#### **LIMITED SUBSURFACE INVESTIGATION**

# LOVE'S TRAVEL STOPS & COUNTRY STORES, INC. 1512 HIGHWAY 97 ELLENSBURG, KITTITAS COUNTY, WASHINGTON

Project No. 81109090.2 Report Date: September 10, 2010

## Prepared For:

Love's Travel Stops & Country Stores, Inc.
Oklahoma City, Oklahoma

Prepared By:

Terracon

Seattle, Washington

| N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
| Mark to the second seco |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
| ROLL CONTROL OF THE C |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | • |   |
| The grant of the control of the cont |                                       |   |   |
| Marie Control of the  |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                           |   |   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
| English to the second of the s | ·                                     |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |   |
| * W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | • |

### **TABLE OF CONTENTS**

| 1.0   | INTR    | ODUCTION                                           |
|-------|---------|----------------------------------------------------|
|       | 1.1     | Site Description                                   |
|       | 1.2     | Scope of Work                                      |
|       | 1.3     | Standard of Care                                   |
|       | 1.4     | Additional Scope Limitations                       |
|       | 1.5     | Reliance                                           |
| 2.0   | FIEL    | D ACTIVITIES                                       |
|       | 2.1     | Borings and Temporary Groundwater Monitoring Wells |
|       | 2.2     | Soil and Groundwater Sampling                      |
| 3.0   | LAB     | ORATORY ANALYTICAL METHODS                         |
| 4.0   | DATA    | A EVALUATION                                       |
|       | 4.1     | Soil Samples                                       |
|       | 4.2     | Groundwater Samples                                |
| 5.0   | FIND    | INGS AND RECOMMENDATIONS                           |
|       |         |                                                    |
|       |         | APPENDICES                                         |
|       | 1507    | A 51 4 77 11 14 15 0 01 15 1                       |
| APPE  |         |                                                    |
| APPEN |         |                                                    |
| APPE  |         |                                                    |
| APPE  | ו אוטוא | D Laboratory Data Sheets                           |

# LIMITED SUBSURFACE INVESTIGATION LOVE'S TRAVEL STOPS & COUNTRY STORES, INC. 1512 HIGHWAY 97 ELLENSBURG, KITTITAS COUNTY, WASHINGTON

Project No. 81109090 Report Date: September 10, 2010

#### 1.0 INTRODUCTION

#### 1.1 Site Description

#### **Site Description**

| Site Name             | Love's Travel Stops & Country Stores, Inc.                                                     |
|-----------------------|------------------------------------------------------------------------------------------------|
| Site Location/Address | 1512 Highway 97, Ellensburg, Kittitas County, Washington                                       |
| Land Area             | Approximately 5.78 acres                                                                       |
| Site Improvements     | Love's Travel Stops & Country Stores, Inc. retail fueling station and associated parking areas |

A topographic map is included as Figure 1, and a site plan is included as Figure 2 of Appendix A.

#### 1.2 Scope of Work

Terracon conducted a Limited Site Investigation (LSI) at the Love's Travel Stops & Country Stores, Inc. facility located at 1512 Highway 97, Ellensburg, Kittitas County, Washington. At your request, Terracon's LSI was undertaken to identify potential petroleum impacts to soil and groundwater from previous operations at the above referenced site. This investigation was conducted to assist Love's Travel Stops & Country Stores, Inc. (client) with due diligence during the acquisition of the property.

The objective of the Limited Site Investigation (LSI) was to evaluate the presence of benzene, toluene, ethylbenzene, and xylenes (BTEX), total petroleum hydrocarbon gasoline (TPH-G), diesel (TPH-D) and oil (TPH-O) range organics, and Polycyclic Aromatic Hydrocarbons (PAHs) above relevant laboratory reporting limits in the on-site soils and groundwater as a result of potential releases from the previous operations at the site.

#### 1.3 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same

time period. Terracon makes no warranties, either express or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These LSI services were performed in accordance with the scope of work agreed with you, our client, as reflected in our proposal and were not restricted by ASTM E1903-97.

#### 1.4 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this LSI. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

#### 1.5 Reliance

This report has been prepared for the exclusive use of the Love's Travel Stops & Country Stores, Inc. and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of Love's Travel Stops & Country Stores, Inc. and Terracon. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal dated June 28, 2010.

#### 2.0 FIELD ACTIVITIES

#### 2.1 Borings and Temporary Groundwater Monitoring Wells

Terracon's field activities were conducted August 16, 2010. As part of the approved scope of work, a total of fifteen (15) soil borings were advanced on-site.

- Boring B-1 and B-7 were advanced on the west side of the tank basin to 11.5 and 12 feet below grade surface (bgs), respectively;

- Boring B-2 was advanced to 1.5 feet bgs on the west side of the tank basin. This boring was terminated due to the presence of a concrete or asphalt surface at approximately 1.5 feet bgs;
- Boring B-3 was advanced to 12 feet bgs on the south side of the gasoline dispenser islands:
- Borings B-4 and B-6 were advanced to 5 feet bgs on the west and east sides of the gasoline dispenser islands, respectively;
- Boring B-5 was advanced to 5.5 feet bgs on the north side of the gasoline dispenser islands;
- Boring B-8 was advanced to 12 feet bgs on the northwest side of the oil/water separator;
- Boring B-9 was advanced to 16 feet bgs on the northwest side of the diesel basin;
- Borings B-10, B-11, and B-13 through B-15 were advanced to 5 to 6 feet bgs on the southwest side of the diesel dispenser islands;
- Boring B-12 was advanced to 12 feet bgs on the southwest side of the diesel dispenser islands.

Figure 1 presents the general boundaries and topography of the site on portions of the USGS topographic quadrangle map of the area (Appendix A). Figure 2 is a site plan that indicates the approximate locations of the soil borings and temporary groundwater monitoring wells in relation to the pertinent structures and general site boundaries (Appendix A).

Drilling services were performed by Environmental Services Network Northwest, Inc. (ESN), a State of Washington licensed Well Driller under the supervision of a Terracon environmental professional, using a GeoProbe® push-probe rig equipped with continuous core sampling. Non-dedicated sampling equipment was decontaminated by an Alconox wash and potable water rinse prior to commencement of the project and between the collection of each soil sample.

Soil samples were collected continuously using either a hand auger or a four-foot macro-bore continuous core sampler to document lithology, color, relative moisture content and visual or olfactory evidence of chemical impact.

The general soil lithology encountered during sample collection consisted of the following:

3" to 6" of Asphalt;

Sandy GRAVEL, with Silt – from below the asphalt to a depth of 2.5 to 7 feet bgs;

SILT, with Sand or Sandy SILT - from below the Sandy GRAVEL to the terminus of borings B-5, B-6, B-7, B-10, B-11, and B-15 and to depths of 3.5 to 8.5 feet bgs in borings B-1, B-3, B-6, B-8, B-9, B-12, and B-14.

Sandy GRAVEL, trace Silt – from below the SILT or Sandy SILT to the terminus of borings B-1, B-3, B-6, B-8, B-9, B-12, and B-14.

Detailed lithologic descriptions are presented on the soil boring logs included in Appendix B.

Groundwater was encountered during the advancement of soil borings B-1, B-3, B-7, B-8, B-9, and B-12 at depths of 6, 6.5, 6, 6, 7, and 6.5 feet bgs, respectively.

The groundwater flow direction and the depth to shallow groundwater, if present, would likely vary depending upon seasonal variations in rainfall and depth to the soil/bedrock interface. Without the benefit of on-site groundwater monitoring wells surveyed to a datum, groundwater flow direction beneath the site cannot be ascertained.

Potential TPH odors were detected in the soil samples collected from soil borings B-5, B-6, B-7, B-10, and B-11. The soil boring logs are included in Appendix B.

Following completion, soil borings B-1, B-2, B-4 through B-6, B-8 through B-11, and B-13 through B-15 were backfilled with bentonite pellets, then hydrated and grouted to surface grade with Portland cement.

Subsequent to advancement, groundwater samples were collected from soil borings B-3, B-7, and B-12 using a peristaltic pump with dedicated tubing. Following completion of the groundwater sampling borings, B-3, B-7, and B-12 were backfilled with bentonite pellets, then hydrated and grouted to surface grade with Portland cement.

Soil cuttings, groundwater, and equipment cleaning water generated during the field activities were placed in Department of Transportation (DOT) approved, 55-gallon steel drums, closed and appropriately labeled with project-specific information and initial accumulation date. A total of two 55-gallon drums containing soil cuttings and one 55-gallon drum containing groundwater and equipment cleaning water were generated during these field services and were left onsite for subsequent characterization and disposal, [which was not included in the Scope of Services].

#### 2.2 Soil and Groundwater Sampling

Terracon's soil sampling program involved submitting one soil sample from each soil boring for laboratory analysis from: a) the soil samples obtained from each of the proposed borings which exhibited potential TPH odors b) if no odors were identified, the unsaturated soil sample obtained from the bottom of the boring or from the interval immediately overlying encountered groundwater. Groundwater samples were collected using a peristaltic pump and dedicated disposable tubing. Sample intervals for each boring are presented on the lithologic boring logs included in Appendix B and on the soil analytical tables in Appendix C.

Soil and groundwater samples collected were placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler. The sample coolers and completed chain-of-custody forms were relinquished to Pace Analytical Laboratory in Seattle, Washington for standard turnaround (10 day).

#### 3.0 LABORATORY ANALYTICAL METHODS

The soil and groundwater samples collected from the push-probe borings were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Test Method 5035/8021B, and gasoline-and diesel-range Total Petroleum Hydrocarbons (TPH-G and TPH-D/TPH-O) by Northwest Methods NWTPH-Gx and NWTPH-Dx, respectively. Two project soil samples with elevated laboratory-detected TPH-D were further analyzed for PAHs by EPA Method 8270C Select Ion Monitoring (SIM). The executed chain-of-custody form and laboratory data sheets are provided in Appendix D.

#### 4.0 DATA EVALUATION

#### 4.1 Soil Samples

Terracon compared the soil sample analytical results to the Washington State Department of Ecology's (Ecology) Model Toxics Control Act (MTCA) Method A cleanup levels.

#### Boring B-5

Concentrations of benzene (8,650  $\mu$ g/kg), ethyl-benzene (9,720  $\mu$ g/kg), toluene (52,800  $\mu$ g/kg), xylenes (45,100  $\mu$ g/kg), TPH-G (436 mg/kg), TPH-D (94.9 mg/kg), and TPH-O (140 mg/kg) were detected in the soil sample collected from boring B-5 at 3' bgs. The detected concentrations of benzene, ethyl-benzene, toluene, xylenes, and TPH-G exceeded the applicable MTCA Method A cleanup levels of 30  $\mu$ g/kg, 6,000  $\mu$ g/kg, 7,000  $\mu$ g/kg, 9,000  $\mu$ g/kg, and 30 mg/kg, respectively. The TPH-D and TPH-O concentrations did not exceed the MTCA Method A cleanup levels, which have both been established at 2,000 mg/kg.

#### Boring B-6

Concentrations of benzene (29.8  $\mu$ g/kg), ethyl-benzene (3.2  $\mu$ g/kg), xylenes (19.9  $\mu$ g/kg), and TPH-G (7.2 mg/kg) were detected in the soil sample collected from boring B-6 at 5' bgs. The detected concentrations of benzene, ethyl-benzene, xylenes, and TPH-G did not exceed the applicable MTCA Method A cleanup levels of 30  $\mu$ g/kg, 6,000  $\mu$ g/kg, 9,000  $\mu$ g/kg, and 30 mg/kg, respectively.

#### Boring B-7

Concentrations of benzene (153  $\mu$ g/kg), ethyl-benzene (45,500  $\mu$ g/kg), toluene (554  $\mu$ g/kg), xylenes (247,000  $\mu$ g/kg), TPH-G (3,700 mg/kg), and TPH-D (423 mg/kg) were detected in the soil sample collected from boring B-7 at 8' bgs. The detected concentrations of benzene, ethyl-benzene, xylenes, and TPH-G exceeded the applicable MTCA Method A cleanup levels of 30  $\mu$ g/kg, 6,000  $\mu$ g/kg, 9,000  $\mu$ g/kg, and 30 mg/kg, respectively. The toluene, TPH-D, and TPH-O concentrations did not exceed the MTCA Method A cleanup levels, which have been established at 7,000  $\mu$ g/kg, 2,000 mg/kg, and 2,000 mg/kg, respectively.

Based on the elevated concentration of TPH-D detected in soil from boring B-7, follow-up analysis was conducted for Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270C SIM. PAH concentrations detected above the laboratory reporting limits in the sample include the following:

Acenaphthene was detected at a concentration of 104  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level (direct contact-soil ingestion) has been established at 4,800,000  $\mu$ g/kg, which the detected concentration did not exceed.

Acenaphthylene was detected at a concentration of 22.2  $\mu$ g/kg. No MTCA cleanup level has been established for this analyte.

Anthracene was detected at a concentration of 37.7 µg/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 24,000,000 µg/kg, which the detected concentration did not exceed.

Fluoranthene was detected at a concentration of 14.1  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 3,200,000  $\mu$ g/kg, which the detected concentration did not exceed.

Fluorene was detected at a concentration of 256 µg/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 3,200,000 µg/kg, which the detected concentration did not exceed.

Naphthalene was detected at a concentration of 1,800 μg/kg, which did not exceed the MTCA Method A cleanup level of 5,000 μg/kg.

Phenanthrene was detected at a concentration of 255 µg/kg. No MTCA cleanup level has been established for this analyte.

Pyrene was detected at a concentration of 57.5  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 2,400,000  $\mu$ g/kg, which the detected concentration did not exceed.

#### Boring B-10

Concentrations of benzene (10,800  $\mu$ g/kg), ethyl-benzene (46,900  $\mu$ g/kg), toluene (1,640  $\mu$ g/kg), xylenes (65,200  $\mu$ g/kg), TPH-G (1,890  $\mu$ g/kg), TPH-D (3,120  $\mu$ g/kg) and TPH-O (98.3  $\mu$ g/kg) were detected in the soil sample collected from boring B-10 at 5' bgs. The detected concentrations of benzene, ethyl-benzene, xylenes, TPH-G, and TPH-D exceeded the applicable MTCA Method A cleanup levels of 30  $\mu$ g/kg, 6,000  $\mu$ g/kg, 9,000  $\mu$ g/kg, 30  $\mu$ g/kg, and 2,000  $\mu$ g/kg, respectively. The toluene and TPH-O concentrations did not exceed the MTCA Method A cleanup levels, which have been established at 7,000  $\mu$ g/kg and 2,000  $\mu$ g/kg, respectively.

#### Boring B-11

Concentrations of benzene (1,750  $\mu$ g/kg), ethyl-benzene (4,350  $\mu$ g/kg), toluene (30.2  $\mu$ g/kg), xylenes (7,070  $\mu$ g/kg), TPH-G (1,250  $\mu$ g/kg), TPH-D (9,960  $\mu$ g/kg) and TPH-O (518  $\mu$ g/kg) were detected in the soil sample collected from boring B-11 at 4½ bgs. The detected concentrations of benzene, TPH-G, and TPH-D exceeded the applicable MTCA Method A cleanup levels of 30  $\mu$ g/kg, 30  $\mu$ g/kg, and 2,000  $\mu$ g/kg, respectively. The ethyl-benzene, toluene, xylenes, and TPH-O concentrations did not exceed the MTCA Method A cleanup levels, which have been established at 6,000  $\mu$ g/kg, 7,000  $\mu$ g/kg, 9,000  $\mu$ g/kg, and 2,000  $\mu$ g/kg, respectively.

Based on the elevated concentration of TPH-D detected in soil from boring B-7, follow-up analysis was conducted for Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270C SIM. PAH concentrations detected above the laboratory reporting limits in the sample include the following:

Acenaphthene was detected at a concentration of 1,240  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level (direct contact-soil ingestion) has been established at 4,800,000  $\mu$ g/kg, which the detected concentration did not exceed.

Acenaphthylene was detected at a concentration of 288  $\mu$ g/kg. No MTCA cleanup level has been established for this analyte.

Anthracene was detected at a concentration of 521  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 24,000,000  $\mu$ g/kg, which the detected concentration did not exceed. Benzo(a)anthracene and chrysene were detected at concentrations of 17.8  $\mu$ g/kg and 45.6  $\mu$ g/kg, respectively. No MTCA cleanup levels have been established for these analytes; however, benzo(a)anthracene and chrysene are considered carcinogenic PAHs (cPAHs). Under MTCA regulations, all identified cPAHs are to be considered a single hazardous substance. Each cPAH is weighted individually by a Total Equivelancy Factor (TEF) and the sum of the weighted cPAH concentrations is compared to the

reference chemical benzo(a)pyrene, which has a cleanup level of 100  $\mu$ g/kg. The weighted sum of benzo(a)anthracene and chrysene concentrations from the boring B-7 sample was 2,236  $\mu$ g/kg, which did not exceed the benzo(a)pyrene cleanup level of 100  $\mu$ g/kg.

Fluoranthene was detected at a concentration of 184  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 3,200,000  $\mu$ g/kg, which the detected concentration did not exceed.

Fluorene was detected at a concentration of 3,490 µg/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 3,200,000 µg/kg, which the detected concentration did not exceed.

Naphthalene was detected at a concentration of 5,800 µg/kg, which exceeded the MTCA Method A cleanup level of 5,000 µg/kg.

Phenanthrene was detected at a concentration of 4,200 µg/kg. No MTCA cleanup level has been established for this analyte.

Pyrene was detected at a concentration of 344  $\mu$ g/kg. A MTCA Method A cleanup level has not been established for this analyte; however, the Method B cleanup level has been established at 2,400,000  $\mu$ g/kg, which the detected concentration did not exceed.

Samples collected from the remaining borings did not indicate detectable concentrations of BTEX or TPH. Sample intervals for each boring are presented on the lithologic boring logs included in Appendix B and on the soil analytical tables in Appendix C.

#### 4.2 Groundwater Samples

Terracon compared the groundwater sample analytical results to Ecology's MTCA Method A cleanup levels.

#### Boring B-3

Concentrations of benzene (96.7  $\mu$ g/L), ethyl-benzene (3.0  $\mu$ g/L), and TPH-D (4,140  $\mu$ g/L) were detected in the groundwater sample collected from boring B-3. The detected concentrations of benzene and TPH-D exceeded the applicable MTCA Method A cleanup levels of 5  $\mu$ g/L and 500  $\mu$ g/L, respectively. The ethyl-benzene concentration did not exceed the MTCA Method A cleanup level, which has been established at 700  $\mu$ g/L.

#### Boring B-7

Concentrations of benzene (932  $\mu$ g/L), ethyl-benzene (1,520  $\mu$ g/L), toluene (84.4  $\mu$ g/L), xylenes (4,820  $\mu$ g/L), TPH-G (25,400  $\mu$ g/L), TPH-D (4,970  $\mu$ g/L), and TPH-O (837  $\mu$ g/L) were detected in the groundwater sample collected from boring B-7. The detected concentrations of benzene, ethyl-benzene, xylenes, TPH-G, TPH-D and TPH-O exceeded the applicable MTCA Method A cleanup levels of 5  $\mu$ g/L, 700  $\mu$ g/L, 1,000  $\mu$ g/L, 800  $\mu$ g/L,

500  $\mu$ g/L, and 500  $\mu$ g/L, respectively. The toluene concentration did not exceed the MTCA Method A cleanup level, which has been established at 1,000  $\mu$ g/L.

The sample collected from boring B-12 did not indicate detectable concentrations of BTEX or TPH.

#### 5.0 FINDINGS AND RECOMMENDATIONS

The findings and recommendations of this investigation are as follows:

The objective of the Limited Site Investigation (LSI) was to evaluate the presence of BTEX and TPH above relevant laboratory reporting limits in the on-site soils and groundwater as a result of potential releases from the former operations at the site. Follow-up analysis for the presence of PAH compounds was completed on two of the soil samples that displayed high diesel-range TPH concentrations.

Based on a review of the soil analytical results, the following analytes were identified:

- Benzene was identified in the soil samples collected from borings B-5 through B-7, B-10, and B-11 at concentrations ranging from 29.8 μg/kg to 10,800 μg/kg. The concentrations identified in the samples collected from borings B-5, B-7, B-10, and B-11 exceeded the MTCA Method A cleanup level for benzene, which has been established at 30 μg/kg.
- Ethyl-benzene was identified in the soil samples collected from borings B-5 through B-7, B-10, and B-11 at concentrations ranging from 3.2 μg/kg to 46,900 μg/kg. The concentrations identified in the samples collected from borings B-5, B-7, and B-10 exceeded the MTCA Method A cleanup level for ethyl-benzene, which has been established at 6,000 μg/kg.
- Toluene was identified in the soil samples collected from borings B-5, B-7, B-10, and B-11 at concentrations ranging from 30.2 µg/kg to 52,800 µg/kg. The concentration identified in the sample collected from boring B-5 exceeded the MTCA Method A cleanup level for toluene, which has been established at 7,000 µg/kg.
- Xylenes were identified in the soil samples collected from borings B-5 through B-7, B-10, and B-11 at concentrations ranging from 19.9 μg/kg to 247,000 μg/kg. The concentrations identified in the samples collected from borings B-5, B-7, and B-10 exceeded the MTCA Method A cleanup level for xylenes, which has been established at 9,000 μg/kg.
- TPH-G was identified in the soil samples collected from borings B-5 through B-7, B-10,
   and B-11 at concentrations ranging from 7.2 mg/kg to 3,700 mg/kg. The concentrations

identified in the samples collected from borings B-5, B-7, B-10, and B-11 exceeded the MTCA Method A cleanup level for TPH-G, which has been established at 100 mg/kg or 30 mg/kg when benzene is present.

- o TPH-D was identified in the soil samples collected from borings B-5, B-7, B-10, and B-11 at concentrations ranging from 94.9 mg/kg to 9,960 mg/kg. The concentrations identified in the samples collected from borings B-10 and B-11 exceeded the MTCA Method A cleanup level for TPH-D, which has been established at 2,000 mg/kg.
- TPH-O was identified in the soil samples collected from borings B-5, B-10, and B-11 at concentrations ranging from 98.3 mg/kg to 518 mg/kg. None of the identified concentrations exceeded the MTCA Method A cleanup level for TPH-O, which has been established at 2,000 mg/kg.
- o Follow-up PAH analysis of the soil samples collected from boring B-7 and B-11 detected naphthalene at concentrations of 1,800 μg/kg and 5,800 μg/kg, respectively. The concentration identified in the sample collected from boring B-11 exceeded the MTCA Method A cleanup level for naphthalene, which has been established at 5,000 μg/kg. Acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, chrysene, fluoranthene, fluorene, phenanthrene, and pyrene were also identified in one or both of the samples analyzed for PAHs; however, the concentrations were either below applicable MTCA cleanup levels or no MTCA cleanup level has been established for the analyte.

Groundwater was encountered during the advancement of the soil borings at depths ranging from 6 to 7 feet bgs. Three grab groundwater samples collected from borings B-3, B-7 and B-12, were analyzed for the presence of BTEX and TPH. Benzene was detected at concentrations ranging from <1  $\mu$ g/L to 932  $\mu$ g/L, ethyl-benzene at concentrations from <1  $\mu$ g/L to 1,520  $\mu$ g/L, toluene at concentrations from <1  $\mu$ g/L to 84.4  $\mu$ g/L, and xylenes at concentrations from <3.0  $\mu$ g/L to 4,820  $\mu$ g/L. TPH-G was detected at concentrations ranging from <50.0  $\mu$ g/L to 25,400  $\mu$ g/L, TPH-D at concentrations from <80.0  $\mu$ g/L to 4,970  $\mu$ g/L, and TPH-O at concentrations from <400  $\mu$ g/L to 837  $\mu$ g/L. The concentrations of benzene, ethyl-benzene, xylenes, TPH-G, TPH-D, and TPH-O exceeded the MTCA Method A cleanup levels for the groundwater sample collected from boring B-7, which have been established at 5  $\mu$ g/L, 700  $\mu$ g/L, 1,000  $\mu$ g/L, 500  $\mu$ g/L for benzene, ethyl-benzene, xylenes, TPH-D and 800  $\mu$ g/L for TPH-G when benzene is present or 1,000  $\mu$ g/L when benzene is not present. The concentrations of benzene and TPH-D also exceeded the MTCA Method A cleanup levels for the groundwater sample collected from boring B-3.

The current regulatory status of the site should be evaluated to determine if the findings of the LSI represent a reportable release. Potential reporting scenarios are as follows:

If a release has not previously been reported for the site, then the finding of the LSI

would require reporting of a release by the owner/operator of the UST system to Ecology.

- o If a release has previously been reported for the site and there is an ongoing investigation then reporting would not be required. However the findings of the LSI should be submitted to the owner/operator of the UST system or responsible party for the release for potential submittal to Ecology.
- If the site has received a No Further Action determination from Ecology and the findings of the LSI are consistent with known residual impacts to the site, then no further reporting is required.
- o If the site has received a No Further Action determination from Ecology and the concentration of contaminants detected during the LSI are above known residual impacts to the site, then reporting of a release is required by the owner/operator of the UST system.

Additional investigation and analysis may be warranted based on the reported concentrations of TPH, BTEX and PAHs in the areas surrounding the USTs and the associated fuel dispensers.

If soils located on the site are to be disturbed during future excavations or construction activities, proper procedures should be followed with respect to worker health and safety, and any affected soil or groundwater encountered should be properly characterized, treated and/or disposed in accordance with applicable local, state or federal regulations.

# APPENDIX A

Figure 1 – Topographic Map Figure 2 – Site Plan

SUBJECT SITE (APPROXIMATE)



SITE LOCATION AND TOPOGRAPHIC MAP Love Travel Stops & Country Stores, Inc. Ellensburg, Kittitas County, Washington

| Project Mngr: |     |
|---------------|-----|
|               | SWD |
| Designed By:  |     |
|               | AJD |
| Checked By:   |     |
|               | AJD |
| Approved By:  |     |
| <u></u>       | SWD |
| File Name:    |     |

Terracor

21905 64<sup>th</sup> Avenue West Suite 100 Seattle, Washington (425) 771-3304 Fax: (425) 771-3549 Project No. 81109090

Scale: Not to Scale

Date: August 2010

Drawn By: AJD

Figure No. 1

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES.



**APPENDIX B** 

**Boring Logs** 

|             | LOG OF BOF                                                        | RING       | NC          | ). E   | 3-1      |               |                        |                     |                            | Pa                                   | age 1 of 1      |
|-------------|-------------------------------------------------------------------|------------|-------------|--------|----------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------|
| CL          | ENT .                                                             |            |             |        |          |               |                        |                     |                            |                                      |                 |
| SIT         | Loves E 1512 Highway 97                                           | PRO        | JFC:        | Γ      |          |               |                        |                     |                            |                                      |                 |
| 0,1         | Ellensburg, Washington                                            | ' ' ' '    |             | •      |          | E             | llensb                 | urg L               | .oves                      |                                      |                 |
|             | ,                                                                 |            |             |        | SA       | MPLES         |                        |                     |                            | TESTS                                |                 |
| ŀ           |                                                                   |            |             |        |          |               |                        |                     |                            |                                      |                 |
| 90          | DESCRIPTION                                                       | <br>       | 80          |        |          | ř.            |                        | 8                   | 유                          | 는<br>N                               |                 |
| ြ<br>မြ     | DESCRIPTION                                                       | #=         | λM          | ĸ      |          | ĒŖ            | 3 / ft.                | ~ Ę                 | VAP                        | AMF                                  |                 |
| GRAPHIC LOG |                                                                   | ОЕРТН, ft. | USCS SYMBOL | NUMBER | TYPE     | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | IL S.<br>NT J                        |                 |
| <u>я</u>    |                                                                   | 퓜          | ŝ           | N      | <u>ξ</u> | 뀖             | SP.                    | \$8                 | 出                          | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                 |
| 3-4         | 0.25 3" Asphalt                                                   | _          |             |        |          |               |                        |                     |                            |                                      |                 |
|             | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist                | _          | -           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   |            | -           |        |          |               |                        |                     |                            |                                      |                 |
|             | 2<br>Gravelly SAND, trace Silt                                    | -          |             |        |          |               |                        |                     | ,                          |                                      |                 |
| • ()        |                                                                   |            |             |        | PP       | 14            |                        |                     |                            |                                      |                 |
|             | SILT, with Sand                                                   | _          |             |        |          |               |                        |                     |                            |                                      |                 |
|             | Brown, Medium Stiff, Moist, Organics                              | _          |             |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | _          |             |        | PP       | 3.5           |                        |                     |                            |                                      |                 |
|             | Wet                                                               | 5          | -           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | -          | 1           |        |          |               |                        |                     |                            |                                      |                 |
| 1           | 6                                                                 | -          | 1           |        |          |               |                        |                     |                            | B1                                   |                 |
|             | Brown, Medium Dense, Wet to Saturated                             | _          | 1           |        |          |               |                        |                     |                            | @6FT                                 |                 |
| •           |                                                                   |            |             |        | ١.       |               |                        |                     |                            |                                      |                 |
|             |                                                                   |            | <u> </u>    |        | - DD     |               |                        |                     |                            |                                      |                 |
|             |                                                                   | -          | -           |        | PP       | 28            |                        |                     |                            |                                      |                 |
|             | ·                                                                 | -          | 1           |        |          |               |                        |                     |                            |                                      |                 |
| 1           | • .                                                               | -          | 1           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | 10-        | 1           |        |          |               |                        |                     |                            |                                      | ·               |
|             |                                                                   | _          | ]           |        |          |               |                        |                     |                            |                                      |                 |
|             | 11.5                                                              | -          | _           |        | _        |               |                        |                     |                            |                                      |                 |
|             | BOTTOM OF BORING  Drilling refusal at 11.5 feet bgs.              | -          | ┨           |        |          |               |                        |                     |                            |                                      |                 |
|             | <b>3</b>                                                          | i          | -           |        |          |               | ·                      |                     |                            |                                      |                 |
|             |                                                                   | -          | 1           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | -          | 1           |        |          | ŀ             | i                      |                     |                            |                                      |                 |
| 5           |                                                                   |            | ]           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | 15         |             |        |          |               |                        |                     |                            |                                      |                 |
| 5           |                                                                   | _          | 1           |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | -          | 1           | •      |          |               |                        |                     |                            |                                      |                 |
|             |                                                                   | -          | 1           |        |          |               |                        |                     |                            |                                      |                 |
| 5           |                                                                   | -          |             |        |          |               |                        |                     |                            |                                      |                 |
| The         | stratification lines represent the approximate boundary lines     | ·          | 1           |        | * ND     | indicat       | es a rea               | ding of l           | ess tha                    | n the field                          | detection limit |
| _           | ween soil and rock types: in-situ, the transition may be gradual. |            |             | (FD    | <u> </u> |               |                        |                     |                            | iene equiv                           | valents (ppmi). |
| ·           | ATER LEVEL OBSERVATIONS, ft                                       |            |             |        |          |               | ING ST                 |                     |                            |                                      | 08-16-10        |
| WL          |                                                                   | 7          | -6          | 77     | <b>-</b> |               | ING CO                 |                     | ,-                         |                                      | 08-16-10        |
| WL          | Ā Ā IIGII                                                         | UL         | L           | JI     |          |               |                        |                     | <del></del>                | RILLER                               |                 |
| <b>W</b> L  | .                                                                 |            |             |        |          | LOG           | GED                    | Α                   | JD   J                     | OB#                                  | 81109090        |

