Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

4660 KITSAP WAY, SUITE A BREMERTON, WA 98312-2357 T. 360.377.0014 F. 360.479.5961 www.parametrix.com

TECHNICAL MEMORANDUM

Date:	October 12, 2010
То:	Steve Teel - Department of Ecology
From:	David Dinkuhn, P.E.
Subject:	Solid Wood Incorporated Site Quarterly Groundwater Monitoring Results, Quarter 7 August 2010
CC:	Kip Summers - City of Olympia David Hanna - City of Olympia Tom Morrill - City of Olympia
Project Number:	235-1577-024
Project Name:	Solid Wood Incorporated (West Bay Park) Site RI/FS and Interim Action

SOLID WOOD INCORPORATED SITE - QUARTER 7 GROUNDWATER MONITORING RESULTS, AUGUST 2010

This technical memorandum presents results for the seventh round of quarterly groundwater monitoring conducted at the Solid Wood Incorporated Site in Olympia, Washington. Quarterly groundwater monitoring is being conducted in accordance with the site's Agreed Order (No. DE-08-TCPSR-5415) and project work plan (Parametrix 2008). This sampling round is the seventh quarterly monitoring event conducted under the site's ongoing Remedial Investigation/Feasibility Study (RI/FS).

QUARTER 7 GROUNDWATER SAMPLING

Groundwater samples were collected from three monitoring wells (MW-08 through MW-10) located in the vicinity of the former wood burner and from one surface water station (SW-1) upgradient (relative to tidal flow) of the former wood burner area (Figure 1). The purpose of the wells is to monitor groundwater conditions in the vicinity of Area D, which was cleaned up during the Interim Action performed in summer 2009 (Parametrix 2010). Quarter seven represents the third quarterly sampling event for the three wells (i.e., they were not sampled during quarters one through four). The wells will be sampled for a minimum of four total quarters under the RI/FS work plan. The purpose of the surface water sample was to obtain information on existing surface water quality conditions in the West Bay of Budd Inlet.

Groundwater samples were collected on August 23, 2010 using a peristaltic pump and low-flow purging/sampling techniques. Prior to sampling, the wells were purged until measured water quality parameters stabilized according to criteria specified in the work plan. Upon stabilization, groundwater samples were collected into the appropriate containers.

The surface water sample collected from upgradient of the former wood burner area was also collected on August 23, 2010. The sample was collected by directly placing the sampling container in the surface water in the direction of flow. Care was taken to prevent loss of preservative.

The water quality parameter measurements for both the monitoring wells and the surface water sample are provided in Table 1. Field data sheets from the sample collection are attached. All samples were collected on an outgoing tide. A tide chart for August 23, 2010 at Olympia, Washington is attached for reference as well as boring logs. Approximate sampling times are provided in Table 1.

Water samples were submitted to Onsite Environmental of Redmond, Washington for chemical analysis of priority pollutant metals (total and dissolved), chloride, and dissolved organic carbon (DOC). A summary of the sample results is presented in Table 2. Table 2 also includes remedial levels (RLs) for groundwater as established in the RI/FS work plan. A Quality Assurance/Quality Control (QA/QC) data review memorandum and the laboratory data report are attached.

The depth to groundwater was measured in each well to provide data used to develop inferred elevation contours as shown on Figure 1. The measurements were collected within a 1-hour period to give a representative snapshot of groundwater elevations. Figure 1 also shows inferred groundwater flow directions based on the elevation contours.

Location ID	Date/Time	pH (units)	Conductivity (mS/cm)	Dissolved Oxygen (mg/l)	Temperature (ºC)	Turbidity (NTU)	Redox (mV)
MW-08	8/23/10 @ 1024	7.21	24.7	0	16.16	0	-345
MW-09	8/23/10 @ 1057	7.17	23.3	0	16.71	0	-358
MW-10	8/23/10 @ 1136	6.50	30.5	0	19.76	0	-298
SW-1	8/23/10 @ 0920	7.07	26.6	5.61	16.28	10.2	-104

Table 1. Final Water Quality Parameters

Notes:

mS/cm = millisiemens per centimeter.

NTU = nephelometric turbidity units.

% = percent.

DISCUSSION AND RECOMMENDATIONS

As shown in Table 2, constituents that exceeded RLs in the samples from the monitoring wells consist of copper and nickel. The concentrations present in the samples are similar to those reported during the first two quarters of sampling (Quarters five and six - February and May 2010). These metals were thought to originate from the former wood burner area, which contained soils with elevated levels of copper, lead, nickel, zinc, and dioxins. These soils were successfully removed during the IA (Parametrix 2010) and should not be a contributing source of copper and nickel to groundwater. Table 2 also shows the results of the surface water sample in comparison to the groundwater results. Total copper and nickel concentrations in the surface water were higher than copper and nickel concentrations in groundwater for all three quarters of data. Note the chloride concentrations in the wells which suggest that the three samples consisted of a mixture of fresh water and 46 to 63 percent sea water. The concentrations of total copper and nickel in the surface water indicate that these metals are present in the wells as a result of area background conditions.

Parametrix recommends collection of three additional surface water samples to confirm background concentrations in West Bay; one located north of the former wood burner area, one located at the SW-1 station,

mg/l = milligrams per liter.

^oC = degrees Celsius.

mV = millivolts.

and one located further south near the northern-most trestle. These samples would be collected for total and dissolved copper and nickel, chloride, and DOC during the upcoming eighth quarter sampling event.

DOC concentrations in the groundwater samples ranged from 23 to 120 mg/l. These values are similar to marine sediment pore water which typically contains 20 mg/L to 175 mg/L DOC. DOC values in this range can affect the bioavailability and resulting toxicity of dissolved copper (Arnold et al 2005). Parametrix recommends that groundwater samples collected during future monitoring events be analyzed for DOC. If appropriate, the DOC data will be used to evaluate the toxicity of the measured copper concentrations considering site-specific conditions.

REFERENCES

Arnold, W. Ray et al. 2005. Effects of Dissolved Organic Carbon on Copper Toxicity: Implications for Saltwater Copper Criteria. Integrated Environmental Assessment and Management Volume 1, Number 1. pp. 34-39.

Parametrix. 2008. Work Plan for Remedial Investigation/Feasibility Study and Interim Action, Solid Wood Incorporated Site (West Bay Park). Prepared for City of Olympia Parks, Arts, and Recreation Department. October.

Parametrix. 2010. Solid Wood Incorporated Site (West Bay Park) Interim Action Report. Prepared for City of Olympia Parks, Arts, and Recreation Department. September.

