JUNE/JULY 2019 MONITORING REPORT

PACIFIC CITY PARK 600 THIRD AVENUE SOUTHEAST PACIFIC, WASHINGTON

River and Floodplain Management Section Water and Land Resources Division

Note:

Some pages in this document have been purposely skipped or blank pages inserted so that this document will copy correctly when duplexed.

JUNE/JULY 2019 MONITORING REPORT

PACIFIC CITY PARK 600 THIRD AVENUE SOUTHEAST PACIFIC, WASHINGTON

Prepared for

River and Floodplain Management Section King County Water and Land Resources Division 201 South Jackson Street, Suite 600 Seattle, Washington 98104

Prepared by
Herrera Environmental Consultants, Inc.
2200 Sixth Avenue, Suite 1100
Seattle, Washington 98121
Telephone: 206-441-9080

In Conjunction with Aspect Consulting, LLC

October 1, 2019

Prepared for:

King County River and Floodplain Management Section King County Water and Land Resources Division

For comments or questions contact:

Mary Strazer, Senior Engineer – 206-263-5817

Alternate Formats Available.

Call 206-477-4812 or TTY 711

CONTENTS

Cer	tificate of Licensed Hydrogeologist	V
1.	Introduction	1
	1.1. General Site Information	4
2.	Methods	5
	2.1. Groundwater Sampling	5
	2.2. Surface Water Sampling	
	2.3. Soil Vapor Monitoring	6
3.	Results	13
	3.1. Groundwater Conditions	13
	3.2. Groundwater Analytical Results	13
	3.3. Surface Water Analytical Results	13
	3.4. Soil Vapor Monitoring Results	14
	3.5. Data Quality Analysis	14
4.	Conclusions	19
5.	References	21

APPENDICES

Appendix A Laboratory Analytical Data
Appendix B Soil Vapor Monitoring Data

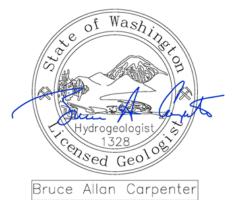
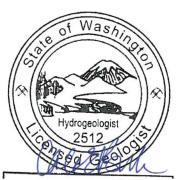

TABLES

Table 1.	Summary of Water Level Elevation Data from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington	25
Table 2.	Summary of Groundwater Sample Results from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington	29
Table 3.	Summary of Surface Water Sample Results, Pacific City Park Remedial Investigation, Pacific, Washington	33
Table 4.	Summary of Soil Vapor Monitoring Data, Pacific City Park Remedial Investigation, Pacific, Washington	35
FIGURI	ES .	
Figure 1.	Vicinity Map, Pacific City Park, Pacific, Washington	2
Figure 2.	Site Map, Pacific City Park, Pacific, Washington	3
Figure 3.	Extent of Fill Soil Containing Refuse, and Soil Boring and Monitoring Well Locations, Pacific City Park, Pacific, Washington	7
Figure 4.	Wetlands, Stormwater Conveyance Features, and Surface Water Sample Locations, Pacific City Park, Pacific, Washington	9
Figure 5.	Soil Vapor Monitoring Locations, Pacific City Park, Pacific, Washington	11
Figure 6.	Groundwater Elevation Contour Map, June 18, 2019, Pacific City Park, Pacific, Washington	12
Figure 7.	Extent of Total and Dissolved Metals in Groundwater, Pacific City Park, Pacific, Washington.	15
Figure 8.	Non-Metals Contaminants of Concern in Groundwater, Pacific City Park,	17


CERTIFICATE OF LICENSED HYDROGEOLOGIST

This document has been prepared under the supervision of a licensed hydrogeologist.

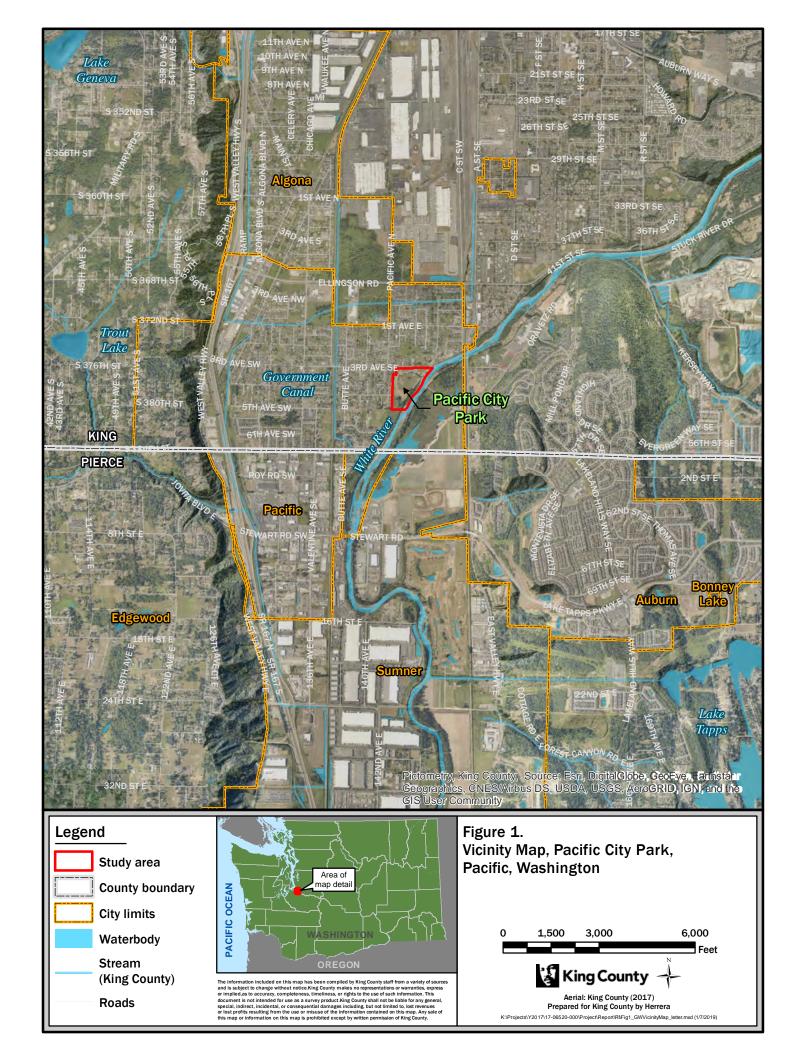
Bruce Carpenter, LHG

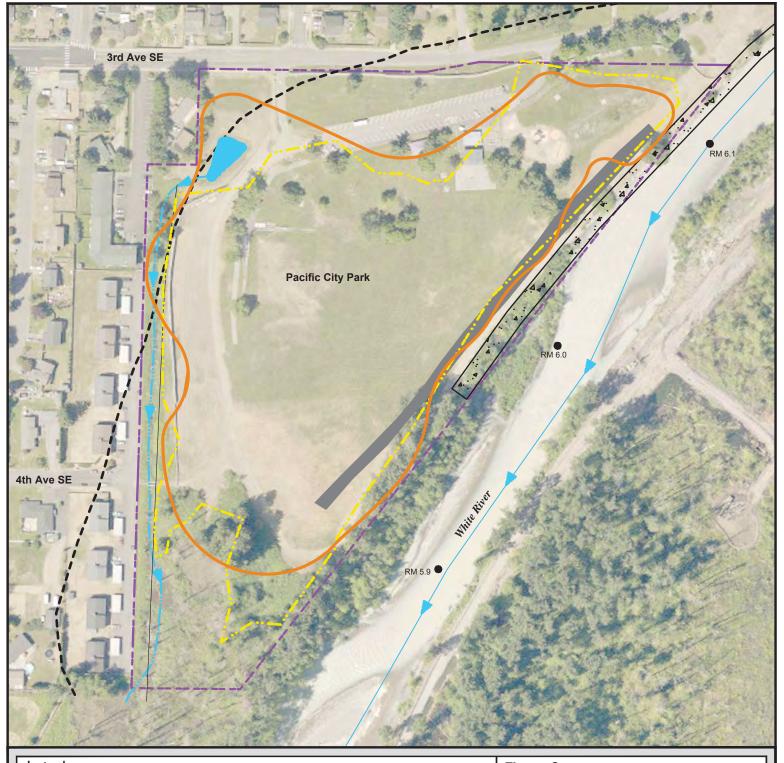
October 1, 2019 Name Date

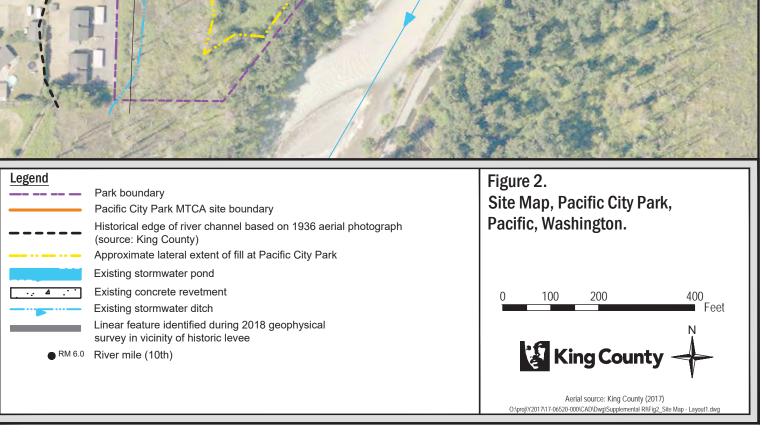
CARLA E. BROCK

Carla Brock, LHG

Name Date


October 1, 2019


1. INTRODUCTION


This report documents the results of quarterly groundwater, surface water, and soil vapor monitoring completed in June and July 2019 for the Pacific City Park, located at 600 Third Avenue Southeast in Pacific, Washington (herein referred to as the Site; Figure 1). This report supplements the Remedial Investigation (RI) Report (Herrera 2019a), the Supplemental RI (SRI) Report (Herrera 2019b), and the March 2019 Monitoring Report (Herrera 2019c) submitted by King County to the Washington State Department of Ecology (Ecology). The Site was an informal dumpsite and city dump between approximately 1921 and 1965 and is defined as any location where one or more of the contaminants of potential concern (COPCs) associated with the dumpsite are present in Site media at concentrations exceeding the screening levels developed for the RI.

The June/July 2019 monitoring was conducted to further evaluate the nature and extent of hazardous substances in groundwater, surface water, and soil vapor at the Site and to support the development, selection, and implementation of a cleanup action. Four quarters or more of groundwater monitoring have been completed for wells MW-1 through MW-9 (Figure 2). The June/July 2019 monitoring was the fifth quarterly sampling event for surface water at the Site, and the third quarterly sampling event for wells MW-10 through MW-12 that were installed in December 2018 during the Supplemental RI. One additional monitoring event is planned for groundwater and soil vapor at the Site in September 2019.

King County is performing work at the Site to meet the requirements of the Model Toxics Control Act cleanup regulation (MTCA) Cleanup Regulation, Chapter 173-340 WAC, for an RI and feasibility study (FS), in order to select and implement a cleanup action alternative. The quarterly monitoring is being performed to collect data and information on the seasonal variability of conditions at the Site to inform the RI.

1.1. GENERAL SITE INFORMATION

Site Name	Pacific City Park
Site Address	600 Third Avenue Southeast
Facility Site Identification number (FSID)	2160
King County Assessor's Parcel No.	3621049040
Cleanup Site ID	21
VCP Project Number	NW3204
Ecology Site Manager	Grant Yang

The project consultant is Mark Ewbank with Herrera Environmental Consultants, Inc. (Herrera), located at 2200 Sixth Avenue, Suite 1100, Seattle, Washington 98121. Telephone: 206-787-8217, and email: MEwbank@herrerainc.com.

Pacific City Park is owned by King County, with a portion, approximately 21 acres, leased to the City of Pacific for use as a City park. Mary Strazer, Senior Engineer with the River and Floodplain Management Section of the King County Water and Land Resources Division, is the Site contact. Her office is located at 201 South Jackson Street, Suite 600, Seattle, Washington 98104. Telephone: 206-263-5817, and email: mstrazer@kingcounty.gov.

2. METHODS

Herrera staff collected groundwater samples from eight monitoring wells, including the three monitoring wells installed during the Supplemental RI (MW-10 through MW-12), and five wells (MW-2, MW-4 through MW-6, and MW-9) located within or downgradient of areas where refuse was historically placed at the Site.

In addition, Herrera collected surface water samples from four locations within the stormwater pond and ditch on the Site and monitored soil gas at three monitoring wells where the static groundwater level was lower than the top of the well screen.

The work was conducted in general accordance with the Sampling and Analysis Plan (SAP) (Herrera 2018). The locations of all soil borings and monitoring wells previously completed at the Site are depicted on Figure 3; surface water sampling locations are depicted on Figure 4; and soil vapor monitoring locations are depicted on Figure 5.