|                                         | LOG (                                                                                                                           | OF BORING  | NC          | ). E   | 3-2           |               |                        |                      |                            | Pa                                   | age 1 of 1                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------|---------------|---------------|------------------------|----------------------|----------------------------|--------------------------------------|------------------------------------|
| CL                                      | ENT Loves                                                                                                                       |            | -           |        |               |               |                        |                      |                            |                                      |                                    |
| SIT                                     |                                                                                                                                 | PRO        | JEC         | Γ      |               | F             | llensb                 | ura I                | oves                       | _                                    |                                    |
| -                                       | Elicitodaly, Washington                                                                                                         |            |             |        | SA            | MPLES         |                        | uig L                |                            | TESTS                                |                                    |
| GRAPHIC LOG                             | DESCRIPTION                                                                                                                     | DЕРТН, ft. | USCS SYMBOL | NUMBER | ТҮРЕ          | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, %  | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                    |
|                                         | 9.25 3" Asphalt  Sandy GRAVEL, with Silt Brown, Medium Dense, Moist                                                             |            |             |        |               |               |                        |                      |                            |                                      |                                    |
|                                         | BOTTOM OF BORING  Boring terminated due to presence of concrete or asphalt at 1.5 feet.                                         |            |             |        |               | -             |                        |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 |            |             |        |               |               | -                      |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 | 5          |             |        |               |               |                        |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 |            |             |        |               |               |                        |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 |            |             |        |               |               |                        |                      |                            |                                      |                                    |
|                                         | ·                                                                                                                               |            |             |        |               |               |                        |                      | -                          |                                      |                                    |
|                                         |                                                                                                                                 | 10-        |             |        |               |               |                        |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 | .   -      |             |        |               |               | ٠                      |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 |            | :           |        |               | :             |                        |                      |                            |                                      |                                    |
|                                         |                                                                                                                                 |            |             |        |               |               |                        |                      |                            |                                      |                                    |
| T 09/03/10                              |                                                                                                                                 | 15—        |             |        | •             |               |                        |                      |                            |                                      |                                    |
| ACON.GD                                 |                                                                                                                                 |            | :           |        |               |               |                        |                      |                            |                                      |                                    |
| DRAFT LOGS. GPJ TERRACON. GDT 09/03/10. |                                                                                                                                 |            |             |        |               |               |                        |                      |                            |                                      |                                    |
| The                                     | stratification lines represent the approximate boundary lines<br>ween soil and rock types: in-situ, the transition may be gradu | al.        |             | (FDL   | ND<br>_) of c | indicat       | es a read<br>part per  | ling of I<br>million | ess tha<br>isobuty         | n the field<br>lene equiv            | detection limit<br>/alents (ppmi). |
| W.                                      | ATER LEVEL OBSERVATIONS, ft                                                                                                     |            |             |        |               | _             | ING ST                 |                      |                            | •                                    | 08-16-10                           |
| ន WL                                    | Ÿ Ţ                                                                                                                             | 1<br>      | سے ب        | •      |               |               | ING CO                 |                      |                            |                                      | 08-16-10                           |
| WL WL                                   | <u>Λ</u>                                                                                                                        | :          | L           |        |               |               | AMS                    |                      |                            | RILLER                               |                                    |
| ğ WL                                    |                                                                                                                                 |            |             |        | - 1           | LOG           | GED                    | Α                    | JD   J                     | OB#                                  | 81109090                           |

|             | LOG OF BO                                                                                                                                                                        | RING       | NC          | ). E         | 3-3      |                       |                                                  |                     |                            | P                                    | age 1 of 1                                                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------------|----------|-----------------------|--------------------------------------------------|---------------------|----------------------------|--------------------------------------|-------------------------------------------------------------------|
| CLI         | ENT Loves                                                                                                                                                                        |            |             |              |          |                       |                                                  |                     |                            |                                      |                                                                   |
| SIT         | E 1512 Highway 97                                                                                                                                                                | PRO        | JEC         | T            |          |                       |                                                  |                     |                            |                                      |                                                                   |
|             | Ellensburg, Washington                                                                                                                                                           |            | ,           | <del>,</del> |          |                       | llenst                                           | ourg L              | .oves                      |                                      |                                                                   |
|             |                                                                                                                                                                                  |            |             |              | SAI      | MPLES                 | 3<br>                                            | -                   | ı                          | TESTS                                | I                                                                 |
| GRAPHIC LOG | DESCRIPTION                                                                                                                                                                      | DEРТН, ft. | USCS SYMBOL | NUMBER       | ТҮРЕ     | RECOVERY, in.         | SPT - N<br>BLOWS / ft.                           | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                                                   |
|             | <sub>0.5</sub> 4" Asphalt                                                                                                                                                        |            |             |              |          |                       |                                                  |                     |                            |                                      |                                                                   |
|             | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  SILT, with Sand Brown, Medium Stiff, Wet to Saturated  8.5  GRAVEL, with Sand and Silt Brown, Medium Dense, Wet to Saturated | 5          |             |              | PP<br>PP | 28                    |                                                  |                     |                            | B3<br>@7.5Ft                         |                                                                   |
|             | <b>BOTTOM OF BORING</b> Drilling refusal at 12 feet.                                                                                                                             | 15         |             |              |          |                       |                                                  |                     |                            | the Folding                          |                                                                   |
| betw<br>WA  | stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.  TER LEVEL OBSERVATIONS, ft                      | -<br>a     |             | (FD          | L) of c  | one (1)<br>BOR<br>BOR | es a read<br>part per<br>ING ST<br>ING CO<br>AMS | Million ARTE OMPLI  | isobuty<br>D<br>ETED       | PRILLER                              | detection limit<br>valents (ppmi).<br>08-16-10<br>08-16-10<br>ESN |

|             | LOG OF BOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RING       | NC              | ). E   | 3-4      |               |                        |                     |                            | Pa                                   | age 1 of 1      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|--------|----------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------|
| CLI         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            |                                      |                 |
| SITI        | Loves<br>1512 Highway 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRO        | JEC             | <br>T  |          |               |                        |                     |                            |                                      |                 |
| 0.11        | Ellensburg, Washington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 0.0             | •      |          | E             | Ellenst                | urg L               | oves                       |                                      |                 |
|             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | SAMPLES SAMPLES |        |          |               |                        |                     |                            |                                      |                 |
| GRAPHIC LOG | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DЕРТН, ft. | USCS SYMBOL     | NUMBER | ТУРЕ     | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY | ·               |
| 3-4         | 0.25 3" Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             | Sandy GRAVEL, with Silt<br>Brown, Medium Dense, Moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |        | pp       | 25            |                        |                     |                            | B4<br>@3.5ft                         |                 |
|             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |        |          |               | ļ                      |                     |                            |                                      |                 |
|             | BOTTOM OF BORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5—         |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | '               |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 | -      |          |               | !                      |                     |                            |                                      | ·               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            | İ                                    |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10—<br>—   |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>       |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · _        |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15         |                 |        |          |               |                        | 1                   |                            |                                      | •               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 |        |          |               |                        |                     |                            |                                      |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | -               |        |          |               | [                      |                     |                            |                                      |                 |
| The         | stratification lines represent the approximate boundary lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | <u> </u>        |        | * ND i   | l<br>indicat  | es a rea               | l<br>ding of l      | l<br>ess tha               | n the field                          | detection limit |
| betw        | een soil and rock types: in-situ, the transition may be gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 | (FD    | L) of c  | one (1)       | part per               | million             | isobuty                    | lene equiv                           | alents (ppmi).  |
|             | TER LEVEL OBSERVATIONS, ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                 |        |          |               | ING ST                 |                     |                            |                                      | 08-16-10        |
| WL          | i de la constant de l | 7          | -,-             | 75     | <b>,</b> |               | ING CO                 |                     |                            |                                      | 08-16-10        |
| WL          | ă ă IIGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۵L         | _Ł              | J      |          |               | AMS                    |                     |                            | RILLER                               |                 |
| WL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |        | í        | LOG           | GED                    | Δ                   | JD   JG                    | OR #                                 | 811090901       |

|                                                  | LOG OF BORING NO. B-5 Page 1 of |                                                                                                                                   |              |             |            |          |               |                        |                     |                            |                                        | age 1 of 1                         |
|--------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------|----------|---------------|------------------------|---------------------|----------------------------|----------------------------------------|------------------------------------|
| Ī                                                | CLI                             | ENT Loves                                                                                                                         | r            |             |            |          |               | •                      |                     |                            |                                        |                                    |
| ł                                                | SIT                             |                                                                                                                                   | PRO          | JEC         |            |          |               |                        |                     |                            | ······································ | <u></u>                            |
| ļ                                                |                                 | Ellensburg, Washington                                                                                                            | ļ            | 1           |            |          |               | llensk                 | urg L               | oves                       | ·                                      |                                    |
| ļ                                                |                                 |                                                                                                                                   |              |             | -          | SAN      | MPLES         | 3                      |                     | <u> </u>                   | TESTS                                  |                                    |
|                                                  | GRAPHIC LOG                     | DESCRIPTION                                                                                                                       | ОЕРТН, А.    | USCS SYMBOL | NUMBER     | TYPE     | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY   | :<br>-                             |
|                                                  | A.A                             | 0.25 3" Asphalt                                                                                                                   |              |             |            |          |               |                        |                     |                            |                                        |                                    |
|                                                  |                                 | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  2.5  SILT, with Sand                                                          | -<br>-<br>-  |             |            | PP       | 30            |                        |                     |                            |                                        |                                    |
|                                                  |                                 | Gray, Medium Stiff, Moist, Organics, TPH Odor                                                                                     | 5            |             |            |          |               | ·                      |                     | -                          | B3<br>@3ft                             |                                    |
|                                                  | ;                               | BOTTOM OF BORING                                                                                                                  |              |             |            |          |               |                        | -                   |                            |                                        |                                    |
|                                                  |                                 |                                                                                                                                   | 10           |             |            |          |               |                        |                     |                            |                                        |                                    |
| 9/03/10                                          |                                 |                                                                                                                                   |              |             |            |          |               |                        |                     |                            |                                        | ·                                  |
| BOREHOLE 99 DRAFT LOGS.GPJ TERRACON.GDT 09/03/10 |                                 |                                                                                                                                   | 15—          |             |            |          |               |                        |                     |                            |                                        | , .                                |
| FT LOGS                                          | betw                            | stratification lines represent the approximate boundary lines<br>een soil and rock types: in-situ, the transition may be gradual. | <del>-</del> |             |            | L) of c  | one (1)       | part per               | million             | isobuty                    |                                        | detection limit<br>valents (ppmi). |
| DRA                                              |                                 | TER LEVEL OBSERVATIONS, ft                                                                                                        |              |             |            |          |               | ING ST                 |                     |                            |                                        | 08-16-10                           |
| E 39                                             | WL                              | ă ă Îu Jet                                                                                                                        | 7            | -6          | <b>7</b> F | <b>,</b> |               | ING CO                 |                     |                            |                                        | 08-16-10                           |
| SEHO!                                            | WL                              | ž Ž IZII                                                                                                                          | CIL          | L           | J          |          | RIG           | AMS                    | -                   |                            | RILLER                                 |                                    |
| 꼆                                                | WL                              | J                                                                                                                                 |              |             |            |          | LOG           | GED                    | A                   | JD J                       | OB#                                    | 81109090                           |

| ĺ                                                  |             | LOG OF BOF                                                                                                                        | RING       | NC          | ). E     | 3-6  |               |                        |                     |                            | P                                    | age 1 of 1                        |
|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------|------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------------|
|                                                    | CLI         | ENT Loves                                                                                                                         |            |             |          |      |               |                        |                     |                            |                                      |                                   |
| I                                                  | SIT         | E 1512 Highway 97                                                                                                                 | PRO        | JEC.        | Τ        |      |               |                        | <u> </u>            |                            |                                      |                                   |
| ŀ                                                  |             | Ellensburg, Washington                                                                                                            |            | 1           |          | SΔI  | MPLES         | llensb                 | urg L               | .oves                      | TESTS                                |                                   |
| ı                                                  |             |                                                                                                                                   |            | }           |          | U/A  | VII LEC       |                        |                     |                            |                                      |                                   |
|                                                    | GRAPHIC LOG | DESCRIPTION                                                                                                                       | DEPTH, ft. | USCS SYMBOL | NUMBER   | TYPE | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                   |
|                                                    | N.          | 0.25 3.5" Asphalt                                                                                                                 |            |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             | Sandy GRAVEL, with Silt<br>Brown, Medium Dense, Moist                                                                             | _          |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             | 2.5                                                                                                                               | -          |             |          | PP   | 39            |                        |                     |                            |                                      | -                                 |
|                                                    |             | SILT, with Sand<br>Brown, Medium Stiff, Moist to Wet                                                                              | _          |             |          |      |               |                        |                     |                            |                                      | ·                                 |
| l                                                  |             | SILT, trace Sand Gray, Medium Stiff, Wet TPH Odor                                                                                 | _          |             |          |      |               |                        |                     |                            | B6<br>@5ft                           |                                   |
| Ì                                                  |             | BOTTOM OF BORING                                                                                                                  | 5          |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             |                                                                                                                                   |            |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             |                                                                                                                                   | <br>       |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             |                                                                                                                                   | 10-        |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             |                                                                                                                                   | -          |             |          |      |               |                        |                     |                            |                                      |                                   |
|                                                    |             |                                                                                                                                   |            |             |          |      |               |                        |                     |                            |                                      |                                   |
| 9/03/10                                            |             |                                                                                                                                   | _<br>_     |             |          |      |               |                        | -                   |                            |                                      |                                   |
| N.GDT C                                            |             |                                                                                                                                   | 15         |             |          |      |               |                        |                     |                            |                                      |                                   |
| BOREHOLE 99 DRAFT LOGS, GPJ TERRACON, GDT 09/03/10 |             |                                                                                                                                   | _          |             |          |      |               |                        |                     |                            |                                      | -                                 |
| S.GP.                                              |             |                                                                                                                                   | <u> </u>   |             |          |      |               |                        |                     | <u> </u>                   |                                      |                                   |
| 100                                                |             | stratification lines represent the approximate boundary lines<br>een soil and rock types: in-situ, the transition may be gradual. |            |             |          |      |               |                        |                     |                            |                                      | detection limit<br>alents (ppmi). |
| DRAF                                               |             | TER LEVEL OBSERVATIONS, ft                                                                                                        |            |             |          |      | BOR           | NG ST                  | ARTE                | D                          |                                      | 08-16-10                          |
| В<br>В                                             | WL          |                                                                                                                                   |            | - 61        | <b>,</b> |      |               | ING CO                 |                     |                            |                                      | 08-16-10                          |
| 걸                                                  | WL          | i de la                                                                                       | حال        | _L          | JI       |      | RIG           | AMS                    |                     |                            | RILLER                               |                                   |
| 띪                                                  | WL          |                                                                                                                                   |            |             |          |      | LOG           | GED                    | A                   | JD J                       | OB#                                  | 81109090                          |

|                     |                                                                                   | LOG O                                                   | F BOR       | ING        | NC          | ). E   | 3-7             |                    |                        |                     |                            | Pa                                   | age 1 of 1                        |
|---------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|-------------|------------|-------------|--------|-----------------|--------------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------------|
| CL                  | LIENT                                                                             |                                                         |             |            |             |        |                 | -                  |                        |                     |                            | -                                    |                                   |
| CI                  | Love:                                                                             |                                                         |             | PRO        | IEC:        | ÷      |                 |                    |                        |                     |                            |                                      |                                   |
| 21                  | ITE 1512 High<br>Ellensburg, W                                                    |                                                         |             | FRU        | JEC         | ı      |                 | F                  | Ellensb                | ura I               | oves                       |                                      |                                   |
|                     | Literiaburg, VV                                                                   | usimigion                                               |             |            |             |        | SAI             | MPLES              |                        |                     | .0100                      | TESTS                                |                                   |
|                     |                                                                                   | ·                                                       |             |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| GRAPHIC LOG         | DESC                                                                              | RIPTION                                                 |             |            | USCS SYMBOL |        |                 | RECOVERY, in.      |                        | %                   | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                   |
| 2 2                 | BLOO                                                                              | idi 11014                                               |             | ŧ.         | SYM         | K.     |                 | ER.                | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | PPA                        | AMP                                  |                                   |
| 후                   |                                                                                   |                                                         |             | DEPTH, ft. | SS          | NUMBER | ļщ              | 6                  | 1-N                    | 岜                   | 310                        |                                      |                                   |
| 유                   |                                                                                   |                                                         |             |            | ΩŠ          | 3      | ТУРЕ            | . Ä                | SP.                    | \$8                 | 品品                         | SES                                  |                                   |
|                     | <sub>0.5</sub> 4" Asphalt                                                         |                                                         |             |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| $\bowtie$           | Sandy GRAVEL, with                                                                | Silt                                                    |             | _          |             |        |                 |                    |                        |                     | •                          |                                      | •                                 |
| <b>&gt;&gt;&gt;</b> | 1.25 Brown, Medium Dens                                                           | se, Moist (Fill)                                        |             |            |             |        | 1               |                    |                        |                     |                            |                                      |                                   |
|                     | Sandy GRAVEL trace                                                                | e Silt                                                  | _/          | -          |             |        | PP              | 28                 |                        |                     |                            | :                                    |                                   |
|                     | Sandy GRAVEL, trace<br>Gray, Medium Dense                                         | , Moist                                                 |             |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     | 3.5<br>SILT, with Sand                                                            |                                                         |             | -          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| $\  \  \ $          | Gray, Medium Stiff, V                                                             | Vet                                                     |             |            |             |        | PP              | 39                 |                        |                     | -                          |                                      |                                   |
|                     |                                                                                   |                                                         |             |            | 1           |        | ļ               | 00                 |                        |                     |                            |                                      |                                   |
| $\  \  \ $          |                                                                                   |                                                         |             | 5          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         | Ţ           |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         | Ā           |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   | •                                                       |             |            |             | l      |                 |                    |                        |                     |                            |                                      |                                   |
|                     | TPH Odor                                                                          |                                                         |             | _          |             | ļ      | PP              | 35                 |                        |                     |                            | B7                                   | ·                                 |
|                     |                                                                                   |                                                         |             |            |             |        |                 |                    | i<br>I                 |                     |                            | @8ft                                 |                                   |
|                     |                                                                                   | - · ·                                                   |             |            |             |        |                 |                    | }                      | 1                   |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | 10         |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             |            | }           |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     | BOTTOM OF BORING                                                                  | 3                                                       |             | _          |             |        | 1               |                    | -                      |                     |                            |                                      |                                   |
| 1                   | Drilling refusal at 12 t                                                          |                                                         |             |            | ĺ           |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| 1                   |                                                                                   |                                                         |             |            |             |        |                 |                    | }                      |                     |                            |                                      |                                   |
| 2                   |                                                                                   |                                                         |             |            |             | l      |                 |                    |                        |                     |                            |                                      |                                   |
| 88                  |                                                                                   |                                                         |             | 15         |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| 3                   |                                                                                   |                                                         |             |            |             |        | 1               |                    |                        |                     |                            |                                      |                                   |
| 3                   |                                                                                   |                                                         |             |            |             |        | 1               |                    | 1                      |                     |                            |                                      |                                   |
| 5                   |                                                                                   |                                                         |             | _          | ł           |        |                 |                    |                        |                     |                            |                                      |                                   |
|                     |                                                                                   |                                                         |             | _          | ł           |        |                 |                    |                        |                     |                            |                                      |                                   |
| <u>-</u>            |                                                                                   |                                                         |             |            |             | I      | * N/D 1         | ا - دالمد          |                        | din = -f'           | one #L                     | n the F-1-1                          | dotocijen !!''                    |
| Th<br>be            | ne stratification lines represent the appetence soil and rock types: in-situ, the | proximate boundary lines<br>e transition may be gradual | l <b>.</b>  |            |             | (FD    | ∸ אט<br>L) of d | inaicat<br>one (1) | es a rea<br>) part pei | ung of I<br>million | ess tna<br>isobuty         | n tne tield<br>lene equiv            | detection limit<br>alents (ppmi). |
|                     | ATER LEVEL OBSERVATION                                                            |                                                         | <del></del> |            |             |        |                 |                    | ING ST                 |                     |                            |                                      | 08-16-10                          |
| 3                   | L \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                            |                                                         |             |            |             |        | - 1             |                    | ING C                  |                     |                            |                                      | 08-16-10                          |
| W                   |                                                                                   | c                                                       | <b>2</b> [[ | ar         | -6          | 7      | <b>7</b>        |                    | AMS                    |                     |                            | RILLER                               |                                   |
|                     |                                                                                   |                                                         | -11         |            |             |        |                 |                    |                        |                     |                            |                                      |                                   |
| Š WI                | L (                                                                               |                                                         |             |            |             |        | - 1             | LOG                | GED                    | A                   | JD J                       | UB #                                 | 81109090                          |

|             | LOG OF BO                                                                                                                       | ORING      | NC          | ). E   | 3-8             |                   |                                       |                     |                            | Pa                                   | age 1 of 1                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------|-----------------|-------------------|---------------------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------------|
| CĻI         | ENT                                                                                                                             |            |             |        |                 |                   |                                       |                     |                            |                                      |                                   |
| SIT         | Loves E 1512 Highway 97                                                                                                         | DDC        | JEC.        | т      | -               | · · · · · · · ·   | ·                                     |                     |                            |                                      |                                   |
| 311         | Ellensburg, Washington                                                                                                          | FRC        | JEC         | '      |                 | F                 | llenst                                | ura l               | OVAS                       |                                      |                                   |
|             | Eliensburg, Washington                                                                                                          |            | T           |        | SAI             | MPLES             |                                       | uig L               | 0463                       | TESTS                                |                                   |
|             |                                                                                                                                 |            | }           |        |                 |                   |                                       |                     |                            |                                      |                                   |
| CLOG        | DESCRIPTION                                                                                                                     | #          | YMBOL       | <br>~  |                 | ∃RY, in.          | /ft.                                  | % 'L                | APOR<br>PM)*               | MPLE<br>D<br>ATORY                   |                                   |
| GRAPHIC LOG |                                                                                                                                 | DEPTH, ft. | USCS SYMBOL | NUMBER | TYPE            | RECOVERY, in.     | SPT - N<br>BLOWS / ft.                | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY | :                                 |
|             | <sub>0.5</sub> 5" Asphalt                                                                                                       |            |             |        |                 |                   |                                       |                     |                            |                                      |                                   |
| No.         | Sandy GRAVEL, with Silt<br>Brown, Medium Dense, Moist                                                                           | -          |             |        | PP              | 30                | · · · · · · · · · · · · · · · · · · · |                     |                            |                                      |                                   |
|             | 2.5  SILT, with Sand Brown, Medium Stiff, Moist                                                                                 | -          |             |        |                 |                   |                                       |                     |                            |                                      |                                   |
|             | 5                                                                                                                               | -          |             |        | PP              | 38                |                                       |                     |                            |                                      |                                   |
| <b>1000</b> | Sandy GRAVEL, trace Silt Brown, Medium Dense, Wet to Saturated  ∑                                                               | 5          |             | -      |                 | ·                 |                                       |                     |                            | B8<br>@6ft                           |                                   |
|             |                                                                                                                                 | -          | -           |        | PP              | 26                | ·                                     |                     |                            |                                      |                                   |
|             |                                                                                                                                 | 10-        |             |        |                 | ,                 |                                       |                     | ·                          |                                      |                                   |
|             | 12                                                                                                                              |            |             |        |                 |                   |                                       | :                   |                            |                                      |                                   |
|             | BOTTOM OF BORING                                                                                                                | -          |             | :      |                 |                   |                                       |                     |                            |                                      |                                   |
|             |                                                                                                                                 | -          |             |        |                 |                   |                                       |                     |                            |                                      |                                   |
|             |                                                                                                                                 | 15         |             |        |                 |                   |                                       |                     |                            |                                      | -                                 |
|             |                                                                                                                                 |            |             |        |                 |                   |                                       |                     |                            |                                      |                                   |
| The betw    | stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. |            |             | (FD    | * ND<br>L) of c | ndicat<br>one (1) | es a rea<br>part per                  | ding of l           | ess tha<br>isobuty         | n the field<br>lene equiv            | detection limit<br>alents (ppmi). |
| :—          | TER LEVEL OBSERVATIONS, ft                                                                                                      |            |             |        |                 |                   | ING ST                                |                     |                            |                                      | 08-16-10                          |
| WL          |                                                                                                                                 |            |             |        | - 1             |                   | ING CO                                |                     |                            |                                      | 08-16-10                          |
| WL          | <u>x</u> <u>x</u> <u>T</u>                                                                                                      | rac        |             |        | 7               |                   |                                       |                     |                            | RILLER                               |                                   |
| WL          |                                                                                                                                 |            |             |        | - [             | LOG               | GED                                   | A                   | JD J                       | OB#                                  | 81109090                          |

|                   |                    |                                        |                                                      | LOG OF BO                             | RING       | NC          | ). E       | 3-9             |                    |                        |                      |                            | Pa                                   | age 1 of 1                        |  |  |  |
|-------------------|--------------------|----------------------------------------|------------------------------------------------------|---------------------------------------|------------|-------------|------------|-----------------|--------------------|------------------------|----------------------|----------------------------|--------------------------------------|-----------------------------------|--|--|--|
| CLI               | ENT                | -                                      | Loves                                                |                                       |            |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
| SIT               | Έ                  | 151                                    | 2 Highway 97                                         |                                       | PRO        | JEC         | Т          |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   |                    | Ellensl                                | burg, Washingtor                                     | 1                                     |            |             |            |                 |                    | llenst                 | urg L                | oves                       |                                      |                                   |  |  |  |
|                   |                    |                                        |                                                      |                                       |            |             |            | SAI             | MPLES              | 3                      |                      | I                          | TESTS                                | ,                                 |  |  |  |
| GRAPHIC LOG       |                    |                                        | DESCRIPTION                                          |                                       | DЕРТН, ft. | USCS SYMBOL | NUMBER     | TYPE            | RECOVERY, in.      | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, %  | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                   |  |  |  |
|                   | 0.5                | 4" Asphalt                             |                                                      |                                       |            |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   | 2.5                |                                        | <u>/EL</u> , with Silt<br>um Dense, Moist            | · · · · · · · · · · · · · · · · · · · | <br>-<br>- |             |            | PP              | 24                 |                        |                      |                            |                                      |                                   |  |  |  |
|                   | 3.5                | <u>SILT</u> , with Sa<br>Brown, Medi   | and<br>um Stiff, Moist to W                          | /et                                   | _          |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   |                    | Sandy GRAV                             | EL, trace Silt                                       | Caturated                             |            |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   |                    | Brown, Medi                            | um Dense, Wet to                                     | Saturated .                           | 5—<br>5—   |             |            | PP              | 30                 | -                      |                      |                            |                                      |                                   |  |  |  |
|                   |                    |                                        |                                                      | Ā                                     | -          |             |            | PP              | 7                  |                        |                      |                            | B9<br>@7ft                           |                                   |  |  |  |
|                   |                    |                                        |                                                      | ·                                     | 10         |             | ·          |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   |                    |                                        |                                                      |                                       | _          |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
|                   |                    |                                        |                                                      |                                       | -          |             |            | PP              | 30                 |                        |                      |                            |                                      | -                                 |  |  |  |
|                   |                    |                                        |                                                      |                                       | 15-        |             |            |                 |                    |                        |                      | -                          |                                      |                                   |  |  |  |
| The betw WL WL WL | 16                 | BOTTOM OF                              | BORING                                               |                                       |            |             |            |                 |                    |                        |                      |                            |                                      |                                   |  |  |  |
| The betw          | stratifi<br>veen s | cation lines represoil and rock types: | ent the approximate bou<br>in-situ, the transition m | undary lines<br>ay be gradual.        | -          |             | (FD        | * ND<br>L) of c | indicat<br>one (1) | es a read<br>part per  | ding of I<br>million | ess tha<br>isobuty         | n the field<br>lene equiv            | detection limit<br>alents (ppmi). |  |  |  |
| § WA              |                    | LEVEL OBSEF                            | <del>,</del>                                         |                                       |            |             |            |                 | BOR                | ING ST                 | ARTE                 | D                          |                                      | 08-16-10                          |  |  |  |
| WL                | ፟ 7                |                                        | ¥                                                    | 76-                                   |            |             | <b>_</b> _ | <b>.</b> [      | BOR                | ING CO                 | OMPLI                | ETED                       |                                      | 08-16-10                          |  |  |  |
| WL<br>WL          | Ā                  |                                        | <u>V</u>                                             | <b>Ter</b> i                          | حال        | _[          |            |                 |                    | AMS                    |                      |                            | RILLER                               |                                   |  |  |  |
| SI AAL            | 1                  |                                        |                                                      | 1                                     |            |             |            | 1               | LOG                | JEU                    | Α                    | JD   J                     | OB#                                  | 81109090                          |  |  |  |

