

January 18, 2019

Andrew Smith, Site Manager Department of Ecology PO Box 47775 Olympia, Washington 98504-7775

Subject: Pilot Study Results Report NuStar Vancouver Annex Facility 5420 NW Fruit Valley Road Vancouver, Washington 0060-001-004

Dear Mr. Smith:

Enclosed, please find the *Pilot Study Results Report* that has been prepared on behalf of NuStar Terminals Services, Inc. (NuStar) by Cascadia Associates, LLC. (Cascadia). The enclosed report provides a summary of the pilot study implemented in September 2017 that utilized oxygen releasing compound (ORC) and *in-situ* chemical oxidation (ISCO) to remediate petroleum hydrocarbon impacted groundwater at the NuStar Vancouver Annex Facility (the Facility). This report provides a brief overview of the pilot study implementation, summarizes the results of four quarters of post-injection groundwater monitoring, and evaluates the efficacy of using ISCO and/or ORC as final cleanup remedies for the Facility.

If you have any questions or would like to discuss this further, please contact me at (503) 906-6577 (ext. 110).

Sincerely,

Stephanie Bosy Salidary

Stephanie Bosze Salisbury, L.G. Senior Associate Geologist

Enclosure Pilot Study Results Report (electronic via email and 2 hard copies)

cc: Renee Robinson, NuStar Energy, L.P. (electronic deliverable)
 Aaron Flett, NuStar Energy, L.P. (electronic deliverable)
 Zack Chaffin, NuStar Energy, L.P. (electronic deliverable)
 Chris Chan, NuStar Energy, L.P. (electronic deliverable)

Pilot Study Results Report NuStar Vancouver Annex Facility 5420 NW Fruit Valley Road Vancouver, Washington

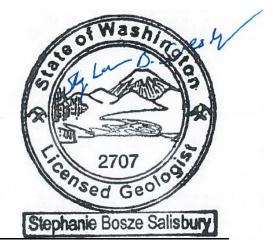
Prepared for:

NuStar Terminals Operations Partnership, L.P.

Prepared by:

Cascadia Associates, LLC 6915 SW Macadam Avenue, Suite 250 Portland, Oregon 97219

> Project No. 0060-001-004 January 17, 2019


Pilot Study Results Report NuStar Vancouver Annex Facility 5420 NW Fruit Valley Road Vancouver, Washington

Prepared for:

NuStar Terminals Operations Partnership, L.P. Project No. 0060-001-004 January 17, 2019

Prepared by:

Amanda Spencer Principal Hydrogeologist, Cascadia Associates

Stephanie Bosze Salisbury, L.G. Sr. Associate Hydrogeologist, Cascadia Associates

CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
2.1	Site Location, Description, and History	1
2.2	Geology and Hydrogeology	2
2	.2.1 Geology	2
2	.2.2 Hydrogeology	3
3.0	SUMMARY OF SITE INVESTIGATIONS	4
3.1	Summary of Historical Investigations – 2001 through 2012	4
3.2	Summary of Additional Investigation – 2014 through 2016	4
4.0	2017 PILOT STUDY – IMPLEMENTATION	5
4.1	RegenOx® and ORC-Advanced Product Description	5
4.2	Injection Process	6
4.3	Issues Encountered During Injections	6
5.0	GROUNDWATER MONITORING	7
5.1	Baseline Groundwater Monitoring Event	7
5.2	Post-Injection – Quarterly Groundwater Monitoring Events	8
5.3	Groundwater Monitoring Procedures	8
5.4	Analytical Program	8
6.0	2017 PILOT STUDY – EVALUATION OF RESULTS	8
6.1	Data Evaluation Approach	9
6.2	Trend Plot Evaluation – TPH	9
6.3	Deeper Groundwater – Evaluation of Results from MW-5D	11
6.4	BTEX Results	11
7.0	CONCLUSIONS	12
8.0	REFERENCES	14

TABLES

- Table 1Groundwater Elevation Data
- Table 2Summary of Analytical Results from Monitoring Wells
- Table 3Historical Soil Data
- Table 4Grab Groundwater Analytical Results

FIGURES

Figure 1	Facility Location Map
Figure 2	Facility Site Plan
Figure 3	Pilot Study Area
Figure 4	Pilot Study Injection Layout
Figure 5	TPH Concentrations in Groundwater (Pre-Injection) - October 2017
Figure 6	TPH Concentrations in Groundwater – Total Petroleum Hydrocarbons in
	Groundwater First Post-Injection Monitoring Event - November 2017
Figure 7	TPH Concentrations in Groundwater – Total Petroleum Hydrocarbons in
	Groundwater Fourth Post-Injection Monitoring Event – August 2018

APPENDICES

- Appendix A Laboratory Reports and Data Quality Review
- Appendix B Sampling Methods and Protocols
- Appendix C Field Sampling Data Sheets
- Appendix D Total Petroleum Hydrocarbon Trend Plots

1.0 INTRODUCTION

This Pilot Study Results Report (Report) presents the implementation and results of a pilot study at the at the NuStar Terminals Operations Partnership, L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Facility). The pilot study was completed in accordance with the Additional Investigation Summary Report and Pilot Study Work Plan (Apex, 2017; [Work Plan]), approved by the Washington Department of Ecology (Ecology) on August 24, 2017, and was conducted to assist in preparation of a Feasibility Study (FS) of remedial technologies for the Facility.

In a September 2016 meeting, Ecology stated that the FS would need to evaluate active remediation to address petroleum hydrocarbons in groundwater near wells MW-5 and MW-6 based on the results from the additional groundwater investigations conducted from 2014 to 2016. As such, NuStar completed a preliminary review of possible remedial technologies and identified injection of oxygen releasing compound and/or *in-situ* chemical oxidation (ISCO) as possible remedial technologies. However, due to the presence of heavier hydrocarbons in the saturated soil and shallow groundwater, it was determined that a pilot test would be prudent to better evaluate the viability of this option prior to completing the FS. In the Work Plan, NuStar proposed the use of RegenOx® (a proprietary ISCO substrate manufactured by Regenesis) and ORCAdvanced (an oxygen releasing formulation also manufactured by Regenesis) for the pilot study.

A description of the site history and previous investigations is presented in the Additional Investigation Summary Report and Pilot Study Work Plan (Apex, 2017). The pilot test was implemented during October and November 2017. The pilot test implementation activities were summarized in the Pilot Study Implementation Memorandum (Pilot Study Memo; Cascadia Associates, LLC [Cascadia], 2018) that was submitted to Ecology on March 13, 2018. The Pilot Study Memo described the pilot study preparatory and implementation activities and summarized the results of the baseline and first-post injection groundwater monitoring events. This results report provides a brief overview of the pilot study implementation, summarizes the results of four quarters of post-injection groundwater monitoring, and evaluates the efficacy of using ISCO and/or oxygen releasing compounds as final cleanup remedies for the Facility.

2.0 BACKGROUND

2.1 SITE LOCATION, DESCRIPTION, AND HISTORY

Location. The Facility address is 5420 NW Fruit Valley Road, Vancouver, Washington 98660 (Latitude: N45^o 39.70', Longitude: W122^o 41.66'), as shown on Figure 1. The Facility is located on Clark County Tax Lot (TL) No. 147360.

Physical Features. Figure 2 is a Site Plan. The Facility is approximately 31 acres and is roughly rectangular, with dimensions of approximately 800 by 1,800 feet. The Facility is located in a mixed industrial-agricultural area and currently includes a tank farm containing jet fuel and methanol (seven aboveground storage tanks [ASTs] ranging in size from 30,000 to 3,000,000 gallons); a covered truck refueling rack with two ASTs (approximately a 400-gallon AST and a 7,500-gallon AST containing anti-static additive [ASA] and fuel system icing inhibitor [FSII] additive); and several buildings used for equipment storage and offices. A former underground storage tank (UST) associated with a vapor recovery system was also located on the Facility and was removed in 2001. The vapor recovery system and an associated oil/water separator (OWS) remain on-site. The surface of the Facility is comprised of graveled areas and grass fields, with asphalt-paved roads providing access to the fueling areas, ASTs, and office buildings.

Property History. Support Terminals Operating Partnership, L.P. (STOP) purchased the Facility from Cenex Harvest States Cooperative (Cenex) in 2003. NuStar acquired STOP in 2007. The property was developed in 1957 as a truck loading terminal. Records are unclear as to whether the Facility was developed by Cenex. Historically, chemicals and other products stored at the Facility included liquid fertilizers and refined petroleum products such as gasoline, diesel, kerosene, denatured alcohol, and petroleum product additives. A trans-mix tank is present in the eastern portion of the Facility (Figure 2), and this is typically where waste (such as from tank-bottom cleanouts or the OWS) would be stored prior to off-site disposal or recycling.

2.2 GEOLOGY AND HYDROGEOLOGY

This section presents the understanding of the geology and hydrogeology as discussed in the Remedial Investigation/Remedial Action (RI/RA) Report (Ash Creek, 2010).

2.2.1 Geology

Regional Geology. The regional geology presented herein is based on reports prepared by Pacific Groundwater Group (PGG; 2001) and AMEC (2002a). The vicinity of the Facility is dominated by three primary units: Recent Alluvial deposits, the Pleistocene Alluvial deposits, and the Troutdale Formation. The Recent Alluvial deposits are the upper unit with deposits approximately 55 feet thick and consist of fine-grained silt and sand within the areas investigated near Vancouver Lake. The Pleistocene Alluvial deposits are approximately 95 to 115 feet thick and consist of coarse-grained sand and gravel. The Pleistocene Alluvial deposits originate from alluvial deposits from the Columbia River and deposits from the catastrophic Missoula Floods. The Troutdale Formation underlies the Pleistocene Alluvial deposits and can be greater than 1,000 feet thick. It is made up of cemented sandy gravels and semi-consolidated sands, silts, and clays.

Site Geology. During previous Facility investigations performed by others, soil borings have been installed to depths of up to 72 feet below ground surface (bgs) at the Facility (Ash Creek, 2007). Recent investigations in the western portion of the Facility included installing borings up to depths of 50 feet bgs.

The Recent Alluvial deposits underlying the western portion of the Facility consist of silt and silty clay with some fine sand to depths of approximately 20 to 25 feet bgs. Below 20 to 25 feet bgs, the Recent Alluvial deposits consist of layers of fine- to medium-grained sand to a depth of at least 50 feet bgs. On the eastern portion of the Facility, fine sand or sandy silt with variable layers of sand or silty sand is encountered to a depth of approximately 10 feet bgs. Below 10 feet bgs, the Recent Alluvial deposits in the eastern portion of the Facility consist of layers of fine- to medium-grained sand to a depth of approximately 50 to 60 feet bgs. The Pleistocene Alluvial deposits are encountered below the Recent Alluvial deposits and consist of sand and/or gravel layers of varying thicknesses to at least 72 feet bgs.

2.2.2 Hydrogeology

Regional Hydrogeology. The regional aquifers, Recent Alluvial Aquifer (RAA); Pleistocene Alluvial Aquifer (PAA); and the aquifers of the Troutdale Formation, follow the regional geology discussed above. The regional hydrogeology summarized below is based on reports prepared in support of Clark Public Utilities (CPU) South Lake Wellfield (PGG, 2001; PGG, 2009), and by Ash Creek (2008a and 2008b).

The RAA is unconfined and receives recharge directly from the land surface and/or surface water features. The PAA directly underlies the RAA and is a productive aquifer with high well yields (several thousand gallons per minute [gpm] without significant drawdown). The groundwater flow system is highly influenced by local surface water bodies. The Columbia River, Vancouver Lake, Vancouver Lake Flushing Channel, and Lake River form natural hydrologic boundaries to the groundwater flow system. Tidal influences and seasonal variations in surface water runoff cause dynamic variation in the stage of the Columbia River, and resulting adjustments in the stages of the other three connected surface water bodies. The groundwater flow system is also influenced by tidal and seasonal variations in the surface water bodies. Regionally, it is anticipated that groundwater within the RAA and PAA near the Facility would have a net gradient towards Vancouver Lake and the Columbia River.

Site Hydrogeology. The depth to first encountered groundwater at the Facility ranges from approximately 8 to 32 feet bgs. This zone corresponds to the silt and fine- to medium-grained sand of the RAA (PGG; 2001) and AMEC (2002a). The PAA is encountered at depths ranging from 50 to 70 and is saturated. Groundwater elevations in the tank farm area of the Site are variable and generally range between 8 and 12 feet above mean sea level (MSL), with the highest elevations typically in the spring. In May 2018, groundwater elevations in the tank farm area were particularly high (approximately 18 feet above MSL). Given the limited monitoring history it is uncertain whether the May 2018 elevations were anomalous or are within the typically range of seasonal variability.

Under static conditions, shallow groundwater flow at the Facility is relatively flat with a slight gradient (0.0002 foot per foot [ft/ft]) to the southeast (AMEC, 2002a; SECOR, 2003; Ash Creek, 2009).

3.0 SUMMARY OF SITE INVESTIGATIONS

The below sections summarize historical and recent investigations conducted at the Facility.

3.1 SUMMARY OF HISTORICAL INVESTIGATIONS – 2001 THROUGH 2012

Several investigations have been conducted at the Facility since 2001. The initial investigation assessed the area of a possible fuel release during a UST decommissioning and resulted in further work to define the extent of impacted soil and groundwater (AMEC 2002a, 2002b). In 2003, SECOR conducted a comprehensive Phase II Environmental Site Assessment (ESA) of the Facility as a part of due diligence activities for Cenex during the property transaction to NuStar (SECOR, 2003). From 2007 to 2008, Ash Creek completed several investigations to further characterize the site (Ash Creek, 2007, 2008a, and 2008b). Four monitoring wells were installed in 2004 and were monitored periodically or quarterly during the 2004 to 2012 investigation period. The scope and results of each of these investigations are detailed in the RI/RA Report (Ash Creek, 2010). Table 1 summarizes the depth to groundwater and groundwater elevation data collected during these investigations; Table 2 summarizes the historical groundwater sampling and analysis data; and Table 3 summarizes the historical soil data.

3.2 SUMMARY OF ADDITIONAL INVESTIGATION – 2014 THROUGH 2016

As previously discussed in Section 1.0, Ecology provided NuStar with comments on the Draft FS on October 16, 2013. In the months following receipt, NuStar held several meetings with Ecology to discuss Ecology's comments on the FS, as well as additional comments that were presented to NuStar in a February 4, 2014 meeting. The additional comments included a request for additional groundwater investigation near historical borings SB-8 and SB-9; the locations of these borings are shown on Figure 2. NuStar agreed to the additional investigation, and the preliminary investigation indicated that petroleum hydrocarbons were present in groundwater near historical borings SB-8 and SB-9 at concentrations above MTCA Method A levels. As a result, additional site investigation, well installation, and groundwater monitoring were conducted to evaluate the magnitude and extent of petroleum hydrocarbons in groundwater in the western portion of the terminal. The results of these investigations are detailed in Apex 2015a, 2015b, and 2017. The soil results from these investigations are included on Table 3 and the grab groundwater results are shown on Table 4. Boring and monitoring well locations are shown on Figure 2.

In summary, these investigations included:

- Installing two monitoring wells, MW-5 and MW-6, at the locations of historical borings SB-8 and SB-9, respectively;
- Conducting one year of quarterly groundwater monitoring of existing wells MW-1 through MW-4 and the new wells, MW-5 and MW-6;

- Conducting additional groundwater investigation to define the extent of petroleum hydrocarbons and related constituents in the areas of wells MW-5 and MW-6, including the installation of 12 additional borings (B-1 through B-12) and the collection of two to three depth discrete groundwater samples from each boring using temporary well points;
- Conducting a groundwater investigation to delineate the extent of petroleum hydrocarbons in groundwater to the west of wells MW-5 and MW-6, including the installation of two borings, B-13 and B-14, outside and to the west of the tank farm berms of the Facility;
- Installing four shallow compliance wells, MW-7 through MW-10, to monitor the potential for offsite migration to the north, west, and south; and
- Installing two deeper monitoring wells, MW-5D and MW-8D, adjacent to wells MW-5 and MW-8, respectively, to evaluate potential vertical gradients in groundwater.

Total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations in the groundwater samples from borings B-13 and B-14, and wells MW-7 through MW-10 and MW-8D were below method reporting limits. The results were presented to Ecology in a meeting on September 22, 2016. During the meeting, Ecology supported the conclusion that the compliance well network was acceptable for monitoring purposes.

4.0 2017 PILOT STUDY – IMPLEMENTATION

In the September 2016 meeting, Ecology stated that the FS would need to evaluate active remediation to address the petroleum hydrocarbons in groundwater near wells MW-5 and MW-6 based on the additional groundwater investigations conducted from 2014 to 2016. As such, NuStar indicated that initial evaluations of potential remedial alternatives identified injection of oxygen releasing compound (ORC) and/or ISCO as possible options. However, due to the presence of the heavier hydrocarbons (TPH) in the saturated soil and shallow groundwater, it was determined that a pilot study would be needed to better evaluate the viability of this option. A pilot study work plan was submitted to Ecology in August 2017 (Apex, 2017) and was implemented in October and November 2017. The pilot study implementation activities were detailed in the March 13, 2018 Pilot Study Implementation Memorandum (Cascadia, 2018). A brief summary of the pilot test implementation and initial monitoring activities are provided in the paragraphs below.

4.1 REGENOX[®] AND ORC-ADVANCED PRODUCT DESCRIPTION

A mixture of RegenOx® and ORCAdvanced was used in the pilot study to evaluate the remediation of residual hydrocarbons in soil and groundwater below the water table at the Facility. RegenOx® is an injectable, two-part ISCO reagent that combines a solid sodium percarbonate based alkaline oxidant (Part A), with a liquid solution of sodium silicates, silica gel, and ferrous sulfate (Part B). RegenOx® produces minimal heat and pressure and is noncorrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping communication lines, etc. In addition to chemical destruction, RegenOx®

produces a significant short-term oxygen footprint that is optimal for establishing aerobic conditions capable of supporting aerobic biodegradation of petroleum hydrocarbons. The ORCAdvanced provides a continuous release of oxygen to the groundwater over a period of up to 12 months to support long-term aerobic biodegradation. ORCAdvanced is a calcium oxy-hydroxide based material that becomes hydrated upon contact with the groundwater, producing a controlled-release of molecular oxygen (17% by weight). Using the combined product model, the RegenOx would provide a more short-term aggressive first approach to mass removal, and the ORCAdvanced would provide a long-term removal of residual mass, particularly in areas of lower hydrocarbon concentrations in groundwater or on the periphery of the plume.

The RegenOx®/ORCAdvanced mixture was injected into 24 borings located within the pilot study area, as shown on Figures 3 and 4. The borings were located on an approximate off-set gridded pattern with 15-foot spacing in general accordance with the pilot study work plan.

4.2 INJECTION PROCESS

The pilot study field activities were performed from October 18 to November 1, 2017. Prior to injection, each borehole was manually cleared (via hand auger) down to 8 feet bgs. Following hand clearance, an injection probe was advanced to a depth of 25 feet bgs using a direct push rig. Because several wells have been installed within or near the pilot study area and lithologic logs of these wells have been prepared, lithologic logs were not prepared for the subsurface injection locations.

RegenOx® and ORCAdvanced were mixed in large totes and injected through the drill stem via air diaphragm pumps on an injection rig. The RegenOx® and ORCAdvanced mix was injected from the bottom depth of the boring up to 15 feet bgs (the approximate depth to groundwater) using one of two types of probe tips:

- A pressure activated probe tip, designed to deliver the injection solution along a localized depth interval (approximately 1 foot); the high pressure required to activate the jet is designed to move the solution out from the injection point into the subsurface as the probe tip is withdrawn in 1-foot intervals.
- A slotted screen injection probe, designed to deliver the injection solution over a 5-foot screened interval. The injection screen consisted of a 5-foot steel rod with rows of injection ports around the circumference of the rod and spaced approximately 3 inches along the length of the screen. The injection screen was withdrawn in 5-foot intervals.

4.3 ISSUES ENCOUNTERED DURING INJECTIONS

Several issues were encountered during the injection activities. These issues were summarized in the Pilot Study memo (Cascadia, 2018), and are reiterated here as they are important factors in considering the efficacy and cost-effectiveness of this remedial technology in the FS.

Daylighting and Slow Injection Rates. Injection rates were significantly slower than anticipated and daylighting of injectant was observed throughout the pilot study. Even with changing the

injection probe from the standard one-foot depth interval to the 5-foot injection screen and injecting the RegenOx®/ORCAdvanced solution at lower pressures, the oxidant solution was still observed at a number of locations in the form of either free-flowing liquid or foaming at the surface. Possible factors contributing to the observed daylighting include: the injection pressure (discussed below), tightness of drill stem connections, and the lithology at the injection boring location. The lithology in the pilot study area is predominantly silt with some fine sand to depths of about 22 feet bgs and the lower permeability of this soil type may have caused the mixture to follow preferential pathways such as along the drill stem casing at times. Additionally, the mixture pumping rate needed to be lowered to accommodate the fluid injections into the lower permeability of the soils. The lowering of the pumping pressure and pumping rates increased the duration of the injection event by approximately 40%.

Injection Pressures. The initial injection locations utilized the pressure activated probe tip to introduce the RegenOx®/ORCAdvanced solution into the subsurface. However, the higher pressures needed to depress the internal spring mechanism in the probe tip resulted in an injection flowrate greater than the subsurface conditions would accept; this resulted in a buildup of pressure and daylighting of the injection material either along the outside of the drill stem or through nearby soil to the surface.

Clogging. The in-line flowmeters used to measure injection flowrate and the total volume pumped at each location had a tendency to clog frequently. ORCAdvanced did not completely dissolve when mixed with water and RegenOx[®], resulting in a solution with particles present that would build-up and clog the flowmeters. When this occurred, injection volumes were estimated from the volume of the mixing tanks. To the extent possible the clogging was mitigated by removing and cleaning the flowmeters after each injection was complete.

5.0 GROUNDWATER MONITORING

A pre-pilot study groundwater monitoring event was conducted to collect baseline data, followed by four post injection monitoring events to evaluate the efficacy of the pilot study. Details of the monitoring scope, procedures and analytical program are summarized in the following sections. The analytical results from the pre- and post-injection groundwater monitoring events are summarized in Table 3. Laboratory analytical reports and a data quality review are provided in Appendix A.

5.1 BASELINE GROUNDWATER MONITORING EVENT

Prior to conducting the RegenOx®/ORCAdvanced injections, a groundwater monitoring event was conducted to assess the baseline TPH and petroleum constituent concentrations. Groundwater samples were collected from monitoring well MW-5 on October 23, 2017, and wells MW-6 and MW-5D on October 24, 2017. The samples from the baseline event were submitted to ESC laboratories of Mt. Juliet, Tennessee, for laboratory analysis.

5.2 POST-INJECTION – QUARTERLY GROUNDWATER MONITORING EVENTS

Quarterly pilot study performance monitoring events were conducted on November 30, 2017, February 28, 2018, May 29, 2018, and August 30, 2018. The November 2017 and August 2018 events were conducted by Cascadia and the March and May 2018 events were conducted by Apex Companies, LLC (Apex). During the four performance monitoring events, samples were collected from monitoring wells MW-5, MW-5D, and MW-6 and were submitted to a Washington-accredited laboratory for analysis. The samples collected during November 2017 and February 2018 were analyzed by ESC Laboratories of Mt. Juliet, Tennessee; the samples collected during the May 2018 event were analyzed by Pace Analytical laboratories (Pace) of Minneapolis, Minnesota; and the samples collected during August 2018 were analyzed by Apex Laboratories of Tigard, Oregon.

5.3 GROUNDWATER MONITORING PROCEDURES

During the monitoring events, depth to groundwater measurements were collected from site wells prior to initiating groundwater sampling. During the baseline event, the depth to groundwater was measured in wells MW-5, MW-5D, and MW-6; during the four performance monitoring events, the depth to groundwater was measured in 12 site monitoring wells (MW-1 through 5, MW-5D, MW-6 through MW-8, MW-8D, MW-9, and MW-10).

Following measurement of the depth to groundwater, sampling at each well was initiated. The wells were first purged and then sampled using low-flow techniques. Field parameters including dissolved oxygen (DO) and oxidation-reduction potential (ORP)measurements were collected during the purging process to assist in evaluating the pilot study results. Sampling methods and protocols used are described in Appendix B and field data sheets are provided in Appendix C.

5.4 ANALYTICAL PROGRAM

Groundwater samples collected during the baseline and performance monitoring events were submitted to a Washington State-certified laboratory for gasoline-range total petroleum hydrocarbons (TPHg) using Pacific Northwest Method NW-TPH-Gx, diesel-range total petroleum hydrocarbons (TPHd) and oil-range total petroleum hydrocarbons (TPHo) using Pacific Northwest Method NW-TPH-Dx (with silica gel cleanup), and BTEX using EPA Method 8260B.

6.0 2017 PILOT STUDY – EVALUATION OF RESULTS

Figures 5 through 7 depict total petroleum hydrocarbons in groundwater from wells MW-5, MW-5D, and MW-6 from the October 2017 baseline monitoring event, the first post-injection monitoring event (November 2017) and the fourth post-injection monitoring event (August 2018), respectively. Total petroleum hydrocarbon data for the monitoring events are provided in Table 3, and TPH trend plots for wells MW-5, MW-5D and MW-6 are included in Appendix D.

6.1 DATA EVALUATION APPROACH

Data collected from wells MW-5 and MW-5D are used to evaluate the efficacy of the pilot study injections and data collected from well MW-6 (located outside of the remediation area) are used as a control. Because well MW-6 is located outside of the active remediation area, any changes in hydrocarbon concentration associated with the pilot study injections can be isolated from variability in data associated with season, water level, (non-enhanced) natural attenuation processes, etc. Well MW-5 is screened from 10 to 25 feet bgs and well MW-5D is screened from 35 to 45 feet bgs, so data collected from both wells can be used to evaluate for vertical concentration gradients in the groundwater plume, and to evaluate the vertical extent of the effects of the pilot study injections.

For wells MW-5 and MW-6 trend plots were prepared for diesel range hydrocarbons and gasolinerange hydrocarbons as well as total hydrocarbons (a summation of diesel- and gasoline-range total petroleum hydrocarbons results; expressed as TPHg+TPHd on figures). BTEX concentrations were minimal to non-detect in wells MW-5 and MW-5D, so the data were not used to evaluate the efficacy of the pilot test. Based on the initial data evaluation, the TPHg+TPHd results are considered the most appropriate data for evaluating concentration trends for the following reasons:

- 1. Because of laboratory ownership changes over the course of the pilot study and some quality control issues identified during the laboratory transition process, three different laboratories were used over the five groundwater monitoring events presented in this report. The carbon ranges used to represent "diesel" or "gasoline" hydrocarbons may vary among laboratories, thus a comparison of TPHg+TPHd results (encompassing a larger carbon chain range) is likely more inclusive and accurate.
- 2. While gasoline and diesel were the most commonly stored products at the terminal, other products, such as jet fuel, which is a combination of gasoline and kerosene, were also stored at the terminal historically and may comprise a portion of the hydrocarbons in soil and groundwater at the site. While kerosene has an intermediate carbon chain length, relative to gasoline and diesel, there is overlap (in carbon chain length, and therefore weight) among all three types of fuel. Again, with different laboratories reporting slightly different carbon ranges for each fuel type, evaluating data as "total hydrocarbons" is the most accurate method for evaluating changes in concentration, and thus potential loss of mass, in individual monitoring wells between monitoring events. It should be noted that oil range hydrocarbons were not included in the evaluation as they were either not detected or represent a very small fraction of the hydrocarbon mass detected in the samples.

6.2 TREND PLOT EVALUATION – TPH

In well MW-5, the TPHg concentration increased after the baseline event, and generally increased through the August 2018 monitoring event. In the same well, TPHd concentrations also increased for the first three groundwater monitoring events after the baseline event, and then dropped significantly between May and August 2018. When evaluating total hydrocarbons in well MW-5

(expressed as TPHg+TPHd), the concentration was at a monitoring history low during the baseline event, and with the exception of a slight decrease in concentration between the November 2017 and February 2018 monitoring events, continued to increase through August 2018.

As discussed in Section 4.12, in addition to chemical destruction, RegenOx® produces a significant short-term oxygen footprint that is optimal for establishing aerobic conditions capable of supporting aerobic biodegradation of petroleum hydrocarbons. Both the chemical destruction and enhanced aerobic biodegradation reactions typically take place within the first month after injection. The November 2017 groundwater monitoring event was conducted approximately one month after the RegenOx® was injected, at an ideal time for evaluating whether or not the chemical oxidation injections effectively reduced hydrocarbon concentrations in site groundwater. TPHg+TPHd concentrations increased in well MW-5 between the baseline monitoring event and the November 2017 monitoring event, indicating the chemical oxidation injections did not have a measurable effect on hydrocarbon concentrations in groundwater near well MW-5. It is possible that the ground disturbance associated with the injections increased the solubility of the material causing a short-term significant increase in the TPHg+TPHd concentration. In that case, the second post-injection groundwater monitoring event may be a better indicator of how effective the oxidant was. In well MW-5, the concentration of TPHg+TPHd decreased slightly after the second postinjection event before increasing the subsequent two monitoring events. The data may indicate that a small concentration reduction was realized in response to the oxidant (but after the initial concentration surge due to solubilization), followed by an increase in concentration because of the remaining TPH mass in the subsurface.

In addition to total hydrocarbon values, the individual concentrations of TPH-g and TPHd also increased from the baseline monitoring event to the November 2017 monitoring event, further indicating an increase in petroleum hydrocarbons in groundwater after the injections. This may be an indicator that at least some oxidant successfully reached the saturated zone.

As discussed in Section 4.1, the injection of ORCAdvanced provides a continuous release of oxygen to the groundwater over a period of up to 12 months to support long-term aerobic biodegradation. With the exception of a slight dip in total TPH concentration between the November 2017 and February 2018 monitoring events, the concentration of TPH in well MW-5 has been consistently increasing since the ORC Advanced was emplaced in October/November 2017. This suggests that while the ORC Advanced may have been effective in supporting long-term aerobic biodegradation in groundwater around well MW-5D, the injected substrate mass was not sufficient to produce a measurable decrease in total hydrocarbon concentrations. It is also possible that the initial oxidant eradicated the microbes, so that despite the addition of oxygen, the organisms were no longer present for long-term aerobic degradation of hydrocarbons.

As discussed in Section 6.1, this pilot study did not include injections in the vicinity of monitoring well MW-6, so data collected from that well are considered a control for natural fluctuations in groundwater at the terminal. TPHg+TPHd concentrations in groundwater from well MW-6 remained generally consistent between the baseline (October 2017) and November 2017

monitoring events. The concentration of TPHg+TPHd decreased in well MW-6 from November 2017 through May 2018, and then increased rapidly to a monitoring history high by August 2018. The variability in the trend plot for well MW-6 may be more indicative of seasonal fluctuations in the water table, resulting in seasonal increases in dissolved phase petroleum hydrocarbons from seasonably saturated soils. As discussed in Section 2.2.2, water levels in the tank farm area may vary seasonally by as much as 10 feet. While seasonable variability is likely also occurring at well MW-5, the consistently increasing TPHg+TPHd concentrations at well MW-5 suggest the trend is more dominated by the physical solubilization of petroleum hydrocarbons in response to the injections, without the sufficient destruction of aerobic degradation of hydrocarbons in response to the RegenOx®/ORCAdvanced injections.

6.3 DEEPER GROUNDWATER – EVALUATION OF RESULTS FROM MW-5D

TPHg was detected in well MW-5D during the baseline monitoring event and the four subsequent pilot study monitoring events at concentrations below MTCA Method A cleanup levels. TPHd was detected in the baseline, November 2017 and February 2018 monitoring events but not in the May and August 2018 monitoring events; all results were below MTCA Method A cleanup levels. BTEX was not detected in well MW-5D during the baseline and four post-injection monitoring events.

The concentrations of TPHg+TPHd in well MW-5D were too low to see any discernable trends. The data suggest that the pilot study did not have a measurable effect on the concentrations in the deeper monitoring well. Concentrations of petroleum hydrocarbons in well MW-5D will continue to be monitored to confirm that there is no ongoing source to deeper groundwater.

6.4 BTEX RESULTS

While the majority of the petroleum hydrocarbons in groundwater in the vicinity of well MW-5 are gasoline and diesel range hydrocarbons, xylenes were also identified in well MW-5 during the pilot study monitoring events at concentrations exceeding MTCA Method A cleanup levels. A trend plot for xylenes is provide in Appendix D. The concentration of xylenes increased between the October 2017 baseline event and the November 2017 monitoring event, and then varied slightly during the subsequent quarterly pilot study monitoring events. The concentration of xylene did not decrease in response to the initial RegenOx® or during approximately 10 months of additional monitoring in response to the ORC Advanced.

Benzene, toluene and ethylbenzene concentrations were not detected in well MW-5 during the baseline or post-injection monitoring events. The lack of benzene and toluene suggests that the hydrocarbon plume is aged and that the lighter petroleum hydrocarbon constituents have likely long attenuated. BTEX was not detected in well MW-5D during any of the pilot study monitoring events.

7.0 CONCLUSIONS

This pilot study was conducted to evaluate the injection of oxygen releasing compound and/or ISCO products in saturated soil and groundwater, for the potential remediation of petroleum hydrocarbons (TPH) and BTEX at the facility. Based on the results of the pilot study, the following conclusions can be made regarding the effectiveness of *in situ* enhanced bioremediation/ISCO at the site, and the implications for preparation of the FS.

- 1. <u>There were significant issues associated with physical implementation of the technology in</u> <u>the tank farm area at the Site.</u> Due to the low permeability soils in the injection area, the RegenOx®/ORCAdvanced mixture frequently daylighted both as a free-flowing liquid as well as foaming at the ground surface. While there is no way to determine the volume of injected material lost to daylighting, the loss of injection volume may have been a factor in the lack of concentration reduction observed in the pilot study area. While injection pressures and injection rates were significantly decreased to help prevent the daylighting of material, the decreased injection rates ultimately led to an approximately 40% increase in the total injection time for the project. This generally correlates with a 40% increase in costs for subcontractor labor, oversight labor, and equipment costs. The pilot test provided useful information for preparation of the FS, in that actual injection time needed (and the associated costs) can now be accurately accounted for when comparing the feasibility of chemox/enhanced bioremediation to other potential remedial technologies.
- 2. <u>Assuming daylighting can be properly managed, the products are considered safe for use at the terminal.</u> RegenOx® is a bicarbonate-based ISCO product and was selected as the appropriate chemical oxidation product for the tank farm area because it is known to be less reactive with metal and other buried infrastructure than other ISCO products on the market. While the material is generally safe for handling, the daylighting of product to the surface may be a safety concern, particularly for a project larger in scope than the pilot study. If pressures and flow rates can be maintained so that there are no releases of chemical oxidation products at the ground surface, RegenOx® may be considered a viable product for limited use at the terminal as described below.
- 3. Post injection groundwater monitoring indicated that the injections were not effective at reducing concentrations of petroleum hydrocarbons in groundwater. The lack of reduction in concentration of TPH-g, TPHd, and/or total hydrocarbon concentrations in response to the remedial injections may be for multiple reasons. Because the RegenOx® and ORCAdvanced were so difficult to inject into the subsurface, and product was observed to daylight not only at the injection location but also at a distance from the injection location, the ineffectiveness of the injections may be because sufficient volume of product never made it in contact with impacted saturated soils and groundwater. This is true for both the fast-acting RegenOx® as well as the time-released ORCAdvanced product.

The proposed injection volumes were prepared using spreadsheets provided by the RegenOx®/ORCAdvanced vendors and considered factors such as contaminant concentration in pilot study area groundwater, soil type, treatment area, thickness of impacted area, etc. Because site-specific information and analytical data are limited, assumptions were made as to how much injection volume was needed, and safety factors were built in to help accommodate any inaccurate assumptions. It is not clear whether the ineffectiveness of the pilot study was due to the loss of too much oxygen-producing RegenOx®/ORCAdvanced mixture due to daylighting, or if the pilot study design inputs were insufficient to accurately quantify the contaminant mass in the subsurface. While the product vendors stipulate that multiple rounds of injections may be required to fully remediate the impacted groundwater, initial concentration reductions are typically observed after an ISCO application, followed by a rebound in contaminant concentration. Because only a slight decrease in concentration was observed four months after the initial injections followed by steady concentration increases, it is most likely that insufficient product made it into the impacted area.