2.1. GROUNDWATER SAMPLING

On June 18, 2019, Herrera staff collected groundwater samples from eight monitoring wells (MW-2, MW-4 through MW-6, and MW-9 through MW-12) and hand delivered them to OnSite Environmental, Inc. (OnSite) for laboratory analysis (see Figure 3). The samples were submitted for analysis of:

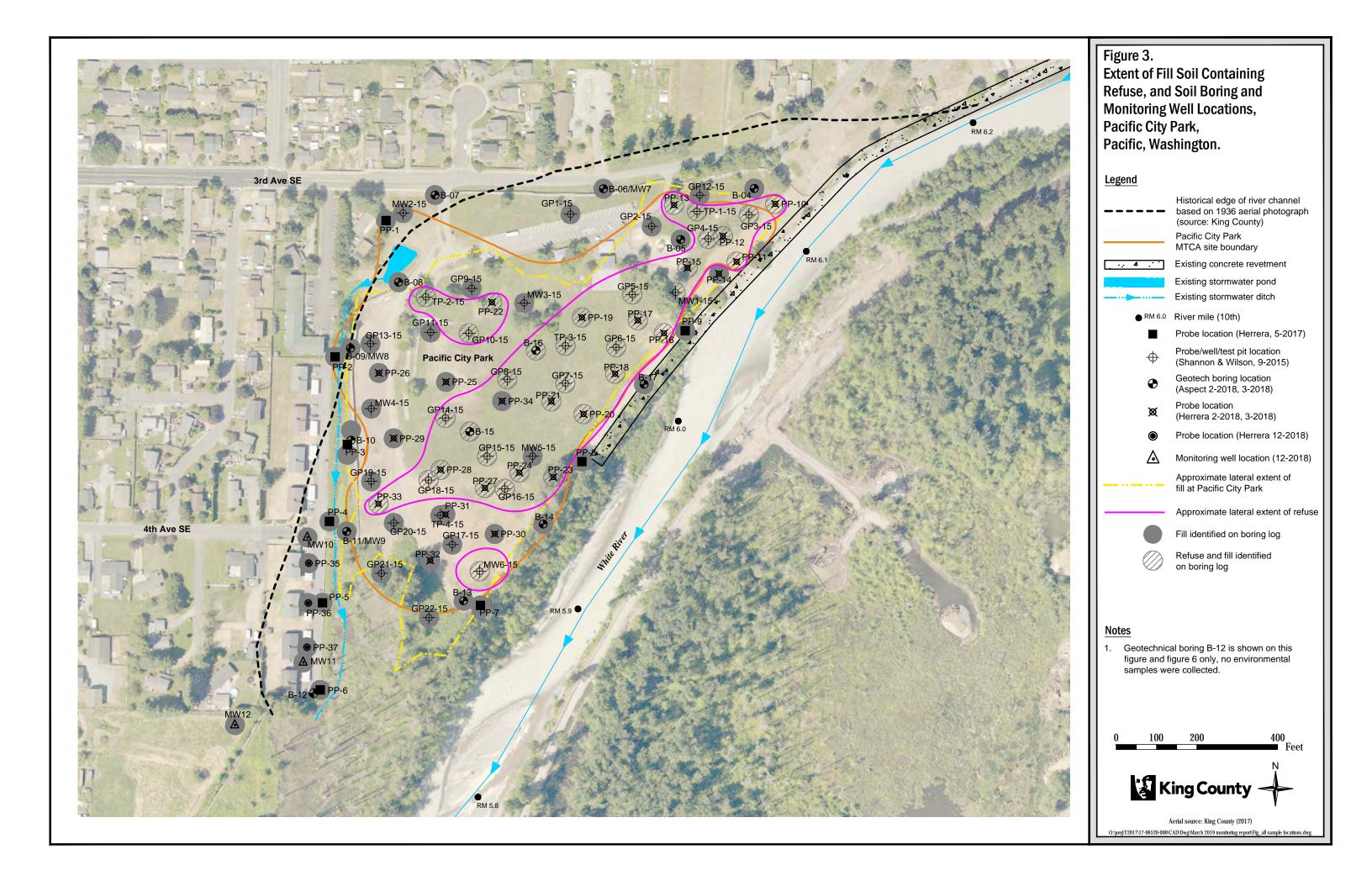
- Volatile organic compounds (VOCs) by EPA Method 8260C
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270D/SIM
- Dissolved MTCA metals by EPA Methods 200.8/7470A

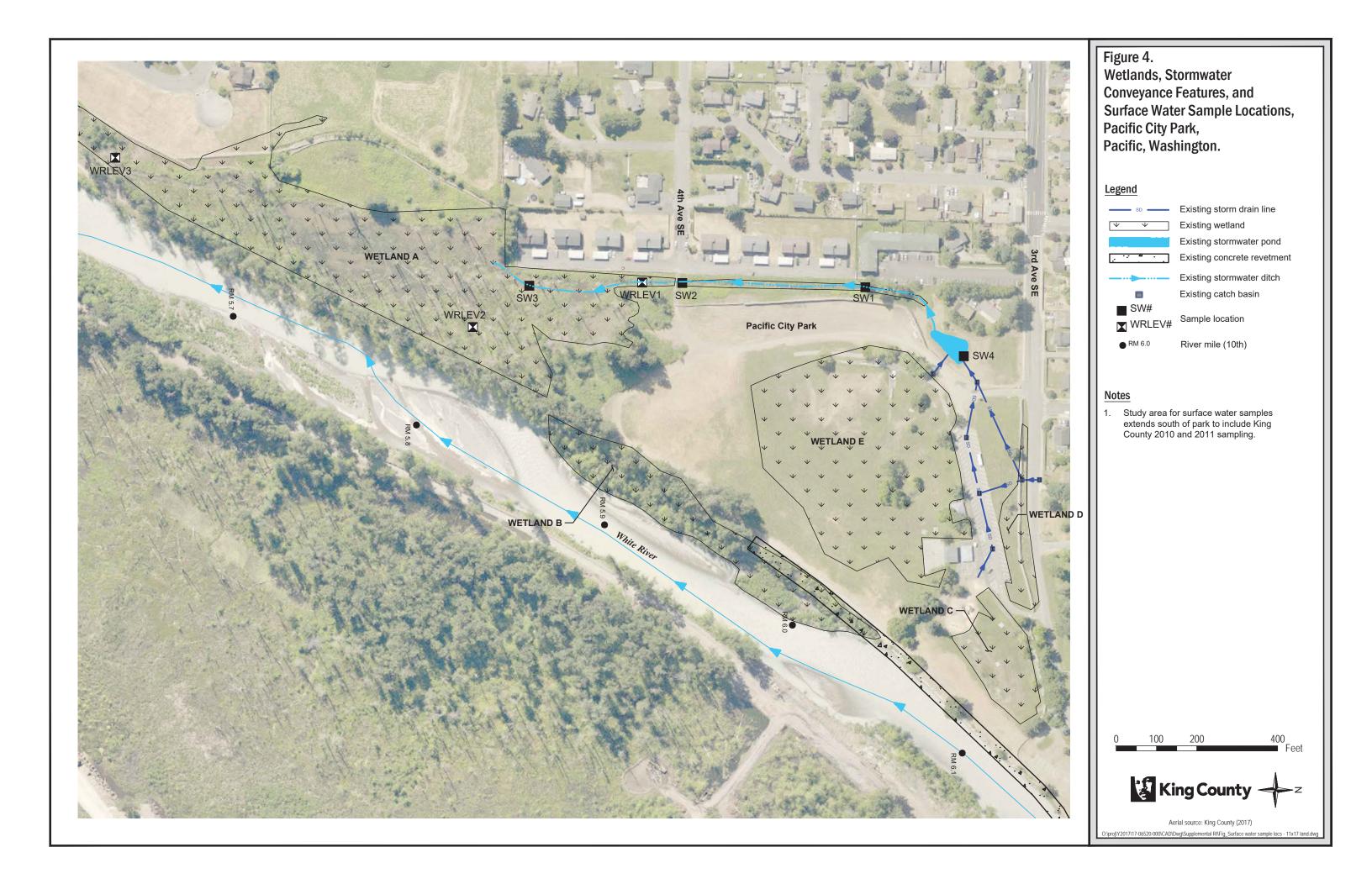
In addition, samples from the three newer wells (MW-10 through MW-12) installed during the Supplemental RI were submitted for analysis of:

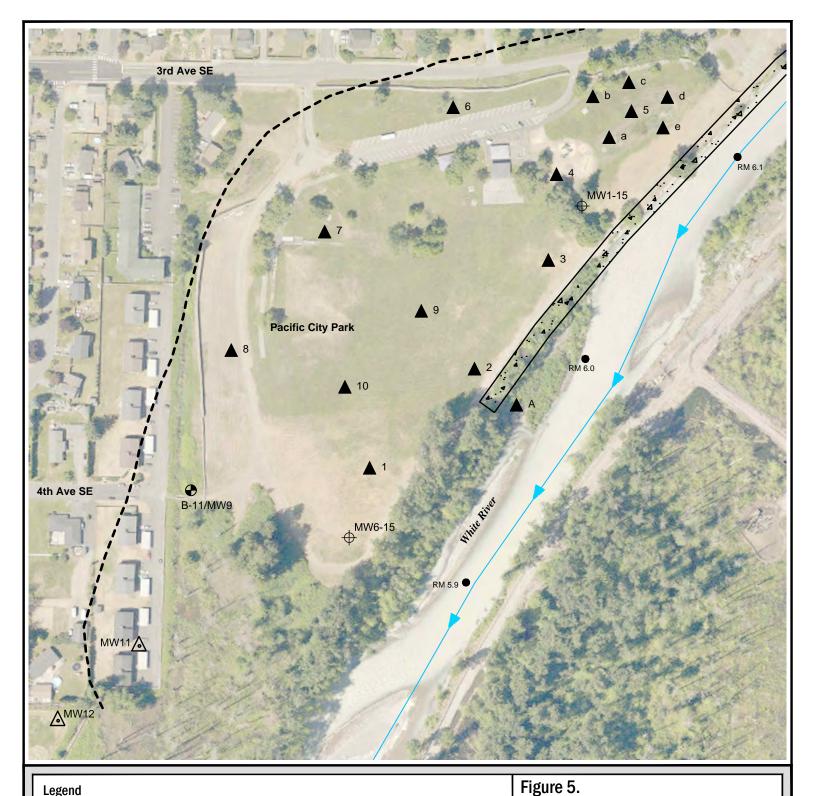
- Gasoline-range total petroleum hydrocarbons (TPH) by Ecology Method NWTPH-Gx
- Diesel-and oil-range TPH by Ecology Method NWTPH-Dx

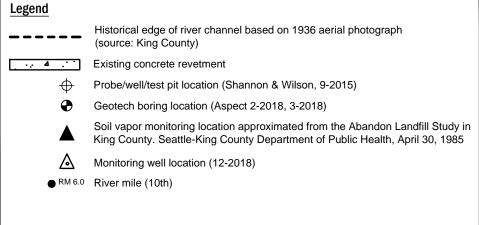
All samples were collected by the low-flow purge method described in the SAP (Herrera 2018) and dissolved metals samples were field filtered. Samples were held for potential analysis of polychlorinated biphenyls (PCBs) pending the results of oil-range TPH analysis; no oil-range petroleum hydrocarbons were detected, so subsequent PCB analysis was not performed.

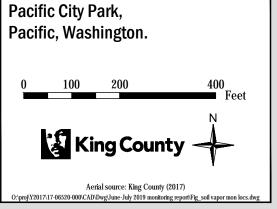
2.2. SURFACE WATER SAMPLING

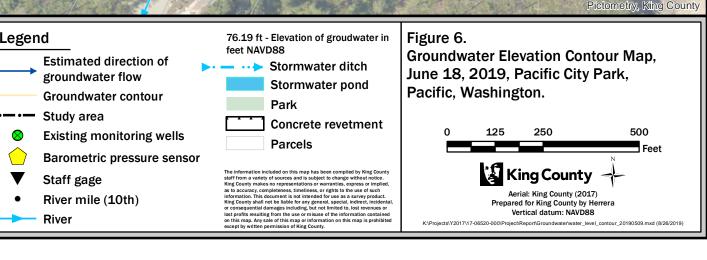

On July 10, 2019, Herrera staff collected surface water samples from four locations (SW1 through SW4) including the onsite stormwater pond and along the stormwater ditch (see Figure 4). The samples were collected during a storm event and included stormwater runoff to the pond and ditch from adjacent upland areas and parking lot at the Site, portions of Third Avenue Southeast, and parking lots and pavement adjacent to Fourth Avenue Southeast. The surface water samples were submitted to OnSite for the following laboratory analyses:


- Gasoline-range TPH by Ecology Method NWTPH-Gx
- Diesel- and oil-range TPH by Ecology Method NWTPH-Dx
- Dissolved MTCA metals by EPA Methods 6010C/200.8/7470A
- cPAHs by EPA Method 8270D/SIM
- VOCs and BTEX by EPA Method 8260C
- Hardness by EPA Method 6010D/SM 2340B


The samples were collected in the same manner as previous surface water samples collected at the Site, which generally follows the King County Standard Operating Procedure (SOP) Sampling Methods for Stream and River Water (SOP #214v3). Samples for analysis of dissolved metals were collected using a peristaltic pump and were field filtered prior to submittal to the laboratory. Two samples (SW1 and SW4) with detected concentrations of lube oil-range petroleum hydrocarbons were also analyzed for PCBs.


2.3. SOIL VAPOR MONITORING


On June 18, 2019, during the quarterly groundwater sampling event, soil gas monitoring was conducted at four locations (MW-6, MW-9, MW-11, and MW-12) (Figure 6). These were the only wells where the static groundwater level was lower than the top of the well screen. Soil gas monitoring was performed using a Landtec Gas Analyzer & Extraction Monitor (GEM) 2000 Plus gas analyzer and extraction monitor that was calibrated by the supplier prior to use. The wells were purged during monitoring using an Aircheck Sampler pump by SKC, Ltd. at a rate of approximately 3,000 milliliters per minute (ml/min).



Soil Vapor Monitoring Locations,

3. RESULTS

The analytical results for samples collected in June and July 2019 are compared to the Site Screening Levels (SSLs) developed in the RI Report based on current and potential future exposure pathways and receptors (Herrera 2019a).

3.1. GROUNDWATER CONDITIONS

On June 18, 2019, static groundwater levels were measured in monitoring wells MW-1 through MW-12 and B-03 (Figure 6) and ranged from near the ground surface (1.02 foot below the top of the monitoring well casing [bTOC]) to 6.64 feet bTOC (Table 1; all tables appear in a separate section following the main report text). Surface water elevations were also measured at two locations within the stormwater ditch, at Staff Gage 1 near monitoring well MW-8, and at Staff Gage 2, located to the southeast of monitoring well MW-11 (Figure 6). As depicted in the groundwater contour map in Figure 6, the direction of groundwater flow is toward the west–southwest with localized flow towards the stormwater ditch along the western side of Pacific Park.

3.2. GROUNDWATER ANALYTICAL RESULTS

A summary of groundwater analytical results for samples collected from monitoring wells is presented in Table 2. Figures 7 and 8 depict the laboratory results for metals and non-metal COPCs in groundwater, respectively. The groundwater analytical data for the June 2019 sampling did not identify concentrations of TPH, cPAHs, or VOCs above the SSLs. Of the five MTCA metals, only dissolved arsenic was detected above the SSL of 3.3 micrograms per liter (μ g/L) in wells MW-2, MW-4, MW-11, and MW-12 at concentrations of 7.1 μ g/L, 11 μ g/L, 3.6 μ g/L, and 14.0 μ g/L, respectively (Table 2). These results are generally consistent with the results of previous groundwater sampling events at the Site, with the exception of MW-11, where dissolved arsenic was not previously detected.