00/05/40

|                                                  | LOG OF BOR                                                                                                                        | ING        | NO          | . B    | -10  | )             |                        |                     |                            | Pa                                   | age 1 of 1                         |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------|------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|------------------------------------|
| CL                                               | IENT                                                                                                                              |            |             |        |      |               |                        |                     |                            |                                      |                                    |
| SIT                                              | Loves E 1512 Highway 97                                                                                                           | PRO        | JEC         | T      |      |               |                        |                     |                            |                                      |                                    |
|                                                  | Ellensburg, Washington                                                                                                            |            |             |        |      |               | llensb                 | urg L               | oves                       |                                      |                                    |
|                                                  |                                                                                                                                   |            |             | ļ      | SAI  | MPLES         | 3                      |                     | ι                          | TESTS                                |                                    |
| GRAPHIC LOG                                      | DESCRIPTION                                                                                                                       | DЕРТН, ft. | USCS SYMBOL | NUMBER | TYPE | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                    |
|                                                  | <sub>0.5</sub> 6" Asphalt                                                                                                         |            |             |        |      |               |                        |                     |                            |                                      |                                    |
|                                                  | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  4  SILT, with Sand, trace Gravel Gray, Medium Stiff, Wet, Organics< TPH Odor  | 5          |             |        | PP   | 30            |                        |                     |                            | B10<br>@5ft                          |                                    |
|                                                  | BOTTOM OF BORING                                                                                                                  | 1 -        |             |        |      |               |                        |                     |                            |                                      |                                    |
| BOREHOLE 99 DRAFT LOGS.GPJ TERRACON.GDT 09/03/10 |                                                                                                                                   | 10         |             |        |      |               |                        |                     |                            |                                      |                                    |
| The bety                                         | e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual. |            | •           |        |      |               |                        |                     |                            |                                      | detection limit<br>valents (ppmi). |
| MY<br>F                                          | ATER LEVEL OBSERVATIONS, ft                                                                                                       |            |             | •      |      |               | ING ST                 |                     |                            |                                      | 08-16-10                           |
| ® WL                                             |                                                                                                                                   |            |             |        |      | BOR           | ING C                  | OMPLI               | ETED                       |                                      | 08-16-10                           |
| B WL                                             |                                                                                                                                   | عال        | _[          |        |      |               | AMS                    | PP 95               | -+-                        | RILLER                               |                                    |
| Mr<br>Mr                                         |                                                                                                                                   |            |             |        |      | LOG           | GED                    | Α                   | JD J                       | OB#                                  | 81109090                           |

|                                                    |             | LOG OF BOR                                                                | ING         | NO          | . В       | -11      |               |                        |                     |                            | Pa                                   | age 1 of 1           |  |  |  |  |
|----------------------------------------------------|-------------|---------------------------------------------------------------------------|-------------|-------------|-----------|----------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|----------------------|--|--|--|--|
|                                                    | CLI         | IENT Loves                                                                |             |             |           |          |               |                        |                     |                            |                                      |                      |  |  |  |  |
| ı                                                  | SIT         |                                                                           | PRO         | JEC         | <u></u> Г |          |               |                        |                     |                            |                                      |                      |  |  |  |  |
| ļ                                                  |             | Ellensburg, Washington                                                    |             | ·           |           |          |               |                        | urg Lo              | ırg Loves                  |                                      |                      |  |  |  |  |
| ı                                                  |             |                                                                           |             |             |           | SAN      | <b>NPLES</b>  | 5                      | <br> T              |                            | TESTS                                |                      |  |  |  |  |
|                                                    | GRAPHIC LOG | DESCRIPTION                                                               | DЕРТН, ft.  | USCS SYMBOL | NUMBER    | TYPE     | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                      |  |  |  |  |
| ١                                                  |             | <sub>0.5</sub> 6" Asphalt                                                 |             |             | -         |          |               |                        |                     |                            |                                      |                      |  |  |  |  |
|                                                    |             | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  3.5                   |             |             |           | PP       | 43            |                        |                     |                            |                                      |                      |  |  |  |  |
|                                                    |             | SILT, with Sand, trace Gravel Gray, Medium Stiff, Wet, Organics, TPH Odor | -<br>-<br>5 |             |           |          |               |                        |                     |                            | B11<br>@4.5ft                        |                      |  |  |  |  |
| ŀ                                                  | Щ           | 5.5 BOTTOM OF BORING                                                      | -           |             |           |          |               |                        |                     | -                          |                                      |                      |  |  |  |  |
| BOREHOLE 99 DRAFT LOGS, GPJ TERRACON, GDT 09/03/10 |             |                                                                           | 10          |             |           |          |               |                        |                     |                            |                                      |                      |  |  |  |  |
| GS,GP                                              | The         | e stratification lines represent the approximate boundary lines           | l           |             |           | ND i     | ndicate       | es a read              | ding of les         | s thar                     | the field                            | detection limit      |  |  |  |  |
| AFTLC                                              | betw        | ween soil and rock types: in-situ, the transition may be gradual.         |             |             |           | .) of c  | ne (1)        | part per               | million is          | obutyl                     |                                      | alents (ppmi).       |  |  |  |  |
| 99<br>PR                                           | WL          | ATER LEVEL OBSERVATIONS, ft                                               |             |             |           |          |               |                        | ARTED               |                            |                                      | 08-16-10<br>08-16-10 |  |  |  |  |
| OLE S                                              | WL          |                                                                           | ar          | ſ           | )[        | <b>)</b> | RIG           |                        | PP 950              |                            | RILLER                               |                      |  |  |  |  |
| SOREH<br>M                                         | WL          | -                                                                         |             |             |           | •        | LOG           |                        |                     | ) JC                       |                                      | 81109090             |  |  |  |  |

|              | LOG OF BOR                                                                                                                         | ING                         | NO          | . B        | -12  |               |                        |                     |                            | Pa                                   | age 1 of 1                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|------------|------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------------|
| CLI          | ENT Loves                                                                                                                          |                             |             |            |      | ·             | -                      |                     |                            |                                      |                                   |
| SIT          | E 1512 Highway 97                                                                                                                  | PRO                         | JEC         | T          |      |               |                        |                     |                            |                                      |                                   |
|              | Ellensburg, Washington                                                                                                             |                             | Г           | ı          | 241  | MPLES         | llenst                 | urg L               | .oves                      | TESTS                                |                                   |
|              |                                                                                                                                    |                             | į           |            | JAI  | VIFEE         | ,<br>                  |                     |                            | 12313                                |                                   |
| GRAPHIC LOG  | DESCRIPTION                                                                                                                        | DEPTH, ft.                  | USCS SYMBOL | NUMBER     | ТҮРЕ | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                                   |
| <b>7</b> 0 B | <sub>0.5</sub> 6" Asphalt                                                                                                          |                             |             |            |      |               |                        |                     |                            |                                      |                                   |
|              | <u>Sandy GRAVEL</u> , with Silt<br>Brown, Medium Dense, Moist                                                                      |                             |             |            | PP   | 23            |                        |                     |                            |                                      |                                   |
|              | 4.5  SILT, with Sand, trace Gravel Gray, Medium Stiff, Wet                                                                         | 5                           |             |            | PP   | 44            |                        |                     |                            |                                      |                                   |
|              | <u>Sandy GRAVEL</u> , trace Silt<br>Brown, Medium Dense, Wet to Saturated <sup>∑</sup>                                             |                             | -           |            | PP   | 25            |                        |                     |                            | B12<br>@6ft                          |                                   |
|              |                                                                                                                                    | 10—                         |             |            |      | 23            |                        |                     |                            |                                      |                                   |
|              | BOTTOM OF BORING Drilling refusal at 12 feet bgs.                                                                                  | -<br>-<br>-<br>-<br>-<br>15 |             |            |      |               |                        |                     |                            |                                      | ·                                 |
|              |                                                                                                                                    |                             |             |            |      |               |                        |                     |                            |                                      |                                   |
|              | stratification lines represent the approximate boundary lines<br>veen soil and rock types: in-situ, the transition may be gradual. |                             |             |            |      |               |                        |                     |                            |                                      | detection limit<br>alents (ppmi). |
|              | TER LEVEL OBSERVATIONS, ft                                                                                                         |                             |             |            |      |               | ING ST                 |                     |                            |                                      | 08-16-10                          |
| <b></b>      | ¥ 6.5                                                                                                                              | 7                           |             | <b>7</b> F | ┓┃   |               | ING CO                 |                     |                            |                                      | 08-16-10                          |
| WL<br>WL     | ¥ y Ierr                                                                                                                           | CIL                         | _L          | JI         | ■∤   | RIG<br>LOG    |                        |                     | JD J                       | RILLER                               | ·                                 |
| E VVL        | 1 <b>I</b>                                                                                                                         |                             |             |            |      | டபப்          | uEU -                  | A                   | ול ∤ כונ                   | UB#                                  | 81109090                          |

|             | LOG OF BOR                                                                                     | ING I     | NO          | . В    | -13  |               |                        |                     |                            | Pa                                   | nge 1 of 1      |
|-------------|------------------------------------------------------------------------------------------------|-----------|-------------|--------|------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------|
| CLI         | ENT Loves                                                                                      |           |             |        |      |               |                        |                     |                            |                                      |                 |
| SIT         |                                                                                                | PRO.      | JEC         | Γ      |      | F             | llensb                 | ura J               | OVAS.                      |                                      |                 |
|             | Eliensburg, Washington                                                                         |           |             |        | SAM  | IPLES         |                        | urg L               | Oves                       | TESTS                                |                 |
| GRAPHIC LOG | DESCRIPTION                                                                                    | оертн, ћ. | USCS SYMBOL | NUMBER | TYPE | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                 |
|             | <sub>0.5</sub> 6" Asphalt                                                                      |           |             |        |      |               |                        |                     |                            |                                      |                 |
|             | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  5.5  BOTTOM OF BORING                      | 5         |             |        | PP   | 24            |                        |                     |                            | B13<br>@3.5ft                        |                 |
|             |                                                                                                | 10—       |             |        |      |               |                        |                     |                            |                                      |                 |
| The         | stratification lines represent the approximate boundary lines                                  | l         | ) .         | ,      | * ND | indicat       | es a read              | ding of I           | ess tha                    | n the field                          | detection limit |
|             | veen soil and rock types: in-situ, the transition may be gradual.  ATER LEVEL OBSERVATIONS, ft |           |             | (FD    |      |               | part per<br>ING ST     |                     |                            | ene equiv                            | 08-16-10        |
| WL          |                                                                                                |           |             |        |      |               | ING CO                 |                     |                            |                                      | 08-16-10        |
| WL          | ă ă Î                                                                                          | 36        |             |        | 1    |               | AMS                    |                     |                            | RILLER                               |                 |

WL

AJD JOB#

LOGGED

81109090

|             |        | LOG OF BOR                                                                                                        | ING        | NO          | . В    | -14     |               |                        |                     |                            | Pa                                   | age 1 of 1      |
|-------------|--------|-------------------------------------------------------------------------------------------------------------------|------------|-------------|--------|---------|---------------|------------------------|---------------------|----------------------------|--------------------------------------|-----------------|
| CLI         | ENT    | Loves                                                                                                             |            |             |        |         |               |                        |                     |                            |                                      | - <del></del>   |
| SIT         | E      | 1512 Highway 97<br>Ellensburg, Washington                                                                         | PRO        | JEC         | Γ      |         | E             | llensb                 | ura L               | oves                       |                                      |                 |
| -           |        |                                                                                                                   |            |             |        | SAN     | /PLES         |                        |                     |                            | TESTS                                |                 |
| GRAPHIC LOG |        | DESCRIPTION                                                                                                       | DЕРТН, ft. | USCS SYMBOL | NUMBER | TYPE    | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, % | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY |                 |
| 40. B       | 0.5    | 6" Asphalt                                                                                                        | _          |             |        |         |               |                        |                     |                            |                                      |                 |
|             | 2.5    | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist  Sandy SILT Brown, Medium Stiff, Wet                           |            |             |        | PP      | 44            |                        |                     |                            |                                      |                 |
|             | 5.5    | BOTTOM OF BORING                                                                                                  | 5—         |             |        |         |               |                        |                     |                            | B14<br>@5ft                          |                 |
|             |        |                                                                                                                   | 10         |             |        |         |               |                        |                     |                            |                                      |                 |
| betv        | veen s | cation lines represent the approximate boundary lines oil and rock types: in-situ, the transition may be gradual. | _          |             | (FDI   | L) of c | ne (1)        | es a read<br>part per  | million             | isobuty                    | n the field<br>ene equiv             | detection limit |

| Š   | VVA | LEK FEAFT ORSEL | KVATIONS, π |  |
|-----|-----|-----------------|-------------|--|
| 88  | WL  | 立               | <u>¥</u> .  |  |
| 200 | WL  | Ā               | <u>V</u>    |  |
|     | WL  |                 |             |  |

Jerracon

| BORING STARTED  |         | 08-16-10 |
|-----------------|---------|----------|
| BORING COMPLETE | ED      | 08-16-10 |
| RIG AMS PP 9500 | DRILLER | ESN      |
| LOGGED AJD      | JOB#    | 81109090 |

|             | LOG OF BOR                                                                                                                         | ING                   | NO          | . В    | -15           | ;             |                        |                      |                            | Pa                                   | age 1 of 1                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|--------|---------------|---------------|------------------------|----------------------|----------------------------|--------------------------------------|-----------------------------------|
| CLI         | ENT                                                                                                                                |                       |             |        |               |               | -                      |                      |                            |                                      | <u> </u>                          |
| SIT         | Loves<br>E 1512 Highway 97                                                                                                         | PRO                   | JEC         | T      |               | -             |                        |                      |                            |                                      | * * * *                           |
|             | Ellensburg, Washington                                                                                                             |                       |             |        |               |               | llensb                 | urg L                | oves                       |                                      |                                   |
|             |                                                                                                                                    |                       |             |        | SAI           | MPLES         | 3                      |                      | I                          | TESTS                                |                                   |
| GRAPHIC LOG | DESCRIPTION                                                                                                                        | DЕРТН, ft.            | USCS SYMBOL | NUMBER | TYPE          | RECOVERY, in. | SPT - N<br>BLOWS / ft. | WATER<br>CONTENT, %  | FIELD VAPOR<br>TEST (PPM)* | SOIL SAMPLE<br>SENT TO<br>LABORATORY | ٠.                                |
|             | <sub>0.5</sub> 6" Asphalt                                                                                                          | _                     |             |        |               |               |                        |                      |                            |                                      |                                   |
|             | Sandy GRAVEL, with Silt Brown, Medium Dense, Moist                                                                                 | _                     |             |        | DD            | 40            |                        |                      |                            |                                      |                                   |
|             | SAND, trace Silt Brown, Medium Dense, Moist                                                                                        | -<br>-<br>-<br>-<br>- |             |        | PP            | 43            |                        |                      |                            |                                      | ·                                 |
|             | Sandy SILT Brown, Medium Stiff, Moist to Wet                                                                                       | -                     |             |        |               |               |                        |                      |                            | B15<br>@4.5ft                        |                                   |
|             | 5 BOTTOM OF BORING                                                                                                                 | 5                     |             |        |               |               |                        | <del> </del>         |                            |                                      |                                   |
|             |                                                                                                                                    | -                     |             |        |               |               |                        |                      |                            |                                      |                                   |
|             |                                                                                                                                    | 10                    |             |        |               |               |                        |                      |                            |                                      |                                   |
|             |                                                                                                                                    | 15—                   |             |        |               |               |                        |                      |                            |                                      | ·                                 |
|             |                                                                                                                                    |                       |             |        |               |               |                        |                      |                            |                                      |                                   |
| The betv    | stratification lines represent the approximate boundary lines<br>veen soil and rock types: in-situ, the transition may be gradual. |                       |             | (FD    | * ND<br>L) of | indicat       | es a rea<br>part per   | ding of I<br>million | ess tha<br>isobuty         | n the field<br>lene equiv            | detection limit<br>alents (ppmi). |
|             | TER LEVEL OBSERVATIONS, ft                                                                                                         |                       |             | · ·    |               | _             | ING ST                 |                      |                            |                                      | 08-16-10                          |
| WL          |                                                                                                                                    |                       |             |        | _             | BOR           | ING C                  | OMPLI                | ETED                       |                                      | 08-16-10                          |
| WL          | A A ISL                                                                                                                            | al                    |             | Jſ     | 1             | RIG           | AMS                    | PP 95                | 00 D                       | RILLER                               | ESN                               |

LOGGED

AJD JOB#

81109090

E 99 DRAFT LOGS.GPJ TERF

APPENDIX C

Tables

# **APPENDIX C Laboratory Results Summary Table 1**

# Table 1 Soil Analytical Results Love's Travel Stop-Ellensburg, Washington, 1512 Highway 97

| Sample |               | Sample         |             | ΒΤ<br>(μg/        |             |             | TPH<br>(mg/Kg) |              |              |  |  |
|--------|---------------|----------------|-------------|-------------------|-------------|-------------|----------------|--------------|--------------|--|--|
| ID     | Date          | Depth<br>(bgs) | Benzene     | Ethyl-<br>benzene | Toluene     | Xylenes     | ТРН-G          | ТРН-D        | трн-о        |  |  |
| B-1    | 8/13/10       | 6'             | <2.8<br>BDL | <2.8<br>BDL       | <2.8<br>BDL | <8.3<br>BDL | <5.9<br>BDL    | <18.5<br>BDL | <73.9<br>BDL |  |  |
| B-3    | 8/13/10       | 7½'            | <2.9<br>BDL | <2.9<br>BDL       | <2.9<br>BDL | <8.6<br>BDL | <7.6<br>BDL    | <19.6<br>BDL | <78.2<br>BDL |  |  |
| B-4    | 8/13/10       | 3½'            | <2.4<br>BDL | <2.4<br>BDL       | <2.4<br>BDL | <7.3<br>BDL | <4.9<br>BDL    | <18.9<br>BDL | <75.5<br>BDL |  |  |
| B-5    | 8/13/10       | 3'             | 8,650       | 9,720             | 52,800      | 45,100      | 436            | 94.9         | 140          |  |  |
| B-6    | 8/13/10       | 5'             | 29.8        | 3.2               | <2.4<br>BDL | 19.9        | 7.2            | <19.2<br>BDL | <76.8<br>BDL |  |  |
| B-7    | 8/13/10       | 8'             | 153         | 45,500            | 554         | 247,000     | 3,700          | 423          | <77.0<br>BDL |  |  |
| B-8    | 8/13/10       | 6'             | <2.9<br>BDL | <2.9<br>BDL       | <2.9<br>BDL | <8.6<br>BDL | <5.3<br>BDL    | <19.9<br>BDL | <79.8<br>BDL |  |  |
| B-9    | 8/13/10       | 7'             | <2.3<br>BDL | <2.3<br>BDL       | <2.3<br>BDL | <7.0<br>BDL | <4.8<br>BDL    | <18.9<br>BDL | <75.8<br>BDL |  |  |
| B-10   | 8/13/10       | 5'             | 10,800      | 46,900            | 1,640       | 65,200      | 1,890          | 3,120        | 98.3         |  |  |
| B-11   | 8/13/10       | 4½'            | 1,750       | 4,320             | 30.2        | 7,070       | 1,250          | 9,960        | 518          |  |  |
| B-12   | 8/13/10       | 6'             | <2.7<br>BDL | <2.7<br>BDL       | <2.7<br>BDL | <8.0<br>BDL | <5.3<br>BDL    | <18.8<br>BDL | <75.2<br>BDL |  |  |
| B-13   | 8/13/10       | 3½'            | <2.4<br>BDL | <2.4<br>BDL       | <2.4<br>BDL | <7.1<br>BDL | <4.9<br>BDL    | <19.0<br>BDL | <76.0<br>BDL |  |  |
| B-14   | 8/13/10       | 5'             | <2.4<br>BDL | <2.4<br>BDL       | <2.4<br>BDL | <7.3<br>BDL | <5.4<br>BDL    | <18.4<br>BDL | <73.5<br>BDL |  |  |
| B-15   | 8/13/10       | 7'             | <2.5<br>BDL | <2.5<br>BDL       | <2.5<br>BDL | <7.6<br>BDL | <5.1<br>BDL    | <19.5<br>BDL | <78.1<br>BDL |  |  |
| MTCA M | ethod A clear | nup levels     | 30          | 6,000             | 7,000       | 9,000       | 100/<br>30*    | 2,000        | 2,000        |  |  |

BDL = Below Detection Limits
\*Cleanup level for TPH-G is 100 mg/kg when benzene is not present and 30 mg/kg when benzene is present.

#### Table 1B Soil Analytical Results Love's Travel Stop-Ellensburg, Washington, 1512 Highway 97

|              |             |                          | Polycyclic Aromatic Hydrocarbons: PAHs (µg/kg) |                |            |              |           |             |              |           |  |  |  |  |
|--------------|-------------|--------------------------|------------------------------------------------|----------------|------------|--------------|-----------|-------------|--------------|-----------|--|--|--|--|
| Sample<br>ID | Date        | Sample<br>Depth<br>(bgs) | Acenaphthene                                   | Acenaphthylene | Anthracene | Fluoranthene | Fluorene  | Naphthalene | Phenanthrene | Pyrene    |  |  |  |  |
| B-7          | 8/16/10     | 8,                       | - 104                                          | 22.2           | 37.0       | 14.1         | 256       | 1,800       | 255          | 57.5      |  |  |  |  |
| B-11         | 8/16/10     | 4½'                      | 1,240                                          | 288            | 521        | 184          | 3,490     | 5,800       | 4,200        | 344       |  |  |  |  |
| MTCA Me      | thod A clea | nup levels               | 4,800,000                                      | NECL           | 24,000,000 | 3,200,000    | 3,200,000 | 5,000       | NECL         | 2,400,000 |  |  |  |  |

BDL = Below Detection Limits
NECL = No Established Cleanup Level

# Table 1C Soil Analytical Results Love's Travel Stop-Ellensburg, Washington, 1512 Highway 97

|              |                             |                          |                    | P<br>Hyd            | rcinoger<br>olycycli<br>Aromatic<br>Irocarbo<br>AHs (µg/ | c<br>;<br>ons: |                     |
|--------------|-----------------------------|--------------------------|--------------------|---------------------|----------------------------------------------------------|----------------|---------------------|
| Sample<br>ID | Date                        | Sample<br>Depth<br>(bgs) | Benzo(a)anthracene | *Benzo(a)anthracene | chrysene                                                 | *chrysene      | Weighted Total cPAH |
| B-11         | 8/16/10                     | 41/2'                    | 17.8               | 1.78                | 45.6                                                     | 0.456          | 2.236               |
| Toxic Equ    | MTCA<br>ivalency Fa         | ctor (TEF)               | 0.1                | -                   | 0.01                                                     | -              | -                   |
|              | ethod A clea<br>Benzo(a)pyr |                          |                    |                     |                                                          |                | 100                 |

BDL = Below Detection Limits
\*Compound concentration multiplied by the TEF.

# Table 2 Groundwater Analytical Results Love's Travel Stop-Ellensburg, Washington, 1512 Highway 97

| Sample |                      |             | BTE<br>(µg/l      | TPH<br>(µg/Kg) |             |                |              |             |
|--------|----------------------|-------------|-------------------|----------------|-------------|----------------|--------------|-------------|
| ID     | Date                 | Benzene     | Ethyl-<br>benzene | Toluene        | Xylenes     | TPH-G          | ТРН-D        | ТРН-О       |
| B-3    | 8/16/10              | 96.7        | 3.0               | <1.0<br>BDL    | <3.0<br>BDL | <250<br>BDL    | 4,140        | <400<br>BDL |
| B-7    | 8/16/10              | 932         | 1,520             | 84.4           | 4,820       | 25,400         | 4,970        | 837         |
| B-12   | 8/16/10              | <1.0<br>BDL | <1.0<br>BDL       | <1.0<br>BDL    | <3.0<br>BDL | <50.0<br>BDL   | <80.0<br>BDL | <400<br>BDL |
|        | Method A<br>p levels | 5           | 700               | 1,000          | 1,000       | 800/<br>1,000* | 500          | 500         |

BDL = Below Detection Limits  $^*$ Cleanup level for TPH-G is 1,000  $\mu$ g/Kg when benzene is not present and 800  $\mu$ g/Kg when benzene is present.

# **APPENDIX D**

**Laboratory Data Sheets** 

LIMS USE: FR - SEAN DONNAN LIMS OBJECT ID: 254571

August 31, 2010

Sean Donnan Terracon-WA 21905 64th Ave W Ste. 100 Mountlake Terrace, WA 98043

RE: Project: Ellensburg Loves 81109090.2

Pace Project No.: 254571

## Dear Sean Donnan:

Enclosed are the analytical results for sample(s) received by the laboratory on August 17, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Samples were received at a temperate above 6.0 degrees C . Pace proceeded with analyses at client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

₹ \_\_\_

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

**Enclosures** 

cc: Alex DeOme, Terracon-WA





## **CERTIFICATIONS**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

**Washington Certification IDs** 

940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229



# SAMPLE ANALYTE COUNT

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Lab ID    | Sample ID  | Method          | Analysts | Analytes<br>Reported | Laboratory |
|-----------|------------|-----------------|----------|----------------------|------------|
| 254571001 | B1@6ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | CC       | 1                    | PASI-S     |
| 54571002  | B3@7 1/2ft | NWTPH-Dx        | ERB      | . 4                  | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | · · 3                | PASI-S     |
|           |            | EPA 8260        | LPM      | . 8                  | PASI-S     |
|           |            | ASTM D2974-87   | cc       | . 1                  | PASI-S     |
| 54571003  | B4@3 1/2ft | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           | F          | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | cc       | 1                    | PASI-S     |
| 54571004  | B5@3ft     | NWTPH-Dx        | ERB      | . 4                  | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | cc       | 1                    | PASI-S     |
| 54571005  | B6@5ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | cc       | 1                    | PASI-S     |
| 54571006  | B7@8ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8270 by SIM | DMT      | 18                   | PASI-S     |
| 2         |            | EPA 8260        | ATH      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | cc       | 1                    | PASI-S     |
| 54571007  | B8@6ft     | NWTPH-Dx        | ERB      | . 4                  | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           | •          | ASTM D2974-87   | cc       | 1                    | PASI-S     |
| 54571008  | B9@7ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | LPM      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | CC       | 1                    | PASI-S     |
| 54571009  | B10@5ft    | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
|           |            | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|           |            | EPA 8260        | ATH      | 8                    | PASI-S     |
|           |            | ASTM D2974-87   | CC       | 1                    | PASI-S     |

**REPORT OF LABORATORY ANALYSIS** 

Page 3 of 49

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



## **SAMPLE ANALYTE COUNT**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| NWTPH-GX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lab ID    | Sample ID   | Method          | Analysts | Analytes<br>Reported | Laboratory |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------|----------|----------------------|------------|
| EPA 8270 by SIM   DMT   18   PA 8270 by SIM   DMT   18   PA 8260   DMT   7   PA 8260   DMT   7   PA 8260   DMT   7   PA 8260   DMT   7   PA 8260   DMT   PA 8260   DMT   | 254571010 | B11@4 1/2ft | NWTPH-Dx        | DMT, ERB | 4                    | PASI-S     |
| EPA 8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |             | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
| EPA 8260   LPM   5   PA 8267   CC   1   PA 8267   PA 8267   CC   1   PA 8267   PA 8267   CC   1   PA 8267   PA 826   |           |             | EPA 8270 by SIM | DMT      | 18                   | PASI-S     |
| ASTM D2974-87   CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             | EPA 8260        | ATH      |                      | PASI-S     |
| 254571011 B12@6ft NWTPH-DX ERB 4 P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •         |             | EPA 8260        | LPM      | . 5                  | PASI-S     |
| NWTPH-Gx AY1 3 P. EPA 8260 LPM 8 P. EPA 8260 LPM |           |             | ASTM D2974-87   | CC       | 1                    | PASI-S     |
| EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571012 B13@3 1/2ft NWTPH-Dx ERB 4 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571013 B14@5ft NWTPH-Dx ERB 4 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571014 NWTPH-Dx ERB 4 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 | 254571011 | B12@6ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
| ASTM D2974-87 KJ1 1 P.  254571012 B13@3 1/2ft NWTPH-DX ERB 4 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  EPA 8260 LPM  |           |             | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
| 254571012 B13@3 1/2ft NWTPH-DX ERB 4 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571013 B14@5ft NWTPH-DX ERB 4 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571014 B15@4 1/2ft NWTPH-DX ERB 4 P.  NWTPH-DX ERB 4 P.  NWTPH-DX ERB 4 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  NWTPH-GX AY1 3 P.  EPA 8260 LPM 8 P.  STATE PROSPER STATE STA |           |             | EPA 8260        | LPM      | 8                    | PASI-S     |
| NWTPH-GX AY1 3 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P.  254571013 B14@5ft NWTPH-DX ERB 4 P. ASTM D2974-87 KJ1 3 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P.  254571014 B15@4 1/2ft NWTPH-DX ERB 4 P. NWTPH-GX AY1 3 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. ASTM D2974-87 KJ1 1 P. EPA 8260 LPM 8 P. EPA  |           |             | ASTM D2974-87   | KJ1      | 1                    | PASI-S     |
| EPA 8260 LPM 8 PA STAND D2974-87 KJ1 1 PA STAND D2974-87 KJ1 3 PA STAND D2974-87 KJ1 1 PA STAND DAT STAND DA | 254571012 | B13@3 1/2ft | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
| ASTM D2974-87 KJ1 1 P.  254571013 B14@5ft NWTPH-Dx ERB 4 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  254571014 B15@4 1/2ft NWTPH-Dx ERB 4 P.  NWTPH-Gx AY1 3 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  NWTPH-Gx AY1 3 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 8260 LPM 8 P.  ASTM D2974-87 KJ1 1 P.  EPA 5030B/8260 LPM 8 P.  NWTPH-Gx AY1 3 P.  EPA 5030B/8260 LPM 8 P.  NWTPH-Gx AY1 3 P.  EPA 5030B/8260 AY1 AY1 3 P.  EPA 5030B/8260 AY1                                                                                                                                                                                                                                 |           |             | · NWTPH-Gx      | AY1      | 3                    | PASI-S     |
| 254571013 B14@5ft NWTPH-Dx ERB 4 P/ NWTPH-Gx AY1 3 P/ EPA 8260 LPM 8 P/ ASTM D2974-87 KJ1 1 P/ ASTM D2974-87 KJ1 1 3 P/ EPA 8260 LPM 8 P/ NWTPH-Gx AY1 3 P/ EPA 8260 LPM 8 P/ ASTM D2974-87 KJ1 1 P/ EPA 8260 LPM 8 P/ ASTM D2974-87 KJ1 1 P/ EPA 8260 LPM 8 P/ ASTM D2974-87 KJ1 1 P/ EPA 50308/8260 LPM 8 P/ NWTPH-Gx AY1 3 P/ EPA 50308/8260 LPM 8 P/ NWTPH-Gx AY1 3 P/ EPA 50308/8260 LPM 8 P/ NWTPH-Gx AY1 3 P/ EPA 50308/8260 ATH 8 P/ EPA 50308/8260 BMT 4 P/ EPA 50308/8260 ATH 8 P/ EPA 50308/8260 BMT 4  |           |             | EPA 8260        | LPM      | 8                    | PASI-S     |
| NWTPH-GX AY1 3 P/EPA 8260 LPM 8 P/EPA 82600 LPM 8 P/E |           |             | ASTM D2974-87   | KJ1      | 1                    | PASI-S     |
| EPA 8260 LPM 8 PA ASTM D2974-87 KJ1 1 PA 254571014 B15@4 1/2ft NWTPH-Dx ERB 4 PA NWTPH-Gx AY1 3 PA EPA 8260 LPM 8 PA EPA 8260 LPM 8 PA ASTM D2974-87 KJ1 1 PA EPA 5030B/8260 LPM 8 PA EPA 5030B/8260 LPM 8 PA NWTPH-Gx AY1 3 PA EPA 5030B/8260 ATH 8 PA EPA 5030B/8260 B12 NWTPH-Dx DMT 4 PA EPA 5030B/8260 ATH 8 PA EPA 5030B/8260 B12 NWTPH-Dx DMT 4 PA EPA 5030B/8260 B12 NWTPH-Dx DMT 4 PA EPA 5030B/8260 B12 NWTPH-Dx DMT 4 PA EPA 5030B/8260 B12 DMT 4 PA EPA 50 | 254571013 | B14@5ft     | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
| ASTM D2974-87 KJ1 1 P/2 254571014 B15@4 1/2ft NWTPH-Dx ERB 4 P/2 NWTPH-Gx AY1 3 P/2 EPA 8260 LPM 8 P/2 ASTM D2974-87 KJ1 1 P/2 254571015 B3 NWTPH-Dx DMT 4 P/2 NWTPH-Gx AY1 3 P/2 EPA 5030B/8260 LPM 8 P/2 EPA 5030B/8260 LPM 8 P/2  254571016 B7 NWTPH-Dx DMT 4 P/2 NWTPH-Gx AY1 3 P/2 EPA 5030B/8260 ATH 8 P/2 EPA 5030B/8260 ATH 8 P/2 EPA 5030B/8260 ATH 8 P/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |             | NWTPH-Gx        | AY1      | . 3                  | PASI-S     |
| 254571014       B15@4 1/2ft       NWTPH-Dx       ERB       4       P/         NWTPH-Gx       AY1       3       P/         EPA 8260       LPM       8       P/         ASTM D2974-87       KJ1       1       P/         254571015       B3       NWTPH-Dx       DMT       4       P/         NWTPH-Gx       AY1       3       P/         254571016       B7       NWTPH-Dx       DMT       4       P/         NWTPH-Gx       AY1       3       P/         NWTPH-Gx       AY1       3       P/         NWTPH-Gx       AY1       3       P/         EPA 5030B/8260       ATH       8       P/         254571017       B12       NWTPH-Dx       DMT       4       P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | •           | EPA 8260        | LPM      | 8                    | PASI-S     |
| NWTPH-Gx AY1 3 PART EPA 8260 LPM 8 PART EPA 8260 LPM 8 PART EPA 8260 LPM 1 PART EPA 8260 LPM 1 PART EPA 8260 LPM 1 PART EPA 5030B/8260 LPM 8 PART EPA 5030B/8260 LPM 8 PART EPA 5030B/8260 LPM 8 PART EPA 5030B/8260 ATH 8 PART EP |           |             | ASTM D2974-87   | KJ1      | 1                    | PASI-S     |
| EPA 8260 LPM 8 PA ASTM D2974-87 KJ1 1 PA 254571015 B3 NWTPH-Dx DMT 4 PA NWTPH-Gx AY1 3 PA EPA 5030B/8260 LPM 8 PA NWTPH-Dx DMT 4 PA NWTPH-Dx DMT 4 PA NWTPH-Dx DMT 3 PA NWTPH-Gx AY1 3 PA NWTPH-Gx AY1 3 PA EPA 5030B/8260 ATH 8 PA EPA 5030B/8260 DMT 4 PA NWTPH-Dx DMT 4 PA EPA 5030B/8260 DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 254571014 | B15@4 1/2ft | NWTPH-Dx        | ERB      | 4                    | PASI-S     |
| ASTM D2974-87 KJ1 1 PA  254571015 B3 NWTPH-Dx DMT 4 PA  NWTPH-Gx AY1 3 PA  EPA 5030B/8260 LPM 8 PA  254571016 B7 NWTPH-Dx DMT 4 PA  NWTPH-Gx AY1 3 PA  NWTPH-Gx AY1 3 PA  NWTPH-Gx AY1 3 PA  EPA 5030B/8260 ATH 8 PA  EPA 5030B/8260 DMT 4 PA  NWTPH-Dx DMT 4 PA  EPA 5030B/8260 DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
| 254571015 B3 NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |             | EPA 8260        | LPM      | 8                    | PASI-S     |
| NWTPH-Gx AY1 3 PA<br>EPA 5030B/8260 LPM 8 PA<br>NWTPH-Dx DMT 4 PA<br>NWTPH-Gx AY1 3 PA<br>EPA 5030B/8260 ATH 8 PA<br>254571017 B12 NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,         |             | ASTM D2974-87   | KJ1      | 1                    | PASI-S     |
| EPA 5030B/8260 LPM 8 PA  254571016 B7 NWTPH-Dx DMT 4 PA  NWTPH-Gx AY1 3 PA  EPA 5030B/8260 ATH 8 PA  254571017 B12 NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 254571015 | В3          | NWTPH-Dx        | DMT      | 4                    | PASI-S     |
| 254571016         B7         NWTPH-Dx         DMT         4         P/           NWTPH-Gx         AY1         3         P/           EPA 5030B/8260         ATH         8         P/           254571017         B12         NWTPH-Dx         DMT         4         P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
| NWTPH-Gx AY1 3 PA<br>EPA 5030B/8260 ATH 8 PA<br>254571017 B12 NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | EPA 5030B/8260  | LPM      | 8                    | PASI-S     |
| EPA 5030B/8260 ATH 8 PA<br>254571017 B12 NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 254571016 | B7          | NWTPH-Dx        | DMT      | 4                    | PASI-S     |
| <b>254571017 B12</b> NWTPH-Dx DMT 4 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | EPA 5030B/8260  | ATH      | 8                    | PASI-S     |
| NWTPH-Gx AY1 3 P/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 254571017 | B12         | NWTPH-Dx        | DMT      | 4                    | PASI-S     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | •           | NWTPH-Gx        | AY1      | 3                    | PASI-S     |
| EPA 5030B/8260 ATH 8 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |             | EPA 5030B/8260  | ATH -    | 8                    | PASI-S     |



## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

NWTPH-Dx

Client:

Description: NWTPH-Dx GCS Terracon-WA

Date:

August 31, 2010

#### General Information:

14 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

## Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/2513

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- B11@4 1/2ft (Lab ID: 254571010)
  - · o-Terphenyl (S)

## Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

## **Additional Comments:**

## Batch Comments:

A sample duplicate was not performed for this batch due to insufficient sample volume.

