Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

4660 KITSAP WAY, SUITE A BREMERTON, WA 98312-2357 T. 360.377.0014 F. 360.479.5961 www.parametrix.com

TECHNICAL MEMORANDUM

Date:	September 1, 2010
To:	Steve Teel – Department of Ecology
From:	David Dinkuhn, P.E. – Parametrix
Subject:	Solid Wood Incorporated Site Quarterly Groundwater Monitoring Results, Quarter 6, May 2010
cc:	Kip Summers – City of Olympia David Hanna – City of Olympia Tom Morrill – City of Olympia
Project Number:	235-1577-024
Project Name:	Solid Wood Incorporated (West Bay Park) Site RI/FS and Interim Action

SOLID WOOD INCORPORATED SITE – QUARTER 6 GROUNDWATER MONITORING AND SEEP SAMPLING RESULTS, MAY 2010

This technical memorandum presents results for the sixth round of quarterly groundwater monitoring conducted under the ongoing Remedial Investigation/Feasibility Study (RI/FS) at the Solid Wood Incorporated Site in Olympia, Washington. Quarterly groundwater monitoring is being conducted in accordance with the site's Agreed Order (No. DE-08-TCPSR-5415) and the RI/FS work plan (Parametrix 2008). In addition to the groundwater sampling, two groundwater seeps located adjacent to the former wood burner area were sampled to assess post-cleanup conditions.

QUARTER 6 GROUNDWATER SAMPLING

Groundwater samples were collected from three monitoring wells (MW-08 through MW-10) located in the vicinity of the former wood burner (see Figure 1 located at the end of this technical memorandum). The purpose of the wells is to monitor groundwater conditions in the vicinity of Area D, which was cleaned up during the Interim Action performed in the summer of 2009 (Parametrix 2010).

Groundwater samples were collected on May 3, 2010, using a peristaltic pump and low-flow purging/sampling techniques. Prior to sampling, the wells were purged until measured water quality parameters stabilized according to criteria specified in the RI/FS work plan. Upon stabilization, groundwater samples were collected into the appropriate containers. The final set of water quality parameter measurements along with approximate sampling times are provided in Table 1. All samples were collected on an outgoing tide. A tide chart for May 3, 2010, at Olympia, Washington; boring logs; and field data sheets are attached.

Well ID	Date/Time	pH (units)	Conductivity (mS/cm)	Dissolved Oxygen (mg/l)	Temperature (ºC)	Turbidity (NTU)	Redox (mV)	Salinity (%)
MW-08	5/3/10 at 1332	7.08	69.0	_	11.5	<1	-332	4.0
MW-09	5/3/10 at 1416	7.07	53.9	-	11.3	<1	-371	3.5
MW-10	5/3/10 at 1455	6.51	63.3	_	11.1	<1	-271	4.0

Table 1. Final Water Quality Parameters

Notes:

Endash (-) = Dissolved oxygen levels were not measured due to equipment failure.

mS/cm = millisiemens per centimeter.

mg/l = milligrams per liter.

 ${}^{\circ}C$ = degrees Celsius.

NTU = nephelometric turbidity units.

mV = millivolts.

% = percent.

Groundwater samples were submitted to Onsite Environmental of Redmond, Washington, for chemical analysis of priority pollutant metals (total and dissolved) and chloride. A summary of the sampling results is presented in Table 2 (page 3). Table 2 also includes remedial levels (RLs) for groundwater as established in the RI/FS work plan. A Quality Assurance/Quality Control (QA/QC) data review memorandum and the laboratory data report are attached.

The depth to groundwater was measured in each well to provide data used to develop inferred elevation contours as shown on Figure 1. The measurements were collected within a 1-hour period to give a representative snapshot of groundwater elevations. Figure 1 also shows inferred groundwater flow directions based on the elevation contours.

SEEP SAMPLING

Seeps 4 and 5 (Figure 1) were sampled concurrently with the wells between the hours of 14:30 and 15:30 on May 3, 2010. Shallow depressions were excavated by hand in the beach sediments below each seep location to provide a sample collection point. Suspended sediments were allowed to settle prior to sample collection resulting in samples that were generally clear. Samples were collected with a peristaltic pump and new polyethylene tubing. Care was taken during collection to prevent the introduction of suspended sediments in the samples. Dissolved metals samples were collected using an in-line 0.45-micron disposable filter.

The seep samples were also submitted to Onsite Environmental for analysis of total and dissolved priority pollutant metals. A summary of the seep sample results is presented in Table 3 (page 5).

		Well ID:	MW	-08		MW-09			MW-10	
	Date S	ampled:	2/3/10	5/3/10	2/3/10	2/3/10 ^a	5/3/10	2/3/10	5/3/10	5/3/10 ^a
ANALYTE	Units	RL								
TOTAL METALS										
Antimony	μg/l	6 ^b	6U	0.50U	6U	6U	0.50U	6U	0.50U	0.50U
Arsenic	μg/l	5	6.5U	1.8U	5U	5U	0.50U	7.5U	2.0U	2.5U
Beryllium	μg/l	4 ^b	4U	0.50U	4U	4U	0.50U	4U	0.50U	0.50U
Cadmium	μg/l	5	5U	0.50U	5U	5U	0.50U	5U	0.50U	0.50U
Chromium	μg/l	50	50U	1.3	50U	50U	0.98	50U	1.4	1.4
Copper	μg/l	2.4 ^c	5.4	5.1	4	3.4	2.7	6.8	4.5	4.5
Lead	μg/l	8.1 ^c	8U	0.50U	8U	8U	0.50U	8U	0.50U	0.50U
Mercury	μg/l	0.025 ^c	0.038U	0.025U	0.038U	0.038U	0.025	0.038U	0.025U	0.025U
Nickel	μg/l	8.2 ^c	9.8	15	11	11	11	13	14	13
Selenium	μg/l	50 ^b	50U	8.0U	50U	50U	1.6U	50U	2.5U	4.5U
Silver	μg/l	1.9 ^c	1.9U	0.50U	1.9U	1.9U	0.50U	1.9U	0.50U	0.50U
Thallium	μg/l	0.47 ^c	0.45U	0.50U	0.45U	0.45U	0.50U	0.45U	0.50U	0.50U
Zinc	μg/l	81 [°]	80U	18	80U	80U	8.7	80U	12	11
DISSOLVED METALS										
Antimony	μg/l	6 ^b	6U	0.50U	6U	6U	0.50U	6U	0.50U	0.50U
Arsenic	μg/l	5	8U	1.4U	6U	5U	0.50U	7.5U	0.50U	2.2U
Beryllium	μg/l	4 ^b	4U	0.50U	4U	4U	0.50U	4U	0.50U	0.50U
Cadmium	μg/l	5	5U	0.50U	5U	5U	0.50U	5U	0.50U	0.50U
Chromium	μg/l	50	50U	0.66	50U	50U	0.50U	50U	0.76	0.66
Copper	μg/l	2.4 ^c	5.5	4.9	4.1	3.4	3.3	5.9	4.8	4.5
Lead	μg/l	8.1 ^c	8U	0.50U	8U	8U	0.50U	8U	0.50U	0.50U
Mercury	μg/l	0.025 ^c	0.038U	0.025U	0.038U	0.038U	0.025U	0.038U	0.025U	0.025U
Nickel	μg/l	8.2 ^c	12	11	11	8.9	9.0	11	11	10
Selenium	μg/l	50 ^b	50U	6.0U	50U	50U	2.0U	50U	5.0U	4.0U