ATTACHMENTS:

Table 2 Figure 1 Groundwater Field Data Sheets Tide Chart Boring Logs Data Validation Technical Memorandum Laboratory Report

TABLE 2

Table 2 Solid Wood Inicorporated Site RI/FS Quarter 7 Groundwater Results, August 2010

		Location ID		MW-08		_		MW-09			_	MW	/-10		SW1
ANALYTE		te Sampled	2/3/10	5/3/10	8/23/10	2/3/10	2/3/10 ^a	5/3/10	8/23/10	8/23/10 ^a	2/3/10	5/3/10	5/3/10 ^a	8/23/10	8/23/2010
	Units	RL													
TOTAL METALS															
Antimony	µg/l	6 ⁰	6U	0.50U	0.50U	6U	6U	0.50U	0.50U	0.50U	6U	0.50U	0.50U	1.3U	1.3U
Arsenic	μg/l	5	6.5U	1.8U	2.0U	5U	5U	0.50U	1.2U	2U	7.5U	2.0U	2.5U	4.0U	6U
Beryllium	μg/l	4 ⁰	4U	0.50U	0.50U	4U	4U	0.50U	0.50U	0.50U	4U	0.50U	0.50U	0.50U	0.50U
Cadmium	μg/l	5	5U	0.50U	0.50U	5U	5U	0.50U	0.50U	0.50U	5U	0.50U	0.50U	0.50U	0.50U
Chromium	μg/l	50	50U	1.3	1.3	50U	50U	0.98	0.89	1.0	50U	1.4	1.4	1.3	3.2
Copper	μg/l	2.4 ^c	5.4	5.1	4.6	4	3.4	2.7	3.6	3.8	6.8	4.5	4.5	6.1	14
Lead	μg/l	8.1 ^c	8U	0.50U	0.50U	8U	8U	0.50U	0.50U	0.50U	8U	0.50U	0.50U	0.50U	1.1
Mercury	μg/l	0.025 ^c	0.038U	0.025U	0.025U	0.038U	0.038U	0.025	0.025U	0.025U	0.038U	0.025U	0.025U	0.025U	0.025U
Nickel	μg/l	8.2 ^c	9.8	15	9.3	11	11	11	9.8	11	13	14	13	14	16
Selenium	μg/l	50 [¤]	50U	8.0U	20U	50U	50U	1.6U	18U	15U	50U	2.5U	4.5U	24U	25U
Silver	μg/l	1.9 ^c	1.9U	0.50U	0.50U	1.9U	1.9U	0.50U	0.50U	0.50U	1.9U	0.50U	0.50U	1.3U	1.3U
Thallium	μg/l	0.47 ^c	0.45U	0.50U	0.50U	0.45U	0.45U	0.50U	0.50U	0.50U	0.45U	0.50U	0.50U	0.50U	0.50U
Zinc	μg/l	81 ^c	80U	18	18J	80U	80U	8.7	9.8J	4.7J	80U	12	11	11J	6.3U
DISSOLVED METALS															
Antimony	μg/l	6 [¤]	6U	0.50U	0.50U	6U	6U	0.50U	0.50U	0.50U	6U	0.50U	0.50U	1.3U	
Arsenic	μg/l	5	8U	1.4U	1.2U	6U	5U	0.50U	1.2U	1.2U	7.5U	0.50U	2.2U	3.5U	
Beryllium	μg/l	4 ⁰	4U	0.50U	0.50U	4U	4U	0.50U	0.50U	0.50U	4U	0.50U	0.50U	0.50U	
Cadmium	μg/l	5	5U	0.50U	0.50U	5U	5U	0.50U	0.50U	0.50U	5U	0.50U	0.50U	0.50U	
Chromium	μg/l	50	50U	0.66	1.1	50U	50U	0.50U	0.75	0.8	50U	0.76	0.66	1.4	
Copper	μg/l	2.4 ^c	5.5	4.9	4.2	4.1	3.4	3.3	3.5	3.4	5.9	4.8	4.5	5.1	
Lead	μg/l	8.1 [°]	8U	0.50U	0.50U	8U	8U	0.50U	0.50U	0.50U	8U	0.50U	0.50U	0.50U	
Mercury	μg/l	0.025 ^c	0.038U	0.025U	0.025U	0.038U	0.038U	0.025U	0.025U	0.025U	0.038U	0.025U	0.025U	0.025U	
Nickel	μg/l	8.2 ^c	12	11	10	11	8.9	9.0	7.8	8.3	11	11	10	12	
Selenium	μg/l	50 [¤]	50U	6.0U	24U	50U	50U	2.0U	18U	16U	50U	5.0U	4.0U	27U	
Silver	μg/l	1.9 ^c	1.9U	0.50U	0.50U	1.9U	1.9U	0.50U	0.50U	0.50U	1.9U	0.50U	0.50U	1.3U	
Thallium	μg/l	0.47 ^c	0.45U	0.50U	0.50U	0.45U	0.45U	0.50U	0.50U	0.50U	0.45U	0.50U	0.50U	0.50U	
Zinc	μg/l	81 [°]	80U	15	5.9	80U	80U	6.3	4.5	4.1	80U	8	11	4.8	
GENERAL CHEMISTRY	1.0			-				-	-			-		-	
Chloride	mg/l	-	11,000	12,000	8,800	8,600	8,400	8,500	9,100	8,500	13,000	10,000	9,600	12,000	19,000
Dissolved Organic Carbon	mg/l	-			100J				72J	120J				38J	23J

Notes:

^a = Duplicate sample.

 $^{\text{b}}$ = State and federal groundater maximum contaminant level (MCL).