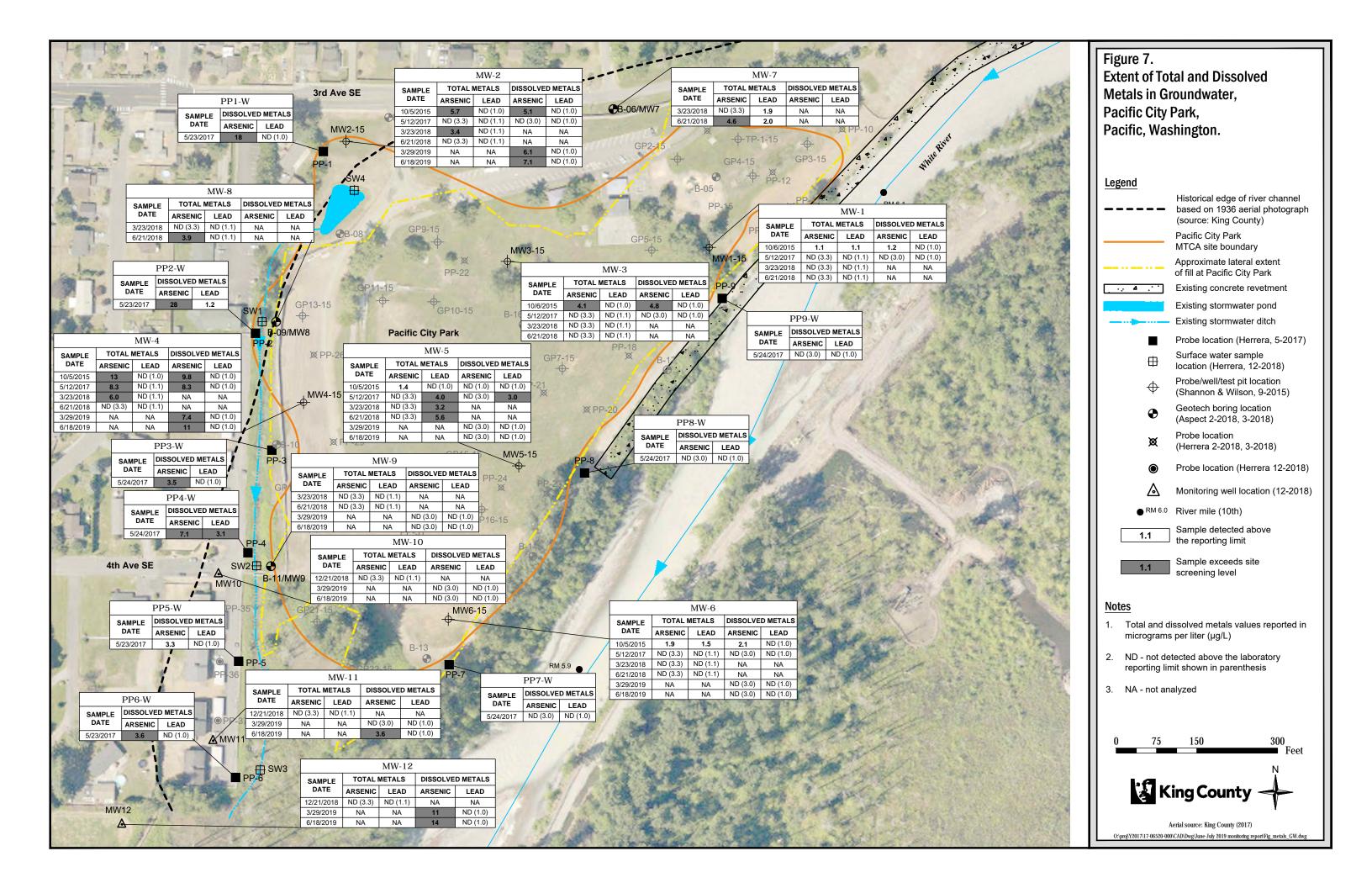
3.3. SURFACE WATER ANALYTICAL RESULTS

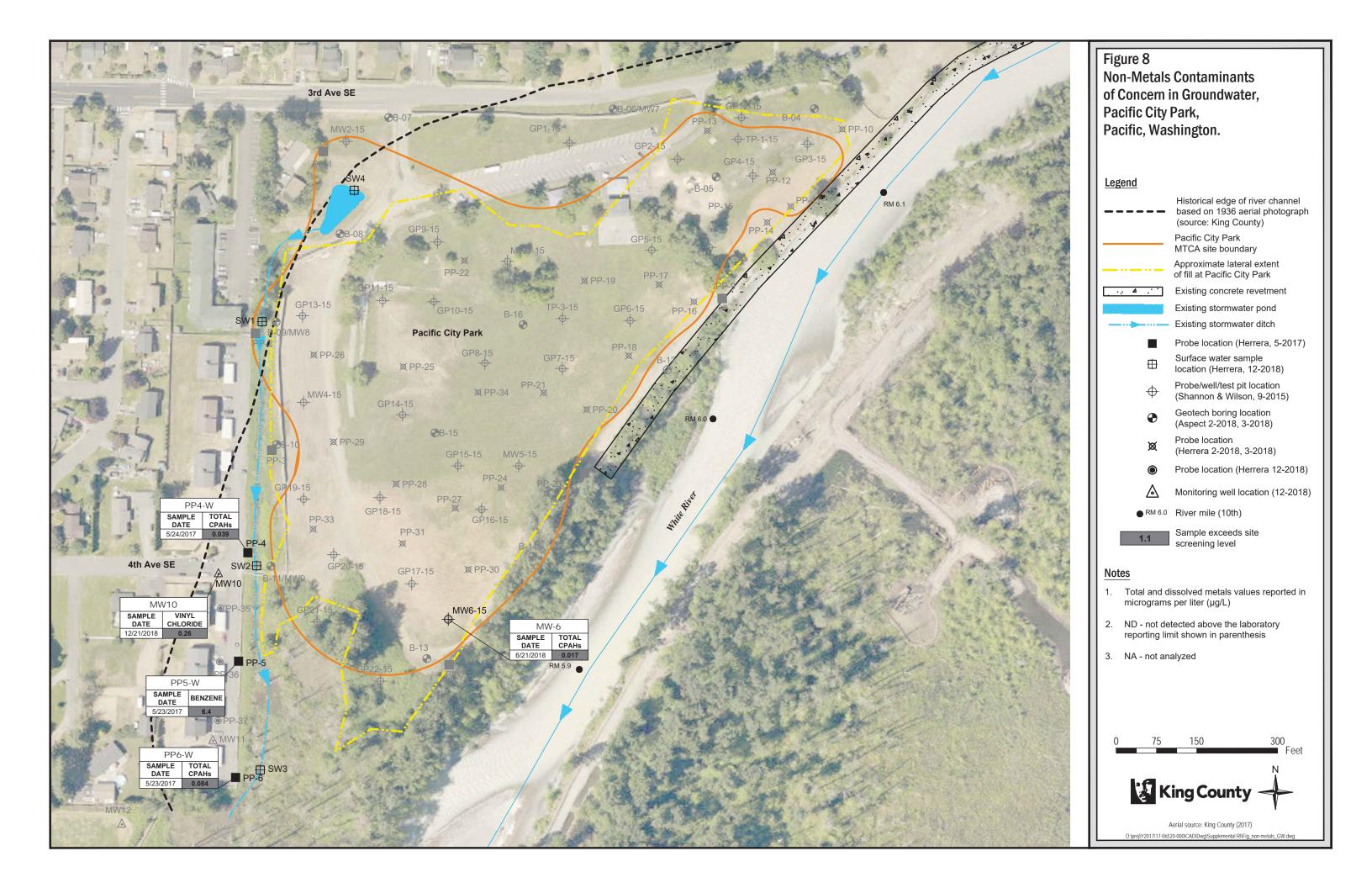
A summary of surface water analytical results for samples from the onsite stormwater pond and ditch is presented in Table 3. Surface water analytical results were compared to the groundwater SSLs protective of surface water. Concentrations of dissolved MTCA metals, cPAHs, and VOCs were not detected in surface water above the SSLs in any of the samples. The concentration of lube oil-range petroleum hydrocarbons detected in sample SW-4 (590 μ g/L) slightly exceeded the SSL of 500 μ g/L. The follow-up analysis for PCBs in these two samples with detected lube oil-range petroleum hydrocarbons did not identify detectable concentrations of PCBs (see Appendix A).

King County

3.4. Soil Vapor Monitoring Results

A summary of soil vapor monitoring results is presented in Table 4 and field data sheets are provided in Appendix B. No methane (CH₄) or hydrogen sulfide (H₂S) was measured in soil gas at wells MW-6, MW-9, MW-11, or MW-12.


3.5. DATA QUALITY ANALYSIS


Laboratory analyses for the June and July 2019 investigation were performed by OnSite, of Redmond, Washington, an Ecology-accredited laboratory. Laboratory reports, chain-of-custody forms, and data quality assurance review completed by Herrera are included in Appendix A.

A data quality assurance review was performed for all laboratory data. The data quality for all parameters was considered to be acceptable as reported by the laboratory based on the following criteria:

- Holding time
- Reporting limits
- Method blanks
- Trip blanks
- Laboratory control standard recovery
- Surrogate recovery
- Matrix spike recovery

Laboratory duplicate relative percent difference

4. CONCLUSIONS

This monitoring report presents groundwater, surface water, and soil vapor monitoring data that supplements information previously presented in the RI report (Herrera 2019a) and Supplemental RI report (Herrera 2019b) prepared for the Site.

The results of the June 2019 groundwater monitoring and sampling event are generally consistent with the results of previous sampling events completed at the Site. The June 2019 groundwater analytical data did not identify concentrations of TPH, cPAHs, or VOCs above the SSLs in the wells. Of the five MTCA metals, only dissolved arsenic was detected in groundwater samples collected from three wells at concentrations slightly above the SSL and the state background level of 5 μ g/l. This data reinforces the conclusions from the RI and SRI that leaching of contaminants from the dumpsite is not affecting groundwater quality at concentrations that pose a risk to human health or the environment.

The July 2019 surface water data, consistent with the previous four quarters of sampling, did not identify concentrations of dissolved MTCA metals, cPAHs, or VOCs above the SSLs in any of the samples collected. The concentration of lube oil-range petroleum hydrocarbons detected in one sample from the stormwater pond slightly exceeded the SSL of 500 μ g/L. This is likely attributed to runoff associated with vehicle traffic on Third Avenue Southeast or vehicles using the parking lot at the Site. Based on this data, it does not appear that contamination present in soils and groundwater at the Site is impacting surface water.

No methane or hydrogen sulfide were measured in soil gas at wells MW-6, MW-9, MW-11, or MW-12 during the June 2019 monitoring. Based on these results and previous monitoring conducted and discussed in the RI report, and the SRI report, it does not appear that the Site is producing or releasing landfill gas.

The monitoring wells installed as part of the Supplemental RI (MW-10, MW-11 and MW-12) will be sampled quarterly for at least one more quarter in September 2019, along with the five closest upgradient wells (MW-2, MW-4, MW-5, MW-6, and MW-9) sampled in June 2019 for comparison. The data collected will be evaluated to determine seasonal fluctuations in groundwater levels, flow direction, and contaminant presence and concentrations to support selection and implementation of the final cleanup remedy.

5. REFERENCES

Herrera. 2018. Sampling and Analysis Plan, Environmental Exploration, Pacific Park/Dumpsite, Pacific, Washington. Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. February 13.

Herrera. 2019a. Remedial Investigation Report, Pacific City Park, Pacific, Washington. Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. January 4.

Herrera. 2019b. Supplemental Remedial Investigation Report, Pacific City Park, Pacific, Washington. Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. May 9.

Herrera. 2019c. March 2019 Monitoring Report, Pacific City Park, Pacific, Washington. Prepared for the River and Floodplain Management Section, King County Water and Land Resources Division by Herrera Environmental Consultants, Inc., Seattle, Washington. June 10.

TABLES

		Remedial Investigat	,,	ngton.
Monitoring Well Identification	Measurement	Reference Elevation	Depth to Water	Water Level Elevation
	Date	(feet) ^a	(feet)	(feet)
MW-1	5/12/17	83.16	2.33	80.83
	3/23/18		2.84	80.32
	6/21/18		3.12	80.04
	9/26/18		5.80	77.36
	12/21/18		2.73	80.43
	3/29/19		3.20	79.96
	6/18/19		3.20 ^b	79.96
MW-2	5/12/17	79.85	1.37	78.48
	3/23/18		1.81	78.04
	6/21/18		2.32	77.53
	9/26/18		3.68	76.17
	12/21/18		2.07	77.78
	3/29/19		2.07 ^b	77.78
	6/18/19		2.52	77.33
MW-3	5/12/17	80.01	0.40	79.61
	3/23/18		0.55	79.46
	6/21/18		1.27	78.74
	9/26/18		3.01	77.00
	12/21/18		0.68	79.33
	3/29/19		1.10	78.91
	6/18/19		1.13	78.88
MW-4	5/12/17	80.14	2.73	77.41
	3/23/18		3.09	77.05
	6/21/18		3.53	76.61
	9/26/18		4.54	75.60
	12/21/18		3.16	76.98
	3/29/19		3.40	76.74
	6/18/19		3.40 ^b	76.74
MW-5	5/12/17	81.40	1.60	79.80
	3/23/18		2.26	79.14
	6/21/18		2.38	79.02
	9/26/18		4.80	76.60
	12/21/18		2.04	79.36
	3/29/19		2.42	78.98
	6/18/19		2.42 ^b	78.98

Table 1 (continued). Summary of Water Level Elevation Data from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington.

Monitoring Well Identification	Measurement Date	Reference Elevation (feet) ^a	Depth to Water (feet)	Water Level Elevation (feet)
MW-6	5/12/17	83.81	5.71	78.10
	3/23/18	1	6.65	77.16
	6/21/18	1	6.60	77.21
	9/26/18	1	8.53	75.28
	12/21/18]	6.42	77.39
	3/29/19	1	6.76	77.05
	6/18/19	1	6.64	77.17
MW-7 ^c	3/23/18	79.82	0.32	79.50
	6/21/18]	0.78	79.04
	9/26/18]	2.68	77.14
	12/21/18]	0.84	78.98
	3/29/19	1	0.69	79.13
	6/18/19	1	1.02	78.80
MW-8 ^c	3/23/18	79.95	2.63	77.32
	6/21/18]	3.12	76.83
	9/26/18]	4.20	75.75
	12/21/18		3.05	76.90
	3/29/19		3.27	76.68
	6/18/19]	3.24	76.71
Staff Gage 1 ^d	9/26/18	75.29	0.46	75.75
	10/9/19		0.62	75.91
	12/20/19		1.47	76.76
	12/21/19		1.44	76.73
	3/29/19		1.18	76.47
	6/18/19		1.27	76.56
MW-9 ^c	3/23/18	82.59	5.85	76.74
	6/21/18		6.02	76.57
	9/26/18		6.98	75.61
	12/21/18		6.20	76.39
	3/29/19		6.40	76.19
	6/18/19		6.35	76.24
MW-10	12/21/18	79.14	2.71	76.43
	3/29/19		2.87	76.27
	6/18/19		2.87 ^b	76.27
MW-11	12/21/18	79.52	4.05	75.47
	3/29/19		4.35	75.17
	6/18/19		4.34	75.18
Staff Gage 2 ^d	3/29/19	73.40	1.20	74.60
	6/18/19		1.19	74.59

Table 1 (continued). Summary of Water Level Elevation Data from Monitoring Wells,
Pacific City Park Remedial Investigation, Pacific, Washington.