Table 2. Solid Wood Incorporated Site RI/FS Quarter 6 Groundwater Results, May 2010

(Table Continues)

	Well ID:		MW	-08		MW-09		MW-10		
	Date S	ampled:	2/3/10	5/3/10	2/3/10	2/3/10 ^a	5/3/10	2/3/10	5/3/10	5/3/10 ^a
ANALYTE	Units	RL								
DISSOLVED METALS (Continued)										
Silver	μg/l	1.9 ^c	1.9U	0.50U	1.9U	1.9U	0.50U	1.9U	0.50U	0.50U
Thallium	μg/l	0.47 ^c	0.45U	0.50U	0.45U	0.45U	0.50U	0.45U	0.50U	0.50U
Zinc	μg/l	81 ^c	80U	15J	80U	80U	6.3J	80U	8J	11
GENERAL CHEMISTRY										
Chloride	mg/l	_	11,000	12,000	8,600	8,400	8,500	13,000	10,000	9,600

Table 2. Solid Wood Incorporated Site RI/FS Quarter 6 Groundwater Results, May 2010 (Continued)

^a Duplicate Sample.

^b State and federal groundwater maximum contaminant level (MCL).

^c Surface water applicable or relevant and appropriate requirement (ARAR).

Notes: *italics* = PQL exceeds screening level.

Endash (-) = Not analyzed.

 $\mathsf{J}=\mathsf{Analyte}$ was detected; the reported quantity should be considered an estimate.

mg/l = milligrams per liter.

RL = Remedial level.

 μ g/l = micrograms per liter.

U = Not detected at given practical quantitation limit (PQL).

Exceeds screening level.

		Seep ID:	SE	EP4	SEE	P5
		Date Sampled:	1/14/09	5/3/10	1/14/09	5/3/10
ANALYTE	Units	RL				
TOTAL METALS						
Antimony	μg/l	6 ^a	5.6U	0.50U	5.6U	0.50U
Arsenic	μg/l	5	3.3U	1.6	3.3U	1.2
Beryllium	μg/l	4 ^a	4.0U	0.50U	4.0U	0.50U
Cadmium	μg/l	5	4.4U	0.50U	4.4U	0.50U
Chromium	μg/l	50	11U	1.0	11U	0.50U
Copper	μg/l	2.4 ^b	5.9	1.1	8.4	3.8
Lead	μg/l	8.1 ^b	1.1U	0.50U	1.1U	0.57
Mercury	μg/l	0.025 ^b	0.125U	0.025U	0.125U	0.0250
Nickel	μg/l	8.2 ^b	14	3.1	8.1	5.8
Selenium	μg/l	50 ^a	28U	1.0U	28U	1.0U
Silver	μg/l	1.9 ^b	1.9U	0.50U	1.9U	0.50U
Thallium	μg/l	0.47 ^b	0.47U	0.50U	0.47U	0.50U
Zinc	μg/l	81 ^b	69U	5.0	69U	5.0
DISSOLVED METALS						
Antimony	μg/l	6 ^a	5.6U	0.50U	5.6U	0.50U
Arsenic	μg/l	5	3.3U	1.7	3.3U	1.3
Beryllium	μg/l	4 ^a	4.0U	0.50U	4.0U	0.50U
Cadmium	μg/l	5	4.4U	0.50U	4.4U	0.50U
Chromium	μg/l	50	11U	0.75	11U	0.55
Copper	μg/l	2.4 ^b	4.0	1.0	13	3.4
Lead	μg/l	8.1 ^b	1.1U	0.50U	1.1U	0.50U
Mercury	μg/l	0.025 ^b	0.125U	0.025U	0.125U	0.025U
Nickel	μg/l	8.2 ^b	13	3.0	8.5	4.0
Selenium	μg/l	50 ^a	28U	1.0U	28U	1.2U
Silver	μg/l	1.9 ^b	1.9U	0.50U	1.9U	0.50U
Thallium	μg/l	0.47 ^b	0.47U	0.50U	0.47U	0.50U
Zinc	μg/l	81 ^b	69U	2.6J	69U	3.5J
GENERAL CHEMISTRY						
Chloride	mg/L	_	4,200	1,500	4,200	4,000

Table 3. Solid Wood Incorporated Site RI/FS Seep Sample Results, May 2010

^a State and federal groundwater maximum contaminant level (MCL).

^b Surface water applicable or relevant and appropriate requirement (ARAR).

italics = PQL exceeds screening level.

mg/l = milligrams per liter.

J = Analyte was detected; the reported quantity should be considered an estimate.

RL = Remedial level.

Notes:

 μ g/l = micrograms per liter.

U = Not detected at given practical quantitation limit (PQL).

Exceeds screening level.

