engine Oil	Co. 1	No	2017	Removed			
Mechanics Shop	AST	250	Hydraulic Oil	Central	No	2017	Removed			
	AST	250	Heat Transfer Oil		No	2017	Removed			
Tank 1	UST	<500	Heating Oil	North Central (Adjacent Office Building)	No	Unknown	Removal Pending			
Tank 2	UST	<500	Waste Oil	Unknown	No	1988	Removed			
TOTALS	20	91,360		Lakeside Industries 1985 to P	resent					

NOTES:

Operational equipment containers are associated with in-use equipment on the Site and are not used for product storage.

 $AST = above ground\ storage\ tank$ N/A = Not Applicable
OE = operational equipment container
UST = underground storage tank

Groundwater Elevations Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	8/2/2011		3.50	9.73
	12/7/2011		3.24	9.99
	12/8/2011		3.27	9.96
MW-1	3/22/2012	13.23	2.75	10.48
IVI VV - I	4/11/2013	13.23	2.74	10.49
	9/26/2013		3.90	9.33
	12/1/2016		NM	NM
	5/2/2017		2.33	10.90
	8/2/2011		9.97	10.65
	12/7/2011		8.22	12.40
	12/8/2011		8.30	12.32
MW-2	3/22/2012	20.62	8.09	12.53
IVI W - 2	4/11/2013	20.02	7.47	13.15
	9/26/2013		8.45	12.17
	12/1/2016		6.71	13.91
	5/2/2017		7.03	13.59
	8/2/2011		0.97	10.11
	12/7/2011		2.56	8.52
	12/8/2011		1.36	9.72
MW 2	3/22/2012	11.00	1.79	9.29
MW-3	4/11/2013	11.08	2.14	8.94
	9/26/2013		2.69	8.39
	12/1/2016		2.45	8.63
	5/2/2017		0.87	10.21
	8/2/2011		4.12	7.38
	12/7/2011		4.20	7.30
	12/8/2011		3.46	8.04
10 77.4	3/22/2012	11.50	4.20	7.30
MW-4	4/11/2013	11.50	4.19	7.31
	9/26/2013		4.03	7.47
	12/1/2016		2.61	8.89
	5/2/2017		4.16	7.34
	8/2/2011		2.83	8.04
	12/7/2011	7	2.33	8.54
	12/8/2011	7	2.76	8.11
M37.5	3/22/2012	10.97	3.13	7.74
MW-5	4/11/2013	10.87	3.45	7.42
	9/26/2013	7	1.97	8.90
	12/1/2016	7	3.95	6.92
	5/2/2017	7	3.41	7.46
	8/2/2011		2.59	8.05
	12/7/2011	7	2.64	8.00
	12/8/2011	7	2.70	7.94
May <	3/22/2012	10.54	2.19	8.45
MW-6	4/11/2013	10.64	2.18	8.46
	9/26/2013		2.24	8.40
	12/1/2016		1.90	8.74
	5/2/2017	7	2.05	8.59

Groundwater Elevations Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	8/2/2011		2.01	9.02
	12/7/2011		1.83	9.20
	12/8/2011		1.88	9.15
MW-7	3/22/2012	11.03	1.63	9.40
141 44 - 7	4/11/2013	11.03	1.64	9.39
	9/26/2013		1.80	9.23
	12/1/2016		1.54	9.49
	5/2/2017		1.83	9.20
	8/2/2011		2.10	9.96
	12/7/2011		2.20	9.86
	12/8/2011		2.31	9.75
MW-8	3/22/2012	12.06	1.95	10.11
1V1 VV -O	4/11/2013	12.00	1.92	10.14
	9/26/2013		2.06	10.00
	12/1/2016		2.10	9.96
	5/2/2017		2.12	9.94
	8/2/2011		5.49	5.19
	12/7/2011		2.65	8.03
	12/8/2011		2.66	8.02
MW-9	3/22/2012	10.68	2.05	8.63
M W-9	4/11/2013	10.08	1.73	8.95
	9/26/2013		1.49	9.19
	12/1/2016		1.66	9.02
	5/2/2017		1.94	8.74
	8/2/2011		2.30	8.76
	12/7/2011		1.39	9.67
	12/8/2011		1.34	9.72
MW 10	3/22/2012	11.06	1.13	9.93
MW-10	4/11/2013	11.06	1.15	9.91
	9/26/2013		2.19	8.87
	12/1/2016		0.90	10.16
	5/2/2017		1.00	10.06
	8/2/2011		7.21	5.20
	12/7/2011	7	7.27	5.14
	12/8/2011	7	4.57	7.84
MXXI 4.4	3/22/2012	10.41	6.54	5.87
MW-11	4/11/2013	12.41	6.71	5.70
	9/26/2013	7	6.76	5.65
	12/1/2016	7	3.64	8.77
	5/2/2017	7	6.21	6.20
	8/2/2011		5.51	6.09
	12/7/2011	 	2.94	8.66
	12/8/2011	 	2.93	8.67
	3/22/2012	7 ,	2.60	9.00
MW-12	4/11/2013	11.60	2.50	9.10
	9/26/2013	┪	2.70	8.90
	12/1/2016	┪	2.43	9.17
	5/2/2017	 	2.51	9.09

Table 2 Groundwater Elevations

Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	8/2/2011		2.81	10.02
	12/7/2011		2.25	10.58
	12/8/2011		2.30	10.53
MW-13	3/22/2012	12.83	1.80	11.03
WIW-13	4/11/2013	12.03	1.74	11.09
	9/26/2013		2.42	10.41
	12/1/2016		1.53	11.30
	5/2/2017		2.05	10.78
	8/2/2011		1.10	11.40
	12/7/2011		0.69	11.81
	12/8/2011		0.69	11.81
2007.14	3/22/2012	12.50	0.00^{3}	12.50
MW-14	4/11/2013	12.50	0.00^{3}	12.50
	9/26/2013	7 -	0.16	12.34
	12/1/2016		0.00^{3}	12.50
	5/2/2017		0.00^{3}	12.50
	8/2/2011		7.35	7.06
	12/7/2011		6.95	7.46
	12/8/2011		7.00	7.41
	3/22/2012		6.33	8.08
MW-15	4/11/2013	14.41	6.55	7.86
	9/26/2013		7.08	7.33
	12/1/2016		6.23	8.18
	5/2/2017		6.45	7.96
	8/2/2011		1.10	12.45
	12/7/2011		0.49	13.06
			0.49	
	12/8/2011		$\frac{0.01}{0.00^3}$	13.04
MW-16	3/22/2012	13.55	0.00	13.55
	4/11/2013	-		13.55
	9/26/2013		0.11 0.00^3	13.44
	12/1/2016	_		13.55
	5/2/2017		0.00^3	13.55
	8/2/2011	-	3.79	8.88
	12/7/2011	-	3.45	9.22
	12/8/2011	-	3.45	9.22
MW-17	3/22/2012	12.67	3.21	9.46
	4/11/2013	- -	3.35	9.32
	9/26/2013	- -	3.63	9.04
	12/1/2016	- -	3.03	9.64
	5/2/2017	+	3.26	9.41
	4/11/2013		4.40	10.25
MW-18	9/26/2013	14.65	5.48	9.17
	12/1/2016	┥	3.82	10.83
	5/2/2017		4.11	10.54
	9/26/2013		4.73	9.19
MW-19	12/1/2016	13.92	NM	NM
	5/2/2017	1	4.78	9.14

Groundwater Elevations

Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	9/26/2013		4.89	9.43
MW-20	12/1/2016	14.32	3.92	10.40
	5/2/2017		4.08	10.24
	9/26/2013		4.36	9.11
MW-21	12/1/2016	13.47	2.54	10.93
	5/2/2017		2.95	10.52

NOTES:

¹Site surveys by Berglund, Schmidt, and Associates on August 11, 2011, May 1, 2013, and October 1, 2013. Elevations NM = not measured due to access issue in feet above mean sea level based on NAVD88 datum.

²In feet below top of PVC well casing.

³Artesian conditions were observed at the time of measurement.

Table 3 Summary of Soil Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

Cample			Depth			Analytical Re	sults (milligra	ms per kilog	gram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO^2	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
			Janu	ary 2009 Initia	al Remedial Inv	vestigation				
B1-2	B1	1/13/2009	2.0	<1,200	12,000	<4.9	< 0.0011	< 0.0053	< 0.0011	< 0.0021
B2-5	B2	1/13/2009	5.0	450	530	<10	< 0.00091	< 0.0045	< 0.00091	< 0.0018
B3-2	В3	1/13/2009	2.0	1,300	1,200	<11	0.0017	< 0.0052	0.0048	0.0032
B3-4	В3	1/13/2009	4.0			5,000 ⁵	1.9	0.69	8	6.6
B4-4	B4	1/13/2009	4.0	510	1,200	<9.4	< 0.00088	< 0.0044	< 0.00088	< 0.0018
B5-5	B5	1/14/2009	5.0	<28	130	< 5.6	< 0.020	< 0.056	< 0.056	< 0.056
B6-5	В6	1/14/2009	5.0	2,000	1,200	<5.7	< 0.020	< 0.057	< 0.057	< 0.057
B7-4	В7	1/14/2009	4.0	<57	<110	<16	< 0.031	< 0.16	< 0.16	< 0.16
B8-2	B8	1/14/2009	2.0	2,100	4,400	< 5.9	0.025	< 0.059	< 0.059	< 0.059
B9-4	В9	1/14/2009	4.0	19,000	23,000	<13	0.088	< 0.13	0.34	0.87
B10-6	B10	1/14/2009	6.0	<30	90	1,000 ⁵	<1.2	<1.2	<1.2	1.4
B11-5	B11	1/14/2009	5.0	<27	110	<5.5	< 0.020	< 0.055	< 0.055	< 0.055
B12-2	B12	1/15/2009	2.0	<31	100	< 6.9	< 0.020	< 0.069	< 0.069	< 0.069
B13-6	B13	1/15/2009	6.0	<31	<61	<6.7	< 0.020	< 0.067	< 0.067	< 0.067
B14-6	B14	1/15/2009	6.0	1,100	3,800	< 5.6	< 0.020	< 0.056	< 0.056	< 0.056
B15-6	B15	1/15/2009	6.0	220	1,000	35 ⁶	< 0.0012	< 0.0058	< 0.0012	< 0.0023
B16-6	B16	1/15/2009	6.0	<33	<65	<7.6	< 0.020	< 0.076	< 0.076	< 0.076
MTCA Method A Cle	eanup Levels ⁷		2,0	000	30	0.03	7	6	9	

Table 3 Summary of Soil Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

G I.			Depth			Analytical Re	sults (milligra	ms per kilog	gram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
				April 2011 Re	medial Investig	ation				•
B17-6.0	B17	4/19/2011	6.0	64	180	<6.0	< 0.020	< 0.060	< 0.060	< 0.060
B18-6.0	B18	4/19/2011	6.0	<29	160	<6.5	< 0.020	< 0.065	< 0.065	< 0.065
B19-6.0	B19	4/19/2011	6.0	<27	<54	< 5.0	< 0.020	< 0.050	< 0.050	< 0.050
B20-7.0	B20	4/19/2011	7.0	2,100	<62	<12	0.039	< 0.12	0.90	1.18
B21-6.0	B21	4/20/2011	6.0	3,100	<3008					
B22-5.0	B22	4/20/2011	5.0	170 ¹⁰	1,200					
B23-3.0	B23	4/20/2011	3.0	1,500	640	<9.3	0.079	< 0.093	0.82	1.98
B24-2.0	B24	4/20/2011	2.0	11,000	7,100	<11	0.099	0.15	0.25	1.02
B25-6.0	B25	4/20/2011	6.0	2,400	1,300					
B26-3.0	B26	4/20/2011	3.0	3,400	1,100	<9.1	< 0.020	< 0.091	< 0.091	<0.468
B27-6.0	B27	4/20/2011	6.0	3,100	3,200					
B28-3.5	B28	4/21/2011	3.5	770	1,000					
B29-3.0	B29	4/21/2011	3.0	<27	87					
B30-3.0	B30	4/21/2011	3.0	3,500	1,100 ⁹					
B31-3.0	B31	4/21/2011	3.0	160^{10}	360					
B32-6.0	B32	4/21/2011	6.0	<28	<55					
B33-6.0	B33	4/21/2011	6.0	<26	<53					
B34-7.0	B34	4/19/2011	7.0	430	65 ⁹	54	0.024	< 0.11	0.18	0.28
B35-4.0	B35	4/21/2011	4.0	5,800	890 ⁹					
MTCA Method A Cl	eanup Levels ⁷		2,0	000	30	0.03	7	6	9	

Table 3 Summary of Soil Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

G I.			Depth			Analytical Re	sults (milligra	ıms per kilog	gram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
		_	July/Augu	st 2011 Supple	mental Remed	ial Investigation	n			
B36-5.0	B36	7/27/2011	5.0	3,300	2,100					
B37-3.5	B37	7/27/2011	3.5	<34	<67					
B38-3.5	B38	7/27/2011	3.5	<26	59					
B39-6.5	B39	7/27/2011	6.5	2,400	270					
B40-5.5	B40	7/27/2011	5.5	4,000	3,800					
B41-3.5	B41	7/26/2011	3.5	3,000	1,100	<10	0.023	< 0.10	0.11	0.55
B42-3.5	B42	7/27/2011	3.5	9,300	9,100	1,200	0.29	< 0.26	1.3	2.2
B43-4.5	B43	7/27/2011	4.5	<26	<53	28	0.064	< 0.053	< 0.053	0.077
B44-2.5	B44	8/1/2011	2.5	<28	66					
MW1-7.5	MW-1	7/27/2011	7.5	<30	<61	20	0.099	< 0.081	< 0.081	< 0.162
MW2-8.5	MW-2	7/27/2011	8.5	<34	<67	23	< 0.020	< 0.086	< 0.086	< 0.172
MW3-9.5	MW-3	7/27/2011	9.5	380	1,100	13	< 0.13	< 0.13	< 0.13	< 0.26
MW4-5.0	MW-4	7/28/2011	5.0	<51	180	<14	< 0.28	< 0.14	< 0.14	< 0.28
MW5-7.5	MW-5	7/27/2011	7.5	<48	<96	390	0.2	< 0.16	0.45	< 0.41
MW7-3.0	MW-7	7/27/2011	3.0	3,400	2,200	<10	0.079	0.28	0.84	2.1
MW9-3.0	MW-9	7/26/2011	3.0	48	<56	< 5.9	< 0.020	< 0.059	< 0.059	< 0.118
MW10-3.5	MW-10	8/1/2011	3.5	4,100	1,000					
MW12-3.0	MW-12	8/1/2011	3.0	450	880	<6.4	< 0.020	< 0.064	< 0.064	< 0.128
MW13-3.5	MW-13	8/1/2011	3.5	8,600	13,000	<11	< 0.022	< 0.11	< 0.11	< 0.22
MW14-2.0	MW-14	8/1/2011	2.0	<32	<63					
MW16D-9.0	MW-16	8/1/2011	9.0	<31	110					
MTCA Method A Cle	TCA Method A Cleanup Levels ⁷					30	0.03	7	6	9

Table 3
Summary of Soil Analytical Results - Total Petroleum Hydrocarbons
Lakeside Industries Aberdeen Facility
Aberdeen, Washington

G			Depth			Analytical Re	sults (milligra	ms per kilog	gram)		
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	
		_	A]	oril 2013 Addit	ional Well Inst	allation				•	
B-45-5.0	B45	4/5/2013	5.0	540	1,300	<5.5	< 0.020	< 0.055	< 0.055	< 0.110	
B-45-12.0	B45	4/5/2013	12.0	<58	160	<17	0.1	< 0.17	< 0.17	< 0.34	
MW-18-5.0	MW-18	4/5/2013	5.0	1,700	600	180	0.081	< 0.12	0.54	0.26	
August 2013 Geoprobe											
B46-080613-3.9	B46	8/6/2013	3.9	<31	<62	<4.7	< 0.020	< 0.047	< 0.047	< 0.094	
B47-080613-3.7	B47	8/6/2013	3.7	< 30	<61	<4.3	< 0.020	< 0.043	< 0.043	< 0.086	
B47-080613-10.0	B47	8/6/2013	10.0	<34	<68	< 6.6	< 0.020	< 0.066	< 0.066	< 0.132	
B48-080613-7.1	B48	8/6/2013	7.1	<31	<61	<4.5	< 0.020	< 0.045	< 0.045	< 0.090	
B49-080613-3.3	B49	8/6/2013	3.3	<34	<68	< 5.2	< 0.020	< 0.052	< 0.052	< 0.104	
B50-080613-6.1	B50	8/6/2013	6.1	460	<64	130	< 0.020	< 0.093	0.43	0.28	
B50-080613-10.8	B50	8/6/2013	10.8	<35	140	< 5.9	< 0.020	< 0.059	< 0.059	< 0.118	
B51-080613-8.0	B51	8/6/2013	8.0	<31	<62	<4.4	< 0.020	< 0.044	< 0.044	< 0.088	
B51-080613-13.6	B51	8/6/2013	13.6	<55	230	<14	< 0.028	< 0.14	< 0.14	< 0.28	
B52-080613-6.5	B52	8/6/2013	6.5	<33	<65	<4.8	< 0.020	< 0.048	< 0.048	< 0.096	
B52-080613-12.8	B52	8/6/2013	12.8	50	240	<11	< 0.022	< 0.11	< 0.11	< 0.22	
B53-080613-5.0	B53	8/6/2013	5.0	3,300	<220	1,700	0.97	< 0.37	13	3.4	
B53-080613-13.5	B53	8/6/2013	13.5	<48	<97	<11	< 0.023	< 0.11	< 0.11	< 0.22	
B54-080613-7.8	B54	8/6/2013	7.8	<31	<62	<4.3	< 0.020	< 0.043	< 0.043	< 0.086	
B54-080613-13.2	B54	8/6/2013	13.2	<58	200	<15	< 0.029	< 0.15	< 0.15	< 0.30	
MTCA Method A Cle	eanup Levels 7			2,0	000	30	0.03	7	6	9	

Summary of Soil Analytical Results - Total Petroleum Hydrocarbons

Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

Comple			Depth			Analytical Re	sults (milligra	ms per kilog	gram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
				May 20	17 Geoprobe					
B55-8.0	B55	5/2/2017	8.0	90	150	<28	< 0.056	< 0.28	< 0.28	< 0.56
B55-14.0	B55	5/2/2017	14.0	<59	<120	<28	< 0.056	< 0.28	< 0.28	< 0.56
B56-8.0	B56	5/2/2017	8.0	< 56	<120	<25	< 0.051	< 0.25	< 0.25	< 0.50
B56-14.0	B56	5/2/2017	14.0	<130	260	<45	< 0.090	< 0.45	< 0.45	< 0.90
B56-19.0	B56	5/2/2017	19.0	<49	140					
B57-9.0	B57	5/2/2017	9.0	1,000 M	320	350	0.076	< 0.21	0.35	2.3
B57-14.0	B57	5/2/2017	14.0	140	620	<66	< 0.13	< 0.66	< 0.66	<1.32
B57-19.0	B57	5/2/2017	19.0	<51	<100	<19	< 0.039	< 0.19	< 0.19	< 0.38
B58-2.5	B58	5/2/2017	2.5	<26	140	<6.1	< 0.020	< 0.061	< 0.061	< 0.122
B58-14.0	B58	5/2/2017	14.0	< 80	450	<39	< 0.078	< 0.39	< 0.39	< 0.78
B58-19.0	B58	5/2/2017	19.0	<51	<100					
B59-3.0	B59	5/2/2017	3.0	<56	<110	46	< 0.046	< 0.23	< 0.23	0.27
B59-14.0	B59	5/2/2017	14.0	<37	<75	<12	< 0.024	< 0.12	< 0.12	< 0.24
B60-4.0	B60	5/2/2017	4.0	<54	<110	120	< 0.039	< 0.20	0.29	0.54
B60-14.0	B60	5/2/2017	14.0	<37	<75	<11	< 0.021	< 0.11	< 0.11	< 0.22
B61-8.0	B61	5/2/2017	8.0	2,600	4,100	30	0.041	< 0.078	< 0.078	< 0.156
B61-14.0	B61	5/2/2017	14.0	<35	<69	<9.7	< 0.020	< 0.097	< 0.097	< 0.194
MTCA Method A Cle	TCA Method A Cleanup Levels ⁷				2,000 30 0.03 7 6					9

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

GRO = TPH as gasoline-range organics ORO = TPH as oil-range organics

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

M = hydrocarbons in the gasoline-range are impacting the diesel-range result

⁻⁻ denotes sample not analyzed

¹Depth in feet below ground surface (bgs).

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B or 8260B.

⁵The laboratory analytical report indicates that hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

⁶The laboratory analytical report indicates that the sample chromatogram is not similar to a typical gasoline.

⁷Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁸The practical quantitation limit is elevated due to interferences in the sample.

⁹Hydrocarbons in diesel range are impacting oil-range results.

¹⁰Hydrocarbons in lube oil range are impacting diesel-range results.

Summary of Soil Analytical Results - Polycyclic Aromatic Hydrocarbons Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

					Analytical Results (milligrams per kilogram) ²																	
					Non-Carcinogenic Polycyclic Aromatic Hydrocarbons Carcinogenic Polycyclic Aromatic Hydrocarbons																	
																				4)		
Sample Identification	Boring Number	Sample Date	Depth (feet bgs) ¹	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Total Toxic Equivalent Concentration ⁵
									Janu	ary 2009 I	nitial Reme	dial Investi	gation									
B1-2	B1	1/13/2009	2.0	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	0.0061	< 0.036	< 0.036	0.11	0.13	0.046	0.54	0.23	< 0.036	0.099	< 0.036	< 0.036	0.149
B8-2	В8	1/14/2009	2.0	0.15	1.3	0.89	0.039	0.11	0.11	0.25	0.024	0.068	0.11	0.099	0.016	0.13	0.091	< 0.014	0.086	< 0.014	< 0.014	0.109
B9-4	В9	1/14/2009	4.0	0.97	230	120	0.081	3.1	6.2	8.5	0.68	0.21	1.3	< 0.079	0.37	1.3	0.3	< 0.079	0.2	< 0.079	< 0.079	0.292
B14-6	B14	1/15/2009	6.0	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	0.026	0.048	0.055	0.2	1.8	0.2	0.16	0.95	0.28	0.019	0.37	0.066	0.062	0.452
					_					April 2011	Remedial 1	Investigatio	n									
B20-7.0	B20	4/19/2011	7.0	0.17	0.69	1.4	0.038	0.23	0.58	0.29	0.036	0.0097	0.0082	< 0.0079	< 0.040	< 0.040	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	0.020
			•	•					July/Augu	st 2011 Suj	pplemental	Remedial I	nvestigatio	n								
MW-7-3.0	MW7	7/27/2011	3.0	< 0.035	0.48	1.9	0.09	0.11	0.38	0.37	0.088	0.059	0.17	0.039	0.07	0.12	0.037	< 0.035	0.073	0.035	< 0.035	0.096
MW-9-3.0	MW9	7/26/2011	3.0	< 0.037	< 0.037	< 0.037	0.049	< 0.037	< 0.037	< 0.037	< 0.037	0.043	0.044	0.058	0.065	0.039	0.052	0.051	0.069	0.062	0.058	0.098
MW-12-3.0	MW12	7/28/2011	3.0	0.083	0.09	< 0.036	0.045	< 0.036	< 0.036	0.081	< 0.036	0.075	0.069	0.059	0.05	0.044	0.051	0.042	0.063	0.052	< 0.036	0.084
		•	•	•	•					Ma	y 2017 Geo	probe										
B55-14.0	B55	5/2/2017	14.0												< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.012
B56-14.0	B56	5/2/2017	14.0												< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	0.018
B57-14.0	B57	5/2/2017	14.0												< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	0.026
B57-19.0	B57	5/2/2017	19.0												< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	0.010
B58-14.0	B58	5/2/2017	14.0												<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	0.016
B59-14.0	B59	5/2/2017	14.0												<0.0099	0.022	0.019	<0.0099	<0.0099	<0.0099	<0.0099	0.011
B59-19.0°	B59	5/2/2017	19.0												<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	0.009
B60-14.0	B60	5/2/2017	14.0												<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	0.0075
B61-14.0	B61	5/2/2017	14.0												<0.0093	< 0.0093	< 0.0093	< 0.0093	<0.0093	<0.0093	<0.0093	0.0070
MTCA Cleanup I	Levels				5 ³		NE	4,8004	3,200 ⁴	NE	24,000 ⁴	$3,200^4$	2,400 ⁴	NE					(Cleanup Leve	l for Mixture	0.1^{3}

MOTEC.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

* = analyzed one day out of holding time

NE = cleanup level not established

UJ = the analyte was analyzed for but was not detected; the reporting limit is an estimate

< denotes analyte not detected at or above the reporting limit listed.

¹Depth in feet below ground surface (bgs).

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Version 3.1 Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

⁵Total Toxic Equivalent Concentration for mixtures of carcinogenic polycyclic aromatic hydrocarbons, calculated in accordance with MTCA Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

Summary of Soil Analytical Results - Metals Lakeside Industries Aberdeen Facility

Aberdeen, Washington

			_
Farallon	PN:	525	-006

Comple	Dowing		Depth			Analytica	l Results (mil	ligrams per	r kilogram) ²	}	_
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
			Janua	ry 2009 Init	ial Remedi	al Investiga	tion				
B3-4	В3	1/13/2009	4	26	43	7	30	1,500	4.3	<11	< 0.56
B9-4	В9	1/14/2009	4	14	44	< 0.60	36	11	< 0.30	<12	< 0.60
B10-6	B10	1/14/2009	6	<12	44	< 0.60	41	6.7	< 0.30	<12	< 0.60
			A	pril 2011 R	emedial In	vestigation					
B23-3.0	B23	4/20/2011	3	<11		< 0.54	24	35	< 0.27		
B24-2.0	B24	4/20/2011	2	<11		1	19	59	1.2		
B26-3.0	B26	4/20/2011	3	<11		< 0.56	18	110	< 0.28		
			July/August	2011 Supp	lemental R	emedial Inv	estigation				
MW9-3.0	MW-9	7/27/2011	3	46	35	2	27	8.7	< 0.28	<11	< 0.56
			Apr	il 2013 Add	itional Wel	l Installatio	n				
B-45-5.0	B45	4/5/2013	5.0					<6.1		1	-
B-45-12.0	B45	4/5/2013	12.0					<12			
MW-18-5.0	MW-18	4/5/2013	5.0					14		-	-
			Augu	ıst 2013 Ad	ditional We	ell Installati	on				
B50-080613-6.1	B50	8/6/2013	6.1					< 6.2			
B54-080613-5.0	B53	8/6/2013	5					9			-
Natural Backgrou	nd Soil Metals (Concentrations ³		7	NE	1	42	36	0.07	NE	NE
MTCA Cleanup Lo	evels			20 ⁴	16,000 ⁵	24	2,0004	250 ⁴	24	400 ⁵	400 ⁵
NOTES:					20,000		_,~~~				

Results in **bold** denote concentrations exceeding applicable cleanup levels.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Washington State Cleanup Levels and Risk Calculations under MTCA, Version 3.1 Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

1 of 1

NE = background concentration not established

< denotes analyte not detected at or exceeding the reporting limit listed.

⁻⁻ denotes sample not analyzed

¹Depth in feet below ground surface (bgs).

²Analyzed by U.S. Environmental Protection Agency Methods 6010B/7471A.

³Washington State Department of Ecology Natural Background Soil Metals Concentrations in Washington State, Publication #94-115, Statewide.

Table 6
Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons
Lakeside Industries Aberdeen Facility
Aberdeen, Washington

g 1					Analytical	Results (micr	ograms per lite	er)	
Sample Identification	Boring Number	Sample Date	\mathbf{DRO}^1	ORO ¹	GRO^2	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
			January 20	09 Initial Ro	emedial Investig	gation			
B1-011309-8	B1	1/13/2009	9,500	2,600	< 500	< 0.20	<1.0	0.29	2.3
B2-011309-10	B2	1/13/2009	920	820	< 500	< 0.20	<1.0	< 0.20	< 0.40
B3-011309-6	В3	1/13/2009	6,300	1,100	6,800	400	90	280	366
B4-011309-8	B4	1/13/2009	1,800	<400	< 500	< 0.20	<1.0	< 0.20	< 0.40
B5-011409-8	B5	1/14/2009	8,400	5,900	<400	<4.0	<4.0	<4.0	<4.0
B6-011409-9	В6	1/14/2009	2,900	520	<400	<4.0	<4.0	<4.0	<4.0
B7-011409-9	В7	1/14/2009	< 260	<410	<400	<4.0	<4.0	<4.0	<4.0
B8-011409-8	В8	1/14/2009	9,300	5,200	1,800 ¹⁰	<4.0	<4.0	<4.0	<4.0
B9-011409-8	В9	1/14/2009	5,900	5,300	<400	5	<4.0	<4.0	<4.0
B10-011409-8	B10	1/14/2009	2,500	1,300	1,000	18	4.1	8.3	8.8
B11-011409-10	B11	1/14/2009	290	610	<400	<4.0	<4.0	<4.0	<4.0
B12-011509-10	B12	1/15/2009	<250	<400	<400	<4.0	<4.0	<4.0	<4.0
B13-011509-9	B13	1/15/2009	< 260	<410	<400	<4.0	<4.0	<4.0	<4.0
B14-011509-9	B14	1/15/2009	<250	<410	<400	<4.0	<4.0	<4.0	<4.0
B15-011509-9	B15	1/15/2009	460	740	< 500	< 0.20	<1.0	< 0.20	< 0.40
B16-011509-10	B16	1/15/2009	<270	<430	<400	<4.0	<4.0	<4.0	<4.0
MTCA Method A	Cleanup Levels ⁴	-	500)	800 ⁵	5	1,000	700	1,000

Table 6
Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons
Lakeside Industries Aberdeen Facility
Aberdeen, Washington

					Analytical	Results (micr	ograms per lite	er)	
Sample Identification	Boring Number	Sample Date	DRO ¹	ORO ¹	GRO^2	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
			April 2	2011 Remed	ial Investigation	1			
B17-041911-GW	B17	4/19/2011	<260	<420	<100	<1.0	<1.0	<1.0	<1.0
B18-041911-GW	B18	4/19/2011	<270	<440	<100	<1.0	<1.0	<1.0	<1.0
B19-041911-GW	B19	4/19/2011	250	1,200	<100	<1.0	<1.0	<1.0	<1.0
B20-041911-GW	B20	4/19/2011	810 ⁷	<420	240	<1.0	<1.0	<1.0	<1.0
B21-042011-GW	B21	4/20/2011	8,800	<1,200					
B22-042011-GW	B22	4/20/2011	<280	<440					
B23-042011-GW	B23	4/20/2011	30,000 ⁷	15,000	560	<4.0	<4.0	<4.0	<4.0
B24-042011-GW	B24	4/20/2011	40,000 ⁷	17,000	4,500	<4.0	<4.0	8.8	13
B25-042011-GW	B25	4/20/2011	1,700 ⁸	470					
B26-042011-GW	B26	4/20/2011	19,000 ⁷	<2,000 ⁶	1,200	<4.0	<4.0	<4.0	6.0
B27-042011-GW	B27	4/20/2011	12,000	9,900					
B28-042111-GW	B28	4/21/2011	9,100	1,700					
B29-042111-GW	B29	4/21/2011	2,000	700 ⁹					
B30-042111-GW	B30	4/21/2011	4,900 ⁸	610					
B31-042111-GW	B31	4/21/2011	290	<260					
B32-042111-GW	B32	4/21/2011	<290	<460					
B33-042111-GW	B33	4/21/2011	<280	<450					
B34-041911-GW	B34	4/19/2011	510 ⁷	<420	510	<1.0	<1.0	<1.0	<1.0
B35-042111-GW	B35	4/21/2011	39,000	<4,200 ⁶					
MTCA Method A	Cleanup Levels ⁴		500)	800 ⁵	5	1,000	700	1,000

Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

					Analytical	Results (micr	ograms per lit	er)	
Sample Identification	Boring Number	Sample Date	\mathbf{DRO}^1	ORO ¹	GRO^2	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
		Ju	ıly/August 2011	Supplemen	tal Remedial In	vestigation			
B36-072511-GW	B36	7/25/2011	7,300	1,200					
B37-072511-GW	B37	7/25/2011	<270	<430					
B38-072522-GW	B38	7/25/2011	330	620					
B39-072511-GW	B39	7/25/2011	9,300	1,100					
B40-072511-GW	B40	7/25/2011	9,600	3,600					
B41-072611-GW	B41	7/26/2011	2,000	1,400	<400	<4.0	<4.0	<4.0	<8.0
B42-072511-GW	B42	7/25/2011	6,800	6,800	660	<4.0	<4.0	<4.0	<8.0
B43-072511-GW	B43	7/25/2011	2,900	680	1,100	5.60	<4.0	<4.0	<8.0
B44-072911-GW	B44	7/29/2011	13,000	4,300					
MTCA Method A	Cleanup Levels ⁴		500)	800 ⁵	5	1,000	700	1,000

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

< denotes analyte not detected at or exceeding the reporting limit listed.

⁻⁻ denotes sample not analyzed

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Cleanup level for GRO is with the presence of benzene.

⁶The practical quantitation limit is elevated due to interferences in the sample.

⁷Hydrocarbons in the gasoline range are impacting the diesel-range result.

⁸Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.

⁹Hydrocarbons in the diesel range are impacting the oil-range result.

 $^{^{10}}$ The laboratory analytical report indicates that hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

Table 7 Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

Boring/ Monitoring	Sample							Ethyl-	
Well	Identification	Sample Date	DRO ¹	ORO ¹	GRO^2	Benzene ³	Toluene ³	benzene ³	Xylenes ³
	MW-1-080211	08/02/11	< 580	<410	1,400	16	<1.0	17	17.2
MW-1	MW-1-032212	03/22/12	<710	<410	1,600	16	1.3	19	13.8
	MW-1-050317	05/03/17	1,300	620	1,300 J F	10 J	<4.0 UJ	<4.0 UJ	<8.0 UJ
	MW-2-080211	08/02/11	<270	<430	<100	<1.0	<1.0	<1.0	< 2.0
MW-2	MW-2-032212	03/22/12	< 260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-2-050217*	05/02/17	< 260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-3-080211	08/02/11	<260	<420	<100	<1.0	<1.0	<1.0	< 2.0
MW-3	MW-3-032212	03/22/12	< 260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-3-050317	05/03/17	<260	<410	<400	<4.0	<4.0	<4.0	<8.0
	MW-4-080211	08/02/11	< 260	<420	<100	<1.0	<1.0	<1.0	< 2.0
MW-4	MW-4-032212	03/22/12	< 260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-4-050317	05/03/17	< 260	<410	<400	<4.0	<4.0	<4.0	< 8.0
	MW-5-080311	08/03/11	< 260	<420	190	<1.0	<1.0	<1.0	< 2.0
MW-5	MW-5-032312	03/23/12	<270	<430	<100	<1.0	<1.0	<1.0	< 2.0
	MW-5-050317	05/03/17	< 260	<420	<400	<4.0	<4.0	<4.0	< 8.0
	MW-6-080211	08/02/11	< 260	<410	140	<1.0	<1.0	<1.0	< 2.0
MW-6	MW-6-032212	03/22/12	< 260	<420	<100	<1.0	<1.0	<1.0	< 2.0
	MW-6-050317	05/03/17	340	430	<100	11	<1.0	<1.0	< 2.0
	MW-7-080311	08/03/11	< 260	<420	240	<1.0	<1.0	<1.0	< 2.0
MW-7	MW-7-032312	03/23/12	<260	<420	170	<1.0	<1.0	<1.0	< 2.0
IVI VV - /	MW-7-050317	05/03/17	620	<410	160 F	<1.0	<1.0	<1.0	< 2.0
	DUP2-050317	05/03/17			160	<1.0	<1.0	<1.0	< 2.0
	MW-8-080211	08/02/11	<270	<430					
MW-8	MW-8-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	< 2.0
	MW-8-050217*	05/02/17	<260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-9-080311	08/03/11	<260	<420	100	<1.0	<1.0	<1.0	< 2.0
MW-9	MW-9-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-9-050317	05/03/17	<260	<420	<100	<1.0	<1.0	<1.0	< 2.0
	MW-10-080311	08/03/11	<260	<410	<100	<1.0	<1.0	<1.0	< 2.0
MW-10	MW-10-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	< 2.0
	MW-10-050317	05/03/17	440	<410	<400 UJ	<4.0 UJ	<4.0 UJ	<4.0 UJ	<8.0 UJ
TCA Cleanup Level	s for Groundwater ⁴	-	50	00	800	5	1,000	700	1,000

Table 7 Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

					Analytical l	Results (micro	grams per liter)		
Boring/ Monitoring Well	Sample Identification	Sample Date	DRO ¹	ORO ¹	GRO^2	Benzene ³	Toluene ³	Ethyl- benzene ³	Xylenes ³
	MW-11-080211-LNAPL	08/03/11							
MW-11	MW-11-032312	03/23/12	<260	440	<100	<1.0	<1.0	<1.0	< 2.0
IVI VV - 1 1	MW-11-050317	05/03/17	240	340	<400	<4.0	<4.0	<4.0	<8.0
	DUP3-050317	05/03/17			480	<1.0	<1.0	<1.0	<2.0
	MW-12-080311	08/03/11	310	<440	<100	<1.0	<1.0	<1.0	<2.0
MW-12	MW-12-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-12-050317	05/03/17	1,300	630	<400	<4.0	<4.0	<4.0	< 8.0
	MW-13-080311	08/03/11	400	<420	<100	<1.0	<1.0	<1.0	<2.0
MW-13	MW-13-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-13-050317	05/03/17	300	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-14-080211	08/02/11	<260	<410					
MW-14	MW-14-032212	03/22/12	< 260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-14-050317	05/03/17	< 260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-15-080311	08/03/11	<260	<420	130	<1.0	<1.0	<1.0	<2.0
MW-15	MW-15-032212	03/22/12	< 260	<420	<100	<1.0	<1.0	<1.0	< 2.0
	MW-15-050317	05/03/17	420	460	<100	<1.0	<1.0	<1.0	<2.0
	MW-16-080211	08/02/11	< 260	<410					
MW-16	MW-16-032212	03/22/12	< 260	<420	<100	<1.0	<1.0	<1.0	< 2.0
	MW-16-050317	05/03/17	< 260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-17-080311	08/03/11	1,400	<410					
MW-17	MW-17-032312	03/23/12	1,000	580	<100	<1.0	<1.0	<1.0	< 2.0
IVI VV - 1 /	MW-17-050317	05/03/17	< 260	430	<100	<1.0	<1.0	<1.0	<2.0
	DUP1-050317	05/03/17			<400	<4.0	<4.0	<4.0	<8.0
MW-18	MW-18-041113	04/11/13	3,900	<1,400	2,300	39	4.7	34	5.9
171 77 - 10	MW-18-050317	05/03/17	4,100	2,500	1,500 F	31	4.3	4.6	<8.0
MW-19	MW-19-082813	08/28/13	740	640	<100	<1.0	<1.0	<1.0	9.3
IVI VV - 1 7	MW-19-050317	05/03/17	310	440	<100	<1.0	<1.0	<1.0	13
MTCA Cleanup Leve	ls for Groundwater ⁴		50	00	800	5	1,000	700	1,000

Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons

Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

				Analytical Results (micrograms per liter)							
Boring/ Monitoring	Sample							Ethyl-			
Well	Identification	Sample Date	DRO^1	ORO ¹	GRO^2	Benzene ³	Toluene ³	benzene ³	Xylenes ³		
MW-20	MW-20-082813	08/28/13	2,700	1,200	460	65	1.3	<1.0	2.7		
IVI VV -20	MW-20-050317	05/03/17	2,700	1,600	500 F	56	<1.0	<1.0	3.9		
MW-21	MW-21-082813	08/28/13	< 260	<410	<100	<1.0	<1.0	<1.0	<2.0		
IVI VV - Z I	MW-21-050317	05/03/17	< 260	<420	<100	<1.0	<1.0	<1.0	<2.0		
MTCA Cleanup Leve	els for Groundwater ⁴		500 800 5 1,000 700 1,00						1,000		

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

F = hydrocarbons indicative of heavier fuels are present in sample and are impacting the gasoline result

GRO = TPH as gasoline-range organics

J = result is an estimate

ORO = TPH as oil-range organics

UJ = the analyte was analyzed for but was not detected; the reporting limit is an estimate

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

^{*} sample analyzed one day out of holding time

Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington

Farallon PN: 525-006

										Ana	alytical Res	ults (micro	grams per l	liter) ¹							
						Non-Carci	nogenic Pol	lycyclic Ar	omatic Hyd	rocarbons					C	arcinogeni	c Polycyclic	c Aromatic	Hydrocarb	ons	
Location	Sample Identification	Sample Date	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Total Toxic Equivalent Concentration³
MW-4	MW-4-080211	08/02/11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.025	0.029	0.011	0.019	0.021	0.031	0.028	0.024	0.043
MW-5	MW-5-080311	08/03/11	< 0.096	< 0.096	0.52	< 0.096	0.13	0.15	< 0.096	< 0.096	< 0.096	< 0.096	0.022	0.026	< 0.0096	0.019	0.019	0.028	0.027	0.024	0.040
MW-6	MW-6-080211	08/02/11	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.021	0.025	< 0.0096	0.017	0.019	0.027	0.026	0.024	0.038
MW-7	MW-7-080311	08/03/11	0.12	0.23	3.2	< 0.095	0.29	0.65	0.13	< 0.095	< 0.095	< 0.095	0.021	0.016	< 0.0095	0.018	0.017	0.027	0.026	0.024	0.037
MW-9	MW-9-080311	08/03/11	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.022	0.024	< 0.0096	0.017	0.019	0.027	0.025	0.024	0.038
MW-12	MW-12-080311	08/03/11	< 0.098	< 0.098	0.18	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	0.026	0.027	0.012	0.021	0.021	0.032	0.028	0.025	0.044
MTCA Cleanur	Levels for Ground	water		160 ²		NE	NE	NE	NE	NE	NE	NE	NE					Clear	nup Level fo	or Mixture	0.12

NOTES:

²Washington State Model Toxics Control Act Cleanup[Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2013.

NE = cleanup levels not established

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Total Toxic Equivalent Concentration for mixtures of carcinogenic PAHs, calculated in accordance with MTCA Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

Summary of Groundwater Analytical Results - Metals

Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

	Sample			Analytical Results (micrograms per liter) ¹								
Location	Identification	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver		
MW-4	MW-4-080211	08/02/11	<3.0	<25	<4.0	<10	<1.0	< 0.5	<5	<10		
MW-5	MW-5-080211	08/02/11	< 3.0	91	<4.0	<10	<1.0	< 0.5	<5	<10		
MW-6	MW-6-080211	08/02/11	< 3.0	140	<4.0	<10	<1.0	< 0.5	<11	<10		
MW-9	MW-9-080311	08/03/11	<3.0	<3.0 130 <4.0 <10 <1.0 <0.5 <5 <10								
MTCA Cle	eanup Levels for G	roundwater	5 ²	$2,000^3$	5 ²	50 ²	15 ²	2^2	NE	NE		

NOTES:

NE = cleanup level not established

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Methods 6000/6010/7000.

²Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³ National Primary Drinking Water Standard Maximum Contaminant Level - http://water.epa.gov/drink/contaminants/index.cfm

Cleanup Technology Screening Lakeside Industries Aberdeen Facility

Aberdeen, Washington Farallon PN: 525-006

				Prima	•	Secondary			
Media	General Response Action	Technology	Process Option ¹	Criteria	Score ²	Criterion Score ²	Total Score ²	Rank ³	Retain ⁴
				Implementability	Effectiveness	Relative Cost	1		
	No Action	None	None	3	0	3	6	2	Y
Non-Specific	Institutional Controls	Legal	Deed Restrictions (Environmental Covenant), Property Use Restrictions, Health Advisories	3	1	3	7	1	Y
	Monitored Natural Attenuation	Natural Degradation Processes, Monitoring, Modeling	Sample Collection and Analysis, Predictive Modeling	3	1	3	7	1	Y
		Piological	Bioventing	2	1	2	5	3	N
		Biological	Enhanced Bioremediation	2	1	2	5	3	N
	Treat In-Situ	Chemical	Chemical Oxidation	1	1	2	4	4	N
	Treat III-Situ		Soil Flush	2	1	1	4	4	N
		Physical	Soil Vapor Extraction	2	1	2	5	3	N
			Thermal Remediation	1	3	1	5	3	N
Soil		Biological	Biopile	2	1	1	4	4	N
	Excavate and Treat or Contain		Slurry Phase Biological Remediation	2	2	1	5	3	N
	On or Off the Site		Incineration	1	3	1	5	3	N
		Physical	Landfill Disposal	2	3	2	7	2	Y
			Thermal Desorption	2	2	1	5	3	N
	Containment	Capping	Physical Barriers and Constructed Cover	3	2	3	8	1	Y
		Biological	Enhanced Bioremediation	1	1	2	4	3	N
		Chemical	Chemical Oxidation	1	1	2	4	3	N
1	Treat In-Situ	Chemical	Passive or Reactive Treatment Wall	2	1	1	4	3	N
		Physical	Air Sparge	1	1	2	4	3	N
		Filysical	Thermal Remediation	2	2	1	5	2	N
		Biological	Bioreactor	2	1	1	4	3	N
Groundwater		Chemical	Advanced Oxidation Processes	2	1	1	4	3	N
Groundwater	Collect and Treat Ex-Situ	Chellical	Granular Activated Carbon	2	3	1	6	2	N
		Physical	Air Stripping	2	1	1	4	3	N
		1 ilysicai	Dispose to Sanitary Sewer	2	1	2	5	2	Y
		Capping	Physical Barriers and Constructed Cover	3	1	3	7	1	Y
	Containment		Sheet Pile Barrier	2	3	1	6	2	Y
	Containment	Vertical Barrier	Slurry Wall	1	1	1	3	4	N
			Existing Wall	3	1	3	7	1	Y

NOTES

¹Process options in **bold** and highlighted are retained for consideration in Cleanup Alternatives 2 through 4.

²Scores: 0 least favorable, 3 most favorable

³Rank: based on total score for media, scale of 1 (most favorable) to 4 (least favorable)

 $^{^4}$ Retain: Y = Yes, retain for consideration in cleanup alternative(s). N = No, do not retain for consideration in cleanup alternative(s).

Table 11 Summary of Cleanup Alternative Evaluation Lakeside Aberdeen Facility Aberdeen Washington Farallon PN: 525-006

	Ī			
	Alternative 1 No Action	Alternative 2 Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation	Alternative 3 Source Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls	Alternative 4 Complete Excavation of Soil Exceeding Cleanup Levels
Description	No action. No additional measures will be taken to clean up property or to provide protection from exposure to COCs remaining at the Site.	Institutional controls in the form of an environmental covenant recorded on the property deed mandating implementation of future protective measures including engineered controls and containment with capping and vertical barriers, groundwater capture and treatment system, and requiring groundwater monitoring of natural attenuation processes and concentrations of COCs over a period of 5 years.	Soil excavation and off-Site disposal at a permitted landfil; Containment involves capping and vertical barriers and requires temporary partial building demolition and restoration.	Soil site-wide excavation and off-Site disposal at a permitted landfill.
Amount of Contaminated Soil Removal (tons)	0	0	3,100	47,090
		THRESHOLD REQUIREMENTS		
Protection of Human Health and the Environment	Alternative will not provide additional protection to human health and the environment.	Yes - Alternative will protect human health and the environment by limiting future COC exposure and requiring protective measures included in institutional and engineered controls.	Yes - Alternative will protect human health and the environment by use of institutional and engineered controls containment measures, and by source excavation.	Yes - Alternative will protect human health and the environment by use of institutional and engineered controls containment measures, and by excavation of all areas of the Site where COCs occur above cleanup levels.
Compliance with Cleanup Standards	Alternative will not comply with cleanup standards except over a very long period of time. COCs will remain above cleanup levels until attenuated naturally.	Alternative will not comply with cleanup standards except over a very long period of time. COCs will remain above cleanup levels until attenuated naturally.	Yes - Active remedial measure (excavation) will result in compliance with cleanup standards in source areas. Cleanup standards outside of source areas would be achieved over the long term.	Yes - Active remedial measures (excavation) will result in compliance with cleanup standards throughou the Site.
Compliance with Applicable State and Federal Laws	Alternative does not comply with MTCA.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.
Provision for Compliance Monitoring	Alternative does not include provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.
		OTHER REQUIREMENTS		-
Permanent to the Maximum Extent Practicable (see detail below)	While alternative is permanent and protective with the current containment systems, cleanup standards will be achieved only over a very long period of time and does not provide for protectiveness beyond that provided by existing containment systems.	Alternative is permanent and protective with the current containment systems supplemented with a new vertical barrier and a protective environmental covenant; however, cleanup standards will be achieved only over a very long period of time and monitoring will enable evaluation of natural attenuation processes.	Yes - Alternative is permanent and protective to the maximum extent practicable with the current containment systems supplemented with a new vertical barrier and a protective environmental covenant; achievement of cleanup standards will be accelerated by removal of source material and monitoring will enable evaluation of natural attenuation processes.	Alternative is permanent and protective and cleanup standards will be achieved by removal of soil containing COCs exceeding cleanup levels; however, this cleanup alternative is not considered to be practicable.
Restoration Time Frame	Concentrations of COCs will degrade below cleanup levels over many years. As no additional protective controls or monitoring will be employed, the restoration time frame is not considered to be reasonable under MTCA.	Concentrations of COCs will degrade below cleanup levels over many years. As additional protective controls and monitoring will be employed, no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restoration time frame is considered to be reasonable under MTCA.	The restoration time frame for groundwater is within 5 years of completing remedial action construction. The restoration time frame for soil after removal of source areas is many years as COCs are naturally attenuated. As additional protective controls, inspections, and monitoring will be employed, no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restoration time frame is considered to be reasonable under MTCA.	The restoration time frame for groundwater is within 5 years of completing remedial action construction. The restoration time frame for soil is upon completion of remedial action construction. Protective controls and monitoring is not required. As no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restoration time frame is considered to be reasonable under MTCA.
		Evaluation Criteria for Permanence to the Maximum E	xtent Practicable ¹	
Protectiveness (30% weighting Factor)	Alternative will not provide additional protectiveness beyond that provided by existing containment systems and does not include an environmental covenent or monitoring; cleanup standards achieved over a long time period through natural attenuation. = 5.	Alternative provides protection with containment systems, subject to periodic repairs, supplemented with an environmental covenant and monitoring; cleanup standards achieved over a long period of time through natural attenuation. = 6.5.	Alternative provides protection with containment systems, supplemented with source excavation and an environmental covenant; cleanup standards achieved in reasonable period of time; monitoring of natural attenuation of residual levels of COCs. = 8.	Alternative provides protection by removing all soil containing COCs exceeding cleanup levels. = 9.
Permanence (20% weighting Factor)	Alternative will not pernamently reduce the toxicity or volume of haxardous substances except via natural attenuation processes but the existing containment systems will reduce the overall mobility of COCs. = 4.	Alternative will not pernamently reduce the toxicity or volume of haxardous substances except via natural attenuation processes but the containment systems will reduce the overall mobility of COCs. = 4.	Alternative will permanently reduce the volume of hazardous substances with source excavation; the existing containment system will reduce overall mobility of residual COCs until naturally attenuated. = 8.	Alternative will permanently reduce the volume of hazardous substances with mass excavation of all areas where COCs exceed cleanup levels. = 9.
Long-Term Effectiveness (20% weighting Factor)	Alternative is considred to provide effective protection over the long-term but with reliance on the existing on-Site containment systems. = 2.	Alternative is considred to provide effective protection over the long-term but with reliance on containment systems supplemented with engineered and institutional controls and monitoring. = 4.	Alternative provides effective protection over the long- term by source excavation and disposal off-Site at a permitted facility and by containment of residual levels of COCs supplemented by engineered and instituational controls. = 7.	Alternative provides effective protection over the long- term by mass excavation of areas where COCs exceed cleanup levels and disposal off-Site at a permitted facility. = 9.
Short-Term Risk Management (10% weighting Factor)	Alternative does not disturb affected media in the short term; no short-term risk management needed = 8.	Alternative disturbs minor volume of affected media in the short term for installation of engineer controls; no short-term risk management needed = 7.	Alternative disturbs affected media presenting short- term risk to workers, proximate property owners, and during transport off-Site = 7.	Alternative disturbs larger volumes of affected media than Alternative 3 presenting short-term risk to workers, proximate property owners, and during transport off-Site = 5.
Implementability (10% weighting Factor)	Alternative is easily implemented and results in no Site disturbance. =10.	Alternative employs standard construction processes and use of institutional and engineered controls. While components are readily implementable and require minimal Site disturbance. = 9.	Alternative employs standard construction processes and use of institutional and engineered controls. Components are readily implementable and require modest Site disturbance. = 8.	Alternative requires facilities temporarily move and demolition/rebuilding of structures, extensive excavation, and large impact to the Site business operations.
Public Concerns (10% weighting Factor)	Alternative leaves impacted soil in place. Site is in area zoned for industrial use and public access is restricted. Public exposure will not occur and limited public concern is anticipated = 10.	Alternative leaves impacted soil in place. Site is in area zoned for industrial use and public access is restricted. Public exposure will not occur and limited public concern is anticipated = 10.	Alternative maximizes removal and disposal of impacted soils. Site is in area zoned for industrial use and public access will be restricted during construction activities. Limited public concern during excavation with most during off-Site transport = 9.	Site is in an area zoned for industiral use and public access will be restricted during construction activities. Public concern may be heightened due to scale of excavation and quantity of soil removed. = 9.
MTCA Composite Benefit Score ¹	5.5	6.2	7.8	7.8
Overall Alternative Ranking ²	4	3	1	2
Cost	\$0	\$1,330,000	\$2,310,000	\$16,400,000
NOTES:				

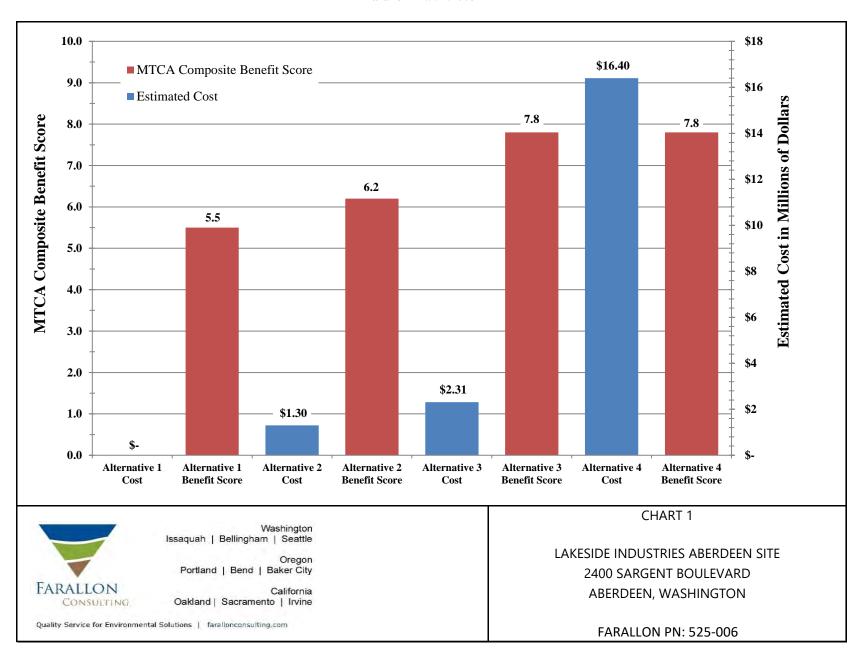
NOTES:

¹ Basis for overall Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Composite Benefit Score provided quantitatively with a "score" from 0 (least favorable) to 10 (most favorable) for each of the six evaluation criteria for permanence to the Maximum Extend Practicable above. MTCA Composite Benefit Scores are calculated by summing the mathematical product of the score multiplied by the indicated weighting factor for each of the six criteria. The basis for the weighting factors for the six criteria to evaluate permanence to the maximum extent practicable are obtained from Washington State Department of Ecology guidance cited in the text.

² Overall Alternative Ranking from 1 (most favorable) to 4 (least favorable).

Summary of Cleanup Alternative Cost Estimates

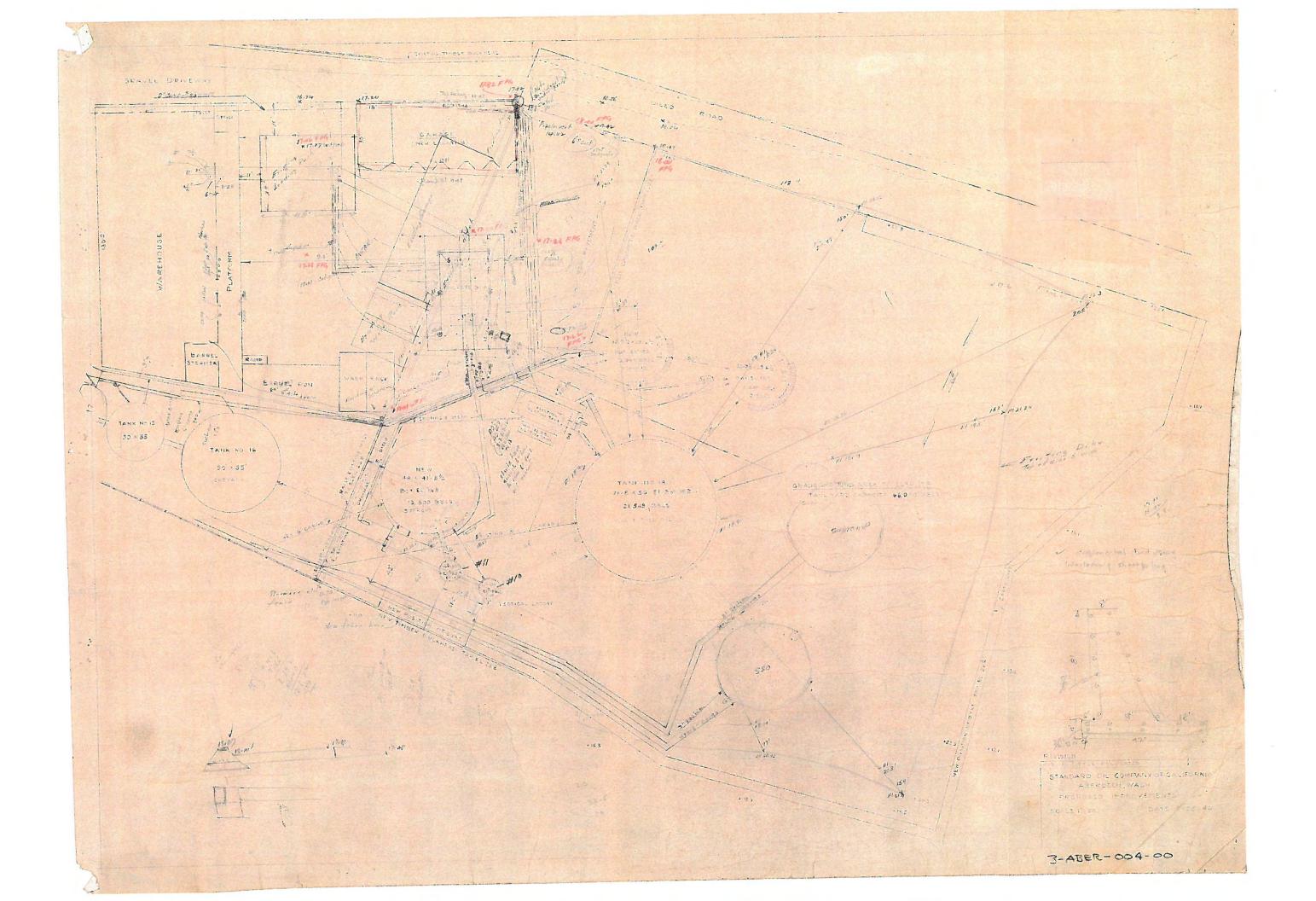
Former Chevron Bulk Fuel Facility

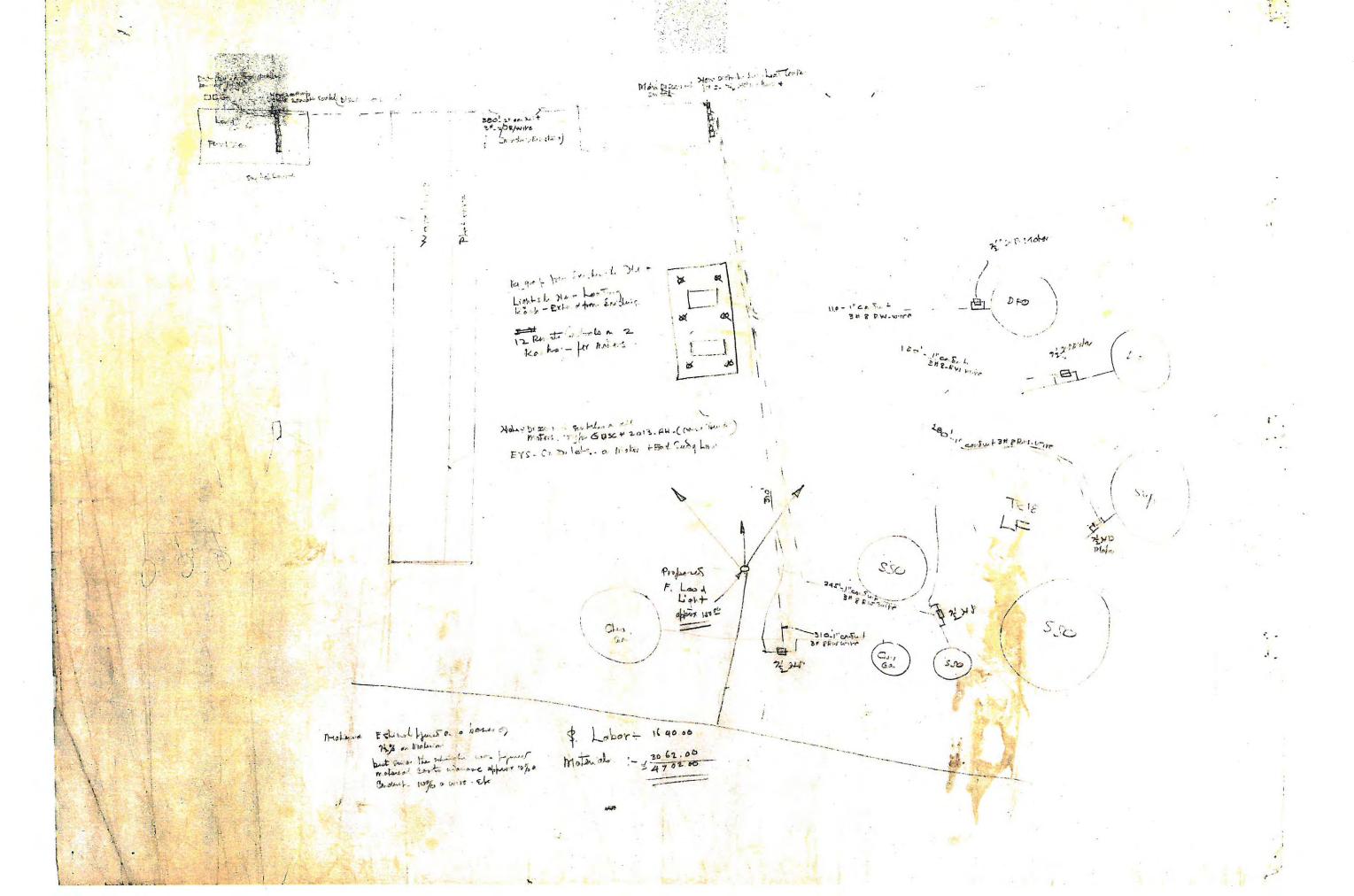

Lakeside Industries Aberdeen, Washington

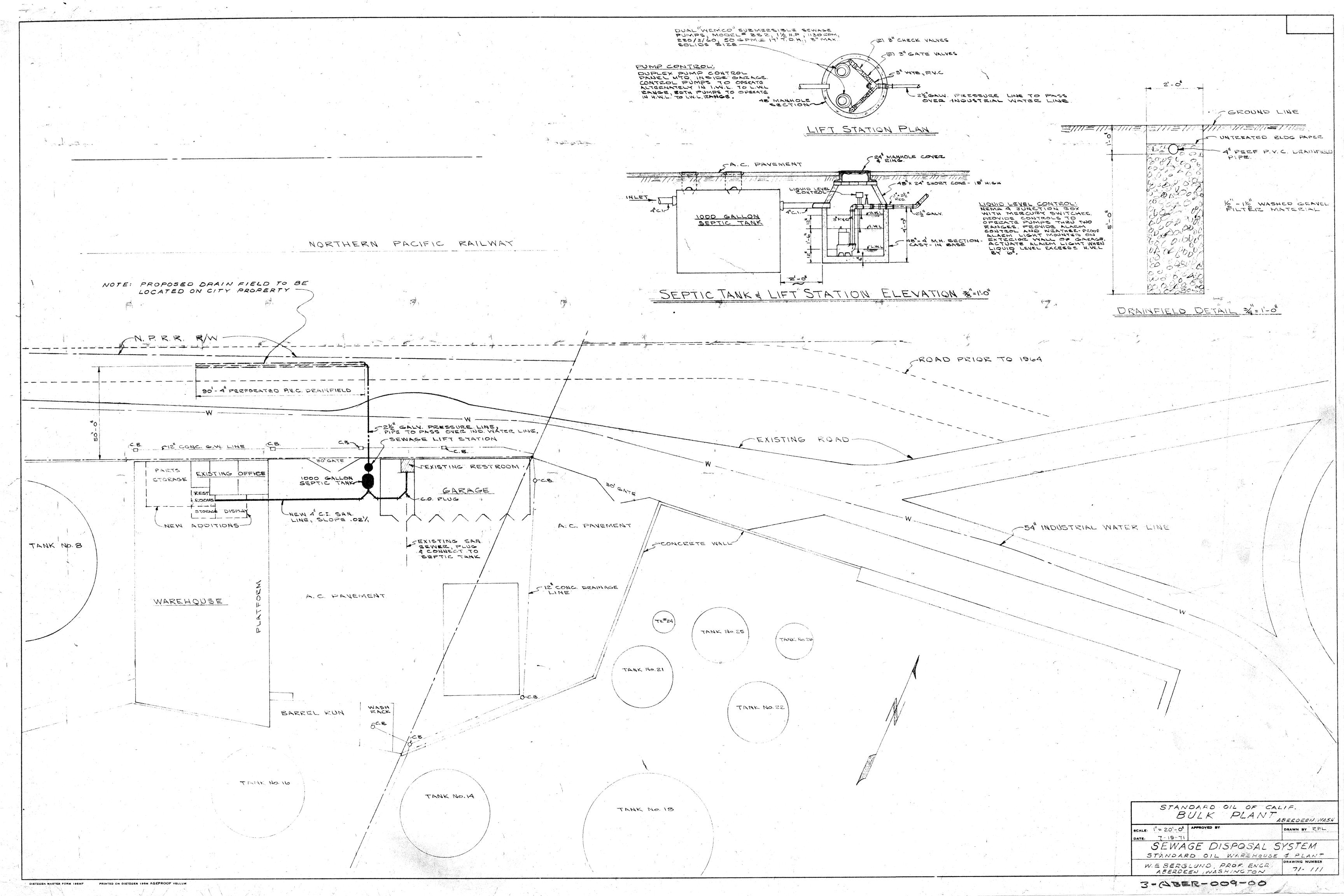
	Alternative 1 No Action	Alternative 2 Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation	Alternative 3 Source Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls	Alternative 4 Complete Excavation of Soil Exceeding Cleanup Levels
Capital Costs				<u> </u>
Engineering				
Project Management (7% total construction cost)	\$0	\$57,800	\$108,000	\$833,000
Remedial Design, Permitting (15% total construction cost)	\$0	\$123,900	\$231,000	\$1,790,000
Construction Management (8% total construction cost)	\$0	\$66,100	\$123,000	\$952,000
Construction		<u> </u>		
Site Preparation and Construction				
Mobilization/Demobilization	\$0	\$0	\$28,000	\$400,000
Temporary Facilities	\$0	\$0	\$5,000	\$5,000
Batch Plant Relocation	\$0	\$0	\$0	\$1,700,000
Erosion Control	\$0	\$0	\$20,000	\$50,000
Site Preparation	\$0	\$0	\$10,000	\$22,000
Demolition (structures, foundations, surfacing, wells, utilities, etc.)	\$0	\$1,700	\$46,800	\$1,100,000
Remediation		•		
Sheet Pile Barrier and Shoring	\$0	\$705,950	\$746,000	\$0
Excavation & Disposal				
Excavate, Disposal, and Backfill	\$0	\$0	\$265,000	\$3,980,000
Dewatering & Treatment + Disposal	\$0	\$0	\$80,000	\$160,000
Site Restoration & Compliance Monitoring Wells	\$0	\$10,000	\$32,000	\$2,110,000
Subtotal Construction	\$0	\$718,000	\$1,233,000	\$9,530,000
Contingency and Taxes		•		
Contingency Percent	0%	15%	25%	25%
Contingency Price	\$0	\$107,700	\$308,250	\$2,380,000
Washington and Local Sales Tax (6.5% + 2.0%)	\$0	\$61,000	\$105,000	\$810,000
Total Construction Cost	\$0	\$826,000	\$1,540,000	\$11,900,000
TOTAL CAPITAL COST	\$0	\$1,135,000	\$2,110,000	\$16,300,000
Ongoing Periodic and Future Costs				
Lift Station Operation and Maintenance (5 years)	\$0	\$84,800	\$84,800	\$0
Preparation of Cleanup Action Plan	\$0	\$25,000	\$25,000	\$25,000
Confirmational Groundwater Monitoring	\$0	\$51,000	\$51,000	\$51,000
Progress Reporting	\$0	\$14,000	\$14,000	\$14,000
Closure Report	\$0	\$20,000	\$30,000	\$40,000
TOTAL ONGOING PERIODIC and FUTURE COST	\$0	\$194,800	\$204,800	\$130,000
Remediation Project Total Cost	\$0	\$1,330,000	\$2,310,000	\$16,400,000
Remediation Project Total Cost Range (-30%/+50%)	\$0	\$931,000 \$2,000,000	1 /1 //	\$11,500,000 \$24,600

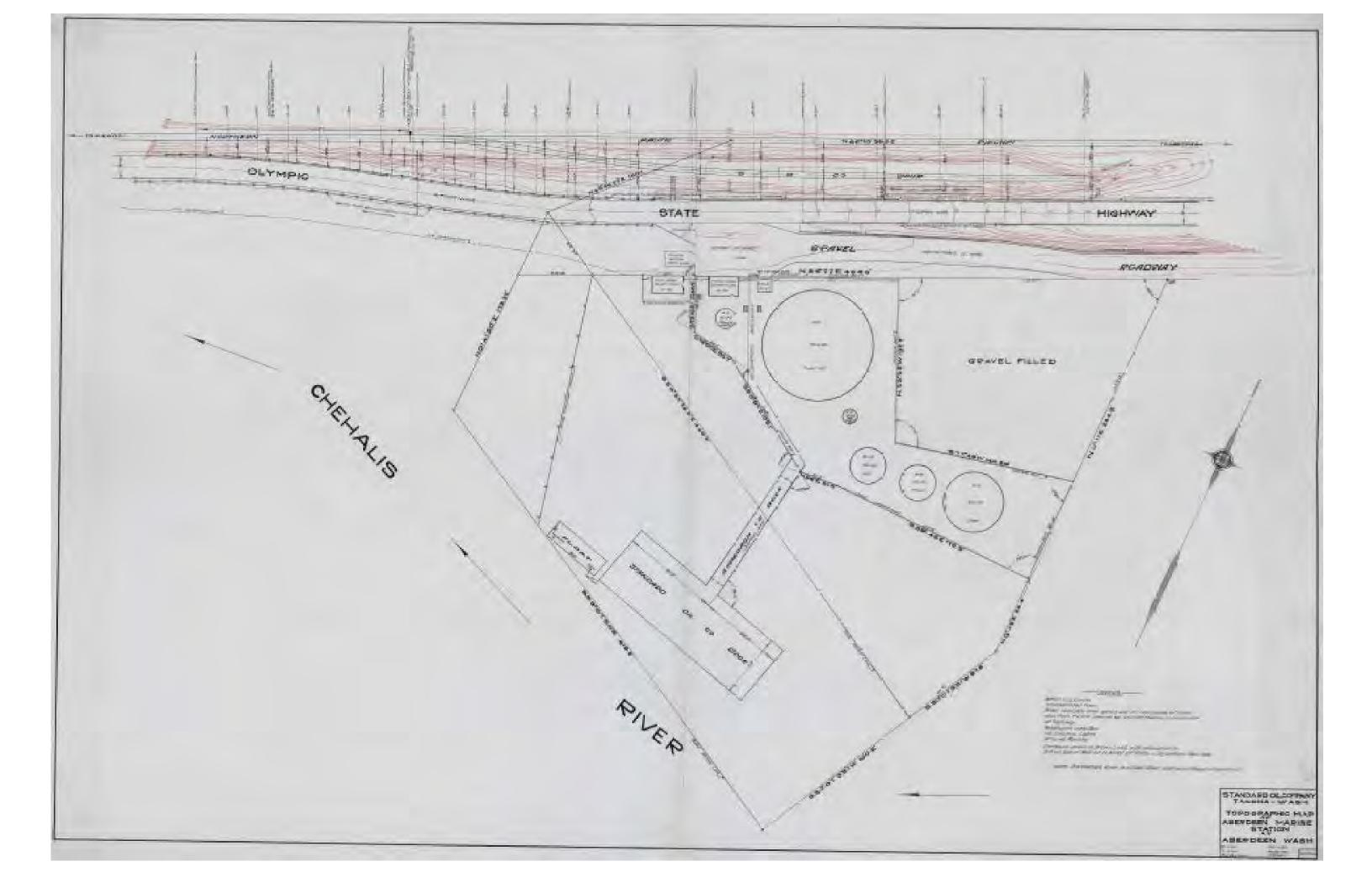
CHART

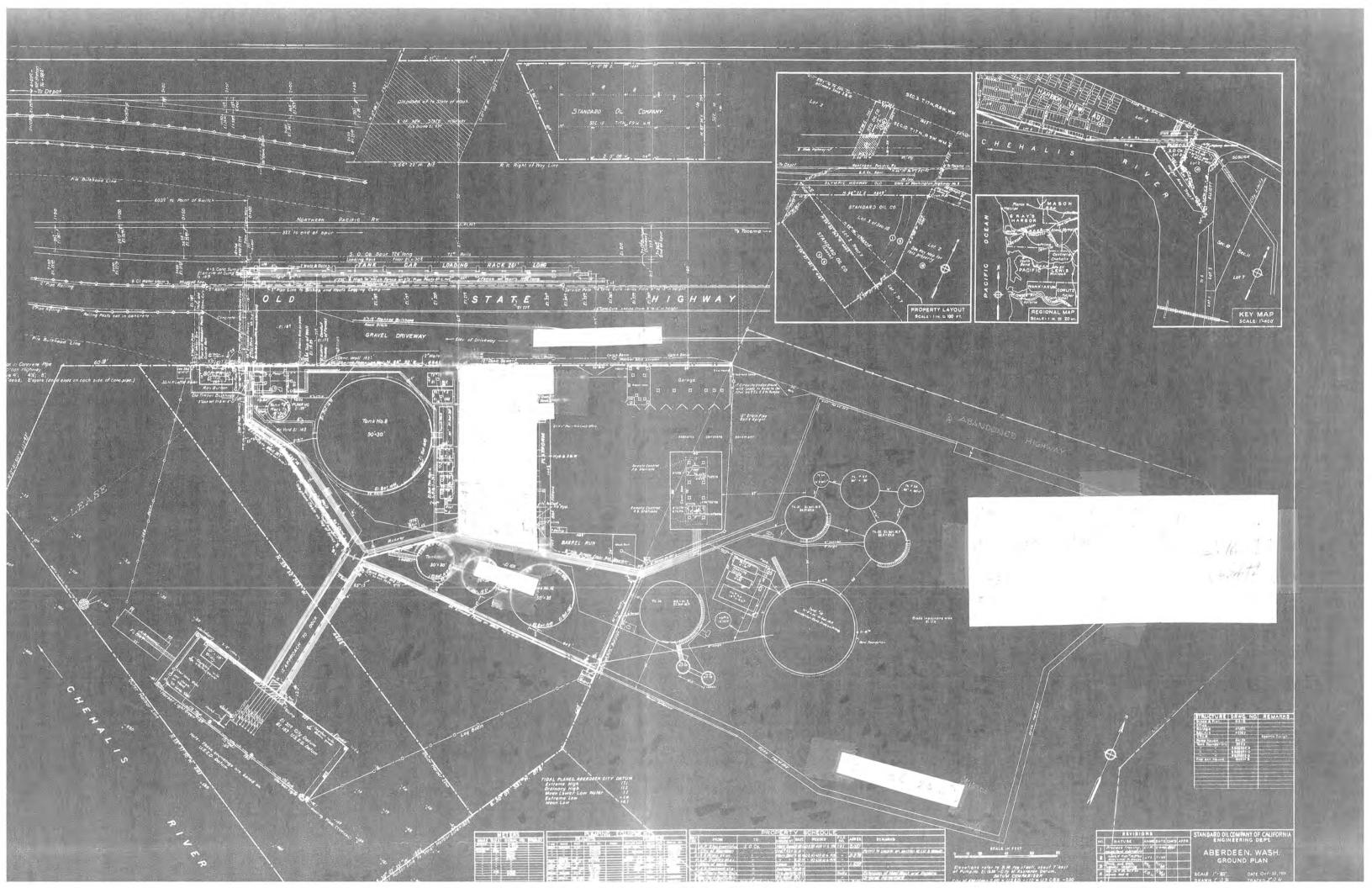
LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington


Chart 1
Disproportionate Cost Analysis
Lakeside Aberdeen Facility
Aberdeen Washington
Farallon PN: 525-006




APPENDIX A HISTORICAL SITE DRAWINGS AND 1984 HYDROGEOLOGIC REPORT


LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington


Farallon PN: 525-006

(206) 881-7900 2020 124th Ave. N.E. P.O. Box 6325 Bellevue, WA 98008 Consulting Geotechnical Engineers and Geologists

July 9, 1984

Chevron USA, Inc. P.O. Box 220 Seattle, Washington 98111

Attention: Mr. Ken Godwin

Gentlemen:

We are transmitting four copies of our hydrogeologic report for your existing bulk storage facility in Aberdeen, Washington. Our services have been performed under the terms of Contract No. M66CNW03444.

