

Feasibility Study Pilot Test Report, Air Sparge/Soil Vapor Extraction Ecology Facility/Site No.: 2551 Agreed Order No.: DE-10947

Prepared for:

Boeing Field Chevron c/o Mr. Andrew Zabel Houlihan Law 100 N. 35th Street Seattle, WA 98103 Chevron Environmental Management Co. Mr. Eric Hetrick 6001 Bollinger Canyon Road San Ramon, CA 94583

Prepared by:

G-Logics, Inc. 40 2nd Avenue SE Issaquah, WA 98027 Telephone: (425) 391-6874 Facsimile: (425) 313-3074

August 14, 2019

G-Logics Project Copyright 2019 G-Logics, Inc. All Rights Reserved

G-Logics has prepared this document only for our client's use, only for the purposes stated herein, and subject to any stated limitations. Use of this document by regulatory agencies is regarded as a "fair use" and is not a violation of our copyright. Regulatory agencies also may make additional copies of this document for their internal and public use, as required by law. All other copies or uses of this document must acknowledge our copyright and indicate that permission to copy/use has been received from G-Logics and our Client.

August 14, 2019 G-Logics Project

Boeing Field Chevron c/o Mr. Andrew Zabel Houlihan Law 100 N. 35th Street Seattle, WA 98103 Chevron Environmental Management Co. Mr. Eric Hetrick 6001 Bollinger Canyon Road San Ramon, CA 94583

Subject: Feasibility Study Pilot Test Report, Air Sparge/Soil Vapor Extraction Ecology Facility/Site No.: 2551 Agreed Order No.: DE-10947

Dear Mr. Sandhu and Mr. Hetrick:

This report presents the purpose, approach, and results of a Feasibility Study Pilot Test performed to assess the effectiveness of Air Sparge and Soil Vapor Extraction remedial technologies at the Boeing Field Chevron Site (Figure 1). This work has been performed as part of a Feasibility Study per the Agreed Order between Mr. and Ms. Sandhu, RPNP Corporation, Chevron Environmental Management Company, and the Washington Department of Ecology. Accordingly, results of the pilot test will be incorporated into the pending Feasibility Study, which will be used to identify a preferred cleanup alternative for the Site.

Should you require additional information or have any questions, please contact us at your convenience. Thank you again for this opportunity to be of service.

Sincerely, G-Logics, Inc.

Kon Gallozo

Rory L. Galloway, LG, LHG Principal

Dan Hatch Project Manager

Zackary S. Wall, LG Project Geologist

TABLE OF CONTENTS

1.0	INTR	ODUCTION AND OBJECTIVES	1
2.0	BACI	KGROUND	2
2.	1 Na	ture and Extent of Contamination	2
2.	2 Re	medial Technology Selection for the Pilot Test	3
2.		st-Area Selection	3
3.0	INST	ALLATION OF TEST WELLS	3
3.0			_
		Iderground Utility Clearance	4
3.		il Borings and Soil Sampling	4
3.	.3 SV	'E Well Construction	5
3.	4 AS	S Well Construction	5
3.	5 Ol	oservation Well Construction	6
3.	6 W	ell Development and Sampling	6
4.0	PILO	T TEST SETUP AND PERFORMANCE	7
4.	1 Pi	ot Test Setup	7
	4.1.1	SVE Test Equipment	7
	4.1.2	AS Pilot Test Equipment	8
	4.1.3	Observation-Well Monitoring Equipment	9
4.	2 SV	'E Step Test	9
	4.2.1	SVE Step Test – Observation Wells	10
	4.2.2	SVE Step Test – Pre-Test Equilibration and Baseline Data Collection	10
	4.2.3	SVE Step Test Initiation and Dilution-Air Adjustment	10
	4.2.4	SVE Step Test Monitoring	10
4.	3 Up	oper-Saturated Zone AS/SVE Test	10
	4.3.1	Upper-Saturated Zone AS/SVE Test – Observation Wells	11
	4.3.2	Upper-Saturated Zone AS/SVE Test – Baseline Data Collection	11
	4.3.3	SVE System Operation	11
	4.3.4	Upper-Saturated Zone AS/SVE Test – AS Test Initiation	11
	4.3.5	Upper-Saturated Zone AS/SVE Test – AS Testing and System Monitoring	11
4.	4 Lo	wer-Saturated Zone AS/SVE Test	12
	4.4.1	Lower-Saturated Zone AS/SVE Test – Observation Wells	12
	4.4.2	Lower-Saturated Zone – Pre-Test Equilibration and Baseline Data Collection	12
	4.4.3	SVE System Operation	12
	4.4.4	Lower-Saturated Zone – AS Test Initiation	13
	4.4.5	Lower-Saturated Zone – AS Testing and System Monitoring	13
4.		ta Collection and Field Analysis	13
	4.5.1	Groundwater Depth Measurements	13

g-logics

	4.5.2	Differential-Pressure Measurements (Observation Wells)	14
	4.5.3	Vapor-Sample Collection and Field Screening	14
	4.5.4	Dissolved Oxygen Measurements	14
	4.5.5	SVE Air Flow Measurements	14
5.0	PILO	Г TEST OBSERVATIONS	15
5	.1 Soi	I-Boring Observations and Findings	15
5	2 Gr	oundwater Observations and Findings	15
5	.3 SV	E Step Test	16
	5.3.1	Vacuum Response/Radius of Influence	16
	5.3.2	Soil Gas Extraction Rates	17
	5.3.3	Day 1 Mass-Recovery Rates	17
5	.4 Up	per Saturated Zone AS/SVE Test Observations and Findings	17
	5.4.1	Sparge Injection Pressure	17
	5.4.2	Air-Sparge Short Circuit Indications	17
	5.4.3	Air-Sparge Radius of Influence	17
	5.4.4	Hydraulic Mounding	18
	5.4.5	Day 2 Observation Well VOC Response and Mass Recovery Rates	19
5	5 Lo	wer Saturated Zone AS/SVE Test Observations and Findings	19
	5.5.1	Lower Saturated Zone Air-Sparge Radius of Influence	19
	5.5.2	Lower Saturated Zone Hydraulic Mounding	20
	5.4.3	Day 3 Observation Well VOC Response and Mass-Recovery Rates	21
6.0	DISCU	USSION	23
6	.1 SV	E Discussion	23
6	.2 Up	per Saturated Zone AS/SVE Discussion	23
6	.3 Lo	wer Saturated Zone AS/SVE Discussion	24
6	.4 Ma	ass-Recovery Rates Discussion	25
7.0	SUMN	AARY AND CONCLUSIONS	
8.0	LIMI	FATIONS	26
9.0	REFE	RENCES	

g-logics

FIGURES

Figure 1	Site Location Maps
Figure 2	Feasibility Study Pilot Test Wells
Figure 3	Cross-Section, Pilot-Test Wells
Figure 4	Piping and Instrumentation Diagram
Figure 5	Boring AS-2 Soil Profile
Figure 6	Observed Vacuum Radius of Influence

TABLES

Soil Analytical Results
Groundwater Analytical Results
SVE Test Field Observations
Upper Saturated Zone AS/SVE Test Field Observations
Lower Saturated Zone AS/SVE Test Field Observations
Pilot Test Air-Sample Analyses
Pilot Test Mass-Recovery Rates

GRAPHS

Graph 1	Subsurface Vacuum Responses, SVE Step Tests
Graph 2	Vacuum Radius of Influence
Graph 3	Ratio of Applied Vacuum to Flow
Graph 4	Subsurface Pressure Responses, Upper Saturated Zone AS/SVE
Graph 5	Headspace VOC Concentrations, Upper Saturated Zone AS/SVE
Graph 6	Subsurface Pressure Responses, Lower Saturated Zone AS/SVE
Graph 7	Headspace VOC Concentrations, Lower Saturated Zone AS/SVE
Graph 8	Groundwater Elevation Responses, Lower Saturated Zone AS/SVE

SITE PHOTOGRAPHS

APPENDICES

- Appendix A:Boring LogsAppendix B:Laboratory Data and Chain-of-Custody DocumentsAppendix C:Laboratory Data and Chain-of-Custody Documents
- Appendix C: Kennedy Jenks Field Oversight Memorandum

ATTACHMENTS

Attachment A: Permission and Conditions for Use and Copying

1.0 INTRODUCTION AND OBJECTIVES

G-Logics has prepared this report to document the recently-completed air sparge/soil-vapor extraction Feasibility Study Pilot Test (pilot test) conducted at the Boeing Field Chevron site (the Site), located at 10805 E. Marginal Way in Tukwila, Washington (Figure 1, Photo 1). The pilot test was performed in accordance with the Feasibility Study Pilot Test Workplan, dated February 4, 2019 and approved by the Washington Department of Ecology (Ecology) on February 6, 2019. The findings of this test are intended to facilitate preparation of a Feasibility Study (FS), which is required per the current Agreed Order for the Site (Agreed Order No. DE 10947).

The pilot test was performed to assess the feasibility of air sparge (AS) and soil-vapor extraction (SVE) technologies as a full-scale remedial method at the Site. Specifically, the pilot test assessed the following.

- 1. The ability to extract soil gas and contaminant vapor from the vadose zone.
- 2. The contaminant mass recovery volumes/rate, and what specific chemical constituents are being removed.
- 3. The ability to inject air into the upper and lower saturated zones at flowrates sufficient to result in effective hydrocarbon contaminant removal and at pressure less than formation fracture pressures.
- 4. The vapor transmissivity of the confining layer between the lower and upper saturated zones.
- 5. The ability to inject air into the lower saturated zone without increasing the potential for soil-vapor intrusion exposure.

The following primary test phases were completed to meet the pilot study objectives:

- **Days 1 and 2: SVE Step Test** This phase evaluated the effects of applying SVE to vadose zone soils at the Site. This test assessed the potential vacuum radius of influence (ROI) that can be achieved, the influence of vacuum on groundwater-elevation conditions in the upper-saturated zone and potential hydrocarbon removal rates that could be achieved in vadose-zone soils.
- Day 2: AS/SVE Test in the upper-saturated zone The second phase of the pilot test evaluated the effects of applying SVE to vadose zone soils while AS was concurrently applied within the upper-saturated zone. Specifically, this test assessed the ability to inject air into the upper-

saturated zone, the effects of the AS on the potential vacuum ROI, the influence on groundwater elevation conditions in the upper-saturated zone, and the potential hydrocarbon recovery rates (as influenced by the AS).

• **Day 3: AS/SVE Test in the lower-saturated zone** – This phase of testing assessed the ability to inject air into the lower saturated zone and evaluated the vapor transmissivity between the lower and upper-saturated zones.

2.0 BACKGROUND

Results from this pilot test further refine the findings presented in the Draft Remedial Investigation (DRI) report prepared by G-Logics, dated November 22, 2017. The findings presented in the DRI indicate that petroleum-range hydrocarbon contaminants (predominantly gasoline-range organics (GRO) and benzene) are impacting soil, groundwater, and soil vapor at the Site. The following section summarizes our current understanding of site conditions based on the completed Site-exploration efforts.

2.1 Nature and Extent of Contamination

G-Logics has identified two groundwater-bearing zones, separated by a confining layer that is present between an approximate depth of 11 feet and 19 feet below the ground surface. The upper-saturated zone consists of approximately 1-3 feet of saturated soils above the confining layer. The lower-saturated zone exists beneath the confining layer, to a depth of at least 35 feet (the deepest exploration at the Site). Previous findings suggest that the lower-saturated zone is tidally influenced, but the upper saturated zone is not. Additionally, at both high and low tide, the lower-saturated zone exhibits a potentiometric surface above the bottom elevation of the confining layer (illustrated on Figure 3).

Petroleum contamination has been observed in both the upper and lower-saturated zones. Light non-aqueous phase liquid (LNAPL) recently has been measured in only one well (IP-7, screened within the lower saturated zone) but has been present historically at multiple locations in the western portion of the Boeing Field Chevron Property.

Contaminant impacts to soil and groundwater at the Site have been found to be greatest in upper saturated zone and found in the western portion of the Property (see Figures 2 and 3). Contaminant impacts also appear to extend westward into the adjoining City of Tukwila right-of-way at lesser concentrations than found on the subject property.

g-logics

The DRI data indicate that GRO and benzene contaminants remain present at the Site at depths ranging from approximately 5 to 18 feet below the ground surface and are present in both the upper and lower saturated zones. GRO and benzene impacts to soil and groundwater also extend west, off-Property, into the right-of-way of Tukwila International Boulevard (TIB).

2.2 Remedial Technology Selection for the Pilot Test

G-Logics completed a preliminary evaluation of remedial technologies likely to be considered in the Site FS. G-Logics determined that in addition to AS/SVE, potential remedial technologies to be evaluated for the Site include, but are not limited to, groundwater pump-and-treat, enhanced in-situ biological remediation, in-situ chemical oxidation, and excavation and disposal. Each of these remedial technologies will be fully evaluated in the pending FS in addition to any other potentially applicable technologies that are identified.

Based on our preliminary evaluation of these technologies with respect to the Site conditions, G-Logics and the project proponents believe that AS/SVE could be an efficient and cost-effective remedial technology. However, pilot testing of these technologies was warranted to evaluate their feasibility for full-scale implementation.

2.3 Test-Area Selection

The pilot-test area is shown on Photograph 1 and on Figure 2. The test was focused in the area of greatest contaminant impacts to the Site, based on existing DRI data (discussed in Section 2.1). This area also has been the location of several previous remedial excavations, which can introduce heterogeneous conditions into the subsurface. However, as this is the area of the Site that would most likely be targeted for future remedial action, it is our opinion that targeting this area for the test was appropriate.

3.0 INSTALLATION OF TEST WELLS

To conduct the pilot test, G-Logics installed six additional wells in the area of greatest contaminant impacts at the Site (Figure 2). Well construction information, such as depth, screened interval, and diameter, are discussed below, illustrated on Figure 3, and included in the attached boring logs (Appendix A).

g-logics

- One 4-inch diameter well (SVE-1) was installed for testing SVE during each phase of the pilot test. This well was screened from an approximate depth of 5 to 9 feet in the vadose zone (above the upper saturated zone).
- G-Logics installed one 2-inch well (AS-1) for AS injection testing in the upper-saturated zone. This well was screened from approximately 12 to 14 feet. A sump (length of blank 2-inch casing beneath the screened interval) was installed from 14 to 16 feet to capture fine sediment.
- G-Logics installed one 2-inch well (AS-2) for AS injection into the lowersaturated zone. This well was screened from approximately 28 to 30 feet (with sump from 30 to 33 feet).
- G-Logics also installed three 2-inch wells (TW-1, TW-2, and TW-3) as observation wells for the pilot test. These wells served as additional monitoring points in the vadose zone for measurement of subsurface conditions during each phase of the pilot test. TW-1, TW-2, and TW-3 were screened from 5 to 9 feet, and are located approximately 10, 20, and 50 feet from SVE-1, respectively.

Well-installation activities are described below.

3.1 Underground Utility Clearance

Numerous subsurface utilities are present in the planned drilling areas. Before beginning fieldwork, G-Logics contacted public and private utility-locating services. Subsurface utility locations were identified by marking their inferred location on the ground surface. Additionally, at each boring location, the first five feet of soils were removed using air-knife/vacuum-extraction methods.

3.2 Soil Borings and Soil Sampling

Borings AS-1, AS-2, TW-1, TW-2, and TW-3 were completed using standard air-knife and direct-push drilling methods. Boring SVE-1 was air knifed to the completed depth of 9 feet to provide adequate annular space for the planned 4-inch well. Hand-auger sampling equipment also was used within the first five to seven feet of each boring where air-knife drilling occurred (9 feet for SVE-1). Specifically, SVE-1 was air-knifed to the completed depth of 9 feet to accommodate a four-inch casing-diameter necessary for the soil-vapor extraction design. Boring locations are shown on Figures 2 and 3.

g-logics

Soil samples were collected continuously to evaluate the nature and extent of the confining layer. Soils were field screened for odors, soil staining, and/or discoloration. Samples also were screened for the presence of volatile organic compounds using a photoionization detector (PID), with the readings noted on our boring logs (Appendix A).

Representative samples from the borings were submitted to Fremont Analytical laboratory and analyzed for gasoline-range organics (GRO), diesel-range organics (DRO), heavy-oil range organics (ORO), benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert butyl ether (MTBE), 1,2-dichloroethane (EDC), 1,2-dibromoethane (EDB), and lead. Soil-sample analytical results are presented in Section 5.1 and summarized in Table 1.

3.3 SVE Well Construction

G-Logics installed one SVE well (SVE-1) in the location presented on Figures 2 and 3. Airknife The screen interval (5 ft to 9 ft below the ground surface) was chosen to be deep enough to prevent short-circuiting to the surface, but shallow enough to prevent the well screen from being flooded during periods of high water table.

This SVE well was constructed of 4-inch diameter Schedule 40 polyvinyl chloride (PVC) piping, with four feet of 0.020-inch slotted screen. The well was completed with 10/20 silica-sand filter pack extending to approximately one foot above the top of the screened interval. The remainder of the boring was backfilled with bentonite chips and then hydrated. The surface was completed with a flush-mounted monument and a concrete seal.

3.4 AS Well Construction

G-Logics installed two AS wells as part of the pilot study (Figure 2). Well AS-1 was completed at the bottom of the upper-saturated zone, just above the silt aquitard (screened from 12 to 14 feet deep). AS well AS-2 was completed approximately 10 feet below the bottom of known contamination (screened from 30 to 32 feet deep), within the lower-saturated zone (see Figure 3).

The AS wells were constructed of 2-inch diameter Schedule 40 PVC, with a 2-foot length of 0.010-inch slotted screen for the sparge point. Below the screen section, a 2 to 3-foot sump (comprised of blank PVC well casing) was installed to act as a silt/fines trap. The wells were completed with 10/20 silica-sand filter pack extending to approximately 1 foot above the top of the screened interval. The remainder of the boring was backfilled with bentonite chips and then hydrated. The surface was completed with a flush-mounted

monument and a concrete seal. The top of the AS wells was completed with a slip-to-thread reducer bushing glued to the casing.

3.5 Observation Well Construction

For the pilot test, three observation wells were installed at locations shown on Figures 2 and 3. Observation wells were constructed of 2-inch PVC casing with 0.020-inch machineslotted screened intervals. The observation wells were screened at the same interval as SVE-1 (from approximately 5 to 9 feet deep) to assess ROI during the SVE phase of the study. TW-1 was located approximately 10 feet from SVE-1, while TW-2 was placed approximately 22 feet from SVE-1. TW-3 was placed approximately 50 feet south of SVE-1.

The observation wells were completed with 10/20 silica-sand filter pack extending to approximately 0.5 foot above the top of the screened interval. The remainder of the boring was backfilled with bentonite chips and then hydrated. The surface was completed with a flush-mounted monument and a concrete seal.

3.6 Well Development and Sampling

Well development was performed only on the AS wells as they are the only wells installed into the water table. After AS-well construction, the wells were developed. Over pumping, or removing water from the well at a rapid rate, was the devolvement technique used in both wells. A 12-volt DC submersible pump, decontaminated between each well, was lowered to near the bottom of the well screen and moved through the screened interval during well development. LNAPL was not observed to be present in either of the two wells.

After the AS-well installations and development, and following an equilibration period of at least 48 hours, groundwater samples were collected from each of the AS wells. Groundwater sampling was conducted in accordance with the methods identified in the G-Logics workplan dated February 4, 2019.

Collected groundwater samples were submitted to Fremont Analytical laboratory and analyzed for GRO, DRO, ORO, BTEX, MTBE, EDC, EDB, and total lead. Groundwater analytical results are presented in Section 5.2 and are summarized in the attached Table 2.

g-logics

4.0 PILOT TEST SETUP AND PERFORMANCE

The pilot test was conducted in three phases. The first phase (Day 1) evaluated SVE within the vadose zone (approximately 0-9 feet below the ground surface). The second and third phases (Days 2 and 3) evaluated the introduction of AS within the upper and lower saturated zones. A representative of Kennedy Jenks was present during the pilot test to observe field activities on behalf of Ecology. Their observations were documented in a technical memorandum, provided in Appendix C.

4.1 Pilot Test Setup

The following section describes the equipment used during the pilot test. Figure 4 presents a Piping and Instrumentation Diagram (P&ID). Photographs of the equipment are attached to the report. Additional photographs are included in Appendix C.

4.1.1 SVE Test Equipment

The SVE system consisted of the following components.

4.1.1.1 SVE Wellhead and Test Assembly

A 4-inch to 2-inch reducing rubberized flexible connector secured the 4-inch SVE-well casing to a 2-inch diameter schedule 40 PVC pipe. The 2-inch PVC pipe was then connected to the test assembly.

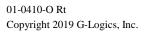
The SVE test assembly consisted of the following equipment (Photos 2 through 4).

- On day 1, a manifold of three rotameters were used to measure specific/graduated flow ranges. Each rotameter was preceded and succeeded by a shut-off valve. On day 2, the rotameter manifold was replaced with a straight section of 2-inch PVC (see Section 4.5.5).
- A sampling port to collect PID readings, soil-vapor samples, and to connect pressure gauges for vacuum measurements.
- A section of clear, 2-inch diameter pipe, 24-inches in length to monitor for the presence of liquid in the extracted vapor stream from the SVE well.
- A 3/8-inch diameter hot-wire anemometer port for the measurement of air velocity and temperature at the test assembly on Day 2 (see Section 4.5.5).
- A 10-gallon translucent plastic moisture-reduction tank and dilution valve. The dilution valve intake was fitted with a dedicated rotameter. The moisture-reduction tank included a vacuum-relief valve to prevent tank implosion.

4.1.1.2 Blower System

G-Logics used a Rotron EN505AX58ML 2-horsepower, 230-volt, single-phase explosionproof regenerative blower. This blower can produce a maximum flow of 160 standard cubic feet per minute (scfm), and a maximum vacuum of 60 inches of water (inH₂O). A portable generator, set up downwind and away from sampling locations, was used to power the blower. Dedicated vacuum gauges were fitted to the inlet of the moisture-reduction tank and to the blower inlet.

Recovered effluent vapors were treated through a 55-gallon activated-carbon vessel before being discharged to the atmosphere (away from the breathing zone) via a discharge pipe (Photo 5). Sample ports were installed in the discharge pipe to collect PID and hot-wire anemometer readings, accordingly.


4.1.2 AS Pilot Test Equipment

The second and third phases of the pilot-testing program included the introduction of air sparging during SVE-equipment operation. To conduct the AS test in the upper-saturated zone, air was injected into well AS-1. During the AS test in the lower-saturated zone, air was injected into well AS-2 while monitoring was performed in nearby observation points. AS-well construction is discussed in Section 3.4. These well locations are shown on Figures 2 and 3.

The planter strip immediately west of the proposed test area is currently unpaved and covered with landscaping gravel. To assess potential air leakage during air sparging, this unpaved area was covered with 6 mil plastic sheeting, and visually checked for inflation (Photo 7).

Beginning at each air-sparge wellhead, the AS system consisted of the following (Photo 6).

- A wellhead assembly, which included the following components,
 - An approximately 18"-long riser pipe threaded onto the well casing via a slip-to-threaded bushing.
 - $\circ~$ A pressure gauge tapped into the side of the 18" pipe.
 - A quick-connect coupler threaded to a reducer bushing at the end of the 18" pipe
- A flexible pneumatic hose connected the AS wellhead to the compressorsystem components.

g-logics

- A flow-meter manifold consisting of one rotameter (0-10 CFM) and pressure gauge, preceded by a shut-off valve.
- Steel piping connecting the rotameter manifold to the compressor. A pressure gauge, temperature gauge, pressure regulator, and pressure-reducing valve were installed in the steel pipe.
- An 80-gallon pressure tank with electric auto-drain valve.
- A 5.5 horsepower, 240-volt, single-phase rotary-vane compressor (Hydrovane V04). The compressor can provide up to 19.5 scfm at 100 psi.

4.1.3 Observation-Well Monitoring Equipment

Each observation well was fitted with a removable rubberized flexible connector cap and valved barbed fitting (wellhead adapter) to allow the temporary connection of a differentialpressure gauge manifold (multiple gauges measuring a wide range of pressure/vacuum). This pressure gauge manifold was used to assess any pressure differences between the subsurface and the atmosphere created during the operation of the pilot test. The wellhead adapter also allowed for the collection of PID readings during the air-sparge phases of the pilot test.

4.2 SVE Step Test

The first phase of the pilot test consisted of performing step tests solely on the SVE system, using the test well SVE-1 and the observation wells described in Section 4.2.1. The step tests were performed in increasing increments of applied vacuum to evaluate the subsurface response in vadose zone soils, as measured in the surrounding observation wells. Specifically, the SVE test consisted of four increased vacuum steps (10, 19.5, 22, and 27 inH₂O) on day 1. Three additional steps (13, 24, and 35 inH₂O) were completed on day 2 (prior to introducing air-sparge).

Data collected during this phase of the pilot test was used to assess the following (see Section 5.3):

- The observable vacuum ROI in the vadose zone achieved with SVE at the tested vacuums;
- The influence of SVE on shallow groundwater elevations in the uppersaturated zone;
- Potential hydrocarbon mass-recovery rates that could be achieved by SVE application to vadose-zone soils.

4.2.1 SVE Step Test – Observation Wells

The observation wells used during the SVE step test consisted of wells TW-1, TW-2, TW-3, IP-4, and MW-26S.

4.2.2 SVE Step Test – Pre-Test Equilibration and Baseline Data Collection

The identified observation wells and SVE-1 were opened and allowed to stabilize for approximately 10 minutes. Initial groundwater depths were then measured. Observation wells were then fitted with wellhead adapters and an initial round of subsurface-atmospheric baseline pressure readings were collected.

4.2.3 SVE Step Test Initiation and Dilution-Air Adjustment

The test began by starting the vacuum blower and allowing it to run on 100-percent dilution air. At the end of this period, the SVE-system operating parameters were recorded (Table 3) and a vapor sample was collected for laboratory analysis (VS-1). With 100% dilution air, a vacuum of approximately 10 inH₂O was achieved at SVE-1. Accordingly, no dilution-air adjustment was needed for the first vacuum step. Approximately 22 scfm of airflow was extracted from SVE-1 at this vacuum.

4.2.4 SVE Step Test Monitoring

During each incremental step, vacuum measurements were collected from the SVE-1 wellhead and from observation wells at approximately 5 to 10-minute intervals (see Table 3). SVE-system parameters also were recorded at each vacuum step. Un-diluted samples were collected directly from the SVE wellhead (see Section 4.5.3). Select vapor samples were submitted for laboratory analysis based on PID field-screening measurements. Each step was concluded once subsurface vacuum measurements were observed to stabilize, based on the discretion of the field engineer. The test was concluded approximately 3 hours after initiation.

4.3 Upper-Saturated Zone AS/SVE Test

The air-sparging test in the upper saturated zone began after a second day of SVE testing had been performed to allow for a greater applied vacuum at the test well and with higher soil gas extraction rates.

This phase of testing utilized SVE-1, sparge well AS-1, and the observation wells described below. System parameters and field observations collected during this phase are summarized in Table 4.

g-logics

4.3.1 Upper-Saturated Zone AS/SVE Test – Observation Wells

The observation wells used for this phase of the pilot test consisted of wells TW-1, TW-2, TW-3, IP-4, and MW-26S.

4.3.2 Upper-Saturated Zone AS/SVE Test – Baseline Data Collection

Prior to the start of the upper-saturated zone AS/SVE test, background pressures, DTW, dissolved oxygen (DO), and head space vapor concentrations were measured in AS-1, SVE-1, and the observation wells.

4.3.3 SVE System Operation

Following the baseline data collection, the SVE system was operated for approximately 1.5 hours (see Section 4.2). Based on preliminary field observations from the completed vacuum step tests (VOC concentrations, subsurface vacuum response), SVE system parameters were set at 37 inches of vacuum for the SVE/AS test (the maximum that the blower could apply). Flow rates ranging from 84 scfm to 96 scfm were achieved at this vacuum during the duration of the test (Table 4).

4.3.4 Upper-Saturated Zone AS/SVE Test – AS Test Initiation

Prior to beginning the AS test, a water-level measurement was collected from the AS-1 sparge test well. With the SVE system running, the compressor unit was then started, with the bypass valve on the air-supply manifold in the fully open position and the valve on the rotameter manifold fully closed. The pressure regulator was then adjusted to 5 psi and the rotameter manifold was slowly opened and the bypass valve slowly closed until air flow was established and indicated on the rotameter. An initial injection breakthrough pressure of less than 1 psi was required to establish flow into the lower aquifer.

Following breakthrough, the pressure regulator was adjusted until the target flowrate of 10 scfm was reached. SVE and AS system operating parameters also were recorded prior to recording observation-well responses.

4.3.5 Upper-Saturated Zone AS/SVE Test – AS Testing and System Monitoring

The AS compressor was operated at static flowrate setting of 10 CFM for 1.5 hours. Pressure and PID measurements were recorded in the observation wells at 20 to 30-minute intervals. Vapor samples also were collected (from the SVE wellhead) for field screening every 20 to 30 minutes during the sparge test to determine the potential additional contributions to recovery concentrations resulting from sparging. Visual checks for

g-logics

bubbling and DTW measurements were completed in observation wells once before, once during, and once at the end of the test. Dissolved oxygen was measured in the observation wells once before and once at the conclusion of the test.

Routinely during the sparge-injection test, the ground surface near the AS well was wetted with potable city water from an exterior hose connection at the service station to identify areas where injected air may escape to the ground surface without being captured by the SVE system. A PID also was used to assess for elevated VOC concentrations in the air beneath the applied planter-strip sheeting (Section 4.1.2). Indications of air leakage (such as the formation of bubbles in wetted concrete, or elevated PID readings beneath the applied sheeting) were not observed during the testing.

4.4 Lower-Saturated Zone AS/SVE Test

The third phase of the pilot test was conducted to assess air sparging in the lower saturated zone. This phase of testing is was performed on the third day of the study and utilized air sparge well AS-2 and extraction well SVE-1, as well as the observation wells described below in Section 4.4.1. System parameters and field observations collected during this phase are summarized in Table 5.

4.4.1 Lower-Saturated Zone AS/SVE Test – Observation Wells

To assess the feasibility of using AS injection in the lower-saturated zone in combination with SVE in the vadose zone, subsurface response data was collected within the vadose zone (wells TW-1. TW-2, TW-3), upper-saturated zone (wells AS-1, IP-4, MW-26S, MW-28S), and the lower-saturated zone (wells IP-3, IP-5, IP-7, MW-26D, and MW-28D).

4.4.2 Lower-Saturated Zone – Pre-Test Equilibration and Baseline Data Collection

The observation wells and AS-2 were opened and allowed to stabilize for approximately 10 minutes prior to recording baseline background pressures. Initial groundwater depths and DO were then measured. Observation wells were fitted with wellhead adapters and an initial round of subsurface-atmospheric pressure and PID readings were collected.

4.4.3 SVE System Operation

Following the baseline data collection, the SVE system was operated for approximately 1 hour at 37 inches of vacuum and recovery flow rates ranging from 87 scfm to 96 scfm.

g-logics

4.4.4 Lower-Saturated Zone – AS Test Initiation

The compressor unit was started, with the bypass valve on the air-supply manifold in the fully open position and the valve on the rotameter manifold fully closed. The pressure regulator was then adjusted to 18 psi and the rotameter manifold was slowly opened and the bypass valve slowly closed until air flow was indicated on the rotameter. An initial injection breakthrough pressure of approximately 6 psi was required to establish flow into the lower aquifer.

Following breakthrough, the pressure regulator was adjusted, and the air flow was increased until the target flowrate of approximately 10 scfm was reached. This flow was maintained for the duration of the test.

4.4.5 Lower-Saturated Zone – AS Testing and System Monitoring

The AS/SVE system was operated at a static setting for approximately 2 hours. Two rounds of pressure, PID, and DTW measurements were recorded in the observation wells following the start of the AS test (Table 5). Vapor samples also were collected periodically (from the SVE wellhead) for field screening during the sparge test (Table 5). Dissolved oxygen was measured in the observation wells once before and once at the conclusion of the test. In addition, observation wells were periodically opened, and a small diameter video scope was lowered to near the surface of the water to look for bubbling (Photo 8).

4.5 Data Collection and Field Analysis

Data-collection and field-analytical methods for groundwater monitoring, vacuum/pressure measurements, vapor-sample collection and screening, and dissolved-oxygen measurements are discussed below.

4.5.1 Groundwater Depth Measurements

Water-level measurements were referenced to the top of the well casing. The static-water level was measured in each monitoring well using a conductivity type water-level probe. The tape on the probe was used to obtain a depth-to-water measurement, from the reference point, to within 0.01 feet. All elevation data collected from wells at the site are referenced to their surveyed elevations provided by PLS, Inc. Land Surveyors.

g-logics

4.5.2 Differential-Pressure Measurements (Observation Wells)

Pressure measurements were made relative to atmospheric pressure using Dwyer Magnehelic® differential pressure gauges. Differential pressure at SVE-1 and the observation wells were measured using a series of differential pressure gauges with sensitivity ranges from 0 to 50 inH₂O.

4.5.3 Vapor-Sample Collection and Field Screening

Vapor concentrations were screened at the SVE-1 wellhead using a PID (calibrated to a 100-ppmv isobutylene calibration standard). At the beginning of day 1, an initial vapor sample (VS-1) was collected from the blower inlet (downstream of the dilution valve). On day 1 of the pilot test, vapor samples were collected from the wellhead of SVE-1 into 1-liter Tedlar® bags via a dedicated rotary-vane compressor pump. On days 2 and 3, vapor samples were collected using a negative-pressure sample chamber to draw samples into the Tedlar® bags. The negative-pressure chamber allowed for the sample bag to be filled directly from the wellhead via dedicated polyethylene tubing, without the sample passing through the pump.

A total of 14 samples were submitted for laboratory analysis for GRO and BTEX compounds over the three days of testing. Vapor-sampling results are discussed in Section 5.6.

4.5.4 Dissolved Oxygen Measurements

DO was measured in observation wells using a down-well optical DO meter. Measurements were collected once before, and once after each of the AS tests (upper and lower saturated zones).

4.5.5 SVE Air Flow Measurements

As discussed in Section 4.1.1, SVE air flow was measured on day 1 using a set of three Dwyer Visi-Float® rotameters with graduated flow ranges (Photo 2). On days 2 and 3, the rotameter manifold was replaced with a straight section of 2-inch PVC pipe in order to achieve a higher applied vacuum and flow rate. A hot-wire anemometer was then used to measure flow velocity in linear feet per minute (lfpm) and temperature (°F) at two locations: a port installed in the clear section of pipe upstream of the blower inlet (referred to as "blower inlet" in Tables 3, 4, and 5) and a port installed downstream of the carbon-treatment vessel on the exhaust pipe (referred to as the "blower exhaust").

01-0410-0 Rt Copyright 2019 G-Logics, Inc.

Rotameter and anemometer measurements were converted to scfm using the following equation (Dwyer Instruments, Inc., 2009):

$$scfm = acfm \times \left(\sqrt{\frac{P(a) \times T(s)}{P(s) \times T(a)}} \right)$$

Where P(a) is the actual pressure (14.7 psia + gauge pressure (psig)), P(s) is the standard pressure (14.7 psia, 0 psig), T(a) is the actual temperature (460 R + measured temperature (F)), and T(s) is standard temperature (530 R).

5.0 PILOT TEST OBSERVATIONS

The observations and findings of this feasibility study pilot test are discussed below. Analytical results obtained during this study are summarized on Tables 1, 2, and 6. Boring logs for the completed test wells are included in Appendix A. Boring logs also are included in Appendix A for existing wells used as observation points during the pilot test. Analytical laboratory reports for the analyzed soil, groundwater, and air samples are attached as Appendix B of this report. Chain of custody forms also are included in Appendix B.

5.1 Soil-Boring Observations and Findings

Six borings were advanced to depths ranging from 9 to 35 feet below the ground surface during the installation of pilot-test wells. A mixture of loose, brown, silty, gravelly sand with variable amounts of concrete, brick, asphalt, and wood debris was generally encountered to a depth of approximately 9 feet in all of the boring locations. Gray-brown silt with fine-grained sand was observed to 11 feet, underlain by two feet of saturated, fine-grained silty sand (upper saturated zone, 11 to 13 feet below the ground surface). Gray-brown silt with fine-grained sand and reedy, grassy vegetation was observed from 13 to 19 feet (confining unit). The deepest boring, AS-2, encountered black to dark gray, fine to very coarse-grained, saturated sand from 19 feet to the explored depth of 35 feet (within the lower saturated zone). An annotated photograph of the recovered soil from boring AS-2 is included as Figure 5. Soil analytical results are presented in Table 1.

5.2 Groundwater Observations and Findings

During drilling, the upper- and lower-saturated zones were first encountered at approximately 11 feet and 19 feet below the ground surface, respectively. Static

g-logics

groundwater was measured at approximately 8.5 feet below the ground surface in the upper saturated zone (well AS-1) and 14.1 feet below the ground surface in the lower saturated zone (well AS-2). Analytical results from the collected groundwater samples are presented in Table 2.

5.3 SVE Step Test

The observations and findings of the SVE step test are discussed below.

5.3.1 Vacuum Response/Radius of Influence

During each successive vacuum step test, the corresponding subsurface vacuum responses were measured at each observation well. Applied test-well vacuums and field-observed vacuum measurements are presented in Table 3, Graph 1, and summarized below. The applied vacuums are listed in the far-left column. Distances and direction from SVE-1 are shown at the top of the remaining corresponding columns. Moving from left to right represents a north-to-south transect of the study area, with SVE-1 near the center of the observation wells (gray column). Vacuum responses at, or greater than 1% of the applied test-well vacuum are shown in bold.

Applied	Subsurface Response (% of applied vacuum at SVE-1)							
Vacuum (inH₂O)	MW-26S 50' North	TW-2 20' North	TW-1 10' North	IP-4 10' South	TW-3 50' South			
10	0.3%	1%	6%	4%	0.1%			
13	0.3%	1%	6%	4%	0.2%			
19.5	0.4%	1%	6%	2%	0.1%			
22	0.4%	2%	7%	2%	0.1%			
27	0.4%	2%	6%	0.2%	0.1%			
35	0.3%	1%	6%	4%	0.1%			

The data show a stronger vacuum response to the north of SVE-1. Also shown above is a conspicuous loss of vacuum in well IP-4 at 27 inH₂O. This was due to a faulty wellhead adapter connection, which was repaired before the next step.

Based on the presented vacuum response data, an ROI of 20 feet has been estimated for SVE-1 (Figure 6, see Section 6.1 for further discussion). Subsurface vacuum-response data also is illustrated on Graph 2.

g-logics

5.3.2 Soil Gas Extraction Rates

The lowest applied test vacuum of 10 inH₂O produced a corresponding flow rate (vaporextraction rate) of approximately 22 scfm. This yielded a vacuum-to-flow ratio of approximately 0.45. The highest applied test vacuum of 27 inH₂O during the same day of testing produced 67 scfm. This produced the same vacuum-to-flow relationship of 0.45. The highest overall vacuum of 37 inH₂O was applied to SVE-1 on days 2 and 3. This yielded a vapor-extraction rate of approximately 90 scfm, with a vacuum-to-flow ratio of 0.44. Based on the above observations, vapor-extraction rates from SVE-1 generally correlate linearly with the applied test-well vacuums (Graph 3, see Section 6.1 for further discussion).

5.3.3 Day 1 Mass-Recovery Rates

Over the course of the pilot test, several soil-gas samples were collected at the SVE wellhead. During day 1, recovered GRO vapor concentrations ranged from 304,000 μ g/m³ (74.3 ppmv) in sample VS-5 to 438,000 μ g/m³ (107 ppmv) in sample VS-3. Based on the measured flow rates and the vapor-sample concentrations, estimated GRO mass-recovery rates ranged from approximately 0.7 pounds per day (lbs/day) during Step 1 to 1.64 lbs/day during Step 4 (See Tables 6 and 7).

5.4 Upper Saturated Zone AS/SVE Test Observations and Findings

The observations and findings of the upper saturated zone AS/SVE test are discussed below. Field measurements are summarized in Table 4.

5.4.1 Sparge Injection Pressure

A breakthrough pressure of less than 1 psi was required at the well head to initiate airflow into the sparge well. A flowrate of 10 scfm was achieved with a pressure of 2 psi at the sparge wellhead.

5.4.2 Air-Sparge Short Circuit Indications

As discussed in Section 4.3.5, elevated headspace VOC concentrations under the plastic sheeting, billowing of plastic, and bubbles on wetted concrete were not observed during the testing.