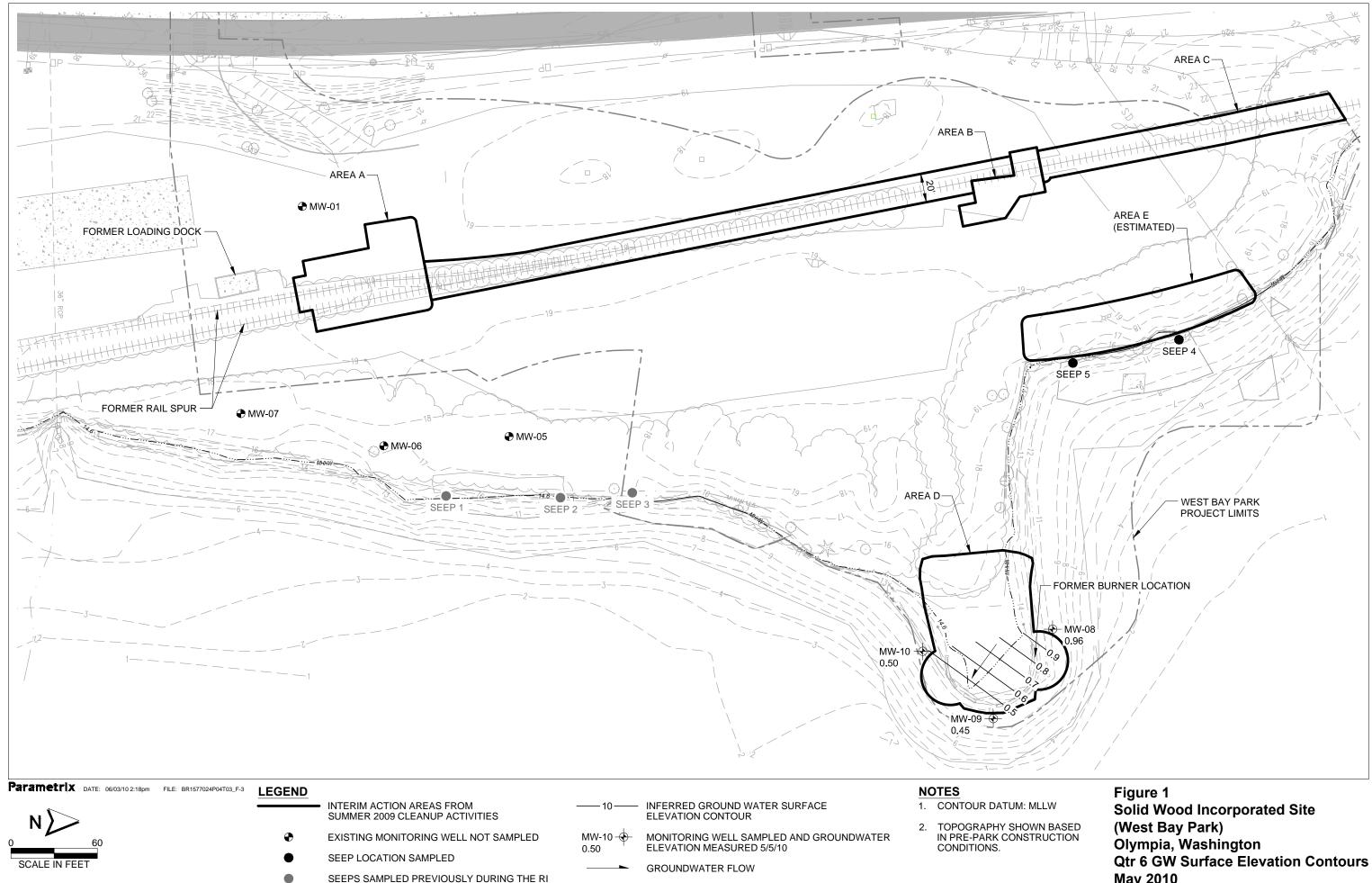
DISCUSSION AND RECOMMENDATIONS

As shown in Table 2, constituents that exceeded RLs in the samples from the monitoring wells consist of copper and nickel. The concentrations present in the samples are similar to those reported during Quarter 5 sampling (February 2010). The apparent source of these metals was ash at the former wood burner area that contained elevated levels of copper, lead, nickel, zinc, and dioxins. All ash was successfully removed during the Interim Action (IA; Parametrix 2010) and is no longer a contributing source of copper and nickel to groundwater. The lack of a decreasing trend in copper and nickel in the wells suggests that these metals may be present as a result of area background conditions. One possible source for the background metals in groundwater is infiltrating stormwater runoff from upgradient developed areas that contains metals from anthropogenic sources such as brake pad dust.

Parametrix recommends that no assessment for background conditions in groundwater be made at this time. Further evaluation of groundwater concentrations will be conducted following the 7th quarterly sampling event. It is possible that a decreasing trend may be seen, indicating that the concentrations are not due to background. The addition of dissolved organic carbon analyses is recommended for the groundwater samples. Dissolved organic carbon can bind to dissolved metals and lessen their bioavailability. Dissolved organic carbon data will allow for an assessment of this possibility.

Table 3 shows that copper and nickel are also of concern in Seeps 4 and 5. Comparison of current seep results to those of previous sampling (January 2009) indicates that a distinct reduction in concentrations has occurred (an average of 65 percent reduction). The only constituent that exceeds the RLs is copper in Seep 5. These results indicate that removal of buried metal debris from Area E during the IA was a success in terms of improving local groundwater quality. The remaining copper concentrations in Seep 5 may also be a result of background conditions as discussed above. Parametrix recommends that Seep 5 be resampled during a future quarterly groundwater monitoring event. The seep samples should be analyzed for total and dissolved copper, chloride, and dissolved organic carbon.

REFERENCES


- Parametrix. 2008. Work plan for remedial investigation/feasibility study and interim action, Solid Wood Incorporated Site (West Bay Park). Prepared for City of Olympia Parks, Arts, and Recreation Department. October.
- Parametrix. 2009. Technical Memorandum RI/FS and IA work plan addendum No. 2 seep sampling and storm drain line survey results and approaches to address metals in seeps. Prepared for City of Olympia Parks, Arts, and Recreation Department. June 15.
- Parametrix. 2010. Draft Solid Wood Incorporated Site (West Bay Park) interim action report. Prepared for City of Olympia Parks, Arts, and Recreation Department. March.

ATTACHMENTS

- A Figure 1
- B Groundwater Field Data Sheets
- C Tide Chart
- D Boring Logs
- E Data Validation Technical Memorandum
- F Laboratory Report

ATTACHMENT A

Figure 1

May 2010

ATTACHMENT B

Groundwater Field Data Sheets

arametri Froundwater S	X, INC. ampling Field D	ata Sheet	i i i i i i i i i i i i i i i i i i i	Sample #:	#: <u>mrv-1</u> 8 - <u>mrv08-0</u> 0910
Project Name We Project Address Client Name Crty	of Algenpia x 4 ar 6"	Date Location Sampled By Purged By Other $\sqrt{2}$	5/3/10 2.1.nd	ę	
Casing Diameter: 2" Depth to Water (feet) Depth of Well (feet) Reference Point (survey Date/Time Sampled	$\begin{array}{c} 0.64\\ 14.7\\ \hline 14.7\\ \hline \\ \hline$	Purge Vol. N Date Purged	Ieas.Method ۱۸	5/3/101 1316-1:	332
Purge Volun	the Calculation: $(\pi r^2 h)(7.48)$ the (gallons) for 2" = (0.16) thruge Volume (gallons)	(n) # (v) = (v)	volumes) 553)(h)(#Cv); (Purge Volume)	5" = (1.48)(l (gallons)	n)(#Cv)
TIME WATER $(2400 hr)$ LEVEL (feet) $(31b)$ $0.55a$ $132b$ $0.55a$ 0.457 $132b$ 0.457 0.48 $132b$ 0.48 0.48 $133a$ 0.58 0.58 0.000 0.58 0.000 0.000 0.000 0.000	$\begin{array}{c ccccc} pH & COND \\ (units) & (mS/cm) \\ \pm 0.1 & \pm 3\% \\ \hline \pm 0.1 & b & 3\% \\ \hline \hline \pm 0.1 & b & 0 & 3 \\ \hline \hline \hline -7.06 & b & 5.5 \\ \hline \hline \hline -7.06 & b & 5.5 \\ \hline \hline \hline -7.06 & b & 5.5 \\ \hline \hline \hline \hline -7.06 & b & 5.5 \\ \hline \hline \hline \hline -7.08 & b & 0 & 0 \\ \hline \hline \hline \hline \hline -7.08 & b & 0 & 0 \\ \hline \hline \hline \hline \hline -7.08 & b & 0 & 0 \\ \hline \hline$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \pm 10\% \\ \hline 0.0 \\ \hline \end{array} $	ORP (mV) - 304 - 31b - 334 - 332 - 332	CUM. VOL. (gal)
Purge Equipment	perestaltic	Sampling	g Equipment	<u>Cam</u>	e
Laboratory Chain-of-Custody (y Shipment Method	Onesite	Date Sem Field QC Split wit	t to Lab Sample Numb h (name(s)/org	ber h	HID MA PIA
Well Integrity Remarks Signature	Good Mater in mor Kindl	ument	- Page	of	
nking value,	visual LIDN	Th: CLEAN			