Monitoring Well Identification	Measurement Date	Reference Elevation (feet) ^a	Depth to Water (feet)	Water Level Elevation (feet)
MW-12	12/21/18	78.11	2.51	75.60
	3/29/19		3.12	74.99
	6/18/19		4.02	74.09
B-03 ^e	3/23/18	86.12	5.52	80.60
	6/21/18		5.41	80.71
	9/26/18		8.3	77.82
	12/21/18		5.05	81.07
	3/29/19		5.51	80.61
	6/18/19		5.47	80.65

^a Reference elevation is the top of protective casing (North American Vertical Datum 1988 [NAVD 88])

b Groundwater elevations in some wells were the same as the previous event. The results were double-checked and confirmed.

^c MW-7, MW-8, and MW-9 correspond to probe borings B-06, B-09, and B-11, respectively.

^d Staff Gages 1 and 2 are installed in close proximity to MW-8 and MW-11, respectively.

^e Standing water level measurement only at boring location B-03. No groundwater sample was collected.

	Table 2. Summary of Groundwater Sample Results from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington.																					
										Α	nalytical Parar	meter (µg/L))									
		Petrole	um Hydro	carbons				Volatile C	rganic Compoun	ıds					Total Metals				D	issolved Me	tals	
Sample Location	Sample Date	GRO	DRO	Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	(cis) 1,2- Dichloroethene	1,4- Dichloro benzene	Chloro- benzene	Vinyl chloride	Arsenic	Cadmium	Chromium	Lead	Mercury	Arsenic	Cadmium	Chromium	Lead	Mercury
Site Screen	-																					
Level (µg/L,		1,000	500	500	0.44	57	29	1,000	16		100	0.02	3.3	4.4	50	2.5	0.5	3.3	4.4	50	2.5	0.5
MW-1	10/6/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	1.1	ND (0.20)	ND (0.50)	1.1	ND (0.10)	1.2	ND (0.20)	ND (0.50)	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)	ND (1.1)		ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18	ND (100)	ND (260)	ND (410)		ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)		ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	` ′	ND (270)	ND (430)	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
			ND (260)	ND (410)		ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
MW-2	10/5/15	ND (50)	ND (50)	ND (100)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	5.7	ND (0.20)	2.3		ND (0.10)	5.1	ND (0.20)	1.6	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (270)	ND (440)			ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)		ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18		ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	3.4	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	` /	ND (270)	ND (430)	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.9	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)		ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ĺ	ND (0.50)	NA	NA	NA	NA	NA
	3/29/19	NA	NA	NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	6.1	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	6/18/19	NA	NA	NA	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20	ND (0.20)	NA	NA	NA	NA	NA	7.1	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-3	10/6/15	ND (50)	ND (50)	ND (100)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	4.1	ND (0.20)	2.8		ND (0.10)	4.8	ND (0.20)	1.5	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)		ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)			ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	0.22	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	9/26/18		ND (260)	ND (410)	ND (0.20)		ND (0.20)	ND (0.40)	0.35	ND (0.20)	ND (0.20)	ND (0.20)		ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	0.30	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-4	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	5.7	ND (0.20)	13	ND (0.20)	2.7	ND (1.0)	ND (0.10)	9.8	ND (0.20)	1.5	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (420)	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	1.5	ND (0.20)	8.3	ND (4.4)	ND (11)		ND (0.50)	8.3	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18	ND (110)	ND (270)	ND (440)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	1.1	ND (0.20)	6.0	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
						ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
		ND (100)						ND (0.40)	ND (0.20)	ND (0.20)	4.6	ND (0.20)		ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)		ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	3.7	ND (0.20)	11	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	3/29/19	NA	NA	NA	ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	2.6	ND (0.20)	NA	NA	NA	NA	NA	7.4	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	6/18/19		NA	NA	ND (0.20)			ND (0.40	ND (0.20)	ND (0.20)	0.33	ND (0.20)	NA	NA	NA	NA	NA	11	ND (4.0)		ND (1.0)	ND (0.50)
MW-5	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	1.4	ND (0.20)	0.52	ND (1.0)	ND (0.10)	ND (1.0)	ND (0.20)	ND (0.5)	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	4.0	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	3.0	ND (0.50)
	3/23/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	3.2	ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	5.6	ND (0.50)	NA	NA	NA	NA	NA
					ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)			ND (11)	1.9	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	1.5	ND (0.50)	NA	NA	NA	NA	NA
	3/29/19	NA	NA	NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	6/18/19	NA	NA	NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)

	Table 2 (continued). Summary of Groundwater Sample Results from Monitoring Wells, Pacific City Park Remedial Investigation, Pacific, Washington.																					
										A	nalytical Paran	neter (µg/L))									
		Petrole	um Hydroc	arbons				Volatile O	rganic Compoun	ds				,	Total Metals				Di	ssolved Me	tals	
Sample	Sample								(cis) 1,2-	1,4- Dichloro	Chloro-	Vinyl										
Location	Date	GRO	DRO	Lube Oil	Benzene	Toluene	Ethylbenzene	Xylenes	Dichloroethene	benzene	benzene	chloride	Arsenic	Cadmium	Chromium	Lead	Mercury	Arsenic	Cadmium	Chromium	Lead	Mercury
Site Screen	-																					
Level (µg/L	i i	1,000	500	500	0.44	57	29	1,000	16	NA	100	0.02	3.3	4.4	50	2.5	0.5	3.3	4.4	50	2.5	0.5
MW-6	10/5/15	ND (50)	ND (50)	ND (100)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (0.20)	ND (1.0)	ND (0.20)	1.9	ND (0.20)	0.74	1.5	ND (0.10)	2.1	ND (0.20)	ND (0.50)	ND (1.0)	ND (0.10)
	5/12/17	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	3/23/18		ND (280)	ND (450)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	6/21/18		ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA NA	NA
	9/26/18		ND (260)	ND (410)	ND (0.20) ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	0.20	ND (0.20)	ND (0.20)	4.5	ND (4.4)	ND (11)		ND (0.50) ND (0.50)	NA NA	NA NA	NA	NA NA	NA NA
	12/21/18 3/29/19	ND (100) NA	ND (260) NA	ND (410) NA	ND (0.20)	ND (1.0) ND (1.0)	ND (0.20) ND (0.20)	ND (0.40) ND (0.40)	ND (0.20) ND (0.20)	ND (0.20) ND (0.20)	ND (0.20) ND (0.20)	ND (0.20) ND (0.20)	ND (3.3) NA	ND (4.4) NA	ND (11) NA	NA NA	NA (0.50)	NA ND (3.0)	NA ND (4.0)	NA ND (10)	ND (1.0)	NA ND (0.50)
	6/18/19	NA NA	NA NA	NA NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA NA	NA NA	NA NA	NA NA	NA NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-7	3/23/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	1.9	ND (0.50)	NA	NA	NA	NA	NA
14144 7	6/21/18	`	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.6	ND (4.4)	ND (11)	2.0	ND (0.50)	NA NA	NA NA	NA NA	NA	NA NA
	9/26/18		ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	5.5	ND (4.4)	ND (11)		ND (0.50)	NA NA	NA	NA	NA	NA NA
		`	ND (270)	ND (440)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	4.5	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
MW-8	3/23/18		ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (1.1)	NA	NA	NA	NA	NA
	6/21/18	`	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	3.9	ND (4.4)	ND (11)	<u> </u>	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)		ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
MW-9	3/23/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	6/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	9/26/18	ND (100)	ND (250)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.38	ND (0.20)	3.6	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	12/21/18	ND (100)	ND (260)	ND (420)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.43	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	3/29/19	NA	NA	NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.41	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	6/18/19	NA	NA	NA	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40	ND (0.20)	ND (0.20)	0.34	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-10	12/21/18	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	0.26	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
					ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
	6/18/19	ND (100)	ND (270)	ND (430)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-11	12/21/18	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
	3/29/19	ND (100)	ND (290)	ND (470)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	0.24	ND (0.20)	NA	NA	NA	NA	NA	ND (3.0)	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
			1		ND (0.20)		İ	ND (0.40)	ND (0.20)	ND (0.20)	0.33	ND (0.20)	NA	NA	NA	NA	NA	3.6	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)
MW-12					ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (3.3)	ND (4.4)	ND (11)	ND (1.1)	ND (0.50)	NA	NA	NA	NA	NA
			The state of the s		ND (0.20)			ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	11	ND (4.0)	ND (10)	ND (1.0)	
	6/18/19	ND (100)	ND (260)	ND (410)	ND (0.20)	ND (1.0)	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	NA	NA	NA	NA	NA	14	ND (4.0)	ND (10)	ND (1.0)	ND (0.50)

			Tab	le 2 (continue	d). Summary	of Ground	lwater Sampl	e Results, Pa	cific City Par	k Remedial Inv	estigation, Pa	cific, Washingt	on.		
				Field Parameter	s						Analytical Parame	eter (µg/L)			
										Carcin	ogenic Polycyclic	Aromatic Hydroca	rbons (cPAHs)		
Sample Location	Sample Date	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pH (std units)	Turbidity (NTU)	Total PCBs	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(j,k) fluoranthene	Benzo(a) pyrene	Indeno(1,2,3-cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs (TEQ)
Site Screening	g Level (μg/L)	NA	NA	NA	NA	NA	0.05	0.01	0.016	0.01	0.01	0.01	0.01	0.01	0.015
MW-1	10/6/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.076)
	5/12/17	9.0	3.28	98	6.84	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	3/23/18	6.9	4.67	97	6.94	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	6/21/18	11.3	1.69	77	6.79	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	9/26/18	14.2	2.76	113	6.64	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	7.9	4.35	93	4.45	1.0	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-2	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	11.9	2.47	296	6.58	Clear	NA	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0099)	ND (0.0075)
	3/23/18	9.8	0.66	328	6.54	Clear	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/21/18	13.7	3.28	270	6.33	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	15.8	0.23	276	6.30	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	11.5	0.38	314	4.38	30.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	10.1	0.21	269	6.40	1.8	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	13.1	0.20	367	6.30	42.3	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-3	10/6/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	10.9	0.69	332	7.08	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	3/23/18	8.1	0.50	332	7.01	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	6/21/18	12.8	0.11	281	7.08	Clear	NA	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0097)	ND (0.0073)
	9/26/18	14.5	0.12	322	6.65	Clear	NA	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0095)	ND (0.0072)
	12/21/18	10.1	0.09	414	4.75	85.6	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-4	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	11.5	0.19	348	6.60	Clear	NA	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0072)
	3/23/18	9.1	0.55	307	6.15	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	6/21/18	15.4	2.05	309	6.62	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	20.4	1.47	325	6.10	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	11.8	0.21	351	4.55	9.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	9.3	0.25	341	6.64	14.4	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	14.6	0.44	313	6.61	95.5	NA	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.0091)
MW-5	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	9.5	1.06	156	7.08	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/23/18	6.7	0.47	129	6.69	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	6/21/18	11.6	0.08	126	7.44	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	15.3	0.26	193	6.90	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	10.0	0.45	182	5.14	5.4	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	7.1	0.04	143	7.32	1.7	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)

			Tab	le 2 (continue	d). Summary	of Ground	lwater Sampl	e Results, Pa	cific City Par	k Remedial In	vestigation, Pa	cific, Washingt	on.		
				Field Parameters	s						Analytical Paramo	eter (µg/L)			
										Carcin	ogenic Polycyclic	Aromatic Hydroca	rbons (cPAHs)		
Sample Location	Sample Date	Temp (°C)	DO (mg/L)	Cond (µS/cm)	pH (std units)	Turbidity (NTU)	Total PCBs	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(j,k) fluoranthene	Benzo(a) pyrene	Indeno(1,2,3-cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs (TEQ)
Site Screening	J Level (μg/L)	NA	NA	NA	NA	NA	0.05	0.01	0.016	0.01	0.01	0.01	0.01	0.01	0.015
	6/18/19	11.6	0.31	125	7.20	1.3	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-6	10/5/15	NR	NR	NR	NR	NR	NA	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.0072)
	5/12/17	10.2	0.25	132	6.25	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/23/18	6.9	0.73	161	5.95	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	6/21/18	12.4	0.14	154	6.69	Clear	NA	0.014	0.014	0.012	0.012	0.011	0.012	0.011	0.017
	9/26/18	15.1	0.44	341	6.25	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	12/21/18	11.0	0.17	206	3.90	3.2	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	6.9	0.24	176	6.64	1.4	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	12.1	0.35	164	6.62	3.5	NA	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.012)	ND (0.0091)
MW-7	3/23/18	6.9	0.52	127	6.94	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	6/21/18	16.2	0.12	137	6.59	Clear	NA	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0096)	ND (0.0072)
	9/26/18	16.2	0.49	151	6.47	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	8.8	0.23	188	4.41	9.7	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
MW-8	3/23/18	10.8	0.45	400	6.62	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	6/21/18	13.4	2.44	384	6.24	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	9/26/18	16.4	0.61	325	6.56	Clear	NA	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0094)	ND (0.0071)
	12/21/18	11.8	0.72	340	6.66	59.0	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-9	3/23/18	10.5	0.42	294	6.22	Clear	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/21/18	11.5	2.65	240	6.58	Clear	NA	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0074)
	9/26/18	14.5	0.60	249	6.41	Clear	NA	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0098)	ND (0.0074)
	12/21/18	12.3	0.33	323	6.74	23.0	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	3/29/19	10.9	0.27	292	6.74	38.0	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	11.3	0.31	248	6.75	26.2	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-10	12/21/18	12.9	0.29	291	6.83	24	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	11.8	0.21	287	6.72	20.5	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	14.5	0.91	287	NR	54	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-11	12/21/18	11.6	2.01	409	6.81	8.5	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	10.3	1.05	355	6.39	51	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
	6/18/19	12.4	0.38	307	7.08	37	NA	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.0083)
MW-12	12/21/18	8.3	2.26	265	6.34	9	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	3/29/19	8.3	0.92	240	6.06	50	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)
	6/18/19	10.7	0.64	322	6.67	Clear	NA	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0076)

Note: MW7, MW8, and MW9 correspond to borings B06, B09, and B11

BOLD values detected above the reporting limit. Shaded values exceed site criteria. GRO = Gasoline range organics $\mu g/L = micrograms per liter$

cPAHs (TEQ) = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency NA = not analyzed or not applicable