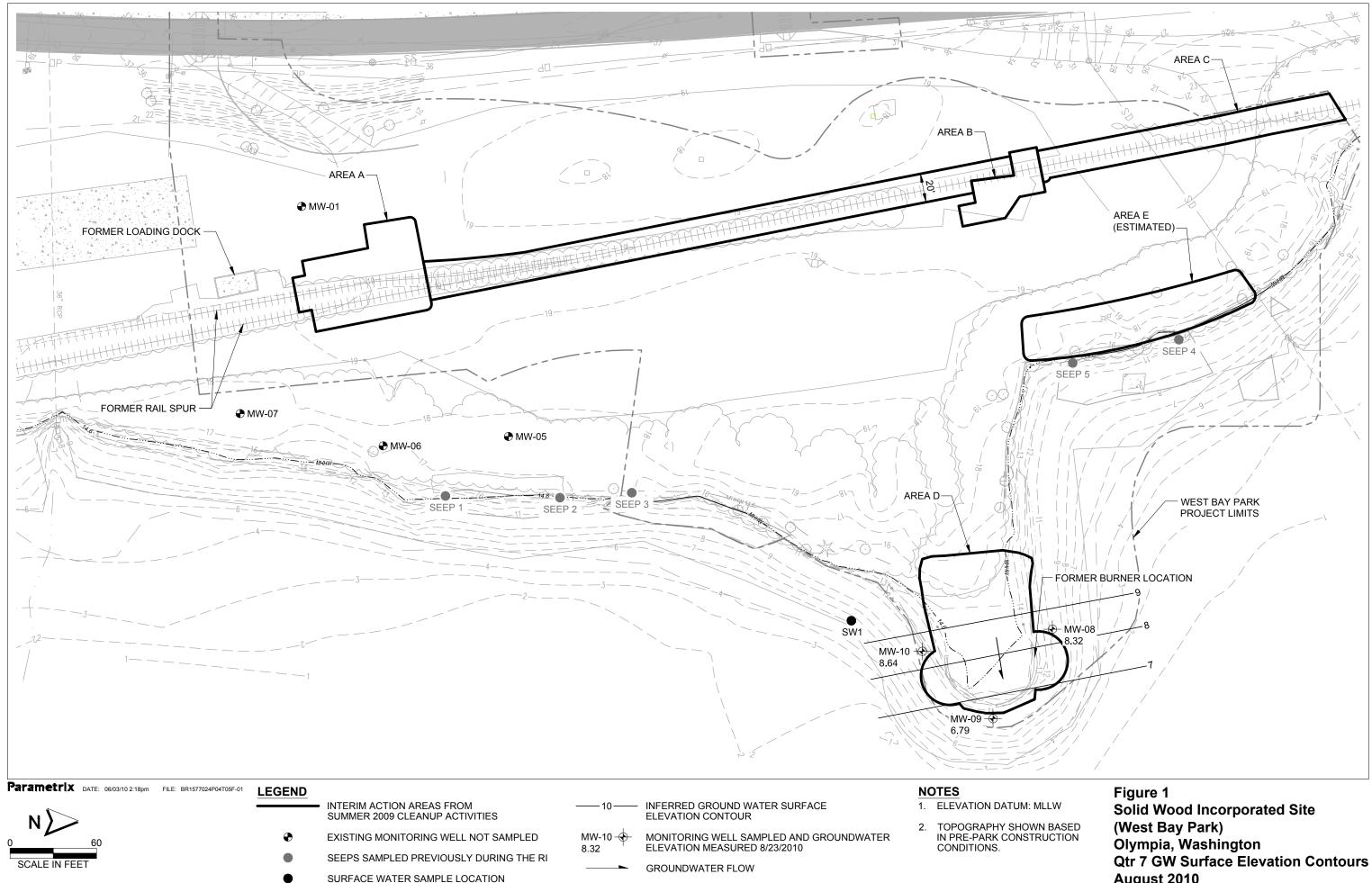
^c = Surface water applicable or relevant and appropriate requirement (ARAR).

italics = PQL exceeds screening level.

J= Analyte was detected. The reported concentration should be considered an estimate.

mg/l = milligrams per liter.

RL = Remedial level.


RL = Remedial level.

 $\mu g/I =$ micrograms per liter.

U = Not detected at given practical quantitation limit (PQL).

-- = Not analyzed. Exceeds RL.

FIGURE 1

August 2010

GROUNDWATER FIELD DATA SHEETS

Parametrix, Inc.

私

Well #: <u>MW-</u>08 Sample #: _____

Groundwater Sampling Field Data Sheet

WB-GW-MW08-0080

Project Number Project Name Project Address Client Name Client Nam	Ŷ
Casing Diameter: 2" 4" 6" Other 3/4."	
Depth to Water (feet) 2.42 Purge Vol. Meas.Method Stop Whith/mehs. Ch Depth of Well (feet) 14.44 Date Purged 3/23/10 Reference Point (surveyors notch/etc) 1000 Purge Time (from/to) 1008 - 1024 Date/Time Sampled 5/23/10 1025 360 m//min	np
Purge Volume Calculation: $(\pi r^2h)(7.48 \text{ gal/ft}^3)$ (# Casing volumes) Purge Volume (gallons) for 2" = (0.16)(h)(#Cv); 4" = (0.653)(h)(#Cv); 6" = (1.48)(h)(#Cv) Calculated Purge Volume (gallons) Actual Purge Volume (gallons)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Purge Equipment Description Sampling Equipment Generation Laboratory Onente Date Sent to Lab 2/23/10 Chain-of-Custody (yes/no) YES Field QC Sample Number N/A Shipment Method W155 Split with (name(s)/organization) D/A	
Shipment Method M45 Split with (name(s)/organization) DA Well Integrity Mark Mark Page of Signature Mark Page of	

	lwater S				heet	WB	-GW-Y	nwog-	ODBD
Project Nur Project Nan Project Add Client Nam	ne <i>We</i> Iress	5-1577 GT Br I Oly 1			tion bled By ed By	6/23 BN11 L.Line	AP Delv Le		- , ,
Casing Dia	meter: 2"	4"	6"	Oth	er <u>3/1</u>	F"			
Depth to W Depth of W Reference I Date/Time	ell (feet)	3.48 14.44 rs notch/etc 8/23 110) <u></u> (100	Date	e Vol. Mea Purged e Time (fro 2		<u>mens v</u> 9/2- 1042- /m.in	y /5107 1037-	watch-
F	Purge Volume Purge Volume Calculated Pur	(gallons) fo	or $2" = (0.16)$	(h)(#Cv); 4		(h)(#Cv);		(h)(#Cv)	
TIME (2400 hr) 1042 1045 1045 1053 1057	WATER LEVEL (feet) 4.00 4.00 4.00	pH (units) ± 0.1 7,17 7,17 7,17 7,18 7,18 7,18 7,18	COND (mS/cm) ± 3% 24.3 24.1 23.4 23.9 23.9	DO (mg/L) ±10%].4] _].27- D D	TEMP °C 16.92 16.85 16.75 16.75	TURB. ±10% 0 0 0 0 0 0 0 0 0 0 0 0 0	ORP (mV) -321 -344 -361 -351 -351 -358	CUM. VO (gal)	
Carrierie		`						Autoreau and	
Purge Equi Laboratory Chain-of-C Shipment I	Custody (yes/n	o) YES	eltic e	Date Fiel	ppling Equi e Sent to La d QC Samp t with (nam	ib ile Numbe		23 Aw-mu/0 FA	 ∏
Well Integ Remarks Signature	rity GU	Ner	n M(mum	Art Page	440 1	of		4

Parametrix, Inc.