Depth of Well (feet)14Date Purged5/2/bReference Point (surveyors notch/etc) $10(000000)$ Purge Time (from/to) $4000000000000000000000000000000000000$	Project Name $\mathcal{N}_{UCT} \mathcal{P}_{TM}$ Location $\mathcal{M}_{U}^{-}\mathcal{O}_{L}^{-}$ Project Address \mathcal{O}_{U} \mathcal{P}_{U} \mathcal{P}_{U} \mathcal{P}_{U} \mathcal{P}_{U} Client Name \mathcal{O}_{U} \mathcal{O}_{U} \mathcal{P}_{U} \mathcal{P}_{U} \mathcal{P}_{U} \mathcal{O}_{U}	arametrix, Inc Froundwater Sampling		neet	Well #: <u>MV</u> Sample #: WB - GW - M
Canny Dimeter D Description Description Description Description Depth to Water (feet) 1 U IF Date Purge Vol. Meas.Method MMR. Graphstreet S21b Reference Point (surveyors notch/etc) 101 (but MWR) Purge Time (from/to) UVD - 1U1b Date/Time Sampled $521b$ Purge Time (from/to) UVD - 1U1b Purge Volume Calculation: (π^2h)(7.48 gal/ \hbar^2)(# Casing volumes) Purge Volume (gallons) for 2" = (0.16)(h)(#Cv); 4" = (0.653)(h)(#Cv); 6" = (1.48)(h)(#Cv) Calculated Purge Volume (gallons) Actual Purge Volume (gallons) Actual Purge Volume (gallons) TIME WATER pH COND DO TEMP (feet) ± 0.1 ± 3% ± 10% mVD (gal) (feet) ± 0.1 ± 3% ± 10% - 3b2 - 3b2 14004 3.34 7.07 54.D D.D 11.3 0.07 - 3b2 14103 3.34 7.07 54.D D.D 11.3 0.04 - 352 14102 3.34 7.07 54.D D.D 11.3 0.04 - 354 14104 3.34 7.07 53.4 <td>Caloring Data and the product of t</td> <td>Project Name Project Address</td> <td>Location Sample</td> <td>on <u>mw</u>- ed By <u>L. Lin</u></td> <td>Å</td>	Caloring Data and the product of t	Project Name Project Address	Location Sample	on <u>mw</u> - ed By <u>L. Lin</u>	Å
Depth of Well (feet) 1117 Date Purged 61216 Reference Point (surveyors notch/etc) 101 (\mathcal{D} (\mathcal{D} (\mathcal{H}) Purge Time (from/to) 1420 - 1416 Date/Time Sampled 51311 1425 200 ml (\mathcal{H} (\mathcal{H}) 175 ml (\mathcal{H} Purge Volume Calculation: (π^2 h)(7.48 gal/ π^3)(# Casing volumes) Purge Volume (gallons) for 2" = (0.16)(h)(#CV); 4" = (0.653)(h)(#CV); 6" = (1.48)(h)(#CV) Calculated Purge Volume (gallons) Actual Purge Volume (gallons) Actual Purge Volume (gallons) TIME WATER pH COND DO TEMP TURB. ORP CUM. VOI (2400 hr) (free) ± 0.1 ± 3% ± 10% (1490 3.80 7.07 54.1 0.0 11.3 0.0 kr -350 1401 3.31 7.07 54.2 0.0 11.3 0.0 kr -324 1410 3.34 7.07 54.9 0.0 11.3 0.0 kr -324 1410 3.325 7.07 54.0 0.0 11.3 0.0 kr -324 1410 3.324 7.07 54.0 0.0 11.3 0.0 kr -371	Depth of Well (feet)Id IIDate PurgedSign in the feet and	Casing Diameter: 2"4"	6"Other	r <u>X 34" in ne</u>	V .
Purge Volume (gallons) for $2^n = (0.16)(h)(\#Cv); 4^n = (0.653)(h)(\#Cv); 6^n = (1.48)(h)(\#Cv); Calculated Purge Volume (gallons)TIME WATER pH COND DO TEMP TURB. ORP CUM. VOL(2400 hr)LEVEL (units) (mS/cm) (mg/L) °C ±10% (mV) (gal)(feet) ±0.1 ±3% ±10%0^n +10% (mV) (gal)(1400 3 \cdot 80 = 7.07 \pm 54.100.0 \pm 11.21401 = 3 \cdot 31 = 7.07 \pm 54.100.0 \pm 11.31402 = 3.34 = 7.07 \pm 54.100.0 \pm 11.31413 = 3.34 = 7.07 \pm 54.100.0 \pm 11.31412 = 3.35 = 7.07 \pm 54.000.0 \pm 11.31412 = 3.34 = 7.07 \pm 54.000.0 \pm 11.31412 = 3.35 = 7.07 \pm 53.040.0 \pm 11.31412 = 3.35 = 7.07 \pm 53.040.0 \pm 11.30.07 \pm 11.30.07 \pm -30.741412 = 3.35 = 7.07 \pm 53.040.0 \pm 11.30.07 \pm -30.104 \pm -37111.524 \pm 0.004 \pm -37111.524 \pm 0.004 \pm -37111.524 \pm 0.004 \pm 0.04$	Purge Volume (gallons) for $2^{\circ} = (0.16)(h)(\#Cv); 4^{\circ} = (0.653)(h)(\#Cv); 6^{\circ} = (1.48)(h)(\#Cv) Calculated Purge Volume (gallons) TIME WATER pH COND DO TEMP TURB. ORP CUM. V (2400 hr) LEVEL (units) (mS/cm) (mg/L) °C \pm 10\% (mV) (gal) (feet) \pm 0.1 \pm 3\% \pm 10\% 0.1 \pm 3\% \pm 10\% (mV) (gal) 1400 3.80 7.07 54.4 0.0 11.3 0.0 \pm -352 14014 3.34 7.07 54.4 0.0 11.3 0.0 \pm -367 1403 3.34 7.07 54.0 0.0 11.3 0.0 \pm -367 1410 3.34 7.07 54.0 0.0 11.3 0.0 \pm -367 1414 3.35 7.07 54.0 0.0 11.3 0.0 \pm -367 1414 3.35 7.07 53.6 0.0 0.0 11.3 0.04 \pm -371 1.56 1416 $	Depth of Well (feet) <u>14</u> Reference Point (surveyors notch/etc)	Date P D((outler) Purge	Purged Time (from/to)	51216
(2400 hr) LEVEL (units) (mS/cm) (mg/L) $^{\circ}$ C $\pm 10\%$ (mV) (gal) 1400 $3 \cdot 80$ $7 \cdot 91$ $55 \cdot 1$ 0.492 $t1 \cdot 3$ $0 \cdot 1^{\circ}$ R -352 1400 $3 \cdot 30$ $7 \cdot 91$ $54 \cdot 10$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -364 1402 $3 \cdot 34$ $7 \cdot 07$ $54 \cdot 10$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -364 1403 $3 \cdot 34$ $7 \cdot 07$ $54 \cdot 10$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -364 1449 $3 \cdot 34$ $7 \cdot 07$ $54 \cdot 10$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -367 1449 $3 \cdot 34$ $7 \cdot 07$ $54 \cdot 10$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -367 1449 $3 \cdot 34$ $7 \cdot 07$ $54 \cdot 0$ $0 \cdot 0$ $11 \cdot 3$ $0 \cdot 0^{\circ}$ r -371 $1 \cdot 5 \cdot 0^{\circ}$ 1449 $3 \cdot 34^{\circ}$ $7 \cdot 07$ $53 \cdot 0^{\circ}$ $0 \cdot 0^{\circ}$ $0 \cdot 0^{\circ}$ $1 \cdot 5 \cdot 0^{\circ}$ 1449 $3 \cdot 0^{\circ}$ $0 \cdot 0^{\circ}$ $0 \cdot 0^{\circ}$	(2400 hr) LEVEL (units) (mS/cm) (mg/L) $^{\circ}$ C $\pm 10\%$ (mV) (gal) 1400 $\overline{3} \cdot 80$ $\overline{7} \cdot 0\overline{7}$ 55.1 0.42 11.3 0.07 -352 1404 $\overline{3} \cdot 31$ $\overline{7} \cdot 0\overline{7}$ 54.6 0.0 11.3 0.07 -364 1408 $\overline{3} \cdot 34$ $\overline{7} \cdot 0\overline{7}$ 54.6 0.0 11.3 0.07 -364 1403 $\overline{3} \cdot 34$ $\overline{7} \cdot 0\overline{7}$ 54.6 0.0 11.3 0.07 -364 1413 $\overline{3} \cdot 34$ $\overline{7} \cdot 0\overline{7}$ 54.0 0.0 11.3 0.07 -367 1416 $\overline{3} \cdot 34$ $\overline{7} \cdot 0\overline{7}$ 54.0 0.0 11.3 0.07 -367 1416 $\overline{3} \cdot 34$ $\overline{7} \cdot 0\overline{7}$ $\overline{53.6}$ 0.0 11.3 0.04 $\overline{-3711}$ 1.57 1416 $\overline{3} \cdot 0\overline{7}$ $\overline{53.6}$ 0.0 11.3 0.04 $\overline{-3711}$ 1.57 $\overline{1410}$ $\overline{1400}$ $\overline{10.010}$ $\overline{10.010}$ $\overline{10.010}$	Purge Volume (gallons) for 2	" = (0.16)(h)(#Cv); 4"	= (0.653)(h)(#Cv); 6	
Laboratory Onentic Date Sent to Lab Fluid Chain-of-Custody (yes/no) YES Field QC Sample Number P/A Shipment Method COMPLEX Split with (name(s)/organization) P/A Well Integrity Cappa Remarks CMARK IN MONUMENT	Laboratory On Mt Date Sent to Lab 5/4/10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} mS/cm) & (mg/L) \\ \pm 3\% & \pm 10\% \\ \hline 5.1 & 0.43 \\ \hline 4.4 & 0.0 \\ \hline 4.2 & 0.0 \\ \hline 4.0 & 0.0 \\ \hline \end{array}$	°C ±10% <u>11.3</u> 0.0★ <u>11.3</u> 0.0★ <u>11.3</u> 0.0★ <u>11.3</u> 0.0★	(mV) (gal) <u>-352</u> <u>-364</u> <u>-367</u> <u>-367</u>
Laboratory Onentic Date Sent to Lab 5/4/10 Chain-of-Custody (yes/no) YES Field QC Sample Number 12/4 Shipment Method COWNER Split with (name(s)/organization) 12/4 Well Integrity Groph Remarks WMARY IN MONIMENT	Laboratory On Mt. Date Sent to Lab 5/4/10				
Shipment Method Councer Split with (name(s)/organization) Well Integrity Groph Remarks WATER IN MONOMENT		Laboratory Onente	Date :	Sent to Lab	5/4/10
Remarks WATEV IN MONWMENT					
	Remarks DAAFEVIN MOMMENT	Remarks WARY MY	nonivinent	Page	of