5.4.3 Air-Sparge Radius of Influence

Approximately 2 feet of water was observed to be present above the screen of AS-1. During active sparging of 10 scfm into the upper saturated zone, an assessment of the presence of

g-logics

bubbles was performed in the observation wells. No bubbles were detected in any of the wells, with the nearest wells being 10 feet away from the sparge well.

The table below depicts the subsurface pressures measured in the observation wells prior to and during the sparge test (also shown on Graph 4). The test intervals are listed in the farleft column. Distances and direction from AS-1 are shown at the top of the corresponding columns. Moving from left to right represents a north-to-south transect of the study area, with AS-1 near the center of the observation wells (see Section 6.2 for discussion).

Test	Measured Subsurface Pressures (inH ₂ O)							
Test Interval	MW-26S	TW-2	TW-1	IP-4	TW-3			
interval	50' North	20' North	10' North	10' South	50' South			
SVE Start	-0.04	-0.16	-0.76	-0.56	-0.02			
SVE Step 2	-0.08	-0.33	-1.4	-0.97	-0.02			
SVE Step 3	-0.11	-0.5	-2	-1.35	-0.03			
AS Start	-0.11	-0.51	-2.1	-1.25	-0.04			
AS End	-0.11	-0.53	-1.9	-2.9	-0.06			

Based on the data presented above, introduction of air sparging into the upper saturated zone did not produce a positive subsurface-pressure response in the observation wells.

5.4.4 Hydraulic Mounding

Groundwater depths were measured in observation wells prior to, during, and immediately after air sparging to determine whether significant groundwater mounding was occurring as a result of sparging. Groundwater-elevation measurements for each observation are summarized below.

Teet	Groundwater Elevation (Ft Above MSL)							
Test Interval	MW-26S	TW-2	TW-1		IP-4	TW-3		
interval	50' North	20' North	10' North		10' South	50' South		
SVE Start	10.82	10.85	10.9		11.12	10.69		
AS Start	10.73	10.79	10.88		11.10	10.51		
AS End	10.83	10.81	10.88		11.69	10.76		

g-logics

Based on the data presented above, introduction of air sparging into the upper saturated zone failed to produce a significant change in groundwater elevations.

5.4.5 Day 2 Observation Well VOC Response and Mass Recovery Rates

Over the course of the sparge test in the upper saturated zone, headspace VOC concentrations were measured to assess observable increases in soil gas concentrations in the observation wells as a result of sparging. These measurements are summarized in the table below.

Teet	Headspace VOCs (ppmv)								
Test Interval	MW-26S	TW-2	TW-1		IP-4	TW-3			
interval	50' North	20' North	10' North		10' South	50' South			
SVE Start	14	0.8	1.6		250	205			
AS Start	14	1.4	0.9		160	86			
13:38:00 PM	24	1	2		230	24			
14:01:00 PM	14	1.4	1		230	23			
Sparge End	35	1.3	1		230	35			

Vapor samples were collected at the SVE wellhead during the Upper Saturated Zone AS/SVE test. During this period, recovered GRO vapor concentrations ranged from $321,000 \ \mu g/m^3$ (78.4 ppmv) in sample VS-8 to $401,000 \ \mu g/m^3$ (98.0 ppmv) in sample VS-6.

Based on the measured flow rates and the vapor-sample concentrations during day 2, G-Logics has estimated a GRO mass-recovery rate of approximately 3.20 lbs/day prior to initiation of air sparging, decreasing to 2.56 lbs/day approximately 1.5 hours after sparge initiation (Tables 4 and 7).

5.5 Lower Saturated Zone AS/SVE Test Observations and Findings

The observations and findings of the lower saturated zone AS/SVE test are discussed below. Field measurements are summarized in Table 5.

5.5.1 Lower Saturated Zone Air-Sparge Radius of Influence

Approximately 12 feet of saturated zone was observed to be present between the top of the screen of AS-2, and the bottom of the confining layer.

g-logics

Within approximately 1 hour and 15 minutes of AS-initiation, bubbles were detected in the upper saturated zone wells AS-1 (4-feet south of AS-2) and IP-4 (within 10 feet of AS-2). The data are summarized below and presented on Table 5 and Graph 6.

Test	Upper Saturated Zone Well Pressure (in H_2O) and Bubbling								
Interval	AS-1	TW-1	IP-4	TW-2	TW-3	MW-26S	MW-28S		
Distance from AS-2 (ft)	4'	10'	10'	20'	50'	50'	100'		
Baseline	0	-0.01	-0.09	-0.01	0	0	-0.01		
SVE Start	-0.13	-2.2	-0.5	-0.5	-0.04	-0.15	0		
AS Start	-0.09	-2.1	-0.06	-0.5	-0.04	-0.12	0		
Mid-AS	29 *	-2.4	0.05*	-0.55	-0.06	-0.1	-0.02		
AS End	3*	-2.35	-0.02*	-0.65	-0.1	-0.18	-0.02		

*Bubbling Observed in well AS-1. Occasional bubbles also were observed in IP-4

Vigorous boiling was observed in the lower saturated zone wells IP-3, IP-5, and IP-7. IP-7 is approximately 35 feet from AS-2. In addition, pressure increases were observed as far as 100 feet from the injection well in the lower saturated zone (see below).

Test	Lower Saturated Zone Pressure Responses, (inH $_2$ O) and Bubbling						
Interval	IP-5	IP-3	IP-7	MW-26D	MW-28D		
Distance from AS-2 (ft)	12'	25'	35'	50'	100'		
Baseline	0	0.02	2.5	0.29	-0.38		
SVE Start	14	-3.45	14.5	3.25	-2.2		
AS Start	17.5	-4.3	16.5	-3.1	8		
Mid-AS	50*	12.5*	50 *	11.5	8		
AS End	50*	50*	50*	1.4	3		

*Bubbling Observed in wells IP-3, IP-5, and IP-7

5.5.2 Lower Saturated Zone Hydraulic Mounding

Groundwater depths were measured in observation wells prior to, during, and immediately after air sparging to determine whether significant groundwater mounding was occurring as a result of sparging. Groundwater-elevation measurements are summarized below for wells screened in the upper saturated zone. The net increase/decrease in groundwater elevations during the lower-saturated zone AS/SVE test also are presented on Graph 8.

Test	Groundwater Elevation, Upper Saturated Zone Wells (Ft Above MSL)								
Interval	AS-1	TW-1	TW-2	IP-4	TW-3	MW-26S	MW-28S		
SVE Start	10.54	10.85	10.88	10.79	11.09	10.8	10.79		
AS Start	8.96	10.77	10.87	10.49	11.07	10.8	10.8		
AS End	10.64	10.76	10.87	10.59	11.08	10.8	10.79		
%Change	1%	-1%	0%	-2%	0%	0%	0%		

Groundwater-elevation measurements are summarized below for wells screened in the lower saturated zone.

	Groundwater Elevation, Lower Saturated Zone Wells (Ft Above MSL)					
Test Interval	IP-5	IP-3	IP-7	MW-26D	MW-28D	Tidal Stage & Trend ¹
SVE Start	4.85	5.05	3.06	4.99	5.07	Low, Rising
AS Start	8.98	6.51		6.27	5.91	Low, Rising
AS End	10.18	8.03	9.41	6.61	6.24	Low, Rising

1 NOAA-Station 9447029, Duwamish Waterway, Eighth Ave S

Based on the data presented above, introduction of air sparging into the lower saturated zone did not produce a significant change in groundwater elevations in wells screened in the upper saturated zone. However, increased groundwater elevations were observed in wells screened in the lower saturated zone. The timing of this increase corelates with a rising tide, as shown in the table above.

5.4.3 Day 3 Observation Well VOC Response and Mass-Recovery Rates

Over the course of the sparge test in the lower saturated zone, headspace VOC concentrations were measured to assess observable increases in soil gas concentrations in the observation wells as a result of sparging. These measurements are summarized in the tables below and presented on Graph 7.

g-logics

-	Upper Saturated Zone Headspace VOCs (ppmv)							
Test Interval	AS-1	TW-1	TW-2	IP-4	TW-3	MW-26S	MW-28S	
Baseline	39	4	3	100	75	4	6	
SVE Start	44	140	48	100	92	5	5	
AS Start	45	16	8.3	115	52	9.6	11	
Mid-Sparge	40	87	80	115	22	3	14	
AS End	120	80	6.3	195	10	18	6	

At the conclusion of the upper saturated zone AS test, elevated VOC concentrations were detected in upper-saturated zone wells AS-1 and IP-4.

Test		Lower Satura	ted Zone Heads	space VOCs (ppmv	/)
Interval	IP-5	IP-3	IP-7 ²	MW-26D	MW-28D
Baseline	75	14	Р	1	76
SVE Start	157	151	Р	178	131
AS Start	139	85	Р	201	177
Mid-Sparge	106	69	Р	380	313
AS End	376	193	Р	5	13

2 "P" indicates LNAPL present in well during testing, headspace VOCs not measured.

Air sparging in the lower saturated zone appears to have resulted in elevated VOC concentrations in wells screened in the lower saturated zone.

During the lower saturated zone AS/SVE test, recovered GRO vapor concentrations ranged from as low as 359,000 μ g/m³ (87.8 ppmv) in sample VS-12 to 586,000 μ g/m³ (143 ppmv) in sample VS-9 (Table 6). Based on the vapor-sample results and flow rates measured during day 3 (Tables 5 and 7), G-Logics has estimated a GRO mass-recovery rate of approximately 5.05 lbs/day at SVE initiation, decreasing to 2.91 lbs/day just prior to the introduction of AS. During the AS portion of the test, mass-recovery rates ranged from 2.87 to 3.23 lbs/day 1.5 hours after sparge initiation.

g-logics

6.0 **DISCUSSION**

The findings of the pilot test are discussed in the following sections.

6.1 SVE Discussion

The SVE test allowed for the estimation of practical limits of the radial vacuum influence at the Site, the soil-gas extraction rates, and the amount of contaminant mass that would require treatment if implemented on a full-scale.

The Radius of Influence (ROI) may be expressed as the lateral distance at which 1% of the applied test-well vacuum can be measured in the subsurface (Kuo, 1999). As presented in Section 5.3.1, a significant subsurface response was observed in nearby shallow observation wells from the onset of the test. Specifically, within minutes of starting the SVE test (and at subsequent vacuum steps), subsurface vacuums greater than 1 to 2% of the applied test-well vacuum were observed in wells within an approximate 20-foot radius of the test well (Graph 1). Similar vacuums were sustained throughout the test. Accordingly, an estimated ROI of 20 feet is estimated for use as a design parameter for spacing soil vapor extraction wells (see Graph 2).

As discussed in Section 5.3.2, vapor-extraction rates from SVE-1 generally correlated linearly with the applied test-well vacuums (see Graph 3). This finding indicates that higher vapor-extraction rates would be achievable at higher applied vacuums. Additionally, flow out of the subsurface does not appear to be limited by the geology at the tested vacuums. This also indicates that the well construction and/or equipment used may be the limiting factor for vapor-recovery rates if SVE is operated at the Site.

6.2 Upper Saturated Zone AS/SVE Discussion

As shown in Section 5.4, the observable impacts of sparging were very limited in the upper saturated zone. Specifically, subsurface pressure, headspace-vapor concentrations, and groundwater elevations appeared to be unaffected by the introduction of air sparging (Graphs 4 and 5). This could be attributed to the limited thickness of water present in the upper saturated zone and the unconfined nature of the soils above this zone.

This finding limits the ability to put a measurable boundary on the radius of effective sparging in this saturated zone. It can be assumed, however, that the radius of sparging influence is less than 10 feet. Additionally, indications of a preferential pathway of injected air to the ground surface were not observed during the testing (see Section 5.4.2).

6.3 Lower Saturated Zone AS/SVE Discussion

Increases in water levels were observed in wells screened in the lower-saturated zone while sparging in the lower-saturated zone. Conversely, groundwater elevations in wells screened within the upper saturated zone did not appear to change appreciably during the same testing event (Graph 8). Groundwater mounding (due to air sparging) can cause the unintentional migration of contaminated groundwater as a result of an artificially increased hydraulic gradient. However, it should be noted that the observed groundwater-elevation changes in the lower saturated zone may be partly due to the influence of tidal fluctuations. Controlling for the potential tidal influences on the data collected during the sparge test is beyond the scope of this pilot test.

While sparging in the lower saturated zone, subsurface pressure, headspace VOC concentrations, and DO responses were modest or non-existent in wells screened within the upper-saturated zone (Graphs 6 and 7). Wells AS-1 (located adjacent to the sparge point) and IP-4 (located approximately 10 feet SE of the sparge point) were the only upper-saturated zone wells where bubbling was observed. While energetic "boiling" was observed in AS-1, the bubbling rate in IP-4 was approximately 4 bubbles per minute. Based on this finding, vapor transmissivity is likely to be limited across the confining layer.

As shown in Section 5.5, strong subsurface pressure responses were observed in wells screened in the lower-saturated zone during sparging (Graphs 6, 7, and 8) with vigorous bubbling detected as far as 35 feet from the injection well. However, the increase in pressures observed in the deeper wells may be due to the effect of rising tide on these wells. The observation of vigorous bubbling in well IP-7 indicates a much wider ROI than was determined in the upper saturated zone, and likely a predominantly lateral pathway for injected air. The larger ROI is likely due to the presence of the confining layer above the sparge point and the depth of sparging below the water table. The lateral distance of lower saturated zone sparge influence suggests that injected air may not be recoverable by an extraction system operating in the vadose zone at the Site.

Therefore, it is possible that air introduced into the lower saturated zone (at any flowrate) would travel laterally along the bottom of the confining layer, rather than vertically across the confining layer into the vadose zone (where it could be recovered by an SVE system). This is further supported by observations of bubbling in well IP-7 (screened in lower saturated zone), which is approximately 35 feet from AS-2. Accordingly, further consideration of air sparging within the lower-saturated zone is not recommended.

6.4 Mass-Recovery Rates Discussion

Over the duration of the test, GRO vapor concentrations ranged from a minimum of $304,000 \ \mu g/m^3$ (74.3 ppmv) during Step 4 of day 1 to a maximum of $585,000 \ \mu g/m^3$ (143 ppmv), captured at the start of the test on day 3 (Tables 6 and 7).

Mass-recovery rates were generally unaffected by the introduction of sparging in either saturated zone and instead appear to be directly proportional to flow rate. These results are presented in Section 5.0 and summarized on Table 7. This finding is consistent with other observations regarding the effectiveness of AS in either of the saturated zones.

7.0 SUMMARY AND CONCLUSIONS

The BFC feasibility study pilot test was successful in collecting site-specific data to evaluate the feasibility and potential effectiveness of utilizing soil vapor extraction (SVE) and/or air sparge (AS) remediation technologies for future full-scale remediation at the Site.

As stand-alone remediation technologies, SVE and AS are not considered as viable alternatives for future consideration for this Site.

By itself, SVE would address only the petroleum contaminant mass present in vadose zone soils that would be accessible via movement of air through the subsurface. Results of the RI indicate that a significant portion of the hydrocarbon mass present in soil at the Site exists in saturated soils in the upper saturated zone, lower saturated zone, and the silty confining layer separating them. Therefore, implementation of an active remediation strategy focused solely on remediation of vadose zone soils is unlikely to be effective.

AS by itself is not considered viable because this technology would likely result in an uncontrolled release of hydrocarbon impacted soil vapor with the potential to impact indoor and/or outdoor ambient air conditions in the vicinity of the remediation area.

When combined, AS and SVE remediation technologies have the potential to complement one another, with AS providing for remediation of saturated zone soils and groundwater through "air-stripping" of hydrocarbons while SVE provides remediation of vadose zone soils and capture of hydrocarbon-laden vapors generated by the AS process. However, data collected during the BFC feasibility study pilot test suggest that the contaminant distribution and geologic conditions at this Site are not favorable for full-scale AS/SVE implementation.

g-logics

In the upper-saturated zone, a sufficient depth of water is generally not present to allow effective sparging. During AS/SVE testing in the upper saturated zone, hydrocarbon mass recovery rates appeared to decrease slightly in response to sparge injection, which is possibly due to the introduction of unimpacted ambient air into the vadose zone by the AS system.

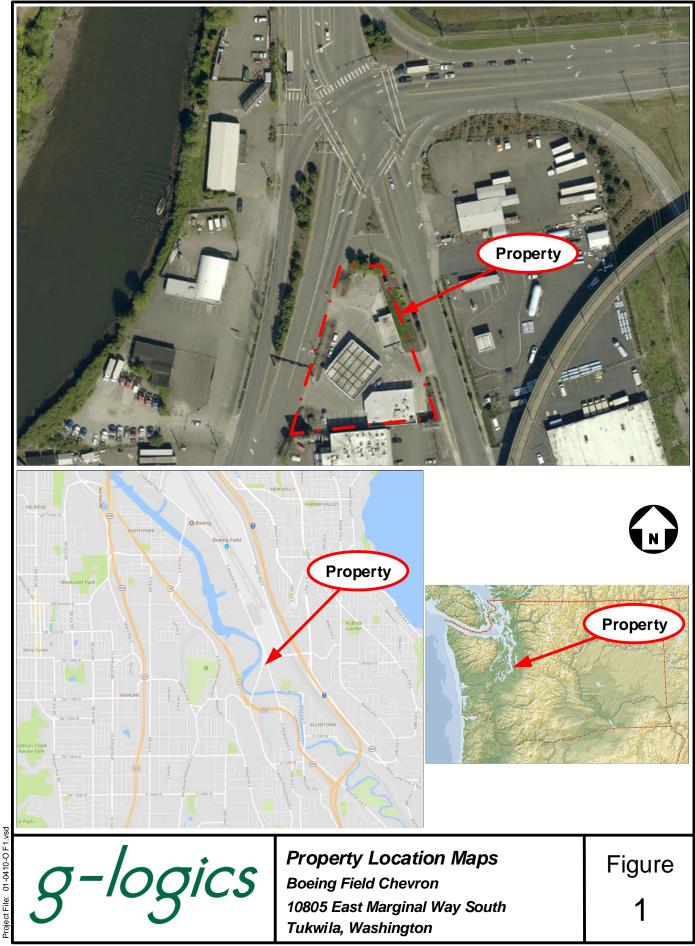
Results of sparge testing in the lower-saturated zone indicate that communication of soil vapors between the lower- and upper-saturated zone is possible but likely limited, as evidenced by bubbling observed in two of the upper-saturated zone wells during the lower-saturated zone sparge test. In addition, hydrocarbon mass recovery rates did not increase during sparge operations in either of the saturated zones. Specifically, these findings indicate that air injected into the lower saturated zone would not be recoverable.

8.0 LIMITATIONS

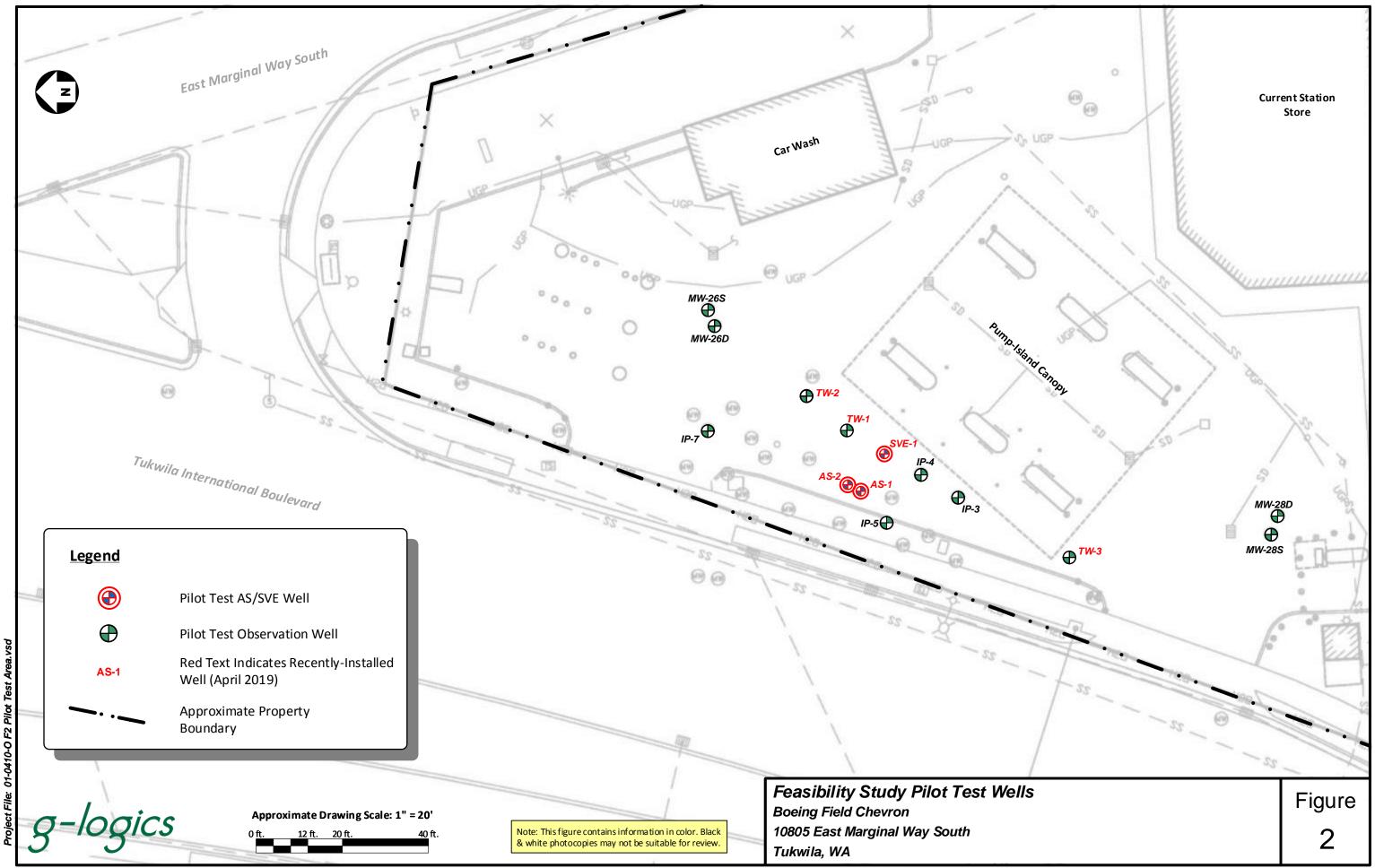
This document was prepared in accordance with generally accepted professional practices, for similar services, locations, and at the time the work was performed. The results and discussions are intended exclusively for the purpose outlined herein and for the Site location and project indicated. Opinions and recommendations presented herein are based solely upon our visual observations and field screening, and the analysis of the soil, groundwater, and soil-gas/vapor samples collected during the Feasibility Study Pilot Test. The information presented in this report reflects site conditions existing at the time of our assessment and does not necessarily apply to future changes or other prior conditions at the site of which G-Logics, Inc. is not aware and has not had the opportunity to evaluate. Our services were not intended to identify all environmental problems, do not eliminate all risk, and were limited to the information described above. Other activities that are not specifically described in this document are excluded and are therefore not part of our services.

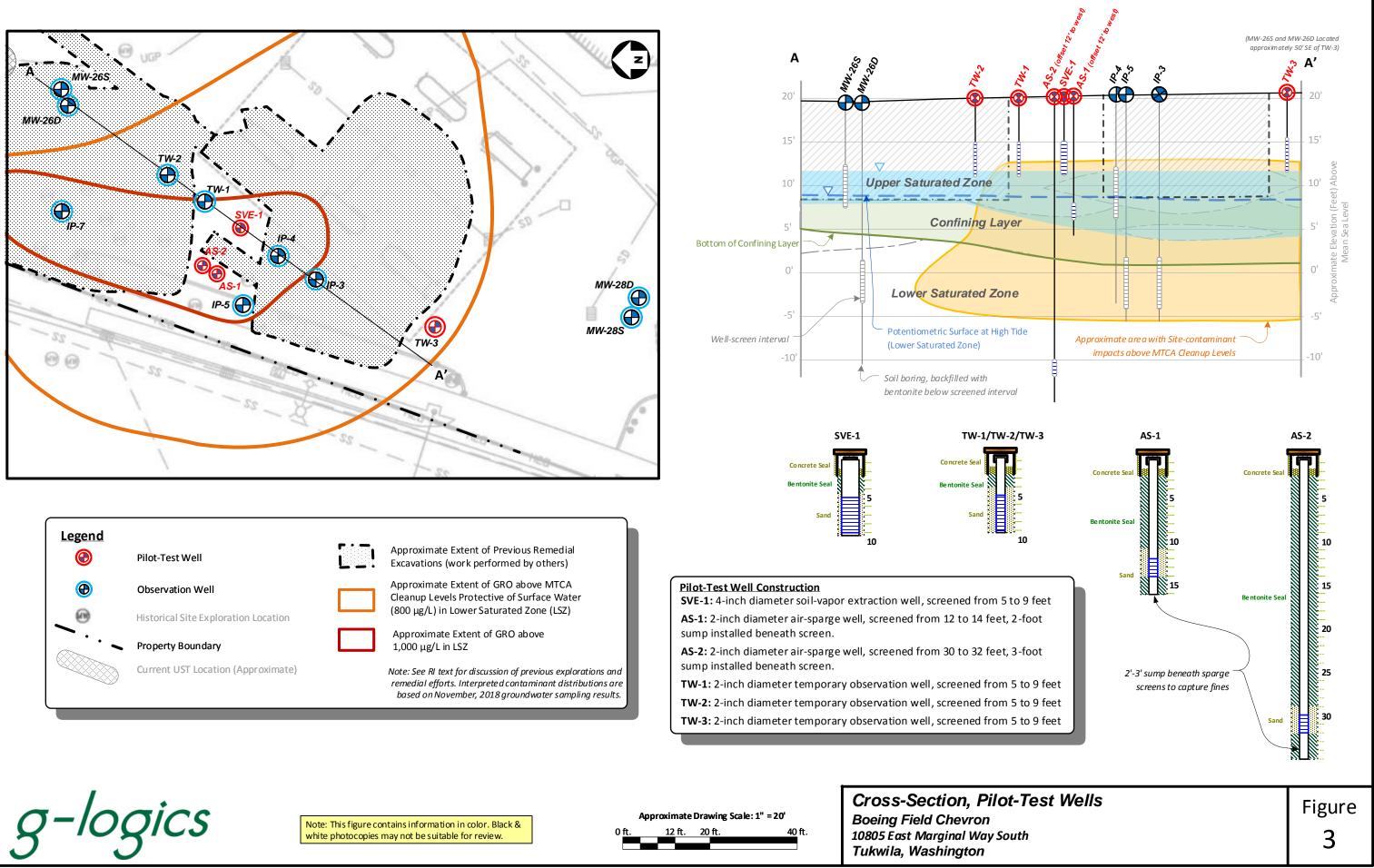
No warranty, either express or implied, is made.

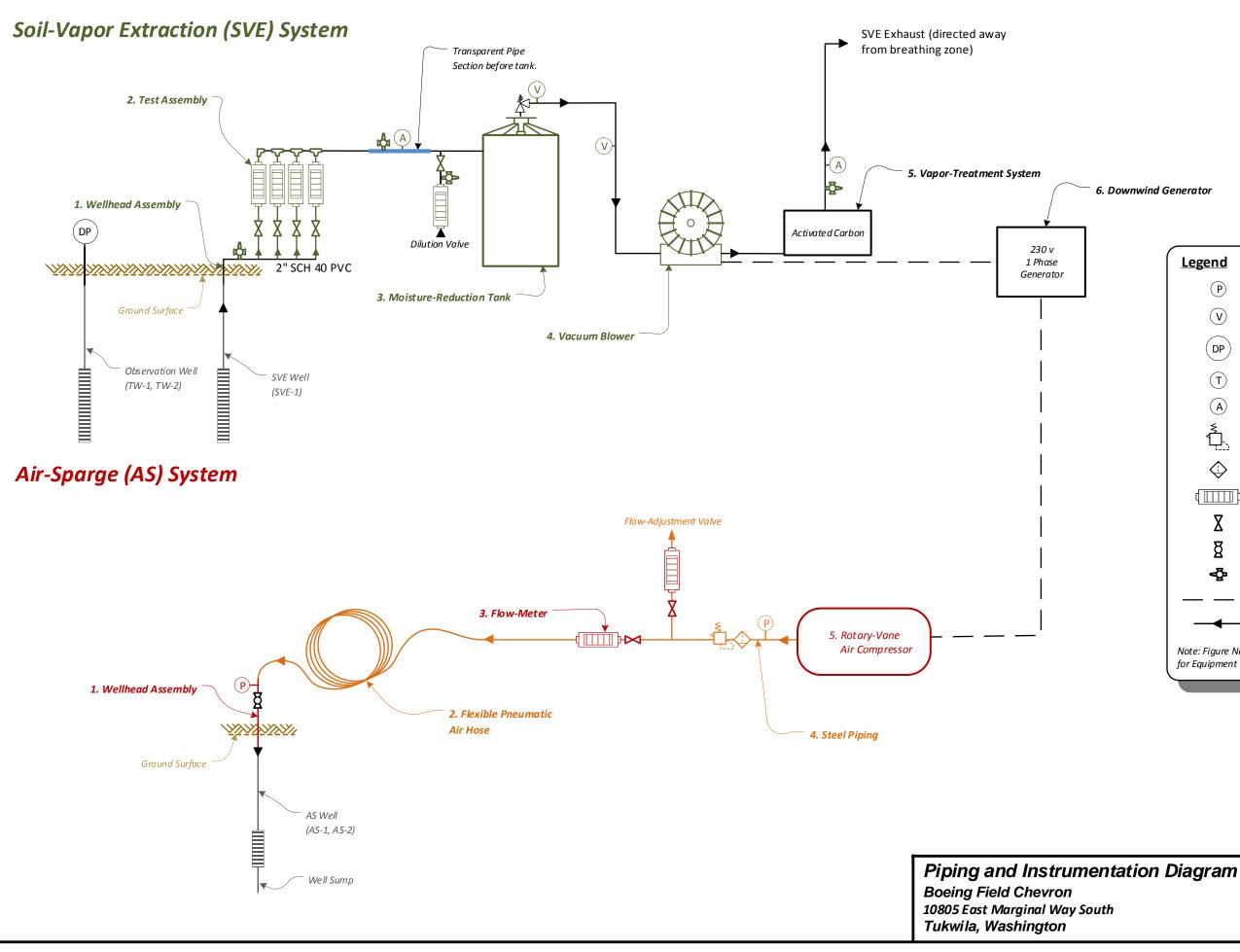
g-logics


9.0 **REFERENCES**

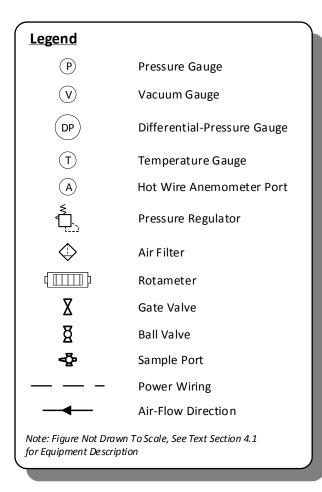
Dwyer Instruments, Inc., 2009, VFC Series Visi-Float® Flowmeter Specifications – Installation and Operating Instructions, Bulletin F-48.

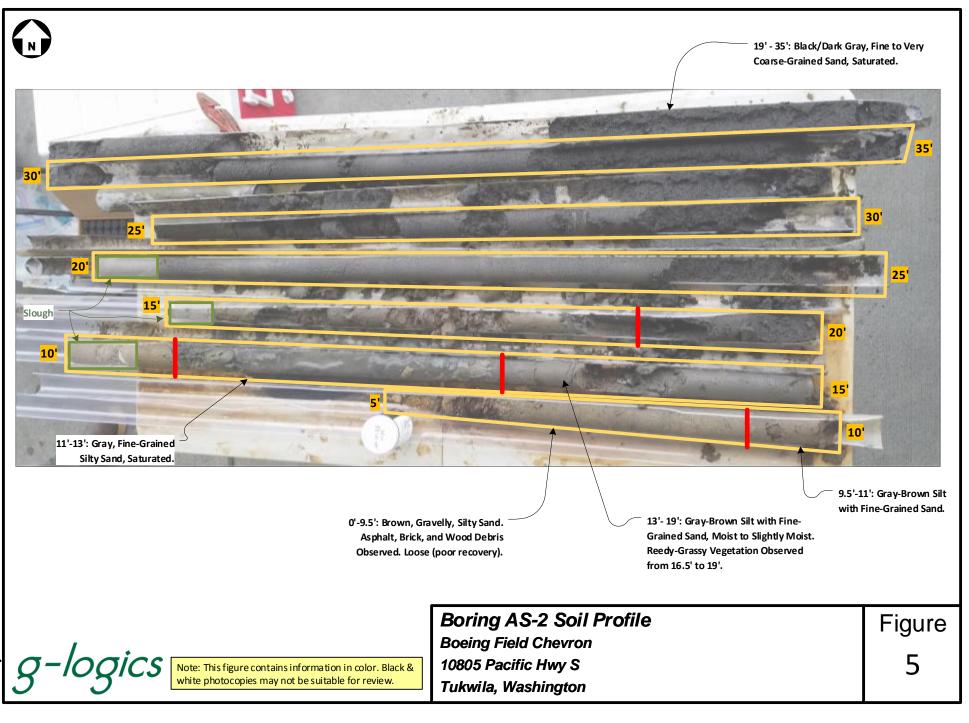

Kuo, 1999, Practical Design Calculations for Groundwater and Soil Remediation.

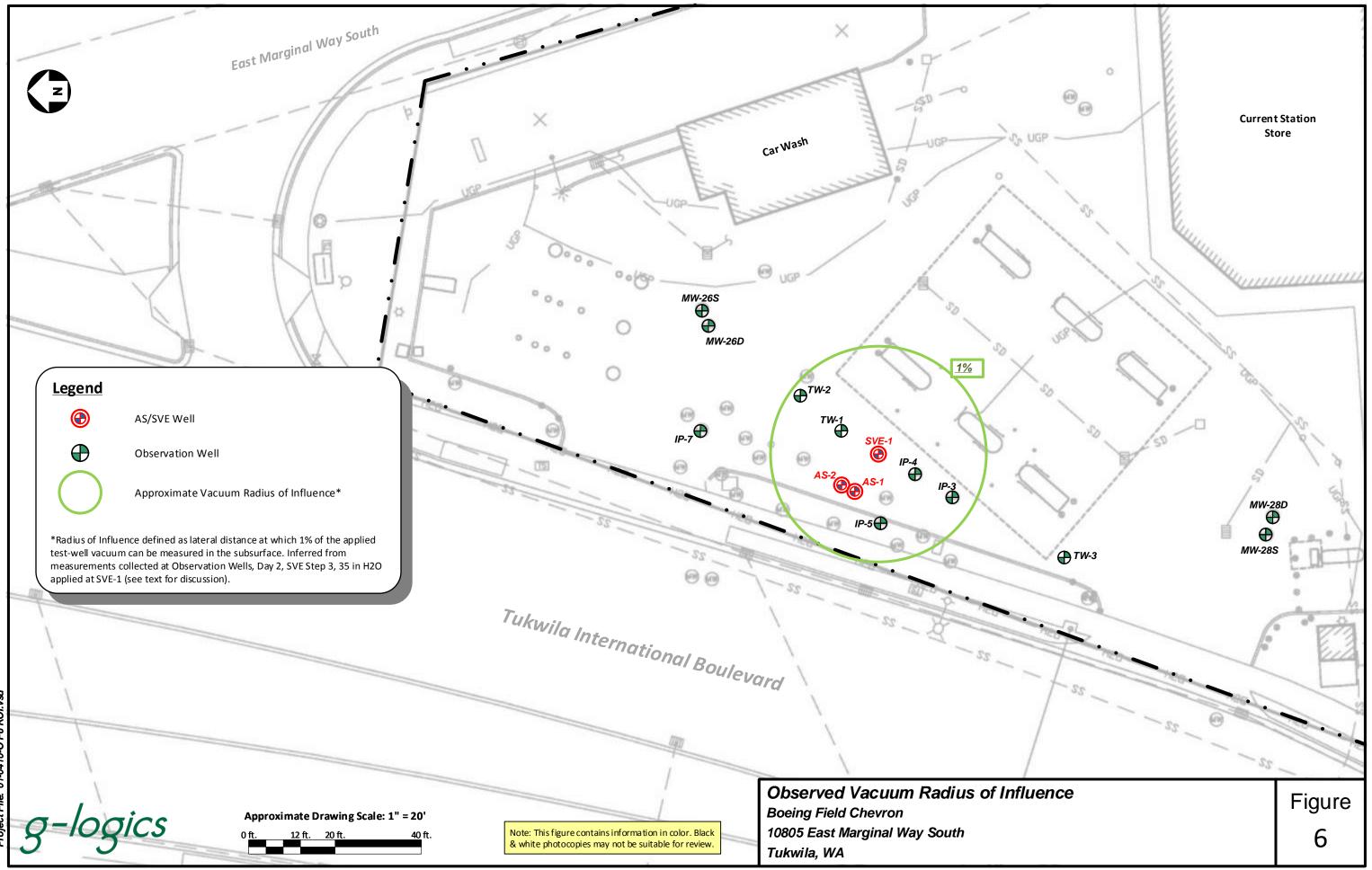

FIGURES



Mapping Reference: Delorme, King County iMap, and Google Maps


Mapping Reference: PLS Survey, G-Logics Field Measurements


g-logics


6. Downwind Generator

Figure

4

Mapping Reference: PLS Survey, G-Logics Field Observations

TABLES

TABLE 1 Soil Sample Analyses Boeing Field Chevron Tukwila, Washington

Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	PHD	Reading topmy (1)	Panse Orosa Dies	nites BRange Ords Heavy	onics or Oil Range Of Bent	Santes Santes Totu	one EIN	benzene tyle	ne ⁵ wet	WTer Bury	the Instantian	at DC AND	
MTCA Method A	Cleanup Level			*	100(a)/30(b)	2,000	2,000	0.03	7	6	9	0.100	11	0.005	250	
(units in mg/kg)																
AS-1	4/10/19	AS-1-5	5													
AS-2	4/10/19	AS-2-5	5	0.00	<4.07	<21.1	<52.6	<0.0163	<0.0163	<0.0203	<0.0407					
	4/10/19	AS-2-10	10	45.0	<5.16	<23.4	<58.6	<0.0207	<0.0207	<0.0258	<0.0516					
	4/10/19	AS-2-15	15	90.0	12.9	<25.8	<64.4	0.0440	0.186	<0.0332	<0.0664					
	4/10/19	AS-2-19	19	75.0	928	<22.3	<55.7	10.2	73.6	15.1	83.2	<1.13	<0.450	<0.113	1.36	
	4/10/19	AS-2-25	25	90.0	24.1	<24.3	<60.9	<0.0296	<0.0296	1.26	0.419					
	4/10/19	AS-2-30	30	100	<5.44	<23.2	<58.0	<0.0218	0.0230	<0.0272	<0.0544					
	4/10/19	AS-2-35	35	100												
SVE-1	4/10/19	SVE-1-5	5	0.00	<5.44	<19.6	106	<0.0218	<0.0218	<0.0272	<0.0544					
	4/10/19	SVE-1-9	9	88.0	3,560	<21.7	<54.2	<0.458	16.8	62.2	407	<1.14	<0.458	<0.114	4.51	
TW-1	4/10/19	TW-1-5	5	0.00	<4.61	<19.4	113	<0.0184	0.0307	<0.0231	<0.0461					
	4/11/19	TW-1-9	9	0.00	<5.48	<18.6	<46.5	<0.0219	<0.0219	<0.0274	<0.0548					
TW-2	4/11/19	TW-2-5	5	0.00	<5.56	<19.6	<49.0	<0.0222	<0.0222	<0.0278	<0.0556					
TW-3	4/11/19	TW-3-5	5	2.10	9.09	<18.6	<46.5	0.0938	0.241	0.299	1.09					
	4/11/19	TW-3-9	9	151	153	<19.7	<49.2	5.35	0.867	7.43	17.5	<0.0455	<0.0182	<0.00455	11.3	
	4/11/19	DUP	9	151	29.4	<20.8	<52.0	0.798	1.67	0.864	2.83	<0.0558	<0.0223	<0.00558	6.89	

Notes: Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.

(1) Soil samples were field screened using a PID to measure VOCs. Headspace VOC concentrations were measured after placing the soil in a sealed plastic bag and allowing soil and air inside the bag to equilibrate.

