Port of Longview TPH Site

Remedial Investigation Work Plan

Prepared for

Port of Longview 10 Port Way Longview, Washington 98632

October 2019

FLOYD | SNIDER

strategy • science • engineering Two Union Square • 601 Union Street • Suite 600 Seattle, Washington 98101 • tel: 206.292.2078

Certified

LIMITATIONS

This work plan has been prepared for the exclusive use of the Port of Longview, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this work plan for any purpose other than that originally intended, unless Floyd |Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd |Snider.

The interpretations and conclusions contained in this work plan are based in part on site characterization data collected by others. Floyd|Snider cannot ensure the accuracy of this information.

Table of Contents

1.0	Introd	Introduction 1-1				
	1.1	BACKGR	ROUND 1-1			
	1.2	WORK F	PLAN ORGANIZATION			
2.0	Site Description 2-1					
	2.1	GENERAL FACILITY INFORMATION2-1				
	2.2	SITE HIS	TORY AND OPERATIONS2-1			
	2.3	PHYSICA	AL SETTING, GEOLOGY, AND HYDROGEOLOGY			
3.0	Previous Investigations and Remedial Actions					
	3.1	1991 TC	2013 INVESTIGATIONS AND REMEDIAL ACTIONS			
	3.2	2011 AND 2016 SEDIMENT INVESTIGATIONS				
	3.3	2015 PRIORITY DATA GAPS INVESTIGATION				
	3.4	2019 EARLY SEASON GROUNDWATER SAMPLING AND MONITORING				
4.0	Preliminary Conceptual Site Model 4-1					
	4.1	CONTAI	VINANTS, SOURCES, AND RELEASE MECHANISMS			
	4.2	EXTENT	OF IMPACTED MEDIA			
		4.2.1	Soil			
		4.2.2	Groundwater			
	4.3	POTENT	TAL RECEPTORS AND EXPOSURE PATHWAYS			
	4.4	SOIL AND GROUNDWATER SCREENING LEVELS				
5.0	Data Needs and Sampling Plan5-1					
	5.1	DATA N	EEDS RELATED TO NATURE AND EXTENT OF IMPACTS5-1			
		5.1.1	AOPC 1: Soil and Groundwater near Southern Pipelines			
		5.1.2	AOPC 2: Former AST Area5-3			
		5.1.3	AOPC 3: Former Mechanic's Shop USTs5-4			
		5.1.4	AOPC 4: Monitoring Well MW-195-5			
		5.1.5	AOPC 5: Former Fuel Loading Racks			
		5.1.6	AOPC 6: Former Calloway Ross Parcel5-7			
		5.1.6 5.1.7	AOPC 6: Former Calloway Ross Parcel5-7AOPC 7: Monitoring Wells MW-26 and MW-285-7			

	5.2	OTHER DATA NEEDS				
		5.2.1	Groundwater Monitoring, Seasonal Variability, and Other Parameters			
		5.2.2	Hydrogeologic Characterization5-10			
6.0	Remedial Investigation Tasks and Schedule					
	6.1	REMEDI	AL INVESTIGATION FIELD INVESTIGATION			
	6.2	INTERIM	I DATA REPORT 6-1			
	6.3	GROUNI	DWATER MONITORING 6-1			
	6.4	REMEDI	AL INVESTIGATION REPORT			
	6.5	SCHEDU	LE			
7.0	Project Team and Responsibilities7-1					
	7.1	WASHIN	GTON STATE DEPARTMENT OF ECOLOGY			
	7.2	PORT OF	LONGVIEW			
	7.3	PLP GRC	0UP7-1			
	7.4	FLOYD	5NIDER			
	7.5	LABORA	TORY			
	7.6	OTHER S	SUBCONTRACTORS—GEOPHYSICAL, DRILLER, AND SURVEYOR			
8.0	References					

List of Tables

- Table 3.1Sediment Physical and Chemical Analytical Results from 2011
- Table 3.2Sediment Physical and Chemical Analytical Results from 2016
- Table 4.1 Soil Analytical Results for TPH, BTEX, and Lead
- Table 4.2Soil Analytical Results for VOCs and EPH/VPH
- Table 4.3Groundwater Analytical Results for TPH and BTEX—2015 Priority Data Gaps
Results
- Table 4.4Groundwater Analytical Results for TPH and BTEX—2019 Monitoring Well Results
- Table 4.5 Well Screen Depths
- Table 4.6 Preliminary Screening Levels
- Table 5.1Summary of Proposed Data Collection by Areas of Potential Concern

List of Figures

- Figure 1.1 Vicinity Map
- Figure 1.2 Site Map
- Figure 2.1 Site Map and Sample Locations
- Figure 2.2 Preliminary Cross Section A-A'
- Figure 4.1 Preliminary Conceptual Site Model
- Figure 4.2 Historical Soil Analytical Data and Locations—2015 Priority Data Gaps Results
- Figure 4.3 Historical Groundwater Analytical Data and Locations in the Vadose Zone—2015 Priority Data Gaps Results
- Figure 4.4 Historical Groundwater Analytical Data and Locations in the Alluvial Aquifer— 2015 Priority Data Gaps Results
- Figure 4.5 Current Groundwater Analytical Data and Locations in the Vadose Zone—2019 Monitoring Well Results
- Figure 4.6 Current Groundwater Analytical Data and Locations in the Alluvial Aquifer—2019 Monitoring Well Results
- Figure 5.1 Areas of Potential Concern and Proposed RI Data Collection Locations

List of Appendices

- Appendix A Documents Reviewed
- Appendix B Available Soil and Groundwater Data from Prior Investigations
- Appendix C Historical Potentiometric Contour Maps
- Appendix D Laboratory Reports
- Appendix E Groundwater Field Sampling Forms
- Appendix F Sampling and Analysis Plan/Quality Assurance Project Plan
- Appendix G Health and Safety Plan
- Appendix H Boring Logs

List of Acronyms and Abbreviations

Acronym/ Abbreviation	Definition
2016 VI Guidance	Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion
Agreed Order	Agreed Order #DE 15907
AOPC	Area of potential concern
AST	Aboveground storage tank
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
Chevron	Chevron Environmental Management Company
COC	Contaminant of concern
сРАН	Carcinogenic polycyclic aromatic hydrocarbon
CSM	Conceptual site model
CUL	Cleanup level
CY	Cubic yards
Data Gaps Report	Priority Data Gaps Investigation Work Plan
DRO	Diesel-range organics
Ecology	Washington State Department of Ecology
EIM	Environmental Information Management
FS	Feasibility Study
Golder	Golder Associates
GPR	Ground-penetrating radar
GRO	Gasoline-range organics
HPT	Hydraulic profiling tool
LNAPL	Light non-aqueous-phase liquid
μg/L	Micrograms per liter
MSL	Mean sea level
MTCA	Model Toxics Control Act
OIP	Optical Image Profiler
ORO	Oil-range organics

Acronym/ Abbreviation	Definition
ORP	Oxidation reduction potential
PAH	Polycyclic aromatic hydrocarbon
PLP	Potentially liable party
Port	Port of Longview
QAPP	Quality Assurance Project Plan
RI	Remedial Investigation
SAP	Sampling and Analysis Plan
SEF	Sediment Evaluation Framework
Site	Port of Longview Total Petroleum Hydrocarbons Site
SMS	Sediment Management Standards
Standard Oil	Standard Oil Company of California
ТРН	Total petroleum hydrocarbons
USEPA	U.S. Environmental Protection Agency
UST	Underground storage tank
VI	Vapor intrusion
VOC	Volatile organic compound
Wilcox & Flegel	Wilcox & Flegel Oil Company
Work Plan	Remedial Investigation Work Plan

1.0 Introduction

This document presents a work plan for the Remedial Investigation (RI) of the Port of Longview (Port) Total Petroleum Hydrocarbons (TPH) Site (Site) in Longview, Washington (Figure 1.1). The RI Work Plan (Work Plan) is a specific requirement of Agreed Order # DE 15907 (Agreed Order) between the Port, Chevron Environmental Management Company (Chevron), Georgia-Pacific, and the Washington State Department of Ecology (Ecology). Other potentially liable parties (PLPs) related to the Site include Wilcox & Flegel Oil Company (Wilcox & Flegel; formerly Wilson Oil, Inc.), and Longview Fibre Paper and Packaging, Inc.¹ The PLPs are collectively referred to as the PLP Group.

1.1 BACKGROUND

The Site is located at 10 Port Way in Longview, Washington, on the north side of the Columbia River, directly east of the Lewis and Clark Bridge. The total area of the Port's property that encompasses the Site is approximately 28.2 acres and currently consists of an office for the Port, multiple buildings and warehouses, several berths, and a railyard (Figure 1.2).

Weyerhaeuser's property, a log export facility, is adjacent to (northwest of) the Site, and Wilcox & Flegel, an active bulk fuel facility formerly owned by Chevron, is located to the northeast. All other adjacent properties are owned by the Port. Land uses at the Site and in the surrounding area are industrial.

As a result of the discovery of releases of petroleum products to soil and groundwater associated with various historical uses, the Site was included on the Ecology list of confirmed and suspected impacted sites list in 1991. In the past, investigation and remediation work as well as routine groundwater monitoring at the Site have been accomplished cooperatively between the Port of Longview, Chevron, Longview Fibre, and the James River Corporation (a corporate successor to Crown Zellerbach and corporate predecessor of Georgia-Pacific).

Following the cessation of routine groundwater monitoring in 2013, the Port undertook a review of data gaps and conducted an additional investigation in 2015. The results of that work are described in the *Priority Data Gaps Investigation Work Plan* (Data Gaps Report; Floyd|Snider 2015) and provide the basis for much of the scope of the RI activities described in this Work Plan.

In 2016, Ecology issued PLP letters to the Port, Chevron, Georgia-Pacific, Wilcox & Flegel, and KapStone. The Port, Chevron, and Georgia-Pacific (PLP Group) worked with Ecology to prepare the Agreed Order, which underwent public comment and was entered with an effective date of February 13, 2019.

¹ Longview Fibre Paper and Packaging, Inc., will be referenced as Longview Fibre in this document; Longview Fibre is also associated with KapStone Kraft Paper Corporation, which is referenced in the Agreed Order.

1.2 WORK PLAN ORGANIZATION

This Work Plan is organized as follows:

- Section 2.0—Site Description. Presents a description of the Site including a summary of the history of the Site and the physical setting.
- Section 3.0—Previous Investigations and Remedial Actions. Summarizes previous investigations and remedial actions that have been conducted at the Site.
- Section 4.0—Preliminary Conceptual Site Model. Presents the preliminary Conceptual Site Model (CSM) for the Site, including the preliminary contaminants of concern (COCs) and pathways, and preliminary screening levels proposed for the RI.
- Section 5.0—Data Needs and Sampling Plan. Presents the identified data needs based on previous data and details the data that will be collected. Refers to the additional site investigation plans, including the Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan.
- Section 6.0—Remedial Investigation Tasks and Schedule. Outlines major tasks for RI activities and schedule for implementing this Work Plan.
- Section 7.0—Project Team and Responsibilities. Describes technical consultants and Ecology's responsibilities for analysis and authorship of the RI.
- Section 8.0—References. Presents the sources cited in this Work Plan.

Documentation supporting this Work Plan are provided in the following appendices:

- Appendix A—Documents Reviewed
- Appendix B—Available Soil and Groundwater Data from Prior Investigations
- Appendix C—Historical Potentiometric Contour Maps
- Appendix D—Laboratory Reports
- Appendix E—Groundwater Field Sampling Forms
- Appendix F—Sampling and Analysis Plan/Quality Assurance Project Plan
- Appendix G—Health and Safety Plan
- Appendix H—Boring Logs

2.0 Site Description

2.1 GENERAL FACILITY INFORMATION

The Site is designated Ecology Facility Site ID No: 42978181 and is officially referred to as the Port of Longview TPH Site. The Site is located at 10 Port Way in Longview, Washington, on Cowlitz County parcels 10171, 10180, and 1018101, Section 8/Township 7N/Range 2W. The total area of the Site is approximately 28.2 acres.

The site is currently zoned as heavy industrial and is used for Port operations, including berths on the Columbia River and an active railyard, and storage of goods, vehicles, and heavy machinery. The site is expected to have similar land use in the future.

2.2 SITE HISTORY AND OPERATIONS

This section summarizes relevant historical Site operations based on information provided in previous reports about the Site (Golder 1994, 2000; Landau 2012) supplemented by the Agreed Order and by Floyd | Snider's review of additional Site records. The list of documents reviewed is provided in Appendix A. Prior analytical data from various investigations and monitoring events were reviewed and consolidated. A tabulation of prior data is provided in Appendix B.

Since the early twentieth century, the Port has been operating at its location on the Columbia River primarily as a bulk and break bulk import and export facility. The Site area encompasses a ship berth, a railyard, and associated warehouse buildings to accommodate the import and export activities. The following history is drawn from Section V of the Findings of Fact in the Agreed Order dated February 13, 2019.

The names given to the various facilities are naming conventions only. Many of the named facilities were owned or operated by multiple PLPs. For example, the Chevron Pipeline was owned or operated by predecessors of Chevron, by the Port, and by predecessors of Wilcox & Flegel. The Longview Pipeline was owned or operated by predecessors of WestRock and predecessors of Georgia-Pacific. References to these facilities by name (e.g., Chevron Pipeline or Longview Pipeline) are not intended to suggest that those entities, their predecessors, or their successors are liable or otherwise responsible for possible releases from them described in the Agreed Order or in this Work Plan.

"A. The Port of Longview consists of multiple parcels along the Columbia River spanning approximately 835 acres. The parcel where the Site is primarily located is owned by the Port of Longview, and is designated as Heavy Industrial in the City of Longview's zoning code (Chapter 19.58 Longview Municipal Code) and lies approximately 31 feet above mean sea level, and is depicted on [Figure 1.2 of this Work Plan]. The investigation data to date indicate the Site is approximately 28.2 acres in size, as depicted [on Figure 1.2 of this Work Plan]. The Site is almost entirely paved, except for areas of rail track infrastructure.

- "B. The Site is bordered in each direction by the following: The Columbia River to the southwest; Washington State Route 433 (Lewis & Clark Bridge) and an active lumber production facility owned by Weyerhaeuser NR Company to the northwest; an active bulk fuel facility (Bulk Plant) owned by Wilson and formerly owned by Chevron to the northeast; and property currently owned by the Port and formerly owned by International Paper Company to the southeast. BNSF Railway Company owns and operates rail lines that traverse the Site.
- "C. The area of land within the Site has been owned primarily by the Port since the early 1900s. The Port formerly operated a 4,000-gallon underground storage tank (UST) and an 8,000-gallon UST on the Port Property (Port USTs). Calloway Ross, Inc. (Calloway) operated a 675-gallon UST (Calloway UST) on the Port Property. The United States Army Reserve operated a 2,800-gallon UST on the Port Property (Army UST). Correspondence between Wilson and the Port in 1993 suggests an additional UST used to stored gasoline may have been located near the Army Reserve building on the Port Property.
- "D. Chevron, or its predecessor, Standard Oil Company of California (Standard Oil) installed pipelines on the Site in 1926 that ran parallel to Port Way beneath the BNSF rail lines, to transfer petroleum products between the Bulk Plant and shipping berths along the Columbia River (Standard Pipelines). Standard Oil or Chevron owned the Standard Pipelines until 1986, when they were conveyed to the Port under the terms of a Termination of License Agreement (Termination Agreement). In accordance with the Termination Agreement, Chevron removed hydrocarbon liquids from the Standard Pipelines, cleaned the Standard Pipelines between the Bulk Plant and their terminus at the shipping berths, and flushed the Standard Pipelines with water and air.
- "E. KapStone (formerly Longview Fibre Company) constructed and began operating a pipeline (Longview Pipeline), fuel loading racks, and an 80,000 barrel aboveground storage tank (AST) on the Port Property in approximately 1935 to transfer and store petroleum products. The Longview Pipeline was positioned slightly east of the Standard Pipelines. In the 1950s, the AST was connected to the Standard Pipelines. After the connection was made, petroleum products were transferred to the AST from the Standard Pipelines. KapStone owned the Longview Pipeline, fuel loading racks, and AST until 1973, when it sold the AST to Crown Zellerbach Corporation ("Crown Zellerbach"), a corporate predecessor of Georgia-Pacific.
- "F. Crown Zellerbach owned the AST from 1973 to 1983. Crown Zellerbach used the AST and Standard Pipelines to transfer and store petroleum products and ballast seawater from tanker ships.

- "G. Wilson operated the Standard Pipelines on behalf of Chevron and Standard Oil between 1971 and 1985. Wilson operated the AST on behalf of Crown Zellerbach between 1974 and 1983.
- "H. The Standard Pipelines, Longview Pipeline, loading racks, AST, Calloway UST, Port USTs, and Army UST have been abandoned and/or removed in various phases. No petroleum products have been stored or distributed at the Site since 1996.
- "I. Petroleum contaminated soil and groundwater was first discovered in 1991 during the decommissioning and removal of the Calloway UST, located in the northwestern corner of the Site. The Port conducted several phases of subsurface investigations between 1992 and 1994 in response to this discovery. The results of the subsurface investigations are generally summarized in a *Phase IV Characterization Report Bunker C and Diesel Fuel Investigation*, prepared by Golder Associates, dated December 7, 1994. A brief summary of each of these phases is provided below and a figure of the related areas is included [as Figure 1.2 of this Work Plan].
 - "i. Phase 1: Gasoline, diesel fuel, and Bunker C were detected in soil and groundwater in the railyard east of Warehouse 9, as well as in the area formerly leased by Calloway.
 - "ii. Phase 2: Petroleum contaminated soil and groundwater were detected and associated with the Calloway UST and the Standard Pipelines and Longview Pipeline.
 - "iii. Phase 3: Two separate zones of soil and groundwater contamination were characterized, suggesting that at least two separate and distinct leaks from pipes have occurred.
 - "iv. As a separate action from the investigations originating with the Calloway UST, the Port removed the Port USTs from the vicinity of the mechanics shop at the time of the Phase 3 investigation. Analysis of groundwater samples near the mechanic shop indicated the presence of gasoline, diesel, and Bunker C. Because the USTs reportedly only contained gasoline, a Phase 4 investigation was conducted to investigate the mechanic shop area and the pipeline locations between the mechanics shop and the Columbia River for the source of diesel and Bunker C contamination.
 - "v. Phase 4: Soil and groundwater were found to contain significant concentrations of gasoline, diesel, and Bunker C throughout the investigation area. The identified impacts to soil and groundwater were generally located north of the mechanics shop area along the pipeline corridor.
- "J. The investigations identified petroleum products in the gasoline, diesel, and oil carbon-ranges, and other petroleum-related constituents (e.g., benzene,

toluene, ethylbenzene, and xylenes) in the subsurface at concentrations exceeding MTCA Method A soil and groundwater cleanup levels for unrestricted land use. The investigations suggest the Standard Pipelines, the Longview Pipeline, the fuel loading racks, the AST, the Calloway UST, the Port USTs, the Army UST, and the practices commonly associated with the storage and transfer of fuel are likely the principal sources of subsurface contamination at the Site.

- "K. Remedial activities at the Site began in the 1990s as part of an independent cleanup action. In 1992, gasoline was detected in soil at depths below the groundwater table on the southwest side of the AST, and diesel and Bunker C fuel were detected at depths between 1.5 to 8 feet below ground surface (bgs) on the east and south sides of the AST. The highest concentrations of petroleum in surface soils were located beneath the AST. In 1996, soil in the vicinity of the AST was excavated to the soil and groundwater interface at a depth of approximately six feet bgs. Confirmation samples taken from the final limits of the excavation indicated residual petroleum products in the diesel carbon-range were present at concentrations above the MTCA Method A soil cleanup level for unrestricted land use and were left in place in a localized area at the southern extent of the excavation. Further excavation was limited by high groundwater, sandy soils, and the proximity to the BNSF rail lines.
- "L. In spring 1996, approximately 800 cubic yards of surface soils impacted with petroleum were removed from the parcel formerly leased by Calloway. The impacts were likely related to historical activities occurring on the parcel. This remedial action did not fully address the subsurface impacts related to the Calloway UST.
- "M. In December 2013, Ecology performed a Site Hazard Assessment (SHA) of the Site. The Site was given a hazard ranking of 2 out of 5 (1 being Ecology's highest priority for cleanup).
- "N. In 2015, the Port retained Floyd|Snider to conduct a data gap analysis to further delineate the extent of soil and groundwater impacts at the Site (Floyd|Snider investigation). The Floyd|Snider investigation included 30 direct-push soil borings focused on the south and west portions of the Site, collection of 16 grab groundwater samples from those borings, and collection of a groundwater sample from an existing monitoring well. The Floyd|Snider investigation indicated that petroleum-impacted soils are primarily located beneath the BNSF rail lines and that petroleum-impacted groundwater does not extend beyond the Port Property boundary to the northwest and does not extend to the Columbia River to the southwest. The Floyd|Snider investigation identified several additional tasks to aid in the development of the remedial investigation and feasibility study.

"O. In February 2016, approximately 5 gallons of petroleum product were released from abandoned pipelines beneath shipping berths 1 and 2 along the Columbia River through two separate corroded areas. The Port conducted spill response actions, plugged the leaks, and reported the releases to the United States Coast Guard and Ecology."

2.3 PHYSICAL SETTING, GEOLOGY, AND HYDROGEOLOGY

The Site is located on the northern bank of the Columbia River, adjacent to its confluence with the Cowlitz River to the east. The Site lies on a relatively flat alluvial floodplain at elevations ranging from approximately 15 to 30 feet above mean sea level (MSL). Longview, Washington, is situated in a topographic basin surrounded by bedrock uplands. The broad, northwest- to southeast-trending alluvial floodplain consists of unconsolidated and consolidated sediments, which filled in a trough that had been carved by the Columbia River into the underlying Quaternary and Tertiary sedimentary and volcanic rocks. The youngest deposits are unconsolidated Quaternary alluvium generally consisting of interbedded sand, silt, and gravel that extend beneath the Site and the Columbia River as deep as approximately 300 feet below ground surface (bgs; KJC 2012). In the vicinity of the Site, these native materials typically consist of silty, fine- to medium-grained sand that is interbedded with silty sand and sandy silt lenses and occasional thin layers of volcanic ash, clay, and organic-rich material. In addition, a noncontinuous, soft to stiff silt layer with low to high plasticity and occasional organic debris is sometimes present within the native fine- to medium-grained sand. Boring logs are included as Appendix H.

The shallow subsurface beneath the Site is characterized by fill material with an unknown origin overlying the alluvial sediments. The fill material consists of a heterogeneous mixture of predominantly silt and sand, with a maximum thickness of approximately 20 feet. The fill material was reportedly placed between the late 1800s and approximately 1950 (Golder 2000). Based on oblique aerial photographs, the thickest fill deposits appear to be located in the areas adjacent to the Columbia River, which were built up and developed as ship berths.

In 1923, seven independent operating diking districts within the region surrounding the Site were merged to form the Consolidated Diking Improvement District (CDID) No. 1 of Cowlitz County. The CDID's mission is to protect the valley north of the Columbia River and west of the Cowlitz River from flooding and to control stormwater runoff (CDID#1 2013). Fifteen miles of levees and thirty-five miles of stormwater collection ditches were constructed. Six high volume pumps were installed to discharge the collected stormwater out of the protected areas into the Coal Creek Slough. Over the years, improvements have been constructed and additional pump stations have been installed to keep up with increased runoff brought about by new development. The closest pump and ditch to the Site are the Oregon Way pump station, which pumps at a rate of 70,000 gallons per minute, and Ditch No. 3. Both are located approximately 0.5 miles to the north-northeast of the northern Site boundary (Figure 1.1).

As shown on the preliminary cross section that extends across the length of the Site (Figure 2.1) and is presented on Figure 2.2, groundwater at the Site occurs in both perched

(i.e., discontinuous) lenses, present primarily in fill deposits, and in a shallow, unconfined aquifer, referred to hereafter as the alluvial aquifer, present primarily in deeper native deposits. Groundwater in both the perched zones and the alluvial aquifer is impacted (refer to Section 4.2.2). Perched groundwater has been found historically as shallow as 10 feet bgs (approximately 10 feet MSL in the center of the Site, below the ordinary high-water mark [OHWM] of 15.41 feet MSL [11.1 CRD]; Cowlitz County and Ecology 2017). The perched groundwater zone(s) occur atop low-permeability silt layer(s) that are typically 1 to 3 feet thick and lie above the regional groundwater in native deposits. The most significant of the silt layers is generally present within the center of the Site at approximately 2 to 4 feet above MSL (which corresponds to depths ranging from approximately 16 to 24 bgs, depending on the groundwater was consistently observed in borings as far north as the north end of former Warehouse 9 and as far south as the Port offices. Declining water levels have been observed in several of the perched zone wells over time, resulting in an increasing tendency for these wells to be found dry in recent years.

Perched groundwater in the center of the Site, which has previously been described as mounded groundwater, is effectively isolated from the alluvial aquifer below (Golder 2000). Silt lenses are believed to trap thin occurrences of groundwater in separate water-bearing zones with limited hydraulic connection to the underlying aquifer. The isolation of perched zones is consistent with the limited observed tidal influence on groundwater located in the central portion of the Site (Golder 1999) of the approximately 2-foot (KJC 2012) tidal fluctuation in the Columbia River. In addition, the Oregon Way pump station and Ditch No. 3 (as part of the CDID) are less likely to have an influence on groundwater flow in the perched zone given the relatively long distance between the Site and these structures and the isolated hydrogeologic nature of the perched zone (the perched zone aquifer is at a higher elevation than the pump station and ditch). However, the potentially high flow rate from the Oregon Way pump station (up to 70,000 gallons per minute), could influence the alluvial aquifer (and perhaps, but less likely, the perched zone) at the Site. This potential influence will be assessed during the 3-day transducer study (refer to Section 5.2.2) to include coordination with the CDID on simultaneous pumping operations of the Oregon Way pump station.

In the vicinity of the Port, the overall groundwater flow direction of shallow groundwater in the alluvial aquifer is to the south-southwest, toward the Columbia River, which is the major discharge location for the regional groundwater system (KJC 2012). However, as described in Sections 3.0 and 4.0 of this Work Plan, investigations to date have found no movement of impacted groundwater from the Port Property to the Columbia River. Potentiometric contour maps from previous investigations are presented in Appendix C.

3.0 Previous Investigations and Remedial Actions

In this section, information about previous data collection and remedial actions provides historical context for further data collection to be conducted as part of the RI work scope.

3.1 1991 TO 2013 INVESTIGATIONS AND REMEDIAL ACTIONS

The scope of previous investigations and remedial actions are summarized below based on previous reports (Golder 2000; 2010). The findings of these investigations are included in the summary of Site impacts in Section 4.2:

- Petroleum Services Unlimited UST Investigation, June 1991. This investigation on the former Calloway Ross portion of the Site characterized the extent of impacts surrounding the removal of a 675-gallon UST. As part of the investigation, eight soil borings were advanced and five monitoring wells (MW-1 through MW-5) were installed.
- Golder Associates (Golder) Multi-Phase Site Investigations, 1992 to 1994:
 - Phase 1 (fall 1992): The investigation area expanded to include the former Calloway Ross UST area, the pipelines underlying the adjacent area, and the 80,000-barrel AST. The investigation included one soil boring, eight test pits, and installation of six additional monitoring wells (MW-6 through MW-12).
 - Phases 2 and 3 (spring 1993): These sequential investigations included groundpenetrating radar (GPR) location of the underground pipelines, advancement of eight soil gas probes, and installation of nine new monitoring wells (MW-13 through MW-21), and re-sampling of existing monitoring wells.
 - Phase 4 (March to June 1994): This investigation expanded the study area further to the south and included further GPR pipeline location, advancement of one soil boring, collection of one groundwater sample from a well point, and installation of eight monitoring wells (MW-22 through MW-29).
- Golder Calloway Ross Lease Area Investigation, March 1993. This focused assessment of surface soils in the Calloway Ross lease area of the site included collection of 10 surface soil samples.
- Golder Mechanic's Shop UST Investigation (July 1993). Soils were investigated associated with the removal of two USTs (one 4,000-gallon and one 8,000-gallon UST) from near the former mechanic's shop. The investigation included three soil borings and installation of one monitoring well (UST-4).
- AST Demolition (fall 1995 through June 1996). The 80,000-barrel AST was demolished and removed from the Site. Approximately 5,000 cubic yards (CY) of petroleum-impacted soils were removed from the Site. Twelve confirmation soil samples were collected, and two monitoring wells were installed.

- Calloway Ross Surface Soil Removal (spring 1996). Approximately 800 CY of petroleum-impacted near-surface soils were excavated in the spring of 1996 and transported off site for disposal. Six verification soil samples were collected following excavation.
- Groundwater Monitoring, 1998 to 1999. In 1998, groundwater monitoring resumed, with the intent to confirm that Site conditions had not significantly changed since 1994. As part of this work, groundwater was sampled site-wide (perimeter and interior) in 1998, a tidal influence study was conducted, and three perimeter monitoring wells were installed (MW-30, MW-31, and MW-32).
- Groundwater Monitoring, 2000 to 2013. A subset of monitoring wells were sampled during this period, which included a site-wide groundwater sampling event in 2009.

3.2 2011 AND 2016 SEDIMENT INVESTIGATIONS

In June 2011, the Port characterized sediments offshore of the Site in support of a dredging and berth deepening project (Anchor QEA 2011) and again in October 2016 in support of maintenance dredging (Anchor QEA 2017). The work in both 2011 and 2016 included collection and characterization of composited sediment samples from four dredge material management units spanning between Berths 1 and 9. Chemical analysis of the sediments included diesel-range organics (DRO), oil-range organics (ORO), and polycyclic aromatic hydrocarbons (PAHs), among other Sediment Evaluation Framework (SEF) and Sediment Management Standards (SMS) freshwater COCs, such as metals, semivolatile organic compounds, polychlorinated biphenyls, and pesticides. The analytical results were compared to both Model Toxics Control Act (MTCA) Method A unrestricted land use and industrial land use for potential upland disposal and SEF freshwater toxicity criteria for in-water disposal.

The analytical results from both 2011 (Table 3.1) and 2016 (Table 3.2) studies indicate that no chemicals exceed the SEF and SMS freshwater criteria nor the MTCA Method A industrial criteria. One sample collected in 2011 near Berths 6 and 7 exceeded the MTCA Method A unrestricted land use criterion for benzo(a)pyrene; the sample was collected from a deeper interval identified as native material, however, and the detected PAHs were determined to be likely naturally occurring. Another sample collected in 2011 near Berth 2 was noted to have a very slight hydrocarbon odor in the surface interval of the core; however, subsequent chemical analysis did not detect either DRO or ORO. In 2016, all analytical results were less than the MTCA Method A criteria for unrestricted land use. During this event, PAHs were only detected near Berth 1, less than the screening levels. These detections are likely due to a minor crude oil spill in February 2016; no petroleum was detected in this area.

As such, the sediment characterization reports in both 2011 and 2016 indicate that dredged sediments are suitable for in-water disposal or upland beneficial reuse. Additionally, prior to 2011, the sediments were ranked as "low-moderate." The 2011 report concluded that based on the chemical concentrations, the ranking should be recharacterized to "low." The 2016 report confirmed this site ranking of "low," which is established after lines of evidence, such as chemical analysis, indicate that depositional materials do not originate from or near impacted areas and

do not contain chemical contaminants at levels of concern. These findings suggest there is no upland source of impacts to the sediments in this area.

3.3 2015 PRIORITY DATA GAPS INVESTIGATION

Based on a review of available documents and data from this previous work, a review of data gaps related to the understanding of Site conditions was performed. Data needs identified from this review were summarized in the Data Gaps Report (Floyd|Snider 2015) and form the basis for much of the planned data collection described in this Work Plan.

A September 2015 investigation filled data gaps related to the extent of soil and groundwater impacts at the southern and western (downgradient) edges of known impacts, uninvestigated areas adjacent to the pipelines in the southern portion of the Site, and along the shoreline of the Columbia River. The work was conducted immediately after the demolition of Warehouse 9, the mechanic's shop, and the Gear Locker A buildings, which were removed in July and September 2015.

This work was performed in accordance with the Data Gaps Report (Floyd|Snider 2015) and included 30 soil borings (GP-1 through GP-30) advanced to up to 30 feet bgs using a direct-push rig, submittal of 38 soil samples for analysis, collection of groundwater screening samples from 16 direct-push borings, groundwater level measurements from selected monitoring wells, and groundwater sample collection from MW-23.

The results of priority data gaps are summarized in Section 4.2. Data gaps remaining to be filled in the Remedial Investigation (RI) are described in Section 5.0.

3.4 2019 EARLY SEASON GROUNDWATER SAMPLING AND MONITORING

Floyd|Snider performed groundwater monitoring and sampling activities between February 27 and March 1, 2019. Prior to this event, monitoring wells at the Site had most recently been sampled in 2013. The intent of the site-wide sampling event was to collect data during winter from wells that have typically been dry at other times of year, to establish current baseline conditions and to provide a winter quarterly groundwater sampling round as described in Section 5.2.1. Groundwater sampling was attempted from all Site monitoring wells, and samples were collected from all monitoring wells except for MW-8, MW-9, and MW-30 as described below.

Prior to collecting groundwater samples, depth to groundwater, total depth, and light nonaqueous-phase liquid (LNAPL) thickness measurements were collected from all existing monitoring wells on the property, except for MW-8, which could not be opened due to a damaged well box and bolts.

MW-9 contained LNAPL at a thickness of 0.01 feet and was not sampled. Absorbent socks were present in monitoring wells MW-3, MW-7, MW-9, and MW-20 and were removed, except from

MW-9, and disposed of in order to allow for future evaluation of the presence and, if present, recoverability of LNAPL during the RI.

MW-30 was dry due to excessive siltation and had a total depth approximately 10 feet shallower than its original installation depth; therefore, MW-30 was redeveloped on March 1, 2019, to remove accumulated sediment. In addition, after collecting groundwater samples from monitoring wells MW-20 and MW-26, both were redeveloped to address siltation. MW-20 and MW-26 had total depths approximately 4 and 3 feet, respectively, shallower than their original installation depths, but were not redeveloped to remove accumulated silt until after groundwater samples were collected.

Samples were collected using low-flow groundwater sampling techniques in accordance with standard environmental industry practice. Water quality indicator parameters monitored and recorded during purging included pH, specific conductivity, dissolved oxygen, temperature, turbidity, and oxidation reduction potential (ORP). Purging continued until parameters were approximately stable (when measurements are within 10 percent) for three consecutive readings. Once stable, groundwater samples were collected and analyzed for the following constituents:

- DRO and ORO by NWTPH-Dx, with and without silica-gel cleanup
- Gasoline-range organics (GRO) by NWTPH-Gx
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by U.S. Environmental Protection Agency (USEPA) Method 8021

4.0 Preliminary Conceptual Site Model

This preliminary CSM is presented based on the physical conditions at the Site, findings from previous environmental reports, records, and correspondence. A figure summarizing the CSM and illustrating the Site in a conceptual cross section is included as Figure 4.1.

The preliminary CSM is intended at this stage of the project to summarize the known and potential hazardous substances at the Site in order to define contaminant transport, possible migration pathways, and routes of exposure. Additionally, this preliminary CSM aids in defining data needs to support the RI. The preliminary CSM is intended to be complete based on available information and subject to refinement as additional data are obtained during the RI process. There are no remaining data gaps in the Site history (refer to Section 2.2) that would significantly influence the CSM. Refer to Section 2.3 for additional information about physical Site setting, geology, and hydrogeology.

4.1 CONTAMINANTS, SOURCES, AND RELEASE MECHANISMS

Based on historical information for the Site, together with prior and current environmental data, the potential COCs whose concentrations exceed the MTCA Method A cleanup levels (CULs; used as screening levels in this Work Plan) are petroleum-derived and include GRO, DRO, and ORO. In addition, individual hazardous substances are found in petroleum, including BTEX and carcinogenic PAHs (cPAHs). MTCA Method A CULs are used only as screening levels, and draft CULs will be established in the RI for the COCs in soil, groundwater, and other applicable media based on the standard MTCA procedures. CULs, such as MTCA Method B or Method C CULs, will be considered and proposed in the Feasibility Study (FS). LNAPL has also been observed in some monitoring wells during historical sampling events. LNAPL has not been measured since approximately 2000, with the exception of the 0.01 feet measured in MW-09 in the 2019 sitewide event, although some wells where LNAPL had previously been observed were frequently found to be dry.

Golder reports dating between 1993 to 2013 indicate that the existing petroleum hydrocarbon impacts are from historical releases associated with the storage and transfer of petroleum fuels. There are currently no continuing sources of petroleum products or other known hazardous substances stored or used at the Site.

Impacts resulted from documented and undocumented discharges of petroleum products to the surface and subsurface soil by means of leaks or spills that are summarized in Section 2.2 of this document.

Following previous remedial actions including removal of soil from the Calloway Ross area and former AST area (refer to Section 3.1), and because of the age of the releases, predominantly subsurface location of the releases, and changing land use at the Port over several decades since the releases, there are no known areas of the Site with impacted surface soils that could allow for contaminant transport by stormwater. The one small area where near-surface soils are known

to be impacted, near the terminus of the Standard and Longview Pipelines, is protected from stormwater beneath Berth 2. There is no transport pathway for contaminants from these bank soils, which are located above the Columbia River OHWM elevation of 15.3 feet MSL, to reach river sediments. Because the extent of impacted groundwater has been determined not to extend to within several hundred feet of the river, there is no complete pathway for discharge of Site contaminants to surface water or sediments, and surface water and sediment are not considered media of concern.

From each point of subsurface release, potential impacts could have migrated downward by gravity drainage through soil in the unsaturated zone. Lateral spreading may have occurred via preferential pathways such as through pipeline bedding, utility trenches, or heterogeneities in fill material, or on top of low-permeability silt layers. In some areas, enough product was released, especially in the northern perched zone area, that the petroleum products reached both perched groundwater and groundwater in the underlying alluvial aquifer. In some instances, petroleum accumulated as LNAPL on the surface of either perched zone groundwater or alluvial aquifer groundwater, and soluble constituents began dissolving into shallow groundwater. Soluble constituents that migrated with groundwater would have flowed away from the source areas until the plume stabilized as a result of biological degradation and/or adsorption to the organic matter in surrounding soils.

A portion of the TPH source mass is present in relatively isolated perched groundwater zones. Although some petroleum hydrocarbon impacts have reached the alluvial aquifer north of the perched area, the silt lenses beneath perched groundwater in this area result in a limited ability for contaminants in groundwater to be transported away from their sources in the hydrocarbonaffected perched area.

4.2 EXTENT OF IMPACTED MEDIA

The September 2015 priority data gaps investigation and previous investigations, together with the 2019 site-wide groundwater monitoring event, have defined the location and concentration of COCs in soil and groundwater at the Site. The soil and groundwater data from previous sampling events are compiled in Appendix B, and the soil and groundwater data from the September 2015 investigation and groundwater data from the 2019 site-wide groundwater monitoring are presented in Tables 4.1, 4.2, and 4.3 and Figures 4.2 through 4.6.

4.2.1 Soil

The extent of known residual petroleum hydrocarbons in soil at concentrations exceeding the MTCA Method A CULs is illustrated in Figure 4.2; and as stated previously, MTCA Method A CULs are used solely for screening purposes. The detectable concentrations of GRO and DRO/ORO impacts in soil form an elongated north-south trending pattern that extends beneath the rail lines from monitoring well MW-19 in the north to soil boring GP-27 in the south. Beneath the rail lines, the affected soil extends laterally to the east and west in two areas: (1) in the north in the vicinity of the former Calloway Ross UST, the rail lines, and the former 80,000-barrel AST and fuel loading racks, and (2) in the central portion of the property in the vicinity of the former mechanic's shop; soil boring GP-27; and monitoring wells MW-24, MW-26, and MW-28. Additionally, a limited area

of soil impacts was encountered in soil boring GP-18, which is located adjacent to the northeast corner of Transit Shed 2. During the September 2015 sampling campaign, the only concentrations in excess of the MTCA Method A standards for soil were found in GP-27 and GP-18.

The soil impacts extend to variable depths, from approximately 2 to 19 feet bgs at various locations in the subsurface within the vicinity of the former pipelines adjacent to the former Warehouse 9, former AST, and loading racks. An area of elevated DRO/ORO and GRO concentrations in soil was also detected in monitoring wells MW-24 and MW-26 at 15 and 18 feet bgs, respectively, and above a low-permeability silt layer with a surface at approximately 20 feet bgs (3 to 5 feet MSL). The September 2015 results indicate soil in GP-27 are impacted by hydrocarbons in the diesel to heavy oil range. In addition to DRO and ORO impacts, cPAHs were detected in GP-27 at a toxic equivalent concentration exceeding the MTCA Method A CUL for soil, which is being used as a screening level. Hydrocarbon impacts were not encountered in soil borings GP-24 through GP-26; therefore, the extent of impact in this area is delineated to the south along the former adjacent pipeline but has not been delineated to the east of GP-27.

Petroleum impacts in soil have not been observed in the off-property borings to the westnorthwest, such as MW-4 and MW-30. In addition, soil analytical data from borings GP-1 through GP-7 and GP-30 show GRO, DRO, and ORO concentrations less than their respective MTCA Method A CUL or the laboratory detection limits. These data indicate that residual hydrocarbon impacts in soil do not extend off the property to the northwest beneath the former Warehouse 9.

Soil analytical data from monitoring wells MW-22, MW-23, and MW-29 and soil borings GP-7 through GP-17 and GP-20 through GP-23 south of the existing soil impacts show concentrations less than the MTCA Method A CULs or the laboratory detection limits. These data indicate that the known hydrocarbon impacts to soil do not extend south toward the Columbia River from this area, and there is no complete pathway for potential impacts from this area to reach surface water or sediments.

A new area of soil impacts unassociated with the known impacts to the north was found based on detections of DRO, ORO, and cPAHs in soil boring GP-18 at concentrations exceeding their respective MTCA Method A CULs. The September 2015 results indicate impacts by hydrocarbons in the diesel to heavy oil range. Impacted soil was limited to a thin layer of silty sand/sandy silt between 27 and 28 feet bgs, which is close to the depth of the alluvial aquifer. Perched zones were not encountered within boring GP-18. Importantly, no DRO or ORO was detected in corresponding groundwater samples from this or any nearby locations (see Section 4.2.2). This area of soil impacts appears to be limited based on a lack of detections in borings to the north, northeast, and southwest. Transit Shed 2 will be investigated as a data gap in the RI (refer to Section 5.1.1)

Residual product in pipelines that emerge beneath Berth 2 south of Transit Shed 2 is being addressed through the Pipeline Interim Action under a separate Work Plan. This work will address potential future releases from the pipelines in this area that may affect the Columbia River.

There is also evidence of a release to surface soil beneath Berth 2 to the south of soil boring GP-18. Historical surface soil samples (P-1 and P-2) were collected below a set of abandoned

pipelines (the pre-1970 Standard and Longview Pipelines) exposed beneath Berth 2. The analytical results from both surface soil samples indicate DRO at concentrations exceeding the MTCA Method A CUL (Golder 1994). Soil beneath Berth 2 will be investigated as a data gap in the RI (refer to Section 5.1.1)

4.2.2 Groundwater

The lateral extents of dissolved-phase GRO and DRO in perched zone and alluvial aquifer groundwater at concentrations exceeding their respective MTCA Method A CULs are shown in Tables 4.3 and 4.4 and on Figures 4.3, 4.4, 4.5, and 4.6. The extents are based on the analysis of groundwater samples collected from monitoring wells between 1998 and 2013, several of which are screened within perched zone(s) above the alluvial aquifer (Table 4.5 and Figure 4.3), as well as groundwater samples from the alluvial aquifer collected from the September 2015 direct-push borings (Figure 4.4). Based on 2019 data, dissolved-phase hydrocarbons in the regional alluvial aquifer have not migrated beyond the property boundary to the west-northwest or the south-southwest toward the Columbia River (Figures 4.5 and 4.6). The following sections summarize historical groundwater data results followed by results from the February 2019 sampling event, which are presented in Tables 4.3 and 4.4 and illustrated on Figures 4.3 through 4.6. Laboratory reports and chromatograms are included as Appendix D, and field sampling forms are included as Appendix E.

4.2.2.1 Diesel-Range and Oil-Range Organics

Elevated DRO concentrations have historically been measured in alluvial aquifer wells MW-10 and MW-12 in this area, as well as in several nearby perched zone monitoring wells (Figures 4.3 and 4.4). For example, DRO was measured at concentrations up to 160,000 micrograms per liter (μ g/L) in perched zone monitoring well MW-14 during the September 2009 site-wide sampling event (Golder 2010). This value may reflect the presence of free product in the sample. In addition, PAHs, which are typically associated with ORO, have been detected at elevated concentrations in monitoring wells in this area, including alluvial aquifer monitoring wells MW-10 and MW-12. Further discussion of the 2019 sampling related to these wells is provided below.

In 1993, DRO was detected in groundwater at concentrations exceeding the MTCA Method A CUL in two alluvial aquifer monitoring wells north of this area and adjacent to the post-1970 Standard Pipeline, MW-19 and MW-6.

Farther south, DRO has also been historically detected in groundwater at concentrations exceeding the MTCA Method A CUL in perched zone monitoring wells MW-26 and MW-28. These wells were dry during the last site-wide sampling event in September 2009 and again during the September 2015 investigation, but both contained enough of a water column to be sampled during the February 2019 sampling event; results are discussed below. At nearby monitoring well MW-30, believed to be screened in across the perched zone and into the alluvial aquifer, the DRO concentrations exceeded the MTCA Method A CUL prior to 2001. However, since 2001, the DRO concentrations in that monitoring well have been less than the MTCA Method A CUL, which coincides with the use of silica gel cleanup for NWTPH-Dx analysis beginning in 2000. MW-30 was

not sampled during the February 2019 sampling event due to siltation, but redevelopment activities removed approximately 10 feet of silt; therefore, MW-30 should have sufficient groundwater to sample during subsequent events. Groundwater analytical data from 2015 borings GP-3, GP-4, and GP-6 indicate that elevated DRO concentrations are unlikely to extend off the property toward MW-30.

Groundwater analytical results from the February 2019 round of groundwater sampling indicate that the current dissolved-phase extent of petroleum hydrocarbons may not be as extensive as believed during earlier investigations. Historical groundwater analytical data indicate that the extent of DRO and/or ORO, analyzed without silica gel cleanup, were detected at concentrations exceeding the MTCA Method A CULs in monitoring wells MW-3, MW-6, MW-7, MW-20, and MW-28. DRO analyzed with silica gel cleanup, was detected at a concentration exceeding the MTCA Method A CUL only in MW-28. Based on the 2019 groundwater data, DRO and ORO concentrations have declined to concentrations less than their respective CULs in monitoring wells that have historically had DRO and ORO exceedances, such as wells MW-10, MW-12, MW-14, and MW-26.

The analytical laboratory noted that 2019 groundwater results for several of the monitoring wells contained sample chromatographic patterns that did not resemble the diesel and oil fuel standards used for DRO and ORO quantitation (Table 4.4). A review of the chromatograms indicates that the results did not match the standards because most of the compounds detected are biogenic breakdown products associated with the fuels, not the actual fuel distillation at old products. This observation is common TPH sites where significant weathering/biodegradation of the petroleum compounds has occurred or is still occurring.

Of all wells with exceedances, only monitoring well MW-28 is screened in the perched zone (Figure 4.5); the rest are screened in the alluvial aquifer (Figure 4.6). Dissolved-phase hydrocarbons were not detected at concentrations exceeding the laboratory reporting limits or CULs in downgradient wells screened in the alluvial aquifer.

4.2.2.2 Gasoline-Range Organics and Benzene

Historical groundwater data indicate that the extent of GRO-impacted groundwater is less than the extent of DRO-impacted groundwater. Some commingling of the GRO and DRO plumes appears to have occurred as well. Historical data indicate that the greatest GRO concentrations measured in groundwater are in the vicinity of the former Calloway Ross UST in alluvial aquifer monitoring well MW-10, with a maximum concentration of 4,200 µg/L during the last site-wide sampling event in 2009 and similar concentrations in several perched zone monitoring wells in this area (Golder 2010). Elevated GRO concentrations are also observed in the vicinity of the former 80,000-barrel AST in alluvial aquifer monitoring wells MW-12 and MW-20. South of this area, GRO has been detected in monitoring wells MW-26 and UST-4, both believed to be screened in perched zones, at concentrations exceeding the MTCA Method A CUL in 1994 and less than the CUL in 1998. For the first time since 1998, monitoring wells MW-26 and UST-4 were sampled during the February 2019 groundwater sampling event. Groundwater analytical results for both MW-26 and UST-4 indicate that all constituents were at concentrations less than their respective MTCA Method A CULs. Benzene has been detected in groundwater at concentrations greater than the MTCA Method A CUL, with a maximum concentration of 840 μ g/L in alluvial aquifer monitoring well MW-12 during the site-wide sampling event in 2009.

Results from the February 2019 groundwater sampling event indicate that GRO and/or benzene were detected at concentrations exceeding their respective MTCA Method A CULs in monitoring wells MW-3, MW-7, MW-12, and MW-20. The greatest GRO concentration of 1,500 μ g/L was detected in monitoring well MW-20, which is screened in the alluvial aquifer. The benzene concentration of 61 μ g/L was detected in MW-12 within the vicinity of the former AST and is screened within the alluvial aquifer. Overall, the current analytical data indicate that GRO and benzene concentrations are declining; however, subsequent monitoring events will help determine whether these results are typical of current conditions or anomalous.

4.2.2.3 Light Non-Aqueous-Phase Liquid

Historically, LNAPL has been present in measurable concentrations with thicknesses between 0.01 and 1.34 feet in perched zone monitoring wells MW-9 and MW-16 and alluvial aquifer wells MW-3, MW-7, MW-19, and MW-20. LNAPL has not been detected in monitoring wells MW-16 and MW-19 since June 1993. Absorbent socks have been used to remove LNAPL in monitoring wells MW-3, MW-7, MW-9, and MW-20 between April 1999 and 2014. The socks were routinely monitored and replaced on a quarterly basis until at 2014. LNAPL thickness measurements were not reported in the most recent November 2013 monitoring report submitted by Golder (Golder 2013). However, 2013 monitoring observations indicated that absorbent socks in MW-9 and MW-20 contained a strong, very oily odor and were oily.

During the September 2015 field activities, LNAPL was not observed in wells MW-3, MW-7, MW-9, MW-16, and MW-19; and monitoring well MW-20 was dry. During the 2019 site-wide groundwater monitoring event, LNAPL was measured only in MW-09, at a thickness of 0.01 feet, which is the smallest unit of measurement for the interface probe. Absorbent socks were removed from monitoring wells MW-3, MW-7, and MW-20 in order to assess LNAPL recoverability in these wells. The absorbent sock was not removed from MW-9.

4.3 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

Based on the current understanding of affected media and the extent of potential impacts, several potential receptors and exposure pathways are apparent. These pathways and potential receptors determine which regulatory cleanup standards are applicable.

For impacted soil found in previous investigations above 15 feet bgs, a potential exposure pathway consists of direct contact with shallow impacted soil in unpaved areas by potential future site workers based on industrial exposure scenarios, as well as direct contact with deeper impacted soil by utility workers entering the subsurface soil. Unpaved areas that are not covered with gravel are generally limited to the northern portion of the Site.

Where concentrations of volatile constituents such as benzene in soil and groundwater exceed the CULs, a potential exposure pathway consists of inhalation of impacted vapors within potential future buildings that may be constructed over these areas. Currently, it does not appear that any occupied buildings overlie areas of impacted soil or groundwater exceeding MTCA Method A standards for Industrial Properties. The RI will include an evaluation of the potential for a complete vapor intrusion (VI) pathway into potential future buildings based on Ecology guidance.

Terrestrial ecological receptors are not expected to be affected because of the limited habitat on the Site and adjacent lands. Based on the Site configuration of paved surfaces and Berths 1 and 2 adjacent to the shoreline, there is no potential for erosion and transport of contaminants from soil by stormwater.

There are no known drinking water wells in the immediate vicinity of the Site, and the use of Site groundwater is unlikely given the industrial location and the non-potable characteristics of Site groundwater. For example, concentrations of iron and manganese in excess of the federal secondary maximum contaminant levels have been measured in groundwater present in wells screened in native units well below the alluvial aquifer (KJC 2012), and perched zone groundwater occurs in fill material and is expected to have low yield. The potential but incomplete exposure pathway exists for drinking water at the Site.

4.4 SOIL AND GROUNDWATER SCREENING LEVELS

Based on the potential COCs and potential exposure pathways identified in the preliminary CSM, soil screening levels have been compiled for soil and groundwater (Table 4.6). MTCA Method A CULs, when available, are used as default screening levels throughout this Work Plan. Soil screening levels are based on worker protection in industrial setting and protection of potable groundwater. Groundwater screening levels are based on the MTCA Method A CULs for groundwater.

A list of Site COCs will be identified in the RI based on the frequency and concentrations of the detected constituents as compared to the screening levels. Draft CULs will then be established for the COCs in soil, groundwater, and other applicable media based on the standard MTCA procedures.

5.0 Data Needs and Sampling Plan

As described in Section 4.0, previous investigations including soil and groundwater data collected in 2015 and 2019 have largely defined the location and concentration of COCs in soil and groundwater at the Site. With the Site boundaries relatively well-defined, gaps in the understanding of nature and extent remain only in selected areas of potential concern (AOPCs). Additional data from these AOPCs will also support more accurate volume estimates for remedial evaluation, if necessary. Based on the review of existing Site data and with consideration of the preliminary CSM, the remaining data needs identified are as follows:

- Nature and extent of impacts, including focused questions of spatial extent, data density for quantifying contaminant volumes, and other data needed for evaluation of remedial alternatives, as might be required
- Other data needs including assessing seasonal change based on four quarters of groundwater monitoring and determination of COCs and CULs
- Site hydrogeology

The scope of additional data collection is described in this section. Refer to the SAP/QAPP (Appendix F) for additional details including sample collection, laboratory analysis, and quality assurance procedures. Refer to the Health and Safety Plan (Appendix G) for details regarding the health and safety procedures associated with these data collection activities.

5.1 DATA NEEDS RELATED TO NATURE AND EXTENT OF IMPACTS

Data needs related to the nature and extent of impacted media at the Site are described in this section. As noted above, these data needs and planned data collection activities that pertain to a specific AOPC are illustrated on Figure 5.1 and summarized in Table 5.1. Prior to any subsurface investigation work, a private utility survey and pipeline survey will be conducted.

Field work will occur in two phases/mobilizations. The first mobilization will consist of using an Optical Image Profiler [OIP] by Geoprobe[®] and a hydraulic profiling tool (HPT) attached to a direct-push drill rig that will be used to investigate the potential for remaining LNAPL and TPH impacts in the subsurface and to obtain hydrostratigraphic data in relevant AOPCs. The OIP can help provide rapid and cost-effective delineation of any remaining LNAPL or residual TPH impacts.

Technologies such as the OIP, Laser Induced Fluorescence, and the Ultra Violet Optical Screening Tool can detect hydrocarbons within the GRO, DRO, and lighter PAHs ranges, but are less effective identifying Bunker C. Technologies such as TarGOST can detect Bunker C, but are not effective in detecting GRO and the lighter PAHs. Hence, due to the broad mix of petroleum fuel products impact to the subsurface, the OIP-HPT combination will provide the most effective direct sensing tools for high resolution site characterization of GRO, DRO, PAH, and Bunker C. OIP will provide visual and photographic confirmation of LNAPL. Product samples collected from the pipeline removal interim action activities will be sent to Columbia Technologies prior to conducting fieldwork in order to evaluate the LNAPL and applicable direct sensing tools. The number of OIP borings may be increased or decreased in each AOPC, pending real-time OIP results, to delineate the extent of impacts based on OIP results in the field. The HPT, which will be used on select locations, utilizes pressure measurements to quantify the permeability of the medium the probe is being advanced through and estimate a hydraulic conductivity (k) value. To accomplish this, water is pumped through a down-hole transducer at approximately 250 milliliters per minute into the formation. Pressure and flow are plotted against depth, resulting in a line graph that provides permeability as a function of depth.

In addition to the OIP/HPT boring locations, 4 to 6 direct-push boring locations will be advanced immediately adjacent to select OIP/HPT locations during the first phase of RI fieldwork in order to collect continuous soil samples and analytical data. The lithology and analytical results from these direct-push borings will be compared to the OIP/HPT results prior to proposing direct-push locations during the second phase of the RI activities. The select direct-push locations will be advanced in areas with significant impacts and varying geology to evaluate the OIP/HPT response data. The proposed OIP and HPT locations are shown on Figure 5.1.

The second phase of field work will consist of a subsequent mobilization with a direct-push probe and a hollow-stem auger rig. The OIP results, along with results from previous investigations, will be used to determine where direct-push locations will be advanced. Samples collected from direct-push boring will help obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples in order to delineate the extent and to calculate the volume of any remaining TPH. At least one direct-push boring will be advanced in all AOPCs in order to obtain quantitative results and to delineate the vertical and lateral extent of TPH impacts. The second mobilization will also include the installation of monitoring wells with the hollow-stem auger rig and the installation of subslab Vapor Pins. The proposed monitoring well locations will be based on the OIP results and on data needs (refer to Section 5.2).

For all soil boring locations, soil cores will be collected continuously, and field screened for indications of petroleum hydrocarbon impacts, which will be recorded on the soil boring logs. In general, soil borings will be advanced to the groundwater surface and deeper if visible impacts are observed. Soil samples will generally be collected from the depth representative of the greatest impacts based on field screening observations (e.g., photoionization detector measurements, sheen, odor, staining), and a minimum of one soil sample will be collected from the depth where water-bearing soils are first observed. Activities conducted during the first and second mobilizations, including all utility and pipeline surveying, monitoring well surveying, soil collection, sampling analyses, and other data needs activities described in the following sections, will be performed according to the SAP/QAPP in Appendix F.

5.1.1 AOPC 1: Soil and Groundwater near Southern Pipelines

Two surface soil samples (P-1 and P-2) that were collected in 1994 beneath the end of an abandoned pipeline under the docks indicate the presence of petroleum hydrocarbons in the soil (Golder 1994). Photographs included in the 1994 Golder report indicate "stained soil" beneath the former Standard and Longview Pipelines adjacent to Transit Shed 2; however, stained soil

was not noted beneath the westernmost pipelines beneath Berth 1. Therefore, surface samples were never collected beneath the westernmost pipelines (Golder 1994). In addition, the soil analytical data and field observations from the Data Gaps Report (Floyd|Snider 2015) indicate that residual hydrocarbon impacts are present in the vicinity of soil boring GP-18, which is northeast of surface samples P-1 and P-2 northeast of Transit Shed 2. Residual hydrocarbon impacts present in GP-18 were encountered between 27 and 28 feet above groundwater and were located within a thin, silty sand/sandy silt layer. The extent of the impacts observed in soil boring GP-18 has not been delineated to the south-southeast along the abandoned pipelines.

Additional investigation is therefore needed to better delineate soil impacts between the surface samples (P-1 and P-2) and soil boring GP-18 and in soil at depths below the surface samples P-1 and P-2. Furthermore, two monitoring wells will be installed where the abandoned pipelines meet the bulkhead in the vicinity of GP-13 and GP-16 in order to confirm that impacted groundwater beneath the Port property has not migrated to the Columbia River. These investigation activities within AOPC 1 will be conducted during the second mobilization with the direct-push rig.

In order to address these data gaps, two OIP/HPT borings within Transit Shed 2 and downgradient of GP-18 will be advanced during the first mobilization. However, if field OIP results indicate the presence of petroleum impacts, additional step-out locations may be added in order to delineate the lateral extent of impacts in this area. During the second mobilization, additional strategic locations, based on the semiquantitative OIP results, will be investigated using a direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the extent and calculate a volume of any remaining TPH impacts. Multiple soil samples will be collected at various depths for analysis. In addition to collecting soil samples, high-resolution discrete groundwater samples, at depths based on the OIP and/or HPT surveys, will be collected from at least one location within Transit Shed 2.

Soil samples will be collected beneath surface samples P-1 and P-2 in order to delineate the vertical extent of surface soil impacts. Two borings will be advanced using a hand auger to collect deeper soil samples denoted as P3 and P4. Additionally, two borings, P5 and P6, will be advanced using a hand auger to collect soil samples beneath the westernmost pipelines beneath Berth 1. Locations are shown on Figure 5.1.

In addition, there is a need to confirm that impacted groundwater beneath the Port property does not reach the Columbia River. Therefore, two monitoring wells, MW-37 and MW-38, will be installed within the vicinity of GP-13 and GP-16 and screened across the alluvial aquifer (Figure 5.1). Soil samples will be collected during the installation of the monitoring wells and in accordance with the SAP/QAPP.

5.1.2 AOPC 2: Former AST Area

In 1996, an interim cleanup action was conducted below and around the footprint of the former 80,000-barrel AST, during which approximately 5,000 CY of petroleum-impacted soil was removed and transported off site for disposal. The excavation was completed to a depth of

6 feet bgs and expanded past the footprint of the AST toward the south, west, and east in order to remove the impacted soil detected in test pits TP-1, TP-3, TP-5, and TP-7. Compliance soil samples were collected from below the footprint of the former AST. Analytical data show that concentrations from all compliance samples, except one floor sample, were less than their respective MTCA Method A CULs. However, the post-excavation report indicates that no verification samples were collected beyond the extent of the former AST footprint and former test pit locations with known soil impacts (Golder 1996a). Soil in test pit TP-3 was found to exceed the MTCA CULs at a depth of 8 feet bgs, which is below the depth of the excavated area and that soil impacts may extend to the east, southeast, and south of the former AST excavation. Monitoring well MW-21 was removed or destroyed as part of the excavation, and groundwater quality in the vicinity of the large area of soil impacts and at the edge of the groundwater plume is unknown.

Additional data are needed to confirm the soil and groundwater quality in this area. During the first mobilization, four OIP/HPT boring locations will be advanced to investigate the presence of remaining residual hydrocarbon impacts and/or the presence of residual LNAPL within the vicinity of the former AST and to obtain hydrostratigraphic data. Proposed locations are shown on Figure 5.1. If the OIP sensor detects LNAPL and/or residual hydrocarbon impacts, additional OIP boring locations will be added to delineate the extent of impacts.

Based on the semiquantitative OIP results, additional strategic locations will be investigated, during the second mobilization, with a direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the extent and calculate a volume of any remaining TPH impacts within AOPC 2. During the second mobilization, multiple soil samples will be collected at various depths for analysis. Soil samples will be collected in areas that contain the greatest TPH impacts, based on OIP results, and in locations to delineate the extent of impacts. Groundwater screening samples will be collected from each of the direct-push borings within AOPC 2. Analytical data from the groundwater screening samples, at depths based on the OIP and/or HPT surveys, will be used to determine whether an additional monitoring well needs to be installed to replace MW-21.

5.1.3 AOPC 3: Former Mechanic's Shop USTs

In 1993, approximately 15 CY of petroleum-impacted soil was removed during the decommissioning of the 4,000- and 8,000-gallon gasoline USTs associated with the Port's former maintenance building (referred to as the former mechanic's shop in previous reports). The maximum depth of the excavation was approximately 11 feet, and soil samples collected from the excavation indicate that residual hydrocarbon impacts remain (Golder 1993b). Impacted soil samples from these subsequent investigations were not collected in accordance with Ecology guidelines for UST decommissioning.

Additional data are needed to establish the vertical and horizontal extent of soil impacts. Soil samples from below the former USTs would help to delineate the vertical extent of GRO impacts

and determine whether the former USTs are sources of the deeper GRO concentrations in the soil. In addition, the lateral extent of soil impacts is poorly defined to the south and west of the former UST locations.

During the first mobilization, four OIP/HPT borings will be advanced within the vicinity of the former mechanic's shop and former UST locations (Figure 5.1). Borings will be advanced to a depth of at least 30 feet bgs in order to investigate remaining residual impacts and/or presence of residual LNAPL and to obtain hydrostratigraphic data. If the OIP sensor detects LNAPL and/or residual hydrocarbon impacts, additional OIP borings will be added to delineate extent.

Based on the semiquantitative OIP results, additional strategic locations will be advanced with a direct-push rig in order to obtain quantitative soil and groundwater results. During the second mobilization, soils samples will be collected in accordance with Ecology's Table 830-1 and guidelines for UST decommissioning and in accordance with the SAP/QAPP. Historical groundwater analytical data indicated that GRO and benzene were detected at concentrations exceeding their respective MTCA Method A CULs in monitoring well UST-4 in 1994 but declined to concentrations less than laboratory reporting limits by 1998 and confirmed in February 2019. Therefore, monitoring well UST-4 will be included in quarterly groundwater sampling in order to determine current water quality to establish four consecutive quarters of concentrations less than the MTCA Method A CULs.

5.1.4 AOPC 4: Monitoring Well MW-19

The presence of LNAPL in the vicinity of monitoring well MW-19 is uncertain, and the potential extent in the vicinity has not been delineated. LNAPL was observed in this well in 1993 but has not been measured in more recent events. In addition, there is more than 100 feet between MW-19 and the closest investigation locations. Therefore, additional soil and groundwater data are needed to assess whether LNAPL is currently present within the vicinity of MW-19 and whether TPH impacts are present between MW-19 and MW-6 to the north and MW-15 to the south.

During the first mobilization, an OIP sensor and HPT, attached to a direct-push drill rig, will be used to investigate the potential for remaining residual LNAPL and TPH impacts in the subsurface and to obtain hydrostratigraphic data. Three OIP/HPT borings will be advanced within the vicinity of MW-19 at 25-foot spacings to provide a higher resolution (Figure 5.1). If the OIP sensor detects LNAPL and/or TPH impacts, additional OIP borings may be added to delineate the extent of impacts based on OIP results.

Based on the semiquantitative OIP results, additional strategic locations will be advanced with a direct-push rig during the second mobilization in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the extent and calculate a volume of TPH impacts remaining at the Site. In addition, at least one direct-push boring will be advanced in the area that contains the greatest TPH impacts, via OIP results, in order to collect soil samples and delineate the vertical extent of potential TPH impacts.

5.1.5 AOPC 5: Former Fuel Loading Racks

Residual hydrocarbon impacts in soil have not been adequately delineated to the east and southeast of the former railyard fuel loading racks associated with historical operations. There are limited soil data in this area, which has historically included measurements of LNAPL in MW-20, making accurate estimates of the volume of impacted soil difficult and leaving open the possibility that impacted soil extends further than previously delineated (refer to Figure 4.2). In addition, the CSM of surface spills near the loading racks leaves open the potential for an exposure pathway from shallow soil; therefore, additional shallow soil data are needed to confirm that no shallow soil pathway exists.

The nature and extent of impacted soil and LNAPL need to be defined better in this area, and additional soil and groundwater data are needed to address these uncertainties. The area potentially affected by the former loading rack activities and the former pipelines within this area is approximately 140 feet wide by 350 feet in length, north to south.

During the first mobilization, approximately 25 borings will be advanced, using an OIP sensor and HPT on a direct-push drill rig, at approximately 25-foot spacings along the entire length of the former loading racks between the loading racks and the former pipelines. Additionally, three perpendicular transects of OIP borings will be advanced from the area east of MW-20 to the west adjacent and within former Warehouse 9 footprint. The multiple lines of evidence from both OIP and HPT locations will provide a better understanding of the spatial and matrix distribution of any potential impacts and to obtain hydrostratigraphic data within AOPC 5. Proposed locations are shown on Figure 5.1 and are subject to change. The number of OIP locations is dependent on real-time results; additional borings may be added to delineate the extent of impacts, or fewer locations may be sufficient if impacts are not encountered. The three transect locations may also be adjusted in the field based on OIP results.

Based on the semiquantitative OIP results, additional strategic locations will need to be advanced and sampled using a direct-push rig, during the second mobilization, in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the potential extent and calculate a volume of TPH impacts remaining at the Site. Direct-push borings will be advanced along the length of the former loading racks and in the area that contains the greatest TPH impacts, based on OIP results. Soil samples will be collected to confirm that no shallow soil pathway exists and to delineate the vertical extent of potential TPH impacts. Shallow soil samples will be collected from the 0- to 2-foot interval at select soil boring locations based on OIP results.

Groundwater screening samples will be collected, at depths based on the OIP and/or HPT surveys, from select direct-push soil borings. In addition, there is a need for groundwater data from the alluvial aquifer in this area of the Site. A new monitoring well (tentatively shown as MW-33 on Figure 5.1) will be installed in an area that displays the greatest TPH impacts, based on OIP results, and within the deeper alluvial aquifer, which is also needed for water level data (refer to Section 5.2). Soil samples will be collected during the installation of the monitoring well and in accordance with the SAP/QAPP.

5.1.6 AOPC 6: Former Calloway Ross Parcel

Previous documents indicate that, in addition to the gasoline UST that was removed from this area (refer to Section 3.1), historical activities included spills and/or leaks that resulted in areas of petroleum-stained surface soil on the northern portion of the parcel, and there was storage of creosote-treated lumber (Golder 1996c). There are no remaining data gaps associated with the Site historical activities associated with spills and leaks to the surface, which were investigated and remediated through removal of approximately 175 tons of soil that contains TPH at concentrations greater than MTCA Method A CULs from three shallow excavations (shown on Figure 2.1) and transported off site for thermal treatment (Golder 1997).

As described in Section 4.2, subsurface GRO and DRO impacts remain in the vicinity of the former UST. The extent of impacted soil and groundwater at the southern edge of this area, close to former Warehouse 9, has not been adequately delineated. To address this data need, two borings will be advanced using an OIP sensor and HPT within AOPC 6 in the vicinity of the northeast corner of former Warehouse 9 and south of MW-9 and MW-10 (Figure 5.1). If necessary, additional stepout borings will be advanced as needed based on OIP results.

Based on the semiquantitative OIP results, additional strategic locations will be advanced during the second mobilization with a direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the potential extent and calculate a volume of TPH impacts remaining at the Site. Soil samples and groundwater grab samples will be collected in order to confirm OIP results, and sampling will be in accordance with the SAP/QAPP.

5.1.7 AOPC 7: Monitoring Wells MW-26 and MW-28

The results of 2019 groundwater monitoring indicated elevated concentrations of DRO and ORO detected at MW-28. Both monitoring wells, MW-26 and MW-28, are screened in the perched zone. In addition, historical soil data show DRO detections at a concentration of 42,000 milligrams per kilogram in monitoring well MW-26 at 18 feet bgs.