We appreciate the opportunity to be of continued service to Chevron USA, Inc. Please call if you have any questions regarding our report or if we may be of additional service.

Yours very truly,

GeoEngineers, Inc.

James A. Miller

Senior Geological Engineer

James a. miller

JAM:da

File No. 372-09

REPORT OF HYDROGEOLOGIC SERVICES
EXISTING BULK STORAGE FACILITY
ABERDEEN, WASHINGTON
FOR
CHEVRON USA, INC.

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
SUBSURFACE SOIL CONDITIONS	1
HYDROCARBON CONTAMINATION	2
GROUND WATER CONDITIONS	2
CHEMICAL TESTING	3
CONCLUSIONS	3
LIST OF FIGURES	
	Figure No.
SITE PLAN	1
APPENDICES	
	Page No.
APPENDIX 1 FIELD EXPLORATIONS MONITOR WELL CONSTRUCTION AND MEASUREMENTS EXPLOSIMETER READINGS	A-1 A-1 A-1 A-2
APPENDIX 2	A-3
Laucks Testing Laboratories, Inc. Certificate Laboratory No. 84886, dated June 25, 1984	A-4

REPORT OF HYDROGEOLOGIC SERVICES EXISTING BULK STORAGE FACILITY ABERDEEN, WASHINGTON

FOR

CHEVRON USA, INC.

INTRODUCTION

The results of our hydrogeologic services at your existing bulk storage facility in Aberdeen, Washington are presented in this report. The bulk plant is located on the north bank of the Chehalis River immediately east of the Aberdeen city limits. The facility was constructed in about 1911 and was used until 1980 when operations ceased at the site. The location of the bulk plant and a layout of the facility are indicated on Figure 1. Most of the storage tanks in the Middle and East Tank Yards are being removed at this time.

We understand that the bulk plant property may be purchased by another owner in the near future. The purpose of our services is to determine the extent and nature of potential subsurface contamination at the bulk plant site. Specifically, our services include:

- 1. Excavating and logging 16 backhoe test pits at the site.
- Installing 2-inch-diameter monitor wells in each of the test pits.
- Submitting four soil samples to Laucks Testing Laboratories for various chemical analyses.
- Sampling the monitor wells for the presence of free (floating) hydrocarbons.
- Evaluating shallow ground water conditions at the site, including ground water flow direction and tidal effects.
- Providing opinions and recommendations regarding abatement of subsurface hydrocarbon contamination at the site.

SUBSURFACE SOIL CONDITIONS

Subsurface soil conditions at the bulk plant site were explored by excavating 16 test pits at the locations indicated on Figure 1. Monitor wells were installed in each test pit prior to backfilling. Details of

the excavation program, well installations and field measurements are presented in Appendix 1.

The test pit data indicate that the subsurface soils at the site can be divided into an upper unit of fill and a lower unit of native soils. The fill is variable in composition and consists of moderately to highly weathered sandstone fragments, fine to medium sand with a trace of silt and gravel, and sandy to silty gravel. Fill thicknesses appear to vary from 1-1/2 to over 4 feet in the West Tank Yard, from 3-1/2 to over 4 feet in the Middle Tank Yard, and from 4 to over 7 feet in the East Tank Yard.

Underlying the fill are native soils consisting of clayey silt, organic silt and peat. Test Pit 20, located in the northwestern corner of the East Tank Yard, appears to have encountered sandstone bedrock at a depth of approximately 7 feet.

HYDROCARBON CONTAMINATION

Olfactory, and sometimes visual, evidence of soil contamination by hydrocarbons was found in 10 of the 16 test pits. Hydrocarbon soil contamination was noted in Test Pits 1, 3, 5, 6, 7, 8, 9, 11, 13, and 18.

The monitor wells were sampled for the presence of free (floating) hydrocarbons on June 1, 1984. Free hydrocarbons were not found in any of the monitor wells.

Explosimeter readings were made at a distance of about one foot above the water level within each monitor well. A list of explosimeter readings is included in Appendix 1. The highest reading obtained was well below the explosive range.

GROUND WATER CONDITIONS

Ground water levels in the monitor wells are shallow, ranging from about 1 to 3 feet below present site grades. Contours of water table elevation, based on June 1 measurements in the 16 monitor wells, are shown on Figure 1. The water table elevation contours indicate that the shallow ground water flows in a southerly direction towards the Chehalis River in the vicinity of the tank yards.

Repetitive ground water level measurements in Monitor Wells 6 and 9 indicated little or no variation in water levels despite large tidal changes in the Chehalis River. This suggests that the shallow ground water at

the site is "perched" within the fill which overlies native soils and that the perched ground water is not in direct hydraulic connection with the Chehalis River.

CHEMICAL TESTING

Soil samples from Test Pits 1, 6, 11 and 13 were submitted to Laucks Testing Laboratories for chemical analyses. The testing program is listed below.

TYPE OF		TEST PI	T NUMBER	
TEST	1	6	11	13
EP Toxicity	x	X		
Halogenated Hydrocarbons		x	X	x
Total Metals	x	x		
Pentachlorophenol		x		
Polycyclic Aromatic Hydrocarbons	X	x	x	x

The test data are attached in Appendix 2. The test results indicate no specific toxicity hazards as defined by the State of Washington Department of Ecology.

CONCLUSIONS

The presence of soil contamination by hydrocarbons in several of the test pits indicates that hydrocarbons have leaked into the ground during the past operation of the facilities. The apparent absence of free (floating) hydrocarbons in the monitor wells suggests that the subsurface hydrocarbons at the site have been immobilized by contact with soil materials. Based on our measurements, it is our opinion that recovery of subsurface hydrocarbons by pumping or skimming operations is not feasible at this site. The available test data indicate that subsurface soils with residual hydrocarbons are not "hazardous", as defined by the State of Washington Department of Ecology.

The shallow ground water in the site area is probably contaminated by low concentrations of dissolved hydrocarbons. This contamination probably does not pose a threat to local ground water supplies since it is highly unlikely that any water wells are located downgradient from the tank yard. Slow discharge of the shallow ground water into the Chehalis River probably results in dilution of dissolved hydrocarbons below detectable limits.

It is our opinion that hydrocarbon vapors may represent a hazard at this site. It has been our experience that vapor production and migration problems are most troublesome when ground warming occurs during the summer months, thereby increasing the rate of volatilization of buried petroleum products. We recommend that future property owners be made aware of the potential presence of hydrocarbon vapors. Future improvements to the property, particularly construction of below-grade confined spaces, should include provisions for vapor protection and isolation.

Recently published information from nationwide experience indicates potential problems with volatile hydrocarbons from petroleum-contaminated soils penetrating buried plastic water pipes, even when those pipes are pressurized and flowing. We therefore recommend that copper or steel water lines be installed at this site if future property owners anticipate the construction of new potable water lines.

- 0 0 0 -

We appreciate the opportunity to be of service on this project. Please call if you have any questions regarding our report.

Respectfully submitted,

James a. mell

GeoEngineers, Inc.

James A. Miller

Senior Geological Engineer

JAM: da

Attachments

APPENDIX 1

FIELD EXPLORATIONS

Sixteen test pits were excavated at the approximate locations indicated on Figure 1 for the purpose of exploring subsurface conditions and installing monitor wells. The test pits were excavated to depths of 5-1/2 to 10 feet with a rubber-tired backhoe owned and operated by the Jack L. Root Construction Company.

A geological engineer from our staff determined the test pit locations, examined and classified the soils encountered, and prepared a detailed log of each excavation. Soils encountered were classified in accordance with the Unified Soil Classification System. Disturbed soil samples were collected and examined in our laboratory. Detailed test pit logs are available in our files.

MONITOR WELL CONSTRUCTION AND MEASUREMENTS

Two-inch-diameter, Schedule 40 PVC pipe was installed to near the base of each test pit excavation. The PVC pipe is machine-slotted (0.02 inch slot size) to allow entry of water and/or free product into the wells. The test pits were backfilled with imported pea gravel. Elevations of the well casing rims were determined by our field engineer to an accuracy of 0.01 feet. Water-finding paste and a weighted fiberglas tape were used to measure subsurface water levels in each of the casings to the nearest 0.01 feet. The results of the June 1, 1984 water level measurements are indicated on Figure 1.

The well casings were also sampled for the potential presence of free (floating) hydrocarbons using a transparent sampler. No free product was found in the wells on June 1, 1984.

EXPLOSIMETER READINGS

Explosimeter readings were made at a distance of about one foot above the water level in each monitor well on June 1, 1984. The measurements were made using our Bacharach Model L Explosimeter. A tabulation of the explosimeter readings is presented below.

Well No.	Explosimeter Readings (% L.E.L.)
1	12
2	0
3	0
4	0
5	0
6	10
7	0
8	6
9	10
11	5
13	0
16	0
17	0
18	10
19	0
20	0

APPENDIX 2

RESULTS OF SOIL TESTING

ATTACHMENT TO APPENDIX 2

Laucks Testing Laboratories, Inc.

Certificate

940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry, Microbiology, and Technical Services

GeoEngineers

CLIENT GEOET

GeoEngineers Inc. P.O. Box 6325 Bellevue, WA 98008 ATTN: James A. Miller

Routing fam 9

JUN 3

LABORATORY NO. 84886

DATE June 25, 1984

REPORT ON

SOIL

SAMPLE IDENTIFICATION Samples submitted 5-31-84 and identified as shown below:

 Boring 1, Sample 3, Depth 42", Job No. 372-09, Soil type ML, 5-22

TESTS PERFORMED AND RESULTS: Boring 6, Sample 2, Depth 2 1/2, Job #372-09, Soil type GP, 5-22

3) Boring No.11, Sample 1, 0-4", 372-09, SW/GP, 5-22

4) 13, 1, 6", 372-09, SW, 5-22

Samples were analyzed in accordance with 40 CFR, Part 261.24 for EP Toxicity, with results as shown below:

parts	per	million	(mg/L)

	1	2_	MCL				
Arsenic	L/0.2	L/0.2	5.0				
Barium	L/0.5	L/0.5	100.				
Cadmium	L/0.02	L/0.02	1.0				
Chromium	L/0.1	L/0.1	5.0				
Copper	L/0.1	L/0.1					
Lead	0.2	0.2	5.0				
Mercury	L/0.002	L/0.002	0.2				
Selenium	L/0.2	L/0.2	1.0				
Silver	L/0.1	L/0.1	5.0				

ţ:

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

2

GeoEngineers Inc.

LABORATORY NO.

84886

Samples were then analyzed for Halogenated Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303 with results as follow:

	2	3	4
Halogenated Hydrocarbons* parts per million (mg/kg), as received basis	48.	15.	57.

* reported as the sum of the halogens bromide, chloride, fluoride and iodide. A value of less than 100 mg/kg is classified as undesignated waste

parts p	per mi	llion	(mg/kg)
---------	--------	-------	---------

Par es per mir	Trien (mg/kg/
1	2
7.3	1.4
70.	L/50.
L/2.	L/2.
32.	25.
40.	59.
40.	L/20.
0.07	L/0.05
L/0.5	L/0.5
L/4.	L/4.
parts per bi	llion (ug/kg)
	22.
	7.3 70. L/2. 32. 40. 40. 0.07 L/0.5 L/4.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

3

GeoEngineers Inc.

LABORATORY NO.

84886

Samples were analyzed also for Gravimetric Polycyclic Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303. The method requires analysis of the sample through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

% by weight, as received basis*

	1		3	4
Stage 1: Soxhlet Extraction	0.23	0.51	0.28	2.85
Stage 2: Acid/Base Clean Up		222	254	0.99

^{*} for 4,5,6 membered rings

Key

MCL = Maximum Contamination Level allowed per regulation.

L/ = Less than

Respectfully submitted,

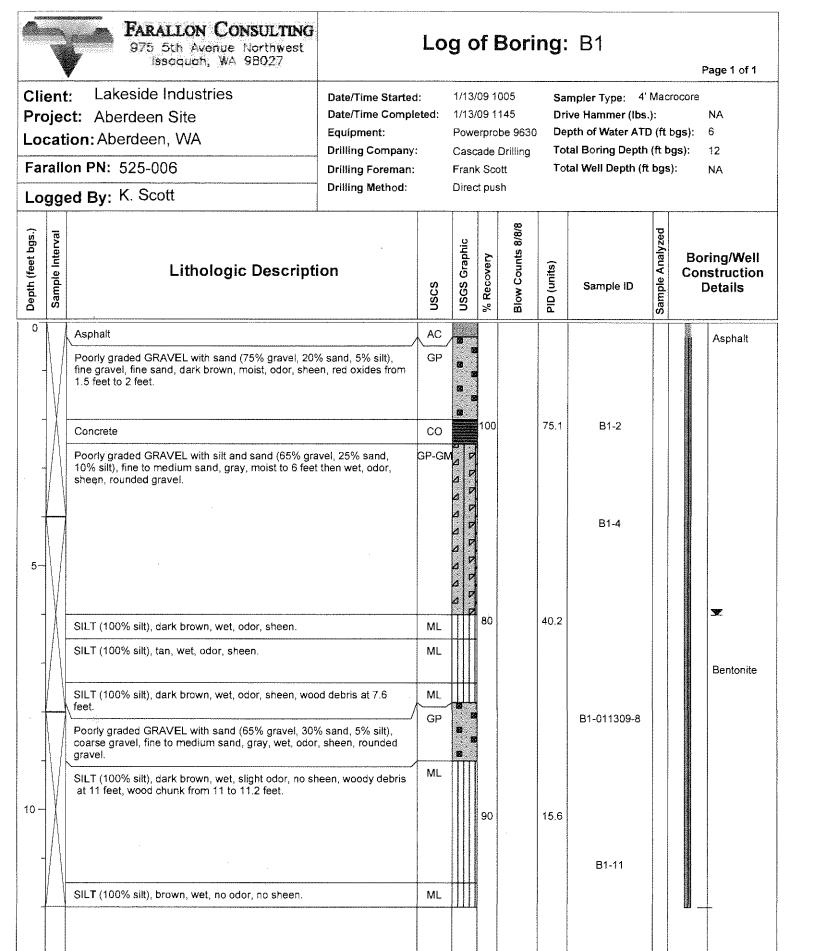
Laucks Testing Laboratories, Inc.

. M. Owens

JMO:bg

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of soence.

APPENDIX B BORING LOGS, TEST PIT LOGS, AND MONITORING WELL COMPLETION DIAGRAMS


LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

USCS Classification and Graphic Legend

•											
Major Divisions					USCS Letter Symbol		Lithologic Description				
Coarse-	GRAVEL	CLEAN GRAVEL (Little); <u>(</u> (), (); ()	3	GW	Woll graded CRA	VEL, well graded GRAVEL with sand				
Grained Soil (More	AND GRAVELLY	or no fines)		d	GV GP		AVEL, GRAVEL with sand				
than 50% of material	SOIL (More than 50% of	GRAVEL WITH FINES		_	P-GM	, ,	AVEL - GRAVEL with sand and silt				
is larger than No.	coarse fraction	(Appreciable amount of fines)			GM	Silty GRAVEL					
200 sieve size)	retained on No. 4 sieve)			1	GC	Clayey GRAVEL					
	SAND AND	CLEAN SAND (Little or	. = //. = /	1	SW	Well graded SANI	D				
	SANDY SOIL (More	no fines)			SP	Poorly graded SA					
	than 50% of coarse SAND WITH FINES			SI	P-SM	Poorly graded SA					
	fraction passed	(Appreciable amount of fines)			SM	Silty SAND					
	through No. 4 sieve)				SC	Clayey SAND					
				SI	M-ML	SILT - Silty SAND					
Fine-	SILT AND				ML	SILT					
Grained Soil (More	CLAY (Liquid limit less		H		CL	CLAY					
than 50% of material is smaller	than 50)				OL	Organic SILT					
than No. 200 sieve	SILT AND				МН	Inorganic SILT					
size)	CLAY (Liquid limit greater than 50)				СН	Inorganic CLAY					
	than 50)				ОН	Organic CLAY					
		Highly Organic Soil	Т Т		PT	Peat					
OTHER MATERIALS	PAVEMENT				AC	Asphalt concrete					
WATERIALO					СО	Concrete					
	OTHER				RK	Bedrock					
			1	,	WD	Wood Debris					
			<u> </u>		DB	Debris (Miscellane	eous)				
					PC	Portland cement					
	Sample In	terval			Leç	gend	Solid line indicates sharp contact between units well defined.				
G	Grab Sam	ple Interval		Op (Cemen	t Grout	Dashed line indicates gradational contact between units.				
•	Water leve	el at time of drilling			Benton	ite	feet bgs = feet below ground surface NE = Not Encountered				
Z	Water leve	Water level at time of sampling		Water level at time of sampling					NA = Not Applicable		
	Blank Casing		Blank Casing		Blank Casing	Blank Casing			Sand P	ack	PID = Photoionization Detector PN = Project Number
	Screened	Casing			Well Ca	ар	*ppm = parts per million total organic vapors in isobutylene equivalents using a 10.6 electron volt lamp USCS = Unified Soil Classification System				

Monument Type: NA

Screened interval (ft bgs):

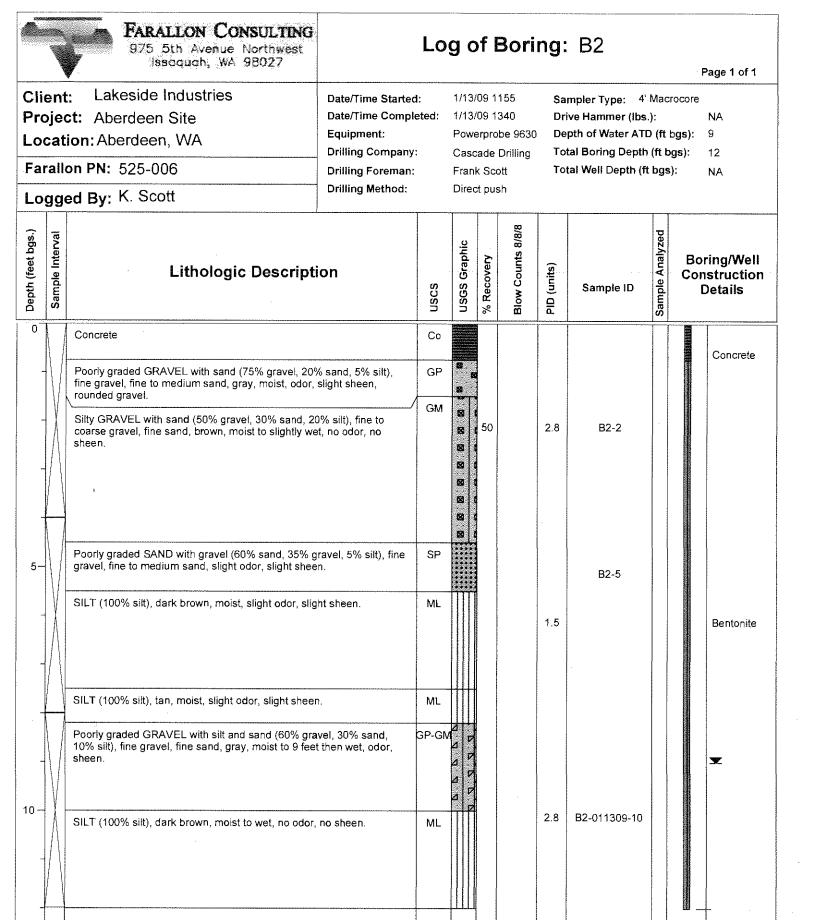
Casing Diameter (inches): Screen Slot Size (inches): NA

NA

6-10

Filter Pack:

Well Construction Information


Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft): **Boring Abandonment:**

NA Bentonite

NA

Surveyed Location: X: NA

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): Screen Slot Size (inches):

NΑ NA

8-12

Filter Pack:

Well Construction Information

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:

NA Bentonite

NΑ

Surveyed Location: X: NA

FARALLON CONSULTING Log of Boring: B3 975 5th Avenue Northwest issaquah, WA 98027 Page 1 of 1 Lakeside Industries Client: Date/Time Started: 1/13/09 1355 Sampler Type: 4' Macrocore Date/Time Completed: Project: Aberdeen Site 1/13/09 1605 Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): Equipment: Powerprobe 9630 Location: Aberdeen, WA **Drilling Company:** Cascade Drilling Total Boring Depth (ft bgs): 20 Farallon PN: 525-006 Total Well Depth (ft bgs): **Drilling Foreman:** Frank Scott NA **Drilling Method:** Direct push Logged By: K. Scott Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval USGS Graphic Boring/Well (units) Lithologic Description Construction Sample ID Details ē 0 Asphalt AC Asphalt Poorly graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine sand, fine gravel, gray, odor, sheen, staining at 3.5 feet. B3-2 60 562 B3-4 Sandy SILT (60% silt, 30% sand, 10% gravel), fine sand, fine gravel, brown, moist to slightly wet, strong solvent-like odor, sheen, staining. Poorly graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine SP 80 225 B3-011309-6 sand, fine gravel, gray, moist to 6 feet then wet, strong odor, sheen. ML SILT (100% silt), greenish-gray, wet, odor, sheen. 10 28.6 Bentonite ML SILT (100% silt), brown, wet, odor, slight sheen. 60 17.2 Peat (100% peat), dark brown, slightly wet, slight odor, slight sheen, root-rhizomes, wood debris. 15 ML SILT (100% silt), brown, slightly wet, odor, no sheen, wood fragment at 15.25 feet. ML SILT (95% silt, 5% sand), brownish-green, slight odor, no sheen. 90 1.5 SILT (100% siit), green, slightly wet, no odor, no sheen. ML 20 Well Construction Information NΑ

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA

6-10

Filter Pack:

Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA **B**entonite

Boring Abandonment: Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Date/Time Started:

1/13/09 1615

Date/Time Completed:

1/13/09 1715

Powerprobe 9630

Drilling Company:

Equipment:

Cascade Drilling

Drilling Foreman:

Frank Scott

Drive Hammer (lbs.):

Sampler Type: 4' Macrocore

Depth of Water ATD (ft bgs):

NA 8.5

Total Boring Depth (ft bgs):

12

Total Well Depth (ft bgs):

NA

Log	gg	ed By: K. Scott	Drilling Method:		Direc	t pusi	h					
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Const	g/Well ruction tails
0	·	Asphalt		AC	77						С	oncrete
۰, –		Poorly graded SAND with silt and gravel (60% sand, silt), fine sand, fine gravel, gray, odor, sheen.	30% gravel, 10%	SP-SN								
^ -		Sandy SILT (60% silt, 30% sand, 10% gravel), fine s brown, moist to slightly wet, odor, sheen.	and, fine gravel,	ML		20		28.8	B4-2		100 mm	
-		Poorly graded SAND with gravel (65% sand, 30% gr sand, fine gravel, gray, moist to 8.5 feet then wet, od	avel, 5% silt), fine lor, sheen.	SP								
S.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								B4-4			
5-												
Q						60		43.5				
M-	$\left \right $											
00-								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B4-011309-8			
0		SILT (100% silt), gray, wet, odor, no sheen.	·	ML							•	<u>*</u>
17		PEAT (100% peat), dark brown, slightly wet, odor, st rhizomes, wood debris.	neen, root-	PT	ign.							
10 -		SILT (100% silt), brown, slightly wet, odor, no sheen		ML		100		7.2		***************************************	В	entonite
		nt Type: NA Well	Construction	Inform	atio	n	•	THE ALL AND ADDRESS OF THE ADDRESS O	urface Elevation			

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches):

NA Screened Interval (ft bgs): 6-10 Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:

Bentonite

NA

Surveyed Location: X: NA

FARALLON CONSULTING

975 5th Avenue Northwest issoquet, WA 98027

Log of Boring: B5

Page 1 of 1

Client:

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

1/14/09 0720 1/14/09 0835

Powerprobe 9630

Cascade Drilling

Frank Scott

Drilling Company: **Drilling Foreman:**

Equipment:

Drilling Method: Direct push

Depth of Water ATD (ft bgs):

Sampler Type: 4' Macrocore

Drive Hammer (lbs.):

NΑ 7

Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs):

NΑ

-ogg	ge	ed By: K. Scott			·	1			т т		······································
Sample interval	Campic illes val	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cor	ring/Well nstruction Details
0		Asphalt /	AC						Til		Asphalt
-		Poorly graded GRAVEL with sand (75% gravel, 20% sand, 5% silt), fine gravel, fine sand, brown, moist, no odor, no sheen.	GP	20 23							
		Poorly graded GRAVEL (90% gravel, 10% sand), coarse gravel, fine sand, gray, moist, no odor, no sheen, angular gravel.	GP	(S)	8						
	-	Poorly graded SAND with gravel (65% sand, 30% gravel, 5% silt), brown, moist, no odor, no sheen.	SP GP		70		1.2	B5-2			
		Poorly graded GRAVEL (85% gravel, 10% sand, 5% silt), coarse gravel, fine sand, brown, moist, no odor, no sheen, rounded gravel.	SM								
5		Silty SAND (70% sand, 25% silt, 5% gravel), fine sand, fine gravel, brown, moist, no odor, no sheen.			1 1 1 70		92.7	B5-5			And the same of th
		Poorly graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine sand, coarse gravel, gray, moist to 7 feet then wet, odor, sheen, staining.	SP					B5-011409-8			_
0	777	SILT (100% silt), gray, wet, odor, no sheen.	ML		90		45.7				Bentonite
		SILT (100% silt), dark brown, wet, slight odor, no sheen.	ML		Military Company of the Company of t						
Onum	er	Well Construction	Inforn	natio	on	Gr	ound S	Surface Elevation	(ft)	: NA	

Monument Type: NA

Casing Diameter (inches): Screen Slot Size (inches):

NΑ NA Filter Pack:

Surface Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft):

NA Bentonite

Boring Abandonment:

Y: NA

Screened Interval (ft bgs):

6-10

Annular Seal: NA

Surveyed Location: X: NA

Monument Type: NA

debris

Casing Diameter (inches): NΑ NA Screen Slot Size (inches):

Filter Pack:

Surface Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft):

NA

Boring Abandonment:

Bentonite

NΑ

Screened interval (ft bgs):

6-10

PEAT (100% peat), dark brown, moist, no odor, no sheen, wood

Annular Seal: NA

Surveyed Location: X: NA

PΤ

Well Construction Information

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Faralion PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

1/14/09 1025 1/14/09 1125

Equipment: **Drilling Company:** Powerprobe 9630 Cascade Drilling

Drilling Foreman: Drilling Method:

Frank Scott Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NΑ Depth of Water ATD (ft bgs): 8.5

Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0. 7 N S S S S S S S S S S S S S S S S S S		Asphalt SILT (100% silt), gray, moist to wet, no odor, no sheen. Water observed at 5 feet, possibly due to concrete coring work.	AC ML		100		0.0	B7-4 B7-6		Asphalt
10-		SILT (100% silt), brown, moist to wet, no odor, no sheen. SILT, with sand (75% silt, 25% sand), brownish-gray, wet at 8.5 feet, no odor, no sheen. SILT (100% silt), brown, wet, no odor, no sheen, wood debris from 9 to 11.5 feet. PEAT (100% peat), dark brown, moist, no odor, no sheen.	ML ML PT		90		0.0	B7-011409-9		Bentonite

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches):

NA 6-10 Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:

NA Bentonite

Surveyed Location: X: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged Bur K. Scott

Date/Time Started:

Date/Time Completed:

Equipment: **Drilling Company:**

Drilling Foreman:

Drilling Method:

1/14/09 1135

1/14/09 1235

Powerprobe 9630

Cascade Drilling

Frank Scott

Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA

Depth of Water ATD (ft bgs): 7 Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs):

NA

Depth (feet bgs.)	Sample Interval	ed By: K. Scott Lithologic Descriptio	n	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Asphait	1-0-04111	AC				<u> </u>	Primarium de de la companya de la co	65	Asphalt
		Fill - rounded pea gravel, gray, moist, no odor, no she	en. /	GP /	583 1581						
\ \		Poorly graded GRAVEL with sand (75% gravel, 20% s fine gravel, fine sand, brown, moist, odor, sheen.	sand, 5% silt),	GP	8						
2-		Poorly graded SAND with gravel (65% sand, 30% gravel, fine gravel, brown, moist, odor, sheen.	vel, 5% silt), fine	SP		60		145	B8-2		
5 9 4		Poorly graded SAND with gravel (65% sand, 30% gravel, fine to coarse gravel, gray, moist to 7 feet then vistaining.	vel, 5% silt), fine wet, odor, sheen,	SP		70		325	B8-5		¥
0 —		SILT (100% silt), brown, wet, odor, no sheen.		ML		80		10.7	B8-011409-9	777777777777777777777777777777777777777	Bentonite
		PEAT (100% peat), dark brown, wet, no odor, no shee	ın.	P T				A-7-7-00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
		Wood debris, no odor, no sheen, pier-like, laminated.		DB	77			***************************************			
		nt Type: NA Well C	Construction I	nform	atio	n			urface Elevation		

Screened interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches):


NA 6-10 Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:

NA Bentonite

Surveyed Location: X: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K: Scott

Date/Time Started: Date/Time Completed: 1/14/09 1310

Sampler Type: 4' Macrocore

1/14/09 1415

Drive Hammer (lbs.):

Powerprobe 9630

Depth of Water ATD (ft bgs):

NA 6.5

Drilling Company:

Equipment:

Cascade Drilling

Total Boring Depth (ft bgs): Total Well Depth (ft bgs):

12 NA

Drilling Foreman: Drilling Method:

Frank Scott

Direct push

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Asphalt	AC							Asphalt
-		Poorly graded SAND with silt and gravel (65% sand 25% gravel, 10% silt), fine sand, fine to coarse gravel, moist, odor, slight sheen.	SP-SM		60		33.2	B9-2		
		Sandy SILT (65% silt, 35% sand), fine sand, brown, moist, odor, sheen.	ML					B9-4		
5-				WHAT AND	70		45.6			
_		Silty SAND (65% sand, 25% silt, 10% gravel), fine sand, fine to coarse gravel, wet, strong bunker-like odor, sheen, staining.	SM							X
		Poorly graded SAND (95% sand, 5% silt), fine sand, green, odor, no sheen.	SP							To by Andrews Services
		No recovery, driller reports material very soft.				·		B9-011409-8		
10 -					0		NΜ			Bentonite

Monument Type: NA

Screened Interval (ft bgs):

NA Casing Diameter (inches): Screen Slot Size (inches):

NA

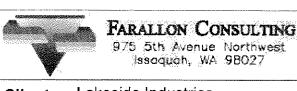
6-10

Filter Pack:

Well Construction Information

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft):


Boring Abandonment:

Bentonite

NΑ

NA

Surveyed Location: X: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed: 1/14/09 1435

1/14/09 1545

Powerprobe 9630

Drilling Company: Drilling Foreman:

Drilling Method:

Equipment:

Cascade Drilling Frank Scott

Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NΑ Depth of Water ATD (ft bgs): В

Total Boring Depth (ft bgs):

Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Sample Interval	Lithologic Description	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Concrete	co							Concrete
7		Poorly graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine sand, fine gravel, brown, moist, no odor, no sheen.	SP							Concrete
_	1	Fill - pea gravel (90% pea gravel, 5% sand, 5% silt), fine gravel, fine sand, black, moist, no odor, no sheen.	GP	52 52	60		3.5	B10-2		
_		Poorly graded GRAVEL (85% gravel, 10% sand, 5% silt), coarse	GP	02						
	$ \cdot $	gravel, fine sand, gray, moist, no odor, no sheen, angular gravel.	SP							
5		Poorly graded SAND with gravel (60% sand, 35% gravel, 5% silt), fine to coarse gravel, fine sand, gray, moist, odor, no sheen, red oxides between 6 and 6.5 feet.					245	B10-6		
_		Silty SAND (60% sand, 35% silt, 5% gravel), fine sand, fine gravel, moist, odor, slight sheen, red oxides between 7 and 7.5 feet.	SM							
-		Silty SAND with gravel (60% sand, 20% silt, 20% gravel), fine sand, fine gravel, green, moist to 8 feet then wet, odor, sheen.	SM		THE PROPERTY OF THE PROPERTY O			B10-011409-8		¥
		SILT (100% silt), brownish green, wet, odor, no sheen.	ML							
10 —	Terrent Control of the Control of th	Poorly graded SAND (95% sand, 5% silt), fine sand, green, wet, odor, no sheen.	SP				56.5			Bentonite
		well Construction I	nforn	natio	n			urface Elevation		

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NΑ Screen Slot Size (inches):

NA 6-10 Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Boring Abandonment:

Top of Casing Elevation (ft):

Bentonite

NA

Surveyed Location: X: NA

FARALLON CONSULTING

975 5th Avenue Northwest Issaquah, WA 98027

Log of Boring: B11

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed: 1/14/09 1650

Equipment:

Drilling Company:

Drilling Foreman: Drilling Method: Cascade Drilling Frank Scott

Powerprobe 9630

1/14/09 1555

Direct push

Sampler Type: 4' Macrocore

samplet type:

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): 9

Total Boring Depth (ft bgs): 1

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample interval **USGS Graphic** Boring/Well Recovery (units) Lithologic Description Construction Sample ID **Details** 믑 0 Concrete Concrete Poorly graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine SP sand, fine gravel, gray, moist, no odor, no sheen. Concrete CO 0.0 B11-2 GW Well-graded GRAVEL with sand (60% gravel, 35% sand, 5% silt), fine to coarse gravel, fine to medium sand, brown, moist to wet, no odor, no sheen. 5. B11-5 Silty SAND (65% sand, 35% silt), fine sand, green, moist. 90 0.3 Sandy SILT (60% silt, 30% sand, 10% gravel), fine sand, fine gravel, green, moist to 9 feet then wet, no odor, no sheen. 10 60 B11-011409-10 Bentonite

Monument Type: NA

Casing Diameter (inches): NA

Screen Slot Size (inches): NA Screened Interval (ft bgs): 8-12 Filter Pack:

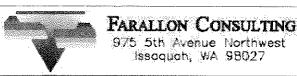
k: NA

Surface Seal: NA Annular Seal: NA

Well Construction Information

Ground Surface Elevation (ft):

Top of Casing Elevation (ft):


Boring Abandonment:

Bentonite

NA

NA

Surveyed Location: X: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Faralion PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

Equipment:

Drilling Company:

Drilling Foreman:

Drilling Method:

1/15/09 0745

1/15/09 0900

Powerprobe 9630 Cascade Drilling

Frank Scott

Direct push

Sampler Type: 4' Macrocore

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 8.5

Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs): NA

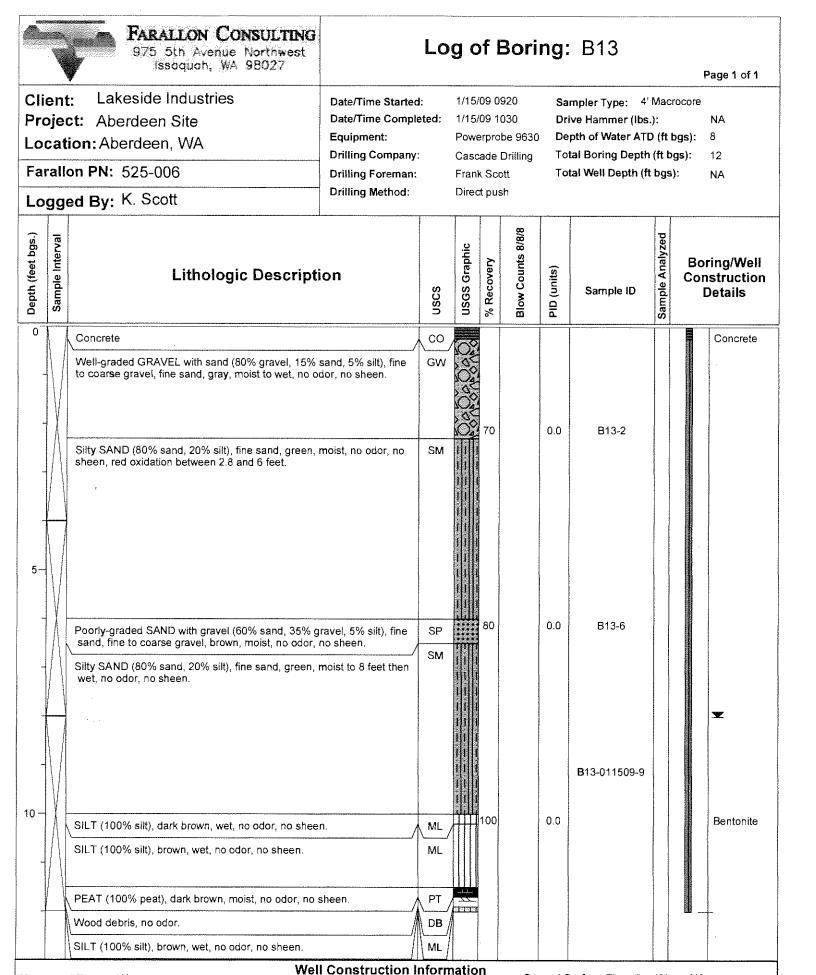
Blow Counts 8/8/8 Depth (feet bgs.) Sample Analyzed Sample Interval **USGS Graphic** Boring/Well Recovery PID (units) Lithologic Description Construction Sample ID Details 0 Concrete CO Concrete Poorly graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine sand, fine to coarse gravel, gray, moist, no odor, no sheen 80 0.0 B12-2 Sandy SILT (55% silt, 35% sand, 10% gravel), fine sand, coarse gravel, green, moist, no odor, no sheen, angular gravel. Silty SAND (80% sand, 20% silt), fine sand, green, moist, no odor, no SM sheen, red oxidation between 7.5 and 7.9 feet. 5 60 0.0 B12-6 Silty SAND (65% sand, 35% silt), fine sand, green, moist to 8.5 feet then wet, no odor, no sheen. 10 B12-011509-10 Bentonite SILT (100% silt), brown, wet, no odor, no sheen. ML. SILT (100% silt), gray, moist, no odor, no sheen, driller reports very ML dense. Well Construction Information

Monument Type: NA

Casing Diameter (inches): NA

Screen Slot Size (inches): NA Screened Interval (ft bgs):

Filter Pack:


Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

Top of Casing Elevation (ft):

Boring Abandonment:

NA Bentonite

Surveyed Location: X: NA

Monument Type: NA

Screened interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches):

NA

6-10

Filter Pack:

Surface Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NΑ Bentonite

Boring Abandonment:

Annular Seal: NA

Surveyed Location: X: NA

FARALLON CONSULTING

975 5th Avenue Northwest issoquah, WA 98027

Log of Boring: B14

Page 1 of 1

Client:

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

Equipment:

Drilling Company:

Drilling Foreman:

Drilling Method:

1/15/09 1045

1/15/09 1140

Powerprobe 9630

Cascade Drilling

Frank Scott

Sampler Type: 4' Macrocore

Total Well Depth (ft bgs):

NA Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 8.5 Total Boring Depth (ft bgs): 12

NA

Direct push

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Con	ring/Well Istruction Details
0		Concrete	со							200 844 844 844 850 244 850 850 850 850	Concrete
***************************************		Poorly graded SAND with gravel (60% sand, 35% gravel, 5% silt), fine sand, fine to coarse gravel, brown, moist, no odor, no sheen.	SP		60		0.0	B14-2			
TOTAL TOTAL AND THE PROPERTY OF THE PROPERTY O		Silty SAND (80% sand, 20% silt), fine sand, green, moist, no odor, no sheen.	SM								
5		Poorly graded SAND with silt (90% sand, 10% silt), green, moist, no odor, no sheen.	SP-SM		60		0.0	B14-6			
1-0		Silty SAND (80% sand, 20% silt), fine sand, green, moist to 8.5 feet then wet, no odor, no sheen.	SM	30 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				B14-011509-9			*
1 U	The state of the s	SILT (100% silt), brown, wet, no odor, no sheen.	ML		100		0.0				Bentonite
TO A STATE OF THE		SILT (100% silt), dark brown, wet, no odor, no sheen.	ML							To be the second	

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches):

NA Screened Interval (ft bgs): 6-10 Filter Pack:

Surface Seal: NA Annular Seal: NA

Well Construction Information

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

Bentonite

NA

NA

Surveyed Location: X: NA

FARALLON CONSULTING

975 5th Avenue Northwest Issoquoh, WA 98027

Log of Boring: B15

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

1/15/09 1205 Date/Time Completed:

1/15/09 1320

Powerprobe 9630

Cascade Drilling

Drilling Company: Drilling Foreman: **Drilling Method:**

Equipment:

Frank Scott

Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): 7.5

Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs): NA

LO	99	3d By: N. 300tt	·	,	,		,			
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Concrete	co							Concrete
		Poorly graded gravel with sand (75% gravel, 20% sand, 5% silt), fine gravel, fine sand, brown, moist no odor, no sheen.	GP	8 8						
		SILT with sand (75% silt, 20% sand, 5% gravel), fine sand, fine gravel, brown, moist, no odor, no sheen.	ML		70		0.0	B15-2		
		Poorly graded GRAVEL with silt and sand (65% gravel, 25% sand, 10% silt), coarse gravel, fine sand, brown, sweet odor, no sheen, rounded gravel.	GP-GN							
5—		Silty SAND with gravel (60% sand, 20% silt, 20% gravel), fine sand, fine gravel, brown, sweet odor, no sheen.	SM	8	70		3.5	B15-6		
		Poorly graded GRAVEL (85% gravel, 10% sand, 5% silt), coarse gravel, fine sand, gray, moist to 7.5 feet then wet, petroleum-like odor, sheen, rounded to subrounded gravel.	GP							¥
-		SILT (90% silt, 10% sand), fine sand, brown, wet, odor, sheen.	ML					B15-011509-9		<i>≨</i> 5
10 -		SILT (100% siit), dark brown, wet, no odor, no sheen.	ML		100		35.6			Bentonite
		Wall Construction								

Monument Type: NA

Casing Diameter (inches): NA

Screen Slot Size (inches): 6-10 Screened Interval (ft bgs):

NA

Filter Pack:

Well Construction Information NA

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA Bentonite

NΑ

Boring Abandonment: Surveyed Location: X: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman:

Drilling Method:

1/15/09 1405

1/15/09 1545

Powerprobe 9630

Cascade Drilling

Frank Scott

Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): 9

Total Boring Depth (ft bgs): 12

Total Well Depth (ft bgs): NA

	ש'פי	, d Dy.			· ,		T		, , , , , , , , , , , , , , , , , , , 	
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Concrete	co	8		\\-				Concrete
100		Poorly graded GRAVEL with sand (60% gravel, 35% sand, 5% silt), fine gravel, fine sand, brown, moist, no odor, no sheen.	GP						4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Total Control of the		Sitty SAND (80% sand, 20% silt), fine sand, green, moist, no odor, no sheen.	SM				5.0	B16-2		
5		SILT (100% silt), brown, moist, no odor, no sheen.	ML				4.3	B16-6		
					71000					
-		Wood debris, laminated, beige, no odor, no sheen.	DB	77						
		SILT (100% silt), brown, moist to 9 feet then wet, no odor, no sheen.	ML							-
10 -							1.8	B16-011509-10		Bentonite
		SILT (100% silt), dark brown, wet, no odor, no sheen.	ML							
Mon	ımer	Well Construction	Inforn	natio	on	Gre	ound 9	Surface Elevation	(ft):	NA NA

Monument Type: NA

Casing Diameter (inches): NA

Screen Slot Size (inches): Screened Interval (ft bgs):

NA NA

8-12

Filter Pack: NA

Sumfana Caali N

Surface Seal: NA Annular Seal: NA Top of Casing Elevation (ft):

Boring Abandonment:

NA Bentonite

Surveyed Location: X: NA

Lithologic Description

Log of Boring: B17

Page 1 of 1

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

4/19/11 920

Sampler Type: 4' Macrocore

4/19/11 1040

Drive Hammer (lbs.):

NA

Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

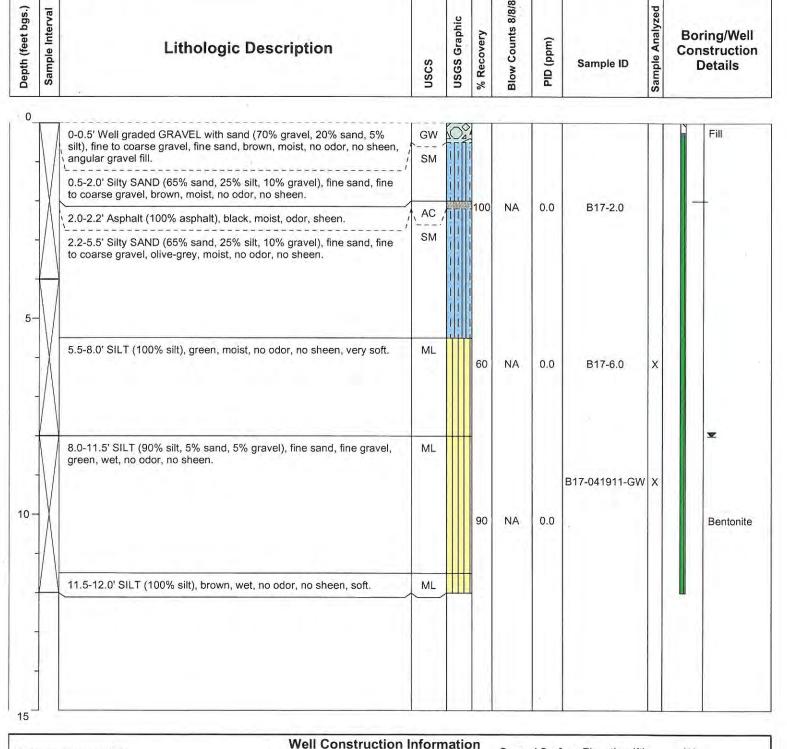
8.0

Drilling Company: Drilling Foreman:

ESN

Total Boring Depth (ft bgs):

Marty Huan


Total Well Depth (ft bgs):

12.0 NA

Drilling Method:

Direct push

Boring/Well Construction **Details**

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA

8-11

NA Filter Pack:

Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA

Bentonite Y: NA

NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/19/11 1050

Sampler Type: 4' Macrocore

4/19/11 1140

Drive Hammer (lbs.):

NA

Date/Time Completed: Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

8.5

Drilling Company: Drilling Foreman:

ESN

Total Boring Depth (ft bgs):

12.0 NA

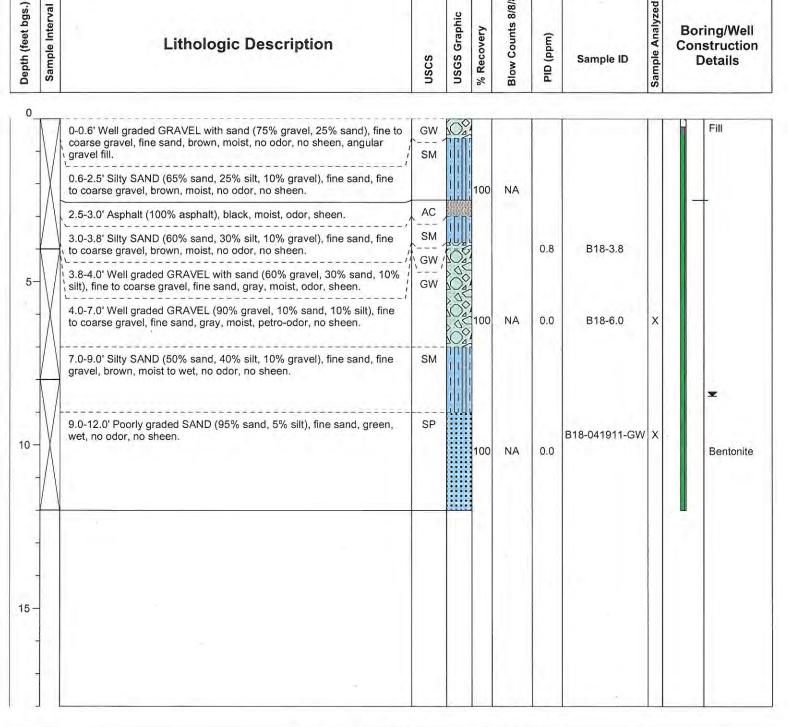
Drilling Method:

Marty Huan

Direct push

Total Well Depth (ft bgs):

Depth (feet bgs.) Interval


Lithologic Description

low Counts 8/8/8 **USGS Graphic** Recovery

Sample ID

(mdd)

Boring/Well Construction **Details**

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA Screened Interval (ft bgs): 8-11 Well Construction Information

Filter Pack: Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

Surveyed Location: X: NA

NA Bentonite Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/19/11 1150 4/19/11 1305 Sampler Type: 4' Macrocore

Drive Hammer (lbs.):

NA 8.5

Date/Time Completed: Equipment: Stratoprobe BR187

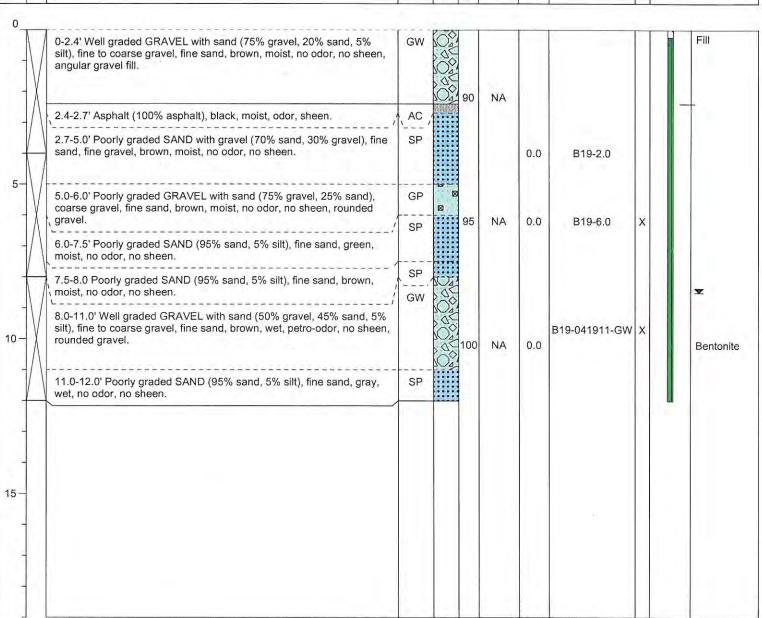
ESN

Depth of Water ATD (ft bgs):

Total Boring Depth (ft bgs):

12.0

Drilling Company: Drilling Foreman:


Marty Huan

Total Well Depth (ft bgs):

NA

Drilling Method: Direct push

(feet bgs.	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
------------	-----------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--	--

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA Filter Pack:

NA

Well Construction Information

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

NA Bentonite

NA

Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/19/11 1315

Sampler Type: 4' Macrocore

Date/Time Completed: 4/19/11 1425 Drive Hammer (lbs.):

NA

Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

8.0

Drilling Company: Drilling Foreman:

ESN

Marty Huan

Total Boring Depth (ft bgs):

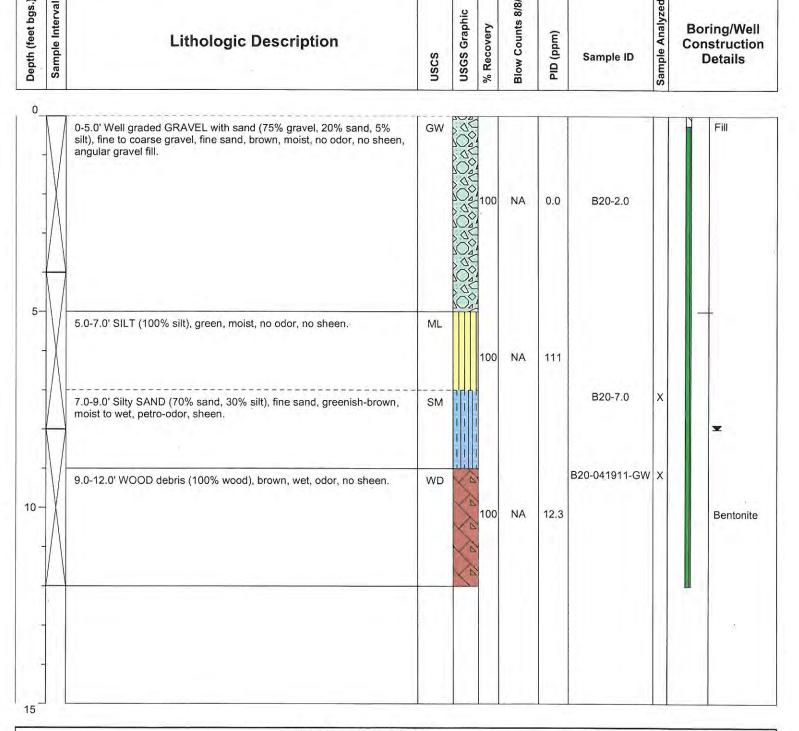
Total Well Depth (ft bgs):

Drilling Method:

Direct push

12.0 NA

Depth (feet bgs.) Sample Interval


Lithologic Description

low Counts 8/8/8 **USGS** Graphic Recovery

Sample ID

(mdd)

Boring/Well Construction **Details**

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA Screened Interval (ft bgs): 8-11 Well Construction Information

NA Filter Pack: Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA

Bentonite Y: NA

NA

Lithologic Description

Log of Boring: B21

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Depth (feet bgs) Sample Interval Date/Time Started:

4/20/11 0800

Sampler Type: 4' Macrocore

Date/Time Completed:

4/20/11 0920

Drive Hammer (lbs):

NA

Equipment:

Stratoprobe BR187 Depth of Water (ft bgs):

PID (ppmv)

8.0

Drilling Company:

ESN

Total Boring Depth (ft bgs):

12.0

Drilling Foreman:

USGS Graphic

uscs

% Recovery

Total Well Depth (ft bgs):

Sample ID

Sample Analyzed

NA

Drilling Method:

John Mefford Direct push

Blow Counts

Boring/Well Construction **Details**

\/	, 0-0.4' Asphalt (100% asphalt), black, moist, odor, sheen.	/_AC								Asphalt cap
	0.4-2.3' Well graded GRAVEL with sand (70% gravel, 20% sand, 5% silt), fine to coarse gravel, fine sand, brown, moist, slight odor, no sheen, angular gravel fill.	FILL		100	NA	26.4	B21-3.0		-	
5-	2.3-7.0' Silty SAND (50% sand, 30% silt, 20% gravel), fine sand, fine to coarse gravel, gray, moist, odor, sheen.			100	NA	6.8	B21-6.0	X		
1	7.0-7.8' SILT (100% silt), brown, moist, slight odor, no sheen.	ML	505							_
) - 	7.8-11.0' Well graded GRAVEL with sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine sand, brown, moist to wet, odor, sheen, rounded pea-gravel.	GW		100	NA	4.7	B21-042011-GW	×		Bentonite
+	11.0-11.5' SILT (100% silt), brown, wet, no odor, no sheen.	ML								
5-1	11.5-12.0' WOOD debris (100% wood), brown, moist to wet, no odor, no sheen.	WD				41-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				

-			Well Constr	uction Info	rmatio
	Monument Type:	NA	Filter Pack:	NA	(

Casing Diameter (in): Screen Slot Size (in): Screened Interval (ft bgs): NA NA 8-11 Surface Seal: Annular Seal:

Boring Abandonment:

NA NA

Bentonite

Ground Surface Elevation (ft msl): Top of Casing Elevation (ft msl): Surveyed Location:

NA X:NA Y:NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/20/11 0945

Sampler Type: 4' Macrocore

Date/Time Completed: 4/20/11 1115

Drive Hammer (lbs):

Stratoprobe BR187 Depth of Water (ft bgs):

8.0 12.0

NA

Drilling Company:

Equipment:

ESN

Total Boring Depth (ft bgs):

NA

Drilling Foreman: Drilling Method:

John Mefford

Direct push

Total Well Depth (ft bgs):

Sample Analyzed

Depth (feet bgs) Sample Interval

Lithologic Description

USGS Graphic Blow Counts % Recovery uscs

Sample ID

PID (ppmv)

Boring/Well Construction Details

Λ	0-0.2' Asphalt (100% asphalt), black, moist, odor, sheen.								Asphalt cap
1X	0.2-0.7' Void (100%)	HOLE	\$O2	40	NA	0.0	B22-2.0		
5-	0.7-2.5' Well graded GRAVEL with sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine sand, brown, moist to wet, no odor, no sheen, rounded gravel. Water appears to be perched, puddle on stranger to the perched specific control of the same stranger to the perched specific control of the same stranger to the perched specific control of the same stranger to the same strang	GW BLAN		40	NA	27.8	B22-5.0	X	
1/	2.5-4.0' No soil in liner.	GW	/						_
\ \ Lo1	4.0-6.0' Well graded GRAVEL with sand (70% gravel, 20% sand, 10% silt), fine sand, brown, wet, odor, sheen.	M WD		60	NA	0.0	B22-042011-GW	x	
/ \	6.0-7.0' WOOD debris (100% wood), brown, wet, no odor, no sheen.	GW							Bentonite
1	7.0-8.0' No soil in liner.	ML	/****					8	
15 —	8.0-10.5' Well graded GRAVEL with sand (65% gravel, 25% sand, 10% silt), fine to coarse gravel, fine sand, brown, wet, no odor, no sheen.								
1	10.5-12.0' SILT (100% silt), brown, wet, organic odor, no sheen, soft.								

