

September 11, 2019

Project No. 923-1000-005.2019

Mr. Bill Kombol Landsburg PLP Group 31407 Highway 169 PO Box 10 Black Diamond, WA 98010

LANDSBURG MINE SITE SHORT-TERM COMPLIANCE MONITORING REPORT JUNE 2019 SAMPLING

Dear Bill,

The Compliance Monitoring Plan (CMP) (Golder 2017)¹ requires short-term compliance monitoring be conducted during the remediation to ensure that there are no adverse effects to the environment from remediation activities. The CMP states that short-term compliance monitoring will commence when the trench-backfilling begins and will continue for a period of four weeks following completion of the backfilling. To meet this requirement Golder Associates Inc. (Golder) completed short-term compliance monitoring events at the Landsburg Mine Site (the Site) starting in June 2019 and extending for four weeks following completion of the backfilling, which was completed on August 7, 2019. This letter report presents the results of the two short-term monitoring events completed in June 2019. The first event was conducted from June 11 to 13, 2019, and included collecting groundwater samples from monitoring wells LMW-2, LMW-3, LMW-4, LMW-5, LMW-6, LMW-7, LMW-8, LMW-9, LMW-10, LMW-11, LMW-12, LMW-13R, LMW-14, and LMW-15. The second event was conducted from June 25 to 26, 2019, and included measurements of groundwater quality parameters from the monitoring wells.

Figure 1 presents the locations of the monitoring wells. Figures 2A and 2B present a cross-section along the strike at the coal seam that also depicts the location of the monitoring wells. Monitoring wells LMW-2, LMW-4, LMW-10, LMW-12 and LMW-13R are completed to monitor shallow, middle, and deeper zones within the north end of the Rogers Coal Mine subsidence trench. Monitoring wells LMW-3, LMW-5, LMW-8, LMW-9, LMW-11, LMW-14 and LMW-15 are completed to monitor shallow, middle and deeper zones along the southern half of the Rogers Coal Mine. LMW-14 was installed in April 2019 as a dual-purpose south sentinel well and to provide groundwater elevation data at a location immediately south of the trench areas that will be backfilled and capped as part of the Site remedial action. Wells LMW-6 and LMW-7 monitor groundwater from the Frasier and Landsburg Coal Mines to the west and east of the Rogers Coal Mine, respectively.

¹ Golder Associates Inc. (Golder). 2017. Exhibit D of the Consent Decree – Compliance Monitoring Plan Landsburg Mine Site MTCA Remediation Project, Ravensdale, Washington. Prepared by Golder Associates Inc. June 7.

Groundwater sampling was conducted in accordance with the CMP (Golder 2017), and included the following activities:

- Measurement of static water levels at monitoring wells.
- Well purging with the dedicated pumping systems installed in each well to ensure sample representativeness.
- Measurement of field parameters including: pH, specific conductance, temperature, dissolved oxygen, oxidation-reduction potential (ORP) and turbidity.
- Collection of representative samples in appropriate containers provided by the analytical laboratory and associated analyses of groundwater samples. Groundwater samples were analyzed for volatile organic compounds (VOCs; United States Environmental Protection Agency [EPA] Method 8260C) and a total petroleum hydrocarbon (TPH) identification scan (NWTPH-HCID). Under the CMP, sample analyses for VOCs and TPH are only performed monthly during short-term compliance monitoring. The groundwater samples collected during the June 11-13, 2019 event were analyzed for VOCs and TPH.

Appendix A presents the laboratory analytical reports and the data validation report with added data qualifiers noted. Field sampling activities were documented on Sample Integrity Data Sheets (SIDS), provided in Appendix B. Tables 1A and 1B present depths to groundwater measured during the two events and calculated static water level elevations.

Following sample collection, all bottles were sealed, labeled, and placed in an iced cooler until delivery to the laboratory. Groundwater samples were transported under chain-of-custody procedures to Analytical Resources Incorporated (ARI), of Tukwila, Washington, for analyses.

The laboratory data packages underwent data validation. Items of note are provided in a validation memorandum in Appendix A. In general, data were found to be acceptable with minor qualification. Acetone was detected in several of the samples inconsistent with historical results. Investigation by laboratory indicated that some of the preserved sampling vials they provided contained acetone contamination. All acetone detections were rejected during data validation. Data qualifiers are defined, and all data qualifiers assigned under the data validation process are presented in the Appendix A data validation memorandum.

Table 2 presents the field parameter measurements and laboratory analytical results for each groundwater sample. Laboratory analyses did not detect any total petroleum hydrocarbon in any of the groundwater samples.

There were no parameters detected in groundwater above the triggers level concentrations prescribed in the CMP (Golder 2017). The only parameters detected in groundwater samples above the laboratory reporting limit during the June 11-13, 2019 sampling event were benzene, methyl ethyl ketone (MEK), carbon disulfide, 1,1-dichloroethane (1,1-DCA), ethylbenzene, and toluene.

MEK was detected in LMW-8 at a concentration of 7.63 μ g/L. MEK is a common lab artefact and may be attributable to potential lab contamination. The detected concentration is significantly less than the MTCA Method B groundwater cleanup level of 4,800 μ g/L.

Carbon disulfide was detected in LMW-10 (0.17 μ g/L) and LMW-15 (0.85 μ g/L). All detected concentrations of carbon disulfide are considerably lower than the MTCA Method A groundwater cleanup level of 800 μ g/L. Carbon

disulfide has been detected at these low levels in Site groundwater in previous sampling events. The detection of carbon disulfide is attributed to being present in the coal bed material as a natural constituent.

1,1-DCA was detected in LMW-12 at a concentration of 0.3 μ g/L. The detected concentration is consistent with previous concentrations of 1,1-DCA detected in LMW-12 and is significantly less than the MTCA Method B groundwater cleanup level of 7.68 μ g/L.

Trace concentrations of benzene, ethylbenzene, and toluene were detected in LMW-14. All detections were at least 10 times lower than their respective MTCA Method A groundwater cleanup levels.

Table 3 presents the groundwater quality parameters (pH, specific conductance, temperature, dissolved oxygen, ORP, and turbidity) for the two events completed in June 2019 and the May 2019 event that was conducted immediately preceding the start of short-term compliance monitoring. Groundwater quality parameters do not appear to be trending significantly upwards or downwards and are within historical norms.

If you have any questions or require any additional information, please contact Gary Zimmerman at (425) 883-0777.

Sincerely,

Golder Associates Inc.

Joseph Xi

Senior Project Engineer

JX/GZ/sb

Gary Žimmerman Principal

Attachments: Table 1A: Groundwater Elevation Data, Landsburg Mine Site, June 11-13, 2019 Table 1B: Groundwater Elevation Data, Landsburg Mine Site, June 25, 2019 Table 2: June 2019 Groundwater Analytical Results Landsburg Mine Site Table 3: Short-Term Monitoring Groundwater Parameter Trends Figure 1: Groundwater Monitoring Locations Figure 2A: Cross-Section along Strike at Coal Seam, June 11-13, 2019 Figure 2B: Cross-Section along Strike at Coal Seam, June 25, 2019 Appendix A: Laboratory Analytical Reports Data Validation and Quality Assurance / Quality Control Review Memorandum and June 2019 Laboratory Analytical Report Appendix B: Sample Integrity Data Sheets (SIDS)

v:\projects_1992 projects\923-1000\gw_data & reports\2019\backfilling gw\reports\2019 06 report\final\9231000005-I-rev0-gw report june 2019-091119.docx

Tables

Table 1A - Groundwater Elevation Data, Landsburg Mine Site, June 11-13, 2019

	LMW-1	LMW-2	LMW-3	LMW-4 ¹	LMW-5	LMW-6	LMW-7 ¹	LMW-8	LMW-9	LMW-10	LMW-11	LMW-12	LMW-13R	LMW-14 ¹	LMW-15
Water Depths															
Date of data collection	NC	6/13/2019	6/12/2019	6/13/2019	6/12/2019	6/12/2019	6/13/2019	6/12/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019
Time of data collection	NC	8:41 AM	9:40 AM	9:44 AM	10:37 AM	8:32 AM	2:38 PM	1:07 PM	3:40 PM	2:15 PM	10:09 AM	12:32 PM	1:06 PM	9:04 AM	11:19 AM
Measured to Top of PVC (ft btc)	NC	7.98	12.48	9.49	14.00	27.61	209.70	4.60	99.86	0.40	157.72	10.85	11.50	160.55	151.72
Surveyed Elevation					l										
Top of PVC (ft asl)	765.36	617.79	656.75	619.27	658.27	632.33	771.51	646.97	743.99	618.98	802.19	625.35	625.86	805.12	796.46
Top of Monument (ft asl)	766.16	618.38	657.48	619.89	658.87	633.00	771.88	NC	NC	619.10	802.51	625.49	625.91	805.14	796.61
Ground Level (ft asl)	763.02	614.92	654.40	617.37	655.63	629.95	768.79	645.25	741.13	615.78	799.89	621.90	622.07	802.22	792.64
Corrected Water Elevation															
Using PVC elevation (ft asl)	NA	609.81	644.27	609.78	644.27	604.72	561.81	642.37	644.13	618.58	644.47	614.50	614.36	644.57	644.74
Notes:															

Notes:

¹ Data corrected to accommodate well inclination from vertical NA = Not applicable

NC = Data not collected

ft btc = feet below top of casing ft asl = feet above sea level

Table 1B - Groundwater Elevation Data, Landsburg Mine Site, June 25, 2019

	LMW-1	LMW-2	LMW-3	LMW-4 ¹	LMW-5	LMW-6	LMW-7 ¹	LMW-8	LMW-9	LMW-10	LMW-11	LMW-12	LMW-13R	LMW-14 ¹	LMW-15
		2	2		2	2		2		2	2.000	2			2
Water Depths															
Date of data collection	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019	6/25/2019
Time of data collection	10:01 AM	12:13 PM	11:38 AM	12:10 PM	11:29 AM	9:32 AM	8:47 AM	11:34 AM	11:02 AM	12:07 PM	10:23 AM	11:59 AM	11:57 AM	10:08 AM	10:31 AM
Measured to Top of PVC (ft btc)	143.71	7.95	12.56	9.44	14.12	31.62	209.76	4.72	99.77	0.10	157.80	11.07	11.60	160.70	151.81
Surveyed Elevation															
Top of PVC (ft asl)	765.36	617.79	656.75	619.27	658.27	632.33	771.51	646.97	743.99	618.98	802.19	625.35	625.86	805.12	796.46
Top of Monument (ft asl)	766.16	618.38	657.48	619.89	658.87	633.00	771.88	NC	NC	619.10	802.51	625.49	625.91	805.14	796.61
Ground Level (ft asl)	763.02	614.92	654.40	617.37	655.63	629.95	768.79	645.25	741.13	615.78	799.89	621.90	622.07	802.22	792.64
Corrected Water Elevation															
Using PVC elevation (ft asl)	621.65	609.84	644.19	609.83	644.15	600.71	561.75	642.25	644.22	618.88	644.39	614.28	614.26	644.42	644.65
Notes:															