Therefore, there is a need to better understand of the spatial and matrix distribution of the impacts within this area. During the first mobilization, approximately nine borings will be advanced, using an OIP sensor and HPT on a direct-push drill rig, at approximately 25-foot spacings within AOPC 7. The number of OIP locations is dependent on real-time results; additional borings may be added to delineate the extent of impacts, or fewer locations may be sufficient if impacts are not encountered (Figure 5.1).

Based on the semiquantitative OIP results, additional strategic locations will be advanced and sampled using a direct-push rig during the second mobilization, in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the potential extent and calculate a volume of TPH impacts remaining at the Site. Groundwater screening samples will be collected, at depths based on the OIP and/or HPT surveys, from select direct-push soil borings.

In addition, there is a need for groundwater data from the alluvial aquifer in this area of the Site. A new monitoring well (tentatively shown as MW-34 on Figure 5.1) will be installed in an area that displays the greatest TPH impacts, based on OIP results, and within the deeper alluvial aquifer, which is also needed for water level data (refer to Section 5.2). Soil samples will be collected during the installation of the monitoring well and in accordance with the SAP/QAPP.

5.1.8 AOPC 8: Soil Vapor Quality

Previous reports indicated that vapor inhalation is not a viable exposure pathway at the Site because of the age and type of fuel products found in soil. The rationale was that diesel and Bunker C fuel have few volatile components, and the gasoline at the Site is old and weathered, reducing the potential for human exposure by means of vapor inhalation (Golder 1999).

Ecology requires an evaluation of VI into indoor air whenever LNAPL and/or volatile hazardous substances are present in the subsurface at a site (Ecology 2018). LNAPL has been observed and recent groundwater results indicate that benzene has been detected in groundwater at concentrations as great as $61 \mu g/L$, which exceeds the MTCA Method C soil vapor screening level of 24 $\mu g/L$ in groundwater for industrial sites.

In addition to Ecology's 2018 VI guidance, USEPA's 2015 technical guidance for addressing petroleum VI states that the lateral inclusion zone and horizontal separation distance must be defined to determine whether current buildings are threatened by potential VI (USEPA 2015). Ecology has updated its VI guidance to include lateral inclusion zones and vertical separation distances in the memorandum *Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion* (2016 VI Guidance; Ecology 2016). The 2016 VI Guidance defines the lateral inclusion zone as the area surrounding a contaminant source through which vapor-phase impacts might travel and intrude into buildings. If the degree and extent of impacts are well-defined and the dissolved-phase plume is stable or receding, then a horizontal separation distance of 30 feet is appropriate for establishing a lateral inclusion zone. If the lateral inclusion zone of 30 feet is not met, the guidance recommends soil vapor sampling if the top of the smear zone, dissolved-phase plume, or LNAPL is present less than 15 feet in vertical distance beneath a building footprint or subslab or if TPH impacted soil or the dissolved-phase plume is present less than 6 feet beneath the building footprint during historical high groundwater table elevations.

Currently, there are no occupied buildings over or in the vicinity of shallow impacted soil, LNAPL, or the dissolved-phase plume. However, VI is a relevant potential future exposure pathway because there is a potential for buildings to be constructed within 30 feet of monitoring well MW-9, which contains an LNAPL thickness of 0.01 feet at a depth of 15.30 feet bgs. To take a conservative approach, one Vapor Pin will be installed in the slab of the former Warehouse 9 in the northeastern corner, near MW-9, and a second will be installed in the middle of the former Warehouse 9 slab (Figure 5.1). Two rounds of vapor sampling, 6 months apart, will be conducted in order to assess the VI risk to a potential future building and will be collected in accordance with the SAP/QAPP.

5.1.9 AOPC 9: U.S. Army Reserve Building

Two USTs were operated on site and maintained by the U.S. Army Reserve. One of the USTs was a heating oil UST located near the northwest corner of the former U.S. Army Reserve building (Wilcox 1993). A U.S. Navy drawing indicates that a 2,800-gallon-capacity heating oil UST was installed in approximately 1949 (U.S. Navy 1949). The drawing indicates that the tank was located immediately northeast of the building and supplied fuel for the building's steam boiler (U.S. Navy 1949). The heating oil UST was emptied and cleaned in the 1970s for possible storage of liquid fertilizer. In addition, a gasoline UST is believed to have been located near the former U.S. Army Reserve building (Wilcox 1993), although the existence of this UST has never been confirmed.

Because of the uncertainty regarding these tanks, an initial building and historical reconnaissance will be conducted to determine where the former heating oil UST was located, and whether there is any further indication of the gasoline UST. A GPR survey will be conducted to attempt to locate these tanks prior to advancing soil borings.

In conjunction with the GPR survey, two direct-push borings will be advanced within AOPC 9 during the second mobilization (refer to Figure 5.1 for AOPC 9 area). The boring locations are not shown on Figure 5.1 but will be advanced in the locations of the former heating oil and/or gasoline UST, as determined by the building survey and GPR results. Soil and groundwater samples will be collected to determine whether any releases related to the former heating oil UST affected soil and water quality. If further evidence of the gasoline UST is found, at least one boring will be advanced within the vicinity of the gasoline UST. Soil and groundwater samples will be collected to the samples use of the gasoline UST. Soil and groundwater samples will be advanced within the vicinity of the gasoline UST. Soil and groundwater samples will be collected in accordance with the SAP/QAPP.

5.2 OTHER DATA NEEDS

Data needs other than impact extent identified for the RI are described below.

5.2.1 Groundwater Monitoring, Seasonal Variability, and Other Parameters

Four quarters of groundwater data will be collected from all Site monitoring wells, including newly installed wells (described in the following section) for GRO, DRO, and BTEX. Four quarters of groundwater data will be collected from selected wells for cPAHs and volatile organic compound (VOCs). After two quarters of groundwater sampling results, the number of monitoring wells to be sampled may be reduced (after request to and approval by Ecology) pending consecutive results of non-detect or less than CULs.

Four quarters of groundwater data will be collected from a subset of monitoring wells for natural attenuation parameters (nitrate, sulfate, manganese, alkalinity, methane, and the additional field measurement of ferrous iron) to provide an updated understanding of groundwater parameters and constituents indicative of biological degradation, including key nutrients and energy sources used by relevant bacteria. Additional groundwater samples will be collected from selected monitoring wells for Table 830-1–required constituents (lead, 1,2-dibromoethane, 1,2-dichloroethane, methyl *tert*-butyl ether, and naphthalenes). Samples from another subset of

spatially representative monitoring wells will be submitted for the full suite of VOC analysis. The analysis of this subset will inform the selection of wells in different areas of the Site that have previously contained elevated concentrations of GRO, DRO, ORO, and benzene. Four consecutive quarters of groundwater samples is likely unattainable for some wells screened in the perched zone due to seasonal fluctuations and insufficient volume of water to sample. Any proposed reduction in the number of monitoring wells to be sampled will be sent to Ecology for review and approval. The intent is to reduce the redundant and necessary perched zone wells that have been seasonally dry, historically clean, or within known impacted areas.

During the second mobilization, selected soil samples will be collected for site-specific CUL calculations based on volatile petroleum hydrocarbons/extractable petroleum hydrocarbons. Ecology suggested that the most practical approach is to use data from multiple soil or product locations to calculate a median soil CUL that is representative of the Site (or portion of the Site impacted by the same product). Three soil samples, GP-1, G-18, and GP-27, were previously collected in September 2015 and subjected to the additional analyses to calculate Site-specific MTCA Method C TPH CULs (Table 4.2). GP-1 had detections of both GRO and DRO; the other two samples, GP-18 and GP-27, contained elevated DRO and ORO concentrations. To calculate an average Site-specific CUL, additional soil samples will be needed from each source area, such as the area adjacent to wells MW-26 and MW-28 (AOPC 7), within the vicinity of the former loading racks (AOPC 5), and within an area that mainly consists of gasoline impacts. Samples collected adjacent to wells MW-26 and MW-28 and within the loading rack area will represent an area of overlapping DRO and GRO impacts in soil. These locations will be determined using OIP results collected during the first mobilization.

Refer to the SAP/QAPP (Appendix F) for additional details.

5.2.2 Hydrogeologic Characterization

Hydrogeologic data needs for the Site include a need for additional alluvial aquifer monitoring wells and associated data, and an improved understanding of the perched zone and its role in the CSM. HPT data collected during the first mobilization will be used to help understand the Site's stratigraphy and hydrogeology within the perched zone and lower alluvial aquifer, including discontinuous zones, but additional monitoring wells will be required as well.

The Site monitoring well network consists primarily of monitoring wells with screened intervals in the vadose or perched zone, with only a small number of monitoring wells with screened intervals in the alluvial aquifer within the central portion of the Site. Construction details of existing monitoring wells are provided in Table 4.5, and several of these wells are illustrated on the preliminary cross-section, Figure 2.2. MW-19, MW-7, MW-10, and MW-12 are screened in the alluvial aquifer in the north portion of the Site, and MW-23 is screened in the alluvial aquifer in the southern portion of the Site; several wells have well screens that span both units.

The conceptual understanding that groundwater in the alluvial aquifer flows toward the Columbia River is based on limited available information. Also, groundwater in the perched zone occurs in a thin, discontinuous zone that appears to be relatively isolated hydraulically.

Therefore, a key hydrogeologic data need is for additional alluvial aquifer monitoring wells to allow accurate potentiometric mapping of groundwater flow and gradients in the alluvial aquifer, as well as vertical gradients between the perched zone and alluvial aquifer.

Additional monitoring wells are needed in the alluvial aquifer in the central and southern portions of the Site to establish groundwater flow directions and gradients between the area of groundwater impacts and the Columbia River. Additional alluvial aquifer monitoring wells are needed to accurately map the potentiometric surface because of the small number of alluvial aquifer monitoring wells and the geographic distribution of the monitoring wells. Previous potentiometric contour maps are included in Appendix C. As noted previously, these maps combine elevations of groundwater from monitoring wells screened in the alluvial aquifer with those from monitoring wells screened in shallower perched zone(s). As illustrated by the previous potentiometric maps, the groundwater monitoring network is concentrated in the northern perched area and a narrow north-south section of the Site along the rail line and pipelines. Two separate potentiometric maps will be prepared for the RI Report that will present groundwater elevations for wells screened in the alluvial aquifer and wells screened in the vadose zone.

During the second mobilization, the following new monitoring wells are proposed to be installed and sampled as part of the monitoring well network during the RI:

- Two additional 2-inch monitoring wells will be installed and developed in the alluvial aquifer, in the central portion of the Site, with screened intervals between approximately 25 and 35 feet bgs: proposed monitoring well MW-33, located near the MW-17 and several other perched zone wells; and MW-34, located near MW-28 and several other perched zone monitoring wells. Refer to Figure 5.1. These monitoring wells will fill a gap for alluvial aquifer wells in the center of the Site between MW-10 and MW-23, and both will allow for calculation of vertical hydraulic gradients relative to adjacent perched zone wells. In addition, MW-33 and MW-34 will provide useful contaminant data (refer to Sections 5.1.5 and 5.1.7, respectively).
- One additional 2-inch monitoring well will be installed and developed in the alluvial aquifer near the western boundary of Site impacts. Proposed monitoring well MW-35 will provide an important data point for monitoring gradients and flow directions in the alluvial aquifer.
- One additional 2-inch monitoring well will be installed and developed in the alluvial aquifer near former Gear Locker A area. Proposed monitoring well MW-36 will provide an important data point for monitoring gradients and flow directions in the alluvial aquifer.
- Two additional 2-inch monitoring wells will be installed where the abandoned pipelines meet the bulkhead in the vicinity of GP-13 and GP-16 to confirm that impacted groundwater beneath the Port property has not migrated to the Columbia River.

In addition, further data would be useful to support the preliminary CSM for the perched area in the center of the Site, which holds that this unit is relatively insubstantial as a water-bearing unit and has limited hydraulic connection with the alluvial aquifer below, so that impacts in the perched zone are relatively immobile, with little potential for migration with groundwater flow. Refer to the cross-section on Figure 2.2.

To fill this data need, the following activities will be performed:

- A limited drawdown test will be conducted on the perched zone in accordance with standard methods for constant-rate discharge tests, as described in ASTM Method D4050 and summarized for Site use in the SAP/QAPP (Appendix F). The drawdown test will utilize a perched-zone monitoring well, located in the central portion of the Site, as the pumping well and nearby monitoring wells as observation wells. The goal of the test is to observe the extent to which pumping draws down the perched-zone water levels. The draw-down test may have to be conducted during the wet season in order to avoid dewatering issues during the drier months.
- A 3-day transducer study will be conducted to measure the relative change in water levels in the alluvial aquifer, which is affected by the tidally influenced stage of the Columbia River (KJC 2012), and the perched zone, which is not likely to be influenced by changes in river stage. The study will install approximately three monitoring wells in the perched zone and approximately three monitoring wells in the alluvial aquifer. The transducer data will also help determine if the Oregon Way pump station has an influence on the perched and alluvial aquifers at the Site.
- Soil samples will be collected from the perched zone, silt underlying the perched zone, and the alluvial aquifer and submitted for grain size, porosity, fraction organic carbon, and bulk density. Two locations that are expected to provide representative samples are planned for new monitoring wells MW-33 and MW-34. The proposed locations for these wells are shown on Figure 5.1, but their final locations may be adjusted, pending OIP/HPT results.

6.0 Remedial Investigation Tasks and Schedule

This section provides summary descriptions and a schedule for RI activities following Ecology approval of the Final Work Plan, including written reports that will be generated.

6.1 REMEDIAL INVESTIGATION FIELD INVESTIGATION

The RI field investigation will include execution of the field data collection activities described in this Work Plan, including but not limited to a utility survey, water level measurement, direct-push soil boring sampling, OIP drilling, installation of monitoring wells, a survey of existing and new monitoring wells, groundwater sampling via monitoring wells and temporary well points installed in Geoprobe borings, and aquifer testing.

6.2 INTERIM DATA REPORT

The Agreed Order requires that data reports and updates be provided to Ecology as new Site data and information become available, and raw laboratory data be provided on request. All validated data will be submitted to Ecology's Environmental Information Management (EIM) System (refer to the SAP/QAPP, Appendix F). In addition to these exchanges of information, an Interim Data Report will be submitted to Ecology for review and comment following the completion of the initial RI field data collection. The purpose of the Interim Data Report is to present the initial field data and identify whether any data gaps remain to be filled. Specifically, the Interim Data Report shall describe the work conducted to collect the data, including a summary of the sampling design, sampling methods, and sampling results. It is expected that the sampling results will be provided both in summary tables and on figures and that screening levels as previously described will be used to evaluate the concentrations of the chemicals detected.

6.3 GROUNDWATER MONITORING

The monitoring wells and sampling program described in this Work Plan are expected to be representative of Site conditions both in the source zones and in downgradient areas. If necessary, following the review of data, additional monitoring wells may be installed.

RI groundwater monitoring will proceed for four quarters. RI groundwater monitoring will include water level measurement, LNAPL measurement where applicable, and groundwater sample collection in accordance with the SAP/QAPP. Groundwater analytes will include DRO, ORO, GRO, and BTEX at all locations and cPAHs, VOCs, and natural attenuation parameters and constituents required under Table 830-1, Required Testing for Petroleum Releases, at selected locations.

6.4 REMEDIAL INVESTIGATION REPORT

Following approval of the Interim Data Report, and completion of four quarters of groundwater monitoring and other required data collection, the Agency Review Draft RI Report will be prepared.

Primary RI reporting tasks include presenting the data, both current and historical, in a comprehensive fashion in order to define the nature and extent of impacts at the Site; defining site-wide COCs and CULs, as well as points of compliance; and updating the CSM to reflect

site-wide comprehensive information. Chemical and physical data collected will be presented on figures and in tables per contaminant class and environmental media. A discussion of how the data were collected and an evaluation of the results will be included.

The preliminary CSM developed based on previous site investigations will be refined throughout the RI process as additional data are collected and site conditions are better defined. The CSM will include a comprehensive understanding of contaminants and sources; nature and extent of impacts; fate and transport processes; and exposure pathways and receptors.

All chemical data collected during the field work will be submitted in Ecology's EIM format. The overall objective of the RI document is to sufficiently define site conditions necessary for the FS to define detailed remedial action objectives and remedial alternatives.

6.5 SCHEDULE

The schedule for the RI will proceed according to or, if feasible, ahead of the existing schedule set forth in the Agreed Order, based on the effective date of February 13, 2019. Below are the dates of performance or completion for significant RI tasks in general accordance with the Agreed Order schedule. Actual dates below are subject to change depending on Ecology review periods and subcontractor/field crew availability.

Task	Expected Duration	Date
Submit Final RI Work Plan to Ecology ⁽¹⁾		October 21, 2019
Implement RI Field Work ⁽²⁾ :		
RI Investigation Phase I (1 st Mobilization)	2 weeks	November 2019
Review OIP and HPT Data	4 weeks	December 2019
Phase II (2 nd Mobilization)	2 weeks	January 2020
1 st Round Groundwater Sampling	3 days	February 2020
2 nd Round Groundwater Sampling	3 days	May 2020
3 rd Round Groundwater Sampling	3 days	August 2020
4 th Round Groundwater Sampling	3 days	November 2020
Receive Data Reports from Laboratories, Complete Data Validation, Load Data to EIM ⁽³⁾		January to December 2020
Submit Interim Data Report to Ecology		June, 2020
Submit Agency Review Draft RI Report ⁽¹⁾		March 2021
Submit Public Review Draft RI Report ⁽¹⁾		June, 2021

Notes:

1 Ecology review periods are assumed to be 60 days for draft documents and 30 days for draft final documents.

2 If Phase I and Phase II mobilizations are not completed by February 1, 2020, a request for an extension of schedule will be submitted to Ecology in accordance with Agreed Order No. DE 15907 Section VIII. I. Extension of Schedule.

3 Final laboratory data must be submitted to EIM within 180 days of receipt; this completion date may change based on the field data collection completion and data validation completion dates.

7.0 Project Team and Responsibilities

7.1 WASHINGTON STATE DEPARTMENT OF ECOLOGY

Ecology is responsible for participation in the planning and scoping of the RI and reviewing and approving the draft RI documents. Matt Morris is the Site Project Manager for Ecology. He will review and approve all work plans and reports for the RI and FS and will determine if all requirements of the Agreed Order have been met.

Ecology will have lead responsibility for all public involvement activities during the RI process. Ecology will be responsible for public relations and outreach in coordination with the Port during the project, which may include participation at public meetings, project fact sheets, and direct community involvement.

7.2 PORT OF LONGVIEW

In addition to its role as part of the PLP Group, the Port's responsibilities include overall project direction and oversight, site access, tenant coordination, and all tasks to support the planning and performance of the work. The Port is the landowner. Lisa Hendriksen is the Port's Manager for the project.

7.3 PLP GROUP

The PLP Group's responsibilities include participation in the planning and scoping of the RI and technical review of draft RI documents. Lisa Hendriksen is the named Agreed Order Coordinator for the PLP Group.

7.4 FLOYD|SNIDER

Floyd|Snider is the PLP Group technical consultant responsible for project planning, technical analysis, authorship, and Ecology coordination to produce the RI in a manner consistent with the Agreed Order and Ecology requirements. Scott Adamek, P.E., L.G. is the Floyd|Snider Project Manager.

7.5 LABORATORY

An Ecology-accredited laboratory will conduct chemical testing of soil, groundwater, and sediment samples. The laboratory will be responsible for calculating method detection limits for each COC and meeting laboratory quality control requirements as specified in the SAP/QAPP.

7.6 OTHER SUBCONTRACTORS—GEOPHYSICAL, DRILLER, AND SURVEYOR

A professional utility locator will perform geophysical work including underground pipeline location. Geoprobe soil boring and monitoring well installation will be performed by licensed drillers with oversight by Floyd|Snider. Professional surveying of site features and monitoring well locations will be performed by licensed surveyors.

8.0 References

- Anchor QEA, LLC (Anchor QEA). 2011. Sediment Characterization Report, Port of Longview Berth Maintenance Dredging and Deepening Project. Prepared for Port of Longview. August.
- _____. 2017. *Port of Longview Maintenance Dredging Project Sediment Characterization Report.* Prepared for the Port of Longview. January.
- Consolidated Diking Improvement District #1 (CDID#1). 2013. "History." http://www.cdid1.org/ History/default.html. Last accessed August 13, 2019.
- Cowlitz County and Washington State Department of Ecology (Cowlitz County and Ecology). 2017. *Millennium Bulk Terminals—Longview: State Environmental Policy Act Final Environmental Impact Statement, Volume I: Final Environmental Impact Statement.* 28 April.
- Floyd|Snider. 2015. Priority Data Gaps Investigation Work Plan, Port of Longview TPH Site, Longview, Washington. Letter report from Tom Colligan, Floyd|Snider, to Lisa Hendriksen, Port of Longview. 6 July.
- Golder Associates (Golder). 1993a. Phase III Characterization Report Bunker C and Diesel Fuel Investigation. 13 August.
- _____. 1993b. Underground Storage Tank Site Characterization, Port of Longview. 18 August.
- _____. 1994. Phase IV Characterization Report Bunker C and Diesel Fuel Investigation, Port of Longview, Longview, Washington. 7 December.
- _____. 1996a. *Report of Verification Sampling Unit B, Port of Longview, Longview, Washington*. 26 September.
- _____. 1996b. Focused Feasibility Study Unit B, Port of Longview, Longview, Washington. 27 March.
- _____. 1996c. Focused Feasibility Study Unit A, Port of Longview, Longview, Washington. 25 January.
- _____. 1997. Report on Verification Sampling Northern Portion Unit A, Port of Longview, Longview, Washington. 2 June.
- _____. 1999. Final Summary of 1998 Groundwater Investigation Field Activities and Future Plans for Remediation. 27 March.
- _____. 2000. Historic Site Investigation and Remediation Summary Report, Port of Longview, 10 Port Way Longview, Washington. October.

- ____. 2010. Site-Wide Groundwater Monitoring Well Sampling Port of Longview, Longview, Washington. 26 February.
- _____. 2013. Post-Cap Annual Groundwater Monitoring Event, Year 2013, Port of Longview, Longview, Washington. 12 November.
- James River Corporation. 1993. RE: Port of Longview Petroleum Contamination. Letter from Jack
 G. Chapman, Manager, James River Corporation, to Judy Grigg, Manager of
 Environmental Affairs, Port of Longview. 14 October.
- Kennedy/Jenks Consultants (KJC). 2012. CARA Level Two Hydrogeologic Assessment, Port of Longview. 20 July.
- Landau Associates (Landau). 2012. Expert Report: The Timing and Releases at the TPH Site, Port of Longview, Washington. 22 June.
- Petroleum Service Unlimited, Inc. (PSU). 1991. Extent of Contamination Investigation, Port of Longview. 26 June.
- U.S. Department of the Navy (U.S. Navy). 1949. *Training Center Building Heating and Ventilating Foundation Plan*. Thirteenth Naval District Public Works Department, U.S. Naval Reserve Training Center, Longview, Washington. 5 May.
- U.S. Environmental Protection Agency (USEPA). 2015. *Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites*. EPA 510-R-15-001. June.
- Washington State Department of Ecology (Ecology). 2001. Concise Explanatory Statement for the Amendments to the Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication No. 01-09-043.
- _____. 2013. Site Hazard Assessment, Port of Longview Site ID 42978181. 10 December.
- _____. 2016. Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion, Implementation Memorandum No. 14. Memorandum from Jeff Johnston, Washington State Department of Ecology, to Interested Persons. 31 March.
- _____. 2018. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication no. 09-09-047. April.
- Wilcox, Steve. 1993. Topic: Golder and Associates Report. Letter from Steve Wilcox, President, Wilson Oil, Inc., to Judy Grigg, Manager of Environmental Affairs, Port of Longview. 29 September.

Port of Longview TPH Site

Remedial Investigation Work Plan

Tables

Table 3.1Sediment Physical and Chemical Analytical Results from 2011

	SEF Freshwater		eshwater It Criteria	Berths POL-01A	1,2,4,5 POL-01B	Berth POL-02A	ns 6,7 POL-02B	Ber POL-03A	th 8 POL-03B	Ber POL-04A	th 9 POL-DUP
	SL Criteria	SCO	CSL	6/15/2011	6/15/2011	6/16/2011	6/16/2011		6/30/2011	6/18/2011	6/18/2011
Conventional Parameters (percent)			1	· · ·	<u> </u>				<u> </u>		
Total organic carbon				0.20	0.42	0.35	0.61	0.17	0.14	0.33	0.16
Total solids				80.2	80.7	74.9	77.9	80.9	76.4	78.4	79.4
Conventional Parameters (mg/kg)	1		200			40.5	44.0			0.42.11	
Ammonia Sulfide		230	300	3.5	4.5	10.5	11.8	3.5	5.1	0.13 U	
Grain Size (percent)		39	61	1.24 U	22.8	1.31 U	1.23 U	16.3	2.21	1.26 U	
Gravel	[7.1	13.7	0.3	6.5	22.9	6.2	21.8	15.3
Sand				82.1	79.8	71.4	66.5	66.3	79.5	76.9	83.4
Silt				9.8	5.6	26.2	24.6	9.4	12.9	1.1	1.3
Clay				0.8	1.2	2.1	2.4	1.4	1.2	0.0	0.0
Metals (mg/kg)		•									
Antimony				6 UJ	6 UJ	6 UJ	6 UJ	6 UJ	6 UJ	6 UJ	6 UJ
Arsenic	20	14	120	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Cadmium	1.1	2.1	5.4	0.2 U	0.2 U	0.3 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U
Chromium	95	72	88	7 15	10	7	20 18	6	6	6	6
Copper Lead	80 340	400 360	1,200 >1,300	2 U	16 2	18 3 U	18 2 U	17 J 3 U	15 J 3 U	12 3 U	11 2 U
Mercury	0.28	0.66	0.8	0.02 U	0.02 U	0.03 U	0.03	0.03 U	0.03 U	0.02 U	0.03 U
Nickel	60	26	110	7	9	7	13	6	6	8	7
Silver	2	0.57	1.7	0.4 U	0.3 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Zinc	130	3,200	> 4,200	32	34	41	35	34	25	42	40
Organometallic Compounds (µg/kg)		•									
Tributyltin (ion)	75	47	320	2.8	3.3 U	5.4 J	3.3 U	3.4 U	3.5 U	3.4 U	3.5 U
Polycyclic Aromatic Hydrocarbons (PAHs) (µg/kg)		1	1							
1-Methylnaphthalene				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
2-Methylnaphthalene	470		[19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Acenaphthene	1,100			19 U	31	18 U	50	18 U	18 U	20 U	20 U
Acenaphthylene Anthracene	470			19 U 19 U	19 U 11 J	18 U 18 U	18 U 23	18 U 18 U	18 U 18 U	20 U 20 U	20 U 20 U
	1,200			19 U 19 U	11 J 10 J	18 U 18 U	23 150		18 U 18 U	20 U 20 U	
Benzo(a)anthracene Benzo(a)pyrene	4,300 3,300			19 U 19 U	10 J 19 U	18 U 18 U	200	18 U 18 U	18 U 18 U	20 U	20 U 20 U
Benzo(g,h,i)perylene	4,000			19 U	19 U	18 U	150	18 U	18 U	20 U	20 U
Total Benzofluoranthenes	1,000			9.3 J	15 J	18 U	340	18 U	18 U	20 U	20 U
Chrysene	5,900			19 U	12 J	18 U	180	18 U	18 U	20 U	20 U
Dibenzo(a,h)anthracene	800			19 U	19 U	18 U	54	18 U	18 U	20 U	20 U
Fluoranthene	11,000			19 U	24	12 J	320	18 U	18 U	20 U	20 U
Fluorene	1,000			19 U	16 J	18 U	19	18 U	18 U	20 U	20 U
Indeno(1,2,3-c,d)pyrene	4,100			19 U	19 U	18 U	130	18 U	18 U	20 U	20 U
Naphthalene	500			19 U	14 J	18 U	18 U	18 U	18 U	20 U	20 U
Phenanthrene	6,100			19 U	42	14 J	150	10 J	18 U	20 U	20 U
Pyrene	8,800	17.000	20.000	19 U	51	10 J	310	18 U	18 U	20 U	20 U
Total PAHs HPAHs (U=1/2)	31,000	17,000	30,000	161 85.3	293 150	162 85	2,112 1,834	154 18 U	18 U 18 U	20 U 20 U	20 U 20 U
LPAHs (U=1/2)	6,600			19 U	130	68	269	64	18 U	20 U	20 U
Semivolatile Organic Compounds (µ	,	<u> </u>	I	10 0	135	00	205		10 0	20 0	20 0
1,2-Dichlorobenzene			1	19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
1,2,4-Trichlorobenzene				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
1,3-Dichlorobenzene				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
1,4-Dichlorobenzene				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
2-Methylphenol (o-Cresol)				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
2,4-Dimethylphenol				37 U	38 U	37 U	37 U	37 U	37 U	40 U	39 U
4-Methylphenol (p-Cresol)		260	2,000	37 U	21 J	24 J	21 J	37 U	37 U	40 U	39 U
Benzoic acid				370 U	380 U	370 U	370 U	370 U	370 U	400 U	390 U
Benzyl alcohol Bis/2-ethylbeyyl) phthalate	220	FOO	22.000	19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Bis(2-ethylhexyl) phthalate Butylbenzyl phthalate	220 260	500	22,000	23 U 19 U	24 U 19 U	48 18 U	23 U 18 U	15 J 18 U	23 U 18 U	25 U 20 U	24 U 20 U
Dibenzofuran	400	200	680	19 U 19 U	19 U	18 U 18 U	9.2 J	18 U 18 U	18 U 18 U	20 U	20 U 20 U
Diethyl phthalate	-00	200	000	47 U	47 U	46 U	46 U	46 U	46 U	20 U	49 U
Dimethyl phthalate	46			19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Di-n-butyl phthalate		380	1,000	19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Di-n-octyl phthalate	26	39	> 1,100	19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Hexachlorobenzene				19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Hexachlorobutadiene				93 U	94 U	92 U	92 U	92 U	92 U	99 U	98 U
Hexachloroethane			[19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
N-Nitrosodiphenylamine		4 202	. 4 000	19 U	19 U	18 U	18 U	18 U	18 U	20 U	20 U
Pentachlorophenol Phenol		1,200 120	> 1,200 210	190 U 19 U	190 U 19 U	180 U 18 U	180 U 18 U	180 U 18 U	180 U 18 U	200 U 20 U	200 U 20 U
Polychlorinated Biphenyl (PCB) Aro	clors (ug/kg)	120	210	19.0	19.0	10 0	10 0	10 0	10 U	20 0	20 0
Aroclor 1016				9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Aroclor 1221	1			9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U 9.4 U	9.2 U
Aroclor 1232		1	1	9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Aroclor 1242				9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Aroclor 1248				9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Aroclor 1254				9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Aroclor 1260				9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Total PCB Aroclors (U=0)	60	110	2,500	9.3 U	9.5 U	9.2 U	9.6 U	4 U	9.6 U	9.4 U	9.2 U
Pesticides (µg/kg)											
4,4'-DDD (p,p'-DDD)	16	310	860	1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
4,4'-DDE (p,p'-DDE) 4 4'-DDT (p p'-DDT)	9	21	33 8 100	1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
4,4'-DDT (p,p'-DDT) Total DDX (U=0)	12	100	8,100	1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
Aldrin	9.5			1.9 U 0.97 U	1.8 U 0.92 U	1.9 U 0.97 U	1.9 U 0.97 U	1.9 U 0.93 U	1.9 U 0.94 U	1.8 U 0.92 U	1.9 U 0.94 U
alpha-Chlordane (cis-Chlordane)	3.5			0.97 U	0.92 U 0.92 U	0.97 U	0.97 U	0.93 U 0.93 U	0.94 U 0.94 U	0.92 U 0.92 U	0.94 U 0.94 U
beta-Chlordane (trans-Chlordane)	1			0.97 U	0.92 U	0.97 U	0.97 U	0.93 U	0.94 U	0.92 U	0.94 U
cis-Nonachlor				1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U

Remedial Investigation Work Plan

Table 3.1

Sediment Physical and Chemical Analytical Results from 2011

Table 3.1

Sediment Physical and Chemical Analytical Results from 2011

	SEF	SMS Fre	shwater	Berths	1,2,4,5	Berth	ns 6,7	Ber	th 8	Ber	th 9
	Freshwater	Sedimen	t Criteria	POL-01A	POL-01B	POL-02A	POL-02B	POL-03A	POL-03B	POL-04A	POL-DUP
	SL Criteria	SCO	CSL	6/15/2011	6/15/2011	6/16/2011	6/16/2011	6/30/2011	6/30/2011	6/18/2011	6/18/2011
Pesticides (µg/kg) (cont.)											
Oxychlordane				1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
Total Chlordane (U=0)	2.8			1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
Dieldrin	1.9	4.9	9.3	1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
Endrin		8.5		1.9 U	1.8 U	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	1.9 U
gamma-BHC (Lindane)				0.97 U	0.92 U	0.97 U	0.97 U	0.93 U	0.94 U	0.92 U	0.94 U
Heptachlor	1.5			0.97 U	0.92 U	0.97 U	0.97 U	0.93 U	0.94 U	0.92 U	0.94 U
Total Petroleum Hydrocarbons (mg/kg)											
Diesel-Range Organics		340	510	6.3 U	13	7.2	9.5	6.2 U	6.5 U	6.2 U	6.2 U
Motor Oil-Range Organics				12 U	20	15	24	12 U	13 U	12 U	12 U

Notes:

Blank cells are intentional.

-- Not available.

BOLD Detected result.

Abbreviations:

CSL Cleanup screening level

DDD Dichlorodiphenyldichloroethane

DDE Dichlorodiphenyldichloroethylene

DDT Dichlorodiphenyltrichloroethane

DDX Sum of DDE, DDD, and DDT

HPAH High molecular weight polycyclic aromatic hydrocarbon

LPAH Low molecular weight polycyclic aromatic hydrocarbon

 μ g/kg Micrograms per kilogram

mg/kg Milligrams per kilogram

SCO Sediment Cleanup Objective

SEF Sediment Evaluation Framework

SL Screening level

SMS Sediment Management Standards

Qualifiers:

J Analyte was detected; concentration is considered an estimate.

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected at the given reporting limit; concentration is considered an estimate.

Remedial Investigation Work Plan Table 3.1

Sediment Physical and Chemical Analytical Results from 2011

Page 2 of 2

		-		Berths 1,2,4,5	Berths 6,7	Berth 8	Berth 9
	SEF Freshwater SL Criteria		eshwater nt Criteria CSL	COMP-POL-01A_2016 DMMU-1 10/12/2016	COMP-POL-02A_2016 DMMU-2 10/11/2016	COMP-POL-03A_2016 DMMU-3 10/11/2016	COMP-POL-04A_2016 DMMU-4 10/11/2016
Conventional Parameters (percent)	or enterna			10/12/2010	10/11/2010	10, 11, 2010	10/11/2010
Total organic carbon				0.09 J	0.12 J	0.23 J	0.29 J
Total solids				72.36	71.53	67.1	74.34
Total volatile solids		ļ	ļ	0.523	0.694	1.18	0.436
Conventional Parameters (mg/kg)	220	220	200	1.02	0.00	12.0	
Ammonia Sulfide	230 39	230 39	300 61	1.03 0.673 U	8.06 0.664 U	13.6 6.87	4.44 0.662 U
Grain Size (percent)	39	39	61	0.673 0	0.664 0	6.87	0.662 0
Gravel				1.2	0	0	0
Sand				90.2	80.7	61.2	94
Silt				6.8	15.8	35.3	4.3
Clay				1.8	3.5	3.4	1.7
Metals (mg/kg)					L.	L	
Arsenic	14	14	120	6.79 U	6.48 U	6.92 U	6.45 U
Cadmium	2.1	2.1	5.4	0.151 J	0.129 J	0.175 J	0.15 J
Chromium	72	72	88	6.42	5.76	6.23	5.65
Copper	400	400	1,200	14.8	15.7	18.5	14.1
Lead	360	360	> 1,300	1.95 J	0.977 J	1.33 J	0.759 J
Mercury	0.66	0.66	0.8	0.02867 U	0.03345 U	0.0272 U	0.02327 U
Nickel	26	26	110	7.88	7.1	7.19	7.09
Selenium	11		ļ	2.62 U	2.63 U	0.71 J	0.54 J
Silver	0.57	0.57	1.7	0.408 U	0.389 U	0.415 U	0.387 U
Zinc	3,200	3,200	> 4,200	25.4	25.8	24.8	21.5
Organometallic Compounds (µg/kg)							
Tributyltin (ion)	47	47	320	4.92 U	4.95 U	5.79 U	5.22 U
Monobutyltin	540			5.2 U	5.23 U	6.12 U	5.52 U
Dibutyltim	910 97			7.37 U	7.41 U	8.67 U	7.82 U
Tetrabutyltin Polycyclic Aromatic Hydrocarbons (PA		1	1	6.38 U	6.41 U	7.5 U	6.77 U
2-Methylnaphthalene	H) (µg/kg) 			10711	4.02.11	4.99 U	4.02.11
Acenaphthene				4.87 U 4.87 U	4.92 U 4.92 U	4.99 U 4.99 U	4.82 U 4.82 U
Acenaphthylene				4.87 U 4.87 U	4.92 U	4.99 U	4.82 U 4.82 U
Anthracene				4.87 U	4.92 U	4.99 U	4.82 U
Benzo(a)anthracene				4.87 0 4.13 J	4.92 U	4.99 U	4.82 U
Benzo(a)pyrene				4.38 J	4.92 U	4.99 U	4.82 U
Benzo(b)fluoranthene				4.51 J	2.91 J	2.39 J	4.82 U
Benzo(g,h,i)perylene				3.4 J	4.92 U	4.99 U	4.82 U
Benzo(k)fluoranthene				2.37 J	4.92 U	4.99 U	4.82 U
Chrysene				4.96	4.13 J	2.51 J	4.82 U
Dibenzo(a,h)anthracene				4.87 U	4.92 U	4.99 U	4.82 U
Fluoranthene				10.2	12.1	5.56	4.82 U
Fluorene				4.87 U	4.92 U	4.99 U	4.82 U
Indeno(1,2,3-c,d)pyrene				3.05 J	4.92 U	4.99 U	4.82 U
Naphthalene				2.54 J	4.92 U	4.99 U	4.82 U
Phenanthrene				5.12	6.99	4.8 J	4.82 U
Pyrene				10.8	9.13	4.46 J	4.82 U
Total PAH (U=1/2)	17,000			79.13 J	70.98 J	55.18 J	4.82 U
Semivolatile Organic Compounds (µg/	kg)	1	1		Γ	Γ	T
2-Methylphenol (o-Cresol)				19.5 U	19.5 U	19.9 U	19.2 U
2,4-Dimethylphenol				24.4 U	24.3 U	24.9 U	24 U
4-Methylphenol (p-Cresol)	260	260	2,000	19.5 U	19.5 U	19.9 U	19.2 U
Benzoic acid Bis(2-ethylhexyl) phthalate	2,900 500	500	22,000	195 U 48.7 U	195 U 48.7 U	61.8 49.8 U	192 U 48 U
Carbazole	900	500	22,000	48.7 U 19.5 U	19.5 U	19.9 U	19.2 U
Dibenzofuran	200	200	680	19.5 U	19.5 U	19.9 U	19.2 U
Di-n-butyl phthalate	380	380	1,000	19.5 U	19.5 U	19.9 U	19.2 U
Di-n-octyl phthalate	380	380	> 1,100	19.5 U	19.5 U	19.9 U	19.2 U
Pentachlorophenol	1,200	1,200	> 1,100	97.4 UJ	97.4 UJ	99.7 UJ	95.9 UJ
Phenol	1,200	1,200	210	19.5 U	19.5 U	8.4	19.2 U
Polychlorinated biphenyl (PCB) Aroclo							
Aroclor 1016				4 U	3.8 U	3.9 U	4 U
Aroclor 1221			L	4 U	3.8 U	3.9 U	4 U
Aroclor 1232				4 U	3.8 U	3.9 U	4 U
Aroclor 1242				4 U	3.8 U	3.9 U	4 U
Aroclor 1248				4 U	3.8 U	3.9 U	4 U
Aroclor 1254				4 U	3.8 U	3.9 U	4 U
Aroclor 1260				4 U	3.8 U	3.9 U	4 U
Total PCB Aroclors	110	110	2,500	4 U	3.8 U	3.9 U	4 U
Pesticides (µg/kg)							
4,4'-DDD (p,p'-DDD)	310	310	860	0.99 U	0.94 U	0.98 U	0.99 U
4,4'-DDE (p,p'-DDE)	21	21	33	0.99 U	0.94 U	0.98 U	0.99 U
4,4'-DDT (p,p'-DDT)	100	100	8,100	0.99 U	0.94 U	0.98 U	0.99 U
Aldrin				0.49 U	0.47 U	0.49 U	0.5 U
alpha-Chlordane (cis-Chlordane) beta-Chlordane (trans-Chlordane)			+	0.49 U	0.47 U	0.49 U	0.5 U
beta-Chlordane (trans-Chlordane) cis-Nonachlor				0.49 U	0.47 U	0.72	0.5 U 0.99 U
cis-Nonachlor trans-Nonachlor			+	0.99 U 0.99 U	0.94 U 0.94 U	0.98 U 2.94 UJ	0.99 U 0.99 U
Oxychlordane			+	0.99 U	0.94 U	0.98 U	0.99 U
Dieldrin	4.9	4.9	9.3	0.99 U	0.94 U	0.98 U	0.99 U
5.5Mmm	+.7	4.9 8.5	5.5	0.99 U	0.94 U	0.98 U	0.99 U
Endrin		~ ~		0.99.0			
	8.5	8.5					
gamma-BHC (Lindane)		8.5		0.49 U	0.47 U	0.49 U	0.5 U
gamma-BHC (Lindane) Heptachlor	8.5 7.2	8.5		0.49 U 0.49 U		0.49 U 0.49 U	0.5 U 0.5 U
gamma-BHC (Lindane) Heptachlor Total Chlordane ⁽¹⁾	8.5 7.2 	8.5		0.49 U	0.47 U 0.47 U	0.49 U	0.5 U
gamma-BHC (Lindane) Heptachlor	8.5 7.2 	8.5		0.49 U 0.49 U	0.47 U 0.47 U	0.49 U 0.49 U	0.5 U 0.5 U

Table 3.2Sediment Physical and Chemical Analytical Results from 2016

-- Not available.

BOLD Detected result.

1 Total chlordane is the summation of alpha-chlordane, betachlordane, and oxychlordane. CSL Cleanup screening level DDD Dichlorodiphenyldichloroethane DDE Dichlorodiphenyldichloroethane DDT Dichlorodiphenyltrichloroethane DMMU Dredged Material Management Unit µg/kg Micrograms per kilogram mg/kg Milligrams per kilogram PAH Polycyclic aromatic hydrocarbon PCB Polychlorinated biphenyl SCO Sediment Cleanup Objective SEF Sediment Evaluation Framework SL Screening level

SMS Sediment Management Standards

J Analyte was detected; concentration is considered an estimate.

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected at the given reporting limit; concentration is considered an estimate.

Remedial Investigation Work Plan

Table 4.1 Soil Analytical Results for TPH, BTEX, and Lead

		Ana	lysis Method		NWTPH-HCID			USEPA	8260C		NWTPH-Gx	NWT	PH-Dx	USEPA 6020
											Gasoline-Range	Diesel-Range	Oil-Range	
			Analyte	Gasoline	Diesel	Heavy Oil	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Organics	Organics	Organics	Lead
	Ν	/ITCA Method A C	leanup Level	30/100 ⁽¹⁾	2,000	2,000	0.030	7	6	9	30/100 ⁽¹⁾	2,000	2,000	250
			Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Sample	Depth											
Location	Sample ID	Date	(feet bgs)											
GP-1	GP-1-19.5-20	09/15/2015	19.5–20				0.03 U	0.05 U	0.05 U	0.1 U	18	280	250 U	1.75
GP-1	GP-1-21-21.5	09/15/2015	21-21.5	20 U	50 U	250 U								
GP-2	GP-2-16-16.5	09/15/2015	16–16.5	20 U	50 U	250 U								
GP-3	GP-3-2-3	09/15/2015	2–3	20 U	50 U	250 U								
GP-3	GP-3-16-16.5	09/15/2015	16–16.5	20 U	50 U	250 U								
GP-4	GP-4-21-21.5	09/15/2015	21–21.5	20 U	50 U	D						50 U	470	
GP-5	GP-5-19-19.5	09/17/2015	19–19.5	20 U	50 U	250 U								
GP-6	GP-6-16-17	09/15/2015	16–17	20 U	50 U	D						50 U	140 JQ	
GP-7	GP-7-25.5-26	09/15/2015	25.5–26	20 U	50 U	D						50 U	470	
GP-8	GP-8-25.5-26	09/15/2015	25.5–26	20 U	50 U	D						50 U	720	
GP-9	GP-9-27.5-28	09/16/2015	27.5–28	20 U	50 U	250 U								
GP-10	GP-10-28-28.5	09/16/2015	28–28.5	20 U	50 U	250 U								
GP-11	GP-11-27-27.5	09/16/2015	27–27.5	20 U	50 U	D						120 JM	530	
GP-12	GP-12-26-26.5	09/16/2015	26–26.5	20 U	50 U	250 U								
GP-13	GP-13-26.5-27	09/16/2015	26.5–27	20 U	50 U	250 U								
GP-14	GP-14-26-26.5	09/16/2015	26–26.5	20 U	50 U	250 U								
GP-15	GP-15-27-27.5	09/16/2015	27–27.5	20 U	50 U	250 U								
GP-16	GP-16-27.5-28	09/16/2015	27.5–28	20 U	50 U	250 U								
GP-17	GP-17-26-26.5	09/17/2015	26–26.5	20 U	50 U	250 U								
GP-18	GP-18-27-28	09/16/2015	27–28				0.03 U	0.05 U	0.05 U	0.1 U	71	4,400	5,600	8.86
GP-18	GP-18-29-30	09/16/2015	29–30	20 U	50 U	250 U								
GP-19	GP-19-23.5-24	09/17/2015	23.5–24	20 U	50 U	250 U								
GP-20	GP-20-24-25	09/17/2015	24–25	20 U	50 U	250 U								
GP-21	GP-21-21-21.5	09/17/2015	21–21.5	20 U	50 U	250 U								
GP-21	GP-21-25.5-26	09/17/2015	25.5–26	20 U	50 U	250 U								
GP-22	GP-22-29-29.5	09/17/2015	29–29.5	20 U	50 U	250 U								
GP-23	GP-23-10.5-11	09/17/2015	10.5–11	20 U	50 U	D						50 U	510	
GP-23	GP-23-27-27.5	09/17/2015	27–27.5	20 U	50 U	250 U								
GP-24	GP-24-20-20.5	09/17/2015	20–20.5	20 U	50 U	250 U								
GP-25	GP-25-20-20.5	09/17/2015	20–20.5	20 U	50 U	250 U								
GP-26	GP-26-14-14.5	09/18/2015	14–14.5	20 U	50 U	250 U								
GP-26	GP-26-19-19.5	09/18/2015	19–19.5	20 U	50 U	250 U								
GP-27	GP-27-14-14.5	09/18/2015	14–14.5				0.03 U	0.05 U	0.05 U	0.1 U	30	11,000	11,000	5.14
GP-27	GP-27-17-18	09/18/2015	17–18	20 U	50 U	250 U								
GP-29	GP-29-25-25.5	09/18/2015	25–25.5	20 U	50 U	250 U								
GP-29	GP-29-27-27.5	09/18/2015	27–27.5	20 U	50 U	250 U								
GP-30	GP-30-16-16.5	09/18/2015	16–16.5	20 U	50 U	250 U								
GP-30	GP-30-19.5-20	09/18/2015	19.5–20	20 U	50 U	250 U								

-- Not analyzed.

BOLD/RED Detected at a concentration that exceeds the MTCA Method A cleanup level.

D Analyte was detected during screening.

1 Criterion is 30 mg/kg if benzene is present and 100 mg/kg if no detectable benzene is present.

Abbreviations:

bgs Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

TPH Total petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

Qualifiers:

JM Analyte was detected; concentration is considered an estimate due to a poor match to the chromatographic standard.

JQ Analyte was detected below the reporting limit; concentration is considered an estimate.

U Analyte was not detected; concentration given is the reporting limit.

Page 1 of 1

Table 4.2Soil Analytical Results for VOCs and EPH/VPH

	Location	GP-1	GP-18	GP-27	4
	Sample ID	GP-1-19.5-20	GP-18-27-28	GP-27-14-14.5	
Sample Dept	ample Date	09/15/2015 19.5–20	09/16/2015 27–28	09/18/2015 14–14.5	MTCA Method A Cleanup Level
Analyte	Unit	15.5-20	27-28	14-14.5	
DCE by USEPA 8260C Direct Spa					
1,2-Dibromoethane	mg/kg	0.005 UJ	0.005 UJ	0.005 UJ	0.005
Volatile Organic Compounds by		C ⁽¹⁾		•	
1,2-Dibromoethane	mg/kg	0.05 U	0.05 U	0.05 U	0.005
1,2-Dichloroethane	mg/kg	0.05 U	0.05 U	0.05 U	11 (2)
Benzene	mg/kg	0.03 U	0.03 U	0.03 U	0.03
Ethylbenzene	mg/kg	0.05 U	0.05 U	0.05 U	6
Toluene	mg/kg	0.05 U	0.05 U	0.05 U	7
Xylenes (total)	mg/kg	0.1 U	0.1 U	0.1 U	9
Methyl tert-butyl ether	mg/kg	0.05 U	0.05 U	0.05 U	0.1
n-Hexane	mg/kg	0.25 U	0.25 U	0.25 U	4,800 (1)
Semivolatile Organic Compound	s by USEPA	8270C-SIM ⁽²⁾	r	1	1
1-Methylnaphthalene	mg/kg	0.01 U	10	15	5,600 ⁽¹⁾
2-Methylnaphthalene	mg/kg	0.01 U	0.5 U	7.2	320 (1)
Acenaphthene	mg/kg	0.01 U	1.1	1.6	4,800 (1)
Acenaphthylene	mg/kg	0.01 U	0.5 U	0.1 U	
Anthracene	mg/kg	0.01 U	1.6	2.6	24,000 ⁽¹⁾
Benzo(a)anthracene	mg/kg	0.01 U	0.86	2	1.37 ⁽¹⁾
Benzo(a)pyrene	mg/kg	0.01 U	0.5 U	0.65	0.1
Benzo(b)fluoranthene	mg/kg	0.01 U	0.5 U	0.35	1.37 (1)
Benzo(g,h,i)perylene	mg/kg	0.01 U	0.5 U	0.19	
Benzo(k)fluoranthene	mg/kg	0.01 U	0.5 U	0.1 U	13.7 ⁽¹⁾
Chrysene	mg/kg	0.01 U	1.5	3.8	137 ⁽¹⁾
Dibenzo(a,h)anthracene	mg/kg	0.01 U	0.5 U	0.16	0.137 (1)
Fluoranthene	mg/kg	0.01 U	0.5 U	0.94	3,200 (1)
Fluorene	mg/kg	0.036	2.5	2.9	3,200 (1)
Indeno(1,2,3-c,d)pyrene	mg/kg	0.01 U	0.5 U	0.1 U	1.37 (1)
Naphthalene	mg/kg	0.01 U	0.5 U	0.1 U	5
Phenanthrene	mg/kg	0.076	3.6	10	
Pyrene	mg/kg	0.01 U	2.4	4.3	2,400 (1)
cPAHs (MTCA TEQ-HalfND)	mg/kg	0.005 U	0.5	0.95	0.1
cPAHs (MTCA TEQ-ZeroND)	mg/kg	0.01 U	0.5	0.95	0.1
NWTPH-Gx/Dx	<u>г . т</u>				
Gasoline-range organics	mg/kg	18	71	30	100
Diesel-range organics	mg/kg	280	4,400	11,000	2,000
Oil-range organics NWEPH	mg/kg	250 U	5,600	11,000	2,000
C8-C10 Aliphatics	mg/kg	6.03 UJ	7.71	9.41	
C10-C12 Aliphatics	mg/kg	6.03 UJ	74.9 JQ	154 JQ	
C12-C16 Aliphatics	mg/kg	17.7 J	365 JQ	949	
C16-C21 Aliphatics	mg/kg	26 J	388 JQ	1080	
C21-C34 Aliphatics	mg/kg	6.03 UJ	374 JQ	879	
C8-C10 Aromatics	mg/kg	6.03 U	5.9 U	6.79 U	
C10-C12 Aromatics	mg/kg	6.03 U	27.5	48.5	
C12-C16 Aromatics	mg/kg	6.03 U	327 JQ	583 JQ	
C16-C21 Aromatics	mg/kg	19.4	1020	1900	
C24 C24 A ···	1 1		919	1260	
C21-C34 Aromatics	mg/kg	6.03 U	0 = 0		
NWVPH	mg/kg				
NWVPH C5-C6 Aliphatics	mg/kg mg/kg	2.17 U	2.61 U	2.27 U	
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics	mg/kg mg/kg mg/kg				
NWVPH C5-C6 Aliphatics	mg/kg mg/kg	2.17 U 2.17 U	2.61 U 2.61 U	2.27 U 2.27 U	
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics	mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U	2.61 U 2.61 U 2.61 U	2.27 U 2.27 U 2.27 U 2.27 U	
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics	mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 2.17 U	2.61 U 2.61 U 2.61 U 12.3	2.27 U 2.27 U 2.27 U 2.27 U 7.69	
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C10-C12 Aromatics	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 2.17 U 3.88 J 7.05 7.81	2.61 U 2.61 U 2.61 U 12.3 23.3 J 47.9 8.1	2.27 U 2.27 U 2.27 U 7.69 28.7 J 55.8 10.6	
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C10-C12 Aromatics C12-C13 Aromatics C8-C10 Aromatics Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 3.88 J 7.05 7.81 0.542 U	2.61 U 2.61 U 2.61 U 12.3 23.3 J 47.9 8.1 0.653 U	2.27 U 2.27 U 2.27 U 7.69 28.7 J 55.8 10.6 0.568 U	 0.03
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C10-C12 Aromatics C12-C13 Aromatics C8-C10 Aromatics Benzene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 2.17 U 3.88 J 7.05 7.81 0.542 U 0.542 U	2.61 U 2.61 U 2.61 U 12.3 23.3 J 47.9 8.1 0.653 U 0.653 U	2.27 U 2.27 U 2.27 U 7.69 28.7 J 55.8 10.6 0.568 U 0.568 U	 0.03 6
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C10-C12 Aromatics C12-C13 Aromatics C8-C10 Aromatics Benzene Ethylbenzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 2.17 U 3.88 J 7.05 7.81 0.542 U 0.542 U 0.542 U	2.61 U 2.61 U 2.61 U 12.3 23.3 J 47.9 8.1 0.653 U 0.653 U 0.653 U	2.27 U 2.27 U 2.27 U 7.69 28.7 J 55.8 10.6 0.568 U 0.568 U 0.568 U	 0.03 6 7
NWVPH C5-C6 Aliphatics C6-C8 Aliphatics C8-C10 Aliphatics C10-C12 Aliphatics C10-C12 Aromatics C12-C13 Aromatics C8-C10 Aromatics Benzene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.17 U 2.17 U 2.17 U 2.17 U 2.17 U 3.88 J 7.05 7.81 0.542 U 0.542 U	2.61 U 2.61 U 2.61 U 12.3 23.3 J 47.9 8.1 0.653 U 0.653 U	2.27 U 2.27 U 2.27 U 7.69 28.7 J 55.8 10.6 0.568 U 0.568 U	 0.03 6

-- Not applicable

BOLD/RED Detected at a concentration that exceeds the MTCA Method A cleanup level.

1 Includes VOCs required by Table 830-1 under MTCA.

2 MTCA Method B unrestricted land use cleanup level.

Abbreviations:

bgs Below ground surfaceTEQ Toxicity equivalentcPAH Carcinogenic polycyclic aromatic hydrocarbonsTPH Total petroleum hydrocarbonsDCE DichloroetheneUSEPA U.S. Environmental Protection AgencyEPH Extractable petroleum hydrocarbonsVOC Volatile organic compoundHalfND Half of reporting limit used for all non-detectionsVPH Volatile petroleum hydrocarbonsmg/kg Milligrams per kilogramZeroND Reporting limit used for all non-detectionsMTCA Model Toxics Control ActVEN

Qualifiers:

J Analyte was detected; concentration is considered an estimate.

 ${\sf JQ}\,$ Analyte was detected below the reporting limit; concentration is considered an estimate.

U Analyte was not detected; concentration given is the reporting limit.

UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate.

Remedial Investigation Work Plan Table 4.2 Soil Analytical Results for VOCs and EPH/VPH

Table 4.3 Groundwater Analytical Results for TPH and BTEX—2015 Priority Data Gaps Results

			Analysis Method		USEP	A 8021B		NWTPH-Gx	NWTPH	-Dx
			Analyte	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Gasoline-Range Organics	Diesel-Range Organics	Oil-Range Organics
		MTCA	A Method A Cleanup Level	5	700	1,000	1,000	800/1,000 ⁽¹⁾	500 ⁽²	2)
			Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Location	Sample ID	Sample Date	Sample Depth (feet bgs)							
GP-1	GP-1-GW	09/15/2015	21.75–25	1 U	1 U	1 U	3 U	290	820 JM	250 U
GP-2	GP-2-GW	09/15/2015	21–25	1 U	1 U	1 U	3 U	310	1,100 JM	250 U
GP-3	GP-3-GW	09/15/2015	16.5–25	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-4	GP-4-GW	09/15/2015	21.5–25	1 U	1 U	1 U	3 U	100 U	110 JM	250 U
GP-6	GP-6-GW	09/15/2015	16.5–20	1 U	1 U	1 U	3 U	100 U	600 JM	290 JM
GP-7	GP-7-GW	09/15/2015	26–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-8	GP-8-GW	09/15/2015	26–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-13	GP-13-GW	09/16/2015	27–30	1 U	1 U	1.1	3 U	100 U	180 JM	250 U
GP-14	GP-14-GW	09/16/2015	26.5–30	1 U	1 U	1 U	3 U	100 U	100 JM	250 U
GP-15	GP-15-GW	09/16/2015	27.5–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-16	GP-16-GW	09/16/2015	28–30	1 U	1 U	1.1	3 U	100 U	50 U	250 U
GP-17	GP-17-GW	09/17/2015	26.5–30	1 U	1 U	1 U	3 U	100 U	68 JM	250 U
GP-18	GP-18-GW	09/18/2015	28–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-20	GP-20-GW	09/17/2015	25–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-21	GP-21-GW	09/17/2015	26–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
GP-28	GP-28-GW	09/18/2015	28–30	1 U	1 U	1 U	3 U	100 U	50 U	250 U
MW-23	MW-23-091415	09/14/2015	22.5-32.5	1 U	1 U	1 U	3 U	100 U	50 U	250 U

BOLD/RED Detected at a concentration that exceeds the MTCA Method A cleanup level.

1 Criterion is 800 μ g/L if benzene is present and 1,000 μ g/L if no detectable benzene is present.

2 Results for diesel- and oil-range organics are added together and compared against the MTCA Method A cleanup level. Non-detections are not added to the total.

Abbreviations:

bgs Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

µg/L Micrograms per liter

MTCA Model Toxics Control Act

TPH Total petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

Qualifiers:

JM Analyte was detected; concentration is considered an estimate due to a poor match to the chromatographic standard.

U Analyte was not detected; concentration given is the reporting limit.

FLOYDISNIDER

Table 4.4 Groundwater Analytical Results for TPH and BTEX—2019 Monitoring Well Results

			Analysis Method		USEPA	8021B		NWTPH-Gx	NWT	PH-Dx	NWTPH-Dx (Sili	ca Gel Cleanup)
								Gasoline-Range	Diesel-Range	Oil-Range	Diesel-Range	Oil-Range
			Analyte	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Organics	Organics	Organics	Organics	Organics
		MTCA	Method A Cleanup Level	5	700	1,000	1,000	800/1,000 ⁽¹⁾	500) ⁽²⁾	500	⁽²⁾
			Unit	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Location	Field Sample	Sample Date	Sample Depth (feet bgs)									
MW-01	MW-01-022719	02/27/2019	6.3–16.3	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-02	MW-02-022719	02/27/2019	6.2–12.4	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-03	MW-03-022719	02/27/2019	8.4-18.4	13	5 U	5 U	15 U	960	1,700 ⁽³⁾	450 ⁽³⁾	73 ⁽³⁾	300 U
MW-04	MW-04-022819	02/28/2019	7.4–17.4	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-05	MW-05-022719	02/27/2019	12.5–22.5	1 U	1 U	1 U	3 U	100 U	82 ⁽³⁾	300 U	60 U	300 U
MW-06	MW-06-022719	02/27/2019	16–21	1 U	1 U	1 U	3 U	100 U	800 ⁽³⁾	300 U	140	300 U
MW-07	MW-07-022719	02/27/2019	18–23	2	2.2	9.2	6	1,100	780 ⁽³⁾	300 U	340 ⁽³⁾	300 U
MW-08 ⁽⁴⁾												
MW-09 ⁽⁴⁾												
MW-10	MW-10-022719	02/27/2019	18–23	1.1	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-11	MW-11-022819	02/28/2019	6.7–16.7	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-12	MW-12-022719	02/27/2019	22–27	61	3.5	6.4	6.2	600	490 ⁽³⁾	300 U	100 ⁽³⁾	300 U
MW-13	MW-13-022819	02/28/2019	13–18	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-14	MW-14-022719	02/27/2019	7–12	1 U	1 U	1 U	3 U	100 U	150 ⁽³⁾	300 U	81	300 U
MW-15	MW-15-022719	02/27/2019	8.5–18.5	1 U	1 U	1 U	3 U	100 U	78 ⁽³⁾	300 U	60 U	300 U
MW-16	MW-16-022719	02/27/2019	4.5–14.5	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-17	MW-17-022819	02/28/2019	7.5–17.5	1 U	1 U	1 U	3 U	100 U	60 U	300 U	65 U	320 U
MW-18	MW-18-022819	02/28/2019	8–18	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-19	MW-19-022719	02/27/2019	13.5–18.5	1 U	1 U	1 U	3 U	100 U	67 ⁽³⁾	300 U	60 U	300 U
MW-20	MW-20-022819	02/28/2019	11.5–21.5	1.7	7	1 U	9.1	1,500	970 ⁽³⁾	360 ⁽³⁾	370 ⁽³⁾	300 U
MW-22	MW-22-022819	02/28/2019	20.2–30.2	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-23	MW-23-022819	02/28/2019	22.4–32.4	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-24	MW-24-022819	02/28/2019	9.6–19.6	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-25	MW-25-022819	02/28/2019	7.8–17.8	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-26	MW-26-022819	02/28/2019	9.4–19.4	1 U	1 U	1 U	3 U	100 U	140 ⁽³⁾	300 U	60 U	300 U
MW-27	MW-27-022819	02/28/2019	18–28	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-28	MW-28-022819	02/28/2019	9.8–19.8	1 U	1 U	1 U	3 U	100 U	5,500 ⁽³⁾	1,600 ⁽³⁾	610	300 U
MW-29	MW-29-022819	02/28/2019	15–27.7	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-30 ⁽⁴⁾												
MW-31	MW-31-022719	02/27/2019	9–19	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
10100-3T	MW-131-022719	02/27/2019	9–19	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
MW-32	MW-32-022819	02/28/2019	8–18	1 U	1 U	1 U	3 U	100 U	60 U	300 U	60 U	300 U
UST-4	UST-4-022819	02/28/2019	14.3–24.3	1 U	1 U	1 U	3 U	100 U	140 ⁽³⁾	300 U	60 U	300 U
031-4	UST-104-022819	02/28/2019	14.3–24.3	1 U	1 U	1 U	3 U	100 U	140 ⁽³⁾	300 U	60 U	300 U

Notes:

-- Not applicable.

SOLD/RED Detected at a concentration that exceeds the MTCA Method A cleanup level.

1 Criterion is 800 μ g/L if benzene is present and 1,000 μ g/L if no detectable benzene is present.

2 Results for diesel-range organics and oil-range organics are added together and compared against the Method A cleanup level. Non-detections are not added to the total.

3 The laboratory noted that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

4 Monitoring well was not sampled during the February 2019 monitoring event.

Abbreviations:

bgs Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

µg/L Micrograms per liter

MTCA Model Toxics Control Act

TPH Total petroleum hydrocarbons

USEPA U.S. Environmental Protection Agency

Qualifier:

U Analyte was not detected; concentration given is the reporting limit.

Monitoring Well ID	Construction Date	Approximate Ground Surface Elevation (feet MSL) ⁽¹⁾	Approximate Screen Length (feet)	Approximate Top of Screen Elevation (feet MSL)	Approximate Bottom of Screen Elevation (feet MSL)	Screened Interval Unit ⁽²⁾
MW-1	04/30/1991	15	10	8.7	-1.3	Alluvial Aquifer
MW-2	04/30/1991	21	6	14.8	8.6	Vadose
MW-3	05/01/1991	20	10	11.6	1.6	Alluvial Aquifer
MW-4	05/02/1991	23	10	15.6	5.6	Vadose
MW-5	05/03/1991	21	10	8.5	-1.5	Alluvial Aquifer
MW-6	12/09/1992	16.0	5	0.0	-5.0	Alluvial Aquifer
MW-7	12/07/1992	20	5	2.0	-3.0	Alluvial Aquifer
MW-8	12/08/1992	20	5	2.0	-3.0	Alluvial Aquifer
MW-9	12/02/1992	21	10	13.0	3.0	Vadose
MW-10	12/07/1992	21	5	3.0	-2.0	Alluvial Aquifer
MW-11	12/03/1992	23	10	16.3	6.3	Vadose
MW-12	12/04/1992	20	5	-2.0	-7.0	Alluvial Aquifer
MW-13	05/26/1993	22	5	9.0	4.0	Vadose
MW-14	05/17/1993	22	5	15.0	10.0	Vadose
MW-15	05/18/1993	19	10	10.5	0.5	Alluvial Aquifer
MW-16	05/18/1993	20	10	15.5	5.5	Vadose
MW-17	05/19/1993	23	10	15.5	5.5	Vadose
MW-18	05/19/1993	24	10	16.0	6.0	Vadose
MW-19	05/20/1993	17	5	3.5	-1.5	Alluvial Aquifer
MW-20	05/20/1993	21	10	9.5	-0.5	Alluvial Aquifer
MW-22	03/01/1994	NA	10	NA	NA	NA
MW-23	03/02/1994	29	10	6.6	-3.4	Alluvial Aquifer
MW-24	03/03/1994	25	10	15.4	5.4	Vadose
MW-25	03/02/1994	19.5	10	11.7	1.7	Alluvial Aquifer
MW-26	03/03/1994	25	10	15.6	5.6	Vadose
MW-27	03/21/1994	24	10	6.0	-4.0	Alluvial Aquifer
MW-28	03/22/1994	26	10	16.2	6.2	Vadose
MW-29	06/03/1994	28	13	13.0	0.3	Alluvial Aquifer
MW-30	06/24/1998	24	17	15.0	-2.0	Alluvial Aquifer
MW-31	06/24/1998	18	10	9.0	-1.0	Alluvial Aquifer
MW-32	06/24/1998	19	10	11.0	1.0	Alluvial Aquifer
UST-4	07/26/1993	NA	10	NA	NA	NA

	Table 4.5
Well	Screen Depths

1 Approximate ground surface elevation where available based on cross sections by Golder (1994) or top of well casing.

2 Screened interval unit indicates deepest unit penetrated based on alluvial aquifer surface at approximately 0 to 2 feet above MSL. Wells screened exclusiviely in the vadose zone may intersect perched groundwater.

Abbreviations:

MSL Mean sea level

NA Not available

Table 4.6 Preliminary Screening Levels

Exposure Pathway for Soil						
Analyte	Unrestricted Land Use (Method A)	Direct Contact by Industrial Workers (Method C Industrial)	Protection of Drinking Water	MTCA Residual Saturation ⁽¹⁾	Protection of Groundwater to Surface Water: 3-Phase (Saturated Soil) ⁽²⁾	
Gasoline-range organics	30 mg/kg		-	5,625 mg/kg		
Diesel-range organics	2,000 mg/kg	30,000 mg/kg	17 mg/kg	13,333 mg/kg		
Oil-range organics	2,000 mg/kg	(EPH/VPH results)	(EPH/VPH soil results)	30,000 mg/kg		
cPAHs	0.1 mg/kg	18 mg/kg	2 mg/kg		0.00013	
Benzene	0.03 mg/kg	239 mg/kg	0.03 mg/kg			
Toluene	7 mg/kg	280,000 mg/kg	7 mg/kg			
Ethylbenzene	6 mg/kg	350,000 mg/kg	6 mg/kg			
Total xylenes	9 mg/kg	700,000 mg/kg	9 mg/kg			
Exposure Pathway for Gro	undwater					
			USEPA AWQC			
	MTCA Method A	MTCA Method B	Protection of Surface	USE	EPA AWQC	
	Protection of Drinking	Protection of Surface Water	Water: Freshwater	Protection of Surfa	ace Water: Human Health	
Analyte	Water ⁽³⁾	Human Health	Aquatic Life Chronic	(Wate	r + Organism)	
Gasoline-range organics	800 μg/L					
Diesel-range organics	500 μg/L					
Oil-range organics	500 μg/L					
cPAHs	0.1 μg/L	0.1 μg/L ⁽⁴⁾		0	.1 μg/L ⁽⁴⁾	
Benzene	5 μg/L	22.7 μg/L				
Toluene	1,000 μg/L	18,900 μg/L				
Ethylbenzene	700 μg/L	6,820 μg/L				
Total xylenes	1,000 μg/L					
Exposure Pathway for Inde			1			
(5)		TCA Method B		ub-Slab MTCA Meth		
Analyte ⁽⁵⁾		eening Level ⁽⁶⁾	S	oil Gas Screening Lev	vel ⁽⁶⁾	
Total TPH ⁽⁷⁾⁽⁸⁾		0 μg/m³				
Benzene	11	μg/m³		110 μg/m ³		
Ethylbenzene	15,00	00 μg/m ³	33,000 µg/m ³			
Methyl tert-butyl ether	320	μg/m ³		3,200 μg/m ³		
Naphthalene	2.5	μg/m ³	25 μg/m ³			
Toluene		0 μg/m³		170,000 μg/m ³		
Total Xylenes		0 μg/m ³		3,300 μg/m ³		

-- Not applicable.