 $\frac{J_{1}^{(i)}}{J_{2}^{(i)}}=\frac{\Phi_{1}}{\sigma}$

a she wegativit

Well #: ______ID Sample #: _____

Groundwater Sampling Field Data Sheet WB-GW-MWID-DC	КD
Project Number Project Name Project Address Client Name CH JUT MAN Purged By Project Address Client Name CH JUT MAN Purged By	
Casing Diameter: 2"4"6"Other <u>34</u> "	
Depth to Water (feet) 2.44 Purge Vol. Meas.Method 500 M/1.4h M/16.0 Depth of Well (feet) 9.44 Date Purge Vol. Meas.Method 500 M/1.4h M/16.0 Reference Point (surveyors notch/etc) 1000 Purge Time (from/to) Date/Time Sampled 8.23 2.50	inp
Purge Volume Calculation: $(\pi r^2 h)(7.48 \text{ gal/ft}^3)$ (# Casing volumes) Purge Volume (gallons) for 2" = (0.16)(h)(#Cv); 4" = (0.653)(h)(#Cv); 6" = (1.48)(h)(#Cv) Calculated Purge Volume (gallons) Actual Purge Volume (gallons)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Purge Equipment Sampling Equipment	
Laboratory Image: Chain-of-Custody (yes/no) YES Date Sent to Lab 8/23/10 Chain-of-Custody (yes/no) YES Field QC Sample Number N/A Shipment Method Image: Chain of the sent to Lab Split with (name(s)/organization) Split	
Well Integrity <u>GIMA</u> Remarks <u>WMA W N MMMMent</u> Signature <u>Fundle</u> Page <u>of</u>	

PARAMETRIX

Form 02-EN-100/Rev. 10/02

Sampling Field Data Sheet

f 1- -			Stat	ion #: <u>SW</u>
Project Number:	235-1577-00404	UB Datë:	8/23/10	
Project Name:	West Bar	Client Name	UPAP-D	
Project Address:	WEGT BANG Dr	Sampled By:	L.Unde	·····
	Olymph, WA	· · ·		
$\begin{array}{c} \text{TIME} & \text{pH (ur} \\ (2400 \text{ hr}) & (\pm 0) \\ \hline $	1) (± 3%) TEN		$\begin{array}{c} OPP(n)\\ \hline COLOR\\ O(mg/L) \\ \hline S. [l] \\ \hline -104 \\ \hline \end{array}$	1V) TURBIDITY (WTT (visual) <u>[0.2.</u>
Sampling Equipme	nt:		·	
Laboratory:	Onente	Date Sent to Lab		laglid.
Chain-of-Custody	(yes/no): <u>Y</u>	Field QC Sample	Number:	V/A
Shipment Method:	NPS	Split With (name	s[s]/organization):	J <u>/A</u>
Remarks:	• ⁿ	NW-09	N 47° 03' (W 122° 54	,
	mw-08	mw-	10	
				SW1
•				
Signature	Linde			····

TIDE CHART

Tides for Olympia, Budd Inlet starting with August 23, 2010.

Day		High /Low	Tide Time	Height Feet	Sunrise Sunset	Moon	Time	% Moon Visible	
M	23	Low	12:19 AM	5.8	6:19 AM	Set	5:23 AM	97	
	23	High	5:04 AM	12.4	8:08 PM	Rise	7:29 PM		
	23	Low	11:50 AM	0.0					
	23	High	6:47 PM	14.1	New Yorking Contraction of the second				<u>Schooners North</u> Sailing San Juans,
Tu	24	Low	12:46 AM	5.2	6:21 AM	Set	6:27 AM	99	and all of the
	24	High	5:46 AM	12.4	8:06 PM	Rise	7:48 PM		islands on a
	24	Low	12:24 PM	0.4					beautiful Schooner www.sanjuansailcharter.u
e.	24	High	7:03 PM	14.1					www.sanjuansalicharter.i
T-7	25	Levi	1:11 AM	4.5	6:22 AM	Set	7:30 AM	99	
W		Low					8:06 PM	99	
	25	High	6:26 AM	12.4 1.0	8:05 PM	Rise	0:00 PM		
	25	Low	12:56 PM						Local Moving
	25	High	7:20 PM	14.2					<u>Company</u>
m1-	20	Τ	1.07 7.14	3.8	6:23 AM	Set	8:33 AM	98	Call for fast free
Th	26	Low	1:37 AM 7:07 AM		8:03 PM	Rise	8:24 PM	50	quote! 253-854-
	26 26	High	7:07 AM 1:28 PM	12.4 1.7	0:03 PM	KIPE	0.24 FM		6683
		Low		14.2					www.FriendsandFamilyN
	26	High	7:41 PM	14.2					
F	27	Low	2:06 AM	2.9	6:25 AM	Set	9:37 AM	95	
	27	High	7:49 AM	12.4	8:01 PM	Rise	8:43 PM		
	27	Low	2:01 PM	2.7					Seattle Coupons
	27	High	8:05 PM	14.2					1 Huge Daily Deal On The Best Stuff

Return to the <u>Washington selection</u> page, the <u>FAQs/definitions</u> page, the <u>region selection</u> page, the <u>script licensing</u> page, or to the <u>home</u> page.

For information on regulations for fishing in Washington contact: <u>Washington Department of</u> Fish and Wildlife

Typhoons, Hurricanes, etc., are NOT included in the predictions. Tidal current direction changes and tide high and low time predictions can be very different. Tide predictions are PREDICTIONS, they can be wrong so use common sense.

© 1999-2010 Tide High and Low, Inc. Reproduction of tide predictions in any form or format is explicitly prohibited.

Tide Sun

Moon

Tide

www.saltwatertides.com

Official Site: www.Groupon.com/Seatl Planning A Conference? Make Your Conference A Success! Hold Your Conference In Bellevue WA

VisitBellevueWashington

To Do In Seattle!

BORING LOGS

Pa	iran	netrix inspired people - inspi	red solutions – making a	diffe	rence	Log	ID: M	W-08	/B(CC7	757
Pi Lo	roject ocatio	Name: West Bay RI/FS #: 235-1577-024 n: Burner Point nates: N47°03'10.2" / W122°54'41.6"	Drilling Company: ESN Drilling Method: Direct Logged by: L. Linde Checked by: M. Marsha	Boring Depth Groun	g Dates g Depth to Wate d Eleva	: 14 ft er: 2 ft					
Depth (ft)	Lithologic Symbol	Description/Classification	of Materials	Sa (mqq) OIA	ed elqm Samble ID Samble S	tails Lacovery	Borin	g Diagra	ım	Lithologic Symbol	Depth (ft)
		Ground Surface Imported Gravel and Cobble (Fill Brown Sand (Native) Gray, shells, easy drilling Bottom of boring at 14 feet below grou					Marine-Grade Concrete	3/4-inch PVC 0.010 Slot pre-packed Screen: 4-14' 3/4-inch PVC Well Casino: 0.4'-4'	-	ၜၟၟၛၟႄၟၜၟၛၟၜၟၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟၜၟ	
20-	1										-20