Notes:

¹ Data corrected to accommodate well inclination from vertical NA = Not applicable

NC = Data not collected

ft btc = feet below top of casing ft asl = feet above sea level

Table 2: June 2019 Groundwater Analytical Results Landsburg Mine Site

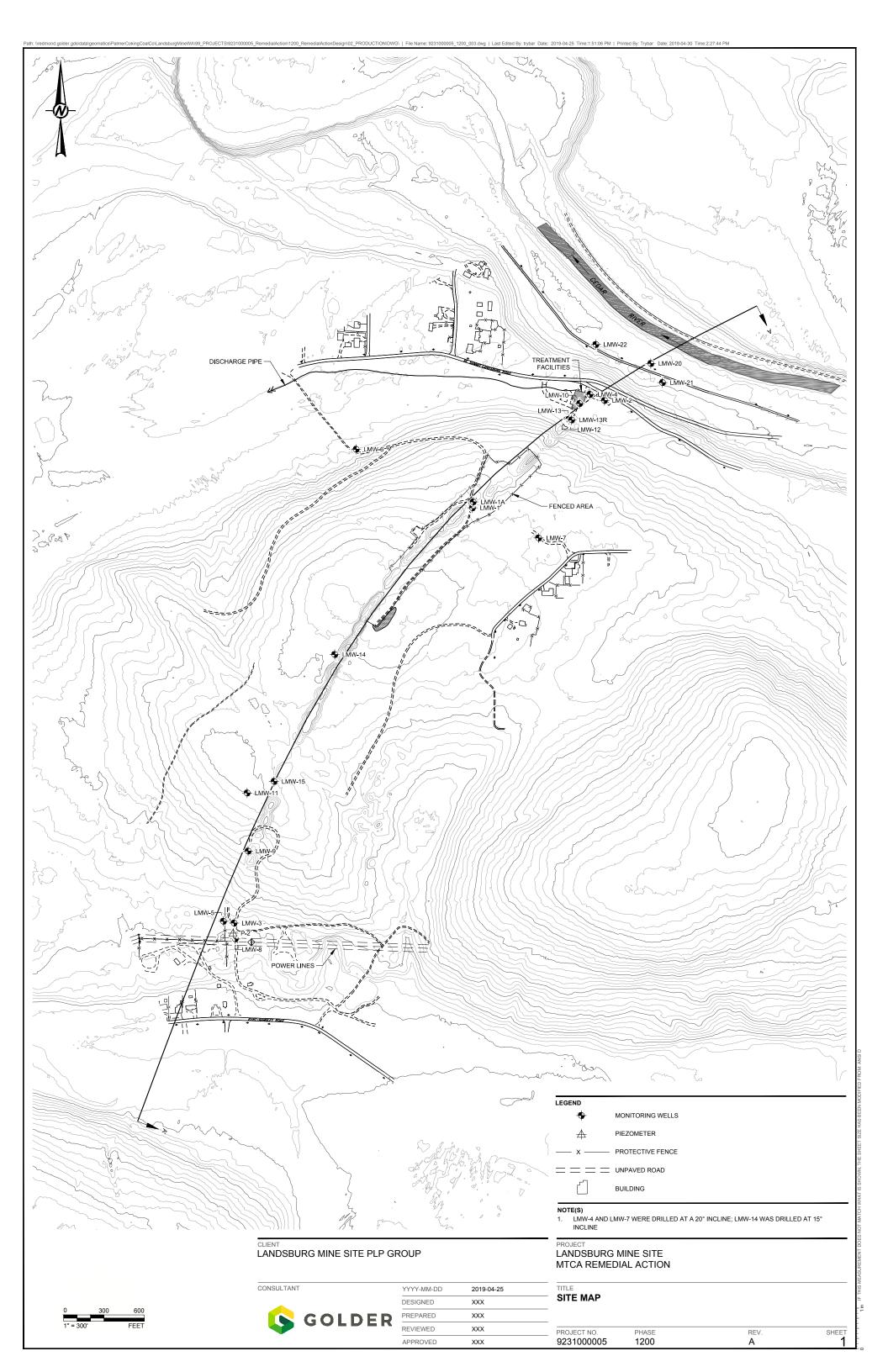
ANALYTE	UNITS	LMW-2	LMW-3	LMW-4	LMW-4 Duplicate	LMW-5	LMW-6	LMW-7	LMW-8	LMW-9	LMW-10	LMW-11	LMW-12	LMW-13R	LMW-14	LMW-15	Equipment Blank	Field Blank	Field Blank 2
		6/13/2019	6/12/2019	6/13/2019	6/13/2019	6/12/2019	6/12/2019	6/12/2019	6/12/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/12/2019	6/11/2019	6/13/2019
Field Parameter																			
Temperature	°C	10.8	10.9	10.6	-	10.7	9.6	14.4	13.4	10.8	12.1	10.3	11.2	11.6	10.6	11.5	-	-	-
pH Specific Conductance	stnd uS/cm	6.79 1000	7.67	6.85 1003	-	6.82 807	6.75 267	7.23	6.70 662	6.94 745	8.63 379	7.18	6.74 981	7.36	6.60 2063	7.51 518	-	-	-
Dissolved Oxygen	mg/L	0.55	0.57	0.76	-	0.51	0.59	1.14	0.61	0.72	0.49	0.87	0.52	0.54	1.41	1.08		-	
Eh	Rel mV	-122.7	-32.2	-151.8	-	-99.5	-46.4	-47.2	-100.7	-63.6	-153.7	-55.8	-76.9	-132.0	-24.5	-120.5	-	-	-
Turbidity	NTU	0.77	0.67	0.23	-	2.35	3.31	5.7		2.34	0.97		57.2			1.28	-	-	-
Volatile Organic Compounds (VO																		1	
Acetone Acrolein	ug/L	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	10.8 R 2.5 U	6.27 R 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U		5 U 2.5 U	5 U 2.5 U	5 U 2.5 U	5 U 2.5 U
Acrylonitrile	ug/L ug/L	2.5 U 1 U	2.50	2.5 U 1 U	2.5 U 1 U	2.5 U	2.5 U	2.5 U	2.5 U 1 U	2.5 U 1 U	2.5 U 1 U	2.50	2.5 U 1 U	2.5 U 1 U	2.50	2.5 U	2.5 0	2.5 U	2.5 U 1 U
Benzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Bromobenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Bromochloromethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Bromoethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Bromoform Bromomethane	ug/L ug/L	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U	0.2 U 1 U		0.2 U 1 U	0.2 U 1 U	0.2 U	0.2 U 1 U
methyl ethyl ketone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	7.63	5 U	50	5 U	5 U	5 U		5 U	50	5 U	5 U
n-Butylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Sec-Butylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
tert-butylbenzene Carbon Disulfide	ug/L	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.17	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.85	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U
Carbon Disulfide Carbon Tetrachloride	ug/L ug/L	0.1 U	0.1 U 0.2 U	0.1 0	0.1 U 0.2 U	0.1 0	0.1 U 0.2 U	0.10	0.1 U 0.2 U	0.1 U 0.2 U	0.17 0.2 U	0.1 U 0.2 U	0.10	0.1 U 0.2 U	0.1 U 0.2 U	0.85 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U
Chlorobenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 0	0.2 U	0.2 U
Chloroethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-Chloroethyl vinyl ether	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Chloromethane 2-Chlorotoluene	ug/L ug/L	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U	0.5 U 0.1 U
4-Chlorotoluene	ug/L ug/L	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.10	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.10	0.10	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.10	0.1 U 0.2 U	0.1 U 0.2 U
Dichlorodifluoromethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dibromo-3-Chloropropane	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylene Dibromide	ug/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Dibromomethane 1,2-Dichlorobenzene	ug/L	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
1,3-Dichlorobenzene	ug/L ug/L	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1.4-Dichlorobenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,4-Dichloro-2-butene	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	10	10	10	10	1 U	1 U	10	1 U	1 U
1,1-Dichloroethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3			0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
1,1-Dichloroethene Cis-1,2-Dichloroethene	ug/L ug/L	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
Trans-1,2-Dichloroethene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
1,3-Dichloropropane	ug/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
2,2-Dichloropropane	ug/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,1-Dichloropropene Cis-1,3-Dichloropropene	ug/L ug/L	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U	0.1 U 0.2 U
Trans-1,3-Dichloropropene	ug/L ug/L	0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 0	0.2 U	0.2 U
Ethylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.23	0.2 U	0.2 U	0.2 U	0.2 U
Hexachlorobutadiene	uğ/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-Hexanone	ug/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
lodomethane	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
Cumene p-lsopropyltoluene	ug/L ug/L	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
Methylene Chloride	ug/L	0.2 U 1 U	1 U	0.2 U 1 U	0.2 U 1 U	1 U	1 U	1 U		0.2 U 1 U	1 U		10.20	1 U		1 U	1 U	0.2 U 1 U	0.2 U 1 U
Methyl isobutyl ketone	ug/L	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
Naphthalene	ug/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
n-Propylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Styrene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,3-Trichlorobenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trichlorobenzene 1,1,1,2-Tetrachloroethane	ug/L ug/L	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U		0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U
1,1,2,2-Tetrachloroethane	ug/L	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U	0.2 0	0.2 U 0.1 U	0.2 U 0.1 U	0.2 U 0.1 U		0.2 U 0.1 U	0.2 0	0.2 U	0.2 U 0.1 U
Tetrachloroethene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toluene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.59	0.2 U	0.2 U	0.2 U	0.2 U