4. The pilot study provided information for evaluation of chemical oxidation and enhanced bioremediation in the FS. The pilot study was beneficial for identifying physical issues that would have to be overcome for *in situ* injection technologies to be successful at the Facility. In order to potentially overcome product daylighting, the injection pressures and rates would need to be significantly decreased. This would significantly increase the duration of an injection event and make the chemical oxidation and enhanced bioremediation technologies less cost-competitive than other technologies. Because technologies such as ISCO typically require several injection events to fully destroy the hydrocarbon mass in the subsurface, ISCO could quickly become more expensive than other technologies that are generally thought to be more expensive than ISCO and enhanced bioremediation. Furthermore, it is not certain whether injection pressures and rates can be reduced enough to completely eliminate migration along preferential pathways and/or product daylighting. If the material cannot be uniformly injected into the subsurface, then it is not an ideal strategy for remediation of petroleum hydrocarbon contaminants in saturated soil and groundwater at the Facility.

It should be noted that this technology may be retained as a potential technology for other areas at the Facility. Soil boring information from several investigations in the truck loading rack area indicate that the subsurface soils are more permeable than at the western side of the site. While a pilot study, including the testing of fluid acceptance rates in the treatment zone, would be necessary before chemical oxidation or enhanced bioremediation technologies would be implemented at other portions of the Facility (e.g., truck loading rack area), these technologies will be retained as remedial options for evaluation in the FS.

8.0 REFERENCES

- Apex Companies, LLC (Apex), 2015a. *Groundwater Monitoring Results December 2014.* February 6, 2015.
- Apex, 2015b. March 2015 Groundwater Results Report and Groundwater Investigation Work Plan. May 28, 2015.
- Apex, 2017. Additional Investigation Summary Report and Pilot Study Work Plan, NuStar Vancouver Annex Terminal, August 2, 2017.

AMEC, 2002a. Phase II Environmental Site Assessment, Cenex Harvest State Cooperatives. May 2002.

AMEC, 2002b. Subsurface Investigation and Soil Removal Report, Cenex Harvest State Cooperatives. December 2002

Ash Creek Associates (Ash Creek), 2007. *Evaluation of Migration Potential Due to Proposed Clark Public Utilities Fruit Valley Well Field.* April 10, 2007.

- Ash Creek, 2008a. Results of Direct-Push Groundwater Assessment. January 28, 2008.
- Ash Creek, 2008b. Groundwater Monitoring Report Quarterly Monitoring 2007. January 28, 2008.

Ash Creek, 2009. Remedial Investigation Work Plan. October 2009.

Ash Creek, 2010. Remedial Investigation/Risk Assessment Report. December 29, 2010.

- Cascadia Associates, LLC, 2018. *NuStar Annex Terminal Pilot Study Implementation Memorandum.* March 13, 2018.
- Pacific Groundwater Group (PGG), 2001. *Clark Public Utilities Lakeshore Wellfield Exploration and Testing Program.* February 2001.
- PGG, 2009. *Hydrogeologic Evaluation for Clark Public Utilities South Lake Wellfield, SGA Production Wells PW-2 and PW-3.* July 2009.

SECOR, 2003. Results of Phase II Environmental Site Assessment. June 6, 2003.

TABLES

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	05/14/02	NS			16.00		NS
	05/25/07	26.66			14.92		11.74
	08/24/07	26.66			18.67		7.99
	11/26/07	26.66			17.91		8.75
	02/27/08	26.66			16.92		9.74
	03/30/10	26.66			17.09		9.57
	09/01/10	26.66			19.19		7.47
MW-1	12/16/14	26.66	14.5 - 24.5		16.19		10.47
	03/25/15	26.66			15.25		11.41
	06/24/15	26.66			18.43		8.23
	09/15/15	26.66			19.05		7.61
	11/30/17	26.72			16.16		10.56
	02/28/18	26.72			15.07		11.65
	05/29/18	26.72			8.43		18.29
	08/30/18	26.72			18.37		8.35
	05/14/02	NS			27.46		NS
	05/25/07	38.21			26.46		11.75
	08/24/07	38.21			30.17		8.04
	11/26/07	38.21			29.42		8.79
	02/27/08	38.21			28.50		9.71
	03/30/10	38.21			28.66		9.55
MW-2	09/01/10	38.21			30.74		7.47
10100-2	12/16/14	38.21	20 - 35		27.77		10.44
	03/25/15	38.21			26.79		11.42
	06/24/15	38.21			30.05		8.16
	09/15/15	38.21			30.65		7.56
	11/30/17	38.27			27.66		10.61
	02/28/18	38.27			26.70		11.57
	05/29/18	38.27			19.96		18.31
	08/30/18	38.27			29.94		8.33

Please refer to notes at end of table.

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	05/14/02	NS			28.15		NS
	05/25/07	39.11			27.17		11.94
	08/24/07	39.11			31.04		8.07
	11/06/07	39.11			30.36		8.75
	02/27/08	39.11			28.71		10.40
	03/30/10	39.11			29.55		9.56
	09/01/10	39.11			31.65		7.46
MW-3	12/16/14	39.11	24.5 - 34.5		28.54		10.57
	03/25/15	39.11			27.72		11.39
	06/24/15	39.11			30.85		8.26
	09/15/15	39.11			31.52		7.59
	11/30/17	39.17			28.61		10.56
	02/28/18	39.17			27.18		11.99
	05/29/18	39.17			20.91		18.26
	08/30/18	39.17			30.80		8.37
	05/14/02	NS			29.40		NS
	05/25/07	40.17			28.35		11.82
	08/24/07	40.17			32.12		8.05
	11/06/07	40.17			31.40		8.77
	02/27/08	40.17			30.40		9.77
	03/30/10	40.17			30.77		9.40
	09/01/10	40.17			32.62		7.55
MW-4	12/16/14	40.17	20 - 35		29.63		10.54
	03/25/15	40.17			28.76		11.41
	06/24/15	40.17			31.92		8.25
	09/15/15	40.17			32.61		7.56
	11/30/17	40.23			29.59		10.64
	02/28/18	40.23			28.60		11.63
	05/29/18	40.23			21.88		18.35
	08/30/18	40.23			31.86		8.37
	12/16/14	27.03			16.60		10.43
	03/25/15	27.03			15.37		11.66
	06/24/15	27.03			18.89		8.14
	09/15/15	27.03			19.35		7.68
MW-5	10/23/17	27.03	10 - 25		17.82		9.21
C-771VI	11/30/17	27.03	10 20		16.39		10.64
	02/28/18	27.03			15.41		10.64
	05/29/18	27.03			8.68		18.35
	03/23/18	27.03			18.55		8.48

Please refer to notes at end of table.

Table 1 Groundwater Elevation Data NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Date of Measurement	Top of Casing Elevation (feet above MSL)	Screened Interval (feet bgs)	Depth To SPH (feet)	Depth to Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)
	10/24/17	26.71			17.50		9.21
	11/30/17	26.71			16.21		10.50
MW-5D	02/28/18	26.71	35 - 45		15.20		11.51
	05/29/18	26.71			8.37		18.34
	08/30/18	26.71			18.51		8.20
	12/16/14	27.33			16.93		10.40
	03/25/15	27.33			15.73		11.60
	06/24/15	27.33			19.34		7.99
	09/15/15	27.33			19.70		7.63
MW-6	10/24/17	27.33	10 - 25		18.12		9.21
	11/30/17	27.33			16.71		10.62
	02/28/18	27.33			15.77		11.56
	05/29/18	27.33			9.03		18.30
	08/30/18	27.33			18.99		8.34
	11/30/2017	21.67			11.12		10.55
	2/28/2018	21.67	10 - 25		10.19		11.48
MW-7	5/29/2018	21.67	10-25		3.4		18.27
	08/30/18	21.67			13.26		8.41
	11/30/2017	27.68			16.91		10.77
	2/28/2017	27.68	10 - 25		16.01		11.67
MW-8	5/29/2018	27.68	10-25		9.31		18.37
	08/30/18	27.68			19.22		8.46
	11/30/2017	27.87			17.36		10.51
	2/28/2018	27.87	35 - 45		16.35		11.52
MW-8D	5/29/2018	27.87	55-45		9.53		18.34
	08/30/18	27.87			19.41		8.46
	11/30/2017	29.39			18.78		10.61
	2/28/2018	29.39	10 - 25		17.79		11.60
MW-9	5/29/2018	29.39	10 - 25		11.09		18.30
	08/30/18	29.39			21.04		8.35
	11/30/2017	28.71			18.16		10.55
NAVA 10	2/28/2018	28.71	10 - 25		17.19		11.52
MW-10	5/29/2018	28.71	20 20		10.38		18.33
	08/30/18	28.71			20.3		8.41

Notes:

1. Survey elevations determined by Bluedot Group surveying, November 2017.

2. Reference elevation (i.e., top of casing) relative to NAVD 88, feet above mean sea level.

- 3. feet above MSL = feet above mean sea level.
- 4. NS = Not surveyed
- 5. -- = SPH not measured/observed.
- 6. bgs = below ground surface.

Analytical Results from Groundwater Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)
	05/14/02	<0.080	0.455 ^{5.}	<0.500	<0.0005	<0.0005	<0.0005	<0.001
	05/19/03				<0.001	<0.001	<0.001	<0.002
	05/25/07	<0.080	<0.238	<0.476	<0.0002	<0.0005	<0.0005	<0.001
	08/24/07	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006
	11/26/07	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006
	02/27/08	<0.080	<0.294	<0.588	<0.0005	<0.0005	<0.0005	<0.001
MW-1	03/31/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	09/01/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005
	03/25/15	<0.250	<0.046	<0.093	<0.0005	<0.0005	<0.0005	<0.001
	06/24/15	<0.250	<0.100	<0.250	<0.0005	<0.0005	<0.0005	<0.001
	09/15/15	<0.250	<0.130	<0.340	<0.0005	<0.0005	0.0015	0.0022
	05/14/02	41.4	<0.250	<0.500	4.35	2.68	1.84	8.72
	05/19/03				0.534	0.00975	0.194	0.876
	05/25/07	0.439	<0.238	<0.476	0.071	0.00114	0.0361	0.0453
	08/24/07	0.102	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006
	11/26/07	<0.080	<0.236	<0.472	<0.001	<0.002	<0.002	<0.006
	02/27/08	0.0817	<0.294	<0.588	0.005	<0.0005	<0.0005	<0.001
MW-2	03/31/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	09/01/10	<0.250	<0.250	<0.500	0.0016	<0.0005	<0.0005	<0.0015
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005
	03/25/15	<0.250	<0.046	<0.091	<0.0005	<0.0005	<0.0005	<0.001
	06/24/15	<0.250	<0.100	<0.250	<0.0005	<0.0005	<0.0005	<0.001
	09/15/15	<0.250	0.17 D	0.37	<0.0005	<0.0005	<0.0005	<0.001
	05/14/02	4.5	<0.250	<0.500	0.0419	0.0096	0.293	0.521
	05/19/03				0.0908	0.0097	0.338	0.5382
	05/25/07	0.361	<0.238	<0.476	<0.0005	<0.0005	0.0132	0.0145
	08/24/07	<0.1	<0.238	<0.476	<0.001	<0.002	<0.002	<0.006
	11/26/07	<0.080	<0.236	<0.472	0.0011	<0.002	0.0066	<0.006
	02/27/08	2.14	0.387 ^{6.}	<0.500	<0.0005	<0.0005	0.17	0.17
	2/27/2008 DUP	1.85	0.342	<0.485	0.0011	<0.0005	0.19	0.2
MW-3	03/31/10	2.10	<0.250	<0.500	<0.0005	<0.0005	0.018	0.021
	3/31/2010 DUP	1.90	<0.250	<0.500	<0.0015	<0.0015	0.018	0.020
	09/01/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	9/1/2010 DUP	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005
	03/25/15	<0.418	<0.046	<0.092	<0.0005	<0.0005	<0.0005	<0.001
	06/24/15	<0.250	0.120	<0.026	<0.0005	<0.0005	<0.0005	<0.001
	09/15/15	<0.250	0.140	<0.250	<0.0008	<0.0008	<0.0008	<0.001

Please refer to notes at end of table.

Analytical Results from Groundwater Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)
	05/14/02	<0.080	0.358 ^{5.}	<0.500	<0.0005	<0.0005	<0.0005	<0.001
	05/19/03				< 0.001	<0.001	<0.001	<0.002
	05/25/07	<0.080	<0.238	<0.476	<0.0002	<0.0005	<0.0005	<0.001
	08/24/07	<0.1	<0.238	<0.476	< 0.001	<0.002	<0.002	<0.006
	11/26/07	<0.080	<0.236	<0.472	< 0.001	<0.002	<0.002	<0.006
	02/27/08	<0.080	<0.248	<0.495	<0.0005	<0.0005	<0.0005	<0.001
MW-4	03/31/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	09/01/10	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0015
	12/16/14	<0.250	<0.250	<0.500	<0.0005	<0.0005	<0.0005	<0.0005
	03/25/15	<0.250	0.074	<0.091	<0.0005	<0.0005	<0.0005	<0.001
	06/24/15	<0.250	<0.099	<0.250	<0.0005	<0.0005	<0.0005	<0.001
	09/15/15	<0.250	<0.130	<0.340	<0.0005	<0.0005	<0.0005	<0.001
	12/16/14	15	0.350	<0.500	0.00070	0.00066	0.12	1.2
	12/16/2014 DUP	15	<0.250	<0.500	0.00088	0.00081	0.18	1.3
	03/25/15	18.1	<0.045	<0.091	<0.00050	0.00061	0.218	1.45
	3/25/2015 DUP	17.2	<0.046	<0.092	0.0005	0.00065	0.236	1.22
	06/24/15	15	0.33 D	<0.250	<0.0012	<0.0012	0.228	1.51
	6/24/2015 DUP	16.8	0.560 D	<0.250	<0.0012	<0.0012	0.232	1.49
	09/15/15	17.3	0.82 D	<0.34	<0.00050	0.00060	0.289	1.92
MW-5	07/11/16	19.4	0.310	<0.29	<0.00084	0.00100	0.215	1.17
_	10/23/17	7.93 J-	1.26	<0.25	<0.0010	0.00117	0.174	0.99
	11/30/17	11.3	1.63	<0.25	<0.0250	<0.0250	0.187	1.21
	11/30/17 DUP	10.9	1.75	<0.25	<0.0010	0.00112	0.187	1.48
	02/28/18	9.86	1.77	<0.25	<0.0010	0.00115	0.145	0.877
	05/29/18	13.2	2.20	<0.25	<0.0010	0.00130	0.271	1.15
	08/30/18	18.6	0.819 F-18	<0.151	<0.00200	<0.0100	0.190	0.936
	8/30/2018 DUP	20.8	0.631 F-18	<0.151	<0.00200	<0.0100	0.212	1.06
	10/24/17	0.42	0.147 J	<0.25	<0.0010	<0.0010	0.00138	0.00296 J
	11/30/17	0.41	0.49	<0.25	<0.0010	<0.0010	<0.0010	<0.0030
MW-5D	02/28/18	0.589	0.249	<0.25	<0.0010	<0.0010	0.00508	0.00204
10100-50	05/29/18	0.68	<0.38	<0.38	<0.0010	<0.0010	0.00220	<0.0030
	08/30/18	0.673	<0.0755	<0.151	<0.000200	<0.00100	<0.00050	<0.00150
	12/16/14	15	<0.250	<0.500	0.47	0.065	1.3	2.6
	03/25/15	13.7	0.047	<0.092	0.516	0.0756	1.40	2.26
	06/24/15	17.7	1.2 D	<0.250	0.423	0.0582	1.58	1.92
	09/15/15	15.1	0.54 D	<0.34	0.306	0.0672	1.23	1.92
	9/15/2015 DUP	14	0.44 D	<0.35	0.328	0.0684	1.32	2.07
	07/11/16	15.5	0.23	<0.28	0.358	0.0616	1.63	1.82
MW-6	10/24/17	7.73	5.07	0.111 J	0.194	0.051	1.51	1.29
	10/24/17 DUP	4.19 J	8.96 QJ	1.19 QJ	0.153	0.046	1.18	1.04
	11/30/17	9.42	7.44	0.69	2.223	0.053	1.71	1.12
	02/28/18	7.72	3.57	0.152	0.256	0.0423	1.44	0.735
	05/29/18	1.5	9.30	0.570	0.23	0.0444	1.38	0.891
	08/30/18	20.1	1.24 F-18	<0.151	0.212	0.0452	1.59	1.15

Please refer to notes at end of table.

Analytical Results from Groundwater Monitoring Wells NuStar Terminals Operations Partnership, L.P. – Annex Terminal Vancouver, Washington

Well Number	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)
MW-7	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015
MW-8	07/11/16 7/11/16 DUP	<0.250 <0.250	<0.19 <0.19	<0.29 <0.29	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00015 <0.00015
MW-9	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015
MW-10	07/11/16	<0.250	<0.19	<0.29	<0.00050	<0.00050	<0.00050	<0.00015
Washington DO A Cleanup Leve	DE MTCA Method	0.8	0.5	0.5	0.005	1	0.7	1

Notes:

1. TPHg = Total petroleum hydrocarbons in gasoline carbon range by NW-TPHgx method.

2. TPHd = Total petroleum hydrocarbons in diesel carbon range by NW-TPHdx method with silica gel cleanup.

3. TPHho = Total petroleum hydrocarbons ion heavy oil carbon range NW-TPHdx method with silica gel cleanup.

4. Boldface values represent concentration that exceeds MTCA Method A cleanup level.

5. Analysis completed without silica gel cleanup. Lab detected hydrocarbons with non-petroleum peaks or elution pattern that suggests the presence of biogenic interference.

6. Hydrocarbon pattern most closely resembles a blend of heavy gas-/light diesel-range components.

7. mg/L (ppm) = Milligrams per liter (parts per million).

8. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.

9. Washington DOE MTCA Method A cleanup level = Washington Department of Ecology Model Toxics Control Act Method A cleanup level.

10. < = Not detected at or above the specified laboratory method reporting limit (MRL).

11. bgs = below ground surface

12. -- = Sample not analyzed for constituent.

Quality Assurance/Quality Control Data Qualifiers

J = Reported result is an estimated value.

J- = Reported result is estimated and biased low.

Q = Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.

F-18 = Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.

D = Laboratory report noted discreet peaks that are not indicative of diesel. The laboratory chemist confirmed the peaks were from non-petroleum organic material.

Summary of Soil Analytical Results: TPH and VOCs

NuStar Terminals Operations Partnership, L.P. - Annex Terminal

Vancouver, Washington

Sample Date Sample Date Depth PHH-ID PHH PHH <th></th> <th></th> <th></th> <th></th> <th colspan="11">Concentrations in mg/kg (ppm)</th> <th></th>					Concentrations in mg/kg (ppm)																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		•	Depth	TPH-HCID	TPHg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	Dibromo-	Dichloro-	butyl ether		Trimethyl-	Trimethyl-			-	Chloroform
M 1100 M 1012 I II I	oil Borings						T														
GP3 MA3 MD M	GP-2		10-12		ND	ND	ND														
6P5 04/1002 131.9 1 ND ND ND ND 1	GP-3	04/10/02-	10-12		ND	ND	ND														
GP-7 04/10/02- 0/10/02- 6/8 1-4 n ND ND ND ND n </td <td>GP-5</td> <td>04/10/02-</td> <td>17-19</td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td>	GP-5	04/10/02-	17-19		ND	ND	ND														
6P8 04/1002- 04/1	GP-7	04/10/02-	14-16		ND	ND	ND														
A11002 (4)1002 (4)1002 15-18 (4)1002 n <	GP-8	04/10/02-	6-8		ND	ND	ND														
Affilo2 Off 3.29 ND ND ND a		04/10/02-			ND		ND														
GP14 d1/102 10-12 DET 3,230 19,700 <1,000 n		04/10/02-																			
GP161 OUS00/02 D1-12 ND ND ND -																					
MM2 Obj09/02 S2-26.5 MD 31.4 25. 55. - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-															
6926 06/26/02 16-9 - - - - - - 2.5 9.1.3 82.5 - 5.5 0.12 692.1 0124 891.1 2.9.3 2.0.7 0.005 - GP31 06/25/02 2.2.4 - - - - 0.0050 - 0 - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
P672 P6726/20 210-12 4.96 0.0050 0.0050 0.015 0.005 0.02 0.055 0.01 0.055 0.02 0.055 0.02 0.055 0.02 0.055 0.02 0.055 0.017 16.9 0.0 0.015 0.017 16.9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.																					
GP31 GP(3c)/Q 22-24 -																					
GP32 Ob/26/02 65.8 910 2,530 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
GP33 GP/26/02 8-10 363 31,500 < <0 0.500 0.7 363 3.7 1.6																					
GP34 06/25/02 6-8 728 13,600 <1,000 <0,500 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050 <0,0050									-												
GP35 Ob/2/O2 8-10 10.3 225 450 40.055 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
SB-2 04/17/03 4 ND <																					
SB-2 04/17/03 22 ND																					
S8-4 04/17/03 3 ND -25 <50																					
SB-4 04/17/03 27 ND < <																					
SB-5 04/17/03 11 ND																					
SB-6 04/16/03 3 ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
SB-6 $04/16/03$ 16ND 1 <td></td>																					
SB-7 $04/17/03$ 12 ND 12 ND 1 </td <td></td>																					
SB-8 04/17/03 8 DET 1,020 7,890 <1,000 <0.500 <0.500 7.45 6.14 31 20.4 <1 3.22 3.54 SB-8 04/17/03 16 DET 369 1,440 <50 <0.500 <0.500 <0.500 <1,000 6.14 31 20.4 <1 3.22 3.54 SB-8 09/30/14 12 <50 <50 6.17 1.67 <0.5 1.13 0.837 <2.55 SB-9 04/18/03 12 <50 <																					
SB-8 04/17/03 16 DET 369 1,440 <50 <0.500 <0.500 <1,000 6.47 1.67 <0.50 1.13 0.837 <2.50 SB-8R 09/30/14 12 <5.00 <5.00 <																					< 0.5
SB-8R 09/30/14 12 $< < 5.0$ $< -$ <					-	-															0.539
SB-9 04/18/03 12 DET 504 1,890 <50							< <u>50</u>	<0.500	<0.500	×0.500	<1,000				0.47	1.07	\U. 3	1.15	0.837	~2.5	0.333
SB-9 $04/18/03$ 15 DET 168 $1,210$ <50 -1 <td></td> <td></td> <td></td> <td>DET</td> <td></td> <td></td> <td>~50</td> <td></td>				DET			~50														
SB-9R 09/30/14 12 1,000 4,000						-															
SB-9R 09/30/14 13.5 3,400																					
SB-11 04/16/03 2.5 ND <25 <50 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-																
SB-11 04/16/03 14 ND <25 <50 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-															
SB-12 04/22/03 3 ND																					
SB-12 04/18/03 12 ND																					
SB-13 04/22/03 2 ND	SB-12 SB-13	04/22/03	2	ND																	
SB-13 04/22/03 5 ND																					

Please refer to notes at end of table.

Table 3Summary of Soil Analytical Results: TPH and VOCsNuStar Terminals Operations Partnership, L.P. - Annex TerminalVancouver, Washington

											Concentrat	tions in mg/	kg (ppm)							
Sample Location	Sample Date	Depth	TPH-HCID	TPHg	TPHd	TPHho	Benzene	Toluene	Ethylbenzene	Xylenes	1,2- Dibromo- ethane	1,2- Dichloro- ethane	Methyl tert- butyl ether (MTBE)	Naphthalene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	lsopropyl- benzene	n-Propyl- benzene	n-Butyl- benzene	Chloroform
Hand Augers																				
HA-1	04/17/03	3	ND																	
HA-1	04/17/03	6	ND																	
HA-2	04/18/03	2	ND																	
HA-2	04/18/03	5	ND																	
HA-3	04/17/03	2					<0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
HA-3	04/17/03	5.5					<0.1	<0.1	<0.1	<300				<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
HA-4	04/18/03	2	ND				<0.1													
HA-4	04/18/03	5	ND																	
HA-5	04/18/03	3	DET	3,320	4,780	<50	<5.0	10.5	48.5	500				76.4	341	109	<10	39.1	<25	6.6
HA-5	04/18/03	5	DET	2,290	10,700	<250	6.7	216	177	1,204				141	576	176	20.8	83.3	34	<5
Washing	gton DOE MTCA Me	thod A cleanup	level	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA
Hand Augers							-												·	
HA-6	04/18/03	2	ND																	
HA-6	04/18/03	5	ND																	
HA-7	04/14/03	6	ND																	
HA-8	04/14/03	6	ND																	
Soil Sample from A	Advancement of Ten	nporary Monite	oring Wells																	
PMW-5	04/16/03	8	ND		31	<50														
PMW-5	04/16/03	10	DET		146	<50														
PMW-6	04/16/03	3	ND																	
PMW-6	04/16/03	12	ND																	
PMW-7	04/16/03	3	ND																	
PMW-7	04/16/03	16	ND																	
Soil Samples from	Excavation Confirm	ation																		
N. Wall	5/20/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
N. Wall	5/20/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
E. Wall	5/21/2002	10					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
E. Wall	5/21/2002	3					<0.100	<0.100	<0.100	<0.2			<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.5	<0.1
Washingt	ton DOE MTCA Met	hod A cleanup	level ^{12.}	100/30 ^{11.}	2,000	2,000	0.03	7	6	9	NA	NA	NA	5	NA	NA	NA	NA	NA	NA

Notes:

1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by NW-TPH-HCID

2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.

3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method with silica gel cleanup.

4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method with silica gel cleanup.

5. mg/kg (ppm) = Milligrams per kilogram (parts per million).

6. -- = Not analyzed or not available.

7. < = Not detected at or above the specified laboratory method reporting limit (MRL).

8. ND = Not detected; MRL not available.

9. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.

10. Boldface values represent concentration that exceeds MTCA Method A cleanup level.

11. TPHg cleanup level dependent on presence of benzene in soil. Cleanup level = 30 mg/kg if benzene is present and 100 mg/kg if benzene is not present.

12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.

13. NA = Cleanup level not available.

14. Grey highlight identifies the 2014 borings installed at the historical (2003) locations of SB-8 and SB-9.

Historical Grab Groundwater Sample Analytical Results: TPH and VOCs NuStar Terminals Operations Partnership, L.P. - Annex Terminal Vancouver, Washington

											Concen	trations in mg	/L (ppm)								
Sample Location	Sample Date	Depth (feet bgs)	TPH-HCID	TPHg	TPHd ¹⁶	TPHo ¹⁶	Benzene	Toluene	Ethyl- benzene	Xylenes	Methyl tert- butyl ether (MTBE)	Tert-Amyl Methyl Ether (TAME)	Naphthalene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	lsopropyl- benzene	n- Propylbenzene	n-Butyl- benzene	sec-Butyl- benzene	Chloroform	Dissolved Lead
Groundwater Sample				n	1	1		1			1	1	1	T	1	1	I	T	1		
B-1(1)	10/22/2015	21-25		0.483	0.51	<0.28	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-1(2)	10/22/2015	26-30		<0.250	0.24	0.38	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-1(3)	10/22/2015	36-40		0.687	0.35	<0.24	<0.00050	<0.00050	0.00053	<0.0010	<0.00050										
B-2(1)	10/23/2015	16-20		4.02	0.77	<0.30	0.0104	0.0155	1.31	3.18	<0.00050										
B-2(2)	10/23/2015	26-30		<0.250	0.2	<0.23	<0.00050	<0.00050	0.0057	0.0108	<0.00050										
B-2(3)	10/23/2015	36-40		2.37	3.5	<0.28	0.0022	0.0019	0.122	0.184	<0.00050										
B-3(1)	10/23/2015	16-20		22.3	15.9/3.2 ¹⁶	0.69 /<0.003 ¹⁶	3.94	0.112	1.24	3.9	<0.010										
B-3(2)	10/23/2015	26-30		25.6	37.4	0.46	3.91	0.104	1.23	3.52	<0.010										
B-4(1)	10/23/2015	16-20		10.3	6.2	<0.300	<0.0012	< 0.0012	0.26	0.321	< 0.0012										
B-4(2)	10/23/2015	26-30		9.88	2.1	<0.260	0.0012	0.001	0.255	0.214	<0.00050										
B-5(1)	10/27/2015	16-20		34.7	68.4	3.8	<0.025	<0.025	2.77	5.24	<0.025										
B-5(2)	10/27/2015	36-40		20.6	0.89	<0.30	<0.0031	0.0097	0.955	1.26	< 0.0031										
B-6(1)	10/27/2015	19-23		48.6	117/67.7 ¹⁶	0.77/0.62 ¹⁶	<0.0025	0.005	0.0743	0.0245	< 0.0025										
B-6(2)	10/27/2015	51-55		<0.250	0.35	0.31	<0.00050		<0.00050	<0.0010	<0.00050										
B-6(3)	10/27/2015	61-65		<0.250	0.35	< 0.30	<0.00050	< 0.00050	<0.00050	<0.0010	0.0025										
B-7 (1)	10/28/2015	21-25		<0.250	<0.170	<0.260	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-7(2)	10/28/2015	26-30		<0.250	<0.190	<0.280	<0.00050	< 0.00050	<0.00050	<0.0010	< 0.00050										
B-8(1)	10/28/2015	16-20		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-8(2)	10/28/2015	21-25		<0.250	<0.190	<0.290	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-9(1)	10/20/2015	16-20		1.63	0.24	0.28	<0.00050	< 0.00050	< 0.00050	< 0.0010	<0.00050										
B-9(2)	10/29/2015	36-40		3.03	0.38	0.62	<0.00050	<0.00050	<0.00050	<0.0010	0.0039										
B-9(3)	10/29/2015	46-50		1.55	0.56	< 0.300	<0.00050	<0.00050	<0.00050	<0.0010	0.0048										
B-10(1)	10/29/2015	16-20		32.7	284	0.58	< 0.0012	< 0.0012	0.377	0.495	< 0.0012										
B-10(2)	10/29/2015	36-40		0.421	2.2	0.37	<0.00050	<0.00050	0.0022	0.003	<0.00050										
B-11(1)	10/30/2015	21-25		19.2	46.7	0.92	<0.0025	< 0.0025	0.455	0.701	<0.0025										
B-11(2)	10/30/2015	36-40		1.58	6.9	0.62	<0.00050	< 0.00050	0.0112	0.0187	<0.00050										
B-11(3)	10/30/2015	41-45		<0.250	0.28	0.3	<0.00050	< 0.00050	0.00052	<0.0010	<0.00050										
B-12(1)	10/30/2015	16-20		0.265	<0.200	0.36	<0.00050	<0.00050	< 0.00050	<0.0010	<0.00050										
B-12(2)	10/30/2015	36-40		<0.250	0.29	<0.260	<0.00050	<0.00050	<0.00050	<0.0010	<0.00050										
B-12(3)	10/30/2015	41-45		<0.250	<0.200	< 0.300	< 0.00050	< 0.00050	< 0.00050	< 0.0010	0.001										
B-13 (1)	7/7/2016	15-20		< 0.250	<0.18	<0.27	< 0.00050	< 0.00050	< 0.00050	< 0.0015											
B-13 (2)	7/7/2016	25-30		< 0.250	<0.18	<0.27	< 0.00050	< 0.00050	< 0.00050	< 0.0015											
B-14 (1)	7/7/2016	15-20		< 0.250	<0.18	<0.27	< 0.00050	< 0.00050	< 0.00050	< 0.0015											
B-14 (2)	7/7/2016	25-30		<0.250	<0.17	<0.26	<0.00050	< 0.00050	<0.00050	< 0.0015											
Washing	ton DOE MTCA Meth	od A cleanup lev	el ^{12.}	0.800 ^{11.}	0.5	0.5	0.005	1	0.7	1	0.02	NA	0.16	NA	NA	NA	NA	NA	NA	NA	0.015

Notes:

1. TPH-HCID = Total petroleum hydrocarbons hydrocarbon identification by method NWTPH-HCID.

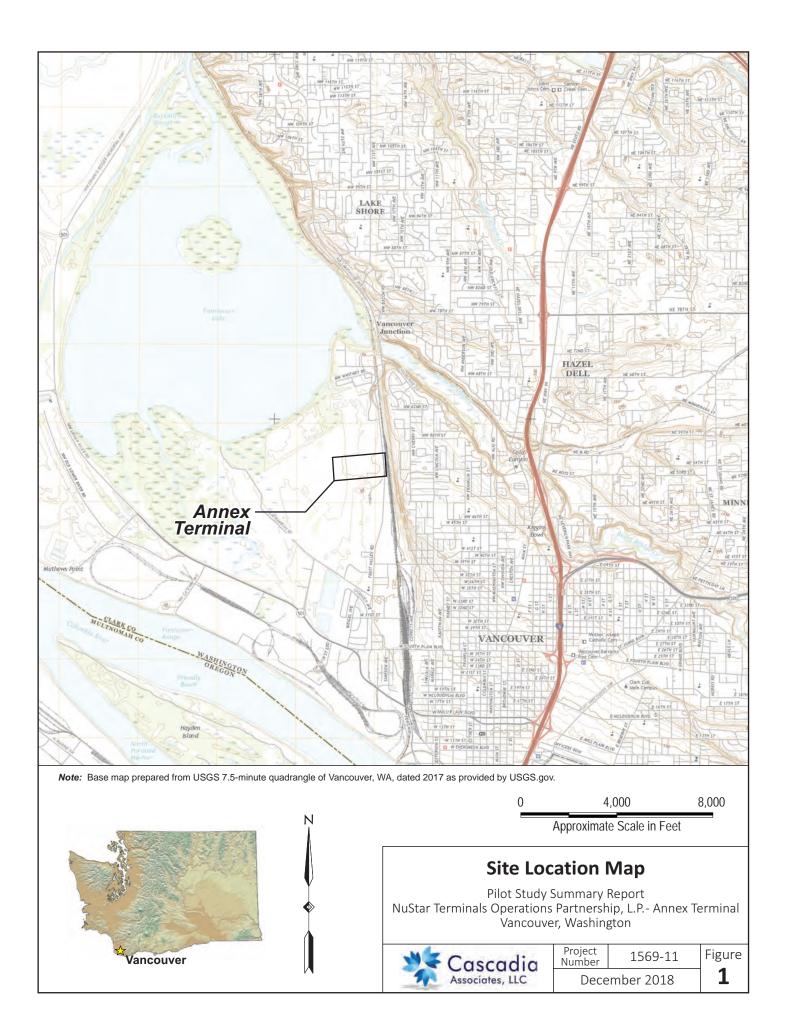
2. TPHg = Total petroleum hydrocarbons in the gasoline carbon range by NW-TPH-Gx method.