Well	Construction	Information
------	--------------	-------------

Monument Type: NA Casing Diameter (in): Screen Slot Size (in):

NΑ NA 8-11

Filter Pack: Surface Seal:

Annular Seal:

NΑ NΑ NA Ground Surface Elevation (ft msl): Top of Casing Elevation (ft msl):

NΑ NΑ X:NA

Boring Abandonment: Bentonite Surveyed Location:

Screened Interval (ft bgs):

Y:NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/20/11 1125

Sampler Type: 4' Macrocore

Date/Time Completed:

4/20/11 1240

Drive Hammer (lbs):

NA

Equipment:

Blow Counts

PID (ppmv)

Stratoprobe BR187 Depth of Water (ft bgs):

3.3

Drilling Company:

ESN

Total Boring Depth (ft bgs):

12.0

Sample Analyzed

Drilling Foreman: **Drilling Method:**

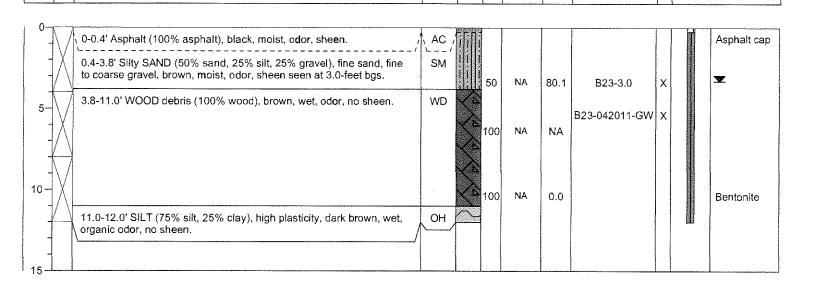
John Mefford

Total Well Depth (ft bgs):

Sample ID

NA

Depth (feet bgs) Sample Interval


Lithologic Description

Direct push

USGS Graphic

% Recovery

Boring/Well Construction **Details**

Well Construction Information

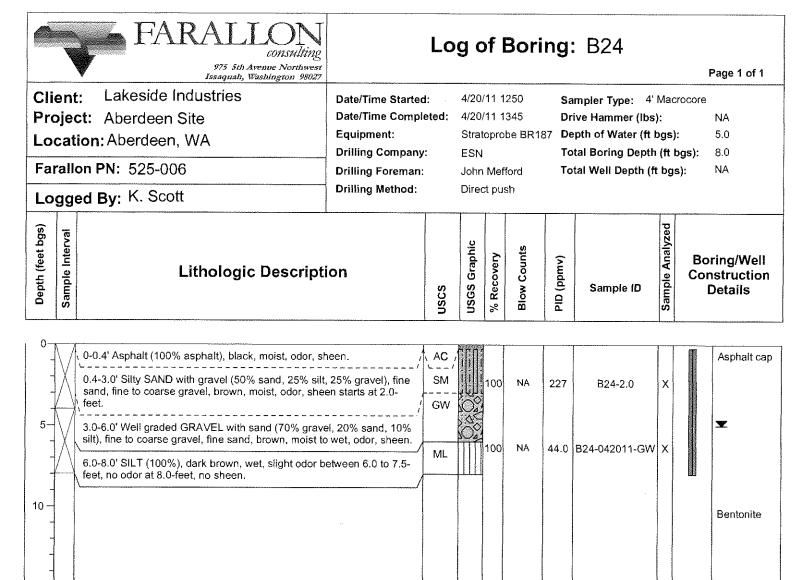
Monument Type: Casing Diameter (in): Screen Slot Size (in):

Screened Interval (ft bgs):

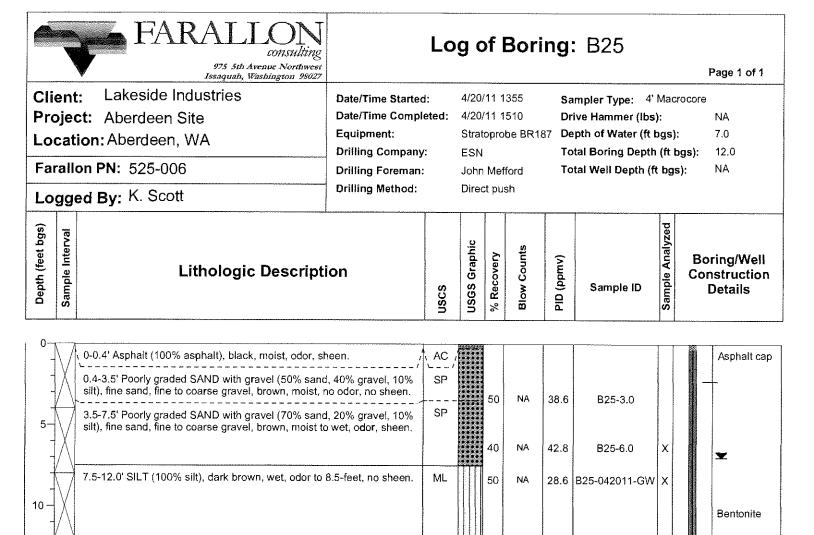
NΑ NΑ 3-6'

Filter Pack: Surface Seal: Annular Seal:

Boring Abandonment:


NA NA

NA


Bentonite

Ground Surface Elevation (ft msl): Top of Casing Elevation (ft msl): Surveyed Location:

NA NA X:NA Y:NA

Well Construction Information Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft msl): NA Casing Diameter (in): NA Surface Seal: NA Top of Casing Elevation (ft msl): NA Screen Slot Size (in): NA Annular Seal: NA Surveyed Location: X:NA Screened Interval (ft bgs): 4-7 Boring Abandonment: Bentonite Y:NA

Well Construction Information

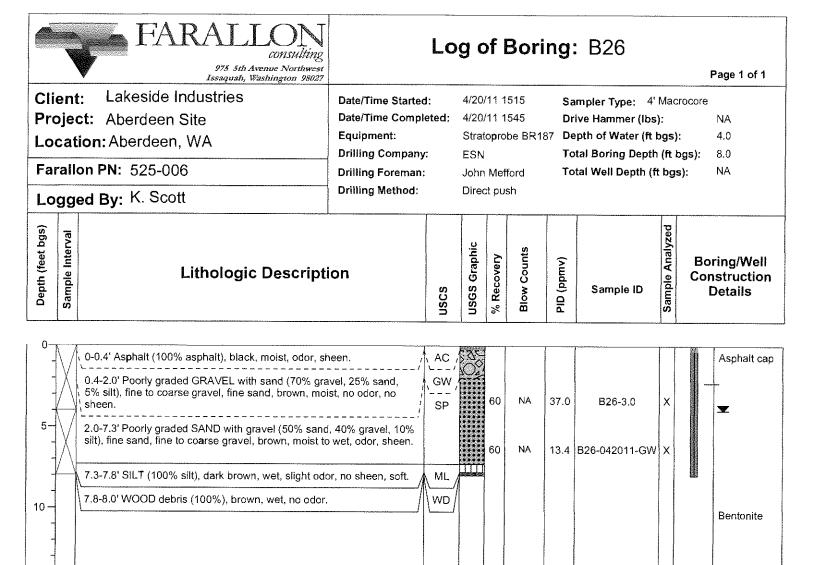
Monument Type: NA Filter Pack: NA Gr

Casing Diameter (in): NA Surface Seal: NA To

Surface Seal: NA Top of Casing Elevation (ft msl):
Annular Seal: NA Surveyed Location:

Screened Interval (ft bgs): 7-10' Boring Abandonment: Bentonite

NA


Screen Slot Size (in):

red Location: X:NA
Y:NA

NA

NA

Ground Surface Elevation (ft msl):

Screened Interval (ft bgs): 4-7' Boring Abandonment: Bentonite

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/20/11 1555

Sampler Type: 4' Macrocore

4/20/11 1645

Date/Time Completed: Equipment:

Drive Hammer (lbs):

Stratoprobe BR187 Depth of Water (ft bgs):

NA 6.5

Drilling Company:

ESN

Total Boring Depth (ft bgs):

Sample Analyzed

12.0

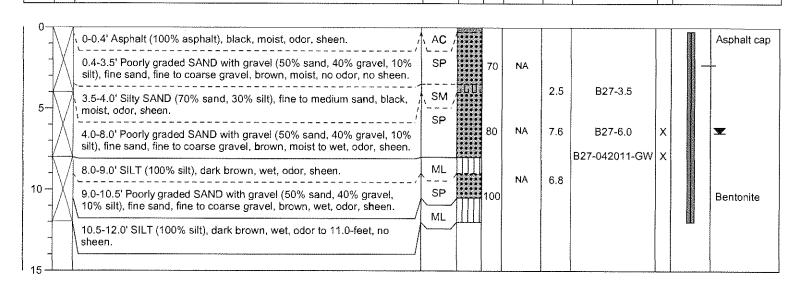
Drilling Foreman: Drilling Method:

John Mefford Direct push

Total Well Depth (ft bgs):

NA

Depth (feet bgs) Sample Interval


Lithologic Description

USGS Graphic % Recovery

Blow Counts PID (ppmv)

Sample ID

Boring/Well Construction **Details**

Well Construction Information

Monument Type: NA Casing Diameter (in): Screen Slot Size (in):

Screened Interval (ft bgs):

NA NA 7-10'

Filter Pack: Surface Seal: Annular Seal:

Boring Abandonment:

NA NA NA

Bentonite

Ground Surface Elevation (ft msl): Top of Casing Elevation (ft msl): Surveyed Location:

NA X:NA Y:NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed: 4/21/11 0745

Stratoprobe BR187

Sampler Type: 4' Macrocore

4/21/11 0825

NA

Drive Hammer (lbs.): Depth of Water ATD (ft bgs):

Total Boring Depth (ft bgs):

5.0

Drilling Method:

Drilling Foreman:

Drilling Company:

Equipment:

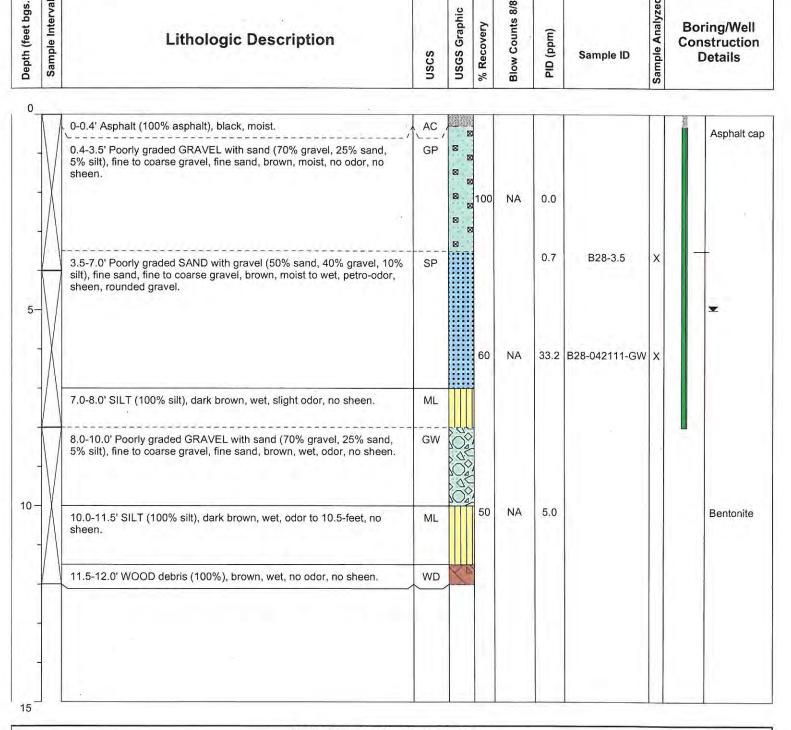
John Mefford Direct push

Total Well Depth (ft bgs):

12.0 NA

Depth (feet bgs.) Sample Interval

Lithologic Description


ow Counts 8/8/8 **USGS** Graphic % Recovery

Sample ID

(mdd)

吕

Boring/Well Construction Details

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA Screened Interval (ft bgs): 5-8 Well Construction Information

Filter Pack: NA Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

Surveyed Location: X: NA

NA Bentonite Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed:

4/21/11 0840

Sampler Type: 4' Macrocore

4/21/11 0900

Drive Hammer (lbs.):

NA

Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

5.5

Drilling Company:

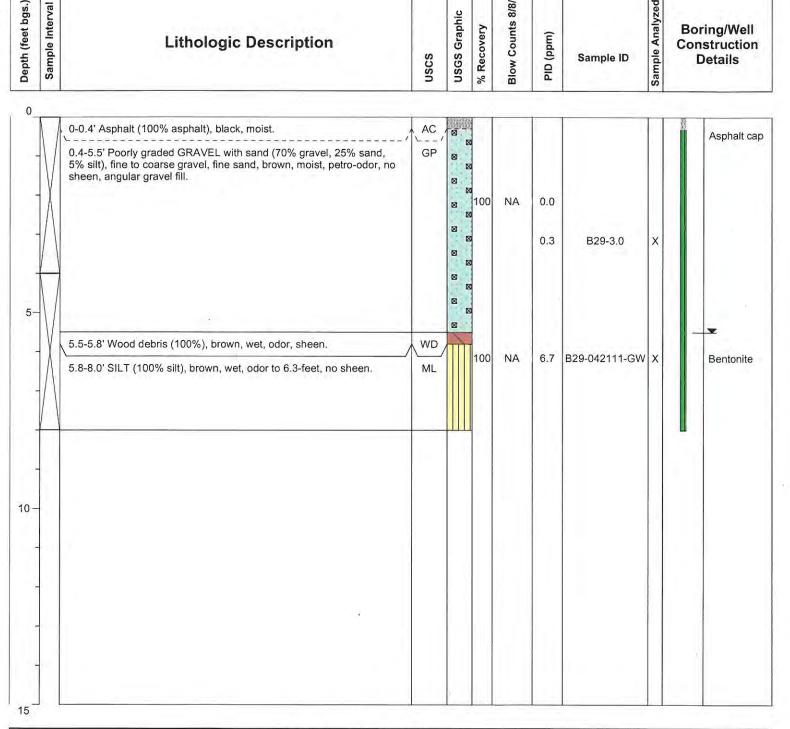
Total Boring Depth (ft bgs):

8.0

Drilling Foreman: Drilling Method:

John Mefford Direct push

Total Well Depth (ft bgs):


NA

Lithologic Description

Blow Counts 8/8/8 **USGS Graphic** % Recovery

(mdd) Sample ID

Boring/Well Construction **Details**

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA 5-8 Screened Interval (ft bgs):

Well Construction Information NA Filter Pack:

Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): **Boring Abandonment:** Surveyed Location: X: NA

NA Bentonite

NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

Date/Time Completed:

4/21/11 0950

Sampler Type: 4' Macrocore

Drive Hammer (lbs.):

NA

8.0

4/21/11 1015

Stratoprobe BR187

Depth of Water ATD (ft bgs):

5.0

Total Boring Depth (ft bgs):

Total Well Depth (ft bgs):

NA

Drilling Foreman: Drilling Method:

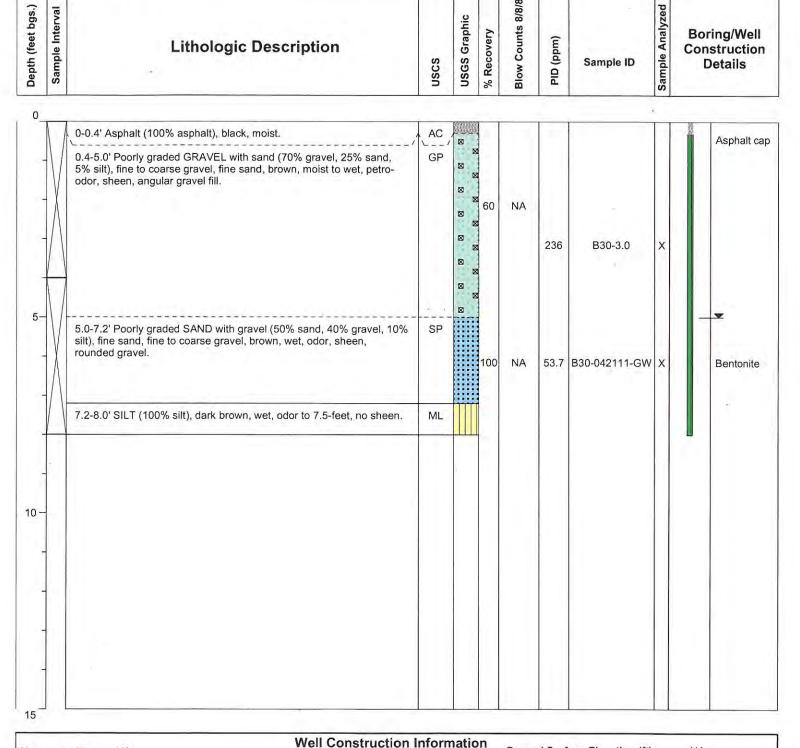
Drilling Company:

Equipment:

John Mefford Direct push

Analyzec

Depth (feet bgs.) Sample Interval


Lithologic Description

USGS Graphic Recovery

(mdd) PID (

Sample ID

Boring/Well Construction **Details**

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA Screened Interval (ft bgs): 5-8 Filter Pack: NA

Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): **Boring Abandonment:** Surveyed Location: X: NA

NA Bentonite

NA

Page 1 of 2

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Depth (feet bgs.) Sample Interval Date/Time Started: Date/Time Completed: 4/21/11 1025 4/21/11 1130

Stratoprobe BR187

Sampler Type: 4' Macrocore

Drive Hammer (lbs.): Depth of Water ATD (ft bgs):

NA 9.0

Total Boring Depth (ft bgs):

Total Well Depth (ft bgs):

Sample Analyzed

12.0 NA

Drilling Foreman: Drilling Method:

Drilling Company:

Equipment:

John Mefford

ESN

Direct push

Boring/Well Construction

Details

Lithologic Description

low Counts 8/8/8 **USGS** Graphic Recovery

(mdd) Sample ID

0 0-0.4' Asphalt (100% asphalt), black, moist. AC Asphalt cap 0.4-3.5' Poorly graded GRAVEL with silt and sand (70% gravel, 20% GP-GM4 sand, 10% silt), fine to coarse gravel, fine sand, gray, moist, slight petro-odor, no sheen. V 100 3.0 NA B31-3.0 X 3.5-7.5' Poorly graded SAND with gravel (70% sand, 20% gravel, 10% silt), fine sand, fine to coarse gravel, gray, moist, odor, no sheen. 5 NA 0.9 B31-6.0 7.5-8.0' SILT (100% silt), dark brown, moist to slight wet, no odor, no 8.0-10.0' Poorly graded SAND with gravel (70% sand, 20% gravel, 10% silt), fine sand, fine to coarse gravel, gray, moist to wet, no odor, 10 NA 0.0 60 Bentonite WD 10.0-10.5' WOOD debris (100%), brown, wet, no odor, no sheen. B31-042111-GW 10.5-12.0' SILT (100% silt), dark brown, wet, no odor, no sheen. ML 15

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA

9-12'

Well Construction Information

Filter Pack: Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA

NA Bentonite

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/21/11 1140

Sampler Type: 4' Macrocore

Date/Time Completed: 4/21/11 1240

Drive Hammer (lbs.):

NA

Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

9.5

Drilling Company:

ESN

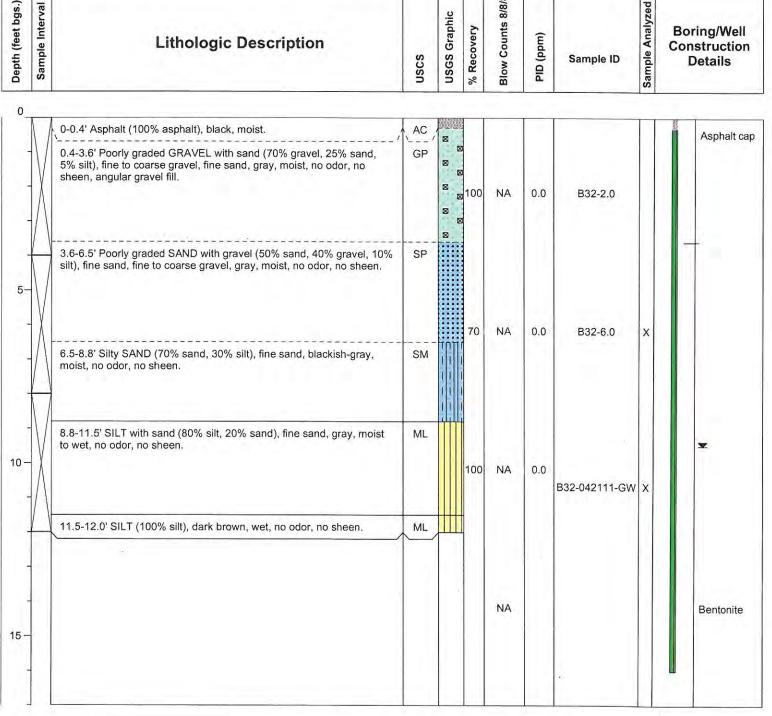
Total Boring Depth (ft bgs):

16.0

Drilling Foreman: Drilling Method:

John Mefford Direct push

Total Well Depth (ft bgs):


NA

Lithologic Description

Blow Counts 8/8/8 **USGS Graphic** Recovery

(mdd) Sample ID

Boring/Well Construction **Details**

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA

9-12'

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA Bentonite

NA

Surveyed Location: X: NA

Boring Abandonment:

Blow Counts

PID (ppmv)

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/21/11 1245

Sampler Type: 4' Macrocore

Date/Time Completed:

4/21/11 1315

Drive Hammer (lbs):

Stratoprobe BR187 Depth of Water (ft bgs):

NA 9.0

Drilling Company:

Equipment:

Total Boring Depth (ft bgs):

12.0

ESN

USGS Graphic

% Recovery

Sample Analyzed

Drilling Foreman: Drilling Method:

John Mefford

Total Well Depth (ft bgs):

Sample ID

NΑ

Depth (feet bgs) Sample Interval

Lithologic Description

Direct push

Boring/Well Construction **Details**

	0-0.4' Asphalt (100% asphalt), black, moist, odor, sheen. 0.4-2.3' Silty SAND (70% sand, 20% silt, 10% gravel), fine sand, fine to coarse gravel, brown, moist, no odor, no sheen. 2.3-3.5' Silty SAND (50% sand, 45% silt, 5% gravel), fine sand, fine to	SM	90	NA	0.0	B33-2.0		Asphait cap
	coarse gravel, dark brown, moist, no odor, no sheen. 3.5-5.5' Sifty SAND (80% sand, 20% silt), fine sand, blackish-gray, moist, no odor, no sheen.	SM SM	50	NA	0.0	B33-6.0	X	
10-	5.5-12.0' Silty SAND (70% sand, 30% silt), fine sand, blackish-gray, moist to wet, no odor, no sheen.		100	NΑ	0.0	B33-042111-GW	X	Y Bentonite

Well Construction Information

Monument Type: NA Casing Diameter (in):

Screen Slot Size (in):

Screened Interval (ft bgs):

NA NΑ 9-12'

Filter Pack: Surface Seal:

Annular Seal:

Boring Abandonment:

NA NA NΑ

Bentonite

Ground Surface Elevation (ft msl): Top of Casing Elevation (ft msl): Surveyed Location:

X:NA Y:NA

NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Date/Time Started: Date/Time Completed: 4/19/11 1440

Sampler Type: 4' Macrocore

4/19/11 1620

Drive Hammer (lbs.):

NA

Equipment:

Stratoprobe BR187

Depth of Water ATD (ft bgs):

9.0

Drilling Company:

ESN

Total Boring Depth (ft bgs):

12.0

Drilling Foreman:

Marty Huan

Total Well Depth (ft bgs):

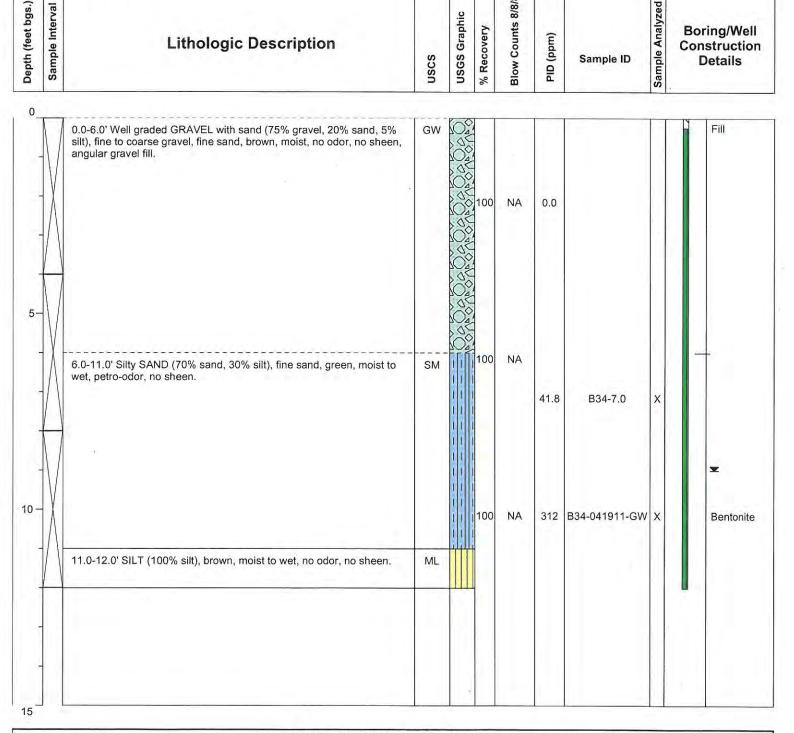
NA

Logged By: K. Scott

Drilling Method:

Direct push

Boring/Well


Depth (feet bgs.) Sample Interval

Lithologic Description

low Counts 8/8/8 **USGS** Graphic Recovery

PID (ppm) Sample ID

Construction **Details**

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): NA

8-11

Well Construction Information

Filter Pack: NA Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA

NA Bentonite Y: NA

Page 1 of 1

NA

12.0

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started:

4/21/11 1405

Stratoprobe BR187

Sampler Type: 4' Macrocore

Date/Time Completed:

ESN

4/21/11 1455

Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 5.0

Total Boring Depth (ft bgs):

NA

Drilling Foreman: Drilling Method:

Drilling Company:

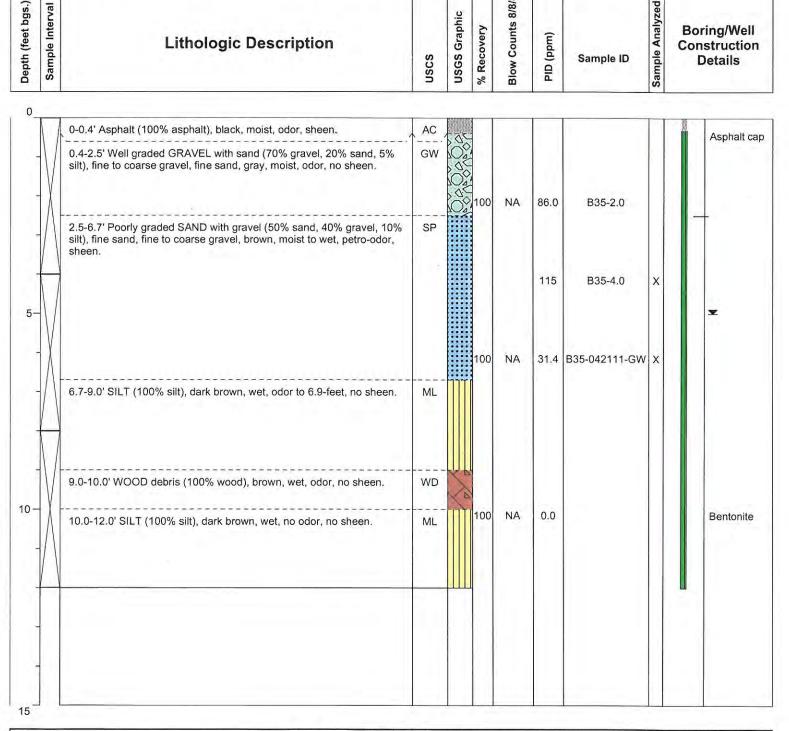
Equipment:

John Mefford

Direct push

Total Well Depth (ft bgs):

Depth (feet bgs.) Sample Interval


Lithologic Description

Blow Counts 8/8/8 **USGS** Graphic Recovery

(mdd) Sample ID

PID (

Boring/Well Construction Details

Well Construction Information

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): NA

Screened Interval (ft bgs): 5-8' Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA NA

Bentonite

Surveyed Location: X: NA

Boring Abandonment:

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: Date/Time Completed:

Drilling Company:

Drilling Foreman:

Drilling Method:

Equipment:

7/25/11 @ 11:15 7/25/11 @ 11:50

Drive Hammer (lbs.):

Sampler Type: 4' Macrocore

Powerprobe 9500

Depth of Water ATD (ft bgs):

NA 5.5'

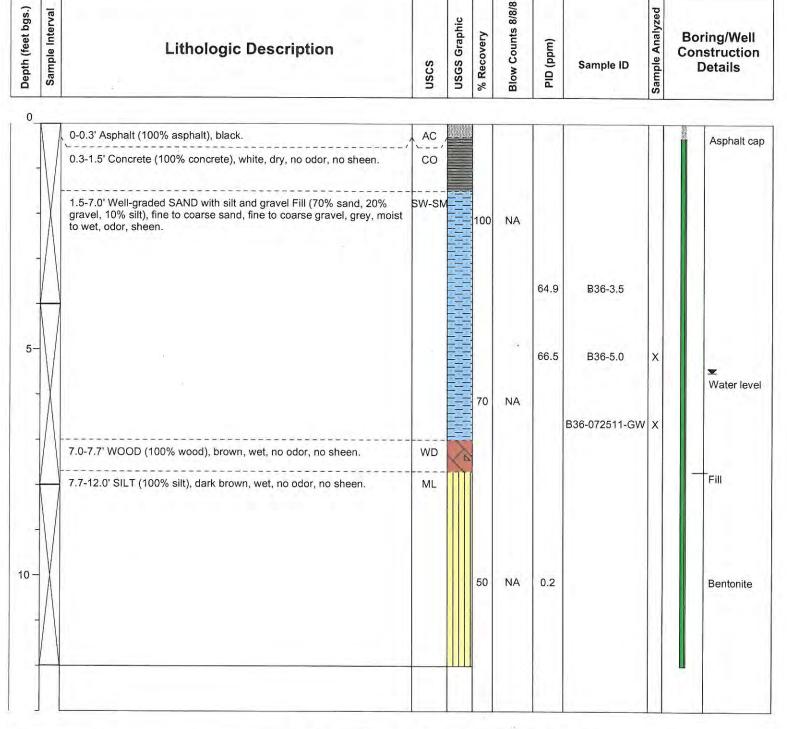
ESN

Don Harnden

Direct push

Total Boring Depth (ft bgs): Total Well Depth (ft bgs):

12.0 NA


Depth (feet bgs.) Sample Interval

Lithologic Description

USGS Graphic Recovery

PID (ppm) Sample ID

Boring/Well Construction **Details**

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): Screen Slot Size (inches):

NA 0.010

5 to 8' bgs

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA NA

Boring Abandonment:

Bentonite

Surveyed Location: X: 98666,4787: 20175,524

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

7/25/11 @ 11:55 7/25/11 @ 12:30

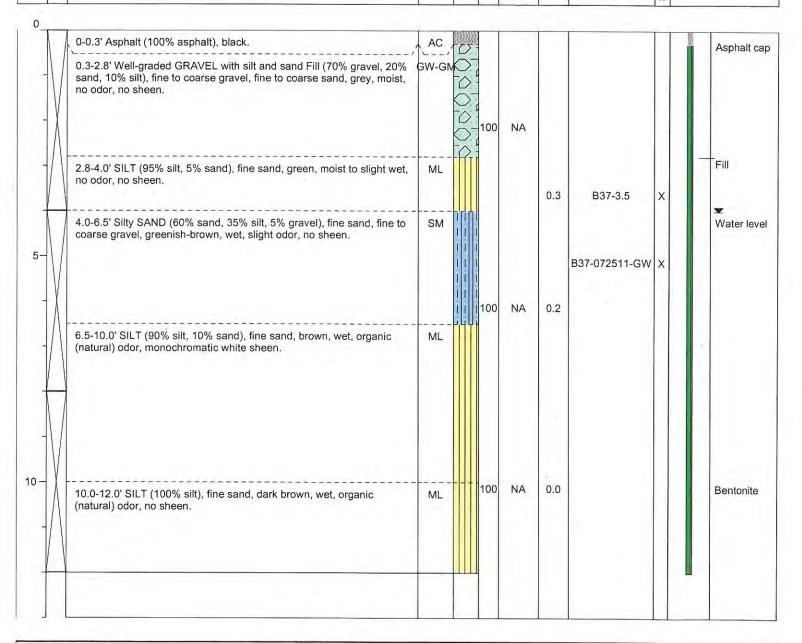
Date/Time Completed: **Equipment:**

Powerprobe 9500

Drilling Company: Drilling Foreman:

Don Harnden **Drilling Method:**

Direct push


Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): 4.0'

Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

ow Counts 8/8/8 Depth (feet bgs.) Sample Interval Sample Analyzed **USGS Graphic** Recovery Boring/Well (mdd) Lithologic Description Construction Sample ID Details PID

Well Construction Information

Monument Type: NA

Casing Diameter (inches): Screen Slot Size (inches): Screened Interval (ft bgs):

NA 0.010

4 to 7' bgs

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft):

NA NA

Top of Casing Elevation (ft): **Boring Abandonment:**

Bentonite

Surveyed Location: X: 98708.318/: 20221.861

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

7/25/11 @ 10:30 7/25/11 @ 11:05

Date/Time Completed: Equipment:

Powerprobe 9500

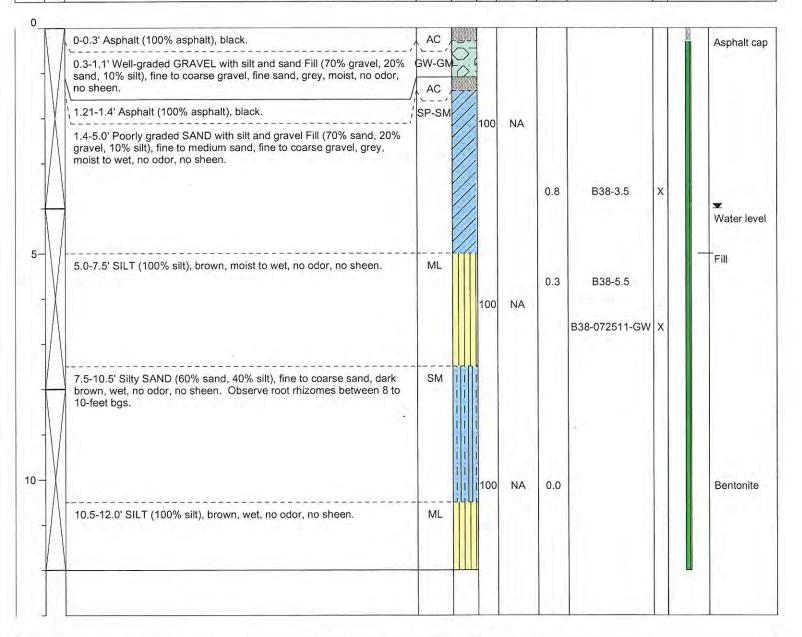
Drilling Company: ESN

Drilling Foreman:

Don Harnden

Direct push **Drilling Method:**

Sampler Type: 4' Macrocore


Drive Hammer (lbs.):

NA

4.0' Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic** Boring/Well (mdd) Lithologic Description Construction Sample ID **Details** 吕

Well Construction Information

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): 0.010 Screened Interval (ft bgs):

4 to 7' bgs

Filter Pack:

Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): **Boring Abandonment:**

NA Bentonite

NA

Surveyed Location: X: 98523.076/: 20151.184

Page 1 of 1

NA

12.0

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

7/25/11 @ 8:35 Date/Time Completed:

Equipment:

7/25/11 @ 9:15 Powerprobe 9500

Drilling Company:

Drilling Foreman: Drilling Method:

Don Harnden

Direct push

Sampler Type: 4' Macrocore

Drive Hammer (lbs.):

Total Boring Depth (ft bgs):

7.0' Depth of Water ATD (ft bgs):

Total Well Depth (ft bgs): NA

low Counts 8/8/8 Boring/Well

Depth (feet bgs.) Sample Analyzed Sample Interval **USGS Graphic** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 0-0.3' Asphalt (100% asphalt), black. AC Asphalt cap 0.3-1.2' Well-graded GRAVEL with silt and sand Fill (70% gravel, 20% GW-GN sand, 10% silt), fine to coarse gravel, fine sand, grey, moist, odor, sheen. SP-SN 1.2-4.0' Poorly graded SAND with silt and gravel Fill (60% sand, 30% 58.3 gravel, 10% silt), fine sand, fine to coarse gravel, brown, moist, petro-100 NA B39-2.0 Fill 4.0-5.2' SILT (100% silt), brown, moist, odor, no sheen. ML 5 5.2-8.0' Well-graded GRAVEL with silt and sand (70% gravel, 20% GW-GM sand, 10% silt), fine to coarse gravel, fine to coarse sand, grey, moist to wet, petro-odor, sheen. 100 NA 36.3 B39-6.5 X Water level B39-072511-GW X 8.0-10.4' SILT (100% silt), brown, wet, slight odor, no sheen. ML 10 100 NA Bentonite 10.4-12.0' Silty SAND (60% sand, 30% silt, 10% gravel), fine to coarse sand, fine to coarse gravel, brown, wet, odor, no sheen.

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches):

0.010

6 to 9' bgs

Filter Pack:

Surface Seal: NA Annular Seal: NA

Well Construction Information

Ground Surface Elevation (ft):

NA NA

Top of Casing Elevation (ft): **Boring Abandonment:**

Bentonite

Surveyed Location: X: 98470.904r: 20112.496

Page 1 of 1

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Sample Interval

Date/Time Started:

Drilling Company:

Drilling Foreman:

Equipment:

7/25/11 @ 9:25 Date/Time Completed:

7/25/11 @ 10:10

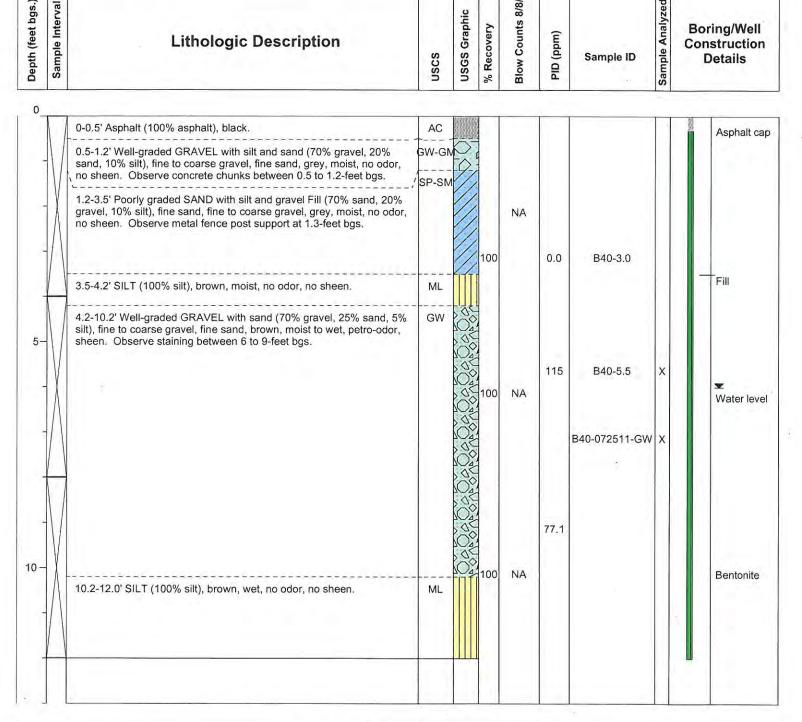
Powerprobe 9500

ESN

Don Harnden

Drilling Method:

Direct push


Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): 6.0

Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 **USGS Graphic** Boring/Well Recovery PID (ppm) **Lithologic Description** Construction Sample ID **Details**

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches):

0.010

6 to 9' bgs

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA NA

Boring Abandonment: Bentonite

Surveyed Location: X: 98433.895/: 20073.833

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

7/26/11 @ 8:10 Date/Time Completed: 7/26/11 @ 8:55

Equipment:

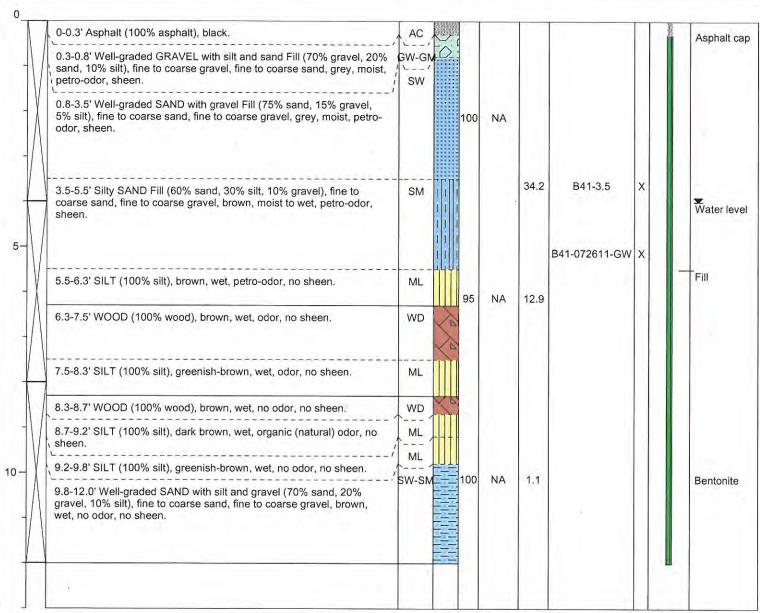
Powerprobe 9500

Drilling Company: ESN

Drilling Foreman: Drilling Method:

Don Harnden

Direct push


Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA Depth of Water ATD (ft bgs): 4.0'

Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Interval	Lithologic Description	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
--------------------------------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--	--

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): Screen Slot Size (inches): 0.010

NA

4 to 7' bgs

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA NA

Boring Abandonment:

Bentonite

Surveyed Location: X: NA

Page 1 of 1

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

Date/Time Completed:

7/25/11 @ 13:25

Sampler Type: 4' Macrocore Drive Hammer (lbs.):

Equipment:

7/25/11 @ 14:00 Powerprobe 9500

NA 4.0'

Drilling Company:

ESN

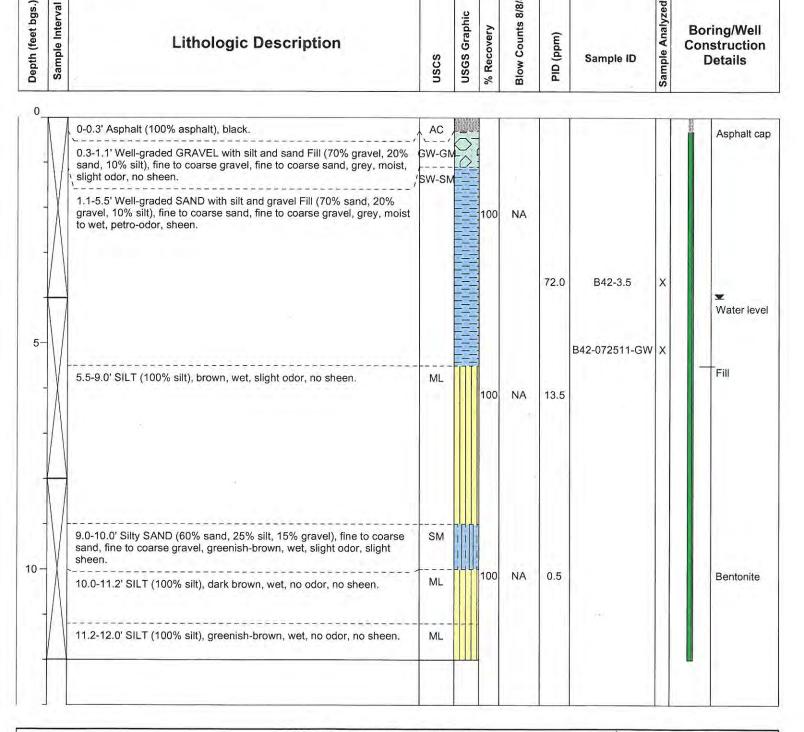
Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs):

12.0

Drilling Foreman: Drilling Method:

Don Harnden Direct push

Total Well Depth (ft bgs):


NA

Lithologic Description

3low Counts 8/8/8 **USGS** Graphic

(mdd) Sample ID

Boring/Well Construction **Details**

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): Screen Slot Size (inches):

NA

0.010 4 to 7' bgs

Filter Pack: Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

NA Bentonite

Surveyed Location: X: NA

Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: Date/Time Completed:

7/25/11 @ 12:40

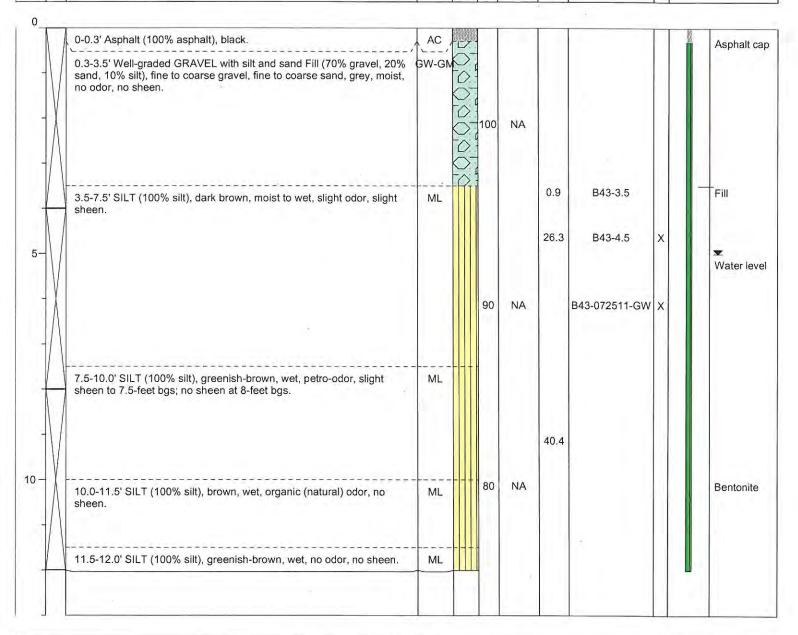
7/25/11 @ 13:20 Powerprobe 9500

Equipment: **Drilling Company:**

Drilling Foreman:

ESN

Don Harnden


Drilling Method: Direct push Sampler Type: 4' Macrocore Drive Hammer (lbs.):

NA 5.0'

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Depth (feet bgs.) Sample Interval Sample Analyzec **USGS Graphic** Recovery Boring/Well (mdd) Lithologic Description Construction Sample ID **Details**

Monument Type: NA

Casing Diameter (inches): Screen Slot Size (inches): Screened Interval (ft bgs):

NA 0.010

5 to 8' bgs

Well Construction Information Filter Pack:

Surface Seal: NA

NA

Annular Seal: NA

Ground Surface Elevation (ft):

NA NA

Top of Casing Elevation (ft): **Boring Abandonment:**

Bentonite

Surveyed Location: X: 98785.739/: 19999.390

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/29/11 @ 15:15 **Date/Time Completed:** 7/29/11 @ 16:05

Equipment: Powerprobe 9500

Drilling Company: ESN

Drilling Foreman: Don Harnden

Drilling Method: Direct push

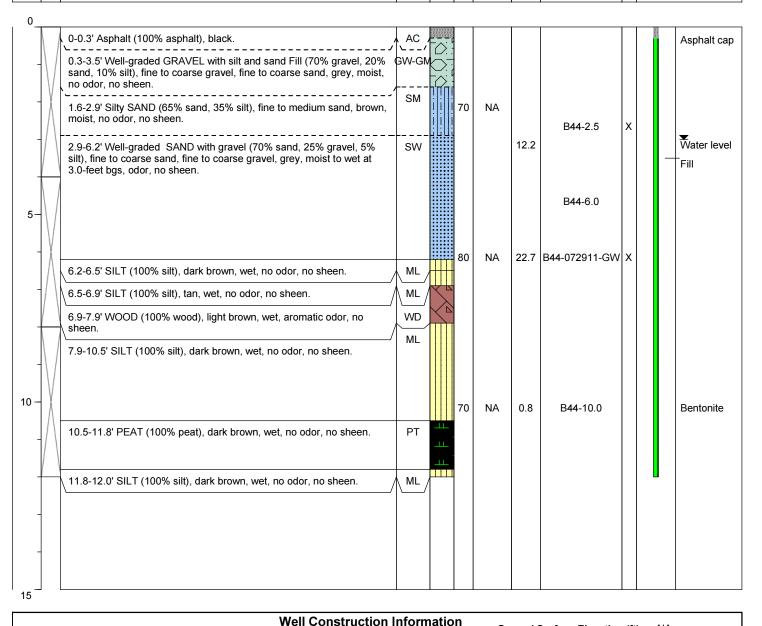
Sampler Type: 4' Macrocore

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): 3.0'

Total Boring Depth (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Sample Interval


NSCS

USCS

Counts 8/8/8

Box Counts 8/8/8

Blow Counts 8/8/8

Monument Type: NA

Casing Diameter (inches): NA
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 3 to 6' bgs

Filter Pack: NA
Surface Seal: NA

Annular Seal: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: 98666.4787: 20175.524

Lithologic Description

Log of Boring: B45

Page 1 of 1

Lakeside Industries Client: Project: Aberdeen Site

Location: Aberdeen, WA

Farallon PN: 525-006

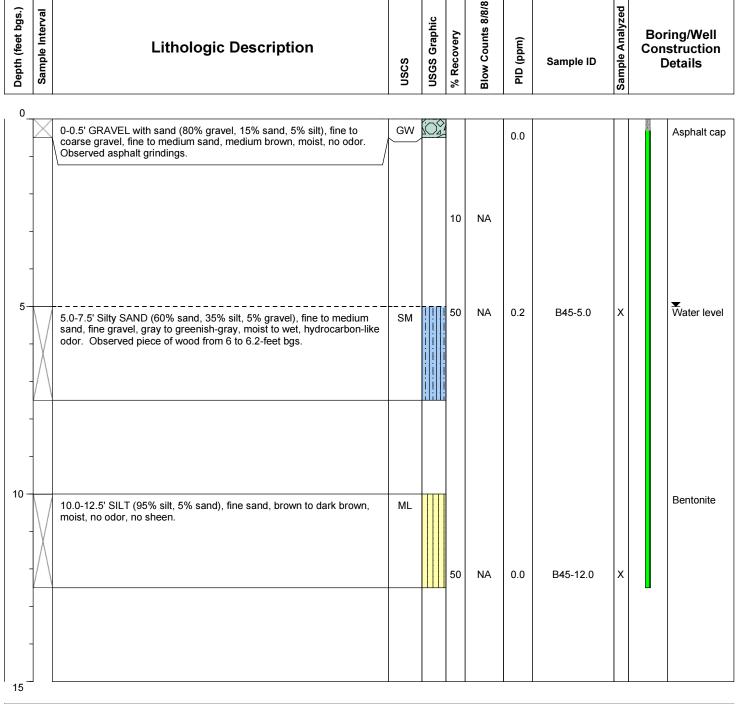
Logged By: Emerald Erickson

Date/Time Started: 4/5/13 @ 10:37 Date/Time Completed: 4/5/13 @ 10:55

Geoprobe 7800 **Equipment:**

Drilling Company: ESN Drilling Foreman: Nick Knopf

Drilling Method: Direct push Sampler Type: 5' Macrocore


Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0' Total Boring Depth (ft bgs): 12.5' NA

Total Well Depth (ft bgs):

Sample ID

(mdd)

Boring/Well Construction **Details**

Well Construction Information Monument Type: NA

Filter Pack: Casing Diameter (inches): NA Surface Seal: NA Screen Slot Size (inches): NA Screened Interval (ft bgs): NA Annular Seal: NA

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: Lakeside Industries

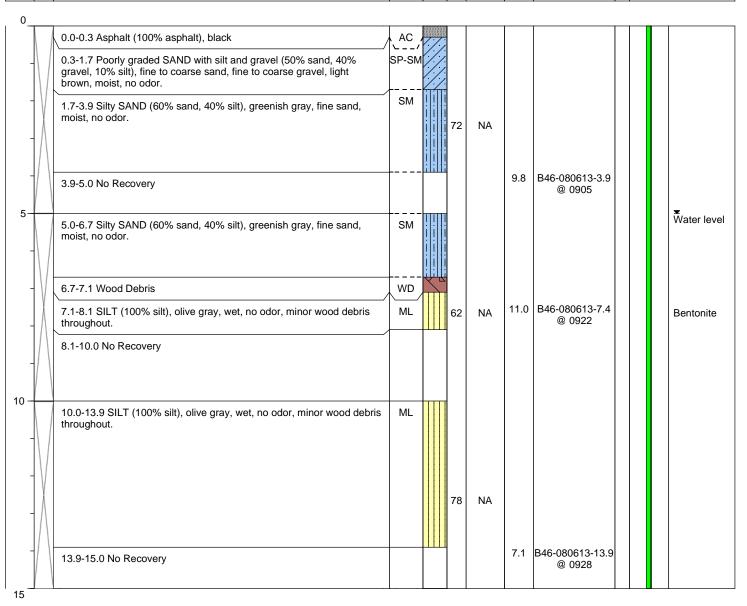
Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started:8/6/13 9:00Date/Time Completed:8/6/13 9:35Equipment:Geoprobe 7800

Drilling Company: ESN


Drilling Foreman: Don Harnden

Drilling Method: Direct push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): AUTO
Depth of Water ATD (ft bgs): 5.0
Total Boring Depth (ft bgs): 15.0
Total Well Depth (ft bgs): NA

Drilling Method: Direct push

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Bentonite Screen Slot Size (inches): NA **Boring Abandonment:** Screened Interval (ft bgs): NA Annular Seal: NA Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

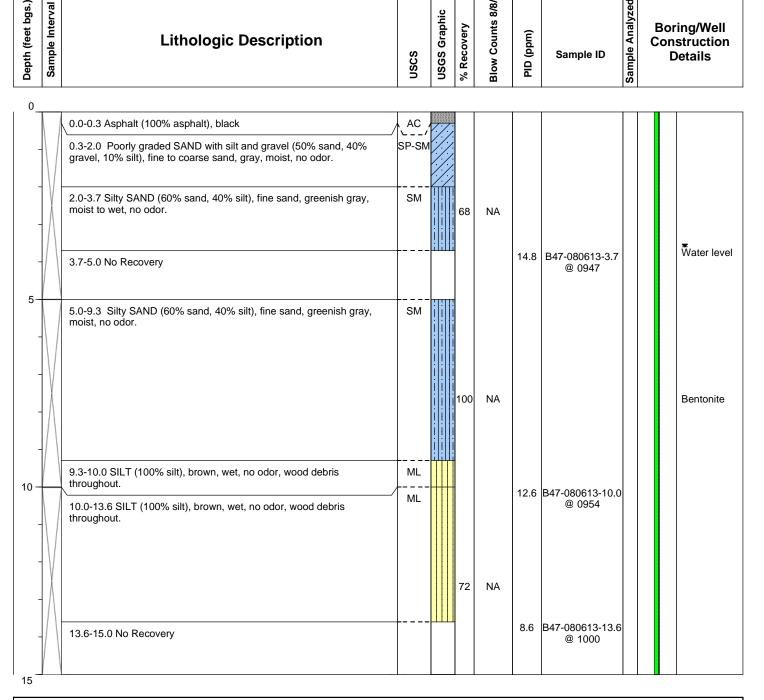
Farallon PN: 525-006

Sample Interval

Logged By: D. Kayhan

Date/Time Started: 8/6/13 9:45 8/6/13 10:10 Date/Time Completed:

Geoprobe 7800 **Equipment:**


Drilling Company: ESN

Drilling Foreman: Don Harnden Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 3.6 Total Boring Depth (ft bgs): 15.0 Total Well Depth (ft bgs): NA

Drilling Method: Direct push

Blow Counts 8/8/8 Sample Analyzed **USGS Graphic** Boring/Well Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Bentonite Screen Slot Size (inches): NA **Boring Abandonment:** Screened Interval (ft bgs): NA Annular Seal: NA Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

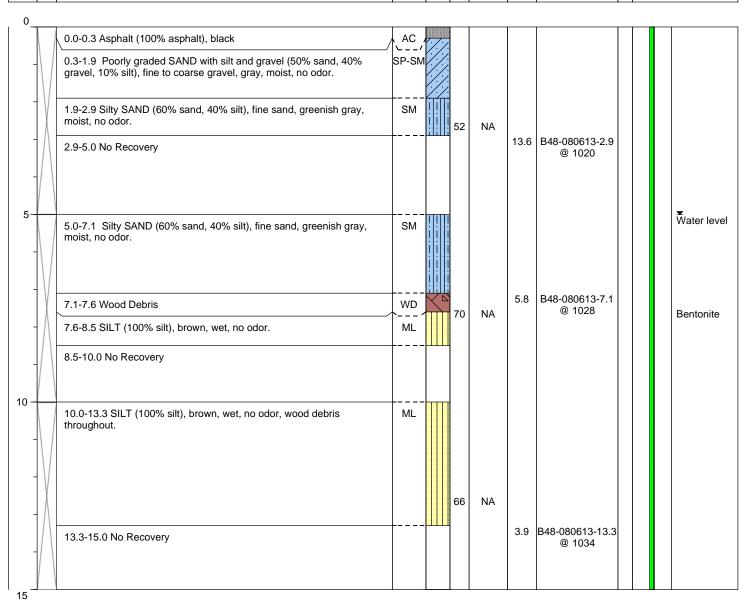
Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 10:15 8/6/13 10:40 Date/Time Completed:

Geoprobe 7800 **Equipment:**

Drilling Company: ESN


Drilling Foreman: Don Harnden

Drilling Method: Direct push Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0

Total Boring Depth (ft bgs): Total Well Depth (ft bgs):

15.0 NA

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Bentonite Screen Slot Size (inches): NA **Boring Abandonment:** Screened Interval (ft bgs): NA Annular Seal: NA Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

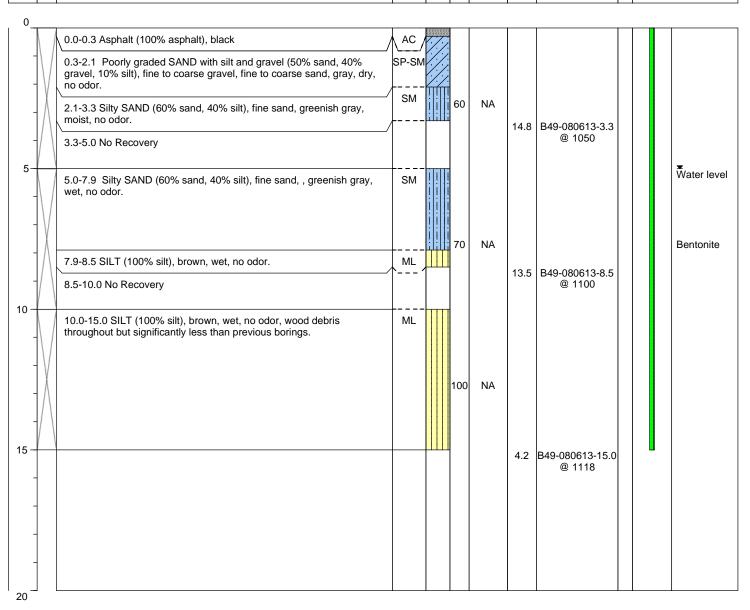
Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 10:45 8/6/13 11:25

Date/Time Completed: Geoprobe 7800 **Equipment:**

Drilling Company: ESN


Drilling Foreman: Don Harnden

Drilling Method: Direct push Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic** Boring/Well Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information

Monument Type: NA Filter Pack: NA Casing Diameter (inches): NA Surface Seal: NA Screen Slot Size (inches): NA Screened Interval (ft bgs): NA Annular Seal: NA

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA **Bentonite Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

Lakeside Industries Client: Project: Aberdeen Site

Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 11:30 8/6/13 12:00 Date/Time Completed:

Geoprobe 7800 **Equipment:**

Drilling Company: ESN

Drilling Foreman: Don Harnden

Drilling Method: Direct push Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 6.1 Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

Surface Seal: NA Screen Slot Size (inches): NA Screened Interval (ft bgs): NA Annular Seal: NA

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: Lakeside Industries

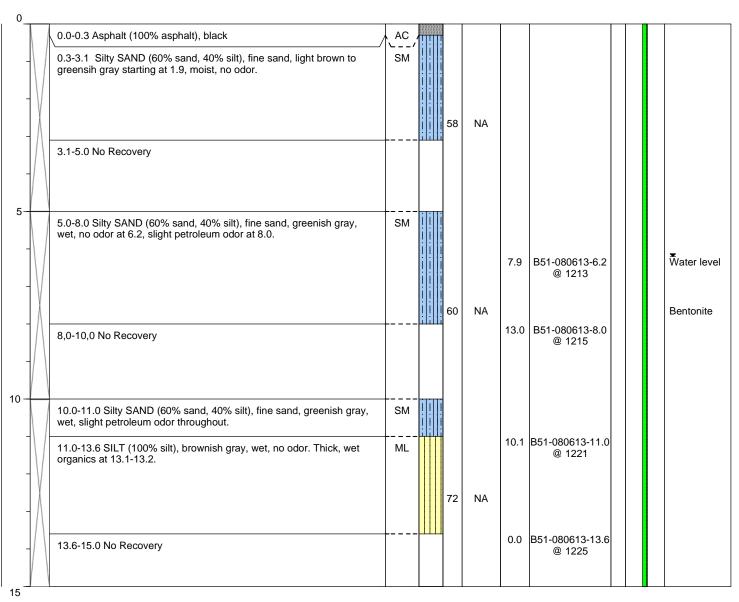
Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 12:07 **Date/Time Completed:** 8/6/13 12:30

Date/Time Completed: 8/6/13 12:30 **Equipment:** Geoprobe 7800


Drilling Company: ESN
Drilling Foreman: Don Harnden

Drilling Method: Direct push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):AUTODepth of Water ATD (ft bgs):6.2Total Boring Depth (ft bgs):15.0

Total Well Depth (ft bgs): NA

Well Construction Information NA Ground Surface Elevation (ft): Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Bentonite Screen Slot Size (inches): NA **Boring Abandonment:** Screened Interval (ft bgs): NA Annular Seal: NA Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 12:57 **Date/Time Completed:** 8/6/13 13:25

Equipment: Geoprobe 7800

Drilling Company: ESN

Drilling Foreman: Don Harnden

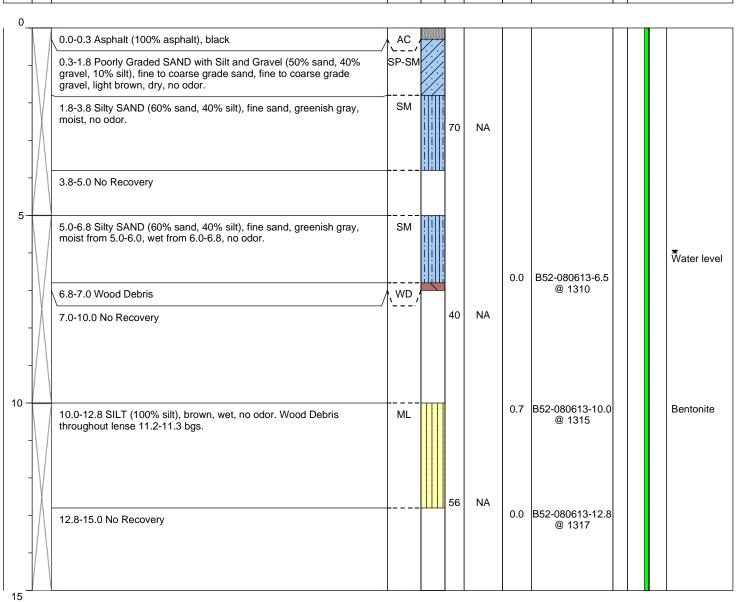
Drilling Method: Direct push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):AUTODepth of Water ATD (ft bgs):6.0Total Boring Depth (ft bgs):15.0

Total Well Depth (ft bgs): NA

Sample Interval


Construction

Blow Counts 8/8/8

Box Counts 8/8/8

Construction

Details

Monument Type: NA

Casing Diameter (inches): NA

Well Construction Information
Filter Pack: NA

Screen Slot Size (inches): NA Surface Seal: NA Screened Interval (ft bgs): NA Annular Seal: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

 Date/Time Started:
 8/6/13 13:30

 Date/Time Completed:
 8/6/13 14:00

Date/Time Completed: 8/6/13 14:00 **Equipment:** Geoprobe 7800

Drilling Company: ESN

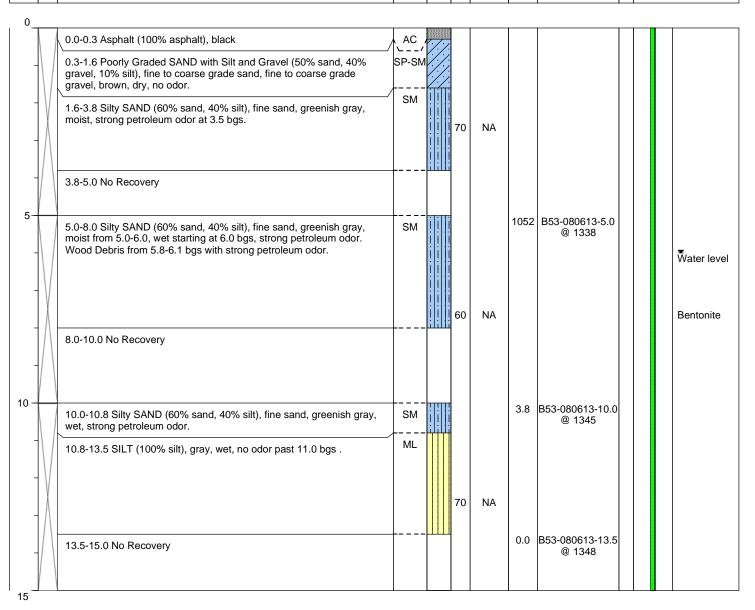
Drilling Foreman: Don Harnden

Drilling Method: Direct push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): AUTO
Depth of Water ATD (ft bgs): 6.0

Total Boring Depth (ft bgs): 15.0


Total Well Depth (ft bgs): NA

Sample Interval

Countraction

Blow Counts 8/8/8

Sample Analyzed

Monument Type: NA Well Construction Information

Casing Diameter (inches): NA
Screen Slot Size (inches): NA
Screened Interval (ft bgs): NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: NA
Y: NA

Page 1 of 1

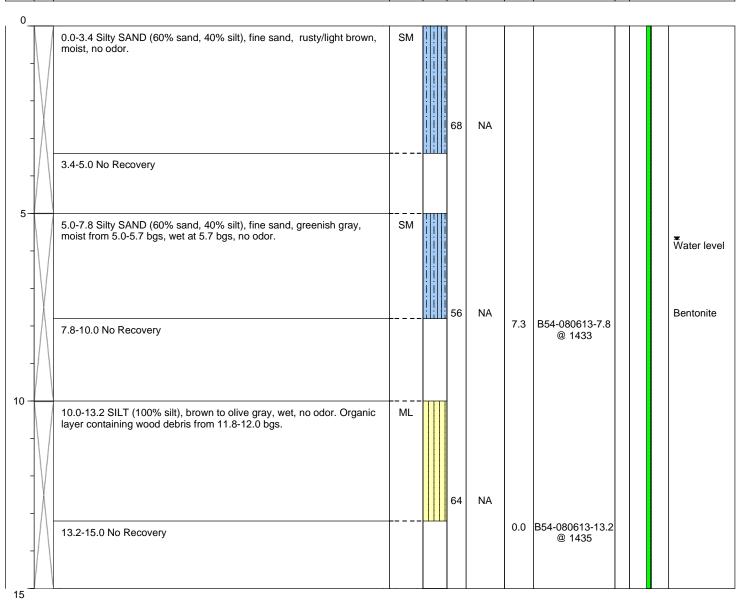
Lakeside Industries Client: Project: Aberdeen Site

Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: D. Kayhan

Date/Time Started: 8/6/13 14:10 8/6/13 14:40 Date/Time Completed:


Geoprobe 7800 **Equipment:**

Drilling Company: ESN Drilling Foreman: Don Harnden

Drilling Method: Direct push Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 15.0 Total Well Depth (ft bgs):

NA

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

Surface Seal: NA Screen Slot Size (inches): NA Screened Interval (ft bgs): NA Annular Seal: NA

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Lithologic Description

Log of Boring: B55

(mdd)

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed:

Equipment: Drilling Company:

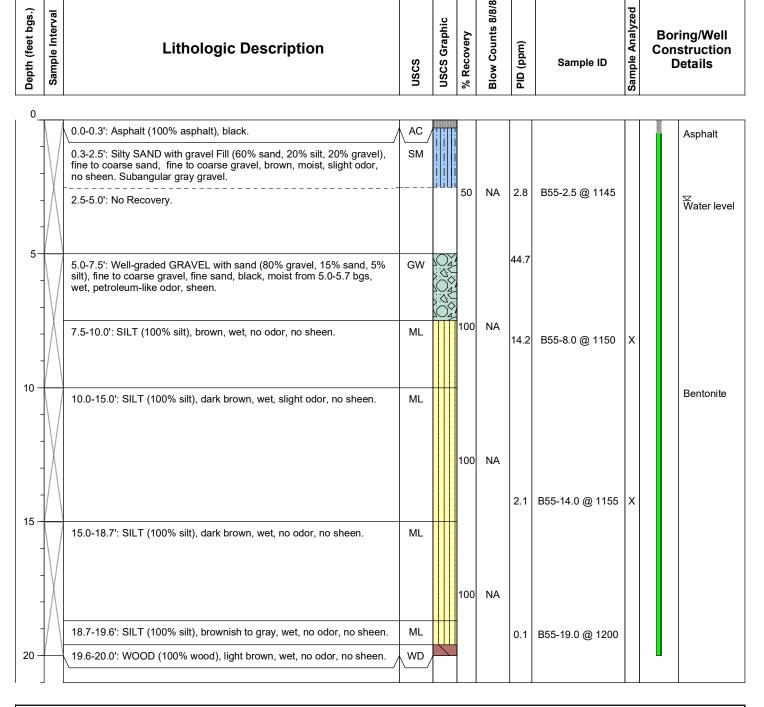
Holt Drilling **Drilling Foreman:**

Michael Running

5/2/17 @ 1140

5/2/17 @ 1210

Geoprobe 7822DT


Sampler Type: 5' Macrocore

Sample ID

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 3.0 Total Boring Depth (ft bgs): 20.0 Total Well Depth (ft bgs): NA

Drilling Method: Direct push

Boring/Well Construction **Details**

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

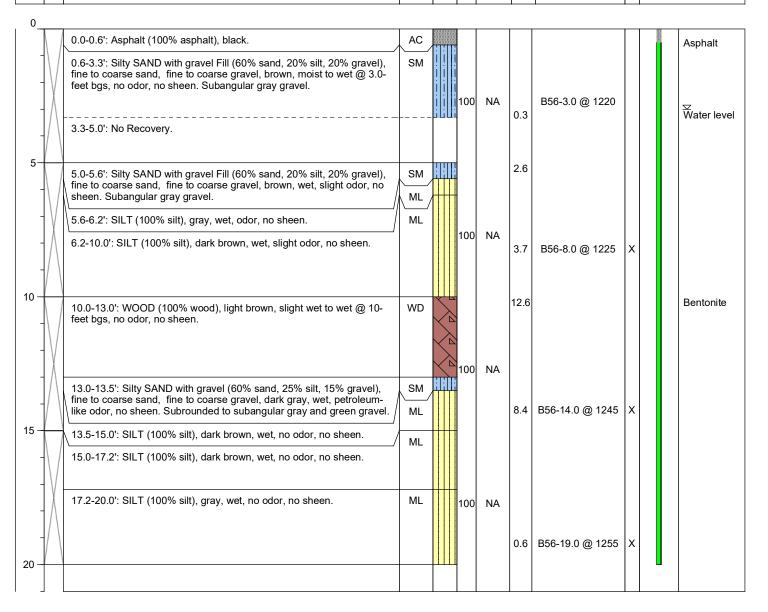
Date/Time Started: 5/2/17 @ 1215 Date/Time Completed:

Equipment: **Drilling Company:**

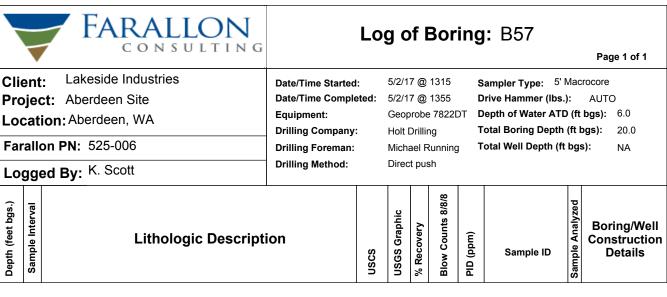
Drilling Foreman: Drilling Method:

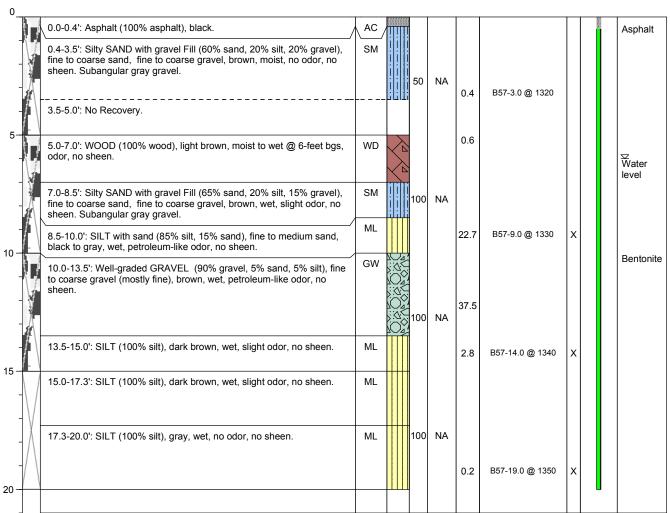
5/2/17 @ 1305 Geoprobe 7822DT

Holt Drilling Michael Running

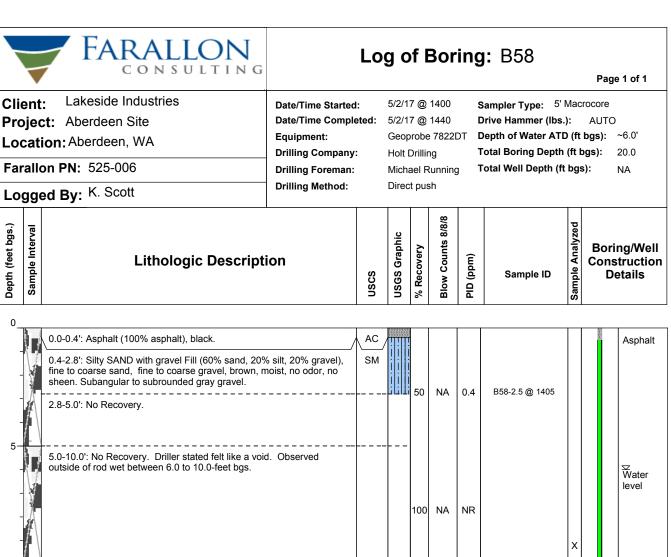

Direct push

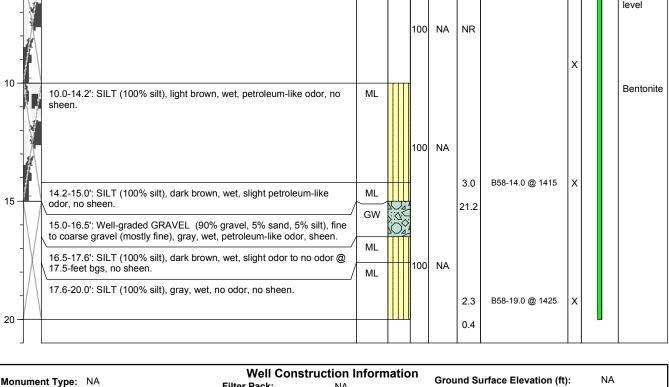
Sampler Type: 5' Macrocore


AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 3.0 Total Boring Depth (ft bgs): 20.0


Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Analyzed Sample Interval **USCS Graphic** low Counts Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕




Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA NA NA Top of Casing Elevation (ft): Casing Diameter (inches): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Y: NA Bentonite

NA

NA

NA

Bentonite

Top of Casing Elevation (ft):

X:NA

Y: NA

Surveyed Location:

NA

Filter Pack:

Surface Seal:

Annular Seal:

Boring Abandonment:

Casing Diameter (inches):

Screen Slot Size (inches):

Screened Interval (ft bgs):

NA

NA

NA

Page 1 of 1

AUTO

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed:

Equipment: Drilling Company:

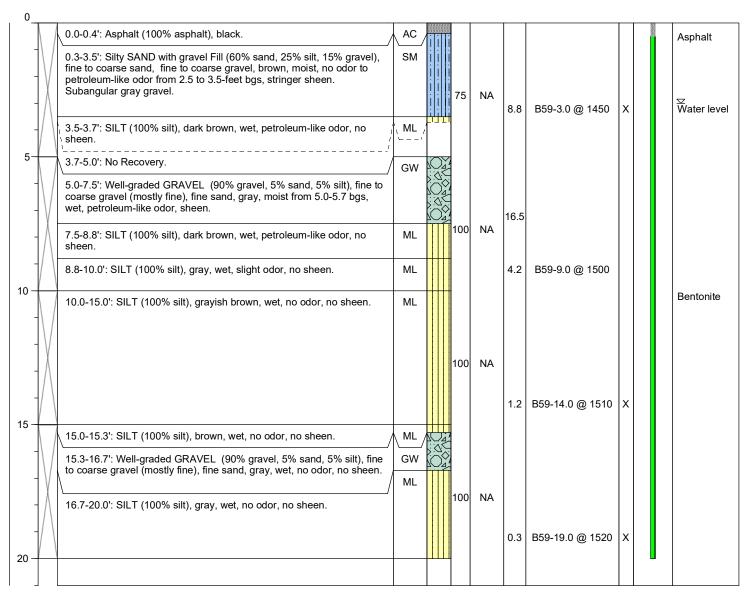
Drilling Foreman:

Drilling Method:

5/2/17 @ 1445 5/2/17 @ 1530

Geoprobe 7822DT Holt Drilling

Michael Running


Direct push

Sampler Type: 5' Macrocore Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 3.0 Total Boring Depth (ft bgs): 20.0

Total Well Depth (ft bgs): NA

low Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Lithologic Description

Log of Boring: B60

Page 1 of 1

Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

20

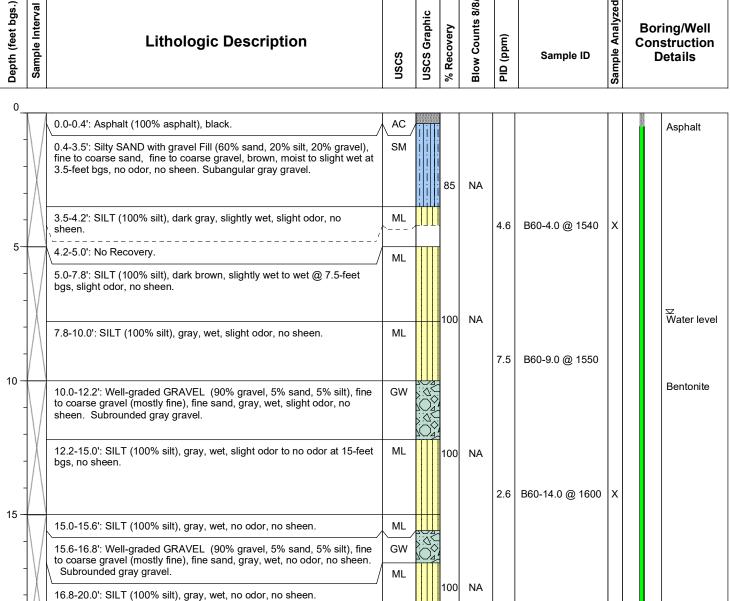
Date/Time Started: 5/2/17 @ 1535 5/2/17 @ 1610 Date/Time Completed:

Equipment: Drilling Company:

Drilling Foreman: Drilling Method:

Geoprobe 7822DT Holt Drilling Michael Running

Sampler Type: 5' Macrocore


AUTO Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 7.5 Total Boring Depth (ft bgs): 20.0 Total Well Depth (ft bgs): NA

Direct push

0.2 B60-19.0 @ 1605

Boring/Well Construction **Details**

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: K. Scott

Date/Time Started: Date/Time Completed:

Equipment: **Drilling Company:**

Drilling Foreman: Drilling Method:

5/2/17 @ 1615 5/2/17 @ 1700

Geoprobe 7822DT Holt Drilling Michael Running

吕

Direct push

Sampler Type: 5' Macrocore

AUTO Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 3.0"

Total Boring Depth (ft bgs): 20.0 Total Well Depth (ft bgs): NA

Depth (feet bgs.) Sample Analyzed Sample Interval **USCS Graphic** low Counts Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details**

0.0-0.4': Asphalt (100% asphalt), black. AC Asphalt 0.4-1.1': Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel), SM fine to coarse sand, fine to coarse gravel, brown, moist, no odor, no sheen. Subangular to subrounded gray gravel. ML 80 NA 1.1-1.8': SILT (100% silt), light brown, moist, no odor, no sheen. ML Water level 1.8-4.2': SILT with sand (85% silt, 15% sand), fine sand, green, moist B61-4.0 @ 1620 to wet @ 3.0-feet bgs, no odor, no sheen. 4.2-5.0': No Recovery. ML 5.0-8.6': SILT with sand (80% silt, 20% sand), fine sand, green, moist to wet at 8.0-feet bgs, slight odor, no sheen. 85 NA B61-8.0 @ 1630 ML 8.6-9.2': SILT (100% silt), green, wet, slight odor, no sheen. 9.2-10.0': No Recovery. 10 Bentonite 10.0-15.0': SILT with sand (75% silt, 20% sand, 5% gravel), fine sand. fine gravel, green, wet, slight odor, no sheen. 100 NA B61-14.0 @ 1640 15 15.0-18.6': SILT with sand (75% silt, 20% sand, 5% gravel), fine sand, fine gravel, green, wet, slight odor, no sheen. 100 NA 18.6-20.0': SILT (100% silt), dark brown, wet, no odor, no sheen. ML B61-19.0 @ 1650 20

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA NA Casing Diameter (inches): NA Top of Casing Elevation (ft): Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

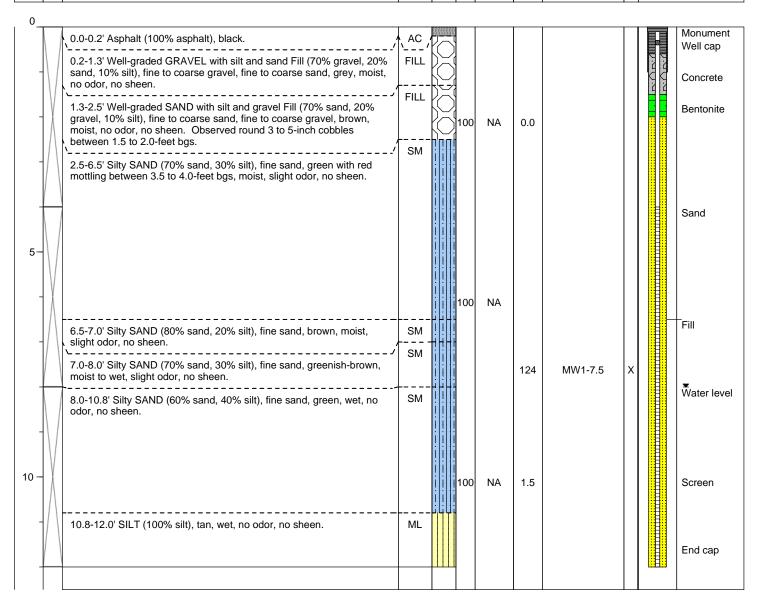
Date/Time Started: 7/27/11 @ 12:30 **Date/Time Completed:** 7/27/11 @ 14:00

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe

Sampler Type: 4' macrocore


Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 8.0'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12'

Sample Interval Sample Interval Bounding Counts 8/8/8 Bounding Details

Lithologic Description

Sample Interval Sample Interva

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 4 to 12' bgs

Well Construction Information
Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98958.649: 20138.942

Page 1 of 1

16'

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

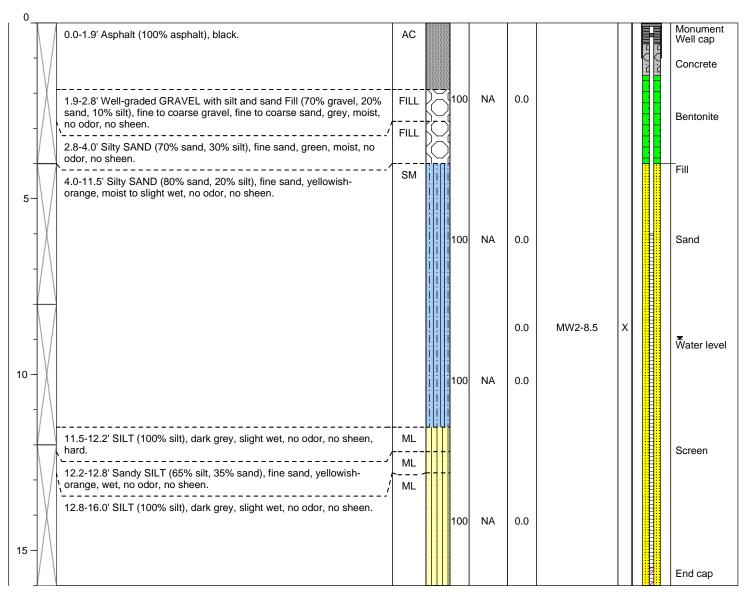
Logged By: Ken Scott

Date/Time Started: 7/27/11 @ 14:10 **Date/Time Completed:** 7/27/11 @ 17:15

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):9.0'Total Boring Depth (ft bgs):16'

Total Well Depth (ft bgs):

Sample Interval

NSCS Graphic
USCS Graphic
WRECOVETY
Blow Counts 8/8/8

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 6 to 16' bgs

Well Construction Information
Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98941.092/: 20293.606

Page 1 of 1

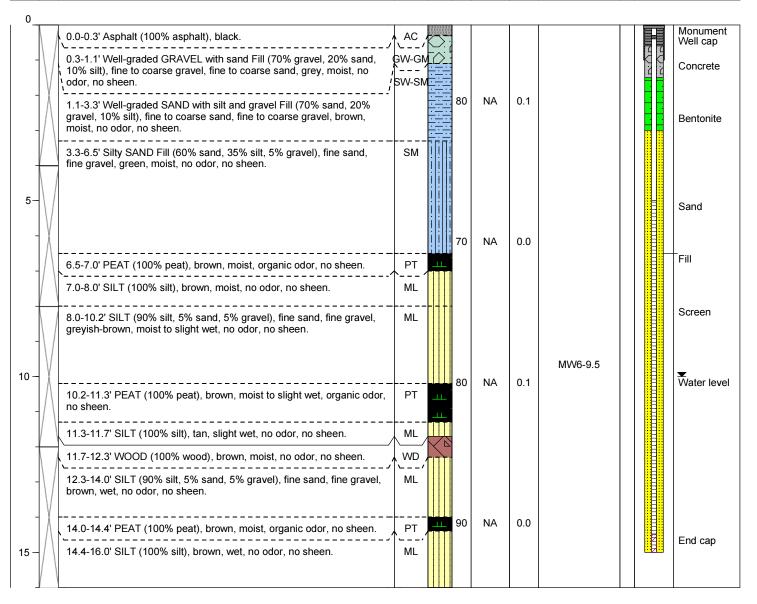
Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/27/11 @ 7:50 Date/Time Completed: 7/27/11 @ 9:05


Powerprobe 9500 **Equipment:**

Drilling Company: ESN Drilling Don Harnden **Drilling Foreman:**

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 10.0' Total Boring Depth (ft bgs): 16' Total Well Depth (ft bgs): 15'

Depth (feet bgs.)	Lithologic Descripti	on sosn	SGS G	% Recovery Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-------------------	----------------------	------------	-------	------------------------------	-----------	-----------	-----------------	--

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5 to 15' bgs

Well Construction Information 10/20 silica sand Filter Pack: Surface Seal: Concrete Annular Seal: Bentonite

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA NA **Boring Abandonment:** Surveyed Location: X: 98797.409/: 20229.860

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

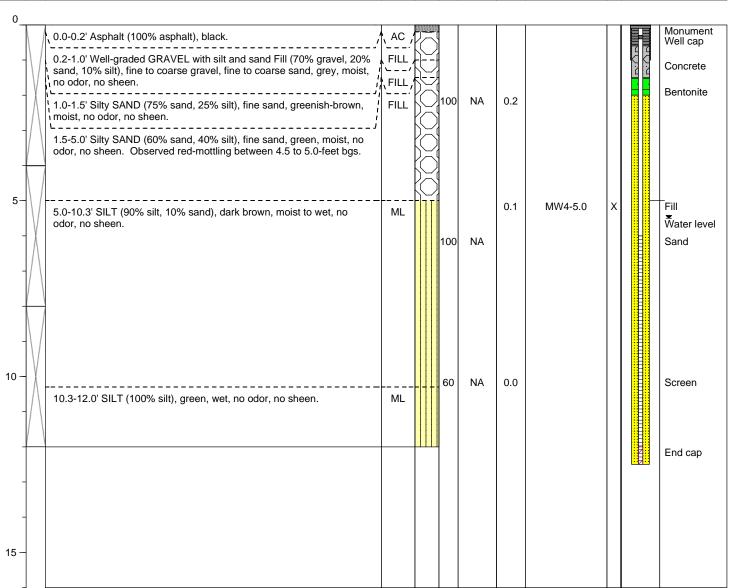
Logged By: Ken Scott

 Date/Time Started:
 7/28/11 @ 8:10

 Date/Time Completed:
 7/28/11 @ 9:30

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden


Drilling Method: Geoprobe

Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.5'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Sample Interval Sample Interval Blow Counts 8/8/8 Boring/Mell Construction Details

Monument Type: Morris Well Construction Information

Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 2.5 to 12.5' bgs

Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98790.3097: 19999.461

Lithologic Description

Log of Boring: MW-5

(mdd)

Sample ID

Page 1 of 1

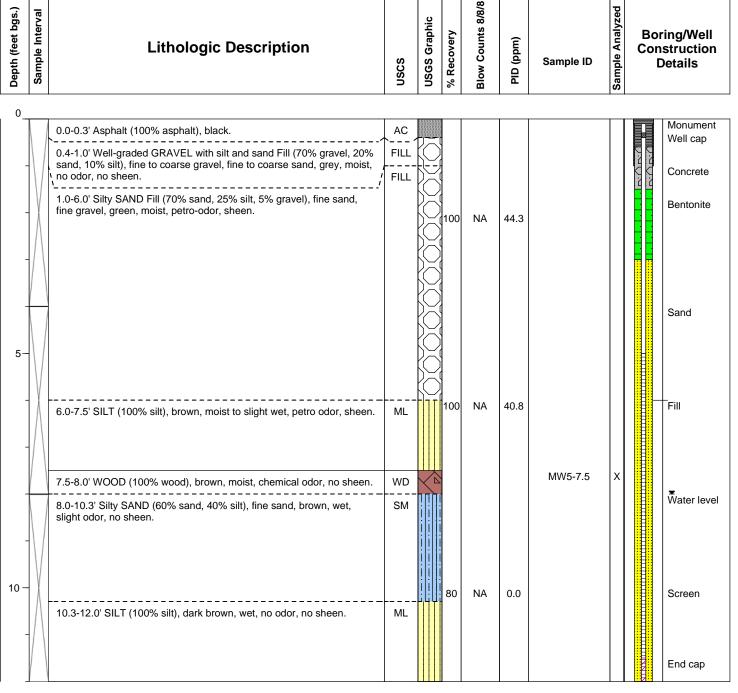
Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/27/11 @ 9:15 **Date/Time Completed:** 7/27/11 @ 10:35


Powerprobe 9500 **Equipment:**

Drilling Company: ESN Drilling Don Harnden **Drilling Foreman:**

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 8.0' Total Boring Depth (ft bgs): 12' Total Well Depth (ft bgs): 12

Boring/Well Construction **Details**

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5 to 12' bgs

Well Construction Information 10/20 silica sand Filter Pack: Surface Seal: Concrete Annular Seal: Bentonite

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA NA **Boring Abandonment:** Surveyed Location: X: 98795.971/y: 20101.184

Page 1 of 1

Lakeside Industries Client:

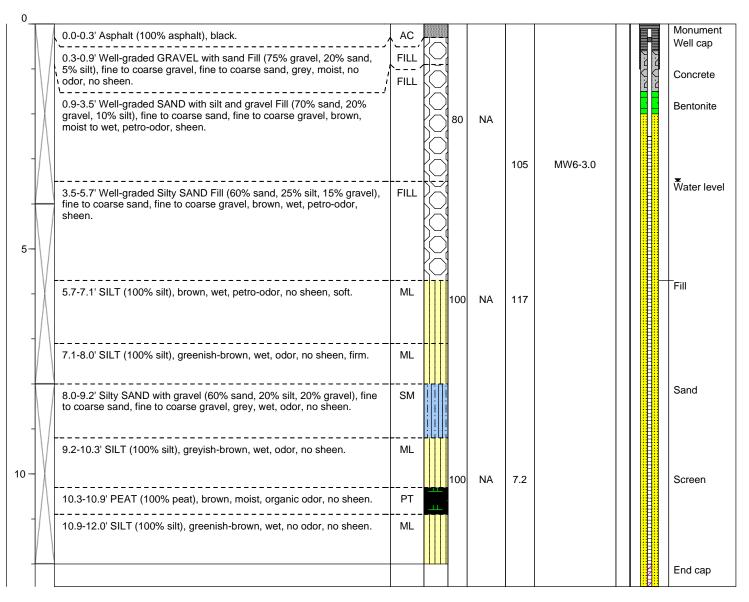
Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

7/26/11 @ 9:25 Date/Time Started: **Date/Time Completed:** 7/26/11 @ 11:10

Powerprobe 9500 **Equipment: Drilling Company: ESN Drilling**


Don Harnden **Drilling Foreman:**

Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 3.5' Total Boring Depth (ft bgs): 12.5' Total Well Depth (ft bgs): 12.5'

Drilling Method: Geoprobe

Depth (feet bgs.) Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-----------------------------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Well Construction Information Monument Type: Morris 10/20 silica sand

Filter Pack:

Casing Diameter (inches): Surface Seal: Concrete Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA NA **Boring Abandonment:** Surveyed Location: X: 98746.473/: 19989.172

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/27/11 @ 10:45

Date/Time Completed: 7/27/11 @ 12:00 **Equipment:** Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe

Sampler Type: 4' macrocore

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):3.5'Total Boring Depth (ft bgs):12'

Total Well Depth (ft bgs): 12.5

Sample Interval

Sample Interval

Bound (feet bgs.)

Coustruction

Bandle Analyzed

Analyzed

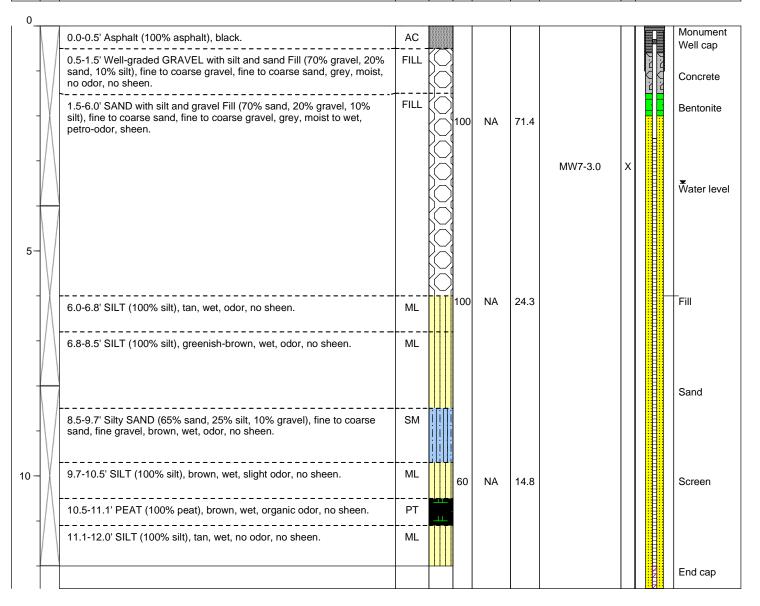
Sample Interval

Bound (feet bgs.)

Sample Interval

Sample Interval

Bound (feet bgs.)


Sample Interval

Bound (feet bgs.)

Sample Interval

Construction

Details

Well Construction Information

Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 2.5 to 12.5' bgs

Monument Type: Morris

Filter Pack: 10/20 silica sand

Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98698.4607: 20090.762

Lithologic Description

Log of Boring: MW-8

(mdd)

Sample ID

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

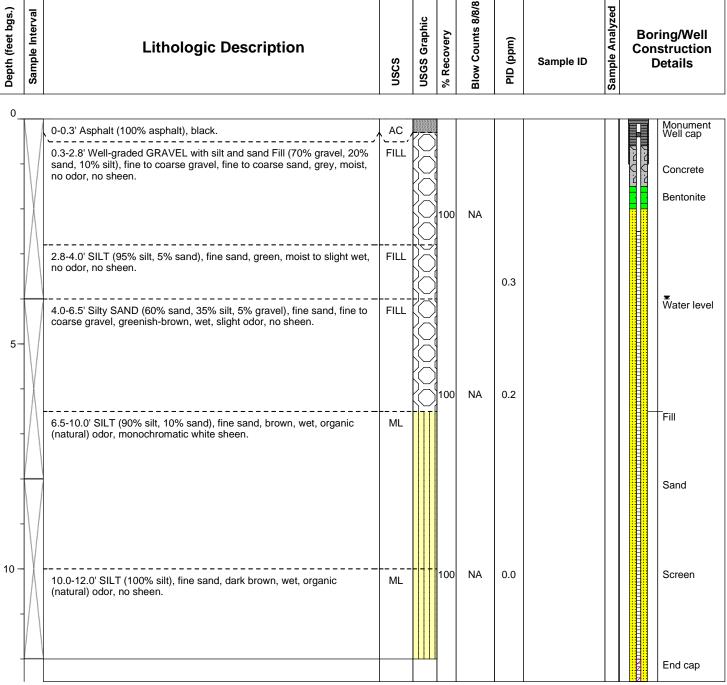
Farallon PN: 525-006

Logged By: Ken Scott

7/29/11 @ 13:55 Date/Time Started: **Date/Time Completed:** 7/29/11 @ 15:05

Powerprobe 9500 **Equipment:**

Drilling Company: ESN Drilling Foreman: Don Harnden


Sampler Type: 4' Macrocore

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 4.0'

Total Boring Depth (ft bgs): 12.0 Total Well Depth (ft bgs): 12.5'

Drilling Method: Direct push

> Boring/Well Construction **Details**

Well Construction Information

Monument Type: NA NA Filter Pack: Casing Diameter (inches): NA Surface Seal: NA Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: NA

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: 98702.25(Y: 20222.583

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

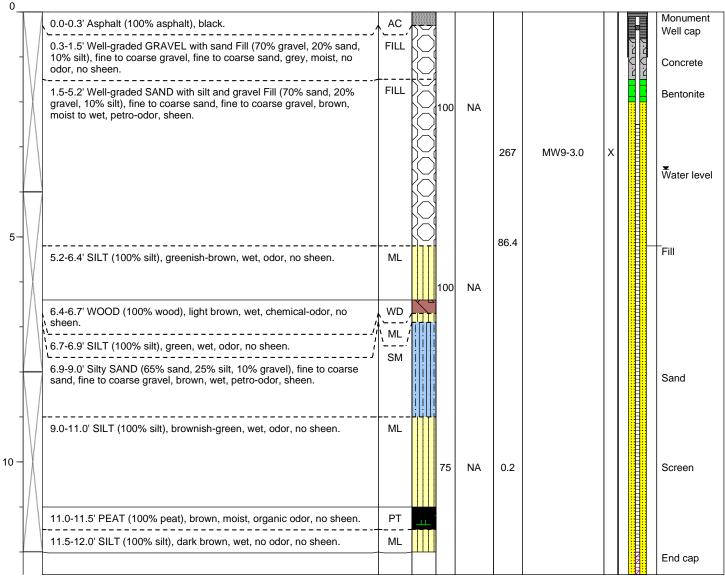
Logged By: Ken Scott

Date/Time Started: 7/26/11 @ 11:15 **Date/Time Completed:** 7/26/11 @ 12:25

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 3.5'
Total Boring Depth (ft bgs): 12.5'

Total Well Depth (ft bgs): 12.5'

Scott

Sample Interval NSCS Graphic NSCS Graphic No. Counts 8/8/8 Blow Counts 8/8/8 Counts 8/8/8 Counts 8/8/8 Blow Counts 8/8/8 Blow Counts 8/8/8 Counts 8/8/8 Counts 8/8/8 Blow Counts 8/8/8 Counts 8/8/8 Blow Counts 8/8/8 Cou

Monument Type: Morris Well Construction Information

2.5 to 12.5' bgs

Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010

Screened Interval (ft bgs):

Filter Pack: 10/20 silica sand
Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98655.204/: 19991.384

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

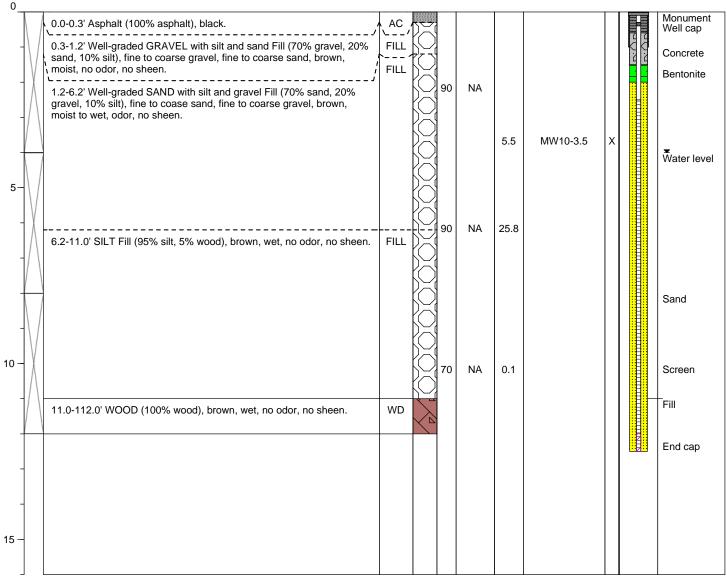
Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/28/11 @ 9:55 **Date/Time Completed:** 7/28/11 @ 11:05

Powerprobe 9500 **Equipment: Drilling Company: ESN Drilling**

Drilling Foreman: Drilling Method:


Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 4.0' Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Don Harnden

Geoprobe

Well Construction Information Monument Type: Morris

Filter Pack: 10/20 silica sand Casing Diameter (inches): Surface Seal: Concrete Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA NA **Boring Abandonment:** Surveyed Location: X: 98615.364/: 20072.417

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/26/11 @ 12:55 **Date/Time Completed:** 7/26/11 @ 15:00

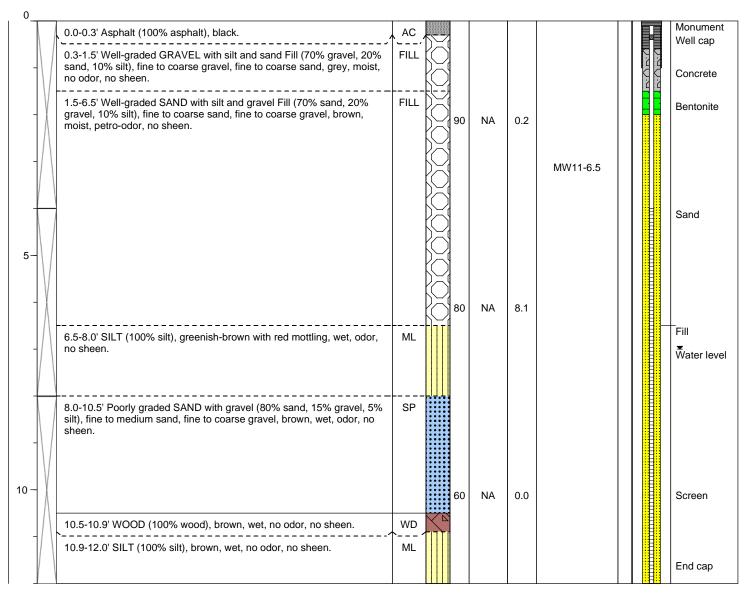
Equipment: Powerpr
Drilling Company: ESN Dril

Drilling Foreman: Drilling Method:

Powerprobe 9500

ESN Drilling Don Harnden Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 7.0'
Total Boring Depth (ft bgs): 12.5'


Total Well Depth (ft bgs): 12

Sample Interval

Note to bgs.)

Construction

Sample Analyzed

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 4 to 12' bgs

Well Construction Information
Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98555.562/: 20002.877

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/28/11 @ 11:25 **Date/Time Completed:** 7/28/11 @ 12:35

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe

Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 3.8'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Sample Interval

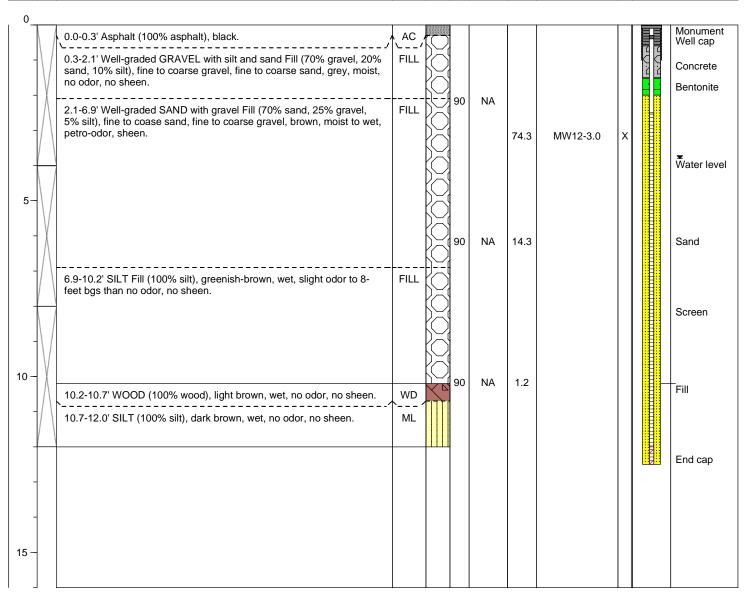
NSCS

USCS

USCS

Counts 8/8/8

Bound/Meet bgs.)


PID (ppm)

PID (ppm)

PID (ppm)

Sample Interval

Construction
Details

Well Construction Information

Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 2.5 to 12.5' bgs

Monument Type: Morris

Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98496.387/: 20044.027

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

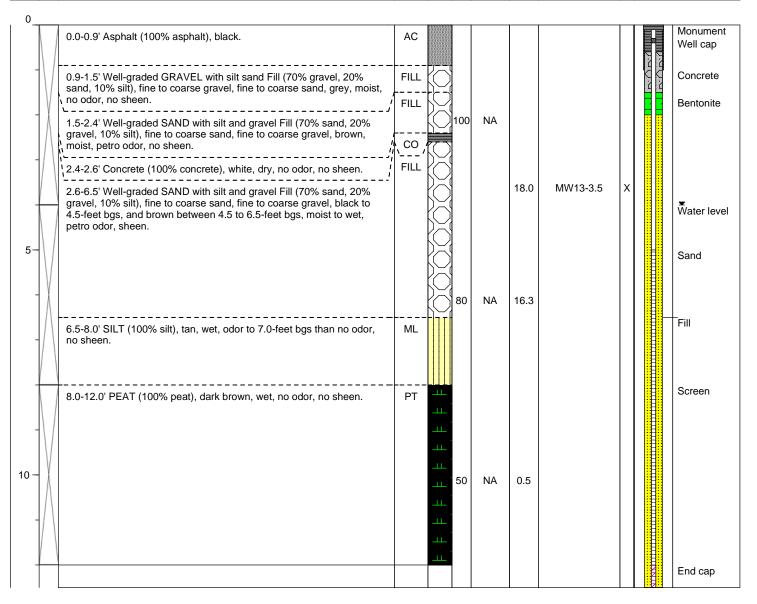
 Date/Time Started:
 7/28/11 @ 13:05

 Date/Time Completed:
 7/28/11 @ 14:20

Equipment: Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 4.0'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Sample Interval

Sample Analyzed

Well Construction Information

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010

2.5 to 12.5' bgs

Screened Interval (ft bgs):

Filter Pack: 10/20 silica sand
Surface Seal: Concrete
Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98496.5347: 20100.477

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

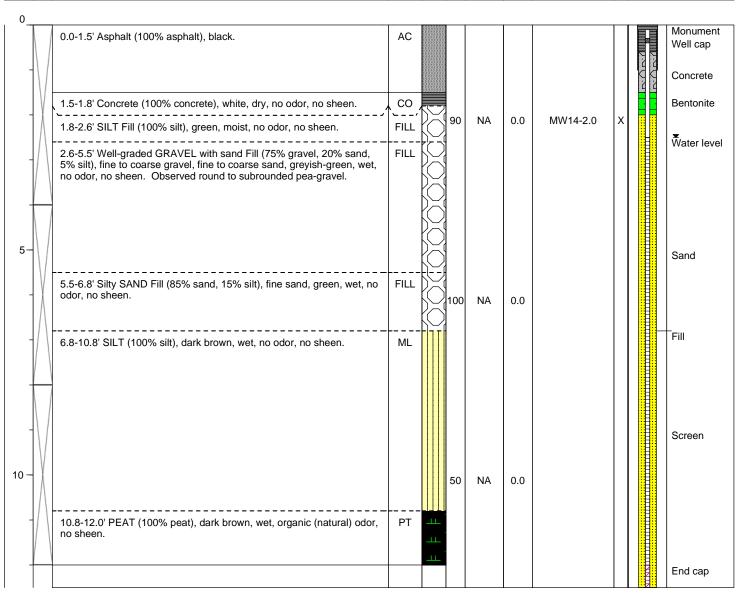
Logged By: Ken Scott

Date/Time Started: 7/28/11 @ 14:30

Date/Time Completed: 7/28/11 @ 15:45 **Equipment:** Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 2.5'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Sample Interval

Note to be a supplementation of the state of the stat

Well Construction Information

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010

Screened Interval (ft bgs):

2.5 to 12.5' bgs

Filter Pack: 10/20 silica sand

Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98495.3647: 20171.411

Page 1 of 1

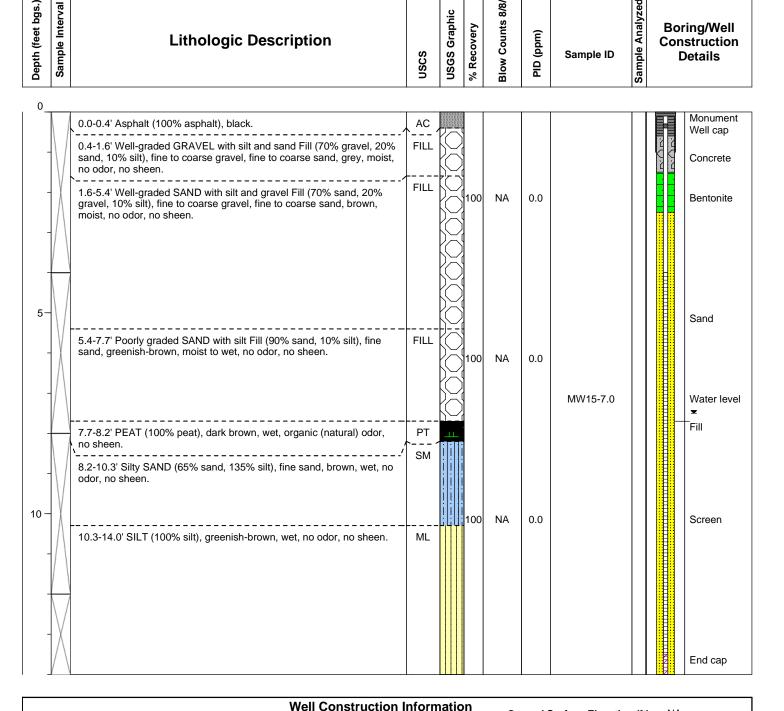
Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/29/11 @ 8:30 **Date/Time Completed:** 7/29/11 @ 9:40


Powerprobe 9500 **Equipment: Drilling Company: ESN Drilling**

Don Harnden **Drilling Foreman:**

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 7.5' Total Boring Depth (ft bgs): 14' Total Well Depth (ft bgs): 14'

Blow Counts 8/8/8 Sample Analyzed **USGS Graphic** Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 4 to 14' bgs

10/20 silica sand Filter Pack: Surface Seal: Concrete Annular Seal: Bentonite

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA NA **Boring Abandonment:** Surveyed Location: X: 98329.057/: 20080.658

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site **Location:** Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: 7/29/11 @ 12:15

Date/Time Completed: 7/29/11 @ 13:45 **Equipment:** Powerprobe 9500

Drilling Company: ESN Drilling
Drilling Foreman: Don Harnden

Drilling Method: Geoprobe

Sampler Type: 4' macrocore

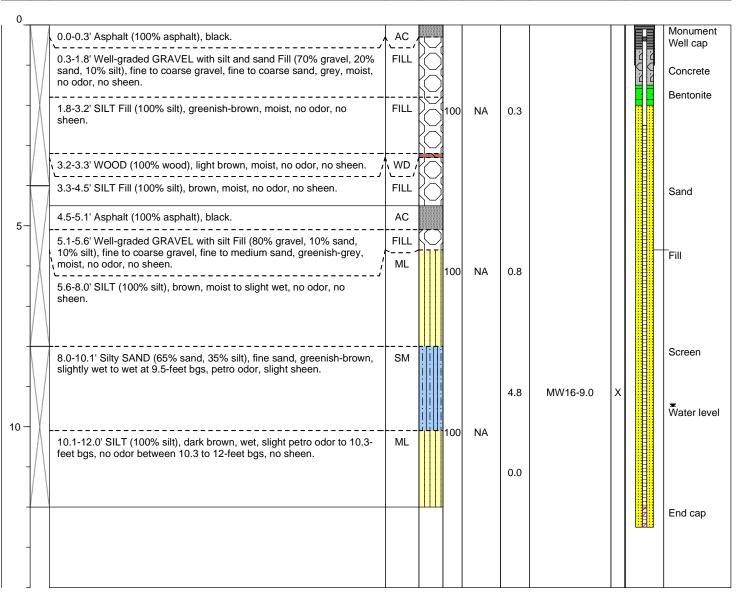
Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 9.5'
Total Boring Depth (ft bgs): 12'

Total Well Depth (ft bgs): 12.5'

Sample Interval Sample Interval Sample ID (ppm)

Sample ID (ppm)

Sample ID (ppm)


Blow Counts 8/8/8

Sample ID (ppm)

Box Counts 8/8/8

Sample ID (ppm)

Details

Monument Type: Morris Well Construction Information

Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010

Screened Interval (ft bgs): 2.5 to 12.5' bgs

Filter Pack: 10/20 silica sand
Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: NA
Surveyed Location: X: 98576.547/: 20211.326

Page 1 of 1

Lakeside Industries Client:

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started: Date/Time Completed:

Drilling Company:

Equipment:

7/29/11 @ 9:55 7/29/11 @ 11:05

Drive Hammer (lbs.):

NA

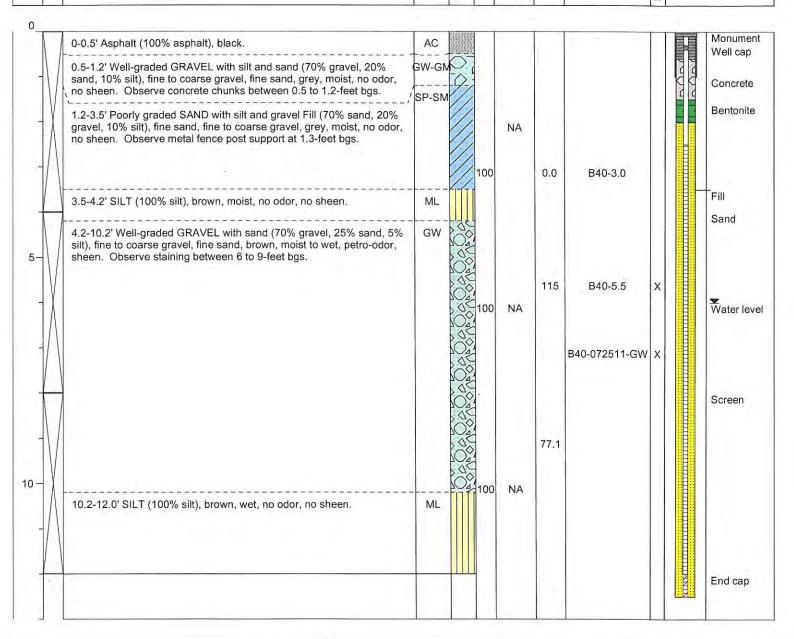
Powerprobe 9500

ESN

Don Harnden

Drilling Foreman: Drilling Method:

Direct push


Sampler Type: 4' Macrocore

Depth of Water ATD (ft bgs): 6.0' Total Boring Depth (ft bgs):

12.0

Total Well Depth (ft bgs): 12.5

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic** Boring/Well Recovery PID (ppm) **Lithologic Description** Construction nscs Sample ID **Details**

Well Construction Information

Monument Type: Morris

Screened Interval (ft bgs):

Casing Diameter (inches): Screen Slot Size (inches):

NA

Filter Pack: Surface Seal: NA 0.010 Annular Seal: NA 6 to 9' bgs

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

NA NA NA

Surveyed Location: X: 98433.895/: 20073.833

Page 1 of 1

12.0'

Client: Lakeside Industries

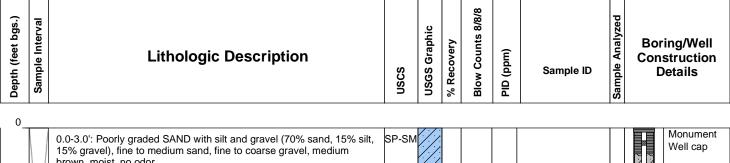
Project: Aberdeen Site **Location:** Aberdeen, WA

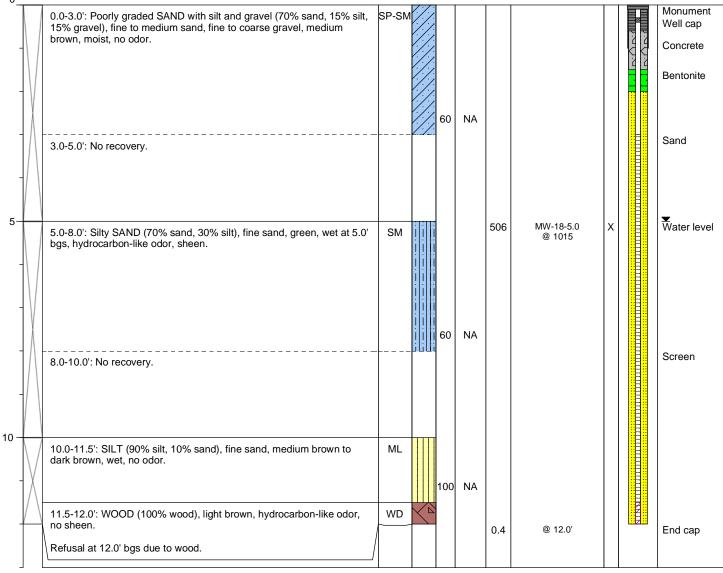
Farallon PN: 525-006

Logged By: Emerald Erickson

Date/Time Started: 04-05-2013 / 0900

Date/Time Completed: 04-05-2013 / 0924 **Equipment:** Geoprobe 7900


Drilling Company: ESN


Drilling Foreman: Nick Knopf
Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.0'
Total Boring Depth (ft bgs): 12.0'

tk Knopf Total Well Depth (ft bgs):

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 3.0-12.0'

Well Construction Information er Pack: 10/20 silica sand

Filter Pack: 10/20 silica
Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:98876.79
Y: 19976.23

Page 1 of 1

Client: Lakeside Industries

Project: Aberdeen Site Location: Aberdeen, WA

Farallon PN: 525-006

Depth (feet bgs.) Sample Interval

Logged By: Dincer Kayhan

Date/Time Started: 08-15-2013 / 0843

08-15-2013 / 0940 Date/Time Completed: Geoprobe 7800 Equipment:

Brian

Drilling Company: ESN

Drilling Foreman:

Drilling Method: Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 6.0' Total Boring Depth (ft bgs): 15.0' Total Well Depth (ft bgs): 10.0'

Blow Counts 8/8/8 Sample Analyzed **USGS Graphic Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5.0-10.0' **Well Construction Information**

Filter Pack: 2/12 sand Surface Seal: Concrete Annular Seal: **Bentonite Boring Abandonment:**

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location:

X:NA Y: NA NA

NA

Page 1 of 1

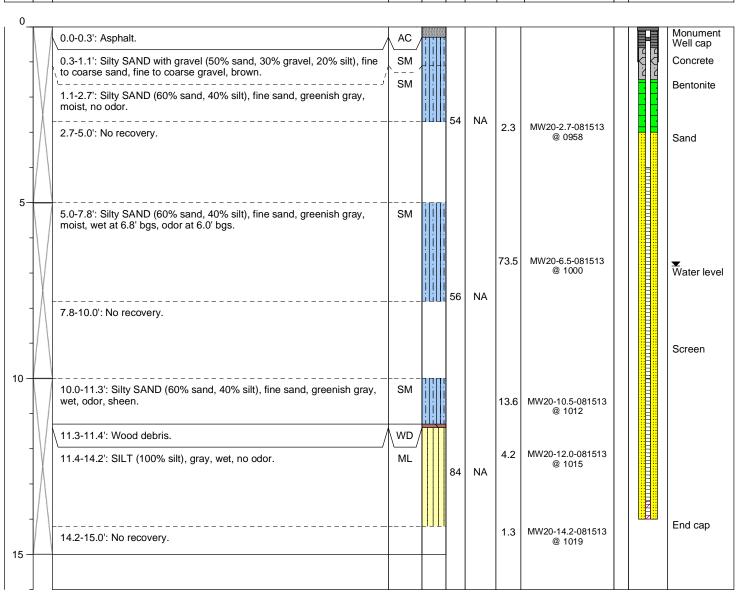
Client: Lakeside Industries Project: Aberdeen Site

Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Dincer Kayhan

Date/Time Started: 08-15-2013 / 0952


08-15-2013 / 1050 Date/Time Completed: Geoprobe 9630 Equipment:

Drilling Company: ESN Drilling Foreman: Brian

Drilling Method: Direct Push Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 6.8 Total Boring Depth (ft bgs): 15.0' Total Well Depth (ft bgs): 14.0'

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic** Recovery **Boring/Well** (mdd) **Lithologic Description** Construction Sample ID **Details** 吕

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010" Screened Interval (ft bgs): 4.0-14.0'

Well Construction Information Filter Pack: 2/12 sand Surface Seal: Concrete Annular Seal: **Bentonite Boring Abandonment:**

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Surveyed Location: X:NA

Y: NA

Page 1 of 1

Client: Lakeside Industries
Project: Aberdeen Site

Location: Aberdeen, WA

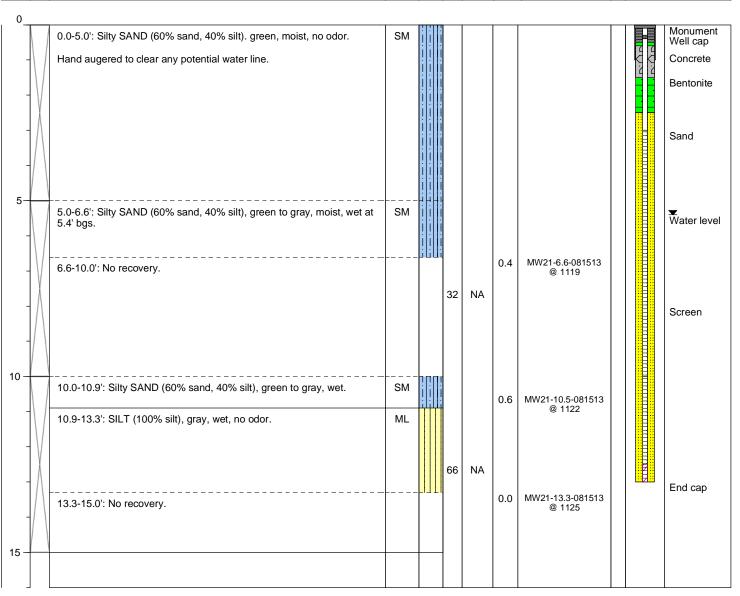
Farallon PN: 525-006

Logged By: Dincer Kayhan

Date/Time Started: 08-15-2013 / 1100

Date/Time Completed: 08-15-2013 / 1219 **Equipment:** Geoprobe 9630

Drilling Company: ESN
Drilling Foreman: Brian


Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.4'
Total Boring Depth (ft bgs): 15.0'

Total Well Depth (ft bgs): 13.0'

Depth (feet bgs.) Sample Interval	Lithologic Descript	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
-----------------------------------	---------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010"
Screened Interval (ft bgs): 3.0-13.0'

Well Construction Information

Filter Pack: 2/12 sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft):

Top of Casing Elevation (ft):

Surveyed Location: X:NA

Y: NA

NA NA

Page 1 of 1

5.7

7.0

Client: Lakeside Industries
Project: Aberdeen Facility

Location: Aberdeen, WA

Farallon PN: 525-006

Depth (feet bgs.) Sample Interval

Logged By: Ken Scott

Date/Time Started:

3/21/12 @ 10:20

Sampler Type: Bucket

Date/Time Completed: 3/21/12 @ 12:10

Drive Hammer (lbs.):

Equipment: Drilling Company:

Drilling Method:

Lakeside Industries

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs):

Drilling Foreman: Brian Bartlett

Excavation

Total Well Depth (ft bgs):

Lithologic Description

No. Counts 8/8/8

Sample Analyzed

0.0-0.4" Asphalt (100% asphalt), black.	AC	and a					
0.4-3.6' Silty GRAVEL with sand Fill (65% gravel, 20% sand, 15% silt), fine to coarse gravel, fine to coarse sand, brown, moist, no odor to 2.8-feet bgs, no sheen. Observed 3-inch round to subrounded cobbles between 1.5 to 3-feet bgs. Observed staining at 2.8-feet bgs with sheen seen on northside of test-pit.	GM		00%	N/A	NM	1	
3.6-7.0' SILT (100% silt), black, moist to wet, petro odor, no sheen on southside test-pit. Observed round wood pier piling in center of test-	 ML		00%	N/A	NM	TP1-3.5 @ 11:15	
pit between 4.0 to 7.0-feet bgs. A 7-foot high concrete seawall was on southside of test-pit, and the bottom of seawall was tied-into silt layer at 4-feet bgs. Observed groundwater on northside of test-pit with a sheen at 5.7-feet bgs.			00%	N/A	NM	TP1-4.5 @ 11:30	
-			00%	N/A	NM	TP1-7.0 @ 11:45	

Well Construction Information

Monument Type:

Casing Diameter (inches): Screen Slot Size (inches):

Screened Interval (ft bgs):

Filter Pack:

Surface Seal:

Annular Seal:

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:

Surveyed Location: X:

Y:

Page 1 of 1

Client: Lakeside Industries
Project: Aberdeen Facility

Location: Aberdeen, WA

Farallon PN: 525-006

Logged By: Ken Scott

Date/Time Started:

Date/Time Completed: 3/21/12 @ 14:15

Equipment:

John Deere 710D

3/21/12 @ 12:30

Drilling Company: Drilling Foreman:

Drilling Method:

Lakeside Industries Brian Bartlett

Excavation

Sampler Type: Bucket

Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 7.0

Total Well Depth (ft bgs):

Sample Interval Lithologic Description	un u	USGS Graphic % Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Boring/Well Construction Details
--	------	----------------------------	-------------------	-----------	-----------	--

0.0-0.3 Asphalt (100% asphalt), black.	AC	×	C				
0.3-3.8' Silty GRAVEL with sand Fill (60% gravel, 25% sand, 15% silt), fine to coarse gravel, fine to coarse sand, brown, moist, no odor to 3.0-feet bgs, no sheen. Observed 3-inch round to subrounded cobbles between 1.5 to 3-feet bgs. Observed staining at 3.0-feet bgs.	GM		00%	N/A	NM		
3.8-7.0' SILT (90% silt, 10% wood), black to grey at 6.5-feet bgs, moist to wet, petro odor to 6.5-feet bgs., slight sheen seen at 3.8-feet bgs, no sheen on southside test-pit or deeper than 3.8-feet bgs. Observed wood pier piling debris from historic dock between 3.8 to 5.5-feet bgs. A 7-foot high concrete seawall was on southside of test-pit, and the bottom of seawall was tied-into silt layer at 4-feet bgs. Observed metal support cable tied-into seawall at 5-feet bgs. Observed groundwater on northside of test-pit at 5.7-feet bgs.	ML	S S	100%	N/A N/A	NM NM	TP2-4.0 @ 13:40 TP2-4.5 @ 13:45	
			100%	N/A	NM	TP2-7.0 @ 13:50	

Well Construction Information

Monument Type:

Casing Diameter (inches):

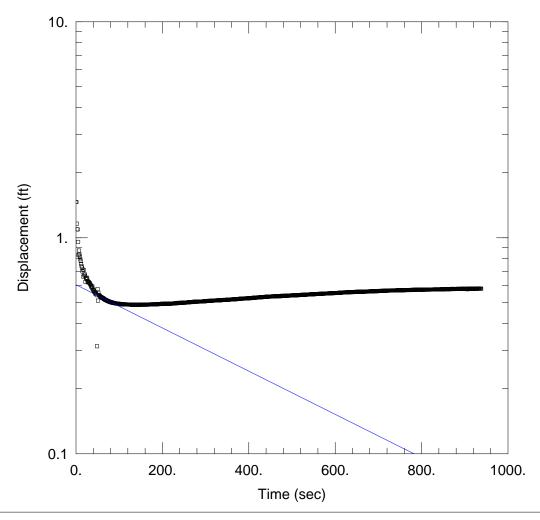
Screen Slot Size (inches): Screened Interval (ft bgs): Filter Pack:

Surface Seal:

Annular Seal:

Ground Surface Elevation (ft):

Top of Casing Elevation (ft): Boring Abandonment:


Surveyed Location: X:

Y:

APPENDIX C AQUIFER TESTING DATA

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

FALLING HEAD

Data Set: P:\...\MW-6 falling head.aqt

Date: 11/07/17 Time: 10:46:25

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

Test Well: MW-6
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6)

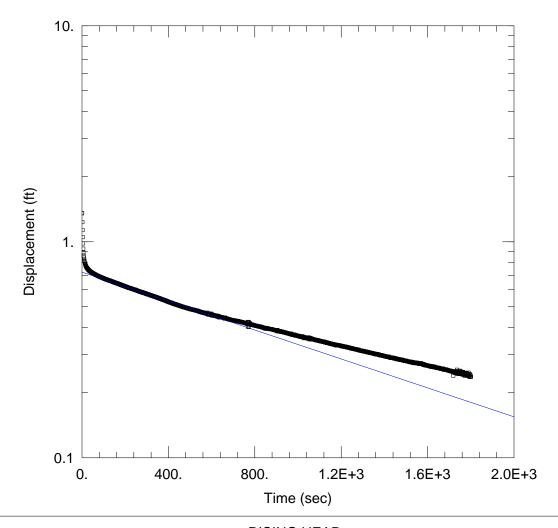
Initial Displacement: 1.464 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.083 ft

Static Water Column Height: 9.23 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 7.36E-5 cm/sec

y0 = 0.6059 ft

Data Set: P:\...\MW-6 rising head.aqt

Date: 11/06/17 Time: 14:33:26

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

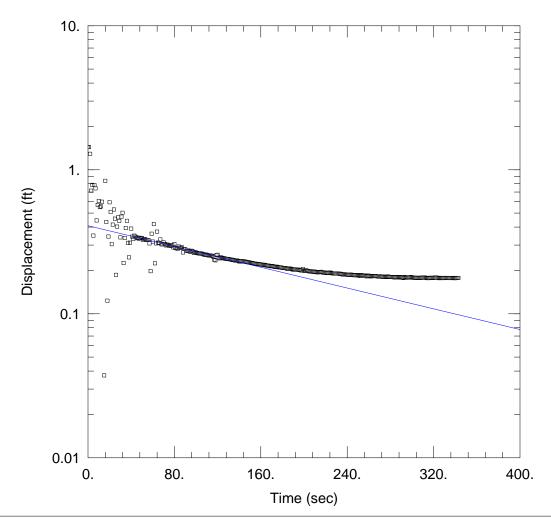
Test Well: MW-6
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6)

Initial Displacement: 1.356 ft


ft Static Water Column Height: 9.81 ft

Total Well Penetration Depth: 10.39 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.188 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.484E-5 cm/sec y0 = 0.7233 ft

FALLING HEAD

Data Set: P:\...\MW-7 falling head.aqt

Date: 11/06/17 Time: 13:58:06

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

Test Well: MW-7
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-7)

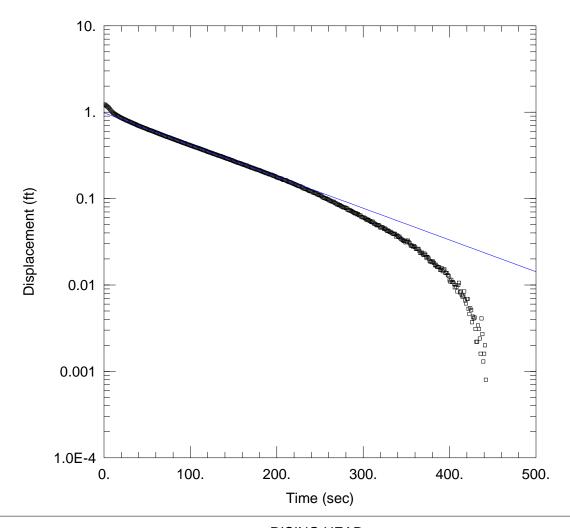
Initial Displacement: 1.437 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.083 ft

Static Water Column Height: 9.9 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001327 cm/sec

y0 = 0.4087 ft

Data Set: P:\...\MW-7 rising head.aqt

Date: 11/06/17 Time: 14:09:00

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

Test Well: MW-7
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-7)

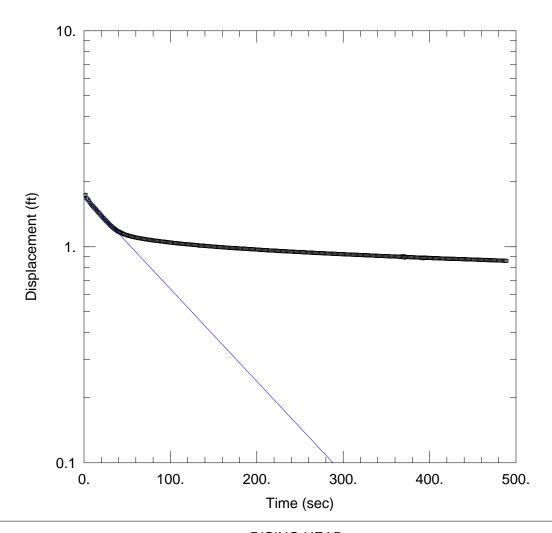
Initial Displacement: 1.229 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.14 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002706 cm/sec

y0 = 0.9813 ft

Data Set: P:\525 Lakeside\525006 Aberdeen Site\Working Folder\Slug-Test 2017\MW-8 rising head.aqt

Date: 11/06/17 Time: 14:58:42

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

Test Well: MW-8
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-8)

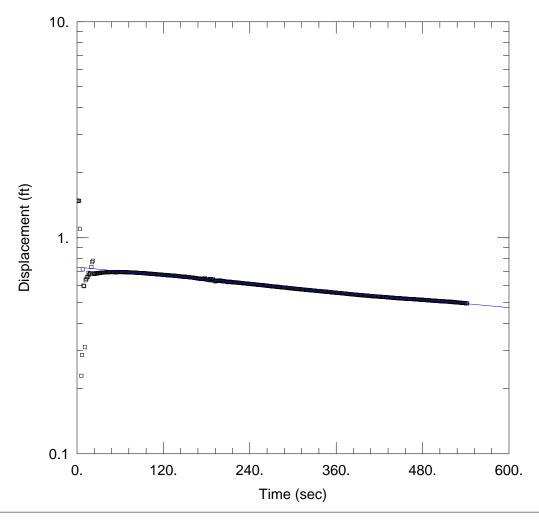
Initial Displacement: 1.726 ft

Total Well Penetration Depth: 11.16 ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.14 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.000322 cm/sec

y0 = 1.707 ft

FALLING HEAD

Data Set: P:\...\MW-9 falling head.aqt

Date: 11/06/17 Time: 14:54:01

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

Test Well: MW-9
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-9)

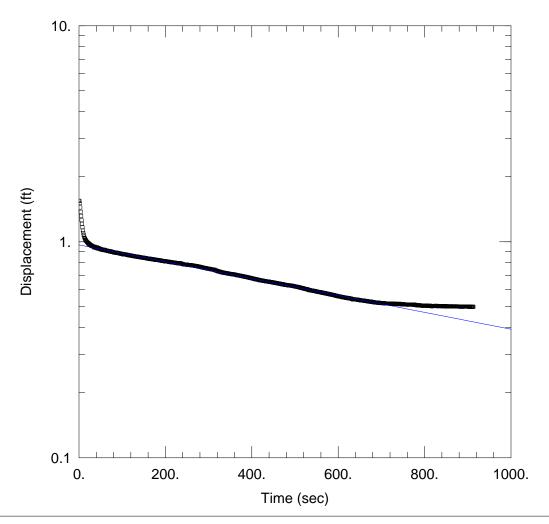
Initial Displacement: 1.484 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.083 ft

Static Water Column Height: 9.17 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 2.3E-5 cm/sec

y0 = 0.7308 ft

Data Set: P:\...\MW-9 rising head.aqt

Date: 11/06/17 Time: 14:56:03

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA

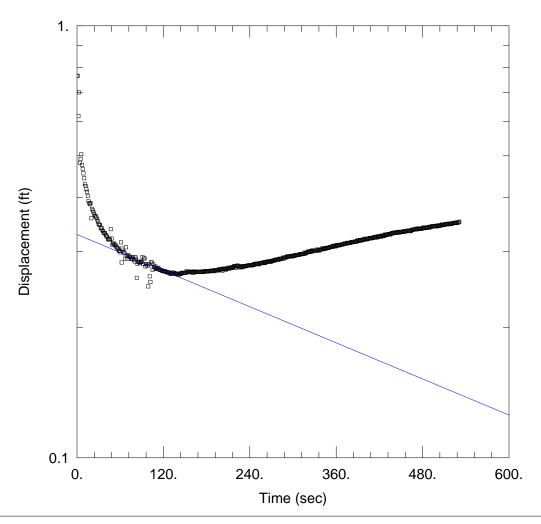
Test Well: MW-9
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-9)

Initial Displacement: 1.547 ft


547 ft Static Water Column Height: 10.23 ft

Total Well Penetration Depth: 10.81 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.188 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.921E-5 cm/sec y0 = 0.9671 ft

FALLING HEAD

Data Set: P:\...\MW-10 falling head.aqt

Date: 11/06/17 Time: 15:16:17

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA
Test Well: MW-10
Test Date: 9/29/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-10)

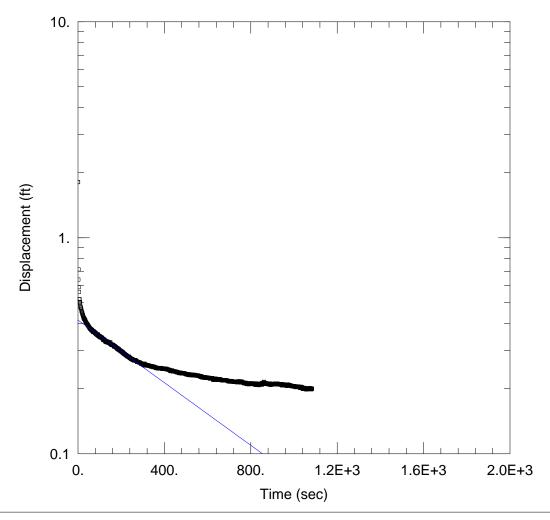
Initial Displacement: 0.766 ft

Static Water Column Height: 10.73 ft

Total Well Penetration Depth: 11.02 ft

Screen Length: 10. ft Well Radius: 0.188 ft

Casing Radius: 0.083 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

 $K = \underline{5.231E-5} \text{ cm/sec}$

y0 = 0.3287 ft

Data Set: P:\...\MW-10 rising head.aqt

Date: 11/06/17 Time: 15:13:01

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA
Test Well: MW-10
Test Date: 9/29/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-10)

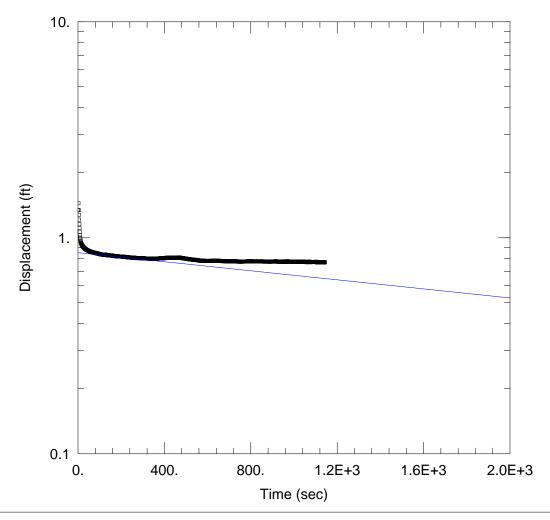
Initial Displacement: 1.81 ft

Total Well Penetration Depth: 11.44 ft

Casing Radius: 0.083 ft

Static Water Column Height: 11.15 ft

Screen Length: 10. ft Well Radius: 0.188 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 5.483E-5 cm/sec

y0 = 0.4157 ft

Data Set: P:\...\MW-12 rising head.aqt

Date: 11/06/17 Time: 15:56:49

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA
Test Well: MW-12
Test Date: 9/29/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)

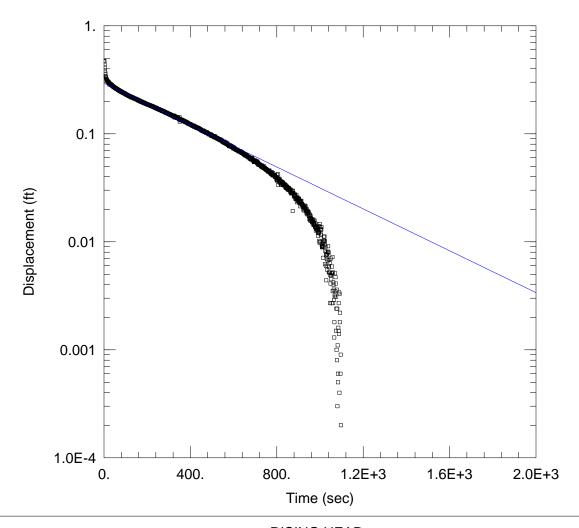
Initial Displacement: 1.345 ft

Static Water Column Height: 9.96 ft

Total Well Penetration Depth: 10.26 ft

Screen Length: 10. ft Well Radius: 0.188 ft

Casing Radius: 0.083 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 7.752E-6 cm/sec

y0 = 0.8529 ft

Data Set: P:\...\MW-18 rising head.aqt

Date: 11/06/17 Time: 16:22:58

PROJECT INFORMATION

Company: Farallon

Client: Lakeside Industries

Project: 525-006

Location: Aberdeen, WA
Test Well: MW-18
Test Date: 9/28/17

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-18)

Initial Displacement: 0.4688 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.083 ft

Static Water Column Height: 6.1 ft

Solution Method: Bouwer-Rice

Screen Length: 10. ft Well Radius: 0.188 ft

SOLUTION

Aquifer Model: Unconfined

0 00000 (1

K = 7.134E-5 cm/sec

y0 = 0.2936 ft

Table C-1 Summary of Aquifer Testing Results Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Tested	Date Tested	Test Conducted	Estimated Hydraulic Conductivity (centimeters/second)	Average Hydraulic Conductivity (centimeters/second)	Hydraulic Conductivity Geometric Mean (centimeters/second)	Groundwater Seepage Velocity (feet per year) ¹
MW-6	9/29/2017	Falling Head	7.36E-05	4.92E-05		
IVI VV -O	9/29/2017	Rising Head	2.48E-05	4.92L-03		
MW-7	9/28/2017	Falling Head	1.33E-04	2.02E-04		
IVI VV - /	9/28/2017	Rising Head	2.71E-04	2.02L-04		
MW	9/28/2017	Falling Head	Inconclusive	2 225 04		
MW-8	9/28/2017	Rising Head	3.22E-04	3.22E-04		
MW-9	9/28/2017	Falling Head	2.30E-05	2.61E-05		
WW-y	9/28/2017	Rising Head	2.92E-05	2.012-03	5.89E-05	8.5
MW-10	9/29/2017	Falling Head	5.23E-05	5.36E-05		
WW-10	9/29/2017	Rising Head	5.48E-05	3.3012-03		
MW-12	9/29/2017	Falling Head	Inconclusive	7.75E-06		
141 44 - 12	9/29/2017	Rising Head	7.75E-06	7.73 <u>L</u> -00		
MW-18	9/28/2017	Falling Head	Inconclusive	7.13E-05		
NOTES.	9/28/2017	Rising Head	7.13E-05	7.13L-03		

NOTES:

K = hydraulic conductivity

1 = hydraulic gradient of 0.035 foot per foot (September 2013)

n = effective porosity of 0.25 (unitless) for silty sands and gravels

¹Groundwater seepage velocity (V) = Kl/n, where

APPENDIX D TIDAL STUDY DATA

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

LAKESIDE TIDAL STUDY

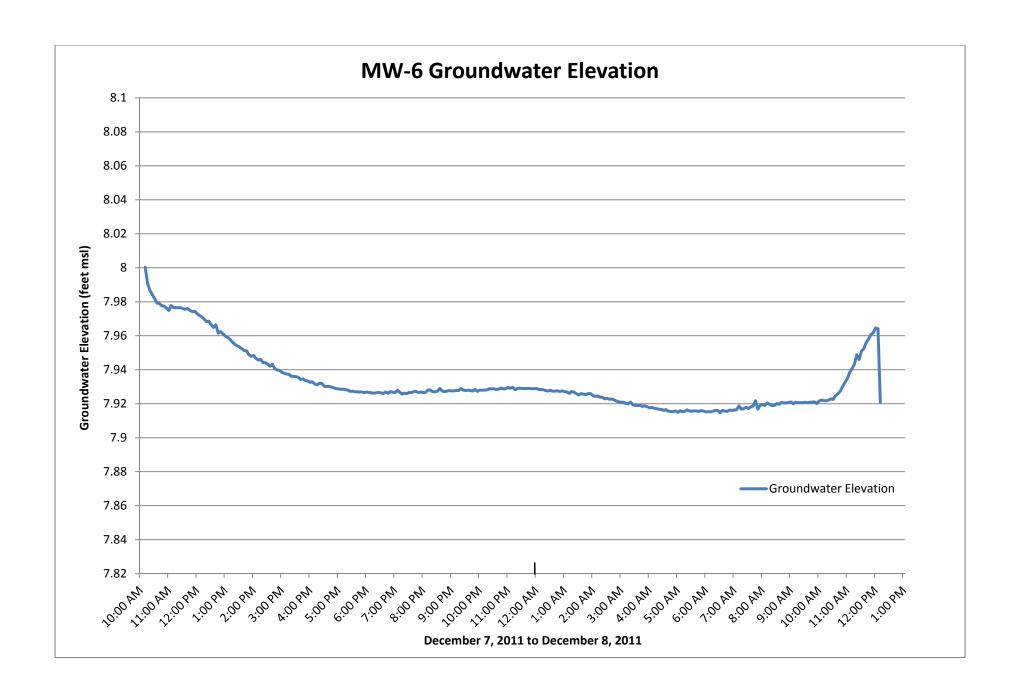
A tidal study was conducted during a 24-hour tidal cycle on December 7 and 8, 2011 at the Lakeside Aberdeen facility in Aberdeen Washington (the Site).

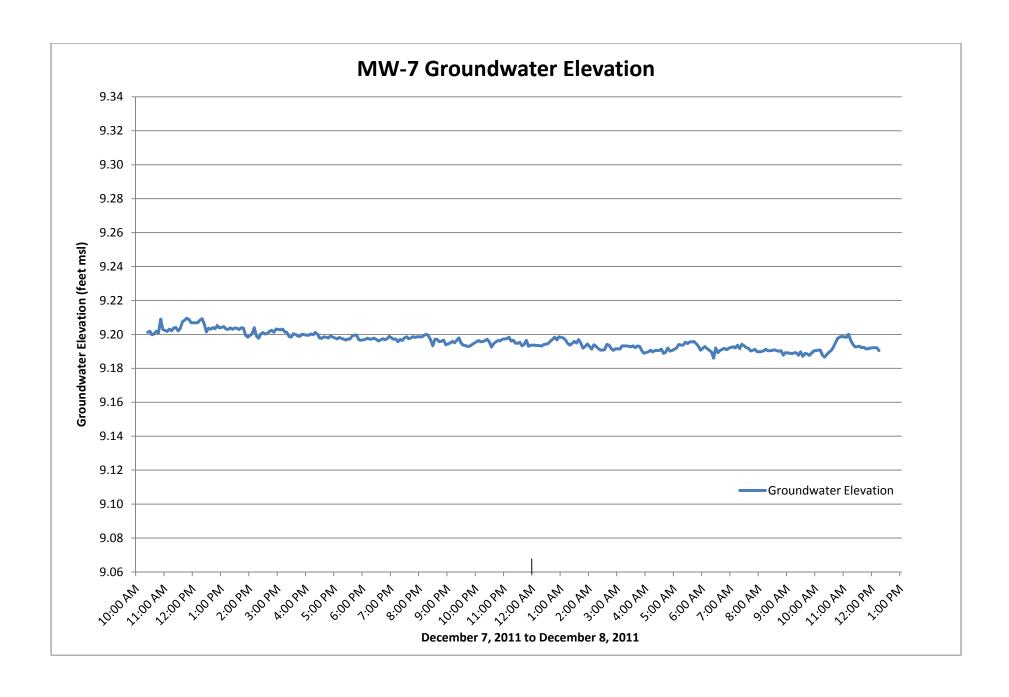
The tidal study included installation of electric pressure-logging transducers in monitoring wells MW-6, MW-7, MW-8, MW-9, and MW-10. Surface water level fluctuations in the Chehalis River were evaluated using data from the National Oceanic and Atmospheric Administration (NOAA) Aberdeen Station #9441187, west of the Site.