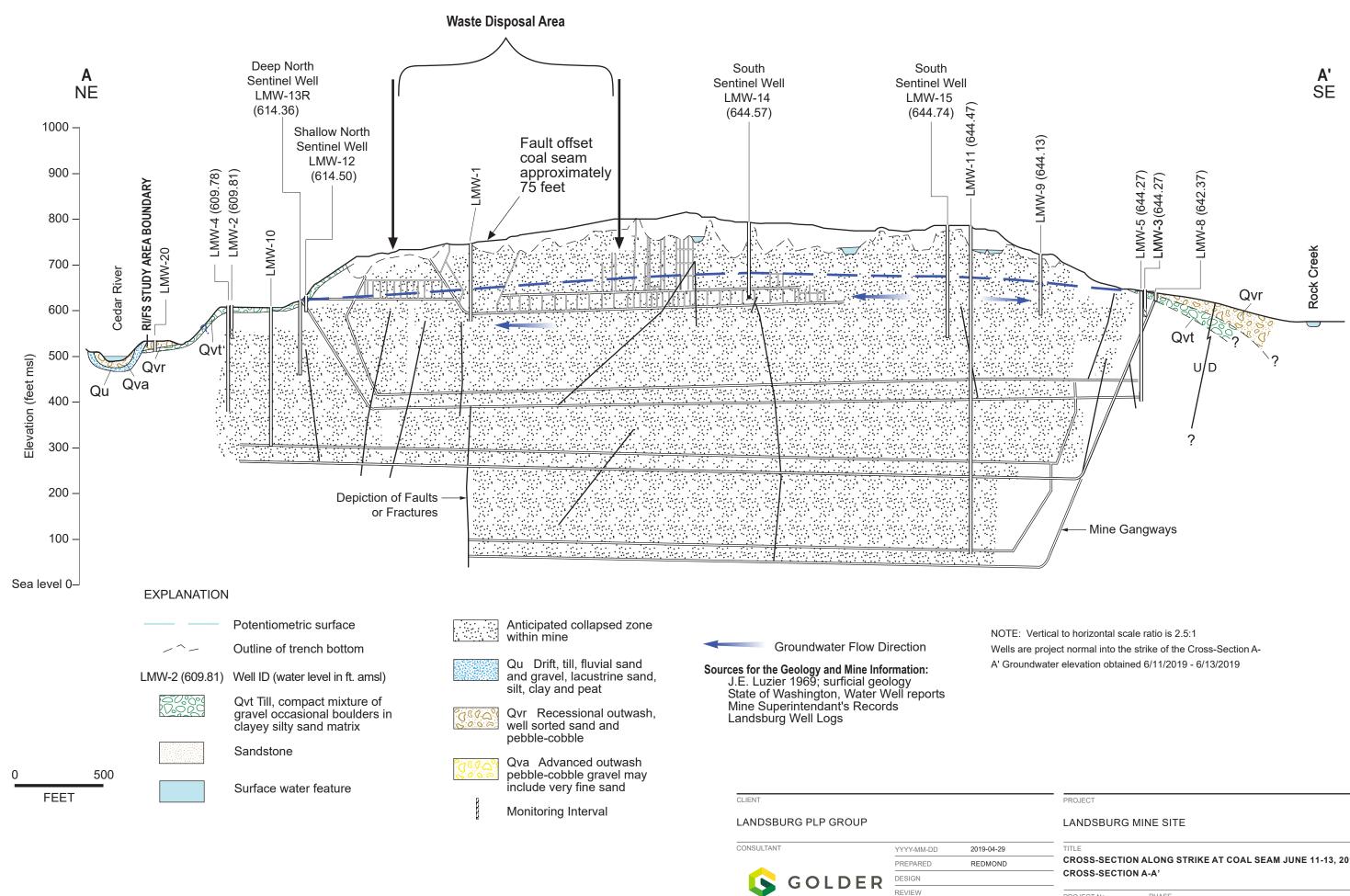
Table 2: June 2019 Groundwater Analytical Results Landsburg Mine Site

ANALYTE	UNITS	LMW-2	LMW-3	LMW-4	LMW-4 Duplicate	LMW-5	LMW-6	LMW-7	LMW-8	LMW-9	LMW-10	LMW-11	LMW-12	LMW-13R	LMW-14	LMW-15	Equipment Blank	Field Blank	Field Blank 2
1,1,1-Trichloroethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trichloroethene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CFC-113	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,3-Trichloropropane	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trimethylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3,5-Trimethylbenzene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	
Vinyl Acetate	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Vinyl Chloride	ug/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
m, p-Xylene	ug/L	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
o-Xylene	ug/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Total Xylenes	ug/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
Hydrocarbon Identification																			
Diesel Range	mg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA
Gas Range	mg/L	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	NA	NA
Lube Oil Range	mg/L	10	10	10	1 U	1 U	10	10	10	10	10	10	10	1 U	10	1 U	10	NA	NA

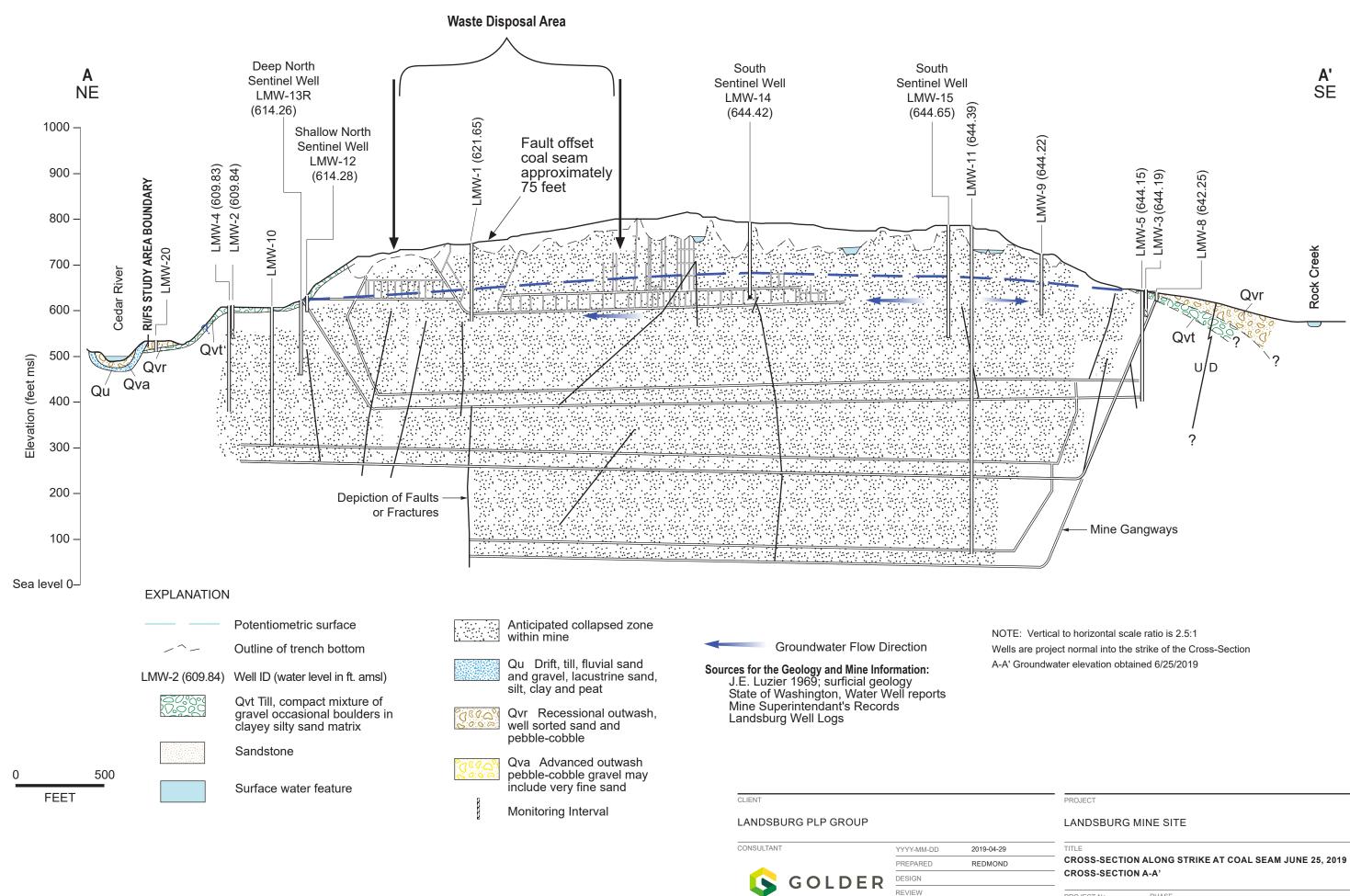
Notes: U - Analyte was not detected above the Reporting Limit (RL). J - Analyte was detected above the Method Detection Limit (MDL) but below the RL. R - Analytical result is unusable because certain data quality criteria were not met.