2)

Parametrix, Inc.

Well #: <u>MW/1</u> Sample #: _____

Groundwater Sampling Field Data Sheet

WB-GW-MWID-008D

Project N Project N Project A Client Na	ame With Bay	4 Date Location Sampled By Mp/A Purged By	5/3/10 mw-10 L. Linde L. Linde	- -
Casing D	iameter: 2" <u>X</u> 4"	Other	3/4"inner	
Depth of Reference	Water (feet) 0.50 Well (feet) <u>0.77</u> e Point (surveyors notch/etc) <u>1</u> ne Sampled <u>5310</u> 1507	Date Purged		— —
	Purge Volume Calculation: (π ^r Purge Volume (gallons) for 2" Calculated Purge Volume (gall	= (0.16)(h)(#Cv); 4" = (0.653)	umes) 3)(h)(#Cv); 6" = (1.48)(h)(#Cv) ge Volume (gallons)	-
TIME (2400 hr 1439 1443 1447 1451 1455	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TURB. ORP CUM. VO $\pm 10\%$ (mV) (gal) 0.0% -293 0.0% -279	L. Sello 3.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Laborato Chain-o:	f-Custody (yes/no) YES nt Method <u>Conver</u> e egrity <u>Groat</u>		Lab 5 /4/10	D-1080
Remarks Signatur	s AAMARIG IN W	Page	eof	

ATTACHMENT C

Tide Chart

Tides for Olympia, Budd Inlet starting with May 1, 2010.

Day		High /Low	Tide Time	Height Feet	Sunrise Sunset	Moon	Time		% Moon Visible	
Sa	1 1 1 1	Low High Low High	2:35 AM 7:15 AM 2:27 PM 9:43 PM	13.4 -2.2	5:56 AM 8:22 PM	Set	7:47	AM	93	Washington/Oreg Fishing We Fish Rivers in
Su	2 2 2 2	Low High Low High	3:30 AM 7:58 AM 3:10 PM 10:32 PM	12.5 -1.5	5:54 AM 8:24 PM	Rise Set	12:25 8:46		87	the Pacific NW Come experience a Salmon fight! www.seattlefishingtrips.c
М	333	Low High Low	4:32 AM 8:47 AM 3:56 PM	11.6 -0.6	5:52 AM 8:25 PM	Rise Set	1:07 9:49	AM AM	79	<u>Surf Report -</u> Washington
Tu	3 4 4 4	High Low High Low	11:22 PM 5:44 AM 9:44 AM 4:44 PM	7.3 10.7	5:51 AM 8:26 PM	Rise Set	1:40 10:55	AM AM	71	Northwest surfing resource: webcams, buoys, tides. www.surfwa.org
W	5 5 5	High Low High Low	12:14 AM 7:05 AM 10:53 AM 5:38 PM	6.8 9.8	5:49 AM 8:28 PM	Rise Set	2:07 12:00	AM PM	62	Washington Boat Insurance Coverage for all

Return to the <u>Washington selection</u> page, the <u>FAQs/definitions</u> page, the <u>region selection</u> page, the <u>script licensing</u> page, or to the <u>home</u> page.

For information on regulations for fishing in Washington contact: <u>Washington Department of</u> <u>Fish and Wildlife</u>

Typhoons, Hurricanes, etc., are NOT included in the predictions. Tidal current direction changes and tide high and low time predictions can be very different. Tide predictions are PREDICTIONS, they can be wrong so use common sense.