(a) Soil Cleanup Level for Gasoline with no detectable benzene in the soil.

(b) Soil Cleanup Level for Gasoline with detectable benzene in the soil.

* Not Applicable/ Cleanup/Screening Level Not Established.

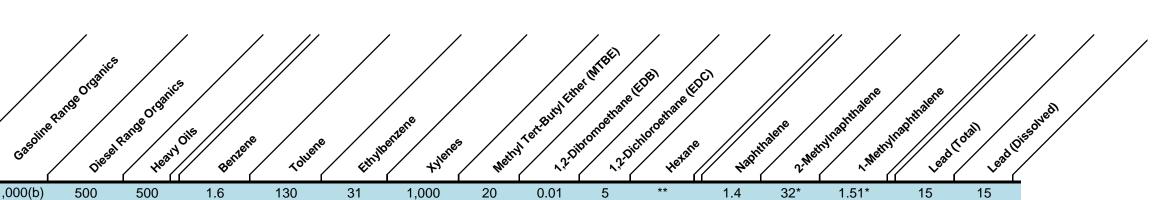
DUP Blind Field Duplicate Sample for QA/QC.

--- Sample not analyzed.

nd Not Detected (data gathered from historical reports, lab analysis reporting limits not available).

<1.07 The analyte was not detected at a concentration above the indicated reporting limit.

12.0 Bold Number(s) indicates contaminant detected.


419 Bold Number(s) and Yellow Shading indicates concentration exceeds applicable cleanup level.

<4.25 Laboratory reporting limit is higher than referenced cleanup levels.

TABLE 2

Groundwater Sample Analyses, Pilot Test Monitoring Wells (1) Boeing Field Chevron Tukwila, Washington

Exploration Location	Sample Name	Sample Date	Water Depth (ft)	Gasoline	kande Diese	Range Organ	UIS BENZEN	e Toluen	e Ethylo	entene tylene	Meth	WTertBuryler	promostrane	hichbroethane t	e Nath	Tratene 2.Met	NHRSONHOBERT	Inaphthalen Lead	Totall
MTCA Cleanup	Level (2, 3)			800(a)/1,000(b)	500	500	1.6	130	31	1,000	20	0.01	5	**	1.4	32*	1.51*	15	15
(units in µg/L)																			
ACTIVE WELL	LS			_			_								_			_	
AS-1	AS-1	4/17/2019	9.60	4,150	270	<101	702	224	138	141.9	<1.00	<0.0100	<1.00					<0.500	
AS-2	AS-2	4/17/2019	15.03	1,560	<50.0	<100	20.8	78.4	22.4	128.4	<1.00	<0.00994	<1.00					0.804	<0.500
	DUP	4/17/2019	15.03	1,500	<50.0	<99.9	19.6	85.3D	22.3	130.7D	<1.00	<0.00989	<1.00					<0.500	<0.500
MW-26S	MW-26	11/30/2016	8.09	<50.0	<49.8	<99.6	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00996	<1.00	<1.00	<0.0993	<0.0993	<0.0993	2.15	<0.500
	MW-26S-3242017	3/24/2017	6.92	<50.0	<49.9	<99.8	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00989	<1.00		<0.0995	<0.0995	<0.0995	1.48	<0.500
	MW-26S-7262017	7/26/2017	8.98	<50.0	<50.2	<100	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00976	<1.00		<0.0997	<0.0997	<0.0997	0.800	<0.500
	MW-26S-1042017	10/4/2017	9.57	<50.0	<49.6	<99.2	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00971	<1.00	<1.00	<0.0999	<0.0999	<0.0999	<0.500	<0.500
	MW-26S	1/11/2018	7.27																
	MW-26S	8/24/2018	8.80	<50.0	<49.7	<99.4	<1.00	<1.00	<1.00	<1.00					<1.00 Q				
	MW-26S	11//28/2018	3 7.85	<50.0	<50.1	<100	<1.00	<1.00	<1.00	<1.00								<0.500	
MW-26D	MW-26D	11/30/2016	5 12.19	<50.0	<49.9	<99.8	<1.00	<1.00	<1.00	<1.00	<1.00	< 0.00997	<1.00	<1.00	<0.0997	<0.0997	<0.0997	0.0633	<0.500
	MW-26D-3242017	3/24/2017	12.24	<50.0	<49.6	<99.1	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00952	<1.00		<0.0998	<0.0998	<0.0998	4.48	<0.500
	MW-26D-7262017	7/26/2017	13.49	<50.0	<49.9	<99.8	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00976	<1.00		<0.0997	<0.0997	<0.0997	0.800	<0.500
	MW-26D-1042017	10/4/2017	14.66	<50.0	<50.0	<100	<1.00	<1.00	<1.00	<1.00	<1.00	<0.0100	<1.00	<1.00	<0.0989	<0.0989	<0.0989	0.729	<0.500
	MW-26D	1/11/2018	11.46																
	MW-26D	8/24/2018	15.65	<50.0	<49.7	<99.5	<1.00	<1.00	<1.00	<1.00					<1.00 Q				
	MW-26D	11//28/2018	3 12.07	<50.0	<49.8	<99.7	<1.00	<1.00	<1.00	<1.00								0.785	
MW-28S	MW-28S	11/28/2016	8.14	<50.0	<49.9	<99.8	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00978	<1.00	<1.00	<0.100	<0.100	<0.100	<0.500	<0.500
	MW-28S-3242017	3/24/2017	6.66	<50.0	<49.9	<99.9	<1.00	<1.00	<1.00	<1.00	<1.00	<0.0100	<1.00		<0.0999	<0.0999	<0.0999	<0.500	<0.500
	MW-28S-7262017	7/26/2017	8.54	<50.0	<50.3	<101	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00925	<1.00		<0.0999	<0.0999	<0.0999	<0.500	<0.500
	MW-28S-1042017	10/4/2017	9.51	<50.0	<49.3	<98.6	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00997	<1.00	<1.00	<0.0985	<0.0985	<0.0985	<0.500	<0.500
	MW-28S	1/11/2018	7.91																
	MW-28S	8/23/2018	9.03	<50.0	<49.8	<99.6	<1.00	<1.00	<1.00	<1.00					<1.00 Q				
	MW-28S	11//27/2018	8.75	<50.0	<49.8	<99.6	<1.00	<1.00	<1.00	<1.00					<1.00 Q				

TABLE 2

Groundwater Sample Analyses, Pilot Test Monitoring Wells (1) Boeing Field Chevron Tukwila, Washington

Tukwila, Wasł	hington																		
									. /	/ /	/						// /	/ /	/
				/	anics								MIB	\$	<u>م</u>				
					Orge	ani	. ⁵⁵					Eth	s ⁻ /.	ED C	jd ^e		ane	ane	
					Range	oros			/ /		/	QUINIT	ethan	ethane			hthale	hthale	Totall Lead
Evoloration	Sampla	Sampla	Water	oline	a Partie Organics	Range Organi	oils	~	。	Sentene tylene	s /	W Ter BUN EM	arter to the state of the state	LEDE Have to	. //	thalene 2.Met	nyhaphinalene	Unophratene	Totall Lead
Exploration Location	Sample Name	Sample Date	Depth (ft)	Gas	niese l	Jeav	y Oils Benze	ne Toluet	the strait	pene +ylene	Neth	N 2.01	³ / 2 ⁷	ic. Jevan	134	.HI	in, Meth	°// ead	
						<u> </u>		Í						**	• •				
MTCA Cleanup) Level (2, 3)			800(a)/1,000(b)	500	500	1.6	130	31	1,000	20	0.01	5	**	1.4	32*	1.51*	15	15
(units in μg/L)							_								_			_	
MW-28D	MW-28D	11/28/201		<50.0	<49.5	<99.1	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00995	<1.00	<1.00	<0.100	<0.100	<0.100	<0.500	<0.500
	MW-28D-3242017	3/24/2017		<50.0	<49.7	<99.4	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00989	<1.00		<0.0993	<0.0993	<0.0993	<0.500	<0.500
	FD-2 (MW-28D Dup)	3/24/2017		<50.0	<49.7	<99.5	<1.00	<1.00	<1.00	2.19	<1.00	<0.00984	<1.00		<0.0995	<0.0995	<0.0995	<0.500	<0.500
	MW-28D-7262017	7/26/2017		<50.0	<49.9	<99.8	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00982	<1.00		<0.0998	<0.0998	<0.0998	<0.500	<0.500
	MW-28D-1042017	10/4/2017		<50.0	<49.6	<99.1	<1.00	<1.00	<1.00	<1.00	<1.00	<0.00993	<1.00	<1.00	<0.0996	<0.0996	<0.0996	0.872	<0.500
	MW-28D	1/11/2018																	
	MW-28D	8/23/2018		<50.0	<49.8	<99.7	<1.00	<1.00	<1.00	<1.00					<1.00 Q				
	MW-28D	11//27/201	8 11.96	<50.0	<49.6	<99.1	<1.00	<1.00	<1.00	<1.00								<0.500	
IP-3	IP-3	5/8/2006	NR**	28			1,800	13,000	1,400	8,300									
	IP-3	3/27/2008	3 NR**	62,900			6,120	8,850	968	4,420									
	IP-3 GW-L	7/17/2015	5 17.44	4,200	460 X	<250	1,200	11	70	38.5	1.2	0.10	<1	38	28	13	8.7	<1	<1
	IP-3 GW-H	7/23/2015	5 14.97	4,700	510 X	<250	1,300	13	71	41.0	<10	0.04	<5	35	3.1	7.7	5.5	<1	<1
	IP-3-3232017	3/23/2017	7 12.96	4,840 D	<49.9	<99.8	783 D	105 D	127 D	139 D	<1.00	<0.00976	<1.00		2.52	6.09	3.30	<0.500	<0.500
	IP-3-7272017	7/27/2017	7 14.16	5,800 D	<50.2	<100	862 D	20.5	136 D	61.6 D	<1.00	<0.00952	<1.00		0.789	6.10	3.56	<0.500	<0.500
	IP-3-1042017	10/4/2017	7 15.32	3,740 D	<50.3	<101	1,270 D	80.7	214 D	458.3 D	<1.00	<0.0100	<1.00	72.7 D	1.37	6.5	4.13	<0.500	<0.500
	DUP	1/12/2018	3 12.01	4,980 D	77.7	<99.9	950 D	45.7 D	100 D	91.62 D	<1.00	<0.250	<1.00		8.77				<0.500
	IP-3	1/12/2018	3 12.01	4,610 D	74.3	<99.6	895 D	42.9 D	94.3 D	88.93 D	<1.00	<0.250	<1.00		15.7				
	MW-B (dup)	5/29/2018		4,520 D	<49.8	<99.6	832 D	31.4 D	101 D	114.21 D		<0.00981			2.56	9.79	5.38		
	IP-3	5/29/2018		4,870 D	<49.9	<99.8	971 D	34.5 D	106 D	107.29 D		<0.00984			2.37	9.85 D	5.57		
	IP-3	8/24/2018		6,160 D	111	101	1,390 D	27.1	125 D	141.33 D		<0.00987			8.19 Q			<0.500	
	MW-A	8/24/2018		5,750 D	113	<99.9	1,300 D	29.4	129 D	154.98 D		<0.00979			6.70			0.551	
	IP-3	11/28/2018		3,710 D	63.9	<99.7	865 D	18.8	53.0 D	52.4		<0.00997			1.95			1.92	
IP-4	IP-4	5/8/2006	NR**	110			15,000	48,000	3,700	23,000									
	IP-4	3/27/2008		84,400			14,600	22,100	4,920	17,600									
	IP-4 GW-L	7/17/2015		170,000	6,800 X	<250	4,100	29,000	4,800	26,900	1.4	0.12	<1	87	550	96	56	<1	<1
	IP-4 GW-H	7/24/2015		150,000	8,700 X	<250	4,200	27,000	4,300	24,400	<10	0.04	<5	64	440	82	47	<1	<1
	IP-4	11/30/201		93,400D	1,410	<99.6	1,070 D	15,600 D	3,300 D	19,950 D	<1.00	<0.00986	<1.00	127 EQ	504 D	85.2 D	47.3 D	0.974	<0.500
	IP-4-3232017	3/23/2017		209,000 D	1,570	<99.6	1,360 D	16,200 D	5,090 D	30,440 D	<1.00	<0.00953	<1.00		757 D	119 D	66.6 D	<0.500	< 0.500
	IP-4-7272017	7/27/2017		213,000 D	1,180	<99.4	1,000 D	19,600 D	5,500 D	19,200 D	<1.00	<0.00933	<1.00		447 D	80.8 D	37.6 D	<0.500	< 0.500
	IP-4-1042017	10/4/2017		213,000 D 212,000 D	1,110	<101	2,030 D	18,400 D	5,320 D	25,190 D	<1.00	< 0.00971	<1.00	48.0	604 D	89.9 D	57.0 D 71.3 D	0.546	< 0.500
	IP-4	1/12/2018		162,000 D	1,110	<99.9	939 D	18,400 D	5,180 D	23,190 D 27,980 D	<1.00	<0.250	<1.00		1,150 D				
	IP-4	5/29/2018		199,000 D	1,250		687 D	17,200 D	6,090 D						661 D				
	IP-4 IP-4					138			6,090 D 5,550 D	32,200 D		<0.00998				101 D	<0.0999		
		8/24/2018		131,000 D	584 471	<99.9	421 D	11,400 D		29,340 D					748 D				
	IP-4	11/28/2013	8 10.00	123,000 D	471	<99.9	246 D	7,380 D	5,170 D	27,120 D		<0.00962			867 D			<0.500	

TABLE 2

Groundwater Sample Analyses, Pilot Test Monitoring Wells (1) Boeing Field Chevron Tukwila, Washington

Exploration Location	Sample Name	Sample Date	Water Depth (ft)	Gasoline	Rans Diesel	Range Oris	NOIS Benten	e Toluen	e Ehvit	Sentene +ylene	s wet	W TertBury	promoethat	Jichloroethall	e _{Nath}	tralene 2.Me	nymaonman	Insorthat Lead	Totall Lead D
MTCA Cleanup	Level (2, 3)			800(a)/1,000(b)	500	500	1.6	130	31	1,000	20	0.01	5	**	1.4	32*	1.51*	15	15
(units in μg/L)																			
IP-5	IP-5	5/9/2006	NR**	48			2,100	18,000	3,500	20,000									
	IP-5	3/27/2008	NR**	13,300			711	1,260	363	1,370									
	IP-5 GW-L	7/20/2015	16.58	35,000	3,900 X	<250	5,200	1,400	2,400	2,800	<10	0.32	<5	160	90	15	15.0	1.02	<1
	IP-5 GW-H	7/24/2015	15.50	27,000	2,700 X	<250	4,500	1,100	2,200	2,580	<10	0.24	<5	170	86	18	13.0	<1	<1
	IP-5	11/30/2016	13.00	15,200 D	321	<99.1	3,450 DE	212 D	774 D	1,789 D	<1.00	<0.00987	<1.00	57.1 DQ	108 D	33.7 D	19.5 D	<0.500	<0.500
	MW-B (IP-5 Dup)	11/30/2016	13.00	15,400 D	313	<99.1	3,440 DE	256 D	795 D	1,824 D	<1.00	<0.00996	<1.00	63.1 DQ	104 D	31.6 D	18.4 D	<0.500	<0.500
	IP-5-3232017	3/23/2017	13.80	18,400 D	209	<99.2	1,740 D	141 D	665 D	1,637 D	<1.00	<0.00980	<1.00		60.4 D	25.1 D	15.1 D	<0.500	<0.500
	FD-1 (IP-5 Dup)	3/23/2017	13.80	15,700 D	273	<99.9	1,420 D	136 D	670 D	1,634 D	<1.00	<0.00981	<1.00		73.4 D	27.6 D	18.4 D	0.785	<0.500
	IP5-7262017	7/27/2017	13.76	15,800 D	102	<99.9	1,660 D	164 D	491 D	936 D	<1.00	<0.00993	<1.00		38.0 D	28.4 D	12.0 D	<0.500	<0.500
	IP-5-1042017	10/4/2017	16.17	30,700 D	175	<100	4,360 D	583 D	1,060 D	2,792 D	<1.00	<0.00971	<1.00	137	81.4 D	20.7 D	31.2 D	<0.500	<0.500
	IP-5	1/12/2018	13.42	13,000 D	222	<100	1,500 D	240 D	462 D	1,195 D	<1.00	<0.250	<1.00		61.1 D				
	IP-5	5/29/2018	16.82	10,900 D	161	<100	1,270 D	149 D	415 D	806.6 D		<0.00981			31.6 D	20.3 D	4.57		
	IP-5	8/24/2018	17.08	36,200 D	471	<99.9	5,670 D	2,200 D	1,190 D	2,773 D					74.4 DQ				
	IP-5	11/28/2018	13.29	16,500 D	251	<101	2,590 D	490 D	633 D	1,105 D		<0.00994			48.1 JD			<0.500	

Notes:

(1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.

(2) Method A groundwater cleanup levels used as surface water cleanup levels per WAC 173-340-730(3)(b)(iii)(C).

(3) Gasoline Analyses by Method NWTPH-Gx, Diesel and Heavy Oil by NWTPH-Dx/Dx Ext., Lead by EPA 200.8, EDB by EPA 8011, PAH by 8270 (SIM), VOCs by 8260C.

a Benzene present in groundwater/site.

b Benzene not present in groundwater/site

* Method B Cleanup Level.

** Not researched, no available data.

--- Sample not analyzed.

nd Not Detected (Data gathered from historical reports, lab analysis reporting limits not available).

NS Sample not collected (Undefined datum from Terracon's 2015 report).

NA Not Applicable (Undefined datum from Terracon's 2015 report).

NR** Water Level not reported, no available data

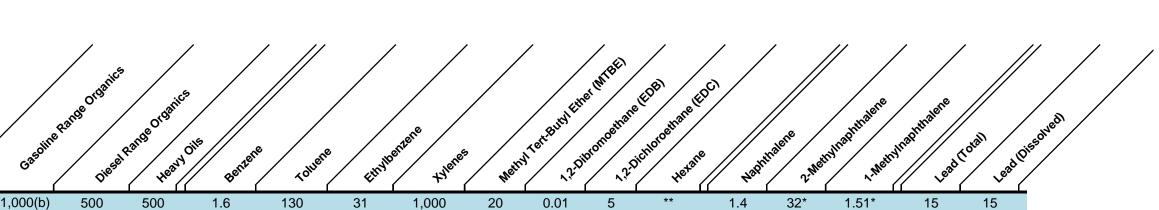
Dup Duplicate Sample for QA/QC.

The Sample Analyte dete Analyte with The sample Sample con Bold numbe Bold numbe Reporting lin

D

J

Q


Х

<50.0

27

160

<250

The Sample was diluted. Detection Limits were raised nad surrogate recoveries my not be meaningful.

Analyte detected below reporting limit.

Analyte with an initial calibration that does not meet established acceptance criteria.

The sample chromatographic pattern does not resemble the fuel standard used for quantification.

Sample concentration below laboratory reporting limit.

- Bold number(s) indicates contaminant detected, below cleanup level.
- Bold number(s) and yellow shading indicates concentration exceeds MTCA Cleanup Level.

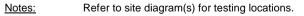
Reporting limits exceeds cleanup level.

Peach shading indicates most recent sampling event data.

TABLE 3 Soil Vapor Extraction Test Field Observations Boeing Field Chevron Tukwila, Washington

Date	5/2/2019	5/3/2019
SVE System Initiation	9:50	10:23
SVE System Shutdowr	13:50	15:00

		Extraction Well		O	oservation W	ell					SVE-Syster	n Parameters	5			
		SVE-1	TW-1	IP-4	TW-2	MW-26S	TW-3	Dilution	ко	Blower		Blower		Bl	ower	Mass
		Distance from SVE-1	10' N	10' S	20' N	50' N	50' S	Valve	Tank	Inlet		Inlet			haust	Recover
Test Phase	Time	Vacuum (in H₂O)	Vacuum (in H₂O)	Vacuum (in H₂O)	Vacuum (in H₂O)	Vacuum (in H₂O)	Vacuum (in H₂O)	% Open	Vacuum (in H₂O)	Vacuum (in H₂O)	Flow (SCFM) ¹	Temp (°F)	PID (ppmv)	Flow (SCFM) ¹	Temp (°F)	(lbs/day)
							Day 1 (5/1/	2019)								
Baseline	9:00		-0.005	0.01	0.00	0.00	0.00						300			
Step 1	10:10	-10.0	-0.63	-0.30	-0.12	-0.020	-0.012	100	-60.0		22.0	55	430			
•	10:20	-10.0	-0.63	-0.38	-0.12	-0.025	-0.010	100	-60.0		22.0	57	430			0.7
Step 2	10:55	-19.5	-1.40	-0.30	-0.26	-0.030	-0.025	0	-42.0	-46.0	37.0	57				
	11:00	-19.5	-1.25	-0.36	-0.27	-0.060	-0.020	0	-42.0	-46.0	37.0	57	450			
	11:05	-19.5	-1.25	-0.35	-0.27	-0.060	-0.020	0	-42.0	-46.0	37.0	57				
	11:10	-19.5	-1.25	-0.37	-0.27	-0.070	-0.020	0	-42.0	-46.0	37.0	57				
	11:15	-19.5	-1.25	-0.37	-0.27	-0.070	-0.020	0	-42.0	-46.0	37.0	57	424			1.5
Step 3	11:40	-22.0	-1.45	-0.43	-0.33	-0.080	-0.020	0	-38.0	-42.0	43.0	57	428			
	11:50	-22.0	-1.50	-0.47	-0.34	-0.080	-0.025	0	-38.0	-42.0	43.0	57				
	11:57	-22.0	-1.50	-0.47	-0.34	-0.080	-0.020	0	-38.0	-42.0	43.0	57				
	12:15	-22.0	-1.50	-0.40	-0.35	-0.090	-0.025	0	-38.0	-42.0	43.0	57	428			1.5
Step 4	12:47	-27.0	-1.80	-0.30	-0.44	-0.11	-0.025	0	-38.0	-42.0	60.0	70	388			
	12:52	-27.0	-1.80	-0.42	-0.43	-0.10	-0.040	0	-38.0	-42.0	60.0	70				
	13:03	-27.0	-1.80	-0.45	-0.43	-0.10	-0.030	0	-38.0	-42.0	60.0	70				
	13:15	-27.0	-1.80	-0.25*	-0.48	-0.12	-0.050	0	-38.0	-42.0	60.0	70				
	13:30	-27.0	-1.70	-0.14*	-0.45	-0.10	-0.040	0	-38.0	-42.0	60.0	70				
	13:45	-27.0	-1.70	-0.06*	-0.43	-0.10	-0.025	0	-38.0	-42.0	60.0	70	400			1.6
							Day 2 (5/2/	2019)								
Step 1	10:33	-13.0	-0.76	-0.56	-0.16	-0.040	-0.020	100	-50.0	-55.0	28.0	60	470	72.0	61	
	10:50	-13.0	-0.75	-0.53	-0.16	-0.040	-0.020	100	-50.0	-55.0	28.0	60		72.0	61	
Step 2	11:20	-24.0	-1.40	-0.97	-0.33	-0.08	-0.020	0			65.0	60	400	61.0	85	
Step 2	11:50	-35.0	-2.00	-1.35	-0.50	-0.11	-0.030	0	-42.0	-46.0	89.0	64	400	84.0	70	
	12:02 12:10	-35.0 -35.0	-2.10 -2.10	-1.35 -1.35	-0.50 -0.50	-0.11 -0.11	-0.040 -0.040	0 0	-42.0 -43.0	-46.0 -47.0	89.0 89.0	62 62	400	84.0 84.0	70 70	3.2


Notes: Refer to site diagram(s) for testing locations.

1 Standard Cubic Feet Per Minute. Air flow was measured on Day 1 using a manifold of Dwyer * rotameters. Air flow was measured on Day 2 using a hot-wire anemometer.

TABLE 4 Upper Saturated Zone Air Sparge / Soil Vapor Extraction Test **Field Observations Boeing Field Chevron** Tukwila, Washington

Date	5/2/2019
SVE System Initiation	10:23
AS System Initiation	12:50
AS/SVE Shutdown	15:00

Time		10:00	12:10	12:50	13:09	13:38	14:00	14:37
AS-System Paramete	rs							
AS-1 Wellhead	Pressure (in H₂O)			<1	2	3	3	3
Regulator	Pressure(in H₂O)			5	18	18	18	18
Manifold	Pressure(in H ₂ O)			5	18	18	18	18
	Temp (°F)			68	70			
	Flowrate (SCFM) ¹			8	10	10	10	10
SVE-System Paramet	ars							
SVE-0 Wellhead	Vacuum (in H₂O)		37.0	37.0	37.0	37.0	37.5	37.5
Blower Inlet	Flowrate (SCFM) ¹		92	92	92	97	90	101
Slower milet	PID (ppmv)		300	400	400	400	400	400
Blower Exhaust	Flowrate (SCFM) ¹		84	93	96	400	93	89
			0.0	93	90	0.0	93	0.0
Mass Removal Rate	PID (ppmv)		3.2			2.7		2.6
	(lbs/day)		3.2			2.1		2.0
Observation Well Par								
FW-1 (10' N of AS-1)	Pressure (in H₂O)		-2.1		-1.90	-1.90	-1.25	-1.90
	PID (ppmv)	1.6			0.90	2.0	1.0	1.0
	Water Elevation (ft)	10.85			10.79			10.81
	Dissolved Oxygen (%)	1.55	1.55					0.55
	Bubbling Observed (Y/N)	N	Ν		Ν			Ν
P-4 (10' S of AS-1)	Pressure (in H₂O)		-1.25		-0.52	0.13	-0.36	-2.90
	PID (ppmv)	250			160	230	230	230
	Water Elevation (ft)	10.69			10.51			10.76
	Dissolved Oxygen (%)	0.85						0.68
	Bubbling Observed (Y/N)	Ν			Ν			Ν
FW-2 (20' N of AS-1)	Pressure (in H₂O)		-0.51		-0.51	-0.43	-0.27	-0.53
	PID (ppmv)	0.80			1.4	1.0	1.4	1.3
	Water Elevation (ft)	10.9			10.88			10.88
	Dissolved Oxygen (%)	2.75						1.49
	Bubbling Observed (Y/N)	Ν			Ν			Ν
/W-26S (50' N of AS-1)	Pressure (in H₂O)		-0.110		-0.130	-0.110	-0.060	-0.110
	PID (ppmv)	14			14	24	14	35
	Water Elevation (ft)	10.82			10.73			10.83
	Dissolved Oxygen (%)	5.6						1.00
	Bubbling Observed (Y/N)	N			Ν			N
W-3 (50' S of AS-1)	Pressure (in H₂O)		-0.04		-0.12		-0.050	-0.060
. ,	PID (ppmv)	205			86	24	23	35
	Water Elevation (ft)	11.12			11.10			11.69
	Dissolved Oxygen (%)	1.1						0.68

1

Standard Cubic Feet Per Minute. SVE air flow was measured using a hot-wire anemometer. AS air flow was measured using a Dwyer® rotameter.

TABLE 5Lower Saturated Zone Air Sparge / Soil Vapor Extraction TestField ObservationsBoeing Field ChevronTukwila, Washington

Date	5/3/2019
SVE System Initiation	11:26
AS System Initiation	12:25
AS System Shutdown	14:30

Time ¹		10:00-11:00	11:26	11:35-12:00	12:05-12:20	12:25	12:45-13:45	14:15-15:00
AS-System Param	eters							
AS-2 Wellhead	Pressure (in H₂O)					6	8	8
Regulator	Pressure(in H₂O)					18	18	18
Manifold	Pressure(in H₂O)					6	20	20
	Temp (°F)					70	82	78
	Flowrate (SCFM) ³					1	10	9
SVE-System Parar	neters_							
SVE-System Parar SVE-1 Wellhead Blower Inlet	Vacuum (in H₂O)		37.0	37.0	37.0	36.0	37.5	37.5
Blower Inlet	Flowrate (SCFM) ³		109			212	123	212
5	PID (ppmv)		527			320	523	400
Blower Exhaust	Flowrate (SCFM) ³		96			89	87	89
	PID (ppmv)		0.0			0.0		0.0
Mass Removal Rate	(lbs/day)		4.7		2.9	3.2	2.9	3.2
		_						
Observation Well I AS-1 (4' S of AS-2)		0.00		-0.13	-0.090		29.0	2 00
	Pressure (in H₂O)	39		-0.13	-0.090 45		29.0 40	3.00 120
	PID (ppmv)							
	Water Elevation (ft)	10.22					11.80	10.12
	Dissolved Oxygen (%)	6					4.50 Y	 V
	Bubbling Observed (Y/N)	N					I	Y
TW-1 (10' N of AS-2)	Pressure (in H₂O)	-0.01		-2.20	-2.10		-2.40	-2.35
	PID (ppmv)	4.0		140	16		87	80
	Water Elevation (ft)	9.22					9.30	9.31
	Dissolved Oxygen (%)	0.38						0.46
	Bubbling Observed (Y/N)	N					Ν	Ν
IP-4 (10' S of AS-2)	Pressure (in H₂O)	-0.090		-0.50	-0.060		0.050	-0.020
	PID (ppmv)	100		100	115		115	195
	Water Elevation (ft)	9.70					10.00	9.90
	Dissolved Oxygen (%)	0.45						
	Bubbling Observed (Y/N)	N					Y	Y
TW-2 (20' N of AS-2)	Pressure (in H₂O)	-0.010		-0.50	-0.50		-0.55	-0.65
	PID (ppmv)	3.0		48	8.3		80	6.3
5	Water Elevation (ft)	9.15					9.16	9.16
	Dissolved Oxygen (%)	0.91						0.92
	Bubbling Observed (Y/N)	N					Ν	Ν
	-2) Pressure (in H ₂ O)	0.00		-0.150	-0.120		-0.10	-0.180
MW-26S (50' N of AS	PID (ppmv)	4.0		5.0	9.6		3.0	18
5	Water Elevation (ft)	8.68					8.68	8.68
	Dissolved Oxygen (%)	0.68						1.60
	Bubbling Observed (Y/N)	N					Ν	Ν
TW-3 (50' S of AS-2)	Pressure (in H₂O)	0.00		-0.040	-0.040		-0.060	-0.10
	PID (ppmv)	75		92	52		22	10
	Water Elevation (ft)	8.68					8.70	8.69
	Dissolved Oxygen (%)	0.48						0.83
	Bubbling Observed (Y/N)	N						Ν
MW-28S (100' S of A	S-2) Pressure (in H₂O)	-0.010		0.00	0.00		-0.020	-0.020
	PID (ppmv)	6.0		5.0	11		14	6.0
	Water Elevation (ft)	8.55					8.54	8.55
	Dissolved Oxygen (%)	3.68						3.80

TABLE 5Lower Saturated Zone Air Sparge / Soil Vapor Extraction TestField ObservationsBoeing Field ChevronTukwila, Washington

Date	5/3/2019
SVE System Initiation	11:26
AS System Initiation	12:25
AS System Shutdown	14:30

	IP-5 (12' S of AS-2)	Pressure (in H₂O)	0.00	 14.0	17.5	 50	50
		PID (ppmv)	75	 157	139	 106	376
		Water Elevation (ft)	16.23	 		 12.10	10.90
		Dissolved Oxygen (%)	0.31	 		 6.13	
		Bubbling Observed (Y/N)	N	 		 Y	Y
	IP-3 (25' S of AS-2)	Pressure (in H₂O)	0.020	 -3.45	-4.30	 12.50	50
		PID (ppmv)	14	 151	85	 69	193
s		Water Elevation (ft)	15.23	 		 13.77	12.25
Wells		Dissolved Oxygen (%)	0.46	 		 0.60	1.19
≥ ₀		Bubbling Observed (Y/N)	N	 		 Y	Y
Zone	IP-7 (35' N of AS-2)	Pressure (in H₂O)	2.50	 14.5	16.5	 50	50
		PID (ppmv)	Р	 Р	Р	 Р	Р
ate		Water Elevation (ft)	17.25	 		 	10.90
nra		Dissolved Oxygen (%)		 		 	
Saturated		Bubbling Observed (Y/N)	N	 		 Υ2	Y
	MW-26D (50' N of AS-2)	Pressure (in H₂O)	0.290	 3.25	-3.10	 11.5	1.40
Lower		PID (ppmv)	1.0	 178	201	 380	5.0
		Water Elevation (ft)	14.70	 		 13.42	13.08
		Dissolved Oxygen (%)	0.54	 		 	0.44
		Bubbling Observed (Y/N)	N	 		 Ν	Ν
	MW-28D (100' S of AS-2) Pressure (in H₂O)	-0.380	 -2.20	8.00	 8.00	3.00
		PID (ppmv)	76	 131	177	 313	13
		Water Elevation (ft)	14.38	 		 13.54	13.21
		Dissolved Oxygen (%)	0.53	 		 	0.55
	J	Bubbling Observed (Y/N)	N	 		 Ν	Ν

Notes: Refer to site diagram(s) for testing locations.

1 Measurements collected over the stated interval.

2 Test concluded after boiling observed in well containing NAPL

Standard Cubic Feet Per Minute. SVE air flow was measured using a hot-wire anemometer.
 AS air flow was measured using a Dwyer® rotameter.

P LNAPL present in well, headspace VOCs not measured

TABLE 6 Pilot Test Air Sample Analyses Boeing Field Chevron Tukwila, Washington

						anics	. /	, /
Test Interval	Sample Date	Sample Time	Sample Number	Gasoli	Re Range Orr	she tome	ne Ethy	ipentene Totë
(units in ug/m ³)								
SVE Test Start (09:50))							
Full Dilution ¹	5/1/2019	9:50	VS-1	3,230	9.26	138	61.6	264.9
SVE Step 1	5/1/2019	10:35	VS-2	355,000	598	4,010	4,330	23,120
SVE Step 2	5/1/2019	11:30	VS-3	438,000	807	5,010	5,780	27,820
SVE Step 3	5/1/2019	12:20	VS-4	383,000	732	4,880	5,480	25,470
SVE Step 4	5/1/2019	13:45	VS-5	304,000	646	4,690	4,770	21,490
Day 2 SVE Start (10:23	3)							
Pre-Sparge	5/2/2019	12:15	VS-6	401,000	954	5,610	5,600	24,720
Upper Sparge Start (1	2:50)							
Sparge	5/2/2019	13:45	VS-7	332,000	777	5,330	5,110	22,160
Sparge	5/2/2019	14:15	VS-8	321,000	759	5,300	5,030	21,660
Day 3 SVE Start (11:20	6)							
Pre-Sparge	5/3/2019	11:30	VS-9	586,000	1,310	6,750	6,290	31,100
Pre-Sparge	5/3/2019	12:20	VS-10	365,000	900	5,620	5,320	23,260
Lower Sparge Start (1	2:25)							
Sparge	5/3/2019	12:55	VS-11	396,000	1,020	6,010	5,660	24,050
Sparge	5/3/2019	13:25	VS-12	359,000	1,260	5,760	5,300	22,430
Sparge	5/3/2019	14:05	VS-13	366,000	1,570	5,790	5,270	22,340
Lower Sparge End (14	•							
Post-Sparge	5/3/2019	14:35	VS-14	404,000	2,780	6,100	5,450	23,120

Notes:

Refer to site diagram(s) for testing locations. Refer to laboratory reports for analytical methods.

* See laboratory report for full analyte list.

¹ Sample collected from port located downstream of dilution valve immediately after stystem initiation.

--- Sample not analyzed.

nd Not detected.

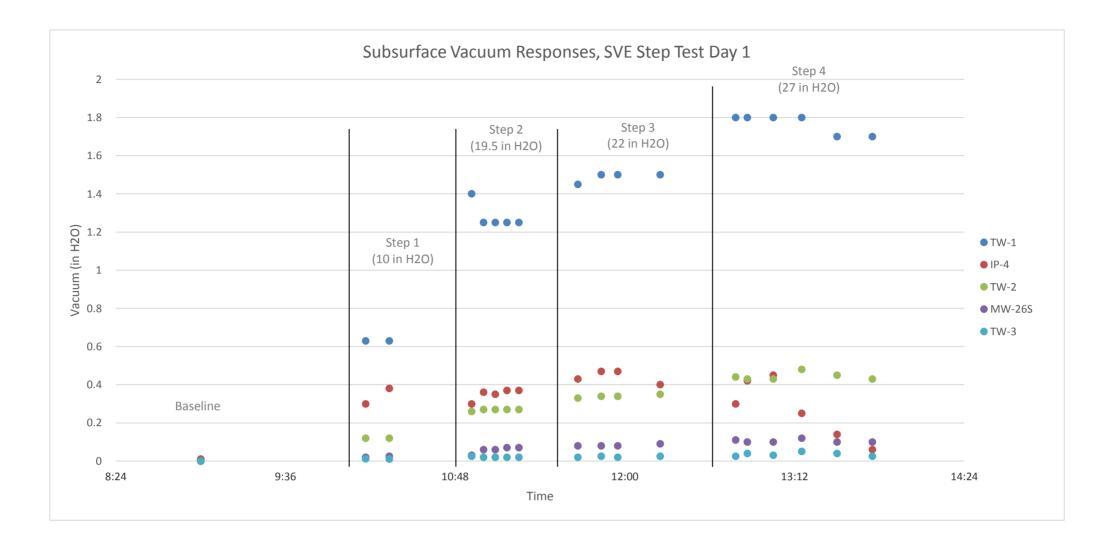
12.0 Bold Number(s) indicates contaminant detected.

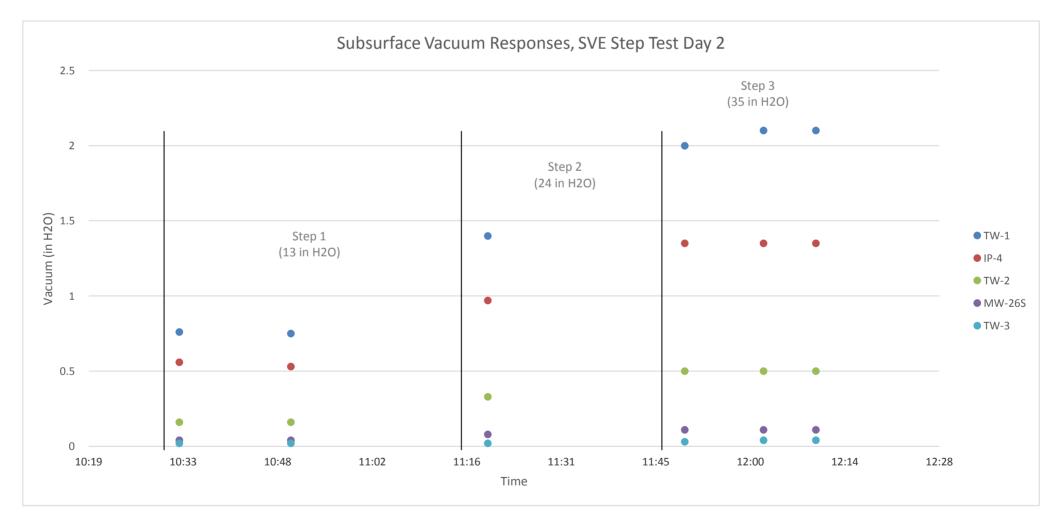
TABLE 7 Pilot Test Mass-Recovery Rates Boeing Field Chevron Tukwila, Washington

	SVESTER	SVESTER	SVE STOR	33 SHESPE	P ⁴ Pre ^{Spar}	s sparoe	SPat	e presparse	Presparge	Sparoe	Sparge	Sparoe	Postsparge
Date		5/1/20 ⁻	19			5/2/2019				5/3/2	019		
Time	10:35	11:30	12:20	13:45	12:15	13:45	14:15	11:30	12:20	12:55	13:25	14:05	14:35
Applied SVE Vacuum	10.0	19.5	22.0	27.0	35.0	37.0	37.0	37.0	37.0	37.0	36.0	37.5	37.5
SVE Flow	22.0	37.0	43.0	60.0	89.0	89.0	89.0	96.0	89.0	89.0	89.0	89.0	89.0
AS Flow						10.0	10.0			10.0	10.0	10.0	10.0
Sample Name	VS-2	VS-3	VS-4	VS-5	VS-6	VS-7	VS-8	VS-9	VS-10	VS-11	VS-12	VS-13	VS-14
Gasoline Range Organics (µg/m³)	355,000	438,000	383,000	304,000	401,000	332,000	321,000	586,000	365,000	396,000	359,000	366,000	404,000
Gasoline Range Organics (ppmv)	86.8	107	93.6	74.3	98.0	81.3	78.4	143	89.3	96.8	87.8	89.6	98.7
Estimated Mass-Removal Rate (pounds/day)	0.701	1.45	1.48	1.64	3.20	2.65	2.56	5.05	2.91	3.16	2.87	2.92	3.23

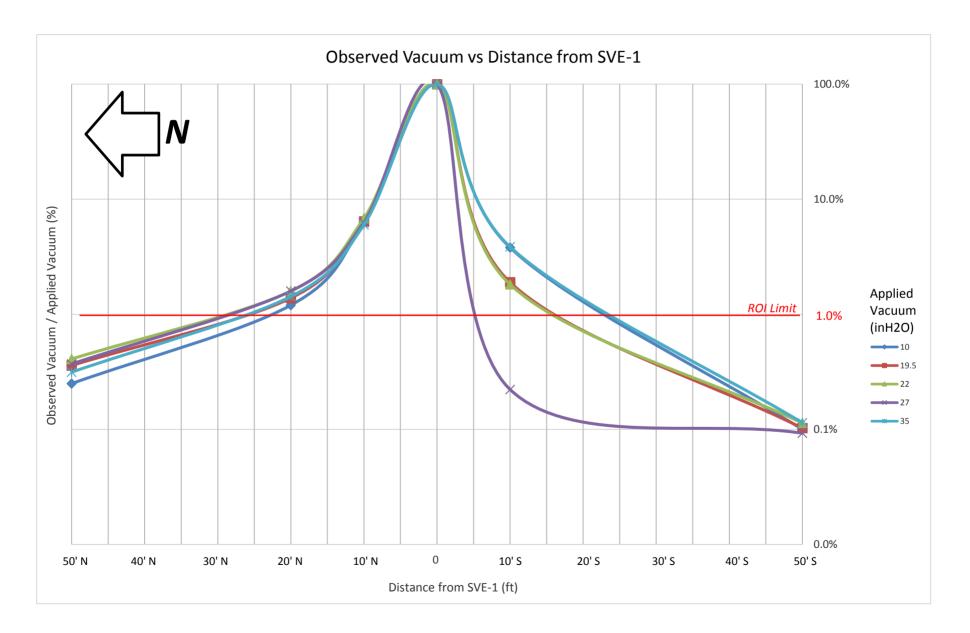
<u>Notes:</u> Refer to site diagram(s) for testing locations.