Table 3: Short-Term Groundwater Monitoring Field Parameter Measurements


	I	Temperature		Conductivity			Turbidity
Well	Date	(°C)	pН	(uS/cm)	DO (mg/L)	ORP (mV)	(NTU)
LMW-2	5/22/2019	10.8	6.89	(u3/cm) 677	0.50	-109.8	0.31
LMW-2	6/13/2019	10.8	6.79	729	0.50	-109.8	0.31
LMW-2	6/26/2019	10.8	6.86	746	0.55	-122.7 -83.4	0.77
LIVIV-2 LMW-3	5/21/2019	10.9	7.73	235	0.64	-72.6	0.44
LMW-3	6/12/2019	10.5	7.67	235	0.52	-32.2	0.49 0.67
LMW-3	6/25/2019	11.2	7.73	240	0.57	-32.2	0.07
LIVIV-3 LMW-4	5/22/2019	10.5	6.92	697	0.50	-23.0	0.45
LMW-4	6/13/2019	10.5	6.85	726	0.33	-120.5	0.04
LIVIV-4 LMW-4	6/25/2019	10.5	6.93	720	0.70		0.23
LIVIV-4 LMW-5	5/21/2019	10.5	6.93	548	0.60	-95.9 -121.3	0.16
		10.0	6.82	546 586	0.48		2.35
LMW-5	6/12/2019 6/25/2019	10.7	6.86	569	0.51	-99.5 -121.1	2.35 0.62
LMW-5			6.80	180	0.57	-121.1	1.95
LMW-6	5/22/2019	9.4					
LMW-6	6/12/2019	9.6	6.75	188	0.59	-46.4	3.31
LMW-6 LMW-7	6/26/2019	9.8	6.83	190 419	0.63	-34.5 -77.5	1.59
	5/21/2019	13.0	7.15		0.59		3.71
LMW-7	6/13/2019	14.4	7.23	409	1.14	-47.2	5.7
LMW-7	6/25/2019	13.1	7.13	423	0.63	-46.1	1.38
LMW-8	5/21/2019	11.1	6.79	429	0.53	-103.7	8.45
LMW-8	6/12/2019	13.4	6.70	515	0.61	-100.7	5.44
LMW-8	6/25/2019	12.6	6.81	505	0.66	-96.3	4.55
LMW-9	5/21/2019	10.2	6.99	507	0.69	-67.4	2.48
LMW-9	6/11/2019	10.8	6.94	542	0.72	-69.6	2.34
LMW-9	6/25/2019	10.4	6.97	524	0.83	-50.7	0.31
LMW-10	5/22/2019	10.4	8.64	266	0.52	-210.4	0.84
LMW-10	6/11/2019	12.1	8.63	287	0.49	-153.7	0.97
LMW-10	6/26/2019	11.6	8.69	282	0.59	-168.9	0.75
LMW-11	5/20/2019	9.8	7.21	390	0.78	-137.1	0.77
LMW-11	6/11/2019	10.3	7.18	412	0.87	-55.8	0.28
LMW-11	6/25/2019	10.0	7.20	391	0.95	-75.3	0.28
LMW-12	5/22/2019	10.1	6.80	667	0.54	-105.8	4.11
LMW-12	6/11/2019	11.2	6.74	720	0.52	-76.9	57.2
LMW-12	6/26/2019	10.4	6.72	681	0.65	-71.8	15.4
LMW-13R	5/22/2019	10.2	7.37	656	0.57	-157.0	1.29
LMW-13R	6/11/2019	11.6	7.36	711	0.54	-132.0	0.54
LMW-13R	6/26/2019	11.0	7.39	701	0.63	-114.2	0.58
LMW-14	5/20/2019	10.0	6.72	1159	0.88	-78.9	1.59
LMW-14	6/11/2019	10.6	6.60	1497	1.41	-45.5	1.3
LMW-14	6/26/2019	10.6	6.62	1540	1.14	-38.1	2.16
LMW-15	5/20/2019	9.5	7.56	356	0.82	-157.2	7.15
LMW-15	6/11/2019	11.5	7.51	383	1.08	-120.5	1.28
LMW-15	6/25/2019	9.9	7.52	358	1.06	-134.9	2.68


Notes:

NC - Not Collected


Figures

APPROVED

PROJECT		
LANDSBURG	MINE SITE	
TITLE		
CROSS-SECTI	N ALONG STRIKE AT COAL S	EAM JUNE 11-13, 2019
CROSS-SECTI	ON A-A'	
PROJECT No.	PHASE	

APPROVED

PROJECT		
LANDSBURG	MINE SITE	
TITLE		
CROSS-SECTI	ON ALONG STRIKE AT COAL SEAM JU	JNE 25, 2019
CROSS-SECTI	ON A-A'	

APPENDIX A

Laboratory Analytical Reports Data Validation and Quality Assurance / Quality Control Review Memorandum and June 2019 Laboratory Analytical Report

TECHNICAL MEMORANDUM

DATE August 6, 2019

Project No. 923-1000-002.2019

TO Bill Kombol Palmer Coking Coal Company

CC Gary Zimmerman

FROM Joseph Xi

EMAIL jxi@golder.com

LANDSBURG MINE SITE JUNE 2019 DATA VALIDATION & QUALITY ASSURANCE / QUALITY CONTROL REVIEW

This Data Usability Summary Report (DUSR) presents the findings of the data quality assessment performed on the analyses of water samples collected from June 11, 12, and 13, 2019 at the Landsburg Mine Site in Washington (Site) as part of the Landsburg Groundwater compliance monitoring sampling project. Samples in the laboratory sample delivery group (SDG) as indicated in Table 1 were reviewed in this DUSR to identify quality issues which could affect the use of the sample data for decision making purposes.

Fourteen water samples, one field duplicate sample, two field blanks, and one equipment blank were collected by Golder Associates, Inc. (Golder). Samples were analyzed by Analytical Resources Inc. of Tukwila, Washington for the following parameters:

- Volatile Organic Compounds (VOCs) following United States Environmental Protection Agency (USEPA) USEPA SW-8461¹ Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); and
- Northwest Total Petroleum Hydrocarbons Hydrocarbon Identification Scan by NWTPH-HCID.

Quality assurance / quality control (QA/QC) reviews of laboratory data were performed in the laboratory in accordance with the laboratory quality assurance program plan (QAPP). The data validation QA/QC review focused primarily on laboratory results and quality control data to ensure that work plan data quality objectives were met for the project.

Data validation was conducted in accordance with the criteria outlined in the National Functional Guidelines for Organic Review (USEPA 2017²), modified to include method specific requirements of the laboratory, and laboratory standard operating procedures. Where there was a discrepancy between the QC criteria in the Guidelines and the QC criterion established in the analytic methodology, method-specific criteria, the QAPP, or professional judgment was used.

¹ USEPA. 2015. Test methods for evaluating solid waste, physical/chemical methods (SW-846): 3rd edition, and subsequent updates, Environmental Protection Agency, National Center for Environmental Publications, Cincinnati, Ohio, accessed at URL http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm

² USEPA. 2017. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Superfund Methods Data Review. OLEM 9355.0-136. EPA-540-R-2017—001/002, January. Available on the Web at: https://www.epa.gov/clp/superfund-clp-national-functional-guidelines-data-review (accessed June 26, 2019)

In general, chemical results for the samples collected at the Site were evaluated based on laboratory preservation, hold times, laboratory and field blank contamination, outlying precision or accuracy parameters, or based on professional judgment. The following definitions provide brief explanations of the qualifiers which may have been assigned to data during the data validation process.

Data Qualifier Definitions

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- .I+ The result is an estimated quantity, but the result may be biased high.
- U The analyte was analyzed for but was not detected.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

The validation level for the data is Tier 2A, and included the following:

- Data package completeness assessment
- Verification of required deliverables
- Evaluation of holding times
- Laboratory narrative evaluation
- Evaluation and qualification of QC elements for surrogates, matrix spike samples, laboratory control samples, blanks (method, equipment, and trip blank) laboratory duplicate samples and field duplicate samples
- Evaluation of detection limits

Raw data and calibration elements, including GC instrument tuning and performance check, initial and continuing calibration, internal standard performance, and analyte identification, were not provided by the lab. Data review and validation was performed by an experienced QA chemist independent of the analytical laboratory and not directly involved in the project. Data qualifiers that were applied by the laboratory have been removed from the data summary report sheets, when applicable, and superseded by data validation qualifiers. Overall, the data review showed that data are acceptable for use except where indicated by data qualifiers. Table 2 is a summary of the qualifiers applied to the data. For details about the data validation, refer to the data validation checklist in Attachment A. The following bulleted items highlight comments and/or qualifications to specific parameters:

■ EPA Method 8260C: The case narrative notes for ARI Work Order 19E0324 (May of 2019) for the Site May 2019 groundwater monitoring event indicate that VOC vials may have been previously contaminated with acetone based on testing on empty vials from the same QC lot and random acetone detections. ARI has since confirmed that vials from lot ((B9045CVBS) are contaminated with acetone and were used to collect June 2019 samples. All positively detected acetone results are rejected and qualified (R) due to a) ARI's 19E0324 case narrative notes and ARI's July 22, 2019 email communication confirming acetone

contamination in the associated vials and b) elevated acetone detections are not consistent with historical data.

- EPA Method 8260C: Two coolers were received at elevated temperatures (11.6°C and 11.2°C) and above EPA's recommended preservation temperature of 6.0°C. No action is taken since samples associated with these coolers were collected and delivered to the laboratory on June 13, 2019 and did not have enough time to cool.
- Matrix spike analysis was not performed along with the VOCs. No action is taken since adequate accuracy and precision data are provided.

The QAPP stipulated completeness goal of 90% was achieved.

Attachments: Attachment A: Tables Table 1: Sample Collection and Analysis Summary Table 2: Qualifier Summary Table Attachment B: Level 2A Data Validation Checklist

\\REDMOND.GOLDER.GDS\DATA2\ENVIRONMENTAL\PROJECTS_1992 PROJECTS\923-1000\GW_DATA & REPORTS\2019\BACKFILLING GW\REPORTS\2019 06 REPORT\APPENDIX A\DUSR_JUNE_2019_LANDSBURG-090419.DOCX

ATTACHMENT A

Table 1: Sample Collection and Analysis Summary

Landsburg Mine Water Sampling Investigation - June 2019

	io Mator Sampling Intoolig	-					Analy	yses	
SDG	Field Identification	Collection Date	Lab Identification	Matrix	QC Samples	VOCs (8260C)	SVOCs; 1,4-Dioxane (8270D)	GasolineTPH- HCID (NWTPH- HCID)	Total TAML Metals (200.8/6010C /7470A)
19F0184	LMW-14-0619	06/11/2019	19F0184-01	GW	-	Х	-	Х	-
19F0184	LMW-FB-0619	06/11/2019	19F0184-02	GW	FB	Х	-	-	-
19F0184	LMW-11-0619	06/11/2019	19F0184-03	GW	-	Х	-	Х	-
19F0184	LMW-15-0619	06/11/2019	19F0184-04	GW	-	Х	-	Х	-
19F0184	LMW-12-0619	06/11/2019	19F0184-05	GW	-	Х	-	Х	-
19F0184	LMW-13R-0619	06/11/2019	19F0184-06	GW	-	Х	-	Х	-
19F0184	LMW-10-0619	06/11/2019	19F0184-07	GW	-	Х	-	Х	-
19F0184	LMW-9-0619	06/11/2019	19F0184-08	GW	-	Х	-	Х	-
19F0184	LMW-6-0619	06/12/2019	19F0184-09	GW	-	Х	-	Х	-
19F0184	LMW-3-0619	06/12/2019	19F0184-10	GW	-	Х	-	Х	-
19F0184	LMW-5-0619	06/12/2019	19F0184-11	GW	-	Х	-	Х	-
19F0184	LMW-8-0619	06/12/2019	19F0184-12	GW	-	Х	-	Х	-
19F0184	LMW-EB-0619	06/12/2019	19F0184-13	GW	EB	Х	-	Х	-
19F0184	LMW-7-0619	06/12/2019	19F0184-14	GW	-	Х	-	Х	-
19F0184	LMW-2-0619	06/13/2019	19F0184-15	GW	-	Х	-	Х	-
19F0184	LMW-4-0619	06/13/2019	19F0184-16	GW	-	Х	-	Х	-
19F0184	LMW-4-D-0619	06/13/2019	19F0184-17		FD (LMW-4-0619)	Х	-	Х	-
19F0184	LMW-FB2-0619	06/13/2019	19F0184-18	FB	FB	Х	-	-	-