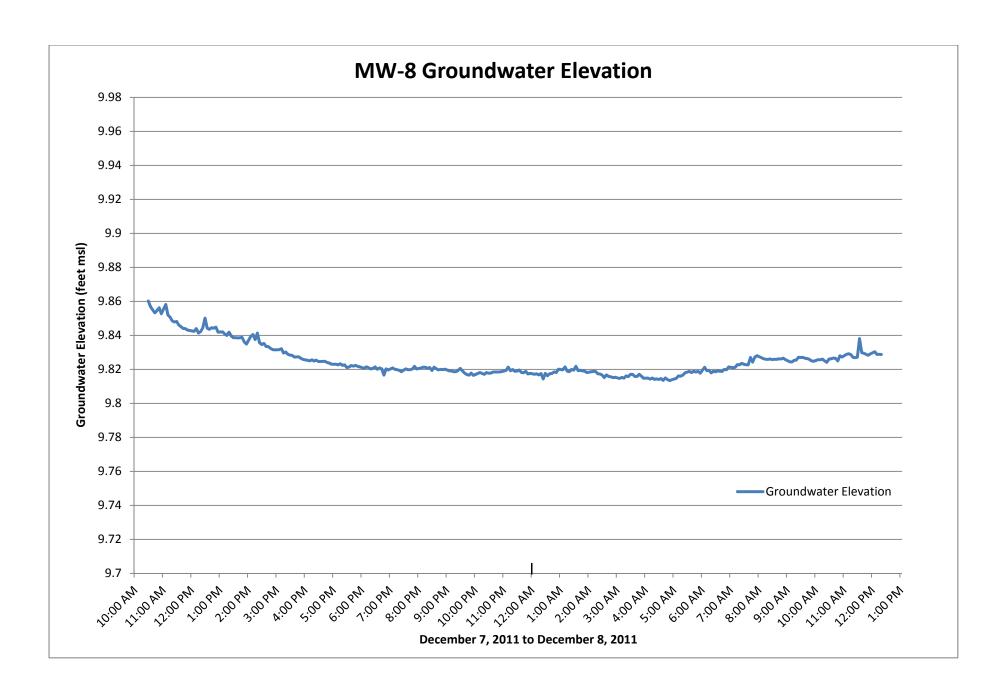
Recording of groundwater levels at each well using the transducers was initiated at 10:00 a.m. on December 7, 2011 during a high tide cycle. Measurements were recorded at 5-minute intervals for approximately 26 hours.

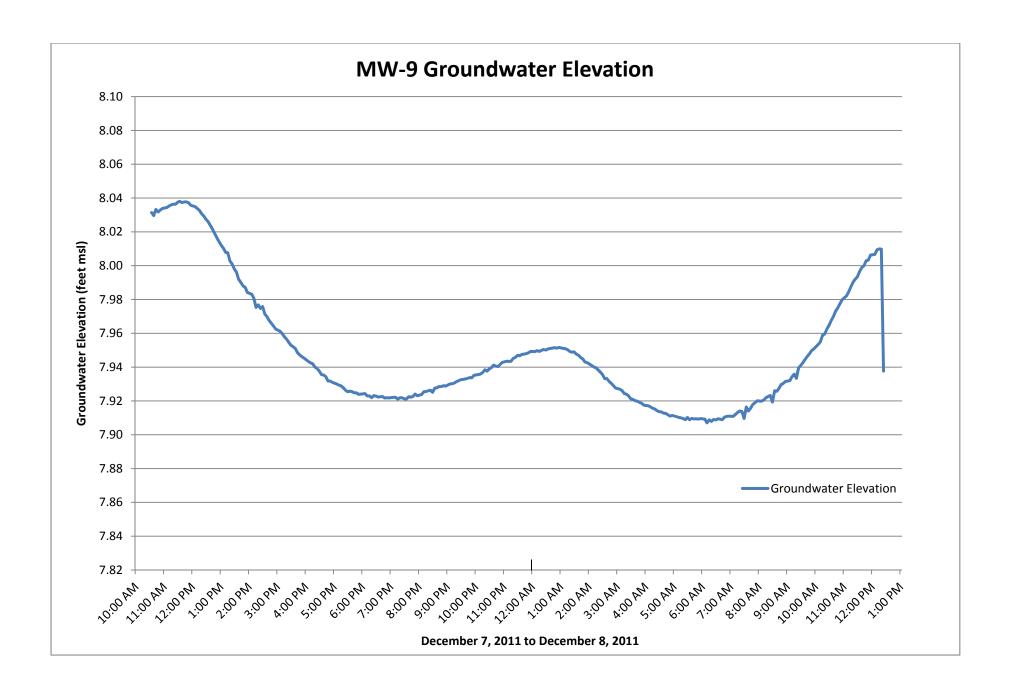
The relative groundwater level fluctuations recorded in the monitoring wells during the tidal study are provided graphically on the included figures. The surface water elevation tidal fluctuation recorded in the Chehalis River at the Aberdeen Station is also depicted graphically over the same time period. The surface water elevation fluctuation in the Chehalis River at Aberdeen Station #9441187 was approximately 10 feet during the study period.

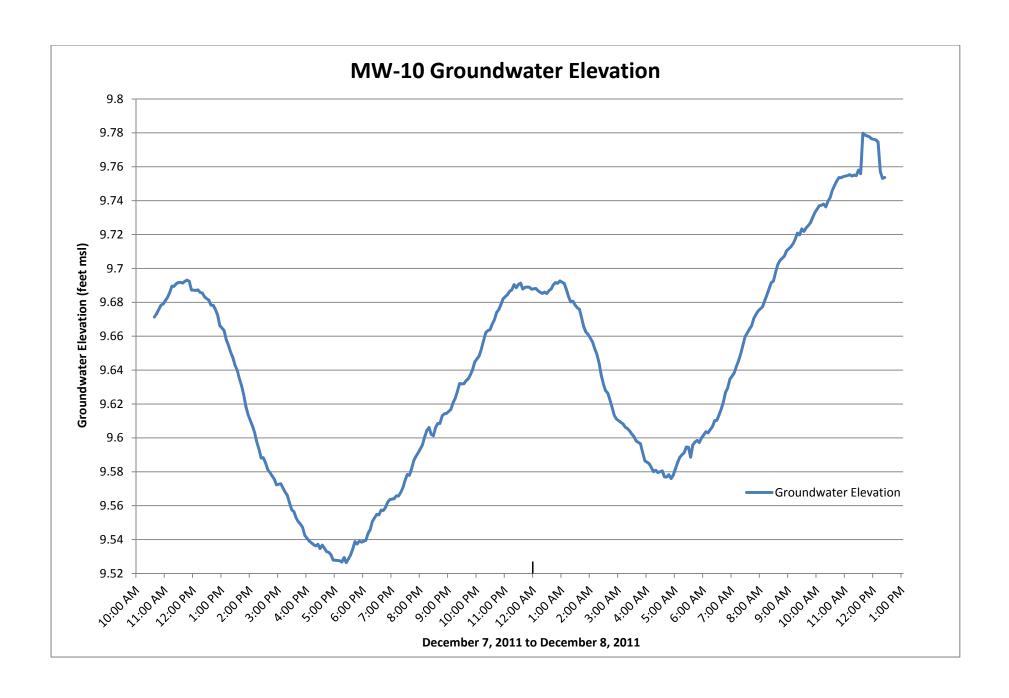
The relative change (i.e., the difference between the highest recorded elevation and the lowest recorded elevation) in groundwater elevations measured in Site monitoring wells is summarized as follows:

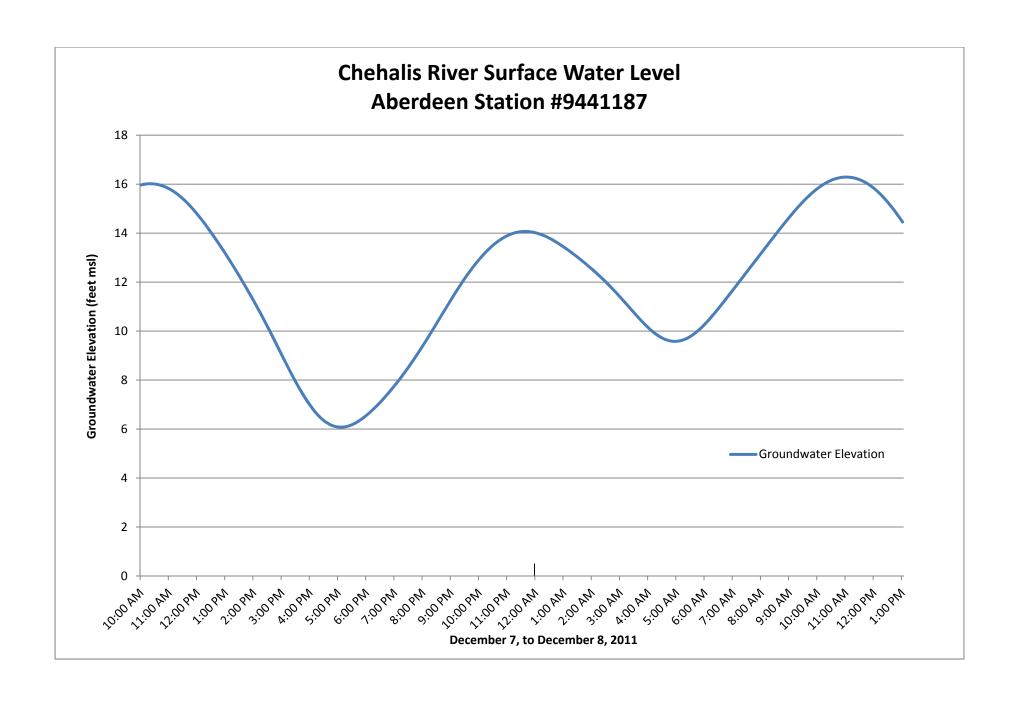

- Monitoring well MW-6, located approximately 20 feet from the top of the river bank, and very close to the concrete retaining wall, displayed a groundwater elevation tidal response of approximately 0.06 foot.
- Monitoring well MW-7, located approximately 120 feet from the top of the river bank, did not display a groundwater elevation tidal response and may reflect either no tidal response or a transducer malfunction.
- Monitoring well MW-8, located approximately 255 feet from the top of the river bank, did not display a groundwater elevation tidal response and may reflect either no tidal response or a transducer malfunction.
- Monitoring well MW-9, located approximately 20 feet from the top of the river bank, and very close to the concrete retaining wall, displayed a groundwater elevation tidal response of approximately 0.15 foot.
- Monitoring well MW-10, located approximately 100 feet from the top of the river bank, displayed a groundwater elevation tidal response of approximately 0.23 foot.


The relative change in groundwater elevations measured in the two monitoring wells that displayed the greatest tidal response ranged from approximately 0.15 foot in monitoring well MW-9 to approximately 0.23 foot in monitoring well MW-10. Monitoring well MW-6, the other


well that possibly displayed a recordable tidal response had a groundwater elevation change of approximately 0.06 foot.


Groundwater elevation data recorded in monitoring wells MW-7 and MW-8 show little or no elevation change and/or tidal pattern. The lack of recorded tidal response could be related to transducer malfunctions. However, these two wells are also the furthest wells from the Chehalis River that were included in the tidal study, so it is possible that they represent actual recorded tidal responses of essentially zero at these locations.


The relatively muted groundwater fluctuations, ranging from approximately 0.15 to 0.23 foot in the two wells that displayed the greatest groundwater elevation response to the tide, compared to the large (10-feet elevation) river tidal fluctuation, suggest a very limited connection between the shallow groundwater-bearing zone at the Site and the surface water of the Chehalis River.



APPENDIX E LABORATORY ANALYTICAL REPORTS (PROVIDED ON CD IN PRINT REPORT)

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 4, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1104-151

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on April 22, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on April 19, 20, and 21, 2011 and received by the laboratory on April 22, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

NWTPH Dx (water) Analysis

The samples were received with their pH levels above 2. A pH below 2 is required by the method. As they were collected in Hydrochloric Acid preserved containers, it is suspected that the matrix may be effecting the pH. The holding time for unpreserved samples is 7 days instead of 14 days. Because of this, samples B17-041911-GW, B18-041911-GW, B19-041911-GW, B20-041911-GW, and B34-041911-GW were extracted and analyzed out of holding time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B17-6.0					
Laboratory ID:	04-151-02					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.060	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.060	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.060	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.060	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	6.0	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	68-124				
Client ID:	B18-6.0					
Laboratory ID:	04-151-05					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.065	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.065	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.065	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.065	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	6.5	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				
Client ID:	B19-6.0					
Laboratory ID:	04-151-08					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.050	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	5.0	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	68-124				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

5 5 (1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-7.0					
Laboratory ID:	04-151-11					
Benzene	0.039	0.023	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.12	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.90	0.12	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	1.1	0.12	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.60	EPA 8021	4-27-11	4-27-11	U1
Gasoline	ND	12	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	B34-7.0					
Laboratory ID:	04-151-13					
Benzene	0.024	0.022	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.11	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.18	0.11	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	0.28	0.11	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.11	EPA 8021	4-27-11	4-27-11	
Gasoline	54	11	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				
Client ID:	B23-3.0					
Laboratory ID:	04-151-21					
Benzene	0.079	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.093	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.82	0.093	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	1.9	0.093	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.93	EPA 8021	4-27-11	4-27-11	U1
Gasoline	ND	9.3	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B24-2.0					
Laboratory ID:	04-151-23					
Benzene	0.099	0.022	EPA 8021	4-27-11	4-27-11	
Toluene	0.15	0.11	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.25	0.11	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	0.42	0.11	EPA 8021	4-27-11	4-27-11	
o-Xylene	0.60	0.11	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	11	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	68-124				
Client ID:	B26-3.0					
Laboratory ID:	04-151-28					
Benzene	ND	0.020	EPA 8021	4-27-11	4-28-11	
Toluene	ND	0.091	EPA 8021	4-27-11	4-28-11	
Ethyl Benzene	ND	0.091	EPA 8021	4-27-11	4-28-11	
m,p-Xylene	0.43	0.091	EPA 8021	4-27-11	4-28-11	
o-Xylene	ND	0.46	EPA 8021	4-27-11	4-28-11	U1
Gasoline	ND	9.1	NWTPH-Gx	4-27-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	68-124				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0427S1					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	_
Toluene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.050	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	5.0	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 91 68-124

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-1	51-02									
•	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						80	81	68-124			
SPIKE BLANKS											
Laboratory ID:	SB04	27S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.885	0.897	1.00	1.00		89	90	77-114	1	9	
Toluene	0.919	0.931	1.00	1.00		92	93	80-115	1	9	
Ethyl Benzene	0.924	0.939	1.00	1.00		92	94	80-118	2	9	
m,p-Xylene	0.939	0.955	1.00	1.00		94	96	82-118	2	9	
o-Xylene	0.935	0.953	1.00	1.00		94	95	82-116	2	9	
Surrogate:		•				•					
Fluorobenzene						85	83	68-124			

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B17-041911-GW					
04-151-03					
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	100	NWTPH-Gx	4-27-11	4-27-11	
Percent Recovery	Control Limits				
93	73-121				
B18-041911-GW					
04-151-06					
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	100	NWTPH-Gx	4-27-11	4-27-11	
Percent Recovery	Control Limits				
91	73-121				
B19-041911-GW					
04-151-09					
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	1.0	EPA 8021	4-27-11	4-27-11	
ND	100	NWTPH-Gx	4-27-11	4-27-11	
Percent Recovery	Control Limits				
91	73-121				
	B17-041911-GW 04-151-03 ND ND ND ND ND ND Percent Recovery 93 B18-041911-GW 04-151-06 ND	B17-041911-GW	B17-041911-GW O4-151-03 ND	Result PQL Method Prepared B17-041911-GW 04-151-03 ND 1.0 EPA 8021 4-27-11 Percent Recovery Control Limits 93 73-121 B18-041911-GW 04-151-06 1.0 EPA 8021 4-27-11 ND 1.0 EPA 8021 4-27-11 Percent Recovery Control Limits 91 73-121 B19-041911-GW 04-151-09 04-151-09 ND 1.0 EPA 8021 4-27-11 ND 1.0 EPA 8021 4-27-11<	Result PQL Method Prepared Analyzed

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-041911-GW					
Laboratory ID:	04-151-12					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	240	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	B34-041911-GW					
Laboratory ID:	04-151-14					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	510	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	B23-042011-GW					
Laboratory ID:	04-151-22					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	560	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B24-042011-GW					
Laboratory ID:	04-151-24					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	8.8	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	13	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	4500	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				
Client ID:	B26-042011-GW					
Laboratory ID:	04-151-29					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	6.0	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	1200	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0427W1					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 90 73-121

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-17	7 4-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						90	92	73-121			
MATRIX SPIKES											
Laboratory ID:	04-17	7 4-01									
•	MS	MSD	MS	MSD		MS	MSD				
Benzene	46.4	45.5	50.0	50.0	ND	93	91	82-120	2	8	
Toluene	47.2	45.5	50.0	50.0	ND	94	91	84-119	4	8	
Ethyl Benzene	46.9	44.4	50.0	50.0	ND	94	89	84-122	5	9	
m,p-Xylene	46.8	44.3	50.0	50.0	ND	94	89	85-121	5	9	
o-Xylene	47.3	44.7	50.0	50.0	ND	95	89	84-121	6	9	
Surrogate:		 									
Fluorobenzene						95	90	73-121			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyto	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte Client ID:	B17-6.0	FQL	WELTIOU	Frepareu	Allalyzeu	i iays
Laboratory ID:	04-151-02					
Diesel Range Organics	64	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	180	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DX	4-20-11	1 -20-11	
o-Terphenyl	92	50-150				
0-Terphenyi	32	30-730				
Client ID:	B18-6.0					
Laboratory ID:	04-151-05					
Diesel Range Organics	ND	29	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	160	57	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	B19-6.0					
Laboratory ID:	04-151-08					
Diesel Range Organics	ND	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
OF A ID	D00 7.0					
Client ID:	B20-7.0					
Laboratory ID:	04-151-11					
Diesel Range Organics	2100	30	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	4-28-11	4-28-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	B34-7.0					
Laboratory ID:	04-151-13					
Diesel Range Organics	430	30	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	65	59	NWTPH-Dx	4-28-11	4-28-11	N1
Surrogate:	Percent Recovery	Control Limits		. 20	. 20	
o-Terphenyl	97	50-150				
- : 3.p	.	00 100				
Client ID:	B21-6.0					
Laboratory ID:						
Dissal Danas Ossasias	04-151-16					
Diesel Range Organics	04-151-16 3100	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics		28 300	NWTPH-Dx NWTPH-Dx	4-28-11 4-28-11	4-28-11 4-28-11	U1
	3100					U1

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B22-5.0	FWL	MENION	riepaieu	Allalyzeu	riays
Laboratory ID:	04-151-19	00	NW/TDLL D.	1.00.44	F 0 44	N.I.
Diesel Range Organics	170	32	NWTPH-Dx	4-28-11	5-2-11	N
Lube Oil	1200	65	NWTPH-Dx	4-28-11	5-2-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	B23-3.0					
Laboratory ID:	04-151-21					
Diesel Range Organics	1500	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	640	54	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	B24-2.0					
Laboratory ID:	04-151-23					
Diesel Range Organics	11000	280	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	7100	550	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
с . с.реу.		00 700				•
Client ID:	B25-6.0					
Laboratory ID:	04-151-26					
Diesel Range Organics	2400	30	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	1300	59	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B26-3.0					
Laboratory ID:	04-151-28					
Diesel Range Organics	3400	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	1100	56	NWTPH-Dx	4-28-11	4-28-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	B27-6.0					
Laboratory ID:	04-151-31					
Diesel Range Organics	3100	59	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	3200	120	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits		. 20 11	. 20 11	
o-Terphenyl	103	50-150				
o respirently	103	JU-1JU				

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B28-3.5		ou		7a.y = 0 a	age
Laboratory ID:	04-151-33					
Diesel Range Organics	770	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	1000	53	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	B29-3.0					
*	04-151-35					
Laboratory ID: Diesel Range Organics	ND	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	87	53	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits	INVVII II-DX	4-20-11	4-20-11	
o-Terphenyl	119	50-150				
о <i>г.е.р.не.н</i> у.		00 /00				
Client ID:	B30-3.0					
Laboratory ID:	04-151-37					
Diesel Range Organics	3500	27	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	1100	55	NWTPH-Dx	4-28-11	4-29-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	B31-3.0					
Laboratory ID:	04-151-39					
Diesel Range Organics	160	27	NWTPH-Dx	4-28-11	4-28-11	N
Lube Oil	360	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	B32-6.0					
Laboratory ID:	04-151-43					
Diesel Range Organics	ND	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	B33-6.0					
Laboratory ID:	04-151-46					
Diesel Range Organics	ND	26	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	53	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits	TOTAL TOTAL	120 11	12011	
o-Terphenyl	106	50-150				
•						
Client ID:	B35-4.0					
Laboratory ID:	04-151-49					
Diesel Range Organics	5800	55	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	890	110	NWTPH-Dx	4-28-11	4-29-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0428S1					
Diesel Range Organics	ND	25	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-15	51-02						
	ORIG	DUP						
Diesel Range Organics	58.4	48.8				18	NA	
Lube Oil	168	179				6	NA	
Surrogate:								
o-Terphenyl			92	105	50-150			
Laboratory ID:	04-15	1-08						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			108	109	50-150			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B17-041911-GW					
Laboratory ID:	04-151-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits	TWO THE DA			
o-Terphenyl	100	50-150				
o respiration	700	00 700				
Client ID:	B18-041911-GW					
Laboratory ID:	04-151-06					
Diesel Range Organics	ND	0.27	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits			,	
o-Terphenyl	100	50-150				
, ,						
Client ID:	B19-041911-GW					
Laboratory ID:	04-151-09	<u> </u>				
Diesel Range Organics	0.25	0.16	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	1.2	0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	B20-041911-GW					
Laboratory ID:	04-151-12					
Diesel Range Organics	0.81	0.26	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	IVI
	Percent Recovery	Control Limits	INVVIFII-DX	4-27-11	4-21-11	
Surrogate:	-					
o-Terphenyl	102	50-150				
Client ID:	B34-041911-GW					
Laboratory ID:	04-151-14					
Diesel Range Organics	0.51	0.26	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
r - J						
Client ID:	B21-042011-GW					
Laboratory ID:	04-151-17					
Diesel Range Organics	8.8	0.27	NWTPH-Dx	4-27-11	4-27-11	·
Lube Oil Range Organics	ND	1.2	NWTPH-Dx	4-27-11	4-27-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
, ,	-					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B22-042011-GW	•				
Laboratory ID:	04-151-20					
Diesel Range Organics	ND	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	B23-042011-GW					
Laboratory ID:	04-151-22					
Diesel Range Organics	30	0.28	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil	15	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	128	50-150				
Client ID:	B24-042011-GW					
Laboratory ID:	04-151-24					
Diesel Range Organics	40	0.28	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil	17	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	129	50-150				
Client ID:	B25-042011-GW					
Laboratory ID:	04-151-27					
Diesel Range Organics	1.7	0.16	NWTPH-Dx	4-27-11	4-27-11	M1
Lube Oil	0.47	0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	B26-042011-GW					
Laboratory ID:	04-151-29					
Diesel Range Organics	19	0.31	NWTPH-Dx	4-27-11	4-27-11	M
Lube Oil Range Organics	ND	2.0	NWTPH-Dx	4-27-11	4-27-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	B27-042011-GW					
Laboratory ID:	04-151-32					
Diesel Range Organics	12	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	9.9	0.28	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits		12111	12111	
o-Terphenyl	126	50-150				
	,20	00 700				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B28-042111-GW					
Laboratory ID:	04-151-34					
Diesel Range Organics	9.1	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	1.7	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	B29-042111-GW					
Laboratory ID:	04-151-36					
Diesel Range Organics	2.0	0.29	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	0.70	0.47	NWTPH-Dx	4-27-11	4-27-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B30-042111-GW					
Laboratory ID:	04-151-38					
Diesel Range Organics	4.9	0.28	NWTPH-Dx	4-27-11	4-27-11	M1
Lube Oil	0.61	0.45	NWTPH-Dx	4-27-11	4-27-11	1411
Surrogate:	Percent Recovery	Control Limits	TWW THE DX			
o-Terphenyl	115	50-150				
σ . σ. μσy.		00 700				
Client ID:	B31-042111-GW					
Laboratory ID:	04-151-41					
Diesel Range Organics	0.29	0.16	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	B32-042111-GW					
Laboratory ID:	04-151-44					
Diesel Range Organics	ND	0.29	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.29	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits	INVVIFII-DX	4-27-11	4-21-11	
o-Terphenyl						
о-тегрпенуі	110	50-150				
Client ID:	B33-042111-GW					
Laboratory ID:	04-151-47					
Diesel Range Organics	ND	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B35-042111-GW	_				
Laboratory ID:	04-151-50					
Diesel Range Organics	39	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	4.2	NWTPH-Dx	4-27-11	4-27-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	129	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0427W1					
Diesel Range Organics	ND	0.13	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				

			Pe	rcent	Recovery		RPD	
Analyte	Result		Red	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-15	51-03						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			100	99	50-150			
Laboratory ID:	04-17	74-01	_					
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			124	114	50-150			

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-7.0					
Laboratory ID:	04-151-11				_	
Naphthalene	0.17	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
2-Methylnaphthalene	0.69	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
1-Methylnaphthalene	1.4	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Acenaphthylene	0.038	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Acenaphthene	0.23	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Fluorene	0.58	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Phenanthrene	0.29	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Anthracene	0.036	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Fluoranthene	0.0097	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Pyrene	0.0082	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[a]anthracene	ND	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Chrysene	ND	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[k]fluoranthene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[g,h,i]perylene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	43 - 109				

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 51
 43 - 109

 Pyrene-d10
 64
 38 - 128

 Terphenyl-d14
 74
 33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0427S1					
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Percent Recovery	Control Limits				
82	43 - 109				
85	38 - 128				
86	33 - 119				
	MB0427S1 ND	MB0427S1 ND 0.0067 Percent Recovery Control Limits 82 43 - 109 85 38 - 128	MB0427S1 ND 0.0067 EPA 8270/SIM ND	Result PQL Method Prepared MB0427S1 ND 0.0067 EPA 8270/SIM 4-27-11 ND 0.0067 EPA 8270/SIM 4-27-11	MB0427S1 MBOMEN Prepared Analyzed ND 0.0067 EPA 8270/SIM 4-27-11 4-27-11 ND 0.0067 <td< td=""></td<>

Project: 525-006

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Pe	rcent	Recovery		RPD	
Res	sult	Spike	Level	Recovery		Limits	RPD	Limit	Flags
SB04	27S1								
SB	SBD	SB	SBD	SB	SBD				
0.0637	0.0633	0.0833	0.0833	76	76	43 - 108	1	27	
0.0670	0.0671	0.0833	0.0833	80	81	52 - 120	0	21	
0.0663	0.0659	0.0833	0.0833	80	79	59 - 113	1	17	
0.0678	0.0661	0.0833	0.0833	81	79	64 - 117	3	14	
0.0656	0.0642	0.0833	0.0833	79	77	67 - 112	2	12	
0.0701	0.0683	0.0833	0.0833	84	82	59 - 110	3	16	
0.0713	0.0692	0.0833	0.0833	86	83	68 - 120	3	15	
0.0679	0.0662	0.0833	0.0833	82	79	69 - 121	3	17	
0.0592	0.0573	0.0833	0.0833	71	69	63 - 114	3	12	
0.0681	0.0661	0.0833	0.0833	82	79	67 - 118	3	12	
0.0619	0.0592	0.0833	0.0833	74	71	58 - 125	4	20	
0.0635	0.0620	0.0833	0.0833	76	74	42 - 134	2	26	
0.0611	0.0596	0.0833	0.0833	73	72	55 - 111	2	19	
0.0716	0.0711	0.0833	0.0833	86	85	60 - 125	1	20	
0.0725	0.0722	0.0833	0.0833	87	87	62 - 125	0	19	
0.0716	0.0712	0.0833	0.0833	86	85	61 - 124	1	19	
				86	84	43 - 109			
				91	87	38 - 128			
				87	83	33 - 119			
	SB04 SB 0.0637 0.0670 0.0663 0.0678 0.0656 0.0701 0.0713 0.0679 0.0592 0.0681 0.0619 0.0635 0.0611 0.0716 0.0725	0.0637 0.0633 0.0670 0.0671 0.0663 0.0659 0.0678 0.0661 0.0656 0.0642 0.0701 0.0683 0.0713 0.0692 0.0679 0.0662 0.0592 0.0573 0.0681 0.0661 0.0619 0.0592 0.0635 0.0620 0.0611 0.0596 0.0716 0.0711 0.0725 0.0722	\$B0427\$1 \$B \$BD \$B 0.0637 0.0633 0.0833 0.0670 0.0671 0.0833 0.0663 0.0659 0.0833 0.0656 0.0642 0.0833 0.0701 0.0683 0.0833 0.0713 0.0692 0.0833 0.0592 0.0573 0.0833 0.0592 0.0573 0.0833 0.0619 0.0592 0.0833 0.0635 0.0620 0.0833 0.0611 0.0596 0.0833 0.0716 0.0711 0.0833 0.0725 0.0722 0.0833	\$B0427\$1 \$B \$BD \$B \$BD 0.0637 0.0633 0.0833 0.0833 0.0670 0.0671 0.0833 0.0833 0.0663 0.0659 0.0833 0.0833 0.0678 0.0661 0.0833 0.0833 0.0656 0.0642 0.0833 0.0833 0.0701 0.0683 0.0833 0.0833 0.0713 0.0692 0.0833 0.0833 0.0679 0.0662 0.0833 0.0833 0.0592 0.0573 0.0833 0.0833 0.0694 0.0661 0.0833 0.0833 0.0695 0.0662 0.0833 0.0833 0.0619 0.0592 0.0833 0.0833 0.0619 0.0592 0.0833 0.0833 0.0619 0.0592 0.0833 0.0833 0.0611 0.0596 0.0833 0.0833 0.0716 0.0711 0.0833 0.0833 0.0725 0.0722 0.0833 0.0833	Result Spike Level Rec SB0427S1 SB SBD SB SBD SB 0.0637 0.0633 0.0833 0.0833 76 0.0670 0.0671 0.0833 0.0833 80 0.0663 0.0659 0.0833 0.0833 80 0.0678 0.0661 0.0833 0.0833 79 0.0701 0.0683 0.0833 0.0833 79 0.0713 0.0692 0.0833 0.0833 86 0.0679 0.0662 0.0833 0.0833 82 0.0592 0.0573 0.0833 0.0833 71 0.0681 0.0661 0.0833 0.0833 74 0.0635 0.0620 0.0833 0.0833 76 0.0611 0.0596 0.0833 0.0833 73 0.0716 0.0711 0.0833 0.0833 73 0.0716 0.0712 0.0833 0.0833 86	SB SBD SB SBD SB SBD 0.0637 0.0633 0.0833 0.0833 76 76 0.0670 0.0671 0.0833 0.0833 80 81 0.0663 0.0659 0.0833 0.0833 80 79 0.0678 0.0661 0.0833 0.0833 79 77 0.0701 0.0683 0.0833 0.0833 84 82 0.0713 0.0692 0.0833 0.0833 86 83 0.0679 0.0662 0.0833 0.0833 71 69 0.0592 0.0573 0.0833 0.0833 71 69 0.0681 0.0661 0.0833 0.0833 74 71 0.0635 0.0620 0.0833 0.0833 74 71 0.0635 0.0620 0.0833 0.0833 76 74 0.0716 0.0711 0.0833 0.0833 73 72 0.0725 <	Result Spike Level Recovery Limits SB0427S1 SB SBD SB SBD 0.0637 0.0633 0.0833 0.0833 76 76 43 - 108 0.0670 0.0671 0.0833 0.0833 80 81 52 - 120 0.0663 0.0659 0.0833 0.0833 80 79 59 - 113 0.0678 0.0661 0.0833 0.0833 81 79 64 - 117 0.0656 0.0642 0.0833 0.0833 79 77 67 - 112 0.0701 0.0683 0.0833 0.0833 84 82 59 - 110 0.0679 0.0662 0.0833 0.0833 88 83 68 - 120 0.0592 0.0573 0.0833 0.0833 71 69 63 - 114 0.0619 0.0592 0.0833 0.0833 74 71 58 - 125 0.0635 0.0620 0.0833 0.0833 7	Result Spike Level Recovery Limits RPD SB0427S1 SB SBD SB SBD SB SBD SB SBD 0.0637 0.0633 0.0833 0.	Result Spike Level Recovery Limits RPD Limit SB0427S1 SB SBD SB SBD SB SBD SB SBD 1 27 0.0637 0.0633 0.0833 0.0833 0.0833 80 81 52 - 120 0 21 0.0663 0.0659 0.0833 0.0833 80 79 59 - 113 1 17 0.0678 0.0661 0.0833 0.0833 79 77 67 - 112 2 12 0.0701 0.0683 0.0833 0.0833 79 77 67 - 112 2 12 0.0713 0.0683 0.0833 0.0833 84 82 59 - 110 3 16 0.0713 0.0692 0.0833 0.0833 86 83 68 - 120 3 15 0.0679 0.0662 0.0833 0.0833 71 69 63 - 114 3 12 0.0681 0.0661 </td

Project: 525-006

TOTAL METALS EPA 6010B/7471A

Matrix:

Soil

Units:

mg/kg (ppm)

	· · · · · ·			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	04-151-21 B23-3.0					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	ND	0.54	6010B	4-26-11	4-27-11	
Chromium	24	0.54	6010B	4-26-11	4-27-11	
Lead	35	5.4	6010B	4-26-11	4-27-11	
Mercury	ND	0.27	7471A	4-27-11	4-27-11	
Lab ID:	04-151-23 B24-2.0					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	1.0	0.55	6010B	4-26-11	4-27-11	
Chromium	19	0.55	6010B	4-26-11	4-27-11	
Lead	59	5.5	6010B	4-26-11	4-27-11	
Mercury	1.2	0.55	7471A	4-27-11	4-27-11	
Lab ID:	04-151-28 B26-3.0					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	ND	0.56	6010B	4-26-11	4-27-11	
Chromium	18	0.56	6010B	4-26-11	4-27-11	
Lead	110	5.6	6010B	4-26-11	4-27-11	
Mercury	ND	0.28	7471A	4-27-11	4-27-11	

Project: 525-006

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 4-26&27-11
Date Analyzed: 4-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0426S2&MB0427S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

Project: 525-006

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 4-26&27-11
Date Analyzed: 4-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 04-173-18

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	19.3	16.6	15	0.50	
Lead	11.8	18.7	46	5.0	С
Mercury	ND	ND	11	0.25	

Project: 525-006

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 4-26&27-11
Date Analyzed: 4-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 04-173-18

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	101	101	99.8	100	1	
Cadmium	50	48.2	96	47.7	95	1	
Chromium	100	117	97	123	104	5	
Lead	250	250	95	245	93	2	
Mercury	0.50	0.573	97	0.565	95	2	

% MOISTURE

Date Analyzed: 4-27&28-11

Client ID	Lab ID	% Moisture
B17-6.0	04-151-02	9
B18-6.0	04-151-05	12
B19-6.0	04-151-08	7
B20-7.0	04-151-11	16
B34-7.0	04-151-13	15
B21-6.0	04-151-16	12
B22-5.0	04-151-19	23
B23-3.0	04-151-21	8
B24-2.0	04-151-23	9
B25-6.0	04-151-26	16
B26-3.0	04-151-28	10
B27-6.0	04-151-31	15
B28-3.5	04-151-33	6
B29-3.0	04-151-35	6
B30-3.0	04-151-37	8
B31-3.0	04-151-39	8
B32-6.0	04-151-43	9
B33-6.0	04-151-46	5
B35-4.0	04-151-49	9

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page ______ of _____

Environmental Inc.		Turnaround (in working		st	La	abo	rato	ory	Nu	mb	er:								0	4 - 1	5	11
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	eque	ested	d Ar	naly	sis					
FARALLON Project Number: 525-006 Project Name:	2	me Day Day andard (7 w		1 Day 3 Day ays)					s by 8260B	OC OC					3)							
Project Manager: AKOS FEKETE Sampled by: Ken Swott			5 workiiner)		NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151Å	Total RCRA Metals (8)	TCLP Metals	HEM by 1664					% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	MN	WN	LMN	Volat	Halo	Sem	PAH	PCB	Pesti	Herb	Total	TCLF	HEM					W %
B17-2.0	4/19/11	940	5	2																		
2 B17-6.0		950	5	2		8	8															8
3 B17-041911-6W		1000	W	5		0	8															
4 B18-3.8		1100	5	2																		
5 B18-6.0		1115	5	2		0	00															\otimes
6 B18-0419 11-6W		1135	W	5		8	8															
7 319-20		1200	5	2																		
8 B19-6.0		1215	5	2			8															Ø
9 B19-041911-6W		1235	W	5		8	8															
10 B20-2.0	V	1330	5	2																		
Signature		Company				Date			Time					s/Spec								
Relinquished by Received by		FAR	225	. 010		41	22	111	15	330	0	De P	res	ser	he	G1	BI	reth will	501 DNA	1st	Mpo	109
Relinquished by						- 4	1	, ,				A	NIA	1.0	MA	Hes	10	Hit	CAH	100		-
Received by												14	-	119	21	2	Ne	77	70	25 0	AL	The
Relinquished by												8)AC	ddec	d 4	1/2	sln	1- 07	(57	A)		DR
Received by													,							,		
Reviewed by/Date		Reviewed I	by/Date									Chro	omat	ogra	ms v	with t	inal r	report [

Chain of Custody

Page _____ of ______

	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turn (in	naround Requ working day	iest 's)		L	abo	orat	ory	Nu	ıml	ber:										04	-1	51	
Compa	Phone: (425) 883-3881 • www.onsite-env.com		(Check One)																						
	FARALLON	Sam	e Day	1 Day	6											N		(e)							
Projec	Number:	2 Da		3 Days											A	S/Q02	A12	no ela							
Projec	525-006 Name:	74									98		(F		8081	es 82	8818	s (circ							
	LAKESIDE INDUSTRIES	Stan (TPI	idard (7 Days) Hanalysis 5 D	ays)	BLS						s 826	NIS/	w-leve		Pesticides 8081A	esticid	bicide	Metal		166					
Projec	Manager: AKOS FEKETE				ntain		EX				olatile	270D)	M (lo		Pest	rus Pe	d Her	TCA		rease					
Sampl	ed by:		(other)		of Co	CE	3x/BT	×	×	3260E	ted V	iles 8 evel F	S/Q0	22	lorine	oydso	ed Aci	A/N	tals	and g					Te.
	Received	Date	Time		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664					% Moisture
Lab ID	Sample Identification	Sampled	Sampled	Matrix	Nun	NN NN	NN NN	NN NN	MN	Vola	Halc	Sem (with	PAH	PCB	Orga	Orga	Chic	Tota	걸	HE					%
11	B20-7.0	4/19111	1340	5	3		8		Ø				X											(B
12	B20-041911-6W		1410	W	5		8		8																
13	B34-7.0		1450	5	3		8		888																\otimes
14	B34041911-6W		1515	W	3		0		Ø																
15		4/2011	810	5	i		,	•																	
	B21-6.0	1	820	5	1				8															(8
()			835	W	2			(B																
18	B2Z-2.0		1000	5	1																				
19	B22-5.0		1010	5	1				\otimes																Ø
20		1	1035	W	2				8																
10	Signature	Co	ompany				Date	9		Time	е		Cor	nmen	ts/Sp	ecial	Instr	uction	ns						
Relin	quished Va bash		FARA	+41_0	~		4	1221	11	((20	0	5	ee	p	49	et	+1							
Rece	ived O		08	6			4	20	M	10	53	0		6	DA	dd	ed	4	26	5/17	. 3	033			
Relin	quished													6	,,(,							
Rece	sived																								
Relin	quished																								
Rece	sived																								
Revi	ewed/Date		Reviewed/Da										Chro	omato	grams	with	final re	eport							
		Data Package: I	Level III 🗌 L	evel IV 🗌 E	Electro	nic Da	ata Del	liverab	les (E	DDs)															

Chain of Custody

Page 3__ of _5_

	14648 NE 95	Onmental Inc. th Street • Redmond, WA 98052		naround Requ working day			L	.abc	rato	ory	Nu	mb	er:)4-	151	
Projec	FARALL Number: 525-C Name: LAKESID Manager: AKOS F	883-3881 • www.onsite-env.com ON OOG EINDUSTRIES EKETE	Sam 2 Da Star (TPI	ndard (7 Days) H analysis 5 D	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA (MTCA) Metals (circle one)	rclP Metals	HEM (oil and grease) 1664			olisture	
Lab ID	Sa	imple Identification	Date Sampled	Time Sampled	Matrix	Num	LMN	TWN		-	Volati	Halog	Semi (with	PAHS	PCBs	Organ	Organ	Chlor	Total	TCLF	HEM			% Moisture	2
21	B23-3.	0	4/20/11	1130	5	3		(8)		8									\otimes					8	2
22	B23-042	011-66	1	1205	W	7		0		8									0						V
23	B24-21	O		1255	5	3		0		8									\otimes					8	S
24		12011-GW		1315	W	7		8	(8															
25				1400	5	1																			-
26	B25-6			1410	5	1				8														6	5
27		42011-GW		1420	W	2				8															
28	B26-3.			1520	5	3		8		8									8					(S	9
29		12011-6W		1530	W	7		8		8															
30	B27-3.5		1	1600	5	1																			
		Signature	C	ompany				Date	ř.	1	Time			Con	nmen	ts/Sp	ecial	Instr	uction	ns				100	
Rece		Karfant		FAR	188	21)	41	22	11/	9	30	0	5.	ee D	P	Ag	d u	#1	61	1) .	DB			
	quished					-				-			-												
Rece	***									+															
	quished																								
	eived			Reviewed/Da	ite									Chro	mete	ara m	naziele.	final -	onort	П					_
Hev	ewed/Date		Data Package:			Electro	nic Da	ata Del	iverable	es (ED	Ds)			Onro	iiidio	granis	WILIT	iirial f	eport						-

Chain of Custody

Page 4 of 5

,	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			L	abo	orat	ory	Nu	ımb	er:										0	4-1	51
Projec	FARALLON It Number: 525-006 It Name: LAKESIDE JUDUSTRIES It Manager: ARUS FEKETE	Sam 2 Da		1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-Gx	H-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	3270D/SIM (low-level)	3082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664				sture
Lab ID		Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semive (with Ic	PAHs (PCBs 8082	Organi	Organo	Chlorinated	Total F	TCLP	HEM (% Moisture
31	B27-6.0	4/2011	1610	5	1			(Ø															(X)
	B27-042011-6W	V	1620	W	2	_			0															
33	B28-3.5	4/21/11	755	5	1				8															8
34	B28-3.5 B28-042111-6W		810	W	2				\bigotimes															
20	B19-310		840	5	i				8														-	Ø
36	B29-042111-6W		900	W	2				8															
37	B3U-3.U		1000	5	1				88															8
39	B30-042111-GW		1010	W	2				$\langle X \rangle$															
39	B31-3:0		1030	5	1				8															\otimes
40	B31-6.0	V	1040	5	l								2/200											
	Signature	Co	ompany		-		Date			Time			-				Instri							
Rece	nquished Sen		OR T	3	U		40	22	lli	15	30)	5	6	- 1 Dr	A of do	ge	#	12	6/1	1. 1	3		
Rece	eived																							
Relin	nquished																							
Rece	eived																							
Revi	iewed/Date		Reviewed/Da										Chro	matog	grams	with t	final re	port						
	D	ata Package: I	Level III L	evel IV 🗌 E	lectro	nic Da	ata De	liverab	oles (E	DDs)														

Chain of Custody

Page <u>5</u> of <u>5</u>

	14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			L	abo	orat	ory	Nu	umk	oer:										0	4-1	51
Compa	Phone: (425) 883-3881 • www.onsite-env.com		(Check One)																					
00111100	FARALLON Number:	Sam	ne Day	1 Day												MIS		(et						
Project	Number: 5 2 5 - 0 0 6	☐ 2 Da	avs	3 Days											1A	3/Q0/3	51A	cle or						
Project	Name:	1									8260B		(le)		s 808	des 82	es 81	ıls (cir		45				
Project	LAKESIDE INPUSTRIES Manager:	(TPI	ndard (7 Days) H analysis 5 D	ays)	ers						ss 826	WIS/(w-lev		ticide	esticic	rbicid	Meta		9) 166				
	AKOS FEKETE				ontair		LEX			a	olatile	3270C PAHs	SIM (le		e Pes	orus F	id He	MTCA		grease) 1664				
Sample	Ken Scutt		(other)	-	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	H-G×	H-Dx	Volatiles 8260B	Halogenated Volatiles	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level)	8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and g				sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs 8082	Organi	Organo	Chlorir	Total P	TCLP	HEM (% Moisture
41	B31-042111-GW	4/2/(11	1100	W	2			(\varnothing															
43	B32-20		1145	5	1																			
43	B32-6.0		1155	5	1				8															08
44	B32-042111-6W		1230	W	2				8															
45	B33-2.0		1250	5	1																			
46	B33-6.0		1300	5	i				8															8
47	B33-042111-6W		1310	W	2				8															
48			1420	5	1																			
49	B35-4.0		1425	5	l			(8															8
50	1335-042111-GW	V	1438	W	2	-			(8)															
	Signature	C	ompany				Date	9		Time	e		Cor	nmen	ts/Sp	ecial	Instr	uction	15					
Relin	quished Van Smith		FARA	HOI			4/	22	10	11	10	0		50	2	PA	tope	2 -	# (
Rece	ived	-	ODE				4	22	111	1	530	0		6	20	ld	10	41	26	/1)	. D	3		
Relin	quished													V	УŊ	00	ecr	'('	20	(11				
Rece	ived																							
Relin	quished																							
Rece	sived																							
Revi	ewed/Date		Reviewed/Da										Chro	omato	grams	with t	final r	eport						
	D	ata Package:	Level III 🗌 L	evel IV 🗌 E	Electro	nic Da	ata De	liverab	les (E	DDs)														

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 27, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1107-179

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 27, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on July 25, 2011 and received by the laboratory on July 27, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-4.5					
Laboratory ID:	07-179-16					
Benzene	0.064	0.020	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.053	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	0.053	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	0.077	0.053	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	0.053	EPA 8021	7-26-11	7-26-11	
Gasoline	28	5.3	NWTPH-Gx	7-26-11	7-26-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	68-124				
Client ID:	B42-3.5					
Laboratory ID:	07-179-18					
Benzene	0.29	0.053	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.26	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	1.3	0.26	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	2.2	0.26	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	1.3	EPA 8021	7-26-11	7-26-11	U1
Gasoline	1200	26	NWTPH-Gx	7-26-11	7-26-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	68-124				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726S1					
Benzene	ND	0.020	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.050	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	0.050	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	0.050	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	0.050	EPA 8021	7-26-11	7-26-11	
Gasoline	ND	5.0	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 107 68-124

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-17	79-16									
	ORIG	DUP									
Benzene	0.0614	0.0632	NA	NA		N	۱A	NA	3	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	١A	NA	NA	30	
m,p-Xylene	0.0730	0.0721	NA	NA		N	۱A	NA	1	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	26.7	28.0	NA	NA		N	۱A	NA	5	30	
Surrogate:											
Fluorobenzene						105	104	68-124			
SPIKE BLANKS											
Laboratory ID:	SB07	'26S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.09	1.05	1.00	1.00		109	105	77-114	4	9	
Toluene	1.13	1.09	1.00	1.00		113	109	80-115	4	9	
Ethyl Benzene	1.11	1.07	1.00	1.00		111	107	80-118	4	9	
m,p-Xylene	1.12	1.08	1.00	1.00		112	108	82-118	4	9	
o-Xylene	1.11	1.08	1.00	1.00		111	108	82-116	3	9	
Surrogate:											
Fluorobenzene						109	105	68-124			

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-072511-GW					
Laboratory ID:	07-179-17					
Benzene	5.6	4.0	EPA 8021	7-26-11	7-26-11	
Toluene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Gasoline	1100	400	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				
Client ID:	B42-072511-GW					
Laboratory ID:	07-179-19					
Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Toluene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Gasoline	660	400	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726W1					
Benzene	ND	1.0	EPA 8021	7-26-11	7-26-11	
Toluene	ND	1.0	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	1.0	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	1.0	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	1.0	EPA 8021	7-26-11	7-26-11	
Gasoline	ND	100	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 98 73-121

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-16	61-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						99	104	73-121			
MATRIX SPIKES											
Laboratory ID:	07-16	61-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	53.3	54.3	50.0	50.0	ND	107	109	82-120	2	8	
Toluene	53.8	54.1	50.0	50.0	ND	108	108	84-119	1	8	
Ethyl Benzene	52.5	51.8	50.0	50.0	ND	105	104	84-122	1	9	
m,p-Xylene	51.9	51.3	50.0	50.0	ND	104	103	85-121	1	9	
o-Xylene	51.8	51.4	50.0	50.0	ND	104	103	84-121	1	9	
Surrogate:											
Fluorobenzene						108	106	73-121			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B39-6.5	1 & L	Metriou	rrepared	Analyzeu	i iags
Laboratory ID:	07-179-02					
Diesel Range Organics	2400	27	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	270	54	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits	I I I I I I I I I I I I I I I I I I I	7 20 11	7 20 11	
o-Terphenyl	113	50-150				
Client ID:	B40-5.5					
Laboratory ID:	07-179-05					
Diesel Range Organics	4000	140	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	3800	280	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	B38-3.5					
Laboratory ID:	07-179-07					
Diesel Range Organics	ND	26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	59	53	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B36-5.0					
Laboratory ID:	07-179-11					
Diesel Range Organics	3300	130	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	2100	270	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	B37-3.5					
Laboratory ID:	07-179-13					
Diesel Range Organics	ND	34	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	67	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits	IVVIIII DX	7 20 11	7 20 11	
o-Terphenyl	87	50-150				
Client ID:	D42 4 5					
Client ID:	B43-4.5					
Laboratory ID:	07-179-16	20	NIM/TOLL Do	7.06.44	7.00.44	
Diesel Range Organics	ND ND	26 53	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND Paraont Pagayany	53 Control Limits	NWTPH-Dx	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 107	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B42-3.5					
Laboratory ID:	07-179-18					
Diesel Range Organics	9300	270	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	9100	540	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726S1					
Diesel Range Organics	ND	25	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								_
Laboratory ID:	07-17	79-02						
	ORIG	DUP						
Diesel Range Organics	2250	2160				4	NA	
Lube Oil	250	236				6	NA	
Surrogate:								
o-Terphenyl			113	100	50-150			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

3 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B39-072511-GW					
Laboratory ID:	07-179-03					
Diesel Range Organics	9.3	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	1.1	0.42	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	B40-072511-GW					
Laboratory ID:	07-179-06					
	96	5.5	NWTPH-Dx	7-26-11	7-26-11	
Diesel Range Organics Lube Oil	36	5.5 8.8	NWTPH-Dx	7-26-11 7-26-11	7-26-11 7-26-11	
Surrogate:	Percent Recovery	Control Limits	INVV I F II - DX	7-20-11	7-20-11	
o-Terphenyl	reicent Recovery	50-150				S
0-тегрпенуі		30-130				3
Client ID:	B38-072511-GW					
Laboratory ID:	07-179-09					
Diesel Range Organics	0.33	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	0.62	0.42	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	B36-072511-GW					
Laboratory ID:	07-179-12					
	7.3	0.27	NWTPH-Dx	7-26-11	7-26-11	
Diesel Range Organics Lube Oil	1.2	0.27	NWTPH-Dx	7-26-11 7-26-11	7-26-11 7-26-11	N1
Surrogate:	Percent Recovery	Control Limits	INVVIFII-DX	7-20-11	7-20-11	INI
o-Terphenyl	89	50-150				
0-тегрпенуі	09	30-130				
Client ID:	B37-072511-GW					
Laboratory ID:	07-179-14					
Diesel Range Organics	ND	0.27	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	B43-072511-GW					
Laboratory ID:	07-179-17					
Diesel Range Organics	2.9	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	0.68	0.41	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 20 11	7 20 11	
o-Terphenyl	86	50-150				
o.po	30	55 750				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B42-072511-GW				_	
Laboratory ID:	07-179-19					
Diesel Range Organics	6.8	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	6.8	0.42	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								_
Laboratory ID:	07-17	79-03						
	ORIG	DUP						
Diesel Range Organics	9.32	5.18				57	NA	
Lube Oil	1.12	0.746				40	NA	
Surrogate:								
o-Terphenyl			85	81	50-150			

% MOISTURE

Date Analyzed: 7-26-11

Client ID	Lab ID	% Moisture
B39-6.5	07-179-02	8
B40-5.5	07-179-05	11
B38-3.5	07-179-07	5
B36-5.0	07-179-11	6
B37-3.5	07-179-13	25
B43-4.5	07-179-16	5
B42-3.5	07-179-18	7

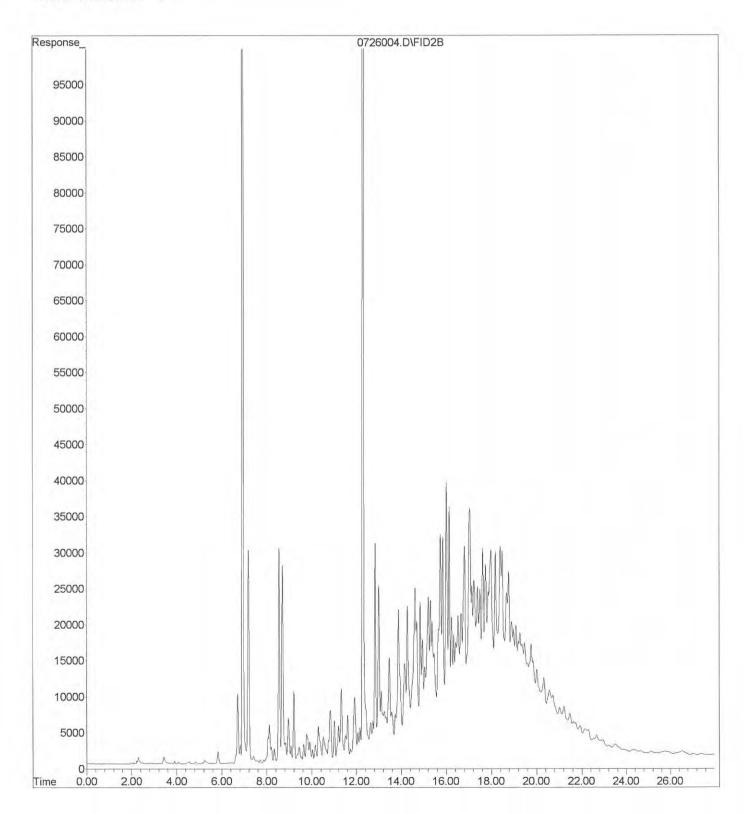
Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit


RPD - Relative Percent Difference

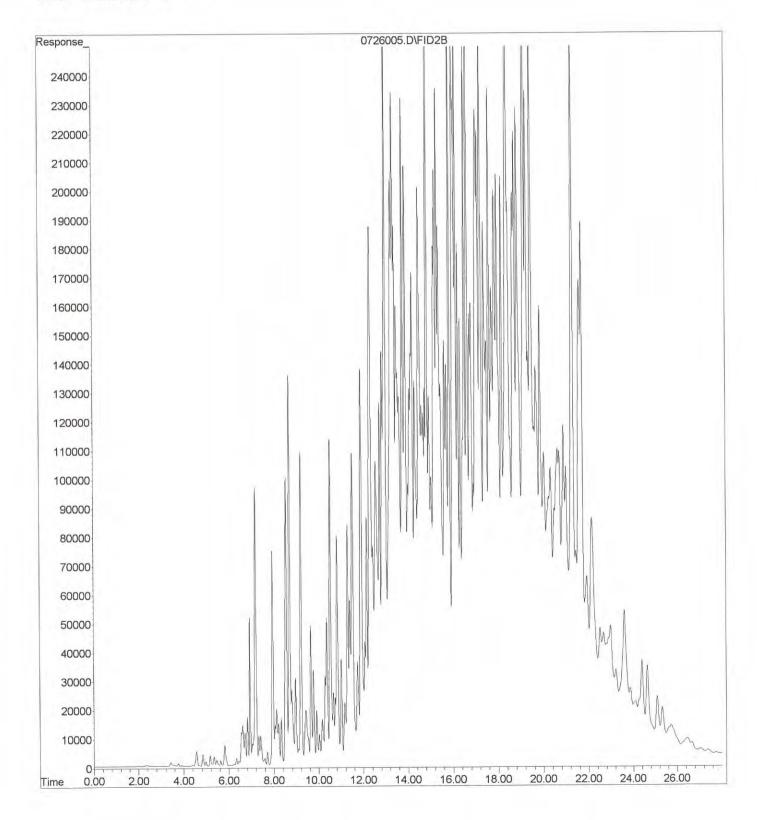
File : X:\BTEX\DARYL\DATA\D110726\0726004.D

Operator

Acquired : 26 Jul 2011 12:51 using AcqMethod 110630V.M Instrument : Daryl

Instrument : Daryl
Sample Name: 07-179-16s
Misc Info : V2-26-24

File : X:\BTEX\DARYL\DATA\D110726\0726005.D

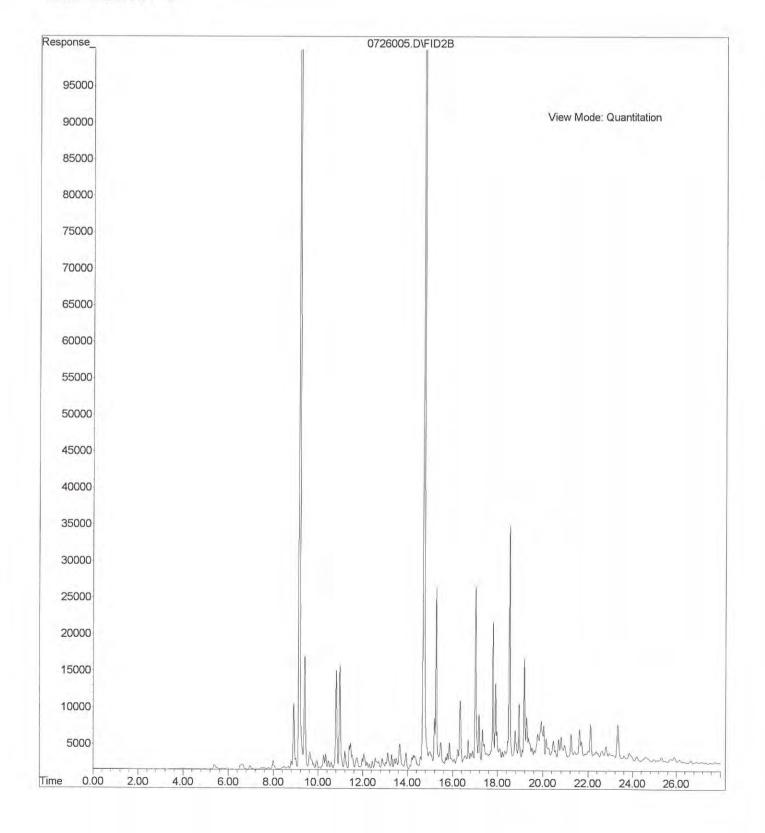

Operator

Acquired : 26 Jul 2011 13:32 using AcqMethod 110630V.M

Instrument : Daryl

Sample Name: 07-179-18s 1:250

Misc Info : V2-26-24


File : X:\BTEX\HOPE\DATA\H110726\0726005.D

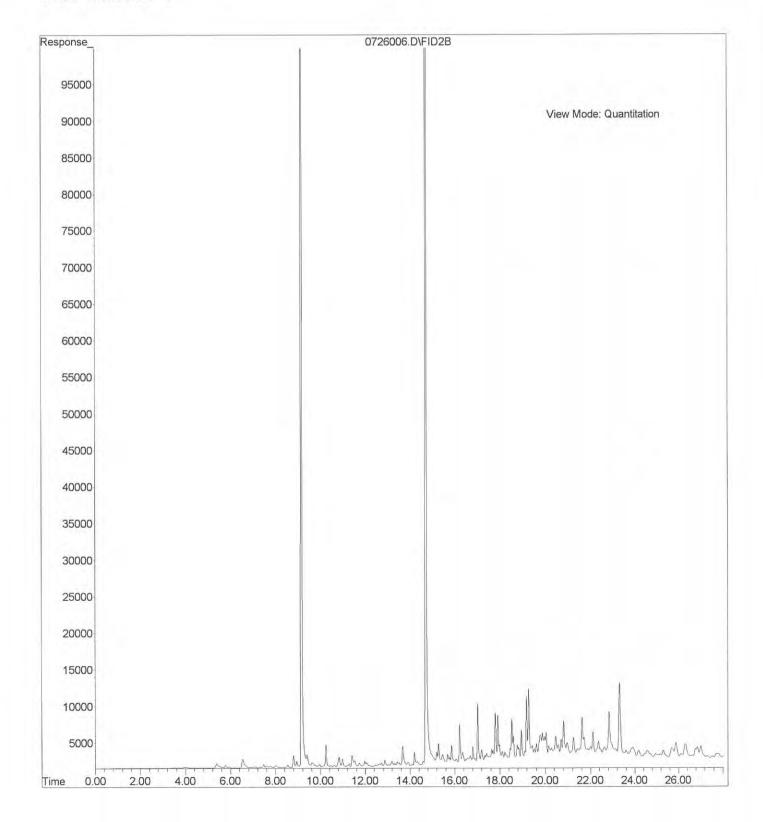
Operator

Acquired : 26 Jul 2011 12:46 using AcqMethod 110630.M

Instrument: HOPE Sample Name: 07-179-17c 1:4

Misc Info : V2-26-24

: X:\BTEX\HOPE\DATA\H110726\0726006.D File

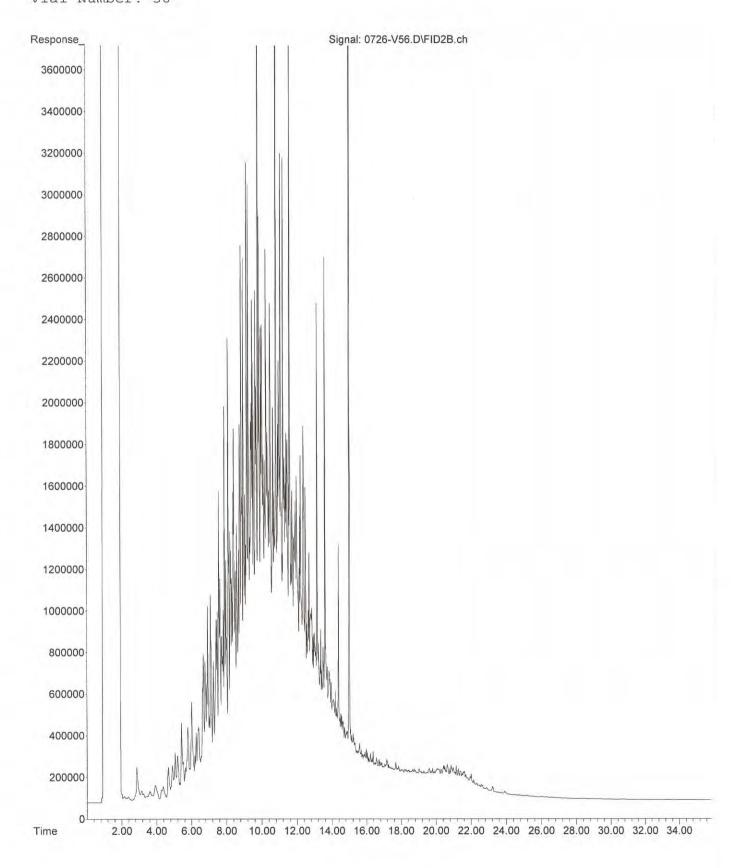

Operator

Acquired : 26 Jul 2011 13:21 using AcqMethod 110630.M

Instrument : HOPE

Sample Name: 07-179-19c 1:4

Misc Info : V2-26-24

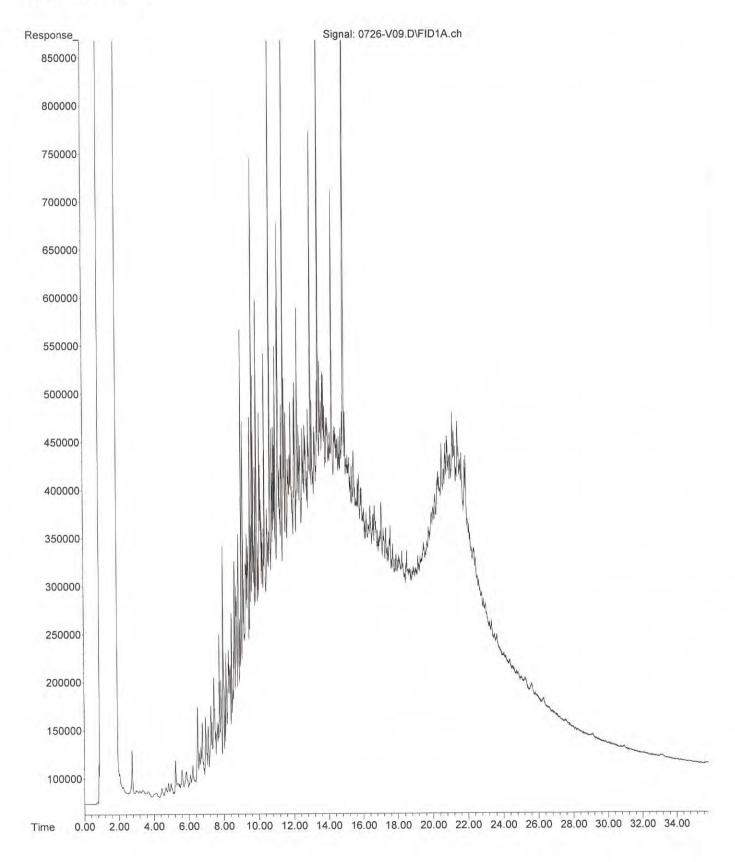


File :C:\msdchem\2\DATA\V110726.SEC\0726-V56.D

Operator :
Acquired : 26 Jul 2011 13:07 using AcqMethod V110710F.M

Instrument : VIGO

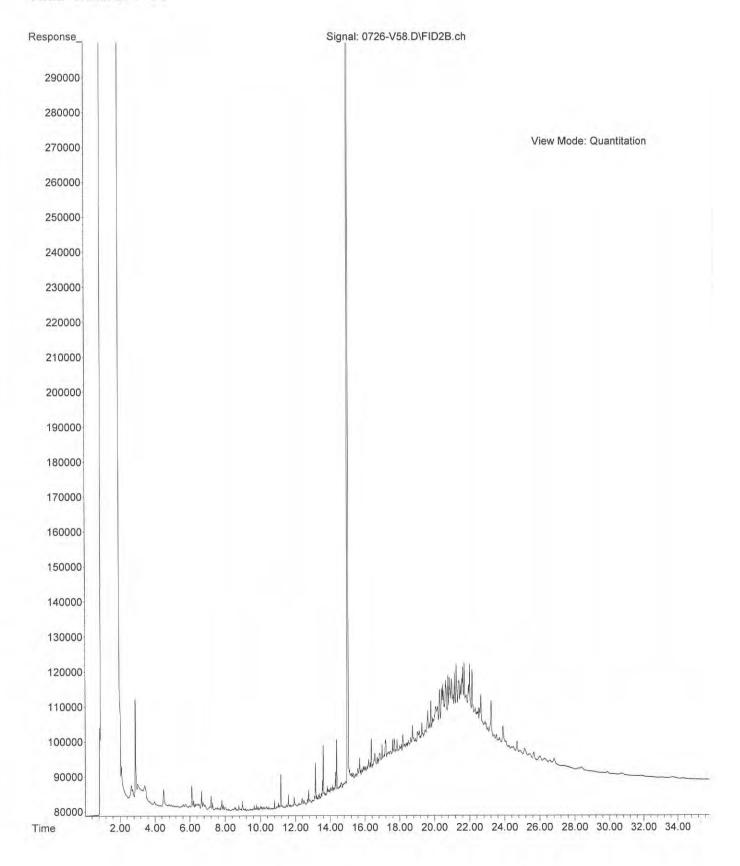
Sample Name: 07-179-02



:C:\msdchem\2\DATA\V110726\0726-V09.D File

Operator : Acquired : 26 Jul 2011 15:07 using AcqMethod V110710F.M

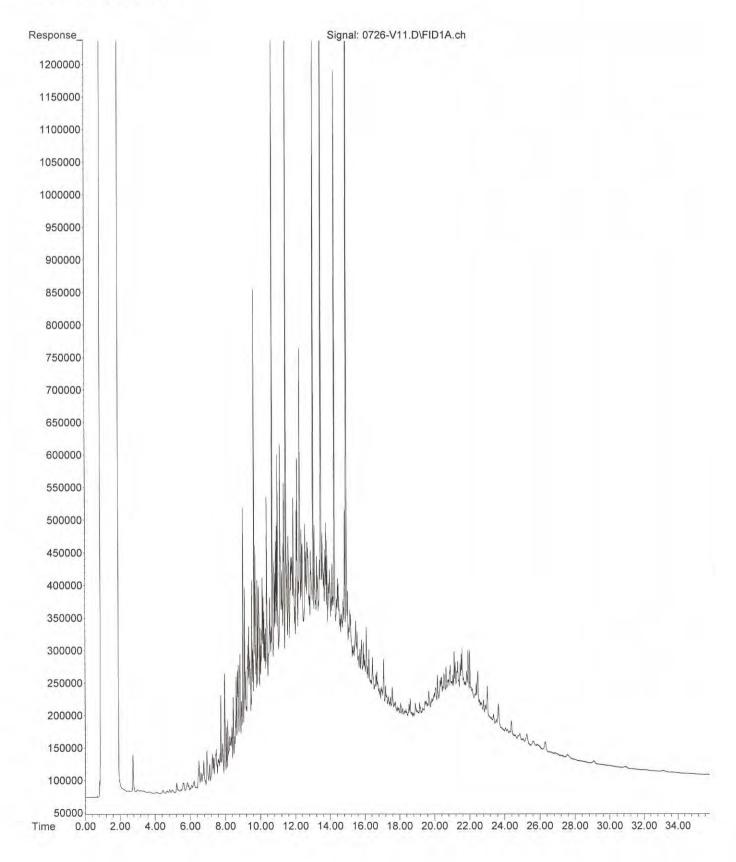
Instrument : VIGO


Sample Name: 07-179-05 5X

File :C:\msdchem\2\DATA\V110726.SEC\0726-V58.D Operator :

Acquired : 26 Jul 2011 14:27 using AcqMethod V110710F.M

Instrument : VIGO Sample Name: 07-179-07

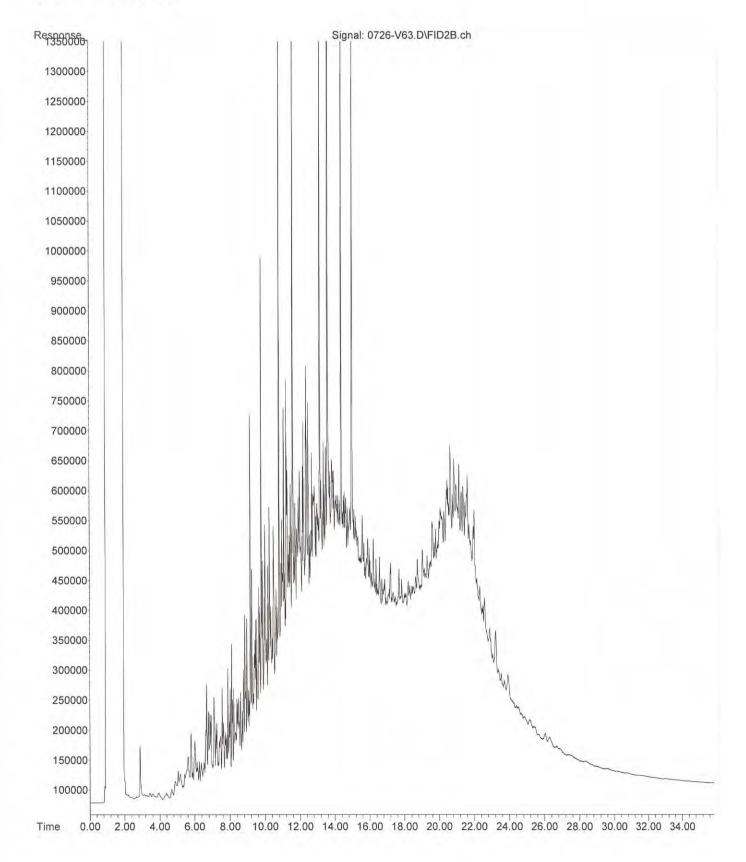

File :C:\msdchem\2\DATA\V110726\0726-V11.D

Operator :