1 Assumes a lithology of fine to medium sand (Ecology 2001).

2 This pathway is based on a conservative calculation and deference is given to groundwater and/or porewater data.

3 Site-specific cleanup levels may be developed from EPH/VPH data.

4 Criterion is less than the quantitation level for benzo(a)pyrene (used as a surrogate for cPAHs) specified by Ecology in its January 2015 Water Quality Program Permit Writer's Manual, Attachment 1-I: Effluent Characterization for Permit Application. Therefore, the proposed preliminary cleanup level is the quantitation level for benzo(a)pyrene.

5 Select analytes are shown on this table; however, any additional additives that are detected in soil or groundwater will be analyzed in soil gas samples.

6 Screening levels acquired from The May 2019 CLARC Spreadsheet Interim Update and Ecology's Memo #18.

7 Total TPH concentrations are compared to Indoor Air Cleanup Levels listed on Table 1 of Ecology's January 2018 Publication No. 17-09-043, Memo #18. An attenuation factor of 0.03 is applied to the indoor air cleanup levels to acquire a sub-slab TPH screening level of 4,700 μg/m³, as per Section A.2 in Memo #18.

8 A MTCA Method C screening for Total TPH has not been established by Ecology. Refer to Attachment A-3 in Memo #18.

Abbreviations:

APH Air-phase petroleum hydrocarbons

AWQC Ambient Water Quality Criteria

cPAH Carcinogenic polycyclic aromatic hydrocarbon

Ecology Washington State Department of Ecology

EPH Extractable petroleum hydrocarbons

 $\mu g/m^3$ Micrograms per cubic meter

µg/L Micrograms per liter

mg/L Milligrams per liter

mg/kg Milligrams per kilogram

- MTCA Model Toxics Control Act
- USEPA Environmental Protection Agency
- VPH Volatile petroleum hydrocarbons

Table 5.1Summary of Proposed Data Collection by Areas of Potential Concern

Areas of Potential Concern (refer to Figure 5.1)	Data Gaps	Summary of Proposed Data Collection
1. Soil and Groundwater beneath Transit Shed 2 and near Southern Pipelines	Isolated soil impacts along pipelines near Transit Shed 2 will require additional data to establish extent. In addition, there is a need to confirm that impacted groundwater beneath the Port property does not reach the Columbia River.	During the first mobilization, two OIP/HPT borings within the Transit Shed 2 and downgradid additional borings will be advanced to delineate the extent of impacted soil. During the second direct-push drill and will be submitted for laboratory analyses. Direct-push locations will be results will be used to delineate the potential extent and calculate the volume of TPH impact samples will be collected, at depths based on the OIP and/or HPT survey, from at least one I Two hand auger borings (P3 and P4) will be advanced adjacent to surface samples P-1 and P soil impacts. Two borings, P5 and P6, will be advanced using a hand auger to collect soil sam Berth 1. Additional surface samples may be collected to confirm that surface impacts are lin Two monitoring wells, MW-37 and MW-38, will be installed within the vicinity of GP-13 and confirm that impacted groundwater beneath the Port property does not extend to the Colum
2. Former AST Area	Soil and groundwater quality to the east, southeast, and south of the former AST has not been fully delineated.	During the first mobilization, four OIP/HPT borings are proposed in locations within the vicin and or residual TPH impacts, additional OIP borings will be added to delineate the extent. Ba strategic locations will be investigated during the first and second mobilizations with a direct analyses. Shallow soil samples will be collected below the base of the former excavation and on field screening observations. A minimum of one deeper soil sample will be collected from observed. Groundwater screening samples will be collected, at depths based on the OIP and
3. Former Mechanic's Shop USTs	Impacted soil was left behind during the UST removal. Vertical and lateral extent of soil in the vicinity has not been fully delineated beneath the former USTs.	During the first mobilization, four OIP/HPT borings are proposed within the vicinity of the for depth of at least 30 feet bgs. If the OIP sensor detects LNAPL and/or residual TPH impacts, a extent. Based on the semiquantitative OIP results, additional strategic locations will be inve with a direct-push drill rig to collect soil samples for laboratory analyses. Soil samples will be and guidelines for UST decommissioning. Additionally, monitoring well UST-4 will be include determine current water quality.
4. Monitoring Well MW-19	LNAPL was observed in monitoring well MW-19 during the 1993 sampling event; however, recent groundwater data show concentrations less than the respective MTCA Method A cleanup levels. The extent of soil and groundwater impacts in this vicinity has not been fully defined.	Two OIP borings will be advanced in the vicinity of MW-19. Additional OIP borings will be ac extent of impacts based on real-time OIP results. Based on the semiquantitative OIP results, direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push loca delineate the lateral extent of TPH-impacted soil. During the first and second mobilizations, contains apparent TPH impacts, based on OIP results, in order to collect soil samples and de determining soil impacts volume. Groundwater screening samples will be collected during to and/or HPT survey.
5. Former Fuel Loading Racks	Soil descriptions and soil and groundwater data indicate that impacts likely extend to the east and south of the loading racks. Surface soil remains a potentially complete exposure pathway based on the CSM of surface spills.	Approximately 15 OIP borings will be advanced in a grid arrangement within the vicinity of t dependent on real-time results. Based on the semiquantitative OIP results, additional locati direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push locate delineate the lateral extent of TPH impacted soil. Additionally, three perpendicular transect MW-20 to the west adjacent and within the former Warehouse 9 footprint. During the first borings will be advanced along the length of the former loading rack and in the area that co samples will be collected to confirm that no shallow soil pathway exists and to delineate the groundwater grab samples will be collected in order to confirm OIP results. Shallow soil sam all soil boring locations. Groundwater screening samples will be collected at depths based o groundwater monitoring well (tentatively shown as MW-33 on Figure 5.1) will be installed w and within the area containing the greatest TPH impacts, based on OIP results.

on ⁽¹⁾

dient of GP-18 are proposed. If impacts are encountered, cond mobilization, soil samples will be collected using a e determined using OIP/HPT results, and analytical acts remaining at the Site. Groundwater screening e location within Transit Shed 2.

P-2 in order to delineate the vertical extent of surface mples beneath the westernmost pipelines beneath imited to beneath the former pipelines.

nd GP-16 and screened across the alluvial aquifer to lumbia River.

cinity of the former AST. If the OIP data indicate LNAPL Based on the semiquantitative OIP results, additional ect-push drill rig to collect soil samples for laboratory nd at the depths with the representative impacts based om the depth where water-bearing soils were first nd/or HPT survey, from all locations around the AST.

former mechanic's shop and former UST locations to a , additional OIP borings will be added to delineate the restigated, during the first and second mobilizations, be collected in accordance with Ecology's Table 830-1 ded in quarterly groundwater sampling in order to

advanced outward to delineate the vertical and lateral ts, additional locations will need to be conducted with a cations will be spaced approximately every 25 feet to s, direct-push borings will be advanced in the area that delineate the vertical extent TPH impacts and to assist in the direct-push borings, at depths based on the OIP

f the former loading racks. The number of OIP borings is ations will need to be advanced and sampled using a boations will be spaced approximately every 25 feet to octs of OIP borings will be advanced from the area east of st and second mobilizations, at least eight direct-push contains apparent TPH impacts, via OIP results. Soil he vertical extent of TPH impacts. Soil samples and amples will be collected from the 0- to 2-foot interval at on the OIP and/or HPT survey. One permanent I within the alluvial aquifer, beneath the perched zone

Table 5.1Summary of Proposed Data Collection by Areas of Potential Concern

Areas of Potential Concern (refer to Figure 5.1)	Data Gaps	Summary of Proposed Data Collection
6. Former Calloway Ross Parcel	The extent of soil impacts and LNAPL has not been fully delineated to the south of the former UST, beneath Warehouse 9.	Two OIP/HPT borings will be advanced in the area south of MW-10 and MW-9. Additional st OIP results. During the second mobilization, soil samples will be collected using a direct-pus Direct-push locations will be determined using OIP/HPT results, and analytical results will be volume of TPH impacts remaining at the Site. Groundwater screening samples will be collect HPT survey.
7. Monitoring Wells MW-26 and	The results of 2019 groundwater monitoring indicated elevated concentrations of DRO and ORO detected at	A new monitoring well, MW-34 (tentative location shown on Figure 5.1), is proposed to be i However, prior to the installation of a well in this area, OIP/HPT borings will be advanced to approximately nine borings will be advanced, using a OIP sensor and HPT on a direct-push d AOPC 7. The number of OIP locations is dependent on real-time results; additional borings r fewer locations may be sufficient if impacts are not encountered.
MW-28	•	Based on the semiquantitative OIP results, additional strategic locations will be advanced and mobilization, in order to obtain quantitative soil and groundwater results. Direct-push location confirmation samples to delineate the potential extent and calculate a volume of TPH impacts. In addition, there is a need for groundwater data from the alluvial aquifer in this area of the
8. Soil Vapor Quality	The soil vapor pathway to indoor air may be a risk for occupants in any future building within 100 feet of known LNAPL accumulations, such as measured at MW-9 in 2019.	the greatest TPH impacts, based on OIP results, and within the deeper alluvial aquifer. The latest monitoring results indicate that LNAPL is present in MW-9 at a depth of 15.30 fee by guidance. To take a conservative approach, two Vapor Pins will be installed in the slab of corner, near MW-9, and a second in the middle of the former Warehouse 9 slab. Vapor sam
9. U.S. Army Reserve Building	A correspondence letter from Wilson Oil stated that a heating oil UST and a gasoline UST were associated with the U.S. Army Reserve building. Drawings indicate that the heating oil UST was located adjacent to the north side of the building. The location of the gasoline UST is unknown, and it is uncertain if it ever existed. Additional data are needed to investigate soil and groundwater quality in the vicinity that may have resulted from leaks from these USTs.	A building reconnaissance will be conducted to determine where the former heating oil UST indication of the gasoline UST. A GPR survey will be conducted to locate these tanks. At least two direct-push borings will be advanced within the area of the former heating oil U in the area of the former gasoline UST if further evidence of the gasoline UST is found. Addit based on indications of soil impacts. Groundwater screening samples will be collected from location.

Note:

1 Refer to the Sampling and Analysis Plan/Quality Assurance Project Plan (Appendix F) for sample collection methodology and analysis.

Abbreviations:

- AST Aboveground storage tank
- LNAPL Light non-aqueous-phase liquid

- bgs Below ground surface CSM Conceptual Site Model
- MTCA Model Toxics Control Act OIP Optical Image Profiler
- OBO Oil-ra
- DRO Diesel-range organics Ecology Washington State Department of Ecology
- GPR Ground-penetrating radar
- HPT Hydraulic profiling tool

- ORO Oil-range organics
- TPH Total petroleum hydrocarbons
 - UST Underground storage tank
 - VI Vapor intrusion

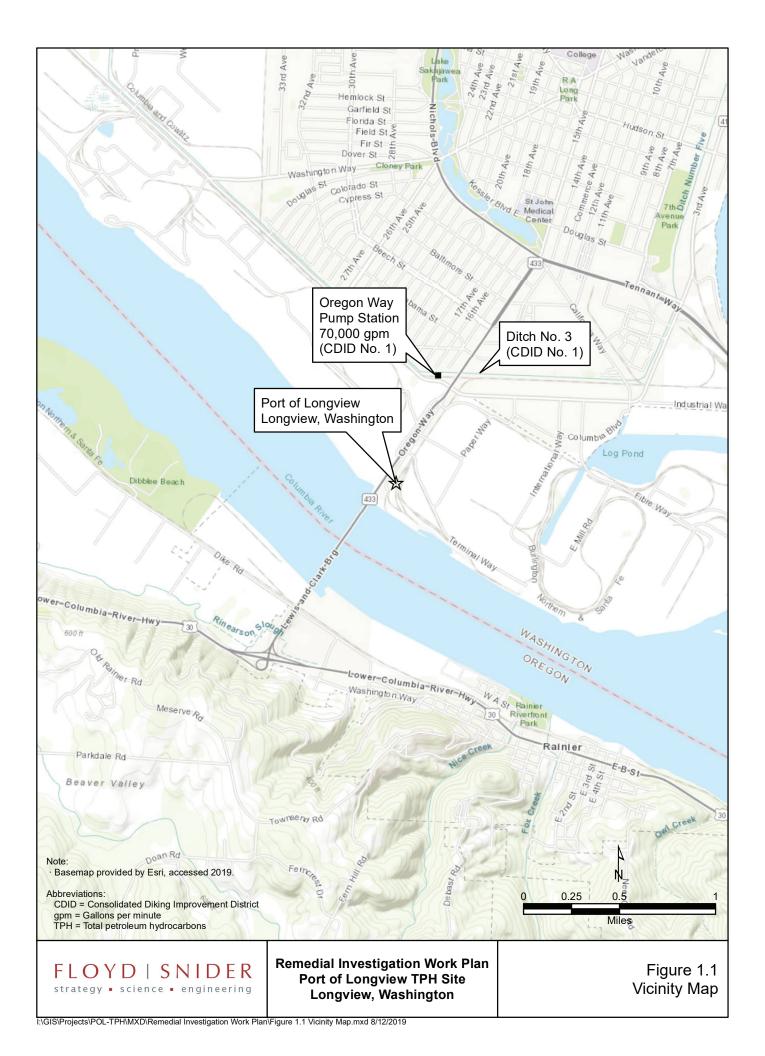
on ⁽¹⁾

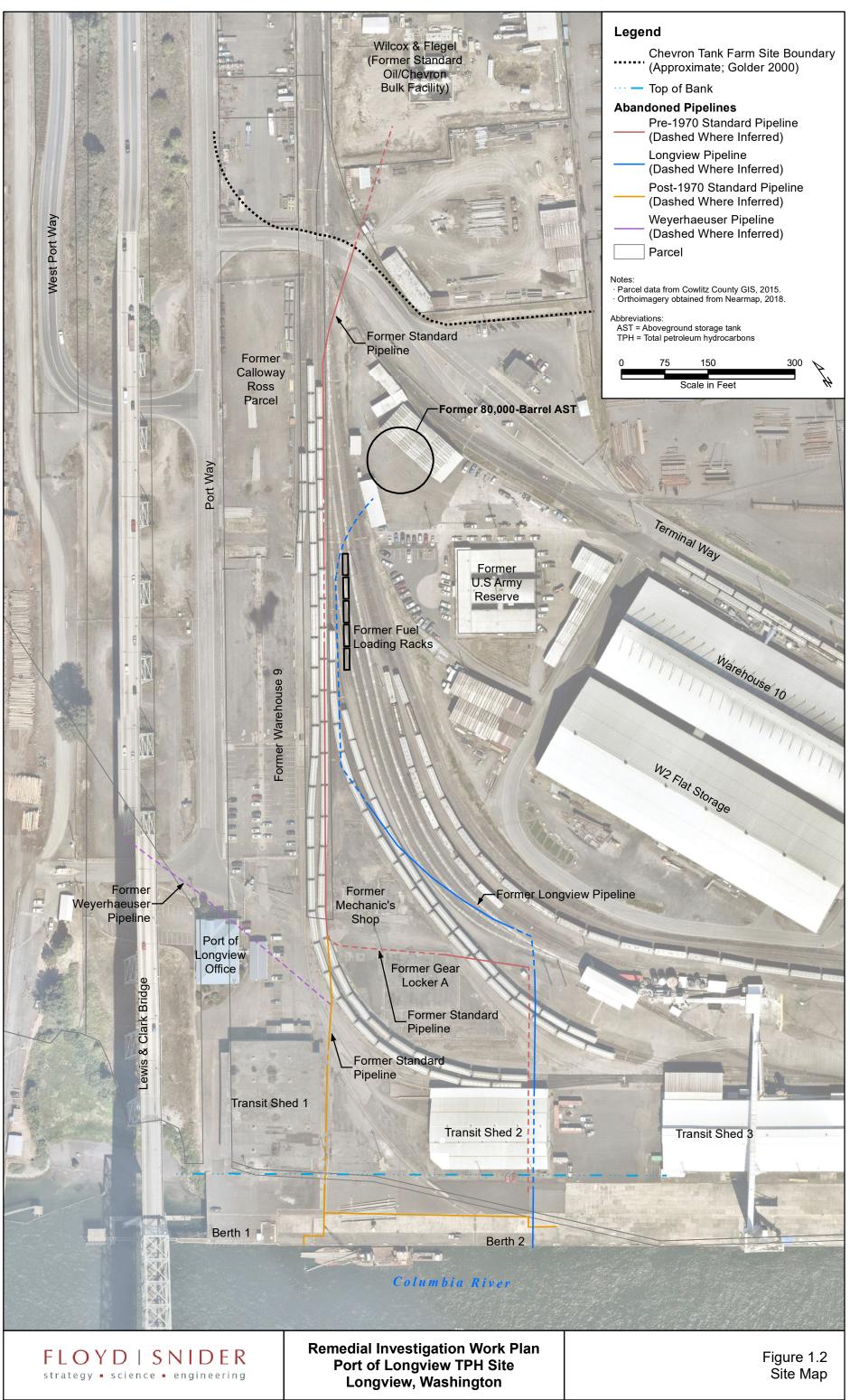
step-out borings will be advanced as needed based on ush drill and will be submitted for laboratory analyses. be used to delineate the potential extent and calculate a ected from all borings at depths based on the OIP and/or

e installed in this location in the alluvial aquifer. to determine its location. During the first mobilization, drill rig, at approximately 25-foot spacings within s may be added to delineate the extent of impacts, or

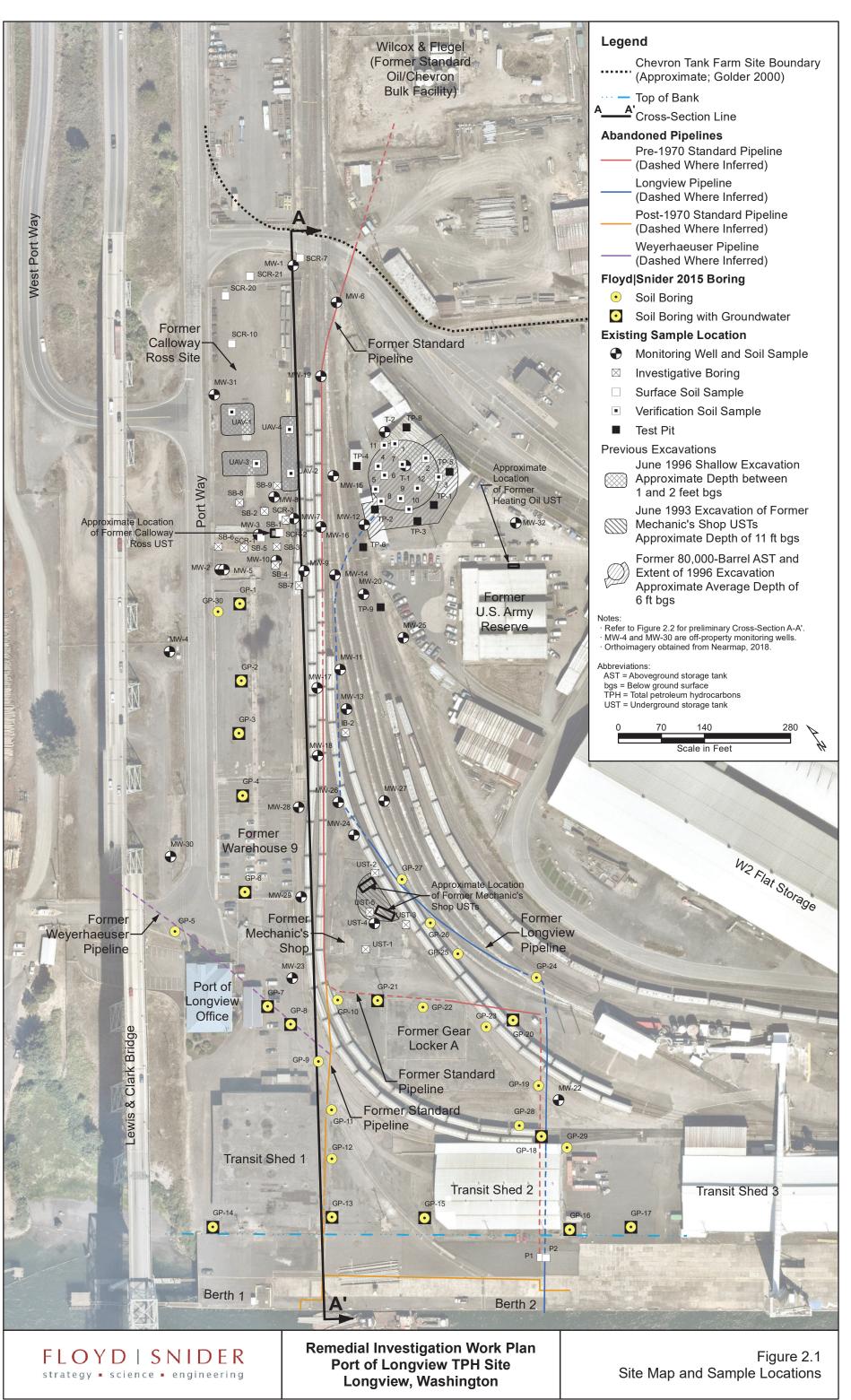
nd sampled using a direct-push rig during the second ions will be selected to collect vertical and lateral cts remaining at the Site.

e Site. MW-34 will be installed in an area that displays

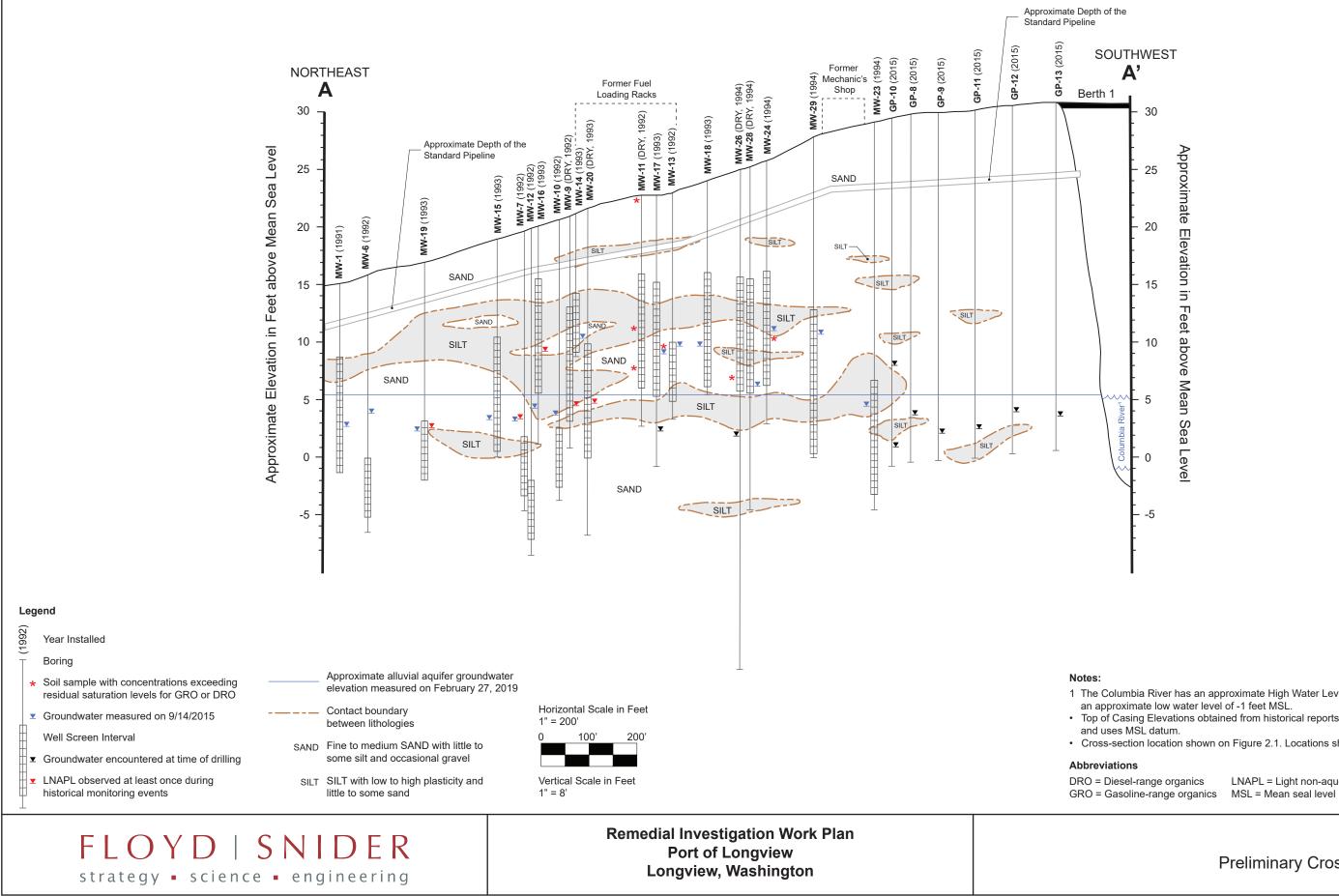

eet bgs, below the 15-foot threshold requiring sampling of the former Warehouse 9; one in the northeastern mples will be collected in order to assess the VI risk.


ST was located and whether there is any further

UST location. One direct-push boring will be advanced ditional step-out borings will be advanced as needed n at least one location within the former heating oil UST Port of Longview TPH Site

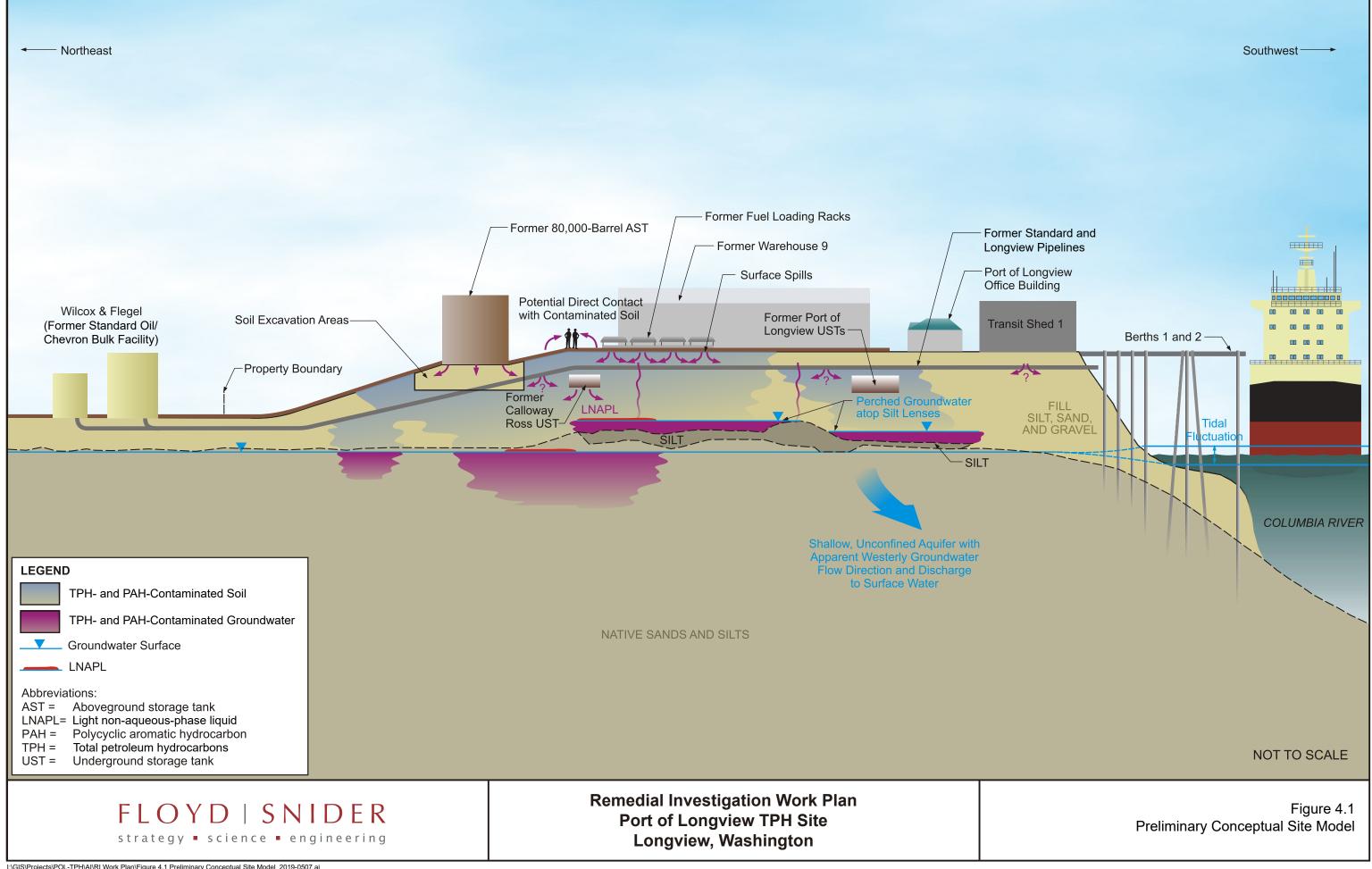

Remedial Investigation Work Plan

Figures

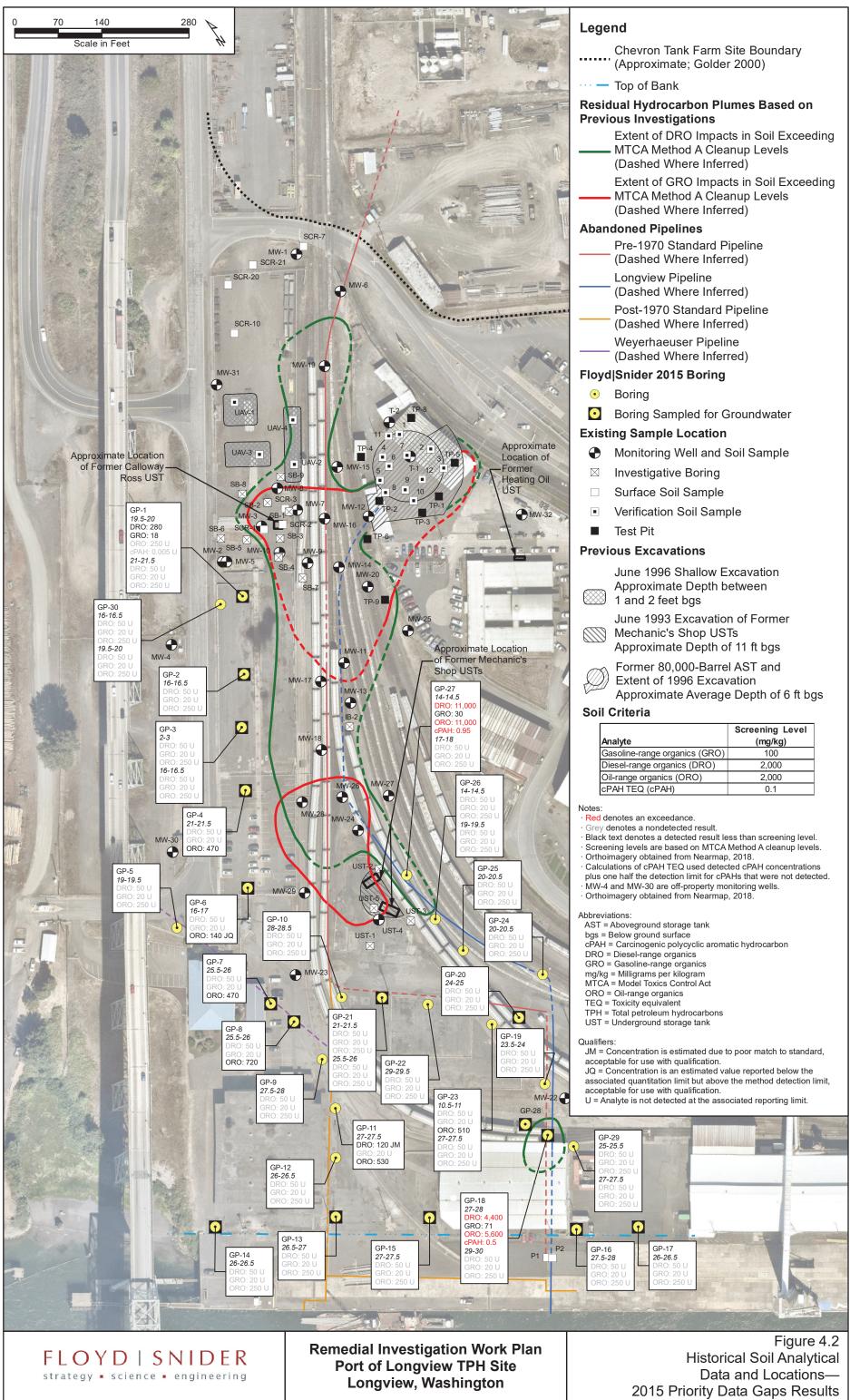


L:\GIS\Projects\POL-TPH\MXD\Remedial Investigation Work Plan\Figure 1.2 Site Map.mxd 3/21/2019

I:\GIS\Projects\POL-TPH\MXD\Remedial Investigation Work Plan\Figure 2.1 Site Map and Sample Locations.mxd 8/15/2019

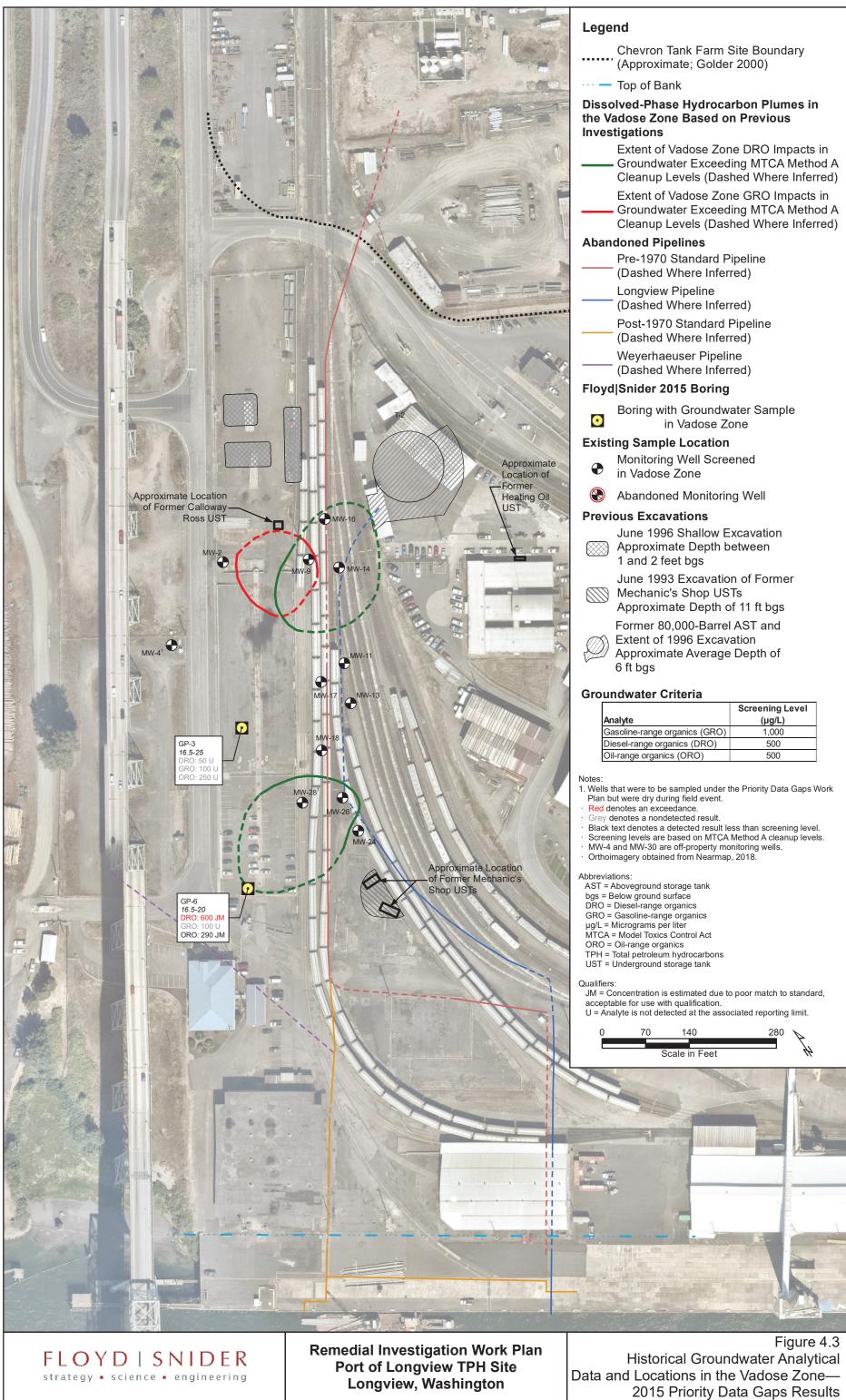

1 The Columbia River has an approximate High Water Level of 5 feet MSL and an approximate low water level of -1 feet MSL.

• Top of Casing Elevations obtained from historical reports by Golder Associates

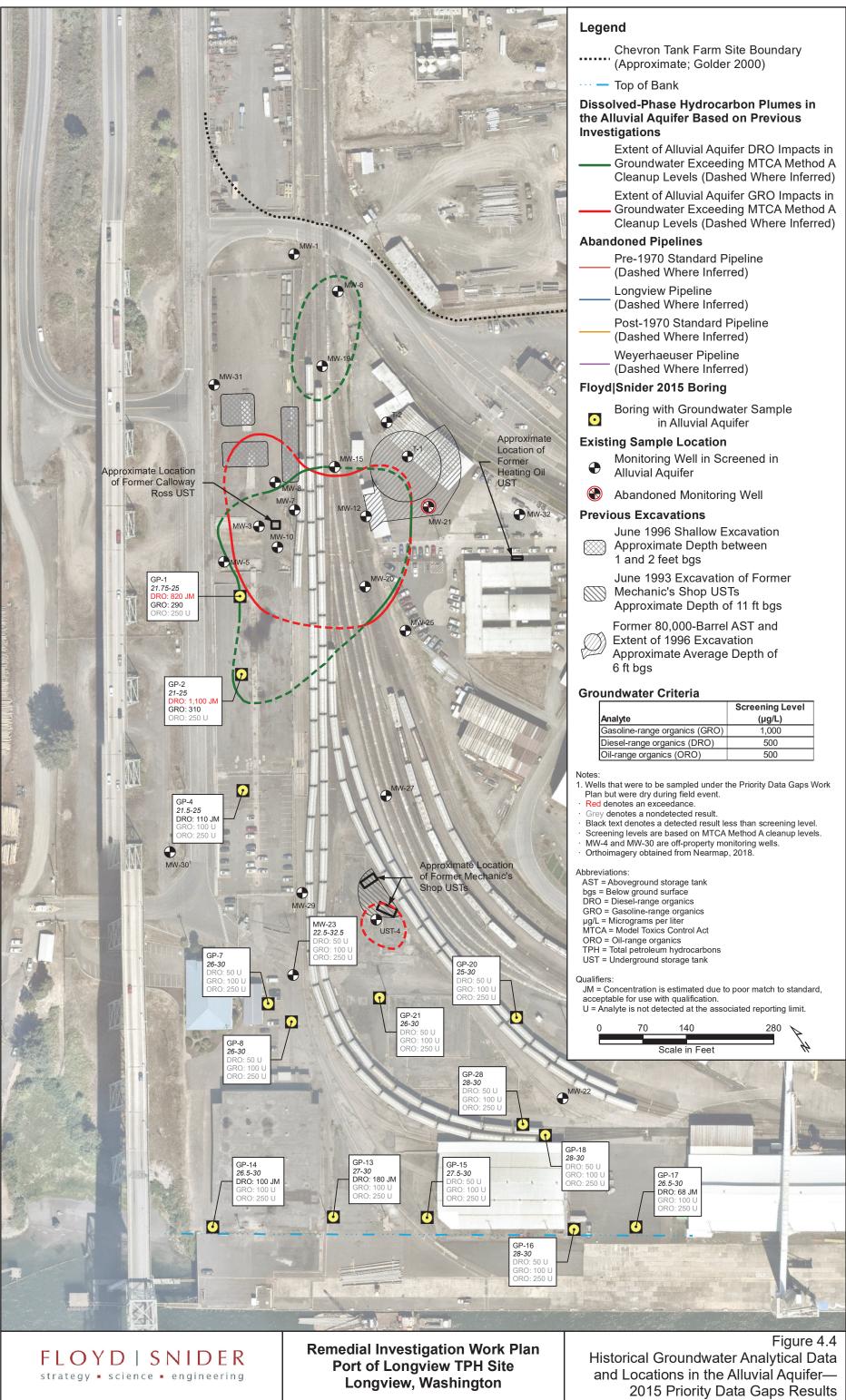

· Cross-section location shown on Figure 2.1. Locations shown are offset.

LNAPL = Light non-aqueous-phase liquids

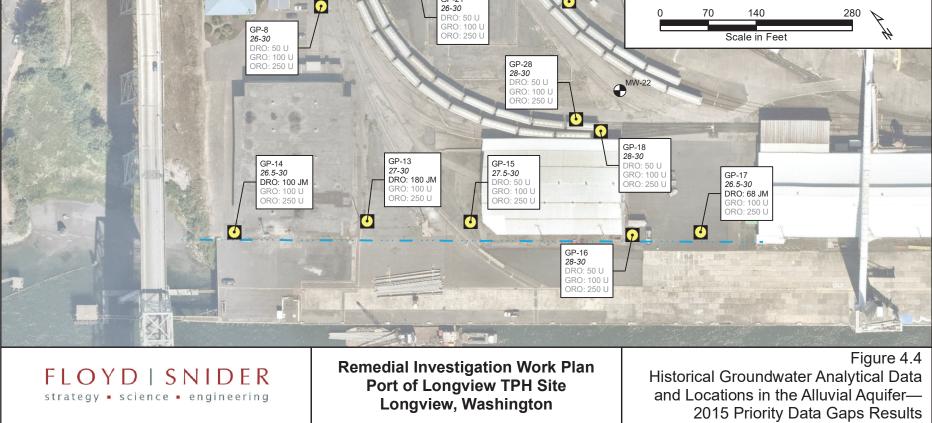
Figure 2.2 Preliminary Cross Section A-A'

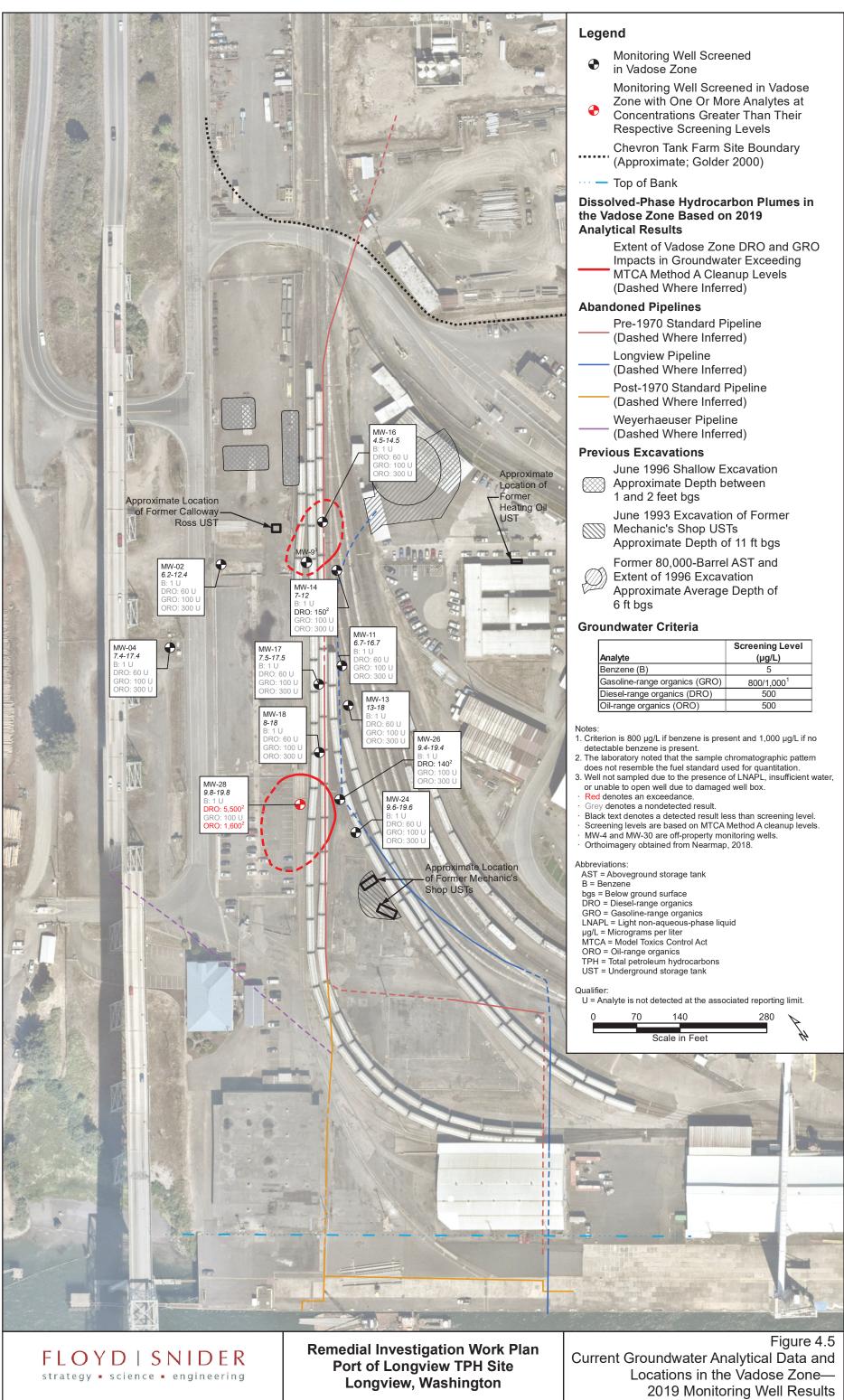


I:\GIS\Projects\POL-TPH\AI\RI Work Plan\Figure 4.1 Preliminary Conceptual Site Model_2019-0507.ai

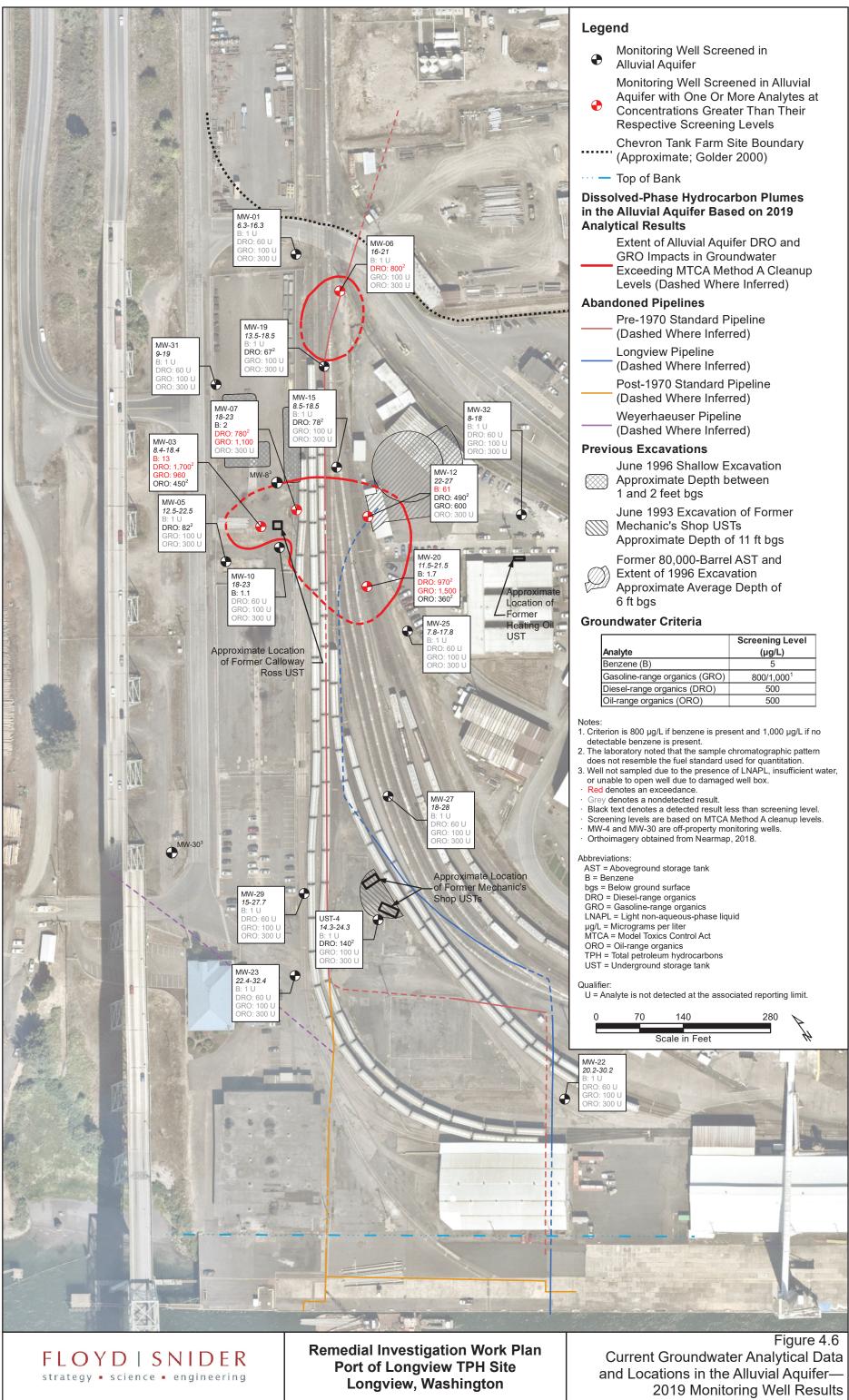


Lege	na	
	Chevron Tank Farm S (Approximate; Golde	
···· —	Top of Bank	
	ual Hydrocarbon Plu ous Investigations	imes Based on
	Extent of DRO Impac MTCA Method A Clea (Dashed Where Infer	anup Levels
	Extent of GRO Impac MTCA Method A Clea (Dashed Where Infer	anup Levels
Aban	doned Pipelines	,
	Pre-1970 Standard P (Dashed Where Infer	•
	Longview Pipeline (Dashed Where Infer	red)
	Post-1970 Standard I (Dashed Where Infer	
	Weyerhaeuser Pipelin (Dashed Where Infer	
Floyd	Snider 2015 Boring	
•	Boring	
•	Boring Sampled for G	Groundwater
Existi	ng Sample Location	
	Monitoring Well and S	Soil Sample
\boxtimes	Investigative Boring	·
	Surface Soil Sample	
	Verification Soil Sam	ble
	Test Pit	
Previ	ous Excavations	
	June 1996 Shallow E	xcavation
\bigotimes	Approximate Depth b 1 and 2 feet bgs	
	June 1993 Excavatio Mechanic's Shop US Approximate Depth o	Ts
	Former 80,000-Barre Extent of 1996 Excav Approximate Average	vation
Soil (Criteria	
	al és	Screening Level
	a lyte asoline-range organics (GRO)	(mg/kg) 100
Di	esel-range organics (DRO)	2,000
	l-range organics (ORO)	2,000
cP	AH TEQ (cPAH)	0.1
Notes:	enotes an exceedance	

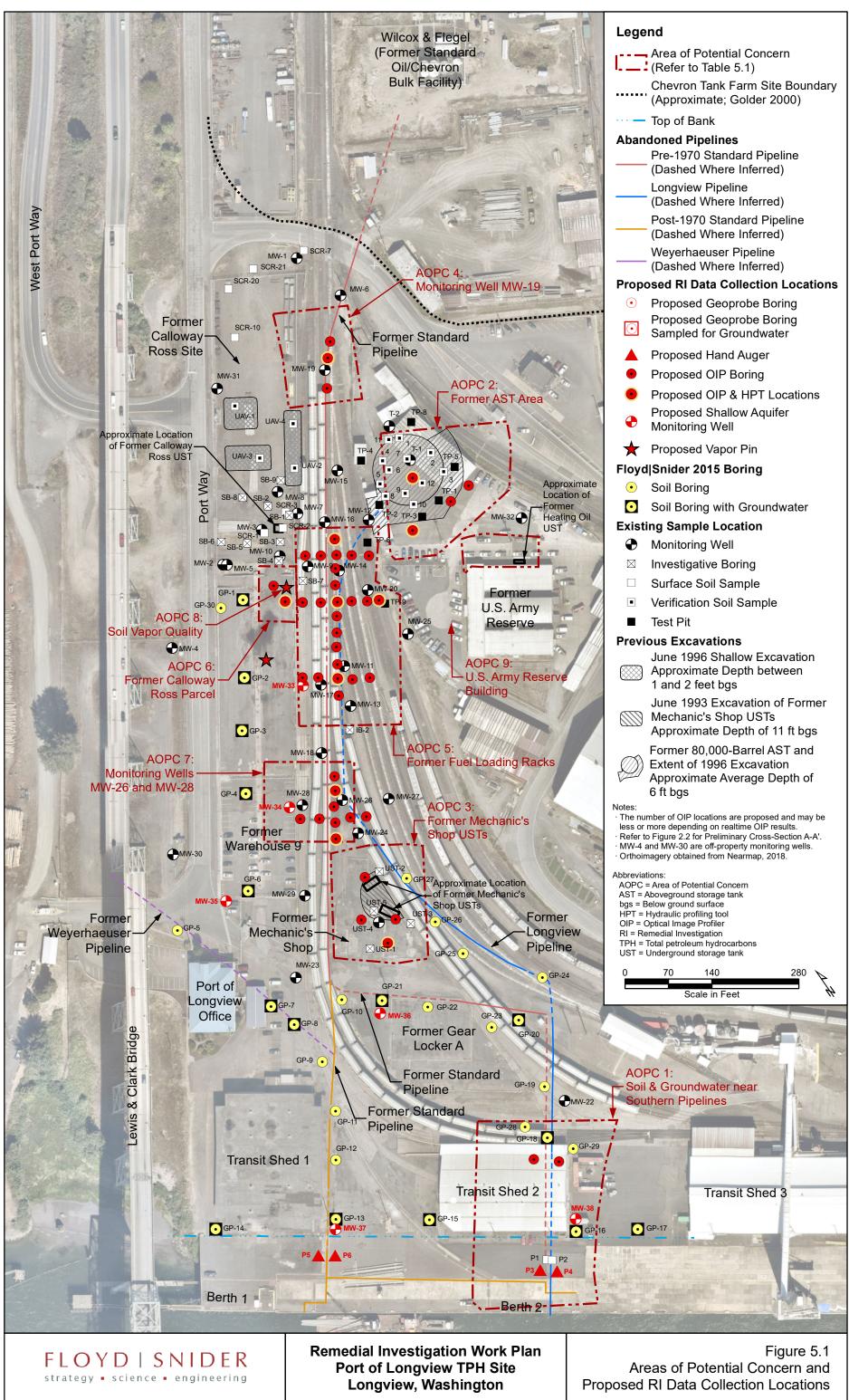

L I:\GIS\Projects\POL-TPH\MXD\Remedial Investigation Work Plan\Figure 4.2 Historical Soil Analytical Data and Locations - 2015 Priority Data Gaps Results.mxd 8/15/2019


water Analystical Data and Locations in the Vadose Zone - 2015 Priority Data ts\POL-TPH\MXD\Remedial Investigation Work Plan\Fig 8/15/2019

ge	nd	
••••	Chevron Tank Farm (Approximate; Golde	
_	Top of Bank	
A (olved-Phase Hydroca Iluvial Aquifer Based tigations	
	Extent of Alluvial Aqu Groundwater Exceed Cleanup Levels (Das	ing MTCA Method
	Extent of Alluvial Aqu Groundwater Exceed Cleanup Levels (Das	ing MTCA Method
an	doned Pipelines	
	Pre-1970 Standard P (Dashed Where Infer	
	Longview Pipeline (Dashed Where Infer	red)
	Post-1970 Standard I (Dashed Where Infer	
	Weyerhaeuser Pipeli (Dashed Where Infer	
byc	I Snider 2015 Boring	
	Boring with Groundw in Alluvial Aqu	
ist D	ing Sample Location Monitoring Well in Sc Alluvial Aquifer	reened in
	Abandoned Monitorin	ig Well
evi	ous Excavations	
\bigotimes	June 1996 Shallow E Approximate Depth b 1 and 2 feet bgs	
\bigcirc	June 1993 Excavatio Mechanic's Shop US Approximate Depth o	Ts
D	Former 80,000-Barrel Extent of 1996 Excav Approximate Average 6 ft bgs	ation
o <u>u</u>	ndwater Criteria	
Ar	nalyte	Screening Level (µg/L)
G	asoline-range organics (GRO)	1,000
	esel-range organics (DRO) I-range organics (ORO)	500 500
s:		



Groundwater Analystical Data and Locations in the Alluvial Aquifer - 2015 Priority Data Gaps Res I:\GIS\Projects\POL-TPH\MXD\Remedial Investigation Work Plan\Figure 4.4 Historic 8/15/2019


Analyte	Screening Level (µg/L)
Benzene (B)	5
Gasoline-range organics (GRO)	800/1,000 ¹
Diesel-range organics (DRO)	500
Oil-range organics (ORO)	500

Analystical Data and Locations in the Vadose Zone - 2019 Monitoring Well Resul ts\POL-TPH\MXD\Remedial Investigation Work Plan\Fig 8/15/2019

Analyte	Screening Level (µg/L)
Benzene (B)	5
Gasoline-range organics (GRO)	800/1,000 ¹
Diesel-range organics (DRO)	500
Oil-range organics (ORO)	500

er Analystical Data and Locations in the Alluvial Aquifer - 2019 Monitoring Well Resu cts\POL-TPH\MXD\Remedial Investigation Work Plan\Fig I:\GIS\Projec 8/15/2019

Legend
Area of Potential Concern (Refer to Table 5.1)
Chevron Tank Farm Site Boundary (Approximate; Golder 2000)
···· — Top of Bank
Abandoned Pipelines
Pre-1970 Standard Pipeline (Dashed Where Inferred)
Longview Pipeline (Dashed Where Inferred)
Post-1970 Standard Pipeline (Dashed Where Inferred)
Weyerhaeuser Pipeline (Dashed Where Inferred)
Proposed RI Data Collection Locations
• Proposed Geoprobe Boring
 Proposed Geoprobe Boring Sampled for Groundwater
Proposed Hand Auger
Proposed OIP Boring
Proposed OIP & HPT Locations
 Proposed Shallow Aquifer Monitoring Well
🛧 Proposed Vapor Pin
Floyd Snider 2015 Boring
• Soil Boring
Soil Boring with Groundwater
Existing Sample Location
Monitoring Well
☐ Investigative Boring
Surface Soil Sample
Verification Soil Sample
■ Test Pit
Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs
June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs
Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs
 Notes: The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018.
Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank
0 70 140 280
Scale in Feet

ts\POL-TPH\MXD\Remedial Investigation Work Plan\Figure 5.1 Areas of Potential Concern and Proposed Data Collection Locations.mxd I:\GIS\Projec 9/16/2019

Port of Longview TPH Site

Remedial Investigation Work Plan

Documents Reviewed					
Document	Author	Date	Туре	Document Number	
Annual Groundwater Monitoring Reports			- · ·		
1st Quarter Groundwater Monitoring Event.pdf	Golder Associates	05/11/1999	Report	A001	
Annual Groundwater Monitoring Event 1999	Golder Associates	11/1/1999	Report	A002	
3rd Quarter Groundwater Monitoring Event.pdf	Golder Associates	12/07/1999	Report	A003	
4th Quarter Groundwater Monitoring Event.pdf 5th Quarter Groundwater Monitoring Event.pdf	Golder Associates	02/25/2000	Report	A004	
Post-Cap Annual Groundwater Monitoring Event 2000	Golder Associates	07/13/2000	Report	A005	
Annual Groundwater Monitoring Event 2001	Golder Associates	10/1/2000 9/27/2001	Report	A006 A007	
Post-Cap Annual Groundwater Monitoring Event 2001	Golder Associates Golder Associates	10/14/2002	Report	A007 A008	
Annual Groundwater Monitoring Event 2003	Golder Associates	11/20/2003	Report	A008 A009	
Annual Groundwater Monitoring Event 2003	Golder Associates	9/10/2004	Report Report	A009	
Post-Cap Annual Groundwater Monitoring Event 2004	Golder Associates	11/29/2004	Report	A010 A011	
Annual Groundwater Monitoring Event 2006	Golder Associates	10/25/2006	Report	A011	
Proposal for Additional Groundwater Sampling.pdf	Golder Associates	09/28/2007	Report	A012 A013	
Post-Cap Annual Groundwater Monitoring Event 2007	Golder Associates	11/19/2007	Report	A013	
Groundwater Monitoring Event 2008	Golder Associates	12/12/2008	Report	A014 A015	
Standard Operating Procedure - Groundwater Sampling	Golder Associates	9/1/2009	Report	A015 A016	
Site-Wide Groundwater Monitoring Well Sampling 2010	Golder Associates	2/26/2010	Report	A010	
Annual Sampling Photos - Aug 2010	Golder Associates	8/1/2010	Photos	A017 A018	
Groundwater Monitoring Data Package		9/16/2010		A018 A019	
	Golder Associates		Report		
Annual Groundwater Monitoring Event 2010	Golder Associates	11/29/2010	Report	A020	
Annual Groundwater Monitoring Event 2011	Golder Associates	10/12/2011	Report	A021	
Third Quarter Groundwater Monitoring Report	Golder Associates	12/28/2011	Report	A022	
2012 Annual Groundwater Monitoring Event	Golder Associates	02/18/2013	Report	A023	
Post-Cap Annual Groundwater Monitoring Event 2013	Golder Associates	11/12/2013	Report	A024	
Second Semiannual 2013 Groundwater Monitoring Report	Leidos	1/23/2014	Report	A025	
Hydrograph Figures Correspondence		ND	Figures	A026	
Meeting Summary re Port of Kelso and Standard Oil	Port Secretary	05/18/1926	Correspondence	B001	
Letter re Value of Oil Tank	R.G. Armstrong	10/02/1936	Correspondence	B001	
Letter re Date for Initial Delivery of Fuel to Longview	Standard Oil Co.	07/26/1955	Correspondence	B003	
Letter re Fuel Oil Facilities	Longview Fibre	11/22/1955	Correspondence	B004	
Letter re Fuel Oil Heating Facilities	Harvey Hart - POL	11/23/1955	Correspondence	B005	
Letter re 1955 Operative Fuel Contract	Standard Oil Co.	05/14/1956	Correspondence	B005	
Inter-Office Correspondence re Increase in Quantity of Oil	H.L. Wollenberg	05/21/1956	Correspondence	B000	
Letter re Operative Fuel Contract	Standard Oil Co.	04/09/1957	Correspondence	B007	
Letter re Acknowledgement of Receipt	H.L. Wollenberg	04/11/1957	Correspondence	B008	
Handwritten Note re Standard Oil Company	N.H. Anderson	02/15/1958	Correspondence	B010	
Consent for Administrative Matters		07/16/1959	Correspondence	B010 B011	
Sampling of 1500 Viscosity Fuel Oil Shipments	V.M. Sutherling - LF	07/27/1959	Correspondence	B011 B012	
Inter-office Memo re Volume of Oil Discrepancies	H.L. Wollenberg	08/03/1959	Correspondence	B012 B013	
Letter re Samples of 1500 Viscosity Fuel	V.M. Sutherling - LF	08/04/1959	Correspondence	B013	
Letter re 1500 Viscosity Fuel Oil Contract	V.M. Sutherling - LF	11/12/1959	Correspondence	B014 B015	
Letter re Difference in Thermal Value of 1500 Viscosity Fuel	R.V. Livingston - SO	11/20/1959	Correspondence	B015 B016	
Letter of Intent to Operate an Oil Transfer Facility	I.J. Blamire - SO	06/29/1973	Correspondence	B010 B017	
Port of Longview Meeting Minutes	Port of Longview	12/11/1973	Correspondence	B017 B018	
Crown Zellerbach Plan Check Sheet	Stephenson	12/11/19/3	Correspondence	B018 B019	
Letter re Ballast Water Tariff Rate	Crown Zellerbach	09/06/1977	Correspondence	B015 B020	
Letter re Ballast Water Discharge	Crown Zellerbach Corp.	09/06/1977	Correspondence	B020 B021	
Large Oil Transfer Certified Handlers		04/27/1981	Correspondence	B021 B022	
Correspondence re Selling Fuel Storage Tank and Lease Termination	Wilcox & Flegel Crown Zellerbach			B022 B023	
Letter re Terminal of License Agreement		12/21/1983	Correspondence Correspondence	B023 B024	
Letter re Longview Site Sampling and Litigation	Port of Longview	12/16/1985			
Memo re Test Wells on Wilcox & Flegel Site	Crosby & Overton	11/12/1987 11/20/1987	Correspondence	B025 B026	
Letter re Geotechnical Considerations Tower Loading Facility	Port of Longview		Correspondence		
	David E. Hilts	06/05/1989	Correspondence	B027	
Letter re Earth Pressures for Sheet Pile Shoring Rail Car Unloading	David E. Hilts	07/12/1989	Correspondence	B028	
Letter re Geotechnical Explorations Tower Loading Facility Letter re Pile Uplift Capacity Tower Loading Facility	David E. Hilts David E. Hilts	07/12/1989	Correspondence	B029 B030	
Memo re International Paper Company	Port of Longview	09/13/1989 11/16/1990	Correspondence Correspondence	B030 B031	
Letter re Petroleum Services Work Summary	Port of Longview Port of Longview	03/18/1990	Correspondence	B031 B032	
Letter re Summary of Petroleum Services Unlimited Work	FOIL OI LONGVIEW				
Letter re Summary of Petroleum Services Unlimited Work	Dort of Long down	03/18/1991	Correspondence	B033	
Letter re Initial Site Characterization	Port of Longview	04/16/1991	Correspondence	B034	
	Port of Longview	06/25/1991	Correspondence	B035	
Longview's Letter to Ecology re Site Characterization Letter re Petroleum Services Site Characterization Report	Dotroloum Consissed United	06/25/1991	Correspondence	B036	
Memo re Lust and Diesel Contamination	Petroleum Services Unlimited	06/26/1991 07/17/1991	Correspondence	B037 B038	
Memo re Lust and Diesel Contamination Memo re Lust and Diesel Contamination at Calloway Ross Site	Port of Longview	07/17/1991 07/17/1991	Correspondence	B038 B039	
,	Port of Longview Davis Wright Tremaine Law Offices		Correspondence	B039 B040	
Memo re Summary of Calloway Ross Site History Letter re Continued Use of Petroleum Services Unltd		07/24/1991	Correspondence		
	Port of Longview	08/09/1991	Correspondence	B041	
Ecology Lattor to UST Closure	Department of Ecology Davis Wright Tremaine Law Offices	08/30/1991	Correspondence	B042	
Ecology Letter re UST Closure		09/19/1991	Correspondence	B043	
Letter re PLPs		02/20/4002		B044	
Letter re PLPs Letter re Investigation & Cleanup of Contamination	Port of Longview	02/26/1992	Correspondence	DO 45	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination	Port of Longview	02/26/1992	Correspondence	B045	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation	Port of Longview Port of Longview	02/26/1992 02/26/1992	Correspondence Correspondence	B046	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder	Port of Longview Port of Longview Port of Longview	02/26/1992 02/26/1992 10/06/1992	Correspondence Correspondence Correspondence	B046 B047	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions	Port of Longview Port of Longview Port of Longview Department of Ecology	02/26/1992 02/26/1992 10/06/1992 10/15/1992	Correspondence Correspondence Correspondence Correspondence	B046 B047 B048	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions Letter re Golder Investigation Payment	Port of Longview Port of Longview Port of Longview Department of Ecology Walker & Dowell	02/26/1992 02/26/1992 10/06/1992 10/15/1992 11/06/1992	Correspondence Correspondence Correspondence Correspondence Correspondence	B046 B047 B048 B049	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions Letter re Golder Investigation Payment Letter re Golder Schedule	Port of Longview Port of Longview Port of Longview Department of Ecology Walker & Dowell Golder Associates	02/26/1992 02/26/1992 10/06/1992 10/15/1992 11/06/1992 11/11/1992	Correspondence Correspondence Correspondence Correspondence Correspondence	B046 B047 B048 B049 B050	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions Letter re Golder Investigation Payment Letter re Golder Schedule Letter re Revised Schedule	Port of Longview Port of Longview Port of Longview Department of Ecology Walker & Dowell Golder Associates Golder Associates	02/26/1992 02/26/1992 10/06/1992 10/15/1992 11/06/1992 11/11/1992 11/13/1992	Correspondence Correspondence Correspondence Correspondence Correspondence Correspondence	B046 B047 B048 B049 B050 B051	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions Letter re Golder Investigation Payment Letter re Golder Schedule Letter re Revised Schedule Letter re Contracting Golder	Port of Longview Port of Longview Port of Longview Department of Ecology Walker & Dowell Golder Associates Golder Associates Port of Longview	02/26/1992 02/26/1992 10/06/1992 10/15/1992 11/06/1992 11/11/1992 11/13/1992 11/19/1992	Correspondence Correspondence Correspondence Correspondence Correspondence Correspondence Correspondence	B046 B047 B048 B049 B050 B051 B052	
Letter re PLPs Letter re Investigation & Cleanup of Contamination Letter re Investigation and Cleanup of Contamination Letter re Request for Cooperation in Investigation Memo re Hiring Golder Ecology letter re Requirements for Reporting Environmental Conditions Letter re Golder Investigation Payment Letter re Golder Schedule Letter re Revised Schedule	Port of Longview Port of Longview Port of Longview Department of Ecology Walker & Dowell Golder Associates Golder Associates	02/26/1992 02/26/1992 10/06/1992 10/15/1992 11/06/1992 11/11/1992 11/13/1992	Correspondence Correspondence Correspondence Correspondence Correspondence Correspondence	B046 B047 B048 B049 B050 B051	