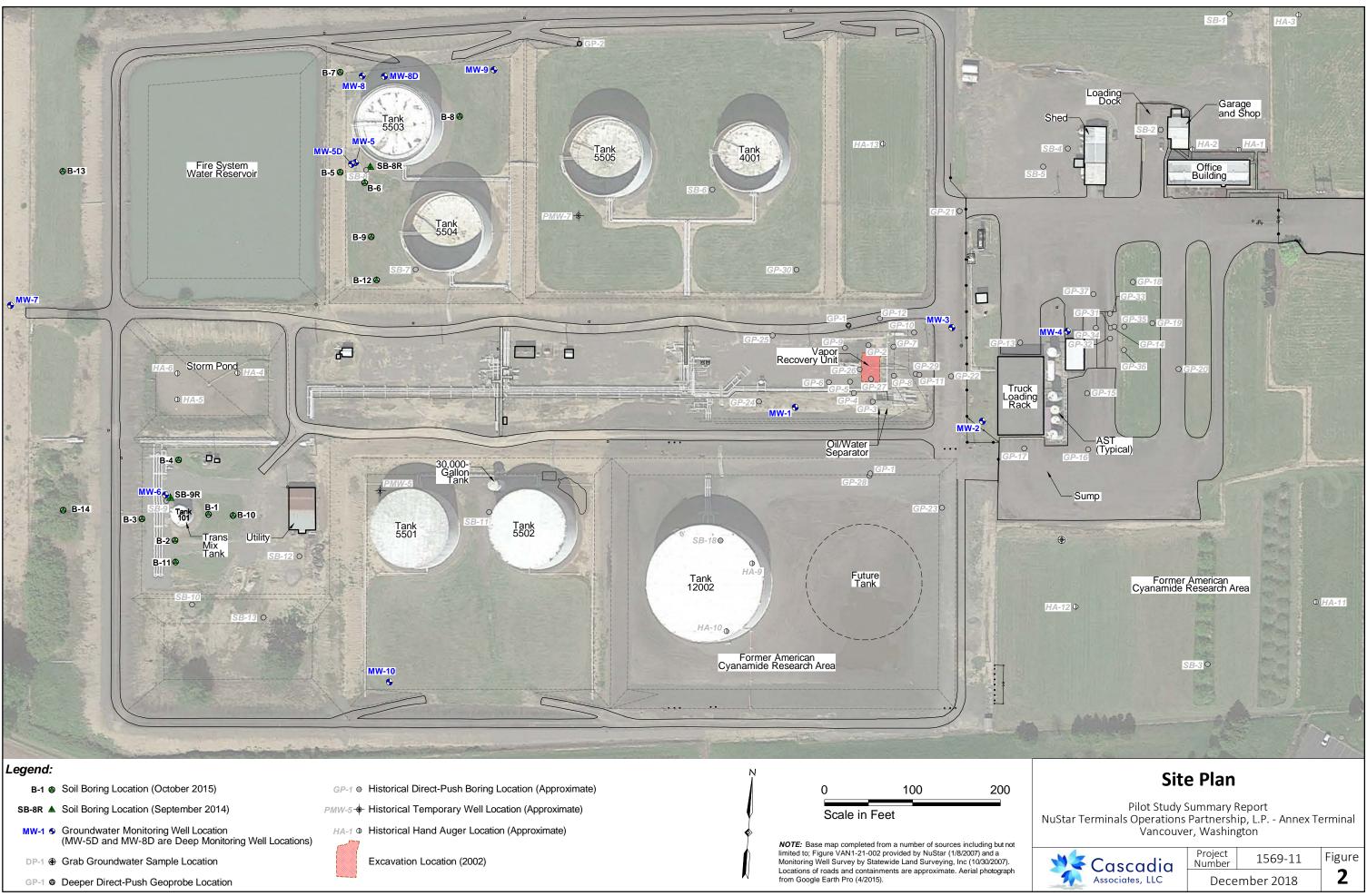
3. TPHd = Total petroleum hydrocarbons in the diesel carbon range by NW-TPH-Dx method. September 2014 samples were analyzed using silica gel cleanup method.

4. TPHho = Total petroleum hydrocarbons in the heavy oil carbon range by NW-TPH-Dx method.

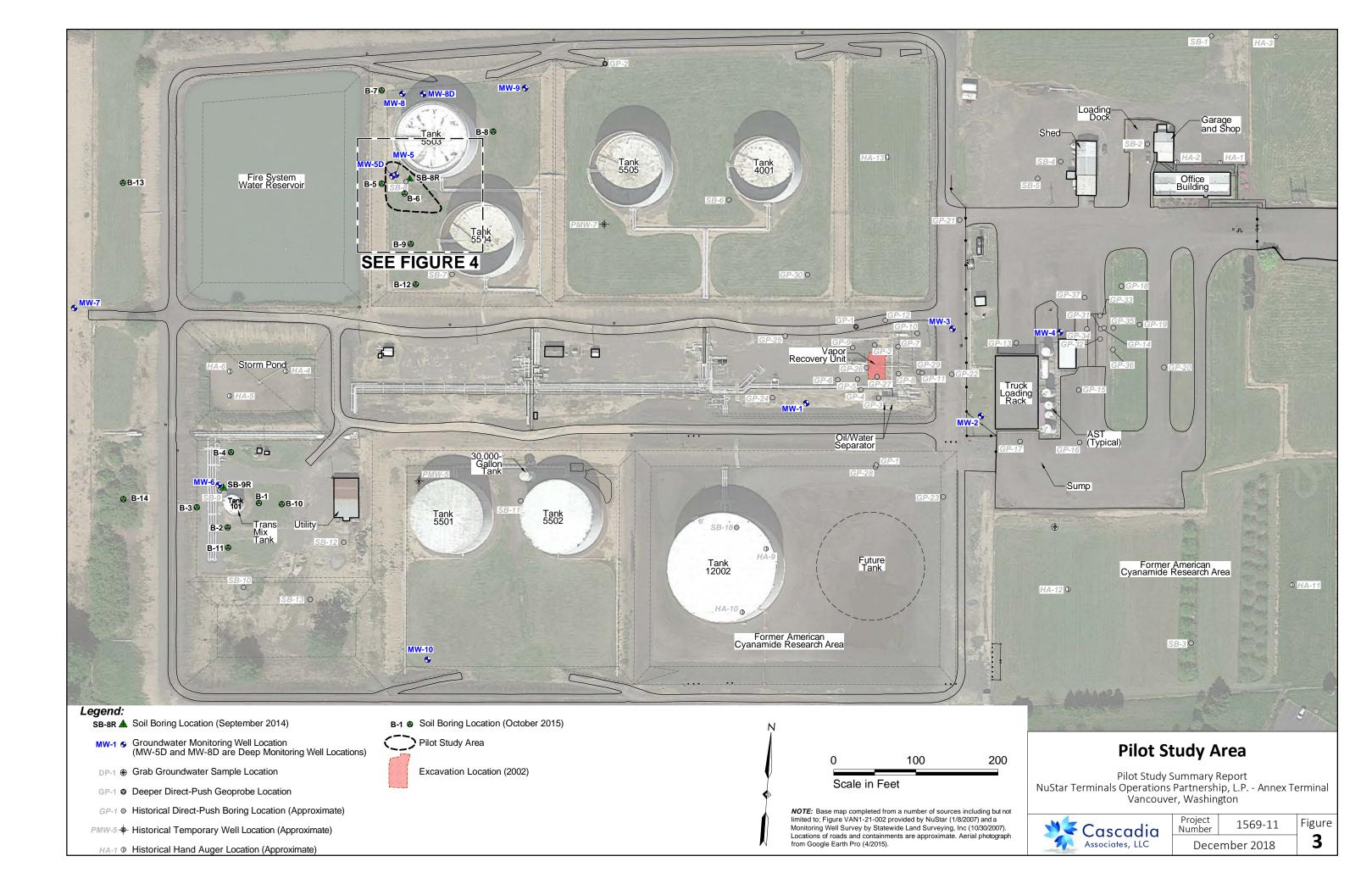
5. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) analysis per EPA Method 8260B.

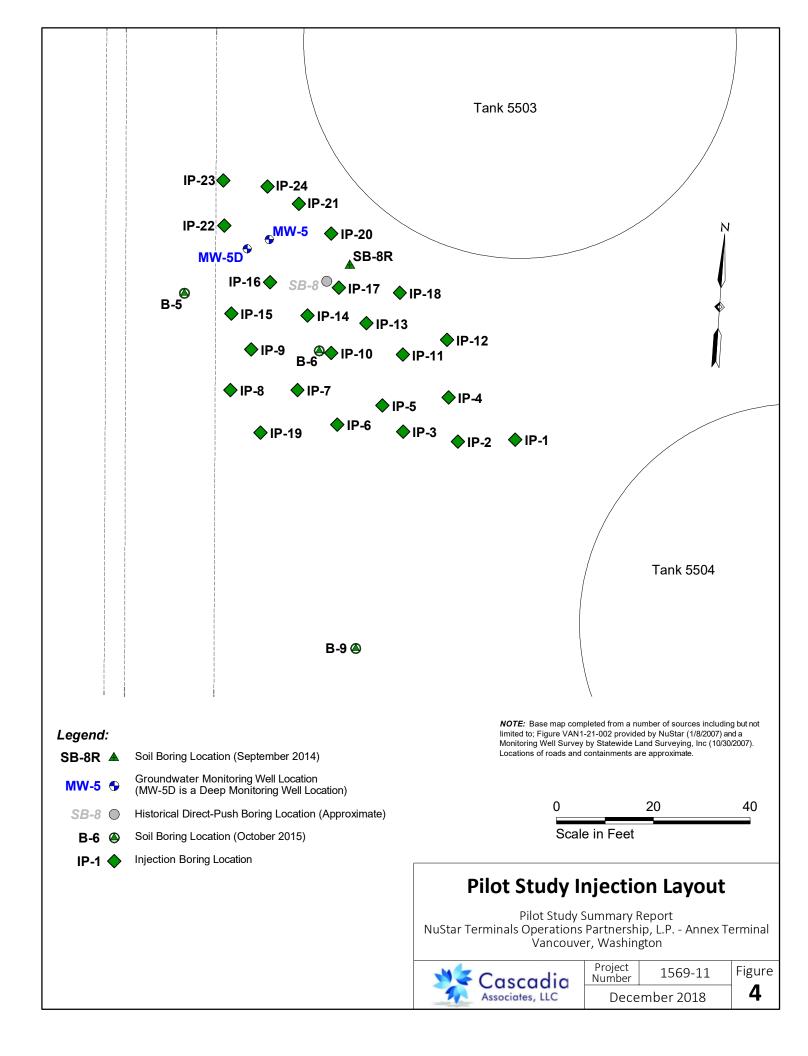
6. Volatile organic compounds (VOCs) analysis per EPA Method 8260B.

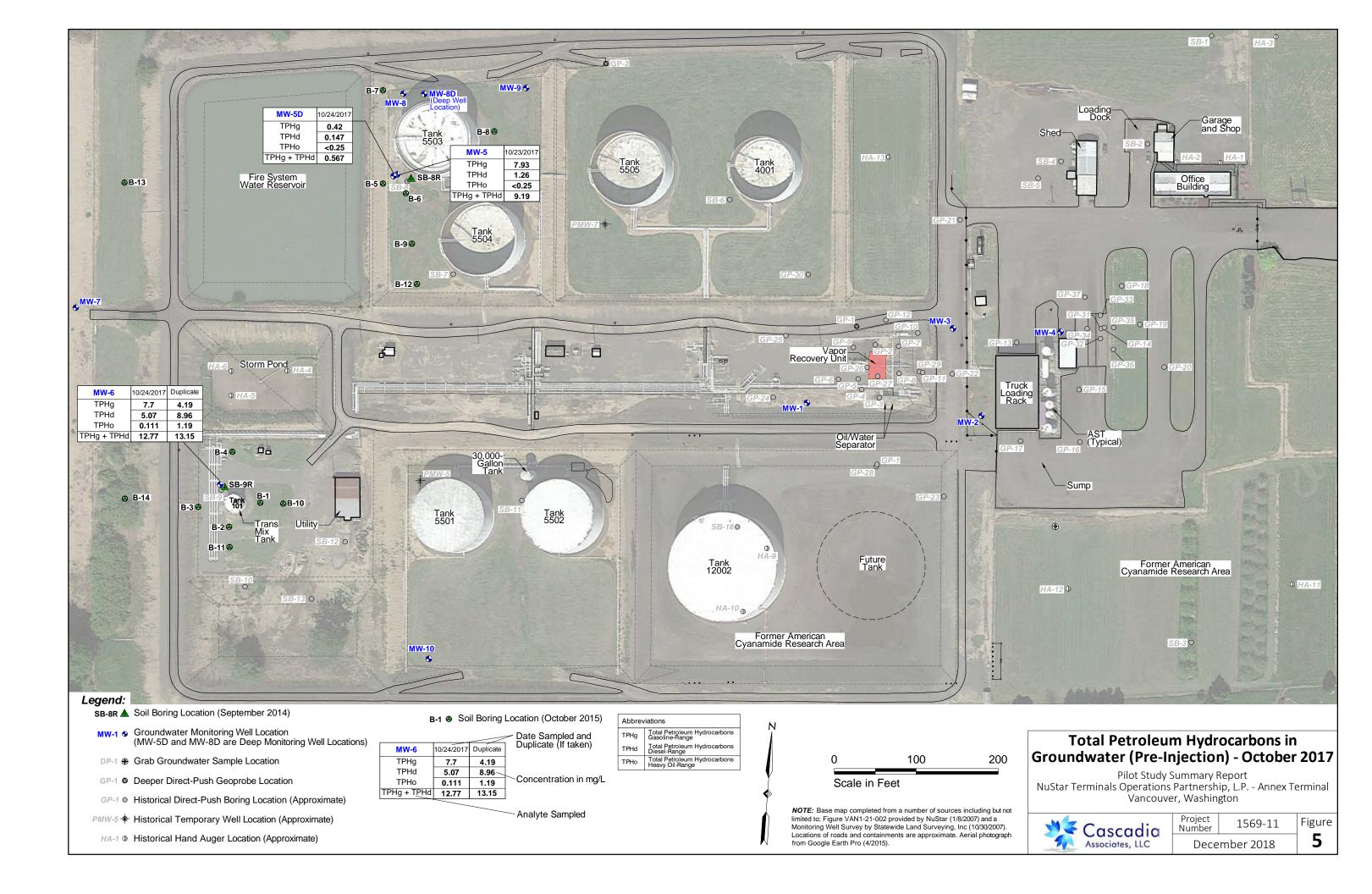

- 7. DET = Gasoline-, diesel-, and/or heavy oil-range hydrocarbons was detected using NWTPH-HCID. Follow-up analysis was completed.
- 8. ND = Not detected; method reporting limit (MRL) not available.
- 9. < = Not detected at or above the specified laboratory method reporting limit (MRL).
- 10. mg/L (ppm) = Milligrams per liter (parts per million).
- 11. TPHg cleanup level dependent on presence of benzene in groundwater. Cleanup level = 0.800 mg/L if benzene is present and 1.00 mg/L if benzene is not present.
- 12. Washington DOE MTCA = Washington Department of Ecology Model Toxics Control Act.
- 13. Boldface values represent concentration that exceeds MTCA Method A cleanup level.
- 14. NA = Cleanup level not available.

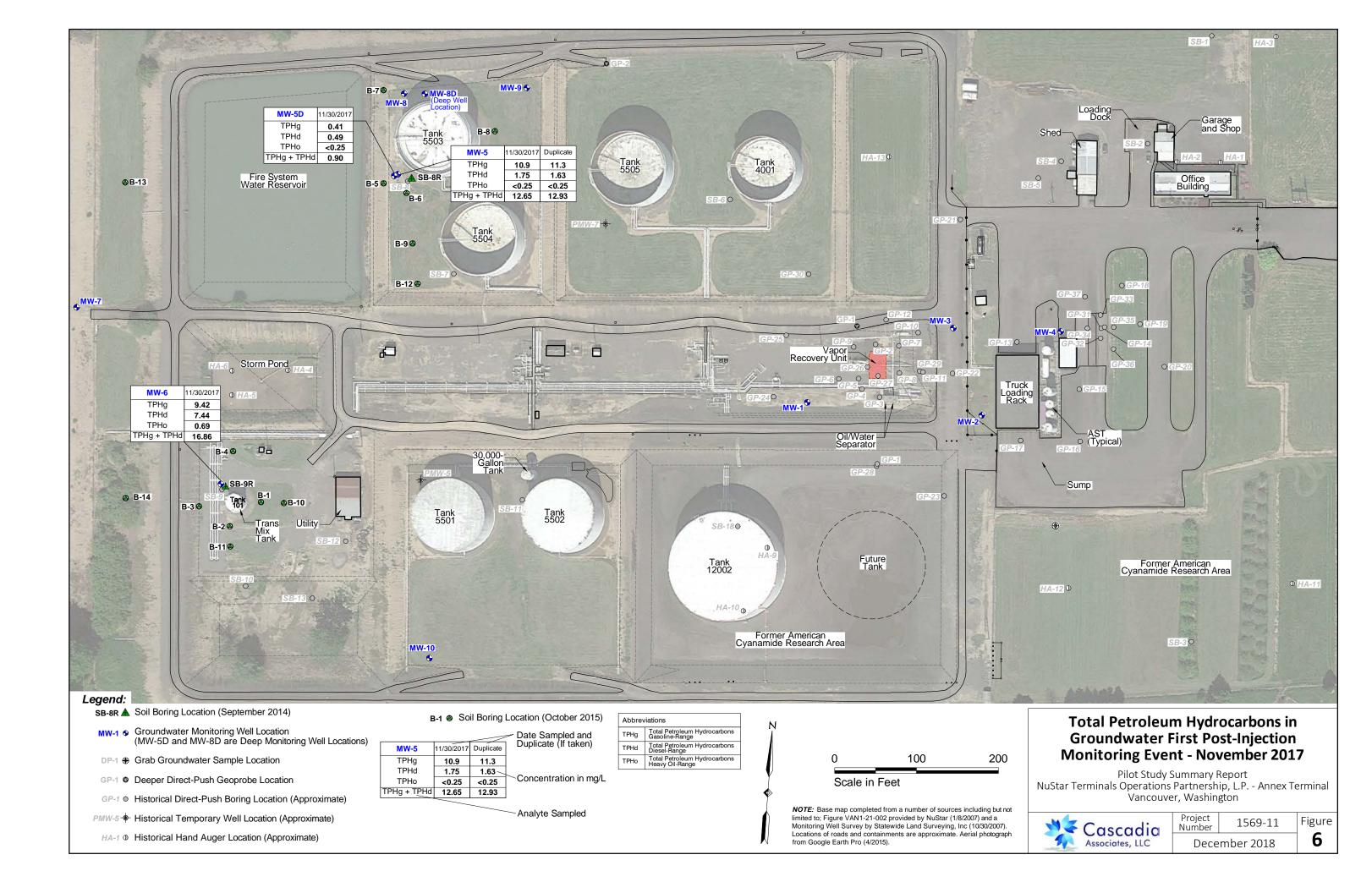

15. The screened intervals for the October 2015 samples are shown. Sample intake was generally from the centerpoint of each interval - see boring logs for more detail.

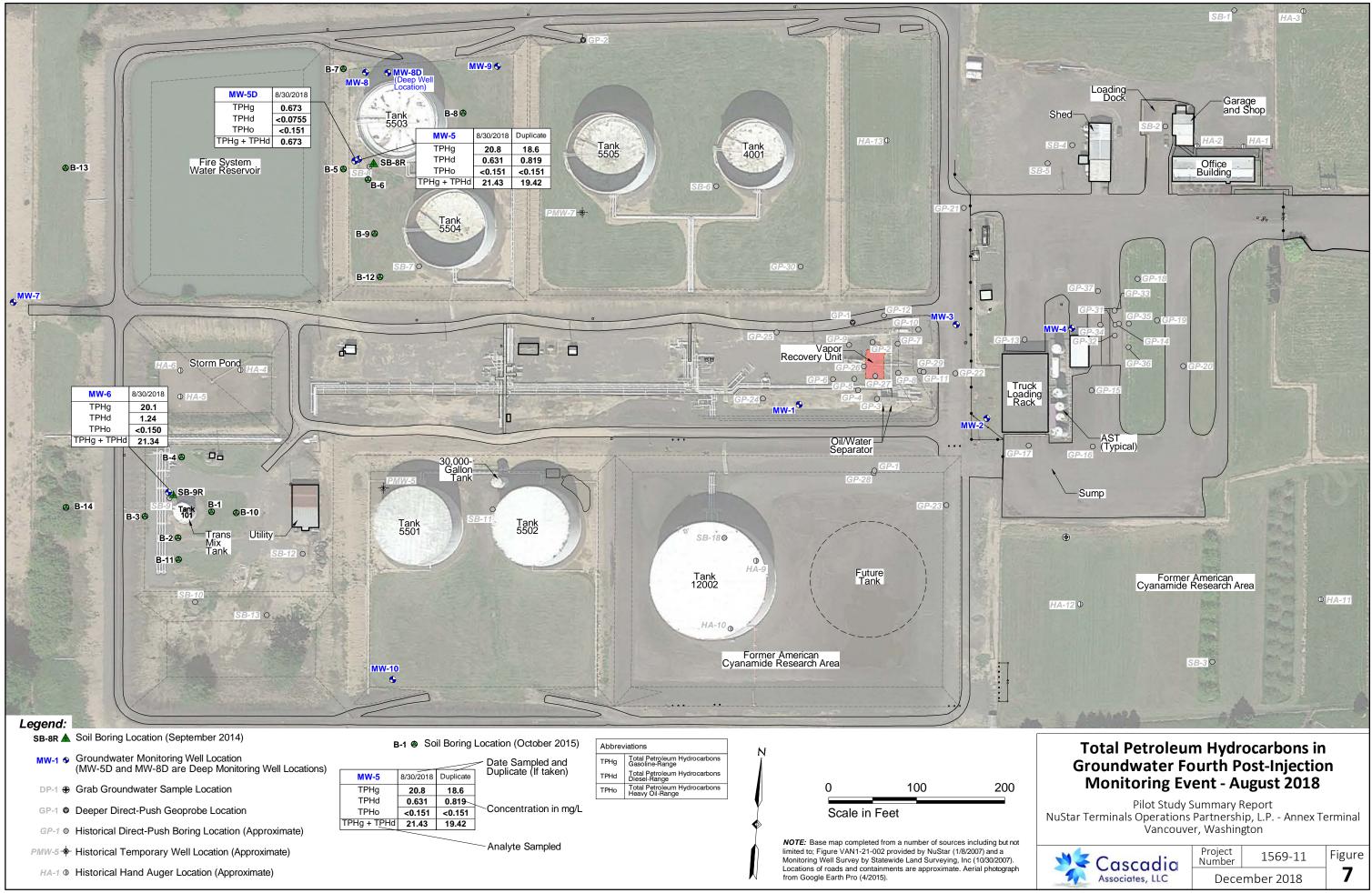
16. For TPHd and TPHo, the first value represents with silica gel cleanup and the second without (i.e. 15.9/3.2)




FIGURES






0	100	200
Scale in	Feet	

	💥 Cascadia	Project Number	1569-11	Figure
bh	Associates, LLC	Dece	mber 2018	7

APPENDIX A LABORATORY REPORTS AND DATA QUALITY REVIEW

1.0 INTRODUCTION

This attachment documents the results of a quality assurance/quality control (QA/QC) review of the analytical data for the groundwater samples collected as part of the pilot study implementation and subsequent monitoring at the NuStar Terminals Operations Partnership (NuStar) Annex Terminal in Vancouver, Washington (the Facility). Groundwater sample analyses were performed by an accredited environmental laboratory; laboratories used during the pilot study are listed in the table below. Copies of the laboratory reports are included in this attachment.

Report	Sampling Date	Event	Laboratory
L946549	10/24/2017	Baseline Monitoring	ESC – Mt. Juliet, TN
L948749	10/28/17	Baseline Monitoring	ESC
L954460	11/30/2017	First Post-Injection Monitoring	ESC
L974072	2/28/2018	Second Post-Injection Monitoring	ESC
10433756	5/29/18	Third Post-Injection Monitoring	Pace Analytical – Minneapolis, MN
A8H0297	8/30/18	Fourth Post-Injection Monitoring	Apex Laboratories, Tigard, OR

2.0 DATA VALIDATION

The QA review included examination and validation of the laboratory data packages for the following:

- Analytical preparation and quantitation methods
- Analytical method holding times
- Sample handling
- Chain of custody handling
- Detection and reporting limits
- Method blank detections
- Laboratory control samples, matrix spikes and surrogates to assess laboratory accuracy
- Laboratory control sample duplicates and matrix spike duplicates to assess laboratory precision
- Field duplicates to assess sampling and laboratory precision

The QA/QC review did not include a review of raw data.

2.1 DATA QUALIFIERS

Any data that is found to have possible bias or error was qualified and flagged. The flags used in the data table are below.

J	Result is an estimated value.
F-18	Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from gasoline or a gasoline-range product.
Q	Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.

3.0 ANALYTICAL METHODS

Groundwater sample analyses included the following.

- Gasoline-range petroleum hydrocarbons (TPHg) by Method NWTPH-Gx;
- Diesel-range petroleum hydrocarbons (TPHd) and oil-range petroleum hydrocarbons (TPHo) by Method NWTPH-Dx with silica gel cleanup; and
- Benzene, toluene, ethylbenzene, and xylenes (collectively BTEX) by U.S. Environmental Protection Agency (EPA) Method 8260B.

4.0 QUALITY ASSURANCE OBJECTIONS AND REVIEW

The general QA objectives for this project were to develop and implement procedures for obtaining, evaluating, and confirming the usability of data of a specified quality for monitoring groundwater quality trends at the Facility. To collect such information, analytical data must have an appropriate degree of accuracy and reproducibility, samples collected must be representative of actual field conditions, and samples must be collected and analyzed using unbroken COC procedures.

Reporting limits and analytical results for the samples were compared to Washington Department of Ecology MTCA Method A Cleanup Levels for each parameter. Precision, accuracy, representativeness, completeness, and comparability parameters used to indicate data quality are defined below.

4.1 HOLDING TIMES AND SAMPLE RECEIPT

The holding time is the minimum amount of time the sample can be stored before analytes start to degrade and are not representative of initial sampling concentrations. Holding times are defined by analytical methods. The groundwater samples included in this QA/QC review were analyzed within the method recommended holding time, except for analysis of diesel range hydrocarbons in the duplicate sample collected from well MW-6 during the baseline sampling event. When the lab began sample preparation, a test of pH showed that the MW-6 DUP sample pH was greater than two. While the sample was prepared and analyzed within standard 14-day hold time, the hold time for

the NWTPH-Dx analysis with a pH greater than two is seven days. The diesel- and residual-range results were subsequently flagged as out-of-hold. Below is a table outlining sample holding times based on sampling preservation and matrix.

Method	Matrix	Analyte	Preservative	Hold Time	
EPA 8260B	Water	Volatile Organic	Hydrochloric Acid (HCl) to	14 days	
LIA0200D Water		Compounds	pH<2; No headspace; Glass	11 duys	
NWTDH Cy	Wator	Gasoline Range Hydrochloric Acid (HCl) to		14 days	
NWTPH-Gx Water		Organics	pH<2; No headspace; Glass	14 uays	
NWTPH-Dx	Water	Diesel Range Organics	Hydrochloric Acid (HCl) to	14 days	
NWIFII-DX	Water	Dieser Kange Organics	pH<2; Amber glass container	14 uays	

Samples were received on ice below 4^oC by the analytical laboratory. Sampling containers arrived intact and unbroken to the laboratories. Groundwater samples to be analyzed for VOCs were received without headspace in VOA sampling containers. All chain-of-custodies were appropriately relinquished by the Cascadia Associates sampler and received by the intentional environmental laboratory. There were no major discrepancies found between the bottles and the chain of custodies received.

4.2 **REPORTING LIMITS**

Reporting limits are the lowest concentration an instrument is capable of accurately detecting an analyte. They are determined by the laboratory and are based on instrumentation capabilities, the matrix of field samples, sample preparation procedures and suggested reporting limits by the EPA or the Washington Department of Ecology. In some cases, the reporting limits may be raised due to high concentrations of analytes or matrix interferences. Detection limits were generally consistent with industry standards and regulatory standards. Reporting limits for individual samples varied based on the magnitude of the chemical impact.

4.3 METHOD BLANKS

A method- or laboratory-blank is a QC sample prepared by the laboratory from an analyte-free matrix and analyzed in an analytical batch along with environmental and other QC samples. It is used to assess laboratory contamination or background interferences. Some analytes were detected in the laboratory method blanks for the groundwater analyses, as follows.

• For gasoline range organics in batch WG1049399, report L954460, TPH-g was detected in the method blank between the method detection limit (MDL) and the reported detection limit (RDL) but the concentration was less than one half the reporting limit. Sample data were accepted and not flagged.

4.4 ACCURACY

Accuracy compares the accepted reference concentration of an analyte to the concentration determined analytically. Accuracy is measured as a percent recovery. This recovery must be within

a certain range or control limit for the data in an analytical batch to be considered acceptable. The analytical laboratory provides quality control samples and surrogates to help determine the accuracy and acceptability of the data reported. These quality control samples and surrogates are discussed below.

4.4.1 Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control duplicate samples (LCSD) were analyzed by the laboratory to assess the accuracy of the analytical methods. A minimum of one set of LCS and LCSD was analyzed per analytical batch. The LCS and LCSD are prepared from an analyte-free matrix that is spiked with known levels of compounds of concern. The concentrations are measured and compared to the known spiked levels. This comparison is expressed as percent recovery. The percent recoveries for LCS and LCSD quality control samples were within method control limits.

4.4.2 Matrix Spikes

A matrix spike QC sample is used to assess the performance of the analytical method by determining potential matrix interferences. Matrix spike (MS) and matrix spike duplicate (MSD) analyses are performed on one environmental sample per analytical batch. A matrix spike sample uses an environmental sample that is spiked with known concentrations of analytes of interest. The matrix spike is then prepared and analyzed with the same analytical procedures as environmental samples in the analytical batch. The resulting concentration of the matrix spike is then compared to the known or true values plus the non-spiked environmental sample concentration. This comparison is expressed as a percent recovery. The percent recoveries for MS and MSD quality control samples were within method control limits, with one exception:

The RPD between the MS and MSD for total petrol hydrocarbons – gasoline range, was slightly above control limits for sample batch 10433756. Because the analyses were performed on a non-project sample, and the associated LCS/LCSD percent recovery for the sample batch was within acceptable limits, no data are flagged.

4.4.3 Surrogates

Surrogates are organic compounds that are similar in chemical composition to the analytes of interest but are not likely to be found in the environment. They are spiked at a known concentration into environmental and batch QC samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference, sample preparation efficiency and analysis performance on a sample-specific basis. Surrogate recoveries were within control limits.

4.5 PRECISION

Precision is measured by how close values of duplicate analyses are to each other. These duplicate analyses are prepared from separate aliquots of the same sample and are analyzed at the same (or

similar) time. Precision in the field ensures that samples taken are representative of field concentrations; this is demonstrated by field duplicates. Analytical precision is the ability of the laboratory to reproduce results that are similar to each other; this is measured through duplicate analysis of environmental and batch QC samples. Precision is estimated by the relative percent difference (RPD) between the original analysis and the duplicate analysis.

4.5.1 Laboratory Control Sample Duplicates

The analytical batch LCS concentration of an analyte is compared to the LCSD concentration of the same analyte. The RPD is calculated from these two concentrations; which must be below a certain percentage to be considered acceptable. The RPD values for the laboratory control samples of the same batch were within the method control limits.

4.5.2 Matrix Spikes

Like the LCS/LCSD, the MS/MSD analyte concentrations are also compared to each other and expressed as an RPD. The RPD values for analytical batch MS/MSD were within the control limit.

4.5.3 Field Duplicate

A field duplicate is a second field sample collected from a selected sample location. Field duplicate samples serve as a check on laboratory precision, sampling quality, as well as potential variability of the sample matrix. The field duplicate is analyzed and compared to the original sample to assess precision. This comparison can be expressed by the RPD between the original and duplicate samples. Application of RPD values is appropriate when the analyte result is five times greater than the reporting limit. Laboratory precision decreases as the analytical result approaches the reporting limit. Some results did exceed the 30 percent control limit but were less than 5 times the reporting limit. Data was accepted and not flagged in the data table, except for the following.

• For sample MW-6 from the baseline sampling event (reports L946549 and L948749), the RPD for TPH-g, TPH-d, and TPH-o between the primary and duplicate sample collected from exceeded the 30 percent control limit. The discrepancy appears to be due to matrix interference with the samples and not the result of laboratory quality control issues. The detected concentrations were more than 5 times the reporting limit. The reported concentrations for TPH-g, TPH-d, and TPH-o in the sample from well MW-6 were J flagged as estimated values.

5.0 CONCLUSION

The overall QA objectives have been met and the data are of adequate quality for use in this project.

ANALYTICAL REPORT

January 29, 2018

Cascadia Associates- Portland, OR

Sample Delivery Group:L946549Samples Received:10/26/2017Project Number:0060-001-001Description:Nustar - Vannex Pilot StudySite:VANCOUVER, WAReport To:Ian Maguire6915 SW Macadam AveSte. 250

Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd Mount Juliet. TN 37122 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-5 L946549-01	5
MW-5D L946549-02	6
MW-6 L946549-03	7
HA-1 L946549-04	8
HA-1 L946549-05	9
Qc: Quality Control Summary	10
Total Solids by Method 2540 G-2011	10
Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX	11
Volatile Organic Compounds (GC) by Method NWTPHGX	13
Volatile Organic Compounds (GC/MS) by Method 8260C	15
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	17
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT: Cascadia Associates- Portland, OR PROJECT: 0060-001-001

SDG: L946549 DATE/TIME: 01/29/18 15:47 **PAGE**: 2 of 22

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

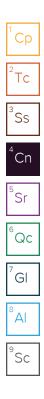
鞅

			、 1		
MW-5 L946549-01 GW			Collected by Ian Maguire	Collected date/time 10/23/17 13:00	Received date/time 10/26/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	- ,
olatile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 10:29	10/27/17 10:29	LRL
platile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 16:20	10/27/17 16:20	BMB
platile Organic Compounds (GC/MS) by Method 8260C	WG1036371	25	11/02/17 02:51	11/02/17 02:51	ACG
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:01	LM
····· · · · · · · · · · · · · · · · ·					
			Collected by	Collected date/time	Received date/time
1W-5D L946549-02 GW			lan Maguire	10/24/17 09:45	10/26/17 08:45
ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
olatile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 10:51	10/27/17 10:51	LRL
olatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 16:41	10/27/17 16:41	BMB
platile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	11/02/17 03:11	11/02/17 03:11	ACG
mi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:18	LM
			Collected by	Collected date/time	Received date/time
1W-6 L946549-03 GW			lan Maguire	10/24/17 11:35	10/26/17 08:45
ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
latile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 11:13	10/27/17 11:13	LRL
atile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 17:01	10/27/17 17:01	BMB
atile Organic Compounds (GC/MS) by Method 8260C	WG1036371	50	11/02/17 03:31	11/02/17 03:31	ACG
ni-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:36	LM
mi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	5	10/30/17 05:29	10/31/17 19:22	LM
			Collected by	Collected date/time	Received date/time
IA-1 L946549-04 Solid			lan Maguire	10/24/17 15:30	10/26/17 08:45
ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1037601	1	11/01/17 11:06	11/01/17 11:19	KDW
platile Organic Compounds (GC) by Method NWTPHGX	WG1036385	500	10/24/17 15:30	10/27/17 15:57	LRL
latile Organic Compounds (GC/MS) by Method 8260C	WG1036716	1	10/24/17 15:30	11/02/17 11:38	ACG
mi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1037950	1	11/02/17 07:36	11/03/17 21:12	DMG
mi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1037950	5	11/02/17 07:36	11/03/17 22:03	DMG
			Collected by	Collected date/time	Received date/time
IA-1 L946549-05 GW			lan Maguire	10/24/17 15:30	10/26/17 08:45
ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
reparation by Method 1312	WG1037226	1	10/31/17 08:01	10/31/17 08:01	TM
eparation by Method 1312	WG1037796	1	11/01/17 11:45	11/01/17 11:45	KK
olatile Organic Compounds (GC) by Method 8021B/NWTPHGX	WG1038336	1	11/02/17 14:40	11/02/17 14:40	JHH
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT					

PROJECT: 0060-001-001

SDG: L946549

DATE/TIME: 01/29/18 15:47


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L946549 DATE/TIME: 01/29/18 15:47

SAMPLE RESULTS - 01

Cn

*Q*c

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	7930		31.6	100	1	10/27/2017 10:29	WG1036093	² Tc
(S) a,a,a-Trifluorotoluene(FID)	67.5	<u>J2</u>		77.0-122		10/27/2017 10:29	WG1036093	³ Ss

Sample Narrative:

L946549-01 WG1036093: Surrogate failure due to sample matrix.