Notes:

All analyses performed by Analytical Resources, Incorporated (ARI), Tukwila WA

Abbreviations:

EB - Equipment Blank FB - Field Blank FD - Field Duplicate QC - Quality Control SDG - Sample Delivery Group GW - Groundwater

- TB Trip Blank
- WQ Water Quality
- MS Matrix Spike

NWTPH - Northwest Total Petroleum Hydrocarbon SVOCs - Semivolatile Organic Compounds TAML - Target Analyte Metals List TPH-HCID - Total Petroleum Hydrocarbons - Hydrocarbon Identification Method VOCs - Volatile Organic Compounds

Table 2: Qualifier Summary Table

Landsburg Mine Water Sampling Investigation - June 2019

SDG	Sample Name	Constituent	New Result	New RL	Qualifier	Reason
19F0184	LMW-9-0619	Acetone	-	-	R	Preserved vial contamination
19F0184	LMW-8-0619	Acetone	-	-	R	Preserved vial contamination
19F0184	All Samples	All Results	-	-	-	Laboratory applied U-qualifiers indicating non- detect results and J-qualifiers indicating results below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations

QC - Quality Control SDG - Sample Delivery Group RL - Reporting Limit

Qualifier Definitions

J - Estimated result

U - Non-detect result

R - The data are rejected and unusable.

ATTACHMENT B

Level 2A Data Validation Checklist

QA LEVEL II - DATA EVALUATION CHECKLIST

Compa	ny Name <u>: Golder Associates, Inc.</u>		Pro	ject Manag	jer: <u>Joe Miller</u>
Project	Name: Landsburg Groundwater 2019-06				er: <u>923-1000-005.2019</u>
Validate	ed by Jessie Compeau/Informa LLC		Vali	dation Dat	e: <u>July 31, 2019</u>
	ed by Joseph Xi	<u> </u>			<u>August 5, 2019</u>
	tory: <u>Analytical Resources, Inc. (ARI) in Tukwila, W</u>		SDO	G #: <u>19F0</u>	<u>184</u>
-	cal Method (type and no.): See DUSR Table 1				
Matrix:	Air Soil/Sed. Water Waste	Other	ner		
Work P <u>2017).</u>	lan or QAPP reference: <u>Compliance Monitoring Pla</u>	<u>n and QA</u>	<u>PP for L</u>	andsburg	Mine Site (Exhibit D, to the Consent Decree,
Applica	ble Data Validation Guidance:				
•	National Functional Guidelines for Organic Review	w, USEPA	2017		
	C C				
Sample	e Information: See Table 1 (attached)				
Field/C	OC Information	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	\bowtie			
b)	Sampling team indicated?	\boxtimes			
c)	Sample location noted?	\boxtimes			
d)	Sample type indicated (grab/composite)?		\boxtimes		COC does not request this information
e)	Field QC noted?	\boxtimes			See Table 1
f)	Field parameters collected (note types)?			\boxtimes	
g)	Was the COC signed by both field and laboratory personnel?	\boxtimes			
h)	Were samples received in good condition?	\boxtimes			See Notes 1, 2, and 3
i)	Were the correct preservatives used?	\boxtimes			
j)	Was the sample cooler temperature within QC lim	nits?	\boxtimes		See Note 4
Labora	tory Case Narrative				
a)	Does the laboratory narrative indicate deficiencies	s? 🛛			See Note 5
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	\boxtimes			
b)	Were hold times met for sample analysis?	\boxtimes			
C)	Was the correct method used?	\boxtimes			
d)	Were appropriate reporting limits achieved?	\boxtimes			See Note 6
e)	Were any sample dilutions noted?		\boxtimes		
f)	Were any matrix problems noted?		\boxtimes		

QA LEVEL II - DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		\boxtimes		See Note 7
b)	Was a method blank analysis performed according	to the	method us	ed?	
c)	Was a method blank analysis performed for each in	istrume	ent used fo	or sample	e analyses?
d)	Were analytes detected in the instrument blank(s)?			\boxtimes	
e)	Were analytes detected in the field blank(s)?		\boxtimes		<u>2 Field Blanks: LMW-FB-0619 and LMW- FB2-0619</u>
f)	Were analytes detected in the equipment blank(s)?		\boxtimes		1 Equipment Blank: LMW-EB-0619
g)	Were analytes detected in the trip blank(s)?			\boxtimes	
h)	Were analytes detected in the storage blank(s)?			\boxtimes	
Surroga	ate (System Monitoring) Compounds	YES	NO	NA	COMMENTS
a)	Were surrogate compounds added to all samples?	\boxtimes			
b)	Were recoveries within control limits?	\boxtimes			
c)	Were surrogate recoveries not calculated due to dilutions?		\boxtimes		
d)	Were recoveries not calculated due to interference?	? 🗌	\boxtimes		
Labora	tory Control Sample	YES	NO	NA	COMMENTS
a)	Was an LCS analyzed once per SDG?	\boxtimes			
b)	Were the proper compounds included in the LCS?	\boxtimes			
c)	Was the LCS accuracy criteria met?	\boxtimes			
Matrix \$	Spike/Matrix Spike Duplicate	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met (note %R)?			\boxtimes	
	Recovery could not be calculated since sample contained high concentration of analyte?			\boxtimes	
b)	Was MSD accuracy criteria met (note %R)?			\boxtimes	
	Recovery could not be calculated since sample contained high concentration of analyte?			\boxtimes	
c)	Were MS/MSD precision criteria met (note RPD)?			\boxtimes	
Duplica	ites	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	e sample n	ames)?	LMW-4-0619 and LMW-4-D-0619
		\boxtimes			
b)	Were field dup. precision criteria met (30%)?	\boxtimes			
c)	Were lab duplicates analyzed?		\boxtimes		
d)	Were lab dup. precision criteria met (note RPD)?			\boxtimes	
ICP Ser	ial Dilution (SD)	YES	NO	NA	COMMENTS
a)	Was an ICP SD analyzed once per SDG?			\boxtimes	
b)	Was the ICP SD criteria met?			\boxtimes	

QA LEVEL II - DATA EVALUATION CHECKLIST

Comments/Notes:

- 1. Review of Cooler Receipt Form notes indicate that one of the bottle label identifications reads LMW-**0**9-0619 and the chain of custody (COC) reads LMW-**9**-0619. Sample identification on the bottle label was corrected to read LMW-**9**-0619.
- Review of Cooler Receipt Form notes indicate that sample LMW-EB-0619 collection time of **1315** is listed on the COC however a collection time of **1350** is on shown on the sample label. Sample collection time on the label was corrected to read **1315**.
- 3. COC seals were not affixed to the outside of the cooler. Sample notes indicate that the samples were received in good condition. No action is taken in this case other than to note that the samples were hand delivered by Golder per chain of custody protocols.
- 4. Review of the Cooler Receipt Form indicates that the cooler temperatures were measured at 11.6 °C, 4.4 °C, 11.2 °C, 7.1 °C, and 6.6 °C. Per June 14, 2019 email (Landsburg Cooler Temperatures) between Golder and ARI: Sample containers associated with coolers 1 and 3 exceeded EPA recommended temperature of 6.0 °C at 11.6 °C and 11.2 °C. In this case no action is taken since samples collected on June 13, 2019 did not have enough time to cool as they were collected and delivered to the laboratory on the same day. No action is taken for the cooler received at 7.1 °C (minor exceedance) other than to note that additional ice or cooling packs should be added to the coolers during an extended sampling event.
- 5. Case narrative notes indicate that VOC continuing calibration (CC) recoveries are below laboratory acceptance criteria for four analytes (vinyl acetate, bromoform, 1,2-dibromo-3-chloropropane, and dichlorodifluoromethane) and laboratory qualified (Q). Review of the data shows that associated samples are not impacted and only LCS/LCSD results are laboratory qualified (Q). No further action was taken other than to note. All LCS/LCSD % recoveries are within laboratory control limit criteria.
- 6. QAPP stipulated reporting limits are met for requested compounds and reporting limits (RLs). ARI analyzed and reported three additional VOC compounds (dichlorodifluoromethane (CFC-12), bromoethane, and total xylenes).
- 7. The case narrative notes for ARI Work Order 19E0324 (May of 2019) for the Site May 2019 groundwater monitoring event indicate that VOC vials may have been previously contaminated with acetone based on testing on empty vials from the same QC lot and random acetone detections. ARI confirmed by email that vials from lot ((B9045CVBS) are contaminated with acetone and were used to collect June 2019 samples. All positively detected acetone results are rejected and qualified (R) due to a) ARI's 19E0324 case narrative notes and ARI's July 22, 2019 email communication confirming acetone contamination in the associated vials and b) elevated acetone detections are not consistent with historical data (Golder, 2019).