Documents Reviewed						
Document	Author	Date	Туре	Document Number		
Correspondence (cont.)	Addition	Dute	i i ypc			
Letter to Ecology re On-going Site Investigation		03/26/1993	Correspondence	B056		
Letter re Additional Agreement	Walker & Dowell	05/03/1993	Correspondence	B057		
Letter re Cost Participation for Phases II and III	James River Corporation	05/06/1993	Correspondence	B058		
Letter re Investigation and Cleanup of Petroleum Contamination	Walker & Dowell	05/06/1993	Correspondence	B059		
Letter re Phase Expenses	Walker & Dowell	05/06/1993	Correspondence	B060		
Letter re Investigation and Additional Agreement	Longview Fibre Company	06/03/1993	Correspondence	B061		
Letter re Investigation and Cleanup of Contamination	Walker & Dowell	06/08/1993	Correspondence	B062		
Letter re Percentage of Cleanup Cost to be Paid by Each Party	Longview Fibre Company	06/17/1993	Correspondence	B063		
Letter re Investigation and Cleanup of Contamination	Walker & Dowell	07/07/1993	Correspondence	B064		
Ecology Letter re Site Report	Department of Ecology	07/23/1993	Correspondence	B065		
Cover Letter for Phase III Characterization Report	Golder Associates	07/27/1993	Correspondence	B066		
Ecology Letter re Deficiencies in Report	Department of Ecology	08/03/1993	Correspondence	B067		
Letter re Investigation and Cleanup of Petroleum Contamination	Walker & Dowell	08/03/1993	Correspondence	B068		
Letter re PLPs	Walker & Dowell	08/06/1993	Correspondence	B069		
Letter re Tank Removal, Mechanics Shop	O'Sullivan	08/24/1993	Correspondence	B070		
Letter re Port of Longview Petroleum Contamination	Walker & Dowell	09/02/1993	Correspondence	B071		
Letter re New Revelation	Walker & Dowell	09/03/1993	Correspondence	B072		
Ecology Letter re Site Report	Department of Ecology	09/15/1993	Correspondence	B073		
Letter re Investigation and Cleanup of Contamination	Walker & Dowell	09/17/1993	Correspondence	B074		
Letter re Golder and Associates Report	Wilson Oil, Inc.	09/29/1993	Correspondence	B075		
Meeting Minutes	Port of Longview	09/30/1993	Correspondence	B076		
Letter re Petroleum Contamination Memos	James River Corp	10/14/1993	Correspondence	B077		
Letter re Longview Petroleum Contamination	James River Corporation	10/14/1993	Correspondence	B078		
Letter re Chevron U.S.A. Port of Longview Invoice	Helsell Fetterman	01/14/1994	Correspondence	B079		
Letter re Chevron Participation in Site Investigation	Port of Longview Walker & Dowell	01/27/1994 02/07/1994	Correspondence	B080 B081		
Letter re Schedule for Phase IV	Golder Associates	02/07/1994 02/17/1994	Correspondence Correspondence	B081 B082		
Letter re Chevron U.S.A.	Helsell Fetterman	02/17/1994 03/07/1994	Correspondence	B082 B083		
Letter re Hydrocarbon Clean Up	Wilson Oil, Inc.	03/07/1994	Correspondence	B083 B084		
Letter re Chevron U.S.A.	Wilson On, Inc. Walker & Dowell	05/11/1994	Correspondence	B085		
Ecology Letter re Site Meeting	Department of Ecology	05/25/1994	Correspondence	B085 B086		
Letter re Schedule for Future Events	Golder Associates	07/08/1994	Correspondence	B080 B087		
December 9, 1994 Meeting Minutes	Port of Longview	12/09/1994	Correspondence	B087 B088		
Meeting with Ecology Minutes	Port of Longview	01/26/1995	Correspondence	B089		
Letter re Completion of Phase IV Report	Walker & Dowell	01/31/1995	Correspondence	B090		
February 2, 1995 Meeting Minutes	Port of Longview	02/01/1995	Correspondence	B091		
Letter re Chevron Documentary Material	Walker & Dowell	04/26/1995	Correspondence	B091		
Ecology Letter re Continuation of Investigation	Department of Ecology	05/04/1995	Correspondence	B093		
Ecology Letter re Division of Remediation Costs		05/04/1995	Correspondence	B094		
Letter re Brief Action Plan	Port of Longview	06/13/1995	Correspondence	B095		
Deposition of William Clarke	William Clarke	10/10/1995	Correspondence	B096		
Letter re Summary of Chevron Work	Port of Longview	10/17/1995	Correspondence	B097		
Letter re Port of Longview Petroleum Contamination	Walker & Dowell	11/02/1995	Correspondence	B098		
Letter re Feb. 15, '96 Meeting Agenda	Port of Longview	01/29/1996	Correspondence	B099		
Letter re Scope of Work and Cost Estimates	Port of Longview	02/12/1996	Correspondence	B100		
Letter re Calloway-Ross	Pond, Roesch, Rahn & Nelson, P.S.	03/12/1996	Correspondence	B101		
Letter re Remedial Cost Estimate for Contaminated Site	Port of Longview	03/22/1996	Correspondence	B102		
Letter re Remedial Cost Estimate		03/22/1996	Correspondence	B103		
Letter re Chevron's Modified Proposal	Helsell Fetterman	04/01/1996	Correspondence	B104		
Letter re Chevron and Phase VII	Helsell Fetterman	04/04/1996	Correspondence	B105		
Letter re Chevron's Proposal	Helsell Fetterman	04/04/1996	Correspondence	B106		
Letter re Longview Contamination	Walker & Dowell	04/09/1996	Correspondence	B107		
Letter re Port of Longview	Helsell Fetterman	07/30/1996	Correspondence	B108		
Letter re Longview Contamination	William L. Dowell	08/15/1996	Correspondence	B109		
Letter re Port of Longview	Helsell Fetterman	09/05/1996	Correspondence	B110		
Letter re Longview Contamination	William L. Dowell	10/07/1996	Correspondence	B111		
Letter re Outstanding Invoice	Port of Longview	01/21/1998	Correspondence	B112		
Letter re PLPs and Chevron	William L. Dowell	02/25/1998	Correspondence	B113		
Letter re Agreement for Conducting Contamination Investigation	William L. Dowell	03/17/1998	Correspondence	B114		
Re: March 27, 1998, Meeting at Ecology Building	Department of Ecology	03/30/1998	Correspondence	B115		
Ecology Letter re Meeting at Ecology	Department of Ecology	03/30/1998	Correspondence	B116		
Letter re Environmental Insurance Claim	Nadler Law Group	02/26/2009	Correspondence	B117		
Letter re Environmental Insurance	Arropoint Capital	03/09/2009	Correspondence	B118		
Emails re Sampling Coordination	Golder Associates	07/15/2010	Correspondence	B119		
Emails re Change of Scope	Golder Associates	07/26/2010	Correspondence	B120		
Ecology Letter re Confirmed or Suspected Contaminates Sites List Re: TPH Cleanup, Port of Longview, Washington	Department of Ecology	09/30/2011	Correspondence	B121		
Re: TPH Cleanup, Port of Longview, Washington Re: TPH Cleanup, Port of Longview, Washington	Frank Randolph	09/29/2014	Correspondence	B122		
	Frank Randolph	10/08/2014 Various	Correspondence	B123		
Three Assorted Oil Operations Letters Letters relating to Chevron's Suspension Period	Various Standard Oil Company	Various Various	Correspondence Correspondence	B124 B125		
Leases, Contracts, and Agreements		various	correspondence	0120		
POL Meeting Summaries		03/11/1931	Summaries	C001		
Agreement between Port and Longview Fibre		06/10/1935	Agreement	C001		
Port Construction Record		01/01/1944	Record	C002		
License between Port and Standard Oil		01/01/1944 01/31/1947	License	C003		
Agreement between Port and Longview Fibre		10/15/1954		C004 C005		
Contract between LFC and SOCC		05/23/1955	Agreement Contract	C005		
		06/15/1955	Agreement	C008		
Fuel Contract between Standard Oil and Longview Fibre odf		201 721 7222	ABICCITICIT			
Fuel Contract between Standard Oil and Longview Fibre.pdf Modification of '55 Contract		05/14/1956	Agreement	C008		
Modification of '55 Contract		05/14/1956 04/09/1957	Agreement Summaries	C008 C009		
		05/14/1956 04/09/1957 04/11/1957	Agreement Summaries Correspondence	C008 C009 C010		

Documents Reviewed					
Document	Author	Date	Туре	Document Number	
Leases, Contracts, and Agreements (cont.)					
LFC File Doc re Amendment of Fuel Oil Contract		05/22/1957	Record	C012	
Inter-Office Correspondence re Contract Termination Agreement		06/12/1957	Correspondence	C013	
Agreement between Port and Longview Fibre Contract between Standard Oil and Longview Fibre		08/02/1957	Agreement	C014	
Agreement between Port and Longview Fibre		07/09/1959	Contract	C015	
Longview Fibre Company Fuel Contract		01/01/1962 04/24/1962	Agreement Contract	C016 C017	
Amended Fuel Oil Contract		07/24/1962	Contract	C017	
Supplement to Agreement between Port and Longview Fibre		01/28/1965	Agreement	C018 C019	
Executed Agreement with Standard Oil Company		02/12/1965	Agreement	C019	
Memo re Executed Agreement with Standard Oil.pdf		02/12/1965	Memo	C020	
License Agreement between Port and Standard Oil		05/18/1971	Agreement	C021	
Longview Fibre Admin Documents		10/31/1971	Correspondence	C023	
Agreement between Port and Longview Fibre		12/11/1973	Agreement	C024	
Lease between Port and Crown Zellerbach Corporation		12/11/1973	Lease	C025	
Zellerbach Corp. Lease		12/11/1973	Lease	C026	
Letter re Oil Tank Site Lease		12/11/1973	Lease	C027	
Statutory Warranty Deed		06/14/1983	Deed	C028	
Statutory Warranty Deed.pdf		06/30/1983	Agreement	C029	
Lease between Port of Longview and Calloway Ross		07/05/1983	Lease	C030	
Storage Tank Agreement.pdf		12/21/1983	Agreement	C031	
Termination of License Agreement		08/08/1986	Agreement	C032	
Amendment to Lease between Port of Longview and Calloway Ross		09/15/1987	Lease	C033	
Agreement for Conducting Contamination Investigation.pdf		05/25/1995	Agreement	C034	
Agreement for Conducting Contamination Investigation.pdf		05/19/1998	Agreement	C035	
Index Port of Longview Deeds & Leases		11/18/2011	Record	C036	
Record of Land Purchase		ND	Record	C037	
Maps and Drawings					
Training Center building Heating and Ventilating Foundation Plan		05/05/1949	Drawing	D001	
Drawing AD2 Mechanics Shop Storage Loft		05/14/1991	Drawing	D002	
Drawing AD2 Exhaust System Mech. Shop		11/22/1991	Drawing	D003	
Drawing AD1 Containment and Wash Area Mech. Shop		09/29/1987	Drawing	D004	
Reports		00/04/4004		5004	
Petroleum Services Unlimited Proposal for Phase II	Petroleum Services Unlimited	03/04/1991	Proposal	E001	
Site Investigation Plan	Petroleum Services Unlimited	4/29/1991	Report	E002	
Extent of Contamination Investigation Petroleum Services Proposal	Petroleum Services Unlimited	6/26/1991	Report	E003	
Cleanup Action Plan	Petroleum Services Unlimited	08/12/1991 8/13/1991	Proposal	E004 E005	
PLP Meeting Minutes	Petroleum Services Unlimited Port of Longview	04/22/1991	Report Minutes	E005	
Port of Longview Costs to Date	Port of Longview	05/22/1992	Summary	E007	
Tracer Tight Test of 2 Underground Storage Tanks	Tracer Research Corporation	10/09/1992	Report	E007	
Summary of HCID Data	Golder Associates	12/11/1992	Summary	E000	
Phases I - III Summary of Costs	Port of Longview	01/21/1993	Summary	E010	
Preliminary Summary of Findings	Golder Associates	03/02/1993	Report	E010	
Interim Data Report Bunker C and Diesel Fuel Investigation	Golder Associates	3/09/1993	Report	E012	
Environmental Assessment Report	Golder Associates	4/20/1993	Report	E013	
1993-04-28 Meeting Minutes	Port of Longview	04/28/1993	Minutes	E014	
Basis for Contribution Calculations	Port of Longview	05/17/1993		E015	
Characterization Report Bunker C and Diesel Fuel Investigation	Golder Associates	8/13/1993	Report	E016	
Underground Storage Tank Site Characterization	Golder Associates	8/18/1993	Report	E017	
Summary of Costs	Port of Longview	10/04/1993	Summary	E018	
Golder Phase IV Scope of Services	Golder Associates	02/09/1994	Report	E019	
Task Order for Phase IV	Port of Longview	02/09/1994	Report	E020	
Draft Summary of Phase IV Soil Data	Golder Associates	04/26/1994	Report	E021	
Draft Summary of Phase IV Soil and Groundwater Data	Golder Associates	04/29/1994	Report	E022	
Phase IV Report Review	Golder Associates	08/11/1994	Report	E023	
Characterization Report Bunker C and Diesel Fuel Investigation	Golder Associates	12/7/1994	Report	E024	
Site Characterization Work Plan	AGRA Earth & Environmental	06/01/1995	Report	E025	
Basis for Contribution Calculations	Golder Associates	06/12/1995	Work Plan	E026	
Sample Analysis	National Environmental Testing, Inc.	06/13/1995	Report	E027	
I.P. Tank Demolition Photos		08/01/1995	Photos	E028	
POL Summary of Costs	Port of Longview	08/09/1995	Summary	E029	
Golder Estimate for Disposal of Contaminated Soil	Golder Associates	08/30/1995	Report	E030	
Subsurface Petroleum Hydrocarbon Assessment	AGRA Earth & Environmental	11/1/1995	Report	E031	
Review of Subsurface Petroleum Hydrocarbon Assessment	Golder Associates	11/29/1995	Report	E032	
Focused Feasibility Study Unit A Pacific Environmental Proposal with Costs	Golder Associates Pacific Environmental	1/25/1996 02/07/1996	Report	E033 E034	
Basis for Contribution Calculations		02/07/1996	Proposal Report	E034 E035	
Projected Costs for Remediation Scenarios	Golder Associates Golder Associates	02/12/1996	Report Report	E035 E036	
Unit C and D Remedial Cost Estimate	Golder Associates	03/20/1996	Report Report	E036 E037	
Focused Feasibility Study Unit B	Golder Associates	3/27/1996	Report	E037 E038	
Site Layout and Well Locations	Golder Associates	06/29/1996	Figure	E038	
Report on Verification Sampling Unit B	Golder Associates	9/26/1996	Report	E040	
Report on Verification Sampling Unit A	Parametrix Inc.	6/2/1997	Report	E040	
Petroleum Hydrocarbon Contamination at the Port of Longview		03/24/1998	Report	E041	
Phase VI Scope of Work	1	03/24/1998	Report	E042	
Summary of '98 GW Investigation	Golder Associates	3/27/1999	Report	E044	
Historic Site Investigation and Remediation Summary Report	Golder Associates	10/1/2000	Report	E045	
Remedial Investigation/Feasibility Study Report	SAIC	12/19/2003	Report	E046	
Laboratory Report	Columbia Analytical Services	05/05/2005	Report	E047	
POL Annual Sampling Analytical Report	Columbia Analytical Services	08/08/2008	Report	E048	
	·			E049	
Summary of POL Costs	Port of Longview	12/01/2009	Summary	L045	
Summary of POL Costs SAIC Annual Report	Port of Longview	12/01/2009 4/1/2010	Report	E045	

Document	Author	Date	Туре	Document Number
Reports (cont.)				
Port of Longview Site Layout and Well Locations	Golder Associates	8/23/2010	Figure	E052
Sample Analysis	Specialty Analytical	08/31/2010	Report	E053
In-Situ Soil Stabilization Treatability Testing Work Plan	URS	7/19/2011	Report	E054
Sediment Characterization Report	Anchor QEA, LLC	8/1/2011	Report	E055
Mechanics Shop Investigation Report	URS	4/10/2012	Report	E056
TPH Expert Report	Landau Associates	6/22/2012	Report	E057
TWP & TPH Expert Report	Pacific Crest Environmental	6/22/2012	Report	E058
Rebuttal Expert Report	Pacific Crest Environmental	7/16/2012	Report	E059
CARA Level Two Hydrogeologic Assessment	Kennedy/Jenks Consultants	7/20/2012	Report	E060
Supplemental Site Assessment Report Former Chevron Bulk Fuel Facilit	SAIC	10/17/2012	Report	E061
Final Supplemental Remedial Investigation Work Plan	SAIC	08/21/2013	Report	E062
Site Hazard Assessment	Ecology	12/10/2013	Report	E063
Index of TPH Site Monitoring Reports Since 2000		ND	Record	E064
Summary of all POL Costs		ND	Record	E065
Summary of all POL Costs		ND	Record	E066
Amended Chevron Proposal	Chevron	ND	Proposal	E067
Phase II Cost Estimate	Port of Longview	ND	Report	E068
Phase III Summary of Costs		ND	Summary	E069
Project Cost Estimate	Golder Associates	ND	Report	E070

Abbreviations:

Ecology Washington State Department of Ecology

ND No date

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix B Available Soil and Groundwater Data from Prior Investigations

			NWTPH-Gx	NWTPH-Dx	NWTPH-Dx	USEPA 418.1
	Sample					
Location	Date	Depth (ft)	Gasoline (ppm)	Diesel (ppm)	Other (ppm)	TPH (ppm)
Calloway Ross and Northern	Pipeline Area					
SB-1	05/01/1991	5.5-7	ND	4,800	ND	NA
	-	7-8.5	ND	2,300	ND	NA
	05/04/4004	2.5-4	ND	ND	220	NA
SB-2	05/01/1991	6-7.5	537	7,800	ND	NA
	05/04/4004	7.5–9	1,500	13,000	ND	NA
SB-2 (Dup)	05/01/1991	6-7.5	591	7,200	ND	NA
SB-3	05/01/1991	10-11.5	ND	450	ND	NA
SB-4	05/02/1991	7-8.5	ND	11,000	ND	NA
SB-5 ⁽¹⁾	05/02/1991	6–7.5	591	7,200	ND	NA
SB-5	05/02/1991	10-11.5	ND	ND	ND	NA
SB-5 (Dup)	05/02/1991	10-11.5	ND	43	110	NA
SB-6	05/02/1991	11.5-13	ND	ND	ND	NA
SB-7	05/02/1991	7.5-9	25	54	ND	NA
SB-8	05/02/1991	9–10.5	ND	ND	ND	NA
SB-8 ⁽²⁾	05/02/1991	10–11.5	ND	43	110	NA
SB-9	05/03/1991	9–10.5	ND	ND	ND	NA
MW-3	05/01/1991	9–10.5	ND	1,700	ND	NA
MW-5	05/03/1991	11–12.5	ND	ND	ND	NA
MW-6	12/09/1992	14	ND	ND	ND	NA
-	,,	19	ND	ND	ND	NA
MW-7		9	ND	ND	ND	NA
	12/07/1992	16	485	368	ND	NA
		24	ND	ND	ND	NA
	12/08/1992	10	ND	ND	ND	NA
MW-8		16	ND	ND	ND	NA
		24	ND	ND	ND	NA
		2	16	1,500	4,600	NA
		7	649	13,000	1,200	NA
MW-9	12/02/1992	10	ND	178	270	NA
		11	1,350	19,000	2,600	NA
		14	4,700	9,000	830	NA
		19.5	ND	549 ⁽³⁾	ND	NA
		2	10	113	140	NA
		8	1800 ⁽³⁾	660	540	NA
MW-10	12/07/1992	9	1,000	4,900	310	NA
		11	ND	152	ND	NA
		14	3,900	4,100	300	NA
		24	ND	ND	ND	NA
S-CR-1	03/25/1993	0-1	ND	60,000	3,500	NA
S-CR-2	03/25/1993	0-1	ND	14,000	150,000	NA
S-CR-3	03/25/1993	0-1	ND	5,300	21,000	NA
S-CR-4	03/25/1993	0-1	ND	3,800	33,000	NA
S-CR-5	03/25/1993	0-1	ND	5,100	38,000	NA
S-CR-6	03/25/1993	0-1	ND	2,400	19,000	NA
S-CR-7	03/25/1993	0-1	ND	296	2,380	NA
S-CR-8	03/25/1993	0-1	ND	3,000	62,000	NA
S-CR-9	03/25/1993	0-1	ND	3,500	22,000	NA
S-CR-10	03/25/1993	0-1	ND	224	1,430	NA
		10	ND	ND	ND	NA

Table B.1 Historical Soil Analytical Data

		16.5	ND	ND	ND	NA
		10	16,000	1,900	290	NA
MW-16	05/18/1993	13.5	ND	9,400	ND	NA
		18	ND	ND	ND	NA
MW-19	05/20/1993	2–4	ND	3,700	12,000	NA
10100-13	03/20/1993	4–8	ND	72,000	58,000	NA
UAV1-Floor	06/01/1996	3	NA	NA	NA	289
UAV2-Floor	06/01/1996	4	NA	NA	NA	ND
UAV3-Floor	06/01/1996	3	NA	NA	NA	ND
UAV4-Floor	06/01/1996	6	NA	NA	NA	15,000
MW-31	06/24/1998	10–11	ND	ND	ND	NA
IVIVV-31	00/24/1998	20–21.5	ND	ND	ND	NA

ND

ND

ND

NA

05/18/1993

13.5

Remedial Investigation Work Plan

Appendix B: Available Soil and Groundwater Data

from Prior Investigations

Table B.1

MW-15

Table B.1	
Historical Soil Analytical Data	

			NWTPH-Gx	NWTPH-Dx	NWTPH-Dx	USEPA 418.1
	Sample					
Location	Date	Depth (ft)	Gasoline (ppm)	Diesel (ppm)	Other (ppm)	TPH (ppm)
Former Loading Rack and Mid	die Pipeline Ar		440	26,000	24,000	N N A
		1.5	449	26,000	34,000	NA
MW-11		9	ND	ND (2)	ND (2)	NA
	12/03/1992	11	ND	17,000 ⁽³⁾	830 ⁽³⁾	NA
	,,	15	ND	16,000 ⁽³⁾	700 ⁽³⁾	NA
		19	ND	ND	ND	NA
		20	ND	ND	ND	NA
IB-2	12/04/1992	20	ND	ND	ND	NA
MW-13	05/26/1993	1	ND	ND	ND	NA
MW-14	05/17/1993	8	6,920	13,000	410	NA
	00, 17, 1990	11	5,980	12,000	ND	NA
		11	ND	2,300	ND	NA
MW-17	05/19/1993	13.5	ND	20,000	970	NA
		19.7	ND	ND	ND	NA
MW-18	05/19/1993	17	ND	ND	ND	NA
MW-18 (Dup)	05/19/1993	17	ND	ND	ND	NA
		11.5	ND	ND	ND	NA
MW-20	05/20/1993	18–19	ND	ND	ND	NA
		19	ND	ND	ND	NA
MW-25	03/02/1994	9.5	ND	ND	ND	NA
Former Longview Fibre 80,000	D-Barrel AST Ar	ea				
TP-1	11/23/1992	2	16	1,500	4,600	NA
TP-2	11/23/1992	7	649	13,000	1,200	NA
		2	<10	113	140	NA
TP-3	11/23/1992	8	1,800 ⁽³⁾	660	540	NA
		11	ND	152	ND	NA
	11/23/1992	1.5	449	26,000	34,000	NA
TP-5		9	ND	ND	ND	NA
TP-6	11/23/1992	11	1,200 ⁽³⁾	129	160	NA
TP-7	11/23/1992	1.5	ND	9,100	45,000	NA
		6	510	121	ND	NA
		14	4,900	1,800 ⁽³⁾	180 ⁽³⁾	NA
MW-12	12/04/1992	19	ND	ND	ND	NA
		22	ND	ND	ND	NA
		14	ND	ND	ND	ND
MW-21	05/21/1993	16.8	ND	ND	ND	ND
	, ,	17	ND	ND	ND	ND
T-1-3	08/30/1995	3	NA	3,000	1,800	NA
T-1-9	08/30/1995	9	NA	ND	ND	NA
T-1-20	08/30/1995	20	NA	78	ND	NA
T-2-19	08/30/1995	19	NA	ND	ND	NA
UBV1-Floor	06/05/1996	3	NA	NA	NA	ND
UBV2-Floor	06/05/1996	4	NA	NA	NA	ND
UBV3-East Side Wall	06/05/1996	3	NA	NA	NA	ND
UBV4-Floor	06/05/1996	6	NA	NA	NA	<50
UBV5-Floor	06/05/1996	7.5	NA	NA	NA	<50
UBV6-Floor	06/10/1996	6	NA	NA	NA	ND
UBV7-Floor	06/10/1996	6	NA	NA	NA	92
UBV8-Southwest Side Wall	06/10/1996	6	NA	NA	NA	<50
UBV9-Floor	06/11/1996	6	NA	NA	NA	8,300
UBV10-South Side Wall	06/11/1996	4	NA	NA	NA	ND
UBV11-North Side Wall	06/11/1996	3	NA	NA	NA	ND
	00, 11, 1990	5				

	00/11/1990	C	NA	NA	NA	ND
UBV12-Floor	06/11/1996	6	NA	NA	NA	28

			NWTPH-Gx	NWTPH-Dx	NWTPH-Dx	USEPA 418.1
	Sample					
Location	Date	Depth (ft)	Gasoline (ppm)	Diesel (ppm)	Other (ppm)	TPH (ppm)
Former Mechanic's Shop an	nd Southern Pipel	ine Area				
UST1-722-24	07/22/1993	24	<20	<50	<100	NA
UST2-723-15	07/23/1993	15	<20	<50	<100	NA
UST3-723-14.5	07/23/1993	14.5	<20	<50	<100	NA
UST4-726-10	07/26/1993	10	<20	<50	<100	NA
UST-5 ^(3,4)	06/03/1994	9	786	170	200	NA
UST-5	06/03/1994	13	ND	ND	ND	NA
031-5	00/03/1994	18	ND	ND	ND	NA
MW-23	03/02/1994	26.5	ND	ND	ND	NA
		15.5	5,600 ⁽³⁾	40,000 ⁽³⁾	360	NA
MW-24	03/03/1994	20	ND	ND	ND	NA
		22.2	ND	ND	ND	NA
MW-24 ⁽⁵⁾	03/03/1994	15.5	2,200	43,000 ⁽⁶⁾	NA	NA
MW-24D ⁽⁵⁾ (Dup)	03/03/1994	15.5	NA	47,000 ⁽⁶⁾	NA	NA
MW-26	03/03/1994	12.8	2,300 ⁽³⁾	17,000 ⁽³⁾	94	NA
MW-26D (Dup)	03/03/1994	12.8	1,900 ⁽³⁾	15,000 ⁽³⁾	93	NA
· · · · · · · · · · · · · · · · · · ·	03/03/1994	18	2,100	42,000 (6)	NA	NA
MW-26 ⁽⁵⁾	03/03/1994	37.5	ND	5.4	NA	NA
MW-27	03/21/1994	18.2	ND	ND	ND	NA
	03/22/1994	14.6	830	8,700 ⁽²⁾	ND	NA
MW-28		27.7	ND	ND	ND	NA
		29.5	ND	ND	ND	NA
MW-28D (Dup)	03/22/1994	14.6	1,100	11,000 ⁽³⁾	57	NA
MW-28 ⁽⁵⁾	03/22/1994	14.6	760	8,400x ⁽⁶⁾	NA	NA
MW-28D (Dup) ⁽⁵⁾	03/22/1994	14.6	690	8,100	NA	NA
		10	ND	ND	ND	NA
MW-29	06/03/1994	20	ND	ND	ND	NA
		24	ND	ND	ND	NA
Perimeter Borings and Well	ls					
MW-22	03/01/1994	27.5	ND	ND	ND	NA
MW-30	06/24/1998	16–16.5	ND	ND	ND	NA
	00, 24, 1000	25–26.5	ND	ND	ND	NA
MW-32	06/24/1998	10–11.5	ND	ND	ND	NA
		20–21.5	ND	ND	ND	NA
Southern Pipeline Capped E			-			
P-1 ⁽⁵⁾	04/01/1994	Surface	NA	4,400 ⁽³⁾	600 ⁽³⁾	NA
P-2 ⁽⁵⁾	04/01/1994	Surface	NA	8,300 ⁽³⁾	5,400 ⁽³⁾	NA

Table B.1Historical Soil Analytical Data

Notes:

1 Duplicate of SB-2 at 6 to 7.5 ft.

2 Duplicate of SB-5 at 10 to 11.5 ft.

3 Result due to diluted sample.

4 Sample was of soil directly adjacent to tank and represents limited quantity of soil.

5 Analyzed for TPH by Ecology TPH Methods.

6 More closely resembles Bunker C.

x Value greater than linear range of instrument.

Abbreviations:

AST Aboveground storage tank

- Ecology Washington State Department of Ecology
 - ft Feet
 - MRL Minimal risk level
 - NA Not analyzed
 - ND Not detected at unknown MRL

ppm Parts per million TPH Total petroleum hydrocarbons USEPA U.S. Environmental Protection Agency

Table B.2Groundwater Analytical Data

		Depth to Water	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Total Xylenes	cPAH TEQ
Well	Sample Date	ft btoc	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	08/04/2000	10.4	420	500 U				<u></u>		/67
	08/07/2001	11.21								
	08/19/2002	10.79								
	08/21/2003	10.7								
	08/05/2004	10.23	250 U	500 U						
	08/10/2005	10.48								
	08/21/2006	10.40	240 U	480 U						
ЛW-2	08/10/2007	10.55	1,900 Y	530 U						
VI V V - Z	10/05/2007	11.34				0.5 U	1 U	1 U	1 U	0.02 L
		11.34							_	
	10/5/2007 (Dup)					0.5 U	_	1 U 	1 U	0.02 l
	07/22/2008	10.26								
	08/18/2010	10.31								
	08/26/2011	10.31								
	09/28/2012	10.91								
	09/26/2013	10.86								
/W-3	09/21/2009		710 Y	500 U	670 Y	6.6	4.90	14	4.83	0.02 l
/W-6	09/23/2009		370 Y	520 U						0.02 L
/W-7	09/22/2009				1,300 Y	2.2	1.30	0.50 U	1.78	
/W-8	09/21/2008		250 U	500 U	2,900 Y	9	3.90	1.60	8.19	0.03
	07/16/1999	12.34	2,170	500 U	5,300	300	58	360	83	0.02 L
	08/03/2000	16.11	3,200	500 U	5,000	140	50	210	99	0.02 l
	08/3/2000 (Dup)	16.11	3,100	500 U	4,800	130	48	200	95	0.02 L
	08/07/2001	17.25	280 L	500 U	4,300 Y	190 C	40 C	190 C	62	0.02 L
	08/7/2001 (Dup)	17.25	290 L	500 U	4,200 Y	190 C	40 C	200 C	64	0.02 C
	08/19/2002	16.53	450 L	500 U	5,800 DY	250 D	46 D	260 C	75	0.02 C
	08/21/2003	16.83	320 Y	480 U	4,700 Y	130	44	180	75 P	0.01 C
MW-10	08/05/2004	16.44	340 Z	500 U	4,000 Y	130	21	140	42	0.02 C
							32			
	08/5/2004 (Dup)	16.44	320 Z		4,000 Y	130		140	43	
	08/26/2005	16.7	1,700 Y	500 U	4,400 Y	310 D	51 D	290 D	77.40 D	0.02 L
	08/21/2006	16.68	500 L	480 U	4,400 Y	430 D	65 D	280 D	90 D	0.02 L
	08/21/2006 (Dup)	16.68	500 L	480 U	4,600 Y	470 D	70 D	3,310 D	96 D	0.02 L
		16.55	660 L	500 U	5,100 Y	360 D	54	230 D	90.6	0.01 L
	07/23/2008	15.9	440 L	500 U	4,700 DY	340 D	51	260 D	65.6	0.01 L
	07/23/2008 (Dup)	15.9	330 L	500 U	4,800 DY	340 D	51	270 D	73.7	0.01 L
	09/24/2009		490 L	530 U	4,100 Y	160 D	37	130 D	54.3	0.01 L
	09/24/2009 (Dup)		500 L	520 U	4,200 Y	140 D	33	110 D	47.2	0.01 L
	08/19/2010	16.91	380 L	550 U	3,200 Y	70 D	16 D	99 D	22 D	0.02 L
	08/19/2010 (Dup)	16.91	340 L	540 U	3,200 Y	74 D	17 D	100 D	23 D	0.02 L
	08/26/2011	16.91	270 U	530 U	2,900 Y	110 D	24 D	130 D	28 D	0.05
	08/26/2011 (Dup)	16.91	270 U	530 U	3,000 Y	110 D	21 D	110 D	23 D	0.04
	09/28/2012	16.92	280 L	520 U	2,300 Y					0.02 L
	09/28/2012 (Dup)	16.92	270 U	530 U	2,300 Y					0.02 L
	09/26/2013	16.56	270 U	530 U	1,900 Y	64	13	55	25	0.02 U
	09/26/2013 (Dup)	16.56	270 U	530 U	1,800 Y	63	13	55	25	0.02 C
	07/16/1999	10.56	1,740	500 U	3,400	210	24	34	56	0.02 U
	07/16/1999 (Dup)	12.85	1,690	500 U	3,600	220	26	37	60	0.02 L
	08/03/2000	14.38	2,800	500 U	4,500	220	54	62	138	0.02 L
	08/08/2001	15.51	270 L	500 U	4,500 Y	710 DC	48 C	42 C	89.9	0.02 L
	08/19/2002	14.74	410 L	500 U	5,400 DY	420 D	41 D	53 D	77	0.02 L
	08/19/2002 (Dup)	14.74	400 L	500 U	5,300 DY	450 D	43 D	57 D	83	0.02 l
	08/21/2003	15.1	290 Y	480 U	3,900 Y	560 D	40	54	74.7 P	0.01 l
	08/21/2003 (Dup)	15.1	250 Y	480 U	4,000 Y	560 D	40	55	75.7 P	0.01 l
	08/05/2004	14.9	250 U	500 U	280 Z	17	1.6	1.9	2.3	0.02 l
/W-12	08/11/2005	14.85	760 L	500 U	3,400 DZ	880 D	52 D	63 D	84 D	0.02 l
*1 V V - 1 Z	08/11/2005 (Dup)	14.85	410 L	500 U	3,300 DZ	890 D	48 D	63 D	77 D	0.02 l
	08/18/2006	14.95	240 U	480 U	970 Y	350 D	21	15	12	0.02 l
	08/09/2007	14.88	400 L	500 U	3,300 Y	730 D	42	48	72.2	0.02 l
	08/9/2007 (Dup)	14.95	470 L	500 U	3,200 Y	680 D	39	47	75.8	0.01 l
	07/23/2008	14.25	300 L	500 U	3,300 DY	660 D	45	34 D	94.6	0.01 (
	09/23/2009		550 L	500 U	3,100 Y	840 D	48 D	44 D	67 D	0.01 (
	08/19/2010	15.24	623 A1,L	199 U	2,410	133	29.6	46.1	52	0.01 C
	08/25/2010	15.24	290 L	520 U	2,410 2,500 Y	420 D	29.6 25 D	40.1 24 D	32 38 D	0.04 (0.02 l
		15.24		520 U	2,500 Y 2,100 Y			24 D 	38 D	0.02 l
	09/27/2012									
	09/26/2013	14.79	350 L	530 U	640 Y	74	6	13	11	0.02 l
/W-14	09/22/2009		160,000 D	50,000 U						
	08/19/2010		1,600	536 M						0.14
/W-15	09/23/2009		260 U	520 U						0.02 l
/W-16	09/23/2009		82,000 D	32,000 U						

Table B.2 **Groundwater Analytical Data**

		Depth to							Total	cPAH
		Water	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	TEQ
Well	Sample Date	ft btoc	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	07/15/1999	22.8								
	08/03/2000	24.22								
	08/08/2001	25.48								
	08/20/2002	25.34								
	08/21/2003	25.21								
	08/06/2004	24.54								
	08/11/2005	25.43								
MW-23	08/21/2006	25.55								
	08/10/2007	25.26								
	07/23/2008	23.89								
	09/25/2009		250 U	500 U						
	08/20/2010	25.64								
	08/25/2011	25.64								
	09/28/2012	26								
	09/27/2013	25.31								
MW-28	08/20/2010		878 A4	301 A2,M						2.76
	07/13/1998	14.59	1,320							
	08/24/1998	14.9	1,680							
	04/28/1999	13.19	943	500 U						
	07/15/1999	13.76	1,230	500 U						
	07/15/1999 (Dup)	13.76	1,200	500 U						
	11/18/1999	14.54	1,660	500 U						
	02/03/2000	13.16	2,200	500 U						
	05/31/2000	13.68	1,400	500 U						
	08/03/2000	14.09	2,000	500 U						
	08/3/2000 (Dup)	14.09	320	500 U						
	08/07/2001	15.25	250 U	500 U						
	08/19/2002	14.31	250 U	500 U						
MW-30	08/21/2003	14.28	240 U	480 U						
	08/05/2004	13.99	250 U	500 U						
	08/26/2005	14.11	3,800 Y	1,100 L						
	10/28/2005	14.63	250 U	500 U						
	08/21/2006	14.89	240 U	480 U						
	08/09/2007	14.05	3,000 Y	680 L						
	10/05/2007	16.1				0.5 U	1 U	1 U	1 U	0.02 U
	07/23/2008	14.15	250 U	500 U						
	09/25/2009		260 U	520 U						
	08/20/2010	15.14								
	08/26/2011	15.14								
	09/28/2012	17.82	830 Y	1,600 O	250 U					
	09/26/2013	20.15	270 U	530 U						

Note:

-- Not analyzed.

Abbreviations:

CLP Contract Laboratory Program

cPAH Carcinogenic polycyclic aromatic hydrocarbon

DRO Diesel-range organics

ft btoc Feet below top of casing

GC Gas chromatogram

GRO Gasoline-range organics

Qualifiers:

A1,L This sample contains a DRO not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards. Diesel result is biased high due to amount of gasoline contained in the sample.

MS Matrix Spike

ORO Oil-range organics

TEQ Toxicity equivalent

µg/L Micrograms per liter

HPLC High Performance Liquid Chromatography

A2,M This sample contains a ORO not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard. Oil result is biased high due to amount of diesel contained in the sample.

A4 The product appears to be aged or degraded diesel.

C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.

D The reported result is from a dilution.

DC The reported result is from a dilution. The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.

DY The reported result is from a dilution. The chromatogram resembles a petroleum product but does not match the calibration standard.

DZ The reported result is from a dilution. The chromatogram does not resemble a petroleum product.

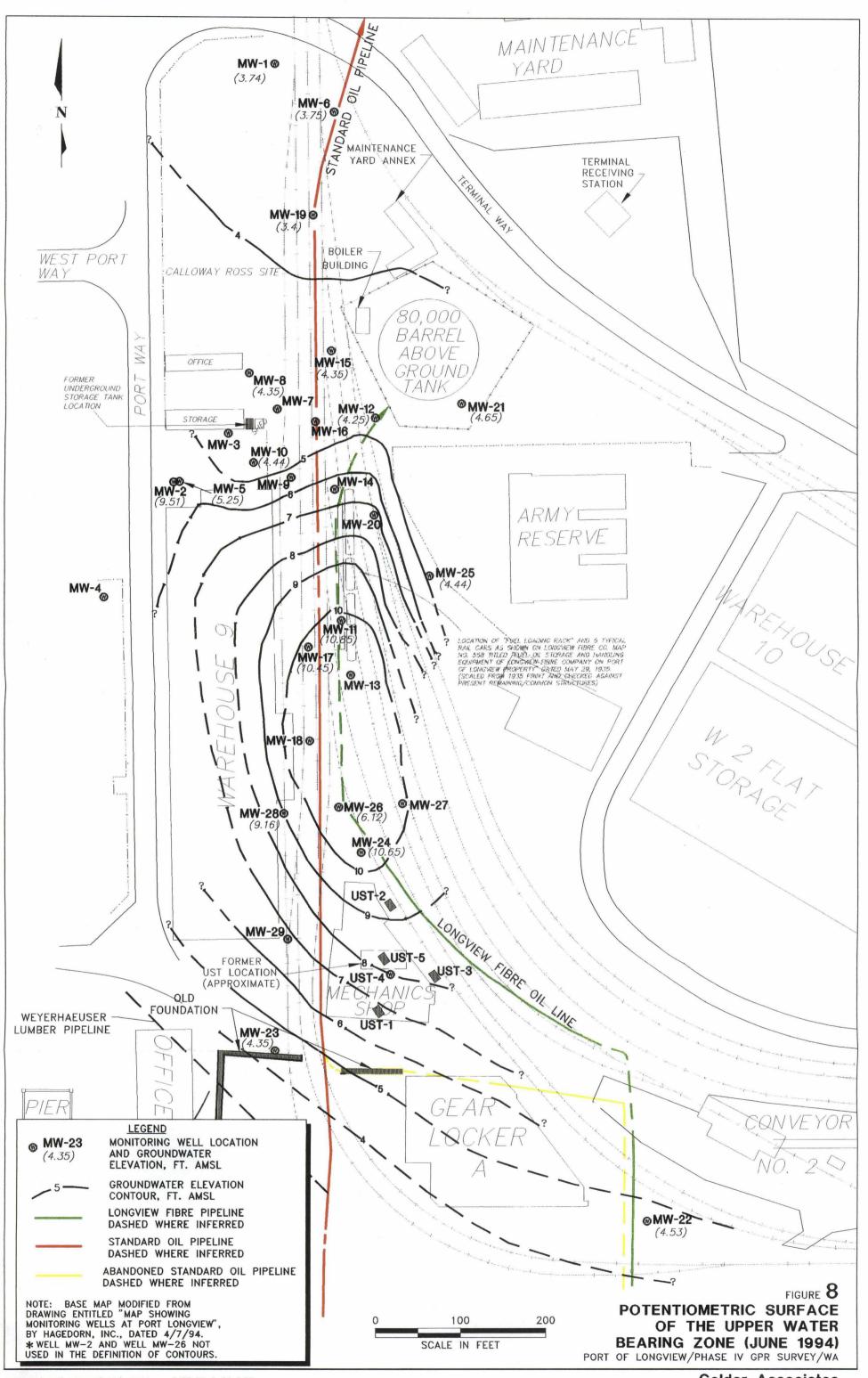
L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.

M Oil result is biased high due to amount of diesel contained in the sample.

O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.

P The GC or HPLC confirmation criteria were exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).

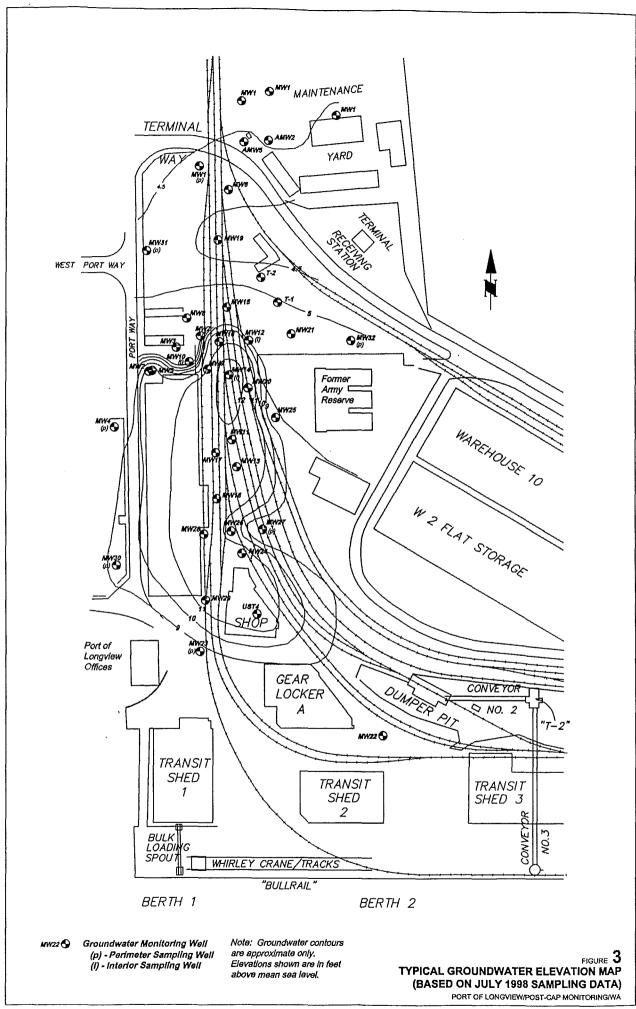
U Indicates the compound was undetected at the reported concentration.


Y The chromatogram resembles a petroleum product but does not match the calibration standard.

Z The chromatogram does not resemble a petroleum product.

Port of Longview TPH Site

Remedial Investigation Work Plan


Appendix C Historical Potentiometric Contour Maps

DWG ID: \JPM\9439735\500\40580 DATE 12-6-94 8:35

Golder Associates

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix D Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 8, 2019

Gabriel Cisneros, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr Cisneros:

Included are the results from the testing of material submitted on March 1, 2019 from the POL-TPH, F&BI 903013 project. There are 18 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Brett Beaulieu FDS0308R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 1, 2019 by Friedman & Bruya, Inc. from the Floyd-Snider POL-TPH, F&BI 903013 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Floyd-Snider
903013 -01	MW-06-022719
903013 -02	MW-19-022719
903013 -03	MW-15-022719
903013 -04	MW-12-022719
903013 -05	MW-07-022719
903013 -06	MW-16-022719
903013 -07	MW-14-022719
903013 -08	MW-31-022719
903013 -09	MW-131-022719
903013 -10	MW-1-022719
903013 -11	MW-02-022719
903013 -12	MW-05-022719
903013 -13	MW-03-022719
903013 -14	MW-10-022719
903013 -15	UST-4-022819
903013 -16	UST-104-022819
903013 -17	MW-22-022819
903013 -18	MW-29-022819
903013 -19	MW-23-022819
903013 -20	MW-24-022819
903013 -21	MW-27-022819
903013 -22	MW-13-022819
903013 -23	MW-26-022819
903013 -24	MW-28-022819
903013 -25	MW-11-022819
903013 -26	MW-25-022819
903013 -27	MW-20-022819
903013 -28	MW-17-022819
903013 -29	MW-18-022819
903013 -30	MW-32-022819
903013 -31	MW-04-022819
903013 -32	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/05/19 Date Analyzed: 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-06-022719 903013-01	<1	<1	<1	<3	<100	80
MW-19-022719 903013-02	<1	<1	<1	<3	<100	83
MW-15-022719 903013-03	<1	<1	<1	<3	<100	85
MW-12-022719 903013-04	61	6.4	3.5	6.2	600	87
MW-07-022719 903013-05	2.0	9.2	2.2	6.0	1,100	88
MW-16-022719 903013-06	<1	<1	<1	<3	<100	84
MW-14-022719 903013-07	<1	<1	<1	<3	<100	84
MW-31-022719 903013-08	<1	<1	<1	<3	<100	83
MW-131-022719 903013-09	<1	<1	<1	<3	<100	84
MW-1-022719 903013-10	<1	<1	<1	<3	<100	84
MW-02-022719 903013-11	<1	<1	<1	<3	<100	85

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/05/19 Date Analyzed: 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-05-022719 903013-12	<1	<1	<1	<3	<100	84
MW-03-022719 903013-13 1/5	13	<5	<5	<15	960	83
MW-10-022719 903013-14	1.1	<1	<1	<3	<100	82
UST-4-022819 903013-15	<1	<1	<1	<3	<100	84
UST-104-022819 903013-16	<1	<1	<1	<3	<100	83
MW-22-022819 903013-17	<1	<1	<1	<3	<100	83
MW-29-022819 903013-18	<1	<1	<1	<3	<100	84
MW-23-022819 903013-19	<1	<1	<1	<3	<100	83
MW-24-022819 903013-20	<1	<1	<1	<3	<100	84
MW-27-022819 903013-21	<1	<1	<1	<3	<100	84
MW-13-022819 903013-22	<1	<1	<1	<3	<100	85

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/05/19 Date Analyzed: 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-26-022819 903013-23	<1	<1	<1	<3	<100	82
MW-28-022819 903013-24	<1	<1	<1	<3	<100	84
MW-11-022819 903013-25	<1	<1	<1	<3	<100	83
MW-25-022819 903013-26	<1	<1	<1	<3	<100	85
MW-20-022819 903013-27	1.7	<1	7.0	9.1	1,500	88
MW-17-022819 903013-28	<1	<1	<1	<3	<100	82
MW-18-022819 903013-29	<1	<1	<1	<3	<100	84
MW-32-022819 903013-30	<1	<1	<1	<3	<100	84
MW-04-022819 903013-31	<1	<1	<1	<3	<100	85
Method Blank ^{09-352 mb}	<1	<1	<1	<3	<100	82
Method Blank ^{09-351 mb}	<1	<1	<1	<3	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx Sample Extracts Passed Through a** Silica Gel Column Prior to Analysis

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-06-022719 903013-01 1/1.2	140	<300	117
MW-19-022719 903013-02 1/1.2	<60	<300	121
MW-15-022719 903013-03 1/1.2	<60	<300	123
MW-12-022719 903013-04 1/1.2	100 x	<300	117
MW-07-022719 903013-05 1/1.2	340 x	<300	116
MW-16-022719 903013-06 1/1.2	<60	<300	70
MW-14-022719 903013-07 1/1.2	81	<300	109
MW-31-022719 903013-08 1/1.2	<60	<300	105
MW-131-022719 903013-09 1/1.2	<60	<300	121
MW-1-022719 903013-10 1/1.2	<60	<300	118

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx Sample Extracts Passed Through a** Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C ₂₅ -C ₃₆)	(% Recovery) (Limit 47-140)
MW-02-022719 903013-11 1/1.2	<60	<300	102
MW-05-022719 903013-12 1/1.2	<60	<300	114
MW-03-022719 903013-13 1/1.2	73 x	<300	105
MW-10-022719 903013-14 1/1.2	<60	<300	108
UST-4-022819 903013-15 1/1.2	<60	<300	103
UST-104-022819 903013-16 1/1.2	<60	<300	110
MW-22-022819 903013-17 1/1.2	<60	<300	113
MW-29-022819 903013-18 1/1.2	<60	<300	111
MW-23-022819 903013-19 1/1.2	<60	<300	110
MW-24-022819 903013-20 1/1.2	<60	<300	111

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx Sample Extracts Passed Through a** Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-27-022819 903013-21 1/1.2	<60	<300	117
MW-13-022819 903013-22 1/1.2	<60	<300	98
MW-26-022819 903013-23 1/1.2	<60	<300	120
MW-28-022819 903013-24 1/1.2	610	<300	122
MW-11-022819 903013-25 1/1.2	<60	<300	121
MW-25-022819 903013-26 1/1.2	<60	<300	122
MW-20-022819 903013-27 1/1.2	370 x	<300	118
MW-17-022819 903013-28 1/1.3	<65	<320	113
MW-18-022819 903013-29 1/1.2	<60	<300	103
MW-32-022819 903013-30 1/1.2	<60	<300	97

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS **DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a** Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-04-022819 903013-31 1/1.2	<60	<300	104
Method Blank 09-459 MB 1/1.2	<60	<300	123
Method Blank 09-461 MB 1/1.2	<60	<300	127

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/04/19 and 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW-06-022719 903013-01 1/1.2	800 x	<300	101
MW-19-022719 903013-02 1/1.2	67 x	<300	103
MW-15-022719 903013-03 1/1.2	78 x	<300	99
MW-12-022719 903013-04 1/1.2	490 x	<300	87
MW-07-022719 903013-05 1/1.2	780 x	<300	93
MW-16-022719 903013-06 1/1.2	<60	<300	61
MW-14-022719 903013-07	150 x	<300	102
MW-31-022719 903013-08	<60	<300	94
MW-131-022719 903013-09 1/1.2	<60	<300	107
MW-1-022719 903013-10 1/1.2	<60	<300	109
MW-02-022719 903013-11 1/1.2	<60	<300	94

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/04/19 and 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW-05-022719 903013-12 1/1.2	82 x	<300	112
MW-03-022719 903013-13 1/1.2	1,700 x	450 x	69
MW-10-022719 903013-14 1/1.2	<60	<300	100
UST-4-022819 903013-15 1/1.2	140 x	<300	102
UST-104-022819 903013-16 1/1.2	140 x	<300	103
MW-22-022819 903013-17 1/1.2	<60	<300	103
MW-29-022819 903013-18 1/1.2	<60	<300	ip
MW-23-022819 903013-19 1/1.2	<60	<300	101
MW-24-022819 903013-20 1/1.2	<60	<300	92
MW-27-022819 903013-21 1/1.2	<60	<300	97
MW-13-022819 903013-22 1/1.2	<60	<300	88

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013 Date Extracted: 03/04/19 Date Analyzed: 03/04/19 and 03/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW-26-022819 903013-23 1/1.2	140 x	<300	100
MW-28-022819 903013-24 1/1.2	5,500 x	1,600 x	71
MW-11-022819 903013-25 1/1.2	<60	<300	97
MW-25-022819 903013-26 1/1.2	<60	<300	105
MW-20-022819 903013-27 1/1.2	970 x	360 x	72
MW-17-022819 903013-28 1/1.2	<60	<300	92
MW-18-022819 903013-29 1/1.2	<60	<300	100
MW-32-022819 903013-30 1/1.2	<60	<300	89
MW-04-022819 903013-31 1/1.2	<60	<300	95
Method Blank ^{09-459 MB}	<60	<300	94
Method Blank ^{09-461 MB}	<60	<300	96

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 903013-01 (Duplicate) Sample Reporting Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	95	65-118		
Toluene	ug/L (ppb)	50	100	72-122		
Ethylbenzene	ug/L (ppb)	50	94	73-126		
Xylenes	ug/L (ppb)	150	98	74-118		
Gasoline	ug/L (ppb)	1,000	100	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 903013-19 (Matrix Spike)

Laboratory couc.	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	<1	78	78	50-150	0
Toluene	ug/L (ppb)	50	<1	79	78	50-150	1
Ethylbenzene	ug/L (ppb)	50	<1	76	75	50-150	1
Xylenes	ug/L (ppb)	150	<3	79	79	50-150	0
Gasoline	ug/L (ppb)	1,000	<100	85	82	53-117	4

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	88	65-118		
Toluene	ug/L (ppb)	50	93	72-122		
Ethylbenzene	ug/L (ppb)	50	89	73-126		
Xylenes	ug/L (ppb)	150	93	74-118		
Gasoline	ug/L (ppb)	1,000	99	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 903013-19 (Matrix Spike) Silica Gel							
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	3,000	<50	97	102	64-141	5
Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	t			
	Reporting	Spike	Recover	ry Accepta	ance		
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	ug/L (ppb)	3,000	97	61-13	33		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel						
-	-	_	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	3,000	102	108	63-142	6

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 903013-19 (Matrix Spike)												
				Percent	Percent							
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD					
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)					
Diesel Extended	ug/L (ppb)	3,000	<50	92	94	52-149	2					
Laboratory Code: Laboratory Control Sample												
			Percent									
	Reporting	Spike	Recover	y Accepta	ince							
Analyte	Units	Level	LCS	Criter	ria							
Diesel Extended	ug/L (ppb)	3,000	77	58-13	34							

16

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/19 Date Received: 03/01/19 Project: POL-TPH, F&BI 903013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	3,000	100	95	58-134	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

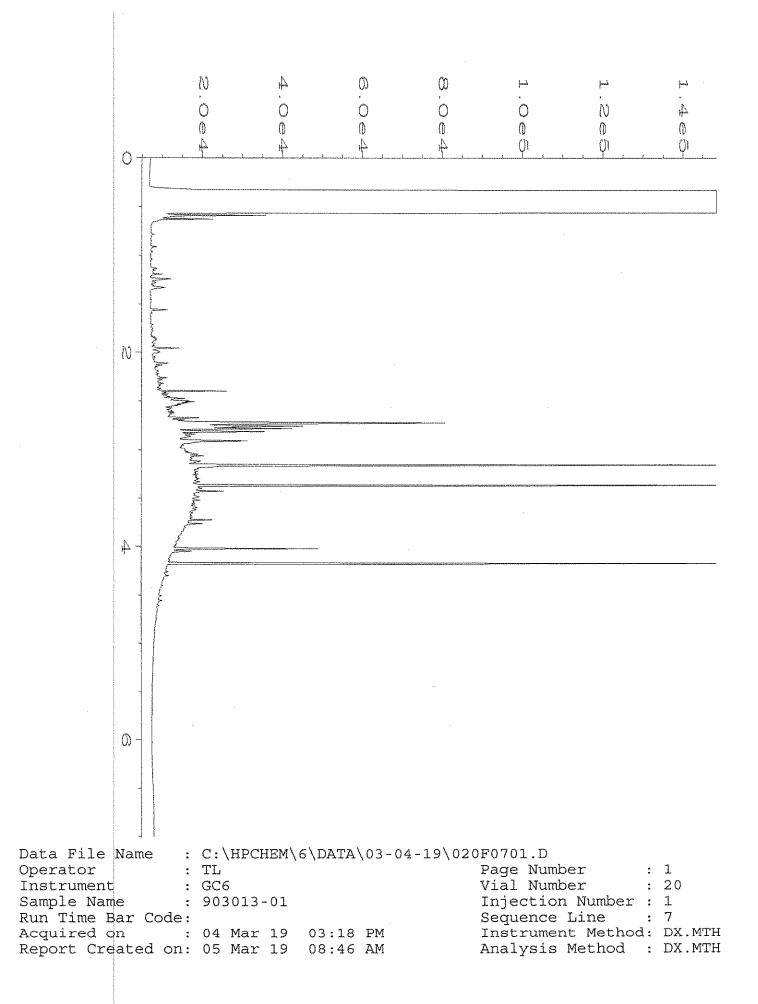
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

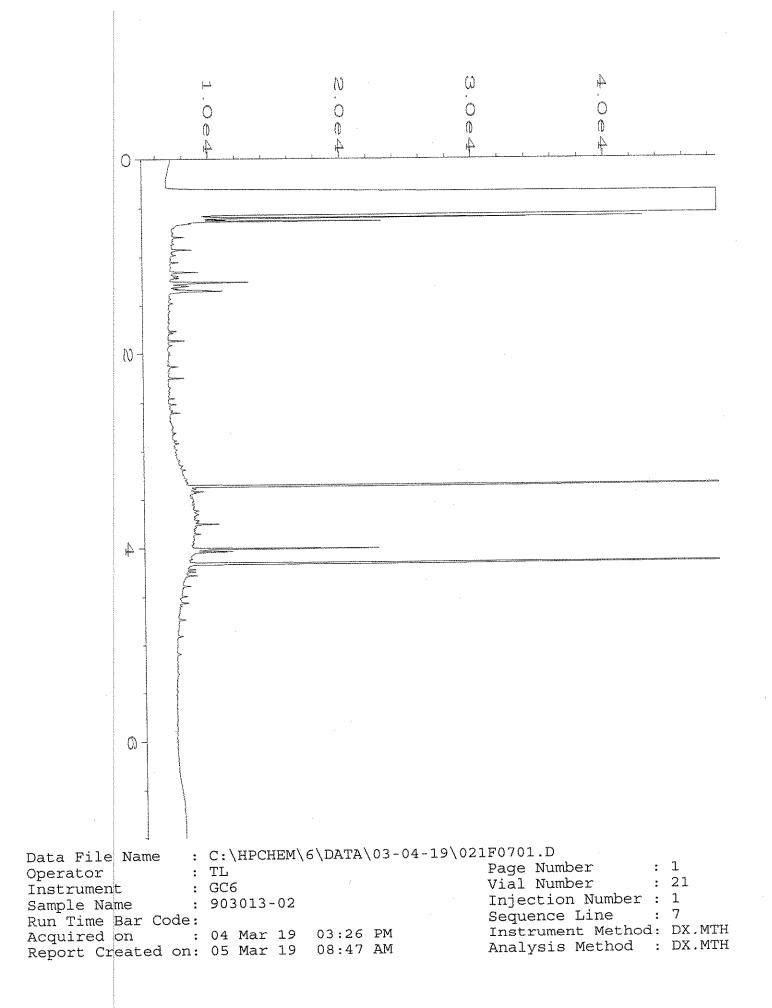
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

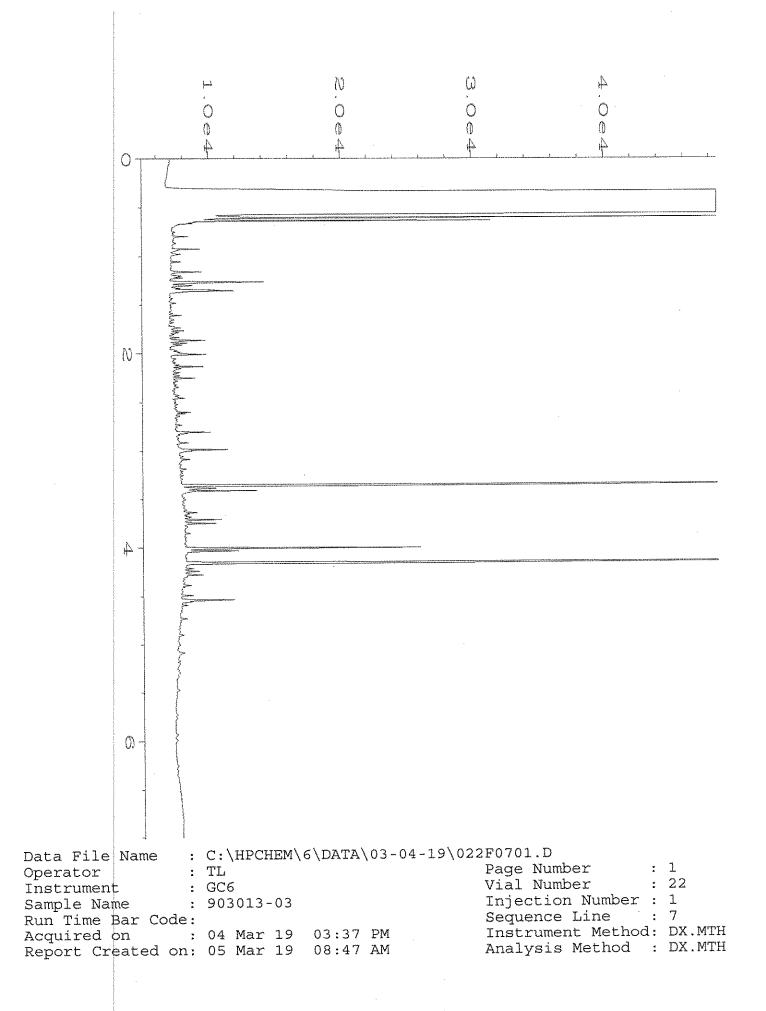
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

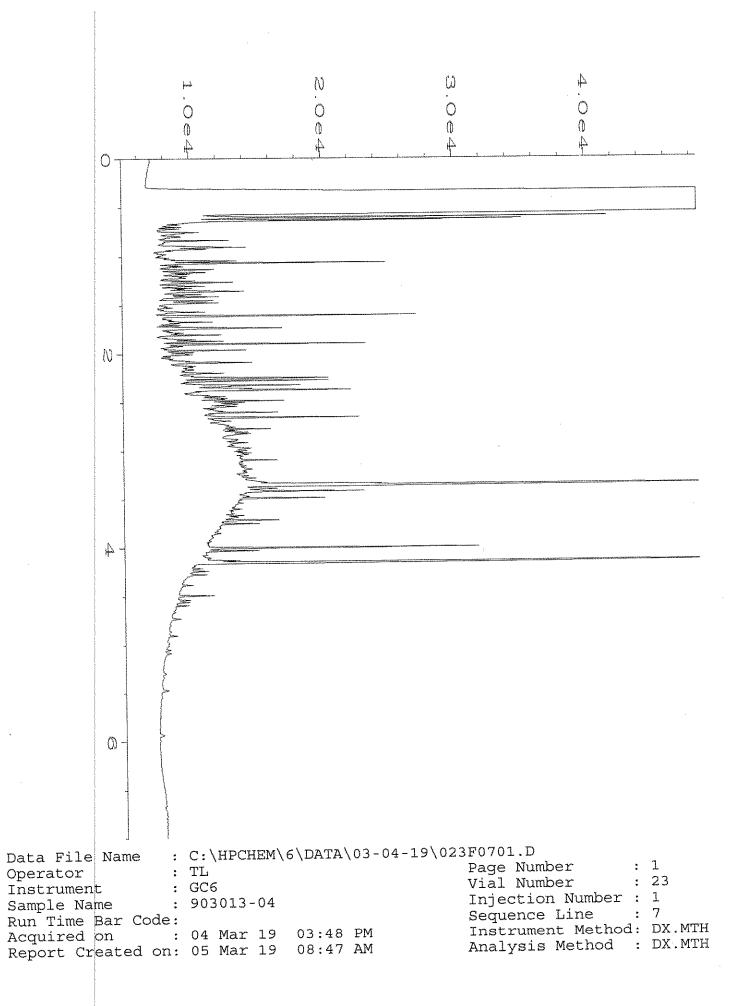
lc - The presence of the analyte is likely due to laboratory contamination.

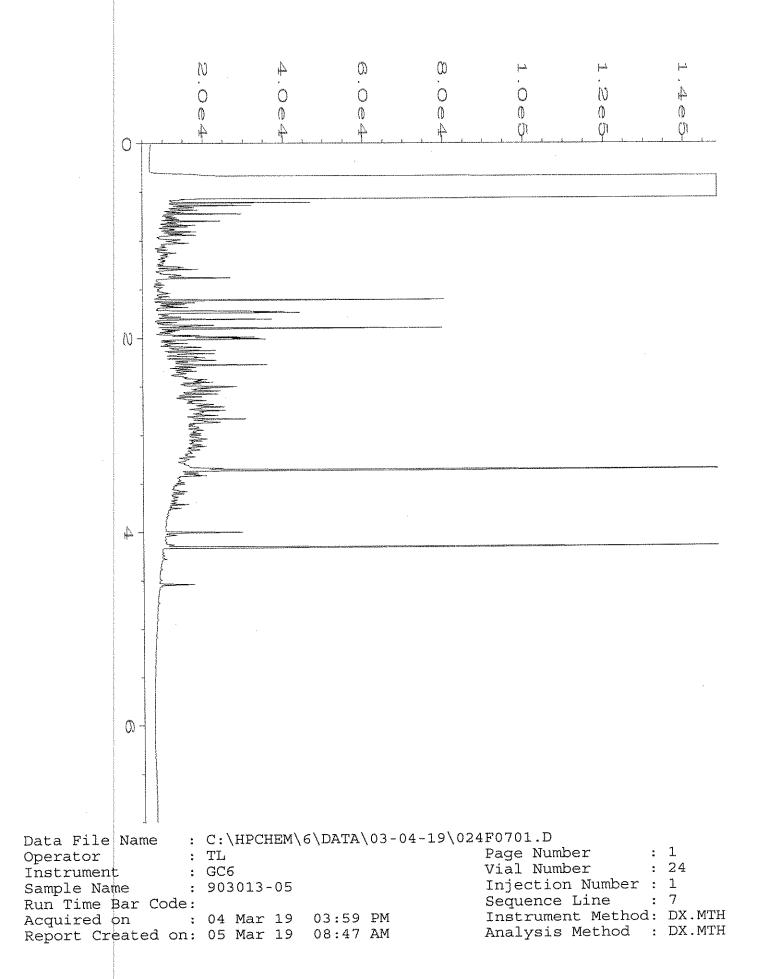
L - The reported concentration was generated from a library search.