© 1999-2010 Tide High and Low, Inc. Reproduction of tide predictions in any form or format is explicitly prohibited.

Moon Tide

http://www.saltwatertides.com/cgi-local/washington.cgi

types of boats. Get a free online quote

Hydrographic

Mapping Puget Sound, Rivers,

Lakes, Marinas

Surveying Bathymetric,

Floodplain

today! www.PEMCO.com

ATTACHMENT D

Boring Logs

Pa	iran	netrix inspired people - inspi	red solutions – making a	diffe	rence	Log	ID: M	W-08	/B(CC7	757
Pi Lo	roject ocatio	Name: West Bay RI/FS #: 235-1577-024 n: Burner Point nates: N47°03'10.2" / W122°54'41.6"	Drilling Company: ESN Drilling Method: Direct Logged by: L. Linde Checked by: M. Marsha	Push all, L.C	à.	Boring Depth Groun	g Dates g Depth to Wate d Eleva	: 14 ft er: 2 ft			
Depth (ft)	Lithologic Symbol	Description/Classification	of Materials	Sa (mqq) OIA	ed elqm Samble ID Samble S	tails Lacovery	Borin	g Diagra	ım	Lithologic Symbol	Depth (ft)
		Ground Surface Imported Gravel and Cobble (Fill Brown Sand (Native) Gray, shells, easy drilling Bottom of boring at 14 feet below grou					Marine-Grade Concrete	3/4-inch PVC 0.010 Slot pre-packed Screen: 4-14' 3/4-inch PVC Well Casino: 0.4'-4'	-	ားရားရားရားရားရားရားရားရားရားရားရားရားရာ	
20-	1										-20

Pa	aran	netrix inspired people - inspi	ired solutions – making a	diffe	rence	Log	ID: N	1W-()9/B	CC7	758
	•	Name: West Bay RI/FS #: 235-1577-024	Drilling Company: ESN Drilling Method: Direct		nwest		g Dates g Depth			0	
	-	n: Burner Point	Logged by: L. Linde	1 4011			to Wat				
c	oordir	nates: N47 °03'09.8" / W122 °54'40.6"		all, L.G	ì.	-	d Elev				
				Sa	mple De	tails					
Depth (ft)	Lithologic Symbol	Description/Classification	n of Materials	PID (ppm)	Sample ID	Recovery	Borin	g Dia	gram	Lithologic Symbol	Depth (ft)
0-	02220	Ground Surface	-						-	02X23	-0
0- 5- 10- 15-	4.5 Cost Cost Cost Cost Cost Cost Cost Cost	Imported Gravel and Cobble (Fill Brown Bottom of boring at 14 feet below grou					Marine-Grade Concrete 10/20 Silica Sand: 4'-14' ↓ 21/40 Silica Sand: 3'-4' ↓		3/4-inch PVC 0.010 Slot pre-packed Screen: 4'-14' 3/4-inch PVC Well Casing: 0.4'-4' SXXX		

Pa	aran	netrix inspired people - inspi	red solutions – making a	diffe	rence	Log	ID: MW-1	0/B(CC7	759
Pi Lo	roject ocatio	Name: West Bay RI/FS #: 235-1577-024 n: Burner Point nates: N47°03'09.3" / W122°54'41.3"	Drilling Company: ESN Drilling Method: Direct Logged by: L. Linde Checked by: M. Marsha	Push all, L.C	à.	Boring Depth Groun	g Dates: 1-22 g Depth: 14 ft to Water: 2 ft d Elevation:	t)	
Depth (ft)	Lithologic Symbol	Description/Classificatior	of Materials	Sa (mqq) OIA	ed elqm Samble ID Samble S	tails Lecover	Boring Diag	ram	Lithologic Symbol	Depth (ft)
		Ground Surface Imported Gravel and Cobble (Fill Brown Hard drilling, difficult to advance Sand (Native) Gray, shells, easy drilling Bottom of boring at 14 feet below grout					21/40 5	3/4-inch PVC 0.010 Slot pre-packed Screen: 4'-14' 3/4-inch PVC Well Casing: 0.4'-4' Neat Cement: 1'-3'		
20-										-20

ATTACHMENT E

Data Validation Technical Memorandum

Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

411 108th AVENUE NE, SUITE 1800 BELLEVUE, WA 98004-5571 T. 425.458.6200 F. 425.458.6363 www.parametrix.com

TECHNICAL MEMORANDUM

Date:	May 18, 2010
To:	Project File
From:	Annika Deutsch
Subject:	Quality Assurance/Quality Control Review for West Bay
cc:	David Dinkuhn
Project Number:	235-1577-024 (04/04)
Project Name:	West Bay Second Quarter 2010 Groundwater Monitoring

INTRODUCTION

This technical memorandum summarizes the results of an internal quality assurance/quality control (QA/QC) review of analytical results for groundwater samples collected on May 3, 2010. Eight groundwater samples (including a field duplicate [WB-GW-MW10-1080]) were submitted to OnSite Environmental, Inc. (Redmond, WA) for analysis.

All groundwater samples from monitoring wells (MW) were analyzed for total and dissolved priority pollutant metals and chloride. Unfiltered groundwater samples from seeps were analyzed for total priority pollutant metals and chloride. Filtered groundwater samples from seeps were analyzed for dissolved priority pollutant metals.

Final laboratory data were submitted to Parametrix via a Tier II-type data report (On-Site Laboratory Reference Number 1005-007). All data and analytical QC elements were reviewed against laboratory and method QC criteria, and qualifiers were applied where judged appropriate.

DATA REVIEW SUMMARY

All samples collected were prepared and analyzed using standard methods. All method holding times were met: All analyses requested on the COC were conducted. Specific PQLs were requested on the COC. These were met, with some exceptions for arsenic and selenium results, which had elevated PQLs due to matrix interference.

No laboratory method blank contamination was observed.

Field duplicate results were acceptable, with the exception of dissolved zinc (relative percent difference [RPD] = 32% [limit = 25%]). All dissolved zinc results were qualified as estimated "J" as a result.

The case narrative notes that the laboratory duplicate for total zinc is outside of control limits. The laboratory duplicate for dissolved chromium also exceeded control limits. All other QC results were acceptable; therefore, no data was qualified as a result of this exceedance.

All other analytical QC results were in control, indicating acceptable analytical accuracy and precision. Table 1 summarizes all data qualified based on this review (i.e., does not include laboratory qualified data).

TECHNICAL MEMORANDUM (CONTINUED)

Table 1. Qualified West Bay Groundwater Data					
Sample ID	Matrix	Analyte	Result	Qualifier	Reason
WB-GW-MW08-0090	Groundwater	Zinc	15 µg/L	J	Field duplicate RPD out of control.
WB-GW- MW09-0090	Groundwater	Zinc	6.3 µg/L	J	Field duplicate RPD out of control.
WB-GW-MW10-0080	Groundwater	Zinc	8.0 µg/L	J	Field duplicate RPD out of control.
WB-GW-MW10-1080	Groundwater	Zinc	11 µg/L	J	Field duplicate RPD out of control.
WB-GW-SEEP5-FILT	Groundwater	Zinc	3.5 µg/L	J	Field duplicate RPD out of control.
WB-GW- SEEP4-FILT	Groundwater	Zinc	2.6 µg/L	J	Field duplicate RPD out of control.