Acquired : 26 Jul 2011 16:27 using AcqMethod V110710F.M

Instrument : VIGO

Sample Name: 07-179-11 5X

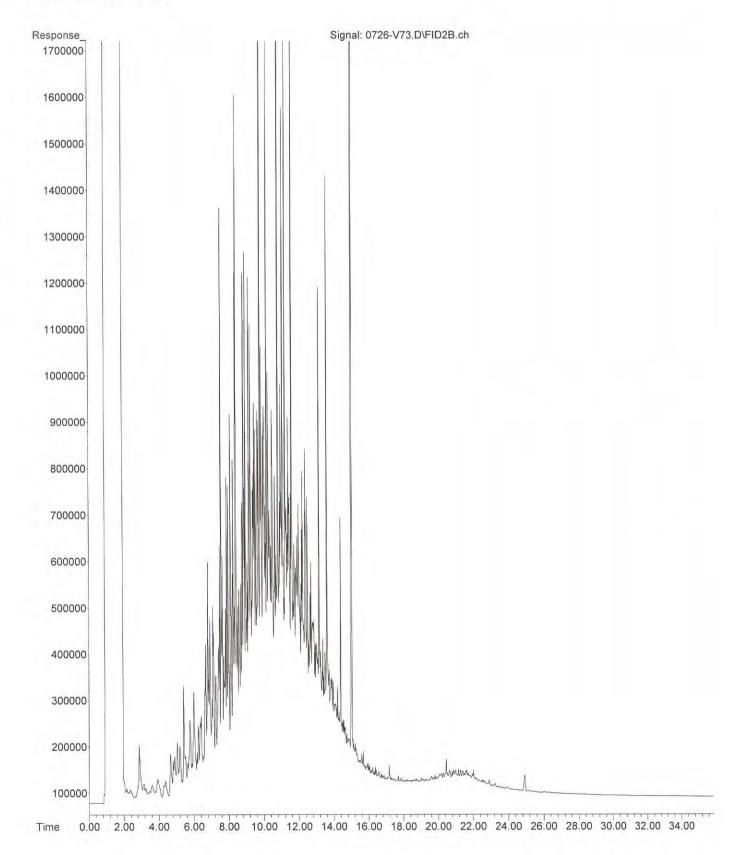

File :C:\msdchem\2\DATA\V110726.SEC\0726-V63.D

Operator :

Acquired : 26 Jul 2011 17:47 using AcqMethod V110710F.M

Instrument : VIGO

Sample Name: 07-179-18 500ul

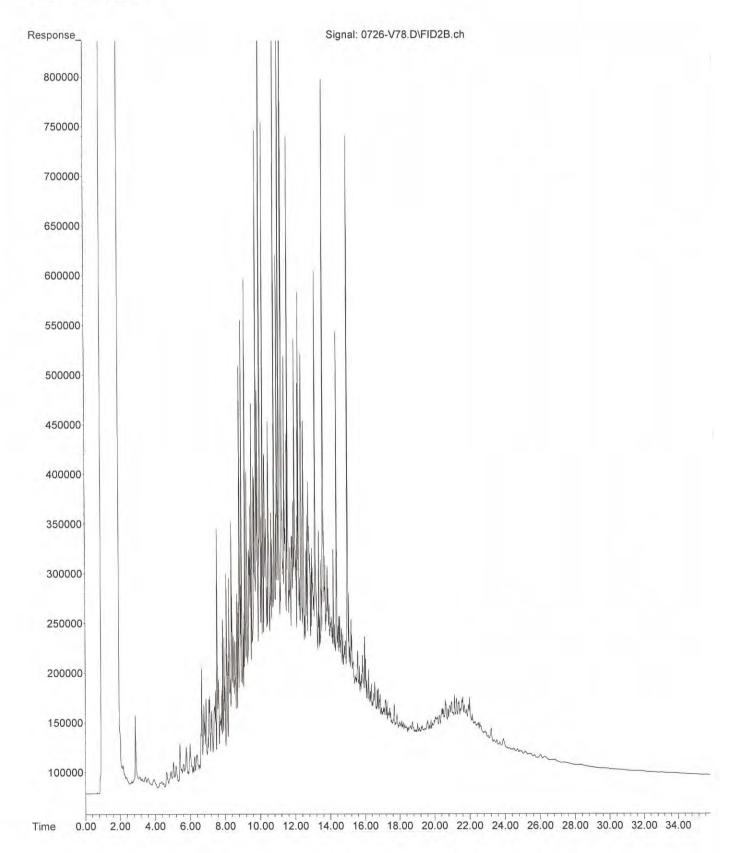


File :C:\msdchem\2\DATA\V110726.SEC\0726-V73.D

Operator :

Acquired : 27 Jul 2011 00:27 using AcqMethod V110710F.M

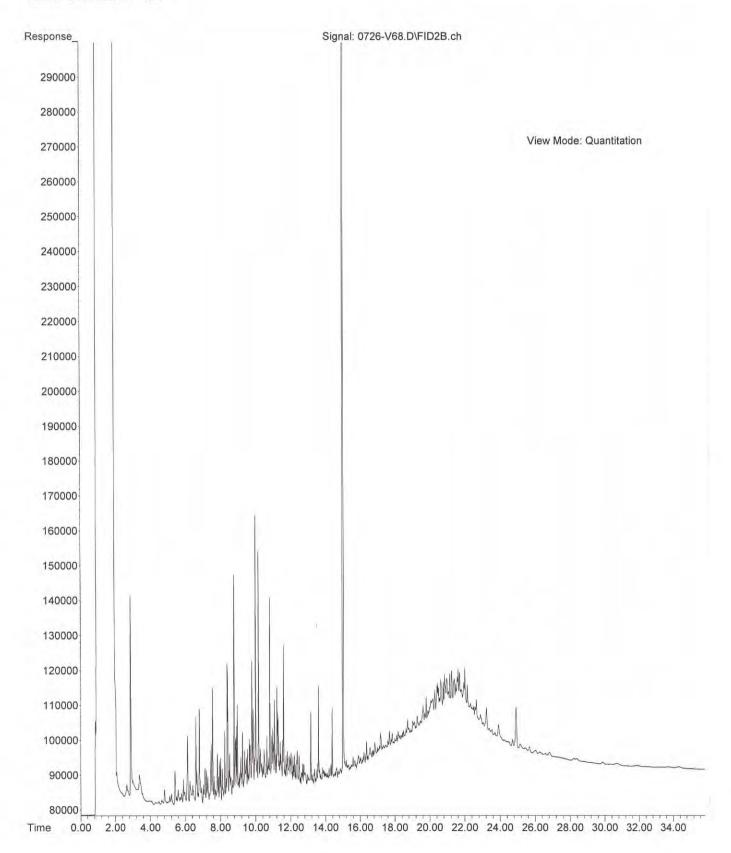
Instrument : VIGO
Sample Name: 07-179-03



File :C:\msdchem\2\DATA\V110726.SEC\0726-V78.D Operator :

Acquired : 27 Jul 2011 3:46 using AcqMethod V110710F.M

Instrument : VIGO


Sample Name: 07-179-06 20X

:C:\msdchem\2\DATA\V110726.SEC\0726-V68.D File

Operator : Acquired : 26 Jul 2011 21:07 using AcqMethod V110710F.M

Instrument : VIGO Sample Name: 07-179-09

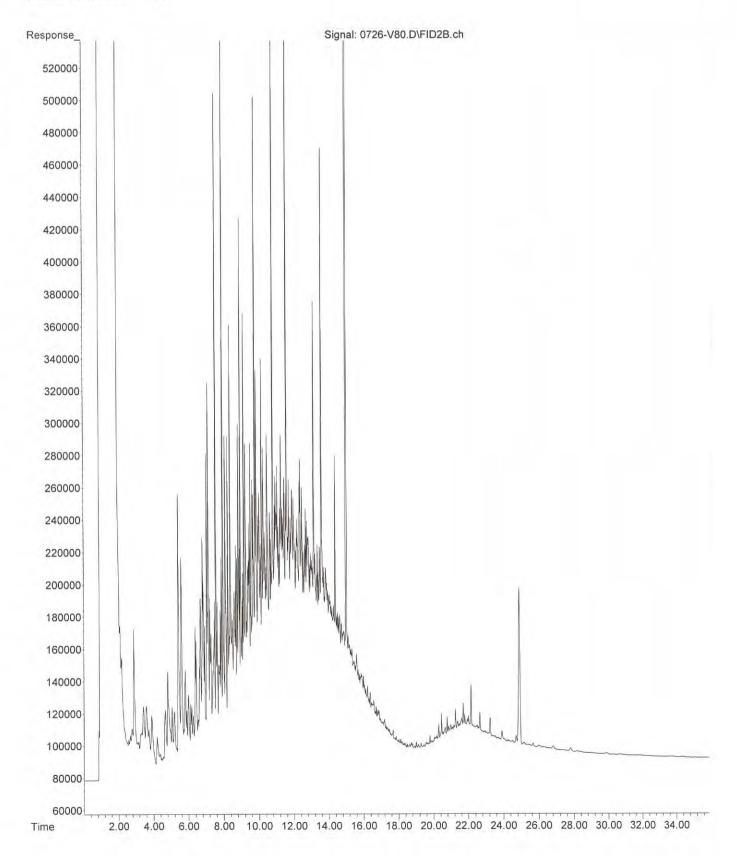


File :C:\msdchem\2\DATA\V110726.SEC\0726-V69.D

Operator :

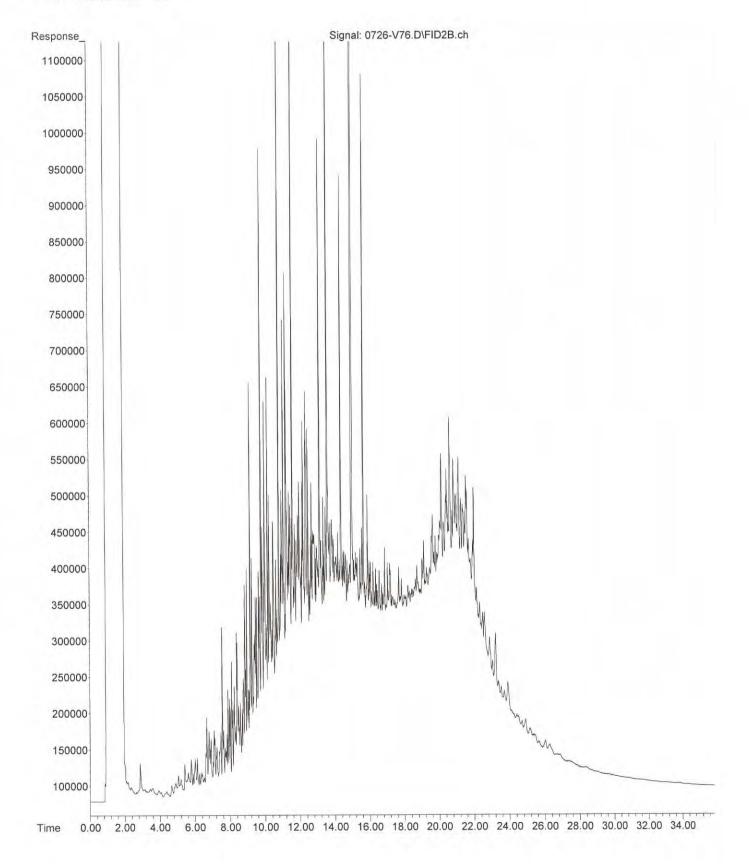
Acquired : 26 Jul 2011 21:47 using AcqMethod V110710F.M

Instrument : VIGO
Sample Name: 07-179-12



File :C:\msdchem\2\DATA\V110726.SEC\0726-V80.D

Operator :


Acquired : 27 Jul 2011 5:06 using AcqMethod V110710F.M

Instrument : VIGO
Sample Name: 07-179-17

File :C:\msdchem\2\DATA\V110726.SEC\0726-V76.D
Operator :
Acquired : 27 Jul 2011 2:26 using AcqMethod V using AcqMethod V110710F.M

Instrument : VIGO Sample Name: 07-179-19

OnSite Environmental Inc.

Chain of Custody

Page _____ of _____

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaroun (in worki		st	Lá	abo	rato	ory	Nu	mb	er:									07	-1	75	9
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Chec	k One)									Re	eque	este	d A	naly	sis						
FARALLON Project Number: 525-006 Project Name:	Sa 2 [me Day		1 Day					8260B														
Aberdeen FACILITY Project Manager: AKOS FEKETE Sampled by:		andard (7 w	orking d		ICID	VWTPH-Gx/BTEX	×	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	PAHs by 8270C / SIM	082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	als	364						an a
Kenswill	Date	(oti Time	her)	# of	NWTPH-HCID	TPH-G	WTPH-Dx	atiles b	ogenati	nivolati	4s by 8	PCBs by 8082	ticides	bicides	al RCR	TCLP Metals	HEM by 1664	т	_				% Moisture
1	Sampled	Sampled	Matrix	Cont.	N/N	Š	Š Z	Vol	Ha	Ser	PA	PCI	Pes	Her	Tota	2	里	VPH	EPH		-	+	N %
1 B39-20 2 B39-6.5	1/25/11	855	5				V																
3 B39-072511-6W		905	W	2		,	X																$\hat{}$
4 840 - 3,0		940	5	l																			
5 B40-5.5 6 B40-072511-GW		950	5	1			X																X
6 B40-072511-GW		1000	W	2			X																
7 B38-3.5 8 B38-5.5 9 B38-072511-6W		1035	5	l			X																X
8 B38-5.5		1045	5	l																			
9 838-072511-GW		1055	W	2			X																
10 B36 - 3 5	1	1120	5	l																			
Relinquished by Ken Sureth		Company		01./		Date			Time			-		(spec			-		-	2			
Received by	,	FAR (OS)	E			7/3	26/1	1	19	25	-	D	AL	1	+	cs	t(AI	20	5 F	ZK!	AME	4
Relinquished by												K	en	5	0	4	w	Du	er	DA	t N	watyt	test
Received by												1	25	4-	ts	,							
Relinquished by																							
Received by																							
Reviewed by/Date		Reviewed b	by/Date									Chro	omat	ograi	ms v	vith f	inal I	repo	rt 🗆				

OnSite Environmental Inc.

Chain of Custody

Page _ _ _ of _ _ _

Environmental inc. 14648 NE 95th Street • Redmond, WA 98052		und Request king days)	L	abo	rato	ory	Nu	mb	er:									0	7 -	17	9
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Che	eck One)		ay.	541		-			R	eque	este	d A	naly	sis						
Project Number: 525-006 Project Name: Aberdeen FACILITY Project Manager: AKOS FEKSTE Sampled by: Ken Rud	Same Day 2 Day Standard (7	☐ 1 Da	,	NWTPH-Gx/BTEX	Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C / SIM	8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	tals	664						re
	Date Time	# of		WTPH-	NWTPH-Dx	latiles	logena	mivola	Hs by	PCBs by 8082	sticide	rbicide	tal RCF	TCLP Metals	HEM by 1664	VPH	I				% Moisture
11 -	Sampled Sample	5 1 W 2 5 1 W 2 5 2 W 5 W 5		X		3)	Ĭ	Š	74		94	31	01	01	H	N.	EPH				X
Signature Relinquished by Received by Received by Relinquished by Relinquished by Received by	Company FAR			1	251		140 92					s/Spec lyz lyz					S Was	JA SF ST	SER	AME	>) ^1
Reviewed by/Date	Reviewed	d by/Date								Chro	omat	ogra	ms w	vith f	inal r	epo	rt 🗆				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 29, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1107-201

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on July 26 and 27, 2011 and received by the laboratory on July 28, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B41-3.5					
Laboratory ID:	07-201-01					
Diesel Range Organics	3000	27	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil	1100	54	NWTPH-Dx	7-28-11	7-28-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	Nesuit	FQL	WELLIOU	riepaieu	Allalyzeu	i iags
METHOD BLANK						
Laboratory ID:	MB0728S1					
Diesel Range Organics	ND	25	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

			Per	ent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20)1-01						
	ORIG	DUP						
Diesel Range Organics	2800	2020				32	NA	
Lube Oil	1050	753				33	NA	N1
Surrogate:								
o-Terphenyl			109	98	50-150			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B41-072611-GW				_	
Laboratory ID:	07-201-02					
Diesel Range Organics	2.0	0.27	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil	1.4	0.44	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

				Percent	Recovery		RPD	
Analyte	Res	sult	F	ecovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20)1-02						
	ORIG	DUP						
Diesel Range Organics	2.04	1.44				34	NA	
Lube Oil	1.43	1.01				34	NA	
Surrogate:								
o-Terphenyl			1	01 111	50-150			

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B41-3.5					
Laboratory ID:	07-201-01					
Benzene	0.023	0.020	EPA 8021	7-28-11	7-28-11	
Toluene	ND	0.10	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	0.11	0.10	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	0.55	0.10	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	0.50	EPA 8021	7-28-11	7-28-11	U1
Gasoline	ND	10	NWTPH-Gx	7-28-11	7-28-11	

Surrogate: Percent Recovery Control Limits Fluorobenzene 107 68-124

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728S1					
Benzene	ND	0.020	EPA 8021	7-28-11	7-28-11	
Toluene	ND	0.050	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	0.050	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	0.050	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	0.050	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	5.0	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits			-	

Surrogate: Percent Recovery Control Limits Fluorobenzene 104 68-124

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-19	96-05									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	١A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						104	104	68-124			
SPIKE BLANKS											
Laboratory ID:	SB07	28S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.06	1.06	1.00	1.00		106	106	77-114	0	9	
Toluene	1.12	1.10	1.00	1.00		112	110	80-115	2	9	
Ethyl Benzene	1.09	1.08	1.00	1.00		109	108	80-118	1	9	
m,p-Xylene	1.15	1.09	1.00	1.00		115	109	82-118	5	9	
o-Xylene	1.11	1.10	1.00	1.00		111	110	82-116	1	9	
Surrogate:											
Fluorobenzene						103	104	68-12 4			

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B41-072611-GW					
Laboratory ID:	07-201-02					
Benzene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Toluene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	4.0	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	400	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit Fluorobenzene 99 73-121

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728W1					
Benzene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Toluene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	1.0	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	1.0	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	100	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 98 73-121

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-13	35-11									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						100	99	73-121			
MATRIX SPIKES											
Laboratory ID:	07-13	35-11									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.6	53.4	50.0	50.0	ND	105	107	82-120	2	8	
Toluene	52.6	53.2	50.0	50.0	ND	105	106	84-119	1	8	
Ethyl Benzene	50.5	51.2	50.0	50.0	ND	101	102	84-122	1	9	
m,p-Xylene	50.0	50.5	50.0	50.0	ND	100	101	85-121	1	9	
o-Xylene	50.3	50.8	50.0	50.0	ND	101	102	84-121	1	9	
Surrogate:											
Fluorobenzene						102	103	73-121			

Project: 525-006

% MOISTURE

Date Analyzed: 7-28-11

Client ID Lab ID % Moisture

B41-3.5 07-201-01 8

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

THE LEADER IN ENVIRONMENTAL TESTING		TestAmeri 5755 8th Tacoma, Tel. 253-3 Fax 253-3 Www.tes	ca Seat Street NA 984 22-231 22-504 tameric	tle Or E. per 0 146 7 Re-	51-51- 548 548	18 NE 18 18 18 18 18 18 18 18 18 18 18 18 18	LAS NA NA	3		hort	SAM E told	5-DA 341 other	4 0		n of ody Red	cord
FARALLON		Client	Contac	AR	05	F					Date			Cha	in of Custody N	umber 33
975 5th Avenue	NW			425	de)/Fax N	Vumber					LO No	mber 2	01	Pag	gel	of
975 5th Avevue City Issaguah State Zip WA	Code 38027	Sampl	en e	Suit	Lab	Contact ue (3 Aum	0369				tach list if is needed)	1 11			
Project Name and Location (State) Abertall Facility Contract/Purchase Order/Quote No.		Billing	Contact						OX GR3TEX				South	tainer	Special	Instructions/
Contract/Purchase Order/Quote No.			I	Matrix			tainers d servative		1 1				mois	circonta		ns of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date	Time	Air Aqueous	Sed.	Unpres.	H2SO4 HNO3	HCI	ZnAc/ NaOH	NWTOH-				200	#67		
B41-3.5	7/26/11	010		X					XX				X	2		
2 B41-072611-GW		835	X						XX					5		
3 MW6-30		940		X										3		
1 MW9-65 3.0		1130		X										3		
5 MW11-6,5	· V	1310		X										2		
6_MW3-9.5	7/27/11	815		X										2		
7_MW5-7,5		935		X										3		
8 MW7-3.0		1055		X										2		
1 MW (-7,5		1245		X										2		
0 MW2-8,5	V	1420		X										2		
		, A														
☐ Yes ☐ No Cooler Temp: ☐ Non-Ha Turn Around Time Required (business days)		nmable \square	l Skin Irr	itant \square	Poison			1000	mple Disposa Return To Cl		Disposa Archive		Mor	nths a	A fee may be as re retained long	ssessed if samples ger than 1 month)
☐ 24 Hours ☐ 48 Hours ☐ 5 Days ☐ 10 Da 1. Relinguished By Sign/Print	ys 🗆 15 Days	Date	er	, Time	-	1 Recei	ved Rv	Sign/Prin	nt					. D:	ate, a	Time
Ker Freth		7/2	7(11	1440			E	Signal III	-m	DON)				1/28/11	Time 915
2. Relinquished By Sign/Print		Date		Time		2. Recei	ved By	Sign/Prin	t						ate	Time
3. Relinquished By Sign/Print		Date		Time		3. Recei	ved By	Sign/Prin	t					Di	ate	Time
Comments																

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 15, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1107-201B

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on July 26 and 27, 2011 and received by the laboratory on July 28, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW9-3.0			•	•	
Laboratory ID:	07-201-04					
Diesel Range Organics	48	28	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 88	Control Limits 50-150				
Client ID: Laboratory ID:	MW3-9.5 07-201-06					
Diesel Range Organics	380	38	NWTPH-Dx	8-5-11	8-6-11	N
Lube Oil	1100	77	NWTPH-Dx	8-5-11	8-6-11	
Surrogate: o-Terphenyl	Percent Recovery 93	Control Limits 50-150				
Client ID: Laboratory ID:	MW5-7.5 07-201-07					
Diesel Range Organics	ND	48	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND ND	96	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 94	Control Limits 50-150				
Client ID:	MW7-3.0					
Laboratory ID:	07-201-08					
Diesel Range Organics	3400	26	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	2200	53	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 108	Control Limits 50-150				
Client ID: Laboratory ID:	MW1-7.5 07-201-09					
Diesel Range Organics	ND	30	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 102	Control Limits 50-150				
Client ID: Laboratory ID:	MW2-8.5 07-201-10					
Diesel Range Organics	ND	34	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	67	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 100	Control Limits 50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0805S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-5-11	8-5-11	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	102	50-150				

			Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20)1-08						
<u>. </u>	ORIG	DUP						
Diesel Range Organics	3180	2370				29	NA	
Lube Oil	2080	1610				25	NA	
Surrogate:								
o-Terphenyl			108	112	50-150			

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

3 3 (1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-3.0					
Laboratory ID:	07-201-04					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.059	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.059	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.059	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.059	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	5.9	NWTPH-Gx	8-1-11	8-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	68-124				
Client ID:	MW3-9.5					
Laboratory ID:	07-201-06					
Benzene	ND	0.026	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.13	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.13	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.13	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.13	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	13	NWTPH-Gx	8-1-11	8-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	MW5-7.5					
Laboratory ID:	07-201-07					
Benzene	0.20	0.032	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.16	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	0.45	0.16	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	0.41	0.16	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.16	EPA 8021	8-1-11	8-1-11	
Gasoline	390	16	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
	i diddin i todd i di	Control Entitle				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

3 3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW7-3.0					
Laboratory ID:	07-201-08					
Benzene	0.079	0.020	EPA 8021	8-1-11	8-2-11	
Toluene	0.28	0.10	EPA 8021	8-1-11	8-2-11	
Ethyl Benzene	0.84	0.10	EPA 8021	8-1-11	8-2-11	
m,p-Xylene	2.1	0.10	EPA 8021	8-1-11	8-2-11	
o-Xylene	ND	1.0	EPA 8021	8-1-11	8-2-11	U1
Gasoline	ND	10	NWTPH-Gx	8-1-11	8-2-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				
Client ID:	MW1-7.5					
Laboratory ID:	07-201-09					
Benzene	0.099	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.081	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.081	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.081	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.081	EPA 8021	8-1-11	8-1-11	
Gasoline	20	8.1	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				
Client ID:	MW2-8.5					
Laboratory ID:	07-201-10					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	_
Toluene	ND	0.086	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.086	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.086	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.086	EPA 8021	8-1-11	8-1-11	
Gasoline	23	8.6	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0801S1					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.050	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.050	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.050	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.050	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	5.0	NWTPH-Gx	8-1-11	8-1-11	

Surrogate: Percent Recovery Control Limits Fluorobenzene 108 68-124

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-22	20-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						108	106	68-124			
SPIKE BLANKS											
Laboratory ID:	SB08	01S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.04	0.987	1.00	1.00		104	99	77-114	5	9	
Toluene	1.06	1.01	1.00	1.00		106	101	80-115	5	9	
Ethyl Benzene	1.02	1.00	1.00	1.00		102	100	80-118	2	9	
m,p-Xylene	1.02	0.994	1.00	1.00		102	99	82-118	3	9	
o-Xylene	1.01	0.997	1.00	1.00		101	100	82-116	1	9	
Surrogate:											
Fluorobenzene						105	102	68-124			

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW9-3.0	. 42	Motriou	Порагоа	Allalyzou	i iugo
Laboratory ID:	07-201-04					
Naphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	0.049	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	0.043	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	0.044	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.065	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.039	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.052	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.051	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.069	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.062	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.058	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.058	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 109				

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 85
 43 - 109

 Pyrene-d10
 112
 38 - 128

 Terphenyl-d14
 93
 33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

D 16	201	88 .41 . 1	Date	Date	
	PQL	Method	Prepared	Analyzed	Flags
MW7-3.0					
07-201-08					
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.48	0.035	EPA 8270/SIM	8-5-11	8-11-11	
1.9	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.090	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.11	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.38	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.37	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.088	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.059	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.17	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.070	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.12	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.037	0.035	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.073	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.035	0.035	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.039	0.035	EPA 8270/SIM	8-5-11	8-11-11	
	ND 0.48 1.9 0.090 0.11 0.38 0.37 0.088 0.059 0.17 0.070 0.12 0.037 ND 0.073 0.035 ND	MW7-3.0 07-201-08 ND 0.035 0.48 0.035 1.9 0.035 0.090 0.035 0.11 0.035 0.38 0.035 0.37 0.035 0.088 0.035 0.059 0.035 0.17 0.035 0.070 0.035 0.12 0.035 0.037 0.035 0.037 0.035 0.037 0.035 0.037 0.035 0.037 0.035 0.035 0.035 0.073 0.035 0.035 0.035 0.035 0.035	MW7-3.0 07-201-08 ND 0.035 EPA 8270/SIM 0.48 0.035 EPA 8270/SIM 1.9 0.035 EPA 8270/SIM 0.090 0.035 EPA 8270/SIM 0.11 0.035 EPA 8270/SIM 0.38 0.035 EPA 8270/SIM 0.037 0.035 EPA 8270/SIM 0.059 0.035 EPA 8270/SIM 0.17 0.035 EPA 8270/SIM 0.070 0.035 EPA 8270/SIM 0.012 0.035 EPA 8270/SIM 0.037 0.035 EPA 8270/SIM 0.037 0.035 EPA 8270/SIM 0.073 0.035 EPA 8270/SIM 0.073 0.035 EPA 8270/SIM 0.035 EPA 8270/SIM	Result PQL Method Prepared MW7-3.0 07-201-08 8-5-11 ND 0.035 EPA 8270/SIM 8-5-11 0.48 0.035 EPA 8270/SIM 8-5-11 1.9 0.035 EPA 8270/SIM 8-5-11 0.090 0.035 EPA 8270/SIM 8-5-11 0.11 0.035 EPA 8270/SIM 8-5-11 0.38 0.035 EPA 8270/SIM 8-5-11 0.037 0.035 EPA 8270/SIM 8-5-11 0.088 0.035 EPA 8270/SIM 8-5-11 0.059 0.035 EPA 8270/SIM 8-5-11 0.070 0.035 EPA 8270/SIM 8-5-11 0.070 0.035 EPA 8270/SIM 8-5-11 0.037 0.035 EPA 8270/SIM 8-5-11 ND 0.035 EPA 8270/SIM 8-5-11 0.073 0.035 EPA 8270/SIM 8-5-11 0.035 EPA 8270/SIM 8-5-11 0.035 EPA 8270/SIM 8-5-11 <td>Result PQL Method Prepared Analyzed MW7-3.0 07-201-08 0.035 EPA 8270/SIM 8-5-11 8-11-11 ND 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.48 0.035 EPA 8270/SIM 8-5-11 8-11-11 1.9 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.090 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.11 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.38 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.088 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.059 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.070 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11</td>	Result PQL Method Prepared Analyzed MW7-3.0 07-201-08 0.035 EPA 8270/SIM 8-5-11 8-11-11 ND 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.48 0.035 EPA 8270/SIM 8-5-11 8-11-11 1.9 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.090 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.11 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.38 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.088 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.059 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.070 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11 0.037 0.035 EPA 8270/SIM 8-5-11 8-11-11

 Surrogate:
 Percent Recovery
 Control Limits

 2-Fluorobiphenyl
 85
 43 - 109

 Pyrene-d10
 112
 38 - 128

 Terphenyl-d14
 81
 33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

Terphenyl-d14

74

3 3				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0805S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	43 - 109				
Pyrene-d10	74	38 - 128				

33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-06	61-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0608	0.0644	0.0833	0.0833	ND	73	77	39 - 110	6	21	
Acenaphthylene	0.0609	0.0624	0.0833	0.0833	ND	73	75	47 - 124	2	21	
Acenaphthene	0.0634	0.0665	0.0833	0.0833	ND	76	80	50 - 120	5	20	
Fluorene	0.0631	0.0661	0.0833	0.0833	ND	76	79	52 - 126	5	21	
Phenanthrene	0.0695	0.0655	0.0833	0.0833	ND	83	79	41 - 130	6	22	
Anthracene	0.0621	0.0631	0.0833	0.0833	ND	75	76	48 - 124	2	23	
Fluoranthene	0.0668	0.0644	0.0833	0.0833	ND	80	77	40 - 137	4	23	
Pyrene	0.0679	0.0648	0.0833	0.0833	ND	82	78	36 - 139	5	23	
Benzo[a]anthracene	0.0566	0.0487	0.0833	0.0833	ND	68	58	43 - 127	15	21	
Chrysene	0.0587	0.0527	0.0833	0.0833	ND	70	63	41 - 133	11	19	
Benzo[b]fluoranthene	0.0516	0.0578	0.0833	0.0833	ND	62	69	40 - 132	11	25	
Benzo(j,k)fluoranthene	0.0521	0.0550	0.0833	0.0833	ND	63	66	35 - 132	5	25	
Benzo[a]pyrene	0.0544	0.0566	0.0833	0.0833	ND	65	68	37 - 131	4	26	
Indeno(1,2,3-c,d)pyrene	0.0527	0.0554	0.0833	0.0833	ND	63	67	39 - 134	5	23	
Dibenz[a,h]anthracene	0.0557	0.0586	0.0833	0.0833	ND	67	70	40 - 137	5	21	
Benzo[g,h,i]perylene	0.0537	0.0577	0.0833	0.0833	ND	64	69	35 - 135	7	22	
Surrogate:											
2-Fluorobiphenyl						77	78	43 - 109			
Pyrene-d10						76	76	38 - 128			
Terphenyl-d14						69	59	33 - 119			

Project: 525-006

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

	3 3 41 7			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	07-201-04 MW9-3.0					
Arsenic	46	11	6010B	8-3-11	8-3-11	
Barium	35	2.8	6010B	8-3-11	8-3-11	
Cadmium	2.0	0.56	6010B	8-3-11	8-3-11	
Chromium	27	0.56	6010B	8-3-11	8-3-11	
Lead	8.7	5.6	6010B	8-3-11	8-3-11	
Mercury	ND	0.28	7471A	8-3-11	8-3-11	
Selenium	ND	11	6010B	8-3-11	8-3-11	
Silver	ND	0.56	6010B	8-3-11	8-3-11	

Project: 525-006

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 8-3-11
Date Analyzed: 8-3-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0803S2&MB0803S4

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.050
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

Project: 525-006

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 8-3-11
Date Analyzed: 8-3-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 08-018-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	44.1	45.3	3	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	36.7	36.5	1	0.50	
Lead	230	236	2	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

Project: 525-006

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 8-3-11
Date Analyzed: 8-3-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 08-018-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	97.6	98	99.4	99	2	
Barium	100	169	125	153	109	10	
Cadmium	50.0	46.3	93	47.0	94	1	
Chromium	100	132	95	133	96	1	
Lead	250	446	86	431	80	3	
Mercury	0.500	1.52	92	1.49	87	2	
Selenium	100	94.1	94	94.9	95	1	
Silver	25.0	23.2	93	23.3	93	0	

% MOISTURE

Date Analyzed: 8-1-11

Client ID	Lab ID	% Moisture
MW9-3.0	07-201-04	11
MW3-9.5	07-201-06	35
MW5-7.5	07-201-07	48
MW7-3.0	07-201-08	5
MW1-7.5	07-201-09	17
MW2-8.5	07-201-10	25

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

TestAmerica P		TestAmer 5755 8th Tacoma, Tel. 253-5 Fax 253-5 www.tes	ica Sea Stree WA 98 322-23	ttle (LE. 424 1	3N-5	ITE SN	LI WIS	AP ASH	5	ZRI □ Sh	ort b	SAME A NO B4 Hold	1		in of tody Red	cord
THE LEADER IN ENVIRONMENTAL TESTING		www.tes	tamer	icainc	com c	1080	52	71		14	SAM	All other	er		nain of Custody N	
FARALLON		Client	Conta	A	200	5 8	25	K	ET	5					71	33
975 5th Avevue	NW		one Nun	iber (Area	5 - 1	ax Numb	er					Les Number		Pa	age	of(
	98027		en .	Suc	the	ab Conta	act BA	unc	256		Ana	alysis (Attach lis re space is need	st if led)	111 %		
Project Name and Location (State) Aberdeed Facility Contract/Purchase Order/Quote No.		Billing	Contac	t						X	-	re space is need		30th		Instructions/
Contract/Purchase Order/Quote No.				Matrix			Contair Preserv			NUTRIK-CR37EX	N	4		moisone oftentaine	Condition	ns of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date	Time	Air	Sed.		Unpres. H2SO4	HN03	NaOH	ZnAc/ NaOH	NUTUR.	PAH	ZZZZ		#6,		
B41-3.5	7/26111	020		X	5					XX				X2	S. D.	
B41-072611-GW		835	\rangle							XX				5		
MW6-30		940		>										3		
MW9-653.0		1130		7						(XXX)	CKE	Ø		3		
MW(1-6,5	V	1310		X										2		
MW3-9.5	7/27/11	815		X						80				802		
MW5-7,5		935								OD				03		
MW7-310		1055		\ \ \ \						CXXX	(X)			2		
MW1-7,5		1245								(XX)				x)2		
MW2-8,5	V	1420								(XXX)				D2		
Cooler Possible H	lazard Identification	n						-	Sá	ample Disposal		Disposal By L	ab		(A fee may be a	ssessed if samples
Yes No Cooler Temp: Non-H	azard 🗆 Flai	mmable [Skin	Irritant	☐ Poi.					Return To Clie	ent 🗆	Archive For	N	<i>Nonths</i>	are retained long	ger than 1 month)
Turn Around Time Required (business days) ☐ 24 Hours ☐ 48 Hours ☐ 5 Days ☐ 10 D	ays 🗆 15 Day	s 🗆 Oth	ier			QC F	Require	nents	(Specii	y)						
1. Relinguished By Sign/Print		Date	-7(11	Time 124	40	1.R	ecejveo	By S	ign/Pri	-m	KUN)		1	7/28/11	915
2. Relinquished By Sign/Print		Date		Time		2. R	eceiveo	By S	ign/Pri						Date	Time
3. Relinquished By Sign/Print		Date		Time		3. R	eceivea	By S	ign/Prii	nt					Date	Time
Comments @ Added 8/111 3	36 511	4														

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 15, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1108-008

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 1, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on July 28 and 29, 2011 and received by the laboratory on August 1, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The surrogate recovery is outside of the control limits on the high end for sample MW4-5.0. However, since the sample was non-detect no further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-5.0					
Laboratory ID:	08-008-01					
Benzene	ND	0.028	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.14	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.14	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.14	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.14	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	14	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	153	68-124				Q
Client ID:	MW12-3.0					
Laboratory ID:	08-008-03					
Benzene	ND	0.020	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.064	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.064	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.064	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.064	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	6.4	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	68-124				
Client ID:	MW13-3.5					
Laboratory ID:	08-008-04					
Benzene	ND	0.022	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.11	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.11	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	0.32	0.11	EPA 8021	8-3-11	8-3-11	
o-Xylene	0.21	0.11	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	11	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				_
Fluorobenzene	103	68-124				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803S2					
Benzene	ND	0.020	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.050	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.050	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.050	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.050	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	5.0	NWTPH-Gx	8-3-11	8-3-11	

Surrogate: Percent Recovery Control Limits Fluorobenzene 110 68-124

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-0	18-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						108	106	68-124			
MATRIX SPIKES											
Laboratory ID:	08-0	18-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	0.995	1.04	1.00	1.00	ND	100	104	79-121	4	10	
Toluene	1.02	1.07	1.00	1.00	ND	102	107	83-121	5	14	
Ethyl Benzene	1.00	1.07	1.00	1.00	ND	100	107	83-123	7	9	
m,p-Xylene	0.996	1.06	1.00	1.00	ND	100	106	84-123	6	10	
o-Xylene	0.995	1.06	1.00	1.00	ND	100	106	82-124	6	10	
Surrogate:											
Fluorobenzene						103	106	68-124			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW4-5.0					
Laboratory ID:	08-008-01					
Diesel Range Organics	ND	51	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	180	100	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW10-3.5					
Laboratory ID:	08-008-02					
Diesel Range Organics	4100	160	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	1000	320	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	MW12-3.0					
Laboratory ID:	08-008-03					
Diesel Range Organics	450	140	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	880	270	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	MW13-3.5					
Laboratory ID:	08-008-04					
Diesel Range Organics	8600	280	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	13000	570	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	MW14-2.0					
Laboratory ID:	08-008-05					
Diesel Range Organics	ND	32	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	MW16D-9.0					
Laboratory ID:	08-008-11					
Diesel Range Organics	ND	31	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	110	62	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	B44-2.5					
Laboratory ID:	08-008-12					
Diesel Range Organics	ND	28	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	66	56	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0805S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	102	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-00)8-12						
	ORIG	DUP						_
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil	59.0	ND				NA	NA	
Surrogate:								_
o-Terphenyl			98	96	50-150			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B44-072911-GW					
Laboratory ID:	08-008-15					
Diesel Range Organics	13	0.28	NWTPH-Dx	8-4-11	8-4-11	
Lube Oil	4.3	0.44	NWTPH-Dx	8-4-11	8-4-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•	•	
Laboratory ID:	MB0804W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-4-11	8-4-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-4-11	8-4-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20)2-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								_
o-Terphenyl			98	93	50-150			

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Date

Date

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW12-3.0					
Laboratory ID:	08-008-03					
Naphthalene	0.083	0.036	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	0.090	0.036	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	0.045	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	0.081	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	0.075	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	0.069	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.050	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.044	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.051	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.042	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.063	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.052	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.059	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits	_			•

Surrogate:	Percent Recovery	Control Limits
2-Fluorobiphenyl	68	43 - 109
Pyrene-d10	86	38 - 128
Terphenyl-d14	75	33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

Terphenyl-d14

74

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0805S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	43 - 109				
Pyrene-d10	74	38 - 128				

33 - 119

Project: 525-006

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-06	61-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0608	0.0644	0.0833	0.0833	ND	73	77	39 - 110	6	21	
Acenaphthylene	0.0609	0.0624	0.0833	0.0833	ND	73	75	47 - 124	2	21	
Acenaphthene	0.0634	0.0665	0.0833	0.0833	ND	76	80	50 - 120	5	20	
Fluorene	0.0631	0.0661	0.0833	0.0833	ND	76	79	52 - 126	5	21	
Phenanthrene	0.0695	0.0655	0.0833	0.0833	ND	83	79	41 - 130	6	22	
Anthracene	0.0621	0.0631	0.0833	0.0833	ND	75	76	48 - 124	2	23	
Fluoranthene	0.0668	0.0644	0.0833	0.0833	ND	80	77	40 - 137	4	23	
Pyrene	0.0679	0.0648	0.0833	0.0833	ND	82	78	36 - 139	5	23	
Benzo[a]anthracene	0.0566	0.0487	0.0833	0.0833	ND	68	58	43 - 127	15	21	
Chrysene	0.0587	0.0527	0.0833	0.0833	ND	70	63	41 - 133	11	19	
Benzo[b]fluoranthene	0.0516	0.0578	0.0833	0.0833	ND	62	69	40 - 132	11	25	
Benzo(j,k)fluoranthene	0.0521	0.0550	0.0833	0.0833	ND	63	66	35 - 132	5	25	
Benzo[a]pyrene	0.0544	0.0566	0.0833	0.0833	ND	65	68	37 - 131	4	26	
Indeno(1,2,3-c,d)pyrene	0.0527	0.0554	0.0833	0.0833	ND	63	67	39 - 134	5	23	
Dibenz[a,h]anthracene	0.0557	0.0586	0.0833	0.0833	ND	67	70	40 - 137	5	21	
Benzo[g,h,i]perylene	0.0537	0.0577	0.0833	0.0833	ND	64	69	35 - 135	7	22	
Surrogate:											
2-Fluorobiphenyl						77	78	43 - 109			
Pyrene-d10						76	76	38 - 128			
Terphenyl-d14						69	59	33 - 119			

Project: 525-006

% MOISTURE

Date Analyzed: 8-3&5-11

Client ID	Lab ID	% Moisture
MW4-5.0	08-008-01	51
MW10-3.5	08-008-02	22
MW12-3.0	08-008-03	9
MW13-3.5	08-008-04	11
MW14-2.0	08-008-05	21
MW16D-9.0	08-008-11	19
B44-2.5	08-008-12	11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page / of 2

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround		st	La	abo	rato	ory	Nu	mb	er:									0 8	3 - (00	8
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: FARALLON Project Number: 525-006 Project Name: Aberdeev FACILity Project Manager: AKOS FEKETE Sampled by:	2[1 Day 3 Day					s by 8260B	202	M	Re		este		naly	sis						
Project Manager: AKOS FSKSTE Sampled by: Lab ID Sample Identification	Date Sampled	andard (7 we (oth Time Sampled		# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	PAHs by 8270C / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	VPH	ЕРН				% Moisture
1 MW4-5.0	7/28/1	820	5	3		X	X																N
3 MW12-3.0		1010	5	3		X	X				X												
4 MW 13-3-5 5 MW 14-2-0	V	1325	5	72		X	X														1		
6 MW15A-7.5 7 MW15B-7-0	7/29/11		5	2																			
8 MW16A-3.5 9 MW16B-6.0		1135	5	2																			
10 MW16C-2-5 Signature	V	1205 Company	5	2		Date	2		Time	2		Com	ment	s/Spe	cial Ir	nstruc	etions						
Relinquished by Received by Relinquished by		FAR	280	UN		8/8	(11)	1		15	5												
Received by Relinquished by																							
Received by																							
Reviewed by/Date		Reviewed t	by/Date									Chr	oma	togra	ms I	with t	final	repo	rt 🗆				- 1

OnSite Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052

Chain of Custody

Page _____ of _____

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin		st	Lá	abo	rato	ory	Nu	mb	er:									0 8	-(00	8
Phone: (425) 883-3881 • Fax: (425) 885-4603		(Check	Onel									Re	eque	este	d Aı	naly	sis						
FARALLON Project Number: 525-006 Project Name: Aber deep Facility Project Manager: AKOS FEKETE Sampled by:	☐ 2 [X Sta	me Day		1 Day 3 Day ays)	0	TEX		260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C / SIM	2	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)								
Sampled by:		(oth	ner)		NWTPH-HCID	NWTPH-Gx/BTEX	H-Dx	Volatiles by 8260B	enated	olatiles	by 827(PCBs by 8082	des by	ides by	CHA I	TCLP Metals	HEM by 1664						sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTP	NWTP	NWTPH-Dx	Volatile	Haloge	Semiv	PAHs	PCBs	Pestici	Herbic	Total F	TCLP	HEM b	VPH	ЕРН				% Moisture
11 MW16D-9,0	7/2911	1245	5	P1			X																0
12 844-215		1520	5	2			X																
13 B44-6-0		1525	5	2																			
14 1344-10.0		1535	5	21																			
15 B44-072917-6W	V	1555	W	2			X																
		Jun .																					
Signature		Company				Date			Time			Com	ment	s/Spe	cial II	nstruc	ctions						
Relinquished by Received by		FARA	THE			8	1	11	12	15													
Relinquished by			86			81	////		14	75)												
Received by																							
Relinquished by				-																			
Received by																							
Reviewed by/Date		Reviewed I	oy/Date									Chr	oma	togra	ms	with	final	repo	rt 🗆				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 16, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1108-048

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 4, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on August 2 and 3, 2011 and received by the laboratory on August 4, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010B/200.8/7470A Analysis

The practical quantitation limit of Selenium for sample MW-6-080211 is elevated due to interferences present in the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-080211					
Laboratory ID:	08-048-02					
Benzene	16	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	17	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	14	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	3.2	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	1400	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-2-080211					
Laboratory ID:	08-048-03					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-3-080211					
Laboratory ID:	08-048-04					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-6-080211					
Laboratory ID:	08-048-06					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	140	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	73-121				
Client ID:	MW-15-080311					
Laboratory ID:	08-048-10					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	130	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	100	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	190	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	240	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-080311					
Laboratory ID:	08-048-14					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-12-080311					
Laboratory ID:	08-048-15					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	MW-13-080311					
Laboratory ID:	08-048-16					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0805W1					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	73-121				
Laboratory ID:	MB0805W2					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	73-121				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Omic: 49/2 (PPS)					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE							-				
Laboratory ID:	08-04	48-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						93	88	73-121			
Laboratory ID:	08-04	48-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						98	91	73-121			
MATRIX SPIKES											
Laboratory ID:	08-04	48-03									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.7	53.0	50.0	50.0	ND	105	106	82-120	1	8	
Toluene	54.3	54.5	50.0	50.0	ND	109	109	84-119	0	8	
Ethyl Benzene	53.8	54.1	50.0	50.0	ND	108	108	84-122	1	9	
m,p-Xylene	52.5	52.6	50.0	50.0	ND	105	105	85-121	0	9	
o-Xylene	53.1	52.9	50.0	50.0	ND	106	106	84-121	0	9	
Surrogate:											
Fluorobenzene						99	101	73-121			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

Onits. mg/L (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-080211					
Laboratory ID:	08-048-02					
Diesel Range Organics	ND	0.58	NWTPH-Dx	8-8-11	8-8-11	U1
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	MW-2-080211					
Laboratory ID:	08-048-03					
Diesel Range Organics	ND	0.27	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	INVITIT DX	0011	0011	
o-Terphenyl	105	50-150				
о-тегрпенуі	103	30-730				
Client ID:	MW-3-080211					
Laboratory ID:	08-048-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
, ,						
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	MW-6-080211					
Laboratory ID:	08-048-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW-8-080211					
	08-048-07					
Laboratory ID:		0.07	NIM/TOURS	0.0.44	0.0.44	
Diesel Range Organics	ND	0.27	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

Analyte	Pocul4	PO!	Mothod	Date	Date	Flore
Analyte Client ID:	Result MW-16-080211	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	08-048-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND ND	0.20	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DX	0-0-11	0-0-11	
o-Terphenyl	107	50-150				
о-тегрпенут	101	30-130				
Client ID:	MW-14-080211					
Laboratory ID:	08-048-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	MW-15-080311					
Laboratory ID:	08-048-10					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	itti ii bx	0011	0011	
o-Terphenyl	103	50-150				
o respiration	,,,,	00 700				
011						
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12	0.00	NACTOLLO	0.0.11	0.0.11	
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW 7 000044					
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13	0.00	NIM/TOUR	0.0.44	0.0.11	
Diesel Range Organics	ND ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

J (11 /		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-080311					
Laboratory ID:	08-048-14					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	MW-12-080311					
Laboratory ID:	08-048-15					
Diesel Range Organics	0.31	0.27	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	MW-13-080311					
Laboratory ID:	08-048-16					
·	0.40	0.26	NWTPH-Dx	8-8-11	8-8-11	
Diesel Range Organics Lube Oil Range Organics	ND	0.26	NWTPH-Dx NWTPH-Dx	8-8-11	8-8-11	
		Control Limits	INVVIPH-DX	0-0-11	0-0-11	
Surrogate:	Percent Recovery 97					
o-Terphenyl	97	50-150				
Client ID:	MW-17-080311					
Laboratory ID:	08-048-17					
Diesel Range Organics	1.4	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	<u> </u>		<u> </u>	
o-Terphenyl	106	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0808W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-04	19-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			86	87	50-150			
Laboratory ID:	08-04	18-02						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:		•		•		•		
o-Terphenyl			103	99	50-150			

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Date

Date

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Naphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.029	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.011	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.019	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.021	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.031	0.010	EPA 8270/SIM	8-5-11	8-11-11	
ndeno(1,2,3-c,d)pyrene	0.028	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.025	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				

 Surrogate:
 Percent Recovery
 Control Limits

 2-Fluorobiphenyl
 55
 38 - 105

 Pyrene-d10
 94
 37 - 121

 Terphenyl-d14
 70
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
nalyte	Result	PQL	Method	Prepared	Analyzed	Flags
ient ID:	MW-6-080211					
aboratory ID:	08-048-06					
aphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
cenaphthylene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
cenaphthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
uorene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
nenanthrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
nthracene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
uoranthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
/rene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
enzo[a]anthracene	0.025	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
nrysene	ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
enzo[b]fluoranthene	0.017	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
enzo(j,k)fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
enzo[a]pyrene	0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
deno(1,2,3-c,d)pyrene	0.026	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
benz[a,h]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
enzo[g,h,i]perylene	0.021	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
urrogate:	Percent Recovery	Control Limits				

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 55
 38 - 105

 Pyrene-d10
 104
 37 - 121

 Terphenyl-d14
 86
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Naphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.017	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.025	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.022	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				

 Surrogate:
 Percent Recovery
 Control Limi

 2-Fluorobiphenyl
 65
 38 - 105

 Pyrene-d10
 108
 37 - 121

 Terphenyl-d14
 78
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Date

Date

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12					
Naphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	0.52	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	0.13	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	0.15	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.026	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.028	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.022	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				·
2-Fluorobiphenyl	63	38 - 105				

 Surrogate:
 Percent Recovery
 Control Limits

 2-Fluorobiphenyl
 63
 38 - 105

 Pyrene-d10
 92
 37 - 121

 Terphenyl-d14
 71
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Date

Date

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13					
Naphthalene	0.12	0.095	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	0.23	0.095	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	3.2	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	0.29	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	0.65	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	0.13	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.016	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.018	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.017	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.027	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.026	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.021	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	38 - 105				

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 60
 38 - 105

 Pyrene-d10
 99
 37 - 121

 Terphenyl-d14
 65
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12-080311					
_aboratory ID:	08-048-15					
Naphthalene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
I-Methylnaphthalene	0.18	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.027	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.012	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.021	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.021	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.032	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
ndeno(1,2,3-c,d)pyrene	0.028	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.025	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.026	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 70
 38 - 105

 Pyrene-d10
 105
 37 - 121

 Terphenyl-d14
 73
 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
•				•	•	
Laboratory ID:	MB0805W1					
Naphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Fluorene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Anthracene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Pyrene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Chrysene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	38 - 105				
Pyrene-d10	80	37 - 121				

Pyrene-d10 80 37 - 121 Terphenyl-d14 82 32 - 112

Project: 525-006

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

					P	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	05W1								
	SB	SBD	SB	SBD	SE	SBD	ı			
Naphthalene	0.295	0.354	0.500	0.500	59	71	38 - 110	18	35	
Acenaphthylene	0.349	0.396	0.500	0.500	70	79	47 - 120	13	30	
Acenaphthene	0.340	0.393	0.500	0.500	68	79	46 - 113	14	26	
Fluorene	0.362	0.410	0.500	0.500	72	82	60 - 104	12	25	
Phenanthrene	0.394	0.423	0.500	0.500	79	85	61 - 99	7	19	
Anthracene	0.400	0.427	0.500	0.500	80	85	55 - 122	7	19	
Fluoranthene	0.432	0.445	0.500	0.500	86	89	58 - 129	3	18	
Pyrene	0.426	0.441	0.500	0.500	85	88	57 - 126	3	22	
Benzo[a]anthracene	0.399	0.395	0.500	0.500	80	79	51 - 124	1	18	
Chrysene	0.425	0.430	0.500	0.500	85	86	53 - 123	1	20	
Benzo[b]fluoranthene	0.297	0.263	0.500	0.500	59	53	53 - 126	12	18	
Benzo(j,k)fluoranthene	0.294	0.256	0.500	0.500	59	51	51 - 126	14	23	
Benzo[a]pyrene	0.351	0.323	0.500	0.500	70	65	52 - 127	8	21	
Indeno(1,2,3-c,d)pyrene	0.409	0.361	0.500	0.500	82	72	49 - 123	12	26	
Dibenz[a,h]anthracene	0.411	0.322	0.500	0.500	82	64	39 - 125	24	31	
Benzo[g,h,i]perylene	0.349	0.328	0.500	0.500	70	66	40 - 125	6	30	
Surrogate:										
2-Fluorobiphenyl					64	76	38 - 105			
Pyrene-d10					85	89	37 - 121			
Terphenyl-d14					87	85	32 - 112			

Date

Date

Date of Report: August 16, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048

Project: 525-006

DISSOLVED METALS EPA 200.8/7470A

Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-048-05 MW-4-080211					
Arsenic	ND	3.0	200.8		8-15-11	
Barium	ND	25	200.8		8-15-11	
Cadmium	ND	4.0	200.8		8-15-11	
Chromium	ND	10	200.8		8-15-11	
Lead	ND	1.0	200.8		8-15-11	
Mercury	ND	0.50	7470A		8-8-11	
Selenium	ND	5.0	200.8		8-15-11	
Silver	ND	10	200.8		8-15-11	
Lab ID: Client ID:	08-048-06 MW-6-080211					
Arsenic	ND	3.0	200.8		8-15-11	
Barium	140	25	200.8		8-15-11	
Cadmium	ND	4.0	200.8		8-15-11	
Chromium	ND	10	200.8		8-15-11	
Lead	ND	1.0	200.8		8-15-11	
Mercury	ND	0.50	7470A		8-8-11	
Selenium	ND	11	200.8		8-15-11	U1
Silver	ND	10	200.8		8-15-11	

Project: 525-006

DISSOLVED METALS EPA 200.8/7470A

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-048-11					
Client ID:	MW-9-080311					
Arsenic	ND	3.0	200.8		8-15-11	
Barium	130	25	200.8		8-15-11	
Cadmium	ND	4.0	200.8		8-15-11	
Chromium	ND	10	200.8		8-15-11	
Lead	ND	1.0	200.8		8-15-11	
Mercury	ND	0.50	7470A		8-8-11	
Selenium	ND	5.0	200.8		8-15-11	
Silver	ND	10	200.8		8-15-11	

Lab ID: Client ID:	08-048-12 MW-5-080311			
Arsenic	ND	3.0	200.8	8-15-11
Barium	91	25	200.8	8-15-11
Cadmium	ND	4.0	200.8	8-15-11
Chromium	ND	10	200.8	8-15-11
Lead	ND	1.0	200.8	8-15-11
Mercury	ND	0.50	7470A	8-8-11
Selenium	ND	5.0	200.8	8-15-11
Silver	ND	10	200.8	8-15-11

Project: 525-006

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 8-8&15-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0808D1&MB0815D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Project: 525-006

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 8-8&15-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 08-048-05

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Barium	ND	ND	NA	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Project: 525-006

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed: 8-8&15-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 08-048-05

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	101	101	101	101	0	
Barium	100	118	118	117	117	1	
Cadmium	100	101	101	99.1	99	2	
Chromium	100	100	100	100	100	0	
Lead	100	100	100	99.3	99	1	
Mercury	12.5	12.0	96	12.1	97	1	
Selenium	100	98.6	99	98.4	98	0	
Silver	100	92.8	93	92.1	92	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page ____ of ____

		Onmental Inc. 5th Street • Redmond, WA 98052 1883-3881 • www.onsite-env.com		naround Requ working day			L	abo	rat	ory	Nu	umb	oer:										0	8 -	0	48
Compa	ny:	,		(Check One)																						
	FARAL Number:	LLON	_ Sam	ne Day	1 Day												SIM		(eu							
Project	52.5-	006	2 Da	ays	3 Days											8081A	3270D/	8151A	ircle o			5				
Project	Name:	ew Facility	Star	ndard (7 Days)								8260B	5	evel)		es 808	sides 8	ides 8	tals (c		364	metal				
Project	Manager:			H analysis 5 D		iners						tiles 8	DD/SIN	(low-le		esticid	Pestic	Herbic	A Me		se) 16	200				
Sample		FEKETE				Conta	0	/BTEX			80B	Vola	S 827	WIS/0		rine Pe	phorus	Acid H	/ MTC	S	d grea	38				
	Ken	Swell		(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles	Semivolatiles 8270D/SIM	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	550				% Moisture
Lab ID	Sa	ample Identification	Date Sampled	Time Sampled	Matrix	Numk	NWT	NWT	HWN	NWT	Volatil	Halog	Semiv (with 1	PAHs	PCBs	Organ	Organ	Chlori	Total	TCLP	HEM	D				% Mc
1	MW-11-	080211-LNAPL	8/21/	1020	WO	1																				
2	MW-1-0			1145	W	5		X		X																
3		080211		1235	W	5		X		X																
4		380211		1325	W	5		X		X																
5	MW-4-C	180211		1405	W	8		X		X				X								X				
6	MW-6-0			1455	W	8		X		X				X								X				
7	MW-8-0			1545	W	2				X																
_	MW-16-0			1615	W	2				X																
9	MW-14-		V	1705	W	2				X																
10	MW-15-		8/3/11	850	W	5		X		X																
		Signature		ompany				Date			Time	е		Coi	nmen	ts/Sp	ecial	Instru	uction	ıs						
Relin	quished	Ken Swott		FARA	LLON	1		8/	1/4	1		30		A	11	me	XA	H.	SA.	npl	es	E.	حالح		He	eredi
Rece	ved	2	_	08	5			8/	4/1	1	13	30	7							П						
Reline	quished							•																		
Rece	ived																									
Relin	quished																									
Rece	ived																									
Revie	wed/Date			Reviewed/Da	te									Chr	omato	grams	with	final re	eport							
		Da	ata Package:	Level III 🗌 Le	evel IV 🗆 E	lectro	nic Da	ta Del	iverab	oles (E	DDs)															

OnSite Environmental Inc.

Chain of Custody

Page _____ of _____

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			L	abo	rate	ory	Nu	ımb	er:										0	8	-0	4	8
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com FARALLON Project Number: 525-006 Project Name: Aberdeed FAcility Project Manager: AKOS FSKE + S Sampled by: Ken Sold 12 MW-5-080311 13 MW-7-080311 14 MW-12-080311 15 MW-12-080311 16 MW-13-080311 17 MW-17-080311 18 Trip blank	Sam 2 Da	(Check One) ne Day ays ndard (7 Days) H analysis 5 D (other) Time Sampled	1 Day 3 Days ays) Matrix W	Number of Containers		NWTPH-GxBTEX	NWTPH-Gx	xd-Hallman X	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	XX Dissolved metAS					% Moisture
Signature	C	ompany				Date			Time			Cor	nmen	ts/Sp	ecial	Instru	ection	18							
Relinquished Received Relinquished Relinquished Relinquished		FARA OSE	,	لر		8/18	4/1	7	9:13	36	0		50	2 /	DAG	pe:	#1	/							
Received		Reviewed/Da	ite	_							-						- Money								
Reviewed/Date	Data Package:			lectror	nic Dat	ta Deli	iverab	les (E	DDs)[Chro	omato	grams	with:	tinal re	eport								

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 23, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1108-048B

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 4, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on August 2 and 3, 2011 and received by the laboratory on August 4, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-HCID

Matrix: Product
Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-11-080211-LNAPL	, QL	Wictilod	rrepared	Analyzea	i lugo
Laboratory ID:	08-048-01					
Gasoline Range Organics	ND	9000	NWTPH-HCID	8-19-11	8-19-11	U1
Diesel Range Organics	Detected	18000	NWTPH-HCID	8-19-11	8-19-11	
Lube Oil	Detected	36000	NWTPH-HCID	8-19-11	8-19-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

Project: 525-006

NWTPH-HCID QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0819S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	8-19-11	8-19-11	_
Diesel Range Organics	ND	50	NWTPH-HCID	8-19-11	8-19-11	
Lube Oil Range Organics	ND	100	NWTPH-HCID	8-19-11	8-19-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page ____ of _____

	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ n working day			L	abo	rat	ory	Nu	mb	er:										0	8	-0	4	8
Compa	Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One)											1					400							
	FARALLON	Sar	me Day	1 Day												SIM		(euo								
Project	525-006	☐ 2 D	ays	3 Days											11A	270D/	151A	rcle o			5					
Project	Name:		ndard (7 Days)								8260B	_	(lev		es 8081A	ides 8	des 8	als (ci		64	metals					
Project	Aberdeev Facility		PH analysis 5 D		iners							D/SIN	low-le		Pesticides	Pestic	erbici	A Met		se) 16	Ea					
Sample	AKUS FEKETE				Conta	۵	ВТЕХ			90B	Volat	8270 el PAH	/SIM			shorus	Acid H	/ MTC	10	d grea	RAS					
Sample	Ken Swott		(other)		er of	H-HCI	H-Gx/	H-Gx	H-Dx	es 826	enated	olatiles ow-leve	8270D/SIM (low-level)	8082	ochlor	dsoydc	nated	Total RCRA / MTCA Metals (circle	TCLP Metals	HEM (oil and grease) 1664	550	,				isture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs (PCBs 8082	Organochlorine	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total F	TCLP	HEM (Di					% Moisture
1	MW-11-080211-LNAPL	8/21/	1020	WO	l	0	3	- (3	20																
2	MW-1-080211		1145	W	5		X		X																_	
3	MW-2-080211		1235	W	5		X		X																	
4	MW-3-080211		1325	W	5		X		X																	
5	MW-4-080211		1405	W	8		X		X				X								X					
6	MW-6-080217		1455	W	8	3	X		X				X								X					
7	MW-8-080211		1545	W	2				X																	
8	MW-16-080211		1615	W	2				X																	
9	MW-14-08021	V	1705	W	2	_			X																	
10	MW-15-080311	8/3/11	850	W	5		X		X																	
	Signature	0	Company		V		Date			Time			Con	nmen	ts/Sp	ecial	Instr	uctio	ns							
Relin	equished Ken Sevel		FARA	LLOI	1		8/	1/4	-1		30		A	11	Me	X	H.	SA	mpl	es	E.	eld	0-4	EH	ter	edi
Rece	sived	_	08	E			8/	4/1	1	13	30)	-	A	0 1	1	1	_	1	1		0	, ,	4	- ^	1
Relin	quished		4 19 9										8	Y	to	00	ol ,	8/	16	1)	1.	VI	5 (37	4	1
Rece	sived																	1		(Ins	sif	fici	ent	-50	mple
Relin	quished												C	DA	tolo	dec	1 5	3/1	7/1	1.	DB	6	TA)		mple
Rece	sived																						_	6		
Revie	ewed/Date		Reviewed/Da	te									Chro	mato	grams	with	final r	eport								

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			L	abo	rat	ory	Nu	ımk	er:											8 (-() 4	8	
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		(Check One)																								
FARALLON	_ Sam	ne Day	1 Day	N.											SIM		(eu									
Project Number: 525-006 Project Name: Aberdeed Facility Project Manager: AKOS FSKE & S Sampléd by:	2 Da	ays	3 Days											31A	270D/	151A	ircle o			免						
Project Name:	Star	ndard (7 Days)								260B	V	(level		es 808	sides 8	des 8	tals (c		964	MAKES						
Project Manager:		H analysis 5 D		iners						tiles 8%	NIS/QC	(low-le		esticid	. Pestic	Herbic	A Me		se) 16	50						
Sampled by				Conta	0	'BTEX			30B	Vola	s 827 el PAl	MIS/C		rine Pe	phorus	Acid	/ MTC	S	d grea	Q ,						
Ken rott		(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	YH-Dx	Volatiles 8260B	Halogenafed Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664	150VV					1	% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numk	NWT	NWTH	NWT	NWTPH-Dx	Volatil	Halog	Semiv (with 1	PAHS	PCBs 8082	Organ	Organ	Chlori	Total	TCLP	HEM	Dis	(70	% IMIC
11 mw-9-080311	8/3/11	945	W	8		X		X				X								X						
12 MW-5-080311		1055	W	8		X		X				X								X						
13 MW-7-080311		1155	W	7		X		X				X														
14 MW-10-08 0311		1245	W	5		X		X																		
15 MW-12-080311		1345	W	7		X		X				X														
16 MW-13_080311		1435	W	5		X		X	_																	
17 MW-17-080311		1515	W	2				X																		
18 Tripblank	1		W	2																						
								/	V													_	_			
								V	1		7															
Signature	C	ompany				Date			Time	9			nmen								4					
Relinquished Ken Sugar		FARA	+LLO.	N		8/	41	11	9.	30	0	,	50	el	A	12	#1									
Received	- (OSE				81	4/1	11	13	33	0															
Relinquished																										
Received																										
Relinquished																										
Received																										-
Reviewed/Date		Reviewed/Da	-							_		Chro	omato	grams	with	final r	eport									
	ata Package:	Level III L	evel IV 🗌 E	lectro	nic Da	ta Del	liverat	oles (E	DDs)																	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 30, 2012

Akos Fekete Farallon Consulting, LLC Queen Anne Square East Bldg. 200 West Mercer Street, Suite 302 Seattle, WA 98119

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1203-187

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on March 23, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on March 22 and 23, 2012 and received by the laboratory on March 23, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-032212					
Laboratory ID:	03-187-01					
Benzene	16	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	1.3	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	19	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	11	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	2.8	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	1600	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	73-121				
Client ID:	MW-2-032212					
Laboratory ID:	03-187-02					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-3-032212					
Laboratory ID:	03-187-03					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX

Client ID: MW-4-032212 Laboratory ID: 03-187-04 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Ox-Vylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits 73-121 73-121 Client ID: MW-6-032212 Laboratory ID: 03-187-05 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline					Date	Date	
Benzene	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene	Client ID:	MW-4-032212					
Toluene ND 1.0 EPA 8021 3-28-12 3-28-12	Laboratory ID:	03-187-04					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-6-032212	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
mp-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 3-28-12 3-28-12 3-28-12 Client ID: MW-6-032212 Laboratory ID: 03-187-05 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Control Limits 2-28-12 3-28-12 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits PA 8021 3-28-12 3-28-12 3-28-12	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
O-Xylene	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Sarrogate:	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate:	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Client ID: MW-6-032212 Surrogate: Percent Recovery ID: 03-187-06 Surrogate: ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Surrogate: Percent Recovery Control Limits Surrogate: Surrogate:	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Client ID: MW-6-032212 Laboratory ID: 03-187-05 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 MVTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Description	Fluorobenzene	92	73-121				
ND	Client ID:	MW-6-032212					
Toluene ND 1.0 EPA 8021 3-28-12 3-28-12	Laboratory ID:	03-187-05					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 3-28-12 3-28-12 3-28-12 -Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate: Percent Recovery Control Limits Fluorobenzene 92 73-121 Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Client ID: MW-8-032212 Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 03-187-06 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Fluorobenzene	92	73-121				
Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Client ID:	MW-8-032212					
ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Laboratory ID:	03-187-06					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
MD 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate: Percent Recovery Control Limits	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Fluorobenzene 91 73-121	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16-032212					
Laboratory ID:	03-187-07					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-14-032212					
Laboratory ID:	03-187-08					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-15-032212					
Laboratory ID:	03-187-09					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-032312					
Laboratory ID:	03-187-10					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-5-032312					
Laboratory ID:	03-187-11					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-7-032312					
Laboratory ID:	03-187-12					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	170	100	NWTPH-Gx	3-28-12	3-28-12	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

Project: 525-006

NWTPH-Gx/BTEX

Client ID:	3 (11)				Date	Date	
Benzene	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene	Client ID:	MW-10-032312					
Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 O-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 O-Xylene ND 100 NWTPH-Gx 3-28-12 3-28-12 O-Xylene ND 1.0 EPA 8021 3-28-1	Laboratory ID:	03-187-13					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-12-032312 Surrogate: Percent Recovery Control Limits Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits 73-121 Client ID: MW-13-03	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
mp-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-12-032312 Laboratory ID: 03-187-14 8021 3-28-12 3-28-12 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 mp-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 O-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Percent Recovery <td>Toluene</td> <td>ND</td> <td>1.0</td> <td>EPA 8021</td> <td>3-28-12</td> <td>3-28-12</td> <td></td>	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
O-Xylene	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-12-032312 Secondary ID: MW-12-032312 Laboratory ID: 03-187-14 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Imp-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 O-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Percent Recovery Control Limits Fluorobenzene ND 1.0 EPA 8021 3-28-12 3-28-12 Client ID: MW-13-032312 MW-13-032312 3-28-12	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate: Percent Recovery Surrogate: Percent Recovery Proceedings	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Client ID: MW-12-032312	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Client ID: MW-12-032312 Laboratory ID: 03-187-14 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 EPA 8021 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Description	Fluorobenzene	91	73-121				
ND	Client ID:	MW-12-032312					
Toluene	Laboratory ID:	03-187-14					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits 73-121 Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 1.0 NVTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-13-032312 WW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate: Percent Recovery Control Limits Fluorobenzene 91 73-121 Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Client ID: MW-13-032312 Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 03-187-15 Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Fluorobenzene	91	73-121				
Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Client ID:	MW-13-032312					
Toluene ND 1.0 EPA 8021 3-28-12 3-28-12 Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Laboratory ID:	03-187-15					
Ethyl Benzene ND 1.0 EPA 8021 3-28-12 3-28-12 m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene ND 1.0 EPA 8021 3-28-12 3-28-12 Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline ND 100 NWTPH-Gx 3-28-12 3-28-12 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Surrogate: Percent Recovery Control Limits	o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
· · · · · · · · · · · · · · · · · · ·	Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Fluorobenzene 92 73-121	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	92	73-121				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-17-032312					_
Laboratory ID:	03-187-16					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	_
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-11-032312					
Laboratory ID:	03-187-17					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	_
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

Project: 525-006

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Laboratory ID:	MB0328W2					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				·
Fluorobenzene	92	73-121				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Omio: ag/2 (PPS)					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE			-				-				
Laboratory ID:	03-18	37-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	1A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	١A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	١A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	١A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	١A	NA	NA	30	
Surrogate:											
Fluorobenzene						93	92	73-121			
Laboratory ID:	03-18	37-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						92	93	73-121			
MATRIX SPIKES											
Laboratory ID:	03-18	37-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.2	51.5	50.0	50.0	ND	98	103	82-120	5	8	
Toluene	49.8	53.7	50.0	50.0	ND	100	107	84-119	8	8	
Ethyl Benzene	50.3	52.2	50.0	50.0	ND	101	104	84-122	4	9	
m,p-Xylene	50.8	54.0	50.0	50.0	ND	102	108	85-121	6	9	
o-Xylene	50.9	52.0	50.0	50.0	ND	102	104	84-121	2	9	
Surrogate:											
Fluorobenzene						94	92	73-121			