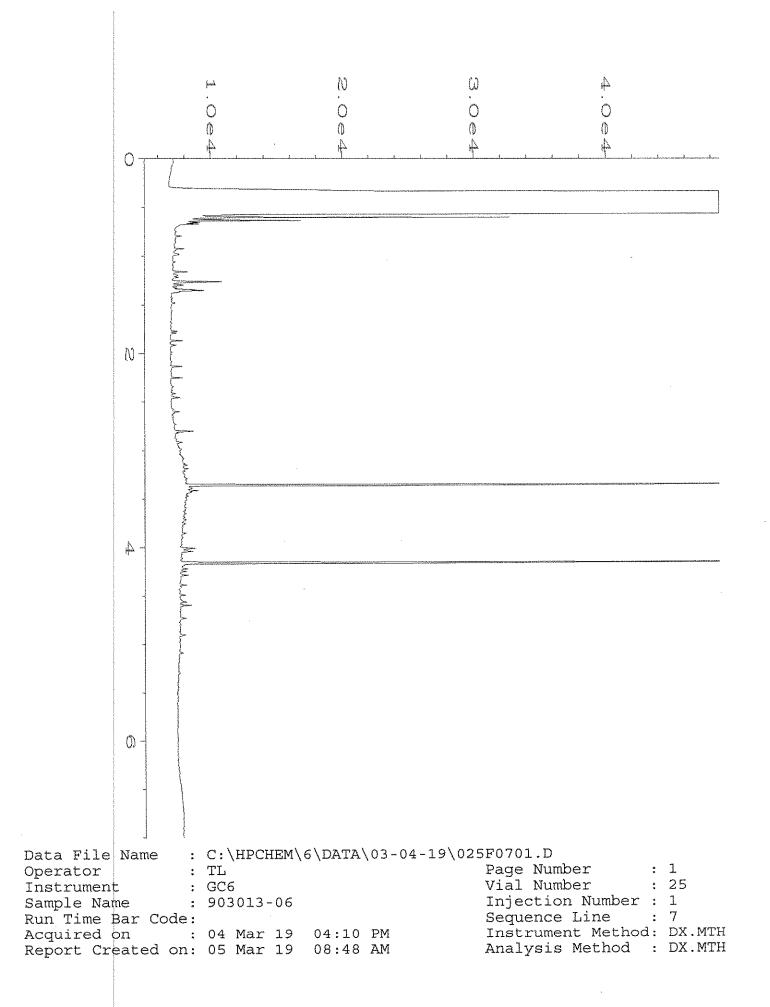

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

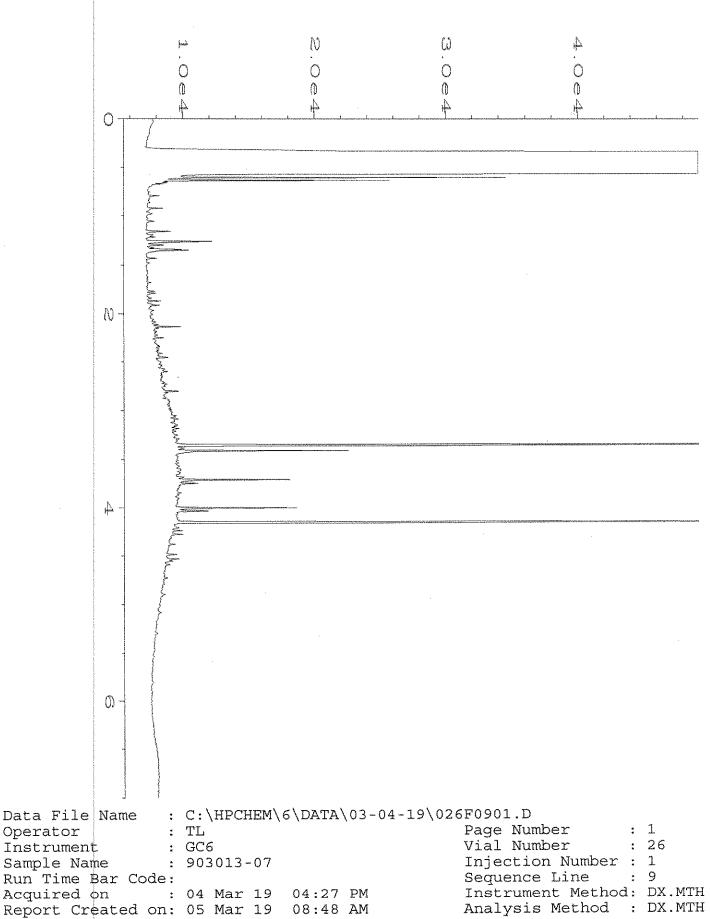

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

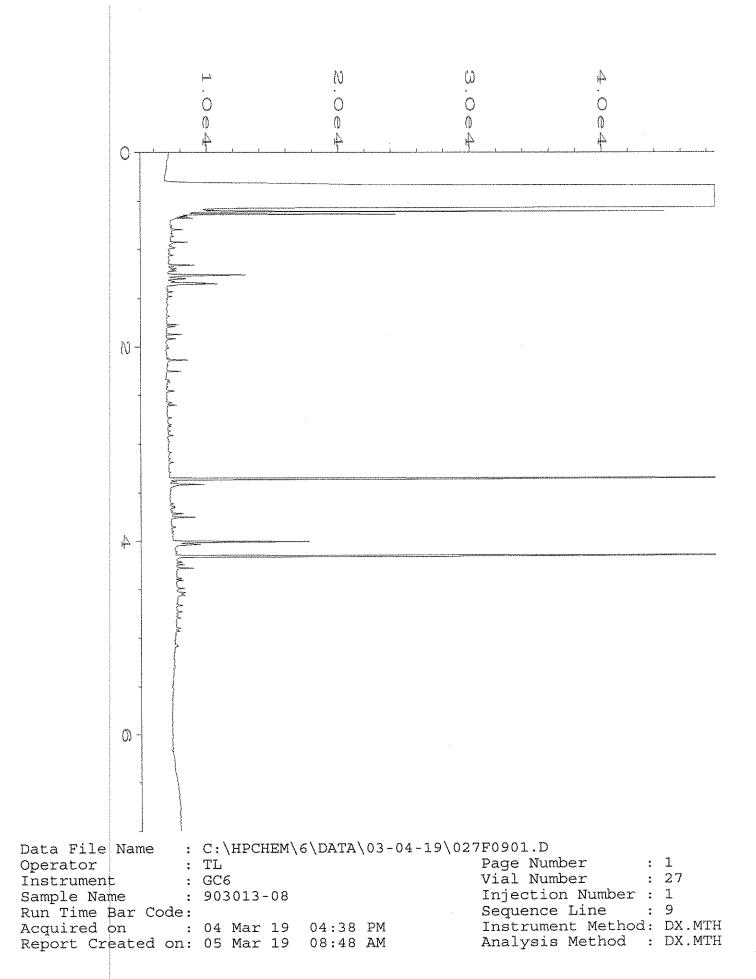

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

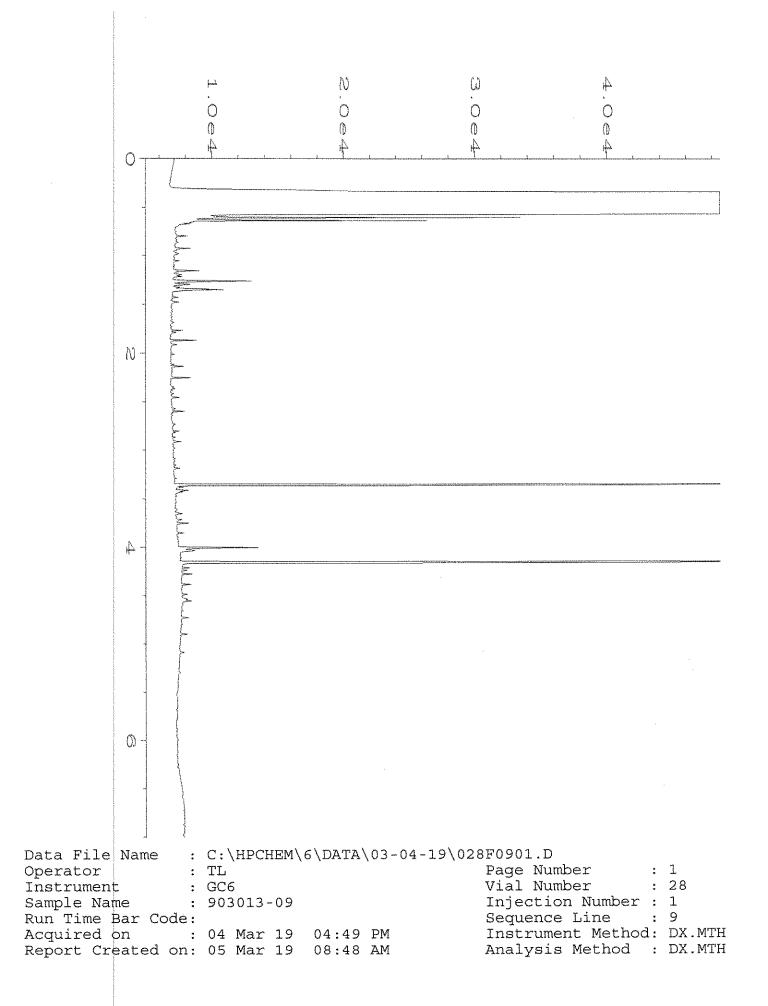

vo - The value reported fell outside the control limits established for this analyte.

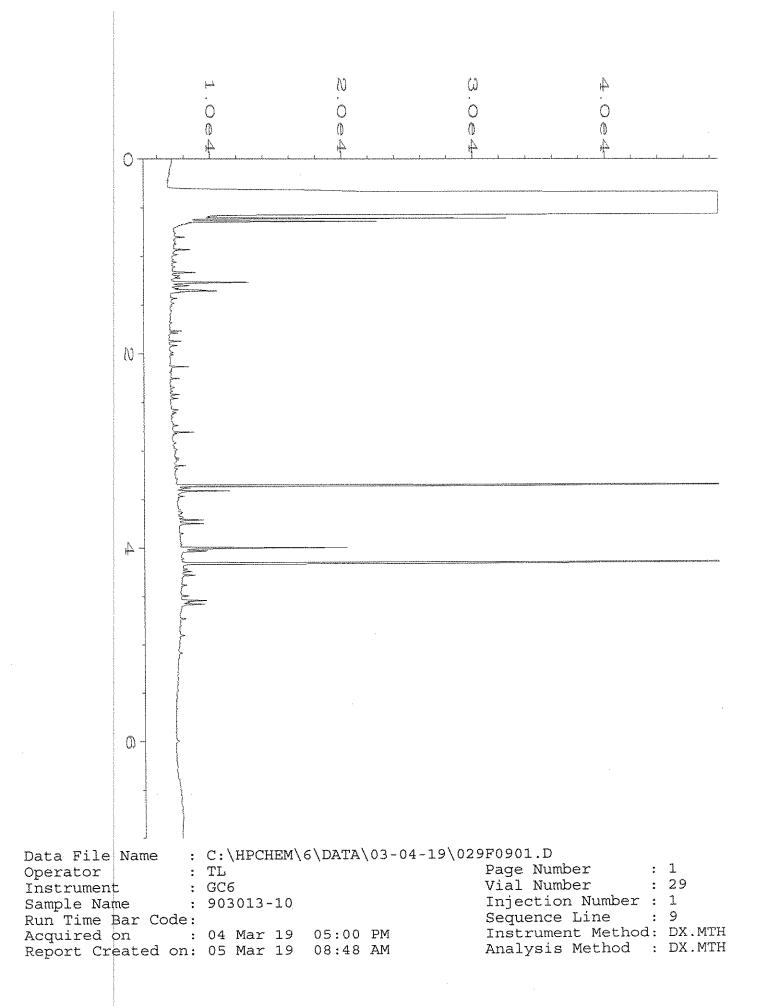

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

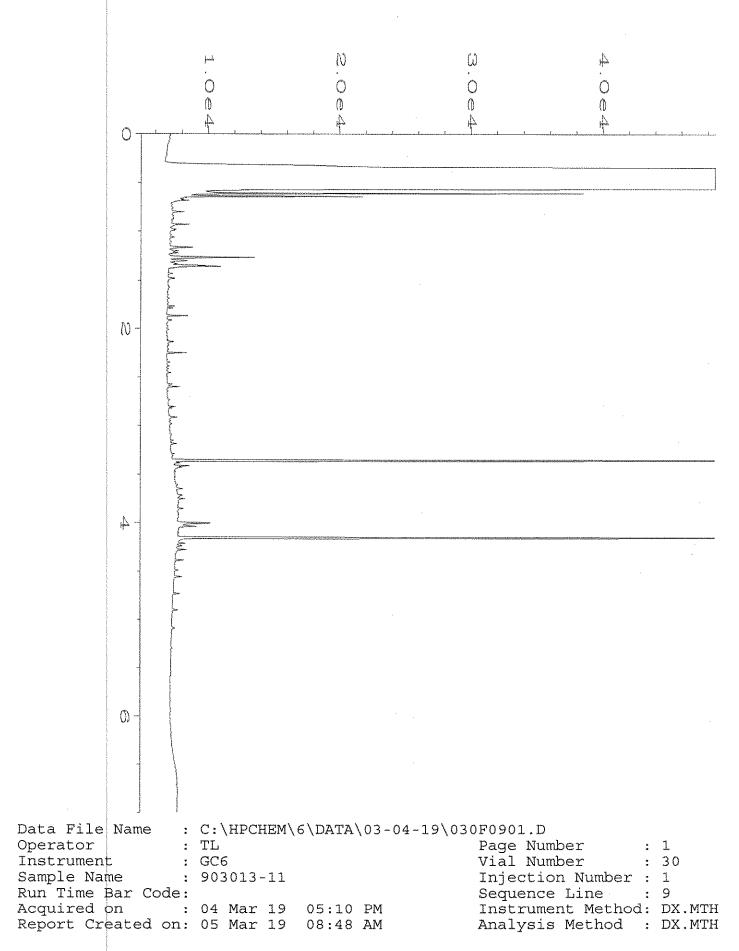


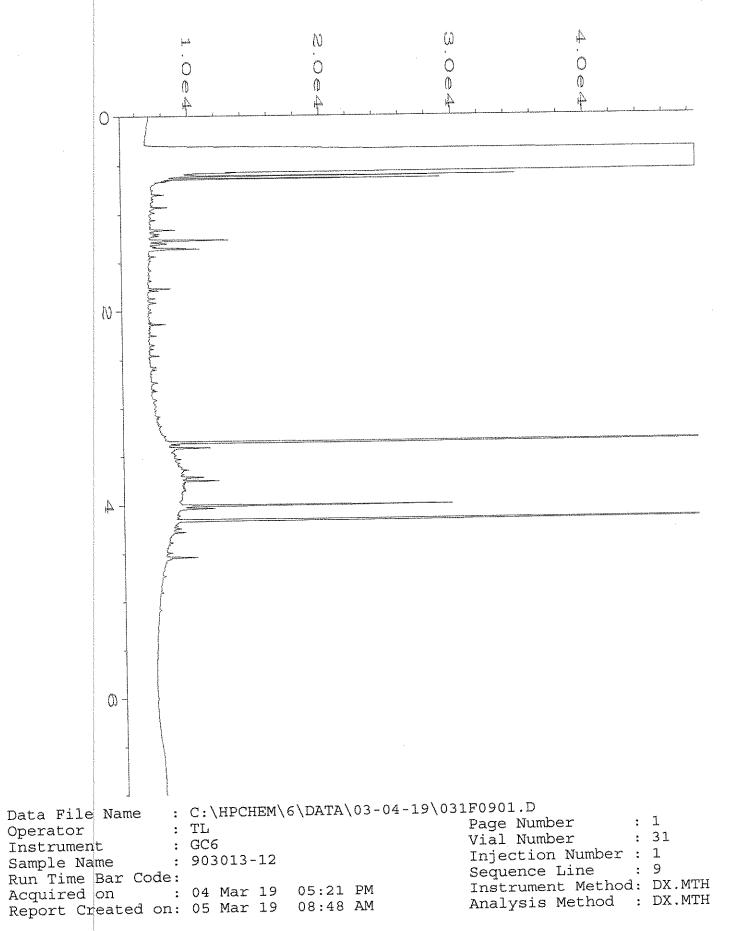


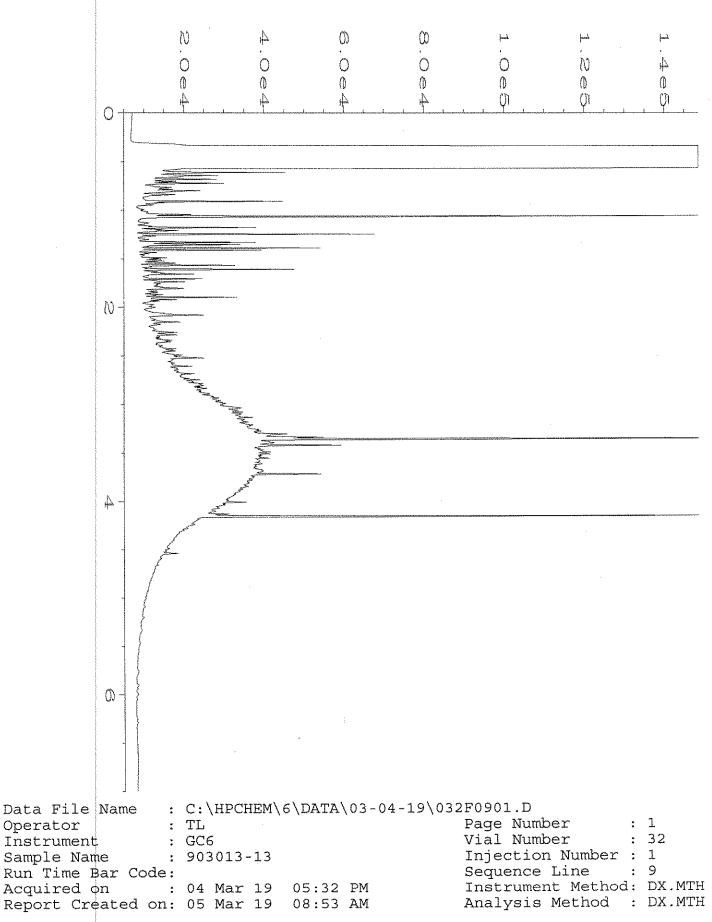


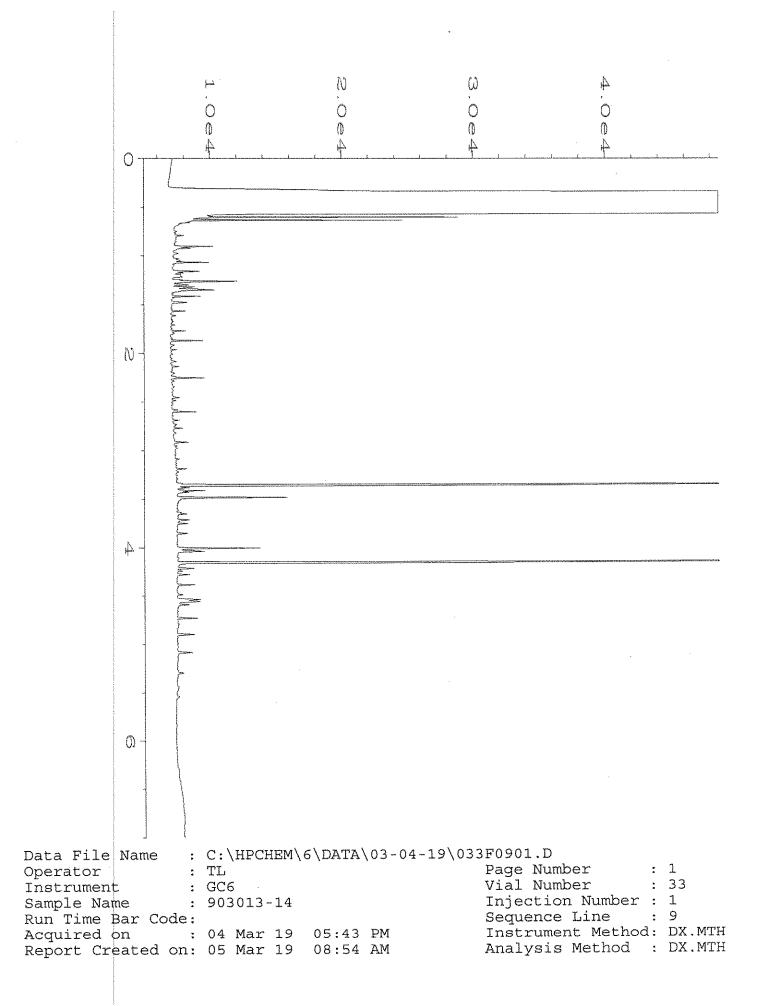


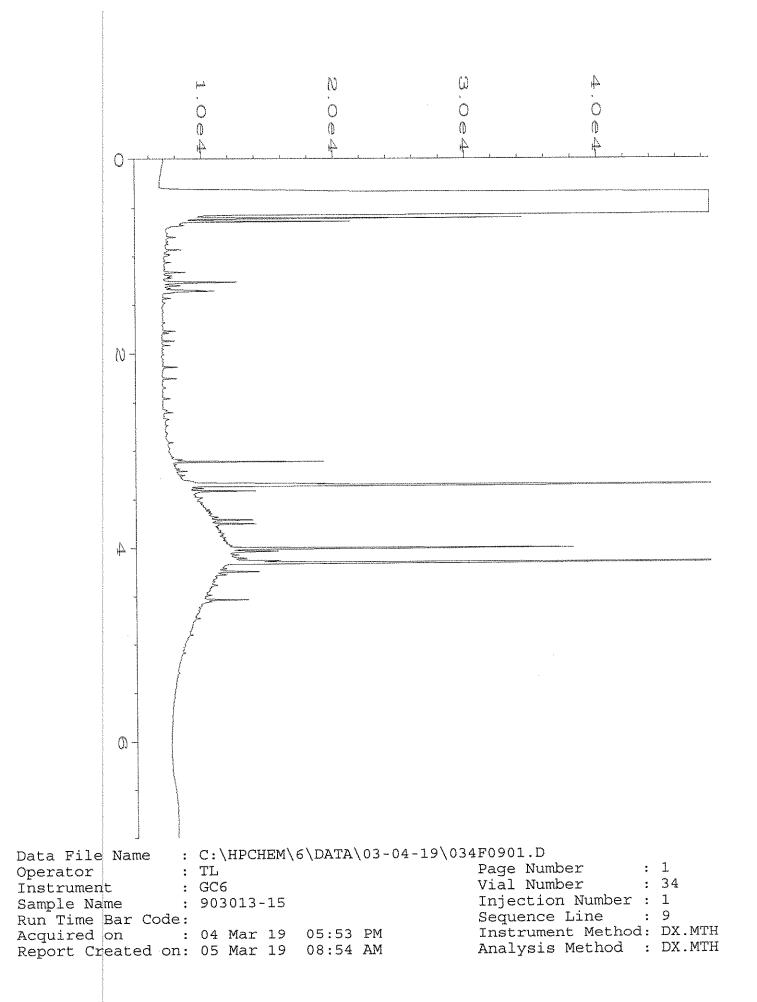


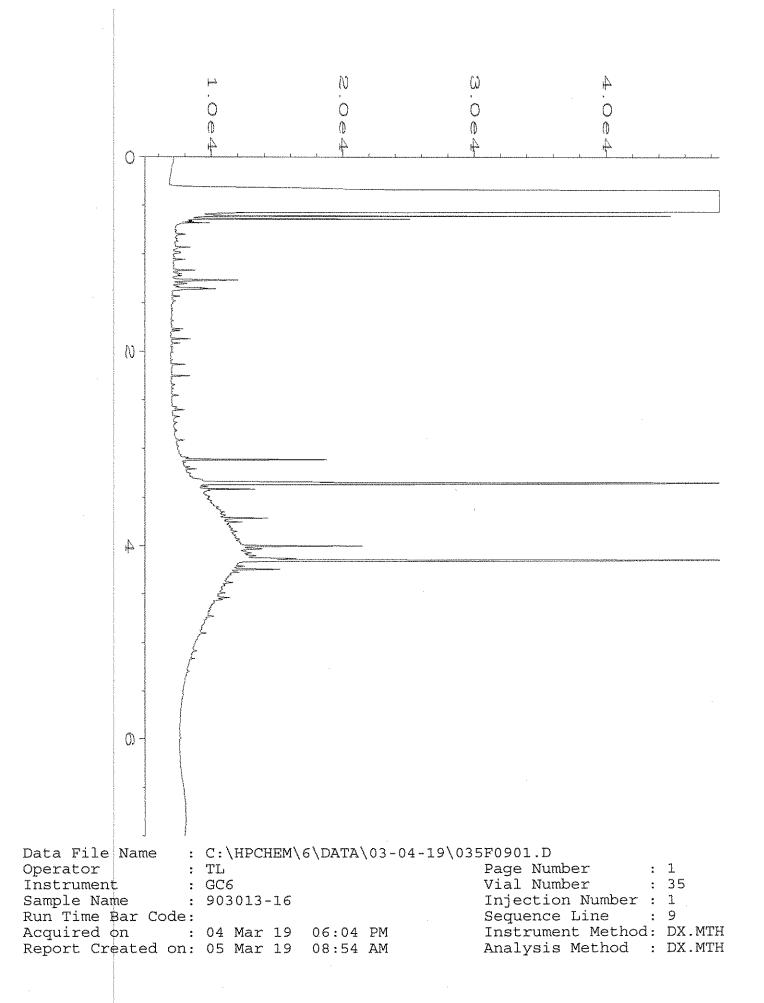


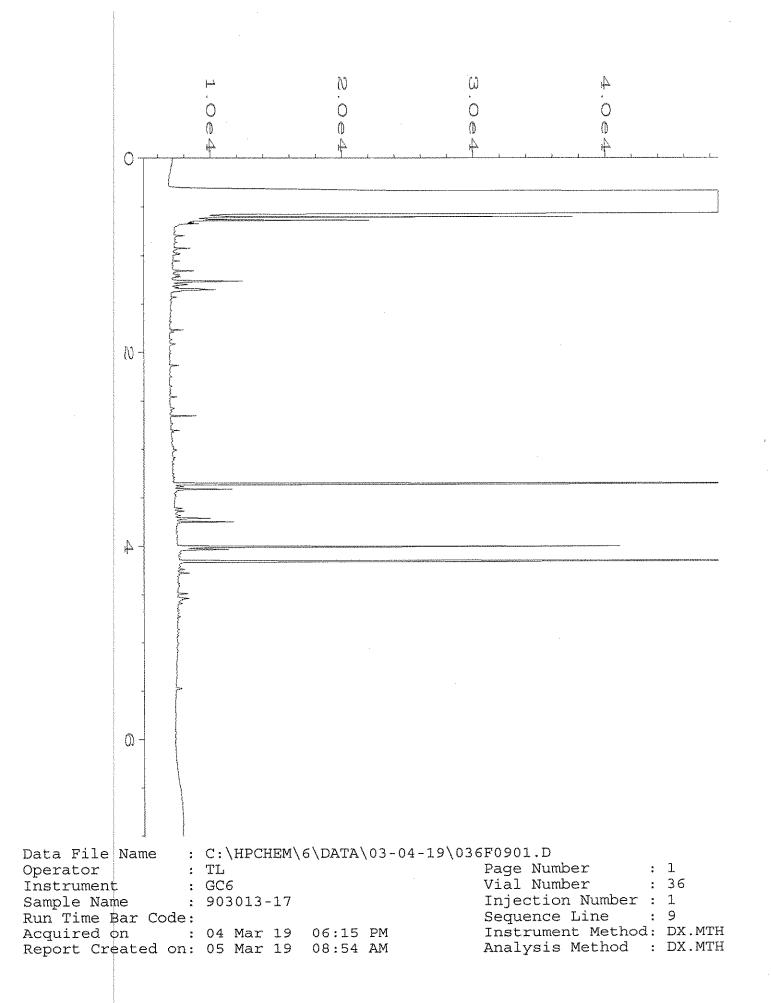


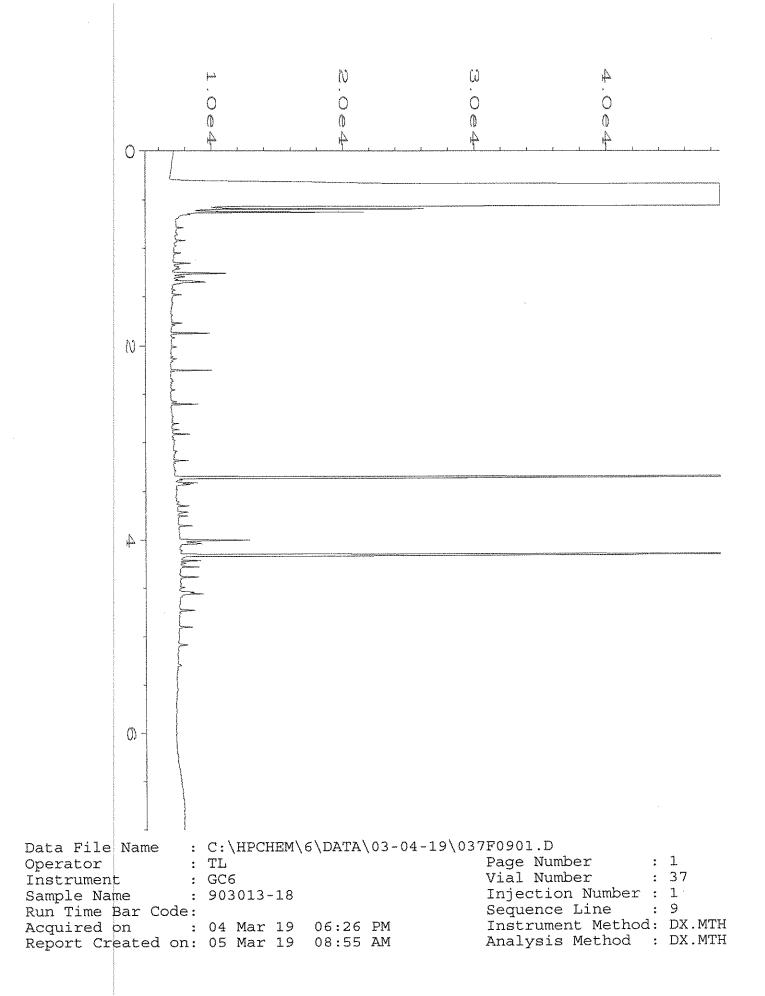


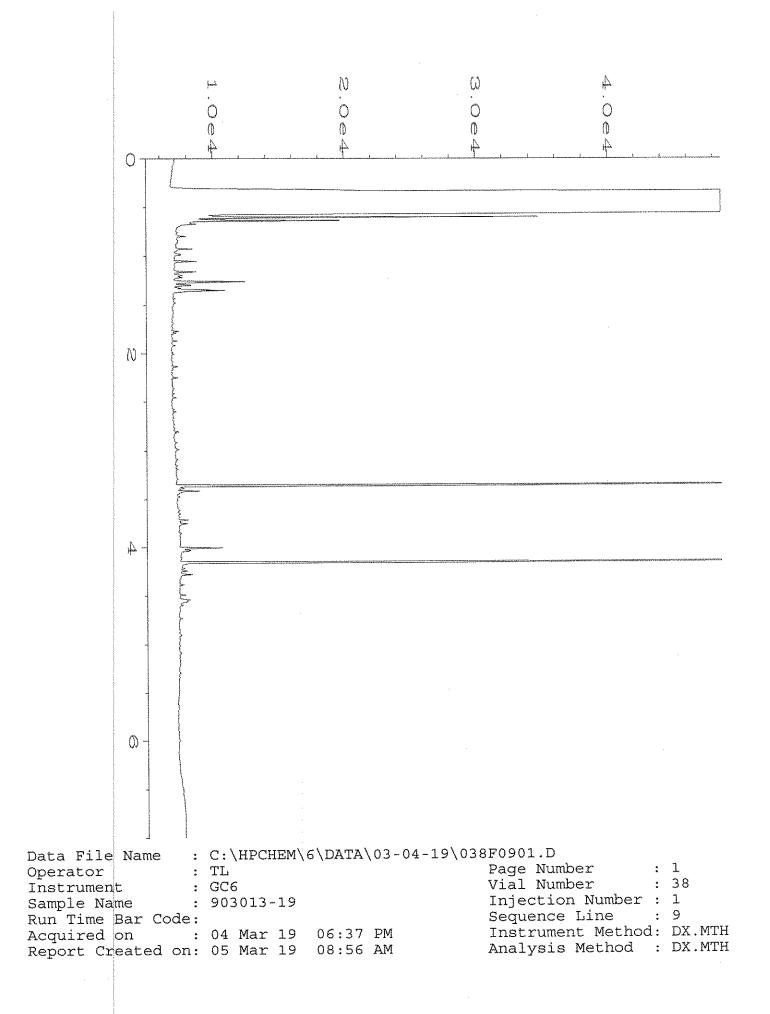


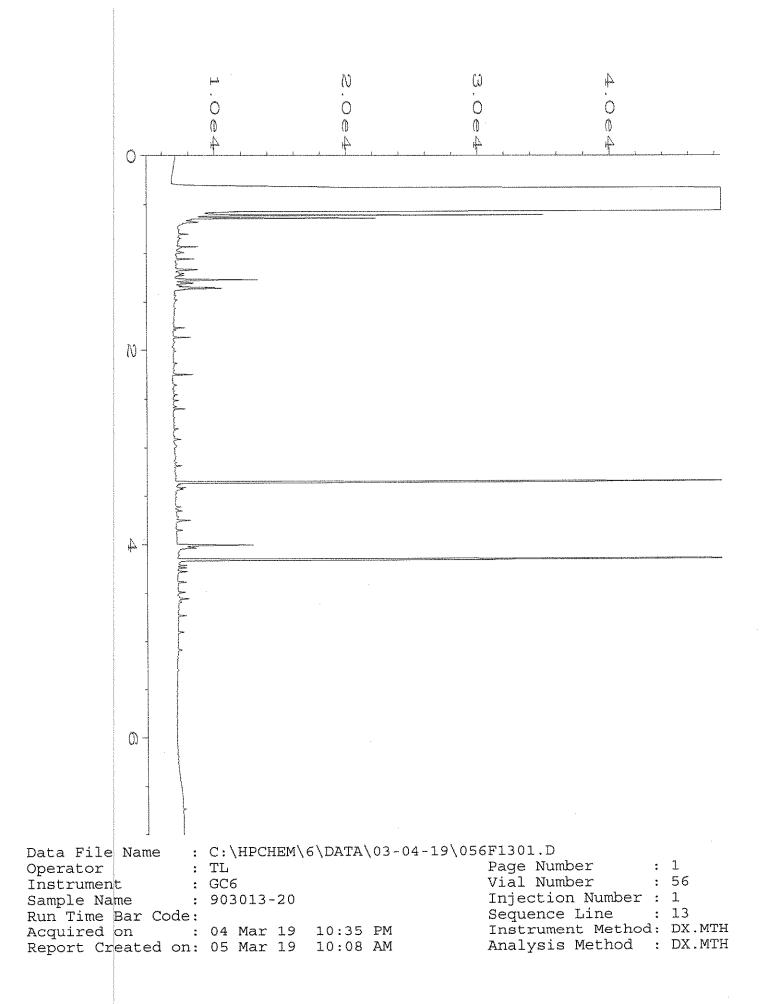


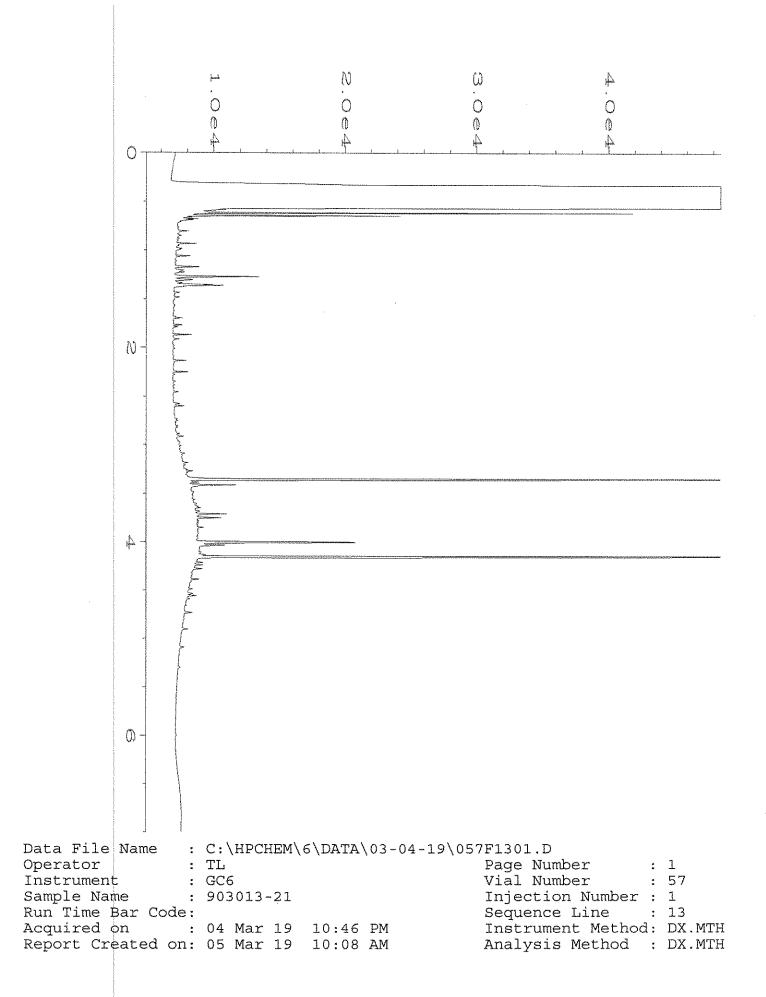

.