Table 1. Qualified West Bay Groundwater Data

Analyte was detected; the reported concentration should be considered an estimate due to field duplicate RPD out of control.

CONCLUSION

J

All samples were analyzed within holding times, and appropriate standard methods were used. No laboratory method blank contamination was observed. Analytical accuracy and precision were determined to be generally acceptable based on this review. Field duplicate results were acceptable, with the exception of zinc as noted. All data reported should be considered valid as qualified and acceptable for further use.

ATTACHMENT F

Laboratory Report

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 14, 2010

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 1005-007

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on May 3, 2010 and received by the laboratory on May 4, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 200.8/7470A Analysis

The practical quantitation limit for Arsenic is elevated for samples WB-GW-MW08-0090, WB-GW-MW10-0080 and WB-GW-MW10-1080 due to interferences present in the sample.

The practical quantitation limit for Selenium is elevated for samples WB-GW-MW08-0090, WB-GW-MW09-0090, WB-GW-MW10-0080 and WB-GW-MW10-1080 due to interferences present in the sample.

The duplicate RPD for Zinc is outside control limits due to the inherently high percentage variability of samples that are within five times the detection limit.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Dissolved Metals EPA 200.8/7470A Analysis

The practical quantitation limit for Arsenic is elevated for samples WB-GW-MW08-0090, WB-GW-MW10-0080 and WB-GW-MW10-1080 due to interferences present in the sample.

The practical quantitation limit for Selenium is elevated for samples WB-GW-MW08-0090, WB-GW-MW09-0090, WB-GW-MW10-0080 and WB-GW-MW10-1080 due to interferences present in the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix:	Water	
Units:	ug/L (ppb)	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-007-01 WB-GW-MW08-0090					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	ND	1.8	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	1.3	0.50	200.8	5-7-10	5-7-10	
Copper	5.1	1.0	200.8	5-7-10	5-11-10	
Lead	ND	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	15	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	8.0	200.8	5-7-10	5-10-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	18	2.5	200.8	5-7-10	5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-02					
Client ID:	WB-GW-MW09-0090					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	ND	0.50	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	0.98	0.50	200.8	5-7-10	5-7-10	
Copper	2.7	1.0	200.8	5-7-10	5-11-10	
Lead	ND	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	11	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	1.6	200.8	5-7-10	5-10-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	8.7	2.5	200.8	5-7-10	5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-03					
Client ID:	WB-GW-MW10-0080					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	ND	2.0	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	1.4	0.50	200.8	5-7-10	5-7-10	
Copper	4.5	1.0	200.8	5-7-10	5-11-10	
Lead	ND	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	14	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	2.5	200.8	5-7-10	5-10-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	12	2.5	200.8	5-7-10	5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-04					
Client ID:	WB-GW-MW10-1080					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	ND	2.5	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	1.4	0.50	200.8	5-7-10	5-7-10	
Copper	4.5	1.0	200.8	5-7-10	5-11-10	
Lead	ND	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	13	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	4.5	200.8	5-7-10	5-10-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	11	2.5	200.8	5-7-10	5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-05					
Client ID:	WB-GW-SEEP4-0000					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	1.6	0.50	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	1.0	0.50	200.8	5-7-10	5-7-10	
Copper	1.1	1.0	200.8	5-7-10	5-11-10	
Lead	ND	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	3.1	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	1.0	200.8	5-7-10	5-10-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	5.0	2.5	200.8	5-7-10	5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-06					
Client ID:	WB-GW-SEEP5-0000					
Antimony	ND	0.50	200.8	5-7-10	5-10-10	
Arsenic	1.2	0.50	200.8	5-7-10	5-10-10	
Beryllium	ND	0.50	200.8	5-7-10	5-11-10	
Cadmium	ND	0.50	200.8	5-7-10	5-7-10	
Chromium	1.4	0.50	200.8	5-7-10	5-7-10	
Copper	3.8	1.0	200.8	5-7-10	5-11-10	
Lead	0.57	0.50	200.8	5-7-10	5-10-10	
Mercury	ND	0.025	7470A	5-10-10	5-10-10	
Nickel	5.8	0.50	200.8	5-7-10	5-11-10	
Selenium	ND	1.0	200.8	5-7-10	5-7-10	
Silver	ND	0.50	200.8	5-7-10	5-12-10	
Thallium	ND	0.50	200.8	5-7-10	5-10-10	
Zinc	5.0	2.5	200.8	5-7-10	5-11-10	

TOTAL METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted:	5-7-10
Date Analyzed:	5-7,10,11&12-10
Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0507W1

Analyte	Method	Result	PQL
Antimony	200.8	ND	0.50
Arsenic	200.8	ND	0.50
Beryllium	200.8	ND	0.50
Cadmium	200.8	ND	0.50
Chromium	200.8	ND	0.50
Copper	200.8	ND	1.0
Lead	200.8	ND	0.50
Nickel	200.8	ND	0.50
Selenium	200.8	ND	1.0
Silver	200.8	ND	0.50
Thallium	200.8	ND	0.50
Zinc	200.8	ND	2.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Extracted:	5-10-10
Date Analyzed:	5-10-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0510W1

Analyte	Method	Result	PQL
Mercury	7470A	ND	0.025

10

TOTAL METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted:	5-7-10
Date Analyzed:	5-7,10,11&12-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-007-05

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Antimony	ND	ND	NA	0.50	
Arsenic	1.64	1.55	5	0.50	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	1.01	1.10	9	0.50	
Copper	1.12	1.16	4	1.0	
Lead	ND	ND	NA	0.50	
Nickel	3.06	3.46	12	0.50	
Selenium	ND	ND	NA	1.0	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	0.50	
Zinc	4.97	ND	NA	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Extracted:	5-10-10
Date Analyzed:	5-10-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-050-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.025	

TOTAL METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted:	5-7-10
Date Analyzed:	5-7,10,11&12-10

Matrix: Water Units: ug/L (ppb)

Lab ID: 05-007-05

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	85.3	85	76.0	76	12	
Arsenic	100	103	102	98.5	97	5	
Beryllium	100	92.6	93	86.9	87	6	
Cadmium	100	90.2	90	91.8	92	2	
Chromium	100	87.6	87	95.3	94	8	
Copper	100	95.9	95	89.6	88	7	
Lead	100	95.9	96	92.9	93	3	
Nickel	100	102	99	96.8	94	5	
Selenium	100	97.7	98	90.7	91	7	
Silver	100	96.0	96	96.1	96	0	
Thallium	100	97.8	98	94.8	95	3	
Zinc	100	97.7	93	92.2	87	6	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Extracted:	5-10-10
Date Analyzed:	5-10-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-050-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	6.25	5.34	85	5.39	86	1	