DRO = Diesel range organics NR = not reported PCBs = Polychlorinated biphenyls

ND = not detected above laboratory reporting limits shown in parentheses

October 2019

										Sample Id	dentification	1								
			SW1					SW2					SW3				S	W4		SSLa
Parameter	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	10/9/18	12/20/18	3/26/19	7/10/19	
Field Parameters																				
Temp (°C)	14.2	1.2	9.7	10.8	16.4	14.7	12.3	10.5	11.1	16.8	14.3	12.9	10.5	10.5	18.2	12.9	11.5	10.6	15.7	NA
DO (mg/L)	1.62		1.24	3.45	0.60	1.84	0.36	1.28	3.71	0.98	1.12	0.8	0.59	4.42	1.75	0.65	2.53	2.55	1.36	NA
Cond (µS/cm)	153.7	204	209	193	278	170	208	182	194	161	178	151	180	197	167	179	182	192	158	NA
pH (std units)	6.73	6.84	7.07	6.80	6.56	6.84	6.74	6.88	6.86	6.64	6.94	6.65	6.94	6.83	6.80	6.69	7.10	6.80	6.57	NA
Turbidity (NTU)	13.72	Clear	12.5	<25	Clear	10.76	Clear	25	12.5	Clear	12.33	Clear	11.5	11.1	Clear	Clear	11.2	6.5	Clear	NA
Conventional Para	meters (mg/L)																			
Hardness (mg CaCO3/L)	66	62	85	NA	59	71	51	77	NA	59	74	51	69	NA	61	45	69	NA	55	NA
Petroleum Hydroca	arbons (µg/L)																			
GRO	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	
DRO	ND (250)	ND (250)	ND (260)	ND (270)	ND (280	ND (260)	ND (260)	ND (270)	ND (290)	ND (290)	ND (260)	ND (260)	ND (250)	ND (250)	ND (310)	ND (250)	ND (260)	ND (260)	ND (290)	500
Lube Oil RO	ND (410)	ND (410)	ND (410)	ND (430)	490	ND (420)	ND (420)	ND (420)	ND (460)	ND (470)	ND (420)	ND (410)	ND (400)	ND (400)	ND (500)	ND (400)	ND (410)	ND (420)	590	500
Volatile Organic Co	mpounds (µg	/L)																		
Benzene	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	0.44
Toluene	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.1	ND (1.0)	57						
Ethylbenzene	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	29
Xylenes	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	1000
Acetone	ND (5.0)	ND (5.0)	ND (7.0)	ND (6.3)	ND (6.5)	ND (5.0)	ND (5.0)	ND (7.0)	ND (6.3)	ND (6.5)	ND (5.0)	ND (5.0)	ND (7.0)	ND (6.3)	ND (6.5)	ND (5.0)	ND (7.0)	ND (6.3)	ND (6.5)	7,200
(cis)1,2- Dichloroethene	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	16
Chlorobenzene	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	100
Vinyl Chloride	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.50)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	0.02					

		7	able 3 (co	ontinued)	. Summa	ry of Surf	ace Wate	r Sample	Results, P	acific City	Park Rer	nedial Inv	estigatio	n, Pacific,	Washingt	on.				
										Sample Ider	ntification									
			SW1					SW2					SW3				SI	W4		SSLa
Parameter	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	6/29/18	10/9/18	12/20/18	3/26/19	7/10/19	10/9/18	12/20/18	3/26/19	7/10/19	
Total Metals (µg/L)								•												
Arsenic	ND (3.3)	ND (3.3)	ND (3.3)	NA	NA	ND (3.3)	ND (3.3)	ND (3.3)	NA	NA	ND (3.3)	ND (3.3)	ND (3.3)	NA	NA	ND (3.3)	ND (3.3)	NA	NA	3.3
Cadmium	ND (4.4)	ND (4.4)	ND (4.4)	NA	NA	ND (4.4)	ND (4.4)	ND (4.4)	NA	NA	ND (4.4)	ND (4.4)	ND (4.4)	NA	NA	ND (4.4)	ND (4.4)	NA	NA	4.4
Calcium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	ND (11)	ND (11)	ND (11)	NA	NA	ND (11)	ND (11)	ND (11)	NA	NA	ND (11)	ND (11)	ND (11)	NA	NA	ND (11)	ND (11)	NA	NA	74
Copper	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,300
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,000
Lead	ND (1.1)	ND (1.1)	ND (1.1)	NA	NA	ND (1.1)	ND (1.1)	ND (1.1)	NA	NA	ND (1.1)	ND (1.1)	ND (1.1)	NA	NA	ND (1.1)	ND (1.1)	NA	NA	2.5
Magnesium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA	ND (0.50)	ND (0.50)	NA	NA	0.50
Dissolved Metals (µg/L)																				
Arsenic	NA	NA	NA	ND (3.0)	ND (3.0)	NA	NA	NA	ND (3.0)	ND (3.0)	NA	NA	NA	ND (3.0)	ND (3.0)	NA	NA	ND (3.0)	ND (3.0)	3.3
Cadmium	NA	NA	NA	ND (4.0)	ND (4.0)	NA	NA	NA	ND (4.0)	ND (4.0)	NA	NA	NA	ND (4.0)	ND (4.0)	NA	NA	ND (4.0)	ND (4.0)	74
Chromium	NA	NA	NA	ND (10)	ND (10)	NA	NA	NA	ND (10)	ND (10)	NA	NA	NA	ND (10)	ND (10)	NA	NA	ND (10)	ND (10)	1,300
Lead	NA	NA	NA	ND (1.0)	ND (1.0)	NA	NA	NA	ND (1.0)	ND (1.0)	NA	NA	NA	ND (1.0)	ND (1.0)	NA	NA	ND (1.0)	ND (1.0)	2.5
Mercury	NA	NA	NA	ND (0.5)	ND (0.5)	NA	NA	NA	ND (0.5)	ND (0.5)	NA	NA	NA	ND (0.5)	ND (0.5)	NA	NA	ND (0.5)	ND (0.5)	50
Carcinogenic Polycyclic Ar	omatic Hydr	ocarbons (µ	g/L)																	
Benzo(a) anthracene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Benzo(b) fluoranthene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Benzo(j,k) fluoranthene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Benzo(a) pyrene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Chrysene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.016
Indeno(1,2,3-cd)pyrene	ND (0.011)	ND (0.011)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.010)	ND (0.011)	ND (0.010)	ND (0.011)	0.01
Dibenz(a,h) anthracene	ND	ND		ND (0.011)	ND (0.010)	ND	ND	ND (0.010)	ND (0.011)	ND (0.010)	ND	ND	ND (0.010)	ND (0.011)	ND (0.010)	ND	ND (0.011)	ND (0.010)	ND (0.011)	0.01
	(0.011)	(0.011)	(0.010)			(0.010)	(0.010)				(0.010)	(0.010)				(0.010)			ļ	
Total cPAHs TEQ ^b	ND (0.000)	ND (0.000)		ND (0.008)	ND (0.008)	ND (0.000)	ND (0.000)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.000)	ND (0.000)	ND (0.008)	ND (0.008)	ND (0.008)	ND (0.000)	ND (0.008)	ND (0.008)	ND (0.008)	0.085
	(0.008)	(800.0)	(800.0)			(0.008)	(0.008)				(0.008)	(0.008)				(0.008)			<u> </u>	

Bold values detected above the reporting limit

Shaded values exceed the site screening level

mg/L = milligrams per liter

 μ g/L = micrograms per liter

NA = not analyzed

ND = not detected above laboratory reporting limits shown in parentheses

SSL = site screening levels

`October 2019

^a Refer to Table 7, "Proposed Site Screening Levels for Groundwater and Surface Water" for notes on how each screening level was selected.

b Total carcinogenic polycyclic aromatic hydrocarbon (cPAHs) toxic equivalency (TEQ) concentration was calculated using one-half the reporting limit for compounds that were not detected above the reporting limit.

Table 4. Summary of Soil Vapor Monitoring Data, Pacific City Park Remedial Investigation, Pacific, Washington. **Parameter** Trace Gasb Methane H₂S **Sample Location Sample Date** (percent volume) (ppm) (ppm) 1 10/23/1984 Trace 0.1 NA 2 0.3 0 NA 3 0 -0.1 NA 4 0 0 NA 5 0.3 6.2 NA 6 0 0 NA 7 0 0 NA 8 0 NA NA 9 NA 0 NA 10 -0.1 0 NA 0.4 0 NA а 0 b Trace NA 0.2 0 NA c d Trace 0.1 NA 0 Trace NA е MW1 9/26/18 0.0 NA 0.0 MW6 3/23/18 0.0 NA 0.0 6/21/18 0.0 NA 0.0 0.0 9/26/18 0.0 NA 12/21/18 0.0 NA 0.0 3/29/19 0.0 NA 0.0 6/18/19 0.0 NA 0.0 MW9 3/23/18 0.0 NA 0.0 6/21/18 0.0 NA 0.0 9/26/18 0.0 NA 0.0 0.0 12/21/18 0.0 NA 3/29/19 0.0 NA 0.0 6/18/19 0.0 NA 0.0 MW11 3/23/18 0.0 NA 0.0 6/21/18 0.0 NA 0.0 9/26/18 0.0 NA 0.0 12/21/18 0.0 NA 0.0 3/29/19 0.0 NA 0.0

6/18/19

0.0

NA

 $NA = not \ analyzed$ $H_2S = hydrogen \ sulfide$ $ppm = parts \ per \ million$

0.0

^a Samples 1 through 10, and a through e by King County 1984. Samples MW1, MW6, MW9, and MW11 by Herrera.

b Trace gases include any organic or inorganic gases with an ionization potential <10.2 electron volts (eV) detected by photo-ionization detector (PID).

APPENDIX A

Laboratory Analytical Data

Herrera Environmental Consultants, Inc.

Internal Memorandum

Date: August 20, 2019

To: Project File 17-06520-000

From: Gina Catarra

Subject: Data Quality Assurance Review of Pacific Park Data

This memorandum presents a review of surface water and groundwater samples collected for the Pacific Park project. A total of four surface water and eight groundwater samples were collected on June 18 and July 10, 2019, from the Pacific Park site in Pacific, Washington. OnSite Environmental, Inc., of Redmond, Washington analyzed the samples for:

- Total petroleum hydrocarbons by Ecology's NWTPH-Gx and NWTPH-Dx methods
- Volatile organic compounds (VOCs) by EPA Method 8260C
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270D/SIM
- Polychlorinated biphenyls (PCBs) by EPA Method 8082A
- Dissolved metals (arsenic, cadmium, chromium, and lead) by EPA Method 200.8
- Hardness by EPA Method 200.7/Standard Method 2340B

Results for the following samples were validated.

	Table 1. Summary of Samples Collected										
Sample ID	Date Time Collected	Lab Reference Number	Analyses								
MW-2	6/18/19 11:15	1906-183	VOCs, cPAHs, metals								
MW-4	6/18/19 12:40	1906-183	VOCs, cPAHs, metals								
MW-5	6/18/19 14:35	1906-183	VOCs, cPAHs, metals								
MW-6	6/18/19 13:35	1906-183	VOCs, cPAHs, metals								
MW-9	6/18/19 15:39	1906-183	VOCs, cPAHs, metals								
MW-10	6/18/19 16:00	1906-183	Gx, Dx, VOCs, cPAHs, metals								
MW-11	6/18/19 13:00	1906-183	Gx, Dx, VOCs, cPAHs, metals								
MW-12	6/18/19 13:45	1906-183	Gx, Dx, VOCs, cPAHs, metals								
SW1	7/10/19 12:25	1907-109 1907-109B	Gx, Dx, VOCs, cPAHs, metals, hardness PCBs								
SW2	7/10/19 11:55	1907-109	Gx, Dx, VOCs, cPAHs, metals, hardness								
SW3	7/10/19 11:35	1907-109	Gx, Dx, VOCs, cPAHs, metals, hardness								
SW4	7/10/19 12:50	1907-109 1907-109B	Gx, Dx, VOCs, cPAHs, metals, hardness PCBs								

The laboratory's performance was reviewed in accordance with quality control (QC) criteria outlined in the *Pacific Park/Dumpsite Environmental and Economic Assessment Sampling and Analysis Plan* (SAP) (Herrera 2017) and the specified analytical methods.

Quality control data summaries submitted by the laboratory were reviewed; raw data were not provided by the laboratory. Data qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below followed by definitions of data qualifiers.

Custody, Preservation, Holding Times, and Completeness—Acceptable

The samples were properly preserved, and sample custody was maintained from sample collection to receipt at the laboratories. All samples were analyzed within the required method holding time. The laboratory report was complete and contained results for all samples and tests requested on the chain-of-custody (COC) forms.

Laboratory Reporting Limits—Acceptable

The laboratory reporting limits (RLs) met those established in the SAP.

Method Blank Analysis—Acceptable

Method blanks were analyzed at the required frequency. Method blanks did not contain levels of target analytes above the laboratory reporting limits.

Trip Blank Analysis—Acceptable

Trip blanks were analyzed for VOCs at the required frequency. Trip blanks did not contain levels of target analytes above the laboratory reporting limits.

Laboratory Control Sample Analysis—Acceptable

Blank spike (BS) or blank spike/blank spike duplicate (BS/BSD) samples were analyzed with project samples for VOCs, PAHs, and PCBs at the required frequency. The percent recovery values met the control limits established by the SAP.

Surrogate Analysis—Acceptable

Surrogate compounds were added to all samples as required by the specified methods. The percent recovery values for all surrogate compounds met the criteria established by the laboratory or specified method.

Matrix Spike Analysis - Acceptable

Matrix spike samples were analyzed at the required frequency. All matrix spike percent recovery values met the project-specific criteria (75 to 125 percent) for project samples analyzed as matrix spike samples.

Laboratory Duplicates – Acceptable

Laboratory duplicate samples were analyzed for Gx, Dx, metals; BS/BSD samples were analyzed for VOCs, cPAHs, and PCBs. The relative percent difference (RPD) was calculated for each analyte where both duplicate values were greater than five times the reporting limit (RL). The difference between duplicate values was calculated if the detected compound concentration was less than five times the RL in either the sample or the duplicate. The RPD values or difference values met the control limits established in the QAPP (less than 20 percent).

DEFINITION OF DATA QUALIFIERS

The following data qualifier definitions are taken from *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (US EPA 2017):

- **U** The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- **J** The associated value is an estimated quantity.
- **UJ** The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
- **R** The data are unusable. (Note: analyte may or may not be present.)

REFERENCES

Herrera. 2017. Pacific Park/Dumpsite Environmental and Economic Assessment, Pacific, Washington, Sampling and Analysis Plan. Prepared by Herrera Environmental Consultants, Inc., Seattle, Washington, for the River and Floodplain Management Section, King County Water and Land Resources Division, King County, Washington. April.