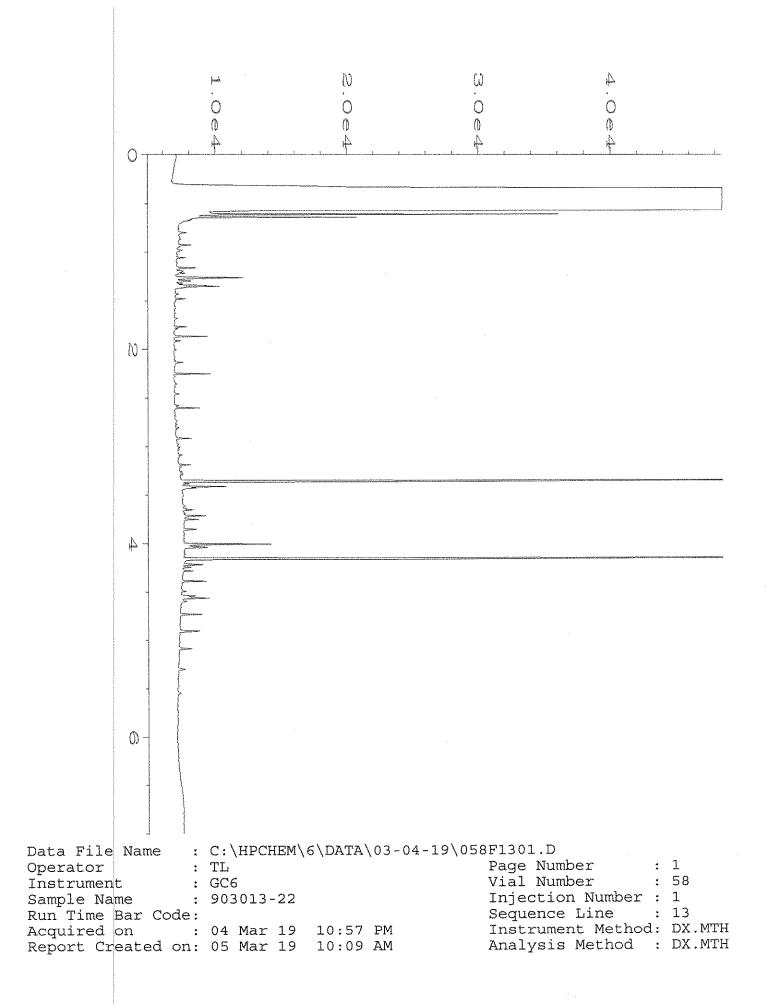


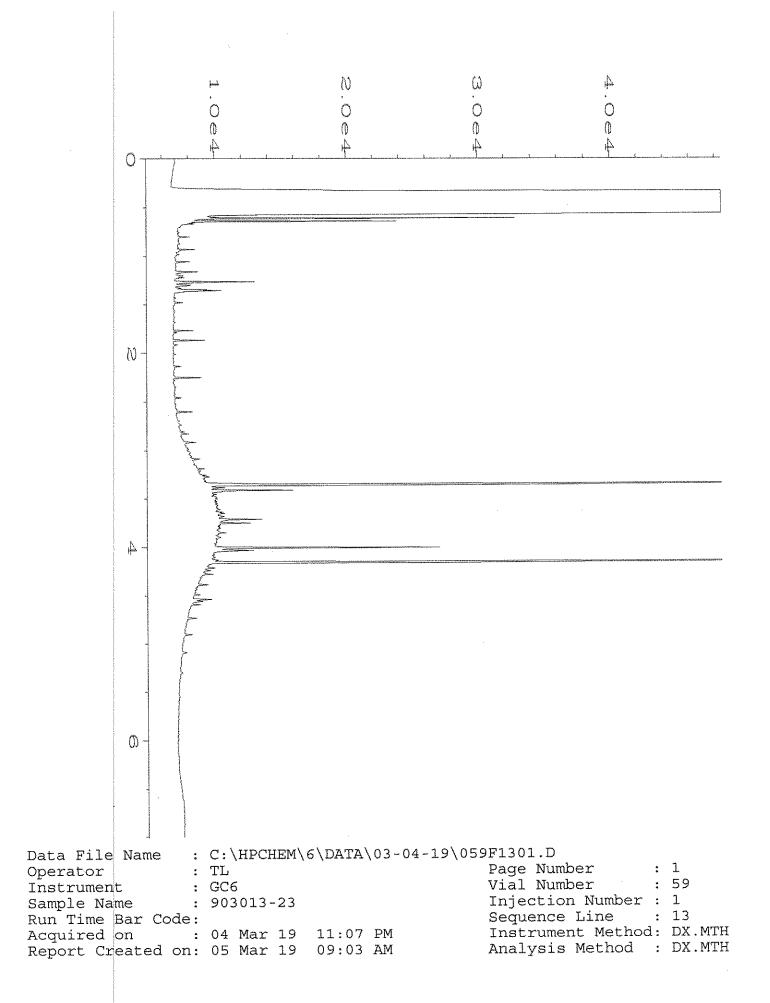


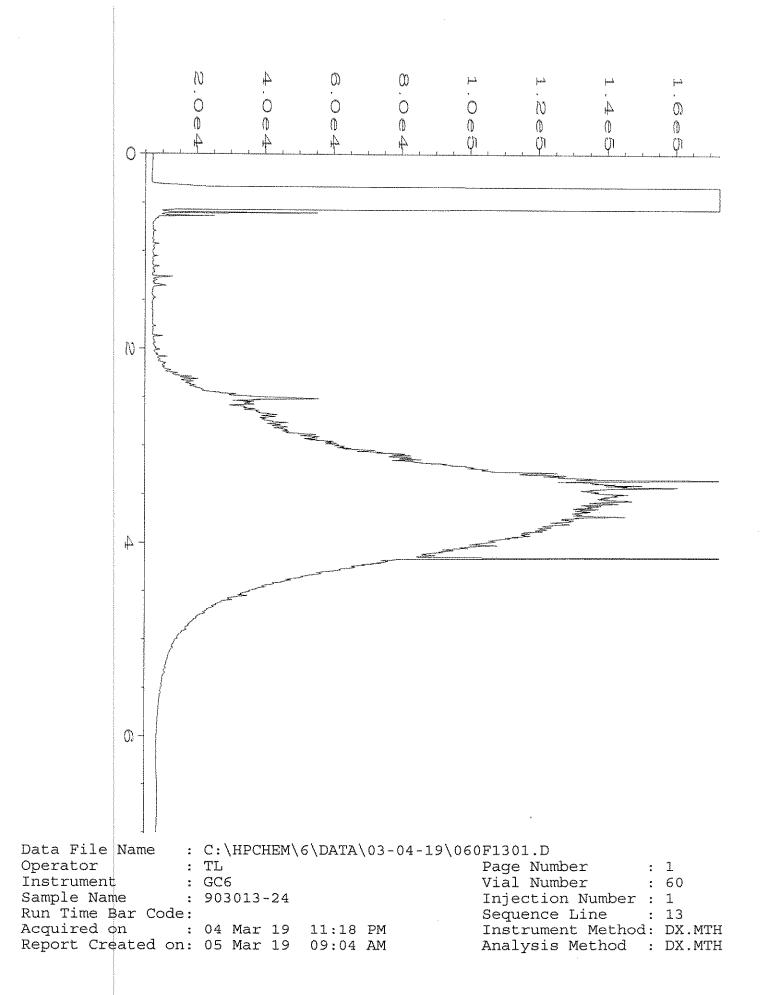


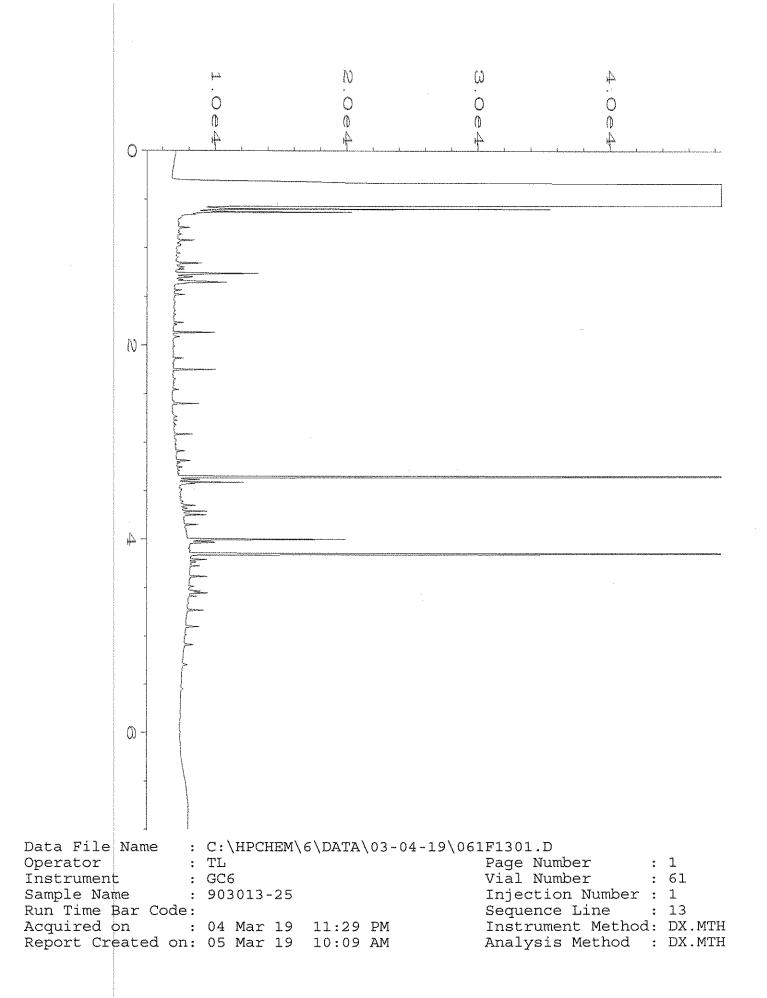


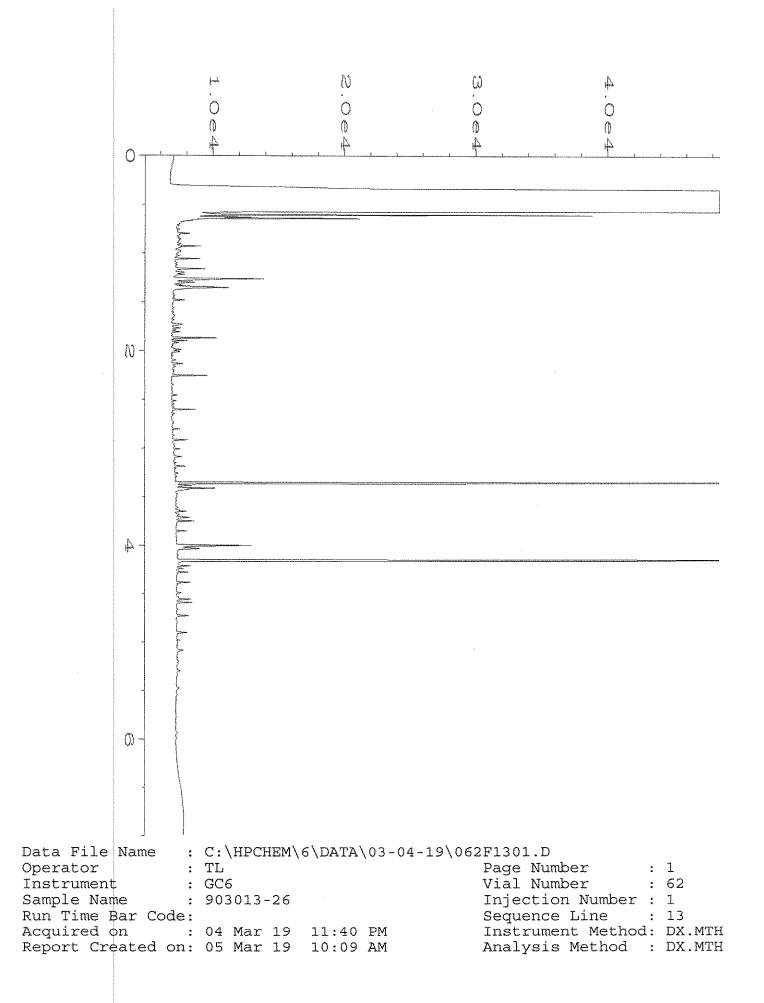


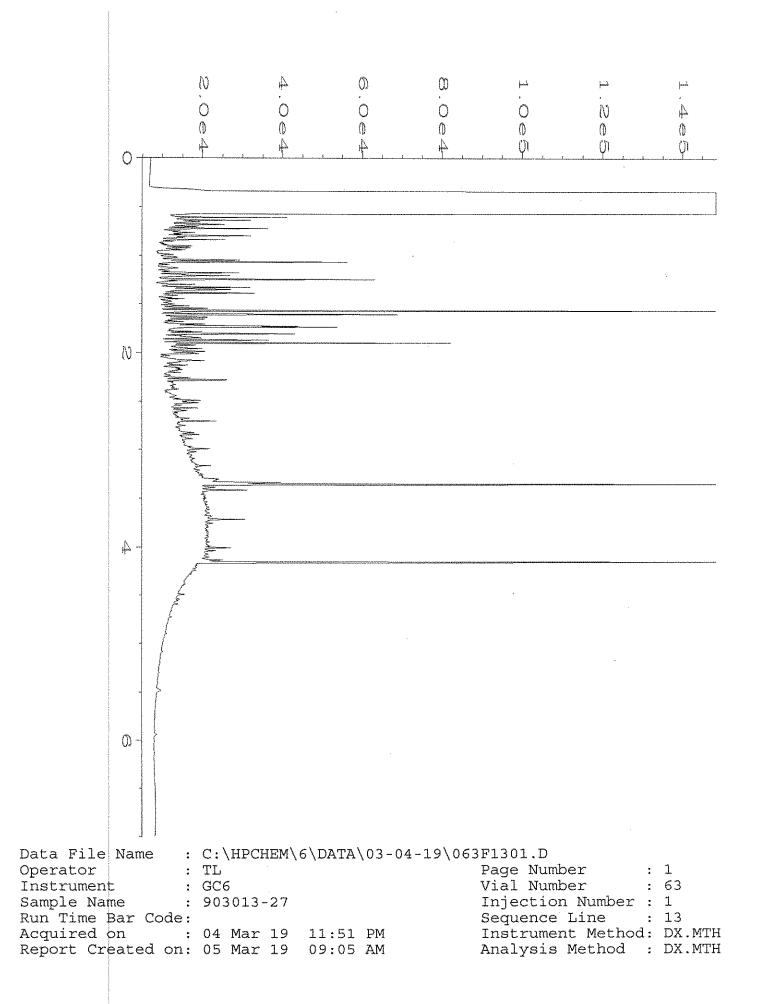


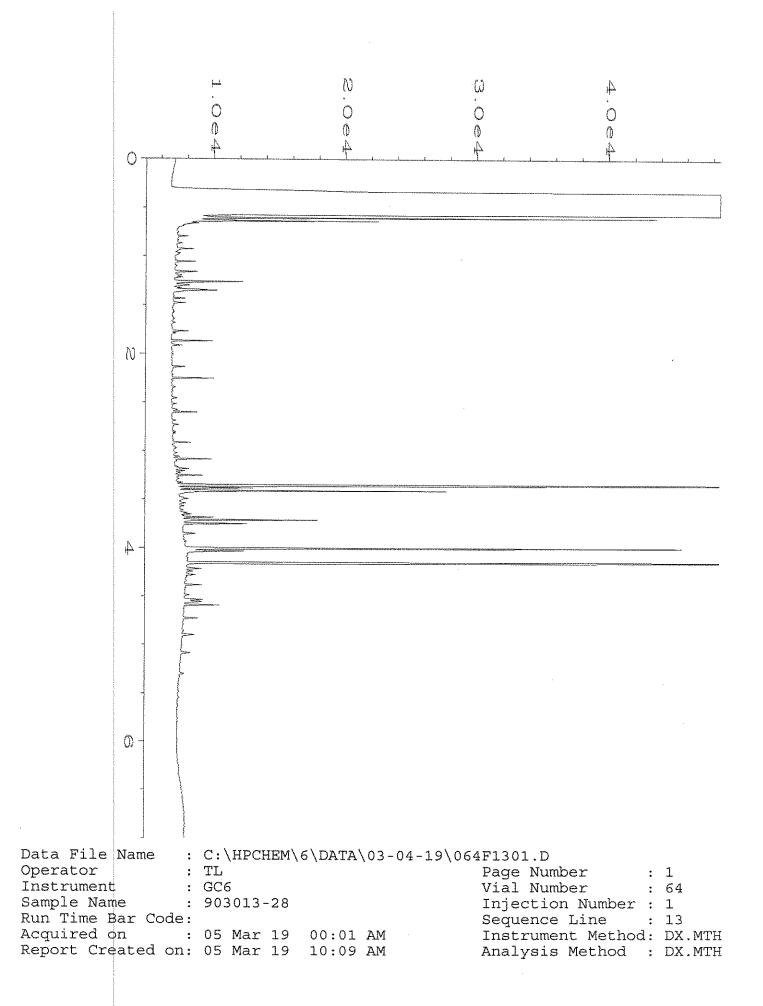


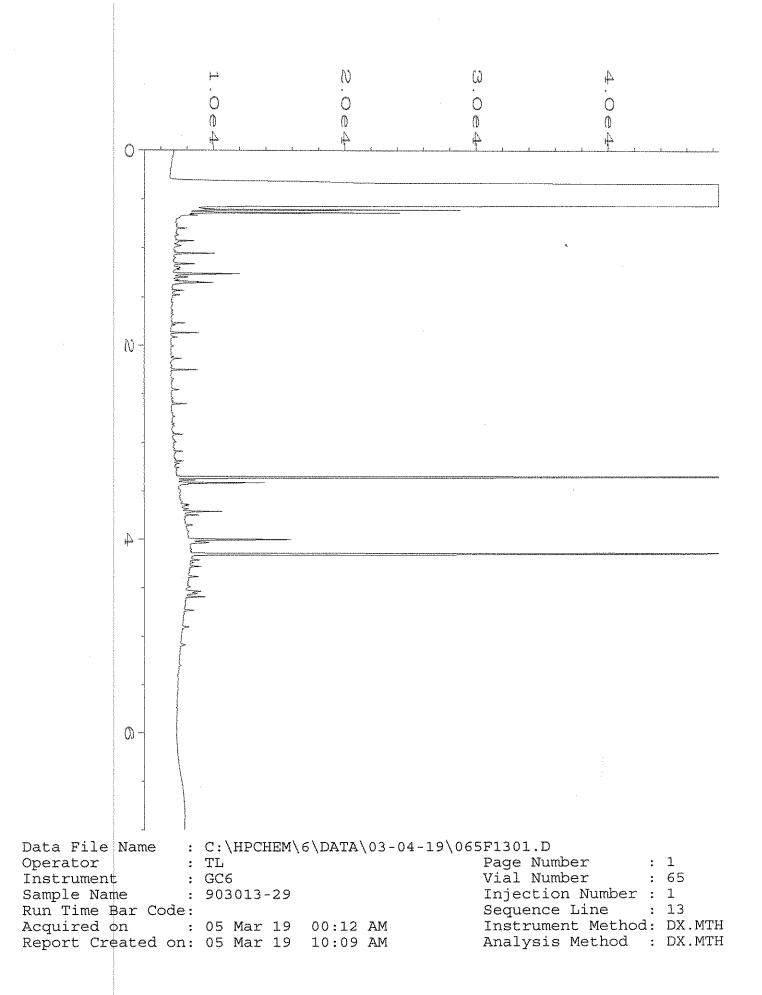


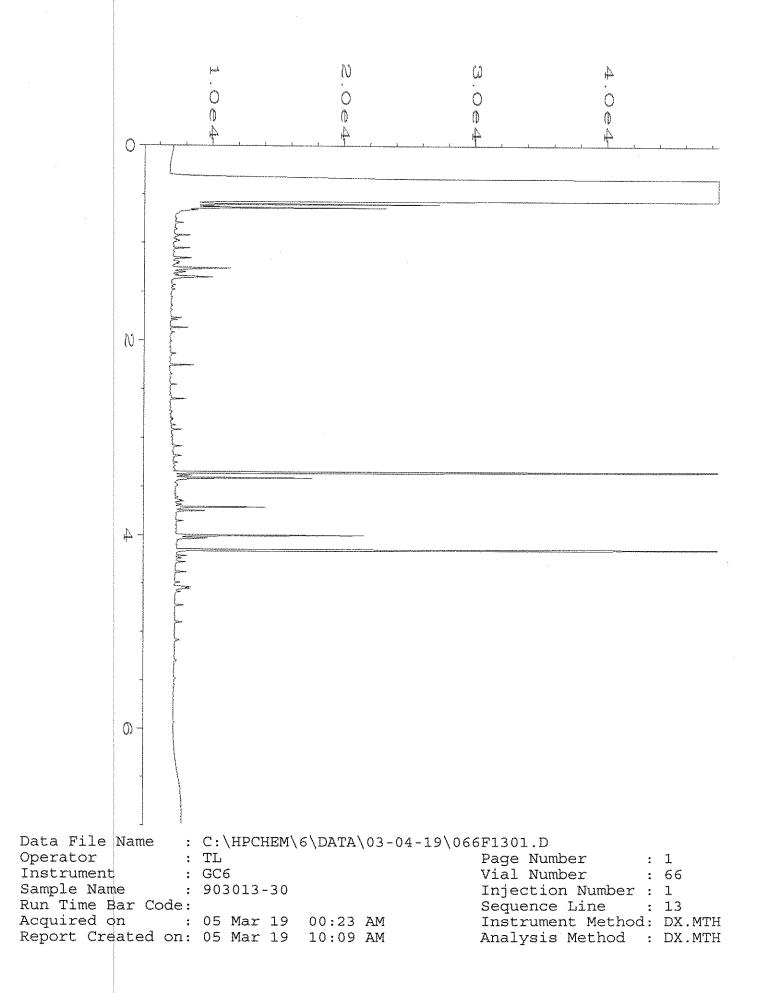


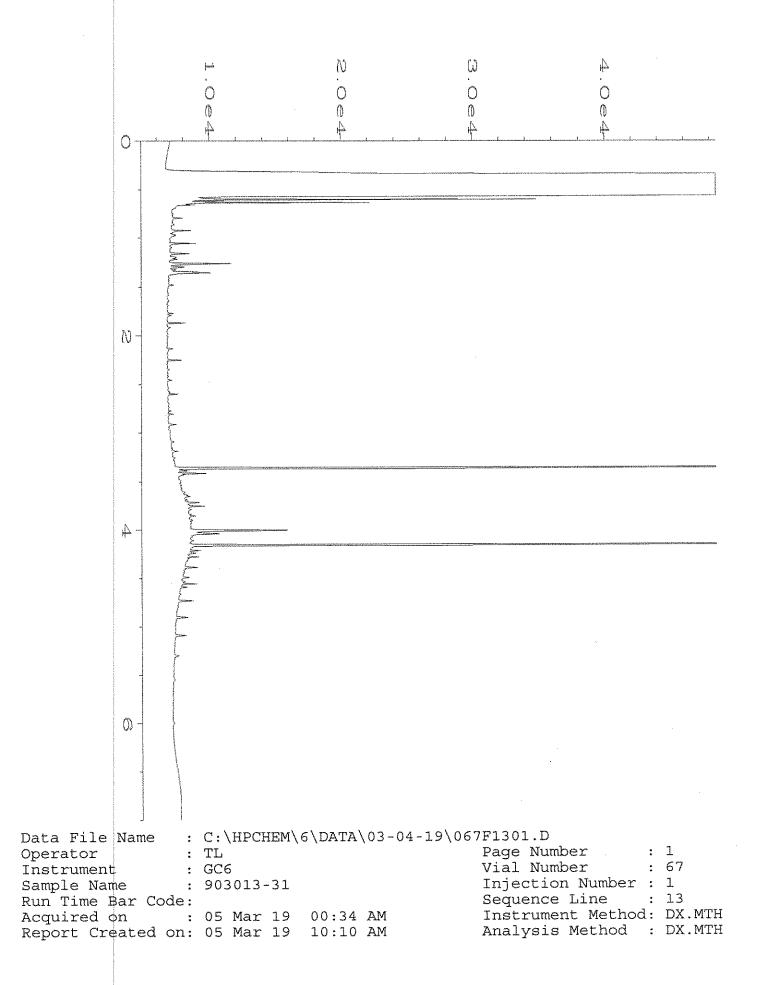


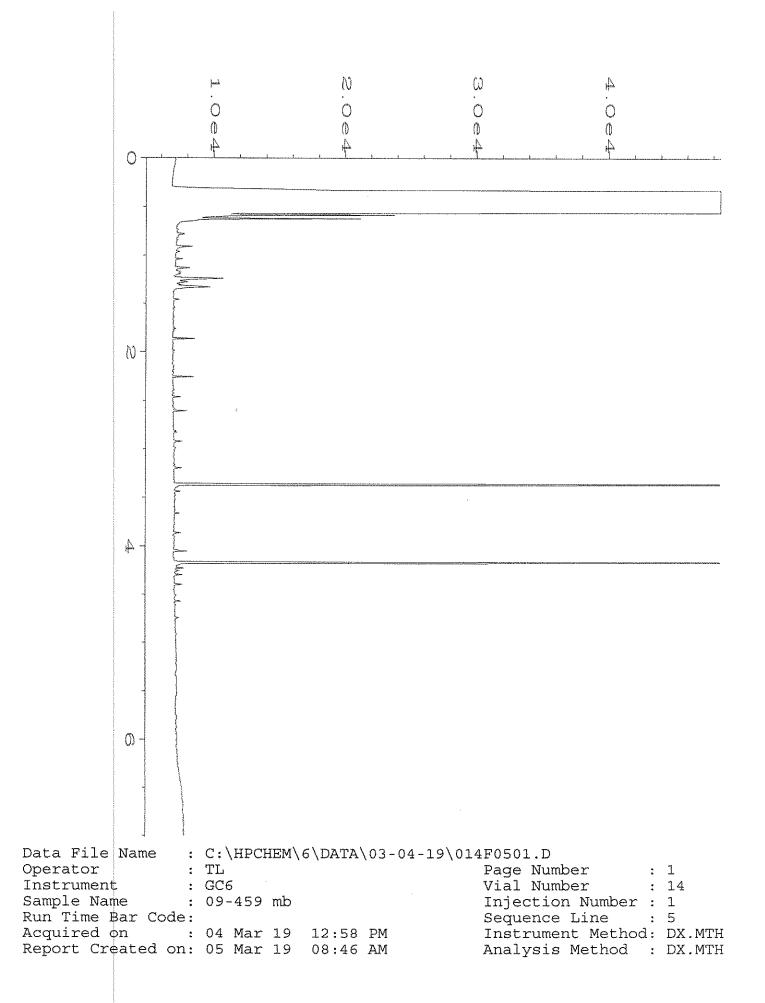


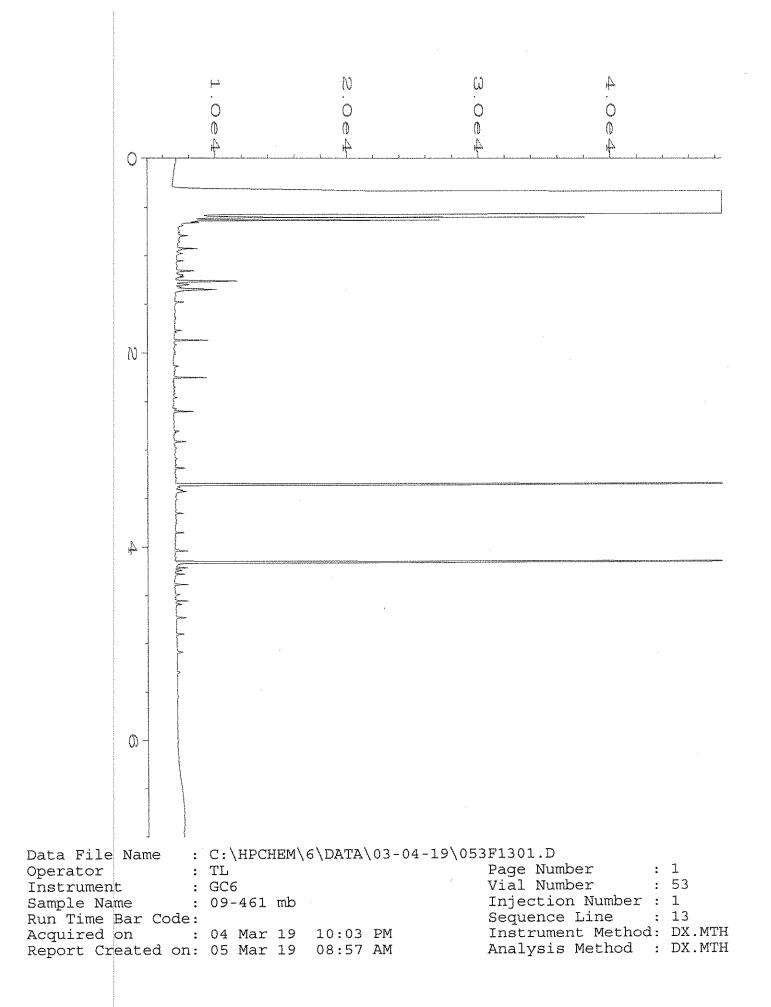


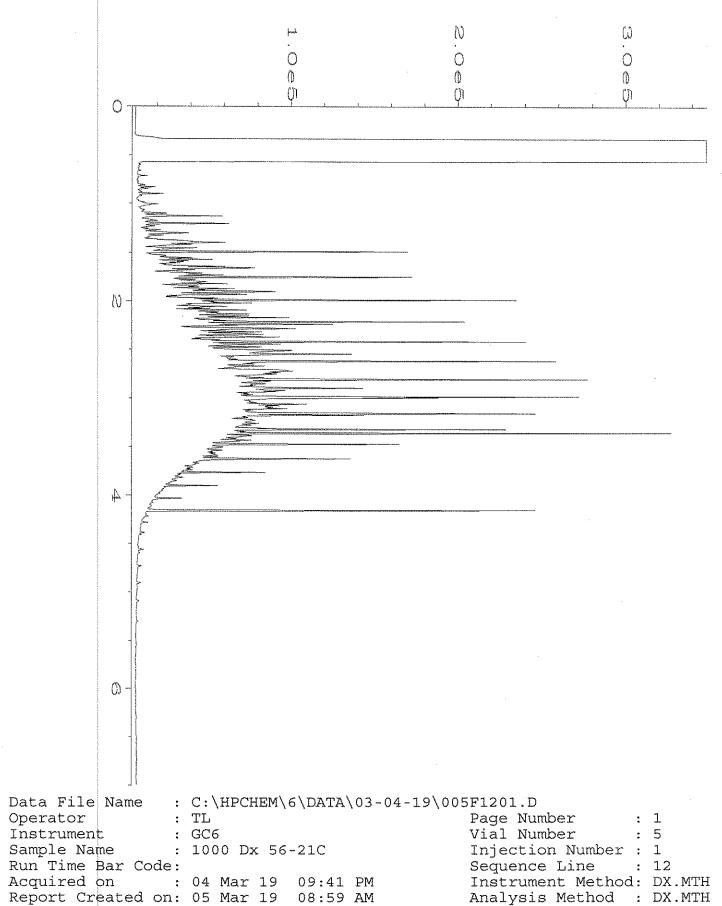


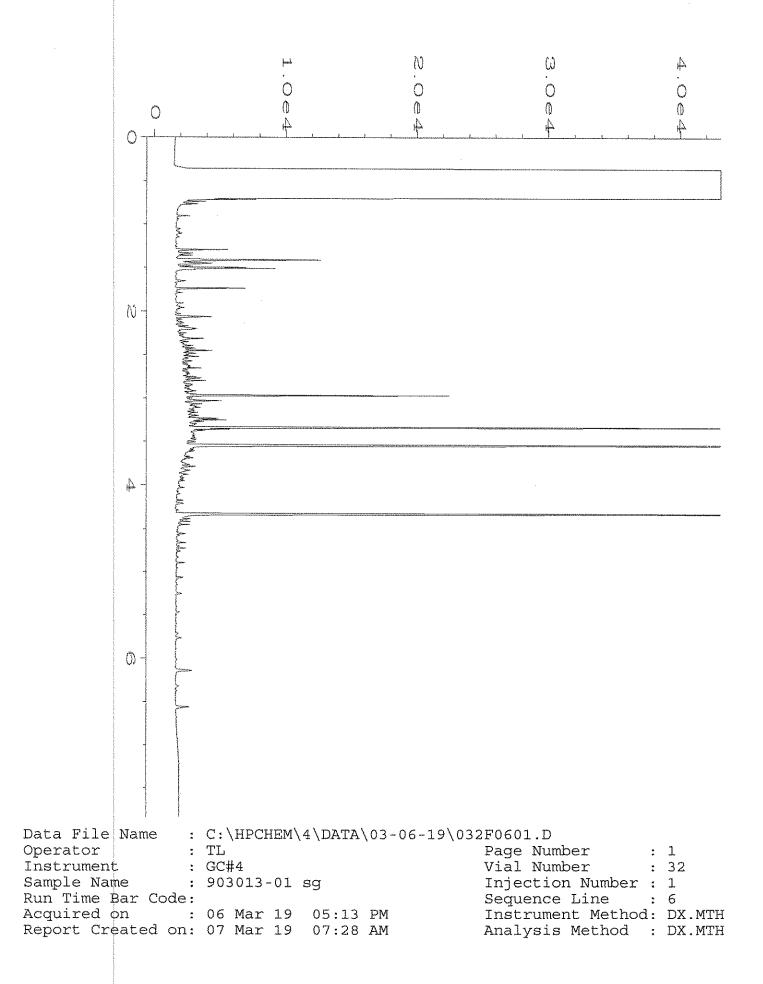


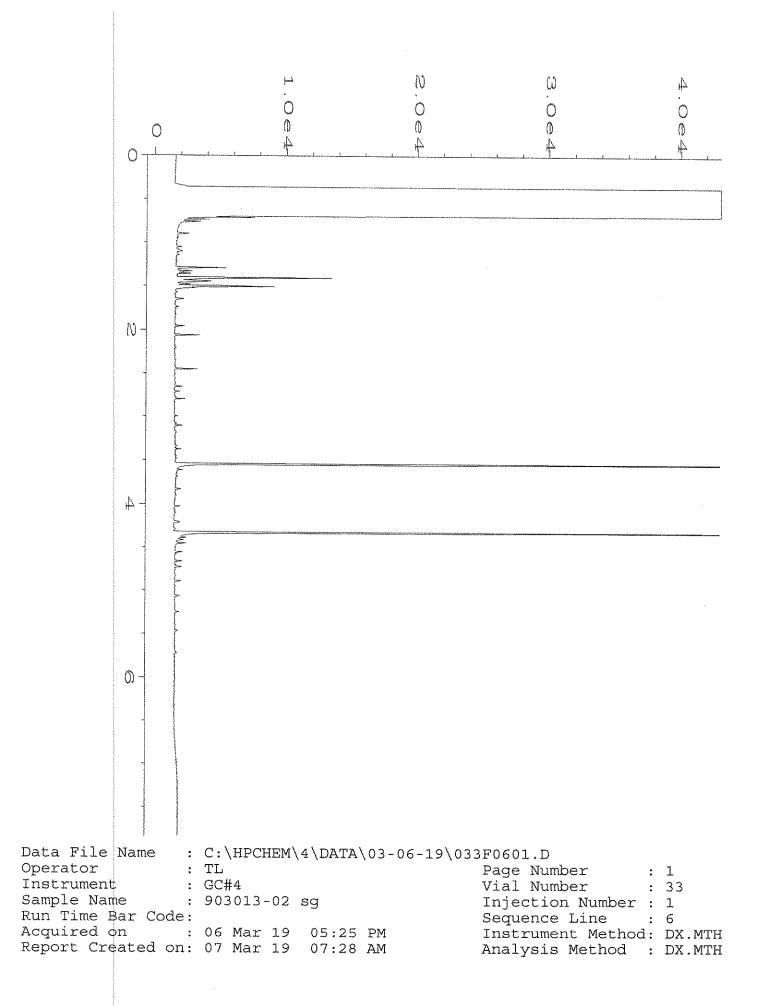


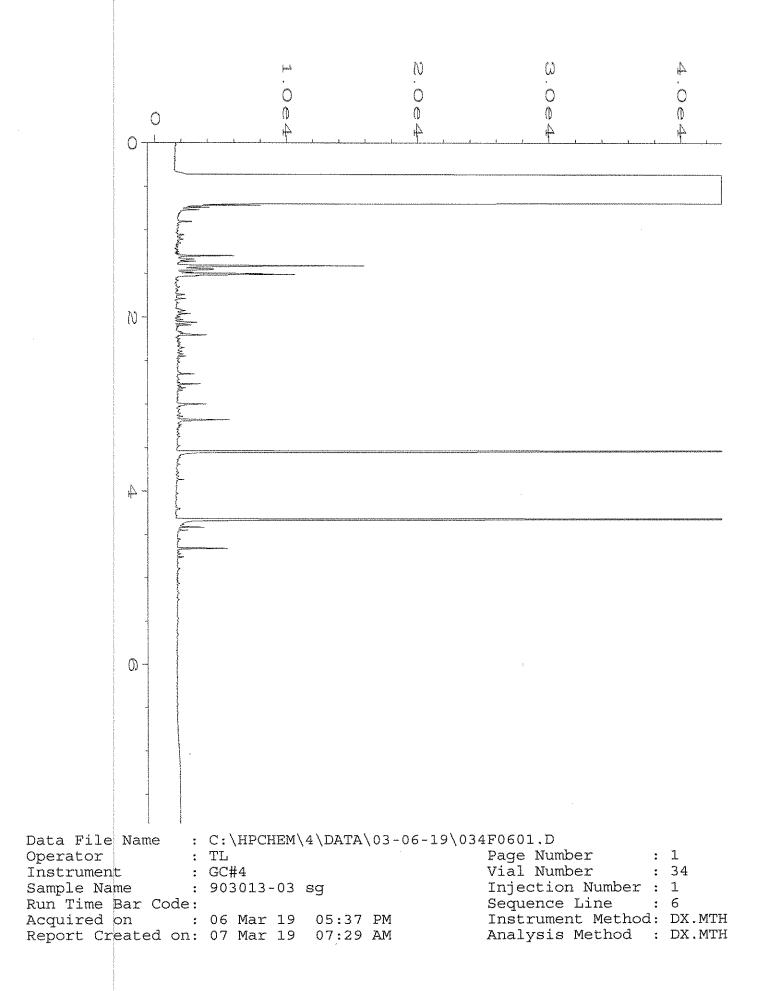


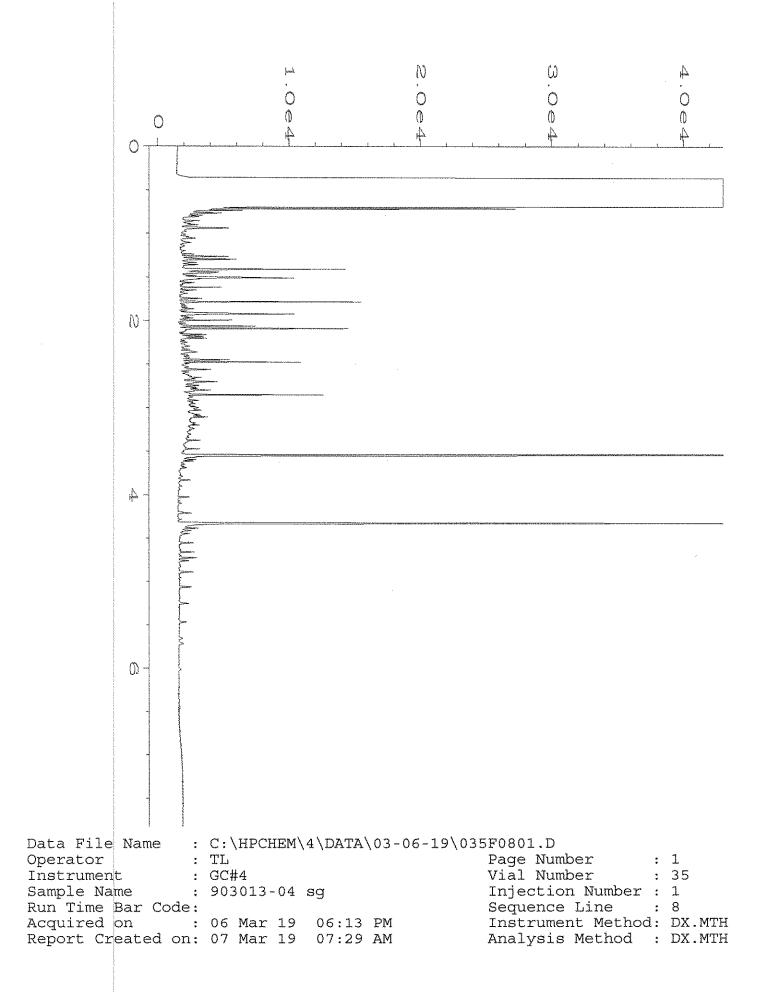


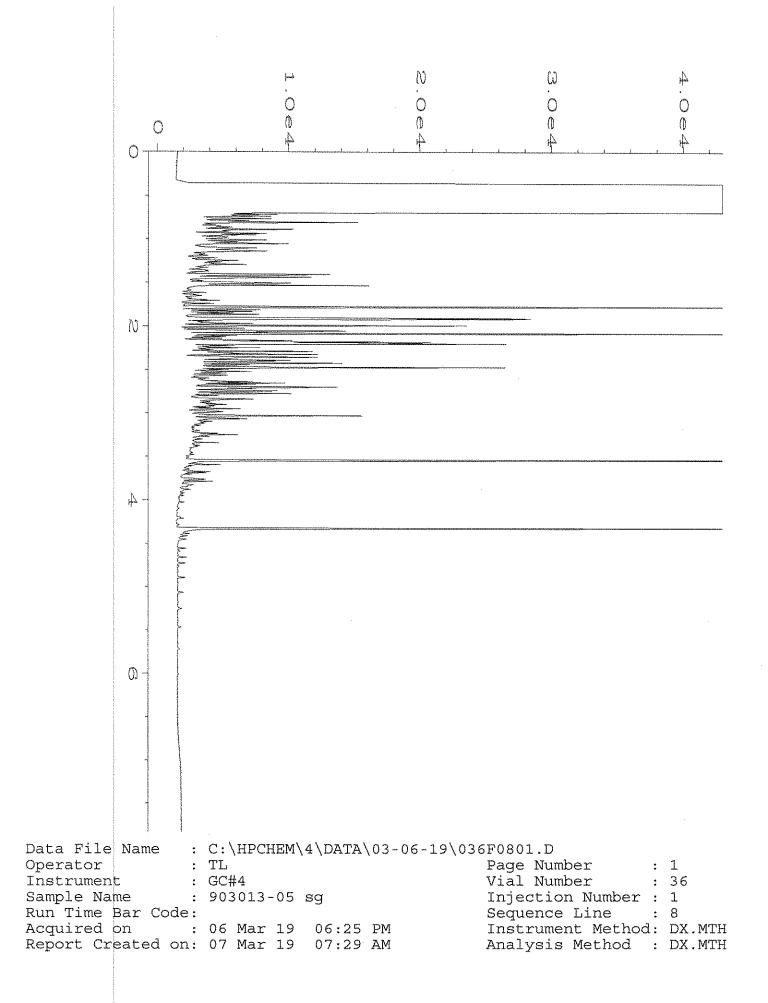


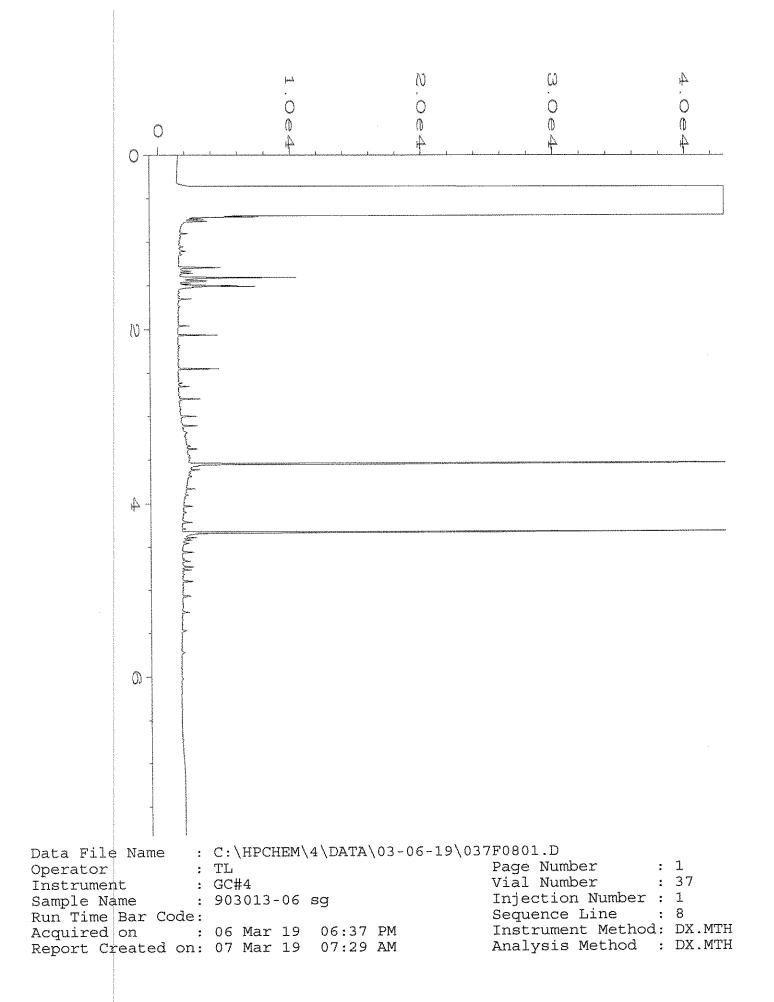


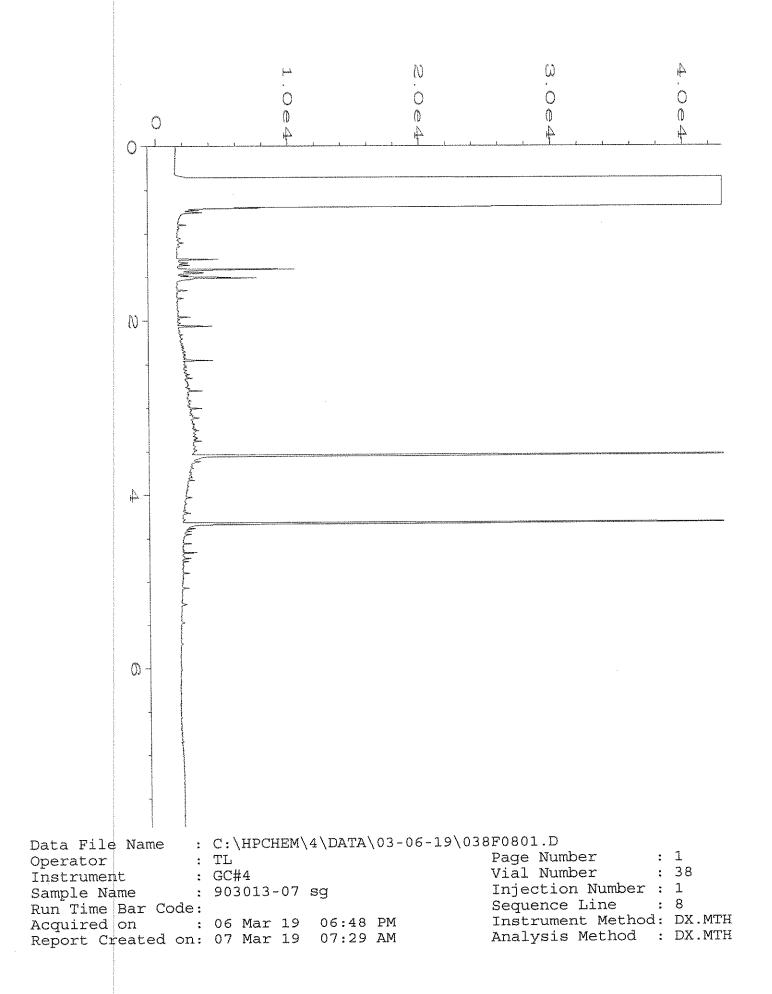


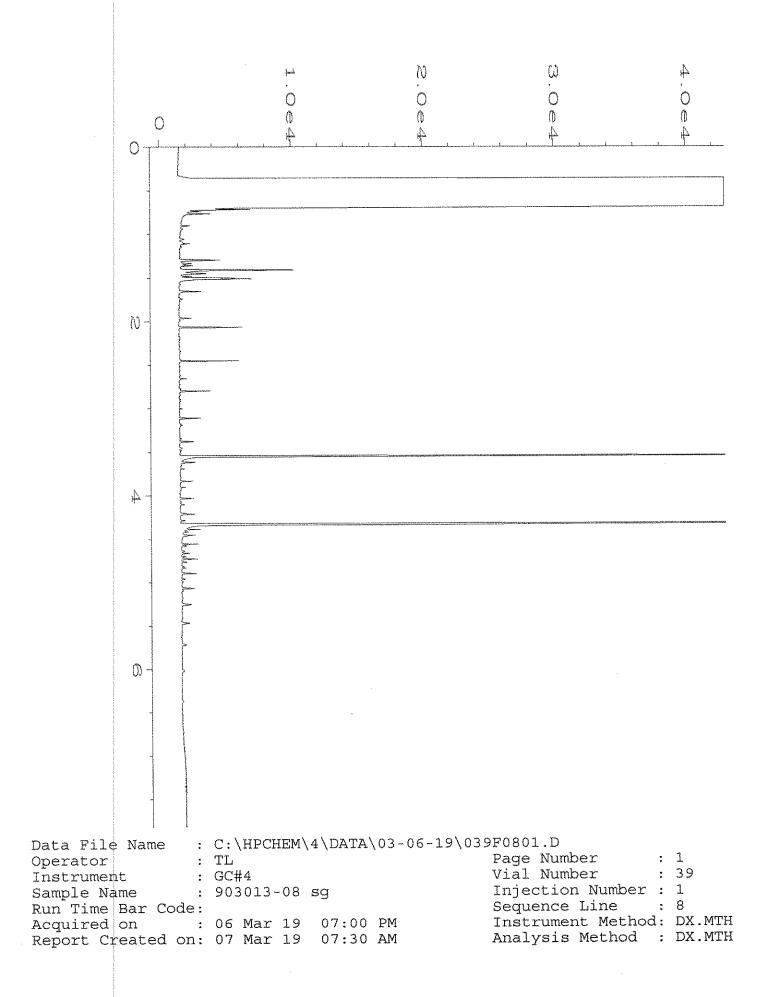


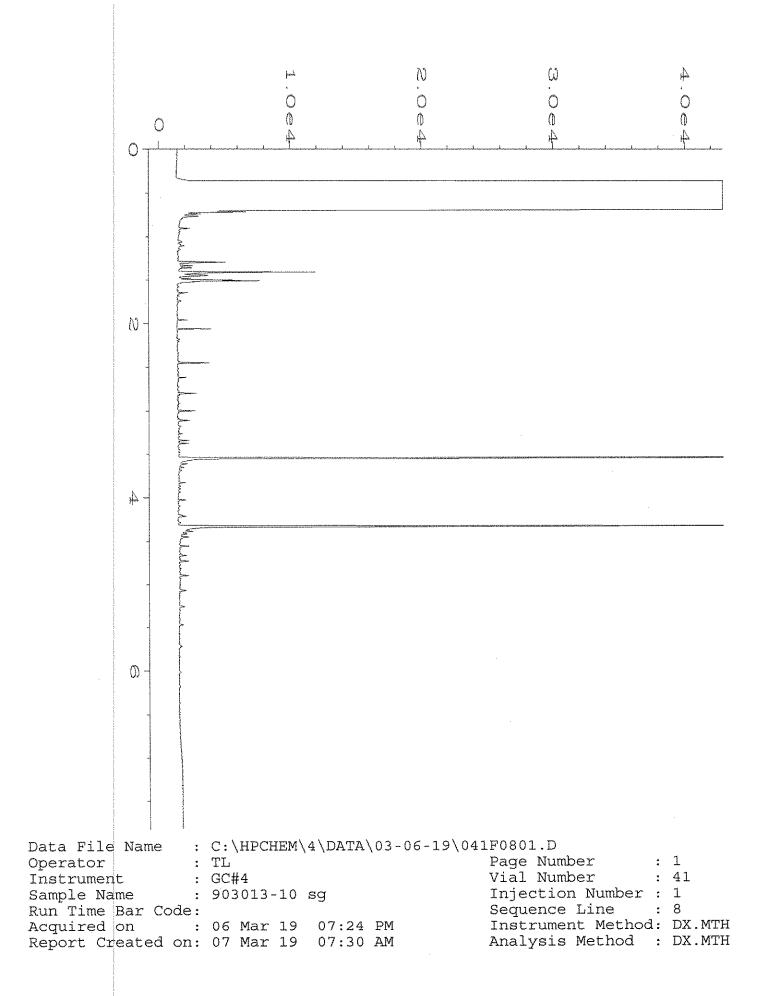


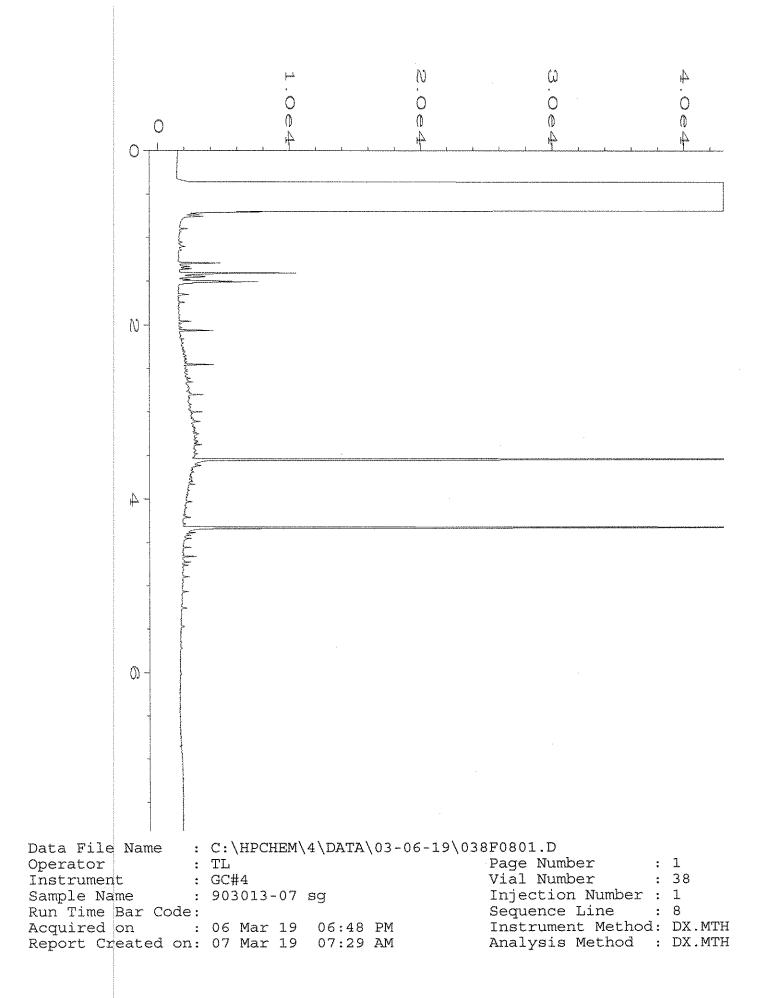


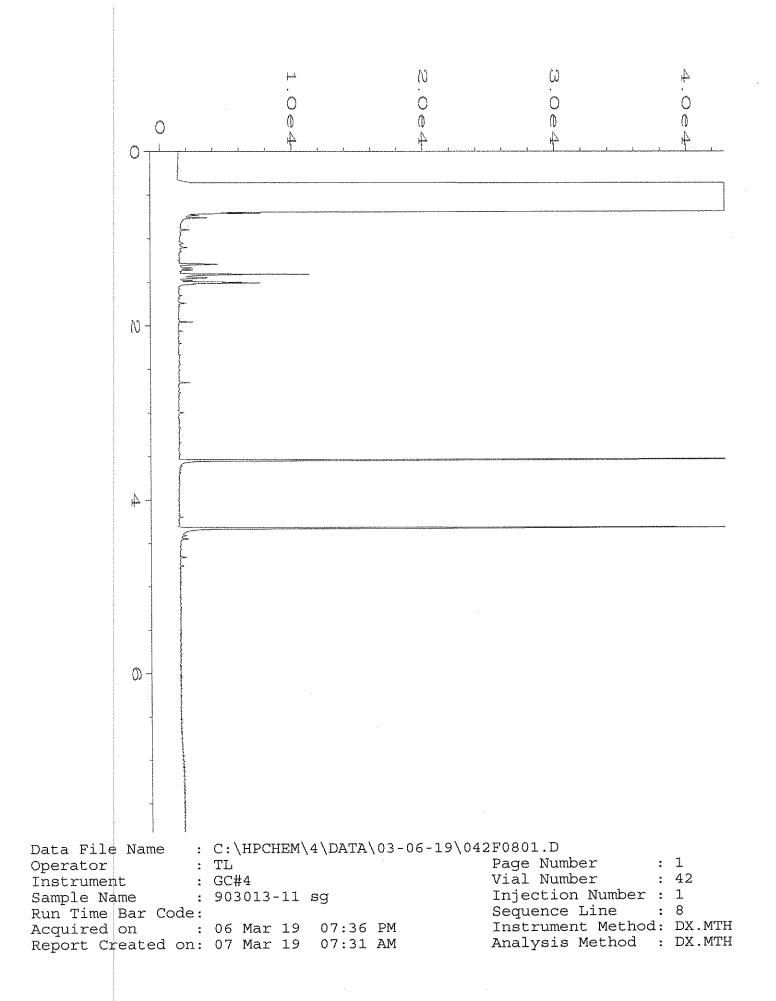


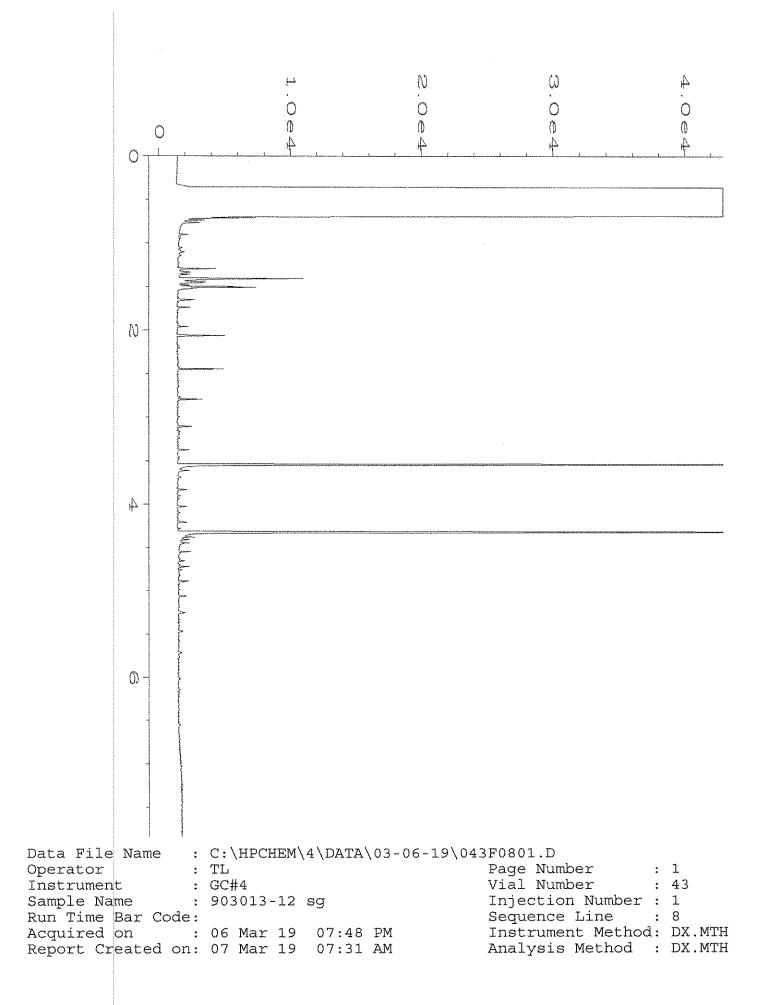


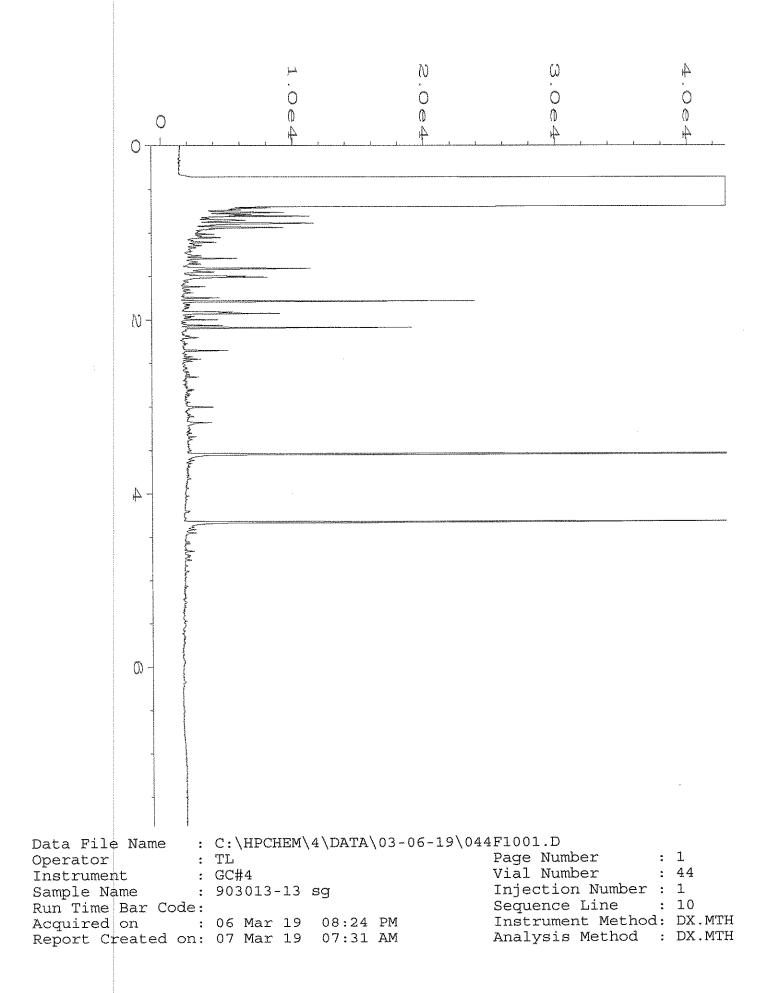


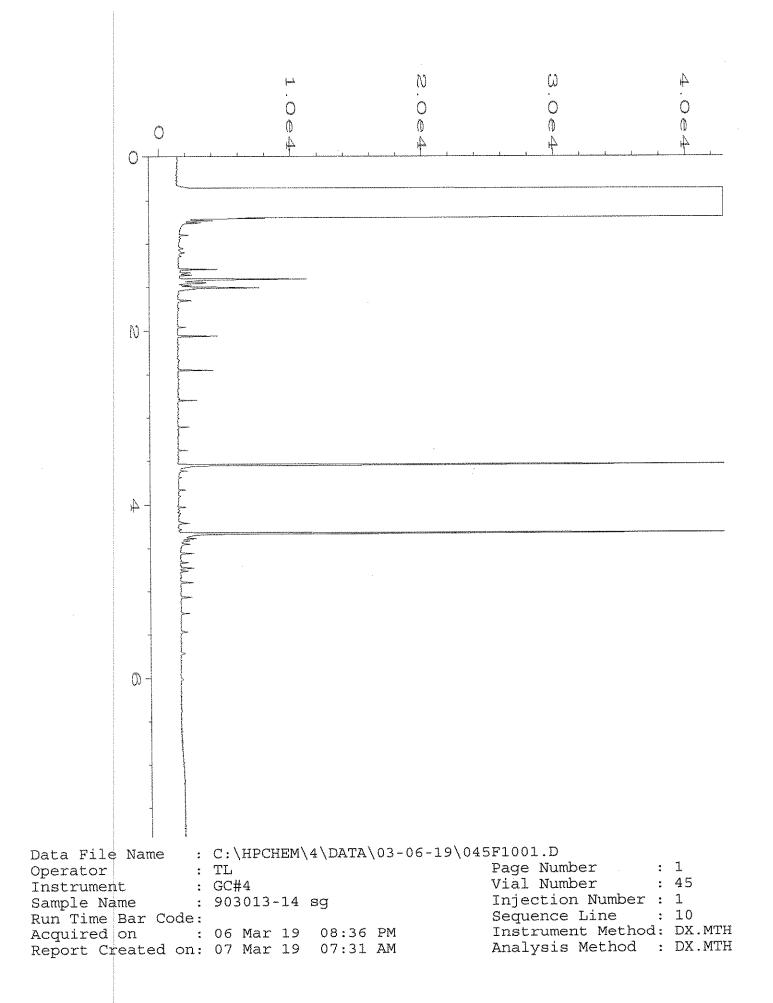


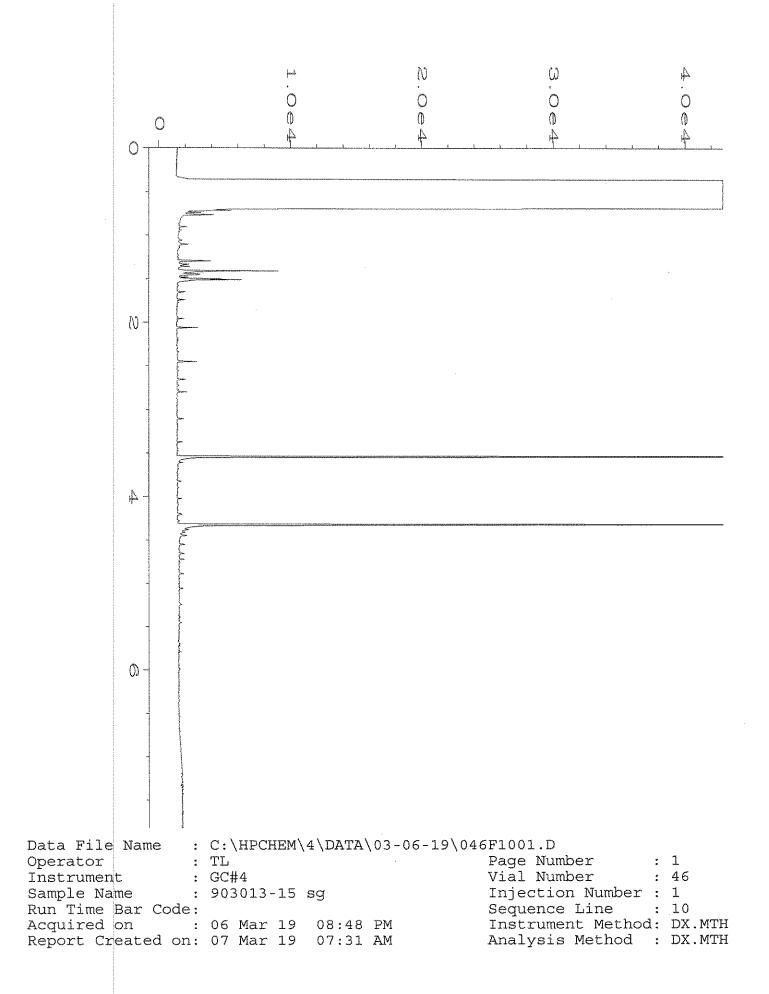


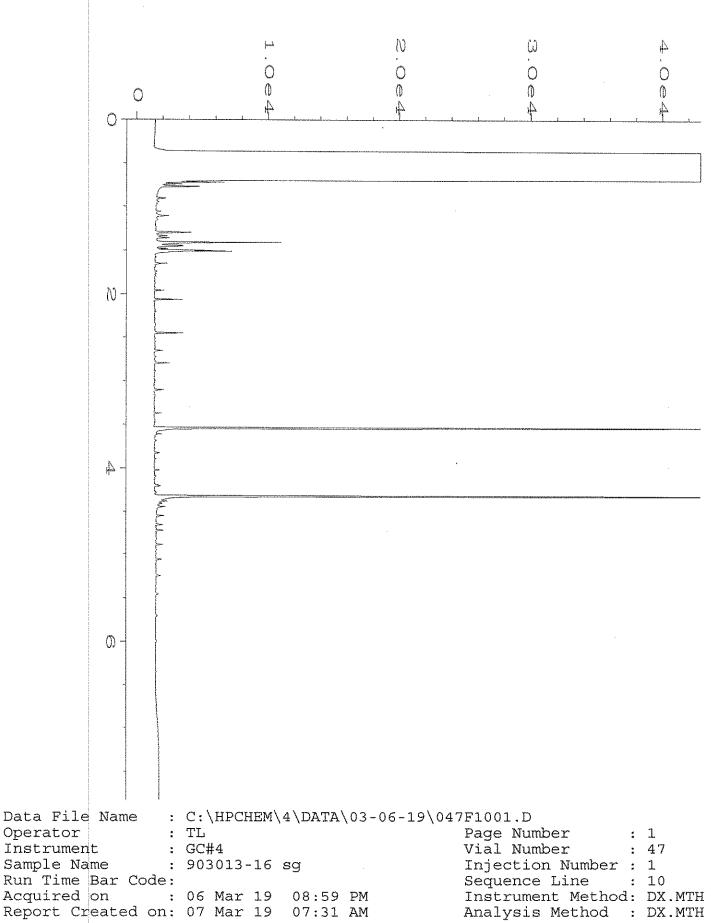


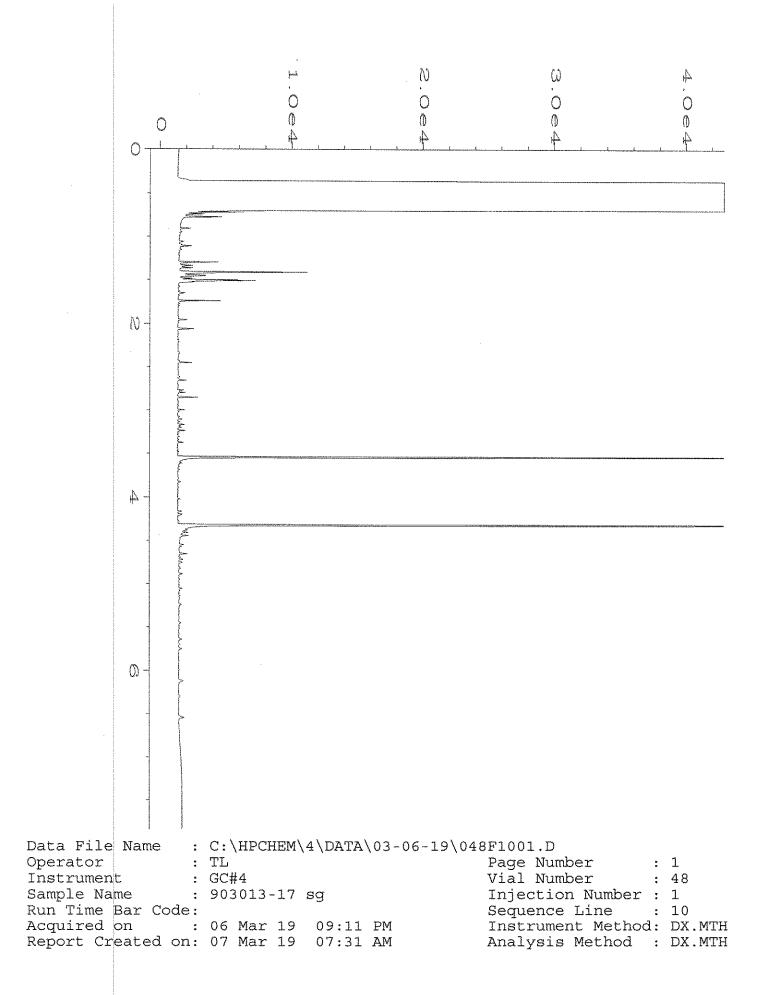


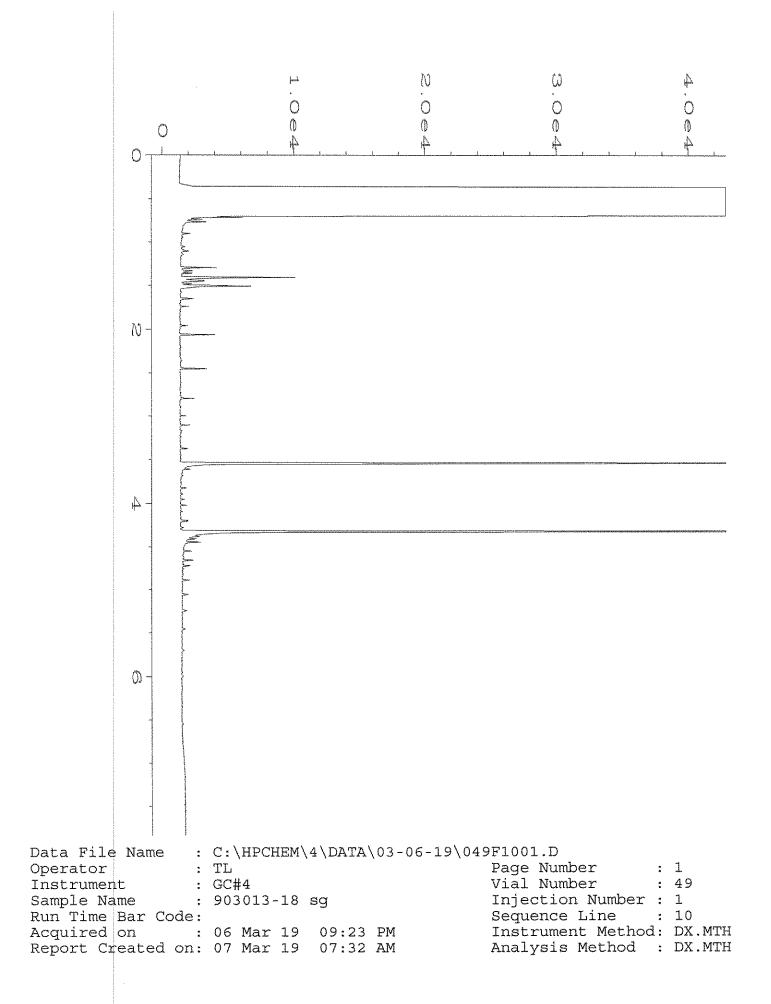


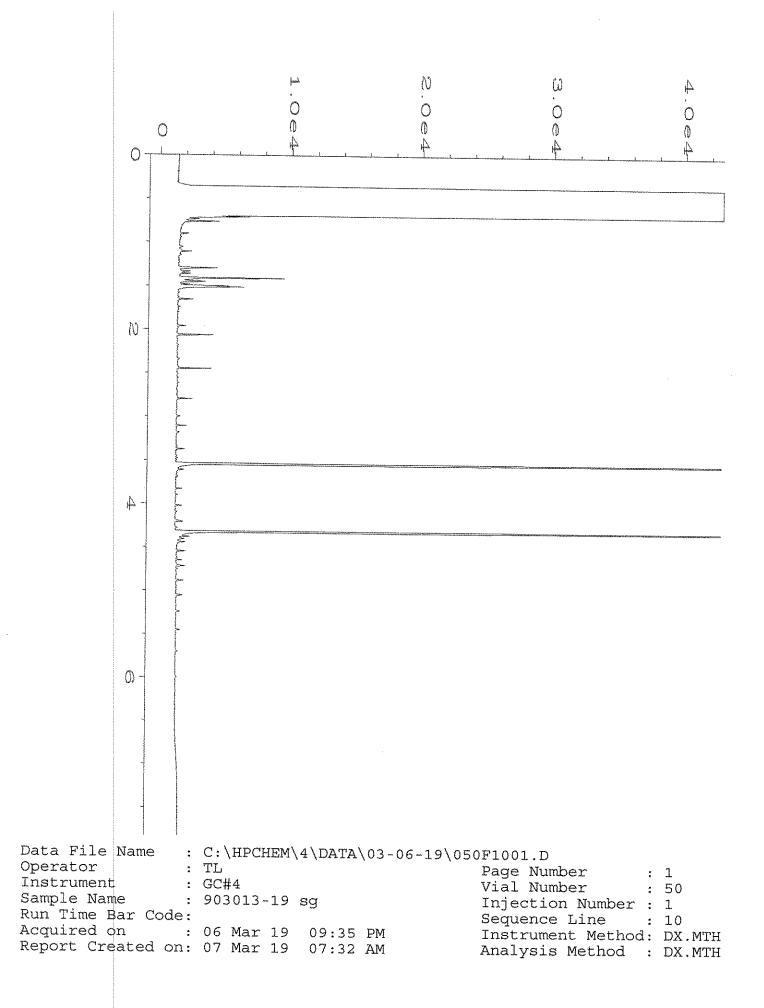


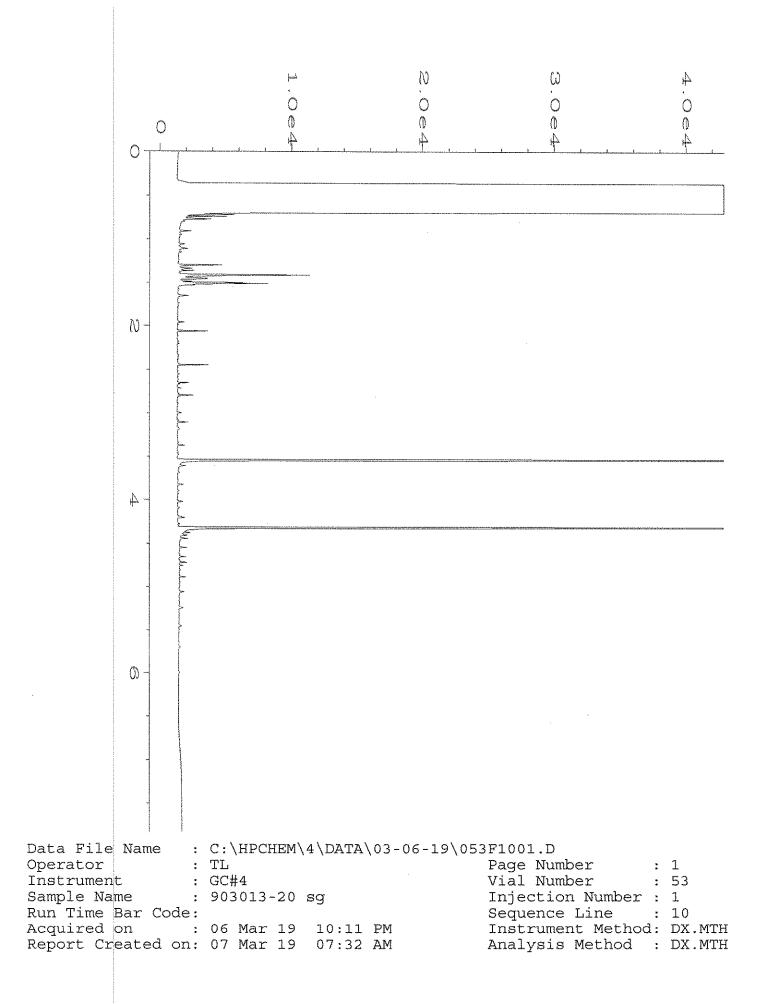


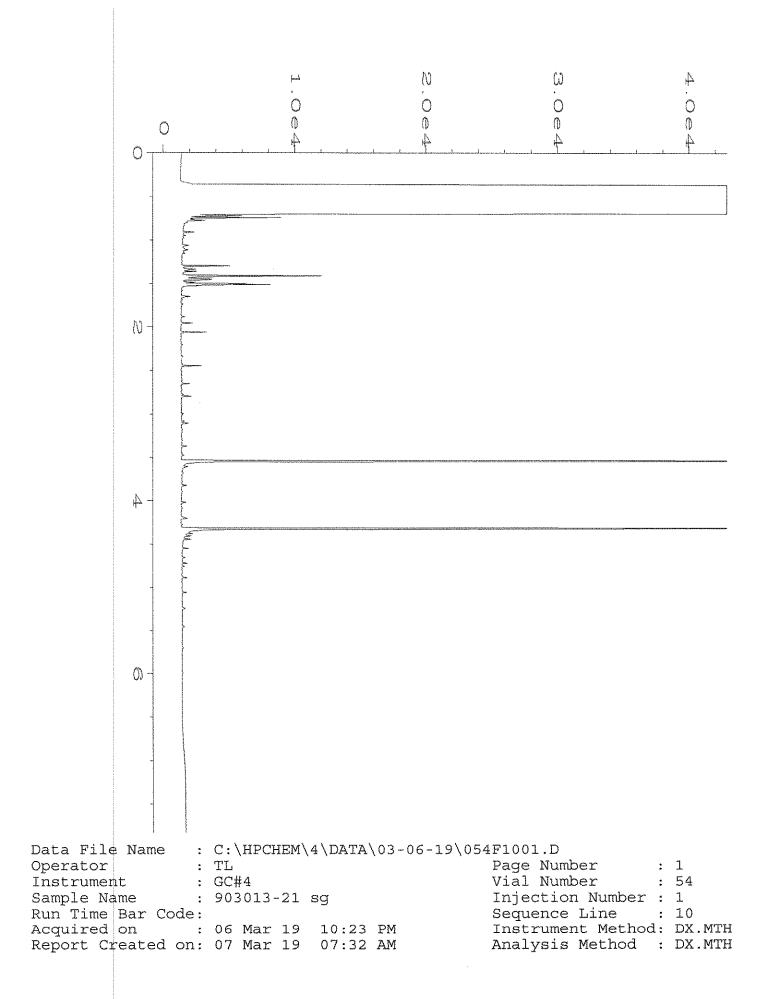


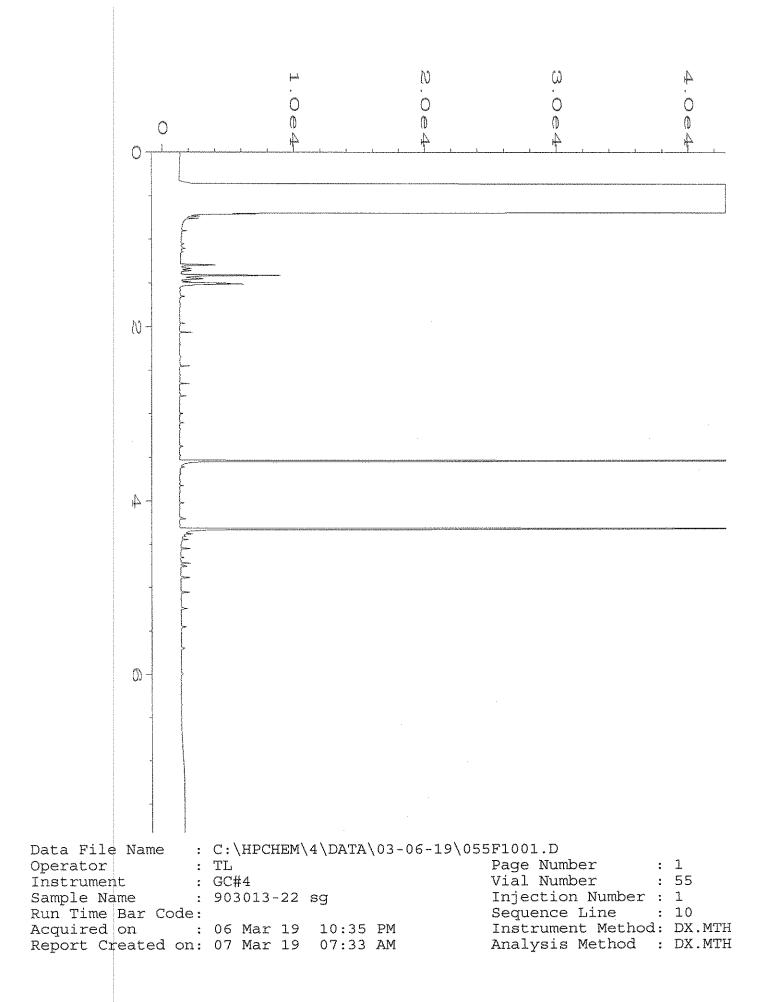


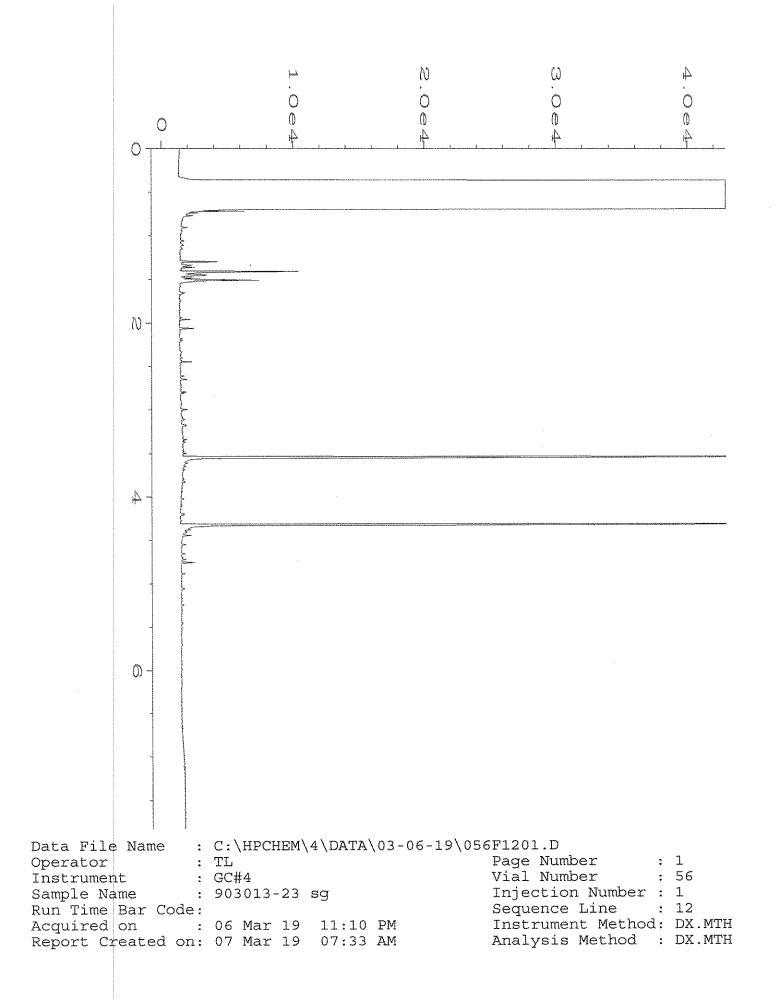


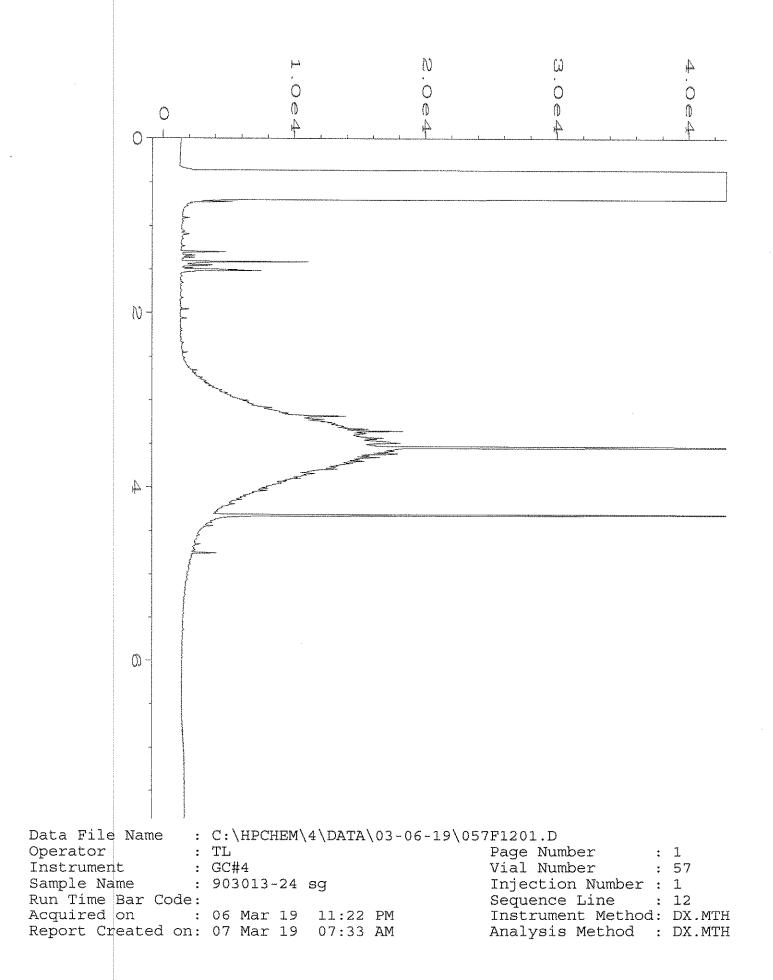


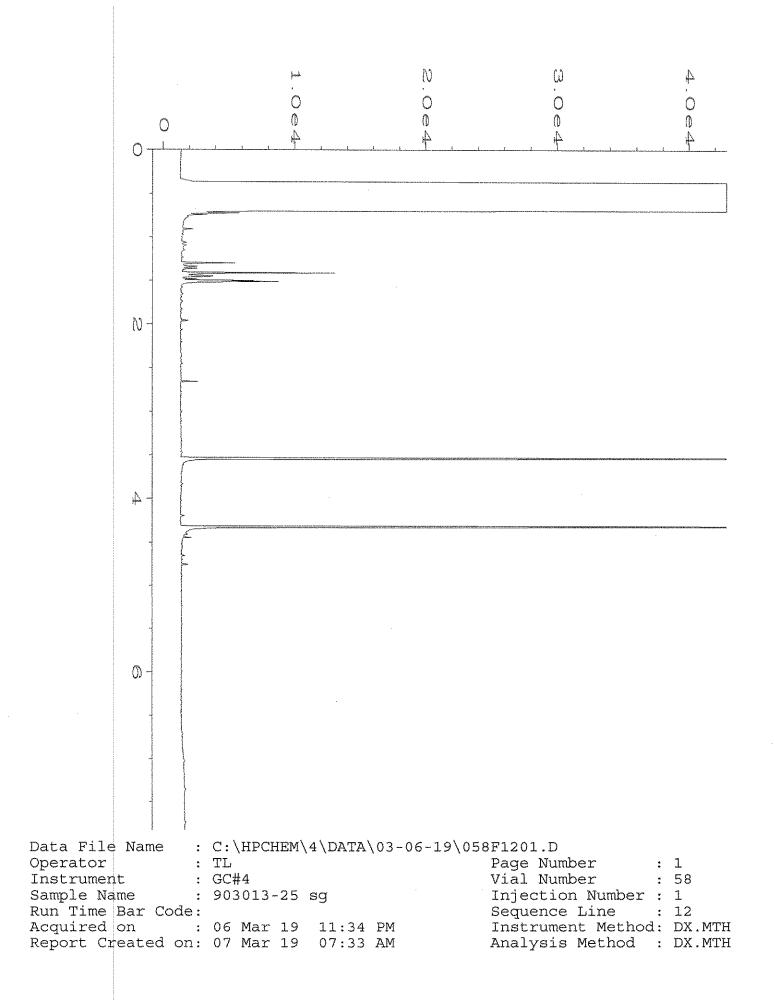


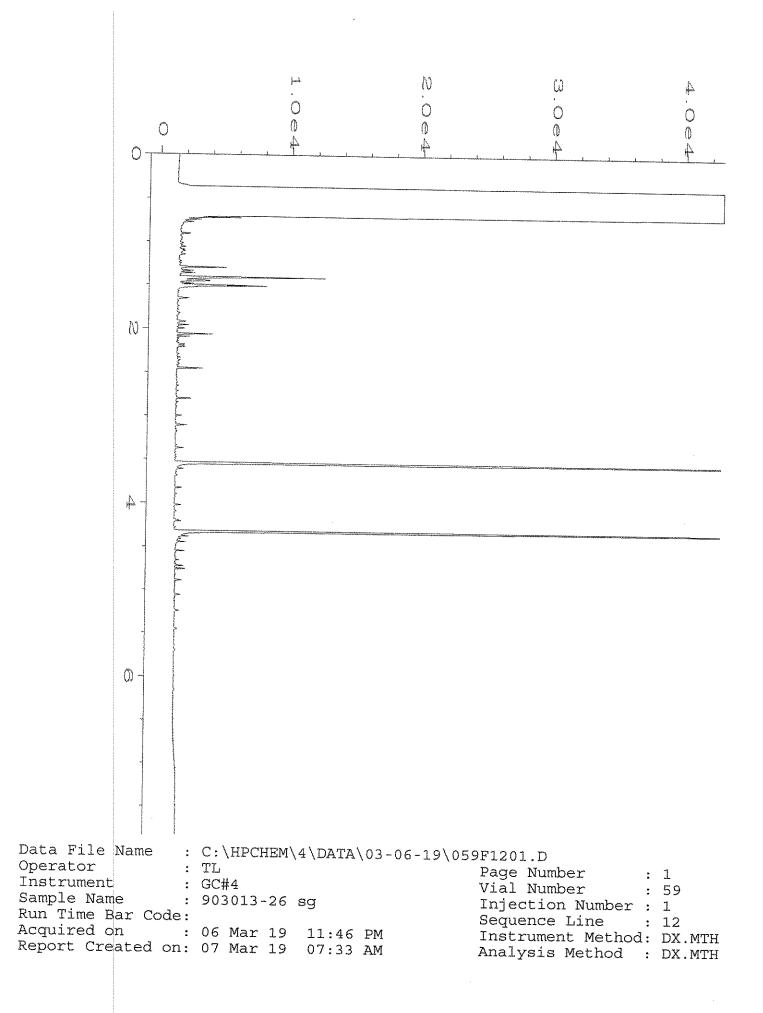

Analysis Met

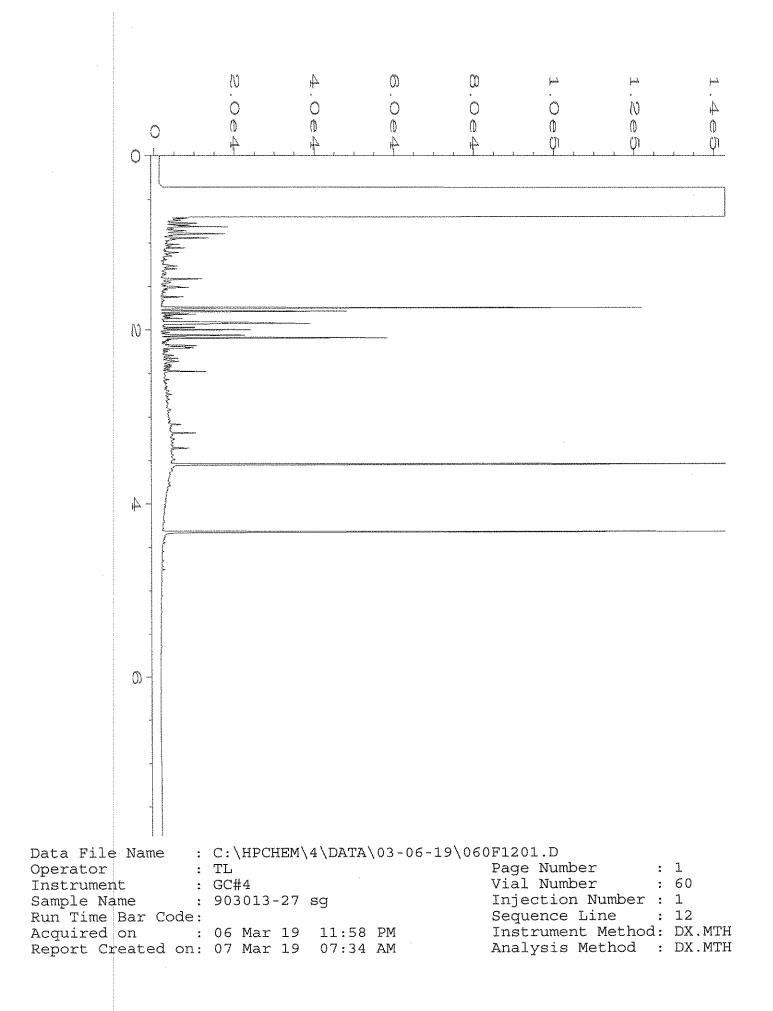


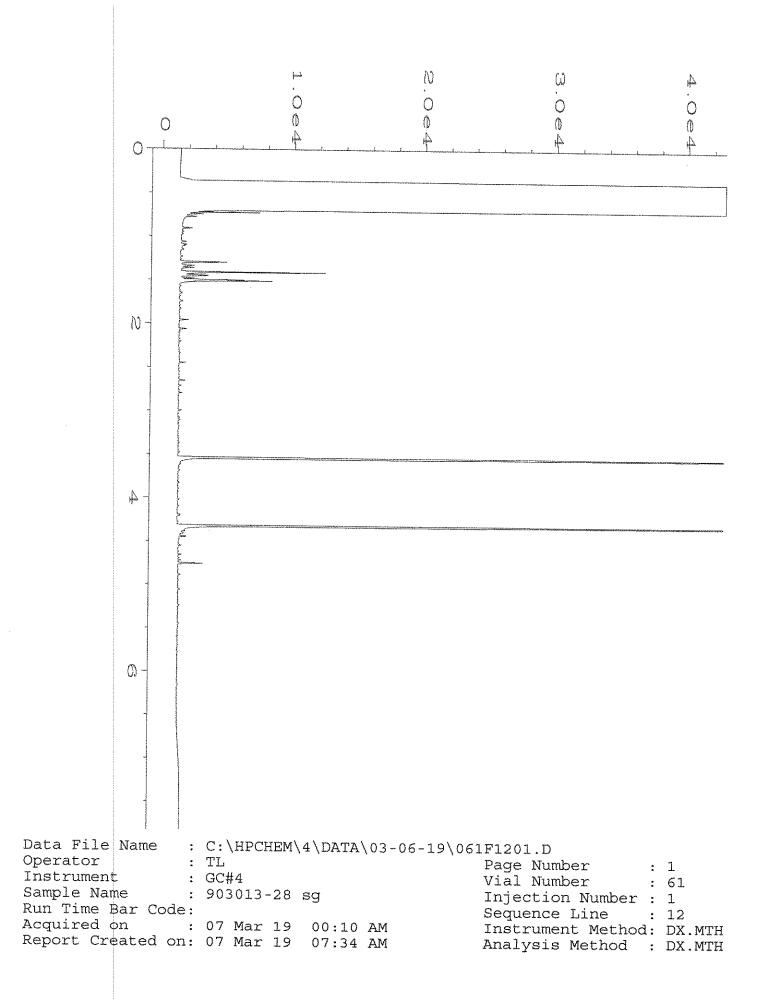


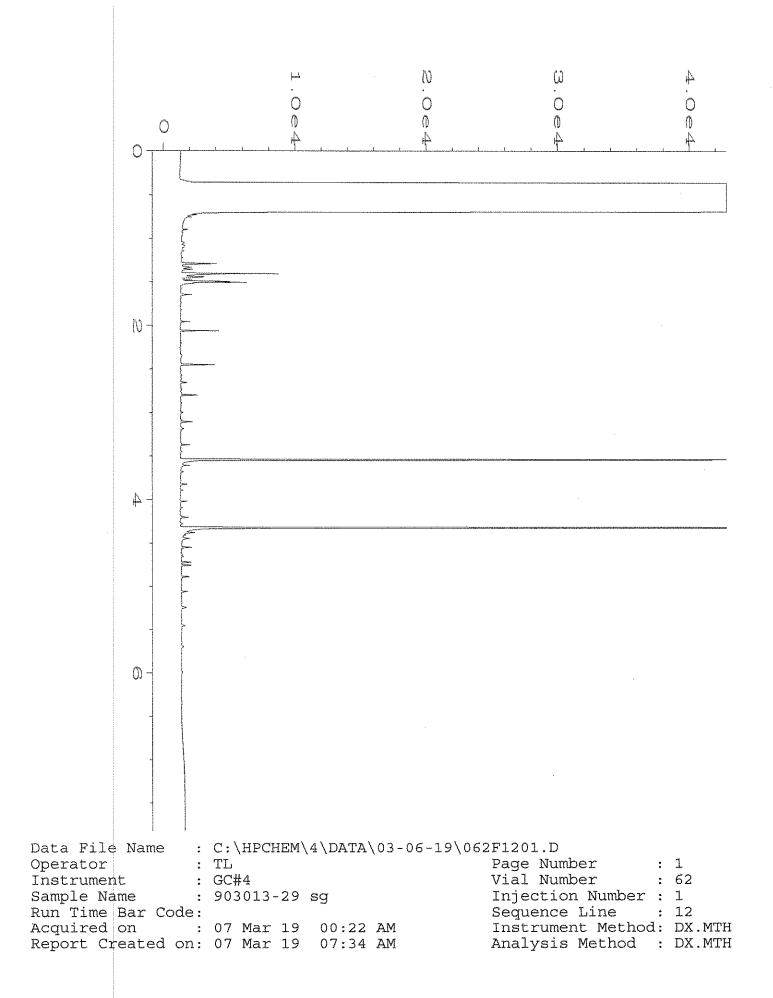


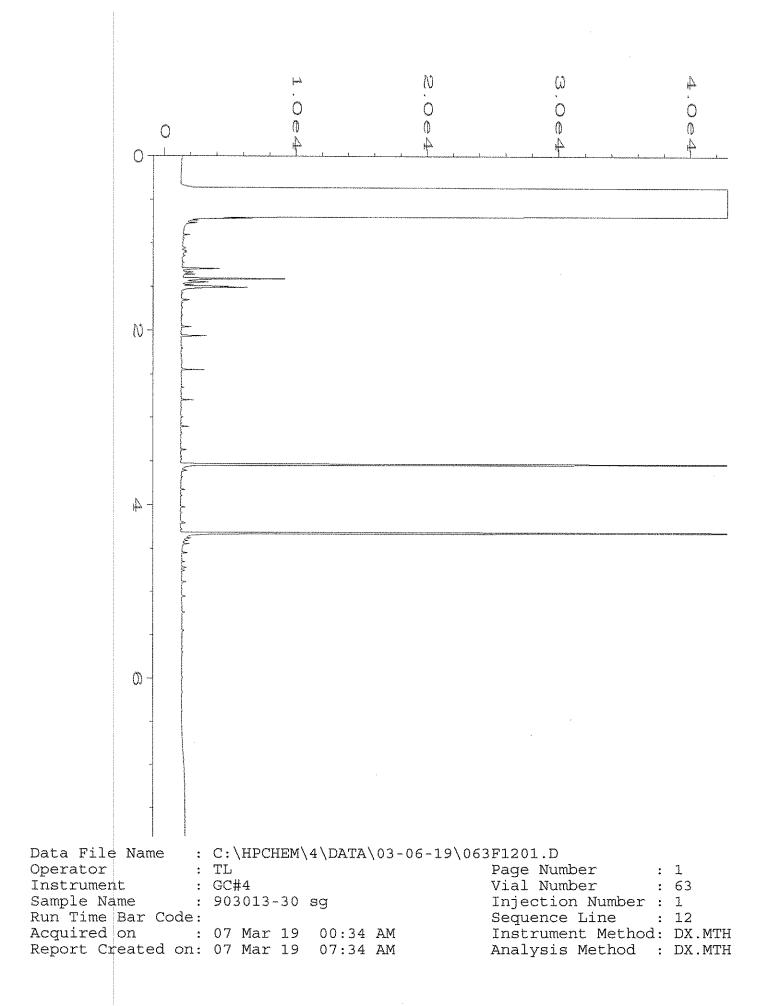


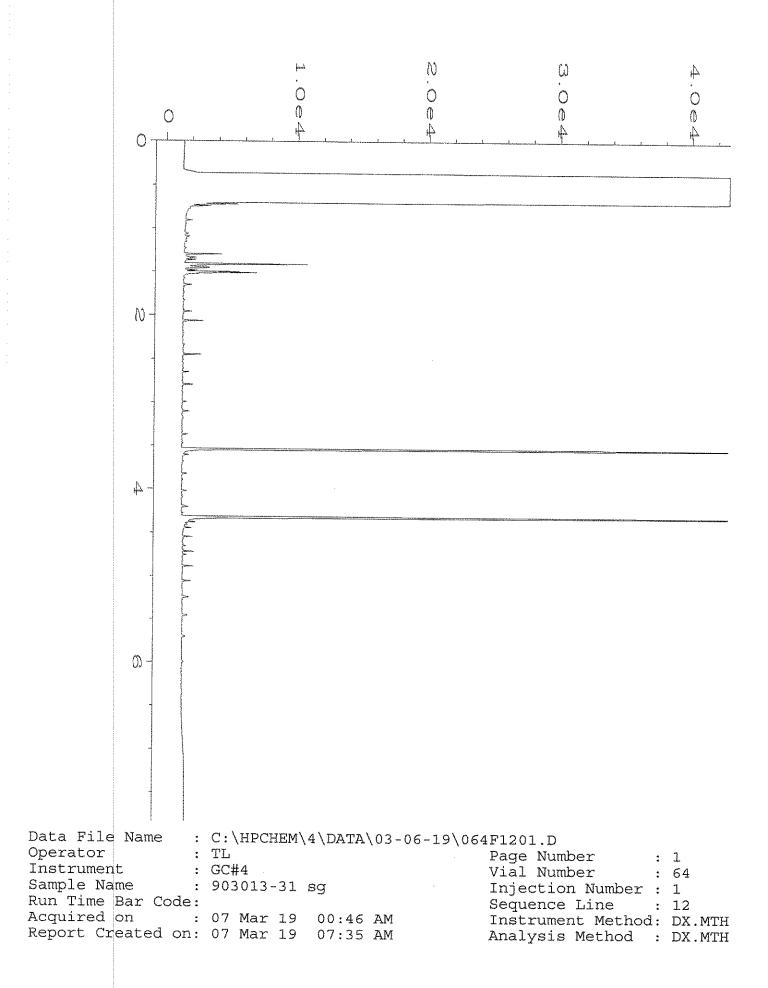


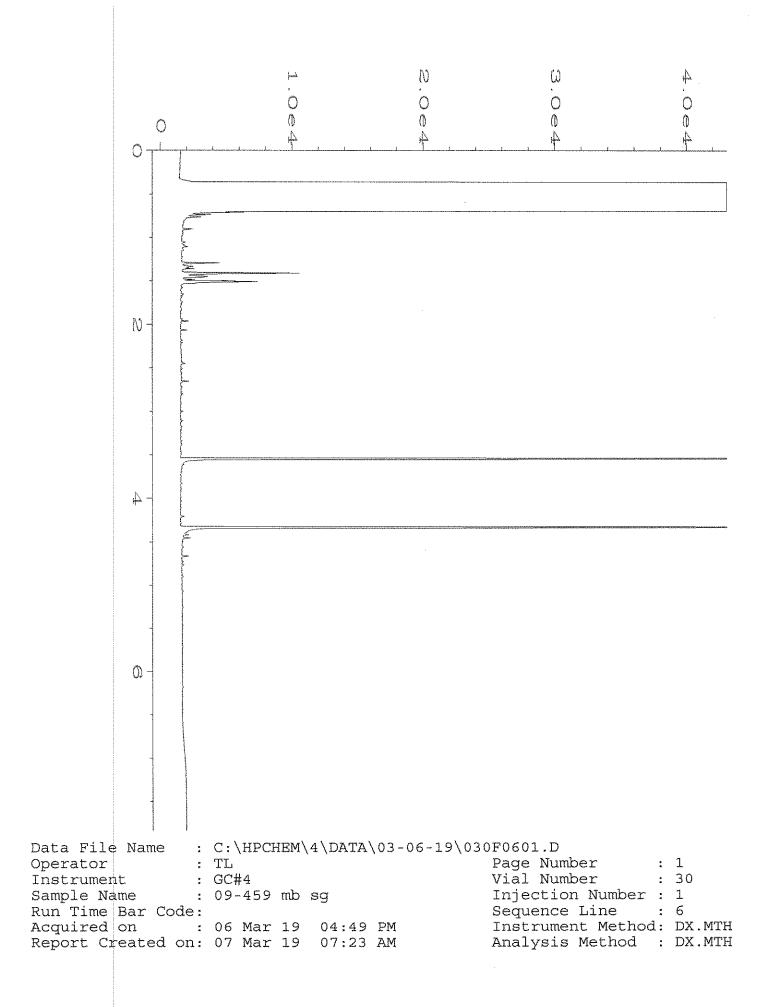


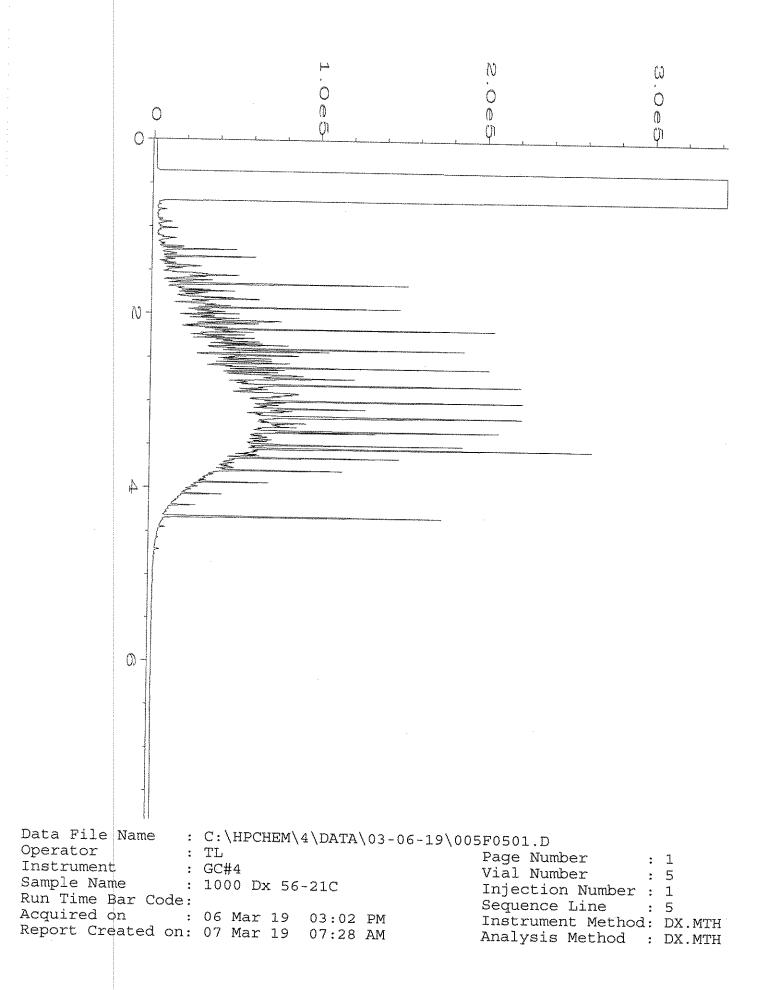


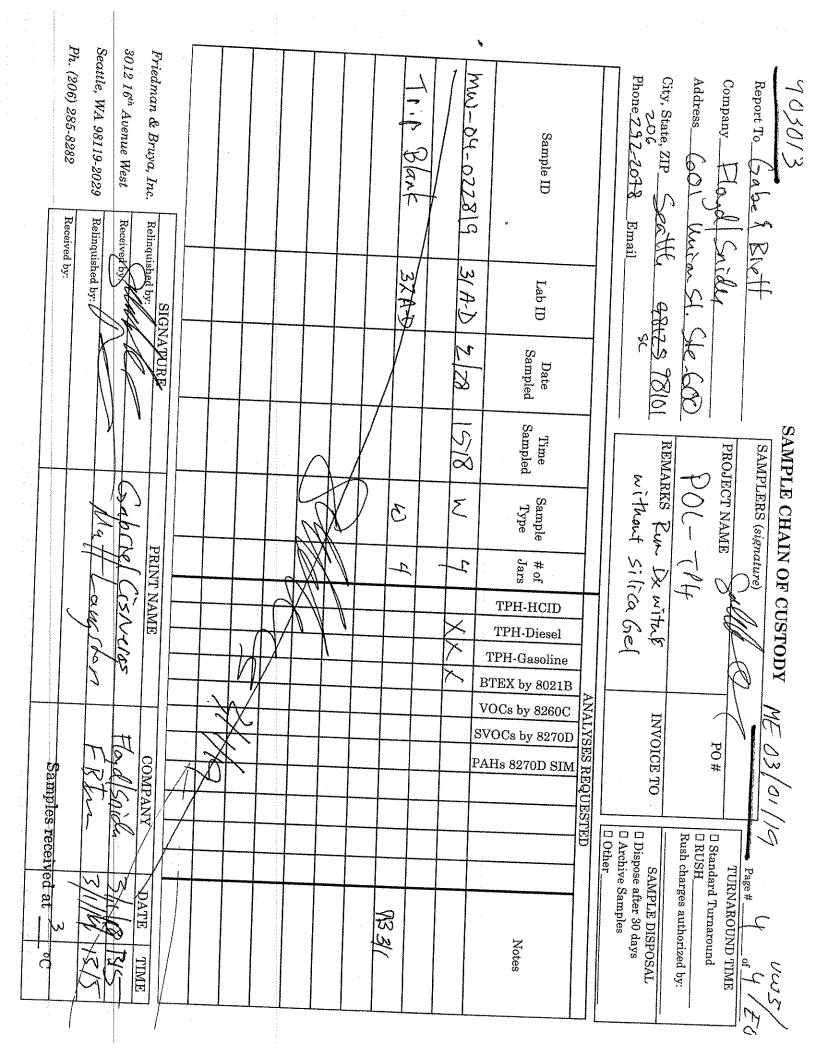







١.