14

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-007-01 WB-GW-MW08-0090					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	ND	1.4	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	0.66	0.50	200.8		5-7-10	
Copper	4.9	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	11	0.50	200.8		5-7-10	
Selenium	ND	6.0	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	15	6.3	200.8		5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-02					
Client ID:	WB-GW-MW09-0090					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	ND	0.50	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	ND	0.50	200.8		5-7-10	
Copper	3.3	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	9.0	0.50	200.8		5-7-10	
Selenium	ND	2.0	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	6.3	2.5	200.8		5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-03					
Client ID:	WB-GW-MW10-0080					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	ND	2.2	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	0.76	0.50	200.8		5-7-10	
Copper	4.8	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	11	0.50	200.8		5-7-10	
Selenium	ND	5.0	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	8.0	2.5	200.8		5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-04					
Client ID:	WB-GW-MW10-1080					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	ND	2.2	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	0.66	0.50	200.8		5-7-10	
Copper	4.5	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	10	0.50	200.8		5-7-10	
Selenium	ND	4.0	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	11	2.5	200.8		5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-07					
Client ID:	WB-GW-SEEP5-FILT					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	1.3	0.50	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	0.55	0.50	200.8		5-7-10	
Copper	3.4	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	4.0	0.50	200.8		5-7-10	
Selenium	ND	1.2	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	3.5	2.5	200.8		5-11-10	

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-007-08					
Client ID:	WB-GW-SEEP4-FILT					
Antimony	ND	0.50	200.8		5-11-10	
Arsenic	1.7	0.50	200.8		5-11-10	
Beryllium	ND	0.50	200.8		5-6-10	
Cadmium	ND	0.50	200.8		5-11-10	
Chromium	0.75	0.50	200.8		5-7-10	
Copper	1.0	1.0	200.8		5-7-10	
Lead	ND	0.50	200.8		5-6-10	
Mercury	ND	0.025	7470A		5-10-10	
Nickel	3.0	0.50	200.8		5-7-10	
Selenium	ND	1.0	200.8		5-11-10	
Silver	ND	0.50	200.8		5-12-10	
Thallium	ND	0.50	200.8		5-6-10	
Zinc	2.6	2.5	200.8		5-11-10	

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	5-6,7,11&12-10
Matrix: Units:	Water ug/L (ppb)
Lab ID:	MB0506D1&SB0507D1

Analyte	Method	Result	PQL
Antimony	200.8	ND	0.50
Arsenic	200.8	ND	0.50
Beryllium	200.8	ND	0.50
Cadmium	200.8	ND	0.50
Chromium	200.8	ND	0.50
Copper	200.8	ND	0.50
Lead	200.8	ND	0.50
Nickel	200.8	ND	0.50
Selenium	200.8	ND	1.0
Silver	200.8	ND	0.50
Thallium	200.8	ND	0.50
Zinc	200.8	ND	2.5

DISSOLVED METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed:	5-10-10		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB0507F1		
Analyte	Method	Result	PQL
Mercury	7470A	ND	0.025

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 5-6,7,11&12-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-007-08

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Antimony	ND	ND	NA	0.50	
Arsenic	1.65	1.67	1	0.50	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	0.746	0.580	25	0.50	С
Copper	1.02	ND	NA	0.50	
Lead	ND	ND	NA	0.50	
Nickel	2.99	2.49	18	0.50	
Selenium	ND	ND	NA	1.0	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	0.50	
Zinc	2.59	2.70	4	2.5	

and is intended only for the use of the individual or company to whom it is addressed.

DISSOLVED METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 5-10-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-050-01

	Sample	Duplicate	000	DOI	-
Analyte	Result	Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.025	

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed: 5-6,7,11&12-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-007-08

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	93.1	93	93.3	93	0	
Arsenic	100	102	100	96.1	94	6	
Beryllium	80	77.1	96	78.3	98	2	
Cadmium	100	92.8	93	87.5	88	6	
Chromium	100	83.6	83	83.2	82	0	
Copper	100	96.0	95	97.6	97	2	
Lead	80	74.4	93	74.1	93	0	
Nickel	100	97.6	95	100	97	2	
Selenium	100	98.2	98	93.7	94	5	
Silver	100	97.9	98	77.2	77	24	
Thallium	80	75.1	94	75.0	94	0	
Zinc	80	84.1	102	84.8	103	1	

DISSOLVED METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed:	5-10-10
----------------	---------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 05-050-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	6.25	5.39	86	5.42	87	1	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

CHLORIDE SM 4500-CI E

Date Analyzed:	5-10-10
----------------	---------

Matrix:	Water
Units:	mg /L

Client ID	Lab ID	Result	PQL
WB-GW-MW08-0090	05-007-01	12000	400
WB-GW-MW09-0090	05-007-02	8500	200
WB-GW-MW10-0080	05-007-03	10000	400
WB-GW-MW10-1080	05-007-04	9600	200
WB-GW-SEEP4-0000	05-007-05	1500	40
WB-GW-SEEP5-0000	05-007-06	4000	100

CHLORIDE SM 4500-CI E QUALITY CONTROL

Date Analyzed:	5-10-10
Dale Analyzeu.	5-10-1

Matrix: Water Units: mg /L

METHOD BLANK QUALITY CONTROL

Lab ID	Result	PQL
MB0510W1	ND	2.0

SPIKE BLANK QUALITY CONTROL

Lab ID	Result	Spiked Amount	Percent Recovery	Control Limit	Flag
SB0510W1	57.0	50.0	114	95-127	

MATRIX SPIKE QUALITY CONTROL

Lab ID	Result	Spiked Amount	Percent Recovery	Control Limit	Flag
05-007-05 Matrix Spike	1550 2610	1000	106	97-124	

DUPLICATE QUALITY CONTROL

		Duplicate		Control			
Lab ID	Result	Result	RPD	Limit	Flag		
05-007-05	1550	1500	3	12			

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

	Berianod hufford	Barreived by	Heceived by	Relinquished by BA. H.		Relinquished by			8 MB-GW-SEEP 4-FIVT	7 WB-GW-SEEPS-FILT	4 WB GW-SEEPE-0000	5 WB-GW-SEEP4-0000	4 WB-GW-MW/10-1080	3 WB-GW-MW/10-0080	2 WB-GW-MWM9-0090	1 WB-GW-MW08-0090	value D Sample Identification	L.Unde D. Dinkinhn	D. Drinkikkh	Protect Manager: Bruy OHTIN GW	235-1577-024	Project Number:	Company:	14648 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 • Www.onsite-env.com	OnSite
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy	(2) Neta, \$1410 12 50		MSGR 5/4/10. 1	01/H S H10	Parametrix 5/4/10 0820	Harmonetry 5/4/10 0820		(1500 4 2051	1430	V 1430 V VZ	1500 2	1505	1500	1425	5/3/10 1340 GW 3	NWTF NWTF Volatil Halog Semiv	es by enatec rolatile	ID /BTE> 8260E J Vola s by E	3 tiles by 3270D /		Same Day 1 Day	(Check One)		Chain of Custody
Chromatograms with final report	> Hg= 0.038~3/	2n = 2-54		PLUE TOUS CONTONCIAS	1 1	* Field fittered . POLS	comments Special Instructions										PAHs PCBs Pestic Total I TCLP HEM I	by 80 ides b cides b RCRA Metals by 166 <i>C</i>	82 y 808 by 815 Metai	1A i1A	als	÷¥	Fequesies Analysis	÷ 05-007	Page of