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	10/27/2017 16:20	<u>WG1036371</u>
Toluene	1.17		0.412	1.00	1	10/27/2017 16:20	<u>WG1036371</u>
Ethylbenzene	174		9.60	25.0	25	11/02/2017 02:51	<u>WG1036371</u>
Total Xylenes	988		26.5	75.0	25	11/02/2017 02:51	WG1036371
(S) Toluene-d8	100			80.0-120		10/27/2017 16:20	WG1036371
(S) Toluene-d8	109			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) Dibromofluoromethane	92.2			76.0-123		10/27/2017 16:20	<u>WG1036371</u>
(S) Dibromofluoromethane	99.1			76.0-123		11/02/2017 02:51	<u>WG1036371</u>
(S) a,a,a-Trifluorotoluene	99.7			80.0-120		10/27/2017 16:20	<u>WG1036371</u>
(S) a,a,a-Trifluorotoluene	110			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) 4-Bromofluorobenzene	90.7			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) 4-Bromofluorobenzene	95.7			80.0-120		10/27/2017 16:20	<u>WG1036371</u>

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1260		66.0	200	1	10/30/2017 15:01	<u>WG1036830</u>
Residual Range Organics (RRO)	U		82.5	250	1	10/30/2017 15:01	<u>WG1036830</u>
(S) o-Terphenyl	85.7			52.0-156		10/30/2017 15:01	<u>WG1036830</u>

SDG: L946549 DATE/TIME: 01/29/18 15:47 Collected date/time: 10/24/17 09:45

SAMPLE RESULTS - 02 L946549

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

0		())						 10
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	422		31.6	100	1	10/27/2017 10:51	<u>WG1036093</u>	
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-122		10/27/2017 10:51	WG1036093	3

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	10/27/2017 16:41	WG1036371	
Toluene	U		0.412	1.00	1	10/27/2017 16:41	WG1036371	r i i i i i i i i i i i i i i i i i i i
Ethylbenzene	1.38		0.384	1.00	1	11/02/2017 03:11	<u>WG1036371</u>	
Fotal Xylenes	2.96	J	1.06	3.00	1	11/02/2017 03:11	<u>WG1036371</u>	L
(S) Toluene-d8	108			80.0-120		11/02/2017 03:11	WG1036371	[
(S) Toluene-d8	106			80.0-120		10/27/2017 16:41	<u>WG1036371</u>	
(S) Dibromofluoromethane	93.3			76.0-123		10/27/2017 16:41	WG1036371	ſ
(S) Dibromofluoromethane	98.5			76.0-123		11/02/2017 03:11	<u>WG1036371</u>	
(S) a,a,a-Trifluorotoluene	104			80.0-120		10/27/2017 16:41	WG1036371	l
(S) a,a,a-Trifluorotoluene	110			80.0-120		11/02/2017 03:11	WG1036371	
(S) 4-Bromofluorobenzene	95.2			80.0-120		10/27/2017 16:41	WG1036371	
(S) 4-Bromofluorobenzene	90.3			80.0-120		11/02/2017 03:11	WG1036371	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	147	J	66.0	200	1	10/30/2017 15:18	WG1036830
Residual Range Organics (RRO)	U		82.5	250	1	10/30/2017 15:18	<u>WG1036830</u>
(S) o-Terphenyl	87.5			52.0-156		10/30/2017 15:18	WG1036830

Collected date/time: 10/24/17 11:35

SAMPLE RESULTS - 03 L946549

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		-
Gasoline Range Organics-NWTPH	7730		31.6	100	1	10/27/2017 11:13	WG1036093	2
(S) a,a,a-Trifluorotoluene(FID)	82.2			77.0-122		10/27/2017 11:13	WG1036093	3
Volatile Organic C	Compound	ls (GC/MS) l	by Metho	d 8260C				2
	Result	Qualifier	MDI	RDI	Dilution	Analysis	Batch	

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	194		16.6	50.0	50	11/02/2017 03:31	<u>WG1036371</u>	
Toluene	51.2		0.412	1.00	1	10/27/2017 17:01	<u>WG1036371</u>	
Ethylbenzene	1510		19.2	50.0	50	11/02/2017 03:31	<u>WG1036371</u>	
Total Xylenes	1290		53.0	150	50	11/02/2017 03:31	<u>WG1036371</u>	
(S) Toluene-d8	105			80.0-120		11/02/2017 03:31	<u>WG1036371</u>	
(S) Toluene-d8	102			80.0-120		10/27/2017 17:01	<u>WG1036371</u>	
(S) Dibromofluoromethane	101			76.0-123		11/02/2017 03:31	<u>WG1036371</u>	
(S) Dibromofluoromethane	90.2			76.0-123		10/27/2017 17:01	<u>WG1036371</u>	
(S) a,a,a-Trifluorotoluene	104			80.0-120		10/27/2017 17:01	<u>WG1036371</u>	
(S) a,a,a-Trifluorotoluene	115			80.0-120		11/02/2017 03:31	<u>WG1036371</u>	
(S) 4-Bromofluorobenzene	86.0			80.0-120		11/02/2017 03:31	<u>WG1036371</u>	
(S) 4-Bromofluorobenzene	97.5			80.0-120		10/27/2017 17:01	<u>WG1036371</u>	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	5070		330	1000	5	10/31/2017 19:22	WG1036830
Residual Range Organics (RRO)	111	J	82.5	250	1	10/30/2017 15:36	WG1036830
(S) o-Terphenyl	94.7			52.0-156		10/30/2017 15:36	WG1036830
(S) o-Terphenyl	95.5			52.0-156		10/31/2017 19:22	WG1036830

SAMPLE RESULTS - 04 L946549

Total Solids by Method 2540 G-2011

Collected date/time: 10/24/17 15:30

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	70.8		1	11/01/2017 11:19	WG1037601	T

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Gasoline Range Organics-NWTPH	1890		24.0	70.6	500	10/27/2017 15:57	WG1036385	
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		10/27/2017 15:57	WG1036385	5

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution Anal	ysis	Batch			
Analyte	%		date	/ time				
Total Solids	70.8		1 11/01	/2017 11:19	<u>WG10376</u>	<u>501</u>		
Volatile Organic Compo	ounds (GC)	by Method	NWTPHG	<				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Gasoline Range Organics-NWTPH	1890		24.0	70.6	500	10/27/2017 15:57	WG1036385	
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		10/27/2017 15:57	WG1036385	
Volatile Organic Compo	ounds (GC/	MS) by Met	hod 82600	2				
Volatile Organic Comp	ounds (GC/ Result (dry)	'MS) by Met <u>Qualifier</u>	hod 82600 MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Volatile Organic Compo					Dilution	Analysis date / time	Batch	
	Result (dry)		MDL (dry)	RDL (dry)	Dilution 1	-	Batch WG1036716	
Analyte	Result (dry) mg/kg		MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution 1 1	date / time		
Analyte Benzene	Result (dry) mg/kg U		MDL (dry) mg/kg 0.00183	RDL (dry) mg/kg 0.00353	Dilution 1 1 1	date / time 11/02/2017 11:38	WG1036716	
Analyte Benzene Toluene	Result (dry) mg/kg U 0.0128		MDL (dry) mg/kg 0.00183 0.00374	RDL (dry) mg/kg 0.00353 0.00706	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	date / time 11/02/2017 11:38 11/02/2017 11:38	WG1036716 WG1036716	
Analyte Benzene Toluene Ethylbenzene	Result (dry) mg/kg U 0.0128 0.0105		MDL (dry) mg/kg 0.00183 0.00374 0.00182	RDL (dry) mg/kg 0.00353 0.00706 0.00353	1 1 1	date / time 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38	WG1036716 WG1036716 WG1036716	
Analyte Benzene Toluene Ethylbenzene Total Xylenes	Result (dry) mg/kg U 0.0128 0.0105 0.0334		MDL (dry) mg/kg 0.00183 0.00374 0.00182	RDL (dry) mg/kg 0.00353 0.00706 0.00353 0.0106	1 1 1	date / time 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38	WG1036716 WG1036716 WG1036716 WG1036716	
Analyte Benzene Toluene Ethylbenzene Total Xylenes (S) Toluene-d8	Result (dry) mg/kg U 0.0128 0.0105 0.0334 109		MDL (dry) mg/kg 0.00183 0.00374 0.00182	RDL (dry) mg/kg 0.00353 0.00706 0.00353 0.0106 <i>80.0-120</i>	1 1 1	date / time 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38 11/02/2017 11:38	WG1036716 WG1036716 WG1036716 WG1036716 WG1036716	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	427		9.32	28.2	5	11/03/2017 22:03	<u>WG1037950</u>
Residual Range Organics (RRO)	U		4.66	14.1	1	11/03/2017 21:12	WG1037950
(S) o-Terphenyl	61.8			18.0-148		11/03/2017 21:12	WG1037950
(S) o-Terphenyl	72.0			18.0-148		11/03/2017 22:03	WG1037950

SAMPLE RESULTS - 05 L946549

Preparation by Method 1312

Analyte date / time SPLP Extraction - 10/31/2017 8:01:58 AM V6103726 SPLP ZHE Extraction - 11/1/2017 11:45:56 AM V61037796 Fluid 2 10/31/2017 8:01:58 AM V6103726 Initial pH 4.81 10/31/2017 8:01:58 AM V6103726 Final pH 4.74 10/31/2017 8:01:58 AM V6103726		Result	Qualifier	Prep	Batch	
SPLP ZHE Extraction - 11/1/2017 11:45:56 AM WG1037796 Fluid 2 10/31/2017 8:01:58 AM WG1037226 Initial pH 4.81 10/31/2017 8:01:58 AM WG1037226	Analyte			date / time		
Fluid 2 10/31/2017 8:01:58 AM WG1037226 Initial pH 4.81 10/31/2017 8:01:58 AM WG1037226	SPLP Extraction	-		10/31/2017 8:01:58 AM	WG1037226	
initial pH 4.81 10/31/2017 8:01:58 AM WG1037226	SPLP ZHE Extraction	-		11/1/2017 11:45:56 AM	WG1037796	
	Fluid	2		10/31/2017 8:01:58 AM	WG1037226	
Final pH 4.74 10/31/2017 8:01:58 AM WG1037226	nitial pH	4.81		10/31/2017 8:01:58 AM	WG1037226	
	Final pH	4.74		10/31/2017 8:01:58 AM	WG1037226	

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
		Qualifier			Dilution		Baten	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	562		31.6	100	1	11/02/2017 14:40	WG1038336	
Benzene	0.601	B	0.190	0.500	1	11/02/2017 14:40	WG1038336	
Toluene	1.86	B	0.412	1.00	1	11/02/2017 14:40	WG1038336	
Ethylbenzene	57.8		0.160	0.500	1	11/02/2017 14:40	WG1038336	
Total Xylene	10.4		0.510	1.50	1	11/02/2017 14:40	WG1038336	
(S) a,a,a-Trifluorotoluene(PID)	102			80.0-121		11/02/2017 14:40	<u>WG1038336</u>	
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-122		11/02/2017 14:40	WG1038336	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1620		66.0	200	1	11/02/2017 20:49	WG1037937
Residual Range Organics (RRO)	152	J	82.5	250	1	11/02/2017 20:49	WG1037937
(S) o-Terphenyl	67.1			52.0-156		11/02/2017 20:49	WG1037937

WG1037601

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

	,			
(MB) R3262355-1 11/0	1/17 11:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.0007			

L946549-04 Original Sample (OS) • Duplicate (DUP)

(OS) L946549-04 11/01/1	7 11:19 • (DUP) R3	3262355-3 11,	/01/17 11:19			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	70.8	70.5	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3262355-2 11	/01/17 11:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 10 of 22

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

QUALITY CONTROL SUMMARY

L946549-05

Тс

Ss

Cn

Sr

Qc

GI

Method Blank (MB)

(MB) R3262620-3 11/02	/17 14:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Gasoline Range Organics-NWTPH	U		31.6	100	
Benzene	0.313	J	0.190	0.500	
Toluene	0.461	J	0.412	1.00	
Ethylbenzene	U		0.160	0.500	
Total Xylene	U		0.510	1.50	
(S) a,a,a-Trifluorotoluene(PID)	103			80.0-121	
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-122	

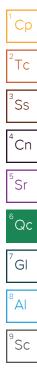
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262620-1 11/02/17 10:02 • (LCSD) R3262620-2 11/02/17 10:24												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		8
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		AI
Gasoline Range Organics-NWTPH	5500	4240	3960	77.0	72.0	72.0-134			6.80	20		⁹ Sc
(S) a,a,a-Trifluorotoluene(FID)				108	107	77.0-122						00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262620-6 11/03/17 03:52 • (LCSD) R3262620-7 11/03/17 04:51												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Benzene	50.0	48.6	47.4	97.3	94.9	71.0-121			2.48	20		
Toluene	50.0	53.0	51.2	106	102	72.0-120			3.30	20		
Ethylbenzene	50.0	53.4	51.9	107	104	75.0-122			2.74	20		
Total Xylene	150	154	147	103	98.0	74.0-124			4.78	20		
(S) a,a,a-Trifluorotoluene(PID)				102	101	80.0-121						
(S) a,a,a-Trifluorotoluene(FID)				94.8	93.8	77.0-122						

PROJECT: 0060-001-001


SDG: L946549

DATE/TIME: 01/29/18 15:47

PAGE: 11 of 22 QUALITY CONTROL SUMMARY

L946549-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-05 11/02/17 14:40 • (MS) R3262620-4 11/02/17 16:25 • (MSD) R3262620-5 11/02/17 16:47												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	562	5410	5490	88.1	89.7	1	23.0-159			1.61	20
(S) a,a,a-Trifluorotoluene(FID)					107	107		77.0-122				

DATE/TIME: 01/29/18 15:47 PAGE: 12 of 22

WG1036093

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				1 Cn							
(MB) R3261836-3 10/27/17 03:28												
	MB Result	MB Qualifier	MB MDL	MB RDL	2							
Analyte	ug/l		ug/l	ug/l	⁻Tc							
Gasoline Range Organics-NWTPH	U		31.6	100	3							
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-122	[°] Ss							
					⁴ Cn							

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261836-1 10/27/17 02:21 • (LCSD) R3261836-2 10/27/17 02:43												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5500	5800	5820	105	106	72.0-134			0.310	20		
(S) a,a,a-Trifluorotoluene(FID)				102	102	77.0-122						

L946549-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-03 10/27/17 11:13 • (MS) R3261836-4 10/27/17 11:35 • (MSD) R3261836-5 10/27/17 11:57												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	7730	10900	11100	57.4	61.6	1	23.0-159		E	2.10	20
(S) a,a,a-Trifluorotoluene(FID)					97.6	96.6		77.0-122				

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 13 of 22

WG1036385

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3261308-3 10/27/	17 12:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.0339	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261308-1 10/27/17 10:29 • (LCSD) R3261308-2 10/27/17 10:53												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5.50	6.47	6.35	118	115	70.0-133			1.81	20		
(S) a,a,a-Trifluorotoluene(FID)				100	101	77.0-120						

L946549-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-04 10/27/17 15:57 • (MS) R3261308-4 10/27/17 20:20 • (MSD) R3261308-5 10/27/17 20:44

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	7.76	1890	6260	5740	112	99.0	500	10.0-146			8.70	30
(S) a,a,a-Trifluorotoluene(FID)					97.9	98.0		77.0-120				

SDG: L946549 DATE/TIME: 01/29/18 15:47

Sc

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

GI

A

°Sc

Method Blank (MB)

(MB) R3262256-2 10/27/1	7 15:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	ug/l		ug/l	ug/l	-
Benzene	U		0.331	1.00	
Ethylbenzene	U		0.384	1.00	3
Toluene	U		0.412	1.00	Ľ
Xylenes, Total	U		1.06	3.00	4
(S) Toluene-d8	111			80.0-120	
(S) Dibromofluoromethane	94.4			76.0-123	Ľ
(S) 4-Bromofluorobenzene	98.2			80.0-120	5
(S) a,a,a-Trifluorotoluene	106			80.0-120	L

Laboratory Control Sample (LCS)

Spike Amount LCS Result LCS Result LCS Qualifier Analyte ug/l ug/l % LCS Qualifier Benzene 25.0 21.5 86.1 69.0-123 Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120	(LCS) R3262256-1 10/	27/17 14:38				
Benzene 25.0 21.5 86.1 69.0-123 Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120	Analyte	ug/l	ug/l	%	%	
Toluene 25.0 24.6 98.5 77.0-120	Benzene	25.0	21.5	86.1	69.0-123	
	Ethylbenzene	25.0	24.9	99.6	77.0-120	
	Toluene	25.0	24.6	98.5	77.0-120	
Xyenes, rotal 75.0 74.3 99.1 77.0-120	Xylenes, Total	75.0	74.3	99.1	77.0-120	
(S) Toluene-d8 103 80.0-120	(S) Toluene-d8			103	80.0-120	
(S) Dibromofluoromethane 92.7 76.0-123	(S) Dibromofluorometha	ine		92.7	76.0-123	
(S) 4-Bromofluorobenzene 97.4 80.0-120	(S) 4-Bromofluorobenze	ne		97.4	80.0-120	
(S) a,a,a-Trifluorotoluene 104 80.0-120	(S) a,a,a-Trifluorotoluen	е		104	80.0-120	

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 15 of 22 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3262116-3 11/01/17 11	1:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.00130	0.00250
Ethylbenzene	U		0.00129	0.00250
Toluene	U		0.00265	0.00500
Xylenes, Total	U		0.00125	0.00750
(S) Toluene-d8	104			80.0-120
(S) Dibromofluoromethane	95.2			74.0-131
(S) a,a,a-Trifluorotoluene	100			80.0-120
(S) 4-Bromofluorobenzene	99.6			64.0-132

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262116-1 11/01/17 C	(LCS) R3262116-1 11/01/17 09:52 • (LCSD) R3262116-2 11/01/17 10:11												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Benzene	0.625	0.613	0.587	98.1	93.9	72.6-120			4.39	20			
Ethylbenzene	0.625	0.596	0.614	95.3	98.2	78.6-124			3.05	20			
Toluene	0.625	0.586	0.608	93.8	97.3	76.7-116			3.62	20			
Xylenes, Total	1.88	1.83	1.88	97.5	100	78.1-123			2.86	20			
(S) Toluene-d8				102	106	80.0-120							
(S) Dibromofluoromethane				105	98.0	74.0-131							
(S) a,a,a-Trifluorotoluene				102	102	80.0-120							
(S) 4-Bromofluorobenzene				98.7	98.4	64.0-132							

L946651-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946651-04 11/01/17 15:45 • (MS) R3262116-4 11/01/17 18:52 • (MSD) R3262116-5 11/01/17 19:11

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.759	ND	0.397	0.544	52.3	71.6	1	47.8-131		<u>J3</u>	31.1	22.8
Ethylbenzene	0.759	ND	0.440	0.575	58.0	75.8	1	44.8-135			26.5	26.9
Toluene	0.759	ND	0.442	0.574	58.2	75.6	1	47.8-127		<u>J3</u>	26.0	24.3
Xylenes, Total	2.28	ND	1.37	1.74	59.9	76.3	1	42.7-135			24.0	26.6
(S) Toluene-d8					105	106		80.0-120				
(S) Dibromofluoromethane					92.1	92.6		74.0-131				
(S) a,a,a-Trifluorotoluene					104	103		80.0-120				
(S) 4-Bromofluorobenzene					101	101		64.0-132				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cascadia Associates- Portland, OR	0060-001-001	L946549	01/29/18 15:47	16 of 22

QUALITY CONTROL SUMMARY L946549-01,02,03

Method Blank (MB)

(MB) R3261738-1 10/30/17 1	13:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	87.5			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261738-2 10/30/17	(LCS) R3261738-2 10/30/17 13:51 • (LCSD) R3261738-3 10/30/17 14:08												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Diesel Range Organics (DRO)	750	775	849	103	113	50.0-150			9.10	20			
Residual Range Organics (RRO)	750	706	847	94.2	113	50.0-150			18.1	20			
(S) o-Terphenyl				84.9	90.7	52.0-156							

Тс Ss Cn Sr Qc GI Â Sc

SDG: L946549

DATE/TIME: 01/29/18 15:47 PAGE: 17 of 22

QUALITY CONTROL SUMMARY

L946549-05

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3263425-1 11/02/17	17:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	81.4			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263425-2 11/02/17	(LCS) R3263425-2 11/02/17 18:09 • (LCSD) R3263425-3 11/02/17 18:25												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Diesel Range Organics (DRO)	750	733	705	97.8	94.0	50.0-150			3.91	20			
Residual Range Organics (RRO)	750	785	777	105	104	50.0-150			1.03	20			
(S) o-Terphenyl				81.6	82.6	52.0-156							

DATE/TIME: 01/29/18 15:47

PAGE: 18 of 22

QUALITY CONTROL SUMMARY

L946549-04

Τс

Ss

Cn

Sr

[°]Qc

GI

A

Sc

Method Blank (MB)

(MB) R3262687-1 11/02/17	17:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	51.6			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262687-2 11/02/17	LCS) R3262687-2 11/02/17 17:52 • (LCSD) R3262687-3 11/02/17 18:09												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Diesel Range Organics (DRO)	30.0	19.1	20.5	63.5	68.4	50.0-150			7.40	20			
Residual Range Organics (RRO)	30.0	17.3	17.8	57.7	59.2	50.0-150			2.61	20			
(S) o-Terphenyl				66.5	72.5	18.0-148							

(100) DOODOTIO (1100/17 00 FF

L946611-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946611-01 11/03/17 20	(OS) L946611-01 11/03/17 20:21 • (MS) R3262971-1 11/03/17 20:38 • (MSD) R3262971-2 11/03/17 20:55												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Diesel Range Organics (DRO)	38.0	3.93	18.5	26.3	38.4	58.7	1	50.0-150	<u>J6</u>	<u>13</u>	34.5	20	
Residual Range Organics (RRO)	38.0	51.2	60.1	79.5	23.5	74.3	1	50.0-150	<u>J6</u>	<u>J3</u>	27.7	20	
(S) o-Terphenyl					39.3	50.3		18.0-148					

PROJECT: 0060-001-001

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 19 of 22

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

PROJECT: 0060-001-001

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660
Alaska	UST-080
Arizona	AZ0612
Arkansas	88-0469
California	01157CA
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
ldaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹	90010
Kentucky ²	16
Louisiana	Al30792
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086
Nebraska	NE-OS-15-05

Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ²	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	221
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-07-TX
Texas⁵	LAB0152
Utah	6157585858
Vermont	VT2006
Virginia	109
Washington	C1915
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

PAGE: 21 of 22

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

- 1 - 2	and the second		Billing Infor	mation:		TE	12		Ar	nalysis / C	ontain	er / Pres	ervative		Chai	n of Custody	Page of									
915 SW Macadam Ave Ste. 250	Portland, OR 97219			Pres Chk										K E	SC											
Portland OR 97219 eport to:			Email To: ir	maguire@cascadiaa	issociates.com		CI-8T						a de la composición d		Mou	5 Lebanon Rri nt Juliet, TN 373										
lan Maguire Project Nustar-Vannex Pilot Study Description:			/ City/State . 1						1				(xear	Phor	ie: 615-758-585 ie: 800-767-585 615-758-5859											
escription:	nex ricoi	STU	-4	NUVANCOUVE		-qm								100	and the second	11.0.10										
Client Project #			21			NUVANCOUVE		NUVANCOUVE		NUVANCOUVE		NUVANCOUVE		NUVANCOUVE		NUVANCOUVE		A 107500000	40miAmb-H	DH-I			5			L# <u>L946</u> Tab E12
ollected by (print): Lan Maquire	Site/Facility ID VANCOUVE	ANCOUVER, WA 006 00 Rush? (Lab MUST Be Notified) Quote #				-	/ SGT)	Amb H	hlAmb			603			Acctr		thum: CASASCTOR									
LAM Maguire Rush? (Lab MUST Be Notified) Collected by (signature): Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 5 Day (Rad Only) Three Day Date Results Needed No. Off Off Off Sample ID Comp/Grab Matrix* Depth Date Time Time Cnirs Matrix* Depth				Quote #				Oml	C 40r	3	Â	30	×		1.53	A second	- Andrew - A									
		n Ford																								
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntr	TWI	TWI	1826	M	NC	5	VÌ		Sm		Sample # (lab only)									
MW-5	Gras	GW	NA	10/23/17	1300	8	1000 B	X	X								-91									
MW-5D	Grub	GW	NA	10/24/17	945	8		X	X		1.5					and the le	- 92									
mw-6	Grab	GW	NA	10/24/17	1135	8	X	X	X								- 03									
MW-6 DUP	Grab	GW	NA	10/24/17	1135	8	Ĥ	H	H				Real of		S. 13	2	1									
		GW							-		-				_	Sec. Alth										
HA-1	Grab	Sail	6'	10/24/17	1530	8				×	×	X	×				-04/.05									
						1																				
	11				1 2. 3	13 12			8 2						-											
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	Conta	+ Ia	for spe	e, fic as	afal	, 			pH	/	Tem Oth		COC Si Bottle Correc	al Pressigned/Activity arrivers arrivers to bottle	e intact: es used:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									
DW - Drinking Water OT - Other	Samples retu	rned via: edExCo	ourier		acking # 7L	+30		P63	387	3	1.0			VOA Ze	I ro Head	lume sent: f Applical space: Correct/CE	ole _/ _N									
Relinquiener (Sigerfure)	e	Date:	5/17	1205	with furth	16	7	ES	for	Trip Bla	nk Kece		HCL AMEOH													
Retinguished by: (Signature)	Schon	Date:	3/17	Time: #	éceived by: (Sig	(nature)				Temp:	1 m	33	thes Received:			quired by L	ogin: Date/Time									
Relinquished by : (Signature)		Date:		Time: R	ecowed for lab	by: (Sig	sture)	0		Date:	\$117	7	ne: 8:45	10	-145		NCF / OK									

ANALYTICAL REPORT

November 14, 2017

Cascadia Associates- Portland, OR

Sample Delivery Group:L948749Samples Received:10/28/2017Project Number:0060-001-001Description:Nustar - Vannex Pilot StudySite:VANCOUVER, WAReport To:Ian Maguire6915 SW Macadam AveSte. 250Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd Mount Juliet. TN 37122 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

*	1
1	

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6 DUP L948749-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (GC) by Method NWTPHGX	6
Volatile Organic Compounds (GC/MS) by Method 8260C	7
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SDG: L948749

PAGE: 2 of 12

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received date/time	4
MW-6 DUP L948749-01 GW			lan Maguire	10/24/17 11:35	10/28/17 08:45	C
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		² T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1040147	1	11/07/17 19:15	11/07/17 19:15	BMB	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1039917	1	11/07/17 14:00	11/07/17 14:00	ACG	3
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1039917	50	11/07/17 15:19	11/07/17 15:19	ACG	ٌS
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1039652	1	11/07/17 17:09	11/08/17 14:39	LM	
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1039652	5	11/07/17 17:09	11/08/17 19:47	LM	⁴ C

¥

SDG: L948749 1 1 PAGE: 3 of 12

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L948749 DATE/TIME: 11/14/17 13:42

SAMPLE RESULTS - 01 L948749

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	4190		31.6	100	1	11/07/2017 19:15	WG1040147	
(S) a,a,a-Trifluorotoluene(FID)	82.2			77.0-122		11/07/2017 19:15	WG1040147	
Volatile Organic C	`ompoupe	$l \in (GC/MS)$	n_{1} n_{1}					

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	153		16.6	50.0	50	11/07/2017 15:19	WG1039917	
Toluene	46.2		0.412	1.00	1	11/07/2017 14:00	<u>WG1039917</u>	
Ethylbenzene	1180		19.2	50.0	50	11/07/2017 15:19	<u>WG1039917</u>	
Total Xylenes	1040		53.0	150	50	11/07/2017 15:19	<u>WG1039917</u>	
(S) Toluene-d8	102			80.0-120		11/07/2017 14:00	<u>WG1039917</u>	
(S) Toluene-d8	111			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) Dibromofluoromethane	103			76.0-123		11/07/2017 15:19	<u>WG1039917</u>	
(S) Dibromofluoromethane	105			76.0-123		11/07/2017 14:00	<u>WG1039917</u>	
(S) a,a,a-Trifluorotoluene	101			80.0-120		11/07/2017 14:00	<u>WG1039917</u>	
(S) a,a,a-Trifluorotoluene	107			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) 4-Bromofluorobenzene	96.3			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) 4-Bromofluorobenzene	91.1			80.0-120		11/07/2017 14:00	WG1039917	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	8960	Q	330	1000	5	11/08/2017 19:47	WG1039652
Residual Range Organics (RRO)	1190	Q	82.5	250	1	11/08/2017 14:39	WG1039652
(S) o-Terphenyl	71.0			52.0-156		11/08/2017 19:47	WG1039652
(S) o-Terphenyl	112			52.0-156		11/08/2017 14:39	WG1039652

WG1040147

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (ME))					1 CD				
(MB) R3263837-3 11/07/17 17:37										
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	ug/l		ug/l	ug/l		Tc				
Gasoline Range Organics-NWTPH	U		31.6	100		3				
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-122		Ss				
						⁴ Cn				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263837-1 11/07/17 16:30 • (LCSD) R3263837-2 11/07/17 16:52												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5500	4370	4300	79.5	78.2	72.0-134			1.61	20		
(S) a,a,a-Trifluorotoluene(FID)				97.7	102	77.0-122						

L948847-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L948847-14 11/08/17 11:56 • (MS) R3263837-4 11/08/17 12:18 • (MSD) R3263837-5 11/08/17 12:41													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	l
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	U	2090	2010	38.1	36.6	1	23.0-159			3.97	20	
(S) a,a,a-Trifluorotoluene(FID)					97.1	96.6		77.0-122					

DATE/TIME: 11/14/17 13:42 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3263749-3 11/07/17	IB) R3263749-3 11/07/17 10:29								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Benzene	U		0.331	1.00					
Ethylbenzene	U		0.384	1.00					
Toluene	U		0.412	1.00					
Xylenes, Total	U		1.06	3.00					
(S) Toluene-d8	108			80.0-120					
(S) Dibromofluoromethane	100			76.0-123					
(S) a,a,a-Trifluorotoluene	111			80.0-120					
(S) 4-Bromofluorobenzene	99.7			80.0-120					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263749-1 11/07/17 09:30 • (LCSD) R3263749-2 11/07/17 09:49												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Benzene	25.0	23.9	24.4	95.4	97.5	69.0-123			2.16	20		
Ethylbenzene	25.0	25.1	25.2	101	101	77.0-120			0.100	20		
Toluene	25.0	23.1	23.4	92.4	93.6	77.0-120			1.20	20		
Xylenes, Total	75.0	79.9	78.3	107	104	77.0-120			2.02	20		
(S) Toluene-d8				104	104	80.0-120						
(S) Dibromofluoromethane				106	105	76.0-123						
(S) a,a,a-Trifluorotoluene				110	107	80.0-120						
(S) 4-Bromofluorobenzene				96.2	99.7	80.0-120						

DATE/TIME: 11/14/17 13:42 PAGE: 7 of 12

QUALITY CONTROL SUMMARY L948749-01

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3264068-1 11/08/17	11:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO) U		83.3	250
(S) o-Terphenyl	73.6			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3264068-2 11/08/17	7 11:24 • (LCSD)	R3264068-3	11/08/17 11:40							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	796	811	106	108	50.0-150			1.90	20
Residual Range Organics (RRO)	750	757	762	101	102	50.0-150			0.570	20
(S) o-Terphenyl				76.6	74.1	52.0-156				

DATE/TIME: 11/14/17 13:42

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Q	Sample was prepared and/or analyzed past recommended holding time. Concentrations should be considered minimum values.

SDG: L948749

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	
Cascadia Associates- Portland, OR	

PROJECT: 0060-001-001

SDG: L948749 DATE/TIME: 11/14/17 13:42

			Billing Inform	ution:	1	10	1		Ana	ysis / Co	ntainer	I Priester	Vativa	T		ten of Custody	CO	-
ascadia Associates- Portland, OR		DR	Accounts Payable- Chris Breemer 6915 SW Macadam Ave			Pres Chi		7			Contraction of the second					*E	36	
915 SW Macadam Ave		1	Ste. 250 Portland,	OR 97219				19/1				24				Contraction in strain of the	man Chiam	
ortland OR 97219	1	_		uguire@cascadiaas	sociates.com	36	81									(2005 Laboran Rd Mount West, TN 3713 Rome, ALS-758 5858	製作	
port 10: n Maguire	14. A. A.		-	Long Strategy a	50%s an		HCI-	-					13			Musie #30 767 5858 Fax: 015-758-5859	自己编	
n Maguire oject Nustar-Vaun nscription:	ex Pilot	Stud	Y	City/State UAAC Collected:	eaver, u	J.A.	dm								100	La 194	549	
none: 503-906-6577	Client Project #			Lab Project # CASASCTOR-N	UVANCOUVI	E	40miAmb	Ę	DH-0			(II)				Tab E1 Accthum: CAS/ Template: T128	24	11
as selected by (printle ICAN Maquaire	Site/Facility ID	0		0060-001	-001-		(w/ SGT)	Amb t	40mlAmb-HCI	×	×	\$7.603						
ollected by (signification)	Rush? (U			Quote #			VI (v	1000		9	P	3	×	- 1-		Prelogin: P622 TSR: 110 - Brian		
Jan Myuire	Same On Next Day Two Day Two Day	100	Day iy (Rad Only) tay (Rad Only)	Date Resol	ts Needed	No.	NWTPHDXLVI	NWTPHGX 40mlAmb HCI	V8260BTEXC	NUNTPH	HELMO	BTEX	PLP			PB: Shipped Via:		
sample 10	Comp/Grab	Matrix *	Depth	Date	Time	Entra	LMN	MM	and the second	NI	2	20	14			Barsarks	Sample & Del colo	1
and the second sec	Gris	GW	NA	10/20/17	1300	8		X	×	1.2						1.1.1.2	- 97	
MW-5	Grab	GW	NA	10/24/17	945	18	X		X	-		-		1			23	3
MW-5D	Grab	GW	AIN.	10/24/17	1135	8	X	X	X	-	Rent I	1	-	1.7			-01	
MW-6 DUP	Grab	GW	NA	10 24/17	1135	8	Ĥ	11	H	-		-				- 48		
RIW C DWI		GW				-	1		1	×	×	X	×				-01/0	5
HA-1	Grob	Soil	6	10/24/17	1530	8		1		F	-	1	-					
	10.00	-	-	-		1	-			1	1.5							
	-	1	5000		the first	H								2.		12		
	Trail 1	100	-		1 200		-	1	-	123						Alexand and	1	-
		1		1	825	- 12		14.1	5	18 1	1	1	1		CON SALT	Rise Necelst Researt/inta	Checklant Y	N
* Matrix: SS - Soll AIR - Air F - Filter GW - Groundwater B - Bicassay	Remarks	Conto	at Is	in for sp	ation a	antal	4.		3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	pił Fio	w	-	np		COC Store	nd/Accurate arrive intact bottles used nt volume ses	in the second	111 111
WW - WasteWater DW - Dricking Water OT - Other UPS / Fed5x		a: CounterTracking #				- 11 UNA 2002						time with	if Arelin Headspaces tion Correct/	ana A	1			
manager suffer Of	2	Date	tra	1205 K	Composition Sector	1/2	5	E	clo	n nipo	HUN THE		HCL /	Mach		ition inquired by	Legin Date/Tin	ne:
ANSWORD		Dane:	20/17	Time	Received by: (5)	Frature	u]]			temp	P. 10	ile !	Matture Rac	1)	if preservi	thon induced by	C.P. C.P. C.P.	
entinguething by: (Cerospire)	ALDon	-101	25/17	1230	1.40.1		1	-		Un	90	50	Time:	0	10-1	45	Conditi	85
Relinquished by : (Signature)	aufuro	Dine:	-price	Time:	Recoved tor 14	a by: 151	Eutor	122		10	1201	17	6	45			NC9 /	0

Andy Vann

From: Sent: To: Subject:

Brian Ford Monday, November 06, 2017 3:03 PM Login; Brian Ford L946549 *CASASCTOR* log off hold Please log MW-6 DUP off hold label 10-145 for NWTPHGX, V8260BTEXC, and NWTPHDXLVI. Log as R5 due 11/13.