• • •	. Ph	Se	36	F					5	-												
	Ph. (206) 285-8282	Seattle, WA 98119-2029 Re	<u> </u>	Friedman & Bruya, Inc.	PK220-1-WM	mw-131-022(19	MW-31-022719	PITZZ () - 11- WM	61220-91-MW	MW7-07-022218	MW-12-022+19	MW-15-022719	MW-19-022719	MW-06-022719	Sample ID		Phone 292-2070 Email	City, State, ZIP	(0)	That	he	903013
	Received by:	Relinquished by	Received by:	Relinquished by:	[] []	100	84	61	99	65	64	, SS	62 +	or A-y			hail	to	Union St.	لم د <u>ا</u>	isveries R	
			1 AM	SIGNATURE	¢									0122	Date Sampled			9181	St-600		Ro+ Reachan	
		2			1622	600	1542	533	1502	1021	1420	1412	1340	1302	Time Sampled		10011			· · · · · · · · · · · · · · · · · · ·	SAMP	SAMPL
		-M	(Jahy											٤	Sample Type		with quitheuts	REMARKS PUN	tol-	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF C
		11-8-	Mar.	PRINT NAME											# of		rents	т (У	てん	Alle	ature)	N OF C
		bungstre	1'S NACOS	VAME	XXX		×	× × ×	XXX	XXX	XXX	XXX		XXX	TPH-HCID TPH-Diesel TPH-Gasoline BTEX by 8021B	-	he 1			Ke >		USTODY
															VOCs by 8260C SVOCs by 8270D	ANALY		INVO			1.10	nf
	Samples received at	FRT	Tardlen	COMPANY											PAHs 8270D SIM			INVOICE TO		PO#	biliden	ne astactica
	eived a	NC	Å	Y												TED	□ Archiv □ Other	Dispos	"I RUSH Rush ch	TT Stand	Pa	V
	t	3/1/10/13/		DATE TIME											Notes		□ Archive Samples □ Other	SAMPLE DISPOSAL	D RUSH Rush charges authorized by:	TURNAROUND TIME	Page # of	VWS/Eau
· .		<u>η</u>	<u>A</u>															A		B		

NW-L 61220-27-mm 40-mm Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. UN-22-072819 17 -1618220-h01-15h City, State, ZIP 78(1) 200 Phone 292-2018 Email 61220-20-MM N72- H-022819 Company__ Address____ Report To KM 61220-50-MM 9030/3 MW-2Y-02281920 614220-20-mm 21-13220-22-MM MW-23-022219/19 Sample ID Floring Unin SI Sid Relinquished by Received by: Received by Relinquished by-10/82 F S 5à 12 _ Lab ID 4-7 SIGNATURE 2/28 2/28 6142/2 17.60 Sampled Date 0.822 [Zhbo 1380 0725 410 1280 S EET 82FT 1633 SAMPLE CHAIN OF CUSTODY NE 03/01/19 1041 Sampled PROJECTORAME Time REMARKS _____Silica Gel Pur with Kwithout 402-714 Sal Sample ξ Туре PRINT NAME L J Jars 5 # of C t \sim 1 t t 20452113 Zaltwet TPH-HCID K TPH-Diesel TPH-Gasoline 5 8021B ANALYSES REQUESTED VOCs by 8260C INVOICE TO Houldsnide SVOCs by 8270D Samples received at PO # PAHs 8270D SIM COMPANY 0 Other C Archive Samples D Dispose after 30 days A Standard Turnaround Rush charges authorized by: . VWS/EO4 Page#____ TURNAROUND TIME SAMPLE DISPOSAL DATE NO ficily Kun MS/MSD No HCID NO HCLD NO HCI 9 å Notes ef L SISI TIME 35

POL - TPH-HCID Sample # of Type # of Type Jars Avita for the INVOICE TO Law V I Are Cleaning Jars for TPH-HCID Jars Avita for the INVOICE TO Company PRINT NAME PRINT NAME PRINT NAME PRINT NAME PRINT NAME PRINT NAME PRINT NAME Sub Company Company Sub Company Company Samples reprired Samples reprired	Ph. (206) 285-8282 Received by:	Seattle, WA 98119-2029 Relinquished by		Friedman & Bruya, Inc. Relinquisted by SIGNATURE	MW-32-022819 30 V V	MW-18-022819 29 11	MW-17-022819 28 1	Mw-20-022819 27 1	mw-25-022819 26	MW-11-022819 25 1-WM.	WW-28-02819 34	MW-26-022819 23	MW-13-022819 22	MU-27-022819 21A-D 2/23/19	Sample ID Lab ID Date Sampled		s, ZIP <u>Sea</u> th 9 Email	Company Floyd Stidd
amples reco		Thomas	placiphures	PRINT NAME	REAL A A BEA	344	1333	1245			1130	1029	1100 1 1 1 4 74		Type Sample Jars of TPH-HCID TPH-Diesel TPH-Gasoline		REMARKS RUN Dx with E without Silicaged Cleanus	1
	Samples received at	1 FISINC 3	Hayd Spilen 3	COMPANY DATE											SVOCs by 8270D	B		Sta RUJ Rush

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix E Groundwater Field Sampling Forms

Project Name: POL- TPH		llection: 🔰	2/27/1	9	
Project Number:	Field Pe	sonnel:	20.		
Purge Data					
Well ID: MW-1 Secure: Ves I No	Well Condition/E	amage Descrip	ntion: 900	od	_
Depth Sounder decontaminated Prior to Placement in Well: 12 Yes Do	One Casing Volu	me (gal):			
Depth of water (from top of well casing): 10.08'	_ Well Casing Typ	e/Diameter/Scr	eened Interva	al: 4" PVC	6.3-16.3
After 5 minutes of purging (from top of casing):	_			dule 40 PVC F	
Begin purge (time): 1550	Diameter	0.D.	I.D.	Volume (Gal/Linear FL)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 10 28	- 1 1/2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64
Gallons purged: 1.25 gal	- 3"	3.500* 4.500*	3.068* 4.026*	0.38 0.66	3.2 5.51
Purge water disposal method:	6*	6.625*	6.065*	1.5	12.5
Time Depth to Vol. pH DO	Conductivity	Turbidity	NTU Tem	np 🕐 ORP 🕈	Comments
1605 10.72' 2L 7.21 2.01	0.238	0.0	11.2	<u>25 -59</u>	
$\frac{1610}{10.72'} \frac{2751}{3.51} \frac{7.39}{7.70} \frac{0.58}{0.53}$	0.230	0.0	12.1		_
$\frac{1615}{10.72'} \frac{3.5L}{4.5L} \frac{7.70}{7.46} 0.53$	0.228	0.0	<u> </u>		
	0. 620	0.0	_ 12:2	5 - 70	·
					-
Sampling Data					
Sample No: <u>MW-1-022719</u>	Location and D	epth: Sha	llow a	anifer	
Date Collected (mo/dy/yr): 2/27/19 Time Collected: 10	022 DA	м 👷 РМ	Weather: 🜔	loudy, col	d
Type: 🙀 Ground Water 🛛 Surface Water Other:	Sam	pie: 🔲 Filtered		d Other:	
Sample Collected with: Bailer Pump Other:					
Water Quality Instrument Data Collected with: Type: 📋 Horiba U-22 🕅 Horib	a U-50 Other:				
Sample Decon Procedure: Sample collected with (circle one): decontaminat					Other:
Sample Description (Color, Turbidity, Odor, Other):				it and poly tooning	
ample Analyses					1
TPH-D (HCI) C Chlor / Fluor (unpres) C COD / T			•	.TER) Diss	. Metals (HNO3)
TPH-G (HCI) X BTEX (HCI) X Total Me	tals (HNO3) [] TKN/P	hos (N2	SO4) 🔲	VOCs (HCI)
dditional Information					
Types of Sample Containers: Quantity: Duplicate Sample Nu	Imbers:		С	omments:	
10 mL VOA WI HCI 3					
UME VOF WITCI					
- ALII					
Signature: Unlight			Date: 2	122/10	
			valc. /		

Project Name: POL- TPH	Date of Collection:	2(27/19
Project Number:	Field Personnel:	2/27/19 11 G.Cisano
Purge Data		
Well ID: <u>MW-2</u> Secure: Yes No	Well Condition/Damage Descrip	ption: Stripped Bilts
Depth Sounder decontaminated Prior to Placement in Well: Yes N	lo One Casing Volume (gal):	34.5
Depth of water (from top of well casing): ? , 9 2	Well Casing Type/Diameter/Scr	1 0 10 111
After 5 minutes of purging (from top of casing): 8-97	Volum	e of Schedule 40 PVC Pipe
Begin purge (time):	Diameter O.D.	LD. Volume Weight of Water (Gal/Linear Ft.) (Lbs/Lineal Ft.)
End purge (time): (6.33		1.360" 0.08 0.64 2.067" 0.17 1.45
Galloris purged: <u>4.8</u>	3" 3.500" 4" 4.500"	3.068° 0.38 3.2 4.026° 0.66 5.51
Purge water disposal method:	6" 6.625"	6.065 1.5 12.5
Time Depth to Vol. pH DO	Conductivity Turbidity	
1621 8.97 2.5 5.87 3.97	0.137 0.4	10.04 139 0.089
1624 897 3.0 5.80 3.92	0.138 D.1	10.04 144 0.089
1627 3.77 3.5 5.87 3.48	0.138 00	
1630 8.97 4.0 5.84 3.37 1133 8.97 4.5 5.83 3.32		10.02 153 0.090
	0.131 0.0	10.00 155 0.090
	-	
ampling Data		
Sample No: MW-02-022719	Location and Donthy NO	dose
Date Collected (mo/dy/yr): 2/2-7/15 Time Collected:	1 07	
Type: Cround Water Surface Water Other:		Weather.
Sample Collected with: Bailer Sector Collected with: Bailer	Sample: [] Filtered	Deventitered Other:
		The file
Nater Quality Instrument Data Collected with: Type: Horiba U-22	1 Sec. 2	
Sample Decon Procedure: Sample collected with (circle one): decontami	20 A A A A A A A A A A A A A A A A A A A	
Sample Description (Color, Turbidity, Odor, Other):	yellow calor, r	Vosdor
ample Analyses		
	& WoutSGC	
	/TOC (H2SO4) 🗌 Orthop	ihos (FILTER) Diss. Metals (HNO3)
	Metais (HNO3)	²hos (N2SO4) ☐ VOCs (HCl) □
ditional Information		
Types of Sample Containers: Quantity: Duplicate Sample	Numbers:	Comments:
200m Anne		1655
40ml Vials 3		
	1	
ignature:	13	Date: 2/27/19

•

Project Name: <u>POL- TPH</u> Project Number:	Date of Collection: 2/27/19
Project Number:	
	Field Personnel: P.O.
Purge Data	
Well ID: MAT-10 MW-3 Secure: XYes No	Well Condition/Damage Description: Fine
Depth Sounder decontaminated Prior to Placement in Well: No	One Casing Volume (gal): 8.4-18.4'b
Depth of water (from top of well casing): 13.14	Well Casing Type/Diameter/Screened Interval: 4"/ 18-23 bgs
After 5 minutes of purging (from top of casing): 13.20'	
Begin purge (time): 10:54 1706	- (Gal/Linear Ft.) (Lbs/Lineal Ft.)
End purge (time):	- 2" 2.375" 2.067" 0.17 1.45
Gallons purged: 0.75 gal	- 4" 4.500" 4.026" 0.66 5.51
Purge water disposal method:	<u>6" 6.625" 6.065" 1.5 12.5</u>
Time Depth to Vol. pH DO	Conductivity Comments
1711 13.20° 0.75L 6.60 2.40	0.445 0.0 11.17 -30
716 13.20' I.SL 6.72 2.14	0.440 0.0 11.76 -47
$\frac{721}{726} \frac{13.22'}{13.23'} \frac{9.25L}{3L} \frac{6.73}{6.73} \frac{1.71}{1.70}$	$\frac{0.441}{0.442} \frac{0.0}{0.0} \frac{12.02}{12.19} \frac{-54}{-59}$
	0. 142 0.0 12.11 -51
ampling Data	
Sample No: MW 10-022719 MW - 03	Location and Depth: Shallow aguifer MW -07
Date Collected (mo/dy/yr): 2/27/19 Time Collected:	728 AM BYPM Weather: Cloucky, cold
ype: 🕅 Ground Water 🔲 Surface Water Other:	
ample Collected with: Bailer Pump Other:	
Vater Quality Instrument Data Collected with: Type: 🛛 Horiba U-22 🙀 Horiba	
ample Decon Procedure: Sample collected with (circle one): decontaminate	
ample Description (Color, Turbidity, Odor, Other): Some Flock - 10	prown/black, moderate TPH odor
mple Analyses	
TPH-D (HCI) 🖾 Chlor / Fluor (unpres) 🗖 COD / T(OC (H2SO4) Orthophos (FILTER) Diss. Metals (HNO3)
TPH-G (HCI) 🔟 BTEX (HCI) 📓 Total Met	
ditional Information	
ypes of Sample Containers: Quantity: Duplicate Sample Nu	imbers: Comments:
5 L Amber 1 None	Absorbent sock in well - fied up to
D ML VOA W/ HCI 3	be above water table until diseo.sal
	can be arranged.
	New tubing put in today.
	This is Really MW-03
ignature: Duh Ostilit	Date: 2/27/19

Collection Form.doc

.

r*

0

Ť

.

.

5

Project Name: POL- TPH		Date of Colle	ection: 22	7/19 +	2/28/19	
Project Number:		Field Pers	onnel: p.O	1.		
Purge Data						
Well ID: MW-H Sect	ure: 🙀 Yes 🔲 No	Well Condition/Dat	mage Description:	Fine - no	belts	
Depth Sounder decontaminated Prior to Placement in		One Casing Volum	e (gal): 2. 9	al = 8L	,	
Depth of water (from top of well casing): 14.20		Well Casing Type/	Diameter/Screened	Interval: <u>4</u> "	PVC 7.4-1	17.4 b
After 5 minutes of purging (from top of casing): 14	56	-	Volume of	Schedule 40 F		
Begin purge (time): 0938		Diameter	O.D. 1.D.	(Gal/Linear	r FL) (Lbs/Li	of Water neal Ft.)
End purge (time): 10 10		- 1 ½" 2"	1.660" 1.38 2.375" 2.06	7" 0.17	1.	64 45
Gallons purged:gal		3" 4"	3.500" 3.06 4.500" 4.02			.2
Purge water disposal method:	•	6*	6.625" 6.06	5* 1.5	12	2.5
Time Depth to Vol. pl Water Purged		Conductivity ms	Turbidity AIT	Temp °C	orp mV	Comments
	1.80	0.313	117		88	
<u>0953 15.38' 31 9.0</u> 0958 15.59' 3.56 8.3	1.76	0.317	<u> </u>	12.66 2	.12	
1003 15.89' 4.752 8.5	9 1.95	0.315	163	and the state of the second se	<u> </u>	
	turned off		<u></u>	<u>III-JZ _</u>		
1020 16.17 well not	productive		ple collect	ed		
Sampling Data NO SAMPLE CO	LLECTED O	n 2127 : 0	ollected 1	10 Purac	Sample	007
Sample No: +++++++++++++++++++++++++++++++++++	-04- 022819			0	0.000	
		Location and Dec	oth:			
ما اصلف	A REAL PROPERTY OF A READ PROPERTY OF A REAL PROPER	Location and Dep		er Showin	0	
Date Collected (mo/dy/yr): 222819	_ Time Collected:	518 dam	PM Weath	er. <u>Snowin</u>)	
Date Collected (mo/dy/yr): 22319	Time Collected:	518 down	PM Weath e:□Filtered KgU		9	
Date Collected (mo/dy/yr): 22319 Type: X Ground Water Surface Water Other: Sample Collected with: Bailer X Pump Other:	_ Time Collected:	518. sample Sample Type:	ngar PM Weath e:⊡Filtered pot 15ta Hic	nfiltered Other	,	
Date Collected (mo/dy/yr): 22319 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: D	_ Time Collected: Horiba U-22 焰 Horiba	518. Sample Sample Type: a U-50 Other:	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr): 22319 Type: St Ground Water Surface Water Other: Sample Collected with: Bailer St Pump Other: Water Quality Instrument Data Collected with: Type: D	_ Time Collected: Horiba U-22 焰 Horiba	518. Sample Sample Type: a U-50 Other:	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr): 2228 19 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer A Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir	_ Time Collected: Horiba U-22 焰 Horiba	518. Sample Sample Type: a U-50 Other:	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr): 223919 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Renner Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other):	_ Time Collected: Horiba U-22 焰 Horiba	518. Sample Sample Type: a U-50 Other:	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr): 223919 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Renner Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other):	_ Time Collected: Horiba U-22 焰 Horiba	518. Sample Sample Type: a U-50 Other:	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr):2 29 19 Type: A Ground Water D Surface Water Other: Sample Collected with: D Bailer A Pump Other: Water Quality Instrument Data Collected with: Type: D Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses	_ Time Collected: Horiba U-22 焰 Horiba	518 Sample Type: a U-50 Other: ed <u>all</u> tubing; disposa	e di PM Weath e: □ Filtered je U 1stattic o param	nfiltered Other	lectad o	
Date Collected (mo/dy/yr): 2229 19 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: D Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unj	_ Time Collected: Horiba U-22 🗶 Horiba	Sample 	ble and/or edicate	nfiltered Other:	lected o	n 2/2
Date Collected (mo/dy/yr): 222819 Type: Collected (mo/dy/yr): 22819 Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unj TPH-G (HCI) Color / BTEX (1	Time Collected:	Sample Samp	pd PM Weath e: □ Filtered jo U 15tattic o parano ble and/or ordicate Orthophos	Infiltered Other: Infiltered Infiltered Infiltered Infiltered Infiltered Infiltered Infiltered Infiltered Infilt	Diss. Metals	n 2/2
Date Collected (mo/dy/yr): 2228 19 Type: S Ground Water Surface Water Other: Sample Collected with: Bailer P Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cirl Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unj TPH-G (HCI) C BTEX (I dditional Information	Time Collected: Horiba U-22 X Horiba rcle one): decontaminat pres) [] COD / To HCI) K Total Met	518 Sample Type: Ptd a U-50 Other: N ed <u>all</u> tubing; disposa Other: N OC (H2SO4) I als (HNO3) I	pd PM Weath e: □ Filtered jo U 15tattic o parano ble and/or ordicate Orthophos	(FILTER)	Diss. Metals	n 2/2
Date Collected (mo/dy/yr): 2228 19 Type: Collected (mo/dy/yr): 228 19 Type: Collected with: Surface Water Other: Sample Collected with: Bailer P Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Color / Fluor (unj TPH-G (HCI) Color / Fluor (unj Color / Fluor (unj TPH-G (HCI) Color / Fluor (unj Color / Fluor (unj TPH-G (HCI) Color / Fluor (unj Color / Fluor (unj Co	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: per a U-50 Other: M ed all tubing; disposa disposa OC (H2SO4) disposa als (HNO3) disposa	pd PM Weath e: □ Filtered jo U 15ta Hic o parana ble and/or edicate Orthophos TKN/Phos	(FILTER)	Diss. Metals	n 2/2
Date Collected (mo/dy/yr): 2228 19 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unit TPH-G (HCI) Chlor / Fluor (unit Types of Sample Containers: Quantity: C	Time Collected: Horiba U-22 X Horiba rcle one): decontaminat pres) [] COD / To HCI) K Total Met	518 Sample Type: Ptd a U-50 Other: N ed <u>all</u> tubing; disposa Other: N OC (H2SO4) I als (HNO3) I	pd PM Weath e: □ Filtered jo U 15tattic o parano ble and/or ordicate Orthophos	(FILTER)	Diss. Metals	n 2/2
Date Collected (mo/dy/yr): 2228 19 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unit TPH-G (HCI) Chlor / Fluor (unit Types of Sample Containers: Quantity: C	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: Plan a U-50 Other: N ed <u>all</u> tubing; disposa OC (H2SO4) OC (H2SO4) mbers:	pd PM Weath e: □ Filtered for U 15tattic o param ble and/or edicate Orthophos TKN/Phos depth = 1	(FILTER)[] (N2SO4) [] Comments: 7.45'	Diss. Metals VOCs	n 2/2: (HNO3) [] (HCI) []
Date Collected (mo/dylyr): 2/28/19 Type: I Ground Water Surface Water Other: Sample Collected with: Bailer I Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other):	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: per a U-50 Other: M ed all tubing; disposa disposa OC (H2SO4) disposa alls (HNO3) disposa mbers: Total Purg	pd PM Weath e: □ Filtered je U 1static o parana ble and/or edicate Orthophos TKN/Phos depth = 1 water	(FILTER)[] (N2SO4) [] Comments: 7.45'	Diss. Metals VOCs	n 2/2: (HNO3) [] (HCI) []
Date Collected (mo/dylyr): 2/28/19 Type: I Ground Water Surface Water Other: Sample Collected with: Bailer I Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other):	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: per a U-50 Other: M ed all tubing; disposa disposa OC (H2SO4) disposa alls (HNO3) disposa mbers: Total Purg	pd PM Weath e: □ Filtered for U 15ta Hic 0 Paran ble and/or edicate Orthophos TKN/Phos depth = 1	(FILTER)[] (N2SO4) [] Comments: 7.45'	Diss. Metals VOCs	n 2/2: (HNO3) [] (HCI) []
Date Collected (mo/dylyr): 222819 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer A Pump Other: Water Quality Instrument Data Collected with: Type: D Sample Decon Procedure: Sample collected with (cirr Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) Chlor / Fluor (unp TPH-G (HCI) Chlor / Fluor (un	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: Plan a U-50 Other: N ed all tubing; disposa Other: N OC (H2SO4) I als (HNO3) I mbers: Total Purge	pd PM Weath e: □ Filtered je U 1static o parana ble and/or edicate Orthophos TKN/Phos depth = 1 water	(FILTER) (N2SO4)	Diss. Metals VOCs	n 2/2 (HNO3) [] (HCI) []
Date Collected (mo/dylyr): 2/28/19 Type: I Ground Water Surface Water Other: Sample Collected with: Bailer I Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (cir Sample Description (Color, Turbidity, Odor, Other):	Time Collected: Horiba U-22 1 Horiba rcle one): decontaminat pres) [] COD / To HCI) [Total Met Duplicate Sample Nu	518 Sample Type: per a U-50 Other: odd All tubing; disposa OC (H2SO4) als (HNO3) mbers: Total Purg Drawn	pd PM Weath e: □ Filtered je U 1static o paran ble and/or edicate Orthophos TKN/Phos depth = 1 c water Cloudy down in	(FILTER) (N2SO4)	Diss. Metals VOCs	n 2/2 (HNO3) [] (HC1) []

F:\Technical\Field Prep\Field	Forms\Groundwater	Sample
Collection Form.doc		

52/2

Project Name: POL- TPH	Data of Calls		_ 1	1
	Date of Colle Field Perso	-	2/2	27/19
Project Number:	Field Perso		G. CisN	rends
Purge Data				
Well ID: MW-5 Secure: Kes INO	Well Condition/Dan			
Depth Sounder decontaminated Prior to Placement in Well:	One Oreine M. L		30lts stri	
Depth of water (from top of well casing): 14.95.	Well Casing Trac	e (gal):	and Instances.	12.5-22.5 bg
After 5 minutes of purging (from top of casing):	Weil Casing Type/L		of Schedule 40 PV	0
Begin purge (time): 1635	Diameter		D. Volume (Gal/Linear Ft.	Weight of Water
End purge (time): 1700	1 1/4" 2"		380" 0.08 067" 0.17	0.64
Ci Ka Ballons purged:	3"	3.500* 3.	068" 0.38	1.45 3.2
Purge water disposal method:	6		026" 0.66 065" 1.5	5.51
Time Depth to Vol. pH DO Water Purged	Conductivity	NT 5 Turbidity	Temp OR	RP Comments T
1648 15.61 0.92 5.51 0.00	0.157	21.7	9.21 7	<u>7</u> 0.102
1651 15.65 1.1 5.43 0.00	0.157	15.1	9.19 187	0.102
1654 15.53 1.3 5.48 0.00 1657 15.50 1.7 5.41 0.00	0 (58	5.9	9.06 18 19E	9 0,103
700 15.49 2.0 5.41 0.00	0.160	2.0	9.02 19	
Sampling Data				-
Sample No: <u>MW-05-022719</u>	Location and Dep	oth: Shall	ow aquife	(
Date Collected (mo/dy/yr): 2127 Time Collected:	1701 DAM	D PM We	ather:Clau	ida 35°
Type: Surface Water Other:				
Sample Collected with: Daller J2Pump Other:	Туре:	Reist	altic	
Water Quality Instrument Data Collected with: Type: Horiba U-22 Horiba			2	
Sample Decon Procedure: Sample collected with (circle one): decontamina			ated silicon and poly tub	ing Other
		NDO	0	
	5 7/101	NUO		
Sample Analyses				
TPH-D (HCI) Chlor / Fluor (unpres) COD / T	TOC (H2SO4)	Orthopho	s (Filter)) [] (Diss. Metals (HNO3) 🔲
TPH-G (BCI) BTEX (HCI) Total Me	(/ _	TKN/Pho:	· · · · ·	VOCs (HCI)
Additional Information	- 9			
	umbana. T			
Soon Anna I Duplicate Sample Nu	uniders:	Ro Han	Comments:	the slow
40mi Urals 3		Belliot	1 10101 101	fin- 10-20
		701	collact	
		-C		

F:11echnical/Field Prep\Field Forms\Groundwater Sample Collection Form.doc

j,

0

Project Name: PDL-TPH		Date of Colle	ction: 🛃	127/201	7	
Project Number:		Field Perso				
Purge Data						
Well ID: <u>MW-6</u> Secure: W	Yes 🗌 No	Well Condition/Dam	nage Descript	ion: <u>Fine</u> .	Well boy	e missing b
Depth Sounder decontaminated Prior to Placement in Well: Depth of water (from top of well casing): 10.21	Yes 🛛 No	One Casing Volume		ened interval:	4"pxc)	16-21 6
After 5 minutes of purging (from top of casing): 10.21'					e 40 PVC Pip	(
Begin purge (time): 12:40		Diameter	0.D.	ID	Volume	Weight of Water
End purge (time): 13:66		1 %	1.660"	1.380*	0.08	(Lbs/Lineal Ft.) 0.64
Gallons purged:		2* 3*	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Purge water disposal method:		4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5.51 12.5
Time Depth to Vol. pH Water Purged	DO 🎇	Conductivity ms	Turbidity	NTU Temp'	ORP M	Comments
<u>2:45 10.21 1L 7.78</u>	3.57	0.322	16.2	10.83	-67	
$\frac{2:50}{2:55} \frac{10.21}{10.21} \frac{2}{3L} \frac{7.33}{7.18}$	<u>3.27</u> 3.30	0.315	6.0	<u> </u>	-77	
$\frac{2.00}{3.00}$ "" 3.761 7.11	3.56	<u>0.313</u> 0.314	<u>3.4</u> 0.0	<u> </u>	- 85	
		0.014	0.0	11.13	- 01	A
	<u> </u>					
	Q <u></u>					
ampling Data						
ample No: <u>MW-6-022719</u>		Location and Dep	. Sha	llow		
late Collected (mo/dy/yr): 2 2 27 19 Time	- Collected:			11000 0	quita	Δ
ype: 🕅 Ground Water 🔲 Surface Water Other:				😰 Unfiltered (Other:	
ample Collected with: 🖸 Bailer 📋 Pump Other:			Matric			
/ater Quality Instrument Data Collected with: Type: 📋 Horiba	U-22 🛒 Horiba	U-50 Other:				
ample Decon Procedure: Sample collected with (circle one				licated silicon a	nd poly tubing C	ther:
ample Description (Color, Turbidity, Odor, Other):	, mild pe	troleum odo	C			
mple Analyses						1
		DC (H2SO4)	Orthoph	ios (FILTE	R)[] Diss. N	letais (HNO3) [
TPH-D (HCI) 💐 Chlor / Fluor (unpres) [• • –				
TPH-D (HCI) 🕅 Chlor / Fluor (unpres) [TPH-G (HCI) 🕅 BTEX (HCI) [TKN/Pł	ios (N2SO4	₩D \	/OCs (HCI) [
TPH-G (HCI) 🕅 BTEX (HCI)			TKN/Pł	ios (N2SO4	¥)⊡ \\	/OCs (HCl) [
TPH-G (HCI) (III) BTEX (HCI) (III)	🛛 Total Meta	ais (HNO3)	TKN/Pł			/OCs (HCI) [
TPH-G (HCI) (III) BTEX (HCI) (III) (III) (HCI) (III) (III) (HCI) (III) (III) (HCI) (III) (III) (III) (HCI) (III) (Total Meta	nbers:		Com	ments:	/OCs (HCI) [
TPH-G (HCI) (ALL MARK (ALL MARK)) (ALL MARK)	Total Meta	nbers:			ments:	/OCs (HCI) [
TPH-G (HCI) Differentiation Iditional Information ypes of Sample Containers: Quantity: Duplication	Total Meta	nbers:		Com	ments:	/OCs (HCl) [
TPH-G (HCI) (ALL MARK (ALL MARK)) (ALL MARK)	Total Meta	nbers:		Com	ments:	/OCs (HCI) [
TPH-G (HCI) (ALLIN ALLIN (ALLINS) (Iditional Information Spes of Sample Containers: Quantity: Duplica SL Amber 1 Nor	Total Meta	nbers:		Com	ments:	/OCs (HCl) [
TPH-G (HCI)	Total Meta	nbers:		Com	ments:	/OCs (HCI) [
TPH-G (HCI)	Total Meta	nbers:		Com	ments:	/OCs (HCl) [

1

	Date of Co		2	127/19
Project Number:	Field Per	rsonnel:	6 Cizne	or
Purge Data				
Well ID: Secure: K Yes] No Well Condition/E	Damage Description:	y" pre	
		B	unt Cap	ns @ tap
Depth Sounder decontaminated Prior to Placement in Well Yes	No One Casing Volu	ume (gal): e/Diameter/Screened Ir		0 .
Depth of water (from top of well casing):	Well Casing Typ	e/Diameter/Screened Ir	iterval:	18-23' bg
After 5 minutes of purging (from top of casing): 14.45		Volume of S	chedule 40 PVC P	
3egin purge (time): 4 30	Diameter	0.D. I.D.	Volume (Gal/Linear FL)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 1458	1 ½" 2" 3"	1.660" 1.380" 2.375" 2.067"	0.08	0.64 1.45
Litus 3.3 Litur	4"	3.500" 3.068" 4.500" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method:	mali mS/cm	6.625" 6.065" NTH	1.5 0 mV	12.5
Water Purged	MS/Conductivity	Turbidity	Temp ORP	SIC T comments
	.00 0.560	0.0 1	0.85 -4	0-359
451 14.45 2.2 5.69 0.0	00 0.561	0.0 10	1.81 -3	0.359
454 14.45 2.6 5.68 0.1		0.0 11	1.73 -4	0.359
457 14.45 3.0 5.69 0.0	0 0.561	0.00 1	0.73 -3	0.359
			·······	
Impling Data				•
ample No: $MW - 07 - 022719$				
ate Collected (mo/dy/yr): 2/27/19 Time Collect		M D PM Weather		41
npe: 🕅 Ground Water 🛛 Surface Water Other:	Sam	ple: D Filtered X Unf	iltered Other:	
ample Collected with: BBailer BPump Other.	Туре:	Peristal	tic	
ater Quality Instrument Data Collected with: Type: Horiba U-22	KHoriba U-50 Other:			
mple Decon Procedure: Sample collected with (circle one): decor	ntaminated all tubing; dispo	sable and/or dedicated	silicon and now tubing	Pithor
Imple Description (Color, Turbidity, Odor, Other):	No Od		the poly manage	
mple Analyses	00			
w/ & w/ont SG	<u> </u>			
	COD / TOC (H2SO4) [Orthophos	(FILTER) Diss.	Metals (HNO3)
	Fotal Metais (HNO3)		(N2SO4)	
ditional Information				VOCs (HCI) [
	nple Numbers:	-	Comments:	-
DODal Anna 1		500	ik in we	el
11 7	Let	+ Kaise	l so Not	IN water
While Vials 3				
lumi Vials 3				
lumi Vials 3				
lumi Vials 3		1		
lumi Vials 3		1		
10m1 Vial 5 3				,
gnature:	4	Date	=Z(27)	8

(

r cos

đ

Project Name: <u>POL- TPH</u> Project Number:				Date of Collection: 2/28/19 Field Personnel: 6.C					
				Field Perso	onnel: 6				
Purge Data									
Well ID: MW-8		Secure: 🕅 Ye	s 🔲 No	Well Condition/Dam	age Descripti	ion: Bolte s	tripped		
						Cannot c	open wel	1	
Depth Sounder decontaminated P				One Casing Volume	(gal):				
Depth of water (from top of well ca				•		•		- 23 6	
After 5 minutes of purging (from to						of Schedule 4		ight of Water	
Begin purge (time):				Diameter	O.D. 1.660"	I.D. (Gal/Lin		s/Lineal FL)	
End purge (time):				2"	2.375	2.067* 0.	17 38	0.64 1.45	
Gallons purged:				4"	4.500*	4.026" 0.	66	3.2 5.51	
Purge water disposal method:			•				.5	12.5	
Time Depth to Water	Vol. Purged	рН –	DO MA	Conductivity mS	Turbidity 1	NTU Temp C	ORP MV	Comments	
						· · · · · · · · · · · · · · · · · · ·			
Sampling Data Nove	collec	ted	14						
Sample No:				Location and Dept	h: Shal	low agu	Fer		
Date Collected (mo/dy/yr):		Time C	ollected:	T AM		(and			
Type: C Ground Water C Surface	e Water Other								
		-		0t-					
Sample Collected with T Delles		г		Sample:	C Filtered		~		
Sample Collected with: Bailer	Pump Other	r:		Туре:	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer	Pump Other	r:		Туре:	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer Water Quality Instrument Data Colle	Pump Other	r: ve: 🗇 Horiba U-	22 🔲 Horiba	Type: a U-50 Other:	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer	Pump Other ected with: Typ le collected with	r:Horiba U- h (circle one): c	22 🔲 Horiba decontaminate	Type: a U-50 Other: ad <u>all</u> tubing; disposab	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity	Pump Other ected with: Typ le collected with	r:Horiba U- h (circle one): c	22 🔲 Horiba decontaminate	Type: a U-50 Other:	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer Bailer Water Quality Instrument Data Collected Sample Decon Procedure: Sample	Pump Other ected with: Typ le collected with	r:Horiba U- h (circle one): c	22 🔲 Horiba decontaminate	Type: a U-50 Other: ad <u>all</u> tubing; disposab	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity	Pump Other ected with: Typ le collected with	r:Horiba U- h (circle one): c	22 🔲 Horiba decontaminate	Type: a U-50 Other: ed <u>all</u> tubing; disposab	Filtered	Unfiltered Othe	r:		
Sample Collected with: Bailer Water Quality Instrument Data Collected Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses] Pump Other ected with: Typ le collected with y, Odor, Other):	r:Horiba U- h (circle one): c	22 🔲 Horiba decontaminate	Type: a U-50 Other: ed <u>all</u> tubing; disposab ed <u>all</u> tubing; disposab DC (H2SO4) []	E Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor	r: pe: [] Horiba U- h (circle one): c : (unpres) []	22 🔲 Horiba decontaminate	Type: a U-50 Other: ed <u>all</u> tubing; disposab ed <u>all</u> tubing; disposab DC (H2SO4) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI)] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor	r: pe: [] Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sampl Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) TPH-G (HCI) C TPH-G (HCI) C Additional Information] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX	r:Horiba U- h (circle one): c : (unpres) [] (HCI) []	22 🔲 Horiba decontaminate COD / TC Total Metz	Type: a U-50 Other: ed <u>all</u> tubing; disposabl ed <u>all</u> tubing; disposabl DC (H2SO4) [] als (HNO3) []	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Containers:] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX Quantity:	r: pe: [] Horiba U- h (circle one): c (unpres) [] (HCl) [] Duplicate	22 🔲 Horiba decontaminate COD / TC Total Metz	Type:	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals VOCs	(HNO3) (HCI)	
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Containers: Signature:] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX Quantity:	r: pe: [] Horiba U- h (circle one): c (unpres) [] (HCl) [] Duplicate	22 🔲 Horiba decontaminate COD / TC Total Metz	Type:	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals	(HNO3) [(HC)) [
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Containers:] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX Quantity:	r:	22 🔲 Horiba decontaminate COD / TC Total Metz	Type:	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals VOCs	(HNO3) [(HC)) [
Sample Collected with: Bailer Water Quality Instrument Data Colle Sample Decon Procedure: Sample Sample Description (Color, Turbidity Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Containers: Signature: Technical/Field Prep/Field Forms/Ground] Pump Other ected with: Typ le collected with y, Odor, Other): Chlor / Fluor BTEX Quantity:	r: pe: [] Horiba U- h (circle one): c (unpres) [] (HCl) [] Duplicate	22 🔲 Horiba decontaminate COD / TC Total Metz	Type:	I Filtered	Unfiltered Othe	r: oly tubing Other: Diss. Metals VOCs	(HNO3) (HC))	

Project Number:	Field Personnel: G_CISALUS
Purge Data	
Well ID: MW-T MW- (U) Secure: Kes INO	Well Condition/Damage Description:
Depth Sounder decontaminated Prior to Placement in Well: Ves No	
Depth of water (from top of well casing):	
After 5 minutes of purging (from top of casing): 15.25	Values 1 Matches Child
Begin purge (time): 1510 End purge (time): 1733 Liters Gallons purged:	Image: Solution of the second secon
Purge water disposal method:	4" 4.500" 4.026" 0.66 5.51 6" 6.625" 6.065" 1.5 12.5
Time Depth to Vol. pH DO Water Purged	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ampling Data	
Date Collected (mo/dy/yr): 22119 Time Collected:	Location and Depth: Shallow agrifer Vadose Mw- 1733 AM ROM Weather:
Sample Collected with: Bailer Pump Other:	Type: Peristaltic
Vater Quality Instrument Data Collected with: Type: 🛛 Horiba U-22	riba U-50 Other:
	nated all tubing; disposable and/ordedicated silicon and poly tubing Sther:
	nange tight
ample Analyses	5
TPH-D (HCI) Chior / Fluor (unpres) COD / TPH-G (HCI) C BTEX (HCI)	
Iditional Information	
Types of Sample Containers: Quantity: Duplicate Sample I	Numbers: Comments:
40ml Vials 3	mw-10 for nw -9
	This is For MW-10
	2/22/19
ignature:	Date:

κ.

Project Number			C 28	10
Project Number:		Field Personnel:	G. Lisn	eros
Purge Data				
Well ID: Se	ecure: 🗍 Yes 📋 No	Well Condition/Damage Desci	ription:	· · · · ·
Depth Sounder decontaminated Prior to Placement	in Well: Yes 🔲 No			
Depth of water (from top of well casing):	7.26	Well Casing Type/Diameter/So	creened interval:	0.7-16.7
After 5 minutes of purging (from top of casing):	7.32	Volun	ne of Schedule 40 PVC P	ipe
Begin purge (time): [[06		Diameter O.D.	I.D. Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft)
End purge (time):		1 ¼" 1.660" 2" 2.375"	1.380" 0.08 2.067" 0.17	0.64 1.45
Gallons purged:		3" 3.500" 4" 4.500"	3.068" 0.38 4.026" 0.66	3.2 5.51
Purge water disposal method:	* 	6" 6.625"	6.065" 1.5	12.5
	pH DO ms/	Conductivity Turbidi		T
Water Purged 135 7.35 3.5 6	.08 1.07	0.553 0.	0 10.46 62	0.35
138 7.34 4.0 5	.55 0.00	0.546 0.0		0.350
1141 7.34 3.3 5	00.0 18.	0.545 0.0	ويتبايلهم الاختراري والمتحدث	0-349
1147 7.34 3.8 5	.87 0.00	0.547 0.0	10.06 109	0.350
				1
Sampling Data				
	19		las P	
Sample No: <u>MW-11-0728</u> Date Collected (mo/dy/yr): <u>2(28/19</u>	17	_ Location and Depth: VQ	dose - renc	her
1				
Type: Ground Water Surface Water Other.	•	Sample: Filtere	d Munfiltered Other:	
Sample Collected with: D Bailer B_Pump Other:		_ Type: <u>Peris</u>	hetic	
Type: Ground Water D Surface Water Other: Sample Collected with: Bailer Burner Other: Water Quality Instrument Data Collected with: Type:		_ Type: <u>Peris</u>	hetic	
Sample Collected with: D Bailer B_Pump Other:	Horiba U-22 Aftoriba		heltic	
Sample Collected with: D Bailer B-Pump Other:	□ Horiba U-22 ▲ Horiba (circle one): decontaminate		ledicated silicon and poly tubing	
Sample Collected with: D Bailer B-Pump Other: _ Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (□ Horiba U-22 ▲ Horiba (circle one): decontaminate		ledicated silicon and poly tubing	
Sample Collected with: Deliver Bailer Bailer Baump Other:	Horiba U-22 Aftoriba (circle one): decontaminate		ledicated silicon and poly tubing	
Sample Collected with: Deliver Bailer Bailer Bailer Collected with: Type: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	Horiba U-22 Proriba (circle one): decontaminate	_ Type: <u><u>Peris</u> UU-50 Other: ed <u>all</u> tubing; disposable and/or of <u><u>+</u>in<u>+</u><u>i</u><u>N</u><u>0</u><u>0</u> <u>+</u><u>in</u><u>+</u><u>i</u><u>N</u><u>0</u><u>0</u> OC (H2SO4) [] Ortho</u></u>	bedicated silicon and poly tubin Lon uphos (FILTER) Diss.	Other: Metals (HNO3
Sample Collected with: Deliver Bailer Bailer Baump Other:	Horiba U-22 Aftoriba (circle one): decontaminate	_ Type: <u><u>Peris</u> UU-50 Other: ed <u>all</u> tubing; disposable and/or of <u><u>+</u>in<u>+</u><u>i</u><u>N</u><u>0</u><u>0</u> <u>0</u>C (H2SO4) [] Ortho</u></u>	Hedicated silicon and poly tubing	Other:
Sample Collected with: Dailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (1) TPH-G (HCI) Chlor / Fluor (1) BTEX	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other:
Sample Collected with: Bailer Bailer Bailer Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (the second seco	Horiba U-22 Proriba (circle one): decontaminate		bedicated silicon and poly tubin Lon uphos (FILTER) Diss.	Other:
Sample Collected with: Dailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (1) TPH-G (HCI) Chlor / Fluor (1) BTEX	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other:
Sample Collected with: Bailer Bailer Bailer Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (the second seco	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other:
Sample Collected with: Bailer Bailer Bailer Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (the second seco	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other: Metals (HNO3
Sample Collected with: Bailer Bailer Bailer Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (the second seco	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other: Metals (HNO3
Sample Collected with: Bailer Bailer Bailer Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (the second seco	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other: Metals (HNO3
Sample Collected with: Bailer Bailer Bailer Bailer Calender Other: Water Quality Instrument Data Collected with: Type: Sample Description Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (tr TPH-G (HCI) Chlor / Fluor (tr Types of Sample Containers: Quantity: SOB I	Horiba U-22 Afloriba (circle one): decontaminate		Pedicated silicon and poly tubing	Other: Metals (HNO3
Sample Collected with: Dailer @-Pump Other:	Horiba U-22 Afloriba (circle one): decontaminate		Phos (FILTER) Diss.	Other:
Sample Collected with: Bailer Bailer Bailer Bailer Calender Other: Water Quality Instrument Data Collected with: Type: Sample Description Procedure: Sample collected with (Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (tr TPH-G (HCI) Chlor / Fluor (tr Types of Sample Containers: Quantity: SOB I	Horiba U-22 Afloriba (circle one): decontaminate		Pedicated silicon and poly tubing	Other:

Project Number: Field Personnel: P.O.	Project Name: POL- TPH	Da	ate of Colle		119	
Purge Data Well Condition/Damage Description: Image Description: <th< th=""><th></th><th></th><th>Field Perso</th><th>nnel: P.O.</th><th>111</th><th></th></th<>			Field Perso	nnel: P.O.	111	
Depth Sounder decontaminated Prior to Placement in Weit: [2] Yes: □ No One Casing Volume (gal):	Purge Data	15				
Depth of water (from top of well cesting): 13.34' Well Cesting Type/Disiniter/Screwerd Intervat: 4'' P/C 2227' 'log After 5 initiates of purging (from top of cesting): 13.33' Image: Property initiates of purging (from top of cesting): 13.53' Begin purge (from): 14.24 Image: Property initiates of purging (from top of cesting): 10.00000000000000000000000000000000000	Well ID: MW - 12 Se	cure: 👮 Yes 🔲 No 🛛 Well	Condition/Dam	age Description:	que	
After 5 minutes of purples (from top of casing): [3,:33' Volume of Schedule 40 PVC Pipe Begin purges (Ime): [4]:24 Dameter 0.0 I.0 (Marine PL) Weight of Weight o		2				
Begin purge (tme): 1359 Diameter 0.0 1.0. Weight of Weight o	Depth of water (from top of well casing): 13.34	Well	Casing Type/Di	ameter/Screened I	nterval: <u>4" PVC</u>	22-27 bg
Description Contract Contret Contract Contract		.33'		Volume of S		
Exp puge time; 1		· · · ·			(Gal/Linear FL)	
Calcobs project	1		2"	2.375" 2.067"	0.17	
Purge wide deposal method: CMUM PUrged PH D0 12 Conductivity in Turbidity NTN Terms (C) ORP #V Comments 1403 13:33' 1L 10:85 0.94 0.317 11.20 9 1408 13:33' 1L 10:85 0.94 0.317 11.33 -1 1413 13:33' 2L 10:45 0.641 0.318 0.1 11.33 -1 1418 13:33' 3L 6.91 0.3417 0.0 11.53 -11 110 13:33' 1L 6.91 0.3417 0.0 11.53 -11 1110 13:34' 1L 6.91 0.3417 0.0 11.53 -11 1110 13:34' 1L 6.91 0.3417 0.0 11.53 -11 3mple No: MW-12-022719 Location and Deph: ShallOw 94/16 34/16 sample Collected (moldyly): 212719 Location and Deph: ShallOw 94/16 34/16 sample Collected with: Balle plus of the plu	Gallons purged:gal		4"	4.500" 4.026"	0.66	
1403 13.33: 1 1 1	Purge water disposal method: drum	L	6"	6.625" 6.065"	1.5	12.5
1408 13.33' 2 L 6.45 0.66 0.548 0.1 11.33 -1 1413 15.33' 3 L 6.47 0.57 0.547 0.0 11.53 -14 1413 15.33' 3 L 6.47 0.57 0.547 0.0 11.53 -14 1410 13.34' 4 L 6.47 0.51 0.347 0.0 11.53 -14 1410 13.34' 4 L 6.47 0.51 0.347 0.0 11.71 -27 ampling Data Sample No: Main Park 0.0 11.71 -27 -27 Date Collected (molegy): 2.127 19 Time Collected: 1420 AM git PM Wester: for the for th	Water Purged	pH DO 🚆 Cor	nductivity 25		Temp * ORP #	Comments
$ 4 13$ 13.33° $3L$ 6.97 0.577 0.5477 0.0 11.53 -14 $ 4 10$ 13.34° $4L$ 6.97 0.517 0.3477 0.0 11.53 -14 $ 4 10$ 13.34° $4L$ 6.97 0.517 0.3477 0.0 11.53 -14 $ 4 10$ 13.34° $4L$ 6.97 0.517 0.3477 0.0 11.53 -14 $ 4 10$ 13.34° $4L$ 6.977 0.517 0.0177 11.53 -14 $ 4 10$ 13.34° $4L$ 6.977 0.5477 0.01177 11.53 -14 $ 4 10$ 13.34° 12.727 19 10.3477 0.01177 11.53 -14 $ 5000000000000000000000000000000000000$						
HIB 13.34* H Log + 0.51 0.34+ 0.0 HSS -H ampling Data						
ampling Data Sample No: MtW-12-022719 Date Collected (moldsyly): 2/2719 Time Collected: [420] Sample: Differed Sample Collected with: Bailer gif Pump Other: Sample Collected with: Date Collected with: Type: Horiba U-22 gif Horiba U-50 Other. Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing: disposable and/or destrated silicon and poly tubing: Other: Sample Description (Color, Turbidity, Odor, Other): [lear w] Slight Coppery Coloring, V: Slight TPH ofor, mild efferices Sample Analyses TPH-0 (HCI) [2] Chior / Fluor TPH-6 (HCI) [2] Total Metals (HNO3) [] Yees of Sample Containers: Quaritity: Duplicate Sample Numbers: Comments: None None None None None Multication Molder A None Nore						-
Sample No: MUX-12-022719 Location and Depth: Shallow ag wifer Date Collected (moldylyr): 2/27 19 Time Collected: 1420 I AM BLPM Weather: By Collected: Cold Dype: © Ground Water © Surface Water Other:						
Sample No: MUX-12-022719 Location and Depth: Shallow aguifer Date Collected (moldy/ry): 2/27/19 Time Collected: 1420 I AM BLPM Weather: By Crack, cold Date Collected (moldy/ry): 2/27/19 Time Collected: 1420 I AM BLPM Weather: By Crack, cold Dype: Ground Water I Surface Water Other:						
Sample No: MUX-12-022719 Location and Depth: Shallow aguifer Date Collected (moldy/ry): 2/27119 Time Collected: M 20						
care concepts (indidysy); 212711 Time Collected: 1420 AM git PM Weather: 601 ype: Gi Ground Water Surface Water Other:	ampling Data					
And e Collected (Invologie)? 212711 Time Collected: 1420 AM BLPM Weather: 6Verceat, Cold yre: 6 Ground Water Sample: Filtered fil Unfiltered Other:		Lo	cation and Dept	: shallow	v aquifer	
ype: Ground Water Surface Water Other: Sample: iample Collected with: Bailer iample Collected with: Type: peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Supple: Coloring: Vision 1 Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Supple: Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristalitic. Type: Peristali	Date Collected (mo/dy/yr): 2/27/19	_ Time Collected: 14 2D		PM Weathe	evercast, co	d
iample Collected with: [] Bailer @ Pump Other:						
Water Quality Instrument Data Collected with: Type: Horiba U-22 P Horiba U-32 P Horiba U-50 Other: ample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: ample Description (Color, Turbidity, Odor, Other): <u>Clear W Slight Coppery Coloring</u> , V. Slight TPH of or mild effension ample Analyses TPH-D (HCI) Chor / Fluor (unpres) COD / TOC (H2SO4) Orthophos (FILTER) Diss. Metals (HNO3) Diss. Metals (HO) Diss. Diss. Metals (HO) Diss. Diss. Metals (HO) Diss. Diss. Metals (HO) Diss. Diss. Diss. Metals (HO) Diss. Dis						
sample Decon Procedure: Sample collected with (circle one): decontaminated <u>all</u> tubing; disposable and/or <u>dedicated silicon and poly tubing</u> Other:					•	
Sample Description (Color, Turbidity, Odor, Other): Clear w Slight Coppery Coloring, V. Slight TPH of or, mild efferivere ample Analyses TPH-D (HCI) C Chlor / Fluor (unpres) COD / TOC (H2SO4) C Orthophos (FILTER) Diss. Metals (HNO3) C TPH-G (HCI) C BTEX (HCI) C Total Metals (HNO3) TKN/Phos (N2SO4) VOCs VOCs (HCI) C Idditional Information Total Metals (HNO3) C Comments: Comments: None SL Amber I None Image: Comments: None Image: Comments: Mathult Mathult Image: Comments Image: Comments Image: Comments Image: Comments						0#
ample Analyses TPH-D (HCI) I Chor / Fluor (unpres) COD / TOC (H2SO4) Corthophos (FILTER) Diss. Metais (HNO3) Corthophos TPH-G (HCI) I BTEX BTEX (HCI) I Total Metais TKN/Phos (N2SO4) VOCs VOCs (HCI) Cortection Iditional Information Information Information Information Information SL Ambler Information Information Information SL Ambler Information Information Information Information Information SL Ambler Information Information Information Information Information Information Infor						
TPH-D (HCI) I Chlor / Fluor (unpres) COD / TOC (H2SO4) Corthophos (FILTER) Diss. Metals (HNO3) Corthophos TPH-G (HCI) I BTEX (HCI) I Total Metals (HNO3) Corthophos (N2SO4) VOCs (HCI) Cortes Iditional Information Information Comments: Comments: Comments: SL Amber I None Image: Containers: None Image: Containers: Quantity: Duplicate Sample Numbers: Comments: Image: Comments: Image: Containers: None Image: Containers: None Image: Containers: Image: Containers: Image: Containers: None Image: Containers: None Image: Containers: Image: Containers: Image: Containers: None Image: Containers: None Image: Containers: Image: Containers: Image: Containers: None Image: Containers: Image: Containers: Image: Containers: Image: Containers: Image: Containers: None Image: Containers: Image: Containers: Image: Containers: Image: Containers: Image: Containers: Image: Containers: Image: C		tea wy stight ce	pery cal	pring, v. sin	nt trit ador	mila effense
TPH-G (HCI) BTEX (HCI) Total Metals (HNO3) TKN/Phos (N2SO4) VOCs (HCI) Iditional Information ypes of Sample Containers: Quantity: Duplicate Sample Numbers: Comments: OmL VOA with Cl	inpre Analyses					
Interview Inter	TPH-D (HCI) 💓 Chior / Fluor (u	npres) 🗌 COD / TOC	(H2SO4) 📋	Orthophos	(FILTER) Diss.	Metals (HNO3)
ypes of Sample Containers: Quantity: Duplicate Sample Numbers: Comments: SL Amber 1 None Image: Sample Numbers: Comments: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: Image: Sample Numbers: ML VOA w/HCI 3 Image: Sample Numers: Image: Sample Numbers: </td <td>ТРН-G (НСІ) 💆 ВТЕХ</td> <td>(HCI) X Total Metais</td> <td>(HNO3) 🔲</td> <td>TKN/Phos</td> <td>(N2SO4)</td> <td>VOCs (HCI)</td>	ТРН-G (НСІ) 💆 ВТЕХ	(HCI) X Total Metais	(HNO3) 🔲	TKN/Phos	(N2SO4)	VOCs (HCI)
<u>SL Amber I None</u> <u>oml VOA withti 3</u> <u>Oml VOA withti 4</u>	ditional Information					
DML VOA w/HCI 3	Types of Sample Containers: Quantity:	Duplicate Sample Numbers	:		Comments:	
D M t l t		None				
ignature: Date: 2/27/19	me voa w HCI 3		_			
gnature: Date: 2/27/19						
gnature: Date: 2/27/19						
ignature: Date: 2/27/19						
ignature: Date: 2/27/19						
Ignature: Date: 2/27/19		1 1				
	D M +	1.4				

.

	H	Date of Collection: Z/28/19					
		Field Personnel: G. Cisnens					
Purge Data							
Well ID:MW - 13	Secure: 🛛 Yes 🗋 No	Well Condition/Da	mage Description:	Gord			
Depth Sounder decontaminated Prior to Pla	cement in Well: 2 Yes DNo	One Casing Volu	ne (gal):				
Depth of water (from top of well casing):	10.85	Well Casing Type	Diameter/Screened I	nterval: Z ¹	13-18'69		
After 5 minutes of purging (from top of casin	g): 11.55		Volume of S	chedule 40 PVC P	6		
Begin purge (time): (070		Diameter	0.D. I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)		
End purge (time):		14:	1.660" 1.380 2.375" 2.067		0.64		
Gallons purged: <u>4.5</u>		4.	3.500" 3.068 4.500" 4.026	0.38	3.2 5.51		
Purge water disposal method:	Drui,	6"	6.625" 6.065	15	12.5		
Time Depth to Vol.2	pH DO/L	- m S/cn Conductivity	NT Turbidity		Comments		
1047 11-41 3.0	5.79 0.00	0.698	14	10.81 -28	1447		
1050 11.30 3.5	5.86 0.00	0.696	5.2 /	0.77 -33	0.445		
105 1126 3.8	5.920.00	0.698	3.7 /	10.74 - 27	0.446		
1056 11.14 4.0	5-95 0.00	0.699	291	0.49 -40	0.442		
1057 11.13 4.4	2.76 0.00	0.700	2.2 1	1.50 -42	0.448		
				<u></u>			
					-		
Sampling Data							
Sample No: <u>MW - 13 - 0</u>	22819	Location and De	pth: <u>Vadose</u>				
Date Collected (mo/dy/yr): 22	Time Collected:	1100 EAN	PM Weathe	- SUNNY 3	8		
Type: Cround Water Surface Water	Other:	Samp	le: 🛛 Filtered 🕰 Un	filtered Other:			
Sample Collected with: Bailer							
	Turner III Hariba (1.22) and a			•			
Water Quality Instrument Data Collected with:	Type. I nonoa 0-22 prejor	Da U-SU Utner:					
Water Quality Instrument Data Collected with: Sample Decon Procedure: Sample collecte					01		
Sample Decon Procedure: Sample collecte	d with (circle one): decontamin	ated all tubing; dispose	able and/or dedicated	silicon and poly tubing			
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O	d with (circle one): decontamin		able and/or dedicated	silicon and poly tubing			
Sample Decon Procedure: Sample collecte	d with (circle one): decontamin	ated all tubing; dispose	able and/or dedicated	silicon and poly tubing			
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses	ther):	ated <u>all</u> tubing; dispose	able and/or dedicated	silicon and poly tubios	<i>•</i>		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses Chlor / Flue	d with (circle one): decontamin ther):	ated <u>all</u> tubing; dispose <u>らん Co (or</u> TOC (H2SO4) []	able and/or dedicated for rust	(FILTER) Diss.	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses PH-D (HC) Chlor / Flue TPH-G (HC) F Chlor / Flue BTE	ther): Brownin ther): COD /	ated <u>all</u> tubing; dispose <u> </u>	able and/or dedicated for rust	silicon and poly tubios	<i>•</i>		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses PH-D (HC) Chlor / Flue TPH-G (HC) F Chlor / Flue BTE Additional Information	d with (circle one): decontamin ther):	ated <u>all</u> tubing; dispose <u>らん Co (or</u> TOC (H2SO4) []	able and/or dedicated for rust	(FILTER) Diss.	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>TPH-D</u> (HC) Chlor / Flue TPH-G (HC) Chlor / Flue BTE Additional Information Types of Sample Containers: Quant	d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> て</u> TOC (H2SO4) [] etails (HNO3) []	able and/or dedicated for rust	(FILTER) Diss.	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue <u>TPH-G</u> (HC) ETE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>TPH-D</u> (HC) Chlor / Flue TPH-G (HC) Chlor / Flue BTE Additional Information Types of Sample Containers: Quant	d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue <u>TPH-G</u> (HC) ETE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue <u>TPH-G</u> (HC) ETE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue <u>TPH-G</u> (HC) ETE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue TPH-G (HC) Chlor / Flue BTE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses TPH-D (HCL) Chlor / Flue TPH-G (HCL) Chlor / Flue BTE Additional Information Types of Sample Containers: Quant SOOM Amber (LOMI Vials 3	d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubing A I O O A (FILTER) Diss. (N2SO4) D Comments:	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses TPH-D (HCL) Chlor / Flue TPH-G (HCL) Chlor / Flue BTE Additional Information Types of Sample Containers: Quant SOOM Amber (LOMI Vials 3	d with (circle one): decontamin ther): Brownin or (unpres) COD / X (HCI) Total M	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubios	Metals (HNO3)		
Sample Decon Procedure: Sample collecte Sample Description (Color, Turbidity, Odor, O Sample Analyses <u>PH-D</u> (HC) Chlor / Flue <u>TPH-G</u> (HC) ETE Additional Information Types of Sample Containers: Quant SOOM Ambed (d with (circle one): decontamin ther): Brownu or (unpres) D COD / X (HCI) Total M tity: Duplicate Sample N	ated <u>all</u> tubing; dispose <u> らん Co (の</u> <u> S ん Co (の</u> TOC (H2SO4) etails (HNO3)	able and/or dedicated for rust	silicon and poly tubing A I O O A (FILTER) Diss. (N2SO4) D Comments:	Metals (HNO3)		

Project Name: POL-TPH	×	Date of Colle	ction: 2/2	7/19	
Project Number:		Field Perso	onnel: P.O.		
Purge Data	`		2		
Well ID: <u>MW - 14</u> s	ecure: 🙀 Yes 🔲 No	Well Condition/Dam	age Description:	fine	
Depth Sounder decontaminated Prior to Placement		One Casing Volume			
Depth of water (from top of well casing): 5.78	8	Well Casing Type/D	iameter/Screened	Interval: 4" PVC	1-12 bgs
After 5 minutes of purging (from top of casing):	.93'		Volume of	Schedule 40 PVC F	
Begin purge (time): 15:10		Diameter	0.D. 1.D	(Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time):		1 1/4" 2"	1.660" 1.38 2.375" 2.06	7" 0.17	0.64 1.45
Gallons purged: 0.8 gal		3" 4"	3.500" 3.06 4.500" 4.02	6* 0.66	3.2 5.51
Purge water disposal method:		6"	6.625" 6.06	5" 1.5	12.5
Time Depth to Vol. Water Purged	pH DO mg	Conductivity		Temp 🕐 ORP 🕈	Comments
		0.450	0.0	10.39 80	_
		0.450	0.0	<u>10.39 82</u>	
		<u>2.451</u> 2.451	0.0	10.37 <u>80</u> 10.27 80	
		<u></u>	0.0	<u>0.27</u> <u>00</u>	
ampling Data	9.				
Sample No: <u>MW - 14 - 022719</u>		Location and Dep	h: Vados	e	
Date Collected (mo/dy/yr): 22719	Time Collected: 153	3 DAM	12 PM Weat	E Cloudy Col	4
ype: 🕅 Ground Water 🔲 Surface Water Other:					
ample Collected with: 🗂 Bailer 🕵 Pump Other:					
Vater Quality Instrument Data Collected with: Type:		1			
• • •	(circle one): decontaminated	<u>all</u> tubing; disposab	le and/or dedicate	ed silicon and poly tubing	Other:
ample Description (Color, Turbidity, Odor, Other):	clear no ode	W	-		
Imple Analyses					,
TPH-D (HCI) 💆 Chlor / Fluor (1	unpres) COD / TOC	(H2SO4) 🗖	Orthophos	(FILTER) Diss	Metals (HNO3)
трн-с (нсі) 🕅 втех	(HCI) 🛒 Total Metals	(HNO3)	TKN/Phos	(N2SO4)	VOCs (HCI) [
ditional Information					
ypes of Sample Containers: Quantity:	Duplicate Sample Numb	pers:		Comments:	
5 L Amber 1 OmL VOA ul HCI 3	None				
ME VUM WI MUI 3					
gnature: DubOstil	H		Dat	te: 2/27/19	

.