Sample Name	Parameter	Analyte	Result	RL	Units
LMW-9-0619	EPA 8260C	Acetone	6.27	5	µg/L
LMW-8-0619	EPA 8260C	Acetone	10.8	5	μg/L

Data Qualification: See Table 2 (attached)

Definitions:

QC: Quality Control
QAPP: Quality Assurance Project Plan
SVOC: Semivolatile Organic Compound
DMC: Deuterated Monitoring Compound
RPD: Relative Percent Difference
RSD: Relative Standard Deviation
CRQL: Contract Required Quantitation Limit
RL: Reporting Limit
PEM: Performance Evaluation Mixture
SPCC: System Performance Check Compound
RT: Retention Time
SPLP: Synthetic Precipitation Leaching Procedure

APPENDIX B

Sample Integrity Data Sheets (SIDS)

SAMPLE INTEGRITY DATA SHEET

Plant/Site Landsburg Mine Site	Project No. <u>923-</u>	1000-005.2019
Site Location Ravensdale, WA	Sample ID <u>No Sa</u>	imple
Sampling Location Groundwater M	Aonitoring Well End of dedicated sam	pling tube
Technical Procedure Reference(s)	<u>TP-1.4-6A, TP-1.2-20, TP-1.2-23</u>	
Type of Sampler Dedicated Pump	Grundfos	
Date 6/26/19	Time	1
Media Water	Station LMW-2	
Sample Type: grab	time composite	space composite
10 15 17	s (depth, volume of static well water a	
SWL - 8.40 ft below TOC (monu	ament at elev. X) (bottom at 38.1 ft bg	s, 4-in casing)
Screen Interval – 27.9-38.1 ft bgs	Monument: 2.94 ags	
Sand Pack Interval - 24.8-38.1 ft bgs	s (8-in hole) (~7.8 gal/sand pack vol))
Packer Depth - NA (~22.3 gal/cas	ing vol) (~30.1 gal/total well vol)	
Sample Description NA	Nosample	
21	1 -	
Field Measurements on Sample (p)	H, conductivity, etc.)	
SEE FIELD PARAMETERS SHEE		
Aliquot Amount Analys	sis Container	Preservation / Amount
	U	
× 1		5
Sampler (signature)	Date 6/26/	19
	Daie di cer	
Summing (simulations) MALP	n h-27.	101
Supervisor (signature)	Date U C/	
	Gal	lder Associates Inc.
SIDS 0519	GOI	uci Assuciates IIIC.

FIELD PARAMETERS SHEET

Well ID_	-MWZ		
Date 6/2	26/19		
Time Begi	n Purge_/	521	
	ect Sample_	NA	_

Water Level	Temp. Sp C / Cond DO ORP Turb							
feet bmp	Time	°C	pН	uS/cm	mg/L	mV	NTU	
8.51	1526	10.8	6.86	1021/744	0.77	-76.7	0.46	
8.55	1531	10.9	6.86	1021/746	0.64	-83.4	0.44	
				э.			· · · ·	
· · · · · · · · · · · · · · · · · · ·		>						
Comments:								
Grundfos: ~8	30 Htz		Sult	fur odor				
Flow Rate:	0.4	gpm		V V V V V V V V V V V V V V V V V V V				

Sampler's Initials_RG

SAMPLE INTEGRITY DATA SHEET

Site Location <u>Ravensdale, W</u> Sampling Location <u>Groundw</u> Technical Procedure Referen Type of Sampler <u>Dedicated F</u> Date <u>6/25/20/9</u> Media <u>Water</u> Sample Type: <u>grab</u> Sample Acquisition Measure <u>SWL - 12.55</u> ft below TOC	vater Moni nce(s) <u>TP-</u> Pump Grur	-1.4-6A, TP-1. ndfos Ti	.2-20, TP-1.2-23							
Technical Procedure Referen Type of Sampler Dedicated F Date	nce(s) <u>TP</u> - Pump Grun	- <u>1.4-6A, TP-1.</u> ndfos Ti St	.2-20, TP-1.2-23	ling tube						
Type of Sampler Dedicated F Date 6/25/2019 Media Water Sample Type: grab Sample Acquisition Measure SWL - 12.55 ft below TOC	Pump Grun	ndfos Ti St	ime							
Date <u>6/25/2019</u> Media <u>Water</u> Sample Type: <u>grab</u> Sample Acquisition Measure <u>SWL - 12.65</u> ft below TOC		Ti St								
Media <u>Water</u> Sample Type: <u>grab</u> Sample Acquisition Measure <u>SWL - 12.65</u> ft below TOC	ments (de	St								
Sample Type: <u>grab</u> Sample Acquisition Measure <u>SWL - 12.65</u> ft below TOC	ments (de									
Sample Acquisition Measure SWL - 12.55 ft below TOC	ments (de	time com								
SWL - 12.65 ft below TOC	ments (de		posite	space composite						
C										
Screen Interval – 49.8-64.8 ft	bgs M	lonument: 3.08	8 ags							
Sand Pack Interval – 47.1-64.	8 ft bgs (8-	-in hole) (~10	.4 gal/sand pack)							
Packer Depth – 39.33 ft bgs	(~36.1 gal	/casing vol) (~	-16.6 gal/packer casin	ng volume)						
		(~	-27.0 gal/total well ve	ol below packer)						
Field Measurements on Sam		onductivity, et	c.)							
Aliquot Amount A	Analysis	Container	F	Preservation / Amount						
P	7		[25]10							
Sampler (signature) <u>For</u>	R	5	Date 6/25/10							
Supervisor (signature)			Date 6.29-19	1						

FIELD PARAMETERS SHEET

Well ID LMW 3 Date 6/25/2019 Time Begin Purge 12578 Time Collect Sample NA

Water Level feet bmp	Time	Temp. °C	рН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
12.10	1303	11.0	7.74	323.7 237:		164.1	0.67
12.10	1308	11.2	7.76	324.2/238.6	1.41	126.9	0.69
12.10	1313	11.2	7.77	326.5/240	0.66	50.4	0.64
12.10	1318	11.2	7.75	328.1/241.3	0.57	3.1	0.21
12.10	1323	11.1	7.74	328.8/241.7	0.59	-12.3	0.81
12.10	1328	11.2	7.73	328.8/241.7	0.56	-23.0	0.45
				•			,
				· · · · ·	•		
						<u> </u>	

Comments:

Grundfos: 135 Htz Packer: 130psi

Flow Rate 0.59

gpm

Sampler's Initials

SAMPLE INTEGRITY DATA SHEET

Plant/Site Landsburg Mine Site	Project No. <u>923-1000-005.2019</u>
Site Location Ravensdale, WA	Sample ID No Sample
Sampling Location Groundwater Monitoring	Well End of dedicated sampling tube
Technical Procedure Reference(s) TP-1.4-6A	, TP-1.2-20, TP-1.2-23
Type of Sampler Dedicated Pump Grundfos	
Date 6/26/19	Time
Media Water	Station LMW-4
Sample Type: grab tim	e composite space composite
Sample Acquisition Measurements (depth, vo	lume of static well water and purged water, etc.)
SWL - 10.85 ft below TOC (monument at ele	ev. X) (bottom at 209.7 ft bgs, 4-in casing)
Screen Interval – 195-209.7 ft bgs Monum	
Sand Pack Interval - 189-209.7 ft bgs (8-in hol	e) (~12.3 gal/sand pack)
Packer Depth - 187.3 ft bgs (~133.3 gal/casin	g vol) (~14.6 gal/packer casing volume)
	(~26.9 gal/total well vol below packer)
** Depths corrected for 70° inclination	
Sample Description NA No Sam	ole
Field Measurements on Sample (pH, conducti	vity, etc.)
SEE FIELD PARAMETERS SHEET	
Aliquot Amount Analysis Con	tainer Preservation / Amount
Sampler (signature) <u>Revo</u>	Date 6/26/19 Date 6-27-19

FIELD PARAMETERS SHEET

Well ID	LMW4	
Date	6/26/19	
Time B	egin Purge_1605	
Time C	ollect Sample MA	

Water Level feet bmp	Time	Temp. °C	pН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
10.84	161D	10.5	7.00	1026/741	0.82	-49.0	0.23
10.85	1615	10.4	6.94	1024/739	0.68	-84.7	0.19
10.85	1620	10.5	6.94	1026/741	0.64	-88.7	0.13
10.85	1625	10.5	6.93	1027/743	0.60	-95.9	0.16
				,			
	· ·						
							5
			-				

Comments:

Grundfos: 80 Htz Packer: 110psi

Flow Rate ~ 0.25 gpm

Sampler's Initials

SAMPLE INTEGRITY DATA SHEET

Plant/Site Landsburg M	fine Site		Project No. <u>923</u>	-1000-005.2019
Site Location Ravensda	ale, WA		Sample ID <u>No S</u>	Sample
Sampling Location Green	oundwater Moni	toring Well E	nd of dedicated san	npling tube
Technical Procedure R	eference(s) <u>TP-</u>	1.4-6A, TP-1	.2-20, TP-1.2-23	1 1-1
Type of Sampler Dedic	ated Pump Grun	ndfos		
Date 6/25/19		Ti	ime	
Media Water		St	ation LMW-5	
Sample Type: gr	<u>ab</u>	time com	posite	space composite
Sample Acquisition Me	asurements (de	pth, volume o	f static well water	and purged water, etc.)
SWL - (4.1) It below	v TOC (monume	ent at elev. X)	(bottom at 241.8 ft	t bgs, 4-in casing)
Screen Interval - 231.8-	241.8 ft bgs	Monument: 3	3.24 ags	P P
Sand Pack Interval - 23	1.8-241.8 ft bgs	(8-in hole) (~	5.9 gal/sand pack)	
Packer Depth - 222.11 f	t bgs (~150.8 g	al/casing vol)	(~12.9 gal/packer	casing volume)
		(-	-18.7 gal/total well	vol below packer)
Sample Description _/ Field Measurements on SEE FIELD PARAMET	Sample (pH, co		c.)	
Aliquot Amount	Analysis	Container		Preservation / Amount
				5
		_		
1. (c)	2 2		11-1	
Sampler (signature) 🗡	us to	5	Date 6/25/1	
	0		Date 6-27-	10
Supervisor (signature)	N	-	Date 6-27	-14

Golder Associates Inc.