Flows measured using rotameter located upstream of blower inlet on first day.

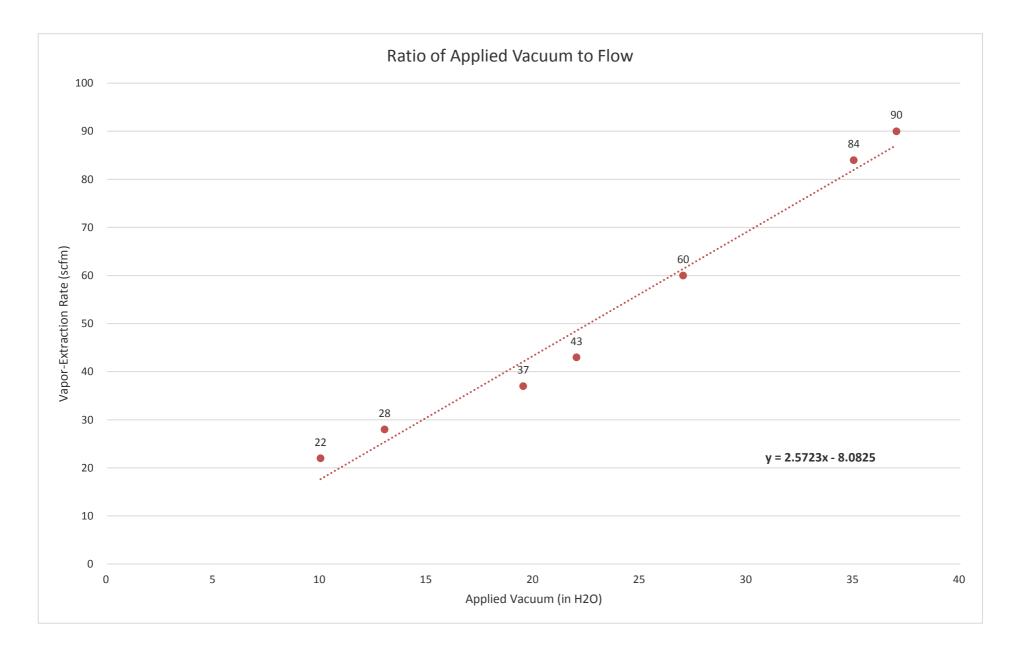

Days 2 and 3 flowrate measured using hot-wire anemometer downstream of blower exhaust.

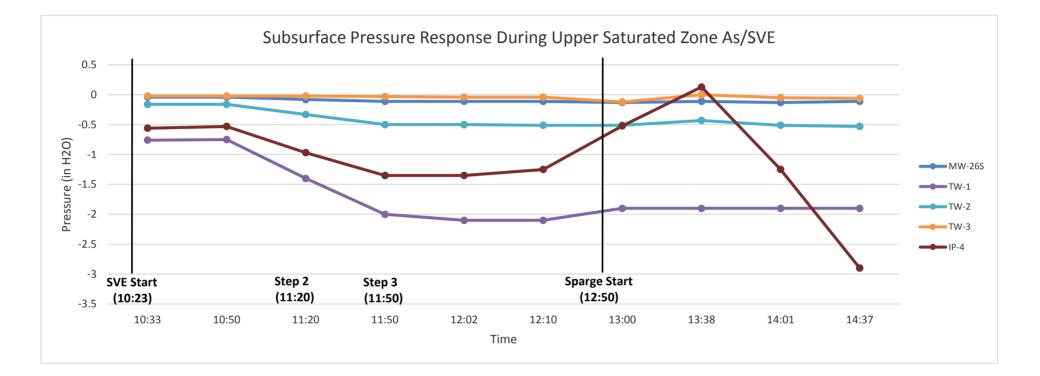

See laboratory analytical reports and Table 6 for more information regarding sample analytical results.

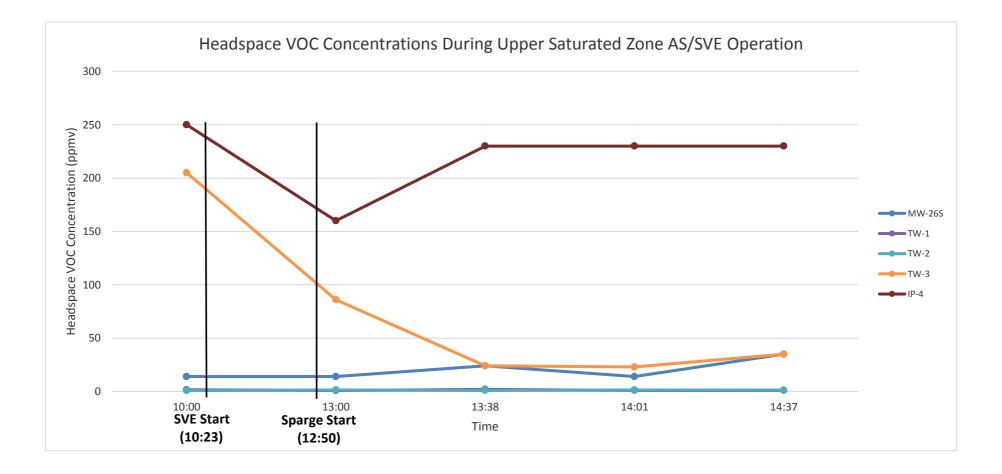
Mass-recovery rate estimate based on GRO concentration (μ g/m³) and the measured flowrate presented.

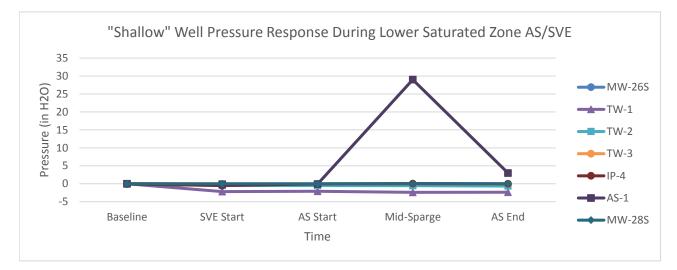

GRAPHS

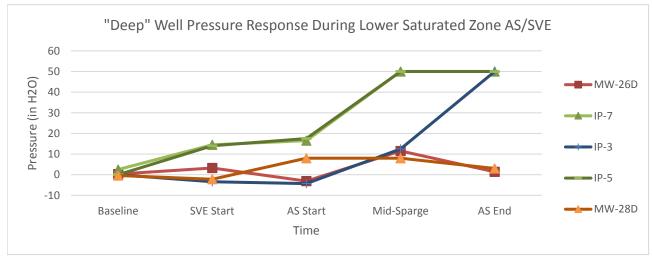
Graph 1 Subsurface Vacuum Responses, SVE Step Tests Boeing Field Chevron Tukwila, Washington



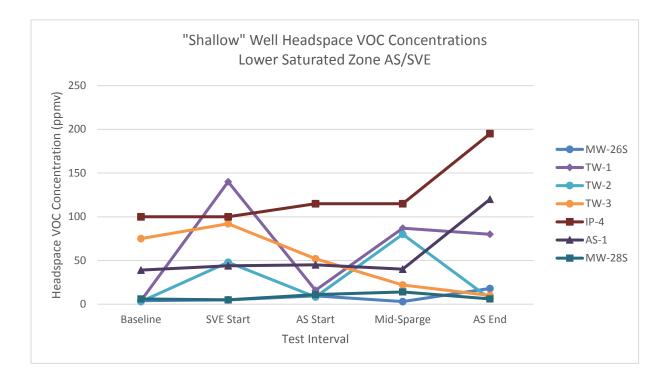

Graph 2 Vacuum Radius of Influence Boeing Field Chevron Tukwila, Washington

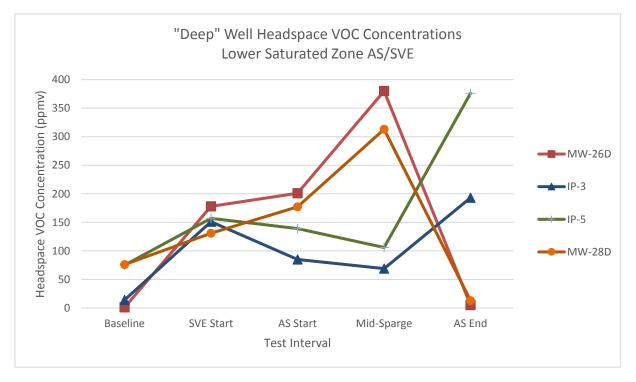

Graph 3 Ratio of Applied Vacuum to Flow Boeing Field Chevron Tukwila, Washington

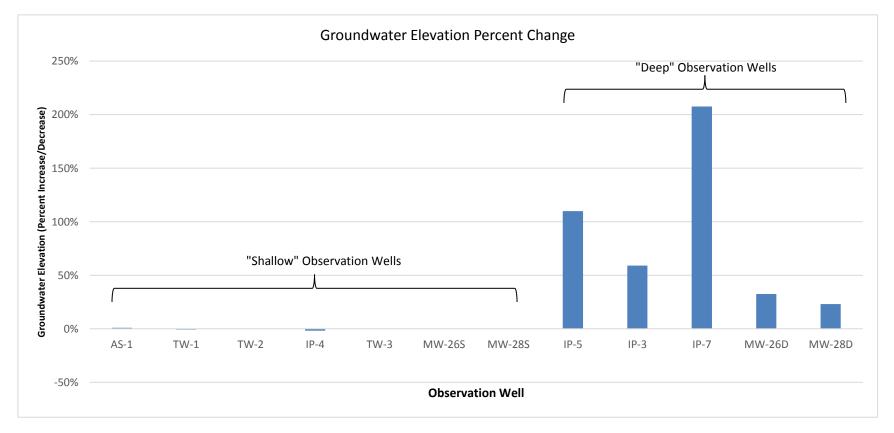

Graph 4 Subsurface Pressure Responses, Upper Saturated Zone AS/SVE Boeing Field Chevron Tukwila, Washington



Graph 5 Headspace VOC Concentrations, Upper Saturated Zone AS/SVE Boeing Field Chevron Tukwila, Washington




Graph 6 Subsurface Pressure Responses, Lower Saturated Zone AS/SVE Boeing Field Chevron Tukwila, Washington

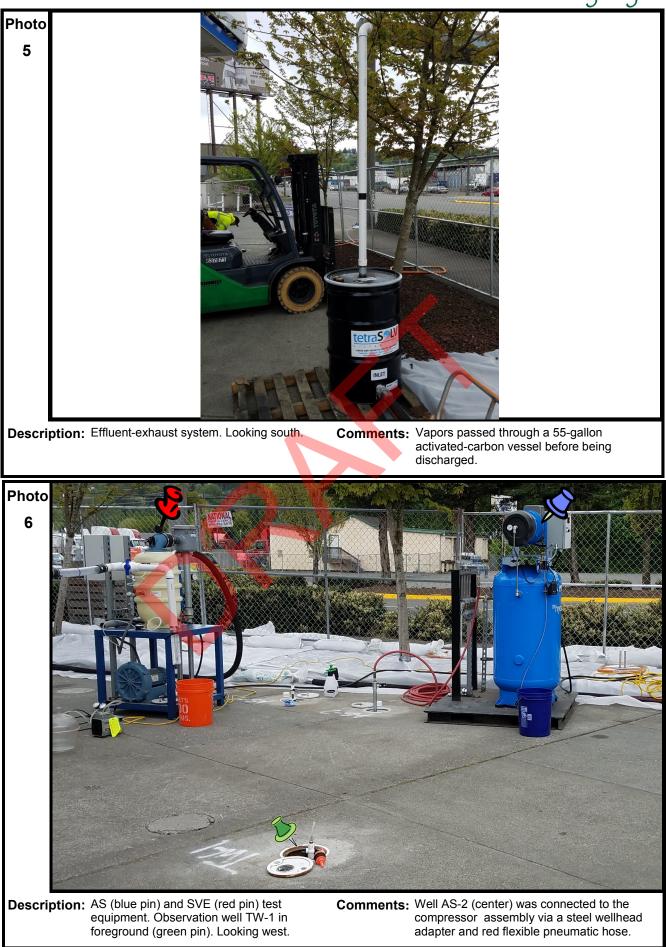


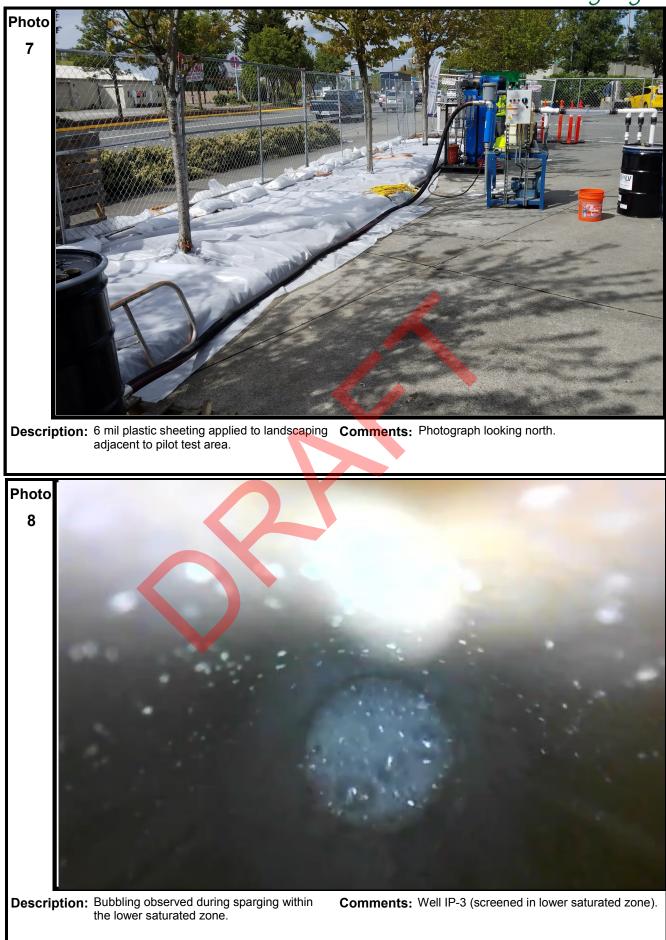
Graph 7 Headspace VOC Concentrations, Lower Saturated Zone AS/SVE Boeing Field Chevron Tukwila, Washington

Graph 8 Groundwater Elevation Responses, Lower Saturated Zone AS/SVE Boeing Field Chevron Tukwila, Washington



The net increase/decrease in groundwater elevation was calculated based on measurements collected during lower saturated zone AS/SVE test, 5/3/2019.


SITE PHOTOGRAPHS


-logics \mathcal{Q}

g-logics

g-logics

APPENDIX A

PRIMARY DIV	ISIONS		SYMBOL	DESCRIPTIONS				
	GRAVELS	CLEAN GRAVEL	GW	Well graded gravel, many different particle sizes, little or no fines				
SOILS	Over 50% of coarse material retained on #4	Less than 5% passing #200 sieve	GP	Poorly graded, few different particle sizes, little or no fines				
Sands & Gravels, Over 50% retained	sieve	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures				
n #200 sieve			GC	Clayey gravels, gravel-sand-clay mixtures				
	SAND	CLEAN SANDS	SW	Well graded gravel, many different particle sizes, little or no fines				
	Over 50% of coarse material	Less than 5% passing #200 sieve	SP	Poorly graded, few different particle sizes, little or no fines				
	passed #4 sieve	SAND WITH FINES	SM	Silty gravels, gravel-sand-silt mixtures				
			SC	Clayey gravels, gravel-sand-clay mixtures				
FINE GRAINED	SILTS AND CLA	AYS	ML	Inorganic silts, slight to no plasticity				
	Liquid limit is les	s than 50 %	CL	Inorganic clays, low to moderate plasticity				
Silts & Clays, Over 50% passing the 4200 sieve			OL	Organic silts and clays of low plasticity				
#200 SIEVE	SILTS AND CLA	AYS	МН	Inorganic silts, moderate to high plasticity				
	Liquid limit is mo	ore than 50 %	СН	Inorganic clays, high plasticity, fat clays				
			ОН	Organic silts and clays of high plasticity				
Highly Organic S	Soils		PT	Peat and other highly organic soils				
<u>Soil Sa</u>	mples_			Field Measurements				
Disturbed,	bag, bulk, or gra	ab sample		Water Level Observed During Drilling				
			PID	Photoionization Detector				
Standard p	penetration split	spoon sample	ppmv	Parts Per Million by Volume				
Cuttings			\bigtriangledown	End of Boring (E.O.B)				
Continuous	s-Core Sample		spoon (2" OD) sa	r foot is the number of blows used to drive a split- ampler through the last 12 inches of an 18-inch t. One blow is a 30-inch fall of a 140-pound hammer				
■ xplorationLogLegend.pub			Note: The line separating strata on the logs represents approximate boundaries only. The actual transition may be gradual. No warranty is provided as to the continuity of the strata between exploration locations. Logs represent the soil section observed at the exploration location on the date of exploration only.					
σ -loc			Expl	oration Log Legend				

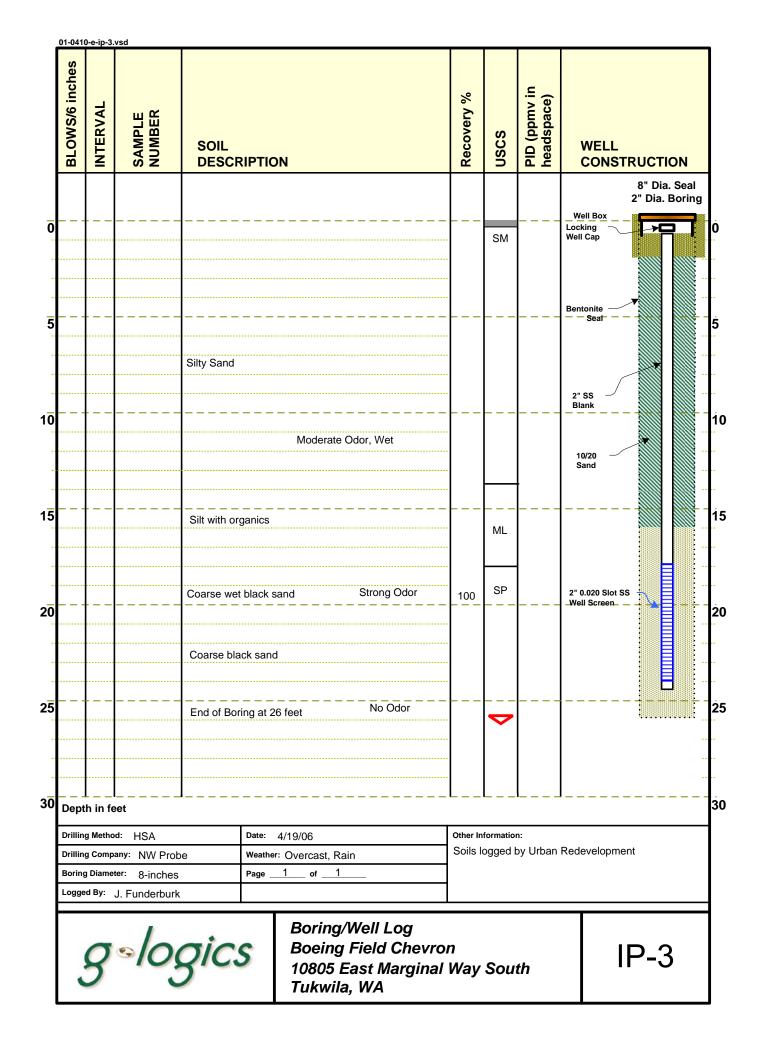
INTERVAL SAMPLE NUMBER DESC		SOIL DESCR	IPTIO	N			Recovery %	nscs	PID (ppmv in headspace)		VELL CONSTRUCTION	ON	
		8" Concrete	Surface	9						Well	4" Borin		
		0-5': Advanc								Well C			
		See boring lo	og for As	S-2 for soi	l information.					Seal	ele		
										2" P\ Blanl			
												- 10	
										Bont	onite 🔿 🗼		
											Seal		
					Groundwa	ter at 11'				10/2 Sar			
										2'	' PVC Screen		
							· 						
					E.O.B.	at 16 feet		\bigtriangledown		:	2' Sump 🧹 📗	- W	
Depth in	L feet						L	L	L	I			
Drilling Met	thod: Direct-Pu mpany: ESN		Date: 4/10/2019 Weather: Cool, Overcast, Windy			Other In	formation	n:					
	meter: FourInc			1 of		/							
Logged By:	Zak Wall												
0	-10	oics	5	Boeir	ng/Well I ng Field	Chevro	n				AS-	1	
3	g-logic			10805 Pacific Hwy S Tukwila, WA							AS-1 DRAFT		

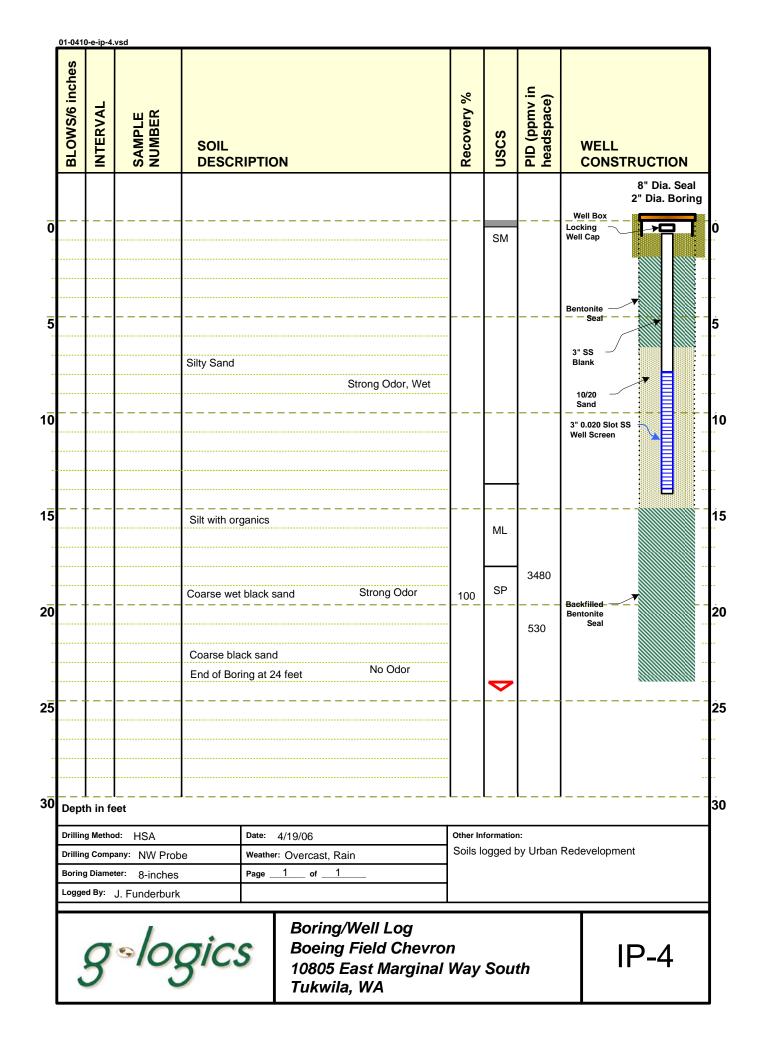
	INTERVAL	SAMPLE NUMBER	SOIL	CRIPTIC	DN		Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCT	ION
0			8" Concre 0-5': Adva	ete anced with	air knife.					2" B Well Box_ Concrete	oring
				avelly, silt		alt, brick, and wood				Seal Well	
5		AS-2-5	5'-9.5': As	s above, sl	lightly moist.		45	SM (FILL)	0		
0	· ■	ĀS-2-10	Moist.			e-grained sand.	90	SM SP	0.5	Bentonite Seal 2" PVC Blank	
5	·	AS-2-15	to slightly		edy-grassy v	grained sand, mois	t	SM	37		
- 20-	-	<u>AS-2-19</u>	<u>19'-35': B</u> sand, sati		gray <u>fine to v</u>	ery coarse-grained	90		500	2" PVC Screen	
25	·	AS-2-25					100	sw	2.0		
:0 		AS-2-30					100		- <u></u> - 1.7	Sand	
5-		AS-2-35				EOB at 3	35'	▼	0	N	aving lative ands
 0- 											
5											
50-											
	Drilling Method: Direct Push Drilling Company: ESN Boring Diameter: Two Inches Logged By: Zak Wall			Weather:	Weather: Overcast, Cool Page			low the	g sand, w ground s ed with 2	rell was set at a depti urface. " direct push, then ov	
	Q	-100	ŢİC.	S	Boeing	Well Log Field Chevr Pacific Hwy S				AS-	2

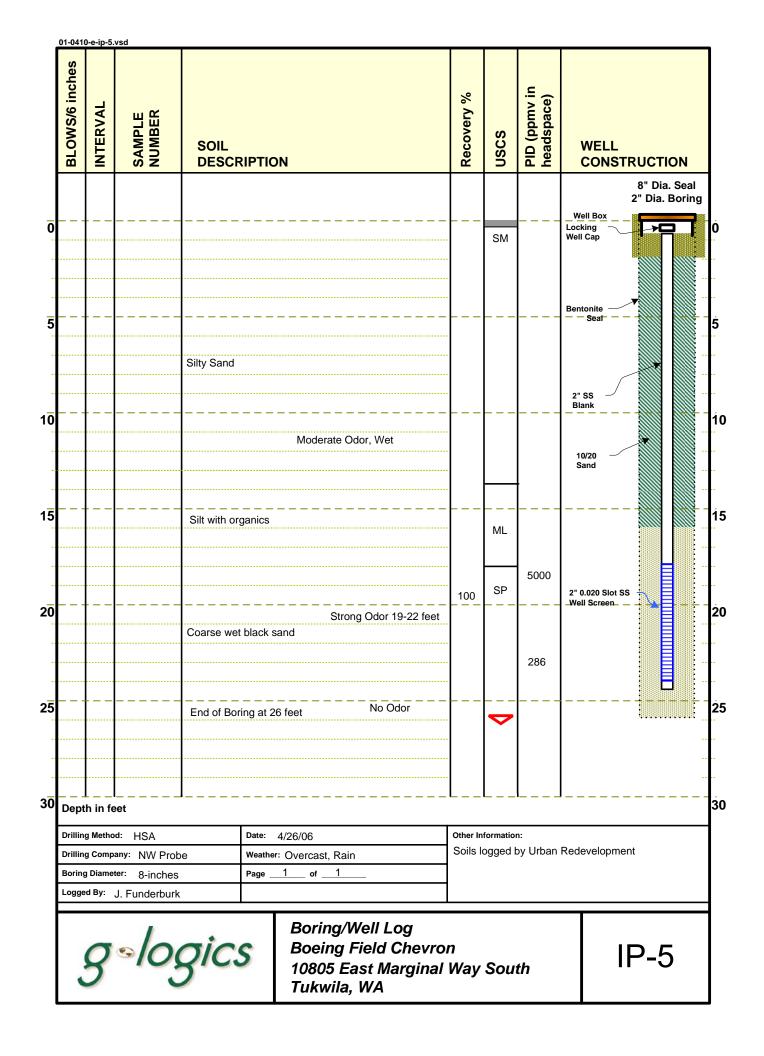
INTERVAL SAMPLE NUMBER DESC			IPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION
							8" Boring
			nced with air knife. silty sand with rounded grav	el and		0	Well Box Well Cap
		3'-8.5': Brov	vn silty sand with gravel, sligt	ntly moist.	SM		Blank Bentonite Seal
		8.5'-9': As a petroleum c	bove, gray discoloration and dor.	strong		88	10/20 Sand 4" PVC Screen-
	SVE-1-9			B. at 9 feet 	~		
Depth in Drilling Met		9	Date: 4/11/2019	Other I	nformatio	n:	
	mpany: ESN		Weather: Cool, Overcast, Wir	ndy 4"-d	iameter	soil-vapo	or extraction well.
	^{meter:} Eight In : Zak Wall	nches	Page1 of1				
0	-10	gics	Boring/Well Boeing Fiel 10805 Pacif	d Chevron			SVE-1

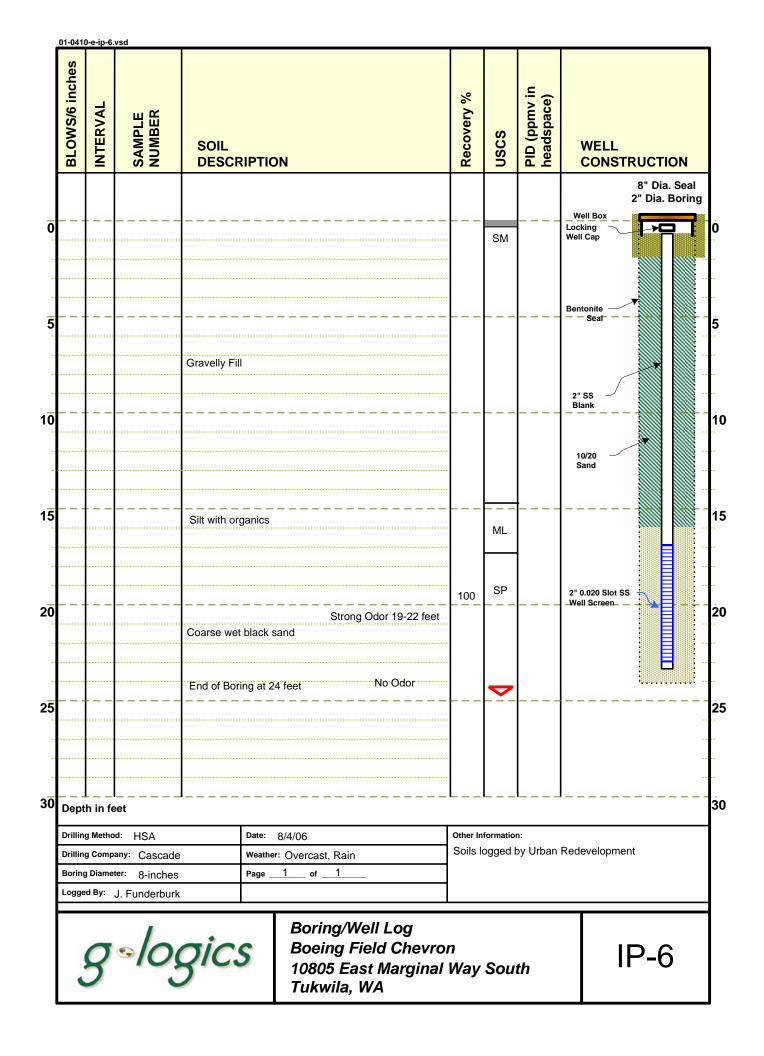
INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
								2" Boring	
			te Surface nced with air knife. y sand with rounded	gravel, slightly	 - -		0	Well Box Well Cap	
	TW-1-5				·	SM		Bentonite Seal	
			n, medium to coarse rounded gravel, mois		40		0	10/20 Sand	
	TW-1-9	Wet at 9'		E.O.B. at 9 feet	-	$\overline{}$		2" PVC Screen	
					-				
					·				
Depth in									
Depth In Drilling Met		ush	Date: 4/11/2019		Other In	formatio	n:		_
	mpany: ESN		Weather: Cool, Ove						
Boring Diar	^{meter:} Two Ind	ches	Page1 of	1					
9	<i>y-10</i>	gic	S Boein 10805	g/Well Log g Field Chevro Pacific Hwy S ila, WA	n			TW-1 DRAFT	-

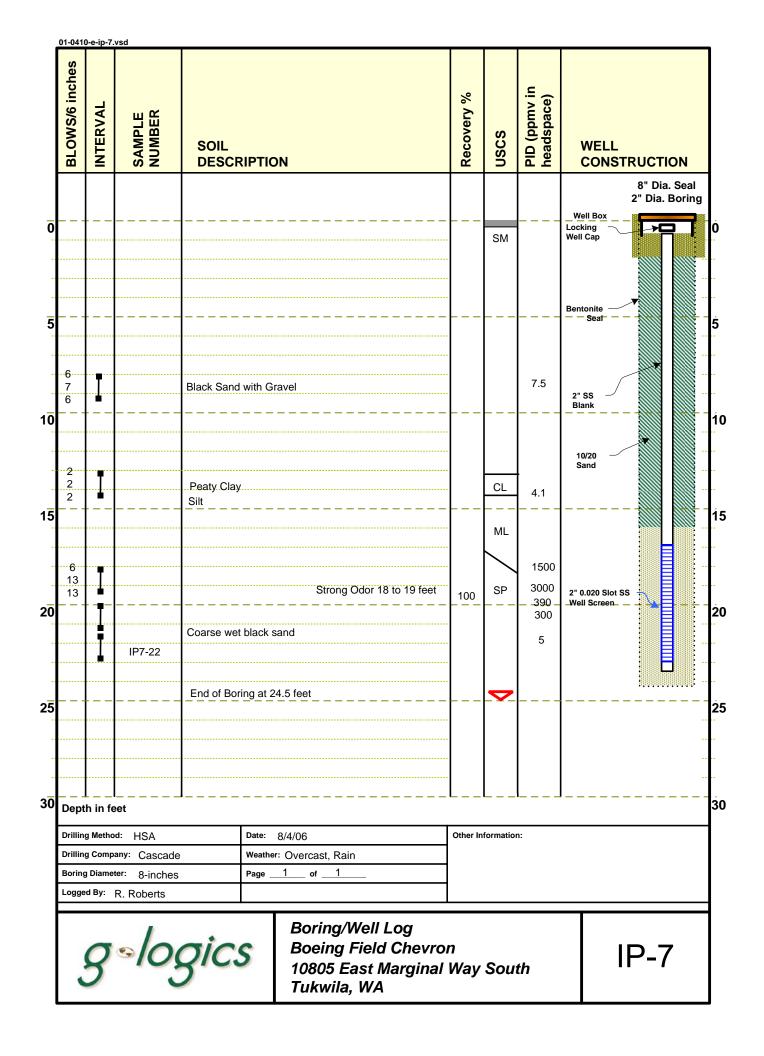
INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
							2" Boring	
		Brown, silty	e Surface ced with air knife. sand with rounded gravel, slightly llar concrete debris throughout.				Well Box Well Cap	
			e obstructing hole at 4 feet. Moved 2			_	Blank Bentonite	
		feet north. 5'-9': As ab	ove, poor recovery.	<5	SM	0	Seal	
			E.O.B. at 9 feet		\bigtriangledown			
Depth in	 feet							
Drilling Met		ush	Date: 4/11/2019	Other Ir	nformatio	n:		
	mpany: ESN	-h	Weather: Cool, Overcast, Windy Page1 of1					
	meter: Two Inc : Zak Wall	unes	raye VI					
3	-10	gics	S Boring/Well Log Boeing Field Chev 10805 Pacific Hwy Tukwila, WA				TW-2	-


INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
							2" Boring	
		Brown, silt moist.	te Surface nced with air knife. ty sand with rounded gravel, slightly yer of weak concrete encountered at 2.5'			2.1	Well Box Well Cap Concrete Seal 2" PVC Blank	
			elly, very silty, medium-grained sand,	50	SM	151	Bentonite Seal 10/20 Sand	
	TW-3-9		E.O.B. at 9 feet		▽		2" PVC Screen	
Depth in	feet]	
Drilling Met	thod: Direct-P	ush	Date: 4/11/2019 Weather: Cool, Overcast, Windy	Other Ir	nformatio	n:		
Boring Diar	meter: Two Inc	ches	Page of	1				
		gic	<i>S</i> Boring/Well Log Boeing Field Chevr 10805 Pacific Hwy S Tukwila, WA				TW-3 DRAFT	-


INTERVAL	SAMPLE NUMBER	SOIL	RIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION		
			Concrete; 4"					8" Boring	•	
		Air Knife						Well Cap Concrete Seal		
	 MW-26D-5							Bentonite Seal		
			LTY SAND with gravel; fine-coars odor, moist to wet @ 8'.	e grain;	75	SM	0.0	2" PVC Blank		
	 	10-11'- 9	ILTY SAND; fine grain; gray, sligl							
		11-15': S moist, so	ILT with clay and sand; brown-grome organics.	ay, no odor,	80	ML	5.0			
- 4 4 -		15-16.5': slight od	SILTY SAND; medium-coarse gr	aın; gray,		SM			ininininininininininininininininininin	
	MW-Z-16 MW-26D-16.5		Well-graded SAND; fine to mediuned in the second se		45	5101	0.0	2" PVC		
╶╼╧╌	MW-26D-20						0.0	Screen Sand		
					80	SW		2" PVC Plug		
- 4	MW-26D-25						0.0			
					100			Caving		
Depth in	<u>MW-26D-30</u>	J	E.O.B. a	30 feet		\checkmark			8	
Drilling Me	thod: Direct-Pu	sh/HSA	Date: 11/17/2016	(Other In	formatior	n:			
Drilling Co	mpany: ESN Noi	rthwest	Weather: Cloudy, Cool		DOE 1	Tag BJI	R-938			
Boring Dia	g.u.u.s		Page <u>1</u> of <u>1</u>				lot screen	rior to development.		
9			<i>S</i> Boring Boeing Field 10805 East M Seattle, Wasl	Chevron larginal V)			MW-26E	=)	


	INTERVAL		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
I							4.5" Boring
)			Irface: Concrete; 4"				Uell Box Well Cap Concrete Seal
			o samples collected. ee MW-26D for soil information.				Bentonite Seal 2" PVC Blank
				¥			2" PVC Screen Sand
			E.O.B. at 12	feet	▽		2" PVC Plug
		· · · · · · · · · · · · · · · · · · ·					
	Depth in t	feet					
ŀ	Drilling Meth	ood: Direct Push	Date: 11/21/2016	Other I	nformatio	n:	
ŀ	Boring Diam	pany: ESN Northw eter: 4.5 Inches Karis Vandehey	est Weather: Cloudy, Cool Page 1 of 1	Sch.		slot screen	or to development.
	9	-log	Boring Boeing Field Cl 10805 East Mar Seattle, Washin	ginal Way	Sou	th	MW-26S