Thanks,

Brian Ford

Technical Service Representative ESC Lab Sciences-a subsidiary of Pace Analytical

12065 Lebanon Road | Mt. Juliet, TN 37122 615.773.9772

bford@esclabsciences.com | www.esclabsciences.com

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

-

ANALYTICAL REPORT

Cascadia Associates- Portland, OR

Sample Delivery Group:	L954460
Samples Received:	12/01/2017
Project Number:	006-001-001
Description:	Vannex GWM
Site:	VANCOUVER, WA
Report To:	lan Maguire
	6915 SW Macadam Ave
	Ste. 250
	Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd Mount Juliet. TN 37122 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

1

IDE.	
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6 L954460-01	5
MW-5 L954460-02	6
MW-5D L954460-03	7
MW-5 DUP L954460-04	8
Qc: Quality Control Summary	9
Volatile Organic Compounds (GC) by Method NWTPHGX	9
Volatile Organic Compounds (GC/MS) by Method 8260C	10
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SDG: L954460

DATE/TIME: 12/12/17 09:41

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

鞅

MW-6 L954460-01 GW			Collected by Joel Mattecheck	Collected date/time 11/30/17 11:45	Received date/time 12/01/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	10	12/06/17 12:22	12/06/17 12:22	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	50	12/03/17 02:12	12/03/17 02:12	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:02	LM
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	5	12/06/17 22:35	12/11/17 14:12	LM
			Collected by	Collected date/time	Received date/time
MW-5 L954460-02 GW			Joel Mattecheck	11/30/17 10:55	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	10	12/06/17 12:46	12/06/17 12:46	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	25	12/03/17 02:28	12/03/17 02:28	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:18	LM
			Collected by	Collected date/time	Received date/time
MW-5D L954460-03 GW			Joel Mattecheck	11/30/17 10:10	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	1	12/04/17 23:06	12/04/17 23:06	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	1	12/03/17 02:45	12/03/17 02:45	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:34	LM
			Collected by	Collected date/time	Received date/time
MW-5 DUP L954460-04 GW			Joel Mattecheck	11/30/17 10:55	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	1	12/04/17 23:30	12/04/17 23:30	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	1	12/03/17 03:02	12/03/17 03:02	BMB
	WG1048800	25	12/05/17 23:14	12/05/17 23:14	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	25	12/03/17 23.14	12/03/17 23.14	LIVE

SDG: L954460

DATE/TIME: 12/12/17 09:41

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L954460 DATE/TIME: 12/12/17 09:41 PAGE: 4 of 14 Collected date/time: 11/30/17 11:45

SAMPLE RESULTS - 01 L954460

°Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

Analyte ug/l ug/l ug/l date / time Gasoline Range Organics-NWTPH 9420 316 1000 10 12/06/2017 12:22 WG1049399		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Drganics-NWTPH 9420 516 1000 10 12/06/2017 12.22 WG1049599	Analyte	ug/l			ug/l		date / time		
(S) 05 C 77 0 122 12/0C/2017 12:22 W/CO 00200		9420		316	1000	10	12/06/2017 12:22	WG1049399	
a,a,a-Trifluorotoluene(FID) 95.6 77.0-122 12/06/2017 12.22 WG1049399	(S) a,a,a-Trifluorotoluene(FID)	95.6			77.0-122		12/06/2017 12:22	WG1049399	

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	223		16.6	50.0	50	12/03/2017 02:12	<u>WG1048800</u>	
Toluene	53.1		20.6	50.0	50	12/03/2017 02:12	<u>WG1048800</u>	
Ethylbenzene	1710		19.2	50.0	50	12/03/2017 02:12	WG1048800	
Total Xylenes	1120		53.0	150	50	12/03/2017 02:12	<u>WG1048800</u>	
(S) Toluene-d8	107			80.0-120		12/03/2017 02:12	WG1048800	
(S) Dibromofluoromethane	88.9			76.0-123		12/03/2017 02:12	<u>WG1048800</u>	
(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:12	WG1048800	
(S) 4-Bromofluorobenzene	97.3			80.0-120		12/03/2017 02:12	WG1048800	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	7440		330	1000	5	12/11/2017 14:12	WG1049374
Residual Range Organics (RRO)	686		82.5	250	1	12/07/2017 21:02	WG1049374
(S) o-Terphenyl	120			52.0-156		12/07/2017 21:02	WG1049374
(S) o-Terphenyl	103			52.0-156		12/11/2017 14:12	WG1049374

Collected date/time: 11/30/17 10:55

SAMPLE RESULTS - 02 L954460

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

0								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	11300		316	1000	10	12/06/2017 12:46	WG1049399	
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-122		12/06/2017 12:46	WG1049399	

Volatile Organic Compounds (GC/MS) by Method 8260C

Analyte ug/l ug/l ug/l date / time Benzene U 8.28 25.0 25 12/03/2017 02:28 WG1048800 Toluene U 10.3 25.0 25 12/03/2017 02:28 WG1048800 Ethylbenzene 187 9.60 25.0 25 12/03/2017 02:28 WG1048800 Total Xylenes 1210 26.5 75.0 25 12/03/2017 02:28 WG1048800 (S) Toluene-d8 106 80.0-120 12/03/2017 02:28 WG1048800 (S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) A.a., a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800 (S) 4-Bromofluorobenzene 97.0 80.0-120 12/03/2017 02:28 WG1048800		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	[
Toluene U 10.3 25.0 25 12/03/2017 02:28 WG1048800 Ethylbenzene 187 9.60 25.0 25 12/03/2017 02:28 WG1048800 Total Xylenes 1210 26.5 75.0 25 12/03/2017 02:28 WG1048800 (S) Toluene-d8 106 80.0-120 12/03/2017 02:28 WG1048800 (S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) a, a, a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	Analyte	ug/l		ug/l	ug/l		date / time		
Ethylbenzene 187 9.60 25.0 25 12/03/2017 02:28 WG1048800 Total Xylenes 1210 26.5 75.0 25 12/03/2017 02:28 WG1048800 (S) Toluene-d8 106 80.0-120 12/03/2017 02:28 WG1048800 (S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) a,a,a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	Benzene	U		8.28	25.0	25	12/03/2017 02:28	WG1048800	
Total Xylenes 1210 26.5 75.0 25 12/03/2017 02:28 WG1048800 (S) Toluene-d8 106 80.0-120 12/03/2017 02:28 WG1048800 (S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) a,a,a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	Toluene	U		10.3	25.0	25	12/03/2017 02:28	WG1048800	
(S) Toluene-d8 106 80.0-120 12/03/2017 02:28 WG1048800 (S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) a, a, a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	Ethylbenzene	187		9.60	25.0	25	12/03/2017 02:28	WG1048800	
(S) Dibromofluoromethane 87.9 76.0-123 12/03/2017 02:28 WG1048800 (S) a,a,a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	Total Xylenes	1210		26.5	75.0	25	12/03/2017 02:28	WG1048800	L
(S) a,a,a-Trifluorotoluene 105 80.0-120 12/03/2017 02:28 WG1048800	(S) Toluene-d8	106			80.0-120		12/03/2017 02:28	WG1048800	-
	(S) Dibromofluoromethane	87.9			76.0-123		12/03/2017 02:28	WG1048800	
(S) 4-Bromofluorobenzene 97.0 80.0-120 12/03/2017.02:28 WG1048800	(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:28	WG1048800	
	(S) 4-Bromofluorobenzene	97.0			80.0-120		12/03/2017 02:28	WG1048800	

Sample Narrative:

L954460-02 WG1048800: Target and non-target analytes too high to re-analyze at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1630		66.0	200	1	12/07/2017 21:18	WG1049374
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:18	WG1049374
(S) o-Terphenyl	91.4			52.0-156		12/07/2017 21:18	WG1049374

SDG: L954460 Collected date/time: 11/30/17 10:10

SAMPLE RESULTS - 03 L954460

Volatile Organic Compounds (GC) by Method NWTPHGX

0	1.1.1							1°Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		 2
Gasoline Range Organics-NWTPH	411		31.6	100	1	12/04/2017 23:06	WG1049399	⁻Tc
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-122		12/04/2017 23:06	WG1049399	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	12/03/2017 02:45	<u>WG1048800</u>	
Toluene	U		0.412	1.00	1	12/03/2017 02:45	<u>WG1048800</u>	
Ethylbenzene	U		0.384	1.00	1	12/03/2017 02:45	<u>WG1048800</u>	
Total Xylenes	U		1.06	3.00	1	12/03/2017 02:45	<u>WG1048800</u>	
(S) Toluene-d8	105			80.0-120		12/03/2017 02:45	<u>WG1048800</u>	
(S) Dibromofluoromethane	88.9			76.0-123		12/03/2017 02:45	<u>WG1048800</u>	
(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:45	<u>WG1048800</u>	
(S) 4-Bromofluorobenzene	98.5			80.0-120		12/03/2017 02:45	WG1048800	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Semi-Volatile Organ	nic Comp	pounds (GC) by Met	thod NWTPHE	DX-SGT			°Sc
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Diesel Range Organics (DRO)	494		66.0	200	1	12/07/2017 21:34	WG1049374	
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:34	WG1049374	
(S) o-Terphenyl	84.9			52.0-156		12/07/2017 21:34	WG1049374	

SDG: L954460

DATE/TIME: 12/12/17 09:41

SAMPLE RESULTS - 04 L954460

Volatile Organic Compounds (GC) by Method NWTPHGX

volatile organie o	ompound							Cn l
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	10900		31.6	100	1	12/04/2017 23:30	WG1049399	Tc
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-122		12/04/2017 23:30	WG1049399	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	12/03/2017 03:02	WG1048800	
Toluene	1.12		0.412	1.00	1	12/03/2017 03:02	<u>WG1048800</u>	
Ethylbenzene	187		0.384	1.00	1	12/03/2017 03:02	<u>WG1048800</u>	
Total Xylenes	1480		26.5	75.0	25	12/05/2017 23:14	<u>WG1048800</u>	
(S) Toluene-d8	100			80.0-120		12/05/2017 23:14	<u>WG1048800</u>	
(S) Toluene-d8	99.2			80.0-120		12/03/2017 03:02	<u>WG1048800</u>	
(S) Dibromofluoromethane	87.7			76.0-123		12/03/2017 03:02	<u>WG1048800</u>	
(S) Dibromofluoromethane	96.1			76.0-123		12/05/2017 23:14	<u>WG1048800</u>	
(S) a,a,a-Trifluorotoluene	103			80.0-120		12/05/2017 23:14	<u>WG1048800</u>	
(S) a,a,a-Trifluorotoluene	109			80.0-120		12/03/2017 03:02	<u>WG1048800</u>	
(S) 4-Bromofluorobenzene	93.9			80.0-120		12/03/2017 03:02	WG1048800	
(S) 4-Bromofluorobenzene	99.0			80.0-120		12/05/2017 23:14	WG1048800	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1750		66.0	200	1	12/07/2017 21:50	WG1049374
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:50	<u>WG1049374</u>
(S) o-Terphenyl	85.5			52.0-156		12/07/2017 21:50	WG1049374

WG1049399

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (ME	<i>)</i>)							
(MB) R3270407-3 12/04/17 11:11								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Gasoline Range Organics-NWTPH	33.1	ī	31.6	100				
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-122				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3270407-1 12/04/17 09:59 • (LCSD) R3270407-2 12/04/17 10:23										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5500	5720	5870	104	107	72.0-134			2.58	20
(S) a,a,a-Trifluorotoluene(FID)				108	108	77.0-122				

L954576-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L954576-05 12/05/17 03:02 • (MS) R3270407-4 12/05/17 03:26 • (MSD) R3270407-5 12/05/17 03:50													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	l
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	ND	2590	2670	46.3	47.9	1	23.0-159			3.15	20	
(S) a,a,a-Trifluorotoluene(FID)					101	101		77.0-122					

DATE/TIME: 12/12/17 09:41 Sc

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

A

°Sc

Method Blank (MB)

(MB) R3270555-2 12/03/1	7 01:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	ug/l		ug/l	ug/l	-
Benzene	U		0.331	1.00	
Ethylbenzene	U		0.384	1.00	3
Toluene	U		0.412	1.00	Ľ
Xylenes, Total	U		1.06	3.00	4
(S) Toluene-d8	106			80.0-120	
(S) Dibromofluoromethane	89.7			76.0-123	Ľ
(S) a,a,a-Trifluorotoluene	105			80.0-120	5
(S) 4-Bromofluorobenzene	98.2			80.0-120	L

Laboratory Control Sample (LCS)

Spike Amount LCS Result LCS Result Rec. Limits LCS Qualifier Analyte ug/l ug/l % Benzene 25.0 25.4 93.5 69.0-123 Ethylbenzene 25.0 25.8 103 77.0-120	(LCS) R3270555-1 12/03/17 01:05									
Benzene 25.0 23.4 93.5 69.0-123										
Ethylbonzono 25.0 25.8 103 77.0.120										
	ſ									
Toluene 25.0 25.1 100 77.0-120										
Xylenes, Total 75.0 77.0 103 77.0-120	l									
(S) Toluene-d8 105 80.0-120										
(S) Dibromofluoromethane 88.4 76.0-123										
(S) a,a,a-Trifluorotoluene 105 80.0-120										
(S) 4-Bromofluorobenzene 99.7 80.0-120										

DATE/TIME: 12/12/17 09:41 PAGE: 10 of 14

QUALITY CONTROL SUMMARY L954460-01,02,03,04

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3271729-1 12/07/17 18:21								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				
Diesel Range Organics (DRO)	U		66.7	200				
Residual Range Organics (RRO)	U		83.3	250				
(S) o-Terphenyl	77.2			52.0-156				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271729-2 12/07/17 18:36 • (LCSD) R3271729-3 12/07/17 18:52										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	719	697	95.9	93.0	50.0-150			3.05	20
Residual Range Organics (RRO)	750	633	614	84.4	81.9	50.0-150			3.00	20
(S) o-Terphenyl				73.4	72.2	52.0-156				

L954618-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L954618-01 12/07/17 22:06 • (MS) R3271729-4 12/07/17 22:22 • (MSD) R3271729-5 12/07/17 22:38										Γ			
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	L
Diesel Range Organics (DRO)	750	ND	619	622	74.2	74.5	1	50.0-150			0.418	20	
Residual Range Organics (RRO)	750	ND	526	536	63.5	64.8	1	50.0-150			1.94	20	
(S) o-Terphenyl					63.3	61.8		52.0-156					

DATE/TIME: 12/12/17 09:41

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L954460 DATE/TIME: 12/12/17 09:41

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{r/a} Accreditation not applicable

Our Locations

Cascadia

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	
a Associates- Portland, OR	

PROJECT: 006-001-001

SDG: L954460 DATE/TIME: 12/12/17 09:41

		5.71	Billing Inform	nation:	di.				1	Anal	ysis / Contair	ner / Pi	reservative		24	-	of Custody	Page_of_
ascadia Associates- P 15 SW Macadam Ave e. 250	ortland, (6915 SW	Payable- C Macadam OR 97219		Dicenter	178-5	101 VX		82603)		-			111	V 5	RE S Lebaron Rd	SC.
Intland OR 97219			Email To: Im	aguire@casc	adiaas	sociates.com	1E	-		0			1853	1		Mour	5 Lebanon na nt Juliet, TN 3712 w. 615-758-5856	
port to: n Maguire			Cell		-		-	19		EX	12		1255	1		Phon	615-758-5859	高級
oject escription: VANNEX GW	щ		5.43	City/State Van Collected:			1	nh-Hc		Bte						L#		54460
CARD IN THE SHORE HER MANY AND A SHORE AND	Client Project #	01-00	CASASCTOR-N		UVANCOUVE		40mlAmb-HCI-BT	G	HCI						T	B08	1 1 C	
bel Mattecheck	Site/Facility ID	11		otified)		006 - 001 - 001 Quote #		/ SG7	NWTPHGX 40mlAmb HCI	A			Acctnum: CASASCTOR Template:T130154)154			
oilected by (signature):		b MUST Be						LVI W,	K 40m	A				-			elogin: P627 R: 110 - Brian	
	Next Day Two Day Three Da	10 Da	(Rad Only) ay (Rad Only)	(Resul	ts Needed	Nc. of	NWTPHDXLVI	PHGX					-		PB	ipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cour	LMI	LMI				158				Remarks	Sample # (lab only)
Sample to	1		-	11151		1110-	3	×	×	×			No.			and the		- 0
MW-G	Grab	GW	-	1(30)	1-1	(145	1.00	and the second		100000000000000000000000000000000000000			120				marca	- 02
MW-5	Grab_	GW	-	111301		forma 1055	· · · · · · · · · · · · · · · · · · ·	About 1	X						17.			- 03
MW-50	Gras	GW	-	11/30		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	notro	and the second of		1011101101			-	1			de la	- 04
MW-5 DUP	Grab	GW	-	11/30/	17	1055	0	×	+	~					and the second			
	1200	GW		1200		1.1	1		1					100				
	-	1	23			1.12								1		-	- 10	
		14.4			2.00	100	1							132			der s	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							1							1			e Redeipt	Charletter
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks: CMail	result	is to	Ian W	145	-inc					pH Flow	-	Temp Other		COC S Bottl Corre	eal Fre igned/A es arri ct bott	e Receipt ment/Intac weurate: we intact: les uped: volume seut	
WW - WasteWater DW - Drinking Water DT - Other	Samples retu	edExC	ourier			racking#	74		466	425	1 Trip Blank I	lecolu	ed RLN	0	1000 2	aro lies	<u>It Applic</u> adspace: n Correct/	able /y_
Relinquisting by : (Signature)	/	Date:	30/17	Time: 1530		leceived by: (Sign		1752					ACE/ TBR	MeoH	liforet	servation	required by	Login: Date/Time
Relinquishert by : (Signature)	nquisherl by : (Signature) Date: Time:		Time:	-	Received by: (Signatur					Q.3	v "C	32		In pres				
Relinguished by : (Signature)		Date:	10	Time:	1	Received for lab t	y: (Si	gnature)	13	5	Date: 12/01	12	Time:	r	Hold			Condition

TANK I

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Tuesday, September 11, 2018

Stephanie Salisbury Cascadia Associates 6915 SW Macadam, Suite 250 Portland, OR 97219

RE: A8H0927 - Nustar Vannex - 0060-001-001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8H0927, which was received by the laboratory on 8/31/2018 at 1:41:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>ldomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Assa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
MW-5	A8H0927-01	Water	08/30/18 10:45	08/31/18 13:41							
MW-5D	А8Н0927-02	Water	08/30/18 11:50	08/31/18 13:41							
MW-6	А8Н0927-03	Water	08/30/18 12:35	08/31/18 13:41							
MW-5 DUP	А8Н0927-04	Water	08/30/18 10:45	08/31/18 13:41							
Trip Blank #1859	А8Н0927-05	Water	08/30/18 00:00	08/31/18 13:41							

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vanne</u>	<u>ex</u>
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	Report ID:
Portland, OR 97219	Project Manager: Stephanie Sal	lisbury A8H0927 - 09 11 18 0747

ANALYTICAL SAMPLE RESULTS

Die	esel and/or Oil H	drocarbons by	NWTPH	-Dx with Silica	Gel Colu	mn Cleanu	р	
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-5 (A8H0927-01)				Matrix: Wate	er	Ba	atch: 8090441	
Diesel	0.819		0.0755	mg/L	1	09/05/18	NWTPH-Dx/SGC	F-18
Oil	ND		0.151	mg/L	1	09/05/18	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	: 78 %	Limits: 50-150 %	6 I	09/05/18	NWTPH-Dx/SGC	
MW-5D (A8H0927-02)				Matrix: Wate	er	Ba		
Diesel	ND		0.0755	mg/L	1	09/05/18	NWTPH-Dx/SGC	
Oil	ND		0.151	mg/L	1	09/05/18	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	: 85 %	Limits: 50-150 %	6 I	09/05/18	NWTPH-Dx/SGC	
MW-6 (A8H0927-03)				Matrix: Wate	er	Ва	atch: 8090441	
Diesel	1.24		0.0748	mg/L	1	09/05/18	NWTPH-Dx/SGC	F-18
Oil	ND		0.150	mg/L	1	09/05/18	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	: 76%	Limits: 50-150 %	6 I	09/05/18	NWTPH-Dx/SGC	
MW-5 DUP (A8H0927-04)				Matrix: Wate	Ater Batch: 8090441		atch: 8090441	
Diesel	0.631		0.0755	mg/L	1	09/05/18	NWTPH-Dx/SGC	F-18
Oil	ND		0.151	mg/L	1	09/05/18	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recovery	: 64 %	Limits: 50-150 %	6 I	09/05/18	NWTPH-Dx/SGC	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons ((Benzene th	nrough Naphtha	alene) by	NWTPH-G	x	
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-5 (A8H0927-01RE1)				Matrix: Wate	er	Ba	itch: 8090448	
Gasoline Range Organics	18.6		1.00	mg/L	10	09/05/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 100 %	Limits: 50-150 %	5 1	09/05/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	09/05/18	NWTPH-Gx (MS)	
MW-5D (A8H0927-02)				Matrix: Wate	ər	Ba	itch: 8090370	
Gasoline Range Organics	0.673		0.100	mg/L	1	09/04/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	very: 96 %	Limits: 50-150 %	5 1	09/04/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	1	09/04/18	NWTPH-Gx (MS)	
MW-6 (A8H0927-03RE1)				Matrix: Wate	ər	Ba	itch: 8090427	
Gasoline Range Organics	20.1		1.00	mg/L	10	09/05/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	very: 97 %	Limits: 50-150 %	1	09/05/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	09/05/18	NWTPH-Gx (MS)	
				Matrix: Wate	er 🗌	Ba		
Gasoline Range Organics	20.8		1.00	mg/L	10	09/05/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recov	very: 99 %	Limits: 50-150 %	5 1	09/05/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	09/05/18	NWTPH-Gx (MS)	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

							EFAID: O	NU1U37
Cascadia Associates		Project:	Nus	star Vannex				
6915 SW Macadam, Suite 250		Project Nu	mber: 006	0-001-001			Report	ID:
Portland, OR 97219		Project Mar	nager: Ste	phanie Salisbury			A8H0927 - 09 1	1 18 0747
		ANALYTICA	L SAMI	PLE RESULTS				
		BTEX Comp	ounds b	y EPA 8260C				
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
/W-5 (A8H0927-01RE1)				Matrix: Water	r	Ba	tch: 8090448	
Benzene	ND		2.00	ug/L	10	09/05/18	EPA 8260C	
Toluene	ND		10.0	ug/L	10	09/05/18	EPA 8260C	
Ethylbenzene	190		5.00	ug/L	10	09/05/18	EPA 8260C	
Xylenes, total	936		15.0	ug/L	10	09/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	99 %	Limits: 80-120 %	1	09/05/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/05/18	EPA 8260C	
/W-5D (A8H0927-02)				Matrix: Water	r	Batch: 8090370		
Benzene	ND		0.200	ug/L	1	09/04/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	09/04/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	09/04/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	09/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	103 %	Limits: 80-120 %	1	09/04/18	EPA 8260C	
Toluene-d8 (Surr)			97 %	80-120 %	1	09/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	09/04/18	EPA 8260C	
//W-6 (A8H0927-03RE1)				Matrix: Water	r	Ba	tch: 8090427	
Benzene	212		2.00	ug/L	10	09/05/18	EPA 8260C	
Toluene	45.2		10.0	ug/L	10	09/05/18	EPA 8260C	
Ethylbenzene	1590		5.00	ug/L	10	09/05/18	EPA 8260C	
Xylenes, total	1150		15.0	ug/L	10	09/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	1	09/05/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/05/18	EPA 8260C	
IW-5 DUP (A8H0927-04RE1)				Matrix: Water	r	Ba	tch: 8090448	
Benzene	ND		2.00	ug/L	10	09/05/18	EPA 8260C	
Toluene	ND		10.0	ug/L	10	09/05/18	EPA 8260C	
Ethylbenzene	212		5.00	ug/L	10	09/05/18	EPA 8260C	
Xylenes, total	1060		15.0	ug/L	10	09/05/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	98 %	Limits: 80-120 %	1	09/05/18	EPA 8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	09/05/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/05/18	EPA 8260C	
Frip Blank #1859 (A8H0927-05)				Matrix: Water	r	Ba	tch: 8090370	
Benzene	ND		0.200	ug/L	1	09/04/18	EPA 8260C	
Anay I abarataria			m	and the stand s			and and a	Luin - C
Apex Laboratories			The res	sults in this report apply	v to the sam	ipies analyzed in	accordance with the c	naın of

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u>	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

ANALYTICAL SAMPLE RESULTS

	BTEX Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
Trip Blank #1859 (A8H0927-05)				Matrix: Wate	ər	Ba							
Toluene	ND		1.00	ug/L	1	09/04/18	EPA 8260C						
Ethylbenzene	ND		0.500	ug/L	1	09/04/18	EPA 8260C						
Xylenes, total	ND		1.50	ug/L	1	09/04/18	EPA 8260C						
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	09/04/18	EPA 8260C						
Toluene-d8 (Surr)			97 %	80-120 %	5 I	09/04/18	EPA 8260C						
4-Bromofluorobenzene (Surr)			101 %	80-120 %	5 1	09/04/18	EPA 8260C						

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil	Hydrocarbo	ons by N	WTPH-Dx	with Silic	ca Gel Co	lumn Cle	eanup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090441 - EPA 3510C	(Fuels/Acid	Ext.) w/Silio	ca Gel				Wat	er				
Blank (8090441-BLK1)		Prepared	: 09/05/18 11:	14 Analyz	ed: 09/05/1	8 20:41						
NWTPH-Dx/SGC												
Diesel	ND		0.0727	mg/L	1							
Oil	ND		0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 106 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (8090441-BS1)		Prepared	: 09/05/18 11:	14 Analyz	ed: 09/05/1	8 21:02						
NWTPH-Dx/SGC		1										
Diesel	0.433		0.0800	mg/L	1	0.500		87	52-120%			
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS Dup (8090441-BSD1)		Prepared	: 09/05/18 11:	14 Analyz	ed: 09/05/1	8 21:23						Q-19
NWTPH-Dx/SGC												
Diesel	0.451		0.0800	mg/L	1	0.500		90	52-120%	4	20%	
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50)-150 %	Dilı	ution: 1x					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	Report ID:
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090370 - EPA 5030B							Wat	er				
Blank (8090370-BLK1)		Prepared	: 09/04/18 09:	10 Analy	zed: 09/04/1	8 13:16						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	. 1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	5	0-150 %		"					
LCS (8090370-BS2)		Prepared	: 09/04/18 09:	10 Analy	zed: 09/04/1	8 10:03						
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	0.517		0.100	mg/L	. 1	0.500		103	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					
Duplicate (8090370-DUP1)		Prepared	: 09/04/18 11:	36 Analy	zed: 09/04/1	8 18:12						
QC Source Sample: MW-5 (A8H)	<u>927-01)</u>											
<u>NWTPH-Gx (MS)</u>												
Gasoline Range Organics	20.0		5.00	mg/L	50		20.0			0.04	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 94 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	5	0-150 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090427 - EPA 5030B							Wat	er				
Blank (8090427-BLK1)		Prepared:	09/05/18 10:	06 Analyz	ed: 09/05/1	8 11:56						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 92 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	50)-150 %		"					
LCS (8090427-BS2)		Prepared:	09/05/18 10:	06 Analyz	ed: 09/05/1	8 11:30						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.482		0.100	mg/L	1	0.500		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 95 %	Limits: 50)-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50)-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090448 - EPA 5030B							Wat	er				
Blank (8090448-BLK1)		Prepared:	09/05/18 12:	00 Analyz	zed: 09/05/1	8 14:55						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 94 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					
LCS (8090448-BS2)		Prepared:	09/05/18 12:	00 Analyz	zed: 09/05/1	8 14:26						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.477		0.100	mg/L	1	0.500		95	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	0-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090370 - EPA 5030B							Wat	er				
Blank (8090370-BLK1)		Prepared	: 09/04/18 09:	:10 Analyz	ed: 09/04/1	8 13:16						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
LCS (8090370-BS3)		Prepared	: 09/04/18 09:	:10 Analyz	ed: 09/04/1	8 10:57						
EPA 8260C												
Benzene	20.6		0.200	ug/L	1	20.0		103	80-120%			
Toluene	19.4		1.00	ug/L	1	20.0		97	80-120%			
Ethylbenzene	20.1		0.500	ug/L	1	20.0		101	80-120%			
Xylenes, total	66.4		1.50	ug/L	1	60.0		111	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (8090370-DUP1)		Prepared	: 09/04/18 11:	36 Analyz	ed: 09/04/1	8 18:12						
<u>QC Source Sample: MW-5 (A8)</u> EPA 8260C	10927-01)											
Benzene	ND		10.0	ug/L	50		ND				30%	
Toluene	ND		50.0	ug/L	50		ND				30%	
Ethylbenzene	203		25.0	ug/L	50		210			3	30%	
Xylenes, total	1110		75.0	ug/L	50		1110			0.2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %		-120 %		"					
4-Bromofluorobenzene (Surr)			96 %		-120 %		"					

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	<u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number:	0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

	BTEX Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090427 - EPA 5030B							Wat	er				
Blank (8090427-BLK1)		Prepared	: 09/05/18 10:	06 Analyz	ed: 09/05/1	8 11:56						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 101 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (8090427-BS1)		Prepared	: 09/05/18 10:	06 Analyz	ed: 09/05/1	8 11:03						
EPA 8260C												
Benzene	20.1		0.200	ug/L	1	20.0		101	80-120%			
Toluene	19.5		1.00	ug/L	1	20.0		97	80-120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		101	80-120%			
Xylenes, total	66.0		1.50	ug/L	1	60.0		110	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 101 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	<u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number:	0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALITY CONTROL (QC) SAMPLE RESULTS

	BTEX Compounds by EPA 8260C											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8090448 - EPA 5030B							Wat	er				
Blank (8090448-BLK1)		Prepared	: 09/05/18 12:	00 Analyz	ed: 09/05/1	8 14:55						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 96 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
LCS (8090448-BS1)		Prepared	: 09/05/18 12:	00 Analyz	ed: 09/05/1	8 13:57						
EPA 8260C												
Benzene	18.7		0.200	ug/L	1	20.0		94	80-120%			
Toluene	18.2		1.00	ug/L	1	20.0		91	80-120%			
Ethylbenzene	18.8		0.500	ug/L	1	20.0		94	80-120%			
Xylenes, total	56.5		1.50	ug/L	1	60.0		94	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project: <u>Nustar Vannex</u>	
6915 SW Macadam, Suite 250	Project Number: 0060-001-001	<u>Report ID:</u>
Portland, OR 97219	Project Manager: Stephanie Salisbury	A8H0927 - 09 11 18 0747

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup							
Prep: EPA 3510C (Fuels/Acid Ext.) w/Silica Gel					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8090441							
A8H0927-01	Water	NWTPH-Dx/SGC	08/30/18 10:45	09/05/18 11:14			0.94
A8H0927-02	Water	NWTPH-Dx/SGC	08/30/18 11:50	09/05/18 11:14			0.94
A8H0927-03	Water	NWTPH-Dx/SGC	08/30/18 12:35	09/05/18 11:14			0.94
A8H0927-04	Water	NWTPH-Dx/SGC	08/30/18 10:45	09/05/18 11:14			0.94

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
<u>Batch: 8090370</u> A8H0927-02	Water	NWTPH-Gx (MS)	08/30/18 11:50	09/04/18 11:36	5mL/5mL	5mL/5mL	1.00
Batch: 8090427 A8H0927-03RE1	Water	NWTPH-Gx (MS)	08/30/18 12:35	09/05/18 11:27	5mL/5mL	5mL/5mL	1.00
Batch: 8090448 A8H0927-01RE1 A8H0927-04RE1	Water Water	NWTPH-Gx (MS) NWTPH-Gx (MS)	08/30/18 10:45 08/30/18 10:45	09/05/18 14:13 09/05/18 14:13	5mL/5mL 5mL/5mL	5mL/5mL 5mL/5mL	1.00 1.00

BTEX Compounds by EPA 8260C

Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8090370							
A8H0927-02	Water	EPA 8260C	08/30/18 11:50	09/04/18 11:36	5mL/5mL	5mL/5mL	1.00
A8H0927-05	Water	EPA 8260C	08/30/18 00:00	09/04/18 11:36	5mL/5mL	5mL/5mL	1.00
Batch: 8090427							
A8H0927-03RE1	Water	EPA 8260C	08/30/18 12:35	09/05/18 11:27	5mL/5mL	5mL/5mL	1.00
Batch: 8090448							
A8H0927-01RE1	Water	EPA 8260C	08/30/18 10:45	09/05/18 14:13	5mL/5mL	5mL/5mL	1.00
A8H0927-04RE1	Water	EPA 8260C	08/30/18 10:45	09/05/18 14:13	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Ir

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates	Project:	Nustar Vannex	
6915 SW Macadam, Suite 250	Project Number:	0060-001-001	Report ID:
Portland, OR 97219	Project Manager:	Stephanie Salisbury	A8H0927 - 09 11 18 0747

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-18 Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219

Project: Nustar Vannex

Project Number: 0060-001-001 Project Manager: Stephanie Salisbury <u>Report ID:</u> A8H0927 - 09 11 18 0747

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.	

- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported
- RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Assa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219

Project: <u>Nustar Vannex</u>

Project Number: 0060-001-001 Project Manager: Stephanie Salisbury <u>Report ID:</u> A8H0927 - 09 11 18 0747

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Cascadia Associates		Project:	Nustar Vannex	
6915 SW Macadam,	, Suite 250	Project Number:	0060-001-001	Report ID:
Portland, OR 97219	9	Project Manager:	Stephanie Salisbury	A8H0927 - 09 11 18 0747
		LABORATORY ACCRED	TATION INFORM	ATION
	<u>TNI Cer</u>	tification ID: OR100062 (Primar	y Accreditation) -	EPA ID: OR01039
	2 1	ed from work performed at Apex Labor exception of any analyte(s) listed below		Apex Laboratories' ORELAP
<u>Apex Labor</u>	<u>atories</u>			
Matrix	Analysis	TNI_ID	Analyte	TNI_ID Accreditation
		All reported analytes are included in Apex	Laboratories' current OR	ELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

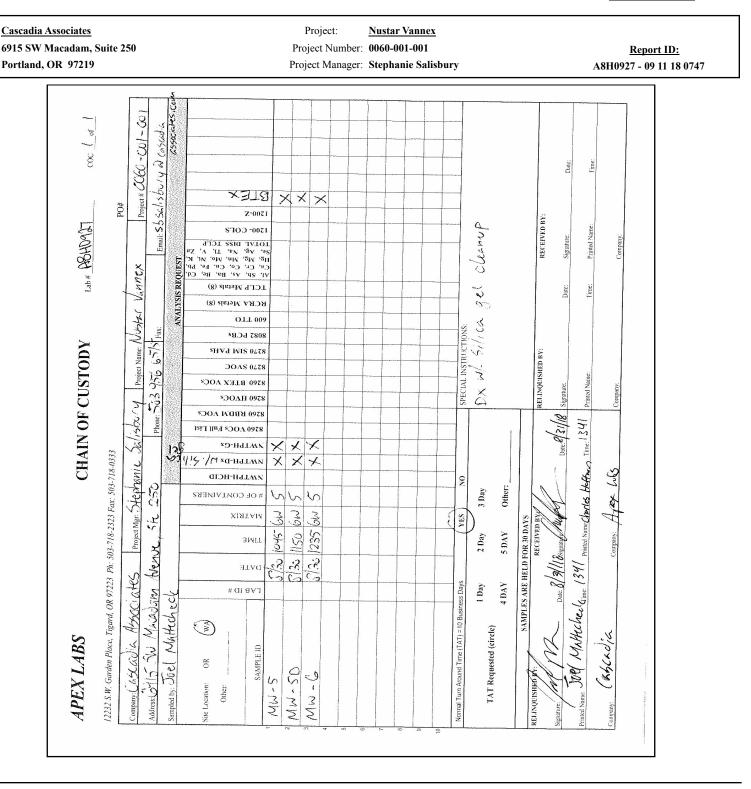
Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Assa A Zomenighini


Lisa Domenighini, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Cascadia Associates</u> 6915 SW Macadam, Suite 250 Portland, OR 97219	Project: Project Number: Project Manager:	<u>Nustar Vannex</u> 0060-001-001 Stephanie Salisbury	<u>Report ID:</u> A8H0927 - 09 11 18 0747
Client: <u>Castadia Asso</u> Project/Project #: <u>Nustai</u> <u>Deliverv info</u> : Date/Time Received: <u>Stall & @</u> Delivered by: Apex_X Client_ESS <u>Cooler Inspection</u> Inspected by: Chain of Custody Included? Yes X Signed/Dated by Client? Yes X Signed/Dated by Apex? Yes \not <u>Cooler #1 9</u> Temperature (deg. C) <u>0.2</u> Received on Ice? (Y/N) <u>Y</u> Temp. Blanks? (Y/N) <u>Y</u> Ice Type: (Gel/Real/Other) <u>Lea1</u> Condition: <u>Multer</u> Cooler out of temp? (Y/G)Possible reaso If some coolers are in temp and some out <u>Samples Inspection</u> : Inspected by: <u></u> All Samples Intact? Yes <u>No</u> <u>Co</u> Bottle Labels/COCs agree? Yes No	C. Vany lx Vany lx Pany	CFH $PSSwiftSenvoySDSOther : _8[3![18@_1[435]] Custody Seals? Yes No_X r#3 Cooler #4 Cooler #5 Cooler #6 Cooler r#3 Cooler #4 Cooler #5 Cooler #6 Cooler applied to out of temperature samples? Yes/No/(: applied to out of temperature samples? Yes/No/(:$	<u>#7</u>
Do VOA Vials have Visible Headspace? Comments Water Samples: pH Checked and Approp Comments: Additional Information: Tripblacked Labeled by: Witness: Witness:	priate (except VC	NAS): Yes No NA	

Apex Laboratories

Assa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

March 09, 2018

APEX Companies - Portland, OR

Sample Delivery Group:	L974072
Samples Received:	03/01/2018
Project Number:	1569-12
Description:	Nustar - Vancouver Annex
Site:	VANCOUVER, WA
Report To:	Megan Masterson
	3015 SW First Avenue
	Portland, OR 97201-4707

Entire Report Reviewed By:

Buar Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Mount Juliet, TN 37122 800-767-5859 12065 Lebanon Rd 615-758-5858 www.esclabsciences.com

TABLE OF CONTENTS

1 2

3

4

5

5

6

7

8

8

9

10

11

12

13

*	
¹ Cp	
² Tc	
³ Ss	

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

ACCOUNT: APEX Companies - Portland, OR

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

MW-5 L974072-01

MW-5D L974072-02

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260C

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

MW-6 L974072-03

GI: Glossary of Terms

SDG: L974072 DATE/TIME: 03/09/18 09:25 PAGE: 2 of 13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

₩

Ср

Τс

Cn

Sr

Qc

GI

Â

Sc

MW-5 L974072-01 GW			Collected by M. Masterson	Collected date/time 02/28/18 11:50	Received date/time 03/01/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1080467	1	03/04/18 23:22	03/04/18 23:22	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1079893	1	03/02/18 20:42	03/02/18 20:42	JAH
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1079893	25	03/04/18 15:59	03/04/18 15:59	JAH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1080793	1	03/06/18 08:51	03/06/18 15:22	LM
			Collected by	Collected date/time	Received date/time
MW-5D L974072-02 GW			M. Masterson	02/28/18 11:25	03/01/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1080467	1	03/04/18 23:46	03/04/18 23:46	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1079893	1	03/02/18 21:01	03/02/18 21:01	JAH
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1079893	1	03/04/18 16:18	03/04/18 16:18	JAH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1080793	1	03/06/18 08:51	03/06/18 15:38	LM
			Collected by	Collected date/time	Received date/time
MW-6 L974072-03 GW			M. Masterson	02/28/18 10:40	03/01/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			dato/timo	dato/timo	

				•	
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1080467	1	03/05/18 00:10	03/05/18 00:10	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1079893	20	03/04/18 16:37	03/04/18 16:37	JAH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1080793	1	03/06/18 08:51	03/06/18 15:54	LM

SDG: L974072

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L974072 DATE/TIME: 03/09/18 09:25

PAGE: 4 of 13 Collected date/time: 02/28/18 11:50

SAMPLE RESULTS - 01 L974072

Volatile Organic Compounds (GC) by Method NWTPHGX

5	1							 l'Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	9860		31.6	100	1	03/04/2018 23:22	WG1080467	⁻Tc
(S) a,a,a-Trifluorotoluene(FID)	99.8			77.0-122		03/04/2018 23:22	WG1080467	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	03/02/2018 20:42	WG1079893	
Toluene	1.15		0.412	1.00	1	03/02/2018 20:42	<u>WG1079893</u>	
Ethylbenzene	145		0.384	1.00	1	03/02/2018 20:42	WG1079893	e
Total Xylenes	877		26.5	75.0	25	03/04/2018 15:59	<u>WG1079893</u>	L
(S) Toluene-d8	94.5			80.0-120		03/02/2018 20:42	WG1079893	7
(S) Toluene-d8	104			80.0-120		03/04/2018 15:59	WG1079893	
(S) Dibromofluoromethane	105			76.0-123		03/04/2018 15:59	WG1079893	
(S) Dibromofluoromethane	104			76.0-123		03/02/2018 20:42	<u>WG1079893</u>	
(S) a,a,a-Trifluorotoluene	94.3			80.0-120		03/04/2018 15:59	WG1079893	L
(S) a,a,a-Trifluorotoluene	96.1			80.0-120		03/02/2018 20:42	<u>WG1079893</u>	ç
(S) 4-Bromofluorobenzene	106			80.0-120		03/04/2018 15:59	WG1079893	
(S) 4-Bromofluorobenzene	107			80.0-120		03/02/2018 20:42	WG1079893	L .