QC Batch: GCSV / 1809

## **REPORT OF LABORATORY ANALYSIS**



## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**NWTPH-Dx** 

Client:

Description: NWTPH-Dx GCS Terracon-WA

Date:

August 31, 2010

#### General Information:

3 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

## Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/2513

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- B11@4 1/2ft (Lab ID: 254571010)
  - · o-Terphenyl (S)

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

## **Batch Comments:**

A sample duplicate was not performed for this batch due to insufficient sample volume.

QC Batch: GCSV / 1809

## REPORT OF LABORATORY ANALYSIS

Page 6 of 49





## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**NWTPH-Gx Description: NWTPH-Gx GCV** 

Client:

Terracon-WA

Date:

August 31, 2010

General Information:

14 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

**Hold Time:** 

The samples were analyzed within the method required hold times with any exceptions noted below.

The samples were prepared in accordance with NWTPH-Gx with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

**Continuing Calibration:** 

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: GCV/1774

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- B11@4 1/2ft (Lab ID: 254571010)
  - 4-Bromofluorobenzene (S)

## Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

**Duplicate Sample:** 

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: GCV/1778

R1: RPD value was outside control limits.

- DUP (Lab ID: 37335)
  - · Gasoline Range Organics

## REPORT OF LABORATORY ANALYSIS

Page 7 of 49





## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**NWTPH-Gx** 

Client:

Description: NWTPH-Gx GCV Terracon-WA

Date:

August 31, 2010

## Additional Comments:

Analyte Comments:

QC Batch: GCV/1778

1n: Sample was originally run at a dilution. Due to limited sample volume sample could not be re-run at a 1x.

- B3 (Lab ID: 254571015)
  - Gasoline Range Organics

#### General information:

3 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: GCV/1774

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- . B11@4 1/2ft (Lab ID: 254571010)
  - 4-Bromofluorobenzene (S)

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

## REPORT OF LABORATORY ANALYSIS

Page 8 of 49





## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**NWTPH-Gx** Description: NWTPH-Gx GCV

Client:

Terracon-WA

Date:

August 31, 2010

QC Batch: GCV/1778

R1: RPD value was outside control limits.

• DUP (Lab ID: 37335)

Gasoline Range Organics

## **Additional Comments:**

**Analyte Comments:** 

QC Batch: GCV/1778

1n: Sample was originally run at a dilution. Due to limited sample volume sample could not be re-run at a 1x.

- B3 (Lab ID: 254571015)
  - Gasoline Range Organics



## PROJECT NARRATIVE

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**EPA 8270 by SIM** Description: 8270 MSSV PAH by SIM

Client:

Terracon-WA

Date:

August 31, 2010

## General Information:

2 samples were analyzed for EPA 8270 by SIM. All samples were received in acceptable condition with any exceptions noted below.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 254571006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 36841)
  - Fluorene
  - Naphthalene
  - Phenanthrene
- MSD (Lab ID: 36842)
  - Fluorene
  - Naphthalene
  - Phenanthrene

REPORT OF LABORATORY ANALYSIS

Page 10 of 49





## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

EPA 8270 by SIM Description: 8270 MSSV PAH by SIM

Client: Date:

Terracon-WA

August 31, 2010

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

**Additional Comments:** 

## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

EPA 5030B/8260

Description: 8260 MSV Client:

Terracon-WA

Date:

August 31, 2010

## **General Information:**

3 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/2871

S2: Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample reanalysis).

- MS (Lab ID: 37005)
  - 1,2-Dichloroethane-d4 (S)
- MSD (Lab ID: 37006)
  - 1,2-Dichloroethane-d4 (S)

## Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

## **Matrix Spikes:**

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/2871

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 254529018

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 37005)
  - Benzene
  - Ethylbenzene
  - Toluene
  - Xylene (Total)
- · MSD (Lab ID: 37006)
  - Benzene

## REPORT OF LABORATORY ANALYSIS

Page 12 of 49





## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

EPA 5030B/8260

Description: 8260 MSV Client:

Terracon-WA

Date:

August 31, 2010

QC Batch: MSV/2871

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 254529018

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- Ethylbenzene
- Toluene
- · Xylene (Total)

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

## **Additional Comments:**

Analyte Comments:

QC Batch: MSV/2871

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 37005)
  - Benzene
  - Ethylbenzene
  - Toluene
  - · Xylene (Total)
- MSD (Lab ID: 37006)
  - Benzene
  - Ethylbenzene
  - Toluene
  - · Xylene (Total)



## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**EPA 8260** 

Description: 8260 MSV Medium LL

Client:

Terracon-WA

Date:

August 31, 2010

#### **General Information:**

4 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

## **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

## Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

## **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

## Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

## Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

## **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

## **Duplicate Sample:**

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

## **PROJECT NARRATIVE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Method:

**EPA 8260** 

Description: 8260/5035A Volatile Organics

Client: Date:

Terracon-WA August 31, 2010

**General Information:** 

11 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

**Hold Time:** 

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

**Continuing Calibration:** 

All criteria were within method requirements with any exceptions noted below.

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/2870

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- B11@4 1/2ft (Lab ID: 254571010)
  - 4-Bromofluorobenzene (S)

#### Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

**Laboratory Control Spike:** 

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

**Additional Comments:** 

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Page 15 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Sample: B1@6ft                                                                                                                                                                                                                                                                                      | Lab ID: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254571001                                                            | Coll         | ected: 08/16/1                                                                         | 0 10:00                                  | Received: 08                                                                                                | /1//10 12:00 N                                                                                      | Matrix: Solid                                                                    |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------|
| Results reported on a "dry-weight                                                                                                                                                                                                                                                                   | " basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |              |                                                                                        |                                          |                                                                                                             |                                                                                                     |                                                                                  |      |
| Parameters                                                                                                                                                                                                                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                                | ·<br>        | Report Limit                                                                           | DF                                       | Prepared                                                                                                    | Analyzed                                                                                            | CAS No.                                                                          | Qual |
| WTPH-Dx GCS                                                                                                                                                                                                                                                                                         | Analytical N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lethod: NWTP                                                         | H-Dx         | Preparation Me                                                                         | ethod: El                                | PA 3546                                                                                                     |                                                                                                     |                                                                                  |      |
| Diesel Range                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                |              | 18.5                                                                                   | 1                                        | 08/18/10 16:35                                                                                              | 08/19/10 23:39                                                                                      |                                                                                  |      |
| Motor Oil Range                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                |              | 73.9                                                                                   | 1                                        | 08/18/10 16:35                                                                                              | 08/19/10 23:39                                                                                      | 64742-65-0                                                                       |      |
| n-Octacosane (S)                                                                                                                                                                                                                                                                                    | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                    |              | 50-150                                                                                 | 1                                        | 08/18/10 16:35                                                                                              | 08/19/10 23:39                                                                                      | 630-02-4                                                                         |      |
| o-Terphenyl (S)                                                                                                                                                                                                                                                                                     | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                    |              | 50-150                                                                                 | 1                                        | 08/18/10 16:35                                                                                              | 08/19/10 23:39                                                                                      | 84-15-1                                                                          |      |
| WTPH-Gx GCV                                                                                                                                                                                                                                                                                         | Analytical N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lethod: NWTP                                                         | H-Gx         | Preparation Mo                                                                         | ethod: N                                 | WTPH-Gx                                                                                                     |                                                                                                     |                                                                                  |      |
| Gasoline Range Organics                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                |              | 5.9                                                                                    | 1                                        | 08/18/10 10:00                                                                                              | 08/19/10 02:07                                                                                      |                                                                                  |      |
| a,a,a-Trifluorotoluene (S)                                                                                                                                                                                                                                                                          | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                    |              | 50-150                                                                                 | 1                                        | 08/18/10 10:00                                                                                              | 08/19/10 02:07                                                                                      | 98-08-8                                                                          |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                            | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                    |              | 50-150                                                                                 | 1                                        | 08/18/10 10:00                                                                                              | 08/19/10 02:07                                                                                      | 460-00-4                                                                         |      |
| 8260/5035A Volatile Organics                                                                                                                                                                                                                                                                        | Analytical N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fethod: EPA 82                                                       | 260          |                                                                                        |                                          |                                                                                                             |                                                                                                     |                                                                                  |      |
| Benzene                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/kg                                                                |              | 2.8                                                                                    | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      | 71-43-2                                                                          |      |
| Ethylbenzene                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/kg                                                                |              | 2.8                                                                                    | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      | 100-41-4                                                                         |      |
| Toluene                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg                                                                |              | 2.8                                                                                    | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      | 108-88-3                                                                         |      |
| Xylene (Total)                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg                                                                |              | 8.3                                                                                    | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      | 1330-20-7                                                                        |      |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                            | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |              | 80-136                                                                                 | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      | 1868-53-7                                                                        |      |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                    |              | 80-120                                                                                 | . 1                                      |                                                                                                             | 08/18/10 10:24                                                                                      |                                                                                  |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                    |              | 72-122                                                                                 | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      |                                                                                  |      |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                    |              | 80-143                                                                                 | 1                                        |                                                                                                             | 08/18/10 10:24                                                                                      |                                                                                  |      |
| Percent Moisture                                                                                                                                                                                                                                                                                    | Analytical N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method: ASTM                                                         | D297         | 4-87                                                                                   |                                          |                                                                                                             |                                                                                                     |                                                                                  |      |
| Percent Moisture                                                                                                                                                                                                                                                                                    | 25.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                    |              | 0.10                                                                                   | 1                                        |                                                                                                             | 08/18/10 15:51                                                                                      |                                                                                  |      |
|                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |              |                                                                                        |                                          |                                                                                                             |                                                                                                     |                                                                                  |      |
|                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |              |                                                                                        |                                          |                                                                                                             |                                                                                                     |                                                                                  |      |
|                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 254571002                                                            | Col          | ected: 08/16/1                                                                         | 10 11:00                                 | Received: 08                                                                                                | /17/10 12:00 N                                                                                      | Matrix: Solid                                                                    |      |
| . •                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 254571002<br>Units                                                   | Col          | ected: 08/16/1                                                                         | 10 11:00<br>DF                           | Received: 08 Prepared                                                                                       | /17/10 12:00 M                                                                                      | Matrix: Solid  CAS No.                                                           | Qua  |
| Results reported on a "dry-weight<br>Parameters                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units                                                                |              | Report Limit                                                                           | DF                                       | Prepared                                                                                                    |                                                                                                     |                                                                                  | Qua  |
| Results reported on a "dry-weight Parameters NWTPH-Dx GCS                                                                                                                                                                                                                                           | Results Analytical M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units                                                                |              | Report Limit Preparation M                                                             | DF<br>ethod: E                           | Prepared PA 3546                                                                                            | Analyzed                                                                                            | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range                                                                                                                                                                                                                            | Results Analytical N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units Nethod: NWTP                                                   |              | Report Limit Preparation Management                                                    | DF<br>ethod: E                           | Prepared PA 3546 08/18/10 16:35                                                                             | Analyzed 08/19/10 23:55                                                                             | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range  Motor Oil Range                                                                                                                                                                                                           | Results  Analytical ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units Method: NWTP mg/kg mg/kg                                       |              | Report Limit Preparation M 19.6 78.2                                                   | DF<br>ethod: E<br>1<br>1                 | Prepared PA 3546 08/18/10 16:35 08/18/10 16:35                                                              | Analyzed 08/19/10 23:55 08/19/10 23:55                                                              | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S)                                                                                                                                                                                           | Results  Analytical ND ND ND 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units Method: NWTP mg/kg mg/kg %                                     |              | Report Limit Preparation M 19.6 78.2 50-150                                            | DF<br>ethod: El<br>1<br>1                | Prepared  PA 3546  08/18/10 16:35  08/18/10 16:35  08/18/10 16:35                                           | Analyzed  08/19/10 23:55 08/19/10 23:55 08/19/10 23:55                                              | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S)                                                                                                                                                                                           | Results  Analytical ND ND ND 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units Method: NWTP mg/kg mg/kg                                       |              | Report Limit Preparation M 19.6 78.2                                                   | DF<br>ethod: E<br>1<br>1                 | Prepared  PA 3546  08/18/10 16:35  08/18/10 16:35  08/18/10 16:35                                           | Analyzed 08/19/10 23:55 08/19/10 23:55                                                              | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)                                                                                                                                                                           | Results  Analytical N  ND  ND  89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Units Method: NWTP mg/kg mg/kg % %                                   | H-Dx         | Report Limit Preparation M 19.6 78.2 50-150                                            | DF<br>ethod: El<br>1<br>1<br>1           | PA 3546  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35                                                       | Analyzed  08/19/10 23:55 08/19/10 23:55 08/19/10 23:55                                              | CAS No.                                                                          | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics                                                                                                                                    | Results  Analytical M ND ND 89 89 Analytical M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units  Method: NWTP  mg/kg mg/kg %  Method: NWTP  mg/kg              | H-Dx         | Report Limit Preparation M 19.6 78.2 50-150 50-150 Preparation M 7.6                   | DF  tethod: E  1  1  1  tethod: N  1     | Prepared  PA 3546  08/18/10 16:35  08/18/10 16:35  08/18/10 16:35  WTPH-Gx  08/18/10 10:00                  | 08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 23:55                                         | CAS No. 64742-65-0 630-02-4 84-15-1                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics                                                                                                                                    | Results  Analytical M ND ND 89 89 Analytical M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Units  Method: NWTP  mg/kg mg/kg % %  Method: NWTP                   | H-Dx         | Report Limit Preparation M 19.6 78.2 50-150 50-150 Preparation M                       | DF ethod: E  1 1 1 1 ethod: N            | Prepared  PA 3546  08/18/10 16:35  08/18/10 16:35  08/18/10 16:35  WTPH-Gx  08/18/10 10:00                  | 08/19/10 23:55<br>08/19/10 23:55<br>08/19/10 23:55<br>08/19/10 23:55                                | CAS No. 64742-65-0 630-02-4 84-15-1                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S)                                                                                                         | Analytical Monalytical Monaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units  Method: NWTP  mg/kg mg/kg %  Method: NWTP  mg/kg              | H-Dx         | Report Limit Preparation M 19.6 78.2 50-150 50-150 Preparation M 7.6                   | DF  tethod: E  1  1  1  tethod: N  1     | Prepared  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 WTPH-Gx 08/18/10 10:00 08/18/10 10:00 | 08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 23:55                                         | CAS No. 64742-65-0 630-02-4 84-15-1                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)                                                                                | Analytical Monalytical Monalyt | Units  Method: NWTP mg/kg mg/kg % Method: NWTP mg/kg %               | H-Dx<br>H-Gx | Report Limit  Preparation M  19.6 78.2 50-150 50-150  Preparation M  7.6 50-150        | DF  tethod: El  1  1  1  tethod: N  1  1 | Prepared  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 WTPH-Gx 08/18/10 10:00 08/18/10 10:00 | 08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 03:19 08/19/10 03:19                          | CAS No. 64742-65-0 630-02-4 84-15-1                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics                                                  | Analytical Monalytical Monalyt | Units Method: NWTP mg/kg mg/kg % Method: NWTP mg/kg % %              | H-Dx<br>H-Gx | Report Limit  Preparation M  19.6 78.2 50-150 50-150  Preparation M  7.6 50-150        | DF  tethod: El  1  1  1  tethod: N  1  1 | Prepared  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 WTPH-Gx 08/18/10 10:00 08/18/10 10:00 | Analyzed  08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 03:19 08/19/10 03:19 08/19/10 03:19 | CAS No.  6 64742-65-0 6 630-02-4 8 44-15-1 98-08-8 4 600-00-4                    | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene                                           | Analytical Monalytical Monaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units Method: NWTP mg/kg % Method: NWTP mg/kg % Method: EPA 82       | H-Dx<br>H-Gx | Report Limit  Preparation M  19.6 78.2 50-150 50-150  Preparation M  7.6 50-150 50-150 | DF  tethod: E  1  1  1  ethod: N  1  1   | Prepared  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 WTPH-Gx 08/18/10 10:00 08/18/10 10:00 | Analyzed  08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 03:19 08/19/10 03:19 08/19/10 03:19 | CAS No.  6 64742-65-0 6 630-02-4 8 44-15-1 98-08-8 4 600-00-4                    | Qua  |
| Sample: B3@7 1/2ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics Benzene Ethylbenzene Toluene | Analytical Monalytical Monalyt | Units Method: NWTP mg/kg % Method: NWTP mg/kg % Method: EPA 82 ug/kg | H-Dx<br>H-Gx | Report Limit  Preparation M  19.6 78.2 50-150 50-150  Preparation M  7.6 50-150 50-150 | DF ethod: E  1  1  1  ethod: N  1  1  1  | Prepared  08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 08/18/10 16:35 WTPH-Gx 08/18/10 10:00 08/18/10 10:00 | Analyzed  08/19/10 23:55 08/19/10 23:55 08/19/10 23:55 08/19/10 03:19 08/19/10 03:19 08/19/10 03:19 | CAS No.  6 64742-65-0 6 630-02-4 84-15-1 98-08-8 4 600-00-4 6 71-43-2 1 100-41-4 | Qua  |

**REPORT OF LABORATORY ANALYSIS** 

Page 16 of 49



Date: 08/31/2010 03:23 PM

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Sample: B3@7 1/2ft                 | Lab ID: 254       | 571002       | Collected: 08/16/1 | 10 11:00 | Received: 08   | /17/10 12:00 N | fatrix: Solid |      |
|------------------------------------|-------------------|--------------|--------------------|----------|----------------|----------------|---------------|------|
| Results reported on a "dry-weight" | basis             |              |                    |          |                |                | •             |      |
| Parameters                         | Results           | Units        | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 3260/5035A Volatile Organics       | Analytical Metl   | hod: EPA 82  | 260                |          |                |                |               |      |
| Dibromofluoromethane (S)           | 102 %             |              | 80-136             | 1        |                | 08/18/10 10:43 | 1868-53-7     |      |
| Toluene-d8 (S)                     | 89 %              |              | 80-120             | 1        |                | 08/18/10 10:43 | 2037-26-5     |      |
| 1-Bromofluorobenzene (S)           | 92 %              |              | 72-122             | 1        |                | 08/18/10 10:43 | 460-00-4      |      |
| ,2-Dichloroethane-d4 (S)           | 95 %              |              | 80-143             | 1        |                | 08/18/10 10:43 | 17060-07-0    |      |
| Percent Moisture                   | Analytical Meti   | hod: ASTM    | D2974-87           |          |                |                |               |      |
| Percent Moisture                   | 33.8 %            |              | 0.10               | 1        |                | 08/18/10 15:53 |               |      |
|                                    |                   |              |                    |          | •              |                |               |      |
| Sample: B4@3 1/2ft                 | Lab ID: 254       | 571003       | Collected: 08/16/1 | 10 12:00 | Received: 08   | /17/10 12:00 N | latrix: Solid |      |
| Results reported on a "dry-weight" | basis             |              |                    |          |                |                |               |      |
| Parameters                         | Results           | Units        | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| IWTPH-Dx GCS                       | Analytical Met    | hod: NWTP    | H-Dx Preparation M | ethod: E | PA 3546        |                |               |      |
| Diesel Range                       | ND m              | g/kg         | 18.9               | 1        | 08/18/10 16:35 | 08/20/10 00:12 |               |      |
| Motor Oil Range                    | ND m              | g/kg         | 75.5               | 1        | 08/18/10 16:35 | 08/20/10 00:12 | 64742-65-0    |      |
| n-Octacosane (S)                   | 92 %              |              | 50-150             | 1        | 08/18/10 16:35 | 08/20/10 00:12 | 630-02-4      |      |
| p-Terphenyl (S)                    | 90 %              |              | 50-150             | 1        | 08/18/10 16:35 | 08/20/10 00:12 | 84-15-1       |      |
| NWTPH-Gx GCV                       | Analytical Met    | hod: NWTP    | H-Gx Preparation M | ethod: N | IWTPH-Gx       |                |               |      |
| Gasoline Range Organics            | ND mg             | g/kg         | 4.9                | 1        | 08/19/10 10:00 | 08/19/10 13:10 |               |      |
| a,a,a-Trifluorotoluene (S)         | 118 %             |              | 50-150             | 1        | 08/19/10 10:00 | 08/19/10 13:10 | 98-08-8       |      |
| 4-Bromofluorobenzene (S)           | 103 %             |              | 50-150             | . 1      | 08/19/10 10:00 | 08/19/10 13:10 | 460-00-4      |      |
| 3260/5035A Volatile Organics       | Analytical Met    | hod: EPA 82  | 260                |          |                |                |               |      |
| Benzene                            | · . ND ug         | ı/kg         | 2.4                | 1        |                | 08/18/10 11:03 | 71-43-2       |      |
| Ethylbenzene                       | ND ug             | ı/kg         | 2.4                | 1        |                | 08/18/10 11:03 | 100-41-4      |      |
| Toluene                            | ND ug             | ı/kg         | 2.4                | 1        |                | 08/18/10 11:03 | 108-88-3      |      |
| (Total)                            | ND ug             | ı/kg         | 7.3                | 1        |                | 08/18/10 11:03 |               |      |
| Dibromofluoromethane (S)           | 103 %             |              | 80-136             | 1        |                | 08/18/10 11:03 | 1868-53-7     |      |
| Toluene-d8 (S)                     | 86 %              |              | 80-120             | 1        |                | 08/18/10 11:03 | 2037-26-5     |      |
| I-Bromofluorobenzene (S)           | 91 %              |              | 72-122             | 1        |                | 08/18/10 11:03 |               |      |
| 1,2-Dichloroethane-d4 (S)          | 90 %              | •            | 80-143             | 1        |                | 08/18/10 11:03 | 17060-07-0    |      |
|                                    | Analytical Met    | hod: ASTM    | D2974-87           |          |                |                |               |      |
| Percent Moisture                   | / many moder mode | 1100.7101111 |                    |          |                |                |               |      |

Date: 08/31/2010 03:23 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 17 of 49





Proiect:

Ellensburg Loves 81109090.2

| Pace Project No.: 254571                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                             |                                      |                                                                                                             |                                                                                                     |                                                                 |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|
| Sample: B5@3ft                                                                                                                                                                                                                                                            | Lab ID: 254571004                                                                                                                                                                  | Collected: 08/16/                                                                                                           | 0 12:30                              | Received: 08                                                                                                | /17/10 12:00 I                                                                                      | Matrix: Solid                                                   |      |
| Results reported on a "dry-weigh                                                                                                                                                                                                                                          | t" basis                                                                                                                                                                           |                                                                                                                             |                                      |                                                                                                             |                                                                                                     |                                                                 |      |
| Parameters                                                                                                                                                                                                                                                                | Results Unit                                                                                                                                                                       | s Report Limit                                                                                                              | DF                                   | Prepared                                                                                                    | Analyzed                                                                                            | CAS No.                                                         | Qual |
| NWTPH-Dx GCS                                                                                                                                                                                                                                                              | Analytical Method: NW                                                                                                                                                              | TPH-Dx Preparation M                                                                                                        | ethod: E                             | PA 3546                                                                                                     |                                                                                                     |                                                                 |      |
| Diesel Range                                                                                                                                                                                                                                                              | 94.9 mg/kg                                                                                                                                                                         | 18.6                                                                                                                        | 1                                    | 08/19/10 16:50                                                                                              | 08/20/10 18:43                                                                                      | i                                                               |      |
| Motor Oil Range                                                                                                                                                                                                                                                           | 140 mg/kg                                                                                                                                                                          | 74.3                                                                                                                        | 1 '                                  | 08/19/10 16:50                                                                                              | 08/20/10 18:43                                                                                      | 64742-65-0                                                      |      |
| n-Octacosane (S)                                                                                                                                                                                                                                                          | 92 %                                                                                                                                                                               | 50-150                                                                                                                      | 1                                    | 08/19/10 16:50                                                                                              | 08/20/10 18:43                                                                                      | 630-02-4                                                        |      |
| o-Terphenyl (S)                                                                                                                                                                                                                                                           | 97 %                                                                                                                                                                               | 50-150                                                                                                                      | 1                                    | 08/19/10 16:50                                                                                              | 08/20/10 18:43                                                                                      | 84-15-1                                                         |      |
| NWTPH-Gx GCV                                                                                                                                                                                                                                                              | Analytical Method: NW                                                                                                                                                              | TPH-Gx Preparation M                                                                                                        | ethod: N                             | WTPH-Gx                                                                                                     |                                                                                                     |                                                                 |      |
| Gasoline Range Organics                                                                                                                                                                                                                                                   | <b>436</b> mg/kg                                                                                                                                                                   | 52.4                                                                                                                        | 10                                   | 08/19/10 10:00                                                                                              | 08/19/10 21:55                                                                                      |                                                                 |      |
| a,a,a-Trifluorotoluene (S)                                                                                                                                                                                                                                                | 109 %                                                                                                                                                                              | 50-150                                                                                                                      | 10                                   | 08/19/10 10:00                                                                                              | 08/19/10 21:55                                                                                      | 98-08-8                                                         |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                  | 97 %                                                                                                                                                                               | 50-150                                                                                                                      | 10                                   | 08/19/10 10:00                                                                                              | 08/19/10 21:55                                                                                      | 460-00-4                                                        |      |
| B260 MSV Medium LL                                                                                                                                                                                                                                                        | Analytical Method: EPA                                                                                                                                                             | 8260 Preparation Met                                                                                                        | hod: EPA                             | A 5035A/5030B                                                                                               |                                                                                                     |                                                                 |      |
| Benzene                                                                                                                                                                                                                                                                   | 8650 ug/kg                                                                                                                                                                         | 21.0                                                                                                                        | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 71-43-2                                                         |      |
| Ethylbenzene                                                                                                                                                                                                                                                              | <b>9720</b> ug/kg                                                                                                                                                                  | 26.2                                                                                                                        | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 100-41-4                                                        |      |
| Toluene                                                                                                                                                                                                                                                                   | <b>52800</b> ug/kg                                                                                                                                                                 | 262                                                                                                                         | 10                                   | 08/20/10 12:00                                                                                              | 08/24/10 13:40                                                                                      | 108-88-3                                                        |      |
| Xylene (Total)                                                                                                                                                                                                                                                            | 45100 ug/kg                                                                                                                                                                        | 78. <b>7</b>                                                                                                                | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 1330-20-7                                                       |      |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                  | 91 %                                                                                                                                                                               | 60-140                                                                                                                      | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 1868-53-7                                                       |      |
| Toluene-d8 (S)                                                                                                                                                                                                                                                            | 92 %                                                                                                                                                                               | 60-140                                                                                                                      | <b>1</b>                             | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 2037-26-5                                                       |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                  | 94 %                                                                                                                                                                               | 60-140                                                                                                                      | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 460-00-4                                                        |      |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                 | 94 %                                                                                                                                                                               | 60-140                                                                                                                      | 1                                    | 08/20/10 12:00                                                                                              | 08/20/10 18:48                                                                                      | 17060-07-0                                                      |      |
| Percent Moisture                                                                                                                                                                                                                                                          | Analytical Method: AST                                                                                                                                                             | M D2974-87                                                                                                                  |                                      |                                                                                                             |                                                                                                     |                                                                 |      |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | 0.40                                                                                                                        | 1                                    |                                                                                                             | 08/18/10 15:56                                                                                      | i                                                               |      |
| Percent Moisture                                                                                                                                                                                                                                                          | 20.0 %                                                                                                                                                                             | 0.10                                                                                                                        | •                                    |                                                                                                             |                                                                                                     |                                                                 |      |
|                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                           | ·                                                                                                                           |                                      | Received: 08                                                                                                | /17/10 12:00                                                                                        | Matrix: Solid                                                   |      |
| Sample: B6@5ft                                                                                                                                                                                                                                                            | Lab ID: 254571005                                                                                                                                                                  | Collected: 08/16/                                                                                                           |                                      | Received: 08                                                                                                | /17/10 12:00                                                                                        | Matrix: Solid                                                   |      |
| Sample: B6@5ft                                                                                                                                                                                                                                                            | Lab ID: 254571005                                                                                                                                                                  | Collected: 08/16/                                                                                                           |                                      | Received: 08                                                                                                | /17/10 12:00 I                                                                                      | Matrix: Solid  CAS No.                                          | Qual |
| Sample: B6@5ft<br>Results reported on a "dry-weigh<br>Parameters                                                                                                                                                                                                          | Lab ID: 254571005<br>t" basis<br>Results Unit                                                                                                                                      | Collected: 08/16/                                                                                                           | 10 12:45<br>DF                       | Prepared                                                                                                    |                                                                                                     |                                                                 | Qual |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters NWTPH-Dx GCS                                                                                                                                                                                                   | Lab ID: 254571005 t" basis Results Unit Analytical Method: NW                                                                                                                      | Collected: 08/16/                                                                                                           | 10 12:45<br>DF                       | Prepared                                                                                                    |                                                                                                     | CAS No.                                                         | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters NWTPH-Dx GCS Diesel Range                                                                                                                                                                                      | Lab ID: 254571005 t" basis Results Unit Analytical Method: NW ND mg/kg                                                                                                             | Collected: 08/16/s  Report Limit  TPH-Dx Preparation M  19.2                                                                | DF<br>ethod: E                       | Prepared PA 3546 08/19/10 16:50                                                                             | Analyzed 08/20/10 19:15                                                                             | CAS No.                                                         | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range  Motor Oil Range                                                                                                                                                                   | Lab ID: 254571005 t" basis Results Unit Analytical Method: NW ND mg/kg ND mg/kg                                                                                                    | Collected: 08/16/s  Report Limit  TPH-Dx Preparation M  19.2  76.8                                                          | DF<br>ethod: E<br>1                  | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50                                                              | Analyzed  08/20/10 19:15 08/20/10 19:15                                                             | CAS No.                                                         | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S)                                                                                                                                                   | Lab ID: 254571005 t" basis Results Unit Analytical Method: NW ND mg/kg                                                                                                             | Collected: 08/16/s  Report Limit  TPH-Dx Preparation M  19.2                                                                | DF<br>ethod: E                       | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50                                               | Analyzed 08/20/10 19:15                                                                             | CAS No.                                                         | Qual |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)                                                                                                                                   | Lab ID: 254571005 t" basis  Results  Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %                                                                                   | Collected: 08/16/s  Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150                                                  | DF ethod: E                          | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50                                           | Analyzed  08/20/10 19:15 08/20/10 19:15 08/20/10 19:15                                              | CAS No.                                                         | Qual |
| Sample: B6@5ft  Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV                                                                                                                    | Lab ID: 254571005 t" basis  Results  Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %                                                                                   | Collected: 08/16/<br>S Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150                                               | DF ethod: E                          | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50                           | Analyzed  08/20/10 19:15 08/20/10 19:15 08/20/10 19:15                                              | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                      | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics                                                                                            | Lab ID: 254571005  t" basis  Results  Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %  Analytical Method: NW                                                           | Collected: 08/16/  Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150  TPH-Gx Preparation M                             | DF                                   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50                           | 08/20/10 19:15<br>08/20/10 19:15<br>08/20/10 19:15<br>08/20/10 19:15                                | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                      | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S)                                                                 | Lab ID: 254571005 t" basis  Results Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %  Analytical Method: NW  7.2 mg/kg                                                  | Collected: 08/16/<br>Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150  50-150  TPH-Gx Preparation M                   | DF                                   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  IWTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 19:15<br>08/20/10 19:15<br>08/20/10 19:15<br>08/20/10 19:15                                | CAS No.  6 64742-65-0 6 630-02-4 8 84-15-1                      | Qua  |
| Sample: B6@5ft Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)                                        | Lab ID: 254571005 t" basis  Results Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %  Analytical Method: NW  7.2 mg/kg  112 %                                           | Collected: 08/16/<br>S Report Limit  TPH-Dx Preparation M  19.2 76.8 50-150 50-150  TPH-Gx Preparation M  5.2 50-150 50-150 | DF                                   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  IWTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 19:15 08/20/10 19:15 08/20/10 19:15 08/20/10 19:15                                         | CAS No.  6 64742-65-0 6 630-02-4 8 84-15-1                      | Qua  |
| Sample: B6@5ft<br>Results reported on a "dry-weigh                                                                                                                                                                                                                        | Lab ID: 254571005 It" basis Results Unit Analytical Method: NW ND mg/kg ND mg/kg 98 % 99 % Analytical Method: NW 7.2 mg/kg 112 % 98 %                                              | Collected: 08/16/<br>S Report Limit  TPH-Dx Preparation M  19.2 76.8 50-150 50-150  TPH-Gx Preparation M  5.2 50-150 50-150 | DF                                   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  IWTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 19:15 08/20/10 19:15 08/20/10 19:15 08/20/10 13:34 08/19/10 13:34 08/19/10 13:34 | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1 6 98-08-8 6 460-00-4 | Qua  |
| Sample: B6@5ft  Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range η-Octacosane (S) ο-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics Benzene | Lab ID: 254571005 t" basis  Results  Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %  Analytical Method: NW  7.2 mg/kg  112 %  98 %  Analytical Method: EP/            | Collected: 08/16/<br>S Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150  TPH-Gx Preparation M  5.2  50-150  50-150    | DF ethod: E 1 1 1 1 ethod: N 1 1 1 1 | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  IWTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 19:15 08/20/10 19:15 08/20/10 19:15 08/20/10 13:34 08/19/10 13:34                | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1 6 98-08-8 6 460-00-4 | Qua  |
| Sample: B6@5ft  Results reported on a "dry-weigh Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range η-Octacosane (S) ο-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics         | Lab ID: 254571005 t" basis  Results Unit  Analytical Method: NW  ND mg/kg  ND mg/kg  98 %  99 %  Analytical Method: NW  7.2 mg/kg  112 %  98 %  Analytical Method: EP/  29.8 ug/kg | Collected: 08/16/<br>S Report Limit  TPH-Dx Preparation M  19.2  76.8  50-150  TPH-Gx Preparation M  5.2  50-150  50-150    | DF ethod: E 1 1 1 1 1 1 1 1 1 1 1    | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  IWTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 19:15 08/20/10 19:15 08/20/10 19:15 08/20/10 13:34 08/19/10 13:34 08/19/10 13:34 | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  98-08-8 4 460-00-4  | Qua  |