INTERVAL	SAMPLE NUMBER	SOIL DESCRIPTION			Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
		Surfaces C						8" Boring	
		Air Knife	concrete; 4" co 6'					_ 10"_Well Box_ Well	1
		4"-7': SIL	TY SAND; fine grain; brown, no	odor, moist.	25		0.7	Cap Concrete Seal	
						SM		Bentonite Seal	
	MW-28D-5	Wet 6-6.5	', oxidized lens (1" thick) at app	rox. 6.5'	35		0.7	2" PVC Blank	
		7-10': No	recovery.			?			
╶╼┷╌	MW-278-10	10-11': La	aminated SILT with clay and CL	AY with silt;		ML/CL	3.9		
		· · · · · · · · · · · · · · · · · · ·	odor, moist to wet.	(· · P · · N		SM			
		@ 11': SI	LTY SAND; fine grain; dark-gra	y (oxidized).	25	?			
- = -	MW-28D-15	11-15': No	o recovery.			CL-	2.9		
		15-15.5': some org	CLAY with silt; gray-brown, no c anics.	odor, moist,	40				8
							_ <u></u>	2" PVC Screen	-
	MW-28D-20 MW-Y		Well-graded SAND; fine to med edium to coarse grain with dept				7.5	Sand	
		no odor, v	vet.		100	SW		2" PVC Plug	
								Caving	ä.
					100				8
Depth i	<u>MW-28D-30</u> _]	E.O.B. a	at 30 feet		\checkmark	_ <u>3</u> .7		
Drilling M		sh/HSA	Date: 11/18/2016	0)ther In	formatior	1:		
	ompany: ESN No		Weather: Cloudy, Cool			Tag BJI			
Boring Dia	^{ameter:} Eight Inc y: Karis Vandeh		Page of				lot screen O @ 13'.		
5	7-10	gic	<i>S</i> Boring Boeing Field 10805 East M Seattle, Was	/larginal V		Sou	th	MW-280	=)


	INTERVAL	SAMPLE NUMBER	SOIL DESCRI	PTION			Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
ľ										4.5" Boring
			Surface: Con Air Knife to				 			U [®] Well Box Well Cap Concrete Seal
										Bentonite Seal 2" PVC Blank
			No samples See MW-28		ormation.					Sand
										2" PVC Screen
					E.O.B.	at 12 feet	· – – – ·	>		2" PVC Plug
							-			
							- - - -			
							-			
-	Depth in	feet					.L	L		
	Drilling Met	hod: Direct Push	1	Date: 11/18/	/2016		Other In	formatio	1:	
ŀ	Drilling Con Boring Dian	npany: ESN North		Weather: Clou	udy, Cool of1			Tag BJI		
ŀ	-	^{neter:} 4.5 Inches Karis Vandehey		Page <u>1</u>					lot screen O @ 9'.	
	8	-100	ŢİCS	Bo	oring oeing Field)805 East l			Sou	th	MW-28S

APPENDIX B

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Zackary Wall 40 Second Ave. SE Issaquah, WA 98027

RE: BFC Work Order Number: 1904212

April 18, 2019

Attention Zackary Wall:

Fremont Analytical, Inc. received 16 sample(s) on 4/11/2019 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Gasoline by NWTPH-Gx Sample Moisture (Percent Moisture) Total Metals by EPA Method 6020 Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mohl c. Redy

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	G-Logics BFC 1904212	Work Order Sample Sumn						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
1904212-001	AS-2-5	04/10/2019 9:20 AM	04/11/2019 12:00 PM					
1904212-002	AS-1-5	04/10/2019 10:00 AM	04/11/2019 12:00 PM					
1904212-003	AS-2-10	04/10/2019 11:10 AM	04/11/2019 12:00 PM					
1904212-004	AS-2-15	04/10/2019 11:15 AM	04/11/2019 12:00 PM					
1904212-005	AS-2-19	04/10/2019 11:20 AM	04/11/2019 12:00 PM					
1904212-006	AS-2-25	04/10/2019 11:25 AM	04/11/2019 12:00 PM					
1904212-007	AS-2-30	04/10/2019 11:30 AM	04/11/2019 12:00 PM					
1904212-008	AS-2-35	04/10/2019 11:35 AM	04/11/2019 12:00 PM					
1904212-009	TW-1-5	04/10/2019 2:30 PM	04/11/2019 12:00 PM					
1904212-010	SVE-1-5	04/10/2019 3:15 PM	04/11/2019 12:00 PM					
1904212-011	SVE-1-9	04/10/2019 4:15 PM	04/11/2019 12:00 PM					
1904212-012	TW-2-5	04/11/2019 9:00 AM	04/11/2019 12:00 PM					
1904212-013	TW-3-5	04/11/2019 9:30 AM	04/11/2019 12:00 PM					
1904212-014	TW-1-9	04/11/2019 10:00 AM	04/11/2019 12:00 PM					
1904212-015	TW-3-9	04/11/2019 10:30 AM	04/11/2019 12:00 PM					
1904212-016	DUP	04/11/2019 11:00 AM	04/11/2019 12:00 PM					

Case Narrative

WO#: **1904212** Date: **4/18/2019**

CLIENT:G-LogicsProject:BFC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 1904212

 Date Reported:
 4/18/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Client: G-Logics Project: BFC				Collection	Da	te: 4/10/2019 9:20:00 AM
Lab ID: 1904212-001				Matrix: So	il	
Client Sample ID: AS-2-5						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>d/Dx Ext.</u>			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	21.1		mg/Kg-dry	1	4/13/2019 8:53:42 AM
Heavy Oil	ND	52.6		mg/Kg-dry	1	4/13/2019 8:53:42 AM
Surr: 2-Fluorobiphenyl	90.1	50 - 150		%Rec	1	4/13/2019 8:53:42 AM
Surr: o-Terphenyl	89.8	50 - 150		%Rec	1	4/13/2019 8:53:42 AM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	4.07		mg/Kg-dry	1	4/18/2019 7:28:58 AM
Surr: 4-Bromofluorobenzene	90.2	65 - 135		%Rec	1	4/18/2019 7:28:58 AM
Surr: Toluene-d8	97.3	65 - 135		%Rec	1	4/18/2019 7:28:58 AM
Volatile Organic Compounds by EF	PA Method	8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0163		mg/Kg-dry	1	4/18/2019 7:28:58 AM
Toluene	ND	0.0163		mg/Kg-dry	1	4/18/2019 7:28:58 AM
Ethylbenzene	ND	0.0203		mg/Kg-dry	1	4/18/2019 7:28:58 AM
m,p-Xylene	ND	0.0407		mg/Kg-dry	1	4/18/2019 7:28:58 AM
o-Xylene	ND	0.0203		mg/Kg-dry	1	4/18/2019 7:28:58 AM
Surr: Dibromofluoromethane	95.8	56.5 - 129		%Rec	1	4/18/2019 7:28:58 AM
Surr: Toluene-d8	97.7	64.5 - 151		%Rec	1	4/18/2019 7:28:58 AM
Surr: 1-Bromo-4-fluorobenzene	95.4	54.8 - 168		%Rec	1	4/18/2019 7:28:58 AM
Sample Moisture (Percent Moisture	<u>.)</u>			Batch	ID:	R50731 Analyst: CJ
Percent Moisture	8.65	0.500		wt%	1	4/15/2019 11:26:17 AM

Work Order: 1904212 Date Reported: 4/18/2019

Client: G-Logics Project: BFC				Collection	Da	te: 4/10/2019 11:10:00 AM
Lab ID: 1904212-003				Matrix: So	sil	
Client Sample ID: AS-2-10					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>d/Dx Ext.</u>			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	23.4		mg/Kg-dry	1	4/13/2019 9:53:06 AM
Heavy Oil	ND	58.6		mg/Kg-dry	1	4/13/2019 9:53:06 AM
Surr: 2-Fluorobiphenyl	103	50 - 150		%Rec	1	4/13/2019 9:53:06 AM
Surr: o-Terphenyl	105	50 - 150		%Rec	1	4/13/2019 9:53:06 AM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	5.16		mg/Kg-dry	1	4/18/2019 7:59:08 AM
Surr: 4-Bromofluorobenzene	89.8	65 - 135		%Rec	1	4/18/2019 7:59:08 AM
Surr: Toluene-d8	96.9	65 - 135		%Rec	1	4/18/2019 7:59:08 AM
Volatile Organic Compounds by EF	<u>A Method</u>	8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0207		mg/Kg-dry	1	4/18/2019 7:59:08 AM
Toluene	ND	0.0207		mg/Kg-dry	1	4/18/2019 7:59:08 AM
Ethylbenzene	ND	0.0258		mg/Kg-dry	1	4/18/2019 7:59:08 AM
m,p-Xylene	ND	0.0516		mg/Kg-dry	1	4/18/2019 7:59:08 AM
o-Xylene	ND	0.0258		mg/Kg-dry	1	4/18/2019 7:59:08 AM
Surr: Dibromofluoromethane	96.1	56.5 - 129		%Rec	1	4/18/2019 7:59:08 AM
Surr: Toluene-d8	97.6	64.5 - 151		%Rec	1	4/18/2019 7:59:08 AM
Surr: 1-Bromo-4-fluorobenzene	94.9	54.8 - 168		%Rec	1	4/18/2019 7:59:08 AM
Sample Moisture (Percent Moisture	ŧ)			Batch	ID:	R50731 Analyst: CJ
Percent Moisture	20.7	0.500		wt%	1	4/15/2019 11:26:17 AM

Work Order: 1904212 Date Reported: 4/18/2019

Client: G-Logics Project: BFC				Collection	Dat	te: 4/10/2019 11:15:00 AM
Lab ID: 1904212-004				Matrix: So	sil	
Client Sample ID: AS-2-15					,,,,	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>x/Dx Ext.</u>			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	25.8		mg/Kg-dry	1	4/13/2019 10:23:05 AM
Heavy Oil	ND	64.4		mg/Kg-dry	1	4/13/2019 10:23:05 AM
Surr: 2-Fluorobiphenyl	77.9	50 - 150		%Rec	1	4/13/2019 10:23:05 AM
Surr: o-Terphenyl	80.5	50 - 150		%Rec	1	4/13/2019 10:23:05 AM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	12.9	6.64		mg/Kg-dry	1	4/18/2019 8:29:14 AM
Surr: 4-Bromofluorobenzene	94.0	65 - 135		%Rec	1	4/18/2019 8:29:14 AM
Surr: Toluene-d8	97.1	65 - 135		%Rec	1	4/18/2019 8:29:14 AM
Volatile Organic Compounds by E	PA Method	8260C		Batch	ID:	24206 Analyst: KT
Benzene	0.0440	0.0265		mg/Kg-dry	1	4/18/2019 8:29:14 AM
Toluene	0.186	0.0265		mg/Kg-dry	1	4/18/2019 8:29:14 AM
Ethylbenzene	ND	0.0332		mg/Kg-dry	1	4/18/2019 8:29:14 AM
m,p-Xylene	ND	0.0664		mg/Kg-dry	1	4/18/2019 8:29:14 AM
o-Xylene	ND	0.0332		mg/Kg-dry	1	4/18/2019 8:29:14 AM
Surr: Dibromofluoromethane	99.9	56.5 - 129		%Rec	1	4/18/2019 8:29:14 AM
Surr: Toluene-d8	98.9	64.5 - 151		%Rec	1	4/18/2019 8:29:14 AM
Surr: 1-Bromo-4-fluorobenzene	98.5	54.8 - 168		%Rec	1	4/18/2019 8:29:14 AM
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	ID:	R50731 Analyst: CJ
Percent Moisture	30.0	0.500		wt%	1	4/15/2019 11:26:17 AM

Client: G-Logics Project: BFC				Collection	Date: 4	/10/2019 11:20:00 AM
Lab ID: 1904212-005 Client Sample ID: AS-2-19				Matrix: So	oil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ID: 241	62 Analyst: DW
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	4/13/2019 10:52:46 AM
Heavy Oil	ND	55.7		mg/Kg-dry	1	4/13/2019 10:52:46 AM
Surr: 2-Fluorobiphenyl	95.2	50 - 150		%Rec	1	4/13/2019 10:52:46 AM
Surr: o-Terphenyl	93.9	50 - 150		%Rec	1	4/13/2019 10:52:46 AM
Gasoline by NWTPH-Gx				Batch	ID: 242	200 Analyst: KT
Gasoline	928	113	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Surr: 4-Bromofluorobenzene	99.0	65 - 135	D	%Rec	20	4/17/2019 12:31:01 PM
Surr: Toluene-d8	101	65 - 135	D	%Rec	20	4/17/2019 12:31:01 PM
Volatile Organic Compounds by EP	A Method	8260C		Batch	ID: 242	00 Analyst: KT
Methyl tert-butyl ether (MTBE)	ND	1.13	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
1,2-Dichloroethane (EDC)	ND	0.450	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Benzene	10.2	0.450	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Toluene	73.6	1.13	D	mg/Kg-dry	50	4/17/2019 2:58:51 PM
1,2-Dibromoethane (EDB)	ND	0.113	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Ethylbenzene	15.1	0.563	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
m,p-Xylene	60.6	1.13	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
o-Xylene	22.6	0.563	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Hexane	14.6	1.13	D	mg/Kg-dry	20	4/17/2019 12:31:01 PM
Surr: Dibromofluoromethane	89.9	56.5 - 129	D	%Rec	20	4/17/2019 12:31:01 PM
Surr: Toluene-d8	94.3	64.5 - 151	D	%Rec	20	4/17/2019 12:31:01 PM
Surr: 1-Bromo-4-fluorobenzene	102	54.8 - 168	D	%Rec	20	4/17/2019 12:31:01 PM
NOTES: Diluted due to matrix.						
Total Metals by EPA Method 6020				Batch	ID: 241	83 Analyst: WC
Lead	1.38	0.206		mg/Kg-dry	1	4/17/2019 2:57:46 AM
Sample Moisture (Percent Moisture)			Batch	ID: R50)748 Analyst: CJ
Percent Moisture	23.6	0.500		wt%	1	4/16/2019 8:17:26 AM

 Work Order:
 1904212

 Date Reported:
 4/18/2019

Client: G-Logics Project: BFC				Collection	Dat	te: 4/10/2019 11:25:00 AM
Lab ID: 1904212-006				Matrix: So	vil	
Client Sample ID: AS-2-25					/11	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Analyses	Result		Quai	Units		Date Analyzeu
Diesel and Heavy Oil by NWTPH-D	k/Dx Ext.			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	24.3		mg/Kg-dry	1	4/13/2019 11:22:27 AM
Heavy Oil	ND	60.9		mg/Kg-dry	1	4/13/2019 11:22:27 AM
Surr: 2-Fluorobiphenyl	91.7	50 - 150		%Rec	1	4/13/2019 11:22:27 AM
Surr: o-Terphenyl	93.6	50 - 150		%Rec	1	4/13/2019 11:22:27 AM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	24.1	7.40		mg/Kg-dry	1	4/18/2019 9:29:31 AM
Surr: 4-Bromofluorobenzene	97.0	65 - 135		%Rec	1	4/18/2019 9:29:31 AM
Surr: Toluene-d8	98.9	65 - 135		%Rec	1	4/18/2019 9:29:31 AM
Volatile Organic Compounds by El	PA Method	<u>d 8260C</u>		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0296		mg/Kg-dry	1	4/18/2019 9:29:31 AM
Toluene	0.0625	0.0296		mg/Kg-dry	1	4/18/2019 9:29:31 AM
Ethylbenzene	1.28	0.0370		mg/Kg-dry	1	4/18/2019 9:29:31 AM
m,p-Xylene	0.419	0.0740		mg/Kg-dry	1	4/18/2019 9:29:31 AM
o-Xylene	ND	0.0370		mg/Kg-dry	1	4/18/2019 9:29:31 AM
Surr: Dibromofluoromethane	97.5	56.5 - 129		%Rec	1	4/18/2019 9:29:31 AM
Surr: Toluene-d8	97.4	64.5 - 151		%Rec	1	4/18/2019 9:29:31 AM
Surr: 1-Bromo-4-fluorobenzene	102	54.8 - 168		%Rec	1	4/18/2019 9:29:31 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	23.9	0.500		wt%	1	4/16/2019 8:17:26 AM

Original

Client: G-Logics				Collection	Dat	te: 4/10/2019 11:30:00 AM
Project: BFC				Motrix: Co		
Lab ID: 1904212-007				Matrix: So	011	
Client Sample ID: AS-2-30						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>k/Dx Ext.</u>			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	23.2		mg/Kg-dry	1	4/13/2019 11:52:15 AM
Heavy Oil	ND	58.0		mg/Kg-dry	1	4/13/2019 11:52:15 AM
Surr: 2-Fluorobiphenyl	90.9	50 - 150		%Rec	1	4/13/2019 11:52:15 AM
Surr: o-Terphenyl	93.5	50 - 150		%Rec	1	4/13/2019 11:52:15 AM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	5.44		mg/Kg-dry	1	4/18/2019 9:59:41 AM
Surr: 4-Bromofluorobenzene	90.6	65 - 135		%Rec	1	4/18/2019 9:59:41 AM
Surr: Toluene-d8	98.1	65 - 135		%Rec	1	4/18/2019 9:59:41 AM
Volatile Organic Compounds by EF	PA Method	1 8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0218		mg/Kg-dry	1	4/18/2019 9:59:41 AM
Toluene	0.0230	0.0218		mg/Kg-dry	1	4/18/2019 9:59:41 AM
Ethylbenzene	ND	0.0272		mg/Kg-dry	1	4/18/2019 9:59:41 AM
m,p-Xylene	ND	0.0544		mg/Kg-dry	1	4/18/2019 9:59:41 AM
o-Xylene	ND	0.0272		mg/Kg-dry	1	4/18/2019 9:59:41 AM
Surr: Dibromofluoromethane	94.2	56.5 - 129		%Rec	1	4/18/2019 9:59:41 AM
Surr: Toluene-d8	97.3	64.5 - 151		%Rec	1	4/18/2019 9:59:41 AM
Surr: 1-Bromo-4-fluorobenzene	96.1	54.8 - 168		%Rec	1	4/18/2019 9:59:41 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	19.6	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics Project: BFC				Collection	Dat	e: 4/10/2019 2:30	:00 PM
Lab ID: 1904212-009 Client Sample ID: TW-1-5				Matrix: So	il		
Analyses	Result	RL	Qual	Units	DF	Date Anal	yzed
Diesel and Heavy Oil by NWTPH-D	<u>x/Dx Ext.</u>			Batch	ID:	24162 Analy	vst: DW
Diesel (Fuel Oil)	ND	19.4		mg/Kg-dry	1	4/13/2019 12:2	21:54 PM
Heavy Oil	113	48.5		mg/Kg-dry	1	4/13/2019 12:2	21:54 PM
Surr: 2-Fluorobiphenyl	90.3	50 - 150		%Rec	1	4/13/2019 12:2	21:54 PM
Surr: o-Terphenyl	89.2	50 - 150		%Rec	1	4/13/2019 12:2	21:54 PM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analy	vst: KT
Gasoline	ND	4.61		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
Surr: 4-Bromofluorobenzene	90.3	65 - 135		%Rec	1	4/18/2019 10:2	29:49 AM
Surr: Toluene-d8	98.0	65 - 135		%Rec	1	4/18/2019 10:2	29:49 AM
Volatile Organic Compounds by E	PA Method	1 8260C		Batch	ID:	24206 Analy	vst: KT
Benzene	ND	0.0184		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
Toluene	0.0307	0.0184		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
Ethylbenzene	ND	0.0231		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
m,p-Xylene	ND	0.0461		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
o-Xylene	ND	0.0231		mg/Kg-dry	1	4/18/2019 10:2	29:49 AM
Surr: Dibromofluoromethane	95.3	56.5 - 129		%Rec	1	4/18/2019 10:2	29:49 AM
Surr: Toluene-d8	97.9	64.5 - 151		%Rec	1	4/18/2019 10:2	29:49 AM
Surr: 1-Bromo-4-fluorobenzene	95.4	54.8 - 168		%Rec	1	4/18/2019 10:2	29:49 AM
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	ID:	R50748 Analy	vst: CJ
Percent Moisture	8.12	0.500		wt%	1	4/16/2019 8:17	7:26 AM

Client: G-Logics Project: BFC				Collection	Da	te: 4/10/2019 3:15:00 PM
Lab ID: 1904212-010				Matrix: So	il	
Client Sample ID: SVE-1-5					/11	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Analyses	Rooun		quui	onno		Dato / Mary20a
Diesel and Heavy Oil by NWTPH-D	<mark>∉/Dx Ext.</mark>			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	19.6		mg/Kg-dry	1	4/13/2019 12:51:40 PM
Heavy Oil	106	49.0		mg/Kg-dry	1	4/13/2019 12:51:40 PM
Surr: 2-Fluorobiphenyl	92.7	50 - 150		%Rec	1	4/13/2019 12:51:40 PM
Surr: o-Terphenyl	93.3	50 - 150		%Rec	1	4/13/2019 12:51:40 PM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	5.44		mg/Kg-dry	1	4/18/2019 10:59:57 AM
Surr: 4-Bromofluorobenzene	88.8	65 - 135		%Rec	1	4/18/2019 10:59:57 AM
Surr: Toluene-d8	97.6	65 - 135		%Rec	1	4/18/2019 10:59:57 AM
Volatile Organic Compounds by EF	<u>A Method</u>	8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0218		mg/Kg-dry	1	4/18/2019 10:59:57 AM
Toluene	ND	0.0218		mg/Kg-dry	1	4/18/2019 10:59:57 AM
Ethylbenzene	ND	0.0272		mg/Kg-dry	1	4/18/2019 10:59:57 AM
m,p-Xylene	ND	0.0544		mg/Kg-dry	1	4/18/2019 10:59:57 AM
o-Xylene	ND	0.0272		mg/Kg-dry	1	4/18/2019 10:59:57 AM
Surr: Dibromofluoromethane	94.5	56.5 - 129		%Rec	1	4/18/2019 10:59:57 AM
Surr: Toluene-d8	100	64.5 - 151		%Rec	1	4/18/2019 10:59:57 AM
Surr: 1-Bromo-4-fluorobenzene	93.9	54.8 - 168		%Rec	1	4/18/2019 10:59:57 AM
Sample Moisture (Percent Moisture	<u>;)</u>			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	8.28	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics Project: BFC				Collection	Date: 4/	10/2019 4:15:00 PM
Lab ID: 1904212-011 Client Sample ID: SVE-1-9				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ID: 2416	62 Analyst: DW
Diesel (Fuel Oil)	ND	21.7		mg/Kg-dry	1	4/13/2019 2:20:50 PM
Heavy Oil	ND	54.2		mg/Kg-dry	1	4/13/2019 2:20:50 PM
Surr: 2-Fluorobiphenyl	117	50 - 150		%Rec	1	4/13/2019 2:20:50 PM
Surr: o-Terphenyl	116	50 - 150		%Rec	1	4/13/2019 2:20:50 PM
Gasoline by NWTPH-Gx				Batch	ID: 2420	00 Analyst: KT
Gasoline	3,560	572	D	mg/Kg-dry	100	4/17/2019 3:59:06 PM
Surr: 4-Bromofluorobenzene	103	65 - 135	D	%Rec	100	4/17/2019 3:59:06 PM
Surr: Toluene-d8	95.9	65 - 135	D	%Rec	100	4/17/2019 3:59:06 PM
Volatile Organic Compounds by EP	A Method	8260C		Batch	ID: 2420	00 Analyst: KT
Methyl tert-butyl ether (MTBE)	ND	1.14	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
1,2-Dichloroethane (EDC)	ND	0.458	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
Benzene	ND	0.458	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
Toluene	16.8	0.458	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
1,2-Dibromoethane (EDB)	ND	0.114	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
Ethylbenzene	62.2	2.86	D	mg/Kg-dry	100	4/17/2019 3:59:06 PM
m,p-Xylene	286	5.72	D	mg/Kg-dry	100	4/17/2019 3:59:06 PM
o-Xylene	121	2.86	D	mg/Kg-dry	100	4/17/2019 3:59:06 PM
Hexane	ND	1.14	D	mg/Kg-dry	20	4/17/2019 2:00:03 PM
Surr: Dibromofluoromethane	95.3	56.5 - 129	D	%Rec	20	4/17/2019 2:00:03 PM
Surr: Toluene-d8	104	64.5 - 151	D	%Rec	20	4/17/2019 2:00:03 PM
Surr: 1-Bromo-4-fluorobenzene	103	54.8 - 168	D	%Rec	20	4/17/2019 2:00:03 PM
NOTES: Diluted due to matrix.						
				Patch	1D: 244	22 Analyst: MC
Total Metals by EPA Method 6020				Daton	ID: 2418	33 Analyst: WC
Lead	4.51	0.184		mg/Kg-dry	1	4/17/2019 3:03:17 AM
Sample Moisture (Percent Moisture)			Batch	ID: R50	748 Analyst: CJ
Percent Moisture	16.4	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics Project: BFC				Collection	Da	te: 4/11/2019 9:00:00 AM
Lab ID: 1904212-012				Matrix: So	vil	
Client Sample ID: TW-2-5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Analyses	Result	κL	Quai	Units		Date Analyzeu
Diesel and Heavy Oil by NWTPH-D	<u>(/Dx Ext.</u>			Batch	ID:	24162 Analyst: DW
		10.0				4/40/0040 0-50-00 DM
Diesel (Fuel Oil)	ND	19.6		mg/Kg-dry	1	4/13/2019 2:50:36 PM
Heavy Oil	ND	49.0		mg/Kg-dry	1	4/13/2019 2:50:36 PM
Surr: 2-Fluorobiphenyl	98.0	50 - 150		%Rec	1	4/13/2019 2:50:36 PM
Surr: o-Terphenyl	98.6	50 - 150		%Rec	1	4/13/2019 2:50:36 PM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	5.56		mg/Kg-dry	1	4/18/2019 2:58:59 AM
Surr: 4-Bromofluorobenzene	89.1	65 - 135		%Rec	1	4/18/2019 2:58:59 AM
Surr: Toluene-d8	97.5	65 - 135		%Rec	1	4/18/2019 2:58:59 AM
Volatile Organic Compounds by EF	PA Method	8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0222		mg/Kg-dry	1	4/18/2019 2:58:59 AM
Toluene	ND	0.0222		mg/Kg-dry	1	4/18/2019 2:58:59 AM
Ethylbenzene	ND	0.0278		mg/Kg-dry	1	4/18/2019 2:58:59 AM
m,p-Xylene	ND	0.0556		mg/Kg-dry	1	4/18/2019 2:58:59 AM
o-Xylene	ND	0.0278		mg/Kg-dry	1	4/18/2019 2:58:59 AM
Surr: Dibromofluoromethane	95.9	56.5 - 129		%Rec	1	4/18/2019 2:58:59 AM
Surr: Toluene-d8	98.7	64.5 - 151		%Rec	1	4/18/2019 2:58:59 AM
Surr: 1-Bromo-4-fluorobenzene	94.3	54.8 - 168		%Rec	1	4/18/2019 2:58:59 AM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	5.69	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics Project: BFC				Collection	Dat	te: 4/11/2019 9:30:00 AM
Lab ID: 1904212-013				Matrix: So	sil	
Client Sample ID: TW-3-5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	18.6		mg/Kg-dry	1	4/13/2019 3:20:18 PM
Heavy Oil	ND	46.5		mg/Kg-dry	1	4/13/2019 3:20:18 PM
Surr: 2-Fluorobiphenyl	92.1	50 - 150		%Rec	1	4/13/2019 3:20:18 PM
Surr: o-Terphenyl	92.8	50 - 150		%Rec	1	4/13/2019 3:20:18 PM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	9.09	5.37		mg/Kg-dry	1	4/18/2019 11:30:05 AM
Surr: 4-Bromofluorobenzene	96.1	65 - 135		%Rec	1	4/18/2019 11:30:05 AM
Surr: Toluene-d8	98.6	65 - 135		%Rec	1	4/18/2019 11:30:05 AM
Volatile Organic Compounds by EF	A Metho	<u>d 8260C</u>		Batch	ID:	24206 Analyst: KT
Benzene	0.0938	0.0215		mg/Kg-dry	1	4/18/2019 11:30:05 AM
Toluene	0.241	0.0215		mg/Kg-dry	1	4/18/2019 11:30:05 AM
Ethylbenzene	0.299	0.0269		mg/Kg-dry	1	4/18/2019 11:30:05 AM
m,p-Xylene	0.848	0.0537		mg/Kg-dry	1	4/18/2019 11:30:05 AM
o-Xylene	0.244	0.0269		mg/Kg-dry	1	4/18/2019 11:30:05 AM
Surr: Dibromofluoromethane	97.4	56.5 - 129		%Rec	1	4/18/2019 11:30:05 AM
Surr: Toluene-d8	102	64.5 - 151		%Rec	1	4/18/2019 11:30:05 AM
Surr: 1-Bromo-4-fluorobenzene	101	54.8 - 168		%Rec	1	4/18/2019 11:30:05 AM
Sample Moisture (Percent Moisture)			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	8.82	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics Project: BFC				Collection	Da	t e: 4/11/2019 10:00:00 AM
Lab ID: 1904212-014				Matrix: So		
				Watth. 50	11	
Client Sample ID: TW-1-9						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ID:	24162 Analyst: DW
Diesel (Fuel Oil)	ND	18.6		mg/Kg-dry	1	4/13/2019 3:50:01 PM
Heavy Oil	ND	46.5		mg/Kg-dry	1	4/13/2019 3:50:01 PM
Surr: 2-Fluorobiphenyl	108	50 - 150		%Rec	1	4/13/2019 3:50:01 PM
Surr: o-Terphenyl	110	50 - 150		%Rec	1	4/13/2019 3:50:01 PM
Gasoline by NWTPH-Gx				Batch	ID:	24206 Analyst: KT
Gasoline	ND	5.48		mg/Kg-dry	1	4/18/2019 12:00:13 PM
Surr: 4-Bromofluorobenzene	89.5	65 - 135		%Rec	1	4/18/2019 12:00:13 PM
Surr: Toluene-d8	97.6	65 - 135		%Rec	1	4/18/2019 12:00:13 PM
Volatile Organic Compounds by EP	A Method	8260C		Batch	ID:	24206 Analyst: KT
Benzene	ND	0.0219		mg/Kg-dry	1	4/18/2019 12:00:13 PM
Toluene	ND	0.0219		mg/Kg-dry	1	4/18/2019 12:00:13 PM
Ethylbenzene	ND	0.0274		mg/Kg-dry	1	4/18/2019 12:00:13 PM
m,p-Xylene	ND	0.0548		mg/Kg-dry	1	4/18/2019 12:00:13 PM
o-Xylene	ND	0.0274		mg/Kg-dry	1	4/18/2019 12:00:13 PM
Surr: Dibromofluoromethane	93.7	56.5 - 129		%Rec	1	4/18/2019 12:00:13 PM
Surr: Toluene-d8	96.8	64.5 - 151		%Rec	1	4/18/2019 12:00:13 PM
Surr: 1-Bromo-4-fluorobenzene	94.6	54.8 - 168		%Rec	1	4/18/2019 12:00:13 PM
Sample Moisture (Percent Moisture)			Batch	ID:	R50748 Analyst: CJ
Percent Moisture	6.69	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics				Collection	Date:	4/11/2019 10:30:00 AM
Project: BFC Lab ID: 1904212-015 Client Sample ID: TW-3-9				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	<u>d/Dx Ext.</u>			Batch	ID: 24	162 Analyst: DW
Diesel (Fuel Oil)	ND	19.7		mg/Kg-dry	1	4/13/2019 4:19:45 PM
Heavy Oil	ND	49.2		mg/Kg-dry	1	4/13/2019 4:19:45 PM
Surr: 2-Fluorobiphenyl	91.2	50 - 150		%Rec	1	4/13/2019 4:19:45 PM
Surr: o-Terphenyl	90.6	50 - 150		%Rec	1	4/13/2019 4:19:45 PM
Gasoline by NWTPH-Gx				Batch	ID: 24	200 Analyst: KT
Gasoline	153	90.9	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
Surr: 4-Bromofluorobenzene	97.5	65 - 135	D	%Rec	20	4/17/2019 3:28:59 PM
Surr: Toluene-d8	97.0	65 - 135	D	%Rec	20	4/17/2019 3:28:59 PM
Volatile Organic Compounds by EF	PA Method	8260C		Batch	ID: 24	200 Analyst: KT
Methyl tert-butyl ether (MTBE)	ND	0.0455		mg/Kg-dry	1	4/17/2019 11:30:42 AM
1,2-Dichloroethane (EDC)	ND	0.0182		mg/Kg-dry	1	4/17/2019 11:30:42 AM
Benzene	5.35	0.364	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
Toluene	0.867	0.0182		mg/Kg-dry	1	4/17/2019 11:30:42 AM
1,2-Dibromoethane (EDB)	ND	0.00455		mg/Kg-dry	1	4/17/2019 11:30:42 AM
Ethylbenzene	7.43	0.455	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
m,p-Xylene	13.4	0.909	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
o-Xylene	4.12	0.455	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
Hexane	2.52	0.909	D	mg/Kg-dry	20	4/17/2019 3:28:59 PM
Surr: Dibromofluoromethane	92.5	56.5 - 129		%Rec	1	4/17/2019 11:30:42 AM
Surr: Toluene-d8	94.3	64.5 - 151		%Rec	1	4/17/2019 11:30:42 AM
Surr: 1-Bromo-4-fluorobenzene	101	54.8 - 168		%Rec	1	4/17/2019 11:30:42 AM
Total Metals by EPA Method 6020				Batch	ID: 24	183 Analyst: WC
Lead	11.3	0.167		mg/Kg-dry	1	4/17/2019 3:08:49 AM
Sample Moisture (Percent Moisture				Batch	ID: R5	0748 Analyst: CJ
Percent Moisture	10.6	0.500		wt%	1	4/16/2019 8:17:26 AM

Client: G-Logics				Collection	Dat	t e: 4/11/20	19 11:00:00 AM
Project: BFC Lab ID: 1904212-016				Matrix: So	bil		
Client Sample ID: DUP Analyses	Result	RL	Qual	Units	DF	: Da	te Analyzed
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batch	ID:	24162	Analyst: DW
Diesel (Fuel Oil)	ND	20.8		mg/Kg-dry	1	4/13/	2019 4:49:30 PM
Heavy Oil	ND	52.0		mg/Kg-dry	1	4/13/	2019 4:49:30 PM
Surr: 2-Fluorobiphenyl	102	50 - 150		%Rec	1	4/13/	2019 4:49:30 PM
Surr: o-Terphenyl	102	50 - 150		%Rec	1	4/13/	2019 4:49:30 PM
Gasoline by NWTPH-Gx				Batch	ID:	24200	Analyst: KT
Gasoline	29.4	5.58		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Surr: 4-Bromofluorobenzene	100	65 - 135		%Rec	1	4/17/	2019 4:29:11 PM
Surr: Toluene-d8	98.8	65 - 135		%Rec	1	4/17/	2019 4:29:11 PM
Volatile Organic Compounds by EP	A Method	8260C		Batch	ID:	24200	Analyst: KT
Methyl tert-butyl ether (MTBE)	ND	0.0558		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
1,2-Dichloroethane (EDC)	ND	0.0223		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Benzene	0.798	0.0223		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Toluene	1.67	0.0223		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
1,2-Dibromoethane (EDB)	ND	0.00558		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Ethylbenzene	0.864	0.0279		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
m,p-Xylene	1.54	0.0558		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
o-Xylene	1.29	0.0279		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Hexane	0.536	0.0558		mg/Kg-dry	1	4/17/	2019 4:29:11 PM
Surr: Dibromofluoromethane	96.3	56.5 - 129		%Rec	1	4/17/	2019 4:29:11 PM
Surr: Toluene-d8	98.5	64.5 - 151		%Rec	1	4/17/	2019 4:29:11 PM
Surr: 1-Bromo-4-fluorobenzene	105	54.8 - 168		%Rec	1	4/17/	2019 4:29:11 PM
Total Metals by EPA Method 6020				Batch	ID:	24183	Analyst: WC
Lead	6.89	0.164		mg/Kg-dry	1	4/17/	2019 3:14:20 AM
Sample Moisture (Percent Moisture)			Batch	ID:	R50748	Analyst: CJ
Percent Moisture	10.5	0.500		wt%	1	4/16/	2019 8:17:26 AM

Work Order: CLIENT: Project:	1904212 G-Logics BFC									SUMMAI etals by EF		
Sample ID: MB-24	183	SampType: MBI	LK		Units: mg	/Kg	Prep Date	4/16/20	19	RunNo: 507	792	
Client ID: MBLK	s	Batch ID: 241	83				Analysis Date	: 4/17/20	19	SeqNo: 998	3179	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.155									
Sample ID: LCS-2	4183	SampType: LCS	6		Units: mg	/Kg	Prep Date	4/16/20	19	RunNo: 507	792	
Client ID: LCSS		Batch ID: 241	83				Analysis Date	4/17/20	19	SeqNo: 998	3182	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		17.3	0.153	19.08	0	90.8	80	120				
Sample ID: 19042	00-001ADUP	SampType: DUF	>		Units: mg	/Kg-dry	Prep Date	: 4/16/20	19	RunNo: 507	792	
Client ID: BATCI	н	Batch ID: 241	83				Analysis Date	: 4/17/20	19	SeqNo: 998	3184	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		9.04	0.189						8.887	1.67	20	
Sample ID: 19042	00-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Date	4/16/20	19	RunNo: 507	792	
Client ID: BATCI	Н	Batch ID: 241	83				Analysis Date	: 4/17/20	19	SeqNo: 998	3186	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		28.2	0.190	23.74	8.887	81.4	75	125				
Sample ID: 19042	00-001AMSD	SampType: MSI	D		Units: mg	/Kg-dry	Prep Date	4/16/20	19	RunNo: 50	792	
Client ID: BATCI	Н	Batch ID: 241	83				Analysis Date	: 4/17/20	19	SeqNo: 998	3187	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		30.1	0.193	24.08	8.887	88.0	75	125	28.22	6.41	20	

Work Order:19042CLIENT:G-LogProject:BFC								Diesel	QC S and Heavy	SUMMAI Oil by NW		-
Sample ID: MB-24162	SampType	e: MBLK			Units: mg/Kg	l	Prep Dat	e: 4/12/20	019	RunNo: 507	735	
Client ID: MBLKS	Batch ID:	24162					Analysis Dat	te: 4/13/20)19	SeqNo: 996	679	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		ND	20.0									
Heavy Oil		ND	50.0									
Surr: 2-Fluorobiphenyl		18.7		20.00		93.6	50	150				
Surr: o-Terphenyl		18.8		20.00		94.0	50	150				
Sample ID: LCS-24162	SampType	e: LCS			Units: mg/Kg		Prep Dat	e: 4/12/20)19	RunNo: 507	735	
Client ID: LCSS	Batch ID:	24162					Analysis Dat	te: 4/13/20)19	SeqNo: 996	680	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		579	20.0	500.0	0	116	65	135				
Surr: 2-Fluorobiphenyl		19.8		20.00		99.0	50	150				
Surr: o-Terphenyl		19.0		20.00		94.9	50	150				
Sample ID: 1904171-001AI	DUP SampType	e: DUP			Units: mg/Kg	-dry	Prep Dat	e: 4/12/20)19	RunNo: 507	735	
Client ID: BATCH	Batch ID:	24162					Analysis Dat	te: 4/13/20	019	SeqNo: 996	682	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		902	23.5						866.8	4.03	30	
Heavy Oil		ND	58.8						0		30	
Surr: 2-Fluorobiphenyl		23.8		23.50		101	50	150		0		
Surr: o-Terphenyl		23.7		23.50		101	50	150		0		
Sample ID: 1904171-001A	IS SampType	e: MS			Units: mg/Kg	-dry	Prep Dat	e: 4/12/20)19	RunNo: 507	735	
Client ID: BATCH	Batch ID:	24162					Analysis Dat	te: 4/13/20)19	SeqNo: 996	683	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		1,230	21.9	548.7	866.8	66.2	65	135				
Surr: 2-Fluorobiphenyl		21.8		21.95		99.5	50	150				
Surr: o-Terphenyl		20.8		21.95		94.6	50	150				