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1770		66.0	200	1	03/06/2018 15:22	WG1080793
Residual Range Organics (RRO)	U		82.5	250	1	03/06/2018 15:22	<u>WG1080793</u>
(S) o-Terphenyl	106			52.0-156		03/06/2018 15:22	WG1080793

SDG: L974072 Collected date/time: 02/28/18 11:25

SAMPLE RESULTS - 02 L974072

Volatile Organic Compounds (GC) by Method NWTPHGX

nalyte ug/l ug/l date / time iasoline Range Irganics-NWTPH 589 31.6 100 1 03/04/2018 23:46 WG1080467 (S) 104 77.0.123 03/04/2018 23:46 WG1080467		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Irganics-NWTPH 369 31.0 100 1 03/04/2018 23.46 WG1080467 (S) 104 77.0.122 03/04/2018 23.46 WG1080467	nalyte	ug/l		ug/l	ug/l		date / time		
	asoline Range organics-NWTPH	589		31.6	100	1	03/04/2018 23:46	WG1080467	
	(S) ,a,a-Trifluorotoluene(FID)	104			77.0-122		03/04/2018 23:46	WG1080467	

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	03/02/2018 21:01	WG1079893	
Foluene	U		0.412	1.00	1	03/02/2018 21:01	WG1079893	
Ethylbenzene	5.08		0.384	1.00	1	03/02/2018 21:01	<u>WG1079893</u>	
Fotal Xylenes	2.04	J	1.06	3.00	1	03/04/2018 16:18	<u>WG1079893</u>	L
(S) Toluene-d8	101			80.0-120		03/02/2018 21:01	<u>WG1079893</u>	[
(S) Toluene-d8	105			80.0-120		03/04/2018 16:18	<u>WG1079893</u>	
(S) Dibromofluoromethane	104			76.0-123		03/04/2018 16:18	<u>WG1079893</u>	
(S) Dibromofluoromethane	106			76.0-123		03/02/2018 21:01	<u>WG1079893</u>	
(S) a,a,a-Trifluorotoluene	97.9			80.0-120		03/04/2018 16:18	<u>WG1079893</u>	
(S) a,a,a-Trifluorotoluene	95.3			80.0-120		03/02/2018 21:01	<u>WG1079893</u>	
(S) 4-Bromofluorobenzene	108			80.0-120		03/04/2018 16:18	<u>WG1079893</u>	
(S) 4-Bromofluorobenzene	102			80.0-120		03/02/2018 21:01	WG1079893	L

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	249		66.0	200	1	03/06/2018 15:38	WG1080793
Residual Range Organics (RRO)	U		82.5	250	1	03/06/2018 15:38	WG1080793
(S) o-Terphenyl	110			52.0-156		03/06/2018 15:38	WG1080793

SDG: L974072 Collected date/time: 02/28/18 10:40

SAMPLE RESULTS - 03 L974072

Volatile Organic Compounds (GC) by Method NWTPHGX

u		· · · ·						1°Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		 2
Gasoline Range Organics-NWTPH	7720		31.6	100	1	03/05/2018 00:10	WG1080467	⁻Tc
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-122		03/05/2018 00:10	WG1080467	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cr			
Analyte	ug/l		ug/l	ug/l		date / time		⁵ C.			
Benzene	256		6.62	20.0	20	03/04/2018 16:37	WG1079893	Šr			
Toluene	42.3		8.24	20.0	20	03/04/2018 16:37	WG1079893	C			
Ethylbenzene	1440		7.68	20.0	20	03/04/2018 16:37	WG1079893	°Q(
Total Xylenes	735		21.2	60.0	20	03/04/2018 16:37	WG1079893				
(S) Toluene-d8	106			80.0-120		03/04/2018 16:37	WG1079893	7			
(S) Dibromofluoromethane	105			76.0-123		03/04/2018 16:37	WG1079893	GI			
(S) a,a,a-Trifluorotoluene	96.3			80.0-120		03/04/2018 16:37	WG1079893				
(S) 4-Bromofluorobenzene	106			80.0-120		03/04/2018 16:37	WG1079893	Å			

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT											
Result Qualifier MDL RDL Dilution Analysis <u>Batch</u>											
Analyte	ug/l		ug/l	ug/l		date / time					
Diesel Range Organics (DRO)	3570		66.0	200	1	03/06/2018 15:54	WG1080793				
Residual Range Organics (RRO)	152	J	82.5	250	1	03/06/2018 15:54	<u>WG1080793</u>				
(S) o-Terphenyl	117			52.0-156		03/06/2018 15:54	WG1080793				

WG1080467

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	\supset				1 CD
(MB) R3290564-3 03/04	4/18 22:13				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Gasoline Range Organics-NWTPH	U		31.6	100	3
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-122	Ss
					⁴ Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3290564-1 03/04	(LCS) R3290564-1 03/04/18 21:00 • (LCSD) R3290564-2 03/04/18 21:25												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Gasoline Range Organics-NWTPH	5500	5090	5090	92.5	92.5	72.0-134			0.000591	20			
(S) a,a,a-Trifluorotoluene(FID)				110	111	77.0-122							

L974541-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L974541-03 03/05/18 06:37 • (MS) R3290564-4 03/05/18 07:02 • (MSD) R3290564-5 03/05/18 07:26													~
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	U	3550	3530	64.5	64.2	1	23.0-159			0.597	20	
(S) a,a,a-Trifluorotoluene(FID)					104	104		77.0-122					

SDG: L974072 DATE/TIME: 03/09/18 09:25 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

³Ss

Cn

Sr

ິQc

GI

A

°Sc

Method Blank (MB)

(MB) R3290325-2 03/02/	18 16:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	-
Benzene	U		0.331	1.00	
Ethylbenzene	U		0.384	1.00	3
Toluene	U		0.412	1.00	
Xylenes, Total	U		1.06	3.00	4
(S) Toluene-d8	107			80.0-120	
(S) Dibromofluoromethane	103			76.0-123	
(S) a,a,a-Trifluorotoluene	96.8			80.0-120	5
(S) 4-Bromofluorobenzene	102			80.0-120	L

Laboratory Control Sample (LCS)

(LCS) R3290325-1 03/02	/18 15:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	25.0	25.1	100	69.0-123	
Ethylbenzene	25.0	25.9	104	77.0-120	
Toluene	25.0	24.8	99.4	77.0-120	
Xylenes, Total	75.0	76.6	102	77.0-120	
(S) Toluene-d8			103	80.0-120	
(S) Dibromofluoromethane			102	76.0-123	
(S) a,a,a-Trifluorotoluene			95.7	80.0-120	
(S) 4-Bromofluorobenzene			104	80.0-120	

SDG: L974072 DATE/TIME: 03/09/18 09:25 PAGE: 9 of 13

QUALITY CONTROL SUMMARY L974072-01,02,03

Method Blank (MB)

(MB) R3290888-1 03/06/1	8 13.14			
(MD) ((3230000 1 03/00/1	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO) U		83.3	250
(S) o-Terphenyl	92.3			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3290888-2 03/06/18 13:30 • (LCSD) R3290888-3 03/06/18 13:46												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Diesel Range Organics (DRO)	750	998	942	133	126	50.0-150			5.84	20		
Residual Range Organics (RRO)	750	919	884	123	118	50.0-150			3.90	20		
(S) o-Terphenyl				110	122	52.0-156						

DATE/TIME: 03/09/18 09:25 Sc

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L974072

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

APEX Companies - Portland, OR

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

1569-12

L974072

PAGE: 12 of 13

03/09/18 09:25

Ss

Cn

Sr

Qc

Gl

AI

Sc

and the second s			Billing Infor	mation:			T	-	1176-	Ar	nalysis /	Contain	er / Pre	servative	È	32	Ch	ain of Custody	Page c	at
APEX Companies - Po 3015 SW First Avenue Portland, OR 97201-4707	rtland, OF	8	Accounts 3015 SW	s Payable / First Ave. I, OR 97201⊣	1707	Pre Chk	2.180		ALC: NOT						1	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -		K E	ESC	
Report to: Megan Masterson			Email To: n	negan.mastersc LISBUR	.4@APE	x(cs.(l											M Ph	2065 Lebanon Rd Iount Juliet, TN 373 hone: 615-758-585 hone: 800-767-585	8 1.2001	
Project Description: Nustar - Vancouver	Annex	24		City/State Collected:	VAR W	100UL	E	PH-9	1							181	Fa	ax: 615-758-5859		田
Phone: 503-924-4704 Fax: 503-943-6357	the second se	Client Project #		Lab Project #	R-NUVANC			40mlAmb	0	-HCI								# L974 G17	and the second se	
Collected by (print): M. MASTERSON	Site/Facility ID			P.O. #				SGT 4	H quu	40mlAmb-HCI								cctnum: ASH		
Collected by (slepature): immediately Packed on Ice N Y				20303229	Date Results Needed			WTPHDXLVI w/	NWTPHGX 40mlAmb HCI	V8260BTEXC 40m							P T P	emplate: T13 Prelogin: P64 SR: 110 - Bria PB:	0529	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cni	15	TWN	NWT	V826		and a					s	Remarks	Sample # (lat	b anly)
MW-5		GW		2-28-1	8 1150			×	×	X								in a	and the second second	01
MW-5D		GW	12.000	2-28-19	3 1125		-	X	X	X		1.57	1					2 ¹³	and the second s	02
MW-6	e 11.	GW		2-28-19	0 104	09	3	X	X	X		100	1		_		-	1000		03
la		GW				-	1		12.	1	-		-		-		-			
19/23		_				-			-		-				-		-		Tables	
E. E.M.	-				-				-	10000	-		-				-			
25	1						1	2.3Ennes		1	-		-		-				1999	
24	- All				_	- 2				100		13-54	-		-				122.00	
A CONTRACTOR OF THE OWNER	and and		+	-			1	1.35	-					1200	1					
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: PLEQSP	STAN	ail r JOAG	esults 2D T	to: S	SAU	IS	Bu		-	Flo		S, C Ten		1	COC Si Bottle Correc	sal Pre igned/A as arri ct bott cient v	e Receipt (ment/Intac) courate: .ve intact: .les used: volume sent		22222000
OT - Other		edExCo	urier	1.2	Tracking #			410	16	325		616			-		ero Hea	II Applica dspace: 1 Correct/C		Y _N
Relinquished by: (Signature)		Date: 2/201	118	Time: Received by: (Si					124	N.	Trip Bl	F.L.		Yes / No HCD/ N TBR	MeoH	1				
Relinquished by : (Signature)		Date:		Time:	Received by:	(Signature	e)				Temp: 2-1		°C ^{BC}	29H		If prese	ervation	required by L	ugin: Date/11	The
Relinquished by : (Signature)		Date:		Time:	Received for	lab by: (Si		ature)	62	1. 1. 1.	Date:	×18		me: 54 S		Hold:			Condi NCF	tian: ОК

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

June 11, 2018

Stephanie Bosze-Salisbury Apex Companies, LLC 3015 SW First Avenue Portland, OR 97201

RE: Project: 1569-12 NuStar Vancouver Annex Pace Project No.: 10433756

Dear Stephanie Bosze-Salisbury:

Enclosed are the analytical results for sample(s) received by the laboratory on June 02, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

The samples were received outside of required temperature range. Analysis was completed upon client approval.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ann Asp

Annika Asp annika.asp@pacelabs.com (612)607-1700 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 1569-12 NuStar Vancouver Annex Pace Project No.: 10433756

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10433756001	MW-5	Water	05/29/18 11:04	06/02/18 09:15
10433756002	MW-5D	Water	05/29/18 11:30	06/02/18 09:15
10433756003	MW-6	Water	05/29/18 10:25	06/02/18 09:15
10433756004	Trip Blank	Water	05/29/18 00:00	06/02/18 09:15

SAMPLE ANALYTE COUNT

Project:1569-12 NuStar Vancouver AnnexPace Project No.:10433756

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10433756001		NWTPH-Dx	EC2	4	PASI-M
		NWTPH-Gx	AJR	2	PASI-M
		EPA 8260B	DS2, MJD	7	PASI-M
10433756002	MW-5D	NWTPH-Dx	EC2	4	PASI-M
		NWTPH-Gx	AJR	2	PASI-M
		EPA 8260B	DS2	7	PASI-M
10433756003	MW-6	NWTPH-Dx	EC2	4	PASI-M
		NWTPH-Gx	AJR	2	PASI-M
		EPA 8260B	DS2, MJD	7	PASI-M
10433756004	Trip Blank	NWTPH-Gx	AJR	2	PASI-M
		EPA 8260B	MJD	7	PASI-M

PROJECT NARRATIVE

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

Method: NWTPH-Dx

Description:NWTPH-Dx GCS Silica Gel LVClient:Apex Companies, LLC_DavisDate:June 11, 2018

General Information:

3 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA Mod. 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Apex Companies, LLC_DavisDate:June 11, 2018

General Information:

4 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 542721

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10433667002

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 2952497)
 - TPH as Gas

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

Method: EPA 8260B

Description:8260B MSV USTClient:Apex Companies, LLC_DavisDate:June 11, 2018

General Information:

4 samples were analyzed for EPA 8260B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project:	1569-12 NuStar	Vancouver Annex

Pace Project No.: 10433756

Sample: MW-5	Lab ID: 104	33756001	Collected: 05/29/1	18 11:04	Received: 06	6/02/18 09:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS Silica Gel LV	Analytical Met	hod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range SG	2.2	mg/L	0.38	1	06/05/18 15:24	06/07/18 13:10	68334-30-5	
Motor Oil Range SG	ND	mg/L	0.38	1	06/05/18 15:24	06/07/18 13:10	64742-65-0	
Surrogates			/					
o-Terphenyl (S)	81	%.	50-150	1		06/07/18 13:10		
n-Triacontane (S)	94	%.	50-150	1	06/05/18 15:24	06/07/18 13:10	638-68-6	
NWTPH-Gx GCV	Analytical Met	hod: NWTP	H-Gx					
TPH as Gas	13200	ug/L	1000	10		06/09/18 00:51		
Surrogates								
a,a,a-Trifluorotoluene (S)	95	%.	50-150	10		06/09/18 00:51	98-08-8	
3260B MSV UST	Analytical Met	hod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		06/07/18 00:37	71-43-2	
Ethylbenzene	271	ug/L	20.0	20		06/08/18 01:26	5 100-41-4	
Toluene	1.3	ug/L	1.0	1		06/07/18 00:37	108-88-3	
(Vlene (Total)	1150	ug/L	60.0	20		06/08/18 01:26	1330-20-7	
Surrogates								
,2-Dichloroethane-d4 (S)	104	%.	75-125	1		06/07/18 00:37	17060-07-0	
Toluene-d8 (S)	97	%.	75-125	1		06/07/18 00:37	2037-26-5	
I-Bromofluorobenzene (S)	97	%.	75-125	1		06/07/18 00:37	460-00-4	
Sample: MW-5D	Lab ID: 104	33756002	Collected: 05/29/1	18 11:30	Received: 06	6/02/18 09:15 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS Silica Gel LV	Analytical Met	hod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
	ND			1		06/07/48 42.20	69224 20 5	
Diesel Fuel Range SG		mg/L	0.38			06/07/18 13:32		
/lotor Oil Range SG Surrogates	ND	mg/L	0.38	1	00/05/16 15:24	06/07/18 13:32	64/42-65-0	
p-Terphenyl (S)	72	%.	50-150	1	06/05/18 15.24	06/07/18 13:32	84-15-1	
n-Triacontane (S)	80	%.	50-150	1		06/07/18 13:32		
- macomane (S)	80	/0.	50-150	I	00/03/10 13.24	00/07/10 13.32	030-00-0	
WTPH-Gx GCV	Analytical Met	hod: NWTP	H-Gx					
TPH as Gas	680	ug/L	100	1		06/06/18 20:49)	
Surrogates								
a,a,a-Trifluorotoluene (S)	92	%.	50-150	1		06/06/18 20:49	98-08-8	
3260B MSV UST	Analytical Met	hod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		06/07/18 20:10	71-43-2	
Ethylbenzene	2.2	ug/L	1.0	1		06/07/18 20:10	100-41-4	
Toluene	ND	ug/L	1.0	1		06/07/18 20:10	108-88-3	
(ylene (Total)	ND	ug/L	3.0	1		06/07/18 20:10		
Surrogates		0						
,2-Dichloroethane-d4 (S)	102	%.	75-125	1		06/07/18 20:10	17060-07-0	
Toluene-d8 (S)	93	%.	75-125	1		06/07/18 20:10	2037-26-5	
			72					

REPORT OF LABORATORY ANALYSIS

75-125

1

99

%.

4-Bromofluorobenzene (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

06/07/18 20:10 460-00-4

ANALYTICAL RESULTS

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

Received: 06/02/18 09:15 Sample: MW-6 Lab ID: 10433756003 Collected: 05/29/18 10:25 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual NWTPH-Dx GCS Silica Gel LV Analytical Method: NWTPH-Dx Preparation Method: EPA Mod. 3510C **Diesel Fuel Range SG** 9.3 mg/L 0.39 1 06/05/18 15:24 06/07/18 13:43 68334-30-5 Motor Oil Range SG 0.57 0.39 06/05/18 15:24 06/07/18 13:43 64742-65-0 mg/L 1 Surrogates o-Terphenyl (S) 78 %. 50-150 1 06/05/18 15:24 06/07/18 13:43 84-15-1 n-Triacontane (S) 83 %. 50-150 1 06/05/18 15:24 06/07/18 13:43 638-68-6 Analytical Method: NWTPH-Gx **NWTPH-Gx GCV** TPH as Gas 1500 100 1 06/09/18 01:25 ug/L Surrogates a,a,a-Trifluorotoluene (S) 88 50-150 06/09/18 01:25 98-08-8 %. 1 8260B MSV UST Analytical Method: EPA 8260B 230 20 06/08/18 01:43 71-43-2 Benzene 20.0 ug/L 1380 06/08/18 01:43 100-41-4 Ethylbenzene ug/L 20.0 20 44.4 06/07/18 01:12 108-88-3 Toluene ug/L 1.0 1 Xylene (Total) 891 ug/L 60.0 20 06/08/18 01:43 1330-20-7 Surrogates 06/07/18 01:12 17060-07-0 1,2-Dichloroethane-d4 (S) 100 %. 75-125 1 Toluene-d8 (S) 96 75-125 06/07/18 01:12 2037-26-5 %. 1 4-Bromofluorobenzene (S) 99 75-125 06/07/18 01:12 460-00-4 %. 1

Sample: Trip Blank	Lab ID: 1043	33756004	Collected: 05/29/1	8 00:00	Received: 06/02/18 09:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx				
TPH as Gas	ND	ug/L	100	1	06/06/18 23	:54	HS
<i>Surrogates</i> a,a,a-Trifluorotoluene (S)	94	%.	50-150	1	06/06/18 23	54 98-08-8	
8260B MSV UST	Analytical Meth	od: EPA 82	260B				
Benzene	ND	ug/L	1.0	1	06/06/18 19	57 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1	06/06/18 19	57 100-41-4	
Toluene	ND	ug/L	1.0	1	06/06/18 19	57 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1	06/06/18 19	57 1330-20-7	
Surrogates		•					
1,2-Dichloroethane-d4 (S)	101	%.	75-125	1	06/06/18 19	57 17060-07-0	
Toluene-d8 (S)	94	%.	75-125	1	06/06/18 19	57 2037-26-5	
4-Bromofluorobenzene (S)	99	%.	75-125	1	06/06/18 19	57 460-00-4	

Project: 1569-1 Pace Project No.: 104337	2 NuStar Vancouver Annex 756						
QC Batch: 54272 QC Batch Method: NWT Associated Lab Samples:	21 PH-Gx 10433756002, 10433756004	Analysis Meth Analysis Desc		NTPH-Gx NTPH-Gx Water			
METHOD BLANK: 295120	05	Matrix:	Water				
Associated Lab Samples:	10433756002, 10433756004	Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifiers		
TPH as Gas a,a,a-Trifluorotoluene (S)	ug/L %.	ND 90	100 50-150	06/06/18 17:42 06/06/18 17:42			
METHOD BLANK: 295120	06	Matrix:	Water				
Associated Lab Samples: Parameter	10433756002, 10433756004 Units	Blank Result	Reporting Limit	Analyzed	Qualifiers		
TPH as Gas a,a,a-Trifluorotoluene (S)	ug/L %.	ND 95	100 50-150	06/06/18 17:59 06/06/18 17:59		_	
LABORATORY CONTROL	SAMPLE & LCSD: 2951207	Spike LCS	2951208 S LCSD	LCS LCSD	% Rec	Max	
Parameter	Units	Conc. Resu		% Rec % Rec	Limits RF		Qualifiers
TPH as Gas a,a,a-Trifluorotoluene (S)	ug/L %.	1000 10	010 1050	101 105 99 99	41-137 50-150	4 20	
MATRIX SPIKE & MATRIX	10433667002	MS MSD Spike Spike	e MS	MSD MS		% Rec	Max
Parameter TPH as Gas a,a,a-Trifluorotoluene (S)	Units Result ug/L ND %.	Conc. Conc. 1000 10		Result % Re	ec <u>% Rec</u> 70 100 99 100	Limits RPD 30-145 35 50-150	RPD Qual
SAMPLE DUPLICATE: 29	152498						
Parameter	Units	10433667003 Result	Dup Result	RPD	Max RPD	Qualifiers	
TPH as Gas a,a,a-Trifluorotoluene (S)	ug/L %.	ND 84	ND 83	1	30		
SAMPLE DUPLICATE: 29	52499						
Parameter	Units	10433926005 Result	Dup Result	RPD	Max RPD	Qualifiers	
TPH as Gas	ug/L	<15.0	ND		30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	1569-12 NuStar Vancouver Annex
Pace Project No.:	10433756

SAMPLE DUPLICATE: 2952499						
		10433926005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
a,a,a-Trifluorotoluene (S)	%.	89	81	9		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

- ,	1569-12 NuStar V 10433756	ancouver Annex										
QC Batch:	543445		Analys	s Method:	N	VTPH-G	x					
QC Batch Method:	NWTPH-Gx		Analysis Description:		ion: N\	VTPH-G	x Water					
Associated Lab Samp	oles: 10433756	001, 10433756003	-									
METHOD BLANK: 2	2954934		N	latrix: Wat	ter							
Associated Lab Samp	oles: 10433756	001, 10433756003										
_			Blank Reporting		-							
Parame	eter	Units	Result	:	Limit	Analyzed		Qualifiers				
TPH as Gas		ug/L		ND	100	06/08/18 22:03						
a,a,a-Trifluorotoluene	(S)	%.		90	50-150	06/08/	18 22:03					
LABORATORY CON	TROL SAMPLE &	LCSD: 2954935		2	954936							
			Spike	LCS	LCSD	LCS	LCSD	% Rec			Max	
Parame	eter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		RPD	Qualifiers
TPH as Gas		ug/L	1000	992	1010	99	101	41-137		2	20	
a,a,a-Trifluorotoluene	(S)	%.				96	99	50-150				
	. ,	%.				96	99	50-150				
	. ,	%.	10433756	001	Dup	96	99	50-150 Max				
	E: 2955393	%. Units	10433756 Result		Dup Result	96 			c	Quali	fiers	
a,a,a-Trifluorotoluene SAMPLE DUPLICATE Parame TPH as Gas	E: 2955393		Result		•			Max	C 30	Quali	fiers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

QC Batch:	542950
QC Batch Method:	EPA 8260B

Analysis Method:

EPA 8260B Analysis Description: 8260B MSV UST-WATER

Associated Lab Samples: 10433756001, 10433756003, 10433756004

METHOD BLANK: 2952202

Matrix:	Water

Associated Lab Samples:	10433756001, 10433756003, 10433756004	
	Blank	Re

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	06/06/18 19:22	
Ethylbenzene	ug/L	ND	1.0	06/06/18 19:22	
Toluene	ug/L	ND	1.0	06/06/18 19:22	
Xylene (Total)	ug/L	ND	3.0	06/06/18 19:22	
1,2-Dichloroethane-d4 (S)	%.	103	75-125	06/06/18 19:22	
4-Bromofluorobenzene (S)	%.	99	75-125	06/06/18 19:22	
Toluene-d8 (S)	%.	93	75-125	06/06/18 19:22	

LABORATORY CONTROL SAMPLE: 2952203

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	23.9	120	75-126	
Ethylbenzene	ug/L	20	22.2	111	75-125	
Toluene	ug/L	20	21.1	106	74-125	
Xylene (Total)	ug/L	60	64.6	108	75-125	
1,2-Dichloroethane-d4 (S)	%.			101	75-125	
4-Bromofluorobenzene (S)	%.			100	75-125	
Toluene-d8 (S)	%.			95	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 29522	16		2952217							
			MS	MSD								
	1	0433739012	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	1630	200	200	1900	1900	137	136	62-140	0	30	
Ethylbenzene	ug/L	765	200	200	986	981	111	108	75-131	1	30	
Toluene	ug/L	60.5	200	200	264	262	102	101	68-132	0	30	
Xylene (Total)	ug/L	971	600	600	1630	1620	110	108	69-135	1	30	
1,2-Dichloroethane-d4 (S)	%.						100	99	75-125			
4-Bromofluorobenzene (S)	%.						99	99	75-125			
Toluene-d8 (S)	%.						95	95	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 1569-12 NuStar Vancouver Annex

. . . 10100756

QC Batch: 543144	543144		hod:	EPA 8260B		
QC Batch Method: EPA 8260B		Analysis Description:		8260B MSV UST-WATER		
Associated Lab Samples: 10433756002						
METHOD BLANK: 2953229		Matrix:	Water			
Associated Lab Samples: 10433756002						
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Benzene	ug/L	ND	1.	0 06/07/18 19:00		
Ethylbenzene	ug/L	ND	1.	0 06/07/18 19:00		

Ioluene	ug/L	ND	1.0	06/07/18 19:00
Xylene (Total)	ug/L	ND	3.0	06/07/18 19:00
1,2-Dichloroethane-d4 (S)	%.	99	75-125	06/07/18 19:00
4-Bromofluorobenzene (S)	%.	100	75-125	06/07/18 19:00
Toluene-d8 (S)	%.	93	75-125	06/07/18 19:00

LABORATORY CONTROL SAMPLE: 2953230

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	23.4	117	75-126	
Ethylbenzene	ug/L	20	20.6	103	75-125	
Toluene	ug/L	20	19.3	96	74-125	
Xylene (Total)	ug/L	60	60.7	101	75-125	
1,2-Dichloroethane-d4 (S)	%.			98	75-125	
4-Bromofluorobenzene (S)	%.			96	75-125	
Toluene-d8 (S)	%.			93	75-125	

MATRIX SPIKE & MATRIX SPI	IKE DUPLICA	ATE: 29532	31		2953232							
			MS	MSD								
	1	0433739011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	90.8	200	200	338	341	124	125	62-140	1	30	
Ethylbenzene	ug/L	483	200	200	720	709	118	113	75-131	1	30	
Toluene	ug/L	ND	200	200	212	210	104	103	68-132	1	30	
Xylene (Total)	ug/L	1220	600	600	1940	1910	120	115	69-135	2	30	
1,2-Dichloroethane-d4 (S)	%.						98	99	75-125			
4-Bromofluorobenzene (S)	%.						96	96	75-125			
Toluene-d8 (S)	%.						92	93	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

QC Batch: 542660

Analysis Method:

QC Batch Method:	EPA	Mod. 3510C
Associated Lab Sam	ples:	104337560

Mod. 3510C Analysis Description: 10433756001, 10433756002, 10433756003

Matrix: Water

NWTPH-Dx

NWTPH-Dx GCS LV SG

METHOD BLANK: 2950839 Matri Associated Lab Samples: 10/33756001 10/33756002 10/33756003

Associated Lab Samples.	10433756001, 10433756002,	10433756003			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Fuel Range SG	mg/L	ND	0.40	06/07/18 12:37	
Motor Oil Range SG	mg/L	ND	0.40	06/07/18 12:37	
n-Triacontane (S)	%.	88	50-150	06/07/18 12:37	
o-Terphenyl (S)	%.	75	50-150	06/07/18 12:37	

LABORATORY CONTROL SAMPLE &	LCSD: 2950840		29	950841						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Fuel Range SG	mg/L	2	1.8	1.8	90	91	50-150	1	20	
Motor Oil Range SG	mg/L	2	1.9	1.9	93	93	50-150	0	20	
n-Triacontane (S)	%.				93	95	50-150			
o-Terphenyl (S)	%.				82	83	50-150			

SAMPLE DUPLICATE: 2950842

Parameter	Units	10433756001 Result	Dup Result	RPD	Max RPD	Qualifiers
Diesel Fuel Range SG	mg/L	2.2	2.2	2	30	
Motor Oil Range SG	mg/L	ND	.089J		30	
n-Triacontane (S)	%.	94	89	7		
o-Terphenyl (S)	%.	81	73	12		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1569-12 NuStar Vancouver Annex

Pace Project No.: 10433756

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

HS Results are from sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:1569-12 NuStar Vancouver AnnexPace Project No.:10433756

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10433756001	 MW-5	EPA Mod. 3510C	542660	NWTPH-Dx	543230
10433756002	MW-5D	EPA Mod. 3510C	542660	NWTPH-Dx	543230
10433756003	MW-6	EPA Mod. 3510C	542660	NWTPH-Dx	543230
10433756001	MW-5	NWTPH-Gx	543445		
10433756002	MW-5D	NWTPH-Gx	542721		
10433756003	MW-6	NWTPH-Gx	543445		
10433756004	Trip Blank	NWTPH-Gx	542721		
10433756001	MW-5	EPA 8260B	542950		
10433756002	MW-5D	EPA 8260B	543144		
10433756003	MW-6	EPA 8260B	542950		
10433756004	Trip Blank	EPA 8260B	542950		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	APEX Project Manager	Stephanie	Bosze S	alisb	City	ient N	ress	: : :	<u>Ap</u> 30 ⁴ Po	ex (15 S rtlai	Com W F nd, (irs OR		, LL(e 01						eler lytic								3 		75	6			
Project Number: 1569-12 Sample IN Anne: M. Mesterson Image:	Project Name:	NuStar Vac	ouver Anne:	x GWI	м													_				To:	<u>Ss</u>	alisi	bur	y@	Аре	exco	os.co	<u>m</u>				
Sample ID / Description Preservative Matrix Analyze For: 9000000000000000000000000000000000000	Project Number:	1569-12							-											-														
Sample ID / Description Page	Sampler Name:	M. Masters	on										-												•									
Bample ID / Description Page Big Burg Org Page Big			Г	1	1		- 		 1	Pres	serv	ativ	e			N	Aatri	ix T		(e	-		-		Ana	ilyze T	Foi	r: T	r T			_	_	—
MW-5 5/29/18 1104 8 X <	Sample ID / Description	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Fittered	Ice	HNO ₃ (Red Label)	HCI (Blue Label)	NaOH (Orange Lapei) H.SO. Plastic (Yellow I ahel)	• 2004 Franke (Fallow Label) H-SO, Glass (Yellow Label)	None (Black Label)	Other (Spacify)	Groundwater	Wastewater Drintsing Motors	Urinking water Studre	Soll	Other (specify):	TPH-diesel and heavy oil -NWTPG-Dx with silica gel cle		BTEX by 8260B									BIISH TAT (Bre-Schedule)	Standard TAT	Fax Results	Send QC with report
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5/29/18	1104	8	x	1		x	H	x	╈	╈			xŤ	╈		\uparrow	Π					_	u -					\top		-		<u>, , , , , , , , , , , , , , , , , , , </u>
MW-6 5/29/18 1025 8 X <thx< th=""> X X X <t< td=""><td></td><td></td><td></td><td>+</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>╈</td><td>╈</td><td>╈</td><td>Ť,</td><td>x</td><td>╈</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td> · · ·</td><td>1-</td><td>┝━╍┨</td><td></td><td></td><td></td><td>+</td><td>\vdash</td></t<></thx<>				+	<u> </u>						╈	╈	╈	Ť,	x	╈								,			· · ·	1-	┝━╍┨				+	\vdash
Trip Ellandt 4 With Gluill With Gluill Special Instructions: TH-Dx Samples indude Silica Gel Clamap Binguished by: Name/Company Date 6/1/2018 Time Received by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Relinquished by: Name/Company Date Time Relinquished by: Name/Company Date Time Relinquished by: Name/Company Date Time <											╈	╈		Ť,	$\frac{1}{x}$	╈															╈	+-	╈	<u> </u>
Implicative Implicative Without of Shipment: Fexts Special Instructions: The Dx Samples inducte Sitica Gel Clance Method of Shipment: Fexts Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time		0/20/10	1020	-				Ê			+	╀		ť		╈		\top		$\hat{}$		~									╈	<u> </u>	╞	┢
Special Instructions: TH-Dx Samples inducte Sitilan Gel Cleanup Method of Shipment: FexEx Method of Shipment: FexEx <t< td=""><td>In fl Z len/4</td><td><u> </u></td><td>)</td><td></td><td></td><td></td><td></td><td>┢</td><td>\square</td><td>╋</td><td>╈</td><td>+</td><td>╋</td><td></td><td>╉</td><td>╈</td><td>╈</td><td>╋</td><td>\vdash</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>┢</td><td>\vdash</td><td></td><td></td><td>+</td><td>╈</td><td>+</td><td>┝─</td><td>┢</td></t<>	In fl Z len/4	<u> </u>)					┢	\square	╋	╈	+	╋		╉	╈	╈	╋	\vdash						-	┢	\vdash			+	╈	+	┝─	┢
Special Instructions: TH-Dx Samples inducte Sitilan Gel Cleanup Method of Shipment: FexEx Method of Shipment: FexEx <t< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>┢</td><td>┝┤</td><td></td><td>+</td><td>╀</td><td>+</td><td></td><td>╈</td><td>╈</td><td></td><td>╈</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>┝╴╽</td><td></td><td>╉</td><td></td><td>┢</td><td>┢</td></t<>				+				┢	┝┤		+	╀	+		╈	╈		╈									-	-	┝╴╽		╉		┢	┢
Method of Shipment: FexEx Relinquished by: Name/Company Date Time 6/1/2018 1500 Megan Masterson / Apex Companies 6/1/2018 6/1/2018 1500 Megan Masterson / Apex Companies 6/1/2018 Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date	<i><i><i>Q</i>[<i>V</i>]¹⁰</i></i>			+				-		+	+	╀	+		╉	╉	╋		\vdash								\vdash			+	╉	+	┢	┢
Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Megan Masterson / Apex Companies 6/1/2018 1500 Image: Part Company 0 ate 7 = 9.8 Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time	Special Instructions: TPH-D	x Sam	pies in	ndi	ا ملو		Siv								ال.	P	<u> </u>	F	exE				Lat	Ten	npe	ratu	re U	lpon	Rece		Y	,	N	L
Megan Masterson / Apex Companies 6/1/2018 1500 Home Pace 6/2/18 915 F= 9.8 Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time	Relinquished by: Name/Company	Da	ite	Ti	me	Rece	ived	by: l	Nam	e/Co	omp	any	,			I	Date)		Ti	me													
Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time Relinquished by: Name/Company Date Time Received by: Name/Company Date Time		6/1/2	2018	15	500	14	L	-	Λ	D,	-, *	0.			Z	6	5/	10.	6	{ } {	5	•	Γ.	9.9	Ъ									
Relinquished by: Name/Company Date Time Received by: Name/Company Date Time	Relinquished by: Name/Company	Da	ite	Ti	me	Rece	ived	oy: I	Vam											_									·					
	Relinquished by: Name/Company	Da	ite	Ті	me	Rece	ived	by: l	Nam	e/Co	omp	any	,			(Date)		Ti	me													
	Relinquished by: Name/Company	Da	ite	Ti	me	Rece	ived	by: I	Nam	e/Co	omp	any	,		┦	I	Date)		Ti	me			·										