Date: 08/31/2010 03:23 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 18 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Sample: B6@5ft                    | Lab ID: 25457    | 71005     | Collected:   | 08/16/1  | 10 12:45  | Received:     | 08/17/10 12:00    | Matrix: Solid |     |
|-----------------------------------|------------------|-----------|--------------|----------|-----------|---------------|-------------------|---------------|-----|
| Results reported on a "dry-weight | t" basis         |           |              |          |           |               |                   |               |     |
| Parameters                        | Results          | Units     | Report       | Limit    | DF        | Prepared      | Analyzed          | CAS No.       | Qua |
| 3260/5035A Volatile Organics      | Analytical Metho | od: EPA 8 | 260          |          |           |               |                   |               |     |
| Dibromofluoromethane (S)          | . 100 %          |           |              | 30-136   | 1         |               | 08/18/10 13:2     | 6 1868-53-7   |     |
| Toluene-d8 (S)                    | 87 %             |           | 8            | 30-120   | 1         |               | 08/18/10 13:2     | 6 2037-26-5   |     |
| 4-Bromofluorobenzene (S)          | 94 %             |           | 7            | 72-122   | 1         |               | 08/18/10 13:2     | 6 460-00-4    |     |
| 1,2-Dichloroethane-d4 (S)         | 99 %             |           |              | 30-143   | 1         |               | 08/18/10 13:2     | 6 17060-07-0  |     |
| Percent Moisture                  | Analytical Metho | d: ASTM   | D2974-87     |          |           |               |                   |               |     |
| Percent Moisture                  | 18.7 %           |           |              | 0.10     | 1         |               | 08/18/10 15:5     | 8             |     |
| Sample: B7@8ft                    | Lab ID: 25457    | 71006     | Collected:   | 08/16/1  | 10 15:45  | Received:     | 08/17/10 12:00    | Matrix: Solid |     |
| Results reported on a "dry-weight | t" basis         |           |              |          |           |               |                   |               |     |
| Parameters                        | Results          | Units     | Report       | Limit    | DF        | Prepared      | Analyzed          | CAS No.       | Qua |
| NWTPH-Dx GCS                      | Analytical Metho | d: NWTP   | H-Dx Prepar  | ation Me | ethod: El | PA 3546       |                   |               |     |
| Diesel Range                      | 423 mg/l         | kg        |              | 19.2     | 1         | 08/19/10 16:5 | 50 08/20/10 19:3  | 2             |     |
| Motor Oil Range                   | ND mg/l          | -         |              | 77.0     | 1         | 08/19/10 16:5 | 50 08/20/10 19:3  | 2 64742-65-0  |     |
| n-Octacosane (S)                  | 99 %             |           |              | 50-150   | 1         |               | 50 08/20/10 19:3  |               |     |
| o-Terphenyl (S)                   | 101 %            |           |              | 50-150   | 1         |               | 50 08/20/10 19:3  |               |     |
| NWTPH-Gx GCV                      | Analytical Metho | d: NWTP   | H-Gx Prepar  | ation Me | ethod: N  | WTPH-Gx       |                   |               |     |
| Gasoline Range Organics           | 3700 mg/l        | kg        |              | 425      | 100       | 08/20/10 17:0 | 00 08/21/10 01:4  | 4             |     |
| a,a,a-Trifluorotoluene (S)        | 112 %            | •         | 5            | 50-150   | 100       | 08/20/10 17:0 | 00 08/21/10 01:4  | 4 98-08-8     |     |
| 4-Bromofluorobenzene (S)          | 118 %            |           | 5            | 50-150   | 100       | 08/20/10 17:0 | 00 08/21/10 01:4  | 4 460-00-4    |     |
| 3270 MSSV PAH by SIM              | Analytical Metho | d: EPA 82 | 270 by SIM P | reparati | ion Meth  | od: EPA 3546  |                   |               |     |
| Acenaphthene                      | <b>104</b> ug/k  | g         |              | 7.5      | 1         | 08/18/10 16:4 | 10 08/19/10 17:3  | 9 83-32-9     |     |
| Acenaphthylene                    | <b>22.2</b> ug/k | g         |              | 7.5      | 1         | 08/18/10 16:4 | 0 08/19/10 17:3   | 9 208-96-8    |     |
| Anthracene                        | 37.0 ug/k        | _         |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| Benzo(a)anthracene                | ND ug/k          | -         |              | 7.5      | 1         |               | 0 08/19/10 17:3   |               |     |
| Benzo(a)pyrene                    | ND ug/k          | •         |              | 7.5      | 1         |               | 0 08/19/10 17:3   |               |     |
| Benzo(b)fluoranthene              | ND ug/k          | •         |              | 7.5      | 1         |               | 0 08/19/10 17:3   |               |     |
| Benzo(g,h,i)perylene              | ND ug/k          | _         |              | 7.5      | 1         |               | 0 08/19/10 17:3   |               |     |
| Benzo(k)fluoranthene              | ND ug/k          | -         |              | 7.5      | 1         |               | 0 08/19/10 17:3   |               |     |
| Chrysene                          | ND ug/k          |           |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| Dibenz(a,h)anthracene             | ND ug/k          |           |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| Fluoranthene                      | 14.1 ug/k        | -         |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| Fluorene                          | 256 ug/k         | _         |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| ndeno(1,2,3-cd)pyrene             | ND ug/k          | -         |              | 7.5      |           |               | 10 08/19/10 17:3  |               |     |
| Naphthalene                       | 1800 ug/k        | -         |              | 7.5      | 1         |               | 10 08/19/10 17:3  |               |     |
| Phenanthrene                      | 255 ug/k         | -         |              | 7.5      |           |               | 10 08/19/10 17:3  |               |     |
| Pyrene                            | 57.5 ug/k        | _         |              | 7.5      |           |               | 10 08/19/10 17:3  |               |     |
|                                   | 37.3 du/k        | <b>.</b>  |              | 1.0      |           | 00/10/10 10:4 | 10 00/18/10 17:3  | J 125-00-0    |     |
| 2-Fluorobiphenyl (S)              | 69 %             | J         |              | 55-136   | 1         | 08/18/10 16:4 | 10 08/19/10 17:39 | 321-60 9      |     |

Date: 08/31/2010 03:23 PM

## **REPORT OF LABORATORY ANALYSIS**

Project:

Ellensburg Loves 81109090.2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab ID:                                                                                                 | 254571006                                                                            | Collected (                            | 08/16/10                                                                                                              | 15:45                                                    | Received: 0                                                                                       | 8/17/10 12:00                                                                                                                                                                                                                      | Matrix: Solid                                                                                                                                                          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Results reported on a "dry-weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | " basis                                                                                                 |                                                                                      |                                        |                                                                                                                       |                                                          |                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                                        |      |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                 | Units                                                                                | Report I                               | Limit                                                                                                                 | DF                                                       | Prepared                                                                                          | Analyzed                                                                                                                                                                                                                           | CAS No.                                                                                                                                                                | Qual |
| 260 MSV Medium LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analytical I                                                                                            | Method: EPA 8                                                                        | 260 Preparation                        | on Metho                                                                                                              | d: EPA                                                   | 5035A/5030B                                                                                       |                                                                                                                                                                                                                                    |                                                                                                                                                                        |      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 153                                                                                                     | ug/kg                                                                                |                                        | 17.0                                                                                                                  | 1                                                        | 08/20/10 12:00                                                                                    | 08/24/10 14:04                                                                                                                                                                                                                     | 4 71-43-2                                                                                                                                                              |      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45500                                                                                                   | ug/kg                                                                                |                                        | 1060                                                                                                                  | 50                                                       | 08/20/10 12:00                                                                                    | 08/20/10 19:37                                                                                                                                                                                                                     | 7 100-41-4                                                                                                                                                             |      |
| foluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 554                                                                                                     | ug/kg                                                                                |                                        | 21.3                                                                                                                  | 1                                                        | 08/20/10 12:00                                                                                    | 08/24/10 14:04                                                                                                                                                                                                                     | 4 108-88-3                                                                                                                                                             |      |
| (ylene (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 247000                                                                                                  | ug/kg                                                                                |                                        | 3190                                                                                                                  | 50                                                       | 08/20/10 12:00                                                                                    | 0 < 08/20/10 19:37                                                                                                                                                                                                                 | 7 1330-20-7                                                                                                                                                            |      |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105                                                                                                     | i %                                                                                  | 60                                     | 0-140                                                                                                                 | 1                                                        | 08/20/10 12:00                                                                                    | 08/24/10 14:04                                                                                                                                                                                                                     | 4 1868-53-7                                                                                                                                                            |      |
| foluene-d8 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         | 3 %                                                                                  | 60                                     | 0-140                                                                                                                 | 1                                                        | 08/20/10 12:00                                                                                    | 08/24/10 14:04                                                                                                                                                                                                                     | 4 2037-26-5                                                                                                                                                            |      |
| I-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114                                                                                                     | %                                                                                    | 60                                     | 0-140                                                                                                                 | 1                                                        | 08/20/10 12:00                                                                                    | 08/24/10 14:04                                                                                                                                                                                                                     | 4 460-00- <b>4</b>                                                                                                                                                     |      |
| ,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108                                                                                                     |                                                                                      | 60                                     | 0-140                                                                                                                 | 1                                                        |                                                                                                   | 08/24/10 14:04                                                                                                                                                                                                                     |                                                                                                                                                                        |      |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical I                                                                                            | Method: ASTM                                                                         | D2974-87                               |                                                                                                                       |                                                          |                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                                        |      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                       |                                                                                      |                                        |                                                                                                                       |                                                          |                                                                                                   |                                                                                                                                                                                                                                    | _                                                                                                                                                                      |      |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8                                                                                                    |                                                                                      |                                        | 0.10                                                                                                                  | 1                                                        |                                                                                                   | 08/18/10 16:07                                                                                                                                                                                                                     | /                                                                                                                                                                      |      |
| Sample: B8@6ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lab ID:                                                                                                 | 254571007                                                                            | Collected: (                           | 08/16/10                                                                                                              | 13:50                                                    | Received: 0                                                                                       | 8/17/10 12:00                                                                                                                                                                                                                      | Matrix: Solid                                                                                                                                                          |      |
| Results reported on a "dry-weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                      | 0011001001                             | - 0, 10, 10                                                                                                           |                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                           | C,                                                                                                                                                                                                                                 |                                                                                                                                                                        |      |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                 | Units                                                                                | Report I                               | Limit                                                                                                                 | DF                                                       | Prepared                                                                                          | Analyzed                                                                                                                                                                                                                           | CAS No.                                                                                                                                                                | Qual |
| WTPH-Dx GCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytical I                                                                                            | Method: NWTF                                                                         | H-Dx Prepara                           | tion Metl                                                                                                             | hod: El                                                  | PA 3546                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                        |                                                                                                                       |                                                          |                                                                                                   |                                                                                                                                                                                                                                    |                                                                                                                                                                        |      |
| Diesel Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                      | ma/ka                                                                                |                                        | 19.9                                                                                                                  | 1                                                        | 08/19/10 16:50                                                                                    | 08/20/10 19:48                                                                                                                                                                                                                     | 3                                                                                                                                                                      |      |
| Diesel Range<br>Motor Oil Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         | mg/kg<br>ma/ka                                                                       |                                        | 19.9<br>79.8                                                                                                          |                                                          |                                                                                                   | 0 08/20/10 19:48                                                                                                                                                                                                                   |                                                                                                                                                                        |      |
| Motor Oil Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                      | mg/kg                                                                                | 50                                     | 79.8                                                                                                                  | 1                                                        | 08/19/10 16:50                                                                                    | 08/20/10 19:48                                                                                                                                                                                                                     | 8 64742-65-0                                                                                                                                                           |      |
| Motor Oil Range<br>n-Octacosane (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | mg/kg .                                                                              |                                        |                                                                                                                       |                                                          | 08/19/10 16:50<br>08/19/10 16:50                                                                  | 0 08/20/10 19:48<br>0 08/20/10 19:48                                                                                                                                                                                               | 64742-65-0<br>630-02-4                                                                                                                                                 |      |
| Motor Oil Range<br>n-Octacosane (S)<br>n-Terphenyl (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NE<br>101<br>104                                                                                        | mg/kg<br>%<br>%                                                                      | 50                                     | 79.8<br>0-150<br>0-150                                                                                                | 1<br>1<br>1                                              | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50                                                | 08/20/10 19:48                                                                                                                                                                                                                     | 64742-65-0<br>630-02-4                                                                                                                                                 |      |
| Motor Oil Range<br>h-Octacosane (S)<br>h-Terphenyl (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NE<br>101<br>104<br>Analytical I                                                                        | mg/kg<br>%<br>%<br>Method: NWTF                                                      |                                        | 79.8<br>0-150<br>0-150<br>Ition Met                                                                                   | 1<br>1<br>1<br>hod: N                                    | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx                                     | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48                                                                                                                                                                           | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1                                                                                                                                |      |
| Motor Oil Range<br>h-Octacosane (S)<br>h-Terphenyl (S)<br>NWTPH-Gx GCV<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NE<br>101<br>104<br>Analytical I                                                                        | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg                                             | 50<br>PH-Gx Prepara                    | 79.8<br>0-150<br>0-150<br>ution Met                                                                                   | 1<br>1<br>1<br>hod: N                                    | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00                   | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/19/10 14:23                                                                                                                                                       | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1                                                                                                                                |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S) NWTPH-Gx GCV Gasoline Range Organics n,a,a-Trifluorotoluene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NE<br>101<br>104<br>Analytical I<br>NE<br>120                                                           | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg                                             | 50<br>PH-Gx Prepara<br>50              | 79.8<br>0-150<br>0-150<br>ution Met<br>5.3<br>0-150                                                                   | 1<br>1<br>1<br>hod: N <sup>1</sup><br>1                  | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/19/10 14:23<br>0 08/19/10 14:23                                                                                                                                   | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8                                                                                                                   |      |
| Motor Oil Range<br>n-Octacosane (S)<br>n-Terphenyl (S)<br>NWTPH-Gx GCV<br>Gasoline Range Organics<br>n,a,a-Trifluorotoluene (S)<br>n-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>101<br>104<br>Analytical I<br>ND<br>120<br>110                                                    | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg<br>%                                        | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ution Met                                                                                   | 1<br>1<br>1<br>hod: N                                    | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/19/10 14:23                                                                                                                                                       | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8                                                                                                                   |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S) NWTPH-Gx GCV Gasoline Range Organics n,a,a-Trifluorotoluene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>101<br>104<br>Analytical I<br>ND<br>120<br>110                                                    | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg                                             | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ution Met<br>5.3<br>0-150                                                                   | 1<br>1<br>1<br>hod: N <sup>1</sup><br>1                  | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/19/10 14:23<br>0 08/19/10 14:23                                                                                                                                   | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8                                                                                                                   |      |
| Motor Oil Range<br>n-Octacosane (S)<br>n-Terphenyl (S)<br>NWTPH-Gx GCV<br>Gasoline Range Organics<br>n,a,a-Trifluorotoluene (S)<br>n-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NE<br>101<br>104<br>Analytical I<br>NE<br>120<br>110<br>Analytical I                                    | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg<br>%                                        | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ution Met<br>5.3<br>0-150                                                                   | 1<br>1<br>1<br>hod: N\<br>1<br>1                         | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/20/10 19:48<br>0 08/19/10 14:23<br>0 08/19/10 14:23                                                                                                                                   | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4                                                                                                     |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S) WTPH-Gx GCV Gasoline Range Organics n,a,a-Trifluorotoluene (S) n-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NE<br>101<br>104<br>Analytical I<br>120<br>110<br>Analytical I                                          | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg<br>) %<br>0 %<br>Method: EPA 8              | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ation Metl<br>5.3<br>0-150                                                                  | 1<br>1<br>1<br>hod: N\<br>1<br>1                         | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/19/10 14:23                                                                                                               | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4                                                                                                     |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) I-Bromofluorobenzene (S)  1260/5035A Volatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NE<br>101<br>104<br>Analytical I<br>120<br>110<br>Analytical I<br>NE                                    | mg/kg<br>%<br>%<br>Method: NWTF<br>mg/kg<br>) %<br>%<br>Method: EPA 8                | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ition Metl<br>5.3<br>0-150<br>0-150                                                         | 1<br>1<br>1<br>hod: N\<br>1<br>1                         | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/19/10 14:23                                                                                                               | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4                                                                          |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) I-Bromofluorobenzene (S) I-Bromofluorobenzene (S) I-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NE<br>101<br>104<br>Analytical I<br>120<br>110<br>Analytical I<br>NE<br>NE                              | mg/kg<br>%<br>/ %<br>Method: NWTF<br>mg/kg<br>/ %<br>/ %<br>Method: EPA 8<br>/ ug/kg | 50<br>PH-Gx Prepara<br>50<br>50        | 79.8<br>0-150<br>0-150<br>ition Metl<br>5.3<br>0-150<br>0-150                                                         | 1<br>1<br>1<br>hod: N\<br>1<br>1<br>1                    | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/20/10 09:12<br>08/20/10 09:12                                                                                             | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4<br>2 108-88-3                                                            |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) n-Bromofluorobenzene (S)  Geo/5035A Volatile Organics  Genzene Ethylbenzene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NE<br>101<br>104<br>Analytical I<br>120<br>110<br>Analytical I<br>NE<br>NE                              | mg/kg   | 50<br>PH-Gx Prepara<br>50<br>50<br>260 | 79.8<br>0-150<br>0-150<br>0-150<br>Metl<br>5.3<br>0-150<br>0-150                                                      | 1<br>1<br>1<br>1<br>hod: N\<br>1<br>1<br>1<br>1          | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/20/10 09:12<br>08/20/10 09:12                                                                         | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4<br>2 108-88-3<br>2 1330-20-7                                             |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) I-Bromofluorobenzene (S) I-Bromo | Analytical I Analytical I Analytical I Analytical I Analytical I ND ND ND                               | mg/kg   | 50<br>PH-Gx Prepara<br>50<br>50<br>260 | 79.8<br>0-150<br>0-150<br>0-150<br>Metl<br>5.3<br>0-150<br>0-150<br>2.9<br>2.9<br>2.9<br>8.6                          | 1<br>1<br>1<br>1<br>hod: N\<br>1<br>1<br>1<br>1<br>1     | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12                                                         | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4<br>2 108-88-3<br>2 1330-20-7<br>2 1868-53-7                              |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) n-Bromofluorobenzene (S)  260/5035A Volatile Organics Genzene Ethylbenzene Toluene (Vjene (Total) Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical I Analytical I Analytical I Analytical I Analytical I NE | mg/kg % Method: NWTF mg/kg % % Method: EPA 8 ug/kg ug/kg ug/kg ug/kg                 | 50<br>2H-Gx Prepara<br>50<br>260<br>80 | 79.8<br>0-150<br>0-150<br>0-150<br>Metl<br>5.3<br>0-150<br>0-150<br>2.9<br>2.9<br>2.9<br>8.6<br>0-136                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12                   | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4<br>2 108-88-3<br>2 1330-20-7<br>2 1868-53-7<br>2 2037-26-5               |      |
| Motor Oil Range n-Octacosane (S) n-Terphenyl (S)  WTPH-Gx GCV  Gasoline Range Organics n,a,a-Trifluorotoluene (S) n-Bromofluorobenzene (S)  260/5035A Volatile Organics Genzene Ethylbenzene foluene (ylene (Total) Dibromofluoromethane (S) foluene-d8 (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytical I Analytical I Analytical I Analytical I Analytical I NE NE NE NE NE NE 103 87 91            | mg/kg % Method: NWTF mg/kg % % Method: EPA 8 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg     | 50<br>260<br>80<br>72                  | 79.8<br>0-150<br>0-150<br>0-150<br>Metl<br>5.3<br>0-150<br>0-150<br>2.9<br>2.9<br>2.9<br>2.9<br>8.6<br>0-136<br>0-120 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 08/19/10 16:50<br>08/19/10 16:50<br>08/19/10 16:50<br>WTPH-Gx<br>08/19/10 10:00<br>08/19/10 10:00 | 0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/20/10 19:44<br>0 08/19/10 14:23<br>0 08/19/10 14:23<br>0 08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12<br>08/20/10 09:12 | 3 64742-65-0<br>3 630-02-4<br>3 84-15-1<br>3 98-08-8<br>3 460-00-4<br>2 71-43-2<br>2 100-41-4<br>2 108-88-3<br>2 1330-20-7<br>2 1868-53-7<br>2 2037-26-5<br>2 460-00-4 |      |

Date: 08/31/2010 03:23 PM

Percent Moisture



Page 20 of 49

08/18/10 16:11





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Sami | ·la· | B9@7ft |
|------|------|--------|
| Sami | JIE. | ווששם  |

Lab ID: 254571008

Collected: 08/16/10 14:15 Received: 08/17/10 12:00

08/24/10 07:00 08/24/10 12:04 108-88-3

08/24/10 07:00 08/24/10 12:04 1330-20-7

Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                  | Results         | Units       | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.    | Qua |
|-----------------------------|-----------------|-------------|-------------------|----------|----------------|----------------|------------|-----|
| WTPH-Dx GCS                 | Analytical Meth | od: NWTPH-  | Dx Preparation Me | ethod: i | EPA 3546       |                |            |     |
| Diesel Range                | ND mg           | /kg         | 18.9              | 1        | 08/19/10 16:50 | 08/20/10 20:37 |            |     |
| Aotor Oil Range             | ND mg           | /kg         | 75.8              | 1        | 08/19/10 16:50 | 08/20/10 20:37 | 64742-65-0 |     |
| n-Octacosane (S)            | 100 %           |             | 50-150            | 1        | 08/19/10 16:50 | 08/20/10 20:37 | 630-02-4   |     |
| o-Terphenyl (S)             | 101 %           |             | 50-150            | 1        | 08/19/10 16:50 | 08/20/10 20:37 | 84-15-1    |     |
| IWTPH-Gx GCV                | Analytical Meth | od: NWTPH-  | Gx Preparation Me | ethod: I | NWTPH-Gx       |                |            |     |
| Sasoline Range Organics     | ND mg           | /kg         | 4.8               | 1.       | 08/19/10 10:00 | 08/19/10 14:47 |            |     |
| ı,a,a-Trifluorotoluene (S)  | 123 %           |             | 50-150            | 1        | 08/19/10 10:00 | 08/19/10 14:47 | 98-08-8    |     |
| l-Bromofluorobenzene (S)    | 111 %           |             | 50-150            | 1        | 08/19/10 10:00 | 08/19/10 14:47 | 460-00-4   |     |
| 260/5035A Volatile Organics | Analytical Meth | od: EPA 826 | 0                 |          |                |                |            |     |
| Benzene                     | ND ug/          | /kg         | 2.3               | 1        |                | 08/19/10 15:01 | 71-43-2    |     |
| Ethylbenzene                | ND ug/          | /kg         | 2.3               | 1        |                | 08/19/10 15:01 | 100-41-4   |     |
| Toluene                     | ND ug/          | /kg         | 2.3               | 1        |                | 08/19/10 15:01 | 108-88-3   |     |
| (ylene (Total)              | ND ug/          | /kg         | 7.0               | 1        |                | 08/19/10 15:01 | 1330-20-7  |     |
| Dibromofluoromethane (S)    | 97 %            |             | 80-136            | 1        |                | 08/19/10 15:01 | 1868-53-7  |     |
| Toluene-d8 (S)              | 88 %            |             | 80-120            | 1        |                | 08/19/10 15:01 | 2037-26-5  |     |
| I-Bromofluorobenzene (S)    | 89 %            |             | 72-122            | 1        |                | 08/19/10 15:01 | 460-00-4   |     |
| ,2-Dichloroethane-d4 (S)    | 83 %            |             | 80-143            | 1        |                | 08/19/10 15:01 | 17060-07-0 |     |
| Percent Moisture            | Analytical Meth | od: ASTM D  | 2974-87           |          |                |                |            |     |
| Percent Moisture            | 8.0 %           |             | 0.10              | 1        |                | 08/18/10 16:12 |            |     |

| Sample: B10@5ft                 | Lab ID: 254571009     | Ool       | lected: 08/16/1 | 0 15:15  | Received: 08   | 8/17/10 12:00 N | latrix: Solid |      |
|---------------------------------|-----------------------|-----------|-----------------|----------|----------------|-----------------|---------------|------|
| Results reported on a "dry-weig | ηht" basis            |           |                 |          |                |                 |               |      |
| Parameters                      | Results Un            | nits      | Report Limit    | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| NWTPH-Dx GCS                    | Analytical Method: NV | WTPH-Dx   | Preparation Me  | ethod: E | EPA 3546       |                 |               |      |
| Diesel Range                    | 3120 mg/kg            |           | 19.8            | 1        | 08/19/10 16:50 | 08/20/10 20:54  |               |      |
| Motor Oil Range                 | 98.3 mg/kg            |           | 79.1            | 1        | 08/19/10 16:50 | 08/20/10 20:54  | 64742-65-0    |      |
| n-Octacosane (S)                | 92 %                  |           | 50-150          | 1        | 08/19/10 16:50 | 08/20/10 20:54  | 630-02-4      |      |
| o-Terphenyl (S)                 | 102 %                 |           | 50-150          | 1        | 08/19/10 16:50 | 08/20/10 20:54  | 84-15-1       |      |
| NWTPH-Gx GCV                    | Analytical Method: NV | WTPH-Gx   | Preparation Mo  | ethod: 1 | NWTPH-Gx       |                 |               |      |
| Gasoline Range Organics         | 1890 mg/kg            |           | 55.0            | 10       | 08/19/10 10:00 | 08/19/10 22:43  |               |      |
| a,a,a-Trifluorotoluene (S)      | 94 %                  |           | 50-150          | 10       | 08/19/10 10:00 | 08/19/10 22:43  | 98-08-8       |      |
| 4-Bromofluorobenzene (S)        | 137 %                 |           | 50-150          | 10       | 08/19/10 10:00 | 08/19/10 22:43  | 460-00-4      |      |
| 8260 MSV Medium LL              | Analytical Method: EF | PA 8260 F | reparation Met  | nod: EF  | A 5035A/5030B  |                 |               |      |
| Benzene                         | <b>10800</b> ug/kg    |           | 220             | 10       | 08/24/10 07:00 | 08/24/10 12:04  | 71-43-2       |      |
| Ethylbenzene                    | 46900 ug/kg           |           | 275             | 10       | 08/24/10 07:00 | 08/24/10 12:04  | 100-41-4      |      |

Date: 08/31/2010 03:23 PM

## **REPORT OF LABORATORY ANALYSIS**

275

825

10

10

1640 ug/kg

65200 ug/kg

Page 21 of 49





Toluene

Xylene (Total)

Project:

Ellensburg Loves 81109090.2

Page Project No

| Sample: B10@5ft                 | Lab ID: 254571     | 009 Collecte      | ed: 08/16/1 | 0 15:15   | Received: 0    | 8/17/10 12:00     ! | Matrix: Solid    |             |
|---------------------------------|--------------------|-------------------|-------------|-----------|----------------|---------------------|------------------|-------------|
| Results reported on a "dry-weig | pht" basis         |                   |             |           |                |                     |                  |             |
| Parameters                      | Results            | Units Rep         | oort Limit  | DF        | Prepared       | Analyzed            | CAS No.          | Qua         |
| 260 MSV Medium LL               | Analytical Method: | : EPA 8260 Prepa  | aration Met | nod: EPA  | 5035A/5030B    |                     |                  |             |
| Dibromofluoromethane (S)        | 94 %               |                   | 60-140      | 10        | 08/24/10 07:00 | 0 08/24/10 12:04    | 1868-53-7        |             |
| Toluene-d8 (S)                  | 86 %               |                   | 60-140      | 10        | 08/24/10 07:00 | 0 08/24/10 12:04    | 2037-26-5        |             |
| 4-Bromofluorobenzene (S)        | 94 %               |                   | 60-140      | 10        | 08/24/10 07:00 | 0 08/24/10 12:04    | 460-00-4         |             |
| 1,2-Dichloroethane-d4 (S)       | 94 %               |                   | 60-140      | 10        | 08/24/10 07:0  | 0 08/24/10 12:04    | 17060-07-0       |             |
| Percent Moisture                | Analytical Method: | : ASTM D2974-87   |             |           |                | •                   |                  |             |
| Percent Moisture                | 17.9 %             |                   | 0.10        | 1         |                | 08/18/10 16:15      | ;                |             |
| Sample: B11@4 1/2ft             | Lab ID: 254571     | 010 Collecte      | ed: 08/16/1 | 10 15:30  | Received: 0    | 08/17/10 12:00      | Matrix: Solid    |             |
| Results reported on a "dry-weig |                    |                   |             |           | , 100000       |                     |                  |             |
| Parameters                      | Results            | Units Re          | oort Limit  | DF        | Prepared       | Analyzed            | CAS No.          | Qua         |
|                                 |                    |                   | -           |           | Troparou       | 711019200           |                  |             |
| NWTPH-Dx GCS                    | Analytical Method  | : NWTPH-Dx Pre    | paration Me | ethod: El | PA 3546        |                     |                  |             |
| Diesel Range                    | <b>9960</b> mg/kg  | I                 | 192         | 10        | 08/19/10 16:50 | 0 08/23/10 11:48    |                  |             |
| Motor Oil Range                 | <b>518</b> mg/kg   |                   | 76.6        | 1         | 08/19/10 16:56 | 0 08/20/10 21:10    | 64742-65-0       |             |
| n-Octacosane (S)                | 96 %               |                   | 50-150      | 1         | 08/19/10 16:56 | 0 08/20/10 21:10    | 630-02-4         |             |
| o-Terphenyl (S)                 | 0 %                |                   | 50-150      | 10        | 08/19/10 16:5  | 0 08/23/10 11:48    | 84-15-1          | S4          |
| NWTPH-Gx GCV                    | Analytical Method  | : NWTPH-Gx Pre    | paration M  | ethod: N  | WTPH-Gx        |                     |                  |             |
| Gasoline Range Organics         | 1250 mg/kg         | ŀ                 | 51.6        | 10        | 08/19/10 10:0  | 0 08/19/10 23:07    | ,                |             |
| a,a,a-Trifluorotoluene (S)      | 123 %              |                   | 50-150      | 10        | 08/19/10 10:0  | 0 08/19/10 23:07    | 98-08-8          |             |
| 4-Bromofluorobenzene (S)        | 166 %              |                   | 50-150      | 10        | 08/19/10 10:0  | 0 08/19/10 23:07    | 460-00- <b>4</b> | <b>\$</b> 5 |
| 3270 MSSV PAH by SIM            | Analytical Method  | : EPA 8270 by SIM | √ Preparat  | ion Meth  | od: EPA 3546   |                     |                  |             |
| Acenaphthene                    | 1240 ug/kg         |                   | 81.2        | 10        | 08/18/10 16:4  | 0 08/20/10 17:06    | 83-32-9          |             |
| Acenaphthylene                  | 288 ug/kg          |                   | 81.2        | 10        | 08/18/10 16:4  | 0 08/20/10 17:06    | 208-96-8         |             |
| Anthracene                      | <b>521</b> ug/kg   |                   | 81.2        | 10        | 08/18/10 16:4  | 0 08/20/10 17:06    | 120-12-7         |             |
| Benzo(a)anthracene              | 17.8 ug/kg         |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Benzo(a)pyrene                  | ND ug/kg           |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Benzo(b)fluoranthene            | ND ug/kg           |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Benzo(g,h,i)perylene            | ND ug/kg           |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Benzo(k)fluoranthene            | ND ug/kg           |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Chrysene                        | 45.6 ug/kg         |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Dibenz(a,h)anthracene           | ND ug/kg           |                   | 8.1         | • 1       |                | 0 08/19/10 18:29    |                  |             |
| Fluoranthene                    | 184 ug/kg          |                   | 81.2        | 10        |                | 0 08/20/10 17:06    |                  |             |
| Fluorene                        | 3490 ug/kg         |                   | 81.2        | 10        |                | 0 08/20/10 17:06    |                  |             |
| Indeno(1,2,3-cd)pyrene          | ND ug/kg           |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| Naphthalene                     | 5800 ug/kg         |                   | 81.2        | 10        |                | 0 08/20/10 17:06    |                  |             |
| Phenanthrene                    | 4200 ug/kg         |                   | 81.2        | 10        |                | 0 08/20/10 17:06    |                  |             |
| Pyrene                          | 344 ug/kg          |                   | 8.1         | 1         |                | 0 08/19/10 18:29    |                  |             |
| 2-Fluorobiphenyl (S)            | 92 %               |                   | 55-136      | 10        |                | 0 08/20/10 17:06    |                  |             |
| Zii luorobiprierryi (O)         | 32 /B              |                   | JJ-130      | 10        | 33/10/10 10.4  | 0 00/20/10 17:00    | . 521 00 0       |             |