Work Order:190421CLIENT:G-LogicProject:BFC						I	Diesel a	QC S and Heavy	SUMMA Oil by NW		
Sample ID: 1904171-001AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date:	4/12/20	19	RunNo: 50	735	
Client ID: BATCH	Batch ID: 24162					Analysis Date	4/13/20	19	SeqNo: 99	6683	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: 1904171-001AMS	D SampType: MSD			Units: mg/l	Kg-dry	Prep Date	4/12/20	19	RunNo: 50	735	
Client ID: BATCH	Batch ID: 24162					Analysis Date	4/13/20	19	SeqNo: 99	6684	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	1,560	23.6	590.9	866.8	117	65	135	1,230	23.7	30	
Surr: 2-Fluorobiphenyl	23.0		23.64		97.2	50	150		0		
Surr: o-Terphenyl	23.1		23.64		97.8	50	150		0		
Sample ID: 1904212-001ADL	P SampType: DUP			Units: mg/l	Kg-dry	Prep Date:	4/12/20	19	RunNo: 50	735	
Client ID: AS-2-5	Batch ID: 24162					Analysis Date	4/13/20	19	SeqNo: 99	6692	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	21.6						0		30	
Heavy Oil	ND	53.9						0		30	
Surr: 2-Fluorobiphenyl	20.9		21.57		96.8	50	150		0		
Surr: o-Terphenyl	21.1		21.57		98.0	50	150		0		

Work Order: CLIENT: Project:	1904212 G-Logics BFC								QC S	SUMMA Gasoline		-
Sample ID: LCS-2	4200	SampType: LC	s		Units: mg/Kg		Prep Da	te: 4/17/20	19	RunNo: 508	304	
Client ID: LCSS		Batch ID: 24	200				Analysis Da	te: 4/17/20	19	SeqNo: 998	3463	
Analyte		Resu	ılt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		27.	.5 5.00	25.00	0	110	65	135				
Surr: Toluene-d	8	1.2	26	1.250		101	65	135				
Surr: 4-Bromoflu	uorobenzene	1.2	26	1.250		101	65	135				
Sample ID: MB-24	4200	SampType: MI	BLK		Units: mg/Kg		Prep Da	te: 4/17/20	19	RunNo: 508	304	
Client ID: MBLK	S	Batch ID: 24	200				Analysis Da	te: 4/17/20	19	SeqNo: 998	3465	
Analyte		Resu	ılt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		N	D 5.00	1								
Surr: Toluene-d	8	1.2	20	1.250		95.8	65	135				
Surr: 4-Bromoflu	uorobenzene	1.1	2	1.250		89.4	65	135				
Sample ID: 19042	12-005BDUP	SampType: Dl	JP		Units: mg/Kg·	dry	Prep Da	te: 4/17/20	19	RunNo: 508	304	
Client ID: AS-2-	19	Batch ID: 24	200				Analysis Da	te: 4/17/20	19	SeqNo: 998	3454	
Analyte		Resu	ılt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		90)1 113						928.4	2.95	30	D
Surr: Toluene-d	8	28	.0	28.15		99.3	65	135		0		D
Surr: 4-Bromoflu	uorobenzene	28	.7	28.15		102	65	135		0		D
Sample ID: LCSD	-24200	SampType: LC	SD		Units: mg/Kg		Prep Da	te: 4/17/20	19	RunNo: 508	304	
Client ID: LCSS	02	Batch ID: 24	200				Analysis Da	te: 4/17/20	19	SeqNo: 998	3464	
Analyte		Resu	ılt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		27.	.3 5.00	25.00	0	109	65	135	27.51	0.679	20	
Surr: Toluene-d	8	1.2	25	1.250		100	65	135		0		
Surr: 4-Bromoflu	uorobenzene	1.2	26	1.250		101	65	135		0		

Work Order: CLIENT: Project:	1904212 G-Logics BFC								QC S	SUMMA Gasoline		-
Sample ID: LCS-2	4206	SampType: LCS			Units: mg/Kg		Prep Date	e: 4/17/20	19	RunNo: 50	307	
Client ID: LCSS		Batch ID: 24206					Analysis Date	e: 4/17/20	19	SeqNo: 99	3506	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		27.6	5.00	25.00	0	110	65	135				
Surr: Toluene-d8	3	1.25		1.250		100	65	135				
Surr: 4-Bromoflu	lorobenzene	1.27		1.250		102	65	135				
Sample ID: MB-24	206	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/17/20	19	RunNo: 50	307	
Client ID: MBLK	S	Batch ID: 24206					Analysis Date	e: 4/17/20	19	SeqNo: 99	3507	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	5.00									
Surr: Toluene-d8	3	1.23		1.250		98.4	65	135				
Surr: 4-Bromoflu	lorobenzene	1.11		1.250		88.7	65	135				
Sample ID: 19042	78-005BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 4/17/20	19	RunNo: 50	307	
Client ID: BATCI	н	Batch ID: 24206					Analysis Date	e: 4/17/20	19	SeqNo: 99	3498	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		ND	3.60						0		30	
Surr: Toluene-d8	3	0.863		0.9001		95.8	65	135		0		
Surr: 4-Bromoflu	lorobenzene	0.797		0.9001		88.6	65	135		0		
Sample ID: 19042	12-012BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 4/17/20	19	RunNo: 50	307	
Client ID: TW-2-	5	Batch ID: 24206					Analysis Date	e: 4/18/20	19	SeqNo: 99	3490	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		32.2	5.56	27.81	0	116	65	135				
Surr: Toluene-d8	3	1.39		1.390		100	65	135				
Surr: 4-Bromoflu	iorobenzene	1.39		1.390		99.9	65	135				

CLIENT:	1904212 G-Logics BFC									QC S	SUMMA Gasoline		-
Sample ID: 1904212 Client ID: TW-2-5	2-012BMSD	SampType: Batch ID:	MSD 24206			Units: mg	ı/Kg-dry	Prep Da Analysis Da	te: 4/17/20 te: 4/18/20		RunNo: 508 SeqNo: 99 8		
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Surr: Toluene-d8 Surr: 4-Bromofluor	robenzene		30.8 1.39 1.39	5.56	27.81 1.390 1.390	0	111 99.9 99.9	65 65 65	135 135 135	32.17	4.34 0 0	30	
Sample ID: 1904212 Client ID: AS-2-15 Analyte			DUP 24206 esult	RL	SPK value	Units: mg	y/Kg-dry %REC	Analysis Da			RunNo: 50 SeqNo: 99 %RPD		Qual
Gasoline Surr: Toluene-d8 Surr: 4-Bromofluo	robenzene		12.8 1.61 1.56	6.64	1.659 1.659		97.1 94.2	65 65	135 135	12.91	0.632 0 0	30	

Work Order: CLIENT: Project:	1904212 G-Logics BFC						Volatile	Organio	QC S	SUMMA ds by EPA		_
Sample ID: LCS-24200		SampType: LCS			Units: mg/Kg	Prep Date: 4/17/2019				RunNo: 50803		
Client ID: LCSS		Batch ID: 24200				Analysis D		ate: 4/17/2019		SeqNo: 998448		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)		1.15	0.0500	1.000	0	115	44.1	152				
1,2-Dichloroethane (EDC)		1.09	0.0200	1.000	0	109	50.9	162				
Benzene		1.08	0.0200	1.000	0	108	64.3	133				
Toluene		1.10	0.0200	1.000	0	110	67	144				
1,2-Dibromoethane	(EDB)	1.12	0.00500	1.000	0	112	50.5	154				
Ethylbenzene		1.17	0.0250	1.000	0	117	74	129				
m,p-Xylene		2.32	0.0500	2.000	0	116	70	124				
o-Xylene		1.14	0.0250	1.000	0	114	68.1	139				
Hexane		1.16	0.0500	1.000	0	116	48.5	159				
Surr: Dibromofluc	promethane	1.26		1.250		101	56.5	129				
Surr: Toluene-d8		1.23		1.250		98.4	64.5	151				
Surr: 1-Bromo-4-1	fluorobenzene	1.33		1.250		106	54.8	168				
Sample ID: MB-242	200	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/17/20)19	RunNo: 508	303	
Client ID: MBLKS	6	Batch ID: 24200				Analysis Date: 4/17/2019)19	SeqNo: 998450		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl eth	er (MTBE)	ND	0.0500									
1,2-Dichloroethane	(EDC)	ND	0.0200									
Benzene		ND	0.0200									
Toluene		ND	0.0200									
1,2-Dibromoethane	(EDB)	ND	0.00500									
Ethylbenzene		ND	0.0250									
m,p-Xylene		ND	0.0500									
o-Xylene		ND	0.0250									
Hexane		ND	0.0500									
Surr: Dibromofluc	promethane	1.15		1.250		92.4	56.5	129				
Surr: Toluene-d8		1.19		1.250		95.4	64.5	151				
Surr: 1-Bromo-4-1	fluorobenzene	1.18		1.250		94.6	54.8	168				

Work Order:	1904212
CLIENT:	G-Logics
Project:	BFC

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID: 1904212-005BDUP	SampType: DUP			Units: mg/Kg-dry		Prep Date: 4/17/2019			RunNo: 50		
Client ID: AS-2-19	Batch ID: 24200					Analysis Date: 4/17/2019			SeqNo: 99		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	1.13						0		30	D
1,2-Dichloroethane (EDC)	ND	0.450						0		30	D
Benzene	10.6	0.450						10.18	4.44	30	D
Toluene	74.9	0.450						69.46	7.56	30	DE
1,2-Dibromoethane (EDB)	ND	0.113						0		30	D
Ethylbenzene	15.9	0.563						15.14	5.13	30	D
m,p-Xylene	64.6	1.13						60.64	6.37	30	D
o-Xylene	24.4	0.563						22.62	7.52	30	D
Hexane	14.8	1.13						14.60	1.50	30	D
Surr: Dibromofluoromethane	25.5		28.15		90.6	56.5	129		0		D
Surr: Toluene-d8	27.0		28.15		95.8	64.5	151		0		D
Surr: 1-Bromo-4-fluorobenzene	29.5		28.15		105	54.8	168		0		D

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Diluted due to matrix.

Sample ID: LCSD-24200	SampType: LCSD	ampType: LCSD Units: mg/Kg Prep Date: 4/17/2019						19	RunNo: 50803		
Client ID: LCSS02	Batch ID: 24200					Analysis Da	te: 4/17/20	19	SeqNo: 998449		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	1.02	0.0500	1.000	0	102	44.1	152	1.147	12.0	20	
1,2-Dichloroethane (EDC)	1.09	0.0200	1.000	0	109	50.9	162	1.088	0.609	20	
Benzene	1.09	0.0200	1.000	0	109	74.6	124	1.081	1.16	20	
Toluene	1.13	0.0200	1.000	0	113	67	144	1.101	2.39	20	
1,2-Dibromoethane (EDB)	1.05	0.00500	1.000	0	105	50.5	154	1.119	6.42	20	
Ethylbenzene	1.20	0.0250	1.000	0	120	74	129	1.168	2.86	20	
m,p-Xylene	2.41	0.0500	2.000	0	121	70	124	2.321	3.91	20	
o-Xylene	1.19	0.0250	1.000	0	119	68.1	139	1.141	4.29	20	
Hexane	1.17	0.0500	1.000	0	117	48.5	159	1.162	0.800	20	
Surr: Dibromofluoromethane	1.33		1.250		106	56.5	129		0		
Surr: Toluene-d8	1.26		1.250		101	64.5	151		0		

Work Order:1904212CLIENT:G-LogicProject:BFC						Volatile	Organio	QC S Compoun	SUMMAI ds by EPA		-
Sample ID: LCSD-24200	SampType: LCS	D		Units: mg/Kg		Prep Dat	e: 4/17/20)19	RunNo: 508	303	
Client ID: LCSS02	Batch ID: 2420	00				Analysis Dat	e: 4/17/20)19	SeqNo: 998	3449	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Bromo-4-fluorobenze	ene 1.30		1.250		104	54.8	168		0		
Sample ID: LCS-24206	SampType: LCS			Units: mg/Kg		Prep Dat	e: 4/17/20)19	RunNo: 508	306	
Client ID: LCSS	Batch ID: 2420)6				Analysis Dat	e: 4/17/20)19	SeqNo: 998	3486	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.11	0.0200	1.000	0	111	64.3	133				
Toluene	1.13	0.0200	1.000	0	113	67	144				
Ethylbenzene	1.15	0.0250	1.000	0	115	74	129				
m,p-Xylene	2.30	0.0500	2.000	0	115	70	124				
o-Xylene	1.14	0.0250	1.000	0	114	68.1	139				
Surr: Dibromofluoromethane	e 1.27		1.250		102	56.5	129				
Surr: Toluene-d8	1.26		1.250		101	64.5	151				
Surr: 1-Bromo-4-fluorobenze	ene 1.32		1.250		106	54.8	168				
Sample ID: MB-24206	SampType: MBL	K		Units: mg/Kg		Prep Dat	e: 4/17/20)19	RunNo: 508	306	
Client ID: MBLKS	Batch ID: 2420)6				Analysis Dat	e: 4/17/20)19	SeqNo: 998	3487	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	e 1.16		1.250		93.0	56.5	129				
Surr: Toluene-d8	1.19		1.250		95.3	64.5	151				
Surr: 1-Bromo-4-fluorobenze	ene 1.17		1.250		93.8	54.8	168				

Fremont Analytical

Work Order: 1904212 CLIENT: G-Logics								QC S	SUMMA	RY REP	POR
CLIENT: G-Logics Project: BFC						Volatile	Organic	Compoun	ds by EPA	Method	8260
Sample ID: 1904278-005BDUP	SampType: DUP			Units: mg/k	a-drv	Prep Dat	e: 4/17/20	19	RunNo: 508	306	
Client ID: BATCH	Batch ID: 24206			e ngr	ig ui j	Analysis Dat			SeqNo: 998		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0144					5	0		30	
Toluene	ND	0.0144						0		30 30	
Ethylbenzene	ND	0.0180						0		30	
m,p-Xylene	ND	0.0360						0		30	
o-Xylene	ND	0.0180						0		30	
Surr: Dibromofluoromethane	0.853		0.9001		94.7	56.5	129	5	0		
Surr: Toluene-d8	0.880		0.9001		97.7	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.845		0.9001		93.9	54.8	168		0		
Sample ID: 1904278-009BMS	SampType: MS			Units: mg/k	(g-dry	Prep Dat	e: 4/17/20	19	RunNo: 508	306	
Client ID: BATCH	Batch ID: 24206					Analysis Dat	e: 4/18/20	19	SeqNo: 998	3481	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.683	0.0129	0.6427	0	106	63.5	133				
Toluene	0.710	0.0129	0.6427	0	111	63.4	132				
Ethylbenzene	0.745	0.0161	0.6427	0	116	54.5	134				
m,p-Xylene	1.49	0.0321	1.285	0	116	53.1	132				
o-Xylene	0.732	0.0161	0.6427	0	114	53.3	139				
Surr: Dibromofluoromethane	0.852		0.8034		106	56.5	129				
Surr: Toluene-d8	0.801		0.8034		99.7	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	0.834		0.8034		104	54.8	168				
Sample ID: 1904278-009BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Dat	e: 4/17/20	19	RunNo: 508	306	
Client ID: BATCH	Batch ID: 24206					Analysis Dat	e: 4/18/20	19	SeqNo: 998	3482	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.700	0.0129	0.6427	0	109	63.5	133	0.6835	2.33	30	
Toluene	0.716	0.0129	0.6427	0	111	63.4	132	0.7102	0.798	30	
Ethylbenzene	0.730	0.0161	0.6427	0	114	54.5	134	0.7454	2.15	30	

Fremont
Analytical

Work Order: CLIENT: Project:	1904212 G-Logics BFC							Volatile	Organic	QC S Compoun	SUMMAI ds by EPA		-
Sample ID: 19042	78-009BMSD	SampType	e: MSD			Units: mg/ł	(g-dry	Prep Date	e: 4/17/20	19	RunNo: 508	306	
Client ID: BATC	н	Batch ID:	24206					Analysis Date	e: 4/18/20	19	SeqNo: 998	3482	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene			0.722	0.0161	0.6427	0	112	53.3	139	0.7318	1.37	30	
Surr: Dibromoflu	uoromethane		0.860		0.8034		107	56.5	129		0		
Surr: Toluene-d	8		0.813		0.8034		101	64.5	151		0		
Surr: 1-Bromo-4	1-fluorobenzene		0.837		0.8034		104	54.8	168		0		
Sample ID: 19042	12-004BDUP	SampType	e: DUP			Units: mg/ł	(g-dry	Prep Date	e: 4/17/20)19	RunNo: 508	306	
Client ID: AS-2-	15	Batch ID:	24206					Analysis Date	e: 4/18/20	19	SeqNo: 998	3766	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		(0.0448	0.0265						0.04402	1.81	30	
Toluene			0.182	0.0265						0.1865	2.54	30	
10100110										0		30	
Ethylbenzene			ND	0.0332						0			
			ND ND	0.0332 0.0664						0		30	
Ethylbenzene													
Ethylbenzene m,p-Xylene	uoromethane		ND	0.0664	1.659		98.4	56.5	129	0	0	30	
Ethylbenzene m,p-Xylene o-Xylene			ND ND	0.0664	1.659 1.659		98.4 97.8	56.5 64.5	129 151	0	0 0	30	

CLIENT: G	904212 6-Logics FC						\$	QC S Sample Mo	SUMMAI isture (Pe		
Sample ID: 1904200-0	003ADUP	SampType: DUP			Units: wt%	Prep Da	te: 4/15/20	19	RunNo: 507	731	
Client ID: BATCH		Batch ID: R50731				Analysis Da	te: 4/15/20	19	SeqNo: 996	6638	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		28.5	0.500					30.98	8.51	20	
Sample ID: 1904205-0	007ADUP	SampType: DUP			Units: wt%	Prep Da	te: 4/15/20	19	RunNo: 507	731	
Client ID: BATCH		Batch ID: R50731				Analysis Da	te: 4/15/20	19	SeqNo: 996	6648	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		21.0	0.500					22.87	8.45	20	
Sample ID: 1904212-0	007ADUP	SampType: DUP			Units: wt%	Prep Da	te: 4/16/20	19	RunNo: 507	748	
Client ID: AS-2-30		Batch ID: R50748				Analysis Da	te: 4/16/20	19	SeqNo: 996	6995	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		19.7	0.500					19.60	0.637	20	
Sample ID: 1904232-0	004ADUP	SampType: DUP			Units: wt%	Prep Da	te: 4/16/20	19	RunNo: 507	748	
Client ID: BATCH		Batch ID: R50748				Analysis Da	te: 4/16/20	19	SeqNo: 997	7010	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		37.5	0.500					37.50	0.130	20	

Sample Log-In Check List

CI	ient Name:	GL	Work Order Num	ber: 1904212	
Lo	gged by:	Clare Griggs	Date Received:	4/11/2019	9 12:00:00 PM
<u>Cha</u>	in of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	Client		
<u>Log</u>	In				
3.	Coolers are p	resent?	Yes 🖌	No 🗌	
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes 🖌	No 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🔽	No 🗌	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🖌	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	tified of all discrepancies with this order?	Yes 🗹	No 🗌	NA 🗌
	Person	Notified: Zak Wall Date:		4/12/2019	
	By Who	m: Brianna Barnes Via:	🗌 eMail 🗌 Ph	ione 🗌 Fax	🖌 In Person
	Regardi	ng: EDB in soil method confirmation.			
	Client Ir	structions:			
19.	Additional rer	narks:			

Item Information

Item #	Temp °C
Cooler	5.6
Sample	5.1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

-	c	í.
8	5	
n	Ď	
۲	-	
9	2	
1		

2	
5	
5	5
-	
<	5
AA AV	5
٠	
-	
-	
C	D
-	3
-	3
Olland	
2	-
-	3
-	-
'n	ŝ.
2	2
-	3
ō	5
	-
-	-
_	
-5	
2	Ξ.
1	2
2	U.
-	-
2	
5	2
C	D
	۲.

öc	
õ	
-	
N	
1	
N	
N	
2	
-	
1	

Same Day (specify)		Date/Time	er.	Received ×		Date/Time	Dat		Reinquished ×
Next Day	1/00	Date/Time	ed Hereit	x X	0	Date/Time	Date/Ti	wad	Relinquished
Lt to 2 Day	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	named above and that I	on behalf of the Client	Fremont Analytical	ement with eement.	to this Agre of this Agr	rized to enter in nt and backside	I represent that I am authorized to enter into this Agreement v each of the terms on the front and backside of this Agreement.	I repres each of
		e	Fluoride Nitrate+Nitrite	le O-Phosphate	e Bromide	de Sulfate	Nitrite Chloride	Nitrate	***Anions (Circle):
Standard	b Sb Se Sr Sn Ti TI U V Zn	Mg Mn Mo Na Ni	Co Cr	Ag	-	llutants TAL	RCRA-8 Priority Pollutants	MTCA-5	**Metals (Circle):
Turn-around Time:	GW = Ground Water, SW = Storm Water, WW = Waste Water		W = Water, DW = Drinking Water,	SL = Solid,	s = Soil, SD = S	O = Other, P = Product, S = Soil, SD = Sediment,	B = Bulk, O = Other,	Matrix: A = Air, AQ = Aqueous, B =	*Matrix: A =
				X	5	1515	Ý	-1-5	10 SV E
AND AND AND AN AN AN	10.51 5 C 1265 55 C 1410 1920			X		1430		15	°Tw-
and a state of the second s	Hold					1135		2-35	8 A S -
			×	×		1130		2-30	7 AS - 3
and the second second second			×	×		1/25		2-25	6 AS -
nie stanowa w tra		X X X X	X	×		1120		2-19	SAS ~
			· X	X		LI15		2-15	4 AS ~
	CONTRACT AND A REACT OF A		×	X		1110		2-10	3 AS -
	Hold		00			1600	57 FE	5-1	2 AS -
	44			_	5	920	4/10	2-5	1 AS ~
Comments	St. Harter Star		5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 C C C C R R R R R R R R R R R R R R R	Sample Type (Matrix)*	e Sample Time	Sample Date	ame	Sample Name
RECEIPT AND AND A CONTRACT AND AND A CONTRACT AND A	///////	ics.com	5-10 S-10	PM Email: Zackar			_		Fax:
t Disposal by lab (after 30 days)	Sample Disposal: Return to client		k uall	Report To (PM): Zak Ua	19-01-00				Telephone:
und the subsect statistic to the				Location:		n percent a		ip:	City, State, Zip:
	non oué de la constante avecto de la constante La constante de la constante avecto de la constante		122	Collected by: 2W					1 22
			0410-6	-10				-Logics	Client: G-
an an ann ann ann ann an Arainn a' 1920. An Ann ann ann ann ann an Arainn an Ar	Special Remarks:	0 8	AND AND AND AND AND AND AND AND AND AND	Project Name: BFC	·	Fax: 206-352-7178	TIMITAN)	4110	
904212	Laboratory Project No (internal):	1 of 2	19 Page:	Date: 4/11/1		Seattle, WA 98103 Tel: 206-352-3790		Fremo	-K
Agreement	& Laboratory Services Agreement		Chain of Custody Record	Chain	nt Ave N.	3600 Fremont Ave N.			RNAH!

	σ
	a
¢	P
	Ð
	-
	9
	N
	-

-	
_	
_	
№ .	
ň	
-	
ical	
-	
	1
8	
F	- 1
<u> </u>	
_	
_	1
3	
_	1

0	
0	
0	
-	
N	
1	
N	
N	
N	
-	

Same Day (specify)	Date/ IIme		x	× ⊼		me	Date/Time			Refinquished ×
1200 Next Day	Date/Time	L	Received	×z		Time /266			all	Relinquished
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to	d above and that I have v	of the Mient name	rtical on behalf	remont Analy	ment with H ment.	his Agree this Agree	to enter into t d backside of	uthorized t e front and	I represent that I am authorized to enter into this Agreement v each of the terms on the front and backside of this Agreement.	I represe each of th
LALE STATE AND ALL ONE ADDRESS OF STATES AND ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF		Nitrate+Nitrite	e Fluoride	O-Phosphate	Bromide	Sulfate	Chloride	Nitrite	rcle): Nitrate	***Anions (Circle):
Sr Sn Ti TI U V Zn	Mg Mn Mo Na Ni b Sb Se S	Ca Cd Co Cr Cu Fe Hg K Mg	Ве	Ag Al As B Ba	Individual:	nts TAL	Priority Pollutants	RCRA-8	cle): MTCA-5	**Metals (Circle):
Water, WW = Waste Water Turn-pround Time:	GW = Ground Water, SW = Storm Water,	DW = Drinking Water, GW	W = Water,	diment, SL = Solid,	S = Soil, SD = Sediment,		O = Other, P = Product,	B = Bulk,	vir, AQ = Aqueous,	*Matrix: A = Air,
			1							10
	1974 250 AV-1974 351	100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 100 miles 1							50.013 (C.C.)	9
						10.00	and ^{an} also abra		100 100 100 100 100 100 100 100 100 100	8
and the second second second second second second second second second second second second second second second	85		1.				-			7
adamastras etam patasma - jar - 760 eta - 100 - 100 - 100 - 100 -	× ×	×	×	X	<	1100	4/11		-0	6 <i>0 c</i> ,
adding 6 A strike COPPORT 1, 5 million 10 laws provide strike 1, 9	××	X	X	×		1030	ú/11		3-9	574.
			×	×		0001	11/11		1-9	ATW
Constant Structure of Constant on the Second Structure of Structure	and the second of the second second second second second second second second second second second second second	1 - 1 - 20 - 20 - 20 - 20 - 20 - 20 - 20	X	×		930	4/11		5 5	- MLE
 To specing et all specification, and with the second of state of the specific specification of the specific		a 8, 6, 6, 6, 6, 6, 6	X	×		900	4/11		· · ·	274-2
	ХX			X	cs	1615	4/10		1-9	ISVE -
Comments		2 (C 7 2 2 2 0 4 3 1	He like R	ACC CRANGE CALL	e e	Sample Time	Sample Date		ne	Sample Name
1/1/1/		THE S								Fax:
omiljer ordenasi. – Listeni i omori, – ordenasi di ina (nirei ordenas).		(a 11	Zak h	Report To (PM):						Telephone:
nle Disposal · Desturn to client · Disposal hulah (affer 20 dave)	Comp.			Location:						City, State, Zip:
 Let are base of sole calls a justice of the adjatence multi- line base of sole constant and Adjatence (1994) stepanes a 			24	Collected by:						Address:
to the solution of the second second to the measure of		0	01-0410-0	Project No: 0				~	-Logics	client: 4
Special Remarks:		තර වනු - එබේ හා ය	BFC	:t Name:		Fax: 206-352-7178		a manyatan		
Laboratory Project No (internal): 19 0400	₩ ∧	Page: 2	19	Date: 4/11		Seattle, WA 98103 Tel: 206-352-3790	2	remo		
Laboratory Services Agreement	8	Chain of Custody Record	in of Cus	Cha	Ave N.	3600 Fremont Ave N.				

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Zackary Wall 40 Second Ave. SE Issaquah, WA 98027

RE: BFC Work Order Number: 1904294

April 24, 2019

Attention Zackary Wall:

Fremont Analytical, Inc. received 3 sample(s) on 4/17/2019 for the analyses presented in the following report.

1,2-Dibromoethane (EDB) by EPA Method 8011 Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Dissolved Metals by EPA Method 200.8 Gasoline by NWTPH-Gx Total Metals by EPA Method 200.8 Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

phil c. Kady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	G-Logics BFC 1904294	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1904294-001	AS-2	04/17/2019 1:15 PM	04/17/2019 3:43 PM
1904294-002	AS-1	04/17/2019 2:15 PM	04/17/2019 3:43 PM
1904294-003	DUP	04/17/2019 12:00 AM	04/17/2019 3:43 PM

Case Narrative

WO#: **1904294** Date: **4/24/2019**

CLIENT: G-Logics Project: BFC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1904294** Date Reported: **4/24/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

G-Logics

Client:

Analytical Report

Work Order: **1904294** Date Reported: **4/24/2019**

Collection Date: 4/17/2019 1:1	5:00 PM
--------------------------------	---------

Project: BFC Lab ID: 1904294-001 Matrix: Groundwater Client Sample ID: AS-2 Analyses Result RL Qual Units DF **Date Analyzed** Batch ID: 24271 Analyst: DW 1.2-Dibromoethane (EDB) by EPA Method 8011 4/23/2019 3:41:15 PM 1,2-Dibromoethane (EDB) ND 0.00994 µg/L 1 Batch ID: 24224 Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Analyst: SB Diesel (Fuel Oil) ND 50.0 µg/L 1 4/19/2019 3:17:25 PM ND 100 4/19/2019 3:17:25 PM Heavy Oil µg/L 1 Surr: 2-Fluorobiphenyl 111 50 - 150 %Rec 1 4/19/2019 3:17:25 PM Surr: o-Terphenyl 111 50 - 150 %Rec 1 4/19/2019 3:17:25 PM Batch ID: 24250 Analyst: KT Gasoline by NWTPH-Gx µg/L Gasoline 1,560 50.0 1 4/22/2019 9:52:17 PM Surr: Toluene-d8 95.9 65 - 135 %Rec 1 4/22/2019 9:52:17 PM Surr: 4-Bromofluorobenzene 65 - 135 %Rec 1 4/22/2019 9:52:17 PM 103 Batch ID: 24250 Volatile Organic Compounds by EPA Method 8260C Analyst: KT 1.00 Methyl tert-butyl ether (MTBE) ND 4/22/2019 9:52:17 PM µg/L 1 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 4/22/2019 9:52:17 PM Benzene 20.8 1.00 4/22/2019 9:52:17 PM µg/L 1 Toluene 78.4 10.0 D µg/L 10 4/23/2019 8:08:00 AM Ethylbenzene 22.4 4/22/2019 9:52:17 PM 1.00 µg/L 1 m,p-Xylene 89.4 10.0 D 10 4/23/2019 8:08:00 AM µg/L o-Xylene 39.0 1.00 µg/L 1 4/22/2019 9:52:17 PM Surr: Dibromofluoromethane 96.2 45.4 - 152 %Rec 1 4/22/2019 9:52:17 PM Surr: Toluene-d8 97.8 40.1 - 139 %Rec 1 4/22/2019 9:52:17 PM Surr: 1-Bromo-4-fluorobenzene 64.2 - 128 101 %Rec 1 4/22/2019 9:52:17 PM Batch ID: 24260 Analyst: WC **Dissolved Metals by EPA Method 200.8** Lead ND 0.500 µg/L 1 4/23/2019 3:18:28 PM Batch ID: 24227 Analyst: WC Total Metals by EPA Method 200.8 Lead 0.804 0.500 µg/L 4/19/2019 12:28:03 PM 1

Analytical Report

 Work Order:
 1904294

 Date Reported:
 4/24/2019

lient: G-Logics			(Collectior	n Date: 4	4/17/2019 2:15:00 PN
roject: BFC						
ab ID: 1904294-002			I	Matrix: G	roundwa	ater
lient Sample ID: AS-1						
nalyses	Result	RL	Qual	Units	DF	Date Analyzed
1,2-Dibromoethane (EDB) by EP	A Method 801	<u>1</u>		Batc	h ID: 24	271 Analyst: DW
1,2-Dibromoethane (EDB)	ND	0.0100		µg/L	1	4/23/2019 3:57:27 PM
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID: 24	224 Analyst: SB
Diesel (Fuel Oil)	ND	50.3		µg/L	1	4/19/2019 4:17:18 PM
Diesel Range Organics (C12-C24)	270	50.3		μg/L	1	4/19/2019 4:17:18 PM
Heavy Oil	ND	101		μg/L	1	4/19/2019 4:17:18 PM
Surr: 2-Fluorobiphenyl	98.7	50 - 150		%Rec	1	4/19/2019 4:17:18 PM
		50 450		%Rec	1	4/19/2019 4:17:18 PM
Surr: o-Terphenyl	73.5	50 - 150		/01/00		
Surr: o-Terphenyl NOTES:	73.5	50 - 150		/01/00	·	
			ecane throu			
NOTES:			ecane throu	gh tetracosa		-C24).
NOTES: DRO - Indicates the presence of unresol			ecane throu D	gh tetracosa Batcl	ine (~C12	-C24).
NOTES: DRO - Indicates the presence of unresol Gasoline by NWTPH-Gx	ved compounds e	luting from dod		gh tetracosa	ne (~C12 h ID: 24	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline by NWTPH-Gx Gasoline	ved compounds e 4,150	eluting from dod	D	gh tetracosa Batcl µg/L	ne (~C12 h ID: 24 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline by NWTPH-Gx Gasoline Surr: Toluene-d8	4,150 96.3 98.5	luting from dod 1,000 65 - 135 65 - 135	D D	gh tetracosa Batcl µg/L %Rec %Rec	nne (~C12 h ID: 24 20 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by	4,150 96.3 98.5 EPA Method	1,000 65 - 135 65 - 135 8260C	D D	gh tetracosa Batcl µg/L %Rec %Rec Batcl	nne (~C12 h ID: 24 20 20 20 h ID: 24	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE)	4,150 96.3 98.5	luting from dod 1,000 65 - 135 65 - 135	D D	gh tetracosa Batcl μg/L %Rec %Rec Batcl μg/L	nne (~C12 h ID: 24 20 20 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by	4,150 96.3 98.5 EPA Method ND	1,000 65 - 135 65 - 135 8260C 1.00	D D	gh tetracosa Batcl µg/L %Rec %Rec Batcl	nne (~C12 20 20 20 11 ID: 24	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC)	4,150 96.3 98.5 EPA Method ND ND	1,000 65 - 135 65 - 135 8260C 1.00 1.00	D D D	gh tetracosa Batcl μg/L %Rec %Rec Batcl μg/L μg/L	nne (~C12 20 20 20 1 1 1	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC) Benzene	4,150 96.3 98.5 EPA Method ND ND 702	eluting from dod 1,000 65 - 135 65 - 135 8260C 1.00 1.00 20.0	D D D	gh tetracosa Batcl %Rec %Rec Batcl µg/L µg/L µg/L µg/L	nne (~C12 20 20 20 h ID: 24 1 1 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC) Benzene Toluene	ved compounds e 4,150 96.3 98.5 EPA Method ND ND 702 224	eluting from dod 1,000 65 - 135 65 - 135 8260C 1.00 1.00 20.0 20.0	D D D D	gh tetracosa Batcl %Rec %Rec Batcl µg/L µg/L µg/L µg/L µg/L µg/L	nne (~C12 20 20 20 h ID: 24 1 1 20 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC) Benzene Toluene Ethylbenzene	ved compounds e 4,150 96.3 98.5 EPA Method ND ND 702 224 138	eluting from dod 1,000 65 - 135 65 - 135 8260C 1.00 1.00 20.0 20.0 20.0 20.0	D D D D D	gh tetracosa Batcl %Rec %Rec Batcl µg/L µg/L µg/L µg/L µg/L µg/L µg/L	nne (~C12 20 20 20 h ID: 24 1 1 20 20 20 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC) Benzene Toluene Ethylbenzene m,p-Xylene	4,150 96.3 98.5 EPA Method ND ND 702 224 138 112	1,000 65 - 135 65 - 135 8260C 1.00 1.00 20.0 20.0 20.0 20.0 20.0	D D D D D	gh tetracosa Batcl %Rec %Rec Batcl µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	nne (~C12 20 20 20 20 1 1 20 20 20 20 20 20	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM
NOTES: DRO - Indicates the presence of unresol Gasoline Surr: Toluene-d8 Surr: 4-Bromofluorobenzene /olatile Organic Compounds by Methyl tert-butyl ether (MTBE) 1,2-Dichloroethane (EDC) Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	ved compounds e 4,150 96.3 98.5 EPA Method ND ND 702 224 138 112 29.9	1,000 65 - 135 65 - 135 8260C 1.00 1.00 20.0 20.0 20.0 20.0 20.0 1.00	D D D D D	gh tetracosa Batcl %Rec %Rec Batcl µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	nne (~C12 20 20 20 1 1 20 20 20 20 20 20 1	-C24). 250 Analyst: KT 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM 250 Analyst: KT 4/23/2019 4:32:00 AM 4/23/2019 4:32:00 AM 4/23/2019 8:38:52 AM 4/23/2019 8:38:52 AM

Analytical Report

 Work Order:
 1904294

 Date Reported:
 4/24/2019

Client: G-Logics Project: BFC			(Collectior	n Date: 4	4/17/2019
Lab ID: 1904294-003 Client Sample ID: DUP			I	Matrix: G	roundwa	ater
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
<u>1,2-Dibromoethane (EDB) by EPA M</u>	ethod 801	1		Batcl	n ID: 242	271 Analyst: DW
1,2-Dibromoethane (EDB)	ND	0.00989		µg/L	1	4/23/2019 4:05:32 PM
Diesel and Heavy Oil by NWTPH-Dx	/Dx Ext.			Batcl	h ID: 242	224 Analyst: SB
Diesel (Fuel Oil)	ND	50.0		µg/L	1	4/19/2019 4:47:15 PM
Heavy Oil	ND	99.9		µg/L	1	4/19/2019 4:47:15 PM
Surr: 2-Fluorobiphenyl	97.4	50 - 150		%Rec	1	4/19/2019 4:47:15 PM
Surr: o-Terphenyl	105	50 - 150		%Rec	1	4/19/2019 4:47:15 PM
Gasoline by NWTPH-Gx				Batcl	h ID: 242	250 Analyst: KT
Gasoline	1,500	50.0		µg/L	1	4/22/2019 10:23:02 PM
Surr: Toluene-d8	96.4	65 - 135		%Rec	1	4/22/2019 10:23:02 PM
Surr: 4-Bromofluorobenzene	103	65 - 135		%Rec	1	4/22/2019 10:23:02 PM
Volatile Organic Compounds by EP	A Method	<u>8260C</u>		Batcl	h ID: 242	250 Analyst: KT
Methyl tert-butyl ether (MTBE)	ND	1.00		µg/L	1	4/22/2019 10:23:02 PM
1,2-Dichloroethane (EDC)	ND	1.00		µg/L	1	4/22/2019 10:23:02 PM
Benzene	19.6	1.00		µg/L	1	4/22/2019 10:23:02 PM
Toluene	85.3	10.0	D	µg/L	10	4/23/2019 9:09:37 AM
Ethylbenzene	22.3	1.00		µg/L	1	4/22/2019 10:23:02 PM
m,p-Xylene	93.4	10.0	D	µg/L	10	4/23/2019 9:09:37 AM
o-Xylene	37.3	1.00		µg/L	1	4/22/2019 10:23:02 PM
Surr: Dibromofluoromethane	96.2	45.4 - 152		%Rec	1	4/22/2019 10:23:02 PM
Surr: Toluene-d8	97.6	40.1 - 139		%Rec	1	4/22/2019 10:23:02 PM
Surr: 1-Bromo-4-fluorobenzene	102	64.2 - 128		%Rec	1	4/22/2019 10:23:02 PM
Dissolved Metals by EPA Method 20	<u>00.8</u>			Batcl	h ID: 242	260 Analyst: WC
Lead	ND	0.500		µg/L	1	4/23/2019 3:51:40 PM
Total Metals by EPA Method 200.8				Batcl	h ID: 242	227 Analyst: WC
Lead	ND	0.500		µg/L	1	4/19/2019 12:33:36 PM

Work Order: CLIENT: Project:	1904294 G-Logics BFC								Dis	QC S	SUMMAI		
Sample ID MB-24		SampType	MBLK			Units: µg/L		Prep Date			RunNo: 50		
Client ID: MBLK		Batch ID:				10		Analysis Date	: 4/23/20 ⁻	19	SeqNo: 10		
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.500									
Sample ID LCS-2	4260	SampType	LCS			Units: µg/L		Prep Date	: 4/23/20 ⁻	19	RunNo: 50	928	
Client ID: LCSW		Batch ID:	24260					Analysis Date	4/23/20 ⁻	19	SeqNo: 10	00811	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			42.9	0.500	50.00	0	85.8	85	115				
Sample ID 190429	94-001EDUP	SampType	DUP			Units: µg/L		Prep Date	4/23/20 ⁻	19	RunNo: 50	928	
Client ID: AS-2		Batch ID:	24260					Analysis Date	4/23/20 ⁻	19	SeqNo: 10	00813	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.500						0		30	
Sample ID 190429	94-001EMS	SampType	MS			Units: µg/L		Prep Date	: 4/23/20 ⁻	19	RunNo: 50	928	
Client ID: AS-2		Batch ID:	24260					Analysis Date	4/23/20 ⁻	19	SeqNo: 10	00814	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			229	0.500	250.0	0	91.5	70	130				
Sample ID 190429	94-001EMSD	SampType	MSD			Units: µg/L		Prep Date	4/23/20 ⁻	19	RunNo: 50	928	
Client ID: AS-2		Batch ID:	24260					Analysis Date	: 4/23/20	19	SeqNo: 10	00817	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			243	0.500	250.0	0	97.2	70	130	228.9	6.01	30	