Pa	Parametrix inspired people - inspired solutions - making a difference							1W-()9/B	CC7	758
	•	Name: West Bay RI/FS #: 235-1577-024	Drilling Company: ESN Drilling Method: Direct		nwest		g Dates g Depth			0	
	-	n: Burner Point	Logged by: L. Linde			to Wat					
Coordinates: N47 °03'09.8" / W122 °54'40.6" Checked by: M. Marshall, L					ì.	-	d Elev				
				Sa	mple De	tails					
Depth (ft)	Lithologic Symbol	Description/Classification	n of Materials	PID (ppm)	Sample ID	Recovery	Borin	g Dia	gram	Lithologic Symbol	Depth (ft)
0-	02220	Ground Surface	-						-	02X23	-0
0- 5- 10- 15-	4.5 Cost Cost Cost Cost Cost Cost Cost Cost	Imported Gravel and Cobble (Fill Brown Bottom of boring at 14 feet below grou					Marine-Grade Concrete 10/20 Silica Sand: 4'-14' ↓ 21/40 Silica Sand: 3'-4' ↓		3/4-inch PVC 0.010 Slot pre-packed Screen: 4'-14' 3/4-inch PVC Well Casing: 0.4'-4' SXXX		

Pa	Parametrix inspired people - inspired solutions - making a difference						ID: MW-1	0/B(CC7	759
Pi Lo	roject ocatio	Name: West Bay RI/FS #: 235-1577-024 n: Burner Point nates: N47°03'09.3" / W122°54'41.3"	Drilling Company: ESN Drilling Method: Direct Logged by: L. Linde Checked by: M. Marsha	Boring Depth Groun	g Dates: 1-22 g Depth: 14 ft to Water: 2 ft d Elevation:	t)			
Depth (ft)	Lithologic Symbol	Description/Classificatior	of Materials	Sa (mqq) OIA	ed elqm Samble ID Samble S	tails Lecover	Boring Diag	ram	Lithologic Symbol	Depth (ft)
		Ground Surface Imported Gravel and Cobble (Fill Brown Hard drilling, difficult to advance Sand (Native) Gray, shells, easy drilling Bottom of boring at 14 feet below grout					21/40 5	3/4-inch PVC 0.010 Slot pre-packed Screen: 4'-14' 3/4-inch PVC Well Casing: 0.4'-4' Neat Cement: 1'-3'		- 0 - 5 - 10
20-										-20

DATA VALIDATION TECHNICAL MEMORANDUM Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

411 108th AVENUE NE, SUITE 1800 BELLEVUE, WA 98004-5571 T. 425.458.6200 F. 425.458.6363 www.parametrix.com

TECHNICAL MEMORANDUM

Date:	September 20, 2010
To:	Project File
From:	Annika Deutsch
Subject:	Quality Assurance/Quality Control Review for West Bay
cc:	David Dinkuhn Lara Linde
Project Number:	235-1577-024 (04/04)
Project Name:	West Bay 7th Quarter Groundwater Monitoring

INTRODUCTION

This technical memorandum summarizes the results of an internal quality assurance/quality control (QA/QC) review of analytical results for groundwater samples collected for the 7th Quarter groundwater monitoring event at the Solid Wood Inc. Site. Samples were collected on August 23, 2010. One surface water and four groundwater samples (including a field duplicate [WB-GW-MW09-1080]) were submitted to OnSite Environmental, Inc. (Redmond, WA) for analysis. Dissolved organic carbon analysis was subcontracted to Am Test Inc. (Kirkland, WA).

All samples were analyzed for total priority pollutant metals, chloride, and dissolved organic carbon (DOC). Filtered groundwater samples were analyzed for dissolved priority pollutant metals.

Final laboratory data were submitted to Parametrix via a Tier II-type data report (On-Site Laboratory Reference Number 1008-163). All data and analytical QC elements were reviewed against laboratory and method QC criteria, and qualifiers were applied where judged appropriate.

DATA REVIEW SUMMARY

All samples collected were prepared and analyzed using standard methods. All method holding times were met. All analyses requested on the COC were conducted.

No laboratory method blank contamination was observed.

Field duplicate results were acceptable, with the exception of total zinc (relative percent difference [RPD] = 70% [limit = 25%]) and DOC (RPD = 50% [limit = 25%]). All detections of total zinc and DOC results were qualified as estimated "J" as a result. Samples without detections of these analytes were not affected.

All other analytical QC results were in control, indicating acceptable analytical accuracy and precision. Table 1 summarizes all data qualified based on this review (i.e., does not include laboratory qualified data).

TECHNICAL MEMORANDUM (CONTINUED)

	Tab		ed west bay	Groundwal	er Dala
Sample ID	Matrix	Analyte	Result	Qualifier	Reason
WB-SW-SW01-0000	Surface Water	DOC	23 mg/L	J	Field duplicate RPD out of control.
WB-GW-MW08-0080	Groundwater	Total Zinc	18 µg/L	J	Field duplicate RPD out of control.
WB-GW-MW08-0080	Groundwater	DOC	100 mg/L	J	Field duplicate RPD out of control.
WB-GW-MW09-0080	Groundwater	Total Zinc	9.8 μg/L	J	Field duplicate RPD out of control.
WB-GW-MW09-0080	Groundwater	DOC	72 mg/L	J	Field duplicate RPD out of control.
WB-GW-MW09-1080	Groundwater	Total Zinc	4.7 μg/L	J	Field duplicate RPD out of control.
WB-GW-MW09-1080	Groundwater	DOC	120 mg/L	J	Field duplicate RPD out of control.
WB-GW-MW10-0080	Groundwater	Total Zinc	11 μg/L	J	Field duplicate RPD out of control.
WB-GW-MW10-0080	Groundwater	DOC	38 mg/L	J	Field duplicate RPD out of control.

Table 1. Qualified West Bay Groundwater Data

J Analyte was detected; the reported concentration should be considered an estimate due to field duplicate RPD out of control.

CONCLUSION

All samples were analyzed within holding times, and appropriate standard methods were used. No laboratory method blank contamination was observed. Analytical accuracy and precision were determined to be generally acceptable based on this review. Field duplicate results were acceptable, with the exception of total zinc and dissolved organic carbon as noted. All data reported should be considered valid as qualified and acceptable for further use.

LABORATORY REPORT

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2010

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 1008-163

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 24, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 23, 2010 and received by the laboratory on August 24, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 200.8/7470A Analysis

The practical quantitation limits for Arsenic and Selenium are elevated due to interferences present in the samples.