Date: 08/31/2010 03:23 PM

Terphenyl-d14 (S)

## **REPORT OF LABORATORY ANALYSIS**

67 %

Page 22 of 49

08/18/10 16:40 08/19/10 18:29 1718-51-0





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254574

| Sample: B11@4 1/2ft                                                                                                                                                                                                                                                                                           | Lab ID: 254571010                                                                                                                                                                                                        | Collected: 08/16/10                                                                                                                          | 15:30                                                  | Received: 08                                                                                               | /17/10 12:00 N                                                                                                                                                                                     | // Aatrix: Solid                                                                                                     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|
| Results reported on a "dry-weight                                                                                                                                                                                                                                                                             | " basis                                                                                                                                                                                                                  |                                                                                                                                              |                                                        |                                                                                                            |                                                                                                                                                                                                    |                                                                                                                      |     |
| Parameters                                                                                                                                                                                                                                                                                                    | Results Units                                                                                                                                                                                                            | Report Limit                                                                                                                                 | DF                                                     | Prepared                                                                                                   | Analyzed                                                                                                                                                                                           | CAS No.                                                                                                              | Qua |
| 8260 MSV Medium LL                                                                                                                                                                                                                                                                                            | Analytical Method: EPA 8                                                                                                                                                                                                 | 3260 Preparation Metho                                                                                                                       | od: EPA                                                | 5035A/5030B                                                                                                |                                                                                                                                                                                                    |                                                                                                                      |     |
| Benzene                                                                                                                                                                                                                                                                                                       | 1750 ug/kg                                                                                                                                                                                                               | 25.5                                                                                                                                         | 1                                                      | 08/24/10 07:00                                                                                             | 08/24/10 13:16                                                                                                                                                                                     | 71-43-2                                                                                                              | -   |
| Ethylbenzene                                                                                                                                                                                                                                                                                                  | <b>4320</b> ug/kg                                                                                                                                                                                                        | 31.9                                                                                                                                         | 1                                                      | 08/24/10 07:00                                                                                             | 08/24/10 13:16                                                                                                                                                                                     | 100-41-4                                                                                                             | ÷   |
| Xylene (Total)                                                                                                                                                                                                                                                                                                | <b>7070</b> ug/kg                                                                                                                                                                                                        | 95.7                                                                                                                                         | 1                                                      | 08/24/10 07:00                                                                                             | 08/24/10 13:16                                                                                                                                                                                     | 1330-20-7                                                                                                            |     |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                      | 93 %                                                                                                                                                                                                                     | 60-140                                                                                                                                       | 1                                                      | 08/24/10 07:00                                                                                             | 08/24/10 13:16                                                                                                                                                                                     | 1868-53-7                                                                                                            |     |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                                | 95 %                                                                                                                                                                                                                     | 60-140                                                                                                                                       | 1                                                      | 08/24/10 07:00                                                                                             | 08/24/10 13:16                                                                                                                                                                                     | 2037-26-5                                                                                                            |     |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                      | 108 %                                                                                                                                                                                                                    | 60-140                                                                                                                                       | 1                                                      | 08/24/10 07:00                                                                                             |                                                                                                                                                                                                    |                                                                                                                      |     |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                     | 98 %                                                                                                                                                                                                                     | 60-140                                                                                                                                       | 1                                                      |                                                                                                            | 08/24/10 13:16                                                                                                                                                                                     |                                                                                                                      |     |
| 8260/5035A Volatile Organics                                                                                                                                                                                                                                                                                  | Analytical Method: EPA 8                                                                                                                                                                                                 | 3260                                                                                                                                         |                                                        |                                                                                                            |                                                                                                                                                                                                    | •                                                                                                                    |     |
| Toluene                                                                                                                                                                                                                                                                                                       | <b>30.2</b> ug/kg                                                                                                                                                                                                        | 2.6                                                                                                                                          | 1 .                                                    |                                                                                                            | 08/18/10 15:02                                                                                                                                                                                     | 108-88-3                                                                                                             |     |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                      | 92 %                                                                                                                                                                                                                     | 80-136                                                                                                                                       | 1                                                      |                                                                                                            | 08/18/10 15:02                                                                                                                                                                                     |                                                                                                                      |     |
| • • •                                                                                                                                                                                                                                                                                                         | 90 %                                                                                                                                                                                                                     | 80-120                                                                                                                                       | 1                                                      |                                                                                                            | 08/18/10 15:02                                                                                                                                                                                     |                                                                                                                      |     |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          | 72-122                                                                                                                                       | 1                                                      |                                                                                                            | 08/18/10 15:02                                                                                                                                                                                     |                                                                                                                      | S5  |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                      | 521 %                                                                                                                                                                                                                    |                                                                                                                                              | 1                                                      |                                                                                                            |                                                                                                                                                                                                    |                                                                                                                      | 33  |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                     | 119 %                                                                                                                                                                                                                    | 80-143                                                                                                                                       | 1                                                      |                                                                                                            | 08/18/10 15:02                                                                                                                                                                                     | 17000-07-0                                                                                                           |     |
| Percent Moisture                                                                                                                                                                                                                                                                                              | Analytical Method: ASTM                                                                                                                                                                                                  | 1 D2974-87                                                                                                                                   | -                                                      |                                                                                                            |                                                                                                                                                                                                    |                                                                                                                      |     |
| Descent Mainture                                                                                                                                                                                                                                                                                              | 19.1 %                                                                                                                                                                                                                   | 0.40                                                                                                                                         | 1                                                      |                                                                                                            | 00/40/40 46:47                                                                                                                                                                                     |                                                                                                                      |     |
| Percent Moisture                                                                                                                                                                                                                                                                                              | 19.1 70                                                                                                                                                                                                                  | 0.10                                                                                                                                         | 1                                                      |                                                                                                            | 08/18/10 16:17                                                                                                                                                                                     |                                                                                                                      |     |
| Percent Moisture                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                              |                                                        |                                                                                                            |                                                                                                                                                                                                    |                                                                                                                      |     |
| Sample: B12@6ft                                                                                                                                                                                                                                                                                               | Lab ID: 254571011                                                                                                                                                                                                        | Collected: 08/16/10                                                                                                                          |                                                        | Received: 08                                                                                               |                                                                                                                                                                                                    | Matrix: Solid                                                                                                        |     |
| Sample: B12@6ft                                                                                                                                                                                                                                                                                               | Lab ID: 254571011                                                                                                                                                                                                        |                                                                                                                                              |                                                        | Received: 08                                                                                               |                                                                                                                                                                                                    |                                                                                                                      |     |
| Sample: B12@6ft                                                                                                                                                                                                                                                                                               | Lab ID: 254571011                                                                                                                                                                                                        |                                                                                                                                              |                                                        | Received: 08                                                                                               |                                                                                                                                                                                                    |                                                                                                                      | Qua |
| Sample: B12@6ft<br>Results reported on a "dry-weight                                                                                                                                                                                                                                                          | Lab ID: 254571011                                                                                                                                                                                                        | Collected: 08/16/10                                                                                                                          | DF                                                     | Prepared                                                                                                   | /17/10 12:00 I                                                                                                                                                                                     | Matrix: Solid                                                                                                        | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters NWTPH-Dx GCS                                                                                                                                                                                                                                     | Lab ID: 254571011 " basis  Results Units                                                                                                                                                                                 | Collected: 08/16/10                                                                                                                          | DF                                                     | Prepared PA 3546                                                                                           | /17/10 12:00 I                                                                                                                                                                                     | Matrix: Solid  CAS No.                                                                                               | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range                                                                                                                                                                                                                      | Lab ID: 254571011 t" basis Results Units Analytical Method: NWTI                                                                                                                                                         | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met                                                                                     | DF<br>thod: E                                          | Prepared PA 3546 08/19/10 16:50                                                                            | Analyzed                                                                                                                                                                                           | Matrix: Solid  CAS No.                                                                                               | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight  Parameters  NWTPH-Dx GCS  Diesel Range  Motor Oil Range                                                                                                                                                                                                   | Lab ID: 254571011  " basis  Results  Units  Analytical Method: NWTI  ND mg/kg  ND mg/kg                                                                                                                                  | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8                                                                               | DF<br>thod: E                                          | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50                                                             | Analyzed 08/20/10 21:26                                                                                                                                                                            | Matrix: Solid  CAS No.  64742-65-0                                                                                   | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight  Parameters  NWTPH-Dx GCS  Diesel Range  Motor Oil Range n-Octacosane (S)                                                                                                                                                                                  | Lab ID: 254571011 t" basis Results Units Analytical Method: NWTI                                                                                                                                                         | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2                                                                         | DF<br>thod: E                                          | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50                                              | Analyzed  08/20/10 21:26 08/20/10 21:26                                                                                                                                                            | CAS No. 64742-65-0 630-02-4                                                                                          | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)                                                                                                                                                                    | Lab ID: 254571011  " basis  Results  Units  Analytical Method: NWTI  ND mg/kg  ND mg/kg  100 %                                                                                                                           | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150                                                         | DF<br>thod: E<br>1<br>1<br>1                           | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50                                              | Analyzed  08/20/10 21:26 08/20/10 21:26 08/20/10 21:26                                                                                                                                             | CAS No. 64742-65-0 630-02-4                                                                                          | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV                                                                                                                                                      | Lab ID: 254571011  "basis  Results  Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI                                                                                               | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met                                  | DF<br>thod: E<br>1<br>1<br>1                           | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50                          | Analyzed  O8/20/10 21:26  08/20/10 21:26  08/20/10 21:26  08/20/10 21:26                                                                                                                           | CAS No.  64742-65-0 630-02-4 84-15-1                                                                                 | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics                                                                                                                             | Lab ID: 254571011  "basis  Results  Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg                                                                                     | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met  5.3                             | DF<br>thod: E<br>1<br>1<br>1<br>1<br>thod: N           | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00                 | Analyzed  O8/20/10 21:26  O8/20/10 21:26  O8/20/10 21:26  O8/20/10 21:26                                                                                                                           | CAS No.  64742-65-0 630-02-4 84-15-1                                                                                 | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S)                                                                                                  | Lab ID: 254571011  "basis  Results  Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 100 % 101 %                                                                         | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met                                  | DF thod: E 1 1 1 1 thod: N                             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  O8/20/10 21:26  08/20/10 21:26  08/20/10 21:26  08/20/10 21:26                                                                                                                           | CAS No.  64742-65-0 630-02-4 84-15-1                                                                                 | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)                                                                         | Lab ID: 254571011 I'' basis Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %                                                                         | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8 75.2 50-150 50-150 PH-Gx Preparation Met  5.3 50-150 50-150                   | DF<br>thod: E<br>1<br>1<br>1<br>1<br>thod: N<br>1      | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 15:11                                                                                                               | CAS No.  64742-65-0 630-02-4 84-15-1                                                                                 | Qua |
| Sample: B12@6ft  Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics                                           | Lab ID: 254571011  "basis  Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %  Analytical Method: EPA 8                                                | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met  5.3  50-150  50-150             | DF<br>thod: E<br>1<br>1<br>1<br>1<br>thod: N<br>1<br>1 | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 15:11 08/19/10 15:11                                                                                                | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4                                                | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene                                     | Lab ID: 254571011  "basis  Results Units  Analytical Method: NWTI  ND mg/kg  ND mg/kg  100 %  101 %  Analytical Method: NWTI  ND mg/kg  121 %  110 %  Analytical Method: EPA 8  ND ug/kg                                 | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met  5.3  50-150  50-150  2260       | DF thod: E 1 1 1 thod: N 1 1 1 1                       | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 15:11 08/19/10 15:11 08/19/10 15:11                                                                                 | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4                                                | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene                                     | Lab ID: 254571011 It basis Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %  Analytical Method: EPA 8  ND ug/kg ND ug/kg                             | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8 75.2 50-150 50-150 PH-Gx Preparation Met  5.3 50-150 50-150 50-150 2260       | DF thod: E 1 1 1 thod: N 1 1 1 1 1 1 1 1 1             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 15:11<br>08/19/10 15:11<br>08/19/10 15:11                                                       | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4                                                | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene                        | Lab ID: 254571011  "basis  Results Units  Analytical Method: NWTI  ND mg/kg  ND mg/kg  100 %  101 %  Analytical Method: NWTI  ND mg/kg  121 %  110 %  Analytical Method: EPA 8  ND ug/kg                                 | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8  75.2  50-150  50-150  PH-Gx Preparation Met  5.3  50-150  50-150  2260       | DF thod: E 1 1 1 thod: N 1 1 1 1                       | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 21:26 08/20/10 15:11 08/19/10 15:11 08/19/10 15:11                                                                                 | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4                                                | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene                | Lab ID: 254571011 It basis Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %  Analytical Method: EPA 8  ND ug/kg ND ug/kg                             | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8 75.2 50-150 50-150 PH-Gx Preparation Met  5.3 50-150 50-150 50-150 2260       | DF thod: E 1 1 1 thod: N 1 1 1 1 1 1 1 1 1             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 15:11<br>08/19/10 15:11<br>08/19/10 15:11                                                       | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4  71-43-2 100-41-4 108-88-3                     | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) | Lab ID: 254571011 It' basis Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %  Analytical Method: EPA 8  ND ug/kg ND ug/kg ND ug/kg ND ug/kg          | Collected: 08/16/10  Report Limit  PH-Dx Preparation Met  18.8 75.2 50-150 50-150 PH-Gx Preparation Met  5.3 50-150 50-150 3260  2.7 2.7 2.7 | DF thod: E  1 1 1 thod: N 1 1 1 1 1                    | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 15:11<br>08/19/10 15:11<br>08/19/10 15:11                                                       | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4  71-43-2 100-41-4 108-88-3 1330-20-7           | Qua |
| Sample: B12@6ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) o-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics                                             | Lab ID: 254571011 I'' basis Results Units  Analytical Method: NWTI  ND mg/kg ND mg/kg 100 % 101 %  Analytical Method: NWTI  ND mg/kg 121 % 110 %  Analytical Method: EPA 8  ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg | Report Limit  PH-Dx Preparation Met  18.8 75.2 50-150 50-150 PH-Gx Preparation Met  5.3 50-150 50-150 3260  2.7 2.7 2.7 8.0                  | DF thod: E  1 1 1 thod: N 1 1 1 1 1 1 1 1              | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 21:26<br>08/20/10 15:11<br>08/19/10 15:11<br>08/19/10 15:11<br>08/19/10 14:42<br>08/19/10 14:42<br>08/19/10 14:42 | Matrix: Solid  CAS No.  64742-65-0 630-02-4 84-15-1  98-08-8 460-00-4  71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 | Qua |

Date: 08/31/2010 03:23 PM

1,2-Dichloroethane-d4 (S)

## **REPORT OF LABORATORY ANALYSIS**

80-143

90 %

Page 23 of 49

08/19/10 14:42 17060-07-0





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

Results reported on a "dry-weight" basis

Sample: B12@6ft

Lab ID: 254571011

Collected: 08/16/10 16:15

Received: 08/17/10 12:00

Matrix: Solid

Parameters

Results

Units

Report Limit

DF

1

1

1

Prepared

Analyzed

CAS No.

Qual

**Percent Moisture** 

Analytical Method: ASTM D2974-87

Percent Moisture

14.9 %

0.10

08/19/10 13:53

Sample: B13@3 1/2ft

Lab ID: 254571012

Collected: 08/16/10 17:11

Received: 08/17/10 12:00

Results reported on a "dry-weight" basis

Report Limit

Prepared

Results

DF

Analyzed

CAS No.

Diesel Range

**Parameters** 

Units

Analytical Method: NWTPH-Dx Preparation Method: EPA 3546

Qual

Motor Oil Range n-Octacosane (S)

**NWTPH-Dx GCS** 

Gasoline Range Organics a,a,a-Trifluorotoluene (S)

100 % 102 % 50-150

76.0 50-150 1

19.0

08/19/10 16:50 08/20/10 21:42 64742-65-0 08/19/10 16:50 08/20/10 21:42 630-02-4

08/19/10 16:50 08/20/10 21:42

o-Terphenyl (S) **NWTPH-Gx GCV** 

Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx

ND mg/kg 119 %

ND mg/kg

ND mg/kg

4.9

08/19/10 16:50 08/20/10 21:42 84-15-1

08/19/10 10:00 08/19/10 20:44

50-150 50-150

08/19/10 10:00 08/19/10 20:44 98-08-8 08/19/10 10:00 08/19/10 20:44 460-00-4

104 % 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Analytical Method: EPA 8260

Benzene Ethylbenzene Toluene Xylene (Total)

Dibromofluoromethane (S)

4-Bromofluorobenzene (S)

ND ug/kg ND ug/kg ND ug/kg ND ug/kg

100 % 87 %

7.1 80-136 80-120 72-122 1 80-143

2.4

24

2.4

08/18/10 15:40 108-88-3 08/18/10 15:40 1330-20-7 08/18/10 15:40 1868-53-7 08/18/10 15:40 2037-26-5

08/18/10 15:40 71-43-2

08/18/10 15:40 100-41-4

08/18/10 15:40 460-00-4

08/18/10 15:40 17060-07-0

1,2-Dichloroethane-d4 (S) **Percent Moisture** 

Percent Moisture

Toluene-d8 (S)

Analytical Method: ASTM D2974-87

10.6 %

92 %

90 %

0.10

08/19/10 13:55

Sample: B14@5ft

Results reported on a "dry-weight" basis

Lab ID: 254571013

117 %

Collected: 08/16/10 17:40

1

1

Received: 08/17/10 12:00

Matrix: Solid

**NWTPH-Dx GCS** 

**Parameters** 

Results

Units

Report Limit

DF Prepared

Analyzed

CAS No.

Qual

Analytical Method: NWTPH-Dx Preparation Method: EPA 3546

Diesel Range Motor Oil Range n-Octacosane (S)

o-Terphenyl (S)

ND mg/kg ND mg/kg 114 %

18.4

73.5

50-150

50-150

08/19/10 16:50 08/20/10 21:59 08/19/10 16:50 08/20/10 21:59 64742-65-0

08/19/10 16:50 08/20/10 21:59 630-02-4 08/19/10 16:50 08/20/10 21:59 84-15-1

Date: 08/31/2010 03:23 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 49

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project:

Ellensburg Loves 81109090.2

| Pace Project No.: 254571                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           |                                                                           |                                                      |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| Sample: B14@5ft                                                                                                                                                                                                                                                                                                                                       | Lab ID: 254                                                                                                                               | 571013                                                                    | Collected: 0                                         | 8/16/10                                                    | 17:40                                          | Received: 08                                                                                               | 3/17/10 12:00                                                                                                                                                                    | Matrix: Solid                                                                                                                        |      |
| Results reported on a "dry-weight                                                                                                                                                                                                                                                                                                                     | t" basis                                                                                                                                  |                                                                           |                                                      |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
| Parameters                                                                                                                                                                                                                                                                                                                                            | Results                                                                                                                                   | Units                                                                     | Report L                                             | imit                                                       | DF                                             | Prepared                                                                                                   | Analyzed                                                                                                                                                                         | CAS No.                                                                                                                              | Qual |
| IWTPH-Gx GCV                                                                                                                                                                                                                                                                                                                                          | Analytical Met                                                                                                                            | hod: NWTP                                                                 | H-Gx Preparat                                        | ion Met                                                    | thod: N                                        | WTPH-Gx                                                                                                    |                                                                                                                                                                                  |                                                                                                                                      |      |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                               | ND m                                                                                                                                      | g/kg                                                                      |                                                      | 5.4                                                        | 1                                              | 08/19/10 10:00                                                                                             | 08/19/10 21:08                                                                                                                                                                   | 3 .                                                                                                                                  |      |
| a,a,a-Trifluorotoluene (S)                                                                                                                                                                                                                                                                                                                            | . 119 %                                                                                                                                   | 1                                                                         | 50                                                   | -150                                                       | 1                                              | 08/19/10 10:00                                                                                             | 08/19/10 21:08                                                                                                                                                                   | 98-08-8                                                                                                                              |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                              | 108 %                                                                                                                                     | ,                                                                         | 50                                                   | -150                                                       | 1 -                                            | 08/19/10 10:00                                                                                             | 08/19/10 21:08                                                                                                                                                                   | 3 460-00-4                                                                                                                           |      |
| 3260/5035A Volatile Organics                                                                                                                                                                                                                                                                                                                          | Analytical Met                                                                                                                            | hod: EPA 82                                                               | 260                                                  |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
| Benzene                                                                                                                                                                                                                                                                                                                                               | ND ug                                                                                                                                     | g/kg                                                                      |                                                      | 2.4                                                        | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 71-43-2                                                                                                                              |      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                          | ND uç                                                                                                                                     | g/kg                                                                      |                                                      | 2.4                                                        | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 100-41-4                                                                                                                             |      |
| Toluene                                                                                                                                                                                                                                                                                                                                               | ND uç                                                                                                                                     | g/kg                                                                      |                                                      | 2.4                                                        | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 108-88-3                                                                                                                             |      |
| Xylene (Total)                                                                                                                                                                                                                                                                                                                                        | ` ND uç                                                                                                                                   | g/kg                                                                      |                                                      | 7.3                                                        | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 1330-20-7                                                                                                                            |      |
| Dibromofluoromethane (S)                                                                                                                                                                                                                                                                                                                              | 97 %                                                                                                                                      |                                                                           | 80-                                                  | -136                                                       | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 1868-53-7                                                                                                                            |      |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                                                                        | 88 %                                                                                                                                      | )                                                                         | 80-                                                  | -120                                                       | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 2037-26-5                                                                                                                            |      |
| 4-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                                                                              | 91 %                                                                                                                                      | ,                                                                         | 72-                                                  | -122                                                       | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 460-00-4                                                                                                                             |      |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                                                                             | 84 %                                                                                                                                      | ,                                                                         | 80                                                   | -143                                                       | 1                                              |                                                                                                            | 08/18/10 15:59                                                                                                                                                                   | 17060-07-0                                                                                                                           |      |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                      | Analytical Met                                                                                                                            | hod: ASTM                                                                 | D2974-87                                             |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                      | 4.4 %                                                                                                                                     | )                                                                         |                                                      | 0.10                                                       | 1                                              |                                                                                                            | 08/19/10 13:57                                                                                                                                                                   | ,                                                                                                                                    |      |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                           |                                                      |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                           |                                                      |                                                            |                                                |                                                                                                            |                                                                                                                                                                                  |                                                                                                                                      |      |
| Sample: B15@4 1/2ft                                                                                                                                                                                                                                                                                                                                   | Lab ID: 254                                                                                                                               | 1571014                                                                   | Collected: 0                                         | 8/16/10                                                    | 18:00                                          | Received: 08                                                                                               | 3/17/10 12:00                                                                                                                                                                    | Matrix: Solid                                                                                                                        |      |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 1571014                                                                   | Collected: 0                                         | 8/16/10                                                    | 18:00                                          | Received: 08                                                                                               | 3/17/10 12:00                                                                                                                                                                    | Matrix: Solid                                                                                                                        |      |
| . , ,                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           | 1571014<br>Units                                                          | Collected: 0                                         |                                                            | ) 18:00<br>DF                                  | Received: 08                                                                                               | 8/17/10 12:00<br>Analyzed                                                                                                                                                        | Matrix: Solid  CAS No.                                                                                                               | Qua  |
| Results reported on a "dry-weight<br>Parameters                                                                                                                                                                                                                                                                                                       | Results                                                                                                                                   | Units                                                                     |                                                      | imit                                                       | DF                                             | Prepared                                                                                                   |                                                                                                                                                                                  |                                                                                                                                      | Qua  |
| Results reported on a "dry-weight Parameters NWTPH-Dx GCS                                                                                                                                                                                                                                                                                             | Results                                                                                                                                   | Units                                                                     | Report L                                             | imit                                                       | DF                                             | Prepared<br>PA 3546                                                                                        |                                                                                                                                                                                  | CAS No.                                                                                                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range                                                                                                                                                                                                                                                                              | Results Analytical Met                                                                                                                    | Units<br>hod: NWTP<br>g/kg                                                | Report L                                             | imit<br>————<br>ion Met                                    | DF<br>thod: E                                  | Prepared PA 3546 08/19/10 16:50                                                                            | Analyzed                                                                                                                                                                         | CAS No.                                                                                                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range                                                                                                                                                                                                                                                              | Results Analytical Met                                                                                                                    | Units<br>hod: NWTP<br>g/kg<br>g/kg                                        | Report L H-Dx Preparati                              | imit<br>ion Met<br>19.5                                    | DF<br>thod: E                                  | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50                                                             | Analyzed<br>08/20/10 22:15                                                                                                                                                       | CAS No.                                                                                                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range 1-Octacosane (S)                                                                                                                                                                                                                                             | Results  Analytical Met  ND m  ND m                                                                                                       | Units<br>thod: NWTP<br>g/kg<br>g/kg                                       | Report L H-Dx Preparati                              | imit<br>ion Met<br>19.5<br>78.1                            | DF<br>thod: E<br>1<br>1                        | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50                                          | Analyzed 08/20/10 22:15 08/20/10 22:15                                                                                                                                           | CAS No.                                                                                                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S)  D-Terphenyl (S)                                                                                                                                                                                                                            | Analytical Met  ND m  ND m  102 % 104 %                                                                                                   | Units<br>hod: NWTP<br>g/kg<br>g/kg                                        | Report L H-Dx Preparati                              | imit                                                       | DF<br>thod: E<br>1<br>1<br>1                   | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50                                              | Analyzed  08/20/10 22:15 08/20/10 22:15 08/20/10 22:15                                                                                                                           | CAS No.                                                                                                                              | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV                                                                                                                                                                                                               | Analytical Met  ND m  ND m  102 % 104 %                                                                                                   | Units  hod: NWTP g/kg g/kg s/kg hod: NWTP                                 | Report L H-Dx Preparati                              | imit                                                       | DF<br>thod: E<br>1<br>1<br>1                   | Prepared PA 3546 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50 08/19/10 16:50                               | Analyzed  08/20/10 22:15 08/20/10 22:15 08/20/10 22:15                                                                                                                           | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                                                                                           | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics                                                                                                                                                                                      | Analytical Met  Analytical Met  ND m  ND m  102 %  104 %  Analytical Met                                                                  | Units  hod: NWTP g/kg g/kg hod: NWTP                                      | H-Dx Preparati 50 50 H-Gx Preparat                   | imit<br>ion Met<br>19.5<br>78.1<br>-150<br>-150<br>ion Met | DF<br>thod: E<br>1<br>1<br>1<br>1<br>thod: N   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00                 | Analyzed  08/20/10 22:15  08/20/10 22:15  08/20/10 22:15                                                                                                                         | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                                                                                           | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S)                                                                                                                                                           | Analytical Met  Analytical Met  ND m  ND m  102 %  104 %  Analytical Met                                                                  | Units  hod: NWTP g/kg g/kg hod: NWTP                                      | Report L H-Dx Preparati 50 H-Gx Preparat             | imit                                                       | DF<br>thod: E<br>1<br>1<br>1<br>1<br>thod: N   | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 21:32                                                                                           | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                                                                                           | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)                                                                                                                                  | Analytical Met  Analytical Met  ND m  ND m  102 %  104 %  Analytical Met  ND m  118 %                                                     | Units  hod: NWTP g/kg g/kg  hod: NWTP                                     | Report L H-Dx Preparati 50 50 H-Gx Preparati 50 50   | imit                                                       | DF thod: E 1 1 1 1 1 thod: N 1 1 1             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32                                                                         | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1                                                                                           | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  3260/5035A Volattle Organics                                                                                                    | Analytical Met  ND m ND m 102 % Analytical Met  ND m 104 % Analytical Met  ND m 118 % 107 %                                               | Units  hod: NWTP g/kg g/kg  hod: NWTP g/kg  hod: EPA 82                   | Report L H-Dx Preparati 50 50 H-Gx Preparati 50 50   | imit                                                       | DF thod: E 1 1 1 1 1 thod: N 1 1 1             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32                                                                         | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1 2 98-08-8 2 460-00-4                                                                      | Qua  |
| Results reported on a "dry-weights Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics Benzene                                                                                           | Analytical Met  Analytical Met  ND m  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met                              | Units  chod: NWTP g/kg g/kg  chod: NWTP g/kg  chod: EPA 82                | Report L H-Dx Preparati 50 50 H-Gx Preparati 50 50   | imit                                                       | DF thod: E 1 1 1 1 1 thod: N 1 1 1             | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 22:15 08/20/10 22:15 08/20/10 22:15 08/20/10 22:15 08/19/10 21:32 08/19/10 21:32                                                                              | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1 2 98-08-8 2 460-00-4 3 71-43-2                                                            | Qua  |
| Results reported on a "dry-weighte Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics Benzene Ethylbenzene                                                                              | Analytical Met  Analytical Met  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met  ND u  ND u  ND u                  | Units  hod: NWTP g/kg g/kg  hod: NWTP g/kg  hod: EPA 82                   | Report L H-Dx Preparati 50 50 H-Gx Preparati 50 50   | imit ———————————————————————————————————                   | DF thod: E                                     | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | Analyzed  08/20/10 22:15 08/20/10 22:15 08/20/10 22:15 08/20/10 22:15 08/19/10 21:32 08/19/10 21:32 08/19/10 16:18                                                               | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  2 98-08-8 2 460-00-4  3 71-43-2 3 100-41-4                                               | Qua  |
| Results reported on a "dry-weights Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  3260/5035A Volatile Organics Genzene Ethylbenzene Toluene                                                                      | Analytical Met  Analytical Met  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met  ND ug  ND ug  ND ug               | Units  chod: NWTP g/kg g/kg chod: NWTP g/kg chod: EPA 82 g/kg g/kg g/kg   | Report L H-Dx Preparati 50 50 H-Gx Preparati 50 50   | imit ———————————————————————————————————                   | DF thod: E  1 1 1 1 thod: N  1 1 1 1 1         | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32<br>08/19/10 16:18<br>08/18/10 16:18                                     | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  2 98-08-8 2 460-00-4  3 71-43-2 3 100-41-4 3 108-88-3                                    | Qua  |
| Results reported on a "dry-weights Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volatile Organics Benzene Ethylbenzene Foluene Kylene (Total)                                                       | Analytical Met  Analytical Met  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met  ND ug  ND ug  ND ug  ND ug  ND ug | Units  chod: NWTP g/kg g/kg chod: NWTP g/kg chod: EPA 82 g/kg g/kg g/kg   | H-Dx Preparati 50 50 H-Gx Preparat 50 50             | imit ———————————————————————————————————                   | DF thod: E  1 1 1 1 thod: N  1 1 1 1 1 1       | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32<br>08/19/10 21:32<br>08/18/10 16:18<br>08/18/10 16:18                   | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  2 98-08-8 2 460-00-4  3 71-43-2 3 100-41-4 3 108-88-3 3 1330-20-7                        | Qua  |
| Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) D-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  8260/5035A Volattle Organics Benzene Ethylbenzene Toluene Kylene (Total) Dibromofluoromethane (S)                               | Analytical Met  Analytical Met  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met  ND ug  ND ug  ND ug  ND ug  99 %  | Units  whod: NWTP g/kg g/kg  whod: NWTP g/kg  whod: EPA 82 g/kg g/kg g/kg | Report L H-Dx Preparati 50 50 H-Gx Preparat 50 50    | imit ———————————————————————————————————                   | DF thod: E  1 1 1 1 thod: N  1 1 1 1 1 1 1 1 1 | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32<br>08/19/10 21:32<br>08/18/10 16:18<br>08/18/10 16:18<br>08/18/10 16:18 | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  2 98-08-8 2 460-00-4  3 71-43-2 3 100-41-4 3 108-88-3 3 1330-20-7 3 1868-53-7            | Qua  |
| Sample: B15@4 1/2ft Results reported on a "dry-weight Parameters  NWTPH-Dx GCS  Diesel Range Motor Oil Range n-Octacosane (S) p-Terphenyl (S)  NWTPH-Gx GCV  Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)  Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | Analytical Met  Analytical Met  ND m  102 %  104 %  Analytical Met  ND m  118 %  107 %  Analytical Met  ND ug  ND ug  ND ug  ND ug  ND ug | Units  whod: NWTP g/kg g/kg whod: NWTP g/kg g/kg g/kg g/kg g/kg g/kg      | Report L H-Dx Preparati 50 50 H-Gx Preparat 50 50 80 | imit ———————————————————————————————————                   | DF thod: E  1 1 1 1 thod: N  1 1 1 1 1 1       | Prepared  PA 3546  08/19/10 16:50  08/19/10 16:50  08/19/10 16:50  WTPH-Gx  08/19/10 10:00  08/19/10 10:00 | 08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/20/10 22:15<br>08/19/10 21:32<br>08/19/10 21:32<br>08/19/10 21:32<br>08/18/10 16:18<br>08/18/10 16:18                   | CAS No.  6 64742-65-0 6 630-02-4 6 84-15-1  2 98-08-8 2 460-00-4 3 71-43-2 3 100-41-4 3 108-88-3 3 1330-20-7 3 1868-53-7 3 2037-26-5 | Qua  |

Date: 08/31/2010 03:23 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 25 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Sample: | R15@4 | 1/2ft |  |
|---------|-------|-------|--|
|         |       |       |  |

Lab ID: 254571014

Collected: 08/16/10 18:00

Received: 08/17/10 12:00

Matrix: Solid

Results reported on a "dry-weight" basis

Parameters Results Units

Report Limit

DF

Prepared Analyzed CAS No.