Work Order:	1904294								00.5	SUMMAI		PORT
CLIENT:	G-Logics											
Project:	BFC							Dis	ssolved Met	als by EP	A Methoo	3 200.8 t
Sample ID MB-24	4245FB	SampType: MBLK			Units: µg/L		Prep Da	ate: 4/23/2	019	RunNo: 50	928	
Client ID: MBLK	W	Batch ID: 24260					Analysis Da	ate: 4/23/2	019	SeqNo: 10	00819	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		ND	0.500									
NOTES:												

Filter Blank

Work Order: CLIENT:	1904294 G-Logics									QC S	SUMMAI	RY REF	PORT
Project:	BFC									Total Met	als by EP	A Method	200.8
Sample ID MB-24	227	SampType	MBLK			Units: µg/L		Prep Date	4/19/20)19	RunNo: 50	864	
Client ID: MBLK	W	Batch ID:	24227					Analysis Date	: 4/19/20)19	SeqNo: 99	9567	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.500									
Sample ID LCS-2	4227	SampType	LCS			Units: µg/L		Prep Date	4/19/20)19	RunNo: 50	864	
Client ID: LCSW		Batch ID:	24227					Analysis Date	4/19/20)19	SeqNo: 99	9568	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			45.7	0.500	50.00	0	91.4	85	115				
Sample ID 19043	13-001EDUP	SampType	DUP			Units: µg/L		Prep Date	4/19/20)19	RunNo: 50	864	
Client ID: BATC	H	Batch ID:	24227					Analysis Date	: 4/19/20	019	SeqNo: 99	9570	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			ND	0.500						0		30	
Sample ID 19043	13-001EMS	SampType	MS			Units: µg/L		Prep Date	4/19/20)19	RunNo: 50	864	
Client ID: BATC	H	Batch ID:	24227					Analysis Date	: 4/19/20	019	SeqNo: 99	9571	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			217	0.500	250.0	0.2015	86.5	70	130				
Sample ID 19043	13-001EMSD	SampType	MSD			Units: µg/L		Prep Date	4/19/20)19	RunNo: 50	864	
Client ID: BATC	H	Batch ID:	24227					Analysis Date	4/19/20	019	SeqNo: 99	9572	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			229	0.500	250.0	0.2015	91.6	70	130	216.5	5.66	30	

Work Order:1904294CLIENT:G-LogicsProject:BFC						1,2-1	Dibrom	QC S oethane (E	SUMMA DB) by EF		
Sample ID MB-24271	SampType: MBLK			Units: µg/L		Prep Date:	4/23/20	19	RunNo: 50	926	
Client ID: MBLKW	Batch ID: 24271					Analysis Date:	4/23/20	19	SeqNo: 10	00751	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.00987									
Sample ID LCS-24271	SampType: LCS			Units: µg/L		Prep Date:	4/23/20	19	RunNo: 50	926	
Client ID: LCSW	Batch ID: 24271					Analysis Date:	4/23/20	19	SeqNo: 10	00752	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	0.292	0.0101	0.2528	0	116	60	140				
Sample ID LCSD-24271	SampType: LCSD			Units: µg/L		Prep Date:	4/23/20	19	RunNo: 50	926	
Client ID: LCSW02	Batch ID: 24271					Analysis Date:	4/23/20	19	SeqNo: 10	00753	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	0.276	0.0100	0.2505	0	110	60	140	0.2921	5.84	20	
Sample ID 1904294-001BDUP	SampType: DUP			Units: µg/L		Prep Date:	4/23/20	19	RunNo: 50	926	
Client ID: AS-2	Batch ID: 24271					Analysis Date:	4/23/20	19	SeqNo: 10	00755	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane (EDB)	ND	0.00992						0		30	

	04294 Logics ⁻ C								Diesel	QC S and Heavy	SUMMAF Oil by NW		-
Sample ID MB-24224		SampType	BLK			Units: µg/L		Prep Dat	e: 4/18/20	019	RunNo: 508	361	
Client ID: MBLKW		Batch ID:	24224					Analysis Dat	e: 4/19/20	019	SeqNo: 999	9760	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	50.3									
Heavy Oil			ND	101									
Surr: 2-Fluorobipheny	yl		77.5		80.42		96.4	50	150				
Surr: o-Terphenyl			86.6		80.42		108	50	150				
Sample ID LCS-24224	,	SampType	LCS			Units: µg/L		Prep Dat	e: 4/18/2	019	RunNo: 508	361	
Client ID: LCSW		Batch ID:	24224					Analysis Dat	e: 4/19/2	019	SeqNo: 999	9761	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			725	50.1	1,002	0	72.4	65	135				
Surr: 2-Fluorobipheny	yl		88.6		80.12		111	50	150				
Surr: o-Terphenyl			85.0		80.12		106	50	150				
Sample ID 1904294-00	01CDUP	SampType	: DUP			Units: µg/L		Prep Dat	e: 4/18/2	019	RunNo: 508	361	
Client ID: AS-2		Batch ID:	24224					Analysis Dat	e: 4/19/2	019	SeqNo: 999	9877	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	52.2						0		30	
Heavy Oil			ND	104						0		30	
Surr: 2-Fluorobipheny	yl		90.3		83.52		108	50	150		0		
Surr: o-Terphenyl			93.6		83.52		112	50	150		0		
Sample ID 1904302-00)1BDUP	SampType	: DUP			Units: µg/L		Prep Dat	e: 4/18/2	019	RunNo: 508	361	
Client ID: BATCH		Batch ID:	24224					Analysis Dat	e: 4/19/2	019	SeqNo: 999	9890	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	62.3						0		30	
Heavy Oil			ND	125						0		30	
Surr: 2-Fluorobipheny	vl		109		99.72		109	50	150		0		

CLIENT:	1904294 G-Logics BFC								Diesel a	QC S and Heavy	SUMMAI Oil by NW		
Sample ID 1904302-	-001BDUP	SampType	DUP			Units: µg/L		Prep Dat	ie: 4/18/20	19	RunNo: 50	861	
Client ID: BATCH		Batch ID:	24224					Analysis Dat	te: 4/19/20	19	SeqNo: 99	9890	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl			119		99.72		119	50	150		0		
Sample ID 1904294	-001CMS	SampType	MS			Units: µg/L		Prep Dat	ie: 4/18/20	19	RunNo: 50	861	
Client ID: AS-2		Batch ID:	24224					Analysis Dat	te: 4/20/20	19	SeqNo: 99	9897	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			631	49.5	989.0	24.18	61.4	65	135				S
Surr: 2-Fluorobiphe	enyl		84.1		79.12		106	50	150				
Surr: o-Terphenyl			76.9		79.12		97.2	50	150				
NOTES: S - Outlying spike r	recovery(ies) o	bserved. A du	iplicate ana	lysis was pe	rformed and r	ecovered within rar	ige.						
Sample ID 1904294	-001CMSD	SampType	MSD			Units: µg/L		Prep Dat	te: 4/18/20	19	RunNo: 50	861	
Client ID: AS-2		Batch ID:	24224					Analysis Dat	te: 4/20/20	19	SeqNo: 99	9898	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			713	51.3	1,026	24.18	67.1	65	135	631.5	12.1	30	
Surr: 2-Fluorobiphe	enyl		85.1		82.11		104	50	150		0		
Surr: o-Terphenyl			82.4		82.11		100	50	150		0		

CLIENT: G-L	4294 ogics									QC S	SUMMAI Gasoline		-
Project: BFC Sample ID LCS-24250		npType:	LCS			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 50	-	
Client ID: LCSW			24250					Analysis Dat			SeqNo: 10		
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			513	50.0	500.0	0	103	65	135				
Surr: Toluene-d8		2	25.1		25.00		100	65	135				
Surr: 4-Bromofluorobe	nzene	2	25.3		25.00		101	65	135				
Sample ID LCSD-24250	Sar	npType:	LCSD			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 50	905	
Client ID: LCSW02	Bat	ch ID:	24250					Analysis Dat	e: 4/22/20)19	SeqNo: 10	00281	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			515	50.0	500.0	0	103	65	135	513.4	0.297	20	
Surr: Toluene-d8		2	24.0		25.00		96.1	65	135		0		
Surr: 4-Bromofluorobe	nzene	2	25.0		25.00		100	65	135		0		
Sample ID MB-24250	Sar	npType:	MBLK			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 50	905	
Client ID: MBLKW	Bat	ch ID:	24250					Analysis Dat	e: 4/22/20)19	SeqNo: 10	00282	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	50.0									
Surr: Toluene-d8		2	24.1		25.00		96.5	65	135				
Surr: 4-Bromofluorobe	nzene	2	23.0		25.00		92.0	65	135				
Sample ID 1904323-001	ADUP Sar	npType:	DUP			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 50	905	
Client ID: BATCH	Bat	ch ID:	24250					Analysis Dat	e: 4/22/20)19	SeqNo: 10	00275	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	50.0						0		30	
Gasoline Range Organics	s (C6-C12)		245	50.0						262.3	6.98	30	
Surr: Toluene-d8		2	24.1		25.00		96.5	65	135		0		
Surr: 4-Bromofluorobe	nzene	2	26.6		25.00		107	65	135		0		

Work Order: 1904294								QC S		RY REF	PORT
CLIENT: G-Logics											
Project: BFC									Gasoline	e by NWT	PH-GX
Sample ID 1904323-001ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 4/22/2	019	RunNo: 50	905	
Client ID: BATCH	Batch ID: 24250					Analysis Date	e: 4/22/2	019	SeqNo: 10	00275	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
NOTES: GRO - Indicates the presence of Sample ID 1904306-001ADUP	unresolved compounds elu SampType: DUP	uting from I	hexane to dod	ecane (~C6-C12). Units: μg/L		Prep Date	e: 4/22/2 0	019	RunNo: 50	905	
Client ID: BATCH	Batch ID: 24250					Analysis Date			SeqNo: 10		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Gasoline Range Organics (C6-C12)	116	50.0						108.1	7.20	30	
Surr: Toluene-d8	25.6		25.00		102	65	135		0		
Surr: 4-Bromofluorobenzene	25.0		25.00		100	65	135		0		

NOTES:

GRO - Indicates the presence of unresolved compounds eluting from hexane to dodecane (~C6-C12).

Work Order:	1904294
	.

CLIENT: **G-Logics**

BFC Project:

QC SUMMARY REPORT

0

0

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-24250	SampType: LCS			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 509	9 01	
Client ID: LCSW	Batch ID: 24250					Analysis Dat	e: 4/22/20)19	SeqNo: 100	00206	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	19.7	1.00	20.00	0	98.7	58	138				
1,2-Dichloroethane (EDC)	19.9	1.00	20.00	0	99.4	67	126				
Benzene	20.1	1.00	20.00	0	101	69.3	132				
Toluene	20.4	1.00	20.00	0	102	61.3	145				
Ethylbenzene	20.3	1.00	20.00	0	102	72	130				
m,p-Xylene	41.0	1.00	40.00	0	103	70.3	134				
o-Xylene	20.6	1.00	20.00	0	103	72.1	131				
Surr: Dibromofluoromethane	24.8		25.00		99.0	45.4	152				
Surr: Toluene-d8	24.8		25.00		99.3	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		102	64.2	128				
Sample ID LCSD-24250	SampType: LCSD			Units: µg/L		Prep Dat	e: 4/22/20)19	RunNo: 509	901	
Client ID: LCSW02	Batch ID: 24250					Analysis Dat	e: 4/22/20)19	SeqNo: 100	00207	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	19.0	1.00	20.00	0	94.9	58	138	19.74	3.99	20	
1,2-Dichloroethane (EDC)	18.8	1.00	20.00	0	93.9	68.8	123	19.87	5.60	20	
Benzene	18.7	1.00	20.00	0	93.6	69.3	132	20.10	7.09	20	
Toluene	18.9	1.00	20.00	0	94.7	61.3	145	20.43	7.63	20	
Ethylbenzene	19.1	1.00	20.00	0	95.4	72	130	20.33	6.39	20	
m,p-Xylene	38.3	1.00	40.00	0	95.7	70.3	134	41.01	6.92	20	
o-Xylene	18.6	1.00	20.00	0	92.8	72.1	131	20.62	10.5	20	
Surr: Dibromofluoromethane	24.8		25.00		99.3	45.4	152		0		

99.0

100

40.1

64.2

139

128

25.00

25.00

24.8

25.1

Surr: Toluene-d8

Surr: 1-Bromo-4-fluorobenzene

Work Order: 1904294 CLIENT: G-Logics								QC S	SUMMAI	RY REF	PORT
Project: BFC						Volatile	Organic	Compoun	ds by EPA	Method	8260C
Sample ID MB-24250	SampType: MBLK			Units: µg/L		Prep Dat	e: 4/22/20	19	RunNo: 50	901	
Client ID: MBLKW	Batch ID: 24250					Analysis Dat	e: 4/22/20	19	SeqNo: 10	00208	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	1.00									
1,2-Dichloroethane (EDC)	ND	1.00									
Benzene	ND	1.00									
Toluene	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Surr: Dibromofluoromethane	25.0		25.00		99.8	45.4	152				
Surr: Toluene-d8	24.9		25.00		99.6	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	22.7		25.00		90.6	64.2	128				
Sample ID 1904323-001ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 4/22/20	19	RunNo: 50	901	
Client ID: BATCH	Batch ID: 24250					Analysis Dat	e: 4/22/20	19	SeqNo: 10	00196	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	16.2	1.00						16.11	0.529	30	
Toluene	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	25.2		25.00		101	45.4	152		0		
Surr: Toluene-d8	24.0		25.00		95.9	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	26.2		25.00		105	64.2	128		0		

Work Order: 1904294

CLIENT: G-Logics

Project: BFC

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1904306-001ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 4/22/2	019	RunNo: 50	901	
Client ID: BATCH	Batch ID: 24250					Analysis Da	te: 4/23/2	019	SeqNo: 10	00188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Toluene	1.43	1.00						1.369	4.14	30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Surr: Dibromofluoromethane	24.5		25.00		98.1	45.4	152		0		
Surr: Toluene-d8	24.5		25.00		98.0	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	24.6		25.00		98.5	64.2	128		0		

Sample Log-In Check List

Client Name: GL	Work Order Num	ber: 1904294	
Logged by: Brianna Barnes	Date Received:	4/17/2019 3:43	:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌 No	ot Present
2. How was the sample delivered?	Client		
Log In			
3. Coolers are present?	Yes 🖌	No 🗌	
0 .			
4. Shipping container/cooler in good condition?	Yes 🖌	No 🗌	
5. Custody Seals present on shipping container/c (Refer to comments for Custody Seals not inter		No 🗌 Not	Required 🗹
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
7. Were all items received at a temperature of >0	0°C to 10.0°C* Yes ✔	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes ✔	No 🗌	
10. Are samples properly preserved?	Yes 🖌	No 🗌	
11. Was preservative added to bottles?	Yes 🔽	No 🗌	NA 🗌
40 la there handler are in the $1/00$ visible	Yee 🗍		d to fraction E.
12. Is there headspace in the VOA vials?	tion(unbroken)? Yes ↓	No 🗹 No 🗌	NA 🗌
13. Did all samples containers arrive in good condi14. Does paperwork match bottle labels?	Yes		
15. Are matrices correctly identified on Chain of Cu	ustody? Yes 🗹	No 🗌	
16. Is it clear what analyses were requested?	Yes ✔	No 🗌	
17. Were all holding times able to be met?	Yes 🔽	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this	s order? Yes	No 🗌	NA 🗹
Person Notified:	Date		
By Whom:		none 🗌 Fax 🗌 In	Person
Regarding:			
Client Instructions:			
19. Additional remarks:			

Item Information

Item #	Temp °C
Cooler	6.5
Sample	8.6

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

1				
	0		1	
Ó	Ņ	q		
1	1	C		
1	+		2	
1	c			
		1	ľ	2
J	r	•		2

www.fremontanalytical.com

0	
õ	
õ	
-	
N	
1	
N	
N	
ŝ	
-	
-	

			-								
Same Day (specify)		Date/ IIIIie		c	x		ā	Date/ IIme			x x
Next Day	1843	ANT/Q		- Call	Received ×		15:43	4-17/15	Z	Val	Relinquished
2 Day	Client named above and that I have verified Client's agreement to	ove and that I h	lient named ab	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the ceach of the terms on the front and backside of this Agreement.	nont Analytical	ent with Frem 1ent.	is Agreem his Agreen	I represent that I am authorized to enter into this Agreement v each of the terms on the front and backside of this Agreement.	authorized t he front and	that I am a erms on th	I represent i each of the t
	and a strategy 2 with the part of a strategy of		Nitrate+Nitrite	Fluoride Nitrate	O-Phosphate	Bromide	Sulfate	Chloride	e Nitrite	e): Nitrate	***Anions (Circle):
Standard	Sb Se Sr Sn Ti TI U V Zn	Mo Na Ni Pb	e Hg K Mg Mn	Ca Cd Co Cr Cu Fe Hg K	Ag Al As B Ba Be	Individual: Ag	ts TAL	Priority Pollutants	RCRA-8): MTCA-5	**Metals (Circle):
Turn-around Time:	SW = Storm Water, WW = Waste Water	GW = Ground Water, SW =		SL = Solid, W = Water, DW = Drinking Water,	nt, SL = Solid, W =	S = Soil, SD = Sediment,		O = Other, P = Product,	B = Bulk,	AQ = Aqueou	*Matrix: A = Air, AQ = Aqueous,
											10
provident and branch				A SPECTOR PARTY	The Property of the	102-201	- 小熊 幻見	- CO (CO - SHI) -			202 ANY
	a state of R from the first frame of the				1941 1949 1949		2 (* Jez?)**		100 C C C C C C C C C C C C C C C C C C	a an an an an an an an an an an an an an	
the design of March 19											
THE CONTRACT OF SHEER	and a second state which a second second second second second second second second second second second second	And a state of the				142 (m. 201 21 2			te Martin da	1011	
아무 네 가 소리에 가 걸려가 안	्रात्र महत्ववेगम्ब हे दिख्याद्वीयमें जाववेशी का महेत्री है जाता. ज										
		7	>	>		2	C	117			00
化化学学 化乙酰氨基基乙酰氨基乙酰胺 化合物		27		27		SW -	CILI	111			AS-
·····································			X	<>	<>	SW	-	111	o chulka	- N	HO
	State 201 (2010) (20	1	×	-	_	-	-	4/12	R. 125555 . 010)	2
Comments		108 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5	105 CE 2 CE 1 CE 1	Sample Type (Matrix)*	Sample Time	Sample Date			Sample Name
all on upper parts	///////////////////////////////////////	Com	100	anin Q G-	Zac	PM Email:					Fax:
Disposal by lab (after 30 days)	Sample Disposal: Return to client		1	Zackery Vall	Report To (PM): Zec	Repor					Telephone:
or a 30 gets on 96.0 Get	and water and an interview with the second		90 8 90 8 90		ion:	Location:					City, State, Zip:
	ge Angelun in ant Dugant e angel ng an gangkeolar ant Sager as suither ng an				collected by: 2 🖌	Collec				c	Address:
	BOUT SPEETAALA IR AMERIKAN DATE			410-0	Project No: $0(-04)$	Projec			ICS	- 605/	client: 6
anna mmanana an 1975. Taise sua chairtean an 1975	Special Remarks:	- (*)	Same pay - C	C	Project Name: RF		Fax: 206-352-7178		A DIGINYATIGA		
1294	Laboratory Project No (internal): 00^{10}	of: /	Page: /	S	リセット	-3790 Date:	Tel: 206-352-3790		GIIO	G	-16
Agreement	Laboratory Services Ag	8	y Recor	Chain of Custody Record	Chain	We N.	3600 Fremont Ave N.	360	5	5	

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

G-Logics Zackary Wall 40 Second Ave. SE Issaquah, WA 98027

RE: BFC Work Order Number: 1905068

May 10, 2019

Attention Zackary Wall:

Fremont Analytical, Inc. received 14 sample(s) on 5/3/2019 for the analyses presented in the following report.

Petroleum Fractionation by EPA Method TO-15 Sulfur Compounds by EPA Method TO-15 Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

lc. Kady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	G-Logics BFC 1905068	Work Order Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected Date/Time Received
1905068-001	VS-1	05/01/2019 9:50 AM 05/03/2019 4:31 PM
1905068-002	VS-2	05/01/2019 10:35 AM 05/03/2019 4:31 PM
1905068-003	VS-3	05/01/2019 11:30 AM 05/03/2019 4:31 PM
1905068-004	VS-4	05/01/2019 12:20 PM 05/03/2019 4:31 PM
1905068-005	VS-5	05/01/2019 1:45 PM 05/03/2019 4:31 PM
1905068-006	VS-6	05/02/2019 12:15 PM 05/03/2019 4:31 PM
1905068-007	VS-7	05/02/2019 1:45 PM 05/03/2019 4:31 PM
1905068-008	VS-8	05/02/2019 2:15 PM 05/03/2019 4:31 PM
1905068-009	VS-9	05/03/2019 11:30 AM 05/03/2019 4:31 PM
1905068-010	VS-10	05/03/2019 12:20 PM 05/03/2019 4:31 PM
1905068-011	VS-11	05/03/2019 12:55 PM 05/03/2019 4:31 PM
1905068-012	VS-12	05/03/2019 1:26 PM 05/03/2019 4:31 PM
1905068-013	VS-13	05/03/2019 2:05 PM 05/03/2019 4:31 PM
1905068-014	VS-14	05/03/2019 2:35 PM 05/03/2019 4:31 PM

Case Narrative

WO#: **1905068** Date: **5/10/2019**

CLIENT: G-Logics Project: BFC

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Note: Gasoline Range Organics reported in ug/m3 should be considered an estimate. The estimated molecular weight of gasoline used in the equation = 100

Qualifiers & Acronyms

WO#: **1905068** Date Reported: **5/10/2019**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Client:
 G-Logics

 WorkOrder:
 1905068

 Project:
 BFC

Surr: 4-Bromofluorobenzene

Client Sample ID:	VS-1					Date Sa	mpled: 5/1/2	2019	
Lab ID:	1905068-001A					Date Re	ceived: 5/3/2	2019	
Sample Type:	Tedlar Bag								
Analyte		Concer	itration	Reporti	ng Limit	Qual	Method	Date/Analy	rst
Volatile Organic Co	mpounds by EPA			(mmhud)	(
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene		2.90	9.26	0.895	2.86	Н	EPA-TO-15	05/06/2019	AD
Ethylbenzene		14.2	61.6	4.00	17.4	Н	EPA-TO-15	05/06/2019	AD
Gasoline Range Organi	cs	791	3,230	10.0	40.9	Н	EPA-TO-15	05/06/2019	AD
m,p-Xylene		46.3	201	8.00	34.7	Н	EPA-TO-15	05/06/2019	AD
o-Xylene		14.7	63.9	4.00	17.4	Н	EPA-TO-15	05/06/2019	AD
Toluene		36.7	138	4.00	15.1	Н	EPA-TO-15	05/06/2019	AD

70-130

н

EPA-TO-15

05/06/2019 AD

97.2 %Rec

Client:G-LogicsWorkOrder:1905068Project:BFC

Client Sample ID:	VS-2			Date Sar	mpled: 5/1/2	2019
Lab ID:	1905068-002A			Date Red	ceived: 5/3/2	2019
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	187	598	0.895	2.86	Н	EPA-TO-15	05/06/2019	AD
Ethylbenzene	998	4,330	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	86,800	355,000	10.0	40.9	EH	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,490	15,100	8.00	34.7	EH	EPA-TO-15	05/06/2019	AD
o-Xylene	1,850	8,020	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Toluene	1,060	4,010	4.00	15.1	EH	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	153 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client: G-Logics WorkOrder: 1905068 Project: BFC

Client Sample ID: Lab ID:	VS-3 1905068-003A			Date Sar Date Rec	•	
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	253	807	0.895	2.86	EH	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,330	5,780	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	107,000	438,000	10.0	40.9	EH	EPA-TO-15	05/06/2019	AD
m,p-Xylene	4,210	18,300	8.00	34.7	EH	EPA-TO-15	05/06/2019	AD
o-Xylene	2,190	9,520	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Toluene	1,330	5,010	4.00	15.1	EH	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	167 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client: G-Logics WorkOrder: 1905068 Project: BFC

5068-004A		Date Re	ceived: 5/3/2	2019 2019
Concentration	Reporting Limit	Qual	Method	Date/Analyst
	llar Bag	llar Bag	llar Bag	llar Bag

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	229	732	0.895	2.86	EH	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,260	5,480	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	93,600	383,000	10.0	40.9	EH	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,850	16,700	8.00	34.7	EH	EPA-TO-15	05/06/2019	AD
o-Xylene	2,020	8,770	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Toluene	1,300	4,880	4.00	15.1	EH	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	153 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client:G-LogicsWorkOrder:1905068Project:BFC

Client Sample ID: Lab ID:	VS-5 1905068-005A			Date Sar Date Rec	mpled: 5/1/2 ceived: 5/3/2	
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	202	646	0.895	2.86	EH	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,100	4,770	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	74,300	304,000	10.0	40.9	EH	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,240	14,100	8.00	34.7	EH	EPA-TO-15	05/06/2019	AD
o-Xylene	1,700	7,390	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Toluene	1,240	4,690	4.00	15.1	EH	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	134 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID: Lab ID:	VS-6 1905068-006A			Date Sar Date Rec	mpled: 5/2/2 ceived: 5/3/2	
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	299	954	0.895	2.86	EH	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,290	5,600	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	98,000	401,000	10.0	40.9	EH	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,740	16,200	8.00	34.7	EH	EPA-TO-15	05/06/2019	AD
o-Xylene	1,960	8,520	4.00	17.4	EH	EPA-TO-15	05/06/2019	AD
Toluene	1,490	5,610	4.00	15.1	EH	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	149 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID:	VS-7			Date San	npled: 5/2/2	2019
Lab ID:	1905068-007A			Date Rec	eived: 5/3/2	2019
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	243	777	0.895	2.86	EH	EPA-TO-15	05/07/2019	AD
Ethylbenzene	1,180	5,110	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Gasoline Range Organics	81,300	332,000	10.0	40.9	EH	EPA-TO-15	05/07/2019	AD
m,p-Xylene	3,360	14,600	8.00	34.7	EH	EPA-TO-15	05/07/2019	AD
o-Xylene	1,740	7,560	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Toluene	1,410	5,330	4.00	15.1	EH	EPA-TO-15	05/07/2019	AD
Surr: 4-Bromofluorobenzene	135 %Rec		70-130		SH	EPA-TO-15	05/07/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID:	VS-8			Date Sar	npled: 5/2/2	2019
Lab ID:	1905068-008A			Date Rec	ceived: 5/3/2	2019
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	238	759	0.895	2.86	EH	EPA-TO-15	05/07/2019	AD
Ethylbenzene	1,160	5,030	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Gasoline Range Organics	78,400	321,000	10.0	40.9	EH	EPA-TO-15	05/07/2019	AD
m,p-Xylene	3,290	14,300	8.00	34.7	EH	EPA-TO-15	05/07/2019	AD
o-Xylene	1,690	7,360	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Toluene	1,410	5,300	4.00	15.1	EH	EPA-TO-15	05/07/2019	AD
Surr: 4-Bromofluorobenzene	131 %Rec		70-130		SH	EPA-TO-15	05/07/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID: Lab ID:	VS-9 1905068-009A			Date Sar Date Rec	mpled: 5/3/2 ceived: 5/3/2	
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	411	1,310	0.895	2.86	EH	EPA-TO-15	05/07/2019	AD
Ethylbenzene	1,450	6,290	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Gasoline Range Organics	143,000	586,000	10.0	40.9	EH	EPA-TO-15	05/07/2019	AD
m,p-Xylene	4,660	20,200	8.00	34.7	EH	EPA-TO-15	05/07/2019	AD
o-Xylene	2,510	10,900	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Toluene	1,790	6,750	4.00	15.1	EH	EPA-TO-15	05/07/2019	AD
Surr: 4-Bromofluorobenzene	180 %Rec		70-130		SH	EPA-TO-15	05/07/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID: Lab ID:	VS-10 1905068-010A			Date Sar Date Rec	npled: 5/3/2 ceived: 5/3/2	
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	282	900	0.895	2.86	EH	EPA-TO-15	05/07/2019	AD
Ethylbenzene	1,230	5,320	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Gasoline Range Organics	89,300	365,000	10.0	40.9	EH	EPA-TO-15	05/07/2019	AD
m,p-Xylene	3,520	15,300	8.00	34.7	EH	EPA-TO-15	05/07/2019	AD
o-Xylene	1,830	7,960	4.00	17.4	EH	EPA-TO-15	05/07/2019	AD
Toluene	1,490	5,620	4.00	15.1	EH	EPA-TO-15	05/07/2019	AD
Surr: 4-Bromofluorobenzene	138 %Rec		70-130		SH	EPA-TO-15	05/07/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID: VS-11 Lab ID: 1905068-011A						Date Sar	mpled: 5/3/2	2019
						Date Red	ceived: 5/3/2	2019
Sample Type: Tedlar Bag								
Analyte		Concentration		Reporting Limit		Qual	Method	Date/Analyst
Sulfur Compounds by EPA Method		0-15						
<u></u>		(ppbv) (ug/m³)		(ppbv)	(ug/m³)			

	(ppor)	(ag/iii /	(PPN+)	(ag/m)					
Carbon Disulfide	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD	
Carbonyl Sulfide	<10.0	<24.6	10.0	24.6	н	EPA-TO-15	05/06/2019	AD	
Dimethyl Disulfide	<10.0	<38.4	10.0	38.4	Н	EPA-TO-15	05/06/2019	AD	
Dimethyl Sulfide	<100	<254	100	254	Н	EPA-TO-15	05/06/2019	AD	
Ethyl Mercaptan	<10.0	<25.4	10.0	25.4	Н	EPA-TO-15	05/06/2019	AD	
Hydrogen Sulfide	<100	<139	100	139	Н	EPA-TO-15	05/06/2019	AD	
Isobutyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD	
Isopropyl Mercaptan	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD	
Methyl Mercaptan	<100	<196	100	196	Н	EPA-TO-15	05/06/2019	AD	
n-Butyl Mercaptan	<10.0	<36.9	10.0	36.9	Н	EPA-TO-15	05/06/2019	AD	
n-Propyl Mercaptan	<100	<311	100	311	Н	EPA-TO-15	05/06/2019	AD	
t-Butyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD	
Surr: 4-Bromofluorobenzene	148 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD	

NOTES:

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	320	1,020	0.895	2.86	Е	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,300	5,660	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	96,800	396,000	10.0	40.9	Е	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,610	15,700	8.00	34.7	Е	EPA-TO-15	05/06/2019	AD
o-Xylene	1,920	8,350	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Toluene	1,590	6,010	4.00	15.1	Е	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	138 %Rec		70-130		S	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID:	VS-12			Date Sa	mpled: 5/3/2	2019
Lab ID:	1905068-012A			Date Re	ceived: 5/3/2	2019
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Carbon Disulfide	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD
Carbonyl Sulfide	<10.0	<24.6	10.0	24.6	н	EPA-TO-15	05/06/2019	AD
Dimethyl Disulfide	<10.0	<38.4	10.0	38.4	н	EPA-TO-15	05/06/2019	AD
Dimethyl Sulfide	<100	<254	100	254	н	EPA-TO-15	05/06/2019	AD
Ethyl Mercaptan	<10.0	<25.4	10.0	25.4	н	EPA-TO-15	05/06/2019	AD
Hydrogen Sulfide	<100	<139	100	139	Н	EPA-TO-15	05/06/2019	AD
Isobutyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD
Isopropyl Mercaptan	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD
Methyl Mercaptan	<100	<196	100	196	Н	EPA-TO-15	05/06/2019	AD
n-Butyl Mercaptan	<10.0	<36.9	10.0	36.9	Н	EPA-TO-15	05/06/2019	AD
n-Propyl Mercaptan	<100	<311	100	311	н	EPA-TO-15	05/06/2019	AD
t-Butyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	144 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	396	1,260	0.895	2.86	Е	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,220	5,300	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	87,800	359,000	10.0	40.9	Е	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,400	14,700	8.00	34.7	Е	EPA-TO-15	05/06/2019	AD
o-Xylene	1,780	7,730	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Toluene	1,530	5,760	4.00	15.1	Е	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	134 %Rec		70-130		S	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client Sample ID:	VS-13			Date Sai	mpled: 5/3/2	2019
Lab ID:	1905068-013A			Date Ree	ceived: 5/3/2	2019
Sample Type:	Tedlar Bag					
Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Carbon Disulfide	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD
Carbonyl Sulfide	<10.0	<24.6	10.0	24.6	Н	EPA-TO-15	05/06/2019	AD
Dimethyl Disulfide	<10.0	<38.4	10.0	38.4	Н	EPA-TO-15	05/06/2019	AD
Dimethyl Sulfide	<100	<254	100	254	Н	EPA-TO-15	05/06/2019	AD
Ethyl Mercaptan	<10.0	<25.4	10.0	25.4	Н	EPA-TO-15	05/06/2019	AD
Hydrogen Sulfide	<100	<139	100	139	Н	EPA-TO-15	05/06/2019	AD
Isobutyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD
Isopropyl Mercaptan	<10.0	<31.1	10.0	31.1	Н	EPA-TO-15	05/06/2019	AD
Methyl Mercaptan	<100	<196	100	196	Н	EPA-TO-15	05/06/2019	AD
n-Butyl Mercaptan	<10.0	<36.9	10.0	36.9	Н	EPA-TO-15	05/06/2019	AD
n-Propyl Mercaptan	<100	<311	100	311	Н	EPA-TO-15	05/06/2019	AD
t-Butyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	142 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	492	1,570	0.895	2.86	Е	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,210	5,270	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	89,600	366,000	10.0	40.9	Е	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,380	14,700	8.00	34.7	Е	EPA-TO-15	05/06/2019	AD
o-Xylene	1,760	7,640	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Toluene	1,540	5,790	4.00	15.1	Е	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	132 %Rec		70-130		S	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Tedlar Bag					
Lab ID:	1905068-014A			Date Red	ceived: 5/3/	2019
Client Sample ID:	VS-14			Date Sar	npled: 5/3/	2019

Petroleum Fractionation by EPA Method TO-15

<u> </u>								
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Decane	30.1	175	0.416	2.42	EH	EPA-TO-15	05/08/2019	AD
Heptane	409	1,640	0.580	2.33	EH	EPA-TO-15	05/08/2019	AD
Dodecane	7.81	54.4	1.10	7.65	*H	EPA-TO-15	05/08/2019	AD
n-Hexane	358	1,260	0.318	1.12	EH	EPA-TO-15	05/08/2019	AD
Nonane	52.5	275	0.487	2.55	EH	EPA-TO-15	05/08/2019	AD
Undecane	5.74	40.0	0.724	5.04	EH	EPA-TO-15	05/08/2019	AD
Octane	128	596	0.503	2.35	EH	EPA-TO-15	05/08/2019	AD
Surr: 4-Bromofluorobenzene	148 %Rec		70-130		SH	EPA-TO-15	05/08/2019	AD

NOTES:

* - Flagged value is not within established control limits.

E - Estimated value. The amount exceeds the linear working range of the instrument.

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sulfur Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Carbon Disulfide	<10.0	<31.1	10.0	31.1	н	EPA-TO-15	05/06/2019	AD
Carbonyl Sulfide	<10.0	<24.6	10.0	24.6	н	EPA-TO-15	05/06/2019	AD
Dimethyl Disulfide	<10.0	<38.4	10.0	38.4	н	EPA-TO-15	05/06/2019	AD
Dimethyl Sulfide	<100	<254	100	254	н	EPA-TO-15	05/06/2019	AD
Ethyl Mercaptan	<10.0	<25.4	10.0	25.4	Н	EPA-TO-15	05/06/2019	AD
Hydrogen Sulfide	<100	<139	100	139	н	EPA-TO-15	05/06/2019	AD
Isobutyl Mercaptan	<100	<368	100	368	н	EPA-TO-15	05/06/2019	AD
Isopropyl Mercaptan	<10.0	<31.1	10.0	31.1	н	EPA-TO-15	05/06/2019	AD
Methyl Mercaptan	<100	<196	100	196	н	EPA-TO-15	05/06/2019	AD
n-Butyl Mercaptan	<10.0	<36.9	10.0	36.9	н	EPA-TO-15	05/06/2019	AD
n-Propyl Mercaptan	<100	<311	100	311	Н	EPA-TO-15	05/06/2019	AD
t-Butyl Mercaptan	<100	<368	100	368	Н	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	144 %Rec		70-130		SH	EPA-TO-15	05/06/2019	AD

NOTES:

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

Volatile Organic Compounds by EPA Method TO-15

(ppbv) (ug/m³) (ppbv) (ug/m³)

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Tedlar Bag					
Lab ID:	1905068-014A			Date Ree	ceived: 5/3/2	2019
Client Sample ID:	VS-14			Date Sai	npled: 5/3/2	2019

Volatile Organic Compounds by EPA Method TO-15

volatile organie competitie by		10						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
Benzene	869	2,780	0.895	2.86	E	EPA-TO-15	05/06/2019	AD
Ethylbenzene	1,260	5,450	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Gasoline Range Organics	98,700	404,000	10.0	40.9	Е	EPA-TO-15	05/06/2019	AD
m,p-Xylene	3,500	15,200	8.00	34.7	Е	EPA-TO-15	05/06/2019	AD
o-Xylene	1,820	7,920	4.00	17.4	Е	EPA-TO-15	05/06/2019	AD
Toluene	1,620	6,100	4.00	15.1	Е	EPA-TO-15	05/06/2019	AD
Surr: 4-Bromofluorobenzene	134 %Rec		70-130		S	EPA-TO-15	05/06/2019	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1905068 CLIENT: **G-Logics**

BFC

Project:

QC SUMMARY REPORT

Petroleum Fractionation by EPA Method TO-15

Sample ID LCS-R51314				Units: ppbv		Prep Dat	te: 5/8/201	19	RunNo: 51314		
Client ID: LCSW	Batch ID: R51314					Analysis Dat	te: 5/8/201	19	SeqNo: 10	10068	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Decane	1.57	0.416	2.000	0	78.4	70	130				
Dodecane	3.26	1.10	2.000	0	163	70	130				S
Heptane	1.72	0.580	2.000	0	86.2	70	130				
n-Hexane	1.77	0.318	2.000	0	88.7	70	130				
Nonane	1.68	0.487	2.000	0	84.0	70	130				
Octane	1.73	0.503	2.000	0	86.6	70	130				
Undecane	2.13	0.724	2.000	0	106	70	130				
Surr: 4-Bromofluorobenzene	4.03		4.000		101	70	130				

NOTES:

S - Outlying spike recovery observed (high bias). Detections will be qualified with a *.

Sample ID MB-R51314	SampType: MBLK			Units: ppbv		Prep Da	te: 5/8/20	19	RunNo: 51:	314	
Client ID: MBLKW	Batch ID: R51314					Analysis Da	te: 5/8/20	19	SeqNo: 10	10069	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Decane	ND	0.416									
Dodecane	ND	1.10									
Heptane	ND	0.580									
n-Hexane	ND	0.318									
Nonane	ND	0.487									
Octane	ND	0.503									
Undecane	ND	0.724									
Surr: 4-Bromofluorobenzene	3.65		4.000		91.1	70	130				

Sample ID 1905068-014AREP	SampType: REP			Units: ppbv		Prep Dat	te: 5/8/20 1	9	RunNo: 513	314	
Client ID: VS-14	Batch ID: R51314					Analysis Dat	te: 5/8/201	9	SeqNo: 101	10071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Decane	30.1	0.416						30.07	0.0342	30	EH
Dodecane	7.94	1.10						7.808	1.71	30	*H
Heptane	457	0.580						409.3	11.0	30	EH

Work Order: 1905068

CLIENT: G-Logics

Project: BFC

QC SUMMARY REPORT

Petroleum Fractionation by EPA Method TO-15

Sample ID 1905068-014AREP				Units: ppbv		Prep Da	te: 5/8/20 1	19	RunNo: 51	314	
Client ID: VS-14	Batch ID: R51314					Analysis Da	te: 5/8/201	19	SeqNo: 10	10071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Hexane	393	0.318						357.5	9.45	30	EH
Nonane	53.3	0.487						52.50	1.56	30	EH
Octane	131	0.503						127.7	2.85	30	EH
Undecane	5.82	0.724						5.743	1.29	30	EH
Surr: 4-Bromofluorobenzene	5.96		4.000		149	70	130		0		SH

NOTES:

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

E - Estimated value. The amount exceeds the linear working range of the instrument.

* - Flagged value is not within established control limits.