The practical quantitation limits for Antimony, Silver, and Zinc are elevated for sample WB-SW-SW01-0000 due to interferences present in the sample.

The practical quantitation limits for Antimony and Silver are elevated in sample WB-GW-MW10-0080 due to interferences present in the sample.

Dissolved Metals by EPA 200.8/7470A Analysis

The practical quantitation limits for Arsenic and Selenium are elevated due to interferences present in the samples.

The practical quantitation limits for Antimony and Silver are elevated in sample WB-GW-MW10-0080 due to interferences present in the sample.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

TOTAL METALS EPA 200.8/7470A

Matrix:	Water
Units:	ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-163-01					
Client ID:	WB-SW-SW01-0000					
Antimony	ND	1.3	200.8	8-31-10	9-2-10	
Arsenic	ND	6	200.8	8-31-10	9-2-10	
Beryllium	ND	0.50	200.8	8-31-10	8-31-10	
Cadmium	ND	0.50	200.8	8-31-10	9-1-10	
Chromium	3.2	0.50	200.8	8-31-10	8-31-10	
Copper	14	2.5	200.8	8-31-10	9-1-10	
Lead	1.1	0.50	200.8	8-31-10	9-1-10	
Mercury	ND	0.025	7470A	9-1-10	9-1-10	
Nickel	16	1.3	200.8	8-31-10	9-1-10	
Selenium	ND	25	200.8	8-31-10	9-1-10	
Silver	ND	1.3	200.8	8-31-10	9-2-10	
Thallium	ND	0.50	200.8	8-31-10	9-1-10	
Zinc	ND	6.3	200.8	8-31-10	9-1-10	

Lab ID:	08-163-02					
Client ID:	WB-GW-MW08-0080					
Antimony	ND	0.50	200.8	8-31-10	9-2-10	
Arsenic	ND	2.0	200.8	8-31-10	8-31-10	
Beryllium	ND	0.50	200.8	8-31-10	8-31-10	
Cadmium	ND	0.50	200.8	8-31-10	8-31-10	
Chromium	1.3	0.50	200.8	8-31-10	8-31-10	
Copper	4.6	1.0	200.8	8-31-10	8-31-10	
Lead	ND	0.50	200.8	8-31-10	9-1-10	
Mercury	ND	0.025	7470A	9-1-10	9-1-10	
Nickel	9.3	0.50	200.8	8-31-10	8-31-10	
Selenium	ND	20	200.8	8-31-10	9-1-10	
Silver	ND	0.50	200.8	8-31-10	9-2-10	
Thallium	ND	0.50	200.8	8-31-10	9-1-10	
Zinc	18	2.5	200.8	8-31-10	8-31-10	

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-163-03					
Client ID:	WB-GW-MW09-0080					
Antimony	ND	0.50	200.8	8-31-10	9-2-10	
Arsenic	ND	1.2	200.8	8-31-10	9-2-10	
Beryllium	ND	0.50	200.8	8-31-10	8-31-10	
Cadmium	ND	0.50	200.8	8-31-10	8-31-10	
Chromium	0.89	0.50	200.8	8-31-10	8-31-10	
Copper	3.6	1.0	200.8	8-31-10	8-31-10	
Lead	ND	0.50	200.8	8-31-10	8-31-10	
Mercury	ND	0.025	7470A	9-1-10	9-1-10	
Nickel	9.8	0.50	200.8	8-31-10	8-31-10	
Selenium	ND	18	200.8	8-31-10	9-2-10	
Silver	ND	0.50	200.8	8-31-10	9-2-10	
Thallium	ND	0.50	200.8	8-31-10	8-31-10	
Zinc	9.8	2.5	200.8	8-31-10	8-31-10	

ad ID:	08-163-04

Lab ID.						
Client ID:	WB-GW-MW09-1080					
Antimony	ND	0.50	200.8	8-31-10	9-2-10	
Arsenic	ND	2.0	200.8	8-31-10	9-2-10	
Beryllium	ND	0.50	200.8	8-31-10	8-31-10	
Cadmium	ND	0.50	200.8	8-31-10	8-31-10	
Chromium	1.0	0.50	200.8	8-31-10	8-31-10	
Copper	3.8	1.0	200.8	8-31-10	8-31-10	
Lead	ND	0.50	200.8	8-31-10	9-1-10	
Mercury	ND	0.025	7470A	9-1-10	9-1-10	
Nickel	11	0.50	200.8	8-31-10	8-31-10	
Selenium	ND	15	200.8	8-31-10	9-1-10	
Silver	ND	0.50	200.8	8-31-10	9-1-10	
Thallium	ND	0.50	200.8	8-31-10	9-1-10	
Zinc	4.7	2.5	200.8	8-31-10	8-31-10	

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-163-05					
Client ID:	WB-GW-MW10-0080					
Antimony	ND	1.3	200.8	8-31-10	9-2-10	
Arsenic	ND	4.0	200.8	8-31-10	8-31-10	
Beryllium	ND	0.50	200.8	8-31-10	8-31-10	
Cadmium	ND	0.50	200.8	8-31-10	9-1-10	
Chromium	1.3	0.50	200.8	8-31-10	8-31-10	
Copper	6.1	1.0	200.8	8-31-10	8-31-10	
Lead	ND	0.50	200.8	8-31-10	9-1-10	
Mercury	ND	0.025	7470A	9-1-10	9-1-10	
Nickel	14	0.50	200.8	8-31-10	8-31-10	
Selenium	ND	24	200.8	8-31-10	9-1-10	
Silver	ND	1.3	200.8	8-31-10	9-2-10	
Thallium	ND	0.50	200.8	8-31-10	9-1-10	
Zinc	11	2.5	200.8	8-31-10	8-31-10	

TOTAL METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-10
Date Analyzed:	8-31&9-2-10
Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0831W1

Analyte	Method	Result	PQL
Antimony	200.8	ND	0.50
Arsenic	200.8	ND	1.2
Beryllium	200.8	ND	0.50
Cadmium	200.8	ND	0.50
Chromium	200.8	ND	0.50
Copper	200.8	ND	1.0
Lead	200.8	ND	0.50
Nickel	200.8	ND	0.50
Selenium	200.8	ND	1.0
Silver	200.8	ND	0.50
Thallium	200.8	ND	0.50
Zinc	200.8	ND	2.5

TOTAL MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-10
Date Analyzed:	9-1-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: MB0901W1

Analyte	Method	Result	PQL
Mercury	7470A	ND	0.025

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-10
Date Analyzed:	8-31&9-2-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-153-02