Qual

**Percent Moisture** 

Analytical Method: ASTM D2974-87

Percent Moisture

17.9 %

0.10

08/19/10 13:59

| Sample: B3                 | Lab ID: 254571015     | Collected: 08/16/1     | 0 11:20 | Received: 08   | /17/10 12:00 · I | Matrix: Water |     |
|----------------------------|-----------------------|------------------------|---------|----------------|------------------|---------------|-----|
| Parameters                 | Results Un            | ts Report Limit        | DF      | Prepared       | Analyzed         | CAS No.       | Qua |
| NWTPH-Dx GCS               | Analytical Method: NV | VTPH-Dx Preparation Me | thod: E | PA 3510        |                  |               |     |
| Diesel Range               | 4140 ug/L             | 80.0                   | 1       | 08/20/10 12:25 | 08/23/10 10:58   |               |     |
| Motor Oil Range            | ND ug/L               | 400                    | 1       | 08/20/10 12:25 | 08/23/10 10:58   | 64742-65-0    |     |
| n-Octacosane (S)           | 99 %                  | 50-150                 | 1       | 08/20/10 12:25 | 08/23/10 10:58   | 630-02-4      |     |
| o-Terphenyl (S)            | 103 %                 | 50-150                 | 1       | 08/20/10 12:25 | 08/23/10 10:58   | 84-15-1       |     |
| NWTPH-Gx GCV               | Analytical Method: NV | VTPH-Gx                |         |                |                  |               |     |
| Gasoline Range Organics    | ND ug/L               | 250                    | 5       |                | 08/20/10 15:03   | }             | 1n  |
| a,a,a-Trifluorotoluene (S) | 95 %                  | 50-150                 | 5 ·     |                | 08/20/10 15:03   | 98-08-8       |     |
| 4-Bromofluorobenzene (S)   | 92 %                  | 50-150                 | 5       |                | 08/20/10 15:03   | 460-00-4      |     |
| 8260 MSV                   | Analytical Method: EF | A 5030B/8260           |         |                |                  |               |     |
| Benzene                    | <b>96.7</b> ug/L      | 1.0                    | 1       |                | 08/20/10 12:51   | 71-43-2       |     |
| Ethylbenzene               | <b>3.0</b> ug/L       | 1.0                    | 1       |                | 08/20/10 12:51   | 100-41-4      |     |
| Toluene                    | ND ug/L               | 1.0                    | 1       |                | 08/20/10 12:51   | 108-88-3      |     |
| Xylene (Total)             | ND ug/L               | 3.0                    | 1       |                | 08/20/10 12:51   | 1330-20-7     |     |
| 4-Bromofluorobenzene (S)   | 108 %                 | 80-120                 | 1       |                | 08/20/10 12:51   | 460-00-4      |     |
| Dibromofluoromethane (S)   | 114 %                 | 80-122                 | 1       |                | 08/20/10 12:51   | 1868-53-7     |     |
| 1,2-Dichloroethane-d4 (S)  | 112 %                 | 80-124                 | 1       |                | 08/20/10 12:51   | 17060-07-0    |     |
| Toluene-d8 (S)             | 95 %                  | 80-123                 | 1       |                | 08/20/10 12:51   | 2037-26-5     |     |

| Sample: B7                 | Lab ID: 254571016     | Collected: 08/16     | /10 19:0 | 0 Received: 08 | 3/17/10 12:00 N | /latrix: Water |      |
|----------------------------|-----------------------|----------------------|----------|----------------|-----------------|----------------|------|
| Parameters                 | Results Unit          | s Report Limit       | DF       | Prepared       | Analyzed        | CAS No.        | Qual |
| NWTPH-Dx GCS               | Analytical Method: NW | TPH-Dx Preparation I | Method:  | EPA 3510       |                 |                |      |
| Diesel Range               | <b>4970</b> ug/L      | 81.6                 | 1        | 08/20/10 12:25 | 08/23/10 11:15  |                |      |
| Motor Oil Range            | 837 ug/L              | 408                  | 1        | 08/20/10 12:25 | 08/23/10 11:15  | 64742-65-0     |      |
| n-Octacosane (S)           | 97 %                  | 50-150               | 1        | 08/20/10 12:25 | 08/23/10 11:15  | 630-02-4       |      |
| o-Terphenyl (S)            | 104 %                 | 50-150               | 1        | 08/20/10 12:25 | 08/23/10 11:15  | 84-15-1        |      |
| NWTPH-Gx GCV               | Analytical Method: NW | TPH-Gx               |          |                |                 |                |      |
| Gasoline Range Organics    | <b>25400</b> ug/L     | 1000                 | 20       |                | 08/20/10 15:27  |                |      |
| a,a,a-Trifluorotoluene (S) | 108 %                 | 50-150               | 20       |                | 08/20/10 15:27  | 98-08-8        |      |
| 4-Bromofluorobenzene (S)   | 101 %                 | 50-150               | 20       |                | 08/20/10 15:27  | 460-00-4       |      |

Date: 08/31/2010 03:23 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 26 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.: 254571

| Sample: B7                 | Lab ID: 25457    | 71016      | Collected: 08/16/1  | 0 19:00  | Received: 08   | 3/17/10 12:00  | Matrix: Water |      |
|----------------------------|------------------|------------|---------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results          | Units      | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| 3260 MSV                   | Analytical Metho | od: EPA 50 | 030B/8260           | -        |                |                |               |      |
| Benzene                    | 932 ug/L         | _          | 5.0                 | 5        |                | 08/18/10 19:09 | 71-43-2       |      |
| Ethylbenzene               | <b>1520</b> ug/L | _          | 5.0                 | 5        |                | 08/18/10 19:09 | 100-41-4      |      |
| Toluene                    | 84.4 ug/L        | _          | 5.0                 | 5        |                | 08/18/10 19:09 | 108-88-3      |      |
| Xylene (Total)             | 4820 ug/L        | _          | 15.0                | 5        |                | 08/18/10 19:09 | 1330-20-7     |      |
| 4-Bromofluorobenzene (S)   | 93 %             |            | 80-120              | 5        |                | 08/18/10 19:09 | 460-00-4      |      |
| Dibromofluoromethane (S)   | 93 %             |            | 80-122              | 5        |                | 08/18/10 19:09 | 1868-53-7     |      |
| 1,2-Dichloroethane-d4 (S)  | 94 %             |            | 80-124              | 5        |                | 08/18/10 19:09 | 17060-07-0    |      |
| Toluene-d8 (S)             | 91 %             |            | 80-123              | 5        | •              | 08/18/10 19:09 | 2037-26-5     |      |
| Sample: B12                | Lab ID: 2545     | 71017      | Collected: 08/16/1  | 0 16:30  | Received: 08   | 3/17/10 12:00  | Matrix: Water |      |
| Parameters                 | Results          | Units      | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| NWTPH-Dx GCS               | Analytical Metho | d: NWTP    | H-Dx Preparation Me | ethod: E | PA 3510        |                |               |      |
| Diesel Range               | ND ug/L          | _          | 80.0                | 1        | 08/20/10 12:25 | 08/23/10 11:32 | !             |      |
| Motor Oil Range            | ND ug/L          | _          | 400                 | 1        | 08/20/10 12:25 | 08/23/10 11:32 | 64742-65-0    |      |
| n-Octacosane (S)           | 105 %            |            | 50-150              | 1        | 08/20/10 12:25 | 08/23/10 11:32 | 630-02-4      |      |
| o-Terphenyl (S)            | 105 %            |            | 50-150              | 1        | 08/20/10 12:25 | 08/23/10 11:32 | 84-15-1       |      |
| NWTPH-Gx GCV               | Analytical Metho | d: NWTP    | H-Gx                |          |                | •              |               |      |
| Gasoline Range Organics    | ND ug/L          | _          | 50.0                | 1        |                | 08/20/10 14:40 | )             |      |
| a,a,a-Trifluorotoluene (S) | 95 %             |            | 50-150              | 1        |                | 08/20/10 14:40 | 98-08-8       |      |
| 4-Bromofluorobenzene (S)   | 92 %             |            | 50-150              | 1        |                | 08/20/10 14:40 | 460-00-4      |      |
| 8260 MSV                   | Analytical Metho | od: EPA 50 | 030B/8260           |          |                |                |               |      |
| Benzene                    | ND ug/L          | _          | 1.0                 | 1        |                | 08/18/10 17:52 | 71-43-2       |      |
| Ethylbenzene               | ND ug/L          | _          | 1.0                 | 1        |                | 08/18/10 17:52 | 2 100-41-4    |      |
| Toluene                    | ND ug/L          |            | 1.0                 | 1        |                | 08/18/10 17:52 | 108-88-3      |      |
| Xylene (Total)             | . ND ug/L        |            | 3.0                 | 1        |                | 08/18/10 17:52 | 1330-20-7     |      |
| 4-Bromofluorobenzene (S)   | 92 %             |            | 80-120              | 1        |                | 08/18/10 17:52 | 2 460-00-4    |      |
| Dibromofluoromethane (S)   | 91 %             |            | 80-122              | 1        |                | 08/18/10 17:52 | 1868-53-7     |      |
| 1,2-Dichloroethane-d4 (S)  | 93 %             |            | 80-124              | 1        |                | 08/18/10 17:52 | 17060-07-0    |      |
| Toluene-d8 (S)             | 90 %             |            | 80-123              | 1        |                | 08/18/10 17:52 |               |      |

Date: 08/31/2010 03:23 PM



Page 27 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

OEXT/2501

Analysis Method:

NWTPH-Dx

QC Batch Method:

EPA 3546

Analysis Description:

NWTPH-Dx GCS

Associated Lab Samples:

254571001, 254571002, 254571003

METHOD BLANK: 36743

Matrix: Solid

Associated Lab Samples:

254571001, 254571002, 254571003

|                  |       | Blank  | Reporting |                | 0155       |
|------------------|-------|--------|-----------|----------------|------------|
| Parameter        | Units | Result | Limit     | Analyzed       | Qualifiers |
| Diesel Range     | mg/kg | ND     | 20.0      | 08/20/10 12:09 |            |
| Motor Oil Range  | mg/kg | ND     | 80.0      | 08/20/10 12:09 |            |
| n-Octacosaпe (S) | . %   | 99     | 50-150    | 08/20/10 12:09 |            |
| o-Terphenyl (S)  | %     | . 99   | 50-150    | 08/20/10 12:09 |            |

| LABORATORY CONTROL SAMPLE: | 36744 |       |        |       |        |            |
|----------------------------|-------|-------|--------|-------|--------|------------|
|                            |       | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Diesel Range               | mg/kg | 500   | 430    | 86    | 56-124 | ·          |
| Motor Oil Range            | mg/kg | 500   | 445    | 89    | 50-150 |            |
| n-Octacosane (S)           | %     |       |        | 92    | 50-150 |            |
| o-Ternhenyl (S)            | %     |       |        | 108   | 50-150 |            |

| SAMPLE DUPLICATE: 36745 |       |                     |               |     |            |
|-------------------------|-------|---------------------|---------------|-----|------------|
| Parameter               | Units | 254551001<br>Result | Dup<br>Result | RPD | Qualifiers |
| Diesel Range            | mg/kg | ND                  | 5.8J          |     |            |
| Motor Oil Range         | mg/kg | ND                  | ND            |     |            |
| n-Octacosane (S)        | %     | 96                  | 90            | 9   |            |
| o-Terphenyl (S)         | %     | 98                  | 92            | 8   | •          |

SAMPLE DUPLICATE: 36746

| o, == = o. =.o, =. |       | 254551011 | Dup    |     |            |
|--------------------|-------|-----------|--------|-----|------------|
| Parameter          | Units | Result    | Result | RPD | Qualifiers |
| Diesel Range       | mg/kg | 29.2      | 40.8   | 3   |            |
| Motor Oil Range    | mg/kg | ND        | ND     |     |            |
| n-Octacosane (S)   | %     | 90        | 91     | .7  |            |
| o-Terphenyl (S)    | %     | 96        | 93     | 4   |            |

Date: 08/31/2010 03:23 PM



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

OEXT/2513

Analysis Method:

NWTPH-Dx

QC Batch Method:

EPA 3546

Analysis Description:

NWTPH-Dx GCS

Associated Lab Samples:

METHOD BLANK: 36937

254571004, 254571005, 254571006, 254571007, 254571008, 254571009, 254571010, 254571011, 254571012, 254571013, 254571014

Matrix: Solid

Associated Lab Samples:

254571004, 254571005, 254571006, 254571007, 254571008, 254571009, 254571010, 254571011, 254571012,

254571013, 254571014

| Parameter        | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------------|-------|-----------------|--------------------|----------------|------------|
| Diesel Range     | mg/kg | ND              | 20.0               | 08/20/10 17:54 |            |
| Motor Oil Range  | mg/kg | ND              | 80.0               | 08/20/10 17:54 |            |
| n-Octacosane (S) | %     | 106             | 50-150             | 08/20/10 17:54 |            |
| o-Terphenyl (S)  | %     | 106             | 50-150             | 08/20/10 17:54 |            |

| LABORATORY CONTROL SAMPLE: | 36938 |       |        |       |        |            |
|----------------------------|-------|-------|--------|-------|--------|------------|
|                            |       | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Diesel Range               | mg/kg | 500   | 460    | 92    | 56-124 |            |
| Motor Oil Range            | mg/kg | 500   | 478    | 96    | 50-150 |            |
| n-Octacosane (S)           | %     |       |        | 100   | 50-150 |            |
| o-Terphenyl (S)            | %     |       |        | 118   | 50-150 |            |

SAMPLE DUPLICATE: 36939

| Parameter        | Units | 254571004<br>Result | Dup<br>Result | RPD | Qualifiers |
|------------------|-------|---------------------|---------------|-----|------------|
| Diesel Range     | mg/kg | 94.9                | 163           | 32  |            |
| Motor Oil Range  | mg/kg | 140                 | 121           | 36  |            |
| n-Octacosane (S) | %     | 92                  | 94            | 6   |            |
| o-Terphenyl (S)  | %     | 97                  | 101           | 8   |            |



Project:

QC Batch:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

\_\_\_

OEXT/2514

Analysis Method:

NWTPH-Dx

QC Batch Method:

EPA 3510

Analysis Description:

NWTPH-Dx GCS

Associated Lab Samples:

les: 254571015, 254571016, 254571017

METHOD BLANK: 36974

Matrix: Water

Associated Lab Samples:

254571015, 254571016, 254571017

| Parameter        | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------------|-------|-----------------|--------------------|----------------|------------|
| Diesel Range     | ug/L  | ND ND           | 80.0               | 08/23/10 08:45 |            |
| Motor Oil Range  | ug/L  | ND              | 400                | 08/23/10 08:45 |            |
| n-Octacosane (S) | %     | 87              | 50-150             | 08/23/10 08:45 |            |
| o-Terphenyl (S)  | %     | 87              | 50-150             | 08/23/10 08:45 | · ·        |

| LABORATORY CONTROL SA | MPLE & LCSD: 36975 |       | 36     | 976    | •     |       |        |     |     |            |
|-----------------------|--------------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                       |                    | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter             | Units              | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Diesel Range          | ug/L               | 5000  | 4570   | 4420   | 91    | 88    | 51-147 | 3   | 30  |            |
| Motor Oil Range       | ug/L               | 5000  | 4710   | 4690   | 94    | 94    | 20-160 | .5  | 30  |            |
| n-Octacosane (S)      | %                  |       |        |        | 108   | 104   | 50-150 |     |     |            |
| o-Terphenyl (S)       | %                  |       |        |        | 124   | 118   | 50-150 |     |     |            |

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

QC Batch Method:

254571

QC Batch:

GCV/1772

**NWTPH-Gx** 

Analysis Method:

NWTPH-Gx

Analysis Description:

Matrix: Solid

NWTPH-Gx Solid GCV

Associated Lab Samples: 254571001, 254571002

METHOD BLANK: 36639

Associated Lab Samples: 254571001, 254571002

| Parameter                  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|----------------------------|-------|-----------------|--------------------|----------------|------------|
| Gasoline Range Organics    | mg/kg | ND              | 5.0                | 08/18/10 12:14 |            |
| 4-Bromofluorobenzene (S)   | %     | 90              | 50-150             | 08/18/10 12:14 |            |
| a,a,a-Trifluorotoluene (S) | %     | 100             | 50-150             | 08/18/10 12:14 |            |

| LABORATORY CONTROL SAMPLE: | 36640 |       |        |       |        |            |
|----------------------------|-------|-------|--------|-------|--------|------------|
|                            |       | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Gasoline Range Organics    | mg/kg | 12.5  | 13.6   | 108   | 54-156 |            |
| 4-Bromofluorobenzene (S)   | %     |       |        | 99    | 50-150 |            |
| a,a,a-Trifluorotoluene (S) | %     |       |        | 106   | 50-150 |            |

| Parameter                  | Units | 254571002<br>Result | Dup<br>Result | RPD | Qualifiers |
|----------------------------|-------|---------------------|---------------|-----|------------|
| Gasoline Range Organics    | mg/kg | ND                  | 4.4J          |     |            |
| 4-Bromofluorobenzene (S)   | %     | . 99                | 99            | .9  |            |
| a,a,a-Trifluorotoluene (S) | %     | 97                  | 100           | 3   |            |

| SAMPLE DUPLICATE: 37304    |       |           | ,      |     |            |
|----------------------------|-------|-----------|--------|-----|------------|
|                            |       | 254634001 | Dup    |     |            |
| Parameter                  | Units | Result    | Result | RPD | Qualifiers |
| Gasoline Range Organics    | mg/kg | 16.5      | 14.5   | 13  | -          |
| 4-Bromofluorobenzene (S)   | %     | 113       | 106    | 6   |            |
| a,a,a-Trifluorotoluene (S) | %     | 106       | 100    | 6   |            |



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

GCV/1774

Analysis Method:

**NWTPH-Gx** 

QC Batch Method:

**NWTPH-Gx** 

Analysis Description:

NWTPH-Gx Solid GCV

Associated Lab Samples:

254571003, 254571004, 254571005, 254571007, 254571008, 254571009, 254571010, 254571011, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012, 254571012254571013, 254571014

Matrix: Solid

METHOD BLANK: 36759

Associated Lab Samples:

254571003, 254571004, 254571005, 254571007, 254571008, 254571009, 254571010, 254571011, 254571012, 254571013, 254571014

| Parameter                  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|----------------------------|-------|-----------------|--------------------|----------------|------------|
| Gasoline Range Organics    | mg/kg | ND              | 5.0                | 08/19/10 11:01 |            |
| 4-Bromofluorobenzene (S)   | %     | 97              | 50-150             | 08/19/10 11:01 |            |
| a,a,a-Trifluorotoluene (S) | %     | 100             | 50-150             | 08/19/10 11:01 |            |

LABORATORY CONTROL SAMPLE: 36760

| Parameter                  | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|----------------------------|-------|----------------|---------------|--------------|-----------------|------------|
| Gasoline Range Organics    | mg/kg | 12.5           | 11.8          | 95           | 54-156          |            |
| 4-Bromofluorobenzene (S)   | %     |                |               | 89           | 50-150          |            |
| a,a,a-Trifluorotoluene (S) | %     |                |               | 94           | 50-150          |            |

SAMPLE DUPLICATE: 37252

| Parameter                  | Units | 254571005<br>Result | Dup<br>Result | RPD | Qualifiers |
|----------------------------|-------|---------------------|---------------|-----|------------|
| Gasoline Range Organics    | mg/kg | 7.2                 | 12.1          | 31  |            |
| 4-Bromofluorobenzene (S)   | %     | 98                  | 113           | 15  |            |
| a,a,a-Trifluorotoluene (S) | %     | 112                 | 125           | 11  |            |

SAMPLE DUPLICATE: 37253

| Parameter                  | Units | 254586002<br>Result | Dup<br>Result | RPD | Qualifiers |
|----------------------------|-------|---------------------|---------------|-----|------------|
| Gasoline Range Organics    | mg/kg | ND                  | 1.1J          |     |            |
| 4-Bromofluorobenzene (S)   | %     | 101                 | 98            | 4   |            |
| a,a,a-Trifluorotoluene (S) | %     | 112                 | 110           | 1   |            |





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

QC Batch Method:

254571

QC Batch:

GCV/1782

**NWTPH-Gx** 

Analysis Method:

NWTPH-Gx

Analysis Description:

NWTPH-Gx Solid GCV

Associated Lab Samples: 254571006

METHOD BLANK: 37130

Matrix: Solid

Associated Lab Samples:

254571006

| Parameter                  | Units | Blank<br>Result | Reporting Limit | Analyzed       | Qualifiers |
|----------------------------|-------|-----------------|-----------------|----------------|------------|
| Gasoline Range Organics    | mg/kg | ND ND           | 5.0             | 08/21/10 00:09 |            |
| 4-Bromofluorobenzene (S)   | %     | 98              | 50-150          | 08/21/10 00:09 |            |
| a,a,a-Trifluorotoluene (S) | %     | 103             | 50-150          | 08/21/10 00:09 |            |

| LABORATORY CONTROL SAME    | *LE: , 3/131 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|--------------|-------|--------|-------|--------|------------|
| Parameter                  | Units        | Conc. | Result | % Rec | Limits | Qualifiers |
| Gasoline Range Organics    | mg/kg        | 12.5  | 13.6   | 109   | 54-156 |            |
| 4-Bromofluorobenzene (S)   | %            |       |        | 66    | 50-150 |            |
| a,a,a-Trifluorotoluene (S) | %            |       |        | 71    | 50-150 |            |

| SAMPLE DUPLICATE: 37332    |       |           |        |     |            |
|----------------------------|-------|-----------|--------|-----|------------|
|                            |       | 254574001 | Dup    | *   |            |
| Parameter                  | Units | Result    | Result | RPD | Qualifiers |
| Gasoline Range Organics    | mg/kg | 12.0      | 12.1   | .1  |            |
| 4-Bromofluorobenzene (S)   | %     | 101       | 100    | 1   |            |
| a,a,a-Trifluorotoluene (S) | %     | 112       | 104    | 8   |            |

| SAMPLE DUPLICATE: 37333    |       |           |        |     |            |
|----------------------------|-------|-----------|--------|-----|------------|
|                            |       | 254574007 | Dup    |     |            |
| Parameter                  | Units | Result    | Result | RPD | Qualifiers |
| Gasoline Range Organics    | mg/kg | 25.6      | 39.1   | 42  |            |
| 4-Bromofluorobenzene (S)   | %     | 114       | 114    | .2  |            |
| a,a,a-Trifluorotoluene (S) | %     | 117       | 121    | 3   |            |

Date: 08/31/2010 03:23 PM



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

GCV/1778

Analysis Method:

NWTPH-Gx

QC Batch Method:

NWTPH-Gx

Analysis Description:

NWTPH-Gx GCV Water

Associated Lab Samples:

s: 254571015, 254571016, 254571017

METHOD BLANK: 36968

Matrix: Water

Associated Lab Samples:

254571015, 254571016, 254571017

| Parameter                  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|----------------------------|-------|-----------------|--------------------|----------------|------------|
| Gasoline Range Organics    | ug/L  | ND              | 50.0               | 08/20/10 13:04 |            |
| 4-Bromofluorobenzene (S)   | %     | 90              | 50-150             | 08/20/10 13:04 |            |
| a,a,a-Trifluorotoluene (S) | %     | 93              | 50-150             | 08/20/10 13:04 |            |

| LABORATORY CONTROL SAMP    | PLE: 36969 | Spike | LCS .  | LCS   | % Rec  |            |
|----------------------------|------------|-------|--------|-------|--------|------------|
| Parameter                  | Units      | Conc. | Result | % Rec | Limits | Qualifiers |
| Gasoline Range Organics    | ug/L       | 250   | 265    | 106   | 50-163 |            |
| 4-Bromofluorobenzene (S)   | %          |       |        | 99    | 50-150 |            |
| a,a,a-Trifluorotoluene (S) | %          |       |        | 97    | 50-150 |            |

| SAMPLE DUPLICATE: 37334    |       |           |        |     |            |
|----------------------------|-------|-----------|--------|-----|------------|
| · _                        |       | 254547003 | Dup    |     | 0 110      |
| Parameter                  | Units | Result    | Result | RPD | Qualifiers |
| Gasoline Range Organics    | ug/L  | ND        | 18.5J  |     |            |
| 4-Bromofluorobenzene (S)   | %     | 103       | 101    | 2   |            |
| a,a,a-Trifluorotoluene (S) | %     | 112       | 110    | 2   |            |

| SAMPLE DUPLICATE: 37335    |       | 05455000            | Divis         |      |            |
|----------------------------|-------|---------------------|---------------|------|------------|
| Parameter                  | Units | 254552002<br>Result | Dup<br>Result | RPD  | Qualifiers |
| Gasoline Range Organics    | ug/L  | 226                 | 131           | 53   | R1         |
| 4-Bromofluorobenzene (S)   | %     | 99                  | 69            | · 35 |            |
| a,a,a-Trifluorotoluene (S) | %     | 100                 | 57            | 55   |            |



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

OEXT/2502

Analysis Method:

EPA 8270 by SIM

QC Batch Method:

EPA 3546

Analysis Description:

8270/3546 MSSV PAH by SIM

Associated Lab Samples: 254571006, 254571010

METHOD BLANK: 36747

Matrix: Solid

Associated Lab Samples:

254571006, 254571010

| Parameter              | Units | Blank Reporting<br>Result Limit |        | Analyzed       | Qualifiers |
|------------------------|-------|---------------------------------|--------|----------------|------------|
| Acenaphthene           | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Acenaphthylene         | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Anthracene             | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Benzo(a)anthracene     | ug/kg | ND -                            | 6.7    | 08/19/10 16:22 |            |
| Benzo(a)pyrene         | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Benzo(b)fluoranthene   | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Benzo(g,h,i)perylene   | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Benzo(k)fluoranthene   | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Chrysene               | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Dibenz(a,h)anthracene  | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Fluoranthene           | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Fluorene               | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Indeno(1,2,3-cd)pyrene | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Naphthalene            | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Phenanthrene           | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| Pyrene                 | ug/kg | ND                              | 6.7    | 08/19/10 16:22 |            |
| 2-Fluorobiphenyl (S)   | %     | 55                              | 55-136 | 08/19/10 16:22 |            |
| Terphenyl-d14 (S)      | %     | 76                              | 60-144 | 08/19/10 16:22 |            |

| LABORATORY CONTROL SAM | PLE: 36748 | -              |               |              |                 |            |
|------------------------|------------|----------------|---------------|--------------|-----------------|------------|
| Parameter              | Units      | Spike<br>Conc. | LCS<br>Resült | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Acenaphthene           | ug/kg      | 133            | 85.2          | 64           | 44-138          |            |
| Acenaphthylene         | ug/kg      | 133            | 78.0          | 59           | 43-140          |            |
| Anthracene             | ug/kg      | 133            | 92.7          | .70          | 58-138          |            |
| Benzo(a)anthracene     | ug/kg      | 133            | 102           | 77           | 50-154          | •          |
| Benzo(a)pyrene         | ug/kg      | 133            | 107           | 80           | 47-154          |            |
| Benzo(b)fluoranthene   | ug/kg      | 133            | 105           | 79           | 43-164          |            |
| Benzo(g,h,i)perylene   | ug/kg      | 133            | 101           | 75           | 54-153          |            |
| Benzo(k)fluoranthene   | ug/kg      | 133            | 114           | 86           | 61-145          |            |
| Chrysene               | ug/kg      | 133            | 98.4          | 74           | 59-141          |            |
| Dibenz(a,h)anthracene  | ug/kg      | 133            | 107           | 80           | 54-161          |            |
| Fluoranthene           | ug/kg      | 133            | 103           | 77           | 43-160          |            |
| Fluorene               | ug/kg      | 133            | 88.8          | 67           | 41-149          |            |
| ndeno(1,2,3-cd)pyrene  | ug/kg      | 133            | 106           | 79           | 48-158          |            |
| Naphthalene            | ug/kg      | 133            | 65.1          | 49           | 44-131          |            |
| Phenanthrene           | ug/kg      | 133            | 88.7          | 67           | 46-144          |            |
| Pyrene                 | ug/kg      | 133            | 103           | 77           | 57-142          |            |
| 2-Fluorobiphenyl (S)   | %          |                |               | 58           | 55-136          |            |
| Terphenyl-d14 (S)      | %          |                |               | 76           | 60-144          |            |