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date	Date	Elogo
Analyte Client ID:	MW-1-032212	FWL	METHOR	Prepared	Analyzed	Flags
Laboratory ID:	03-187-01					
Diesel Range Organics	ND	0.71	NWTPH-Dx	3-28-12	3-28-12	U1
Lube Oil Range Organics	ND ND	0.41	NWTPH-Dx	3-28-12	3-28-12	01
Surrogate:	Percent Recovery	Control Limits	INVITIT DX	0 20 12	0 20 12	
o-Terphenyl	88	50-150				
o respiretly:	00	00 700				
Client ID:	MW-2-032212					
Laboratory ID:	03-187-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	MW-3-032212					
Laboratory ID:	03-187-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MW-4-032212					
Laboratory ID:	03-187-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	MW-6-032212					
Laboratory ID:	03-187-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW-8-032212					
Laboratory ID:	03-187-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
, ,						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

Onits. Trig/L (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16-032212					
Laboratory ID:	03-187-07					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-14-032212					
Laboratory ID:	03-187-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MM 45 022242					
	MW-15-032212					
Laboratory ID:	03-187-09	0.00	AUA/TOLL D	0.00.40	0.00.40	
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	MW-9-032312					
Laboratory ID:	03-187-10					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
o respicitly	32	00 700				
Client ID:	MW-5-032312					
Laboratory ID:	03-187-11					
Diesel Range Organics	ND	0.27	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW-7-032312					
Laboratory ID:	03-187-12					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
	Percent Recovery	Control Limits	INVVII II-DA	J-ZU-1Z	J-2U-12	
Surrogate:		50-150				
o-Terphenyl	95	30-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

3 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-032312					
Laboratory ID:	03-187-13		A WATER LEE	0.00.40	0.00.10	
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-12-032312					
Laboratory ID:	03-187-14					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-13-032312					
Laboratory ID:	03-187-15					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	MW-17-032312					
Laboratory ID:	03-187-16					
Diesel Range Organics	1.0	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil	0.58	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-11-032312					
Laboratory ID:	03-187-17					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil	0.44	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-28-12	3-28-12	_
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				_
o-Terphenyl	93	50-150				

Analyte	Res	sult	Recovery		Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	03-18	37-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			88	88	50-150			
Laboratory ID:	03-18	37-05						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
			0.4	0.5	E0 4E0			

o-Terphenyl 94 95 50-150

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page _____ of _____

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 9809	52	(in working			L	abo	rat	ory	Nu	mb	er:					l	13	-	16	5 1		
	Phone: (425) 883-3881 • www.onsite-env.c	om	(Check	-			П									T		T					
Compar	FARALLON	Sam	***************************************	1 D											5								
Project	Number:														DI/SII	Y.							
Project	525-006	2 Da	ays	☐ 3 D	ays						m		_	081A	\$ 8270	815							
Froject	Name: Aber Leen Facility Manager: AKOS FERETE	1 Star	ndard (7 Days)	(TPH analysi	is 5 Days)						8260E	SIM	v-level)	cides 8	sticides	oicides				1664			
Project	Manager: AKOS FERETE	/					E			_	olatiles	270D/ PAHs)	VO) MI	Pestic	orus Pe	id Herl	etals	etals		rease)			
Sample	Ken Brevt		(0	other)	_	-HCID	-Gx/B	-Gx	×Q-	s 8260E	vated V	atiles 8 v-level	270D/S	082 chlorine	phospho	ated Ac	Total RCRA Metals	TCA M	Aetals	il and g			sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	No. of Cont.	NWTPH	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082 Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total R(Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664			% Moisture
	MW-1-032212	3/2211	21015	W	5		X		X														
	MW-2-032212	1	1055	W	5		X		X														
	MW-3-032212		1135	W	5		X		X														
	MW-4-032212		1220	W	5		X		X														
	MW-6-03 2212		1310	W	5		X		X														
	MW-8-032212		1345	W	5		X		X														
	MW-16-032212		1430	W	5		X		X														
	MW-14-032212		1505	W	5		X		X														
	MW-15-032212	V	1540	W	5		X		X														
	MW-9-032312	3/23/13	2 850	W	5		X		X					,									
	Signature		Company			Date	е		Time			Con	ment	s/Spec	ial Ins	tructio	ns						
Relino	quished Randon		PARI	ALLO,	N	31	23/1	2	173	30													
Recei	ived	n)	965	Le E	TV.	3	1231	lz	17	12	>												
Relino	quished																						
Recei	ived																						
Relino	quished		9																				
Recei	ived																						
Revie	ewed/Date		Reviewed/D	***									matog	ırams w	ith fina	l repor	t 🗌						
		Data Package:	Level III	_evel IV	E	Electro	onic Da	ta De	liverab	les (El	DDs)												

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin			L	abo	rat	ory	Nu	mb	er:						0	3	- 1	8	7		
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 525-006 Project Name: Aberdeen Facility Project Manager: AKOS FSKSTE Sampled by:	Same 2 Day Stand	vs dard (7 Days)	☐ 1 Da	ays s 5 Days)	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Sernivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pestlcides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664				% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	No. of Cont.	NWT	NWT	NWT	NWT	Volati	Halog	Semiv (with I PAHs	PCBs	Organ	Organ	Chlori	Total	Total	TCLP	HEM				% W
MW-5-032312	3/23/12	930	W	5		X		X															
MW-7-032312		1010	W	5		X		X															
MW-10-032312		1100	W	5		X		X															
MW-12-032312		1145	W	5		X		X															
MW-13-032312		1225	W	5		X		X															
MW-17-032312		1310	W	5		X		X															
MW-11-032312	1	1405	W	5		X		X															
							//												_				
				-	K	5	ラ																
Signature		ompany			Date	9	19	Time			Comm	nts/S	pecial	Instr	uctio	18							
Relinquished Kon Such	t	FARA	LLUA)		23/12		173	30)													
Received		DEZI	te f	T	31	zal	(2	12	73	0													
Relinquished																							
Received																							
Relinquished						_				0	-												
Received Poto		Reviewed/Da	ata							1		OLIV.						_					
Reviewed/Date	ta Package	Level III 🔲 L		F	lectro	nic Da	ita De	liverabl	les (E	DDs)	Chroma	togram	s with	tinal r	report					_			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

December 10, 2012

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1211-230

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on November 30, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 1211-230

Project: 525-006

Case Narrative

Samples were collected on November 30, 2012 and received by the laboratory on November 30, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The MTCA Method A clean-up level for Benzene is not achievable in samples B27A-10.5 and B9A-9.0 due to their high moisture content.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 1211-230

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27A-3.5					
Laboratory ID:	11-230-01					
Gasoline	ND	5.2	NWTPH-Gx	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	70-132				
Client ID:	B27A-10.5					
Laboratory ID:	11-230-03					
Benzene	ND	0.046	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
m,p-Xylene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	23	NWTPH-Gx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	70-132				
Client ID:	B9A-5.0					
Laboratory ID:	11-230-05					
Gasoline	ND	8.1	NWTPH-Gx	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	70-132				
Client ID:	B9A-9.0					
Laboratory ID:	11-230-06					
Benzene	ND	0.034	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
m,p-Xylene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	17	NWTPH-Gx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	122	70-132				

Laboratory Reference: 1211-230

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1203S2					
Benzene	ND	0.020	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
m,p-Xylene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	5.0	NWTPH-Gx	12-3-12	12-3-12	

Surrogate: Percent Recovery Control Limits Fluorobenzene 107 70-132

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-00	04-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	۱A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						115	114	70-132			
SPIKE BLANKS											
Laboratory ID:	SB12	.03S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.02	1.04	1.00	1.00		102	104	71-125	2	11	
Toluene	1.03	1.05	1.00	1.00		103	105	77-125	2	11	
Ethyl Benzene	1.03	1.03	1.00	1.00		103	103	76-125	0	10	
m,p-Xylene	1.04	1.03	1.00	1.00		104	103	78-124	1	9	
o-Xylene	1.00	0.985	1.00	1.00		100	99	77-123	2	9	
Surrogate:											
Fluorobenzene						105	106	70-132			

Laboratory Reference: 1211-230

Project: 525-006

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
S-S-5-120112					
12-003-07					
ND	27	NWTPH-Dx	12-3-12	12-3-12	_
ND	54	NWTPH-Dx	12-3-12	12-3-12	
Percent Recovery	Control Limits				
124	50-150				
S-N-4-120112					
12-003-09					
8500	140	NWTPH-Dx	12-3-12	12-4-12	
ND	420	NWTPH-Dx	12-3-12	12-4-12	U1
Percent Recovery	Control Limits				
	50-150				F
S-E-2-120112					
12-003-10					
44	29	NWTPH-Dx	12-3-12	12-3-12	_
ND	58	NWTPH-Dx	12-3-12	12-3-12	
Percent Recovery	Control Limits				
118	50-150				
	S-S-5-120112 12-003-07 ND ND Percent Recovery 124 S-N-4-120112 12-003-09 8500 ND Percent Recovery S-E-2-120112 12-003-10 44 ND Percent Recovery	S-S-5-120112 12-003-07 27 ND 54 Percent Recovery 124 Control Limits 50-150 S-N-4-120112 12-003-09 140 420 ND 420 Percent Recovery 12-003-10 Control Limits 50-150 S-E-2-120112 12-003-10 29 58 Percent Recovery Control Limits Control Limits Control Limits Control Limits Control Limits Control Limits Control Limits	S-S-5-120112 12-003-07 ND 27 NWTPH-Dx ND 54 NWTPH-Dx Percent Recovery 124 Control Limits 50-150 S-N-4-120112 12-003-09 NWTPH-Dx ND 420 NWTPH-Dx Percent Recovery 50-150 S-E-2-120112 12-003-10 NWTPH-Dx ND 58 NWTPH-Dx Percent Recovery Control Limits Percent Recovery Control Limits	Result PQL Method Prepared S-S-5-120112 12-003-07 ND 27 ND NWTPH-Dx 12-3-12 NWTPH-Dx 12-3-12 Percent Recovery 124 Control Limits 50-150 S-N-4-120112 12-003-09 NWTPH-Dx 12-3-12 ND 12-3-12 NWTPH-Dx 12-3-12 12-3-12 Percent Recovery 12-003-10 Control Limits 50-150 S-E-2-120112 12-003-10 NWTPH-Dx 12-3-12 12-3-12 ND 58 NWTPH-Dx 12-3-12 Percent Recovery Control Limits Percent Recovery Control Limits 12-3-12	Result PQL Method Prepared Analyzed S-S-5-120112 12-003-07 12-003-07 12-3-12 12-3-12 ND 27 ND NWTPH-Dx 12-3-12 12-3-12 Percent Recovery 124 Control Limits 50-150 12-3-12 12-3-12 12-3-12 S-N-4-120112 12-003-09 NWTPH-Dx 12-3-12 12-4-12 ND 420 NWTPH-Dx 12-3-12 12-4-12 Percent Recovery 12-003-10 Control Limits 50-150 12-3-12 12-3-12 12-3-12 A4 29 ND NWTPH-Dx 58 12-3-12 12-3-12 12-3-12 Percent Recovery Control Limits 12-3-12 12-3-12 12-3-12

Laboratory Reference: 1211-230

Project: 525-006

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1203S1					
Diesel Range Organics	ND	25	NWTPH-Dx	12-3-12	12-3-12	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

			Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Red	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	12-00	02-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil	17500	16900				3	NA	
Surrogate:				•			•	
o-Terphenyl					50-150			S,S

Laboratory Reference: 1211-230

Project: 525-006

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27A-3.5					
Laboratory ID:	11-230-01					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	6.5	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	6.5		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.052	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.052	EPA 8021B	12-3-12	12-4-12	

Surrogate: Percent Recovery Control Limits Fluorobenzene 104 70-132

Laboratory Reference: 1211-230

Project: 525-006

VOLATILE PETROLEUM HYDROCARBONS

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B9A-5.0					
Laboratory ID:	11-230-05					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	17	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	17		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	7.9	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	6.9	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	15		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.081	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.081	EPA 8021B	12-3-12	12-4-12	

Surrogate: Percent Recovery Control Limits Fluorobenzene 114 70-132

Laboratory Reference: 1211-230

Project: 525-006

VOLATILE PETROLEUM HYDROCARBONS METHOD BLANK QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1203S2					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.050	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.050	EPA 8021B	12-3-12	12-4-12	

Surrogate: Percent Recovery Control Limits Fluorobenzene 101 70-132

Laboratory Reference: 1211-230

Project: 525-006

VOLATILE PETROLEUM HYDROCARBONS DUPLICATE QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

g (pp)					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-00	04-01								
	ORIG	DUP								
Aliphatic C5-C6	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C6-C8	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Total Aliphatic:	NA	NA	NA	NA		NA	NA	NA	30	
Aromatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C12-C13	ND	ND	NA	NA		NA	NA	NA	30	
Total Aromatic:	NA	NA	NA	NA		NA	NA	NA	30	
MTBE	ND	ND	NA	NA		NA	NA	NA	30	
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	

Surrogate:

Fluorobenzene 110 112 70-132

Laboratory Reference: 1211-230

Project: 525-006

VOLATILE PETROLEUM HYDROCARBONS SPIKE BLANK QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

					Source	Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB12	.03S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.999	1.04	1.00	1.00		100	104	71-125	4	11	
Toluene	1.02	1.06	1.00	1.00		102	106	77-125 4		11	
Ethyl Benzene	1.01	1.05	1.00	1.00		101	105	76-125	4	10	
m,p-Xylene	1.02	1.06	1.00	1.00		102	106	78-124	4	9	
o-Xylene	0.975	1.00	1.00	1.00		98	100	77-123	3	9	
Surrogate:											
Fluorobenzene						105	106	70-132			

Laboratory Reference: 1211-230

Project: 525-006

% MOISTURE

Date Analyzed: 12-3-12

Client ID	Lab ID	% Moisture
B27A-3.5	11-230-01	9
B27A-10.5	11-230-03	53
B9A-5.0	11-230-05	26
B9A-9.0	11-230-06	48

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

December 10, 2012

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

On December 3rd, 2 samples were received by our laboratory and assigned our laboratory project number EV12120002. The project was identified as your Lab Ref #11-230 / Proj #525-006. The sample identification and requested analyses are outlined on the attached chain of custody record.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT: OnSite Environmental Inc. DATE: 12/10/2012

14648 NE 95th Street ALS JOB#: EV12120002

Redmond, WA 98052 WDOE ACCREDITATION: C601

CLIENT CONTACT: David Baumeister

CLIENT PROJECT: Lab Ref #11-230 / Proj #525-006

CASE NARRATIVE

No sample abnormalities were qualified in this report.

CLIENT: OnSite Environmental Inc. DATE: 12/10/2012

14648 NE 95th Street ALS JOB#: EV12120002

Redmond, WA 98052 ALS SAMPLE#: -01

CLIENT CONTACT: David Baumeister DATE RECEIVED: 12/3/2012

CLIENT PROJECT: Lab Ref #11-230 / Proj #525-006 COLLECTION DATE: 11/30/2012 9:40:00 AM

CLIENT SAMPLE ID B27A-3.5 WDOE ACCREDITATION: C601

G						•		
		DA	TA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A	ANALYSIS BY	
>C8-C10 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	1
>C10-C12 Aliphatics	NWEPH	37	5.0	1	MG/KG	12/04/2012	EBS	i
>C12-C16 Aliphatics	NWEPH	500	5.0	1	MG/KG	12/04/2012	EBS	1
>C16-C21 Aliphatics	NWEPH	460	5.0	1	MG/KG	12/04/2012	EBS	1
>C21-C34 Aliphatics	NWEPH	820	5.0	1	MG/KG	12/04/2012	EBS	1
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	;
>C10-C12 Aromatics	NWEPH	18	5.0	1	MG/KG	12/04/2012	EBS	1
>C12-C16 Aromatics	NWEPH	370	5.0	1	MG/KG	12/04/2012	EBS	1
>C16-C21 Aromatics	NWEPH	820	5.0	1	MG/KG	12/04/2012	EBS	1
>C21-C34 Aromatics	NWEPH	1400	5.0	1	MG/KG	12/04/2012	EBS	_ ;
SURROGATE	METHOD	%REC				ANALYSIS A	ANALYSIS BY	
C25	NWEPH	95.0				12/04/2012	EBS	;
p-Terphenyl	NWEPH	109				12/04/2012	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: OnSite Environmental Inc. DATE: 12/10/2012

14648 NE 95th Street ALS JOB#: EV12120002

COLLECTION DATE:

11/30/2012 11:25:00 AM

Redmond, WA 98052 ALS SAMPLE#: -02

CLIENT CONTACT: **David Baumeister** DATE RECEIVED: 12/3/2012 CLIENT PROJECT: Lab Ref #11-230 / Proj #525-006

CLIENT SAMPLE ID B9A-5.0 WDOE ACCREDITATION: C601

		DA	TA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	8.4	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aliphatics	NWEPH	8.5	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aliphatics	NWEPH	38	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aliphatics	NWEPH	91	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aliphatics	NWEPH	150	5.0	1	MG/KG	12/04/2012	EBS
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aromatics	NWEPH	5.8	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aromatics	NWEPH	49	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aromatics	NWEPH	82	5.0	1	MG/KG	12/04/2012	EBS
						ANALYSIS A	ANALYSIS BY
SURROGATE	METHOD	%REC				DATE	DТ
C25	NWEPH	90.0				12/04/2012	EBS
p-Terphenyl	NWEPH	107				12/04/2012	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: OnSite Environmental Inc. DATE: 12/10/2012

14648 NE 95th Street ALS SDG#: EV12120002

Redmond, WA 98052 WDOE ACCREDITATION: C601

CLIENT CONTACT: David Baumeister

CLIENT PROJECT: Lab Ref #11-230 / Proj #525-006

LABORATORY BLANK RESULTS

MBLK-1242012 - Batch R79505 - Soil by NWEPH

			REPORTING	DILUTION		ANALYSIS A	ANALYSIS	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
>C8-C10 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C10-C12 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C12-C16 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C16-C21 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C21-C34 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C10-C12 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C12-C16 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C16-C21 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C21-C34 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	

CLIENT: OnSite Environmental Inc.

DATE: 12/1

12/10/2012

14648 NE 95th Street Redmond, WA 98052 ALS SDG#:

EV12120002

CLIENT CONTACT: David B

David Baumeister

CLIENT PROJECT: Lab Ref #1

WDOE ACCREDITATION:

C601

Lab Ref #11-230 / Proj #525-006

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R79505 - Soil by NWEPH

SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	ANALYSIS DATE	ANALYSIS BY	
>C8-C10 Aliphatics - BS	NWEPH	74.0			12/04/2012	EBS	1
>C8-C10 Aliphatics - BSD	NWEPH	72.0	3		12/04/2012	EBS	1
>C10-C12 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	1
>C10-C12 Aliphatics - BSD	NWEPH	77.0	1		12/04/2012	EBS	1
>C12-C16 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	1
>C12-C16 Aliphatics - BSD	NWEPH	79.0	1		12/04/2012	EBS	1
>C16-C21 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	1
>C16-C21 Aliphatics - BSD	NWEPH	81.0	4		12/04/2012	EBS	1
>C21-C34 Aliphatics - BS	NWEPH	79.0			12/04/2012	EBS	1
>C21-C34 Aliphatics - BSD	NWEPH	81.0	3		12/04/2012	EBS	1
>C8-C10 Aromatics - BS	NWEPH	76.0			12/04/2012	EBS	1
>C8-C10 Aromatics - BSD	NWEPH	83.0	9		12/04/2012	EBS	1
>C10-C12 Aromatics - BS	NWEPH	77.0			12/04/2012	EBS	1
>C10-C12 Aromatics - BSD	NWEPH	83.0	8		12/04/2012	EBS	1
>C12-C16 Aromatics - BS	NWEPH	79.0			12/04/2012	EBS	1
>C12-C16 Aromatics - BSD	NWEPH	85.0	7		12/04/2012	EBS	1
>C16-C21 Aromatics - BS	NWEPH	82.0			12/04/2012	EBS	1
>C16-C21 Aromatics - BSD	NWEPH	86.0	5		12/04/2012	EBS	1
>C21-C34 Aromatics - BS	NWEPH	73.0			12/04/2012	EBS	1
>C21-C34 Aromatics - BSD	NWEPH	75.0	3		12/04/2012	EBS	1

APPROVED BY

Laboratory Director

Page	of	

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Subcontract Laboratory: ALS Environmental

Attention: Rick Bagan

8620 Holly Drive Everett, WA 98208

Phone Number: (425) 356-2600

Date/Time:

	_	_	
Turnar	ound	Reau	est:

1 Day 2

2 Day 3 Day

Standard

Other:

Laboratory Reference #: 11-230

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Project Number: <u>525-606</u>

Project Name:

Lab ID Sample Identification B27A - 3.5 B9A - 5.0	Date Sampled II(30(1)	Time Sampled 0940 (125	Matrix S L	# of Cont.	Requested Analysis EPH L
Relinquished by: Received by: Received by: Relinquished by: Relinquished by: Relinquished by: Received by:	5'p = A	P D'	7	Date 12/3/12 12-3 12/3/12	Time Comments/Special Instructions 1237 1257 1:257 1:25

2

MA	OnSite	
	Environmental	inc.

Chain of Custody

	1	
Page	of	

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin			L	abo	rate	ory l	er:	19	11	-	2	3 ()							
Projec	Number: 525-006 Name: Aberteen Facility Manager: Terre Pertelle	Same	ys dard (7 Days) (□ 1 D	ays	H-HCID	NWTPH-Gx/BTEX	H-Gx	H-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	3082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664	I-Meshod VPH	-Method EP	sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	No. of Cont.	NWTPH	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivo (with Io PAHs 8	PCBs 8082	Organo	Organo	Chlorir	Total F	Total N	TCLP	HEM (3	NN	% Moisture
İ	B 27A ~ 3.5	11/30/12	940	5	2		X		X												X	X	X
2	B27A-6,5		950	5	2																		
3	B27 A- 10-5		1005	5	2		X		X														χ
4	B9A-400		1115	5	2																		
5	B9A- 5.0		1125	5	2		X		X												X	X	X
6	B9A-9.0	V	1135	5	2		X		X														X
						(K	5	7		_												
							-																
	Signature		ompany			Date			Time			Commer	nts/Sp	ecial	Instr	uction	IS						
	quished Ken Shirt		FARA	110	<u>U</u>	-	30/1		15	0	5												
Rece			OSE			11/	30/	2	15	05													
Rece	quished																						
	quished																						
	ived							+															
Revi	ewed/Date		Reviewed/Da	te								Chromato	ograms	s with	final r	eport							
	Da	ita Package:	Level III 🗌 Le	evel IV	E	lectro	nic Da	ta Deli	verable	es (El	DDs)												

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 10, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1304-051

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on April 5, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on April 5, 2013 and received by the laboratory on April 5, 2013. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

Result PQL Method Itent ID: MW-18-5.0 MW-18-5.0 aboratory ID: 04-051-01 enzene 0.081 0.025 EPA 8021B oluene ND 0.12 EPA 8021B thyl Benzene 0.54 0.12 EPA 8021B ychlene 0.26 0.12 EPA 8021B		Date	
Aboratory ID: 04-051-01 enzene 0.081 0.025 EPA 8021B oluene ND 0.12 EPA 8021B thyl Benzene 0.54 0.12 EPA 8021B ,p-Xylene 0.26 0.12 EPA 8021B	Prepared	Analyzed	Flags
enzene 0.081 0.025 EPA 8021B bluene ND 0.12 EPA 8021B thyl Benzene 0.54 0.12 EPA 8021B ,p-Xylene 0.26 0.12 EPA 8021B			
ND 0.12 EPA 8021B thyl Benzene 0.54 0.12 EPA 8021B ,p-Xylene 0.26 0.12 EPA 8021B			
thyl Benzene 0.54 0.12 EPA 8021B p-Xylene 0.26 0.12 EPA 8021B	4-8-13	4-9-13	
,p-Xylene 0.26 0.12 EPA 8021B	4-8-13	4-9-13	
<i>'</i> 1	4-8-13	4-9-13	
Videos ND 0.40 EDA 0004D	4-8-13	4-9-13	
Xylene ND 0.12 EPA 8021B	4-8-13	4-9-13	
asoline 180 12 NWTPH-Gx	4-8-13	4-9-13	0
urrogate: Percent Recovery Control Limits			
luorobenzene 104 70-132			
lient ID: B-45-5.0			
aboratory ID: 04-051-02			
enzene ND 0.020 EPA 8021B	4-8-13	4-9-13	
oluene ND 0.055 EPA 8021B	4-8-13	4-9-13	
thyl Benzene ND 0.055 EPA 8021B	4-8-13	4-9-13	
p-Xylene ND 0.055 EPA 8021B	4-8-13	4-9-13	
Xylene ND 0.055 EPA 8021B	4-8-13	4-9-13	
asoline ND 5.5 NWTPH-Gx	4-8-13	4-9-13	
urrogate: Percent Recovery Control Limits			
luorobenzene 93 70-132			
lient ID: B-45-12.0			
aboratory ID: 04-051-03			
enzene 0.10 0.034 EPA 8021B	4-8-13	4-9-13	
oluene ND 0.17 EPA 8021B	4-8-13	4-9-13	
thyl Benzene ND 0.17 EPA 8021B	4-8-13	4-9-13	
p-Xylene ND 0.17 EPA 8021B	4-8-13	4-9-13	
Xylene ND 0.17 EPA 8021B	4-8-13	4-9-13	
asoline ND 17 NWTPH-Gx	4-8-13	4-9-13	
urrogate: Percent Recovery Control Limits			
luorobenzene 105 70-132			

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408S1					
Benzene	ND	0.020	EPA 8021B	4-8-13	4-8-13	
Toluene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
Ethyl Benzene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
m,p-Xylene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
o-Xylene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
Gasoline	ND	5.0	NWTPH-Gx	4-8-13	4-8-13	

Surrogate: Percent Recovery Control Limits Fluorobenzene 93 70-132

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE			•								
Laboratory ID:	04-0	56-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	NΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						91	93	70-132			
SPIKE BLANKS											
Laboratory ID:	SB04	08S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.989	0.996	1.00	1.00		99	100	71-125	1	11	
Toluene	1.01	1.01	1.00	1.00		101	101	77-125	0	11	
Ethyl Benzene	0.985	0.960	1.00	1.00		99	96	76-125	3	10	
m,p-Xylene	1.01	0.968	1.00	1.00		101	97	78-124	4	9	
o-Xylene	0.980	0.912	1.00	1.00		98	91	77-123	7	9	
Surrogate:											
Fluorobenzene						94	96	70-132			

Project: 525-006

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-18-5.0					
Laboratory ID:	04-051-01					
Diesel Fuel #2	1700	31	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	600	62	NWTPH-Dx	4-8-13	4-8-13	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B-45-5.0					
Laboratory ID:	04-051-02					
Diesel Fuel #2	540	31	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	1300	61	NWTPH-Dx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	B-45-12.0					
Laboratory ID:	04-051-03					
Diesel Range Organics	ND	58	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	160	120	NWTPH-Dx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK		·			, , , ,	
Laboratory ID:	MB0408S1					
Diesel Range Organics	ND	25	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

			Perd	ent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-04	16-04						
	ORIG	DUP						
Diesel Range Organics	47.9	71.6				40	NA	_
Lube Oil	1070	423				87	NA	
Surrogate:								
o-Terphenyl			82	87	50-150			

Project: 525-006

TOTAL LEAD EPA 6010C

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	04-051-01					
Client ID:	MW-18-5.0					
Lead	14	6.2	6010C	4-8-13	4-8-13	
Lab ID:	04-051-02					
Client ID:	B-45-5.0					
Lead	ND	6.1	6010C	4-8-13	4-8-13	
Lab ID:	04-051-03					
Client ID:	B-45-12.0					
Lead	ND	12	6010C	4-8-13	4-8-13	

Project: 525-006

TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted: 4-8-13
Date Analyzed: 4-8-13

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0408SM1

Analyte Method Result PQL

Lead 6010C **ND** 5.0

Project: 525-006

TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted: 4-8-13
Date Analyzed: 4-8-13

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 04-051-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	11.0	10.7	2	5.0	

Project: 525-006

TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 4-8-13
Date Analyzed: 4-8-13

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 04-051-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	254	97	256	98	1	

Project: 525-006

% MOISTURE

Date Analyzed: 4-8-13

Client ID	Lab ID	% Moisture
MW-18-5.0	04-051-01	19
B-45-5.0	04-051-02	18
B-45-12.0	04-051-03	57

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

M	OnSite	
-	Environmental	

1	i	
Page	of	

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Lab	orator	y Numb								04	-0	5	1	
Phone: (425) 883-3881 • www.onsite-env.com Company: Project Number: Project Name: Layer de Aberdan Project Manager: Sampled by: Sample Identification	(Check One) Same Day 1 Day 2 Days 3 Day Standard (7 Days) (TPH analysis 5 Days) (other) Date Sampled Matrix H 9 1 3 1019 951	Number of Containers	NWTPH-HCID NWTPH-GX/BTEX	NWTPH-Gx NWTPH-Dx	Volatiles 8260C Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270U/SIM (low-leve) PCBs 8082A	Organochlorine Pesticides 8081B	Organophorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A Tratal RCRA Matals, MTCA Matals friends mea	TCLP Metals	HEM (oil and grease) 1664A	XXX Lead by EPA boro				% Moisture
Received Received Relinquished Received Relinquished Received Relinquished Received Reviewed/Date	Company Caracle Reviewed/Date	3n II		15/13 (S(3		0	Comme										
Dat	a Package: Level III Level IV		Electr	onic Data	Deliverables (E			J		_							

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 19, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1304-100

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on April 11, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on April 11, 2013 and received by the laboratory on April 11, 2013. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

ate Date	
ared Analyzed F	Flags
	,
6-13 4-16-13	
6-13 4-16-13	
7-13 4-17-13	
7-13 4-17-13	
7-13 4-17-13	
′	7-13 4-17-13 7-13 4-17-13

Surrogate: Percent Recovery Control Limits Fluorobenzene 100 71-116

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0416W2					
Benzene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Toluene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Ethyl Benzene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
m,p-Xylene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
o-Xylene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Gasoline	ND	100	NWTPH-Gx	4-16-13	4-16-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	71-116				
Laboratory ID:	MB0417W1					
Benzene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Toluene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Ethyl Benzene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
m,p-Xylene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
o-Xylene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Gasoline	ND	100	NWTPH-Gx	4-17-13	4-17-13	
Surrogate:	Percent Recovery	Control Limits		·		
Fluorobenzene	88	71-116				

Data

Data

Surrogate:	Percent Recovery	Control Limits
Fluorobenzene	88	71-116

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									-	
Laboratory ID:	04-11	14-11								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Eluarahanzana						90 00	71 116			

Fluorobenzene 90 71-116

MATRIX SPIKES

WATRIX SPINES											
Laboratory ID:	04-1	14-10									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	45.1	48.1	50.0	50.0	ND	90	96	81-121	6	11	
Toluene	45.3	48.0	50.0	50.0	ND	91	96	83-122	6	13	
Ethyl Benzene	44.4	47.1	50.0	50.0	ND	89	94	81-121	6	15	
m,p-Xylene	44.9	47.3	50.0	50.0	ND	90	95	80-119	5	16	
o-Xylene	44.7	47.0	50.0	50.0	ND	89	94	80-119	5	15	
Surrogate:											
Fluorobenzene						93	94	71-116			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 525-006

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-18-041113			•	-	
Laboratory ID:	04-100-01					
Diesel Range Organics	3.9	0.26	NWTPH-Dx	4-12-13	4-15-13	М
Lube Oil Range Organics	ND	1.4	NWTPH-Dx	4-12-13	4-15-13	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0412W1					
ND	0.13	NWTPH-Dx	4-12-13	4-16-13	_
ND	0.20	NWTPH-Dx	4-12-13	4-16-13	
Percent Recovery	Control Limits				
<i>7</i> 5	50-150				
	MB0412W1 ND ND Percent Recovery	MB0412W1 ND 0.13 ND 0.20 Percent Recovery Control Limits	MB0412W1 ND 0.13 NWTPH-Dx ND 0.20 NWTPH-Dx Percent Recovery Control Limits	Result PQL Method Prepared MB0412W1 4-12-13 ND 0.20 NWTPH-Dx 4-12-13	Result PQL Method Prepared Analyzed MB0412W1 ND 0.13 NWTPH-Dx 4-12-13 4-16-13 ND 0.20 NWTPH-Dx 4-12-13 4-16-13 Percent Recovery Control Limits

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-08	37-06						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			78	96	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

W	OnSite Environmental Inc.
	Analytical Laboratory Testing Services

	1
of	
	_ of

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.opsite.env.com	(in w	round Request vorking days)		1	Labo	rato	ory I	Nun	nbe	r:				C) 4	-	10	0 (
Phone: (425) 883-3881 • www.onsite-env.com Company: Favollo Project Number: 50-50-00b Project Manager: Terry Project Manager: Terry Sampled by: Marada Grickson - Mulanay ab ID Sample Identification	Same D. 2 Days Standarr (TPH and	[3 dd (7 Days) alysis 5 Days) (other)	Days latrix	NWTPH-HCID	NWTPH-GX/BTEX	NWTPH-Gx	NWTPH-DX	Volatiles 8260C	Natural Volatiles 62000	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals/ MTCA Metals (circle one)	Metals	HEM (oil and grease) 1664A			% Moisture
Received Signature Received	Comp	pany	lon		Date 4	1)1	3	Time	55	-	ommen	ts/Spe	ecial (Instruc	ctions	3				
Relinquished	-	()		1	-11	10 1.) (30											
Received																				
Relinquished																				
Received																				
Reviewed/Date		viewed/Date									omato	grams	with fi	nal rep	ort [
Dat	a Package: Leve	el III Level I	V		Electron	nic Dat	a Deliv	erable	s (EDI	Os) 🗆 _				-						

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 14, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1308-045

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on August 7, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on August 6, 2013 and received by the laboratory on August 7, 2013. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Method 5035A VOA vials were not provided for sample B53-080613-5.0. The sample was therefore extracted from a 4-ounce jar for analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B46-080613-3.9					
08-045-01					
ND	0.020	EPA 8021B	8-12-13	8-12-13	
ND	0.047	EPA 8021B	8-12-13	8-12-13	
ND	0.047	EPA 8021B	8-12-13	8-12-13	
ND	0.047	EPA 8021B	8-12-13	8-12-13	
ND	0.047	EPA 8021B	8-12-13	8-12-13	
ND	4.7	NWTPH-Gx	8-12-13	8-12-13	
Percent Recovery	Control Limits				
94	71-121				
B47-080613-3.7					
08-045-04					
ND	0.020	EPA 8021B	8-12-13	8-12-13	
ND	0.043	EPA 8021B	8-12-13	8-12-13	
ND	0.043	EPA 8021B	8-12-13	8-12-13	
ND	0.043	EPA 8021B	8-12-13	8-12-13	
ND	0.043	EPA 8021B	8-12-13	8-12-13	
ND	4.3	NWTPH-Gx	8-12-13	8-12-13	
Percent Recovery	Control Limits				
100	71-121				
B47-080613-10.0					
08-045-05					
ND	0.020	EPA 8021B	8-12-13	8-12-13	
ND	0.066	EPA 8021B	8-12-13	8-12-13	
ND	0.066	EPA 8021B	8-12-13	8-12-13	
ND	0.066	EPA 8021B	8-12-13	8-12-13	
ND	0.066	EPA 8021B	8-12-13	8-12-13	
ND	6.6	NWTPH-Gx	8-12-13	8-12-13	
Percent Recovery	Control Limits				
88	71-121				
	B46-080613-3.9	B46-080613-3.9 08-045-01	ND 0.020 EPA 8021B	Result PQL Method Prepared B46-080613-3.9 08-045-01 0.020 EPA 8021B 8-12-13 ND 0.047 EPA 8021B 8-12-13 ND 4.7 NWTPH-Gx 8-12-13 Percent Recovery 94 Control Limits 71-121 8-12-13 B47-080613-3.7 Control Limits 71-121 8-12-13 ND 0.043 EPA 8021B 8-12-13 ND 4.3 NWTPH-Gx 8-12-13 Percent Recovery 100 Control Limits 71-121 8-12-13 ND 0.066 EPA 8021B 8-12-13 ND 0.066 EPA 8021B 8-12-13 ND 0.066	Result PQL Method Prepared Analyzed B46-080613-3.9 08-045-01 08-045-01 8-12-13 8-12-13 8-12-13 ND 0.047 EPA 8021B 8-12-13 8-12-13 ND 4.7 NWTPH-Gx 8-12-13 8-12-13 Percent Recovery Official Limits 71-121 B47-080613-3.7 08-045-04 8-12-13 8-12-13 8-12-13 ND 0.043 EPA 8021B 8-12-13 8-12-13 ND 4.3 NWTPH-Gx 8-12-13 8-12-13 Percent Recovery Control Limits ND

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Client ID:	0 0 (11 /				Date	Date	
Benzene	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene	Client ID:	B48-080613-7.1					
Toluene ND 0.045 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.045 EPA 8021B 8-12-13 8-12-13 Mn,p-Xylene Mn Mn 0.045 EPA 8021B 8-12-13 8-12-13 Mn,p-Xylene Mn 0.052 EPA 8021B 8-12-13 8-12-13 Mn,p-Xylene Mn 0.093 EPA	Laboratory ID:	08-045-08					
Ethyl Benzene	Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene ND 0.045 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.045 EPA 8021B 8-12-13 8-12-13 Gasoline ND 4.5 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 8-12-13 8-12-13 Client ID: B49-080613-3.3 Laboratory ID: 8-12-10 8-12-13 8-12-13 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 0.052 EPA 8021B 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 8-12-13 8-12-13 8-12-13 <td>Toluene</td> <td>ND</td> <td>0.045</td> <td>EPA 8021B</td> <td>8-12-13</td> <td>8-12-13</td> <td></td>	Toluene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
O-Xylene ND 0.045 EPA 8021B 8-12-13 8-12-13 Gasoline ND 4.5 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Bloom Process Control Limits NWTPH-Gx 8-12-13 8-12-13 Client ID: B49-080613-3.3 Laboratory ID: 08-045-10 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 mp-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 0.052 EPA 8021B 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 8-12-13 8-12-13 8-12-13	Ethyl Benzene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
Gasoline ND 4.5 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery 87 Control Limits Fluorobenzene 87 71-121 Client ID: B49-080613-3.3 Laboratory ID: 08-045-10 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 mp-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 71-121 8-12-13 8-12-13 Client ID: B50-080613-6.1 R50-045-14 R50-045-14 R50-045-14 R50-045-14 R50-045-14 R50-045-14 R	m,p-Xylene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
Surrogate: Percent Recovery Control Limits Fluorobenzene 87 71-121 Client ID: B49-080613-3.3 B49-080613-3.3 Laboratory ID: 08-045-10 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 mp-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 0.052 EPA 8021B 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.093 EPA 8021B 8-12	o-Xylene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
Client ID: B49-080613-3.3 Laboratory ID: 08-045-10 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 m.p-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 8-12-13 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.093 EPA 8021B 8-12-13 8-12-13 m.p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13	Gasoline	ND	4.5	NWTPH-Gx	8-12-13	8-12-13	
Client ID:	Surrogate:	Percent Recovery	Control Limits				
December ND 0.020 EPA 8021B 8-12-13 8-12-13	Fluorobenzene	87	71-121				
ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 m,p-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits Control Limits Control Limits Contro	Client ID:	B49-080613-3.3					
Toluene ND 0.052 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 m,p-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 0.052 EPA 8021B 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 O-Surrogate: Percent Recovery Control Limits	Laboratory ID:	08-045-10					
Ethyl Benzene ND 0.052 EPA 8021B 8-12-13 8-12-13 m,p-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene NA 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 O-Xylene Percent Recovery Control Limits	Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 71-121 Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 0 Surrogate: Percent Recovery Control Limits	Toluene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
ND 0.052 EPA 8021B 8-12-13 8-12-13 Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery 101 Control Limits 71-121 Fluorobenzene Control Limits Client ID: B50-080613-6.1 B50-080613-6.1 B50-080613-6.1 B50-080613-6.1 Laboratory ID: 08-045-14 08-045-14 09-045-14 09-045-13 09-12-13	Ethyl Benzene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
Gasoline ND 5.2 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Fluorobenzene Control Limits 71-121 Recovery 71-121 Control Limits 71-121 Client ID: B50-080613-6.1 B50-080618-8-12-13 B512-13 B512-1	m,p-Xylene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
Surrogate: Percent Recovery Fluorobenzene Control Limits 71-121 Client ID: B50-080613-6.1 B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Gasoline	ND	5.2	NWTPH-Gx	8-12-13	8-12-13	
Client ID: B50-080613-6.1 Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-045-14 Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Fluorobenzene	101	71-121				
Benzene ND 0.020 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Client ID:	B50-080613-6.1					
ND 0.093 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Laboratory ID:	08-045-14					
Ethyl Benzene 0.43 0.093 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Toluene	ND	0.093	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene 0.28 0.093 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Ethyl Benzene	0.43	0.093	EPA 8021B	8-12-13	8-12-13	
ND 0.093 EPA 8021B 8-12-13 8-12-13 Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	m,p-Xylene	0.28	0.093	EPA 8021B	8-12-13	8-12-13	
Gasoline 130 9.3 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.093	EPA 8021B	8-12-13	8-12-13	
Surrogate: Percent Recovery Control Limits	Gasoline	130	9.3	NWTPH-Gx	8-12-13	8-12-13	0
·	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene						

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B50-080613-10.8					
Laboratory ID:	08-045-16					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.9	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	71-121				
Client ID:	B51-080613-8.0					
Laboratory ID:	08-045-18					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.4	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				
Client ID:	B51-080613-13.6					
Laboratory ID:	08-045-19					
Benzene	ND	0.028	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	14	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Description	3 3 (11)				Date	Date	
Benzene	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene	Client ID:	B52-080613-6.5					
Toluene ND 0.048 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.048 EPA 8021B 8-12-13 8-12-13 ND 0.049 EPA 8021B 8-12-13 8-12-13 ND 0.049 EPA 8021B 8-12-13 8-12-13 ND 0.011 EPA 8021B 8-12-13 8-12-13 ND 0.011 EPA 8021B 8-12-13 8-12-13 ND 0.049 EPA 8021B 8-12-13 8-12-13 EPA 80	Laboratory ID:	08-045-20					
Section Sect	Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
ND	Toluene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
ND 0.048 EPA 8021B 8-12-13 8-12-13	Ethyl Benzene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
Sasoline ND	m,p-Xylene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
Surrogate: Percent Recovery Control Limits Fluorobenzene 87 71-121	o-Xylene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
Record Recovery Control Limits Fluorobenzene Recovery	Gasoline	ND	4.8	NWTPH-Gx	8-12-13	8-12-13	
Client ID:	Surrogate:	Percent Recovery	Control Limits				
Decoratory Dec	Fluorobenzene	87	71-121				
ND 0.022 EPA 8021B 8-12-13	Client ID:	B52-080613-12.8					
Toluene ND 0.11 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene ND 0.11 EPA 8021B 8-12-13 8-12-13 m,p-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 Gasoline ND 11 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 71-121 Client ID: B53-080613-5.0 Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 O-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 O-Surrogate: Percent Recovery Control Limits	Laboratory ID:	08-045-22					
Ethyl Benzene ND 0.11 EPA 8021B 8-12-13 8-12-13 m,p-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 m-p-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 m-p-Xylene ND 0.11 EPA 8021B 8-12-13 8-12-13 B-12-13	Benzene	ND	0.022	EPA 8021B	8-12-13	8-12-13	
ND	Toluene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
ND	Ethyl Benzene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Gasoline ND 11 NWTPH-Gx 8-12-13 8-12-13 Surrogate: Percent Recovery Fluorobenzene Control Limits 71-121 Control Limits 71-121 Client ID: B53-080613-5.0 Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Surrogate: Percent Recovery Control Limits Fluorobenzene 94 71-121 Client ID: B53-080613-5.0 B53-080613-5.0 Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Client ID: B53-080613-5.0 Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Gasoline	ND	11	NWTPH-Gx	8-12-13	8-12-13	
Client ID: B53-080613-5.0 Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 O-Xylene ND 37 NWTPH-Gx 8-12-13 0 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-045-23 Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Fluorobenzene	94	71-121				
Benzene 0.97 0.075 EPA 8021B 8-12-13 8-12-13 Toluene ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Client ID:	B53-080613-5.0					
ND 0.37 EPA 8021B 8-12-13 8-12-13 Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Laboratory ID:	08-045-23					
Ethyl Benzene 13 0.37 EPA 8021B 8-12-13 8-12-13 m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Benzene	0.97	0.075	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Toluene	ND	0.37	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene 3.4 0.37 EPA 8021B 8-12-13 8-12-13 o-Xylene ND 1.9 EPA 8021B 8-12-13 8-12-13 U1 Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	Ethyl Benzene	13	0.37	EPA 8021B	8-12-13	8-12-13	
o-Xylene	m,p-Xylene	3.4	0.37	EPA 8021B	8-12-13	8-12-13	
Gasoline 1700 37 NWTPH-Gx 8-12-13 8-12-13 O Surrogate: Percent Recovery Control Limits	o-Xylene	ND	1.9	EPA 8021B	8-12-13	8-12-13	U1
Surrogate: Percent Recovery Control Limits	Gasoline	1700	37	NWTPH-Gx	8-12-13	8-12-13	
·	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene						

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B53-080613-13.5					
Laboratory ID:	08-045-25					
Benzene	ND	0.023	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	11	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	71-121				
Client ID:	B54-080613-7.8					
Laboratory ID:	08-045-26					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.3	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	71-121				
Client ID:	B54-080613-13.2					
Laboratory ID:	08-045-27					
Benzene	ND	0.029	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	15	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				

Project: 525-006

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	MD004004					
Laboratory ID:	MB0812S1					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.0	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	71-121				
Laboratory ID:	MB0812S2					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.0	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				

71-121 Fluorobenzene

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Cinto: mg/kg (ppin	,				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-04	15-04									
-	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	IΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						100	100	71-121			
Laboratory ID:	08-05	59-05									
,	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA			IΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			IΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA			IΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA			IΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						95	90	71-121			
SPIKE BLANKS											
Laboratory ID:	SB08	12S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.932	0.899	1.00	1.00		93	90	73-121	4	10	
Toluene	0.965	0.924	1.00	1.00		97	92	75-124	4	10	
Ethyl Benzene	0.987	0.950	1.00	1.00		99	95	75-125	4	9	
m,p-Xylene	0.997	0.957	1.00	1.00		100	96	75-126	4	9	
o-Xylene	1.00	0.964	1.00	1.00		100	96	74-123	4	8	
Surrogate:		 									
Fluorobenzene						91	86	71-121			

Project: 525-006

NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B46-080613-3.9					
Laboratory ID:	08-045-01					
Diesel Range Organics	ND	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	B47-080613-3.7					
Laboratory ID:	08-045-04					
Diesel Range Organics	ND	30	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	B47-080613-10.0					
Laboratory ID:	08-045-05					
Diesel Range Organics	ND	34	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND ND	54 68	NWTPH-DX	8-12-13 8-12-13	8-12-13 8-12-13	
Surrogate:	Percent Recovery	Control Limits	INVV I F II - DX	0-12-13	0-12-13	
o-Terphenyl	96	50-150				
0-Terphenyi	90	30-130				
Client ID:	B48-080613-7.1					
Laboratory ID:	08-045-08					
Diesel Range Organics	ND	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	61	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
, ,						
Client ID:	B49-080613-3.3					
Laboratory ID:	08-045-10					
Diesel Range Organics	ND	34	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	68	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B50-080613-6.1					
Laboratory ID:	08-045-14					
Diesel Fuel #2	460	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	64	NWTPH-Dx	8-12-13	8-12-13	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 525-006

NWTPH-Dx

Matrix: Soil

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B50-080613-10.8					
08-045-16					
ND	35	NWTPH-Dx	8-12-13	8-12-13	
140	70	NWTPH-Dx	8-12-13	8-12-13	
Percent Recovery	Control Limits				
99	50-150				
·		NWTPH-Dx	8-12-13	8-12-13	
110	50-150				
B51_080612_12 6					
	EE	NIMTDH Dv	0 10 10	0.40.40	
230	110	NWTPH-DX	8-12-13 8-12-13	8-12-13 8-12-13	
2.30	110	INVV I F III-DX	0-12-13	0-12-13	
	Control Limita				
Percent Recovery	Control Limits				
	Control Limits 50-150				
Percent Recovery					
Percent Recovery 101					
Percent Recovery 101 B52-080613-6.5					
Percent Recovery 101	50-150	NWTPH-Dx	8-12-13	8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20	33	NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND	33 65	NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND	33				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery	33 65 Control Limits				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery	33 65 Control Limits				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery	33 65 Control Limits				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85	33 65 Control Limits				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8	33 65 Control Limits				
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22	33 65 Control Limits 50-150	NWTPH-Dx	8-12-13	8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50	33 65 Control Limits 50-150	NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240	33 65 Control Limits 50-150 47 94	NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery	33 65 Control Limits 50-150 47 94 Control Limits	NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80	33 65 Control Limits 50-150 47 94 Control Limits	NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80 B53-080613-5.0	33 65 Control Limits 50-150 47 94 Control Limits	NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80 B53-080613-5.0 08-045-23	33 65 Control Limits 50-150 47 94 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13 8-12-13	8-12-13 8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80 B53-080613-5.0 08-045-23 3300	33 65 Control Limits 50-150 47 94 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13 8-12-13	8-12-13 8-12-13 8-12-13	
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80 B53-080613-5.0 08-045-23 3300 ND	33 65 Control Limits 50-150 47 94 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13 8-12-13	8-12-13 8-12-13 8-12-13	U1
Percent Recovery 101 B52-080613-6.5 08-045-20 ND ND Percent Recovery 85 B52-080613-12.8 08-045-22 50 240 Percent Recovery 80 B53-080613-5.0 08-045-23 3300	33 65 Control Limits 50-150 47 94 Control Limits 50-150	NWTPH-Dx NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13 8-12-13	8-12-13 8-12-13 8-12-13	U1
	B50-080613-10.8	B50-080613-10.8	B50-080613-10.8 08-045-16 ND 35 NWTPH-Dx ND 70 NWTPH-Dx Percent Recovery 99 Control Limits 50-150 B51-080613-8.0 08-045-18 31 NWTPH-Dx ND 62 NWTPH-Dx Percent Recovery 110 Control Limits 50-150 B51-080613-13.6 08-045-19 NWTPH-Dx ND 55 NWTPH-Dx	B50-080613-10.8	B50-080613-10.8

Project: 525-006

NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B53-080613-13.5					_
Laboratory ID:	08-045-25					
Diesel Range Organics	ND	48	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	97	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	B54-080613-7.8					
Laboratory ID:	08-045-26					
Diesel Range Organics	ND	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
011 4 15	DE4 000040 40 0					
Client ID:	B54-080613-13.2					
Laboratory ID:	08-045-27					
Diesel Range Organics	ND	58	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	200	120	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	rtoourt	. 42	moniou	rioparou	Analyzou	riugo
Laboratory ID:	MB0812S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-12-13	8-12-13	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rece	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-04	1 5-08						
	ORIG	DUP	•					
Diesel Range Organics	ND	ND	•			NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:			•					
o-Terphenyl			114	108	50-150			
Laboratory ID:	08-05	55-13						
•	ORIG	DUP						
Mineral Oil	88.7	87.3				2	NA	
Lube Oil	149	135				10	NA	
Surrogate:							-	
o-Terphenyl			121	112	50-150			

Project: 525-006

% MOISTURE

Date Analyzed: 8-12-13

Client ID	Lab ID	% Moisture
B46-080613-3.9	08-045-01	20
B47-080613-3.7	08-045-04	18
B47-080613-10.0	08-045-05	26
B48-080613-7.1	08-045-08	18
B49-080613-3.3	08-045-10	27
B50-080613-6.1	08-045-14	19
B50-080613-10.8	08-045-16	29
B51-080613-8.0	08-045-18	19
B51-080613-13.6	08-045-19	55
B52-080613-6.5	08-045-20	24
B52-080613-12.8	08-045-22	47
B53-080613-5.0	08-045-23	21
B53-080613-13.5	08-045-25	48
B54-080613-7.8	08-045-26	19
B54-080613-13.2	08-045-27	57

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			La	abo	rate	ory	Nur	nb	er:								80	-	04	5	
Phone: (425) 883-3881 • www.onsite-env.com Company: Farallon Project Number: 525-006 Project Name: Lakeside Project Manager: Jefry P. & Riley C. Sampled by: Dincer Kayhan	(TPH		1 Day 3 Days	Number of Containers	OIC	k/BTEX			5600	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals/ MTCA Metals (circle one)	Ils	HEM (oil and grease) 1664A					
ab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of	NWTPH-HCID	NWTPH-Gx/B1	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenate	Semivolatil (with low-le PAHs 8270	PCBs 8082A	Organochic	Organophos	Chlorinated	Total RCRA	TCLP Metals	HEM (oil ar					% Moisture
2 B46-080613-3.9 2 11 - 7.4	8/6/13	0905	soil	2		X		X															乂
2 11 - 7.4 3 11 - 13.9		0928																					
4 B47-080613-3.7		0947				K		K															メ
5 11 - 10.0		0954				X		X															X
6 11 - 13.6		1000				6	DB		DIS)													
7 848-080613- 2.9		1020				X	NE	X	a	0													
8 11 - 7.1		1028				K		X															X
9 11 - 13.3		1034																					
1	4		1	4																			
Signature	Co	mpany				Date			Time		Co	mme	nts/Sp	ecial	Instru	uction	S						
Received Received Received Received Received Received Received Received	TE SE			Q, X.		13	100	10	74	We WI Spr	66		eo mu						en.	- - J	か		
Reviewed/Date Reviewed/Date											Chr	omato	grams	with	final re	eport [

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		Turnaround Request (in working days) Laboratory Nul								ber	r: 08-045													
Phone: (425) 883-3881 • www.onsite-env.com Company:	-	(Check One)						T		T		T	T	T	T	(et		T		T	T			
Farallon Project Number:	Same	Day [1 Day											SIM		circle or								
525-006	2 Day	rs [3 Days										81B	3270D/	3151A	etals (c								
Project Name: Lakeside	Stand (TPH	lard (7 Days) analysis 5 Da	- DD	60					8260C	Σ	-level)		ides 80	ticides 8	icides 8	TCA M		1664A						
Project Manager: Jerry P. & Riley C.	7 8	/121	,,,,,	Number of Containers		LEX			Volatiles 8260C Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)		Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals/ MTCA Metals (circle one)		(oil and grease) 1664A						
Sampled by: Dincer Kayhan	<u> </u>	(other)		er of Co	1-HCID	NWTPH-Gx/BTEX	XS -	XO-F	Volatiles 8260C Halogenated Vo	latiles 8	w-level 270D/S	082A	chlorine	ohospho	ated Ac	CRA Me	Aetals	il and g					chire	oinic
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH-HCID	NWTPH	NWTPH-Gx	XU-FIT WW	Volatile Haloge	Semivo	(with lo	PCBs 8082A	Organo	Organo	Chlorina	Total R	TCLP Metals	HEM (o					% Mois	NO INTERNA
10 B49-080613 - 3,3	8/6/13	1050	Soil	2		X	0	X															3	X
11 11 - 8,5		1055		1																				
12 11 - 15.0		1100																						
13 B50-080613-3.3		1135																						
14 11 - 6.1		1139				K	(X)	X
15 11 - 8.3		1142																						
16 11 - 10.8		1146				X	0	X															>	1
17 11 - 12.4		1200				NO	,_																	
B51-080613-6.2		1213				多	DE	4			No	+ ;	13	579	m	PL	E	_		-	-			_
18 11 - 8.p/	4	1215	4	4		X		X															;	X
Signature	Co	mpany	*			Date			Time		Ce	ommei	nts/Sp	ecial	Instr	uction	15							
Relinquished												Wa	01	1	_	11		2				1		
Received Prosta		Speck.				8	7	(9-1	79		00(_	ay i		108		a	na	7513		
Relinquished		Speed	Y			9	17		10:10)a		Cin		21 10	19 i	11	7	0	-C0	NE	172 Y	M	-	
Received		0	8E			87	7/1	3	101	0		SIS	WI		2_	H	UU	3_1	72	11_		FER	52	
Relinquished																								
Received																								
Reviewed/Date	Reviewed/Date							Ch	romato	grams	with	final r	eport							X X Moisture				
Da	ata Package: L	evel III 🗌 Le	evel IV		Ele	ectror	nic Data	Deliv	/erables	(EDD	s) 🗌 _				_									

Page 3 of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number:																80	- 0	45	5			
Phone: (425) 883-3881 • www.onsite-env.com Company: Facallon Project Number: Facallon	Same	Duj L	1 Day											D/SIM	A	Total RCRA Metals/ MTCA Metals (circle one)							
525-006 Project Name:	2 Day		3 Days							()			3081B	8270	8151	Metals							
Lakeside	Stand (TPH	lard (7 Days) analysis 5 Da	ays)	73						8260C	SIM v-level		sides 8	sticides	oicides	ATCA		1664					
Project Manager: Jerry P. & Riley C.	J 8	14		of Containers		Ä			0	olatiles	8270D/ I PAHS) SIM (lov		Pesti	orus Pe	id Herl	etals/ N		rease)					
Sampled by: Dincer Kayhan	140	(other)		er of Co	NWTPH-HCID	NWTPH-Gx/BT	+G×	H-Dx	Volatiles 8260C	Halogenated Volatiles	olatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level)	1082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	CRA Me	Netals	HEM (oil and grease) 1664A					sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivolatiles (with low-level PAHs 8270D/S	PCBs 8082A	Organo	Organo	Chlorin	Total R	TCLP Metals	HEM (c					% Moisture
B51-080613 - H.O	8/6/13	1221	Soil	1							UOT	n	- <	A	me	PLE	-		-	-	-	\blacksquare	
19 11 - 13.6		1225	1			ox		X															X
20 B52-080613-6,5		1310				×		×															X
21 11 - 10.0		1315													- /	No	1	25	CEIL	JE]	D	DB	
22 11 -12.8		1317				X		K				T	T										X
23 853-080613- 5.0		1338		$ \cdot \rangle$		X		X													1		×
24 11 - 10.0		1345				V		V													T		
25 11 - 13.5		1348				X		X					T	1					\forall	+		\Box	X
H B54-080613-7.8		1433				4		K															X
27 11 - 13.2/	P	1435	*			7 8		4					1						+	+			1
Signature		mpany	*			Date			Time		Co	mme	nts/S	pecial	Instr	uction	18						
Relinquished		4)					1	, 1	11			11		0				
Received		Seed	1			4	11	7	9	170	a	to	e	l l		C	211		tor		avie	dys	13
Relinquished Received		Mosty	/			8/	17	7	10	100	a	M	-	C	au.		= 3		1	- 1	0	ON	FIRM
Received	7	105	XE			81	7	13	10	old	0	SA	mf	216	S	1-1	OLI		מט'	MC	7	HEN	D(7
Relinquished							-		, ,														D17
Received																							
Reviewed/Date		Reviewed/Da	te								Chi	romate	ogram	s with	final r	eport							
	Data Package: L	evel III 🗌 Le	evel IV		El	lectro	nic Da	ata Del	iverabl	es (E	DDs) 🗌 _												

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2013

Riley Conkin Farallon Consulting, LLC Queen Anne Square East Bldg. 200 West Mercer Street, Suite 302 Seattle, WA 98119

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1308-222

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on August 29, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on August 28, 2013 and received by the laboratory on August 29, 2013. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-082813					
Laboratory ID:	08-222-01					
Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	ND	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	71-112				
Client ID:	MW-19-082813					
Laboratory ID:	08-222-02					
Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	7.2	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	2.1	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	ND	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	71-112				
Client ID:	MW-20-082813					
Laboratory ID:	08-222-03					
Benzene	65	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	1.3	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	2.7	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	460	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-112				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0830W1					
ND	1.0	EPA 8021B	8-30-13	8-30-13	
ND	1.0	EPA 8021B	8-30-13	8-30-13	
ND	1.0	EPA 8021B	8-30-13	8-30-13	
ND	1.0	EPA 8021B	8-30-13	8-30-13	
ND	1.0	EPA 8021B	8-30-13	8-30-13	
ND	100	NWTPH-Gx	8-30-13	8-30-13	
	MB0830W1 ND ND ND ND ND ND	MB0830W1 ND 1.0 MB0830W1 ND 1.0 EPA 8021B Result PQL Method Prepared MB0830W1 ND 1.0 EPA 8021B 8-30-13 ND 1.0 EPA 8021B 8-30-13	MB0830W1 ND 1.0 EPA 8021B 8-30-13 8-30-13 ND 1.0 EPA 8021B 8-30-13 8-30-13		

Surrogate: Percent Recovery Control Limits Fluorobenzene 81 71-112

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-19	95-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		ı	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		ı	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		ı	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		ı	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		ı	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		ı	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						81	81	71-112			
MATRIX SPIKES											
Laboratory ID:	08-19	95-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.7	45.4	50.0	50.0	ND	99	91	78-120	9	12	
Toluene	51.0	47.3	50.0	50.0	ND	102	95	80-121	8	12	
Ethyl Benzene	51.5	47.8	50.0	50.0	ND	103	96	81-120	7	13	
m,p-Xylene	52.3	49.1	50.0	50.0	ND	105	98	81-119	6	13	
o-Xylene	52.1	49.1	50.0	50.0	ND	104	98	79-117	6	13	
Surrogate:											
Fluorobenzene						110	99	71-112			

Project: 525-006

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-082813					_
Laboratory ID:	08-222-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-30-13	8-30-13	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	68	50-150				
Client ID:	MW-19-082813					
Laboratory ID:	08-222-02					
Diesel Range Organics	0.74	0.26	NWTPH-Dx	8-30-13	8-30-13	
Lube Oil Range Organics	0.64	0.41	NWTPH-Dx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Olivert ID.	MM 00 000040					
Client ID:	MW-20-082813					
Laboratory ID:	08-222-03					
Diesel Range Organics	2.7	0.26	NWTPH-Dx	8-30-13	8-30-13	
Lube Oil Range Organics	1.2	0.41	NWTPH-Dx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-30-13	8-30-13	_
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

			Perd	ent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								_
Laboratory ID:	08-22	20-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil Range Organics	1.11	1.04				7	NA	
Surrogate:								
o-Terphenyl			82	77	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Dane	1 05	
Page	OT	- 4

	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com						abo	rato	ory	Numl	ber	:									08-222					
Project LA Project Ri Samp	AND	(TPH	dard (7 Days) I analysis 5 Da (other)	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	VWTPH-Gx	NWTPH-Dx	Volatiles 8260C Halogenated Volatiles 8260C	mivolatiles 8270D/SIM	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals/ MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664A						% Moisture	
Lab ID	Sample Identification Mw-21-08283	Sampled 8/28	Sampled 1240	Matrix	5		2		Z) Î	S	N 14	<u> </u>	ō	ō	Ö	12	Ĕ	I					1	%	
2	MW-19-082813	1	1340	1	1		4		7		T													1		
3	mw-20-082813	1	1447	4	4		j		1																	
																							<u>+</u>			
Rece Relin	guished sived sive	F	Sold X				8	29	13	Time 12 13 13 143	0p	Co	omme	nts/Sp	pecial	Instr	uction	าร								
Reviewed/Date Reviewed/Date				te								Chi	romato	grams	with	final r	eport									
		Data Daaliana	Laurat III T	ovol IV 🗆			laatra	nia Dat	to Dol	ivorables	/EDD															

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2015

Riley Conkin Farallon Consulting, LLC 720 Olive Way , Suite 840 Seattle, WA 98119

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1505-280B

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on May 29, 2015 and received by the laboratory on May 29, 2015. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

TOTAL LEAD EPA 6010C

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-280-01					
Client ID:	SFE Trench-1					
Lead	54	5.5	6010C	6-11-15	6-11-15	

Project: 525-006

TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted: 6-11-15
Date Analyzed: 6-11-15

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0611SM1

Analyte Method Result PQL

Lead 6010C **ND** 5.0

Project: 525-006

TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted: 6-11-15
Date Analyzed: 6-11-15

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-199-32

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	53.9	54.0	0	5.0	

Project: 525-006

TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 6-11-15
Date Analyzed: 6-11-15

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-199-32

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	281	91	281	91	0	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

MA	OnSite	
	Environmental	Inc.