US EPA. 2017. National Functional Guidelines for Inorganic Superfund Data Review. US Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC. (EPA-540-R-2017-001). January.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 27, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1906-183

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on June 19, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 17-06520-000

Case Narrative

Samples were collected on June 18, 2019 and received by the laboratory on June 19, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	06-183-06					
Gasoline	ND	100	NWTPH-Gx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	59-122				
Client ID:	MW-11					
Laboratory ID:	06-183-07					
Gasoline	ND	100	NWTPH-Gx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	59-122				
Client ID:	MW-12					
Laboratory ID:	06-183-08					
Gasoline	ND	100	NWTPH-Gx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits	_	_		
Fluorobenzene	91	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0621W2					
Gasoline	ND	100	NWTPH-Gx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	59-122				

Analyte	Res	sult	Spike	Level	Source Result	Perc Reco		Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	06-18	30-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N/	4	NA	NA	30	
Surrogate:											
Fluorobenzene						89	90	59-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	06-183-06					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-21-19	6-21-19	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	<i>79</i>	50-150				
Oli and ID.	BBW 44					
Client ID:	MW-11					
Laboratory ID:	06-183-07					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-21-19	6-21-19	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Oliona ID.	MW 40					
Client ID:	MW-12					
Laboratory ID:	06-183-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-21-19	6-21-19	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0621W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-21-19	6-21-19	·
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-21-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				·
o-Terphenyl	80	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-17	'8-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						92 93	50-150			

VOLATILE ORGANICS EPA 8260C

page 1 of 2

Analyte Result PQL Method Prepared Analyzed Flag Client ID: MW-2 Laboratory ID: 06-183-01 Dichlorodifluoromethane ND 0.20 EPA 8260C 6-20-19 6-20-19 Chloromethane ND 1.0 EPA 8260C 6-20-19 6-20-19 Vinyl Chloride ND 0.20 EPA 8260C 6-20-19 6-20-19 Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Analyta
Laboratory ID: 06-183-01 Dichlorodifluoromethane ND 0.20 EPA 8260C 6-20-19 6-20-19 Chloromethane ND 1.0 EPA 8260C 6-20-19 6-20-19 Vinyl Chloride ND 0.20 EPA 8260C 6-20-19 6-20-19 Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Allalyte
Dichlorodifluoromethane ND 0.20 EPA 8260C 6-20-19 6-20-19 Chloromethane ND 1.0 EPA 8260C 6-20-19 6-20-19 Vinyl Chloride ND 0.20 EPA 8260C 6-20-19 6-20-19 Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Client ID:
Chloromethane ND 1.0 EPA 8260C 6-20-19 6-20-19 Vinyl Chloride ND 0.20 EPA 8260C 6-20-19 6-20-19 Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Laboratory ID:
Vinyl Chloride ND 0.20 EPA 8260C 6-20-19 6-20-19 Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Dichlorodifluoromethane
Bromomethane ND 0.29 EPA 8260C 6-20-19 6-20-19 Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Chloromethane
Chloroethane ND 1.0 EPA 8260C 6-20-19 6-20-19	Vinyl Chloride
	Bromomethane
	Chloroethane
Trichlorofluoromethane ND 0.20 EPA 8260C 6-20-19 6-20-19	Trichlorofluoromethane
1,1-Dichloroethene ND 0.20 EPA 8260C 6-20-19 6-20-19	1,1-Dichloroethene
Acetone ND 5.0 EPA 8260C 6-20-19 6-20-19	Acetone
lodomethane ND 2.1 EPA 8260C 6-20-19 6-20-19	Iodomethane
Carbon Disulfide ND 0.20 EPA 8260C 6-20-19 6-20-19	Carbon Disulfide
Methylene Chloride ND 1.0 EPA 8260C 6-20-19 6-20-19	Methylene Chloride
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260C 6-20-19 6-20-19	(trans) 1,2-Dichloroethene
Methyl t-Butyl Ether ND 0.20 EPA 8260C 6-20-19 6-20-19	Methyl t-Butyl Ether
1,1-Dichloroethane ND 0.20 EPA 8260C 6-20-19 6-20-19	1,1-Dichloroethane
Vinyl Acetate ND 1.0 EPA 8260C 6-20-19 6-20-19	Vinyl Acetate
2,2-Dichloropropane ND 0.20 EPA 8260C 6-20-19 6-20-19	2,2-Dichloropropane
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 6-20-19 6-20-19	(cis) 1,2-Dichloroethene
2-Butanone ND 5.0 EPA 8260C 6-20-19 6-20-19	2-Butanone
Bromochloromethane ND 0.20 EPA 8260C 6-20-19 6-20-19	Bromochloromethane
Chloroform ND 0.20 EPA 8260C 6-20-19 6-20-19	Chloroform
1,1,1-Trichloroethane ND 0.20 EPA 8260C 6-20-19 6-20-19	1,1,1-Trichloroethane
Carbon Tetrachloride ND 0.20 EPA 8260C 6-20-19 6-20-19	Carbon Tetrachloride
1,1-Dichloropropene ND 0.20 EPA 8260C 6-20-19 6-20-19	1,1-Dichloropropene
Benzene ND 0.20 EPA 8260C 6-20-19 6-20-19	Benzene
1,2-Dichloroethane ND 0.20 EPA 8260C 6-20-19 6-20-19	1,2-Dichloroethane
Trichloroethene ND 0.20 EPA 8260C 6-20-19 6-20-19	Trichloroethene
1,2-Dichloropropane ND 0.20 EPA 8260C 6-20-19 6-20-19	1,2-Dichloropropane
Dibromomethane ND 0.20 EPA 8260C 6-20-19 6-20-19	Dibromomethane
Bromodichloromethane ND 0.20 EPA 8260C 6-20-19 6-20-19	Bromodichloromethane
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260C 6-20-19 6-20-19	2-Chloroethyl Vinyl Ether
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 6-20-19 6-20-19	(cis) 1,3-Dichloropropene
Methyl Isobutyl Ketone ND 2.0 EPA 8260C 6-20-19 6-20-19	Methyl Isobutyl Ketone
Toluene ND 1.0 EPA 8260C 6-20-19 6-20-19	Toluene
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260C 6-20-19 6-20-19	(trans) 1,3-Dichloropropene

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	06-183-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 101 75-127

Toluene-d8 98 80-127

4-Bromofluorobenzene 94 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	06-183-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Iodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	06-183-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	3.3	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
	Percent Recovery	Control Limits	-			

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 104 75-127 Toluene-d8 99 80-127 4-Bromofluorobenzene 94 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	06-183-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
lodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Amalista	Dec. 9	DC!	88-45	Date	Date	- 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	06-183-03		=======================================			
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery	Control Limits	-			

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 102 75-127

Toluene-d8 98 80-127

4-Bromofluorobenzene 93 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	06-183-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
lodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

		ne:		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	06-183-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery					

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 102 75-127
Toluene-d8 98 80-127
4-Bromofluorobenzene 91 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-9					
06-183-05					
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.29	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	5.0	EPA 8260C	6-20-19	6-20-19	
ND	2.1	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	5.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
ND	2.0	EPA 8260C	6-20-19	6-20-19	
ND	1.0	EPA 8260C	6-20-19	6-20-19	
ND	0.20	EPA 8260C	6-20-19	6-20-19	
	MW-9 06-183-05 ND	MW-9 06-183-05 ND	MW-9 06-183-05 ND 0.20 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND 0.29 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND 0.20 EPA 8260C ND 5.0 EPA 8260C ND 5.0 EPA 8260C ND 0.20 EPA 8260C ND 1.0 EPA 8260C ND 0.20 EPA 8260C ND <td>Result PQL Method Prepared MW-9 06-183-05 06-183-05 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 0.29 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 5.0 EPA 8260C 6-20-19 ND 5.0 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 <tr< td=""><td>MW-9 06-183-05 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.29 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 5.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.20<!--</td--></td></tr<></td>	Result PQL Method Prepared MW-9 06-183-05 06-183-05 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 0.29 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 1.0 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 ND 5.0 EPA 8260C 6-20-19 ND 5.0 EPA 8260C 6-20-19 ND 0.20 EPA 8260C 6-20-19 <tr< td=""><td>MW-9 06-183-05 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.29 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 5.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.20<!--</td--></td></tr<>	MW-9 06-183-05 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 1.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.29 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 5.0 EPA 8260C 6-20-19 6-20-19 ND 0.20 EPA 8260C 6-20-19 6-20-19 ND 0.20 </td

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	06-183-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	0.34	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 100 75-127 Toluene-d8 97 80-127 4-Bromofluorobenzene 89 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	06-183-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Iodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

	-	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	06-183-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery					

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 102 75-127
Toluene-d8 98 80-127
4-Bromofluorobenzene 91 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

omis. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	06-183-07					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Iodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	06-183-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	0.33	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
	Percent Recovery	Control Limits	-			

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 102 75-127
Toluene-d8 98 80-127
4-Bromofluorobenzene 92 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	06-183-08					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Iodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Date of Report: June 27, 2019 Samples Submitted: June 19, 2019 Laboratory Reference: 1906-183

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Amalista	Decode	DOL	8.8 - Alel	Date	Date	5 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	06-183-08	0.00	EDA 00000	0.00.10	0.00.10	
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery	Control Limits	2.7.02000	0 20 10	0 20 10	

Dibromofluoromethane 103 75-127
Toluene-d8 99 80-127
4-Bromofluorobenzene 93 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

omis. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BLANK					
Laboratory ID:	06-183-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
lodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Date of Report: June 27, 2019 Samples Submitted: June 19, 2019 Laboratory Reference: 1906-183

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Amalista	Decole	DC!	Made	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BLANK					
Laboratory ID:	06-183-09			0.00.40	0.00.40	
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery	Control Limits		0 _0 .0	0 = 0 . 0	

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 101 75-127

Toluene-d8 100 80-127

4-Bromofluorobenzene 94 78-125

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0620W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloromethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Vinyl Chloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromomethane	ND	0.29	EPA 8260C	6-20-19	6-20-19	
Chloroethane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Acetone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Iodomethane	ND	2.1	EPA 8260C	6-20-19	6-20-19	
Carbon Disulfide	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methylene Chloride	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Vinyl Acetate	ND	1.0	EPA 8260C	6-20-19	6-20-19	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Butanone	ND	5.0	EPA 8260C	6-20-19	6-20-19	
Bromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chloroform	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Benzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Trichloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Dibromomethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromodichloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Toluene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-20-19	6-20-19	

Date of Report: June 27, 2019 Samples Submitted: June 19, 2019 Laboratory Reference: 1906-183

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0620W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Tetrachloroethene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Hexanone	ND	2.0	EPA 8260C	6-20-19	6-20-19	
Dibromochloromethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Chlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Ethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
m,p-Xylene	ND	0.40	EPA 8260C	6-20-19	6-20-19	
o-Xylene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Styrene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromoform	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Isopropylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Bromobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Propylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
n-Butylbenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
Naphthalene	ND	1.0	EPA 8260C	6-20-19	6-20-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-20-19	6-20-19	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 105 75-127
Toluene-d8 99 80-127
4-Bromofluorobenzene 92 78-125

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	20W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.47	8.92	10.0	10.0	95	89	63-130	6	17	
Benzene	9.95	9.33	10.0	10.0	100	93	76-125	6	19	
Trichloroethene	10.3	9.74	10.0	10.0	103	97	76-121	6	18	
Toluene	9.94	9.44	10.0	10.0	99	94	80-124	5	18	
Chlorobenzene	10.8	10.1	10.0	10.0	108	101	75-120	7	19	
Surrogate:										
Dibromofluoromethane					101	103	<i>75-127</i>			
Toluene-d8					98	97	80-127			
4-Bromofluorobenzene					93	91	<i>78-125</i>			

DISSOLVED METALS EPA 200.8/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	06-183-01					
Arsenic	7.1	3.0	EPA 200.8		6-21-19	_
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-4					
Laboratory ID:	06-183-02					
Arsenic	11	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-5					
Laboratory ID:	06-183-03					
Arsenic	ND	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-6					
Laboratory ID:	06-183-04					
Arsenic	ND	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	

DISSOLVED METALS EPA 200.8/7470A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	06-183-05					
Arsenic	ND	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-10					
Laboratory ID:	06-183-06					
Arsenic	ND	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-11					
Laboratory ID:	06-183-07					
Arsenic	3.6	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	
Client ID:	MW-12					
Laboratory ID:	06-183-08					
Arsenic	14	3.0	EPA 200.8		6-21-19	
Cadmium	ND	4.0	EPA 200.8		6-21-19	
Chromium	ND	10	EPA 200.8		6-21-19	
Lead	ND	1.0	EPA 200.8		6-21-19	
Mercury	ND	0.50	EPA 7470A		6-24-19	

DISSOLVED METALS EPA 200.8/7470A **QUALITY CONTROL**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0618F1					
Arsenic	ND	3.0	EPA 200.8	6-18-19	6-21-19	
Cadmium	ND	4.0	EPA 200.8	6-18-19	6-21-19	
Chromium	ND	10	EPA 200.8	6-18-19	6-21-19	
Lead	ND	1.0	EPA 200.8	6-18-19	6-21-19	
Laboratory ID:	MB0618F1					
Mercury	ND	0.50	EPA 7470A	6-18-19	6-24-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-16	68-05									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA		l	NA	NA	NA	20	
Laboratory ID:	06-16	68-05									
Mercury	ND	ND	NA	NA		I	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-16	68-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	86.4	94.0	80.0	80.0	ND	108	118	75-125	8	20	
Cadmium	78.4	85.6	80.0	80.0	ND	98	107	75-125	9	20	
Chromium	78.8	86.4	80.0	80.0	ND	99	108	75-125	9	20	
Lead	73.4	80.4	80.0	80.0	ND	92	101	75-125	9	20	
Laboratory ID:	06-16	68-05									
Mercury	11.1	11.4	12.5	12.5	ND	88	91	75-125	3	20	

cPAHs EPA 8270D/SIM

Analyte Result PQL Method	Prepared	Analyzed	
		Allalyzea	Flags
Client ID: MW-2			
Laboratory ID: 06-183-01			
Benzo[a]anthracene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Chrysene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Benzo[b]fluoranthene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Benzo(j,k)fluoranthene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Benzo[a]pyrene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Indeno(1,2,3-c,d)pyrene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Dibenz[a,h]anthracene ND 0.010 EPA 8270D/SIM	6-20-19	6-20-19	
Surrogate: Percent Recovery Control Limits			
2-Fluorobiphenyl 65 27 - 106			
Pyrene-d10 85 35 - 98			
Terphenyl-d14 94 41 - 129			