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Antimony	ND	ND	NA	0.50	
Arsenic	12.7	12.7	0	1.2	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	0.568	ND	NA	0.50	
Copper	5.09	4.54	11	1.0	
Lead	ND	ND	NA	0.50	
Nickel	3.55	3.24	9	0.50	
Selenium	ND	ND	NA	1.0	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	0.50	
Zinc	4.48	4.18	7	2.5	

TOTAL MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-10
Date Analyzed:	9-1-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-163-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.025	

TOTAL METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Extracted:	8-31-10
Date Analyzed:	8-31&9-2-10

Matrix:	Water	
Units:	ug/L (ppb)	

Lab ID: 08-153-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	91.9	92	93.5	94	2	
Arsenic	100	102	90	104	91	2	
Beryllium	100	83.6	84	81.4	81	3	
Cadmium	100	95.4	95	93.2	93	2	
Chromium	100	80.7	80	78.0	77	4	
Copper	100	94.3	89	95.0	90	1	
Lead	100	94.1	94	93.9	94	0	
Nickel	100	94.1	91	94.5	91	0	
Selenium	100	93.9	94	91.4	91	3	
Silver	100	89.4	89	92.6	93	4	
Thallium	100	95.8	96	90.6	91	6	
Zinc	100	101	96	98.8	94	2	

TOTAL MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Extracted:	9-1-10
Date Analyzed:	9-1-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-163-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	6.25	5.92	95	5.70	91	4	

11

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

	- 3. (1-17			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
	00,400,00					
Lab ID:	08-163-02					
Client ID:	WB-GW-MW08-0080				/ -	
Antimony	ND	0.50	200.8		9-2-10	
Arsenic	ND	1.2	200.8		8-31-10	
Beryllium	ND	0.50	200.8		8-31-10	
Cadmium	ND	0.50	200.8		9-1-10	
Chromium	1.1	0.50	200.8		8-31-10	
Copper	4.2	1.0	200.8		8-31-10	
Lead	ND	0.50	200.8		9-1-10	
Mercury	ND	0.025	7470A		9-1-10	
Nickel	10	0.50	200.8		9-1-10	
Selenium	ND	24	200.8		8-31-10	
Silver	ND	0.50	200.8		9-1-10	
Thallium	ND	0.50	200.8		9-1-10	
Zinc	5.9	2.5	200.8		8-31-10	
Lab ID:	08-163-03					
Client ID:	WB-GW-MW09-0080					
Antimony	ND	0.50	200.8		9-2-10	
Arsenic	ND	1.2	200.8		9-2-10	
Beryllium	ND	0.50	200.8		8-31-10	
Cadmium	ND	0.50	200.8		8-31-10	
Chromium	0.75	0.50	200.8		8-31-10	
Copper	3.5	1.0	200.8		8-31-10	
Lead	ND	0.50	200.8		8-31-10	
Mercury	ND	0.025	7470A		9-1-10	
Nickel	7.8	0.50	200.8		9-1-10	
Selenium	ND	18	200.8		9-2-10	
Silver	ND	0.50	200.8		9-2-10	
Thallium	ND	0.50	200.8		8-31-10	
Zinc	4.5	2.5	200.8		8-31-10	

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-163-04					
Client ID:	WB-GW-MW09-1080					
Antimony	ND	0.50	200.8		9-2-10	
Arsenic	ND	1.2	200.8		9-2-10	
Beryllium	ND	0.50	200.8		8-31-10	
Cadmium	ND	0.50	200.8		8-31-10	
Chromium	0.80	0.50	200.8		8-31-10	
Copper	3.4	1.0	200.8		8-31-10	
Lead	ND	0.50	200.8		8-31-10	
Mercury	ND	0.025	7470A		9-1-10	
Nickel	8.3	0.50	200.8		9-1-10	
Selenium	ND	16	200.8		9-2-10	
Silver	ND	0.50	200.8		9-2-10	
Thallium	ND	0.50	200.8		8-31-10	
Zinc	4.1	2.5	200.8		8-31-10	
Lab ID:	08-163-05					
Client ID:	WB-GW-MW10-0080					
Antimony	ND	1.3	200.8		9-2-10	

Client ID:	WB-GW-MW10-0080			
Antimony	ND	1.3	200.8	9-2-10
Arsenic	ND	3.5	200.8	8-31-10
Beryllium	ND	0.50	200.8	8-31-10
Cadmium	ND	0.50	200.8	9-1-10
Chromium	1.4	0.50	200.8	8-31-10
Copper	5.1	1.0	200.8	8-31-10
Lead	ND	0.50	200.8	9-1-10
Mercury	ND	0.025	7470A	9-1-10
Nickel	12	0.50	200.8	9-1-10
Selenium	ND	27	200.8	8-31-10
Silver	ND	1.3	200.8	9-2-10
Thallium	ND	0.50	200.8	9-1-10
Zinc	4.8	2.5	200.8	8-31-10

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed:	8-31&9-2-10
Matrix: Units:	Water ug/L (ppb)
Lab ID:	MB0831D1

Analyte	Method	Result	PQL
Antimony	200.8	ND	0.50
Arsenic	200.8	ND	1.2
Beryllium	200.8	ND	0.50
Cadmium	200.8	ND	0.50
Chromium	200.8	ND	0.50
Copper	200.8	ND	0.50
Lead	200.8	ND	0.50
Nickel	200.8	ND	0.50
Selenium	200.8	ND	1.00
Silver	200.8	ND	0.50
Thallium	200.8	ND	0.50
Zinc	200.8	ND	2.5

DISSOLVED MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed:	9-1-10		
Matrix: Units:	Water ug/L (ppb)		
Lab ID:	MB0901D1		
Analyte	Method	Result	PQL
Mercury	7470A	ND	0.025

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 8-31&9-2-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-213-02

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Antimony	3.34	3.40	2	0.50	
Arsenic	3.43	3.40	1	1.20	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	1.49	1.45	3	0.50	
Copper	15.3	17.3	13	0.50	
Lead	ND	ND	NA	0.50	
Nickel	6.17	6.48	5	0.50	
Selenium	1.12	1.19	7	1.0	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	0.50	
Zinc	16.1	17.1	6	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 9-1-10

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-163-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.025	

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed:	8-31&9-2-10
----------------	-------------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-213-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	99.1	96	101	98	2	
Arsenic	100	95.6	92	97.4	94	2	
Beryllium	100	94.5	95	96.5	97	2	
Cadmium	100	93.3	93	94.6	95	1	
Chromium	100	90.1	89	91.4	90	2	
Copper	100	110	94	111	95	1	
Lead	100	94.1	94	96.2	96	2	
Nickel	100	100	94	102	96	2	
Selenium	100	94.0	93	95.9	95	2	
Silver	100	81.3	81	78.1	78	4	
Thallium	100	94.6	95	96.8	97	2	
Zinc	100	106	90	108	92	2	