Chain of Custody

Analytical Laboratory T 14648 NE 95th Stre		naround Req working da			La	bor	ato	ry I	Num	be	r:	05	- 2	2 8	0									
Company: LakeSide Todustrik Project Number: 525-00 Project Name: Chandre	oste onkin	Same 2 Day		1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	-Gx	4-Dx	Volatiles 8260C Halogenated Volatiles 8260C	Mis/COZON	Sermivoratives 82.70J/Sinvi (with low-level PAHs) PAHs 8270D/SIM (low-level)	1082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MHEAL Metals LEAD	TCLP Metals	or and greade) 1004A				sture
Lab ID Sample Id	lentification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPH-Gx	NWTPH-Dx	Volatile Haloge	Somivo	(with lo	PCBs 8082A	Organo	Organo	Chlorin	Total R	Total N	TCLP Metals	N I I				% Moisture
1 SFE Trench -	.)	5-29-15	8:05	Soil	4		X		X									X)					X
SFE Trend		529-18		Soil	2	— ,Ū	n																	
										\forall		\top	+		T									
		-									-	+	+											\Box
10						+	_				1	+		1										
			1			\dashv	-	-	\dashv	+	+	+	+	+					1				+	
						-	-		-	-	+	+	+	-									-	
										-	4	_	+	-					-	+			-	-
													4							_			-	
Signa	ture		ompany				Date			Time			Comme		ecial	Instru	ection	S		1			^	
Relinquished	rande Nei	L	akeside	- Inch!	strie	25							att	M	(X)A	Jole	العا	5/11	1,5.	D31	1 da	4 -
Received	Well -	/	Karall	on,						14	20)					,						T	AT
Relinquished	1996		Farsl	100			5/	29/	15	14	30		. 1	_	5									
Received	They	-	T. Dog			4	9/2	9/19	5	23	-	2	0		*									
Relinquished	They	***	1 Dog	SV.			0/	29/	5	3:3	90	~												
Received		2	(AL	_		SIZ	29/	15	15	33	0												
Reviewed/Date			Reviewed/Da					100-7-					hroma	togra	ms w	ith fina	al rep	ort [
	Data Package: St	tandard L	evel III L	evel IV		Ele	ectron	nic Dat	a Deli	iverable	s (ED	Ds)												

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 5, 2015

Riley Conkin Farallon Consulting, LLC 720 Olive Way , Suite 840 Seattle, WA 98119

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1505-280

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on May 29, 2015 and received by the laboratory on May 29, 2015. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SFE Trench-1					
Laboratory ID:	05-280-01					
Benzene	0.091	0.020	EPA 8021B	6-1-15	6-3-15	
Toluene	0.25	0.067	EPA 8021B	6-1-15	6-3-15	
Ethyl Benzene	ND	0.067	EPA 8021B	6-1-15	6-3-15	
m,p-Xylene	0.16	0.067	EPA 8021B	6-1-15	6-3-15	
o-Xylene	ND	0.067	EPA 8021B	6-1-15	6-3-15	
Gasoline	ND	6.7	NWTPH-Gx	6-1-15	6-3-15	
_						

Surrogate: Percent Recovery Control Limits Fluorobenzene 79 68-123

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0601S1					
Benzene	ND	0.020	EPA 8021B	6-1-15	6-1-15	
Toluene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
Ethyl Benzene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
m,p-Xylene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
o-Xylene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
Gasoline	ND	5.0	NWTPH-Gx	6-1-15	6-1-15	

Surrogate: Percent Recovery Control Limits Fluorobenzene 85 68-123

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-27	74-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						78	83	68-123			
SPIKE BLANKS											
Laboratory ID:	SB06	01S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.916	0.839	1.00	1.00		92	84	75-117	9	13	
Toluene	0.922	0.859	1.00	1.00		92	86	78-118	7	12	
Ethyl Benzene	0.927	0.866	1.00	1.00		93	87	78-118	7	12	
m,p-Xylene	0.930	0.910	1.00	1.00		93	91	78-121	2	13	
o-Xylene	0.929	0.890	1.00	1.00		93	89	77-119	4	13	
Surrogate:											
Fluorobenzene						84	79	68-123			

Project: 525-006

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SFE Trench-1					
Laboratory ID:	05-280-01					
Diesel Range Organics	810	140	NWTPH-Dx	6-2-15	6-3-15	N
Lube Oil	4000	280	NWTPH-Dx	6-2-15	6-3-15	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0602S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-2-15	6-2-15	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-2-15	6-2-15	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-0	16-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N.	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N.	Α	NA	NA	NA	
Surrogate:											
o-Terphenyl						76	67	50-150			

o- I erphenyl

Project: 525-006

% MOISTURE

Date Analyzed: 6-1-15

Client ID Lab ID % Moisture

SFE Trench-1 05-280-01 9

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

MA	OnSite Environmental	Inc.
	Analytical Laboratory Testing Service	

Chain of Custody

Page ______ of ________

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req working da			La	bo	rato	ry N	lum	ber	: ()5	- 2	28	0								
Phone: (425) 883-3881 • www.onsite-env.com		(Check One)						-		T		T	T	T T		1							
Lakeside Industries, Inc. GARALL	☐ Same	- Day	1 Day											Σ									
525-006	☐ 2 Day		3 Days										81B	Organophosphorus Pesticides 8270D/SIM	3151A								
Project Name:	X Stand	dard (7 Days) analysis 5 Da							260C	5	evel)		es 80	sides 8	ides 8				64A				
	(ТРН	analysis 5 Da	ays)	ners					iles 82	JIS/Q	ds)		sticid	Pestic	lerbic	(0	100		se) 16				
Sampled by:				ontai		этех		2	Volat	8270	/SIM		ne Pe	horus	Acid H	Metals	Metal		grea				
Amanda Neice		(other)		er of C	무무	1-Gx/	×5-	XO-H	s 626	olatiles	w-leve	3082A	chlori	dsoud	ated /	CRA	ITCA	Metals	oil and				sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-DX	Volatiles 6200C Halogenated Volatiles 8260C	Semivo	(with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organo	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
1 SFE Trench -/	5-29-15	8:05	Soil	4		X		X															X
SFE Treach-Z	529-15	-	Soil	2	7	n																	
										1	+					1							
				-				-							-	-		\vdash	-		-	+	\vdash
																		_	-				
		1																					
																			1				
								\exists		T													
				-				-		+										+			
							-	-	-	+	-	-		-					-	+	-	+	+
													. 10			••							
Signature		ompany			-	Date	- 10		Time			ommer		jeciai	Instri	uction	IS						
Relinquished Omando Nei	L	akeside Farall	- Inch	stri	es	5-	29-1	5 1	12:2	Opn	_ '	att	M										
Received	/	Farall	On,			5/	29/1	5/	142	0			-										
Relinquished		Faral	100			5/	29/	5	143	30		î		1									
Received CM	-	T. Dog				4/2	9/15		2:3		_ ,	1	1	7									
Relinquished 971	-	T Dos	ar .			0/	240	5	3:30	nac	~ ·												
Received	3	- (8	202	7		Ś	19/	15	15	30													
Reviewed/Date		Reviewed/Da	nte		,	100					Ch	romat	ogran	ms w	ith fin	al rep	ort [
Data Package: St.	andard 🗆 L	evel III 🔲 L	evel IV		El	ectror	nic Data	a Deliv	erables	(EDD	s) 🗌 _			-34									

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 8, 2016

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1606-060

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on June 7, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on June 7, 2016 and received by the laboratory on June 7, 2016. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	SP1-E-060716					
Laboratory ID:	06-060-03					
Diesel Fuel #2	16000	270	NWTPH-Dx	6-7-16	6-7-16	_
Lube Oil	12000	530	NWTPH-Dx	6-7-16	6-7-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0607S2					
Diesel Range Organics	ND	25	NWTPH-Dx	6-7-16	6-7-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-7-16	6-7-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-05	50-02								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										_
o-Terphenyl						62 68	50-150			

Project: 525-006

% MOISTURE

Date Analyzed: 6-7-16

Client ID Lab ID % Moisture

SP1-E-060716 06-060-03 6

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page _____ of _____

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			La	abo	rate	ory	Nu	mb	er:	0	6 -	0	6 (
Phone: (425) 883-3881 • www.onsite-env.com Company: ARALLON Project Number: 525-006 Project Name: LAKESIDE TNOUSTIES Project Manager: Jerry Partele Sampled by: Ken Shub	(TPH			Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	1 (oil and grease) 1664A	,				% Moisture
ab ID Sample Identification	Sampled	Sampled	Matrix	Num	NN	NW	NN NN	NN NN	Vola	Halo	Sem (with	PCB	Orga	Orga	Chlo	Tota	Tota	TCL	HEM		4			% 2
SP1-W-060716	6/7/16	1055	5	2																				
2 SPI-C-060716		1100	5	2																				
3 SPI-E-060716		1105	5	2				X																X
4 TR-W-1,5		1120	5	2																				
5 TR-E-1.5		1125	5	2																				
6 TR-S-115		1130	5	2																				
7 TR-N-1.5		1135	5	2																				
8 TR-B-20	1	1145	5	2																				
		100					1	2	>	1														
							1			7														
Signature	Co	ompany				Date			Time)	C	omm	ents/S	pecial	Instr	uction	ns							
Relinquished Ren Bank	1	FAR	ALL	21	1	61	711	6	14	5.	5	R	SU		51	0/-	-E	_	06	07	16	0	N	
Received		1	DE			6	7/1	6		45	3	2	4-	-h	1 1	_	1	U =	56	4		0		
Relinquished												-		_		· ir i		0.		-	OV	1	7	•
Received												1	+(1		101	10	1	r	rte	re	A	SA	P	
Relinquished												TC) (911	le	V	er	61	41	A	NA	5A	tia	of
Received												re	50	11	5									
Reviewed/Date		Reviewed/Da	te								С	hroma	atogra	ıms w	ith fin	al rep	port [
Data Package: \$	Standard 🗆 L	evel III 🗌 Le	evel IV		Ele	ectror	nic Da	ta De	liverat	oles (EDDs) [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 5, 2017

Riley Conkin Farallon Consulting, LLC 1809 7th Ave., Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1704-263

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on April 27, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on April 26, 2017 and received by the laboratory on April 27, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FW1-042617					
Laboratory ID:	04-263-01					
Benzene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Toluene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
o-Xylene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Gasoline	ND	400	NWTPH-Gx	5-3-17	5-3-17	
_						

Surrogate: Percent Recovery Control Limits Fluorobenzene 89 61-118

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-	-	
Laboratory ID:	MB0503W1					
Benzene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Toluene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
o-Xylene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Gasoline	ND	100	NWTPH-Gx	5-3-17	5-3-17	

Surrogate: Percent Recovery Control Limits Fluorobenzene 92 61-118

					Source	Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-26	64-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						94	93	61-118			
MATRIX SPIKES											
Laboratory ID:	04-26	64-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.2	48.2	50.0	50.0	ND	98	96	80-120	2	13	
Toluene	49.7	48.7	50.0	50.0	ND	99	97	81-115	2	14	
Ethyl Benzene	51.0	49.9	50.0	50.0	ND	102	100	81-114	2	12	
m,p-Xylene	50.1	49.1	50.0	50.0	ND	100	98	81-114	2	13	
o-Xylene	50.1	49.2	50.0	50.0	ND	100	98	81-113	2	11	
Surrogate:											
Fluorobenzene						95	95	61-118			

Project: 525-006

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FW1-042617					
Laboratory ID:	04-263-01					
Diesel Fuel #2	27	0.26	NWTPH-Dx	5-2-17	5-3-17	
Lube Oil Range Organics	ND	9.9	NWTPH-Dx	5-2-17	5-3-17	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0502W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-2-17	5-3-17	_
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-2-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

Analyte	Re	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	04-2	53-06								
	ORIG	DUP								
Diesel Range Organics	0.678	0.580	NA	NA		NA	NA	16	NA	
Lube Oil Range	ND	0.515	NA	NA		NA	NA	NA	NA	
Surrogate: o-Terphenyl						86 71	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

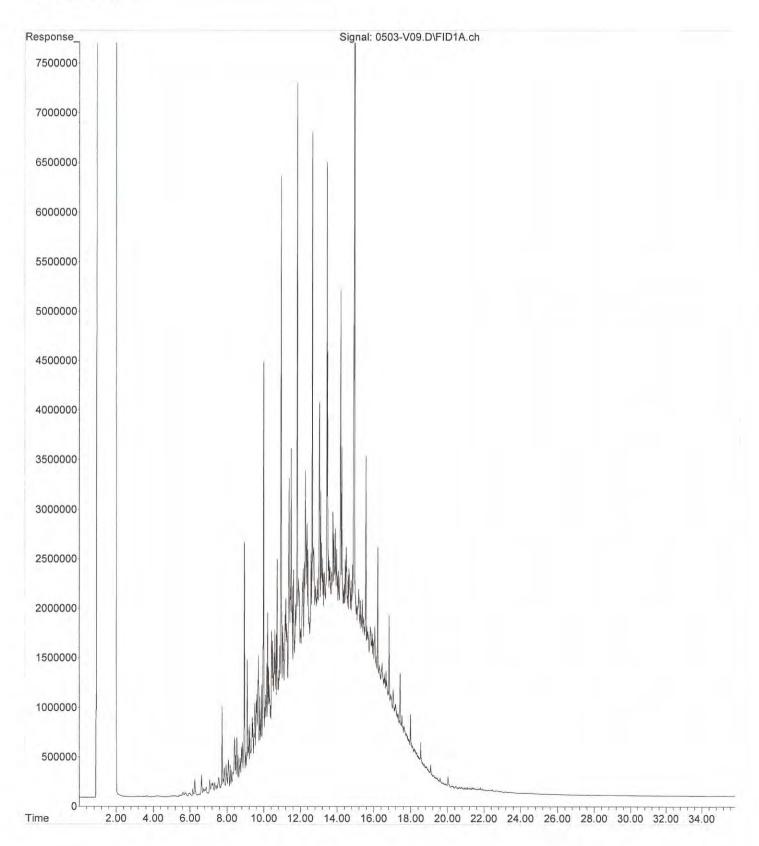
PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

		1
Page	of	

Analyt 14648	Tur (ii	Turnaround Request (in working days)		Laboratory Number: 04-26								2 6	3														
Project Number: Project Name: Project Manager: Face Project Name:	2: (425) 883-3881 · www.onsite-env.com 1100 5-006 Eside Conkin B Sample Identification	Date		1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	WITH-GX DS	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A					% Moisture
to the same of the	-042617	Y/26/17		W	5		X	X	×	_	_	ш	0, 2	ш			0		-	-	-			+	\dagger		%
	042617	4/26/17		W	5			1																1	1	1	
				\			Ti																		1	1	
																										1	
											1	M	2													1	
											1	1	9														
													1														
															1												
				,												1											
Relinquished	Signature Mar Bouse		Earallo	_			Date 4/	26/		Time 150	00		Com	ment	s/Spe	icial I	nstru	ction	S								
Received	Mayoure		alaha	4			-/	27/	-	10:			-	to	L	D	F	-W	2	-0	142	61	7				
Relinquished	Ru		Alak	1			ub	7/1	2	113	35																
Received	2 and		Den	The E	2	4	115	7/1	7	11	35	5	-														
Relinquished	-																										
Received													Data	Pack	kage:	Sta	ndard	d 🗆	Lev	el III		Level	IV [
Reviewed/Date			Reviewed/Da	te									Chro	mato	gram	s with	n fina	l repo	ort 🗌	Elec	etronic	Data	Deliv	erables	(EDD	Os) 🗌	


File :X:\DIESELS\VIGO\DATA\V170503\0503-V09.D

Operator

Acquired : 3 May 2017 13:24 using AcqMethod V170502F.M

Instrument : Vigo Sample Name: 04-263-01

Misc Info : Vial Number: 9

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 19, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1705-076B

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076B

Project: 525-006

Case Narrative

Samples were collected on May 2, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample B59-19.0 was extracted one day out of hold-time.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076B

Project: 525-006

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-19.0					
Laboratory ID:	05-076-08					
Diesel Range Organics	ND	49	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	140	97	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				
Client ID:	B58-19.0					
Laboratory ID:	05-076-15					
Diesel Range Organics	ND	51	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	ND	100	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076B

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0516S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-09	92-03								
	ORIG	DUP								
Diesel Range Organics	65.0	53.6	NA	NA		NA	NA	19	NA	
Lube Oil Range Organics	150	144	NA	NA		NA	NA	4	NA	
Surrogate:										
o-Terphenyl						64 68	50-150			

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-19.0					
Laboratory ID:	05-076-19					
Benzo[a]anthracene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Chrysene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[b]fluoranthene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[a]pyrene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	32 - 122				
Pyrene-d10	77	33 - 125				
Terphenyl-d14	86	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0517S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	32 - 122				
Pyrene-d10	89	33 - 125				
Terphenyl-d14	104	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-2	17-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0827	0.0857	0.0833	0.0833	ND	99	103	30 - 143	4	31	
Chrysene	0.0795	0.0806	0.0833	0.0833	ND	95	97	32 - 129	1	33	
Benzo[b]fluoranthene	0.0766	0.0765	0.0833	0.0833	ND	92	92	23 - 140	0	29	
Benzo(j,k)fluoranthene	0.0819	0.0867	0.0833	0.0833	ND	98	104	32 - 119	6	30	
Benzo[a]pyrene	0.0783	0.0804	0.0833	0.0833	ND	94	97	31 - 131	3	32	
Indeno(1,2,3-c,d)pyrene	0.0679	0.0698	0.0833	0.0833	ND	82	84	31 - 130	3	28	
Dibenz[a,h]anthracene	0.0780	0.0803	0.0833	0.0833	ND	94	96	40 - 119	3	27	
Surrogate:											
2-Fluorobiphenyl						83	83	32 - 122			
Pyrene-d10						88	88	33 - 125			
Terphenyl-d14						98	97	36 - 118			

Project: 525-006

% MOISTURE

Date Analyzed: 5-16-17

Client ID	Lab ID	% Moisture
B56-19.0	05-076-08	48
B58-19.0	05-076-15	51
B59-19.0	05-076-19	44

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page ____ of _______

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working da			Lat	oora	itory	Nu	mb	er:			05	-	0	7	6							
Phone: (425) 883-3881 • www.onsite-env.com Company: PARALLUN Project Number: 525-006 Project Name: LAKESIDE Aberdeev Project Manager: Jerry Pertele Sampled by: Lab ID Sample Identification	Same 2 Day Stand (TPH Date Sampled		1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level) CPAHS and	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	fotal RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
R55-2,5	512/17	1145	5	2			- 2		_		0, 2						F	_		_		+		%
2 355-8.0		1150	5	2	>	<	X													T			П	X
3 B55-14-0		1155	5	5	>	X	X					X												X
4 B55-1910		1200	5	5																				
5 B56-3.0		1220	5	2																				
6 B56-810		1225	2	2	>	X	X																	X
7 B56-14-0		1245	5	5	>	<	X				1	X											1	X
8 356-190		1255	5	5			(0)																	X
9 B57 - 3.0		1320	5	2																				
10 1357-9.0	V	1330	5	2	->	(X																	X
Signature 1) 2 1		ompany		1		ate		Time					s/Spec						111					
Received Received Received Relinquished Received Relinquished	5	PARA SP SP	dy	N .	5	5/4	17	11	000 000 000 000 000 000 000 000 000 00)	AT	NA	ldeo	56	5	m	OK	161	49	- (Di	a	*	
Received											Data	Pack	age:	Stand	dard		Leve	el III [] L	evel	IV 🗆			7
Reviewed/Date		Reviewed/Dat	е								Chron	natog	grams	with	final	repo	rt 🗌	Elec	tronic	Data	Delivera	ables (ED	DDs)	

OnSite Environmental Inc.

Chain of Custody

Page 2 of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ir	naround Req n working da	uest ys)		La	bor	rato	ory I	Nur	nbe	er:			0	5	-0	7	6							
Phone: (425) 883-3881 * www.onsite-env.com Company: FARALLON Project Number: 525-006 Project Name: LAKES I BE Aber Jeeu Project Manager: Jerry Perfect Sampled by: Lab ID Sample Identification	Same		1 Day 3 Days lys)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level) CPAHS BA	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
11 B57-14.0		1340	5	5	_	X	_	X		_		_	X				0	-	-						X
12 B57-19-0		1350	5	5		X		X					X												X
13 B58 - 2.0 2.5 DB		1405	5	2		X		X																	X
14 B58-14.0		1415	5	5		X		X				1	X												X
15 B58-1910		1425	5	5			(X)																	\otimes
16-358- (43)		-						1					-	-	-							-	-		
16 B 59 - 3.0		1450	5	2		X		X																	X
量17859-910		1500	5	2	110	关	20																		
18 B59-14.0		1510	5	5		X		X				1	X												X
19 B59-19.0	V	1520	5	5								(X												X
Signature	Go	mpany		1	1	Date			Time			Com	ment	s/Spe	cial I	nstru	ction	S							
Relinquished 2 A	5	FARK	SELC	W		5/	3(1	7	18	X	/	5	7	e	PI	Ag	2	#	1	_					
Received Van		50	Dy			5/2	4/1	7	- 1	00					,	· ·									
Relinquished Var		50	Jag			1	11		12	0	D														
Received		0	823		2	5/4	1/1	7	120	0															
Relinquished																									
Received												Data	Pack	age:	Star	ndarc		Lev	el III		Level	IV 🗆			
Reviewed/Date		Reviewed/Date	te									Chror	mato	grams	s with	n fina	repo	ort 🗌	Elec	ctronic	Data	Delive	rables (EDDs)	

OnSite Environmental Inc.

Chain of Custody

Page 3_ of 3_

	Street • Redmond, WA 98052		naround Requ n working day			Lal	oora	atory	/ Nu	ımb	er:		1		0	5	-0	7	6						
Company: FARAL Project Number: 525- Project Name: LAKES i be Project Manager: Sampled by: Ken	e Aberdeed	Same 2 Day Stand PH Date Sampled		1 Day 3 Days ys) Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NW I PH-Gx NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level) CPAHS OF	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
20 360-4		5/24/7		5	2	1	X	X																_	X
U B60-9	10		1550	5	2																				
22 360-14	t,0		1600	5	5	-	X	X					X)	X
	010		1605	5	5																				,
	.0		1626	5	2																				
	0		1630	5	2)	X	X																7	X
26 B61-14. 27 B61-19	0		1640	5	5	>	X	×					X											1	X
27 1361-19	O	V	1650	5	5																				
1000								2	1												-	-	+		
							1		/																
Sig	nature	Co	ompany		1	D	ate		Tim	e				s/Spe				S							
Received Received	Van		FARA SIP	eed	N		13	1		100		5	ce	P	190	已研	-/								
Relinquished	Van		34	sly			5/4	1/17		20															
Received	X		C	288	>		5/4	lin	1.	er)														
Relinquished																									
Received												Data	Pacl	kage:	Star	ndard		Leve	el III		evel	IV 🗆			
Reviewed/Date			Reviewed/Dat	e								Chro	mato	grams	with	final	repo	ort 🗌	Elec	tronic	Data	Delivera	ables (ED	Ds)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 15, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1705-076

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on May 2, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for samples B55-8.0, B55-14.0, B56-8.0, B56-14.0, B57-14.0, B57-19.0, B58-14.0, B59-3.0, and B60-4.0 due to the low dry weight of the sample in addition to the low sample weight in the provided VOA vial.

The MTCA Method A cleanup level of 30.0 ppm for fresh gasoline is not achievable for samples B56-14.0, B57-14.0, and B58-14.0 due to the low dry weight of the sample in addition to the low sample weight in the provided VOA vial..

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

Analyte Result PQL Method Prepared Analyzed Client ID: B55-8.0 B855-8.0 B856-8.0 B856-8.0 <th>mo. mg/ng (ppm)</th> <th></th> <th></th> <th></th> <th>Date</th> <th>Date</th> <th></th>	mo. mg/ng (ppm)				Date	Date	
Laboratory ID: 05-076-02 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m.p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 O-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 79 63-124 Client ID: B55-14.0 Laboratory ID: 05-076-03 EPA 8021B 5-10-17 5-10-17 Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 End Sulphane ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 N	ıalyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene	ient ID:	B55-8.0					
Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits FULL 5-10-17 5-10-17 Fluorobenzene 79 63-124 5-10-17 5-10-17 5-10-17 Client ID: B55-14.0 EPA 8021B 5-10-17 5-10-17 5-10-17 Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Eyylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate:	boratory ID:	05-076-02					
Ethyl Benzene	nzene	ND	0.056	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery 79 Control Limits 63-124 Formal 5-10-17 5-10-17 Client ID: B55-14.0 Laboratory ID: 05-076-03 EPA 8021B 5-10-17 5-10-17 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m.p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 0.28 EPA 8021B 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0 B56-8.0 EPA 8021B <th< td=""><td>luene</td><td>ND</td><td>0.28</td><td>EPA 8021B</td><td>5-10-17</td><td>5-10-17</td><td></td></th<>	luene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery 79 Control Limits 63-124 S-10-17 5-10-17 Client ID: B55-14.0 Separate Separate ND Separate Separate Separate ND Separate Separate ND Separate Separate Separate ND Separate Separate Separate ND Separate Separate <td>hyl Benzene</td> <td>ND</td> <td>0.28</td> <td>EPA 8021B</td> <td>5-10-17</td> <td>5-10-17</td> <td></td>	hyl Benzene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery 79 Control Limits 63-124 Fluorobenzene 79 63-124 Client ID: B55-14.0 Laboratory ID: 05-076-03 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m.p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 O-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 0.28 EPA 8021B 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 63-124 Client ID: B56-8.0 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021	p-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Surrogate: Percent Recovery Control Limits Fluorobenzene 79 63-124 Client ID: B55-14.0 Laboratory ID: 05-076-03 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m.p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 O-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0	Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Client ID: B55-14.0 Laboratory ID: 05-076-03 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0	asoline	ND	28	NWTPH-Gx	5-10-17	5-10-17	
Client ID: B55-14.0 Laboratory ID: 05-076-03 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 63-124 Client ID: B56-8.0 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.051 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17	ırrogate:	Percent Recovery	Control Limits				
Laboratory ID: 05-076-03 Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0	ıorobenzene	79	63-124				
ND	ient ID:	B55-14.0					
Benzene ND 0.056 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.28 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0	boratory ID:	05-076-03					
Ethyl Benzene ND 0.28 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0 <	enzene	ND	0.056	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 o-Xylene ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery 88 Control Limits 63-124 5-10-17 5-10-17 Client ID: B56-8.0 B56-8.0 <t< td=""><td>luene</td><td>ND</td><td>0.28</td><td>EPA 8021B</td><td>5-10-17</td><td>5-10-17</td><td></td></t<>	luene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
ND 0.28 EPA 8021B 5-10-17 5-10-17 Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0 B56-8.0 Laboratory ID: 05-076-06 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	nyl Benzene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Gasoline ND 28 NWTPH-Gx 5-10-17 5-10-17 Surrogate: Percent Recovery Recovery Bas 63-124 Control Limits 63-124 <td>p-Xylene</td> <td>ND</td> <td>0.28</td> <td>EPA 8021B</td> <td>5-10-17</td> <td>5-10-17</td> <td></td>	p-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Surrogate: Percent Recovery Control Limits Fluorobenzene 88 63-124 Client ID: B56-8.0 Laboratory ID: 05-076-06 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Client ID: B56-8.0 Laboratory ID: 05-076-06 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	asoline	ND	28	NWTPH-Gx	5-10-17	5-10-17	
Client ID: B56-8.0 Laboratory ID: 05-076-06 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	ırrogate:	Percent Recovery	Control Limits				
Laboratory ID: 05-076-06 Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	ıorobenzene	88	63-124				
Benzene ND 0.051 EPA 8021B 5-10-17 5-10-17 Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	ient ID:	B56-8.0					
Toluene ND 0.25 EPA 8021B 5-10-17 5-10-17 Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	boratory ID:	05-076-06					
Ethyl Benzene ND 0.25 EPA 8021B 5-10-17 5-10-17 m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	enzene	ND	0.051	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	luene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
	nyl Benzene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
N	p-Xylene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
o-Xylene ND 0.25 EPA 8021B 5-10-17 5-10-17	Xylene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
Gasoline ND 25 NWTPH-Gx 5-10-17 5-10-17	asoline	ND	25	NWTPH-Gx	5-10-17	5-10-17	
Surrogate: Percent Recovery Control Limits	ırrogate:	Percent Recovery	Control Limits				
Fluorobenzene 71 63-124	uorobenzene	71	63-124				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-14.0					
Laboratory ID:	05-076-07					
Benzene	ND	0.090	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	45	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	63-124				
Client ID:	B57-9.0					
Laboratory ID:	05-076-10					
Benzene	0.076	0.043	EPA 8021B	5-10-17	5-10-17	_
Toluene	ND	0.21	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	0.35	0.21	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	2.3	0.21	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	2.1	EPA 8021B	5-10-17	5-10-17	
Gasoline	350	21	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	63-124				
Client ID:	B57-14.0					
Laboratory ID:	05-076-11					
Benzene	ND	0.13	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	66	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	63-124				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-19.0					
Laboratory ID:	05-076-12					
Benzene	ND	0.039	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	19	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	B58-2.5					
Laboratory ID:	05-076-13					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	_
Toluene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	6.1	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	63-124				
Client ID:	B58-14.0					
Laboratory ID:	05-076-14					
Benzene	ND	0.078	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	39	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-3.0					
Laboratory ID:	05-076-16					
Benzene	ND	0.046	EPA 8021B	5-10-17	5-11-17	
Toluene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	0.27	0.23	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
Gasoline	46	23	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				
Client ID:	B59-14.0					
Laboratory ID:	05-076-18					
Benzene	ND	0.024	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	12	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				
Client ID:	B60-4.0					
Laboratory ID:	05-076-20					
Benzene	ND	0.039	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.20	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	0.29	0.20	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	0.54	0.20	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	1.0	EPA 8021B	5-10-17	5-10-17	
Gasoline	120	20	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	63-124				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Soil

omo. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Benzene	ND	0.021	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	11	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	63-124				
Client ID:	B61-8.0					
Laboratory ID:	05-076-25					
Benzene	0.041	0.020	EPA 8021B	5-10-17	5-11-17	
Toluene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
Gasoline	30	7.8	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	63-124				
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-11-17	_
Toluene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
Gasoline	ND	9.7	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				

Project: 525-006

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0510S1					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	5.0	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				
Laboratory ID:	MB0510S2					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	5.0	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits		·		
Fluorobenzene	77	63-124				

Project: 525-006

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Office. Trig/kg (ppff))				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result		overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-07	76-13									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IΑ	NA	NA	30	
Surrogate:											
Fluorobenzene						89	88	63-124			
I ah amatam (ID)	05.05	70.00									
Laboratory ID:	05-07										
	ORIG	DUP		N 1 A				NIA.	N1A		
Benzene	ND	ND	NA	NA			IA · · ·	NA	NA	30	
Toluene	ND	ND	NA	NA			IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						103	102	63-124			
SPIKE BLANKS											
Laboratory ID:	SB05	10S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.867	0.834	1.00	1.00		87	83	70-124	4	12	
Toluene	0.888	0.867	1.00	1.00		89	87	73-119	2	12	
Ethyl Benzene	0.909	0.886	1.00	1.00		91	89	74-117	3	12	
m,p-Xylene	0.909	0.883	1.00	1.00		91	88	75-117	3	13	
o-Xylene	0.917	0.894	1.00	1.00		92	89	75-116	3	12	
Surrogate:	0.017	3.034	1.00	1.00		<u> </u>	- 00	75 110		12	
Surrogate. Fluorobenzene						83	80	63-124			
riuoroberizerie						03	ου	03-124			

Project: 525-006

NWTPH-Dx

Matrix: Soil

Diesel Range Organics Percent Recovery Control Limits Police of Laboratory ID: B55-8.0
Laboratory ID: 05-076-02
Diesel Range Organics
Lube Oil Range Organics 150 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: o-Terphenyl Percent Recovery 55 Control Limits 50-150 Sol-150 Client ID: Laboratory ID: 05-076-03 B55-14.0 Desel Range Organics ND 120 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 120 NWTPH-Dx 5-11-17 5-10-17 ND 120 NWTPH-Dx 5-11-17 5-10-17 Surrogate: o-Terphenyl Percent Recovery 76 Sol-150 Client ID: Laboratory ID: 05-076-06 Diesel Range Organics Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: o-Terphenyl Percent Recovery 58 Sol-150 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 270 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: o-Terphenyl Percent Recovery 79 50-150 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: o-Terphenyl Percent Recovery 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Surrogate: o-Terphenyl
Client ID:
Client ID:
Laboratory ID:
Laboratory ID:
Laboratory ID:
Diesel Range Organics
Lube Oil Range Organics ND 120 NWTPH-Dx 5-11-17 5-10-17 Surrogate: o-Terphenyl Percent Recovery 76 Control Limits 50-150 5-11-17 5-10-17 Client ID: Laboratory ID: Diesel Range Organics ND Diesel Range Organics ND Diesel Range Organics ND Diesel Range Organics ND Diesel Range Organics Surrogate: o-Terphenyl ND Diesel Range Organics Surrogate: Oothrol Limits Surrogate: Oothrol Limits Surrogate: Oothrol Diesel Range Organics Surrogate: Office of Surrogate: Office of Surrogate: Office of Surrogate: Oothrol Limits Surrogate: Oothrol
Surrogate: o-Terphenyl
Client ID: B56-8.0 Laboratory ID: 05-076-06 Diesel Range Organics ND 56 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery 58 Control Limits 5-11-17 5-10-17 O-Terphenyl 58 50-150 5-11-17 5-12-17 Laboratory ID: 05-076-07 5-11-17 5-12-17 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery 79 Control Limits 50-150 Client ID: B57-9.0 B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Client ID: B56-8.0 Laboratory ID: 05-076-06 Diesel Range Organics ND 56 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery 58 Control Limits 50-150 5-11-17 5-10-17 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery 50-150 Control Limits o-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-06 Diesel Range Organics ND 56 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery Control Limits 50-150 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 5-11-17 5-12-17 O-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-06 Diesel Range Organics ND 56 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery Control Limits 50-150 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 5-11-17 5-12-17 O-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Diesel Range Organics ND 56 NWTPH-Dx 5-11-17 5-10-17 Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery Control Limits 5-11-17 5-10-17 O-Terphenyl B56-14.0 Section of the control Limits Section of the control Limits Section of the control Limits Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Lube Oil Range Organics ND 110 NWTPH-Dx 5-11-17 5-10-17 Surrogate: Percent Recovery 58 Control Limits 50-150 5-11-17 5-10-17 Client ID: B56-14.0 Laboratory ID: 05-076-07 5-11-17 5-12-17 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery 79 Control Limits 50-150 O-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Surrogate: Percent Recovery Control Limits o-Terphenyl 58 50-150 Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits o-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits o-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Client ID: B56-14.0 Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 79 50-150 Client ID: B57-9.0 B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-07 Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Diesel Range Organics ND 130 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery Control Limits 5-150 Client ID: B57-9.0 50-150 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Lube Oil Range Organics 260 260 NWTPH-Dx 5-11-17 5-12-17 Surrogate: Percent Recovery 79 Control Limits 50-150 Formula 100 Formula 1000 Formula 100 Formula 1000 <td< td=""></td<>
Surrogate: Percent Recovery Control Limits o-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
o-Terphenyl 79 50-150 Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Client ID: B57-9.0 Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Laboratory ID: 05-076-10 Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Diesel Range Organics 1000 65 NWTPH-Dx 5-11-17 5-10-17 M
Lube Oil Range Organics 320 130 NWTPH-Dx 5-11-17 5-10-17
Surrogate: Percent Recovery Control Limits
o-Terphenyl 72 50-150
Client ID: B57-14.0
Laboratory ID: 05 070 44
Laboratory ID: 05-076-11
Diesel Range Organics 140 89 NWTPH-Dx 5-11-17 5-12-17
Diesel Range Organics 140 89 NWTPH-Dx 5-11-17 5-12-17 Lube Oil Range Organics 620 180 NWTPH-Dx 5-11-17 5-12-17
Diesel Range Organics 140 89 NWTPH-Dx 5-11-17 5-12-17

Project: 525-006

NWTPH-Dx

Matrix: Soil

3 3 W 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-19.0					
Laboratory ID:	05-076-12					
Diesel Range Organics	ND	51	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	100	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	B58-2.5					
Laboratory ID:	05-076-13					
Diesel Range Organics	ND	26	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil	140	52	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	B58-14.0					
Laboratory ID:	05-076-14					
Diesel Range Organics	ND	80	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	450	160	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	63	50-150				
Client ID:	B59-3.0					
Laboratory ID:	05-076-16					
Diesel Range Organics	ND	56	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	110	NWTPH-Dx	5-11-17	5-10-17 5-10-17	
Surrogate:	Percent Recovery	Control Limits	INVITIT DX	3 11 17	0 10 17	
o-Terphenyl	77	50-150				
o respiration	,,	00 700				
Client ID:	B59-14.0					
Laboratory ID:	05-076-18					
Diesel Range Organics	ND	37	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	75	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
Client ID.	DCC 4.0					
Client ID:	B60-4.0					
Laboratory ID:	05-076-20	<u> </u>	NUATELLE	E 44 47	E 40 17	
Diesel Range Organics	ND	54	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	110	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	67	50-150				

Project: 525-006

NWTPH-Dx

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Diesel Range Organics	ND	37	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	75	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	65	50-150				
Client ID:	B61-8.0					
Laboratory ID:	05-076-25					
Diesel Range Organics	2600	330	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil	4100	660	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Diesel Range Organics	ND	35	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	69	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0510S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Laboratory ID:	MB0512S2					
Diesel Range Organics	ND	25	NWTPH-Dx	5-11-17	5-12-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-11-17	5-12-17	
Surrogate:	Percent Recovery	Control Limits				•

Surrogate: Percent Recovery Control Limits o-Terphenyl 81 50-150

					Source	Perce	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery/	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-05	59-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	١	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	١	NA	NA	NA	
Surrogate:											
o-Terphenyl						68	65	50-150			
Laboratory ID:	05-05	51-07									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	\	NA	NA	NA	
Lube Oil	2140	2120	NA	NA		NA	١	NA	1	NA	
Surrogate:											
o-Terphenyl								50-150			S,S
Laboratory ID:	05-06	61-08									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	١	NA	NA	NA	
Lube Oil	217	146	NA	NA		NA	١	NA	39	NA	
Surrogate:											
o-Terphenyl						93	109	50-150			

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B55-14.0					
Laboratory ID:	05-076-03					
Benzo[a]anthracene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	32 - 122				
Pyrene-d10	74	33 - 125				
Terphenyl-d14	86	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-14.0					
Laboratory ID:	05-076-07					
Benzo[a]anthracene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	32 - 122				
Pyrene-d10	69	33 - 125				
Terphenyl-d14	79	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-14.0					
Laboratory ID:	05-076-11					
Benzo[a]anthracene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	32 - 122				
Pyrene-d10	55	33 - 125				
Terphenyl-d14	77	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B57-19.0					
05-076-12					
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Percent Recovery	Control Limits				
85	32 - 122				
77	33 - 125				
87	36 - 118				
	B57-19.0 05-076-12 ND ND ND ND ND ND ND ND Percent Recovery 85 77	B57-19.0 05-076-12 ND 0.013 ND 0.013 ND 0.013 ND 0.013 ND 0.013 ND 0.013 Percent Recovery Control Limits 85 32 - 122 77 33 - 125	B57-19.0 05-076-12 ND 0.013 EPA 8270D/SIM Percent Recovery Control Limits 85 32 - 122 77 33 - 125	Result PQL Method Prepared B57-19.0 05-076-12 5-11-17 ND 0.013 EPA 8270D/SIM 5-11-17 Percent Recovery Control Limits 85 32 - 122 77 33 - 125 40 - 12 40 - 12	Result PQL Method Prepared Analyzed B57-19.0 05-076-12 5-11-17 5-11-17 ND 0.013 EPA 8270D/SIM 5-11-17 5-11-17 Percent Recovery Control Limits 85 32 - 122 33 - 125 77 33 - 125 33 - 125 48 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B58-14.0					
Laboratory ID:	05-076-14					
Benzo[a]anthracene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	32 - 122				
Pyrene-d10	65	33 - 125				
Terphenyl-d14	75	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-14.0					
Laboratory ID:	05-076-18					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	0.022	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	0.019	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	32 - 122				
Pyrene-d10	78	33 - 125				
Terphenyl-d14	111	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	32 - 122				
Pyrene-d10	68	33 - 125				
Terphenyl-d14	72	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Benzo[a]anthracene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	32 - 122				
Pyrene-d10	80	33 - 125				
Terphenyl-d14	94	36 - 118				

Project: 525-006

CPAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0511S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	32 - 122				
Pyrene-d10	91	33 - 125				
Terphenyl-d14	103	36 - 118				

Project: 525-006

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Percent		Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-0	61-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0811	0.0828	0.0833	0.0833	ND	97	99	30 - 143	2	31	
Chrysene	0.0759	0.0762	0.0833	0.0833	ND	91	91	32 - 129	0	33	
Benzo[b]fluoranthene	0.0744	0.0730	0.0833	0.0833	ND	89	88	23 - 140	2	29	
Benzo(j,k)fluoranthene	0.0710	0.0758	0.0833	0.0833	ND	85	91	32 - 119	7	30	
Benzo[a]pyrene	0.0745	0.0756	0.0833	0.0833	ND	89	91	31 - 131	1	32	
Indeno(1,2,3-c,d)pyrene	0.0769	0.0777	0.0833	0.0833	ND	92	93	31 - 130	1	28	
Dibenz[a,h]anthracene	0.0765	0.0790	0.0833	0.0833	ND	92	95	40 - 119	3	27	
Surrogate:											
2-Fluorobiphenyl						86	86	32 - 122			
Pyrene-d10						80	80	33 - 125			
Terphenyl-d14						93	97	36 - 118			

Project: 525-006

% MOISTURE

Date Analyzed: 5-10-17

Client ID	Lab ID	% Moisture
B55-8.0	05-076-02	53
B55-14.0	05-076-03	58
B56-8.0	05-076-06	55
B56-14.0	05-076-07	72
B57-9.0	05-076-10	62
B57-14.0	05-076-11	81
B57-19.0	05-076-12	51
B58-2.5	05-076-13	4
B58-14.0	05-076-14	69
B59-3.0	05-076-16	55
B59-14.0	05-076-18	33
B60-4.0	05-076-20	54
B60-14.0	05-076-22	33
B61-8.0	05-076-25	24
B61-14.0	05-076-26	28

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working day			La	aboi	rato	ry l	Nun	nbe	er:			0 5	-	0	7	6							
Phone: (425) 883-3881 • www.onsite-env.com Company: PARALLUN Project Number: 5 2 5 - 006 Project Name: LAKESIDE Aberdeeu Project Manager: Terry Perfele Sampled by: Lab ID Sample Identification	Same 2 Date Sampled		1 Day 3 Days ys)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level) CPAHS conty	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
R55-2,5	512/17		5	2																				П	01
2 855-80		1150	5	2		X		X																	X
3 B55-14-0		1155	5	5		X		X					X												X
4 B55-1910		1200	5	5																					
5 B56-3.0		1220	5	2																					
6 B56-810		1225	5	2		X		X																	X
7 B56-14-0		1245	5	5		X	1	X				,	X												X
8 B56-1910		1255	5	5																					
9 B57 - 3.0	1	1320	5	2																					
10 1357-9.0	V	1330	5	2	-	X		X																	X
Signature 1) 0 1		ompany		1		Date	1 (Time			_		s/Spec	100		1	-		511					
Received Kan Shadk	-	PARA	0	~		5/4	13/1	7	18	00		1		6	5,1	mp	We and	51	w		CA	4-((3	(See	
Relinquished Var		500	00	_		5).	31,	7	12			45	UF	ty	51	5	11	OA	70;	Aq	- (Pi	3		
Received		d	N/S			5/4	di																	-	
Relinquished							V - 0																		
Received												Data	Pack	age:	Stan	dard		Lev	el III		_evel	IV 🗆			
Reviewed/Date		Reviewed/Dat	re								Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐														

Chain of Custody

Page 2 of 3

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Req n working day			La	abo	rato	ory	Nur	nbe	er:			0	5	-0	7	6							
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 525-006 Project Name: Lakeside Aberdeeu	Same	ys [dard (7 Days)	1 Day 3 Days					SG Clean-up)		260C	Only)	M	evel) CPAHS ON			MIS/Q					364A				
Sampled by: Ken Snick	Date	analysis 5 Da (other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / §	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A			20 Moioth 20	Woisture
Lab ID Sample Identification [1] B57-14.0	Sampled	Sampled 1340	Matrix 5	5	Z	X	Z	X	>	I	ш	SS	X		0	0	0	7	1	F	I	1	+	>	
12 B57-19-0	31417	1350	5	5		X		X					X			7								7	-
13 B58 - 2.0 2.5 DB		1405	5	2		X		X																×	\neg
14 B58-14.0		1415	5	5		X		X					X											7	
15 358-19,0		1425	5	5																					
16-1358- (42)		1142						-							-						4,	+	-		7
16 B 59 - 3.0		1450	5	2		X		X																>	4
第11859-910		1500	5	2		英	10																		
18 B59-14.0		1510	5	5		X		X					X											>	4
19 B59-19.0	V	1520	5	5																					
Signature	Go	mpany		1		Date			Time			Com	men	s/Spe	cial l	nstru	ction	IS							
Relinquished Rm don H	5	FARE	FILC	W		5/	311	7	18	X	/	-5	20	e	P	Ag	2	#	1	_					
Received Van		50	Dy			5/2	411	7		00															
Relinquished		200	Jeg			,	4		12	0	0														
Received		0	825			5/4	Ylı	7	120	0															
Relinquished																									
Received												Data	Pacl	kage:	Sta	ndaro	d 🗆	Lev	el III		Level	IV 🗆			
Reviewed/Date		Reviewed/Dat	te									Chro	mato	gram	s with	n fina	l repo	ort 🗌	Elec	ctronic	: Data	Delive	ables (E	DDs) 🗌	

OnSite Environmental Inc.

Chain of Custody

Page 3_ of 3_

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		naround Requ n working day			La	abo	rato	ry N	Vun	nbe	er:		1/2		0	5	-(7	6						
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 525-006 Project Name: LAKES LAE Aber 6200 Project Manager: Sampled by: Ken Shuth Lab ID Sample Identification	Same		1 Day 3 Days /s) Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		NWTPH-Dx (☐ Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level) CPAHS OV	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
20 B60-4.0	5/24/7		5	2		X	-	X		_		0, 0						-			_	1	\top		X
U B60-910		1550	5	2		,																			
22 B60-14,0		1600	5	5		X		X					X										-		X
23 1360-19,0		1605	5	5																					,
24 B61 - 4.0		1626	5	2																					
25 B61 - 8.0		1630	5	2		X	1	X																	X
26 B61-14-0 27 B61-190		1640	5	5		X	1	X					X												X
27 361-19.0	V	1650	5	5																					
							A	/	4												_	_			
Signature	Co	ompany		-		Date		T	Time	-				ts/Spe				IS							
Relinquished Klan Smith		FARA		N		19			18			5	ce	P	Agu	e t	+1								
Received Van			eede	h		5	111		11		- 1														
Received Van		34	Dy		-	-	111	7	12	0	0														
Relinquished		C	200	>	\dashv	21.	Gli	4	1 K	70	-														
Received					\dashv			+			+	Data	Pac	kage:	Sta	ndar	1 [Lev	el III		Level	IV 🗆			-
Reviewed/Date		Reviewed/Dat	е								-	-	_		_	-			_		_		rables (E	EDDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 19, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006

Laboratory Reference No. 1705-077

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 525-006

Case Narrative

Samples were collected on May 2 and 3, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Samples MW-8-050217 and MW-2-050217 were extracted and analyzed one day out of hold time.

All VOA vials provided for samples MW-10-050317 and MW-1-050317 contained headspace. Some loss of volatiles may have occurred.

NWTPH Dx Analysis

Samples MW-8-050217 and MW-2-050217 were extracted and analyzed one day out of hold time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 525-006

NWTPH-Gx/BTEX

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-050217					
Laboratory ID:	05-077-01					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-118				
Client ID:	MW-2-050217					
Laboratory ID:	05-077-02					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-20-050317					
Laboratory ID:	05-077-03					
Benzene	56	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	2.9	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	1.0	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	500	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16-050317					
Laboratory ID:	05-077-04					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-18-050317					
Laboratory ID:	05-077-05					
Benzene	31	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	4.3	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	4.6	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	1500	400	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-118				
Client ID:	MW-14-050317					
Laboratory ID:	05-077-06					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				

Project: 525-006

NWTPH-Gx/BTEX

Analyte Result PQL Method Client ID: MW-15-050317	Prepared	Analyzed	Flags
Client ID: MW-15-050317			
aboratory ID: 05-077-07			
Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Toluene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
n,p-Xylene ND 1.0 EPA 8021B	5-17-17	5-17-17	
o-Xylene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Gasoline ND 100 NWTPH-Gx	5-17-17	5-17-17	
Surrogate: Percent Recovery Control Limits			
Fluorobenzene 92 61-118			
Client ID: MW-17-050317			
aboratory ID: 05-077-08			
Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Toluene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
n,p-Xylene ND 1.0 EPA 8021B	5-17-17	5-17-17	
o-Xylene ND 1.0 EPA 8021B	5-17-17	5-17-17	
Gasoline ND 100 NWTPH-Gx	5-17-17	5-17-17	
Surrogate: Percent Recovery Control Limits			
Fluorobenzene 90 61-118			
Client ID: MW-19-050317			
Laboratory ID: 05-077-09			
Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
ND 1.0 EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene ND 1.0 EPA 8021B	5-17-17	5-17-17	
n,p-Xylene 13 1.0 EPA 8021B	5-17-17	5-17-17	
ND 1.0 EPA 8021B	5-17-17	5-17-17	
Gasoline ND 100 NWTPH-Gx	5-17-17	5-17-17	
Surrogate: Percent Recovery Control Limits			
Fluorobenzene 90 61-118			

Project: 525-006

NWTPH-Gx/BTEX

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-050317					
Laboratory ID:	05-077-10					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	61-118				
Client ID:	MW-12-050317					
Laboratory ID:	05-077-11					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	_
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-11-050317					
Laboratory ID:	05-077-12					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	_
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	61-118				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-050317					
Laboratory ID:	05-077-13					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	61-118				
Client ID:	MW-10-050317					
Laboratory ID:	05-077-14					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				
Client ID:	MW-4-050317					
Laboratory ID:	05-077-15					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				

Project: 525-006

NWTPH-Gx/BTEX

3 "" ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-050317					
Laboratory ID:	05-077-16					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				
Client ID:	MW-7-050317					
Laboratory ID:	05-077-17					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	160	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Client ID:	MW-3-050317					
Laboratory ID:	05-077-18					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-050317					
Laboratory ID:	05-077-19					
Benzene	11	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				
Client ID:	MW-1-050317					
Laboratory ID:	05-077-20					
Benzene	10	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	1300	400	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				

Project: 525-006

NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-050317					
Laboratory ID:	05-077-21					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				
Client ID:	DUP1-050317					
Laboratory ID:	05-077-22					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Client ID:	DUP2-050317					
Laboratory ID:	05-077-23					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	160	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				

Project: 525-006

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP3-050317					
Laboratory ID:	05-077-24					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	480	100	NWTPH-Gx	5-17-17	5-17-17	0

Surrogate: Percent Recovery Control Limits Fluorobenzene 89 61-118

Project: 525-006

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

J (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0517W1					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Laboratory ID:	MB0517W2					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Laboratory ID:	MB0517W3					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				

Project: 525-006

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-07	7-16									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	ΙA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	ΙA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Surrogate:											
Fluorobenzene						90	94	61-118			
Laboratory ID:	05-07	7-13									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						93	95	61-118			
Laboratory ID:	05-15	51-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	ΙA	NA	NA	30	·
Toluene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	ΙA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	85	61-118			

Project: 525-006

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	Result Spike Level Result Recove		overy	Limits	RPD	Limit	Flags			
MATRIX SPIKES											
Laboratory ID:	05-0	77-16									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	45.5	45.3	50.0	50.0	ND	91	91	80-120	0	13	
Toluene	46.1	46.0	50.0	50.0	ND	92	92	81-115	0	14	
Ethyl Benzene	47.0	47.0	50.0	50.0	ND	94	94	81-114	0	12	
m,p-Xylene	46.2	46.5	50.0	50.0	ND	92	93	81-114	1	13	
o-Xylene	46.4	46.1	50.0	50.0	ND	93	92	81-113	1	11	
Surrogate:											
Fluorobenzene						89	88	61-118			
Laboratory ID:	05-1	51-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	44.6	41.6	50.0	50.0	ND	89	83	80-120	7	13	
Toluene	45.4	42.1	50.0	50.0	ND	91	84	81-115	8	14	
Ethyl Benzene	46.4	43.0	50.0	50.0	ND	93	86	81-114	8	12	
m,p-Xylene	45.6	42.4	50.0	50.0	ND	91	85	81-114	7	13	
o-Xylene	45.7	42.3	50.0	50.0	ND	91	85	81-113	8	11	
Surrogate:									·		
Fluorobenzene						86	88	61-118			

Project: 525-006

NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8-050217					
Laboratory ID:	05-077-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				
- 11						
Client ID:	MW-2-050217					
Laboratory ID:	05-077-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				
Client ID:	MW-20-050317					
Laboratory ID:	05-077-03					
Diesel Range Organics	2.7	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	1.6	0.42	NWTPH-Dx	5-17-17 5-17-17	5-17-17 5-17-17	
Surrogate:	Percent Recovery	Control Limits	INVV I PIT-DX	5-17-17	3-17-17	
o-Terphenyl	80	50-150				
0-Terprienyi	00	50-750				
Client ID:	MW-16-050317					
Laboratory ID:	05-077-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits	TWO THE DA	0 11 11	0 17 17	
o-Terphenyl	61	50-150				
c respirency.	0,	00 700				
Client ID:	MW-18-050317					
Laboratory ID:	05-077-05					
Diesel Range Organics	4.1	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	2.5	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				
, ,						
Client ID:	MW-14-050317					
Laboratory ID:	05-077-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

Project: 525-006

NWTPH-Dx

Data

Data

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-15-050317					
Laboratory ID:	05-077-07					
Diesel Range Organics	0.42	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.46	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	MW-17-050317					
Laboratory ID:	05-077-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil	0.43	0.41	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID.	MW 40 050045					
Client ID:	MW-19-050317					
Laboratory ID:	05-077-09					
Diesel Range Organics	0.31	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.44	0.42	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	MW-13-050317					
Laboratory ID:	05-077-10					
· · · · · · · · · · · · · · · · · · ·		0.26	NWTPH-Dx	5-17-17	5-17-17	
Diesel Range Organics Lube Oil Range Organics	0.30 ND	0.26 0.42	NWTPH-Dx	5-17-17 5-17-17	5-17-17 5-17-17	
Surrogate:		Control Limits	INVVIPH-DX	5-17-17	3-17-17	
_	Percent Recovery 87	50-150				
o-Terphenyl	07	50-750				
Client ID:	MW-12-050317					
Laboratory ID:	05-077-11					
Diesel Range Organics	1.3	0.29	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.63	0.46	NWTPH-Dx	5-17-17 5-17-17	5-17-17 5-17-17	
Surrogate:	Percent Recovery	Control Limits		<u> </u>	· · · · · ·	
o-Terphenyl	84	50-150				
	J.	22 ,00				
Client ID:	MW-11-050317					
Laboratory ID:	05-077-12					
Diesel Range Organics	2.4	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	3.4	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
• •						

Project: 525-006

NWTPH-Dx

Dato

Data

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-050317					
Laboratory ID:	05-077-13					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
o respiratiff	01	00 700				
Client ID:	MW-10-050317					
Laboratory ID:	05-077-14					
	0.44	0.25	NWTPH-Dx	5-17-17	5-17-17	
Diesel Range Organics	-					
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	MW-4-050317					
Laboratory ID:	05-077-15					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	70	50-150				
Client ID:	MW-9-050317					
Laboratory ID:	05-077-16					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
c . c.,pey.						
Client ID:	MW-7-050317					
Laboratory ID:	05-077-17					
Diesel Range Organics	0.62	0.25	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.23	NWTPH-Dx	5-17-17 5-17-17	5-17-17 5-17-17	
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DX	J-11-11	J-17-17	
o-Terphenyl	76	50-150				
Client ID.	M/M/ 2 050247					
Client ID:	MW-3-050317					
Laboratory ID:	05-077-18	0.55	NA/TE:: 5	= 4= :=	= 46 1=	
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				

Project: 525-006

NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-050317					
Laboratory ID:	05-077-19					
Diesel Range Organics	0.34	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	0.43	0.42	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Olimut ID:	MM 4 050047					
Client ID:	MW-1-050317					
Laboratory ID:	05-077-20					
Diesel Range Organics	1.3	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.62	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW-5-050317					
Laboratory ID:	05-077-21					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits		J 17	0 10 17	
o-Terphenyl	76	50-150				
o-reipnenyi	70	30-130				

Project: 525-006

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0517W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-17-17	5-1-81	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-17-17	5-1-81	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Laboratory ID:	MB0517W2					
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o Terphonyl	70	50 150				

o-Terphenyl 70 50-150

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-07	77-09								
	ORIG	DUP								
Diesel Range Organics	0.314	0.305	NA	NA		NA	NA	3	NA	
Lube Oil Range Organics	0.442	0.440	NA	NA		NA	NA	0	NA	
Surrogate:										
o-Terphenyl						82 79	50-150			
Laboratory ID:	05-07	77-20								
	ORIG	DUP								
Diesel Range Organics	1.36	1.34	NA	NA		NA	NA	1	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	U1,
Surrogate: o-Terphenyl						99 95	50-150			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page	of 1
	1

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	(in working days)		La	bora	tory	Nu	mb	er:	0	5	-(7	7									
Phone: (425) 883-3881 * www.onsite-env.com Company: FARALON Project Number: 525-006 Project Name: LAKES, LE AberdeeN Project Manager: Jerry Partele Sampled by: ANAS-HASIA BUNNS.	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days)	er of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	3082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	Aetals	il and grease) 1664A				ture
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	Number of	NWTP	NWTPH-G)	NWTP	Volatile	Haloge	EDB E	Semive (with Ic	PAHs 8	PCBs 8082A	Organi	Organo	Chlorir	Total R	Total N	TCLP Metals	HEM (oil and				% Moisture
1 MW-8-050217	512/17 1456 W	5		X	X																	
2 MW-2-050217	V 1766 W	5		X	X																	
3 MW-20-050317	5-3-17 8:16	5																				
4 MW-16-050317	8:30	1																				
5 MW-18-050317	8152																					
6 MW-14-050317	8:53																					
1 MW-15-050317	9:29																					
3 MW-17-050317	10:00	7																				
9 MW-19-050317	10:28				1																	
10 MW-13-050817	10:33	V	1	1	V																	
Signature	Company			ate		Time			Com	ment	s/Spe	cial l	nstruc	ction	S							
Relinquished Kin Shrell	PARALLO	N		5-4-	17	80	0															
Received Van	5pdy	_		5/4	17	1	1 or	0														
Relinquished	- John		3	5/1	17	1:	20	7														
Received	5 038		<	5/4	117	12	W)														
Relinquished				•																		W.
Received									Data	Pac	kage:	Stan	ndard		Leve	el III		Level	IV 🗆			
Reviewed/Date	Reviewed/Date								Chro	mato	grams	s with	final	repo	ort 🗌	Elec	ctronic	Data	Delive	erables	(EDD	s) 🗌

OnSite Environmental Inc.

Chain of Custody

Page 2 of 3

14648 NE	aboratory Testing Services 95th Street • Redmond, WA 98052		urnaround Req (in working da			Lá	abo	rate	ory	Nu	mb	er:		0 5	5 -	0	7	7									
Project Name: Project Manager:	25) 883-3881 · www.onsite-env.com 2100 5-000 e Aberdeen Portele Burns/K. Scott	☐ 2 D		1 Day	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	(oil and grease) 1664A					sture
Lab ID S	ample Identification	Date Sampled	Time Sampled	Matrix	Numi	NWT	NWT	NWT	NWT	Volati	Halog	EDB I	Semiv (with	PAHs	PCBs	Organ	Organ	Chlori	Total	Total	TCLP	HEM					% Moisture
11 MW-12	-050317	5-3-17	711:05	Water	5		X		X																		
12 MW-11	-050317	1	11:30																							T	
13 MW-2	1-050317		11:3)						1															\top	1	T	
	-050317		12:05																						1		
15 MW- 4	-050317		12:31																						1	1	
16 MW-9	-050317		13:10		7		1																\top		\dagger	\dagger	
17 MW-7	-050317		13:46		T				1																+	\top	
18 MW- 3	- 050317		14:30		T				1														1	\top	\top	\top	
19 MW - 6	-050317		14:3)	,			1																		1	\top	
20 MW-1-	-050317	1	15:03	V	A		V		V							1							1	\top	1	1	
	Signature	(Company				Date			Time			Com	ment	s/Spe	cial I	nstru	ction	S								
Relinquished	Ku Smitt		Faralle	20		4	5-	4	17	80	30	,															
Received	Van		58	sly_			5/1	1/1	7	11	00																
Relinquished	Van		70	20			Sti	()	7	1.	20																
Received		<	0	295		4	54	//-		12	D																
Relinquished				1			-11	, ,		14																	
Received													Data	Pack	age:	Star	ndarc	1 🗆	Leve	el III		_evel	IV 🗆				
Reviewed/Date			Reviewed/Dat	te									Chro	mato	grams	with	fina	repo	ort 🗌	Elec	tronic	Data	Delive	erables	(EDD)s) [

OnSite Environmental Inc.

Chain of Custody

 3_{of}

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	bor	ato	ry N	uml	ber:	n	5	-1	17	7									
Project Name: Lakeside Abedeen Project Manager: Sampled by: ABUCOS/K, Scatte Lab ID Sample Identification	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other) Date Time Sampled Matrix	Number of Containers	NWTPH-HGID	ИВТЕХ		NWTPH-Dx (Acid / SG Clean-up)	latiles 8260C			(el)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
1	5-3-17 15:30 Water		_	X	_	X			0,0	-												0/
22 DUPI-050317	1 10:02 1	=7				1	con	-ceV	kd,	8									\top	\top	T	\forall
23 DUP 2-050317	13:48 3	3				1	can	رحا	- 1												T	T
24 DUP3-050317	V 11:33 V3	1		J	-	10	ens	روالأو	10													
		23																				
	CAO																					
	(CC)																					
				_	-																	
Signature Relinquished	Company			Date 5. L	1 ,		me	<u> </u>	Cor	nmen	ts/Spe	ecial I	Instru	ction	S							
Received 1	Farellon	_		5/4	1 1	1 2	300 11 x	0	-													
Relinquished \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3000	_		1				50														
Received	5000	7		5/4	11/1) /	20															
Relinquished	010)	()/	ofc																	
Received									Data	a Pac	kage:	Sta	ndard	d 🗆	Lev	el III		Level	IV 🗆			
Reviewed/Date	Reviewed/Date								Chromatograms with final report Electronic Data Deliverables (EDDs)) 🗆							

APPENDIX F TERRESTRIAL ECOLOGICAL EVALUATION FORMS

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

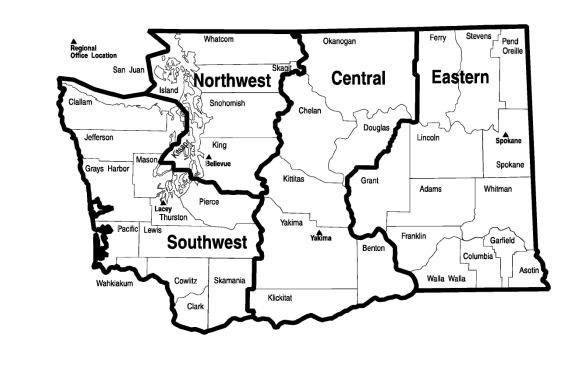
If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE										
Please identify below the hazardous waste site for which you are documenting an evaluation.										
Facility/Site Name: Lakeside Industries Aberde	een Site									
Facility/Site Address: 2400 Sargent Boulevard										
Facility/Site No: 84657452 VCP Project No.: SW1161										

Step 2: IDENTIFY EVALUATOR											
Please identify below the person who conducted the evaluation and their contact information.											
Name: Eric Buer Title: Senior Hydrogeologist											
Organization: Farallon Con	sulting, L.L.C.										
Mailing address: 1809 7th	Avenue Suite 1111										
City: Seattle State: WA Zip code: 98101											
Phone: (425) 394-4418											

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? ⊠ Yes If you answered "YES," then answer Question 2. No or If you answered "NO" or "UKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or \boxtimes paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area

by wildlife.


В.	Simplified evaluation.		
1.	Does the Site qualify for a simplified evaluation?		
		es If you answered "YES," then answer Question 2 below.	
	☐ N Unkno	o or own If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.	
2.	Did you conduct a simplified evaluation?		
		es If you answered "YES," then answer Question 3 below.	
	□ N	o If you answered "NO," then skip to Step 3C of this form.	
3.	Was further evaluation necessary?		
		es If you answered "YES," then answer Question 4 below.	
	□ N	o If you answered "NO," then answer Question 5 below.	
4.	If further evaluation was necessary, what did you do?		
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.	
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.	
5.	If no further evaluation was necessary, what was the reason? Check all that apply. Then skip to Step 4 of this form.		
	Exposure Analysis: WAC 173-340-7492(2)(a)		
		Area of soil contamination at the Site is not more than 350 square feet.	
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.	
	Pathway Analysis: WAC 173-340-7492(2)(b)		
		No potential exposure pathways from soil contamination to ecological receptors.	
	Contaminant Analysis: WAC 173-340-7492(2)(c)		
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.	
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.	
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.	
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.	

C.	Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).					
1.	1. Was there a problem? See WAC 173-340-7493(2).					
	Yes If you answered "YES," then answer Question 2 below.					
	No If you answered " NO ," then identify the reason here and then skip to Question 5 below:					
	No issues were identified during the problem formulation step.					
	While issues were identified, those issues were addressed by the cleanup actions for protecting human health.					
2.	2. What did you do to resolve the problem? See WAC 173-340-7493(3).					
	Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to Question 5 below.</i>					
	Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>					
3.	3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).					
	Literature surveys.					
	Soil bioassays.					
	☐ Wildlife exposure model.					
	☐ Biomarkers.					
	Site-specific field studies.					
	☐ Weight of evidence.					
	Other methods approved by Ecology. If so, please specify:					
4.	4. What was the result of those evaluations?					
	Confirmed there was no problem.					
	Confirmed there was a problem and established site-specific cleanup levels.					
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?					
	Yes If so, please identify the Ecology staff who approved those steps:					
	□ No					

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160 th Ave. SE Bellevue, WA 98008-5452	Central Region: Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009
Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775	Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295

APPENDIX G INADVERTENT DISCOVERY PLAN

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

PLAN AND PROCEDURES FOR THE UNANTICIPATED DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS¹

PROJECT TITLE: Remedial Investigation/Feasibility Study, Lakeside Industries Aberdeen Site, Aberdeen, Washington

COUNTY WASHINGTON: Grays Harbor

Section, Township, Range: Section 10, Township 17, Range 9

1. INTRODUCTION

The following Inadvertent Discovery Plan (IDP) outlines procedures to perform in the event of discovering archaeological materials or human remains, in accordance with state and federal laws.

2. RECOGNIZING CULTURAL RESOURCES

A cultural resource discovery could be prehistoric or historic. Examples include:

- a. An accumulation of shell, burned rocks, or other food related materials.
- b. Bones or small pieces of bone.
- c. An area of charcoal or very dark stained soil with artifacts.
- d. Stone tools or waste flakes (i.e. an arrowhead. or stone chips).
- e. Clusters of tin cans or bottles, logging or agricultural equipment that appears to be older than 50 years.
- f. Buried railroad tracks, decking, or other industrial materials.

When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

STEP 1: *Stop Work*. If any employee, contractor or subcontractor believes that he or she has uncovered a cultural resource at any point in the project, all work must stop immediately. Notify the appropriate party(s). Leave the surrounding area untouched, and provide a demarcation adequate to provide the total security, protection, and integrity of the discovery. The discovery location must be secured at all times by a temporary fence or other onsite security.

STEP 2: *Notify Archaeological Monitor or Licensed Archaeologist*. If there is an Archaeological Monitor for the project, notify that person. If there is a monitoring plan in place, the monitor will follow the outlined procedure.

¹ If you need this document in a format for the visually impaired, call Water Quality Reception at Ecology, (360) 407-6600. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

STEP 3: *Notify the Project Manager*_of this project and contact the Ecology Staff Project Manager, or other applicable contacts:

Project Manager:

Name: Eric Buer, Farallon Consulting

Phone: (206) 661-3536 (cell)

Email: ebuer@farallonconsulting.com

Ecology Staff Project Manager:

Name: Chris Maurer

Phone: (360) 407-7223 (office)

Email: christopher.maurer@ecy.wa.gov

Assigned Alternates:

Assigned Project Manager Alternate:

Name: Riley Conkin, Farallon Consulting

Phone: (425) 417-4076 (cell)

Email: rconkin@farallonconsulting.com

Ecology Cultural Resource Specialist

(Alternate):

Name: Dawn Hooper

Phone: (360) 407-7182 (office) email: dawn.hooper@ecy.wa.gov

The Project Manager or applicable staff will make all calls and necessary notifications. **If human remains are encountered**, treat them with dignity and respect at all times. Cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed. **Do not call 911 or speak with the media. Do not take pictures unless directed to do so by DAHP. See Section 5.**

4. FURTHER CONTACTS AND CONSULTATION

A. Project Manager's Responsibilities:

- Protect Find: The Project Manager is responsible for taking appropriate steps to
 protect the discovery site. All work will stop immediately in a surrounding area
 adequate to provide for the complete security of location, protection, and integrity
 of the resource. Vehicles, equipment, and unauthorized personnel will not be
 permitted to traverse the discovery site. Work in the immediate area will not
 resume until treatment of the discovery has been completed following provisions
 for treating archaeological/cultural material as set forth in this document.
- *Direct Construction Elsewhere on-Site*: The Project Manager may direct construction away from cultural resources to work in other areas prior to contacting the concerned parties.
- Contact Senior Staff: If the Senior Staff person has not yet been contacted, the Project Manager must do so.

B. Senior Staff Responsibilities:

- *Identify Find*: The Senior Staff (or a delegated Cultural Resource Specialist), will ensure that a qualified professional archaeologist examines the area to determine if there is an archaeological find.
 - o If it is determined not to be of archaeological, historical, or human remains, work may proceed with no further delay.

- o If it is determined to be an archaeological find, the Senior Staff or Cultural Resource Specialist will continue with all notifications.
- If the find may be human remains or funerary objects, the Senior Staff or Cultural Resource Specialist will ensure that a qualified physical anthropologist examines the find. If it is determined to be human remains, the procedure described in Section 5 will be followed.
- *Notify DAHP*: The Senior Staff (or a delegated Cultural Resource Specialist) will contact the involved federal agencies (if any) and the Washington Department of Archaeology and Historic Preservation (DAHP).
- *Notify Tribes*: If the discovery may be of interest to Native American Tribes, the DAHP and Ecology Supervisor or Coordinator will coordinate with the interested and/or affected tribes.

General Contacts

Federal Agencies: NA State Agencies: DAHP

Agency: Department of Archaeology and Historic Preservation (DAHP)

Name: (see below) Title: (see below) Phone: (see below)

Email:

Department of Archaeology and Historic Preservation (DAHP):

D	r. Allyson Brooks	Rob Whitlam, Ph.D.
St	ate Historic Preservation Officer	Staff Archaeologist
(3	60) 586-3066	(360) 586-3050
A	ssigned Alternate:	Assigned Alternate:

The DAHP or appropriate Ecology Staff will contact the interested and affected Tribes for a specific project.

Further Activities

- Archaeological discoveries will be documented as described in Section 6.
- Construction in the discovery area may resume as described in Section 7.

5. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL MATERIAL

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Do not take photographs by any means, unless you are pre-approved to do so.

If the project occurs on federal lands or receives federal funding (e.g., national forest or park, military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 apply, and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Manager will comply with applicable state and federal laws, and the following procedure:

A. In all cases you must notify a law enforcement agency or Medical Examiner/Coroner's Office:

In addition to the actions described in Sections 3 and 4, the Project Manager will immediately notify the local law enforcement agency or medical examiner/coroner's office.

The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human, whether the discovery site constitutes a crime scene, and will then notify DAHP.

Enter contact information below:

- Aberdeen Police Department non-emergency phone number: (360) 533-3180
- Grays Harbor Radio non-emergency phone number (after hours): (360) 533-8765

B. Participate in Consultation:

Per RCW 27.44.055, RCW 68.50, and RCW 68.60, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation.

C. Further Activities:

- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in RCW 27.44.055, RCW 68.50, and RCW 68.60.
- When consultation and documentation activities are complete, construction in the discovery area may resume as described in Section 7.

6. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological deposits discovered during construction will be assumed eligible for inclusion in the National Register of Historic Places under Criterion D until a formal Determination of Eligibility is made.

Project staff will ensure the proper documentation and field assessment will be made of any discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and a contracted consultant (if any).

All prehistoric and historic cultural material discovered during project construction will be recorded by a professional archaeologist on a cultural resource site or isolate form using standard and approved techniques. Site overviews, features, and artifacts will be photographed; stratigraphic profiles and soil/sediment descriptions will be prepared for minimal subsurface exposures. Discovery locations will be documented on scaled site plans and site location maps.

Cultural features, horizons and artifacts detected in buried sediments may require further evaluation using hand-dug test units. Units may be dug in controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. A test excavation unit or small trench might also be used to determine if an intact occupation surface is present. Test units will be used only when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. Excavations will be conducted using state-of-the-art techniques for controlling provenience, and the chronology of ownership, custody and location recorded with precision.

Spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock will be recorded for each probe on a standard form. Test excavation units will be recorded on unit-level forms, which include plan maps for each excavated level, and material type, number, and vertical provenience (depth below surface and stratum association where applicable) for all artifacts recovered from the level. A stratigraphic profile will be drawn for at least one wall of each test excavation unit.

Sediments excavated for purposes of cultural resources investigation will be screened through 1/8-inch mesh, unless soil conditions warrant 1/4-inch mesh.

All prehistoric and historic artifacts collected from the surface and from probes and excavation units will be analyzed, catalogued, and temporarily curated. Ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology and the affected tribes.

Within 90 days of concluding fieldwork, a technical report describing any and all monitoring and resultant archaeological excavations will be provided to the Project Manager, who will forward the report for review and delivery to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s).

If assessment activity exposes human remains (burials, isolated teeth, or bones), the process described in Section 5 will be followed.

7. PROCEEDING WITH WORK

Work outside the discovery location may continue while documentation and assessment of the cultural resources proceed. A professional archaeologist must determine the boundaries of the discovery location. In consultation with Ecology, DAHP and any affected tribes, the Project Manager will determine the appropriate level of documentation and treatment of the resource. If there is a federal nexus, Section 106 consultation and associated federal laws will make the final determinations about treatment and documentation.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Manager, DAHP, any affected tribes, Ecology (and the federal agencies, if any) determine that compliance with state and federal law is complete.

8. RECIPIENT/PROJECT PARTNER RESPONSIBILITY

The Project Recipient/Project Partner is responsible for developing an IDP. The IDP must be immediately available onsite, be implemented to address any discovery, and be available by request by any party. The Project Manager and staff will review the IDP during a project kickoff or pre-construction meeting.

We recommend that you print images in color for accuracy.

You see chipped stone artifacts.

- Glass-like material
- Angular
- "Unusual" material for area
- "Unusual" shape
- Regularity of flaking
- Variability of size

You see ground or pecked stone artifacts.

- Striations or scratching
- Unusual or unnatural shapes
- Unusual stone
- Etching
- Perforations
- Pecking
- Regularity in modifications
- Variability of size, function, and complexity

You see bone or shell artifacts.

- Often smooth
- Unusual shape
- Carved
- Often pointed if used as a tool
- Often wedge shaped like a "shoehorn"

You see bone or shell artifacts.

- Often smooth
- Unusual shape
- Perforated
- Variability of size

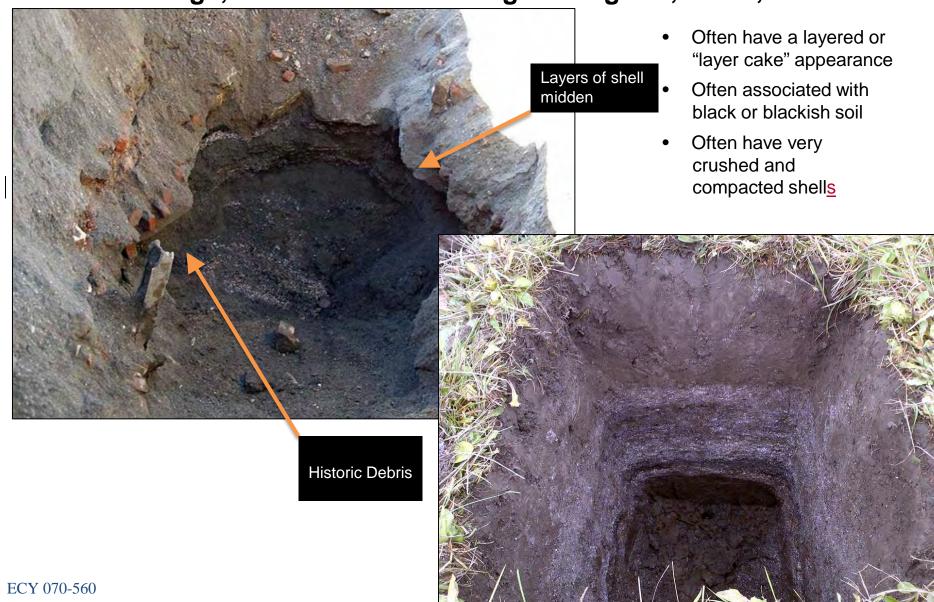
You see fiber or wood artifacts.

- Wet environments needed for preservation
- Variability of size, function, and complexity
- Rare

You see historic period artifacts.

You see strange, different or interesting looking dirt, rocks, or

- Human activities leave traces in the ground that may or may not have artifacts associated with them
- "Unusual" accumulations of rock (especially fire-cracked rock)
- "Unusual" shaped accumulations of rock (e.g., similar to a fire ring)
- Charcoal or charcoal-stained soils
- Oxidized or burnt-looking soils
- Accumulations of shell
- Accumulations of bones or artifacts
 - Look for the "unusual" or out of place (e.g., rock piles or accumulations in areas with few rock)


ECY 070-560

You see strange, different or interesting looking dirt, rocks, or

- "Unusual" accumulations of rock (especially fire-cracked rock)
- "Unusual" shaped accumulations of rock (e.g., similar to a fire ring)
- Look for the "unusual" or out of place (e.g., rock piles or accumulations in areas with few rock)

You see strange, different or interesting looking dirt, rocks, or

You see historic foundations or buried structures.

10