Work Order:1905068CLIENT:G-LogicsProject:BFC							QC Sulfur Compou	SUMMAR)	_
Sample ID LCS-R51029	SampType: LCS			Units: ppbv		Prep Date:	4/27/2019	RunNo: 51029	
Client ID: LCSW	Batch ID: R51029					Analysis Date:	4/27/2019	SeqNo: 10029	72
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	%RPD R	PDLimit Qual
Hydrogen Sulfide	118	10.0	110.0	0	107	70	130		
Methyl Mercaptan	102	10.0	103.0	0	99.4	70	130		
Dimethyl Sulfide	144	10.0	144.0	0	99.9	70	130		
t-Butyl Mercaptan	99.7	10.0	95.00	0	105	70	130		
n-Propyl Mercaptan	102	10.0	97.00	0	105	70	130		
Isobutyl Mercaptan	87.9	10.0	92.00	0	95.6	70	130		
Surr: 4-Bromofluorobenzene	4.70		4.000		118	70	130		
Sample ID MB-R51029	SampType: MBLK			Units: ppbv		Prep Date:	4/27/2019	RunNo: 51029	
Client ID: MBLKW	Batch ID: R51029					Analysis Date:	4/27/2019	SeqNo: 10029	73
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	8 %RPD R	PDLimit Qual
Hydrogen Sulfide	ND	10.0							
Methyl Mercaptan	ND	10.0							
Dimethyl Sulfide	ND	10.0							
t-Butyl Mercaptan	ND	10.0							
n-Propyl Mercaptan	ND	10.0							
Isobutyl Mercaptan	ND	10.0							
Surr: 4-Bromofluorobenzene	4.20		4.000		105	70	130		
Sample ID LCS-R51030	SampType: LCS			Units: ppbv		Prep Date:	4/27/2019	RunNo: 51030	
Client ID: LCSW	Batch ID: R51030					Analysis Date:	4/27/2019	SeqNo: 10030	13
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Va	%RPD R	PDLimit Qual
Carbon Disulfide	98.5	10.0	103.0	0	95.7	70	130		
Ethyl Mercaptan	59.9	10.0	63.00	0	95.1	70	130		
Carbonyl Sulfide	108	10.0	112.0	0	96.2	70	130		
Isopropyl Mercaptan	58.9	10.0	62.00	0	95.0	70	130		
n-Butyl Mercaptan	76.5	10.0	78.00	0	98.1	70	130		

Work Order: 1905068 CLIENT: G-Logics Project: BFC							Sulfu	QC S	SUMMAI		
Sample ID LCS-R51030	SampType: LCS			Units: ppbv		Prep Dat	e: 4/27/2 0	019	RunNo: 51	030	
Client ID: LCSW	Batch ID: R51030					Analysis Dat	e: 4/27/2	019	SeqNo: 10	03013	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	4.34		4.000		108	70	130				
Sample ID MB-R51030	SampType: MBLK			Units: ppbv		Prep Dat	e: 4/27/2 0	019	RunNo: 51	030	
Client ID: MBLKW	Batch ID: R51030					Analysis Dat	e: 4/27/2	019	SeqNo: 10	03014	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Disulfide	ND	10.0									
Ethyl Mercaptan	ND	10.0									
Carbonyl Sulfide	ND	10.0									
Isopropyl Mercaptan	ND	10.0									
n-Butyl Mercaptan	ND	10.0									
Dimethyl Disulfide	ND	10.0									
Surr: 4-Bromofluorobenzene	3.80		4.000		94.9	70	130				
Sample ID 1904386-001AREP	SampType: REP			Units: ppbv		Prep Dat	e: 4/27/2	019	RunNo: 51	029	
Client ID: BATCH	Batch ID: R51029					Analysis Dat	e: 4/27/2 0	019	SeqNo: 10	02976	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide	280,000	2,000						273,100	2.38	30	DEH
Methyl Mercaptan	2,400	2,000						2,324	3.03	30	DH
Dimethyl Sulfide	ND	2,000						0		30	DH
t-Butyl Mercaptan	ND	2,000						0		30	DH
n-Propyl Mercaptan	ND	2,000						0		30	DH
Isobutyl Mercaptan	ND	2,000						0		30	DH
Surr: 4-Bromofluorobenzene	786		4.000		19,700	70	130		0		DSH

NOTES:

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

E - Estimated value. The amount exceeds the linear working range of the instrument.

Work Order: 1905068

CLIENT: G-Logics BFC

Project:

QC SUMMARY REPORT

Sulfur Compounds by EPA Method TO-15

Sample ID 1904386-001AREP	SampType: REP		U	nits: ppbv	Prep Dat	e: 4/27/20)19	RunNo: 51	030	
Client ID: BATCH	Batch ID: R51030				Analysis Dat	te: 4/27/20	019	SeqNo: 10	03017	
Analyte	Result	RL	SPK value SPK F	ef Val %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Disulfide	ND	2,000					0		30	DH
Ethyl Mercaptan	ND	2,000					0		30	DH
Carbonyl Sulfide	ND	2,000					0		30	DH
Isopropyl Mercaptan	ND	2,000					0		30	DH
n-Butyl Mercaptan	ND	2,000					0		30	DH
Dimethyl Disulfide	ND	2,000					0		30	DH
Surr: 4-Bromofluorobenzene	767		4.000	19,200	70	130		0		DSH

NOTES:

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect. Diluted due to matrix.

Sample ID LCS-R51029B	SampType: LCS			Units: ppbv		Prep Dat	te: 5/6/201	9	RunNo: 510)29	
Client ID: LCSW	Batch ID: R51029				Analysis Date: 5/6/2019			9	SeqNo: 100	08174	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide	141	10.0	110.0	0	128	70	130				
Methyl Mercaptan	132	10.0	103.0	0	128	70	130				
Dimethyl Sulfide	149	10.0	144.0	0	104	70	130				
t-Butyl Mercaptan	122	10.0	95.00	0	129	70	130				
n-Propyl Mercaptan	137	10.0	97.00	0	142	70	130				S
Isobutyl Mercaptan	113	10.0	92.00	0	122	70	130				
Surr: 4-Bromofluorobenzene	4.12		4.000		103	70	130				

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID LCS-R51030	SampType: LCS			Units: ppbv		Prep Date: 5/6/2019			RunNo: 510		
Client ID: LCSW	Batch ID: R51030					Analysis Da	te: 5/6/201	19	SeqNo: 100	8221	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Disulfide	108	10.0	103.0	0	105	70	130				
Ethyl Mercaptan	67.0	10.0	63.00	0	106	70	130				
Carbonyl Sulfide	111	10.0	112.0	0	99.2	70	130				

Work Order:1905068CLIENT:G-LogicsProject:BFC							Sulfur	• - ·	SUMMAI		-
Sample ID LCS-R51030	SampType: LCS			Units: ppbv		Prep Date:	5/6/2019)	RunNo: 51	030	
Client ID: LCSW	Batch ID: R51030					Analysis Date:	5/6/2019)	SeqNo: 10	08221	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Isopropyl Mercaptan	65.1	10.0	62.00	0	105	70	130				
n-Butyl Mercaptan	89.0	10.0	78.00	0	114	70	130				
Dimethyl Disulfide	33.1	10.0	26.00	0	127	70	130				
Surr: 4-Bromofluorobenzene	4.07		4.000		102	70	130				
Sample ID MB-R51029B	SampType: MBLK			Units: ppbv		Prep Date:	5/6/2019)	RunNo: 51	029	
Client ID: MBLKW	Batch ID: R51029					Analysis Date:	5/6/2019)	SeqNo: 10	08175	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide	ND	10.0									
Methyl Mercaptan	ND	10.0									
Dimethyl Sulfide	ND	10.0									
t-Butyl Mercaptan	ND	10.0									
n-Propyl Mercaptan	ND	10.0									
Isobutyl Mercaptan	ND	10.0									
Surr: 4-Bromofluorobenzene	3.81		4.000		95.2	70	130				
Sample ID MB-R51030	SampType: MBLK			Units: ppbv		Prep Date:	5/6/2019)	RunNo: 51	030	
Client ID: MBLKW	Batch ID: R51030					Analysis Date:	5/6/2019	1	SeqNo: 10	08222	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Disulfide	ND	10.0									
Ethyl Mercaptan	ND	10.0									
Carbonyl Sulfide	ND	10.0									
Isopropyl Mercaptan	ND	10.0									
n-Butyl Mercaptan	ND	10.0									
Dimethyl Disulfide	ND	10.0									
Surr: 4-Bromofluorobenzene	3.71		4.000		92.8	70	130				

0

Work Order:	1905068									QC S	SUMMA	RY REF	ORT
CLIENT:	G-Logics								C				
Project:	BFC								Sulfu	r Compoun	as by EPA	Wethod	10-15
Sample ID 1905	068-011AREP	SampType	REP			Units: ppbv		Prep Da	te: 5/6/201	19	RunNo: 510	029	
Client ID: VS-1	1	Batch ID:	R51029					Analysis Da	te: 5/6/201	19	SeqNo: 100	08177	
Analyte		R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hydrogen Sulfide			ND	100						0		30	Н

NOTES											
Surr: 4-Bromofluorobenzene	58.8		40.00	1	47	70	130		0		S
Isobutyl Mercaptan	ND	100						0		30	
n-Propyl Mercaptan	ND	100						0		30	
t-Butyl Mercaptan	ND	100						0		30	
Dimethyl Sulfide	ND	100						0		30	

NOTES:

Methyl Mercaptan

S - Surrogate recovery indicates a possible matrix effect. The method is in control as indicated by the Laboratory Control Sample (LCS).

100

ND

Sample ID 1905068-011AREP	SampType: REP			Units: ppbv		Prep Da	te: 5/6/20	19	RunNo: 51	030	
Client ID: VS-11	Batch ID: R51030					Analysis Da	te: 5/6/20	19	SeqNo: 10	08224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Disulfide	ND	10.0						0		30	Н
Ethyl Mercaptan	ND	10.0						0		30	н
Carbonyl Sulfide	ND	10.0						0		30	н
Isopropyl Mercaptan	ND	10.0						0		30	н
n-Butyl Mercaptan	ND	10.0						0		30	н
Dimethyl Disulfide	ND	10.0						0		30	н
Surr: 4-Bromofluorobenzene	5.73		4.000		143	70	130		0		SH

NOTES:

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

н н

н

н

Н

SH

30

Fremont
Analytical

Work Order: 1905 CLIENT: G-Lo	ogics							Volatile	Organic	QC :	SUMMA		-
Project: BFC		CompTupo:				Lipito, anku			•	-	-		
Sample ID LCS-R51276		SampType:				Units: ppbv			e: 5/6/201		RunNo: 512	-	
Client ID: LCSW		Batch ID:	R51276					Analysis Date			SeqNo: 100)8949	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics			68.2	1.00	72.00	0	94.8	70	130				
Benzene			1.82	0.0895	2.000	0	91.0	70	130				
Toluene			2.07	0.400	2.000	0	103	70	130				
Ethylbenzene			1.94	0.400	2.000	0	97.2	70	130				
m,p-Xylene			3.81	0.800	4.000	0	95.2	70	130				
o-Xylene			1.85	0.400	2.000	0	92.3	70	130				
Surr: 4-Bromofluorobenz	zene		4.12		4.000		103	70	130				
Sample ID MB-R51276		SampType:	MBLK			Units: ppbv		Prep Date	e: 5/6/201	9	RunNo: 512	276	
Client ID: MBLKW		Batch ID:	R51276					Analysis Date	e: 5/6/201	9	SeqNo: 100	08950	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline Range Organics			ND	1.00									
Benzene			ND	0.0895									
Toluene			ND	0.400									
Ethylbenzene			ND	0.400									
m,p-Xylene			ND	0.800									
o-Xylene			ND	0.400									
Surr: 4-Bromofluorobenz	zene		3.55		4.000		88.7	70	130				
Sample ID 1905068-011A	AREP	SampType:	REP			Units: ppbv		Prep Date	e: 5/6/201	9	RunNo: 512	276	
Client ID: VS-11		Batch ID:	R51276					Analysis Date	e: 5/6/201	9	SeqNo: 100	08952	
Analyte		R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline Range Organics		92	2,000	10.0						96,790	0	30	E
Benzene			300	0.895						319.8	6.52	30	Е
Toluene		1	1,550	4.00						1,594	2.52	30	Е
Ethylbenzene		1	1,270	4.00						1,304	2.67	30	Е
m,p-Xylene		3	3,540	8.00						3,609	1.84	30	Е

Work Order:1905068CLIENT:G-LogicsProject:BFC						Volatile	Organic	QC S Compoun	SUMMA ds by EPA		
Sample ID 1905068-011AREP	SampType: REP			Units: ppbv		Prep Dat	ie: 5/6/201	9	RunNo: 512	276	
Client ID: VS-11	Batch ID: R51276					Analysis Dat	te: 5/6/201	9	SeqNo: 100	08952	
Analyte	Result	RL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	54.7		40.00		137	70	130		0		S

NOTES:

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

E - Estimated value. The amount exceeds the linear working range of the instrument.

Sample Log-In Check List

С	lient Name:	GL	Work Order Num	per: 1905068	
Lo	ogged by:	Clare Griggs	Date Received:	5/3/2019 4	:31:00 PM
<u>Cha</u>	nin of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	In				
-	Coolers are p	present?	Yes	No 🖌	
0.			Air Samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	as received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🔽
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserv	ative added to bottles?	Yes	No 🗹	NA 🗌
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	rork match bottle labels?	Yes 🗹	No	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ling times able to be met?	Yes	No 🗹	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
	Person	Notified: Date			
	By Who	vm: Via:	🗌 eMail 🗌 Ph	one 🗌 Fax 🛛	In Person
	Regardi	-			
	Client Ir	nstructions:			
19.	Additional rei	marks:			

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

8
õ
Air
1.5
1
10.
29.
18

								•	•	1				_					•						
Fremo	ont	3600 Fremont Ave N. Seattle, WA 98103	600 Fremont Ave N. Seattle, WA 98103 Tel: 206.352-3790	2				Cusio	YUY		Ĩ		Laborat	ory Pr	oject N	lo (Int	Laboratory Project No (Internal):	90506	R	N'S	no?	0			
	alytical	Fax: 206		Date: / Project Name:	~	RFC	-	Page:	of:	1	× *		Special Remarks:	Rema	arks:					(
client: 6-Logics				Project No:	1	01-0410-	0																		
Address:				Location:																					
City, State, Zip:				Collected by:	2 v																				
Telephone:				Reports to (PM):	(PM): Zec	202	NON.	- 105205	cs ,	5	3	QA	Air samples are dispo otherwise requested.	ples a se req	e disp ueste	d.	Air samples are disposed of one week after report is submitted to client unless otherwise requested.	ek afte to Disp	r repo	I is s	 Submitted to client unlear Hold (fees may apply) 	(fees	may a	app	2 2
Fax:				Email (PM):			(¢																	
						Internal			-			Analysis	- IS	-1											Internal
Sample Name	Canister / Flow San Reg Serial #	Sample Date & S Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (" Hg)	Field Initial Sample Pressure (" Hg)	Field Final Sample Pressure (" Hg)	VOCs TO15 SCAN	VOCs TO15 SIM	Siloxanes TO15	Sulfur TO15	Sulfur Ext. TO15	Helium	Major Gases 3C		High Concentrations Comments	3	Com	Comments	ist .	10.1	Ń	_	Final Pressure ("Hg)
- VS - 1	Canister S	950 Date	\sim	TB	105	eireseide	Pressure Date	Pressure Date									GX, BTEX ONLY	-	S	D	X	COL	~		
vs - 2	Canister 5/	1 Date	5	€ ₹	105	Pressure Date	Pressure Date	Pressure Date												5					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Carnster 5	5/1 Dave	$\sim$	2	105	Pressure	Pressure Date	Pressure Late					Ĵ.												
1 - 5 V	Carister 5/	1 Date 129ine	- M	TIS	501	Pressure Date	Pressure	Pressure Date	<																
vs - 5	Canister 5/	1 Date	5	18	105	Pressure Date	Pressure	Pressure Date												$\leq$					
* Matrix Codes: AA = Ambient Air IA ** Container Codes: BV = 1 Liter Bottle Vac	IA = Indoor Air L le Vac 6L = 6L Canister	= La	IL Ca	lsqr	ab / Soil Gas CYL = High Pressure Cylinder	e Cylinder	F = Filter	S = Sorbent Tube	nt Tub		TB = Tedlar Bag	edlar	Bag									Turn-Around	Turn-Around Time:	ar in	d 0
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	d to enter into th e of this Agreem	his Agreem ent.	ent with F	remont A	nalytical o	n behalf of	the Clien	t named a	bove,	that	I hav	e ve	ified	I Cli	ent's	agr	eement 1	o ea	ch of	the			3 Day		
relinquished × /////////////// Rejfrquished	5 - 3 / 16 Date/Time	Time				Received Received	401	R	2			Date/Time		61,		<u> </u>	[63					2 Day Next Same Day	2 Day Next Day		ay
																					┝				1

Page 30 of 32

1
1
-10
- 10
- 10.
- 10.2
- 10.29
- 10.29
- 10.29.
- 10.29.1.
- 10.29.18

														.					'		1				
		3600 Fren	3600 Fremont Ave N.			Air Chain	ain of	Custody	ody	Re	Record	d	20	a	00	rat	Laboratory S	Services Agreement	Nic	Sel	A	re	en	lei	1 at
			Seattle, WA 98103 Tel: 206-352-3790	Date: 5	13/	1019		Page: 2	of:	W		<u> </u>	abora	tory P	roject	Laboratory Project No (Internal):	ernal):	To	0	B	Spo	C			
	The State of States			Project Name:	7-10	FC							opecial netitaliss	al Nell	IdINS.										
Client: G-Lagacs				Project No:	075	0410-	-0																		
Address:				Location:																					
City, State, Zip:				Collected by:	Y:									·											
Telephone:				Reports to (PM):	(PM):							0.2	Air samples are dispo otherwise requested.	nples a rise re	are dis quest	posed ed.	Air samples are disposed of one week after report is submitted to client unless otherwise requested. OK to Dispose Hold (fees may apply)	ek after to Disp	ose .		Hold (	ed to offees n	s submitted to client unles Hold (fees may apply)	unless ply)	
Fav.				Email (PM):	•																				
1 07.						Internal			$\left  \right $	$\left  \right $		Analysis	sis	-										Internal	nal
						-					5		15		30		HIGH CONCENTRATION	T	8	NCO	Lo	RAT	21		
Sample Name	Canister / Flow S Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Evacuation Pressure (" Hg)	Sample Pressure (" Hg)	Sample Pressure (" Hg)	VOCs TO15 S	VOCs TO15 S	Siloxanes TO	Sulfur TO15	Sulfur Ext. T	APH TO15	Helium Major Gases	inajor Gases			Comments	lients				Final Pressure ("Hg)	al sure g)
1 ~ ~ 6	Carister	5/2	$\wedge$	70	201	Pagasta	Pressure	Preșsure		15							6x	бх втех 1	- 2	X	oury	km			
-5V	Canister Flow Peg	5/200	S			Pressure Date	Pressure Date	Pressure																	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Carborer Flow Reg	1415	S			Pressure Date	Pressure Date	Pressure Date																	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Carister Fibw Peg	5/3 Date	$\sim$			Pressure	Pressure Date	Pressure											~						
S-10	Cardster Flow Reg	5/3 Date 1220 me	$\sim$	E	<	Prassure Date	Pressure	Pressing					2			-			-						
* Matrix Codes: AA = Ambient Air	IA = Indoor Air	ir L = Landfill		S = Subslab / Soil Gas	oil Gas																	urn-	Turn-Around Time:	nd Tin	ne:
** Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Hiter S = Sorbent Tube 1B = Feduar 248 I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	d to enter into e of this Agree	6L = 6L Canister r into this Agreen Agreement.	nent with From	remont A	CYL = High Pressure Cylinder ont Analytical on behalf	n behalf o	f the Clier	s = sorbent lube nt named above, t	above	, that	I ha	I have verifi	rifie	d CI	ient'	s agr	eement 1	to eac	th of	the			Standard 3 Day	rd	
x MCVR	5 Dat	Date/Time 5 3 1642	\			x x	D	L	X	0	Coa	Date/Time	S.	w	100	5/3/19	1	P	N	)			2 Day Next Day	ау	
Relinquished x	Dat	Date/Time				Received x		C			Da	Date/Time									S	Same Day		(specify )	fy)

0	
Ō	
Þ	
÷	
H	
ŝ	
Å.	
- 10	
- 10.2	
- 10.29	
- 10.29.1	
- 10.29.18	

		3600 Fremont Ave N.			Air Chain of Custody	ain of	Custo		Record	ord	20	La	Ь	ra	Laboratory Services Agreement	Agre	em	ent	
		Seattle, WA 98103 Tel: 206-352-3790	Date: S	12/2	n n		Page:	of:	W		Labor	atory F	roject	No (In	Laboratory Project No (Internal):	de			32
	naiyataar	FUX: 200-332-7170	Project Name:		RFC						Spec	Special Remarks:	narks:						32 of
client: Gruczza			Project No:		01-0410-0	v													age 3
Address:			Location:																Pa
City, State, Zip:			Collected by:	¥.								×							
Telephone:			Reports to (PM):	(PM):							Air sai other	Air samples are dispo otherwise requested.	are dis quest	sposec ed.	Air samples are disposed of one week after report is submitted to client unless otherwise requested.	Submitted to client unlest Hold (fees may apply)	nay app	nless ly)	
Fax:			Email (PM):																
					Internal					Ana	Analysis		-	+				Internal	
Sample Name	Canister / Flow Sample Date & Time	Date & Sample Type ne (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (" Hg)	Field Initial Sample Pressure (" Hg)	Field Final Sample Pressure (" Hg)	VOCs TO15 SCAN VOCs TO15 SCAN LL	VOCs TO15 SIM Siloxanes TO15	Sulfur TO15	Sulfur Ext. TO15	APH TO15	Helium Major Gases 3C		Comments		פ	Final Pressure ("Hg)	
$\sqrt{2} - 1$	Carister 5/3 D	55 S	-R	501	aurise area	Prior Street	Prossure								HIGH Conce. GX BTEX.	only	y suor		
2	(5) 	1			1.7376		Oate		_			-	+	-	1 1 1 1 1 1	8	the state	7	
5-12	$(N \rightarrow )$	S Date			Pressure Date	Pressure Date	Pressure Date										Br	NC	
	Carrent 5/3	Care	-		Fressure	Pressure	Pressure										9	VIE	-
	Piow Reg 1700	11 87 87 87 87 87 87 87 87 87 87 87 87 87		2	1.0836	Date	Date									2			
N2-14	Canister 15 c	S Date			area area	Pressure Date	Pressure Date								+A	PHG	7	1 1	
	Capister		$\leftarrow$		Pressure	Pressure	entes.								F	M	6	15	19
* Matrix Codes: AA = Ambient Air	IA = Indoor Air	L = Landfill S =	S = Subslab / Soil Gas	oil Gas					╞	t		-	┢	ŀ		Turn-	Turn-Around Time:	Time:	
<b>**</b> Container Codes: BV = 1 Liter Bottle Vac	tle Vac 6L = 6L Canister	ter 1L = 1L Canister		CYL = High Pressure Cylinder	e Cylinder	F = Filter	S = Sorbent Tube	nt Tube	TB =	TB = Tedlar Bag	r Bag					St St	andard		
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, terms on the front and backside of this Agreement.	ed to enter into this A le of this Agreement.	Agreement with F	remont A	nalytical o	n behalf of	the Clien	t named a		hat I h	ave v	erifie	d Cli	ent's	agr	that I have verified Client's agreement to each of the	<u> </u>	3 Day		
relinguished × fill the filled	5-3//	/1642		-	x x	40	X	P		Date/Time	13/19	) (	-27		1642		2 Day Next Day		
×					X Vecelved		C		ç	Date/Time	e					Same Day		(specify )	

Page 32 of 32

# **APPENDIX C**



23 May 2019

# **Technical Memorandum**

To:	Dale Myers, Washington State Department of Ecology
From:	Julia Schwarz, Ty Schreiner
Subject:	Boeing Field Chevron Pilot Study K/J 1896033.00

This technical memorandum provides a summary of field oversight conducted by Kennedy Jenks on behalf of the Washington State Department of Ecology (Ecology). On 1 through 3 May 2019, G-Logics conducted an air sparge/soil vapor extraction (AS/SVE) pilot test at the Boeing Field Chevron site located at 10805 East Marginal Way South in Tukwila, WA. G-Logics personnel onsite for the pilot test included Zak Wall and Jon Stordahl. Adam Morine (EPI) was also onsite to help run the pilot test as a subcontractor to G-Logics. Russell Shropshire (Leidos) was onsite on behalf of Chevron on 1 and 2 May 2019. Julia Schwarz of Kennedy Jenks was onsite on 1 through 3 May 2019 to observe the pilot test on behalf of Ecology.

On 1 May 2019, the SVE system was tested in the upper saturated zone to evaluate the efficacy of SVE at the site. A blower step test was conducted extracting air from well SVE-1 at three different flow rates/pressures. A photo log is provided in Attachment A. At each step, flow rates and pressures were measured at SVE-1, a photoionization detector was used to measure volatiles extracted from well SVE-1, and pressures were measured at nearby wells screened in the upper saturated zone. Vacuum was observed in nearby wells. The maximum vacuum achieved at well SVE-1 was approximately 28 in H₂0. PID measurements in outflow from SVE-1 were generally around 350 ppm regardless of the vacuum or air flow.

On 2 May 2019, the SVE system was operated at maximum pressure/flow while sparging into the upper saturated zone at AS-1. A photo log from 2 May 2019 is provided in Attachment B. Wells in the upper saturated zone were monitored for pressure, headspace gases with the PID, and bubbles. Observation frequency for these parameters was modified slightly from the work plan given field constraints including time to open wells to observe bubbles, and negative pressures observed in wells (unlikely to be bubbles). Sparging into well AS-1 at a rate of approximately 8 scfm with approximately 8 inches H₂0 pressure at the well. PID measurements from well SVE-1 did not significantly increase from the step test day. Following system shutdown, DO measurements in some wells were lower than prior to the start of the test.

On 3 May 2019, the SVE system was operated at maximum pressure/flow while sparging into the lower saturated zone at AS-2. A photo log from 3 May 2019 is provided in Attachment C. Wells in the upper and lower saturated zone were monitored for pressure, headspace gases with a PID, and bubbles, and for DO prior to and following the test. Positive pressure was noted



# Memorandum

Dale Myers 23 May 2019 1896033.00 Page 2

in lower zone wells prior to starting the test. Pressure fluctuations in the lower zone may be influenced by tidal cycles. Observation frequency for parameters to be collected during the test was again modified from the work plan due to field constraints (e.g. time to collect measurements from all wells). Approximately 9 scfm was injected into AS-2 with a steady pressure of approximately 8 psi. Large amounts of bubbles were observed in some lower saturated zone wells, including IP-5 and IP-7. Limited, intermittent, and small bubbles were noted in some upper saturated zone wells located nearby to AS-2; however, most of the air appeared to still be within the lower saturated zone. During the AS test into the lower saturated zone, PID readings from SVE-1 remained relatively similar to concentrations from the SVE test.

Some questions raised during this pilot test that may need to be answered to accurately assess the efficacy of an AS/SVE system at the site and may be important for design and implementation. These include, but are not limited to:

- How do tidal fluctuations influence the ability to inject air into the lower saturated zone?
- Where is air in the lower saturated zone going? What is the ROI in the lower saturated zone vs. the ROI in the upper saturated zone from sparging in the lower saturated zone? During sparging into the lower saturated zone, bubbles were observed in wells screened in the lower saturated zone, approximately 35 feet away from the sparge well. Small bubbles, but not of the same volume, were observed in closer wells screened in the upper saturated zone.
- Is air within the lower saturated zone traveling along preferential pathways, e.g. the utility corridor?
- Is air traveling along the bottom of the semi-confining layer rather than being released to the upper saturated zone? If so, what are the expected directions of travel and ROI of this air based on the elevation of the confining layer?

Enclosure(s) (3)

Attachment A: Photo log from 1 May 2019 Attachment B: Photo log from 2 May 2019 Attachment C: Photo log from 3 May 2019



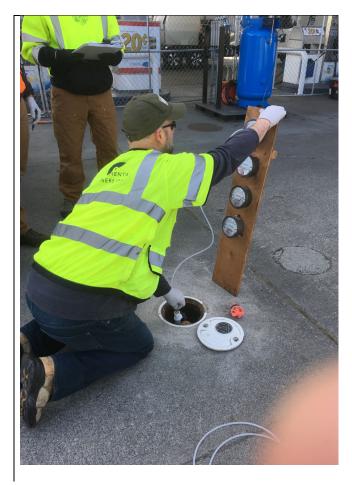
Photo #1: Soil Vapor Extraction (SVE) system set up at well SVE-1. SVE system set up to extract from SVE-1 with manifold with several flow meters in order to conduct a step test. Extracted vapor will be run through GAC canister (drum in background).



Photo #2: Measuring vacuum at wells prior to startup of the SVE system.






## Photo #3:

System startup of the SVE system. Opening the valves on part of the manifold. Operating at 100% dilution.

#### Photo #4:

Collecting SVE system sample in a tedlar bag. Sample collected from the SVE system prior to going through the manifold. Sample being drawn through the vacuum pump.





#### Photo #5:

Measuring concentrations in air leaving the GAC canister using a photoionization detector (PID) measuring in ppm. Low concentrations in air after going through GAC.

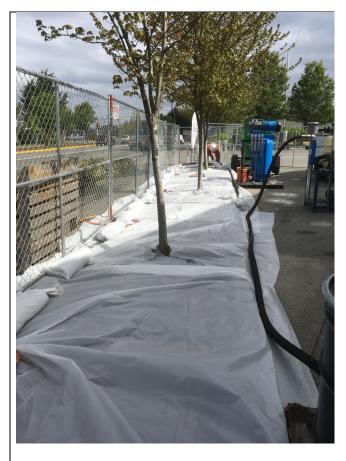
## Photo #6:

Measuring vacuum in shallow wells during operation of the SVE system. Vacuum observed in nearby shallow wells.





#### Photo #7:


Measuring vacuum in shallow well MW-26S during operation of the SVE system. Traffic control set up direct traffic around the well.

#### Photo #8:

Measuring airflow between well SVE-1 and the moisture separator with a hot wire anemometer. Flow within the manifold was limited by the flow meters, so one section was changed out for blank PVC with no flow meter (closest upright in picture), and the airflow was measured by hot wire anemometer instead.



**Photo #1**: Setting up visqueen on gravel area adjacent to AS-1 prior to operation of the air sparge (AS) system.



## Photo #2:

Completed setup of visqueen on gravel area adjacent to AS-1. Edge secured with sandbags, and duct taped around trees and visqueen seams.



## Photo #3:

SVE setup at well SVE-1, measuring pressure in SVE-1 prior to startup of AS system.



2

#### Photo #4:

Collecting an air sample for PID testing from SVE-1. Using a vacuum chamber so that the sample does not go through the vacuum pump. Sample collected prior to going through the manifold.



## Photo #5:

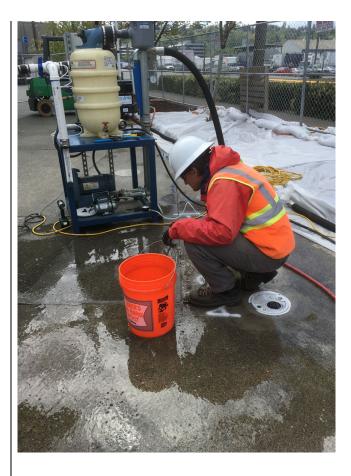
Measuring flow in the GAC outflow pipe to compare to flow near SVE-1.



3

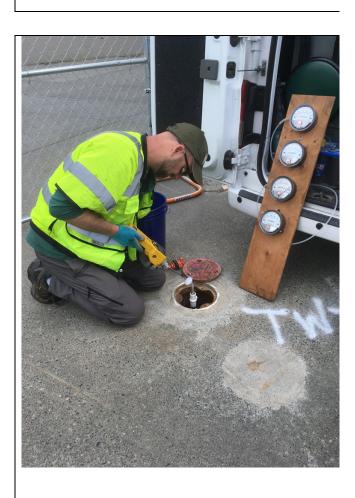
#### Photo #6:

Setting up for injection into the shallow zone at well AS-1. SVE in operation.




## Photo #7:

Using a well camera paired with a phone to inspect shallow well MW-26S for bubbles prior to startup of the AS system.




**Photo #8**: Initiating startup of the AS system, to blow into shallow well AS-1. AS-1 is located beneath the yellow jacket; concerns were raised about pressurizing PVC so a jacket was placed over the well attachment to protect personnel from PVC pieces in the event that the PVC



## Photo #9:

Ground near AS-1 and AS-2 wetted to inspect the surface for bubbles. No bubbles were observed.



5

#### Photo #10:

Measuring well head space with a PID while AS (shallow) and SVE systems operating.



## Photo #11:

AS system gauges. Injecting into AS-1 at highest measurable flow rate (right gauge at 10 SCFM).

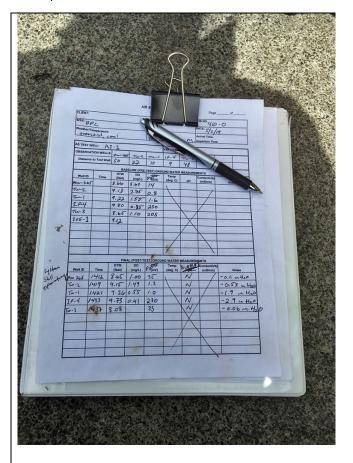


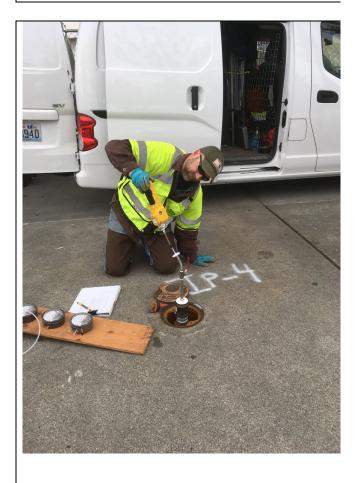

Photo #12: Well attachment at AS-1 with two pressure gauges attached.




**Photo #13**: Measuring airspace beneath the visqueen near AS-1 with a PID. Readings beneath the visqueen were similar to ambient.

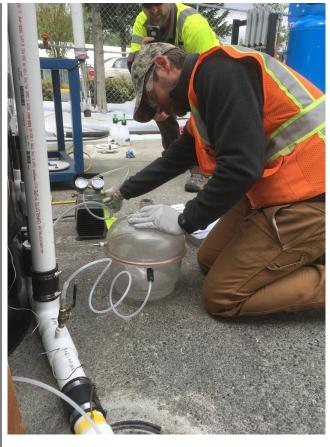
7




#### Photo #14:

Data collection sheets for baseline (pretest) and final (near the end of test) groundwater readings in monitoring wells. Vacuum measured in most shallow wells; DO after operation of AS and SVE systems lower than initial. PID readings generally a similar order of magnitude.




## Photo #1:

Setting up steel well attachments for sparging at deep well AS-2.



## Photo #2:

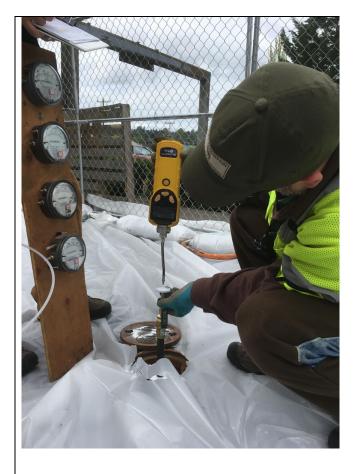
Measuring headspace in well IP-4 using a PID.





#### Photo #3:

Collecting a vapor sample from SVE-1 using a vacuum chamber prior to startup of sparging into AS-2.


## Photo #4:

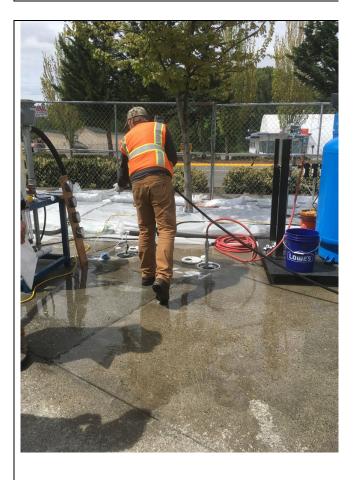
Field screening air extracted from well SVE-1 using a PID and tedlar bag. Concentrations measured with a PID did not change significantly while sparging compared to just soil vapor extraction.



## Photo #5:

Measuring pressure/vacuum in each well prior to startup of the AS system in the deep zone.




#### Photo #6:

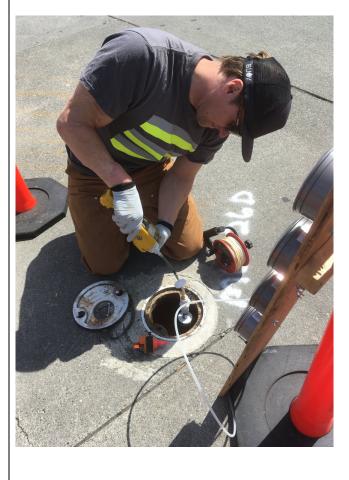
Measuring well headspace with a PID at deep well IP-5.





System startup, sparging into deep well AS-2.




## Photo #8:

Wetting down pavement near AS-1 and AS-2 to check for bubbles in the pavement.



*Photo #9*: Inspecting wet ground for bubbles near IP-5 and SVE-1.





#### Photo #10:

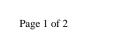
Using a well camera paired with a phone to inspect well MW-28D for bubbles while sparging into the lower zone and extracting from the upper zone.

## Photo #11:

Measuring well headspace in well MW-26D while sparging into the lower zone and extracting from the upper zone.

# ATTACHMENTS

#### Permission and Conditions for Use and Copying Form


## Feasibility Study Pilot Test Report, Air Sparge/Soil Vapor Extraction Boeing Field Chevron, 10805 East Marginal Way South Tukwila, WA 98168

## G-Logics Project 01-0410-O August 14, 2019

G-Logics prepared the above-identified Document only for our Client and/or other user(s), as identified in the Document, for the purposes stated and subject to any identified and contractual limitations. Regulatory agencies may make additional "fair use" copies for internal and public use based on state and federal laws that do not violate copyright laws.

All other Requestors must obtain permission from G-Logics and our Client in order to avoid copyright violations. To request authorization for a copy of the Document, please read our conditions listed below, complete the Requestor section, and fax to G-Logics at 425-313-3074 for approval review.

- I recognize that G-Logics has prepared this Document only for their Client and/or other user(s), only for the purposes stated in the Document and subject to any identified and contractual limitations.
- My intended use of the Document is for general informational purposes only.
- I understand and accept that there may be limitations to the reliability of the Document's findings due to circumstances beyond the control of G-Logics, the limited scope of funding, and/or limitations inherent in the nature of the performed services.
- I agree not to rely on the Document as being comprehensive or inclusive of all possible site hazards and agree to defend, indemnify, and hold G-Logics harmless from and against any and all claims, damages, or liability which arise from or which are alleged to arise from my use of the Document. I also will compensate G-Logics for any time spent or expenses incurred by G-Logics in defense of any such claim.
- I agree not to provide the Document to any other person or organizations without prior authorization from G-Logics and their Client.







I, the Requestor, have reviewed the above-identified conditions for copying/use of the Document, am familiar with the presented limitations of the provided services, and acknowledge my understanding and concurrence, as indicated by my signature below.

Requestor's Company Mailing Address City, State, Zip Code Contact Name & Title Signature & Date Telephone & Fax Numbers Planned Use of Document

With your information and signature above, please fax to G-Logics (425-313-3074) for approval review. G-Logics will share your request with our Client for their approval.

#### **Client Review and Acknowledgment of Use and Copying Request**

Per the notification of G-Logics, I, the Client, have reviewed this request for copying/use of this Document, have discussed the request with G-Logics, and grant my consent as indicated by my signature below.

Client Company	
Client Contact Name & Title	
Signature & Date	
Telephone & Fax Numbers	

#### G-Logics review and Acknowledgment of Use and Copying Request

Based on your concurrence with the above-presented conditions, approval of our Client, and our review of the information, G-Logics allows the Requestor to copy/use the above referenced Document for purposes stated. Additional fees may apply.

G-Logics Signature	
Title	
Date	

g-logics