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4					
Laboratory ID:	06-183-02					
Benzo[a]anthracene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	27 - 106				
Pyrene-d10	76	<i>35 - 98</i>				
Terphenyl-d14	85	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5					
Laboratory ID:	06-183-03					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	27 - 106				
Pyrene-d10	77	35 - 98				
Terphenyl-d14	109	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	06-183-04					
Benzo[a]anthracene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	27 - 106				
Pyrene-d10	88	35 - 98				
Terphenyl-d14	97	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9					
Laboratory ID:	06-183-05					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	27 - 106				
Pyrene-d10	63	35 - 98				
Terphenyl-d14	80	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10					
Laboratory ID:	06-183-06					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	27 - 106				
Pyrene-d10	76	<i>35 - 98</i>				
Terphenyl-d14	104	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-11					
Laboratory ID:	06-183-07					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	27 - 106				
Pyrene-d10	74	35 - 98				
Terphenyl-d14	90	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12					
Laboratory ID:	06-183-08					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	27 - 106				
Pyrene-d10	67	<i>35 - 98</i>				
Terphenyl-d14	76	41 - 129				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0620W1					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Chrysene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	6-20-19	6-21-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	50	27 - 106				
Pyrene-d10	87	<i>35 - 98</i>				
Terphenyl-d14	98	41 - 129				

cPAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	20W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.528	0.506	0.500	0.500	106	101	59 - 127	4	24	
Chrysene	0.466	0.457	0.500	0.500	93	91	57 - 122	2	24	
Benzo[b]fluoranthene	0.518	0.537	0.500	0.500	104	107	58 - 123	4	26	
Benzo(j,k)fluoranthene	0.513	0.467	0.500	0.500	103	93	60 - 123	9	22	
Benzo[a]pyrene	0.501	0.488	0.500	0.500	100	98	54 - 121	3	24	
Indeno(1,2,3-c,d)pyrene	0.497	0.507	0.500	0.500	99	101	55 - 125	2	26	
Dibenz[a,h]anthracene	0.494	0.501	0.500	0.500	99	100	57 - 127	1	25	
Surrogate:										
2-Fluorobiphenyl					<i>65</i>	71	27 - 106			
Pyrene-d10					84	84	<i>35 - 98</i>			
Terphenyl-d14					100	99	41 - 129			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

1		P
Page	of	l .
age	UI	4

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	abor	ator	уΝ	umb	er:	06	6 -	18	3									
Phone: (425) 883-3881 • www.onsite-env.com Company:	(Check One)					T	T	T			Ī					T	T	T	T		
Herrera	Same Day 1 Day											D/SIN			3						
17-06520-000	2 Days 3 Days				Acid / SG Clean-up)		0	0			8081B	es 8270	8151A		Dissolue						
Project Name: Pacific Park Project Manager:	Standard (7 Days)	ers			1/8GC		ss 82600	ers Only	s) w-level)		ticides 8	Pesticid	rbicides		Dis	grease) 1664A					
Sampled by:	(other)	of Containers	ICID	NWTPH-Gx/BTEX			Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	2A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Netals						Ф
George, Kyle	Date Time	(D)	NWTPH-HCID	TPH-G	NW I PH-GX	Volatiles 8260C	ogenal	3 EPA	nivolat h low-	PCBs 8082A	Janoch	anoph	orinate	al RCR	at MTC	HEM (oil and	14	1			% Moisture
ab ID Sample Identification	Sampled Sampled Matrix	Numb	NZ N	NZ Z	N N	No	Ta	9	Ser (wit	PC	o o	Org	ਨ	Tot		三 三 三		J			%
MW-72	6/18/19 11:15 9000	6				X									X		X				
2 Mw-4	12:40	6																			
3 Mw-S	14:35	6																			
4 Mw-6	13:35	6																			
5 Mw-9	15:39	6																			
6 MW-10	16:00	11			X)																
7 hw-11	13:00	11			XX	(
8 MW-12	1 13:45 \$	11			X	6									V		1				
9 Blank	NA	3				1	/														
Signature	Company		4	Date		Tir	ne		Comm	ents/S _j	oecial	Instr	uction	18							
Relinquished	Herrera			6.1	9.1	911	1:11	6	-Hol	6	N	w)-1	0,	11,	12	- +	er	Pe	B	5
Received Eilew Clark	Alpha			10/1	9/1	9 4	1:0	6	-Hol	lu	re	fa	1 :	Sa	mp	les	Su	es	e		
Relinquished Filler Clark	Alpha			6/1	9/1	9/	1:5	5	f	i e	d	13	13	TU	TEC	1					
Received MXOU Liscour	OSE			6/19	119		50	5_													
Relinquished					(la faire and									
Received									Data P	ackag	e: Sta	andar	rd 🗆	Lev	/el III [Le	vel IV				
Reviewed/Date	Reviewed/Date					4000-000			Chroma	atogra	ns wi	th fin	al rep	ort [Elect	ronic D	ata De	eliverab	oles (El	DDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 18, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1907-109

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on July 10, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

Date of Report: July 18, 2019 Samples Submitted: July 10, 2019 Laboratory Reference: 1907-109

Project: 17-06520-000

Case Narrative

Samples were collected on July 10, 2019 and received by the laboratory on July 10, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

GASOLINE RANGE ORGANICS NWTPH-Gx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Gasoline	ND	100	NWTPH-Gx	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	59-122				
Client ID:	SW2					
Laboratory ID:	07-109-02					
Gasoline	ND	100	NWTPH-Gx	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				
Client ID:	SW3					
Laboratory ID:	07-109-03					
Gasoline	ND	100	NWTPH-Gx	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	59-122				
Client ID:	SW4					
Laboratory ID:	07-109-04					
Gasoline	ND	100	NWTPH-Gx	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	59-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0711W1					
Gasoline	ND	100	NWTPH-Gx	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	59-122				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike L	evel	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-10	09-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:		•						•		

Surrogate:

Fluorobenzene 100 96 59-122

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Diesel Range Organics	ND	0.28	NWTPH-Dx	7-11-19	7-15-19	
Lube Oil Range Organics	0.49	0.45	NWTPH-Dx	7-11-19	7-15-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	SW2					
Laboratory ID:	07-109-02					
Diesel Range Organics	ND	0.29	NWTPH-Dx	7-11-19	7-15-19	
Lube Oil Range Organics	ND	0.47	NWTPH-Dx	7-11-19	7-15-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	SW3					
Laboratory ID:	07-109-03					
Diesel Range Organics	ND	0.31	NWTPH-Dx	7-11-19	7-17-19	
Lube Oil Range Organics	ND	0.50	NWTPH-Dx	7-11-19	7-17-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Olicant ID.	0)4/4					
Client ID:	SW4					
Laboratory ID:	07-109-04					
Diesel Range Organics	ND	0.29	NWTPH-Dx	7-11-19	7-15-19	
Lube Oil Range Organics	0.59	0.46	NWTPH-Dx	7-11-19	7-15-19	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0711W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-11-19	7-12-19	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-11-19	7-12-19	
Surrogate:	Percent Recovery	Control Limits				·
o-Terphenyl	74	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB07	11W1									
	ORIG	DUP									
Diesel Fuel #2	0.871	0.817	NA	NA		N	Α	NA	6	NA	
Lube Oil Range	ND	ND	NA	NA		N	Α	NA	NA	NA	
Surrogate:											
o-Terphenyl						84	87	50-150			

VOLATILE ORGANICS EPA 8260C

page 1 of 2

<u> </u>				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
Iodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Amalista	Decul	DOL		Date	Date	Flores
Analyte Client ID:	Result SW1	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	07-109-01	0.00	EDA 00000	7 11 10	7 11 10	
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Tetrachloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Hexanone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				

Percent Recovery Surrogate: Control Limits Dibromofluoromethane 101 75-127 Toluene-d8 100 80-127 4-Bromofluorobenzene 99 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW2					
Laboratory ID:	07-109-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
Iodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Analista	Doorde	DOL		Date	Date	Flores
Analyte Client ID:	Result SW2	PQL	Method	Prepared	Analyzed	Flags
	07-109-02					
Laboratory ID: 1,1,2-Trichloroethane	07-109-02 ND	0.20	EPA 8260C	7-11-19	7-11-19	
Tetrachloroethene	ND ND	0.20	EPA 8260C	7-11-19 7-11-19	7-11-19 7-11-19	
	ND ND	0.20		-	_	
1,3-Dichloropropane		0.20 2.6	EPA 8260C	7-11-19	7-11-19	
2-Hexanone	ND		EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits	/. 02000	, , , , , ,	, , , , , ,	

Dibromofluoromethane 101 75-127 Toluene-d8 100 80-127 97 4-Bromofluorobenzene 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW3					
Laboratory ID:	07-109-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
lodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Amalista	Decul	DOL		Date	Date	Flores
Analyte Client ID:	Result SW3	PQL	Method	Prepared	Analyzed	Flags
	07-109-03					
Laboratory ID: 1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Tetrachloroethene	ND ND	0.20	EPA 8260C	7-11-19 7-11-19	7-11-19 7-11-19	
	ND ND	0.20		-	_	
1,3-Dichloropropane		0.20 2.6	EPA 8260C	7-11-19	7-11-19	
2-Hexanone	ND		EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane		1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				

Dibromofluoromethane 102 75-127 Toluene-d8 100 80-127 4-Bromofluorobenzene 98 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW4					_
Laboratory ID:	07-109-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
Iodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

Analyte Client ID:	Result SW4	PQL	Method	Date Prepared	Date Analyzed	Flags
	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2-Trichloroethane Tetrachloroethene	ND ND	0.20	EPA 8260C EPA 8260C	7-11-19 7-11-19	7-11-19 7-11-19	
	ND ND	0.20		7-11-19 7-11-19	7-11-19 7-11-19	
1,3-Dichloropropane			EPA 8260C			
2-Hexanone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits		, , , , , ,	, , , , , ,	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 102 75-127 Toluene-d8 100 80-127 4-Bromofluorobenzene 98 78-125

VOLATILE ORGANICS EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	07-109-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
lodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

VOLATILE ORGANICS EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	07-109-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Tetrachloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Hexanone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
	Percent Recovery	Control Limits			<u> </u>	

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 100 75-127 Toluene-d8 100 80-127 4-Bromofluorobenzene 98 78-125

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0711W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloromethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Vinyl Chloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Trichlorofluoromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Acetone	ND	6.5	EPA 8260C	7-11-19	7-11-19	
Iodomethane	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Carbon Disulfide	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methylene Chloride	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Vinyl Acetate	ND	1.5	EPA 8260C	7-11-19	7-11-19	
2,2-Dichloropropane	ND	0.26	EPA 8260C	7-11-19	7-11-19	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Butanone	ND	5.0	EPA 8260C	7-11-19	7-11-19	
Bromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chloroform	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Carbon Tetrachloride	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Benzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Trichloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Dibromomethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromodichloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Methyl Isobutyl Ketone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Toluene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	7-11-19	7-11-19	

Date of Report: July 18, 2019 Samples Submitted: July 10, 2019 Laboratory Reference: 1907-109

Project: 17-06520-000

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte	nesun	FUL	Method	гтератец	Allalyzeu	i iags
Laboratory ID:	MB0711W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Tetrachloroethene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Hexanone	ND	2.6	EPA 8260C	7-11-19	7-11-19	
Dibromochloromethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromoethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Chlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Ethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
m,p-Xylene	ND	0.40	EPA 8260C	7-11-19	7-11-19	
o-Xylene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Styrene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromoform	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Isopropylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Bromobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Propylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
2-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
4-Chlorotoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
tert-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
sec-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
p-Isopropyltoluene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
n-Butylbenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
1,2-Dibromo-3-chloropropane	ND	1.4	EPA 8260C	7-11-19	7-11-19	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Hexachlorobutadiene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
Naphthalene	ND	1.0	EPA 8260C	7-11-19	7-11-19	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 100 75-127
Toluene-d8 101 80-127
4-Bromofluorobenzene 101 78-125

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	11W1								
	SB	SBD	SB	SBD	SB	SBD				_
1,1-Dichloroethene	7.84	7.82	10.0	10.0	78	78	63-130	0	17	
Benzene	8.52	8.55	10.0	10.0	85	86	76-125	0	19	
Trichloroethene	9.85	9.92	10.0	10.0	99	99	76-121	1	18	
Toluene	9.28	9.22	10.0	10.0	93	92	80-124	1	18	
Chlorobenzene	9.76	9.92	10.0	10.0	98	99	75-120	2	19	
Surrogate:										
Dibromofluoromethane					100	101	<i>75-127</i>			
Toluene-d8					102	102	80-127			
4-Bromofluorobenzene					99	101	78-125			

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Arsenic	ND	3.0	EPA 200.8		7-15-19	
Cadmium	ND	4.0	EPA 200.8		7-15-19	
Chromium	ND	10	EPA 200.8		7-15-19	
Lead	ND	1.0	EPA 200.8		7-15-19	
Mercury	ND	0.50	EPA 7470A		7-15-19	
Client ID:	SW2					
Laboratory ID:	07-109-02					
Arsenic	ND	3.0	EPA 200.8		7-15-19	
Cadmium	ND	4.0	EPA 200.8		7-15-19	
Chromium	ND	10	EPA 200.8		7-15-19	
Lead	ND	1.0	EPA 200.8		7-15-19	
Mercury	ND	0.50	EPA 7470A		7-15-19	
Client ID:	SW3					
Laboratory ID:	07-109-03					
Arsenic	ND	3.0	EPA 200.8		7-15-19	
Cadmium	ND	4.0	EPA 200.8		7-15-19	
Chromium	ND	10	EPA 200.8		7-15-19	
Lead	ND	1.0	EPA 200.8		7-15-19	
Mercury	ND	0.50	EPA 7470A		7-15-19	
Client ID:	SW4					
Laboratory ID:	07-109-04					
Arsenic	ND	3.0	EPA 200.8		7-15-19	
Cadmium	ND	4.0	EPA 200.8		7-15-19	
Chromium	ND	10	EPA 200.8		7-15-19	
Lead	ND	1.0	EPA 200.8		7-15-19	
Mercury	ND	0.50	EPA 7470A		7-15-19	