FIELD PARAMETERS SHEET

Well ID	LMW 5	
Date	6/25/2019	
Time B	egin Purge1417	
Time C	ollect SampleNA	

Water Level	Level Temp. Sp C / Cond DO ORP Turl								
feet bmp	Time	°C	рН	uS/cm	mg/L	mV	NTU		
14.12	1422	10.5	6.86	782/566	1.06	-96.6	0.68		
14.10	1427	i0.6	6.86	783/567	0.66	-109.4	0.85		
14.11	1432	10.7	6.86	783/569	0.57	-121.1	0.62		
<u> </u>									
						· · ·			
	<u> </u>								
Comments:									
	os: 135 Htz : 110psi		Sulfu	ir smell					
Flow R	ate 👌	8 g	Ipm						

Sampler's Initials_R6

SAMPLE INTEGRITY DATA SHEET

Plant/Site Landsburg Mi	ne Site	Proj	Project No. <u>923-1000-005.2019</u>			
Site Location <u>Ravensdal</u>	Sam	Sample ID No Sample				
Sampling Location <u>Grou</u>	undwater Monito	oring Well End of d	edicated sampli	ing tube		
Technical Procedure Re	ference(s) <u>TP-1</u>	.4-6A, TP-1.2-20,	ГР-1.2-23			
Type of Sampler Dedica	ted Pump Grund	dfos				
Date 6/26/2019		Time				
Media Water	Station LMW-6					
Sample Type: gra	<u>b</u>	time composite		space composite		
Sample Acquisition Mea SWL - 32.6 ft below		oth, volume of static nt at elev. X) (botto				
Screen Interval - 90.9-10	5.9 ft bgs N	10nument: 3.05 ags				
Sand Pack Interval - 82.5	i-105.9 ft bgs (8	-in hole) (~13.7 ga	l/sand pack)			
Packer Depth – 81.22 ft b	gs (~53 gal/ca	sing vol) (~16.1 gal	/packer casing	volume)		
		(~29.9 g	al/total well vol	l below packer)		
Sample Description	4 - No Sampl	e				
Aliquot Amount	Analysis	Container	Pr	reservation / Amount		
Sampler (signature)	un dre	Date	6/26/19	5		
Supervisor (signature) _	In	Date	6-27-19			

Golder Associates Inc.

FIELD PARAMETERS SHEET

Well ID LMW6 Date 6-26-2017 Time Begin Purge 0909 Time Collect Sample MA

feet bmp		°C	nH.	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
01/0	Time		pH		-		
31.63	0914	9.5	6.80	266.9/187.9	1.13	-6.8	5.90
31.63	0919	9.8	6.81	266.8/189.2	0,74	-25.0	3.15
31.63	6924	9.8	6.22	266.7/184.2	0.67	-29.9	2.53
31.63	6929	9.8	6.83	266.9/189.4	0.64	~33.1	1.67
31.63	0934	9.8	6.83	266.8/189.5		-34.5	1.59
		·					

Comments:

Grundfos: 180 Htz Packer: 110psi

Flow Rate 0.75 gpm

Sampler's Initials

SAMPLE INTEGRITY DATA SHEET

Plant/Site Landsburg Mine Site	Project No. <u>923-1000-005.2019</u>				
Site Location Ravensdale, WA	Sample ID No Sample				
Sampling Location Groundwater Mon	nitoring Well End of dedicated sampling tube				
Technical Procedure Reference(s) T					
Type of Sampler <u>Dedicated Pump Gru</u>					
	Time N/A wycmph.				
Media Water	Station <u>LMW-7</u>				
Sample Type: grab	time composite space composite				
Sample Acquisition Measurements (2 SWL - 22.3.22 ft below TOC (monum	lepth, volume of static well water and purged water, etc.) tent at elev. X) (bottom at 253.7 ft bgs, 4-in casing)				
Screen Interval – 239.6-253.7 ft bgs					
Sand Pack Interval – NA					
Packer Depth – NA (~28.3 gal/casing	vol) ** Depths corrected for 70° inclination				
Sample Description NA- No S	1				
	The second se				
Field Measurements on Sample (pH, SEE FIELD PARAMETERS SHEET					
Aliquot Amount Analysis	Container Preservation / Amount				
Sampler (signature) <u>Kor</u>	Date <u>6/25/19</u>				
Supervisor (signature)	Date 6-27-19				

Golder Associates Inc.

Well ID LMW 7	
Date 6/25/19	
Time Begin Purge_ 0932	
Time Collect Sample MA	

Time	Temp. ℃	pН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
0937	12.9	7.19	499.0/3840	0.84	76.2	15.3
0942	13.0	7.21	498.7/384.0	0.76	47.4	6.87
0946	13.0	7.23	499.0/384.9	0.71	<i>n.</i> 4	3.72
0952	13.0	7.22	506/390.7	0.66	-15.1	2.90
0957	13.0	7.17	533/4127	0.64	- 36.8	2.05
1000	13.1	7.13	547/422.5	0.63	-46.1	1.38
*						
	0937 0942 0946 0952 0957	Time°C093712.9094213.0094613.0095213.0095713.0	Time°CpH093712.97.19094213.07.21094613.07.23095213.07.22095713.07.17	Time°CpHuS/cm093712.97.19499.0/3840094213.07.21498.7/3840094613.07.23499.0/384.9095213.07.22506/390.7095713.07.17533/412.7	Time°CpHuS/cmmg/L093712.97.19499.0/38400.84094213.07.21498.7/38400.76094613.07.23499.0/38490.71095213.07.22506/390.70.66095713.07.17533/412.70.64	Time $^{\circ}$ CpHuS/cmmg/LmV093712.97.19499.0/38400.8476.2094213.07.21498.7/38400.7647.4094613.07.23499.0/384.90.7111.4095213.07.22506/390.70.66-15.1095713.07.17633/412.70.64-36.8

Comments:

Grundfos: 320 Htz

Flow Rate ~0.5 gpm

Water level meter Stuck at 211' bys brip, no measurements taken during purge

Sampler's Initials RG

Plant/Site Landsburg Mine Sit	e	Project No. <u>923-100</u>	00-005.2019
Site Location <u>Ravensdale</u> , WA	<u>k</u>	Sample ID <u>No Sam</u>	ple
Sampling Location <u>Groundwa</u>	ter Monitoring Well Er	nd of dedicated sampli	ng tube
Technical Procedure Reference	ce(s) <u>TP-1.4-6A, TP-1.</u>	2-20, TP-1.2-23	
Type of Sampler <u>New Tubing</u>	and Peristaltic Pump		
Date 6/25/2019	Ti	me	
Media Water	St	ation <u>LMW-8</u>	
Sample Type: grab	time com	posite	space composite
Sample Acquisition Measuren	nents (depth, volume o	f static well water and	purged water, etc.)
SWL-4.72 ft below TOC			
Screen Interval – 8-13 ft bgs			
Sand Pack Interval – 6-13 ft bg	s (8-in hole) (~5.1 gal/	sand pack)	
Packer Depth – NA (~1.9 gal/	casing vol) (~7.0	gal/total well vol)	
Sample Description <u>MA</u> -	the second se		
Field Measurements on Samp	le (pH, conductivity, et	c.)	
SEE FIELD PARAMETERS S			
Aliquot Amount A	nalysis Container	Pr	eservation / Amount
1.			
			15
5			
	1		
Sampler (signature)	Isag	Date 6/25/19	1992 - H
٥.	20		
Supervisor (signature)		Date 6.27.19	

Date 6/25/2019	_
Time Begin Purge 1512	
Time Collect SampleA	_

Water Level		Temp.		Sp C / Cond	DO	ORP	Turbidity
feet bmp	Time	°C	рН	uS/cm	mg/L	mV	NTU
6.32	1517	12.7		646/494.0	0.78	-94.8	5.70
7.40	1522	12.6	6.81	662/505	0.66		4.55
	+527			note*-			
·							
	L		L	· · · · · · · · · · · · · · · · · · ·	1		
Comments:		* Param	eters a	Iready cov	nsistent	- 6/	
		previo	us nou	.nd			
Flow R	ate	g	lpm				
	3	50 mL/m:	1 1 1				
L	1.						

Sampler's Initials

Plant/Site Landsburg Mine S	ite Project No. <u>923-1000-005.2019</u>
Site Location Ravensdale, W	A Sample ID No Sample
Sampling Location Groundy	rater Monitoring Well End of dedicated sampling tube
Technical Procedure Refere	nce(s) TP-1.4-6A, TP-1.2-20, TP-1.2-23
Type of Sampler Dedicated	ED Bladder
Date 6/25/19	Time
Media Water	Station LMW-9
Sample Type: grab	time composite space compos
Sample Acquisition Measur SWL - 99-77 ft below TO	ments (depth, volume of static well water and purged water, etc. (PVC at black notch) (bottom at 159 ft bgs, 2-in casing)
	gs PVC stickup: 2.86 ags
Sand Pack Interval - 143.5-1	9 ft bgs (8-in hole) (~11.4 gal/sand pack)
Packer Depth – NA (~10.2)	al/casing vol) (~21.6 gal/total well vol)
Sample Description <u>NA</u> Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS Aliquot Amount	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS	ple (pH, conductivity, etc.)
Field Measurements on Sam SEE FIELD PARAMETERS Aliquot Amount	ple (pH, conductivity, etc.)

Well ID LMW 9	
Date 6/25/19	
Time Begin Purge	11:20
Time Collect Sample	NA

Water Level		Temp.		Sp C / Cond		ORP	Turbidity
feet bmp	Time	°C	рН	uS/cm	mg/L	mV	NTU
49.79	11:25	10.3	7.00	725/522	2.27	-4.2	0.65
99.78	11:30	10.4	6.96	726/523	2,26	-29.0	0.44
99.79	1140	10.4	6.96	726/524	3.37*	- 39.0	0.25
99.79	1145	10.4	6.97	726/524	0.92	-47.6	0.71
99.80	1150	10.4	6.97	726/524	0.83	-50.7	0.31
		+					
					•		
Comments:			D (2)	maller -	20 E 11	4	
Tank: 1	30	* Bad Caugh	D.U. It. Fixe	reading, c	nr bubb	des	
Throttle	: 95						

CPM: 2

CID:50 751 Changed CID to 51

Flow Rate 500 mL/min

Sampler's Initials______

Plant/Site Landsburg Mine Site	Project No. <u>923-1000-005.2019</u>						
Site Location Ravensdale, WA	Sample ID No Sample						
Sampling Location Groundwater Monitoring Well End of dedicated sampling tube							
Technical Procedure Reference(s)	TP-1.4-6A, TP-1.2-20, TP-1.2-23						
Type of Sampler Dedicated QED E	Bladder						
Date 6/26/19	Time						
Media Water	Station LMW-10						
Sample Type: grab	time composite space composite						
Sample Acquisition Measurements	s (depth, volume of static well water and purged water, etc.)						
SWL - 0.5/ H below TOC (PV	C) (bottom at 289 ft bgs, 4-in casing)						
Screen Interval - 267-289 ft bgs	PVC stickup: 3.12 ags						
Sand Pack Interval - 258-289 ft bgs	(9-in hole) (~18.2 gal/sand pack)						
Packer Depth - NA (~191 gal/casin	ng vol) (~209 gal/total well vol)						
Sample DescriptionNA - N							
Field Measurements on Sample (pl	H, conductivity, etc.)						
SEE FIELD PARAMETERS SHEE	<u>.T</u>						
Aliquot Amount Analys	sis Container Preservation / Amount						
N							
Sampler (signature) Recorder	Date 6/26/19						
Supervisor (signature)	Date 6-27-19						