18

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DISSOLVED MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed:	9-1-10
----------------	--------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-163-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	6.25	5.40	86	5.63	90	4	

CHLORIDE SM 4500-CI E

Date Analyzed:	8-26-10
----------------	---------

Matrix:	Water
Units:	mg /L

Client ID	Lab ID	Result	PQL
WB-SW-SW01-0000	08-163-01	19000	400
WB-GW-MW08-0080	08-163-02	8800	200
WB-GW-MW09-0080	08-163-03	9100	200
WB-GW-MW09-1080	08-163-04	8500	200
WB-GW-MW10-0080	08-163-05	12000	500

CHLORIDE SM 4500-CI E QUALITY CONTROL

Date Analyzed:	8-26-10
----------------	---------

Matrix: Water Units: mg /L

METHOD BLANK QUALITY CONTROL

Lab ID	Result	PQL
MB0826W1	ND	2.0

SPIKE BLANK QUALITY CONTROL

Lab ID	Result	Spiked Amount	Percent Recovery	Control Limit	Flag
SB0826W1	59.5	50.0	119	95-127	

MATRIX SPIKE QUALITY CONTROL

Lab ID	Result	Spiked Amount	Percent Recovery	Control Limit	Flag
08-163-05 Matrix Spike	11900 26000	12500	113	97-124	

DUPLICATE QUALITY CONTROL

		Duplicate		Control	
Lab ID	Result	Result	RPD	Limit	Flag
08-163-05	11900	11700	2	12	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Sep 3 2010 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
WB-SW-SW01-000	Water	10-A014338	CONV
WB-GW-MW08-0080	Water	10-A014339	CONV
WB-GW-MW09-0080	Water	10-A014340	CONV
WB-GW-MW09-1080	Water	10-A014341	CONV
WB-GW-MW10-0080	Water	10-A014342	CONV

Your samples were received on Wednesday, August 25, 2010. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

aron W Aaron W. Young

Aaron W. Young Laboratory Manager

Project #: 235-1577-024

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics

NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Date Received: 08/25/10 Date Reported: 9/ 3/10

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 235-1577-024 All results reported on an as received basis.

AMTEST Identification Number	10-A014338
Client Identification	WB-SW-SW01-000
Sampling Date	08/23/10, 09:20

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Dissolved Organic Carbon	23.	mg/l		0.50	EPA 415.2	KK	08/27/10

AMTEST Identification Number
Client Identification
Sampling Date

10-A014339 WB-GW-MW08-0080 08/23/10, 10:25

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Dissolved Organic Carbon	100	mg/l		0.50	EPA 415.2	KK	08/27/10

AMTEST Identification Number	10-A014340
Client Identification	WB-GW-MW09-0080
Sampling Date	08/23/10, 11:00

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Dissolved Organic Carbon	72.	mg/l		0.50	EPA 415.2	KK	08/27/10

A014341
3-GW-MW09-1080
23/10, 11:10

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Dissolved Organic Carbon	120	mg/l		0.50	EPA 415.2	KK	09/01/10

AMTEST Identification Number
Client Identification
Sampling Date

10-A014342 WB-GW-MW10-0080 08/23/10, 11:45

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Dissolved Organic Carbon	38.	mg/l		0.50	EPA 415.2	KK	09/01/10

W on Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 10-A014338 to 10-A014342

DUPLICATES

SAMPLE # ANALYTE	UNITS	SAMPLE VAL	UE DUP VAL	UE F	RPD			
10-A014639 Dissolved Organic Carbon	mg/l	2.7	3.3	2	20.			
MATRIX SPIKES								
SAMPLE # ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT				
10-A014639 Dissolved Organic Carbon	mg/l	2.7	100	100	97.30 %			
					'			
STANDARD REFERENCE MATERIA	LS							
ANALYTE	UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY			
Dissolved Organic Carbon	mg/l	100	92.	92.0 %				
Dissolved Organic Carbon		100	100	100				
Dissolved Organic Carbon	mg/l	100	100	00				
-			•		'			
BLANKS								
ANALYTE	UNITS	NITS RESULT						
Dissolved Organic Carbon	mg/l	< 0.5						
Dissolved Organic Carbon		< 0.5						
Dissolved Organic Carbon		< 0.5						
5								

					chl					
Received by: Relinquished by: Received by:	Relinquished by	Signature	42 WB - GW - MW10 - 0020	40 UB - GW- MW07 - 080 40 UB - GW- MW07 - 0080	$\frac{1}{100}$	Phone Number: (206)695-6200 Date/Time:	Attention: Aaron Young 13600 NE 126th PI Kirkland, WA 98034	Subcontract Laboratory: AmTest Laboratories	TAG48 NE 95th Street, Redmond, WA 98052 · (425) 883-3881	
	Anctest	Company	ل البرج ب ب	0111 0111 STOI	Sampled Sampled Matrix	Other:	1 Day 2 Day 3 Day	Turnaround Request:		
	8/25/10 1245 5/25/10 1245	Date	<		* or 2 Diss Orga	Proje	Project	Project	Laboratory Reference #:	
		Comments/Special Instructions	E		Janic Carbon	Project Name:	email: dbaumeister@onsite-env.com Project Number: <u>235 - 1577 - 024</u>	Project Manager: David Baumeister	08-163	Page of

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Survey States				5 WB-GW-MW10-0080	4 WB-GW-MWOM-1080	3 WB-GW-MW09-0080		1. WB-SW-SW01-0000	Company Project Number: Project Name: Sampled by Manager: Sampled by Sampled by Sample
	2				()	At wall		D			080 - 01VI	0801-1080	0800-100			Efford WA 90052 www.onsile-env.com
DISTRIBUTI											. •	<				8123h	The same (Line of the second s
DISTRIBUTION LEGEND: White - OnSite Copy	Reviewed by/Date				(C C C	PINIX						1110	1100	Mb GRai	NS (DELO	Check One) Day Check One) Day Check One) ard (7 working d analysis 5 working d (other)
InSite Copy								and the second				<			ς Γ	4	A Of C Set C A Day A Day A days) NWTPH-HCID
Yellow - Client Copy						8/24/11b	1/23/16			 							ng ays Day Laboratory NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Dx NWTPH-Dx Volatiles by 8260B
						945	1430										Halogenated Volatiles by 8260B Semivolatiles by 8270D / SIM
	Chromatograms with final report				OFIN ENVS		* Field Filtered									XXX	PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 PP metals (diss) PP metals (diss) Chloride Diss. Organic Cartan
																	% Moisture