DISSOLVED METALS EPA 200.8/7470A **QUALITY CONTROL**

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0715D1					
Arsenic	ND	3.0	EPA 200.8		7-15-19	
Cadmium	ND	4.0	EPA 200.8		7-15-19	
Chromium	ND	10	EPA 200.8		7-15-19	
Lead	ND	1.0	EPA 200.8		7-15-19	
Laboratory ID:	MB0715D1					
Mercury	ND	0.50	EPA 7470A		7-15-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-10	09-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Lead	ND	ND	NA	NA		l	NA	NA	NA	20	
Laboratory ID:	07-10	09-01									
Mercury	ND	ND	NA	NA		ı	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-10	09-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	86.2	71.6	80.0	80.0	ND	108	90	75-125	19	20	
Cadmium	80.0	66.4	80.0	80.0	ND	100	83	75-125	19	20	
Chromium	79.0	65.8	80.0	80.0	ND	99	82	75-125	18	20	
Lead	84.8	70.8	80.0	80.0	ND	106	89	75-125	18	20	
Laboratory ID:	07-10	09-01									
Mercury	10.6	11.3	12.5	12.5	ND	85	91	75-125	7	20	

cPAHs EPA 8270D/SIM

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Chrysene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	68	27 - 106				
Pyrene-d10	78	35 - 98				
Terphenyl-d14	97	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW2					
Laboratory ID:	07-109-02					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Chrysene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	27 - 106				
Pyrene-d10	81	35 - 98				
Terphenyl-d14	103	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW3					
Laboratory ID:	07-109-03					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Chrysene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	27 - 106				
Pyrene-d10	68	35 - 98				
Terphenyl-d14	88	41 - 129				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW4					
Laboratory ID:	07-109-04					
Benzo[a]anthracene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Chrysene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[b]fluoranthene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo(j,k)fluoranthene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[a]pyrene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270D/SIM	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	27 - 106				
Pyrene-d10	74	35 - 98				
Terphenyl-d14	94	41 - 129				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0711W2					
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Chrysene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	7-11-19	7-11-19	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	37	27 - 106				
Pyrene-d10	<i>73</i>	35 - 98				
Terphenyl-d14	89	41 - 129				

cPAHs EPA 8270D/SIM **SB/SBD QUALITY CONTROL**

					Percent		Recovery		RPD		
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB07	11W2									
	SB	SBD	SB	SBD	SB	SBD					
Benzo[a]anthracene	0.502	0.504	0.500	0.500	100	101	59 - 127	0	24		
Chrysene	0.438	0.466	0.500	0.500	88	93	57 - 122	6	24		
Benzo[b]fluoranthene	0.444	0.492	0.500	0.500	89	98	58 - 123	10	26		
Benzo(j,k)fluoranthene	0.514	0.476	0.500	0.500	103	95	60 - 123	8	22		
Benzo[a]pyrene	0.464	0.476	0.500	0.500	93	95	54 - 121	3	24		
Indeno(1,2,3-c,d)pyrene	0.493	0.498	0.500	0.500	99	100	55 - 125	1	26		
Dibenz[a,h]anthracene	0.481	0.490	0.500	0.500	96	98	57 - 127	2	25		
Surrogate:											
2-Fluorobiphenyl					59	59	27 - 106				
Pyrene-d10					77	77	<i>35 - 98</i>				
Terphenyl-d14					92	95	41 - 129				

HARDNESS EPA 200.7/SM 2340B

Matrix: Water

Units: mg eqt. CaCO3/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Hardness	59	1.0	200.7/SM 2340B	7-12-19	7-12-19	
Client ID:	SW2					
Laboratory ID:	07-109-02					
Hardness	59	1.0	200.7/SM 2340B	7-12-19	7-12-19	
Client ID:	SW3					
Laboratory ID:	07-109-03					
Hardness	61	1.0	200.7/SM 2340B	7-12-19	7-12-19	
Client ID:	SW4					
Laboratory ID:	07-109-04					
Hardness	55	1.0	200.7/SM 2340B	7-12-19	7-12-19	•

HARDNESS EPA 200.7/SM 2340B **QUALITY CONTROL**

Matrix: Water

Units: mg eqt. CaCO3/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712WH1					
Hardness	ND	1.0	200.7/SM 2340B	7-12-19	7-12-19	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-1	12-01									
	ORIG	DUP									
Hardness	5.35	5.26	١	IA	NA		NA	NA	2	20	
MATRIX SPIKES											
Laboratory ID:	07-1	12-01									
	MS	MSD	MS	MSD		MS	MSD				
Hardness	133	133	132	132	5.35	97	97	75-125	0	20	
SPIKE BLANK											
Laboratory ID:	SB071	2WH1									
	S	В	5	SB			SB				
Hardness	12	25	1	32	NA	•	95	85-115	NA	NA	•

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

Page ____ of ____

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Lá	aboi	rato	ry N	umk	er:	0	7 -	11	9						×			
Project Number: Project Name: Project Manager: Sampled by: Sampled	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx NWTPH-Dx (T) Acid / SG Clean-un)		Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 82 (UD/SIM (low-level) PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A	SSAVED MTCA Metals	1000 COS	% Moisture	
ab ID Sample Identification	Sampled Sampled Matrix 7/15/4 12:75 Water	10	Z	Z	z z	< X	Ī	Ш	0 2		0	0	0	T)	-T	ř	-	XX	X	%	-
2 562	1 11:55	1			X	CX		+		+	+							A D			1
1 Swl 2 Sw2 3 Sw3 4 Sw4	[1:35]	Н			X	XX	1											XX			-
4 544	12:50	V			Y	X	1				+							K X	-		1
5 Trip Blank	×	3			1	X													1		-
11.7																	1				1
																					1
							\dagger														1
																					1
																					1
Signature	Company			Date		Tir	ne		Comi	ments/S	Special	Instr	uction	ns						Y S. J.	
Relinquished	Iterrera			7.	lo ·1	91	5::	23	H	DL	D	>0	21	14	le	5	J.	0			
Received	COSE			7/1	ou;	3 1	52	3		P	C'	B	5	,							
Relinquished									¥	M	ta	13	3	~	4	PK	S	FU	w/k	3	
Received						-			-						•			Fi	He	g red	
Relinquished											2.										_
Received	Device 1/D	_								Packa						-					_
Reviewed/Date Reviewed/Date									Chror	natogra	ams wi	th fina	al rep	ort [Elec	ctronic	Data	Delivera	bles (El	DDs)	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 29, 2019

George Iftner Herrera Environmental Consultants, Inc. 2200 6th Avenue, Suite 1100 Seattle, WA 98121

Re: Analytical Data for Project 17-06520-000

Laboratory Reference No. 1907-109B

Dear George:

Enclosed are the analytical results and associated quality control data for samples submitted on July 10, 2019.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 29, 2019 Samples Submitted: July 10, 2019 Laboratory Reference: 1907-109B

Project: 17-06520-000

Case Narrative

Samples were collected on July 10, 2019 and received by the laboratory on July 10, 2019. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: July 29, 2019 Samples Submitted: July 10, 2019 Laboratory Reference: 1907-109B

Project: 17-06520-000

PCBs EPA 8082A

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1					
Laboratory ID:	07-109-01					
Aroclor 1016	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1221	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1232	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1242	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1248	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1254	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Aroclor 1260	ND	0.051	EPA 8082A	7-22-19	7-23-19	
Surrogate:	Percent Recovery	Control Limits				
DCB	96	50-153				
Client ID:	SW4					
Laboratory ID:	07-109-04					
Aroclor 1016	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1221	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1232	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1242	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1248	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1254	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Aroclor 1260	ND	0.058	EPA 8082A	7-22-19	7-23-19	
Surrogate:	Percent Recovery	Control Limits				·
DCB	92	50-153				

Date of Report: July 29, 2019 Samples Submitted: July 10, 2019 Laboratory Reference: 1907-109B

Project: 17-06520-000

PCBs EPA 8082A QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0722W1					
Aroclor 1016	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1221	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1232	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1242	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1248	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1254	ND	0.050	EPA 8082A	7-22-19	7-23-19	
Aroclor 1260	ND	0.050	EPA 8082A	7-22-19	7-23-19	

Surrogate: Percent Recovery Control Limits DCB 92 50-153

Analyte	Re	sult	Spike	Level	Source Result			Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB07	22W1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.523	0.511	0.500	0.500	N/A	105	102	78-129	2	12	
Surrogate:											
DCB						103	97	50-153			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

1		19
Page	of	-

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)									r: 07-109											
Project Name: Project Manager: Sampled by: Bliss	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (other)	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	7	NW I PRI-UX (Acid / Sig Clean-up) Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	lotal RCKA Metals	TCI P Metals	HEM (oil and grease) 1664A	195 Just MTC & Maries		manchs	% Moisture
Lab ID Sample Identification	Sampled Sampled Matrix 7/15/4 12:75 Water		Z	Z	z 2	z >	I	Ш	S S		$\frac{1}{2}$	0 (0 0	2 1	¥ F	¥ F	- II	V	Y	X	- 8
1 SW [2 SW Z	1 11:55				X	XX		+			2	+	+	+	+	+	+	~	Y	Y.	
2 5w2 3 5w3 4 5w4	11:35	H	-			XX	1	1						1	+	+	+	X	X	X	
4 5424	12:50	V				X	1				(X			\top	\dagger	+		X	X	X	
5 Trip Blank	×	3			1	X					الات			\top	\top	\uparrow				-	
					+			+		-			1	-	+	+	+	-			
Signature	Company			Date		The second second	ne		Con	nmeni	ts/Sp	ecial I	nstru	ctions	3						
Relinquished	Itegera			7.1	0	91	5:	23	1	D	LI	2	>6	LA	P	le,	ک	Ce	(•	red
Received	COSE			7/1	oll	31	52	3		T	2	-F	3	5		-	1				
Relinquished									*	N	10	tal	5	3.	24	1P	ME	5 7	TO	BIC	
Received						_			/	λ.	, ,	1	_ 1	-1	-	-1	1	F	=1	ter	red
Relinquished Received						_			()	VA	rdd	d	71	19	19	. D5	> رح	Yel IV			
Reviewed/Date	Reviewed/Date											: Star					ronic D			es (EDI	Os) 🗌
	Tieviewed/Date										T									,	

APPENDIX B

Soil Vapor Monitoring Data

Gas Probe ID: NW 6 WL = 6-64'
Sample ID: NA 6/18/19 10:50 Avva
Total Casing Volume (cc): 618 u/ft x6.64' = 4,100 = 1 Well Vol

Canister ID: NA
Initial Canister Pressure: NA
Final Canister Pressure: NA

Field Personnel: _G. Iftner_____

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time		CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H₂S (ppmv)
0	0	3000	0	sec	0	0	20,1	0
1/4	1025	3000	20	sec	Ö	2,1	18.7	6
1/2	2050	3000	46	sec	0	5.1	12.1	0
3/4	3,075	3000	60	sec	0	5.4	11.3	0
1	4,100	3000	80	sec	6	5.5	11,0	0
1 1/4	5,125	3000	100	sec	0	5,6	10.8	0
1 1/2	6,150	3000	1210	sec	0	5.6	10.7	0
1 3/4	7,175	3000	140	sec	0	5.7	10.6	0
2	8,200	3000	160	sec	0	5,7	10.6	0
2 1/4	END PWGL	3000		sec				
2 1/2		3000		sec				
2 3/4		3000	700	sec			·	
3		3000		sec				±.

Comments: Static WL = 6.64' I well vol = 4.100/3,000m1/min purge = 1.37 min = 82 Secons.

Bur onetric Pressure. 30, 15"

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter

Gas Probe ID: MW-9 WL = 6.35' Sample ID: NA Date & Time: 6/18/19 11:20 Am

Total Casing Volume (cc): 6/8 cc/f+x6.35'= 3.925 (1 well vol.) Canister ID: Initial Canister Pressure:

Final Canister Pressure:

Field Personnel: _G. Iftner_

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time		CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H ₂ S (ppmv)
0	0	3000	0	sec	0	0	20.5	0
1/4	981	3000	20	sec	0	0.4	19.6	0
1/2	1,962	3000	40	sec	0	0.1	20,6	0
3/4	2,943	3000	60	sec	0	0.2	20.5	0
1	3,924	3000	80	sec	0	0.8	20.0	0
1 1/4	4,905	3000	100	sec	0	1.8	18.9	0
1 1/2	5,889	3000	120	sec	0	2.0	18.8	0
1 3/4	6,870	3000	140	sec	0	2.7	181	0
2	7,851	3000	160	sec	0	2.9	17.9	0
2 1/4	End pwd	€ 3000		sec				
2 1/2	1 0	3000		sec				
2 3/4		3000		sec				
3		3000	03	sec				100

Comments:

Barometric Pressure

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter

NA

NA

NA

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time		CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H₂S (ppmv)
0	0	3000	0	sec	0	ð	20.5	Ó
1/4	670	3000	14	sec	0	0.5	20,6	0
1/2	1,340	3000	28	sec	0	0.6	20.0	0
3/4	2,016	3000	42	sec	B	3.9	16.8	0
1	2,680	3000	55	sec	0	5.4	15,3	0
1 1/4	3,350	3000	70	sec	0	5.7	15,1	0
1 1/2	4,020	3000	84	sec	0	5,7	15.1	0
1 3/4	4,690	3000	98	sec	0	5,8	14,9	0
2	5,360	3000	112	sec	0	5.9	14,9	0
2 1/4	Fud puge	- 3000		sec		一些		- 1
2 1/2	/	3000		sec				
2 3/4		3000		sec				
3		3000		sec		4.		

comments: static WL=4.34 2,680 cc3/3,000 m/min. page = 0.89 min=54 s-e cond rounded to 56 seconda. Bursmetric Pressure 30,15" Hg.

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter

MW 12

Canister ID:

NA

Initial Canister Pressure: Final Canister Pressure:

NA NA

Sample ID: NA 6/18/14)3:06

Date & Time: 6/18/14)3:06

Total Casing Volume (cc): $6/18 \times 4.02 = 7484 = 1841$

Field Personnel: _G. Iftner_

Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)	Purge Time		CH₄ (% volume)	CO ₂ (% volume)	O ₂ (% volume)	H₂S (ppmv)	
0	0 =	3000	0	sec	O	O	20.8	0	1
1/4	621	3000	13	sec	0	04)	20.4	0	
1/2	1,242	3000	26	sec	0	011 -	20.6K	0	-20.3
3/4	1,863	3000	39	sec	0	0.2	20.3	0	
1	2,484	3000	52	sec	0	0.1	20.3	0	
1 1/4	3,105	3000	65	sec	0	0,2	20,0	0	
1 1/2	3,726	3000	78	sec	0	0.1	20,5	0	
1 3/4	4,347	3000	91	sec	0	0.1	20.6	0	
2	4,968	3000	104	sec	0	0.1	20.4	0	
2 1/4	1	~UL3000		sec					
2 1/2	1	3000		sec					
2 3/4		3000		sec					
3		3000		sec					

now milmin purge = 0.83 Min = 50 Seconds Comments:

Equipment Used: SKC Pump, Gem 2000+, Water Level Meter