Well ID LMW 10	
Date_6/26/19 810	_
Time Begin Purge # 1330	
Time Collect Sample	

Water Level feet bmp	Time	Temp. °C	рН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU	
1.08	1335	11.7	8.69	378.0/281.9	0.65	-130.0	0.98	RG
1.58	1340	11.6	8.69	3783	0.59	-168.9	4.15	0.75
•								
								6
								S.
	<u> </u>							
Comments:								
ר	Fank: 110							

Throttle: 40

CPM: 2

CID:50

Flow Rate 350 mL/min gpm

Sampler's Initials

Plant/Site Landsburg Mine Site	Project No. <u>923-1000-005.2019</u>				
Site Location Ravensdale, WA	Sample ID No Sample Well End of dedicated sampling tube				
Sampling Location Groundwater Monitoring					
Technical Procedure Reference(s) <u>TP-1.4-6</u> A	A, TP-1.2-20, TP-1.2-23				
Type of Sampler Dedicated QED Bladder					
Date 6/25/2019	Time				
Media Water	Station LMW-11				
Sample Type: grab tir	me composite space composite				
SwL – 15783 ft below TOC (PVC) (bottom	olume of static well water and purged water, etc.) at 707 ft bgs, 4-in casing)				
Screen Interval – 696-707 ft bgs PVC stick	kup: 2.70 ags				
Sand Pack Interval - 688-707 ft bgs (8-in hole) (~11.2 gal/sand pack)				
Packer Depth - NA (~360.4 gal/casing vol)	(~371.6 gal/total well vol)				
Field Measurements on Sample (pH, conduct SEE FIELD PARAMETERS SHEET	ivity, etc.)				
Aliquot Amount Analysis Cor	ntainer Preservation / Amount				
Sampler (signature) <u><i>Reco Gypo</i></u>	Date <u>6/25/2019</u>				
Supervisor (signature)	Date Date				

Well ID <u>LMw II</u> Date <u>6/25/2019</u> Time Begin Purge <u>1620</u> Time Collect Sample _____A

Water Level		Temp.		Sp C / Cond	DO	ORP	Turbidity
feet bmp	Time	°C	рН	uS/cm	mg/L	mV	NTU
157.83	1625	10.2	7.23	545/392	2.07	-58.3	1.14
157.84	1630	10.1	7.20	544/390.0	1.37	-62.7	1.08
157.83	1635	10.0	7.20	546/389.9	1.06	-70.2	0.44
157.83	1640	10-0	7.20	548/391.4	0.95	-75.3	0.28
			1				

Comments:

Tank: 130

Throttle: 110

CPM: 1 CID: 20 > 16 Flow Rate 375 mL/min

Sampler's Initials

۴.

Plant/Site Landsburg Mine Site	Project No. <u>923-1000-005.2019</u>					
Site Location Ravensdale, WA	Sample ID No Sample					
Sampling Location Groundwater M	Monitoring Well End of dedicated sampling tube					
Technical Procedure Reference(s)	<u>TP-1.4-6A, TP-1.2-20, TP-1.2-23</u>					
Type of Sampler _ Dedicated QED	Bladder					
Date 6/26/19 Time						
Media Water	Station LMW-12					
Sample Type: grab	time composite space composite					
SWL- 11,13 @ 1135 top	s (depth, volume of static well water and purged water, etc.)					
Screen Interval – 15-25						
Sand Pack Interval – 11-25						
Packer Depth – NA						
Sample Description <u>NA - 1</u>	Vo Sample					
Field Measurements on Sample (p SEE FIELD PARAMETERS SHEE	ET					
Aliquot Amount Analy	sis Container Preservation / Amount					
Sampler (signature)	Date 6/26/19					
Supervisor (signature)	Date 6 (7-19					
	ia din					

Well ID LMW12	
Date 6/26/19	
Time Begin Purge 1137	
Time Collect Sample 11A	_

11

Water Level feet bmp	Time	Temp. °C	pН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
1 10.98	1142	10.5	6.71	945/682	0.74	-68.8	19.7
11.11	1147	10.4	6.72	945/681	0.65	-71.8	15.4
•							
· · · · · · · · · · · · · · · · · · ·							
)

Comments:		
	Tank: 110	
	Throttle: 20	
	CPM: 2	
	CID: 47	
	Flow Rate 450 mL/min	

Sampler's Initials_14

Plant/Site Landsburg Mine S	ite		Project	No. <u>923-1</u>	000-005.2019		
Site Location Ravensdale, W	A	<u> </u>	Sample ID No Sample				
Sampling Location Groundy	vater Monii	toring Well E	nd of dedie	cated samp	ling tube		
Technical Procedure Refere			.2-20, TP-	1.2-23			
Type of Sampler Dedicated	QED Blade	ler		_			
Date 6/26/19		T	ime	_			
Media Water		St	tation <u>LM</u>	W-13R			
Sample Type: grab		time com	posite		space composite		
Sample Acquisition Measure SWL - 11.65 @ 1200							
Screen Interval –115-140				(a)			
Sand Pack Interval -110-150				_			
Packer Depth – NA	- No E			_			
Field Measurements on Sam SEE FIELD PARAMETERS		onductivity, et	ic.)				
Aliquot Amount	Analysis	Container		P	Preservation / Amount		
				6			
0							
					M D I		
Sampler (signature) <u>Res</u> Supervisor (signature)			Date	6/26/19 1-27-1	9		

Well ID LMW 13R	
Date 6/26/19	
	(20)
Time Collect Sample	NA

Water Level feet bmp	Time	Temp. °C	рН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
11.86	1206	10.9	7.38	953/696	0.74	-105.6	1.15
11.84	1211	11.0	7.39	995/701	0.63	-114.2	0.58
	•			-			

Comments:

Tank:	110
Thrott	le: 35

CPM: 2

CID: 48

Flow Rate

400 mL/min

Sampler's Initials_______

Plant/Site Landsburg Mi	ne Site		Project No. <u>92</u>	2 <u>3-1000-005.2019</u>			
Site Location Ravensdale, WA			Sample ID No Sample				
Sampling Location Gro	undwater Moni	toring Well E	nd of dedicated s	ampling tube			
Technical Procedure Re	ference(s) <u>TP</u> -	-1.4-6A, TP-1	.2-20, TP-1.2-23				
Type of Sampler <u>Dedic</u>	ated QED Blad	der					
Date 6/26/2013		Ti	ime				
Media Water	-	St	tation LMW-14				
Sample Type: gra	b	time com	posite	space composite			
Sample Acquisition Means SWL - 166.38 Below	surements (de	pth, volume o	of static well wate ckup 2.90' ags	r and purged water, etc.)			
Screen Interval – 156.5-1							
Sand Pack Interval – 152	.5-175.8' bgs						
Packer Depth – NA	_	** Der	oths corrected for	75° inclination			
Field Measurements on SEE FIELD PARAMET		onductivity, et	ic.)				
Aliquot Amount	Analysis	Container		Preservation / Amount			
		-	-				
Sampler (signature) 💆	ed and		Date 6/2-6/	2019			
Supervisor (signature) _	h		Date 6-27	<u>\19</u>			

Well ID <u>LMW14</u> Date <u>6/26/19</u> Time Begin Purge <u>1022</u> Time Collect Sample <u>NA</u>

Water Level feet bmp	Time	Temp. °C	рН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
166.51	1027	10.8	And a state of the local division of the loc		4.10	-6.9	24.8
166.56	1032	10.7		2136/1552	1.42	-40.8	3.3]
166.56	1037	10.6	÷	2123/1540	1.14	-38.1	2.16
					ę		
-	··					,	
-							

Comments:

Tank: 140

Throttle: 115

CPM: 2

CID: 47 49

Flow Rate 400 mL/min gpm

Sampler's Initials_R6

Plant/Site Landsb	urg Mine Site	Project No	Project No. <u>923-1000-005.2019</u>			
Site Location Rav	ensdale, WA	Sample ID	Sample ID No Sample			
Sampling Location	n <u>Groundwater Monit</u>	oring Well End of dedicate	ed sampling tube			
Technical Procedu	re Reference(s) TP-	1.4-6A, TP-1.2-20, TP-1.2				
	Dedicated QED Blade		-25			
Date 6/25/19	Dedicated QLD Diade	Time				
Media Water Station LMW-15						
Sample Type:	grab	time composite	space composite			
		•	vater and purged water, etc.)			
SWL - 151.84	@ 1700 Below -	top of bladdar pump	mount			
Screen Interval -2						
Sand Pack Interval						
Packer Depth – NA						
Sample Descriptio	414	Samolo				
Sample Descriptio		ange	and the second se			
Field Measuremen	its on Sample (pH, co	nductivity etc.)				
	METERS SHEET					
SDBT1000 THR						
Aliquot Amount	Analysis	Container	Preservation / Amount			
Sampler (signatur	e) las the	Date 6/	25/2019			
	0					
Supervisor (signat	ure)	Date	27.14			
- • •						

Well ID LMW 15	
Date 6/25/19	
Time Begin Purge 1702	
Time Collect Sample NA	

Water Level feet bmp	Time	Temp. °C	рН	Sp C / Cond uS/cm	DO mg/L	ORP mV	Turbidity NTU
151.82	1707	10.1	7.47	495.3/3543	2.90	-93.9	3.01
151.84	1712	9.9	7.52	497.7/8545	1.33	-128.7	3.06
151-84	דורו	9.9	7.52	503/357.9	1.06	-134.9	2.68
						r.	
					· · · · · ·		
	,						

Comments:

Tank: 130psi

Throttle: 95psi

CPM: 2

CID:53

Flow Rate 400 mL/min gpm

Sampler's Initials_RG