Date: 08/31/2010 03:23 PM

REPORT OF LABORATORY ANALYSIS

Page 35 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| MATRIX SPIKE & MATRIX S | PIKE DUPLICAT | E: 36841  |       |       | 36842  |        |       |       |        |       |     |
|-------------------------|---------------|-----------|-------|-------|--------|--------|-------|-------|--------|-------|-----|
|                         |               |           | MS    | MSD   |        |        | -     |       |        |       |     |
|                         |               | 254571006 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |       |     |
| Parameter               | Units         | Result    | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD   | Qua |
| Acenaphthene            | ug/kg         | 104       | 150   | 151   | 159    | 156    | 37    | 35    | -1-182 | 2     |     |
| Acenaphthylene          | ug/kg         | 22.2      | 150   | 151   | 97.7   | 109    | 50    | 58    | 31-156 | 11    |     |
| inthracene              | ug/kg         | 37.0      | 150   | 151   | . 122  | 132    | 56    | 63    | 20-171 | 9     |     |
| Benzo(a)anthracene      | ug/kg         | ND        | 150   | 151   | 103    | 120    | 64    | 75    | 24-181 | 15    |     |
| Benzo(a)pyrene          | ug/kg         | ND        | 150   | 151   | 102    | 122    | 66    | 79    | 26-174 | 18    |     |
| Benzo(b)fluoranthene    | ug/kg         | ND        | 150   | 151   | 100    | 117    | 66    | 76    | 33-173 | 15    |     |
| tenzo(g,h,i)perylene    | ug/kg         | ND        | 150   | 151   | 93.0   | 113    | 60    | 73    | 15-178 | 20    |     |
| enzo(k)fluoranthene     | ug/kg         | ND        | 150   | 151   | 99.9   | 124    | 66    | 82    | 20-167 | 22    |     |
| Chrysene                | ug/kg         | ND        | 150   | 151   | 95.7   | 112    | 60    | 70    | 15-174 | 16    |     |
| Dibenz(a,h)anthracene   | ug/kg         | ND        | 150   | 151   | 93.4   | 118    | 62    | 78    | 26-189 | 23    |     |
| luoranthene             | ug/kg         | 14.1      | 150   | 151   | 118    | 131    | 69    | 78    | 21-104 | 11    |     |
| luorene                 | ug/kg         | 256       | 150   | 151   | 203    | 264    | -35   | 5     | 25-173 | 26 M1 |     |
| ndeno(1,2,3-cd)pyrene   | ug/kg         | ND        | 150   | 151   | 94.4   | 117    | 63    | 77    | 19-182 | 22    |     |
| laphthalene             | ug/kg         | 1800      | 150   | 151   | 1410   | 1380   | -265  | -279  | -3-165 | 2 M1  |     |
| Phenanthrene            | ug/kg         | 255       | 150   | 151   | 246    | 234    | -6    | -14   | 25-163 | 5 M1  |     |
| Pyrene                  | ug/kg         | 57.5      | 150   | 151   | 137    | 144    | 53    | 58    | 30-165 | 5     |     |
| -Fluorobiphenyl (S)     | %             |           |       |       |        |        | 60    | 63    | 55-136 |       |     |
| Ferphenyl-d14 (S)       | %             |           |       |       |        |        | 71    | 73    | 60-144 |       |     |

Date: 08/31/2010 03:23 PM



Page 36 of 49





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2871

Analysis Method:

EPA 5030B/8260

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

METHOD BLANK: 36733

254571016, 254571017

Matrix: Water

Associated Lab Samples:

254571016, 254571017

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/L  | ND              | 1.0                | 08/18/10 15:02 |            |
| Ethylbenzene              | ug/L  | ND              | 1.0                | 08/18/10 15:02 |            |
| Toluene                   | ug/L  | ND              | 1.0                | 08/18/10 15:02 |            |
| Xylene (Total)            | ug/L  | ND              | 3.0                | 08/18/10 15:02 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 92              | 80-124             | 08/18/10 15:02 |            |
| 4-Bromofluorobenzene (S)  | %     | 93              | 80-120             | 08/18/10 15:02 |            |
| Dibromofluoromethane (S)  | %     | 90              | 80-122             | 08/18/10 15:02 | •          |
| Toluene-d8 (S)            | %     | 94              | 80-123             | 08/18/10 15:02 |            |

| LABORATORY CONTROL SAMI   | PLE: 36734 |                |               |              |                 |            |
|---------------------------|------------|----------------|---------------|--------------|-----------------|------------|
| Parameter                 | Units      | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Benzene                   | ug/L       | 20             | 16.4          | 82           | 76-127          |            |
| Ethylbenzene              | ug/L       | 20             | 16.5          | 83           | 72-125          |            |
| Toluene                   | ug/L       | 20             | 16.0          | 80           | 69-125          |            |
| Xylene (Total)            | ug/L       | 60             | 50.5          | 84           | 74-124          |            |
| 1,2-Dichloroethane-d4 (S) | %          |                |               | 93           | 80-124          |            |
| 4-Bromofluorobenzene (S)  | %          |                |               | 93           | 80-120          |            |
| Dibromofluoromethane (S)  | %          |                |               | 95           | 80-122          |            |
| Toluene-d8 (S)            | %          |                |               | 92           | 80-123          |            |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLICAT | E: 37005            |                      |                       | 37006        |               |             |              |                 |          |
|---------------------------|--------------|---------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|----------|
| Parameter                 | Z<br>Units   | 254529018<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD Qual |
| Benzene                   | ug/L         | 26400               | 20                   | 20                    | 2540         | 2590          | -119000     | -119000      | 75-124          | 2 E,M1   |
| Ethylbenzene              | ug/L         | 1210                | 20                   | 20                    | 844          | 742           | -1830       | -2340        | 76-124          | 13 E,M1  |
| Toluene                   | ug/L         | 4800                | 20                   | 20                    | 2050         | 1810          | -13800      | -15000       | 75-124          | 12 E,M1  |
| Xylene (Total)            | ug/L         | 3800                | 60                   | 60                    | 2480         | 2270          | -2200       | -2560        | 76-123          | 9 E,M1   |
| 1,2-Dichloroethane-d4 (S) | %            |                     |                      |                       |              |               | 70          | 40           | 80-124          | S2       |
| 4-Bromofluorobenzene (S)  | %            |                     |                      |                       |              |               | 94          | 93           | 80-120          |          |
| Dibromofluoromethane (S)  | %            |                     |                      |                       |              |               | 104         | 100          | 80-122          |          |
| Toluene-d8 (S)            | %            |                     |                      |                       |              |               | 102         | 97           | 80-123          |          |

Date: 08/31/2010 03:23 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 37 of 49



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2885

Analysis Method:

EPA 5030B/8260

102

80-123

QC Batch Method:

EPA 5030B/8260

Analysis Description:

8260 MSV Water 10 mL Purge

Associated Lab Samples:

Toluene-d8 (S)

254571015

Matrix: Water

METHOD BLANK: 37007 Associated Lab Samples:

254571015

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/L  | ND ND           | 1.0                | 08/20/10 08:54 |            |
| Ethylbenzene              | ug/L  | ND              | 1.0                | 08/20/10 08:54 |            |
| Toluene                   | ug/L  | ND              | 1.0                | 08/20/10 08:54 |            |
| Xylene (Total)            | ug/L  | ND              | 3.0                | 08/20/10 08:54 |            |
| 1,2-Dichloroethane-d4 (S) | . %   | 112             | 80-124             | 08/20/10 08:54 |            |
| 4-Bromofluorobenzene (S)  | %     | 100             | 80-120             | 08/20/10 08:54 |            |
| Dibromofluoromethane (S)  | %     | 111             | 80-122             | 08/20/10 08:54 |            |
| Toluene-d8 (S)            | %     | 96              | 80-123             | 08/20/10 08:54 |            |

| LABORATORY CONTROL SAME   | PLE: 37008 |       |        |       |        |            |
|---------------------------|------------|-------|--------|-------|--------|------------|
| D/                        | 11.2.      | Spike | LCS    | LCS   | % Rec  | 0175       |
| Parameter                 | Units      | Conc. | Result | % Rec | Limits | Qualifiers |
| Benzene                   | ug/L       | 20    | 16.8   | 84    | 76-127 |            |
| Ethylbenzene              | ug/L       | 20    | 15.6   | 78    | 72-125 |            |
| Toluene                   | ug/L       | 20    | 14.9   | 74    | 69-125 |            |
| Xylene (Total)            | ug/L       | 60    | 49.9   | 83    | 74-124 |            |
| 1,2-Dichloroethane-d4 (S) | %          |       |        | 116   | 80-124 |            |
| 4-Bromofluorobenzene (S)  | %          |       |        | 110   | 80-120 |            |
| Dibromofluoromethane (S)  | %          |       |        | 112   | 80-122 | •          |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLICAT | E: 37250  |       |       | 37251  |        |       |       |        |     |      |
|---------------------------|--------------|-----------|-------|-------|--------|--------|-------|-------|--------|-----|------|
|                           |              |           | MS    | MSD   |        |        |       |       |        |     |      |
|                           | 2            | 254629001 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     |      |
| Parameter                 | Units        | Result    | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | Qual |
| Benzene                   | ug/L         | ND        | 20    | 20    | 19.3   | 21.0   | 93    | 102   | 75-124 | 9 - |      |
| Ethylbenzene              | uġ/L         | ND        | 20    | 20    | 21.7   | 21.4   | 106   | 104   | 76-124 | 1   |      |
| Toluene                   | ug/L         | ND        | 20    | 20    | 18.4   | 20.5   | 92    | 102   | 75-124 | 11  |      |
| Xylene (Total)            | ug/L         | ND        | 60    | 60    | 68.6   | 66.5   | 114   | 111   | 76-123 | 3   |      |
| 1,2-Dichloroethane-d4 (S) | %            |           |       |       |        |        | 94    | 100   | 80-124 |     |      |
| 4-Bromofluorobenzene (S)  | %            |           |       |       |        |        | 110   | 110   | 80-120 |     | -    |
| Dibromofluoromethane (S)  | %            |           |       |       |        |        | 99    | 103   | 80-122 |     |      |
| Toluene-d8 (S)            | %            |           |       |       |        |        | 105   | 107   | 80-123 |     |      |



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2883

Analysis Method:

EPA 8260

QC Batch Method:

: EPA 5035A/5030B

Analysis Description:

8260 MSV Medium LL Soil

Associated Lab Samples:

254571004

74004

METHOD BLANK: 36943

1

Matrix: Solid

Associated Lab Samples:

254571004

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/kg | ND              | 20.0               | 08/20/10 18:00 |            |
| Ethylbenzene              | ug/kg | , ND            | 25.0               | 08/20/10 18:00 |            |
| Toluene                   | ug/kg | ND              | 25.0               | 08/20/10 18:00 |            |
| Xylene (Total)            | ug/kg | ND              | 75.0               | 08/20/10 18:00 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 92              | 60-140             | 08/20/10 18:00 |            |
| 4-Bromofluorobenzene (S)  | %     | 91              | 60-140             | 08/20/10 18:00 |            |
| Dibromofluoromethane (S)  | %     | 88              | 60-140             | 08/20/10 18:00 |            |
| Toluene-d8 (S)            | %     | 90              | 60-140             | 08/20/10 18:00 |            |

| LABORATORY CONTROL SAME   | PLE & LCSD: 36944 |       | 36     | 3945   | •     |       |        |     |     |            |
|---------------------------|-------------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                           |                   | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                 | Units             | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                   | ug/kg             | 1000  | 901    | 891    | 90    | 89    | 78-123 | 1   | 30  |            |
| Ethylbenzene              | ug/kg             | 1000  | 884    | 876    | -88   | 88    | 74-120 | .9  | 30  |            |
| Toluene                   | ug/kg             | 1000  | 846    | 836    | 85    | 84    | 70-121 | 1   | 30  |            |
| Xylene (Total)            | ug/kg             | 3000  | 2660   | 2630   | 89    | 88    | 76-120 | 1   | 30  |            |
| 1,2-Dichloroethane-d4 (S) | %                 |       |        |        | 92    | 91    | 60-140 |     |     |            |
| 4-Bromofluorobenzene (S)  | %                 |       |        |        | 93    | 95    | 60-140 |     |     |            |
| Dibromofluoromethane (S)  | %                 |       |        |        | .93   | 92    | 60-140 |     |     |            |
| Toluene-d8 (S)            | %                 |       |        |        | 91    | 91    | 60-140 |     |     |            |





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2900

Analysis Method:

EPA 8260

QC Batch Method:

EPA 5035A/5030B

Analysis Description:

8260 MSV Medium LL Soil

Associated Lab Samples:

254571006, 254571009, 254571010

METHOD BLANK: 37338

Matrix: Solid

Associated Lab Samples:

254571006, 254571009, 254571010

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/kg | ND ND           | 20.0               | 08/24/10 08:44 |            |
| Ethylbenzene              | ug/kg | ND              | 25.0               | 08/24/10 08:44 |            |
| Toluene                   | ug/kg | ND              | 25.0               | 08/24/10 08:44 |            |
| Xylene (Total)            | ug/kg | ND              | 75.0               | 08/24/10 08:44 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 92              | 60-140             | 08/24/10 08:44 |            |
| 4-Bromofluorobenzene (S)  | %     | 92              | 60-140             | 08/24/10 08:44 |            |
| Dibromofluoromethane (S)  | %     | 88              | 60-140             | 08/24/10 08:44 |            |
| Toluene-d8 (S)            | %     | 88              | 60-140             | 08/24/10 08:44 |            |

| LABORATORY CONTROL SAMP   | PLE: 37339 |                |               |              |                 |            |
|---------------------------|------------|----------------|---------------|--------------|-----------------|------------|
| Parameter                 | Units      | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
| Benzene                   | ug/kg      | 1000           | 955           | 95           | 78-123          |            |
| Ethylbenzene              | ug/kg      | 1000           | 880           | 88           | 74-120          |            |
| Toluene                   | ug/kg      | 1000           | 835           | 84           | 70-121          |            |
| Xylene (Total)            | ug/kg      | 3000           | 2640          | 88           | 76-120          |            |
| 1,2-Dichloroethane-d4 (S) | %          |                |               | 93           | 60-140          |            |
| 4-Bromofluorobenzene (S)  | %          |                |               | 96           | 60-140          |            |
| Dibromofluoromethane (S)  | %          |                |               | 95           | 60-140          |            |
| Toluene-d8 (S)            | %          |                |               | . 88         | 60-140          |            |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLICAT | ΓΕ: 37340 |       |       | 37341  |        |       |       |        |     |      |
|---------------------------|--------------|-----------|-------|-------|--------|--------|-------|-------|--------|-----|------|
|                           |              |           | MS    | MSD   |        |        |       |       |        |     |      |
|                           |              | 254632001 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     |      |
| Parameter                 | Units        | Result    | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | Qual |
| Benzene                   | ug/kg        | ND .      | 1250  | 1250  | 1280   | 1250   | 102   | 99    | 79-127 | 2   |      |
| Ethylbenzene              | ug/kg        | ND        | 1250  | 1250  | 1180   | 1150   | 94    | 92    | 77-126 | 2   |      |
| Toluene                   | ug/kg        | ND        | 1250  | 1250  | 1120   | 1090   | 88    | 86    | 77-124 | 3   |      |
| Xylene (Total)            | ug/kg        | ND        | 3750  | 3750  | 3530   | 3480   | 93    | 92    | 77-127 | 2   |      |
| 1,2-Dichloroethane-d4 (S) | %            |           |       |       |        |        | 93    | 93    | 60-140 |     |      |
| 4-Bromofluorobenzene (S)  | %            |           |       |       |        |        | 97    | 96    | 60-140 |     |      |
| Dibromofluoromethane (S)  | %            |           |       |       |        |        | 94    | 95    | 60-140 |     | -    |
| Toluene-d8 (S)            | %            |           |       |       |        |        | 89    | . 88  | 60-140 |     |      |



Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2869

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV 5035A Volatile Organics

Associated Lab Samples:

es: 254571001, 254571002, 254571003

METHOD BLANK: 36700

Matrix: Solid

Associated Lab Samples:

254571001, 254571002, 254571003

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/kg | · ND            | 3.0                | 08/18/10 09:00 |            |
| Ethylbenzene              | ug/kg | ND              | 3.0                | 08/18/10 09:00 |            |
| Toluene                   | ug/kg | ND              | 3.0                | 08/18/10 09:00 |            |
| Xylene (Total)            | ug/kg | ND              | 9.0                | 08/18/10 09:00 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 95              | 80-143             | 08/18/10 09:00 |            |
| 4-Bromofluorobenzene (S)  | %     | 87              | 72-122             | 08/18/10 09:00 |            |
| Dibromofluoromethane (S)  | %     | 105             | 80-136             | 08/18/10 09:00 |            |
| Toluene-d8 (S)            | %     | 85              | 80-120             | 08/18/10 09:00 |            |

| LABORATORY CONTROL SAME   | PLE & LCSD: 36701 |                | 36            | 702            |              | -             |                 |     |            |            |
|---------------------------|-------------------|----------------|---------------|----------------|--------------|---------------|-----------------|-----|------------|------------|
| Parameter                 | Units             | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qualifiers |
| Benzene                   | ug/kg             | 50             | 53.0          | 50.9           | 106          | 102           | 75-133          | 4   | 30         |            |
| Ethylbenzene              | ug/kg             | 50             | 47.7          | 45.0           | 95           | 90            | 68-131          | 6   | 30         |            |
| Toluene                   | ug/kg             | 50             | 47.2          | 43.1           | 94           | 86            | 73-124          | . 9 | 30         |            |
| Xylene (Total)            | ug/kg             | 150            | 146           | 140            | 97           | 93            | 68-130          | 4   | 30         |            |
| 1,2-Dichloroethane-d4 (S) | %                 |                |               |                | 87           | 86            | 80-143          |     |            |            |
| 4-Bromofluorobenzene (S)  | %                 |                |               |                | 97           | 96            | 72-122          |     |            |            |
| Dibromofluoromethane (S)  | · %               |                |               |                | 100          | 103           | 80-136          |     |            |            |
| Toluene-d8 (S)            | %                 |                |               |                | 91           | 87            | 80-120          |     |            |            |

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2870

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV 5035A Volatile Organics

Associated Lab Samples:

amples: 254571005, 254571010, 254571012, 254571013, 254571014

METHOD BLANK: 36703

Matrix: Solid

Associated Lab Samples:

254571005, 254571010, 254571012, 254571013, 254571014

|                           |       | Blank  | Reporting |                |            |
|---------------------------|-------|--------|-----------|----------------|------------|
| Parameter                 | Units | Result | Limit     | Analyzed       | Qualifiers |
| Benzene                   | ug/kg | ND     | 3.0       | 08/18/10 13:07 |            |
| Ethylbenzene              | ug/kg | ND     | 3.0       | 08/18/10 13:07 |            |
| Toluene                   | ug/kg | ND     | 3.0       | 08/18/10 13:07 |            |
| Xylene (Total)            | ug/kg | ND     | 9.0       | 08/18/10 13:07 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 96     | 80-143    | 08/18/10 13:07 |            |
| 4-Bromofluorobenzene (S)  | %     | 91     | 72-122    | 08/18/10 13:07 |            |
| Dibromofluoromethane (S)  | %     | 99     | 80-136    | 08/18/10 13:07 |            |
| Toluene-d8 (S)            | %     | 88     | 80-120    | 08/18/10 13:07 |            |

| LABORATORY CONTROL SAME   | PLE & LCSD: 36704 |                | 36            | 3705           |              |               |                 |     |            |            |
|---------------------------|-------------------|----------------|---------------|----------------|--------------|---------------|-----------------|-----|------------|------------|
| Parameter                 | Units             | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qualifiers |
| Benzene                   | ug/kg             | 50             | 50.1          | 49.3           | 100          | 99            | 75-133          | 2   | 30         |            |
| Ethylbenzene              | ug/kg             | 50             | 43.2          | 43.2           | 86           | 86            | 68-131          | .1  | 30         |            |
| Toluene                   | ug/kg             | 50             | 45.8          | 46.0           | 92           | 92            | 73-124          | .5  | 30         | -          |
| Xylene (Total)            | ug/kg             | 150            | 137           | 136            | 92           | 90            | 68-130          | 1   | 30         |            |
| 1,2-Dichloroethane-d4 (S) | %                 |                |               |                | 86           | 83            | 80-143          |     |            |            |
| 4-Bromofluorobenzene (S)  | %                 |                |               |                | 96           | 98            | 72-122          |     |            |            |
| Dibromofluoromethane (S)  | %                 |                |               |                | 100          | 95            | 80-136          |     |            |            |
| Toluene-d8 (S)            | %                 |                |               |                | 87           | 89            | 80-120          |     |            |            |

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2879

Analysis Method:

EPA 8260

QC Batch Method: EPA 8260

Associated Lab Samples:

8260 MSV 5035A Volatile Organics

METHOD BLANK: 36877

254571008, 254571011

Matrix: Solid

Analysis Description:

Associated Lab Samples:

254571008, 254571011

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                   | ug/kg | ND              | 3.0                | 08/19/10 13:23 |            |
| Ethylbenzene              | ug/kg | ND:             | 3.0                | 08/19/10 13:23 |            |
| Toluene                   | ug/kg | ND              | 3.0                | 08/19/10 13:23 |            |
| Xylene (Total)            | ug/kg | ND              | 9.0                | 08/19/10 13:23 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 88              | 80-143             | 08/19/10 13:23 |            |
| 4-Bromofluorobenzene (S)  | %     | 90              | 72-122             | 08/19/10 13:23 |            |
| Dibromofluoromethane (S)  | %     | 99              | 80-136             | 08/19/10 13:23 |            |
| Toluene-d8 (S)            | %     | 86              | 80-120             | 08/19/10 13:23 |            |

| LABORATORY CONTROL SAME   | PLE & LCSD: 36878 |       | 36     | 879    |       |       |        |     |     | *          |
|---------------------------|-------------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                           |                   | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                 | Units             | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                   | ug/kg             | 50    | 58.4   | 55.9   | 117   | 112   | 75-133 | 4   | 30  |            |
| Ethylbenzene              | ug/kg             | 50    | 50.7   | 48.6   | 101   | 97    | 68-131 | 4   | 30  |            |
| Toluene                   | ug/kg             | 50    | 52.7   | 49.8   | 105   | 100   | 73-124 | 6   | 30  |            |
| Xylene (Total)            | ug/kg             | 150   | 157    | 151    | 105   | 101   | 68-130 | 4   | 30  |            |
| 1,2-Dichloroethane-d4 (S) | %                 |       |        |        | 87    | 85    | 80-143 |     |     |            |
| 4-Bromofluorobenzene (S)  | %                 |       |        |        | 94    | 97    | 72-122 |     |     |            |
| Dibromofluoromethane (S)  | %                 |       |        |        | 99    | 97    | 80-136 |     |     |            |
| Toluene-d8 (S)            | %                 |       |        |        | 91    | 89    | 80-120 |     |     |            |





Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

MSV/2884

Analysis Method:

EPA 8260

QC Batch Method:

EPA 8260

Analysis Description:

8260 MSV 5035A Volatile Organics

Associated Lab Samples:

254571007

Matrix: Solid

METHOD BLANK: 36984 Associated Lab Samples:

254571007

| • .                       |       | Blank  | Reporting |                |            |  |
|---------------------------|-------|--------|-----------|----------------|------------|--|
| Parameter                 | Units | Result | Limit     | Analyzed       | Qualifiers |  |
| Benzene                   | ug/kg | ND     | 3.0       | 08/20/10 07:52 |            |  |
| Ethylbenzene              | ug/kg | ND     | 3.0       | 08/20/10 07:52 |            |  |
| Toluene                   | ug/kg | ND     | 3.0       | 08/20/10 07:52 |            |  |
| Xylene (Total)            | ug/kg | ND     | 9.0       | 08/20/10 07:52 |            |  |
| 1,2-Dichloroethane-d4 (S) | %     | 86     | 80-143    | 08/20/10 07:52 |            |  |
| 4-Bromofluorobenzene (S)  | %     | 87     | 72-122    | 08/20/10 07:52 |            |  |
| Dibromofluoromethane (S)  | %     | 101    | 80-136    | 08/20/10 07:52 |            |  |
| Toluene-d8 (S)            | %     | 85     | 80-120    | 08/20/10 07:52 |            |  |

| LABORATORY CONTROL SAME   | PLE & LCSD: 36985 |                | 36            | 986            | -            |               |                 |     |            |            |
|---------------------------|-------------------|----------------|---------------|----------------|--------------|---------------|-----------------|-----|------------|------------|
| Parameter                 | Units             | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qualifiers |
| Benzene                   | ug/kg             | 50             | 55.0          | 55.1           | 110          | 110           | 75-133          | .3  | 30         |            |
| Ethylbenzene              | ug/kg             | 50             | 47.1          | 47.3           | 94           | 95            | 68-131          | .5  | 30         |            |
| Toluene                   | ug/kg             | 50             | 45.1          | 47.5           | 90           | 95            | 73-124          | 5   | 30         |            |
| Xylene (Total)            | ug/kg             | 150            | 144           | 145            | 96           | 96            | 68-130          | .6  | 30         |            |
| 1,2-Dichloroethane-d4 (S) | %                 |                |               |                | 86           | 85            | 80-143          |     |            |            |
| 4-Bromofluorobenzene (S)  | %                 |                |               |                | 96           | 96            | 72-122          |     |            |            |
| Dibromofluoromethane (S)  | %                 |                | •             |                | 100          | 99            | 80-136          |     |            |            |
| Toluene-d8 (S)            | %                 |                |               |                | 83           | 87            | 80-120          |     |            |            |

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

### **QUALITY CONTROL DATA**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

PMST/1303

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

254571001, 254571002, 254571003, 254571004, 254571005, 254571006, 254571007, 254571008, 254571009,

Units

254571010

SAMPLE DUPLICATE:

254567001 Result

Dup

Result

**RPD** 

Qualifiers

Percent Moisture

%

8.3

8.2

.7

SAMPLE DUPLICATE:

Parameter

Parameter Units

254571002 Result

Dup Result

**RPD** 

Qualifiers

Percent Moisture

%

33.8

33.2

2

Date: 08/31/2010 03:23 PM

REPORT OF LABORATORY ANALYSIS

Page 45 of 49

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Pace Analytical Services, inc. 940 South Harney Seattle, WA 98108 (206)767-5060

### **QUALITY CONTROL DATA**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

QC Batch:

PMST/1305

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples: 254571011, 254571012, 254571013, 254571014

SAMPLE DUPLICATE: 36941

Parameter

254571011

Dup Result

RPD

Qualifiers

Percent Moisture

%

14.9

15.1

1

SAMPLE DUPLICATE:

36942

Parameter

Units

Units

254569002 Result

Result

Dup Result

RPD

Qualifiers

Percent Moisture

%

16.2

16.3

.6



### **QUALIFIERS**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

#### **LABORATORIES**

[1]

PASI-S

Pace Analytical Services - Seattle

### **BATCH QUALIFIERS**

Batch: GCSV/1809

A sample duplicate was not performed for this batch due to insufficient sample volume.

#### **ANALYTE QUALIFIERS**

| 1n        | Sample was originally run at a dilution. Due to limited sample volume sample could not be re-run at a 1x.                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| E         | Analyte concentration exceeded the calibration range. The reported result is estimated.                                                  |
| M1.       | Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.                              |
| R1 .      | RPD value was outside control limits.                                                                                                    |
| S2        | Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-analysis). |
| S4        | Surrogate recovery not evaluated against control limits due to sample dilution.                                                          |
| <b>95</b> | Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis)                                     |



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Lab ID    | Sample ID   | QC Batch Method | QC Batch          | Analytical Method | Analytical<br>Batch |
|-----------|-------------|-----------------|-------------------|-------------------|---------------------|
| 254571001 | B1@6ft      | EPA 3546        | OEXT/2501         | NWTPH-Dx          | GCSV/1801           |
| 254571002 | B3@7 1/2ft  | EPA 3546        | OEXT/2501         | NWTPH-Dx          | GCSV/1801           |
| 254571003 | B4@3 1/2ft  | EPA 3546        | OEXT/2501         | NWTPH-Dx          | GCSV/1801           |
| 254571004 | B5@3ft      | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571005 | B6@5ft      | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571006 | B7@8ft      | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571007 | B8@6ft      | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571008 | B9@7ft      | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571009 | B10@5ft     | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571010 | B11@4 1/2ft | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571011 | B12@6ft     | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571012 | B13@3 1/2ft | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571013 | B14@5ft     | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571014 | B15@4 1/2ft | EPA 3546        | OEXT/2513         | NWTPH-Dx          | GCSV/1806           |
| 254571015 | В3          | EPA 3510        | OEXT/2514         | NWTPH-Dx          | GCSV/1809           |
| 254571016 | B7          | EPA 3510        | OEXT/2514         | NWTPH-Dx          | GCSV/1809           |
| 254571017 | B12         | EPA 3510        | OEXT/2514         | NWTPH-Dx          | GCSV/1809           |
| 254571001 | B1@6ft      | NWTPH-Gx        | GCV/1 <b>7</b> 72 | NWTPH-Gx          | GCV/1785            |
| 254571002 | B3@7 1/2ft  | NWTPH-Gx        | GCV/1 <b>7</b> 72 | NWTPH-Gx          | GCV/1785            |
| 254571003 | B4@3 1/2ft  | NWTPH-Gx        | GCV/1 <b>7</b> 74 | NWTPH-Gx          | GCV/1783            |
| 254571004 | B5@3ft      | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571005 | B6@5ft      | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571006 | B7@8ft      | NWTPH-Gx        | GCV/1782          | NWTPH-Gx          | GCV/1792            |
| 254571007 | B8@6ft      | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571008 | B9@7ft      | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571009 | B10@5ft     | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571010 | B11@4 1/2ft | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571011 | B12@6ft     | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571012 | B13@3 1/2ft | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571013 | B14@5ft     | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571014 | B15@4 1/2ft | NWTPH-Gx        | GCV/1774          | NWTPH-Gx          | GCV/1783            |
| 254571015 | B3          | NWTPH-Gx        | GCV/1778          |                   |                     |
| 254571016 | B7          | NWTPH-Gx        | GCV/1778          |                   |                     |
| 254571017 | B12         | NWTPH-Gx        | GCV/1778          |                   |                     |
| 254571006 | B7@8ft      | EPA 3546        | OEXT/2502         | EPA 8270 by SIM   | MSSV/1364           |
| 254571010 | B11@4 1/2ft | EPA 3546        | OEXT/2502         | EPA 8270 by SIM   | MSSV/1364           |
| 254571015 | В3          | EPA 5030B/8260  | MSV/2885          |                   | •                   |
| 254571016 | В7          | EPA 5030B/8260  | MSV/2871          |                   |                     |
| 254571017 | B12         | EPA 5030B/8260  | MSV/2871          | •                 |                     |
| 254571004 | B5@3ft      | EPA 5035A/5030B | MSV/2883          | EPA 8260          | MSV/2908            |
| 254571006 | B7@8ft      | EPA 5035A/5030B | MSV/2900          | EPA 8260          | MSV/2907            |
| 254571009 | B10@5ft     | EPA 5035A/5030B | MSV/2900          | EPA 8260          | MSV/2907            |
| 254571010 | B11@4 1/2ft | EPA 5035A/5030B | MSV/2900          | EPA 8260          | MSV/2907            |

Date: 08/31/2010 03:23 PM

# **REPORT OF LABORATORY ANALYSIS**

Page 48 of 49





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project:

Ellensburg Loves 81109090.2

Pace Project No.:

254571

| Lab ID    | Sample ID   | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-----------|-------------|-----------------|-----------|-------------------|---------------------|
| 254571001 | B1@6ft      | EPA 8260        | MSV/2869  |                   |                     |
| 254571002 | B3@7 1/2ft  | EPA 8260        | MSV/2869  |                   |                     |
| 254571003 | B4@3 1/2ft  | EPA 8260        | MSV/2869  |                   |                     |
| 254571005 | B6@5ft      | EPA 8260        | MSV/2870  | •                 |                     |
| 254571007 | B8@6ft      | EPA 8260        | MSV/2884  |                   |                     |
| 254571008 | B9@7ft      | EPA 8260        | MSV/2879  |                   |                     |
| 254571010 | B11@4 1/2ft | EPA 8260        | MSV/2870  | •                 |                     |
| 254571011 | B12@6ft     | EPA 8260        | MSV/2879  |                   |                     |
| 254571012 | B13@3 1/2ft | EPA 8260        | MSV/2870  |                   | -                   |
| 254571013 | B14@5ft     | EPA 8260        | MSV/2870  |                   |                     |
| 254571014 | B15@4 1/2ft | EPA 8260        | MSV/2870  | •                 |                     |
| 254571001 | B1@6ft      | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571002 | B3@7 1/2ft  | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571003 | B4@3 1/2ft  | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571004 | B5@3ft      | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571005 | B6@5ft      | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571006 | B7@8ft      | ASTM D2974-87   | PMST/1303 | -                 | -                   |
| 254571007 | B8@6ft      | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571008 | B9@7ft      | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571009 | B10@5ft     | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571010 | B11@4 1/2ft | ASTM D2974-87   | PMST/1303 |                   |                     |
| 254571011 | B12@6ft     | ASTM D2974-87   | PMST/1305 |                   |                     |
| 254571012 | B13@3 1/2ft | ASTM D2974-87   | PMST/1305 |                   |                     |
| 254571013 | B14@5ft     | ASTM D2974-87   | PMST/1305 |                   |                     |
| 254571014 | B15@4 1/2ft | ASTM D2974-87   | PMST/1305 |                   |                     |