	Pace Analytical	Sample Cond	cument N ition Upo ocument IN-L-213-	on Receip No.:	ot Form		Iment Revise Page 1 o Issuing Auth Minnesota C	f 2 nority:	
Sample Cond Upon Rece			I	Project i				3756	
Courier:	Al Pace Speed	USPS Dee Other:_ 1832		ient	PM: CLIE		Due ex_Davis	Date: 06	\$/05/18
Custody Seal	l on Cooler/Box Present?	No s	eals Inta	ct? 🗌	Yes 🦯 No	Optio	nai: Proj. D	ue Date:	Proj. Name:
Packing Mat	erial: Bubble Wrap Bubb	le Bags 🗌 None	è ∏o	ther:			Temp B	lank? 🔎	Tes 🔲 No
Temp should b	Read (°C): 1 , 5 , 6	Type emp Corrected (°C): ion Factor:	e of Ice:			-	Dry sue Frozen? xamining Con		NO CALL
Did samples or	iginate in a quarantine zone within the K, OR, SC, TN, TX or VA (check maps)? If Yes to either question, fill o		Ύε	es 🗌	No inc	luding Hawa	ili and Puerto R	ico)?	(internationally,
	· · · · · · · · · · · · · · · · · · ·					•• BL	COMME	NTS:	
Chain of Custo	ody Present?	E res	□No		1			.	
Chain of Custo	dy Filled Out?	Ves	∐No		2.				
Chain of Custo	dy Relinquished?	Yes	□No		3.				
Sampler Name	and/or Signature on COC?	Yes	No	□n/a	4.	u			
Samples Arrive	ed within Hold Time?	∠ Yes	□No		5.				
Short Hold Tin	ne Analysis (<72 hr)?	Yes	No		6.				
Rush Turn Aro	ound Time Requested?	Yes	No		7			W	
Sufficient Volu	ime?	Ves	ΠNο		8.				
Correct Contai	iners Used?	- Yes	□No		9.				
-Pace Conta	ainers Used?	Yes	□No						
Containers Inta	act?	Yes			10.				
	ne Received for Dissolved Tests?	 Yes	N₀	N /A	11. Note if	sediment is	visible in the	dissolved con	tainer
ls sufficient inf	formation available to reconcile the sar				12.				
the COC?	Matrix:								· · · · · · · · · · · · · · · · · · ·
checked? All containers i	needing acid/base preservation have b needing preservation are found to be i th EPA recommendation?	Yes	∏No	A N7A	13. Sample #	∐HNO₃	∏H₂SO₄	■NaOH	Positive for Res. Chlorine?YN
(HNO ₃ , H ₂ SO ₄ , Exceptions VC	<2pH, NaOH >9 Sulfide, NaOH>12 Cya Coliform, TOC/DOC Oil and Grease,		[]]No	N/A	Initial when			of added	
	ater) and Dioxin/PFAS		<u></u> No □		completed:		<u> </u>	rvative:	
Trip Blank Pres	VOA Vials (>6mm)?				14. 4/4 7 15.	tri p Bl	anks ha	we >6n	in headspace
	tody Seals Present?	des es	<u>∏</u> No ☐No	□n/a □n/a	15.				
	k Lot # (if purchased): 160158	158225							
	LIENT NOTIFICATION/RESOLUTION		<u> </u>		J		Field Data Re	auired?	Yes No
Person Contac					Date/Time:		4/18	ganca: L	
Comments/Re		hat samples w	ere rec	eived o				ure and he	adspace greate
comments/ Ne	than 6 mm was pre-	•					•		
							mpie was		i vvasiliigton
Dro	ject Manager Review:	n-potable wate	L SOUICE	9		ate: 6/4	4/18		
	r there is a discrepancy affecting North C	arolina compliance sa	- mples, a c	opy of thi			.,	EHNR Certificat	
hold, incorrect p	preservative, out of temp, incorrect conta	iners).							

`

-

---- --- ---

 _....

_... ___...

.

APPENDIX B

SAMPLING METHODS AND PROTOCOLS

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE PUSH-PROBE EXPLORATION PROCEDURES

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for observing and sampling from push-probes (i.e., GeoProbe™, AMS PowerProbe™, or similar). Subsurface soil cores may be obtained using this system for purposes of determining subsurface soil conditions and for obtaining soil samples for physical and/or chemical evaluation. Grab groundwater samples may be collected using temporary well screens. Soil vapor samples may be obtained using temporary well points. Shallow (less than 50 feet), small-diameter (2-inch max) pre-packed wells may also be installed using push-probe equipment. This procedure is applicable during all Cascadia Associates, LLC (Cascadia) push-probe activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, tools, keys, and buckets/drums
- Water quality meter with calibration solutions (record daily calibration/calibration check in field notes)
- Sampling equipment (water level probe, pumps, tubing) and laboratory-supplied sample containers
- Field documentation materials
- Decontamination materials
- Personal protective equipment (as required by project Health and Safety Plan)

3. METHODOLOGY

Coring Procedure (Conducted by Drilling Subcontractor):

The sampling procedure includes driving a 2-inch outside-diameter, 5-foot-long, push-probe soil sampler to the desired depth using a combination of hydraulic pressure and mechanical hammer blows. When the sampling depth is reached, the pin attaching the sampler's tip is released (if a tip is used), which allows the tip to slide inside the sampler (Macro-Core Sampler with removable plastic liner). The sampler is driven the length of the sampler to collect a soil core, which is then withdrawn from the exploration. When the sampler is retrieved from the borehole the drive head/cutting shoe is detached and the liner is removed and the liner is cut open to expose the recovered soil core. Soil cores are collected continuously to the full depth of the exploration unless otherwise specified in a project-specific sampling and analysis plan (SAP). Verify that the subcontractor decontaminates the sampling device prior to its initial use and following collection of each soil sample.

Logging and Soil Sample Collection:

Remove the soil core from the sampler for field screening, description, and placement into sample jars. Soil samples will be collected for field screening and possible chemical analysis on two foot intervals unless otherwise specified in a project-specific SAP. The sampling interval will be determined in the field based on recovery, soil variability, and evidence of contamination.

Complete field screening as specified in the applicable SOP. Soil samples should be collected using different procedures for volatile on non-volatile analyses, as follows.

- Volatile Analyses. Sampling for volatile organics analysis (VOA) is different than other routine physical or chemical testing because of the potential loss of volatiles during sampling. To limit volatile loss, the soil sample must be obtained as quickly and as directly as possible. If a VOA sample is to collected as part of a multiple analyte sample, the VOA sample portion will be obtained first. The VOA sample should be obtained from a discrete portion of the entire collected sample and should not be composited or homogenized. Sample bottles should be filled to capacity, with no headspace.
- Other Analyses. Soil samples for non-volatile analyses will be thoroughly homogenized in a stainless-steel bowl prior to bottling. Sample homogenizing is accomplished by manually mixing the entire soil sample in the stainless-steel bowl with a clean sampling tool until a uniform mixture is achieved. The sample jar should be filled completely.

Grab Groundwater Sample Collection:

Collect grab groundwater samples using a sampling attachment with a 4 to 5-foot-long temporary screen (specify to drillers whether to use decontaminated stainless steel or disposable PVC. Also, specify whether a filter pack is necessary based on field observations). Obtain samples using a peristaltic pump unless otherwise specified in the SAP with new tubing for each boring. Record field parameters (e.g., temperature, conductivity, and pH) prior to sampling.

Backfilling the Excavation (Conducted by Drilling Subcontractor):

After sampling activities are completed, abandon each exploration in accordance with Oregon Water Resources Department (OWRD) regulations and procedures (or other regulatory authority if work is completed outside of the State of Oregon. The abandonment procedure typically consists of filling the exploration with granular bentonite and hydrating the bentonite with water. Match the surface completion to the surrounding materials.

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) provides instructions for standard field screening. Field screening results are used to aid in the selection of soil samples for chemical analysis. This procedure is applicable during all Cascadia Associates, LLC (Cascadia) soil sampling operations.

Standard field screening techniques include the use of a photoionization detector (PID) to assess for volatile organic compounds (VOCs) and for the presence of separate-phase petroleum hydrocarbons using a sheen test. These methods will not detect all potential contaminants, so selection of screening techniques shall be based on an understanding of the site history. The PID is not compound or concentration-specific, but it can provide a qualitative indication of the presence of VOCs. PID measurements are affected by other field parameters such as temperature and soil moisture. Other field screening methods, such as screening for dense non-aqueous phase liquid (DNAPL) using dye or UV light, are not considered "standard" and will be detailed in the site-specific sampling and analysis plan (SAP).

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- PID with calibration gas (record daily calibration/calibration check in field notes);
- Plastic resealable bags (for PID measurement); and
- Glass jars or stainless steel bowls (for sheen testing).

3. METHODOLOGY

Each soil sample will be field screened for VOCs using a PID and for the presence of separatephase petroleum hydrocarbons using a sheen test.

PID lamps come in multiple sizes, typically 9.8, 10.6, and 11.7 electron volts (eV). The eV rating for the lamp must be greater than the ionization potential (in eV) of a compound for the PID to detect the compound. For petroleum hydrocarbons, a lamp of at least 9.8 eV should be used. For typical chlorinated alkenes (dichloroethene, trichloroethene, tetrachloroethene, or vinyl chloride), a lamp of at least 10.6 eV should be used. The compatibility of the lamp size with the site constituents should be verified prior to the field event and will be detailed in the site-specific SAP.

PID Calibration Procedure: The PID used on-site should be calibrated daily or more frequently if needed. Calibration of the PID should be documented in field notes. Calibrations procedures should be conducted per the manufacturer's instructions.

PID Screening Procedure:

- Place a representative portion (approximately one ounce) of freshly exposed, uncompacted soil into a clean resealable plastic bag.
- Seal the bag and break up the soil to expose vapors from the soil matrix.
- Allow the bag to sit to reach ambient temperature. Note: Ambient temperature and

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE

Revision Number: 0

Date: July 7, 2017

STANDARD FIELD SCREENING PROCEDURES

Page: 2 of 2

weather conditions/humidity should be recorded in field notes. Changes in ambient temperature and weather during the field work should also be recorded, as temperature and humidity can affect PID readings.

- Carefully insert the intake port of the PID into the plastic bag.
- Record the PID measurement in the field notes or boringlogs.

Sheen Test Procedure:

- Following the PID screen, place approximately one ounce of freshly exposed, uncompacted soil into a clean glass jar or stainless steel bowl.
- Add enough water to cover the sample.
- Observe the water surface for signs of discoloration/sheen and characterize based on the descriptions below.

No Sheen (NS)	No visible sheen on the water surface
Biogenic Film (BF)	Dull, platy/blocky or foamy film.
Slight Sheen (SS)	Light sheen with irregular spread, not rapid. May have small
	spots of color/iridescence. Majority of water surface not covered
	by sheen.
Moderate Sheen (MS)	Medium to heavy coverage, some color/iridescence, spread is
	irregular to flowing. Sheen covering a large portion of water
	surface.
Heavy Sheen (HS)	Heavy sheen coverage with color/iridescence, spread is rapid,
	entire water surface covered with sheen. Separate-phase
	hydrocarbons may be evident during sheen test.

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE Low Flow Groundwater Sampling

1. PURPOSE AND SCOPE

The objective of this standard operating procedure (SOP) is to define the methods and requirements for collection of groundwater samples from monitoring wells applying low flow protocols. Low flow sampling is a technique for collecting samples that does not require the removal of large volumes of water and therefore does not overly agitate the water, suspend particles, or potentially aspirate VOCs. Typical flow rates for low flow sampling should range from 0.1 L/min to 0.5 L/min depending on site characteristics. The groundwater monitoring activities will consist of measuring water levels, purging and sampling groundwater, and measuring groundwater field parameters. This procedure is applicable during all Cascadia Associates, LLC low flow groundwater sampling activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, tools, keys, and buckets/drums;
- Water quality meter with calibration solutions (record daily calibration/calibration check in field notes);
- Sampling equipment (water level indicator, pump, tubing);
- Laboratory-supplied sample containers (Consult the project-specific sampling and analysis plan (SAP) for sampling requirements);
- Field documentation materials;
- Decontamination materials; and
- Personal protective equipment (consult the site-specific Health and Safety Plan).

3. METHODOLOGY

Water Levels:

Water levels in the wells will be measured and recorded for the purpose of determining groundwater elevations and gradient. The wells will be opened and the water level allowed to equilibrate before the measurements are taken. Measurements of the depth to water will be made to the nearest 0.01 foot using an electronic water level indicator.

Purging:

Purge using low-flow sampling equipment (e.g., peristaltic or bladder pump) at a rate no greater than the recharge rate of the groundwater to prevent water table drawdown. Unless specified otherwise in the project-specific SAP the sample tubing/pump will be lowered to the middle of the screened interval. Groundwater field parameters (pH, electrical conductivity, and temperature) will be measured using a water quality meter and flow cell connected to the discharge tubing of the sample pump to assess the effectiveness of purging. Purging will be considered complete when the water quality parameters (i.e., pH, temperature, and specific conductance) stabilize within 10 percent for three consecutive 3-minute intervals. Consult the

project-specific SAP for additional parameters and stabilization criteria. Purge water will be placed in Department of Transportation (DOT) approved drums.

Sample Collection:

After the purging of each well is complete, collect groundwater samples for chemical analyses using the same pump used for the well purging.

Low Yield Sampling Procedure:

If a well pumps dry during purging discontinue measurement of water quality parameters. Collect groundwater samples once the water level recovers to 90 percent of the pre-purge water column. Contact project manager in the event of slow recharge conditions. Always collect samples for VOC analysis as soon after recharge as possible.

APPENDIX C

FIELD SAMPLING DATA SHEETS

3015 SW First Avenue Portland, Oregon 97201-4707 (503) 924-4704 Phone (503) 943-6357 Fax

PROJE	CT NUMBER	1569-12			
FIE	LD REPORT NU	IMBER			
PAGE	1		OF	1	
DATE	2/28/2018				

PROJECT	Vancouver	Annex GWM		ARRIVAL TIME	0800	
LOCATION	Vancouver,	Washington		DEPARTURE TIME	1225	
CLIENT	NuStar			WEATHER	Rainy / Lt.	Wind
PURPOSE C	F OBSERVA	TIONS	Gauge monitoring wells, col	- lect samples from we	ells MW-5, M	MW-5D, and MW-6
APEX REPR	ESENTATIV	E M. Masters	son	APEX PROJECT MA	NAGER	S. Salisbury
CONTRACT	OR	NA		PERMIT NO.		×
CONTRACT	OR REP.	NA		H&S REVIEW	Yes	

Our firm's professionals are represented on site solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and to report those opinions to our client. The presence and activities of our field representative do not relieve any contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, send sequence of construction. Unless signed by the Ash Creek Associates Project Manager, this report is preliminary. A preliminary report is provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the final report may vary from and shall take precedence over those included in a preliminary report.

0800 Arrived on-site, checked-in with Site Manager (Karen), site safety training, issued work permit.

0830 HASP review / tailgate form

0835 Began removing well caps from monitoring wells to allow pressure to equalize prior to gauging

0915 Finished removing caps, began gauging wells

1005 Finished gauging wells, mobilize to MW-6, calibrate YSI

1025 Start sampling wells

1205 Finished sampling wells MW-5, MW-5D, and MW-6

1210 Gave IDW to Karen, Karen disposed of IDW in their oil-water separator

1225 Checked out with Karen, left site

BY

	-7		W	ELL GAGING	DATA SHE	ET			
							Job Number:	1569-12	
				Client:	Nustar		Date:	2/28/18	
APE	=X			Project:	VAN AN	NNEX GUN	Sampler:	mm	
	-/ (Weather:	RAINY		Time In/Out:		
		T			EVEL DATA	Water			
Well I.D.	Time	Depth to Free Product (feet)	Depth to Water (feet)	Depth to Well Bottom (feet)	Product Thickness (feet)	Column Height (feet)	Notes/Other Remarks		
MW-1	0959		15.07			1	bolts d	oud thread	
MW-2	0948		26.70				1 601+		
MW.3	0955		27.18					Û	
MW-4	0952		28.60	100					
MW-5	093A		15:41	Cip 14	1				
MW-SD	0932		15.20	6.1.1	Cart .	N. C.			
MW-6	1005		15.77	18 . A.	1	Seller.	1 (M)		
MW-7	0927		16,19	in the second	Sec. C	-			
MW-8	0936		16.01	N. N.		10.00	1 t		
MW-80		8	16:35	5-	1	The second	16		
MW-9	0942		17.79		~ *	RE I	2		
MIN-10	0920		17.19	1. (a. 11)		1 1			
	0.120			1		estima		4	
				1.					
			×		1	17-2.	and the second		
						1.4		.92	
				1000		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
				T		5. 1º 3		8	
	¢.,			in the			12		
				1	-	-			
		-		18.14		No.		<u></u>	
			-					·	
				-			*		
					-		Alk		
			<u> </u>					1	
				1		1.1	<u>e</u>		
				10 T (00 - 10)		4	1.55		
	· · · · · ·				A. N.	. 5	1	1	
			1.1		K	-	1	•	
					1		1	1.643	
					1	-	•	<	
								· ///	

e .

_					Well I.D.	Mu	-3		Job Numbe	r: 1560	9-12
					Client:	NUS	tar		Date:	278	1
	EX				Project:	VAN	ANN	Ex ALD	Sampler:	ANA	<u> </u>
1-1-					Weather:	PAIN		INDY	Time In/Out	101001	
		1. A. A.			and the second se	VELL DATA	1			<u>·</u>	
Well Depth	:	-			Well Diamet	er:	2"		Water Heig	ubt	
Depth to W	ater:	15.A.	2.		Screened In	terval:	-		x Multiplier		
Water Colu	Imn Length	-		1.1	Depth to Fre		-		x Casing Vo	olumes	-
Purge Volu	me:	~			Free Produc		e		= Purge Vo	the second se	
Water H	leight Multi	pliers (gal)	1-inch	= 0.041	1	= 0.162	4-inc	h = 0.653		3.785 liters	-
						RGING DAT	and the second se		- guildri - c	5.700 Itters	
Purge Meth	nod:	PER	121		Pump Intake	Depth:	MS				Comments
Sampling M	lethod:	LF			Tubing Type		HO	71-		<u> </u>	Johnments
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
1137			15.93	6.1	6.98	11.7	356.1	1.11	- 48.5	age of the second	С
1140			16.22	0.1	6.86	11.9	363.5	0.29	-60.0	-	С
1143			16-50	0-1	6.85	12.0	365.3	0.20	-65.4	1	С
1146			16.79	0.1	6.87	12.0	370.8	0,34	- 69.2	-	С
				- 44							
		Clari	ty: VC = v	ery cloudy,	CI = Cloudy, S	C = slightly o	cloudy, AC	= almost clear	, C = clear		
Sample	e ID:	MW-S		Sampling F		6.1		Analytical Lab	oratory:	PACE	:
Sample	Time:	1150			h to Water:	16.60		Did Well Dewa		N	
# Containe		Preserv	ative		s/Method	Field Fil		Filter		MS/MSD	Duplicate ID
0	Onl	(+((RRO	yes	no	1 11(81	UIZE	1013/10130	Duplicate ID
-	Inl	He	1	GRO		yes	no				· · ·
3×40		HC	(RTK	X	yes	no				5
						yes	no				N
						yes	no		-		
						yes	no				
			-		co	MMENTS					
Deta	-87.										
		A REAL PROPERTY AND ADDRESS OF			the second s				Contraction of the local division of the loc		

-

			•	N	VELL MONIT	ORING DA	TA SHEE	т	1			
					Well I.D.	MW-	50	1 .	Job Numbe	r: 1569	-12	
					Client:	Nusta	~		Date:	2/28	118	
AP	EX				Project:	VAN	ANNO	EX GWM	Sampler:	mm		
/ \1									Time In/Out	::		
	_	-			V	VELL DATA			0	۴ Ę		
Vell Depth	and the second se	100	/		Well Diamet	er:	Zu		Water Heig	ht	<u> </u>	
Depth to W		15.2	5		Screened In	terval:			x Multiplier	1	-	
	mn Length:	-			Depth to Fre	e Product:	-		x Casing Vo	olumes	-	
urge Volu		-			Free Produc	t Thickness:	-		= Purge Vo	lume	~	
Water H	leight Multi	pliers (gal)	1-inch	n = 0.041	State of the second	= 0.162	the second s	h = 0.653	1 gallon = :	3.785 liters	-	
		Trace	2 (RGING DATA	1				4	
urge Meth		PORT			Pump Intake		MS			C	Comments	
Sampling M		Cumulative		1	Tubing Type	:	TTL	PE		1. 30. 10		
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks	
	_		1910		+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria	
1104			15.25	6-1	7.44	10.8	309,2	1.62	- 46.4	-	AC	
1107			13.23	0.1	7.40	11.3	319.5	1.\$72	- 75.1	_	AC	
110			15.25	6-1	7.32	11.5	344.3	1:56	-77.2	-	AC	
113			15.25	0.1	7.27	11.3	375.9	1.45	-77.8	-	AC	
116			15.25	0.1	7.18	11.4	488.9	1.28	- 69.8	-	AC .	
1119			15.25	0.1	7.13	11.4	492.2	1.27	-51.3	-	AC	
122			15.25	0.1	7.11	11.3	496.1	1.23	- 49.9	-	C	
							0				41 <u></u>	
<u> </u>		Clari	ty: VC = v	ery cloudy,	CI = Cloudy, S	C = slightly o	cloudy, AC	= almost clea	r, C = clear			
Sample	e ID:	MW-E	SD	Sampling F		U-		Analytical Lat	oratory	PACE	- / - /	
Sample		1125			th to Water:	15.25		Did Well Dew		NICE	2	
# Containe		Preserv	ative		s/Method	Field Fill		Filter	1	MS/MSD	Duplicate ID	
* 40		Ha		DEU.		yes	no	Filler		1013/10130	Duplicate ID	
+ 40		HCI		GRI		yes	no 🧔					
3× 90		HC		BTE		yes	no	10 - E.				
						yes	no					
						yes	no					
1.10	1.11					yes	no					

_					Well I.D.	Mw.	10	*	Job Number	ICr.	9-12
					Client:	NUSE	the second s		Date:	2/28	
	FX				Project:			EX GLON		mon	
141-	EA				Weather:	RAIN	M	ich Ocor	Time In/Out		-
					and the second se	VELL DATA				·I	
Vell Depth	:	-			Well Diame		171		Water Heig	bt	~
epth to W	ater:	15:-	17		Screened In				x Multiplier		
_	mn Length:				Depth to Fre		-	£.	x Casing Vo	lumos	-
urge Volu		-				t Thickness:	-		= Purge Vol		
	leight Multi	pliers (gal)	1-inch	= 0.041		= 0.162	4-inc	h = 0.653	1 gallon = 3		
		(0-7			and the second se	RGING DATA	And a state of the	11 - 0.000	i gallon – c	5.765 IIIEIS	
urge Meth	od:	PERR	1		Pump Intake	Depth:	me				Comments
ampling M	lethod:	LF			Tubing Type		HDP	F	1		ommenta
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remark
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criter
1025			16-56	0.1	6.59	10:4	802	o.de	- Sle.2	-	C
020			16.69	0.1	6.69	10.7	821	0.98	-75.0	galani-	C
031			11,90	1-1	6.69	10.7	822	1.05	-80.2	_	C
034				6.1	6.69	10.9	Ø,23	1.21	-840	~	(
						10.0	000	1	0.0		<u> </u>
											1
		Clari	tr: 1/0 = 10	an alaudu							
		Ciari	ty. VC - V	ery cloudy,	SAM	PLING DATA	ioudy, AC	= almost clear	, C = clear		
Sample	e ID:	MW-6	2	Sampling F	low Rate	D.I		Analytical Lab	oratory:	PACE	
Sample	Time:	1 UBAA	1040	Final Dept	th to Water:	16.44		Did Well Dewa		N	
# Containe	ers/Type	Preserv	ative	Analysis	s/Method	Field Filt	ered	Filter	Size	MS/MSD	Duplicate ID
+ 90 m	nl	1401			F-rro	yes	no				- upilouto ib
	me	140	1	TPHO		yes	no			-	
+ 40	-	HC	1	BTE		yes	no		5		
4						yes	no				
						yes	no		-	-	
144				. 50		yes	no			1	
					cc	MMENTS					

· .

3015 SW First Avenue Portland, Oregon 97201-4707 (503) 924-4704 Phone (503) 943-6357 Fax

PROJE	CT NUMBER	1569-12			
FIE	LD REPORT NU	JMBER			
PAGE	1		OF	1	
DATE	5/29/2018				

PROJECT	Vancouver	Annex GWN	l	ARRIVAL TIME	0755	
LOCATION	Vancouver,	WA		DEPARTURE TIME	1200	
CLIENT	NuStar		16	WEATHER	Fair/ Over	cast
PURPOSE (OF OBSERV	ATIONS	Gauge monitoring wells, co	llect samples from w	ells MW-5,	MW-5D, and MW-6
APEX REPF	RESENTATIV	E M. Master	rson	APEX PROJECT MA	NAGER	S. Salisbury
CONTRACT	OR	NA		PERMIT NO.		-
CONTRACT	OR REP.	NA		H&S REVIEW	Yes	

Our firm's professionals are represented on site solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and to report those opinions to our client. The presence and activities of our field representative do not relieve any contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, send sequence of construction. Unless signed by the Ash Creek Associates Project Manager, this report is preliminary. A preliminary report is provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the final report may vary from and shall take precedence over those included in a preliminary report.

0755 Arrived on-site/ checked in with Site Manager (Karen) / Signed in / Issued Permit / HASP Review

0805 Removed well caps from monitoring wells to allow pressure to equalize prior to gauging

0850 Gauged monitoring wells to nearest 0.01 foot

0940 Finished gauging / calibrate YSI / Set up on well for sampling

1000 Sampled wells using low flow techniques with a Peristaltic Pump per Apes SOPs

1145 Finished sampling wells / gave purge water to Karen (NuStar) who disposed of the IDW in the on-site OWS

1200 Signed out / left site.

BY APEX REPRE SENTATIVE

REVIEWED BY

APEX PROJECT MANAGER

WELL GAGING DATA SHEET

	-						Job Number:	1569-12
				Client:	Nustar		Date:	5/29/18
	- \/			Project:	UAN AN	NEXCU	Sampler:	MMASTGREAN
APE				Weather:	FAIR		Time In/Out:	
				WATER LI	EVEL DATA			
Well I.D.	Time	Depth to Free Product (feet)	Depth to Water (feet)	Depth to Well Bottom (feet)	Product Thickness (feet)	Water Column Height (feet)	No	tes/Other Remarks
MW-1	0935		8.43					
MW-Z	0927		17.96					
MW-3	0932		20.91					
MW-4	0929		21.88					
MW-50	0907		8.37					
MW-5			8.68				RAISEO	Manumenst
MW-6	0940		9.03					
MW-7	0900		3.40					
MW-8	6913		9-31					
MW-80			9.53					
MW-9	1919		11,09				1 N	
MW-10	0855		10.38					1. 1. 19
								14
							20	
1								
		-			1.1.1			
								1
>		1		1.22		e la		1
	3.0					-2	1	
						1.021		
			-	1				
								×.
	1.3			53				
18								

				VV		ORING DAT	the second day of the second d				1-
					Well I.D.	MW -			Job Number:		and the second sec
					Client:	Nuster	-		Date:	5-29-	18
AP					Project:	VAN AN	NNEX	GUM	Sampler:	nm	
1-11-					Weather:	OVERCHS	T		Time In/Out:		
					W	ELL DATA					
Well Depth:		6-	(*)		Well Diamete	er:	2 ⁴		Water Heigh	nt	-
Depth to Wa		8.65			Screened Int	erval:	~		x Multiplier		-
Water Colui		~			Depth to Fre	e Product:	-		x Casing Vol	lumes	~
Purge Volur		~			Free Product	Thickness:	~		= Purge Volu	ume	~
	leight Multip	oliers (gal)	1-inch	= 0.041	2-inch :	= 0.162	4-inch	= 0.653	1 gallon = 3	.785 liters	
					PUF	RGING DATA					
Purge Meth	od:	PERRI	_		Pump Intake Depth:		MS			С	omments
Sampling M	ethod:	LF			Tubing Type	1	HOP	e			
Time	Volume Purged (liters)	Cumulative Volume Purged	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
	((liters)			+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
1044			9.15	0.15	7.69	14.45	431	4.67	-38.5	-	SC
1047			9.24	6.15	7.65	19.39	433	3.50	-76.1	-	AC
1050			9.37	0.15	7.66	14.50	434	2.12	-81.3	-	AC
1053			9.51	0.15	7.72	14.34	432	1,73	-87.2	~	AC
1656			9.67	0.15	7.82	14.46	433	1.55	-93.8	-	AC
1059			9.82	0.15	7.81	14.15	429	1.49	-923	-	AC
		Cla	rity: VC = v	ery cloudy	, CI = Cloudy, SAN	SC = slightly	cloudy, AC A	= almost cle	ar, C = clear		
Same	ole ID:	MW-5		Sampling	Flow Rate	0.15		Analytical La	aboratory:	PACE	
Sample		1104			pth to Water:	9.44		Did Well De		N	
	ners/Type		rvative		sis/Method	Field F			r Size	MS/MSD	Duplicate ID
3×40		140		BTE	5 C	yes	10				
SLAN	ml	HO		TPH-	1	yes	(na)				
2-2/1)		20	TPH-		yes	ng				
U- mc	Amb					yes	no				
			10			yes	no				
						yes	no				
					C	OMMENTS				•	
_									and the second sec		

			W	ELL MONIT						12
_				Well I.D.	MW-	SD		Job Number:		
				Client:	NUSto	×		Date:	5-29	-18
APEX				Project:	VAN A	NNEY	Gum	Sampler:		
APEA				Weather:	over	457		Time In/Out:		
				W	ELL DATA					
Well Depth:	1			Well Diamete	er:	2"		Water Heigh	nt	<u> </u>
Depth to Water:	8.30			Screened Int	terval:	~		x Multiplier		-
Water Column Length:	-			Depth to Fre	e Product:	•		x Casing Vo	lumes	6
Purge Volume:	~			Free Produc	t Thickness:	~		= Purge Vol	ume	~
Water Height Multi	oliers (gal)	1-inch :	= 0.041	2-inch	= 0.162	4-inch	n = 0.653	1 gallon = 3	.785 liters	
	(0 /			PUI	RGING DATA					
Purge Method:	PERR	-1		Pump Intake	Depth:	MS			с	omments
Sampling Method:	LF			Tubing Type		ITOP	3			
Time Volume (liters)	Cumulative Volume Purged	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
(iiters)	(liters)		(=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
11:14		8.41	0.2	7.94	14.05	355	7.21	-1.7	-	SC
1117		8.42	0.2	7.90	13.93	358	1,74	-13,7	-	SC
1120		8.92	0.2	7.91	13.86	356	1.38	-16.8	-	sC
1123		8.42	0.2	7.90	13.84		1.22	-18.9	Stor.	SC
1126		8.42	0.2	7.92	13.85		1.14	-21.3	ding.	AC
	Cla	rity: VC = v	ery cloudy	, CI = Cloudy,	SC = slightly	cloudy, AC	= almost cle	ar, C = clear		
		-				A			PACE	~
Sample ID:	MW-E	D		Flow Rate	0.2		Analytical La		N	
Sample Time:	1130			pth to Water:			Did Well De			Dunlingto ID
# Containers/Type		rvative		sis/Method	Field F	iltered	Filte	er Size	MS/MSD	Duplicate ID
3×40ml	He		BTE		yes					
3×40 ml	HC		TPH-	-	yes	no				
2×250ml Ambe	H	9	TPH	-Dx	yes yes	no				
					yes	no				
					yes	no				
					,				1	

	10		W	ELL MONITO		and the second		Job Number	151-9	- 12
				Well I.D.	MW-1			Job Number: Date:	5/29	1
				Client:	NJSta		C. AA			ASTORSON
APFX				Project:			Gum	Sampler:	10(770	101000
				Weather:	FAIR/C	NERCA	51	Time In/Out:		
	-			T	ELL DATA	2"		Water Heigh	+	~
Well Depth:				Well Diamete		2				
Depth to Water:	9.00			Screened Int				x Multiplier		and the second s
Water Column Length:			10	Depth to Fre		<u>^</u>		x Casing Vol = Purge Volu		
Purge Volume:	2	I		Free Product			- 0.052	1 gallon = 3		
Water Height Multip	pliers (gal)	1-inch =	= 0.041		= 0.162 RGING DATA		= 0.653	T gallon - 3	.705 mers	
	PERRI			T		MS			C	omments
Purge Method:	LE			Pump Intake		HOPE				
Sampling Method:	Cumulative		Dura	Tubing Type	:	E				al 10 l
Time Volume (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
	(inters)			+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
1003		9.72	0.2	8.55	14.00	811	8.68	-12.9	REALING	AC SC
10010		9.85	0.2	8.01	13.86	712	5.02	-69.0	-	SC
(009		9.97	0.2	7.94	13.84	708	4.92	-85.1	-	SC
1012	4	10.03	0.2	7.91	13.78	708	4.00	-89.4	G iattan	SC
1615		10.12	0.2	7.89	13.82	710	2.89	-96.1	-	S.
1018		10.15	0.2	7.88	13.76	705	2.75	-99.1		SE AC
1021		10-21	0.2	7.87	13.72	703	2.61	-101.3	-	AC
	Cla	rity: VC = v	ery cloudy	, CI = Cloudy, SAM	APLING DAT		, = aimost cie	ar, C - clear		
Sample ID:	MUILO	2	Sampling	Flow Rate	0.2		Analytical La	aboratory:	PACE	
Sample Time:	102			pth to Water:	9.30	7	Did Well De		N	
# Containers/Type		rvative		sis/Method	Field F			er Size	MS/MSD	Duplicate ID
3 x 40 ml	HC		BTE		yes	Go				
3-14-0	H			-Gry	yes	no				
2 × 250ml				I-Dx	yes	no				
LY BUME	Pi vev	1 Sector			yes	no				
11					yes	no				
					yes	no				
			1	the second s	OMMENTS					

Project: Client: Sampler:

Date: Permit:

Well ID:	Time:	DTP:	DTW:	Product Thickness:	Notes:
Mw-4	0850		31.86		
Мш-ч Мш-2 Мш-3	0900		29.94		
MW-3	0910		30.80		
MW-1	0915	-	18.37	and the	Sec. 1
MW-6			18.99	and a set	
MW-10	0925		20.30		
Mw-7	6930		13.26		
MW-9	0940	No.	21.04		
MW-80	0950		19.41		
MN-8	1000		19.22	1. 2.	
MW-5	1610		18.55		
MW-5D	1020		18.51		<i>и</i>
	3				

MW-5, MW-50, MW-6

°г	-		F	110	100	1	1	-			100	1 1 1	1								1	T	
F	1	-			-				-	4	15		-					1					
F		2		in the second		-		*	- 14		1	e.				1					-		
L					-	1		-				-											
	2			1		1		Q.K.M	-			1											
F		-	2	10	170	100		ar.		-		8											
F							-					1		-				-					
-	-			1	-		CA.	*	1.					-	-		-						-
-				-	1	100			+		1	-			-		-	-					
	14	1	2					ŝψ.		+		(Sec.)											-
		-	14				1	19			14	. 3											
			1						Ê.,	Luid	1.	9						2					
	3										1.8										-4		
-		1			1	1					1											-	
							-		1		1					+	1						
-			1	100	-	1		_	-		-		-	-	4								
															-								
				14.25					1										1				
				1																			
-				14			and and			2	the second	all and											
		-	4			-	-			-	-			the st	-	-	Constant of		-		-	-	-
E	1	-1	1	1	1	1			E	1	E			1		1	1	1	1		1		
				-					(may)	2													
				1							1												
+				20	5					-	_		-				-						
	2			MIC-1	1		3																
ľ				-	1	12						23											
	-												-	-									1101
ă	depth				1.2						*								10				
5	5				10						453				1	12	1						
*					6			-05	1		7												
	3	27.66	0	19	5 0	-	5	it	2-	1													
2	thank.	rt.	9	49.61	14.10	11.12	1	2	in .	20		64											
2	COLUMN TWO IS NOT	100	n	9 =	19	3	13	1-		1	21	12					-				1		
30	-		and the second se	and the second se	Contraction of the local division of the loc		*	8	1 0	9.0	1 3	5						F					
5	-	1.1.1		1	100	And Address	Sugar Law Street weeks	- 10 Mar	A CONTRACT	1 (7	6 0	19						-2	-				
	ime	1.1.1		1	3	17	14	-	- 9	9		* 45 m				1			1	1	1000	2	
	ime	8.45		10:0	0.0	4	9.14		6	0: 23 16 G	-0	10								100			
	ime	51.3	8:50	-0:0		4	P1.P 0	A 19 18 78	0.00	0	10	10											
	ime	51.3	8:50	-0:0	1. 0.6	4	-10 9.14	9 9.1	C 6 (0-1	5	- 27.0	1.5.9											
	ime	51.3	8:50	-0:0	111/2 0.14	a the stand	11-10 9.14	9 9 1	C 6 (10-11)	14 9.	10 - ST 9	14-5-9:		-									
	ime	1.1.1	8:50	10:0		1	Mu-10 9.14 - 6	M	45.71 ac. Pap-um	mure of:	Mir sha	Mu-S-9	- fr	- +									
VONNEX OI	ime	51.3	8:50	-0:0	ANNA TO TAN	1 t - 11	Mu-10 9.14	N G G.	C D G D-G M	Whield O	A LA LA	MW-5- 9:25 16:31	- te										
	ime	51.3	8:50	-0:0	ANNUT PIC		M10 9.14	ALL O G	C DUD-UM	Willied OI.	O LY SIM	Mu-S- 95											
	ime	51.3	8:50	-0:0	CURVE TO CON	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Min-to 9.14	A	C DUD-ITW	Will do Puille	I US I'M	M.W5-9:	in the	+ d									

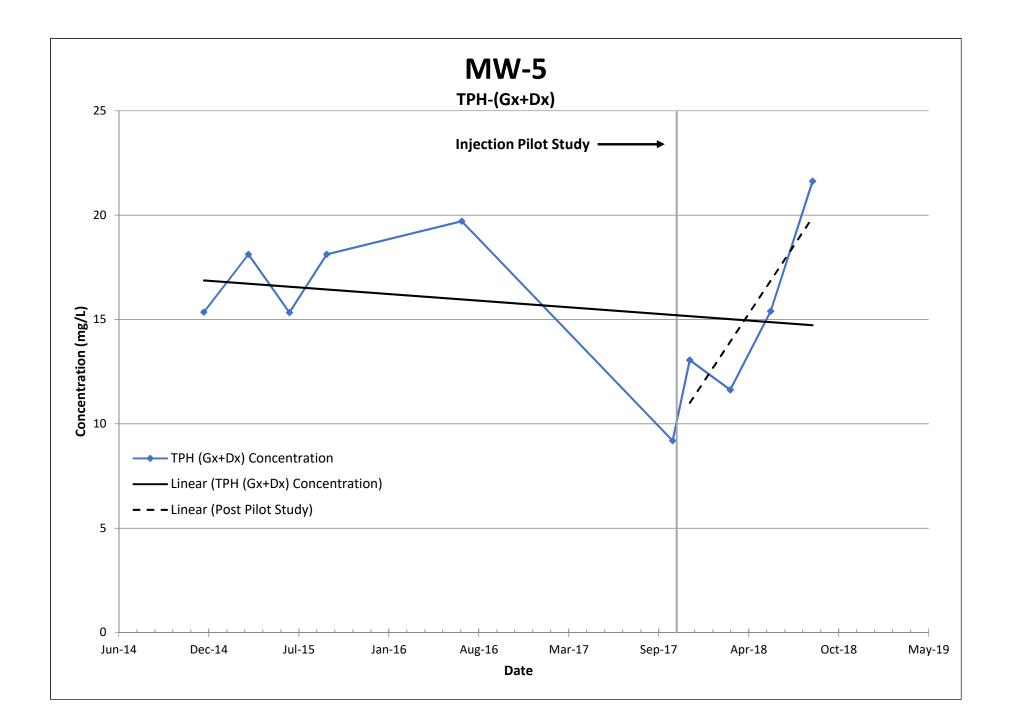
				Well ID:				Job Number:	nov-c	001-001
MA	C			Client:	NUST			Date:	11-20.	- 2017
200	Laso	adic		Project:	VANN			Sampler:	A. Spen	er/seel Mi
	Associat	es, LLC		Weather:	LOUN		ING	Time In/Out:	9:40	1
		-			WELL					
	4	Flush-mount,	/Stick-up		Well Diamete	R	2"	Depth to Free	Product:	/
Ionument Typ	pe:	Other:			Well Depth:		45	Free Product 1	hickness:	/
Ionument Co	ndition:	~			Depth to Wate	er:	16.21	Water Column	Length:	220°
Vell Cap Lock	Present: /	Yes No			Screened Inte	rval:	35-45	Purge Volume	:	
omments:							100 1.0			
urge Volume	= (Water Hei	ght) X (Multij	olier) X (# Casin	g Volumes)		- C -				
/ater height r	nultipliers (ga	d):	1-inch well =	0.041	2-inch = 0.162	the second of a second second	4-inch = 0.65	53	1 gal = 3.785 lit	ters
			L. L.M.	MARY SALES	PURGIN	-				
urge Method		peris			Pump Intake		LDPE	- scree	1	
ampling Meth	100:	Cumulative	low		Tubing Mater	iar & rype:	LAIL	1	NEW	/ DEDICATED
	Volume	Volume	DTW	Purge Rate	-11	Temp	Cond	DO	ORP	Clarity/Color
Time	Purged (liters)	Purged	(btc)	(L/min)	pH	(*C)	(µS/cm)	(ppm)	(mV)	Other Remarks
and downstreeting in	fureral	(liters)	COLUMN DE LA COLUMN				.1.800			Contraction in a second
	1	0.000			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	a.1
9:50			16,22	0.3	6.46	12.12	512	4,4	109.2	Clear
09:53			16.24		10:51	12.04	516	3.40	97.1	
69:56			16.24		4.55	12.19	534	1.94	86.8	
19:59			16.24		6.56	11,70	532	1.00	79,0	
0:02			16.24		6.52	12,06	1	ORO	73.8	
			14.24		arr	1 ~ 1 0 0	217	10180	T 5. 0	
10:10			14,29							
		_								
		1			_		1.1			
		1								2.24
					-					
	er		-		-				-	
			-		-				-	
	1 200 5		2.12							
					PURGIN	IG DATA			and the second	
Sample ID: /			- 10 A.	Sampling Fl		01	3 L/m			ESC
Sample Time:	and the second se			Final Depth		16	ter /	Did Well Dev		NO
No. of Contain	and the second se	and the second se	ervative	Analysis/Me	ethod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
8 Vi	0/+5	1-1-	CL .	-				-		
							1.1			19
12				1						
	and a state of					<u> </u>	-			
	-	37 0	-		50 20 70 10	-	-	-		
)+ 		a a a				1		1	a second second
				N	IOTES/ADDITIC	NAL COMME	NTS	-	100	12.0
					and some					
	0			81 						
						E.C		15		

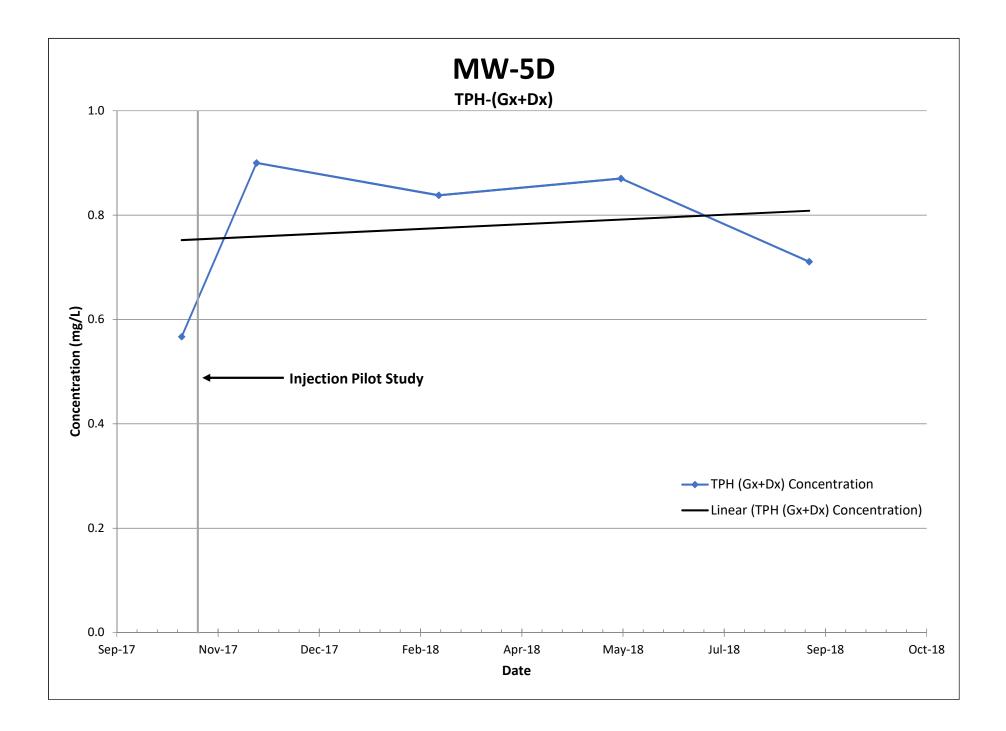
÷

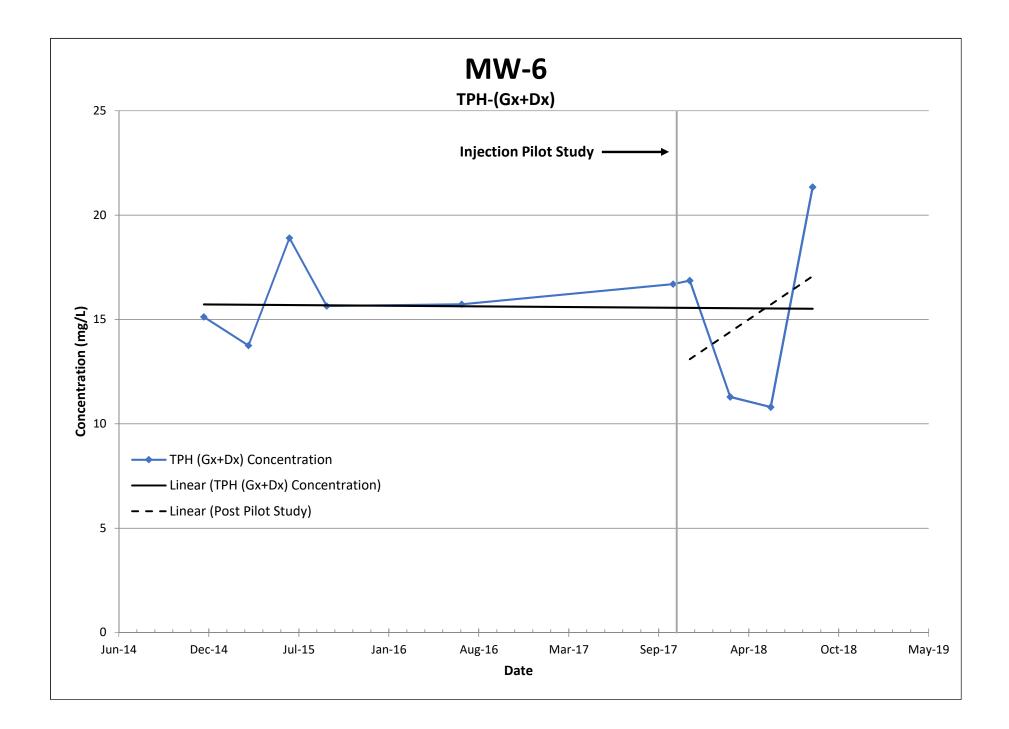
			_			DATA SHEET			43-34	101
n.A.	1.2.			Well ID:	MW		_	Job Number:	006-0	
234	Case	cadia		Client:	NUST		-	Date:	11-30	- 2017
10	Associa	tes, LLC		Project:	VAN			Sampler:	Spence	v IMattelche
				Weather:	WELL			Time In/Out:	10:2:	r
		K A	Calulation			1	91	Depth to Free	Broduct:	
lonument Typ	pe:	Flush-mount/	ыск-ир		Well Diamete		2"		2.0	
		Other:		_	Well Depth:	(?)	25'	Free Product 1		
Ionument Cor	ndition:	(-00	d		Depth to Wat		17,14	Water Column		
/ell Cap Lock I	Present:	Tes No		X 5	Screened Inte	erval:		Purge Volume	1 (L	
omments:									6)	
		ight) X (Multip								
/ater height n	nultipliers (g	al):	1-inch well =	0.041	2-inch = 0.16		4-inch = 0.65	53	1 gal = 3.785 lit	ers
		<u> </u>		_	PURGIN			_		
urge Method					Pump Intake Tubing Mater		-		NEW	/ DEDICATED
ampling Meth	100:	Cumulative	-		l ubing iviatei	nal & Type:		1	INCAN	7 DEDICATED
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
	0.000101010	Incersy		10,369.00	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1.9127			17114	0.2	9.8		393	7.3	36,1	Class
10:27			TIT	04		12.40				1 Samerica -
10:30					8.8	12,39	382		30,4	
10:35			12-181		10.7	12.50	384	7.7	Z8.8	
10:38			A.85		8.7	12,38	395	7.4	24.6	
11:42	184 341		17.91	1	6.5	12.16	396	7,1	2415	
					1	12.10	403	7.1	23.2	
10:45			179B		10.6	12,10	10 -	4.1	aD: C	
									1	
			_			<u> </u>				
					· · · · ·					
					10					
	-							-		
1		1	-	a		NG DATA		Analytical La	haratesu	ESC
Sample ID:		MW-	2	Sampling Fl		0.2	0	Did Well Dev		No
Sample Time:		10:5		Final Depth Analysis/Me		Field Filtered		MS/MSD	Duplicate ID	100
No. of Contair	· · ·		ervative	TATIBIAR 22/16/1	Ediod	Triend Fillered	A HEL SIZE	UCIAL (CIAL	In the second se	
10	>	H H	24						-	
8-										
93-	Dup									
	1 1-P								-	
	1									

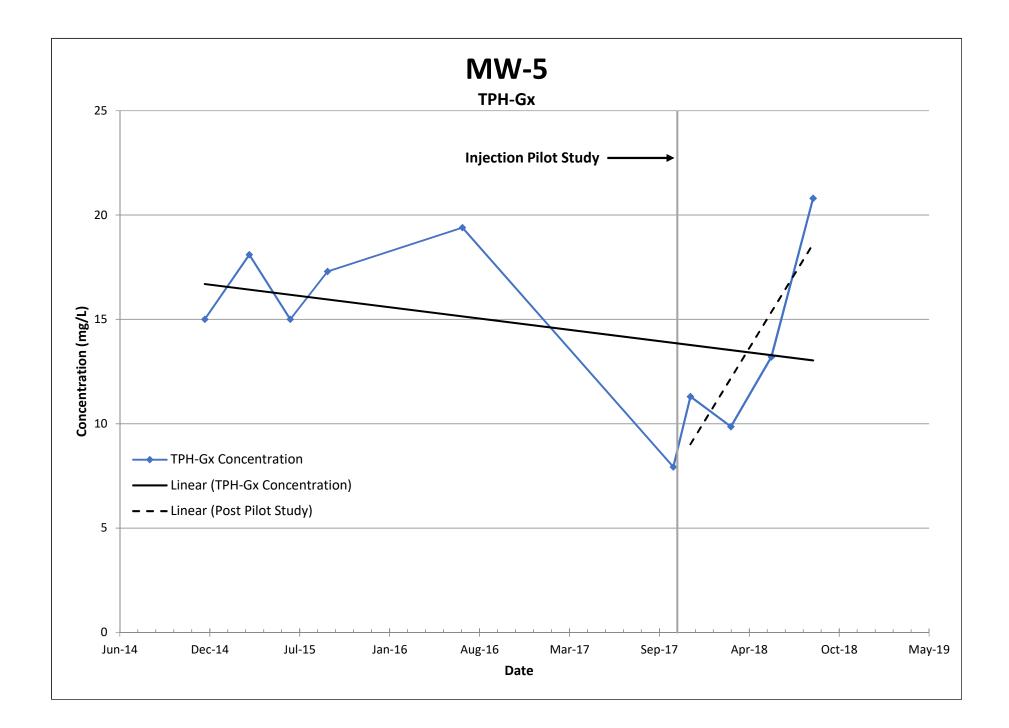
NA-				Well ID:	MW-6			Job Number:		01-001
34	Case	cadia tes, LLC		Client:	NUS4			Date:	11/30/	17-
70 0	ssocia	tes, LLC		Project:	VANN	EX		Sampler:	SPERK	ER/Mattele
and the state of the set				Weather:	RAIN			Time In/Out:	11:15	
					WELL		- 4			
Monument Type:		Flush-mount/S	tick-up		Well Diamete	r:	2	Depth to Free	Product:	1,-
wonuntencitype.		Other:	/		Well Depth:		25	Free Product	Thickness:	
Monument Condi	tion:	-6000	p	12	Depth to Wat	er:		Water Colum	n Length:	
Well Cap Lock Pre	1.22	res No			Screened Inte	erval:	15-25	Purge Volume	:	
Comments:		<u> </u>								
Purge Volume = (Water He	ight) X (Multinli	er) X (# Casin	e Volumes)						
Water height mul			L-inch well = (2-inch = 0.16	2	4-inch = 0.65	53	1 gal = 3.785 li	ters
Hater Height Hid	rapitera (B				PURGIN					
Purge Method:					Pump Intake	Depth:				
Sampling Method	1:				Tubing Mate				NEW	/ DEDICATED
Time	/olume Purged (liters)	Cumulative Volume Purged	DTW (btc)	Purge Rate (L/min)	Not DHY KIT	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
	((liters)	-	Contractor of the local data			. 1		+/-20 mV	COLUMN TRANSFORME
	1944			4.0	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm		
1120			17:70	0.2	P	12.38	741	0.98	40.3	Clear
11:73			18.00	0.2	1/	12.30	755	0.84	23:0	
11:26			18.40			12.63	755	0.48	21.2	
								0.44		
11:29	_		18.74			12.74	768		36.0	
11:33			18.01			12.69	766	0.50	41.2	
	1.1								~	
	-									
	_	- Sec. 1	14				-			
	-									
	-									
	12									
h					PLIRCI	NG DATA				
Sample ID: M	W-6	T		Sampling F		(2 - 2		Analytical La	aboratory:	ESC
Sample Time:	1145			Final Depth		1		Did Well De		
No. of Container	A second s	Prese	rvative	Analysis/M		Field Filtered	Filter Size	MS/MSD	Duplicate ID	
B	-1.16-		()							
10	_		h			-				
							23 =			
	· · · · · ·						0			
						-				
								_		
			-							10.0
	_				NOTES/ADDITI	ONAL COMME	NTS			
								6	11	
				Sec.						
		2								

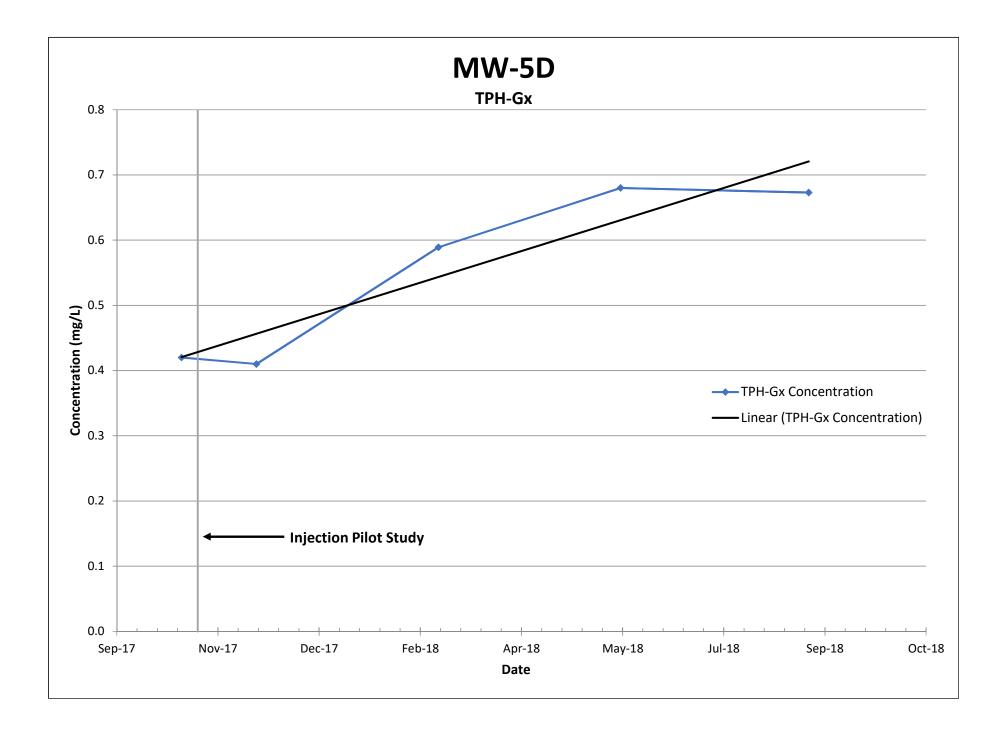
Keindusbed by (bighature)	Relinquished by (Signature)	Relinquisfied by (Signature)	OV - Orinking Water OT - Other	undwater isteWater	* Matrix: SS - Soil AIR - Air F - Filter							MW-5 DUP	MM- 50	MW-S	MW-C	Sample ID	Immediately Packed on Ice N V	for	- <u>a</u>	Sel Watte Seck	5//	X		Report to: lan Maguire	Portland OR 97719	6915 SW Macadam Ave Ste. 250	Cascadia Associates- Portland, OR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			UPSFedEx	emeil 1								Grab	9429	61910	6129	Comp/Grab	Three Day	Same Day Next Day	Rush? (Lab MUST Be Notified)	Site/Facility ID # VANCOUVER, WA	(ac-001	Client Project #					ortland,	
Date	Date:	Date: 1//30	ied via: IExCourier	12501-5	F						GW	GW	GW	GW	GW	Matrix *	K		b MUST Be	R, WA	1-08						OR	
		117	rier	2	-							1	۱	1	1	Depth	10 Day (Rad Only)	Five Day 5 Day (Rad Only)	Notified)		0			Email Io: I		Ste. 250	Account 6915 SM	Billing Information:
		Time: 1530	F	Lan Mry								11/36/17	11/2/17	11130/17	1(130/17	Date	è	Date Res	Quote #	106 - C	CASASCTOR	Lab Project #	City/State VAINC SUM	Email 10: Imaguire@cascadiaassociates.com	1, ON JA	Ste. 250	Accounts Payable- Chris Breemer 6915 SW Macadam Ave	rmation:
עברבואבת ותו ופת האי (סוקוומרטור)	Received by (Signature)	Received by (Signature)	Tracking #	2.12			-					1055	1010	104443 1055	1145	Time		Date Results Needed		51 - Ce	CASASCTOR-NUVANCOUVE	10/1	icourt	aassociates.com			is Breemer e	
insufact	ure)	ure)		140				1	-	1	22	ol.	0.	21	0.1	Contrs			4.1	TOWNYOR			-	Section 2		1	Pres Chk	
1	2											K	X	X	X	(ALC)	and spect		CERT		40miA	mb	-HCI	-BT				
						2.64			100	33	1923	X	X	X	X	1948000	TPHG	PLYNC	-	Distance of		-	15105	1	-		1	
	Temp	Trip					2					X	X	X	X	VUZ	508jii	27.64	a Cal	HAR	D-HCI	Br	E)		82	601	3)	Analy
	e np	o Blank R		Flow	포				103		100	100			11.11	1100	1				S	9.75	10.5	193	190		122.41	sis / Con
	റ്	i i	5		_													12					in:	157-1	11.	4		tainer /
	Bornes Received	4	1000	Other	Temp			-								19					Sec.		2	4		553		Analysis / Container / Preservative
	eceived	es / No HCL / MeoH TBR						1000		200	8181												and a local data	al la sur a				itive
	II pre	Pres	VOA	Bott	8						開設			20.0			9.0		N.	E.L.					4			
	servatio	et var to	Zero He	les arr	Seal Pr																							
	In preservation required by cogin: Date/ Time	LIEBELARTION COTTECT CHECKED	VOLUME Sent: <u>If Applicable</u> VOA Zero Headspace:	COC Signed/Accurace: Bottles arrive intact: Correct bottles used:	Seal Present/Intact: _NP					21	-					Remarks	PB: shinned Via*	Prelogin: Pb2725b TSR: 110 - Brian Ford	Template: 1 150154	Acctnum: CASASCTOR	Table #	Ľ#	Phone: 800-767-5859 Fax: 615-758-5859	12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858		1.1 B 6.5		Chain of Custody
NCF / OK	Condition		H E		_NP _Y _		Part of the second									Sample # (tab only)		Ford	1134	ISCTOR					- 7	TEN C E	3	Page of


	_		_			NG DATA SHI	EET	~		
				Well ID:	MW-S			Job Number:		
714	Case	-adia		Client:		Unnex	W1 118	Date:	8/301	(8
1	Associat	es, LLC		Project:	Gwm			Sampler:	Jan	
				Weather:	ourca			Time In/Out:	1030	~
			10 x 1		1	DATA	- 4			
Monument T	ype:	Flush-mount/	Stick-up		Well Diamete		24	Depth to Free		-
		Other:			Well Depth:			Free Product		
Monument C	ondition:	0			Depth to Wa	ter:	8.55	Water Colum		
Well Cap Loci	k Present:	Yes No			Screened Int	erval:	-	Purge Volume	21	-
Comments:	1	<u> </u>								1.
-		eight) X (Multip			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1. <u>1</u>	
Water height	multipliers (g	(al):	1-inch well =	0.041,	2-inch = 0.16	SZ NG DATA	4-inch = 0.65	5	1 gal = 3.785	iters
Purge Metho	d:	P. Pum	P		Pump Intake		MS			
Sampling Me		LF			Tubing Mate		LOPE		NEW	/ DEDICATED
		Cumulative		5		T	100110			
Time	Volume Purged	Volume	DTW-	Puige Bate	pH	Temp	Cond	DO	ORP	Clarity/Colo
tune	(liters)	Purged	(btc)	(L/min)	Pri Pri	(°C)	(µS/cm)	(ppm)	(mV)	Other Remar
	1	(liters)		+	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1030			0.2	18.55		16.24	426	2.23	-82.0	S. Cl
	-	-	0.20		6.45	1	426		-85.3	1
1033	_	-	\vdash	18.57	G.40	16.38	1 4	1.83		
1036	-	-		18.64	6.60	16.70	428	1.50	-92.5	
1039	-	~		18:71	6.63	16.48	425	1.33	-99.6	
1642		1		18:74	6.64	16-45	424	1,25	-100-6	
										4
		+	7		+	+				
		+								
			ļ							
]	
		+		<u> </u>	+		1		+	
		+		┢────	<u> </u>			+		
			L	<u> </u>						
						NG DATA				
Sample ID:		MW-5	<u>.</u>	Sampling Flo		0.30		Analytical Lab		Aprix
Sample Time:		1045		Final Depth t		18.76	Filton Sinn	Did Well Dew	-	NO
No. of Contai		T	rvative	Analysis/Met		Field Filtered	Filter Size	MS/MSD	Duplicate ID	
3× 40	ml	Hel		Gx/B	IEX				\times	MW.SD
2×1	6	Hei		Dx					X	5
				Banax		,				
		1								
		+								
		N.								
1	1010010312	100				NAL COMMEN	TS			
		MW	-5 D	SP A	1045					


				Well ID:	MW-	50		Job Number:		
MA	C			Client:	Nuster			Date:	8/30/1	8
2	Case	aala		Project:	Vanne	×		Sampler:	Ju	
7	Associat	es, LLC		Weather:	OVERCA			Time In/Out:	11.30	
		-	_	Webaler,		DATA		Thine thy out.	11050	
		Elush-mount/	Chiekum		Well Diamete		2"	Depth to Free	Product:	
Monument T	ype:		Suck-up		-	=1.				
		Other:			Well Depth:		-	Free Product		
Monument C	ondition:	-			Depth to Wa	ter:		Water Colum	n Length:	
Well Cap Loc	k Present:	Yes No			Screened Inte	erval:		Purge Volume	1:	
Comments:					<u>.</u>		1			
urge Volum	e = (Water He	eight) X (Multip	lier) X (# Casir	g Volumes)		I				
-	multipliers (g		1-inch well =		2-inch = 0.16	2	4-inch = 0.65	3	1 gal = 3.785 i	iters
	111010101010	,,,,				G DATA				to an
Purge Metho	d:	P. Punif	2		Pump Intake		MS			
Sampling Me		LF			Tubing Mate		LOPE		NEW	/ DEDICATED
		Cumulative				1				
	Volume	Volume	DTW	Purge Rate	C	Temp	Cond	DO	ORP	Clarity/Color
Time	Purged	Purged	(btc)	(L/min)	рН	(*C)	(µS/cm)	(ppm)	(mV)	Other Remarks
	(liters)	(liters)	,,	,		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				100 B 20 - 100	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1/30	1	-	180	0.30	7.09	1- 22	111-1	3.00	100	Class
			18.50	0.50		7.33	467		10.0	Clear
1133		-	18.56		6.50	17.02	473	3.40	- 27.0	
1136	_		18.62		6-62	16.23	464	2.30	-25.2	char
		-	_		-			1	20.0	
139			18.65		6.60	15.94	444	1.16	-32.0	Clear
1142	-	-	18.67		6.61	15.93	447	1.13	31.6	Clea
(145	_	·	6		-	15.94	450	1.14	-33.8	clear
(14)			18.71		6.60	1341-1	-100	1 * 1 -2	10310	· ····
				*						
						5				
					+			5		
		1					ļ			
					1				1	
		 								
				·						
		<u> </u>								
						IG DATA				
ample ID:		MW-	50	Sampling Flo		0.30)	Analytical Lab		APIEX
iample Time		1150		Final Depth	to Water:	18.76		Did Well Dew		No
lo. of Contai	ners/Type		rvative	Analysis/Me	thod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
2~11		Itel		BTEX/	Ince					
<u>3 x 40</u>		1			VL~3		1	1		
$2 \times 1 L$		Hr.		Dx			ļ	ļ		
					· <u> </u>					
		1					1	1		
				l		NAL COMPACT	 TC	1		L
				N	UTES/ADDITIO	NAL COMMEN	12			


				Well ID:	MW-1			Job Number:		
13	Case	adia		Client:	NUSTR			Date:	8/30/	(8
-	Associate			Project:	Vanne	2		Sampler:	Jm	
-	Associate	es, LLC		Weather:	OVESCA			Time In/Out:	1220	
						DATA			1	
		Flush-mount,	/Stick-up		Well Diamet	er:	24	Depth to Free	Product:	
Monument T	ype:	Other:			Well Depth:		-	Free Product	Thickness:	
Monument (ondition:				Depth to Wa	ter:	19.00	Water Colum	n Length:	
Well Cap Loc	k Present:	Ves No			Screened Int	erval	1	Purge Volume		-
Comments:	KTTESCITE.			_	Screenco int	critar.	1-	I Bibe Foldin		28
	L e = (Water He	ight) X (Multip	lier) X (# Casi	ng Volumes)	Î 👘	T				
	multipliers (g	_	1-inch well =	-	2-inch = 0.16	52	4-inch = 0.65	53	1 gal = 3.785 l	iters
					PURGIN	IG DATA		000000		
Purge Metho	d:	P. Ru	i,p		Pump Intake	Depth:	ans		~	
Sampling Me	thod:	LE			Tubing Mate	rial & Type:	LOPE		NEW	/ DEDICATED
	Volume	Cumulative			3	1998 (St. 1977)				
Time	Purged	Volume	DTW	Purge Rate	pН	Temp	Cond	DO	ORP	Clarity/Color
	(liters)	Purged (liters)	(btc)	(L/min)		(*C)	(µS/cm)	(ppm)	(mV)	Other Remark
		(incers)			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1220		-	Kana	0.8-		16.46		4.26	-91.1	clear
			19.00	0.30	0.14	1.	859			1
1223	·		19.10		6016	16.42	865	1.80	-81.0	
1226	-	-	19.15		6.13	16.16	858	1.53	-81.4	
P55)	~	-	19.16		6-13			1.40	-80.2	
			1		1				- 79.6	
232	-	<u> </u>	19.21		6.15	16.00	857	1.29	77.6	
		ļ			· · ·	ļ				- · *
					1					
				<u> </u>				+		l
			 		<u> </u>		· ·	<u> </u>		
		1								
								+	1	
	ς									
				T		IG DATA				40
Sample ID:		MW-C	2	Sampling Flo		0.30	_	Analytical Lab		Aper
Sample Time		1235	mintin-	Final Depth		Field Filtered	Filter Size	Did Well Dew MS/MSD	ater: Duplicate ID	NO
No. of Conta		1	rvative	Analysis/Me		Frieid Fritered	Tritter Size			1
3× 40		1401		BTEX	160	ļ				
2×10		Iter		Dx						
							1			
		<u> </u>			*			1	1	
-				+				+		
						ĺ.				
		·		N	DTES/ADDITIO	NAL COMMEN	TS			
]		6								
2	4									


APPENDIX D


TOTAL PETROLEUM HYDROCARBON TREND PLOTS