ş

Project Name: POL-TPH	Date of Collection: 777 M
Project Number:	Field Personnel:
Purge Data	- G CISICION
Well ID:	Well Condition/Damage Description:
Depth Sounder decontaminated Prior to Placement in Well: \Box Yes \Box No Depth of water (from top of well casing): 13.82 After 5 minutes of purging (from top of casing): 13.82 Begin purge (time): 13.82 End purge (time): 1414 Link C Gailon's purged: 6.2 (idm Purge water disposal method: 0 C 1 Mater 13.83 4 5.13 0.00 1405 13.83 4 5.13 0.001408 13.85 $5-1$ 5.22 0.001411 13.87 5.5 5.26 0.001414 13.87 5.5 5.26 0.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Date Collected (mo/dy/yr):	Type:
	- orange that wo color wo odn
TPH-D (HCI) Chlor / Fluor (unpres) COD / TC TPH-G (HCI) HCI CHlor (Unpres) COD / TC TPH-G (HCI) HCI Total Met dditional Information	TOC (H2SO4) C Orthophos (FILTER) Diss. Metals (HNO3)
Types of Sample Containers: Quantity: Duplicate Sample Nun SOOm Amber 1 Yum Vous 3	Umbers: Comments:

.

GROUNDWATER OR SURFACE WATER SAM				
Project Name: POL - TPH	Date of Coll	ection: 2/2	7/19	
Project Number:	Field Pers	ionnel: <u>p.o.</u>		
Purge Data				
Well ID:	Well Condition/Da	mage Description: <u>1</u>	3ud - Needs -	to be replaced
Well box has dropped 0.4' So PVC shchir		lcap does n		
Depth Sounder decontaminated Prior to Placement in Well: X Yes IN		ne (gal):		
Depth of water (from top of well casing):	Well Casing Type/	Diameter/Screened In	terval: 4"PVC/4	1.5-14.5 bgs
After 5 minutes of purging (from top of casing): 6.81			chedule 40 PVC P	0
Begin purge (time): 14 34	Diameter	O.D. I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 150 V	- 1 1/4"	1.660" 1.380" 2.375" 2.067"	0.08	0.64
Gallons purged: 1.25 gal		3.500" 3.068" 4.500" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method: drum	6*	6.625" 6.065"	1.5	12,5
Time Depth to Vol. pH DO Water Purged			Temp C ORP	Comments
$\frac{ 44 }{ 44 } \frac{ 6.9 }{7.00'} \frac{ 1 }{2 } \frac{7.06}{6.82} \frac{3.60}{2.43}$	0.348	0.0 1	1.27 -27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.346 0.346		.35 + 4	
H56 7.21 4L 6.84 3.12	0.346		<u>1.33</u> <u>30</u> 1.27 47	-
1501 7.29' 5L 4.85 3.55	0.346		1.22 59	-
			 <u></u>	
Sampling Data	·			
Sample No: MW - 10 - 022719	Location and De	pth: Vadose	percha a	quiter 2
Date Collected (mo/dy/yr): 227/19 Time Collected:	1502 DAM	PM Weather	overcast. u	d
Type: 🕅 Ground Water 🔲 Surface Water Other:				
Sample Collected with: 🗖 Bailer 🙀 Pump Other:				
Water Quality Instrument Data Collected with: Type: Horiba U-22 🕅 Horiba				
				*
Sample Decon Procedure: Sample collected with (circle one): decontamin				Other:
Sample Description (Color, Turbidity, Odor, Other):	e coppery fl	lock, no oc	DY	10
ample Analyses				1
TPH-D (HCI) 🚺 Chlor / Fluor (unpres) 🔲 COD /	/ TOC (H2SO4) 🗌	Orthophos		
TPH-G (HCI) 🖾 BTEX (HCI) 🔯 Total N	(TKN/Phos	(FILTER) Diss.	Metals (HNO3)
dditional Information		1047 1105	(112304)	
Types of Sample Containers: Quantity: Duplicate Sample 1	Numbers:		Comments:	
10 mL VOA w/ HCI				
		-		
Signature: photostunt		Date	2/27/19	
-: Technical/Field Prep/Field Forms/Groundwater Sample				

F:\Technical\Field Prep\Field Forms\Groundwater Sample Collection Form.doc

Project Name: POL-TPH	Date of Collection: 2/28/2019
Project Number:	Field Personnel: P.O.
Purge Data	
Well ID: MW-17 Secure: Ves INo	Well Condition/Damage Description:
Depth Sounder decontaminated Prior to Placement in Well: 🕅 Yes 🔲 No	One Casing Volume (gal):
Depth of water (from top of well casing): 7.80'	Well Casing Type/Diameter/Screened Interval: 4" 7.5-17.5'
After 5 minutes of purging (from top of casing): 7.95	Volume of Schedule 40 PVC Pipe
Begin purge (time): 13:05	Diameter O.D. I.D. Volume Weight of Water (Gal/Linear Ft.) (Lbs/Lineal Ft.)
End purge (time):	1 ¼" 1.660" 1.380" 0.08 0.64 2" 2.375" 2.067" 0.17 1.45
Gallons purged:	3" 3.500" 3.068" 0.38 3.2 4" 4.500" 4.026" 0.66 5.51
Purge water disposal method:	6" 6.625" 6.065" 1.5 12.5
Time Depth to Vol. pH DO	Conductivity ms Turbidity NTU Temp C ORP V Comments
$\frac{3:15}{3:20} \frac{B.02'}{8.04'} \frac{2L}{2.75L} \frac{7.47}{7.19} \frac{6.80}{5.87}$	0.340 0.0 11.82 -47
$\frac{3:20}{3:25} \frac{8.04'}{8.05'} \frac{2.75 \ \text{L}}{3.5 \ \text{L}} \frac{7.19}{7.24} \frac{5.87}{5.73}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3:30 B.06' 4.25L 7.22 5.63	0.339 0.0 11.79 -5
ampling Data	
ample No: MW - 17 - 022819	Location and Depth: VACOSE
ate Collected (mo/dy/yr): 22319 Time Collected: 13	:33 AM OPPM Weather: Overcast
	Sample: D Filtered D Unfiltered Other:
ample Collected with: Bailer Pump Other:	
/ater Quality Instrument Data Collected with: Type: 🗆 Horiba U-22 📷 Horiba	
	ed all tubing; disposable and/or dedicated silicon and poly tubing Other:
ample Description (Color, Turbidity, Odor, Other): Clear, NO oc	
mple Analyses	
TPH-D (HCI) 💐 Chlor / Fluor (unpres) 🗌 COD / TO	DC (H2SO4) D Orthophos (FILTER) Diss. Metals (HNO3) [
TPH-G (HCI) 🕅 BTEX (HCI) 📓 Total Metal	als (HNO3) 🔲 TKN/Phos (N2SO4) 🗍 VOCs (HCI) [
ditional Information	
ypes of Sample Containers: Quantity: Duplicate Sample Nurr	nbers: Comments:
.5L Amber 1 None	
	· · · · · · · · · · · · · · · · · · ·
	Date: 2/28/19

Collection Form.doc

	Project Name: POL-TPH	Date of Collection:
	Project Number:	Field Personnel: G. Cisnus 5
	Purge Data	
)	Well ID: MW - 18 Secure: Yes No	Well Condition/Damage Description:
	Depth Sounder decontaminated Prior to Placement in Well: Yes INo	One Casing Volume (gal):
	Depth of water (from top of well casing): . O	Well Casing Type/Diameter/Screened Interval: 8-18' bogs
	After 5 minutes of purging (from top of casing):(1.13	Volume of Schedule 40 PVC Pipe
	Begin purge (time): [36]	Diameter O.D. I.D. Volume Weight of Water (Gal/Linear Ft.) (Lbs/Lineal Ft.)
	End purge (time): 342	- 2" 1.660" 1.380" 0.08 0.64 2" 2.375" 2.067" 0.17 1.45
	Gallons purged: 3.2	- 4" 3.500" 3.068" 0.38 3.2 - 4" 4.500" 4.026" 0.66 5.51
	Purge water disposal method:	6" 6.625" 6.065" 1.5 12.5
	Time Depth to Vol. pH DO Water Purged	Conductivity Turbidity Temp ORP Comments
29	1.21 1.5 5.87 3.16	0.182 3.8 9.54 72 0.119
	1332 11.25 1.8 5.86 0.98	0.180 1.8 9.57 81 0.117
	1335 11.26 2.3 5.87 0.50	0.180 0.6 9.65 94 0.117
	1338 1.77 2.8 5.75 0.00	0.180 0.5 9.67 97 0.180
	<u> 501 1.20 5.0 5.15 0.00</u>	6.180 0.6 9.70 104 0.117
	Sampling Data	
	Sample No: MW-18-022819	
	Date Collected (mo/dy/yr): 228 Time Collected: 1	344 DAM DPM Weather: SUNM
	Type: D Ground Water D Surface Water Other.	Sample: Filtered I Unfiltered Other:
	Sample Collected with: Bailer	
	Water Quality Instrument Data Collected with: Type: Horiba U-22 Horiba	
	Sample Decon Procedure: Sample collected with (circle one): decontaminat	ted all tubing; disposable and/or dedicated silicon and poly tubing Other:
	Sample Description (Color, Turbidity, Odor, Other): Orense +;	Nt, No odor
1	Sample Analyses	
	TPH-D (HCI) Chlor / Fluor (unpres) COD / T	OC (H2SO4) Orthophos (FILTER) Diss. Metals (HNO3)
3	TPH-G (HCI) BTEX (HCI) K Total Me	
7	Additional Information	tais (HNO3) TKN/Phos (N2SO4) VOCs (HCI) [
	Types of Sample Containers: Quantity: Duplicate Sample Nu	Imbers: Comments:
2	500ml Ambes 1	
-	40ml Urds 3	
!		
-		
-		
-	- Ali C	· · · · · · · · · · · · · · · · · · ·
	Signature:	D-4
		Date:

Project Name: POL - TPH		Date of Colle	ection: 2	27/2019		
Project Number:		Field Perso	onnei: p.).		
Purge Data			2000			
Well ID: MW-19 Secur	e: 🚺 Yes 🔲 No	Well Condition/Dan	nage Descriptio	m: good		
				0		
Depth Sounder decontaminated Prior to Placement in W	Vell: 🗌 Yes 🔲 No	One Casing Volum				
Depth of water (from top of well casing): 12.93'		Well Casing Type/C	Diameter/Scree	ned interval: 📩	<u> " PVC I</u>	3.5-18.5'
After 5 minutes of purging (from top of casing): 12.9	3'	-	Volume	of Schedule		
		Diameter		I.D. (Gal	/olume /Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 41 13:46		1 ½" 2" 3"	2.375* 2	.380*	0.08	0.64 1.45
Gallons purged: 0.75 gal	2	- 4" 6"	4.500" 4	.068"	0.38	. 3.2 5.51
Purge water disposal method: 0 num				.065*	1.5	12.5
Time Depth to Vol. pH Water Purged	DO 🏹	Conductivity	Turbidity N	Temp C	ORP	Comments
1322 12.93' IL 65		0.522	0.0	12.18	-13	
1327 12.93' 2L 6.50		0.516	0.0	12.42	+3	
<u>332 12.93' 2.5L 6.44</u> 337 "" 3.5L 6.44		0.508	0.0	12.59	17	
<u>337 "" 3.5L 6.46</u>	0.59	0.504	0.0	12.79	27	
ampling Data						
Sample No: MW - 19 - 022719		Location and De-	shall	0402 0-	w.For	
Date Collected (mo/dy/yr): 2 27 19	Time Collected:			uw ug	in the off	11 Installer
	ooneoleo.		Martin AA		(10)	in puray
Type: 🔯 Ground Water 🔲 Surface Water Other:		Sample		Untiltered O	ther:	
Sample Collected with: Bailer Pump Other:					•	
Vater Quality Instrument Data Collected with: Type:						
Sample Decon Procedure: Sample collected with (circ			ble and/ordedi	cated silicon an	d poly tubiog	Other.
Sample Description (Color, Turbidity, Odor, Other):	ear, no ac	lor				
ample Analyses						1
TPH-D (HCI) 🖬 Chior/Fluor (unp						
			Orthophe	-		Metals (HNO3)
	Cl) 👿 Total Met	tals (HNO3)	TKN/Pho	os (N2SO4)		VOCs (HCI) [
ditional Information						
	uplicate Sample Nu		1 1.04		nents:	
SLAmber 1 DmL VOA W/ HCI 3	None	a	l dept	h = 18.1	00	
	,					
	1					
ignature: pmhOstule	+	1	I	Date: <u>2/2</u> :	7/19	

.

Project Name: POL - TF	14	Date of Colle		5/19	
Project Number:		Field Perso			
Purge Data	540				
Well ID: MW-20	Secure: Yes INO	Well Condition/Dan	nage Description:	The, inside al	f well is slin
	Depth Sounder decontaminated Prior to Placement in Well: Ves DNo				
Depth of water (from top of well casing):	5.27'	Well Casing Type/D	iameter/Screened II	nterval: <u>4"/1</u>	.5-21.5'
After 5 minutes of purging (from top of casing	<u>): 15.44'</u>			chedule 40 [′] PVC F	
Begin purge (time): 12: 019		Diameter	O.D. I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time):		1 1/4" 2"	1.660" 1.380" 2.375" 2.067"	0.08 0.17	0.64
Gallons purged:		3" 4"	3.500" 3.068" 4.500" 4.026"	0.38	3.2 5.51
Purge water disposal method:		6"	6.625" 6.065"	1.5	12.5
Time Depth to Vol. Water Purged	pH DO Mg	Conductivity ms		Temp C ORP	Comment
12:24 15.44 075L		0.923		12.24 -11	
<u>12:29 15.62' 1.5L</u> 12:34 15.71' 2.25L	<u>7.06 1.01</u> 7.17 0.95	0.926		<u>2.37 -81</u> 2.42 -94	
2:39 15.77' 3L	7.23 1.05	0.937		2.45 -102	
12:44 5.83' 3.75L	7.25 1.30	0.942		2.46 -108	
			-		
Sampling Data	4				
Sample No: <u>MW - 20 - 022819</u>		Location and Dep	th: Shallow	s aquifer	M
Date Collected (mo/dy/yr): 228/19	Time Collected: 2	:45 DAM	PM Weathe	overcast co	old
Type: 🕵 Ground Water 🔲 Surface Water					
Sample Collected with: 🛛 Bailer 💆 Pump					- ÷.,
Water Quality Instrument Data Collected with					
Sample Decon Procedure: Sample collecte					
Sample Description (Color, Turbidity, Odor, O	ther): Brown discol	oration, she	een blebs,	mod-strong	petrol. ado
Sample Analyses				/	
TPH-D (HCl) 💆 Chlor / Flue	or (unpres) 🗌 COD / To	0Ċ (H2SO4) □	Orthophos	(FILTER) Dis	s. Metals (HNO3)
TPH-G <u>(</u> HCI) 🛄 BTE	X (HCI) 🛃 Total Mei	als (HNO3) 🗌	TKN/Phos	(N2SO4)	VOCs (HCI)
Additional Information					
Types of Sample Containers: Quan	ity: Duplicate Sample Nu	mbers:	7 0	Comments:	
0.5 L Amber 1	None	Rem	oved absor	went sock	
40 mL VOA w HCI 3		0.			
				ell has shee	
		23	ho measur	able produ	ct.
		Shee	n in purg	e water (n	netallic)
Signature: DubOt	let		Date	2/28/19	
			Udu	- LIVII	

C

. . .

Project Name: POL - TPH	Date of Colle	ection:	2/28/-	2019	
Project Number:	Field Perso	onnel:	20.		
Purge Data					
Well ID: <u>MW - 22</u> Secure: <u>M</u> Yes □ No	Well Condition/Dan	nage Descri	iption:	pod	
Depth Sounder decontaminated Prior to Placement in Well: 1 Yes Do	One Casing Volum				
Depth of water (from top of well casing): 23.97	Well Casing Type/	Diameter/Sc	reened Inter	val: <u>4"pvc</u>	20.2 - 30.2
After 5 minutes of purging (from top of casing): 24. 10	-	Volum	ne of Sch	edule 40 PVC P	
Begin purge (time): 07:50	Diameter	0.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 00:27	- 2".	1.660" 2.375"	1.380" 2.067"	0.08	0.64
Gallons purged: 13 1.1 gal	- 4" 6"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method:	-	6.625"	6.065*	1.5	12.5
Time Depth to Vol. pH DO	Conductivity	Turbidit	ίγ λητ ά Το	emp 🍋 🛛 ORP 🕈	Comments
07:55 24.10' 0.75L 7.08 2.55	0.245	0.0		1.14 216	
08:00 24.16' 1.56 6.60 2.23	0.239	0.0		.67 166	
08:105 24.21' 2.25L 6.48 2.39 08:10 24.23' 3L 6.43 3.51	0.237	0.0		53 127	
3:15 24.23' $3.75L$ (6.41 6.97	0.240	0.0		<u>54 93</u> 46 <u>76</u>	-
18:20 " " 4.5L 6.39 0.70	0.244	0.0	13	44 59	
Sampling Data	-				
Sample No: <u>MW - 22 - 022819</u>	Location and Dep	oth:			
Date Collected (mo/dy/yr): 2/28/2019 Time Collected: 0					d
Type: 🕅 Ground Water 🔲 Surface Water Other:					
Sample Collected with: Bailer Pump Other:					
Water Quality Instrument Data Collected with: Type: Horiba U-22 is Horit				2.0	
Sample Decon Procedure: Sample collected with (circle one): decontamina			edicated sili	con and poly tubing	Other.
Sample Description (Color, Turbidity, Odor, Other):	sarerit oolo				
ample Analyses	+				
TPH-D (HCI) 🔯 Chior / Fluor (unpres) 🗖 COD / 1	TOC (H2SO4)	Ortho	ohos //	FILTER)	. Metals (HNO3)
TPH-G (HCI) 🔯 BTEX (HCI) 🔯 Total Me	(/	TKN/		12504)	VOCs (HCI)
dditional Information			~		
Types of Sample Containers: Quantity: Duplicate Sample No.		- 0	1.91	Comments:	: 0
5 L Amber 1 None		ng bai	ely n	paches int	
ID ML VOA W/ HU 3	- Mau	j ne	d'to	replace to	ubing and
	well	gh it	dowr).	J
Signature: Inh Atilit				alala	
			Date:	2128/19	

Project Name: <u>POL- TPH</u> Project Number:		Date of Colle Field Pers	ection: 2 onnel: 1	28/19		
Purge Data	5				-	
Well ID: MW - 23	Secure: 🕅 Yes 🔲 No	Well Condition/Dar	nage Descrip	ion: good		
Depth Sounder decontaminated Prior to Placem		One Casing Volum				
Depth of water (from top of well casing):3		Well Casing Type/I	Diameter/Scre	ened Interval: 4	" PNC 2	2.4-32.4
After 5 minutes of purging (from top of casing):	23.90	-	Volume	of Schedule		
Begin purge (time): 0846		Diameter	O.D.	I.D. (Gal	/olume /Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time):0938		1 1/2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45
Gallons purged: 1. 4 gal		3" 4"	3.500" 4.500"	3.068" 4.026"	0.38	3.2 5.51
Purge water disposal method:		6'	6.625"	6.065"	1.5	12.5
Time Depth to Vol. Water Purged	pH DOM	Conductivity	Turbidity	NTU Temp C	ORP 🕅	V Comment
	<u>6.43</u> <u>1.29</u>	0.885	0.0	12.27		
0905 23.79 2.5L 0910 23.77 3.5L	<u>6.59</u> 0.99 6.66 0.84	<u>0.919</u> 0.945	0.0	12.72	-64	ovoter ris
	6.72 0.15	0.970	0.0	<u>12.83</u> 12.83	-76 -83	-
	0.74 0.29	0.987	0.0	12.86	-88	-
· · · ·						
Sampling Data						
Sample No: <u>MW - 23 - 022819</u>		Location and De	the Slave	llaux a	au Car	
Date Collected (mo/dy/yr): 228/19	Time Collected:	922 54		Voother CL O	Entre	14
Type: Q Ground Water D Surface Water Other						
Sample Collected with: Bailer Pump Othe			STAME		-	
Water Quality Instrument Data Collected with: Ty						
Sample Decon Procedure: Sample collected wi			ble and/or de	dicated silicon an	d poly tubing	Other.
Sample Description (Color, Turbidity, Odor, Other	clear, no ad	01.				
Sample Analyses						
TPH-D (HCI) 🕅 Chlor / Fluor	(unpres) 🗌 COD / T	OC (H2SO4)	Orthop	hos (FILTER	l) Diss.	Metals (HNO3)
TPH-G (HCI) 😰 BTEX	(HCI) 🔟 Total Me	tals (HNO3)	TKN/P	hos (N2SO4)		VOCs (HCI)
Additional Information						
Types of Sample Containers: Quantity:	Duplicate Sample Nu		7		nents:	V U
0.5 L Amber 3	Extra volume			purge w		- depth of
40 mL VOA w/ HCI 9	MS/MSD		a second s		eristatt	c pump
		have	a ha	rd fime	purgir	lg.
e	1				_	
Signature: Dubatur	lit			Date: 2/2	8/19	

•

Project Name: POL-TPH			ection:	C11.	3/19	
Project Number:		Field Pers	ionnel:	G. Cicn	rends	
Purge Data						
Well ID: MW - 24	Secure 2 Yes D No	Well Condition/Da	mage Description:		01	
Depth Sounder decontaminated Prior to Placement	ent in WellNZLYes IN No	One Casing Volur	ne (gal):			
	1.37		Diameter/Screene	d interval:	9.6-	19.6'b
After 5 minutes of purging (from top of casing):				Schedule 40		
Begin purge (time): 090 (Diameter	0.D. 1.1	Male	me Weig	ht of Water Lineal Ft.)
End purge (time):		1 ½" 2"	1.660° 1.3 2.375° 2.0	80" 0.0	B	0.64
Gallens purged: 4.3		3.	3.500" 3.0	68" 0.3	B	1.45 3.2
	m	6"	4.500" 4.0 6.625" 6.0			5.51 12.5
Time Depth to Volutions Water Purged	pH DO	- mS/cm Conductivity	Turbidity	ос Temp	ORP	TDS 3 Comments
0932 11.37 3.2	5.81 5.30	0.226	1.5			9.147
0935 11.37 3.5	5.82 0.30	0, 225	3.9			147-
	5.86 0.00	0.225	1.2			146
		<u>v. 665</u>	000	10,11	0 (00	.146
· · · ·						
Sampling Data		4)				
Sample No: Mus-24		Location and De	enth: Vodo	SP		
Date Collected (mo/dy/yr): 2/28/19	Time Collected:	0942 114	TIPM Wes	ther SUA	Nu 20	0
Type: A Ground Water Surface Water Other						
Sample Collected with: Bailer Pump Othe		Turner	enic 1			
					•	
Water Quality Instrument Data Collected with: Ty	-					
Sample Decon Procedure: Sample collected wi	11 11		able and/or oedica	ted silicon and po	ly tubing Other.	
Sample Description (Color, Turbidity, Odor, Other	: Slight	Jange	tint,	Node	7,	
Sample Description (Color, Turbidity, Odor, Other Sample Analyses	: Slight	Marge	tint,	Node	7	,
Sample Analyses):S /igh+	nange_	tint,	Node	7;	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(unpres) □ COD /	- 0	. /	(FILTER)	Diss. Metals	(HNO3) 🗌
Sample Analyses	,).	TTOC (H2SO4)	Orthophos	(FILTER)[] (N2SO4) []	Diss. Metals VOCs	(HNO3) [] (HCI) []
Sample Analyses	(unpres) COD /	тос (н2s04) [Orthophos	• • • -		–
TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX	(unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	• • • -	VOCs	–
Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX	(unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity:	(unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity: SWM (Amber ((unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity: SWM (Amber ((unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity: SWM (Amber ((unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity: SOOm (Am her ((unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity: SOOm (Am hes (YOm (Yials 3	(unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G Chlor / Fluor BTEX Additional Information Types of Sample Containers: Quantity: SWM (Amber ((unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos TKN/Phos	(N2SO4)	VOCs	–
Sample Analyses TPH-D (HCI) TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity: SOOm (Am hes) (YOm (Vials 3)	(unpres) COD / (HCI) Total M	TOC (H2SO4)	Orthophos TKN/Phos	(N2SO4)	VOCs	–

Project Name: P	OL-TPH		Date of Coll	ection:			
Project Number:			Field Pers		6 (1)	SAJE TO	,
Purge Data					0-00	SACIO	
Well ID:MW - 25	Sec	cure: 🖉 Yes 🔲 No	Well Condition/Da	Image Description	on:		
Depth Sounder decontaminat	ed Prior to Placement in	Well: Jackes 🔲 No	One Casing Volum	ne (gal):			
Depth of water (from top of we	ell casing):	6.90	Well Casing Type/	Diameter/Scree	ned interval:	7	.8-17.8
After 5 minutes of purging (fro	m top of casing):	4.557.4			of Schedule 4		
Begin purge (time):	1152		Diameter	O.D.		lume inear FL)	Weight of Water (Lbs/Lineal FL)
End purge (time):	1232		1 %*		.380" 0	0.08	0.64
Genions purged:	6.0		3"	3.500" 3	.068" 0	0.38	1.45 3.2
			- 4"			.66 1.5	5.51 12.5
Purge water disposal method:	Drun		C	NTh	°(1	TPS
Time Depth to Water	Vol. p Purged	DO DO	C Conductivity	Turbidity	Temp	ORP	Comme
1222 07.40	4.0 5	72 0.00	0.569	0.0	9.45	72	03.64
1725 7.41	45 5	49 0.00	0572	0.0	<u></u>	29	03.6
1228 7.40	5.0 5.	33 0.00	0.576	0.0	711	61	0.36
731 740	5.0 5.	30 0.00		0.0	7.51	41-	0.362
161 - 1- 10	<u> </u>		0.576	0.0	9.30	<u>LT</u>	0.367
- bra	5						
							
			8 8				
Sampling Data							the second s
	C 0225	9.9					
Sample No: <u>MU - Z</u> Date Collected (mo/dy/yr): <u></u>	2/28/19	Time Collected:	123 <u>3</u> 0 AN	DPM W	0w aqu eather: <u>50</u>	comy l	
	ZZZB/19	_ Time Collected: _	1233. 🗆 AM	l D PM W	eather: <u>50</u>	comy l	100
Date Collected (mo/dy/yr):	Z Z Z I I unface Water Other: er F/Pump Other:	_ Time Collected: _	<u>1233</u> . □ AW Samp Type:	l D PM W	eather: <u>50</u> Unfiltered Other	comy l	
Date Collected (mo/dy/yr):	Z Z Z I I unface Water Other: er F F P Collected with: Type: [Time Collected: _	1233 AM	PM W	eather: <u>50</u> DUnfiltered Other Children Children	er:	
Date Collected (mo/dy/yr): Type: FGround Water Su Sample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S	Z Z Z I 9 unface Water Other: er F F Pump Other: Collected with: Type: E ample collected with (c	Time Collected:	IZ33 AM	A D PM W Ne: D Filtered (Perist able and/or dedi	eather: <u>50</u> DUnfiltered Other Children Children	er:	
Date Collected (mo/dy/yr):	Z Z Z I 9 unface Water Other: er F F Pump Other: Collected with: Type: E ample collected with (c	Time Collected:	IZ33 AM	A D PM W Ne: D Filtered (Perist able and/or dedi	eather: <u>50</u> DUnfiltered Other Children Children	er:	
Date Collected (mo/dy/yr): Type: FGround Water Su Sample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S	Z Z Z I 9 unface Water Other: er F F Pump Other: Collected with: Type: E ample collected with (c	Time Collected:	IZ33 AM	A D PM W Ne: D Filtered (Perist able and/or dedi	eather: <u>50</u> DUnfiltered Other Children Children	er:	
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S	ZZZZZ	Time Collected:	IZ33 AM	A PM W	eather: <u>SU</u> DUnfiltered Other (alt) C (ated silicon and)	er:)ther:
Date Collected (mo/dy/yr): Type: 🛱 Ground Water 🔲 Su Sample Collected with: 🗌 Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses	Z Z 8 19 unface Water Other: er 522Pump Other: Collected with: Type: [ample collected with (collected with (collected with; Odor, Other): bidity, Odor, Other): Chlor / Fluor (units)	Time Collected:	<u>1233</u> . □ AM Samp Type: riba U-50 Other: nated <u>all</u> tubing; dispose	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Oth	er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Time Collected:	<u>1233</u> □ AM Samp Type: riba U-50 Other: nated <u>all</u> tubing; dispose	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Oth	er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Su Sample Collected with: Bailed Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information	Z Z 8 1 9 unface Water Other:	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose YTOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decord Water Stample Collected with: Baile Water Quality Instrument Data Sample Decord Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) SC TPH-G (HCI) C	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose YTOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered SU Unfiltered Other SU Unfiltered Oth	er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decord Water Stample Collected with: Baile Water Quality Instrument Data Sample Decord Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) SC TPH-G (HCI) C	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Decound Water Stample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Accound Water [] Su Sample Collected with: [] Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SODM 1 Amaly	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	PM Wile: Filtered (Feri3t able and/or dedi	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Accound Water [] Su Sample Collected with: [] Bailed Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) SC TPH-G (HCI) C Additional Information Types of Sample Container SODAL Amb COML Vial	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	A D PM W	eather:	er:)ther:
Date Collected (mo/dy/yr): Type: Area and the second secon	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	A D PM W	eather:	er:)ther:
Date Collected (mo/dy/yr): Type: Accound Water [] Su Sample Collected with: [] Baile Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) S TPH-G (HCI) S Additional Information Types of Sample Container SOD I Ami U O MI Vial	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	A D PM W	eather: <u>SU</u> D Unfiltered Other Cated silicon and p cated silicon and p ps (FILTER)[ps (N2SO4) [er:)ther:
Date Collected (mo/dy/yr): Type: Accound Water [] Su Sample Collected with: [] Bailed Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Turk Sample Analyses TPH-D (HCI) SC TPH-G (HCI) C Additional Information Types of Sample Container SODAL Amb COML Vial	Z Z	Time Collected:	IZZZ I AM Samp Samp Type: Type: riba U-50 Other: nated all tubing; dispose TOC (H2SO4) Metals (HNO3)	A D PM W	eather:	er:)ther:

	a Name. PC	/ - IPr	1			of Collec	ction: 🤰	128	19		
Project	Number:				Field	d Perso	nnel: 🦷	2.0.			
Purge Dat	ta		•								
Well ID:	MW-26		Secure: 🛐	Yes 🗌 No	Well Con	dition/Dam	age Descrip	otion: 🔨	3 ft of 9	salime	t built
									in bother		
Depth Sound	der decontaminate	ed Prior to Place	ment in Well: 🕅	Yes 🗌 No	One Casi	ng Volume	(gal):				
Depth of wat	ter (from top of we	ili casing):	69'		Well Casi	ng Type/Di	iameter/Scr	eened Inte		9.4-	194 ba
After 5 minut	tes of purging (fror	m top of casing)	11.92'		_				edule 40 PV		
Begin purge	(time): 10:01	1			Dia	meter	O.D.	I.D.	Volume (Gal/Linear F		ht of Water /Lineal Ft.)
End purge (ti	ime):					¼* 2*	1.660" 2.375"	1.380" 2.067"	0.08 0.17		0.64
Gailons purg	red:] gal					3" 4"	3.500* 4.500*	3.068" 4.026"	0.38 0.66		3.2 5.51
Purge water	disposal method:	drum	2			6	6.625*	6.065*	1.5		12.5
Time	Depth to Water	Vol. Purged	pH	DO			Turbidity	NTU TO	emp 🕻 🛛 O		Comments
<u>10:06</u> 10:11	12.11'	<u>0.75L</u>	7.60 7.29	4.21	0.17		0.0		<u>68 -6</u>		
0:16	12.26	2.25L	6.96	<u>5.12</u> 3.43	<u>0.162</u> 0.160		<u>0.0</u> 0.0		<u>31 -1</u> 54 4	<u> </u>	
0:21	12.34'	31	6.78	4.40	0.160		0.0		70 19	<u> </u>	
0:26	12.45	3.75L	688	4.59	0. lle 1		0.0		88 29	8	
			2							2	
					_	-		-			
ampling	Data				4. 						
Sample No:	MW-26-0	22819									
					Location	n and Dept	th: Vac	lose			
Date Collecter	d (mo/dy/yr): _2	28/19	Time	Collected:	Location	n and Depi	th: <u>Vac</u> D PM	<u>do se</u> Weather: ,	Sunny,	cold	
Date Collecter	nd (mo/dy/yr): 2	28/19	Time	e Collected: 🔟	0:29	_ 🖾 AM	D PM	Weather:			
Date Collecter Type: 🕅 Grou	d (mo/dy/yr): 2	128/19 Inface Water Of	ther:	Collected: 📙	0:29	_ 🛒 AM Sample:	PM Filtered	Weather:	ered Other:		
Date Collecter Type: 🚺 Grou Sample Collec	d (mo/dy/yr): und Water _ Su cted with: _ Bailer	128/19 Inface Water Of In 阆 Pump Ot	Time ther: ther:	e Collected:	0:29 Туре:	_ 🖬 AM Sample: Per	DPM DFiltered	Weather:	ered Other:		
Date Collecter Type: 🏹 Grou Sample Collec Water Quality	d (mo/dy/yr): 2	128/19 Inface Water Of In 10 Pump Of Collected with:	ther; ther; ther: Type: [] Horiba	Collected:	D:29 Type: Dea U-50 Oth	_ 🛱 AM Sample: Per er:	D PM	Weather:	ered Other:		
Date Collecter Type: 🏹 Grou Sample Collec Water Quality Sample Decor	d (mo/dy/yr): 2	28/19 Inface Water Of In 10 Pump Of Collected with:	ther: ther: ther: ther: Type: [] Horiba with (circle one	U-22 Morit	D:29 Type: Da U-50 Oth	_ 🖬 AM Sample: - Per er: ; disposab	PM Filtered Static He and/or de	Weather:	ered Other:		
Date Collecter Type: 🕅 Grou Sample Collec Water Quality Sample Decor Sample Descr	d (mo/dy/yr): 2	28/19 Inface Water Of In 10 Pump Of Collected with:	ther: ther: ther: ther: Type: [] Horiba with (circle one	U-22 Morit	D:29 Type: Da U-50 Oth	_ 🖬 AM Sample: - Per er: ; disposab	PM Filtered Static He and/or de	Weather:	ered Other:		
Date Collecter Type: 🏹 Grou Sample Collec Water Quality Sample Decor Sample Descr	d (mo/dy/yr): 2	28/19 Inface Water Of In 10 Pump Of Collected with:	ther: ther: ther: ther: Type: [] Horiba with (circle one	U-22 Morit	D:29 Type: Da U-50 Oth	_ 🖬 AM Sample: - Per er: ; disposab	PM Filtered Static He and/or de	Weather:	ered Other:		
Date Collecter Type: 🎘 Grou Sample Collec Water Quality Sample Decor Sample Descr	d (mo/dy/yr): 2	28/19 Inface Water Of In 10 Pump Of Collected with:	ther; ther: Type: [] Horiba with (circle one her):	e Collected:	D:29 Type: Da U-50 Oth ted <u>all</u> tubing	_ 🖬 AM Sample: - Per er: ; disposab	PM Filtered Static He and/or de	Weather:	ered Other:		
Date Collecter Type: 🕅 Grou Sample Collect Water Quality Sample Decor Sample Descr ample Arr TPH-D TPH-G	d (mo/dy/yr): 22 und Water 🔲 Su cted with: 🗍 Bailer Instrument Data C n Procedure: Sa ription (Color, Turb nalyses (HCI) 🕅	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: Collected with: ample collected pidity, Odor, Oth Chlor / Fluor BTEX	ther: ther: Type: [] Horiba with (circle one her): (unpres) [e Collected:	D: 29 Type: ba U-50 Oth ted <u>all</u> tubing	_ 🗊 AM _ Sample: _ Per er:; disposab	PM	Weather:	icon and poly tu	ibing Other:	
Date Collecter Type: 🕅 Grou Sample Collec Water Quality Sample Decor Sample Descr ample An TPH-D TPH-G	d (mo/dy/yr): 2	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: Collected with: ample collected pidity, Odor, Oth Chlor / Fluor BTEX	ther: ther: Type: [] Horiba with (circle one her): (unpres) [e Collected:	D: 29 Type: ba U-50 Oth ted <u>all</u> tubing	So4)	PM Filtered	Weather:	icon and poly tu	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collec Water Quality Sample Decor Sample Descr Ample An TPH-D TPH-G dditional Types of Sa	d (mo/dy/yr): 22 und Water 🔲 Su cted with: 🗍 Bailer Instrument Data C n Procedure: Sa ription (Color, Turb nalyses (HCI) 🕅	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: Collected with: ample collected bidity, Odor, Oth Chlor / Fluor BTEX	Time ther: Type: [] Horiba with (circle one ner): (unpres) [(HCI) []	e Collected:	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	So4)	PM Filtered	Weather:	icon and poly tu	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collect Water Quality Sample Decor Sample Descr Ample Ar TPH-D TPH-G dditional Types of Sa SL Ar	d (mo/dy/yr): 22 und Water 📄 Su cted with: 📄 Bailer Instrument Data C n Procedure: Sa ription (Color, Turb nalyses (HCI) 🕅 Information mple Container	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected:	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr ample Ar TPH-D TPH-G dditional Types of Sa SL Ar	d (mo/dy/yr): 22 und Water □ Su cted with: □ Bailer Instrument Data (n Procedure: Sa tiption (Color, Turb nalyses (HCI) 1 (HCI) 1 Information mple Containers	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected:	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr ample Ar TPH-D TPH-G dditional Types of Sa -SL Ar	d (mo/dy/yr): 22 und Water □ Su cted with: □ Bailer Instrument Data (n Procedure: Sa tiption (Color, Turb nalyses (HCI) 1 (HCI) 1 Information mple Containers	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected:	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr ample Ar TPH-D TPH-G dditional Types of Sa -SL Ar	d (mo/dy/yr): 22 und Water □ Su cted with: □ Bailer Instrument Data (n Procedure: Sa tiption (Color, Turb nalyses (HCI) 1 (HCI) 1 Information mple Containers	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected:	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: Type: Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr ample Ar TPH-D TPH-G dditional Types of Sa -SL Ar	d (mo/dy/yr): 22 und Water □ Su cted with: □ Bailer Instrument Data (n Procedure: Sa tiption (Color, Turb nalyses (HCI) 1 (HCI) 1 Information mple Containers	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected: U-22 jm(Horit e): decontarmina] COD / T [] Total Me ate Sample Nu	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	ibing Other: . Diss. Metals	(HNO3) []
Date Collecter Type: (1) Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr ample Arr TPH-D TPH-G dditional Types of Sa	d (mo/dy/yr): 22 und Water 🗆 Su cted with: 🗆 Bailer Instrument Data C in Procedure: Sa ription (Color, Turb nalyses (HCI) 🕅 (HCI) 🕅 Information mple Container MOA w H	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected: U-22 jm(Horit e): decontarmina] COD / T [] Total Me ate Sample Nu	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	Diss. Metals VOCs	(HNO3) []
Date Collecter Type: D Grou Sample Collect Water Quality Sample Decor Sample Decor Sample Descr Ample Ar TPH-D TPH-G dditional Types of Sa SL Ar	d (mo/dy/yr): 22 und Water 🗆 Su cted with: 🗆 Bailer Instrument Data C in Procedure: Sa ription (Color, Turb nalyses (HCI) 🕅 (HCI) 🕅 Information mple Container MOA w H	2.8/19 Inface Water Of Inface Water Of Inface Water Of Collected with: ample collected oldity, Odor, Oth Chlor / Fluor BTEX I S: Quantit	Time ther: ther: Type: [] Horiba with (circle one er): (unpres) [(HCI) [] y: Duplica	e Collected: U-22 jm(Horit e): decontarmina] COD / T [] Total Me ate Sample Nu	D:29 Type: ba U-50 Oth ted <u>all</u> tubing	_ III AM Sample: - Per er: ; disposab	PM Filtered	Weather:	FILTER)	Diss. Metals VOCs	(HNO3) []

C

		· ·		te of Colle	ection:				2/28/19
Project Number:	•		F	ield Pers	onnel:	(5	.Cis	Ner	05
Purge Data									
Well ID: MW - 27	,	Secure: KYes 🔲 I	No Well	Condition/Dar	nage Descri	ption:			
						6	food		
Depth Sounder decontaminate	ed Prior to Placeme	nt in Well: 🗌 Yes 📘		Casing Volum					
Depth of water (from top of we			Well (Casing Type/L	Diameter/Scr	reened inter	rval: <u>Z</u>	18	3-28 16
After 5 minutes of purging (from			F		Volum		edule 40		
Begin purge (time):	094	5		Diameter	O.D.	I.D.	Volun (Gal/Line:	ar Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): Li 4.rs					1.660" 2.375"	1.380" 2.067"	0.08		0.64 1.45
Gallons purged:				-3 4" 6"	3.500* 4.500*	3.068" 4.026"	0.38 0.66	;	3.2 5.51
Purge water disposal method:			ha la ba	Slem	6.625" NT	6.065"	<u>1.5</u> 2	mu	12.5 B/L -
Time Depth to Water	Vol. Littes Purged	pH DO	ng le Con	ductivity	Turbidity		emp	ORP	Commen
1004 18-21		5.50 0.0	0 0-7	624	1.2	11.	28	36	0.48
1007 18.19	2.2	5.49 0.0		258	1.2		39	25	0.485
1010 18.18		5.52 0.0		757	0.0		50 _	19	0.485
1013 10.10	<u></u>	5.52 0.0	0_0.	751	0.0	_ ".	5ሃ	16	0.485
Sampling Data				-					
						Weather:			
Type: Collected with: D Baile Sample Collected with: D Baile Water Quality Instrument Data C Sample Decon Procedure: Sample De	urface Water Other er de Pump Other Collected with: Typ	r: e:	T Leforiba U-50 taminated <u>all</u> tu	ype: Other: bing; disposa	e: [] Filtered	Weather:	con and por	y tubing O	Xher:
Type: A Ground Water Su Sample Collected with: Baile Water Quality Instrument Data of Sample Decon Procedure: Sa Sample Description (Color, Turt	urface Water Other er Cump Other Collected with: Typ ample collected with	r: e:	T	ype: Other: bing; disposa	e: [] Filtered	Weather:	con and por	y tubing O	Xher:
Type: A Ground Water Su Sample Collected with: Baile Water Quality Instrument Data G Sample Decon Procedure: Sa Sample Description (Color, Turt	urface Water Other er Cump Other Collected with: Typ ample collected with	r: e:	T Leforiba U-50 taminated <u>all</u> tu	ype: Other: bing; disposa	e: [] Filtered	Weather:	con and por	y tubing O	Xher:
Type: Concernent of the second	urface Water Other er Cump Other Collected with: Typ ample collected with	r e:	T Leforiba U-50 taminated <u>all</u> tu	ype: Other: bing; disposa	e: [] Filtered	Weather:	con and por	y tubing O	Mher:
Type: Sound Water Su Sample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: Sample Description (Color, Turt Sample Analyses	urface Water Other er prepump Other Collected with: Typ ample collected with bidity, Odor, Other):		T Leforiba U-50 taminated <u>all</u> tu	Sample ype: Other: blng; disposa	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the control of the phose (1)	con and por	<u>y tubing</u> O Diss. M	Mher:
Type: A Ground Water Su Sample Collected with: Baile Water Quality Instrument Data Sample Decon Procedure: Sample Description (Color, Turt Sample Analyses	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bling; disposa) (H2SO4) []	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the control of the phose (1)	icon and pot	<u>y tubing</u> O Diss. M	ther:
Type: A Ground Water Su Sample Collected with: Sample Collected with: Sample Collected with: Sample Decon Procedure: Sample Decon Procedure: Sample Description (Color, Turt Sample Analyses TPH-D (HCI) C (HC	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bing; disposa) (H2SO4) [] (HNO3) [].	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the control of the phose (1)	icon and pot	<u>y tubing</u> O Diss. M	ther:
Type: A Ground Water Su Sample Collected with: Balle Water Quality Instrument Data Sample Decon Procedure: Sa Sample Description (Color, Turt Sample Analyses TPH-D (HCI) TPH-G (HCI) Additional Information Types of Sample Container	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bing; disposa) (H2SO4) [] (HNO3) [].	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the selection of the selec	FILTER)	<u>y tubing</u> O Diss. M	ther: tetals (HNO3)
Type: def Ground Water I Su Sample Collected with: I Balle Water Quality Instrument Data (Sample Decon Procedure: Sa Sample Description (Color, Turt Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Container Solom (Ambu	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bing; disposa) (H2SO4) [] (HNO3) [].	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the selection of the selec	FILTER)	<u>y tubing</u> O Diss. M	ther:
Type: def Ground Water I Su Sample Collected with: I Balle Water Quality Instrument Data (Sample Decon Procedure: Sa Sample Description (Color, Turt Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Container Solom (Ambu	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bing; disposa) (H2SO4) [] (HNO3) [].	e: [] Filtered	Weather: Unfilte Unfilte Unfilte Control of the selection of the selec	FILTER)	<u>y tubing</u> O Diss. M	ther:
Type: def Ground Water I Su Sample Collected with: I Balle Water Quality Instrument Data (Sample Decon Procedure: Sa Sample Description (Color, Turt Sample Analyses TPH-D (HCI) C TPH-G (HCI) C Additional Information Types of Sample Container Solom (Ambu	Collected with: Typ ample collected with bidity, Odor, Other) Chlor / Fluor BTEX		T	Sample ype: Other: bing; disposa) (H2SO4) [] (HNO3) [].	e: [] Filtered	Weather:	FILTER)	y tubing C Diss. M	ther:

14

 $\mathbf{1}$

Project Name: POL-TPH		Date of Colle	ction:	2/28	/19	
Project Number:		Field Perse	onnel:	2.0.		
Purge Data						
Well ID: MW-28	Secure: Xes 🛛 No	Well Condition/Dan	nage Descri	ption: F	x	•
Depth Sounder decontaminated Prior to Placeme		One Casing Volum				0.000
Depth of water (from top of well casing): 12.3	and the second s	Well Casing Type/D				.8-19.8'b
After 5 minutes of purging (from top of casing):	2.51				edule 40 PVC F	Pipe Weight of Water
Begin purge (time): 11:06		- Diameter	O.D. 1.660"	I.D. 1.380*	(Gal/Linear FL) 0.08	(Lbs/Lineal Ft.)
		- 2"	2.375"	2.067"	0.17	0.64
Gallons purged: 0.75 gal		- 4* 6*	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method;		-	6.625	6.065*	1.5	12.5
Time Depth to Vol. Water Purged				Y NTU TO		Comments
	<u>2.40</u> <u>2.70</u> 2.28 2.49	<u>0.280</u> 0.277	0.0		<u>.11 83</u> 19 84	
	0.29 <u>3.40</u>	0.276	0.0		.19 85	
	.33 3.90	0.275	0.0		22 86	3
				_		-
					<u> </u>	
Sampling Data						
Sample No: <u>MW - 28 - 022819</u>		Location and Dep	th: Vac	ose		
Date Collected (mo/dy/yr): 228/19	Time Collected:	<u>1:30 д</u> ам	D PM	Weather:	sunny, col	d
Type: 🚺 Ground Water 🔲 Surface Water Other		Sample	: 🖸 Filtered	l 🙍 Unfilte	red Other:	
Sample Collected with: Bailer Pump Other		Type:	TSta Hic	-		
Water Quality Instrument Data Collected with: Typ	e: 🗖 Horiba U-22 🛛 😭 Horib	a U-50 Other:			-	
Sample Decon Procedure: Sample collected with						
Sample Description (Color, Turbidity, Odor, Other):				conduct and	con and poly lubing	
۵. ا	LUAN, NO DOL	NY				
Sample Analyses						
TPH-D (HCl) 🚺 Chlor / Fluor	(unpres) 🔲 COD / T	OC (H2SO4)	Ortho	ahos (I	FILTER) Diss	. Metals (HNO3) 🗌
ТРН-G <u>(</u> HCl) 📓 ВТЕХ	(HCI) 🔲 Total Me	–	TKN/		12504)	VOCs (HCI)
Additional Information						
Types of Sample Containers: Quantity:	Duplicate Sample Nu				Comments:	
0.5L Amber	None	Kep	laced	well	cap 7	
40 mL VOA w/ HCI 3						
	1.					
Signature: Publish	lit			Date:	1/20/19	

$\frac{2[28/19}{G.Ci_{MV}(63)}$ ription: $\frac{2[28/19]}{Creened Interval:} = \frac{15 - 27 \cdot 7 \cdot bg}{I5 - 27 \cdot 7 \cdot bg}$ re of Schedule 40 PVC Pipe $\frac{ID.}{(Gal/Linear FL)} = \frac{15 - 27 \cdot 7 \cdot bg}{(Lbs/Linear FL)}$ $\frac{ID.}{(Gal/Linear FL)} = \frac{Volume}{(Lbs/Linear FL)}$ $\frac{ID.}{(Cal/Linear FL)} = \frac{Volume}{(Lbs/Linear FL)}$ $\frac{Volume}{(Cal/Linear FL)} = \frac{Volume}{(Lbs/Linear FL)}$ $\frac{Volume}{(Lbs/Linear FL)} = \frac{Volume}{(Lbs/Linear FL)}$ $$
ription: $ \begin{array}{c} \hline & & & & \\ $
$ \begin{array}{c} \hline 2 & 11 & 5 & 0 & d \\ \hline & & & & & \\ \hline creened interval: & & & & \\ \hline 15 - 27 \cdot 7 & & & & \\ \hline ne of Schedule 40 PVC Pipe \\ \hline 1.0 & & & & \\ \hline (Gal/Linear FL) & & & \\ \hline (Lbs/Lineal FL) & & \\ \hline 1.380^{\circ} & 0.08 & 0.64 \\ \hline 2.067^{\circ} & 0.17 & 1.45 \\ \hline 3.068^{\circ} & 0.38 & 3.2 \\ \hline 4.026^{\circ} & 0.66 & 5.51 \\ \hline 6.065^{\circ} & 1.5 & 12.5 \\ \hline M & & & \\ \hline cmp & & & & \\ \hline M & & & & \\ \hline 10 & & & & \\ \hline 0.88 & & & & \\ \hline 0.89 & & & & \\ \hline 0.89 & & & & \\ \hline 0.95 & & & & \\ \hline 0.95 & & & & \\ \hline 0.95 & & & & \\ \hline 0.139 & & \\ \hline 0.132 \end{array} $
$ \begin{array}{c} \hline 2 & 11 & 5 & 0 & d \\ \hline & & & & & \\ \hline creened interval: & & & & \\ \hline 15 - 27 \cdot 7 & & & & \\ \hline ne of Schedule 40 PVC Pipe \\ \hline 1.0 & & & & \\ \hline (Gal/Linear FL) & & & \\ \hline (Lbs/Lineal FL) & & \\ \hline 1.380^{\circ} & 0.08 & 0.64 \\ \hline 2.067^{\circ} & 0.17 & 1.45 \\ \hline 3.068^{\circ} & 0.38 & 3.2 \\ \hline 4.026^{\circ} & 0.66 & 5.51 \\ \hline 6.065^{\circ} & 1.5 & 12.5 \\ \hline M & & & \\ \hline cmp & & & & \\ \hline M & & & & \\ \hline 10 & & & & \\ \hline 0.88 & & & & \\ \hline 0.89 & & & & \\ \hline 0.89 & & & & \\ \hline 0.95 & & & & \\ \hline 0.95 & & & & \\ \hline 0.95 & & & & \\ \hline 0.139 & & \\ \hline 0.132 \end{array} $
$\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \$
IS - 27.7 bg/ ne of Schedule 40 PVC Pipe I.D. Volume (Gal/Linear FL) Weight of Water (Lbs/Lineal FL) 1.380° 0.08 0.64 2.067° 0.17 1.45 3.068° 0.38 3.2 4.026° 0.66 5.51 6.065° 1.5 12.5 M °C m TDS Slc ity Temp ORP TDS Slc (0.92) 300 0.139 0.139 0.95 300 0.135 0.135
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.92 259 0.139 10.95 300 0.132
10.92 299 0.139 10.95 300 0.132
2
allow aquifer
Weather: SULINY 30
d ge-Unfiltered Other:
fal fic
2
dedicated silicon and poly tubing Other:
dor
ophos (FILTER)□ Diss. Metals (HNO3) □
ophos (FILTER) Diss. Metals (HNO3) I /Phos (N2SO4) VOCs (HCI) I
Comments:

F:\Technical\Field Prep\Field Forms\Groundwater Sample Collection Form.doc

Project Number: Purge Data Well ID: $MW - 31$ Secure: Secure: Depth Sounder decontaminated Prior to Placement in Well: Yes Depth Sounder decontaminated Prior to Placement in Well: Yes Depth of water (from top of well casing): 12.63 After 5 minutes of purging (from top of casing): 12.72 Begin purge (time): 15.15 End purge (time): 15.15 Purge water disposal method: Drms Water Purged Time Depth to Water Purged 15.27 1330 0.8 Like 5.32 1.331 LWLike 5.63 5.535 1.326 L.2 Like 5.67 0.00	One Casing Volum	mage Description: re (gal): Diameter/Screened in Volume of S 0.D. I.D. 1.660° 1.380° 2.375° 2.067° 3.500° 4.026° 6.625° 6.065° NTCA Turbidity 5.8 6.9 5.8 4.4 4.4 5.8 6.9 5.8 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4	nterval:C chedule 40 PVC F Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66	$\begin{array}{c} 1-19 & bgs \\ \hline \hline 0.64 \\ 1.45 \\ 3.2 \\ 5.51 \\ 12.5 \\ \hline \\ \hline 0.38 \\ \hline 0.$
Well ID: $\underline{MW-3}$ Secure: \boxed{SYes} No Depth Sounder decontaminated Prior to Placement in Well: \boxed{Yes} No Depth of water (from top of well casing): 12.63 After 5 minutes of purging (from top of casing): 12.77 Begin purge (time): 1515 End purge (time): 1515 End purge (time): 244 Virture 244 Purge water disposal method: Dmg Time Depth to vol_{Lithr} Water Purged 5.68 0.00 1532 1331 $Lolifin$ 5.63 0.00	One Casing Volum Well Casing Type/ Diameter $1 \frac{1}{2^{\circ}}$ 3° 4° 6° <i>m.S/cm.</i> <i>conductivity</i> <u>0.608</u> <u>0.605</u> <u>0.600</u>	mage Description: re (gal): Diameter/Screened in Volume of S 0.D. I.D. 1.660° 1.380° 2.375° 2.067° 3.500° 4.026° 6.625° 6.065° NTCA Turbidity 5.8 6.9 5.8 4.4 4.4 5.8 6.9 5.8 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4	nterval: chedule 40 PVC F Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 °C Temp ORP 11.07 11.07 67 11.07 77 11.11 77 4.18 80	$\begin{array}{c} 1-19 & bgs \\ \hline \hline 0.64 \\ 1.45 \\ 3.2 \\ 5.51 \\ 12.5 \\ \hline \\ \hline 0.38 \\ \hline 0.$
Depth Sounder decontaminated Prior to Placement in Well: \Box Yes \Box No Depth of water (from top of well casing): <u>12.63</u> After 5 minutes of purging (from top of casing): <u>12.77</u> Begin purge (time): <u>15.68</u> End purge (time): <u>15.68</u> Qaffons purged: <u>2.4</u> Purge water disposal method: <u>Drms</u> Time Depth to VolCithr pH DOSIC Water Purged <u>15.27</u> <u>13.30</u> 0.8 Like <u>5.68</u> 0.00 <u>15.32</u> <u>13.31</u> LOCIT <u>5.63</u> 0.00	One Casing Volum Well Casing Type/ Diameter $1 \frac{1}{2^{\circ}}$ 3° 4° 6° <i>m.S/cm.</i> <i>conductivity</i> <u>0.608</u> <u>0.605</u> <u>0.600</u>	ne (gal): Diameter/Screened in Volume of S 0.D. I.D. 1.660" 1.380" 2.375" 2.067" 3.500" 3.088" 4.500" 4.026" 6.625" 6.065" XTCV Turbidity 5.8 6.9 5.8 4.4	nterval:C chedule 40 PVC F Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 °C Temp ORP 11.07 69 11.07 69 11.07 69 11.07 69 11.07 89 11.07 69 11.07 89 11.07 80 11.07 80 11.08 80 1	7-19 bgs 7ipe Weight of Water (Lbs/Lineal Ft.) 0.64 1.45 3.2 5.51 12.5 $7D^{5}z$ Comments 0.388 0.388 0.384 0.384 0.384
Depth of water (from top of well casing): 12.63 After 5 minutes of purging (from top of casing): 12.77 Begin purge (time): 1515 End purge (time): 1515 End purge (time): 244 1544 Purge water disposal method: 0705 Time Depth to VolCitor pH DOSIC Water Purged 1577 1330 0.8 Lihr 5.68 0.00 1532 1331 LOLIN 5.63 0.00	Well Casing Type/ Diameter $1\frac{1}{2^{\circ}}$ 3° 4° 6° <i>n</i> 5/cm Conductivity <u>0.608</u> <u>0.605</u> <u>0.600</u>	Diameter/Screened in Volume of S O.D. I.D. 1.660° 1.380° 2.375° 2.067° 3.500° 4.026° 6.625° 6.065° NTC Turbidity 5.8 6.9 5.8 4.4 5.8 6.9 5.8 4.4 4.4 4.4 5.8 5.8 5.8 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4	nterval: Chedule 40 PVC F Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 °C Temp ORP 11.07 69 11.07 69 11.07 69 11.07 69 11.1 77	$\begin{array}{c} \textbf{Pipe} \\ \hline Weight of Water (Lbs/Lineal FL) \\ 0.64 \\ 1.45 \\ 3.2 \\ 5.51 \\ 12.5 \\ \hline \\ $
After 5 minutes of purging (from top of casing): 12.77 Begin purge (time): 1515 End purge (time): 1544 Citrs Galions purged: 24 Purge water disposal method: $Drms$ Time Depth to VolCitr pH DOdlc Water Purged 1527 1330 0.8 Lihr 5.68 0.00 1532 1331 LOCIT 5.63 0.00	$\begin{array}{c} \hline Diameter \\ 1 \% \\ 2^{\circ} \\ 3^{\circ} \\ 4^{\circ} \\ 6^{\circ} \\ \hline n 5 (cm \\ Conductivity \\ \hline 0 . 608 \\ \hline 0 . 605 \\ \hline 0 . 600 \\ \hline \end{array}$	Volume of S 0.D. I.D. 1.660" 1.380" 2.375" 2.067" 3.500" 3.068" 4.500" 4.026" 6.625" 6.065" NTCA Turbidity 5.8 6.9 5.8 5.8 6.9	Chedule 40 PVC F Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 *C Temp 0RP 11.07 67 11.07 72) 11.1 72) 11.1	$\begin{array}{c} \textbf{Pipe} \\ \hline Weight of Water (Lbs/Lineal FL) \\ 0.64 \\ 1.45 \\ 3.2 \\ 5.51 \\ 12.5 \\ \hline \\ $
Begin purge (time): 1515 End purge (time): 1544 Liturs Galions purged: 24 Purge water disposal method: $Drms$ Time Depth to VolCiter pH DOSIC Water Purged 1527 1330 0.8 Like 5.68 0.00 1532 1331 LOLIS 5.63 0.00	$\frac{\text{Diameter}}{1\%}$ $\frac{1\%}{2^{\circ}}$ $\frac{3^{\circ}}{4^{\circ}}$ $\frac{4^{\circ}}{6^{\circ}}$ $\frac{5/cm}{conductivity}$ $\frac{0.608}{0.605}$ 0.600	0.D. I.D. 1.660° 1.380° 2.375° 2.067° 3.500° 3.068° 4.500° 4.026° 6.625° 6.065° AUELA Turbidity 5.8 5.9 5.8 4.9	Volume (Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 Temp ORP 11.07 69 11.07 69 11.07 69 11.07 69 11.0 7 71 11.11 77	Weight of Water (Lbs/Lineal FL) 0.64 1.45 3.2 5.51 12.5 7.05 Comments 0.388 0.387 0.387 0.384 0.384
End purge (time): 1544 Liturs Galions purged: Z.4 Purge water disposal method: $Drms$ Time Depth to VolLiter pH DOdle Water Purged 1529 1330 0.8 Liter 5.68 0.00 1532 1331 LOLIN 5.63 0.00	$\frac{1 \frac{1}{2^{\circ}}}{2^{\circ}}$ $\frac{2^{\circ}}{3^{\circ}}$ $\frac{4^{\circ}}{6^{\circ}}$ $\frac{6^{\circ}}{0.608}$ $\frac{0.608}{0.605}$ 0.600	1.660° 1.380° 2.375° 3.500° 3.068° 4.500° 4.026° 6.625° 6.065° AUTUA Turbidity 5.8 6.9 5.8 4.9 5.8 4.026° 6.05° 5.8 6.9 5.8 6.9 6.05°	(Gal/Linear Ft.) 0.08 0.17 0.38 0.66 1.5 °C Temp 0RP 11.07 67 11.07 67 11.07 77 11.11 77 11.11 77	(Lbs/Lineal Ft.) 0.64 1.45 3.2 5.51 12.5 7.05 Comments 0.388 0.387 0.384 0.384 0.384
Citus Galitons purged: Z.H Purge water disposal method: Drug Time Depth to VolCitur pH DOBLE Water Purged 15-29 1330 0.8 Like 5.68 0.00 15-32 1331 LUCIA 5.63 0.00	$\frac{2^{\circ}}{3^{\circ}}$ $\frac{3^{\circ}}{6^{\circ}}$ <i>n.5/cm</i> <i>conductivity</i> $\frac{0.608}{0.605}$ 0.600	$\begin{array}{c} 2.375^{\circ} \\ 3.500^{\circ} \\ 4.500^{\circ} \\ 4.026^{\circ} \\ 6.625^{\circ} \\ 6.625^{\circ} \\ 6.065^{\circ} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	0.17 0.38 0.66 1.5 Temp ORP 11.07 69 11.07 69 11.07 71 11.11 77 11.11 77	$ \begin{array}{r} 1.45 \\ 3.2 \\ 5.51 \\ 12.5 \\ \hline $
Galitons purged: Z.1 Purge water disposal method: Drms Time Depth to Vol Likr Water Purged 15-29 1330 15-32 1331 Locin 5.68 0.00	$\frac{4^{\circ}}{6^{\circ}}$ $\frac{5}{0.608}$ $\frac{0.608}{0.605}$	4.500° 4.026° 6.625° 6.065° Turbidity 5.8 6.9 5.8 5.8	0.66 1.5 Temp ORP 11.07 69 11.07 69 11.07 71 11.11 77 11.11 77 1.18 80	5.51 12.5 705 comments 0.388 0.387 0.387 0.387
Time Depth to Vollikr pH DOBLE Water Purged 1577 1330 0.8 Like 5.68 0.00 1532 1331 LUCIA 5.63 0.00	0.608	NEG Turbidity 5.8 6.9 5.8 5.8 5.8	°C °C Temp ORP 11.07 69 11.01 71 11.11 77 11.11 77 11.8 80	0.388 0.388 0.387 0.387 0.387 0.387
Water Purged 15-29 1330 0.8 Like 5.68 0.00 1532 1331 LOGA 5.63 0.00	0.608	Turbldity 5.8 6.9 $5 \cdot 8$ $5 \cdot 8$ $5 \cdot 8$ $5 \cdot 8$	Temp ORP 11.07 69 11.01 71 11.11 77 11.8 80	0.388 0.387 0.387 0.384 0.384
1532 1331 LOUGE 5.63 0.00	0.605	6.9 5.8 5.8	11.09 71 11.11 77 11.12 80	0.387
	0.600	5-8 1	11.11 77	0.387
535 1326 126h 5.62 0.00		5-8 1	1.18 80	0.384
	0.594	1 9		0.381
<u>538 1326 (.56 5.81 0.00</u>	0.594	4.1 /	1.24 85	
1541 1326 1.9L 5.60 0.00 1544 1326 2.1L 5.60 0.00	0.5-71		120 94	0.380
594 1366 2.16 5.60 0.00		4.7	1.28 85	0.379
ampling Data				
		01 //	10	
	Location and Dep	pth: <u>Sha 110</u>	w gquite	r
Date Collected (mo/dy/yr): 2/27/19 Time Collected:				
Type: 🗟 Ground Water 🔲 Surface Water Other:	Sampl	e: Filtered	filtered Other:	
Sample Collected with: D Bailer 2 Pump Other:	Туре:			
Vater Quality Instrument Data Collected with: Type: 🛛 Horiba U-22 🛛 🛱 oriba	a U-50 Other:		3	
ample Decon Procedure: Sample collected with (circle one): decontaminate	ed all tubing: disposa	ble and/or dedicated	silicon and poly tubing	Other
		1		
	mer colo	1 ; 10 0a		
ample Analyses	ß			
TPH-D (HCI) Z Chlor / Fluor (unpres) C COD / TC				
	, , , –	Orthophos		Metals (HNO3)
	als (HNO3)	TKN/Phos	(N2SO4)	VOCs (HCI)
Iditional Information		54		
ypes of Sample Containers: Quantity: Duplicate Sample Nu	2+12+ N33 (B)	\sim	Comments:	
500al Anha Z MW-131-02		kup Co	lect	
40 mi Urals 6 C16	0	mw-131	-02271	1901600
		1		
/			•	
ignature:	6		71	1

F:\Technical\Field Prep\Field Forms\Groundwater Sample Collection Form.doc

Proj	ect Name: PO	L-TPH	ł		Date of Coll	ection:	2/28/19		
Proje	ect Number:				Field Pers	onnel:	P.O.		
Purge	Data		`						
Well ID:	MW-32		Secure: 🕅	∕es □ No	Well Condition/Da	mage Descr	iption: <u>oke</u>	well be	ox rim broken
Depth So	under decontaminated F	Prior to Placeme	ent in Well: 🕅	Yes 🗌 No	One Casing Volum	ne (gal):			
Depth of	water (from top of well c	asing): 10.0	00		Well Casing Type/	Diameter/Sc	xeened Interva	1 2"/ 8	3-18 bgs
After 5 m	inutes of purging (from to	op of casing):	0.89					lule 40 PVC F	
	rge (time): 14:35				Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purg	e (time): 1504				1 %"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64
Gallons p	urged: 0.75 cal			-	3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Purge wa	ter disposal method:	um	·		6"	6.625"	6.065*	1.5	12.5
Time	Depth to Water	Vol. Purged	рН	DO 🔁	Conductivity		ty NTU Tem	o C ORP	Comments
<u>14 40</u> 1445	<u> </u>	1 <u>L</u>	7.25 7.16	0.88	0.449	6.9			
1450		2.25L	7.69	0.96	0.451	<u>6.0</u> 0.4	<u>12.3</u> 12.6		
1455	1.11	3L	7.05	1.00	0.456	0.0	_ 12.7		
				<u> </u>					
									-
						(
Samplir									
Sample N	MW-32-0	22819			Location and De	pth: Sho	llow	agnifes	/
Date Colle	cted (mo/dy/yr): 2	28 201	1 Time	Collected:	59 G AM	🙇 РМ	Weather: <u>S</u>	nowers. c	old
									1
Sample Co	lected with: 🗋 Bailer	Pump Othe	r		_ Type: Der	istattic			
	lity Instrument Data Coll								
	con Procedure: Samp								
	scription (Color, Turbidit						edicated silicor	and poly tubing	Other:
Sample	Analyses								7
TPH-) (HCI) 💢 (Chior / Fluor	(unpres))C (H2SO4) 🗌	Ortho	phos (FIL	TER) Diss	. Metals (HNO3)
TPH-(6 <u>(</u> HCI) 🔀	BTEX	(HCI) 🕅	Total Meta	ais (HNO3) 🗌	TKN	Phos (N2S	604) 🔲	VOCs (HCI)
Addition	al Information								
Types of	Sample Containers:	Quantity:	Duplicat	e Sample Nu	nbers:		Ce	omments:	
0.51	Amber		N	lone					
70 mL	VOA w/ HCI	3							
			1						
		4	1.					4	
Signatu	re: Dull	at	lit				Date: 2	128/19	
•									

ŝ

		e of Collection:	2/28/19 6-CISNUMOS			
Project Number:	Fi	ield Personnel:				
Purge Data						
Well ID: <u>UST-4</u> Secure:] Yes 🔲 No 🛛 Well C	Condition/Damage Desc	ription:			
Depth Sounder decontaminated Prior to Placement in Well:		asing Volume (gal):	Z" NO	Bolts		
Depth of water (from top of well casing): 17.0°	7 Well C	asing Type/Diameter/S	creened interval:	14.3-24.3		
After 5 minutes of purging (from top of casing):	[Volur	ne of Schedule 40 P			
Begin purge (time): 0748		Diameter O.D.	I.D. Volume (Gal/Linear i			
End purge (time):		1 ¼" 1.660" 2" 2.375"	1.380" 0.08 2.067" 0.17	0.64 1.45		
Sallons purged:		3" 3.500" 4" 4.500"	3.068" 0.38 4.026" 0.66	3.2 5.51		
Purge water disposal method:	L	6" 6.625" S/cm NTU	6.065" 1.5	12.5		
Time Depth to Vol. pH Water Purged	UU Cona	uctivity Turbid	· (/*	RP Tps 8/6 Comments		
0807 17 09 1.8 4.74	1.63 0.5	the second se	12.12 30	68 0.303		
$\frac{17.07}{5813} \frac{7.07}{17.09} \frac{7.7}{2.6} \frac{4.69}{4.58}$	1.03 0.0	581 0.8	<u> </u>	7 0.374		
1816 17.09 3.0 4.56	0.28 0.5	82 02	- 11.67 57	0.379		
		0.0		210		
ampling Data						
Sample No: @ UST- 4-022819	loca		1115 4			
		tion and Depth:				
Date Collected (mo/dy/yr): ZZ8/19 Tim	ne Collected: 0 817	I AM T PM	Weather: CH NAL	, 20°		
Date Collected (mo/dy/yr): ZZB/19 Tim	ne Collected: 0817		Weather: <u>Sunn</u>			
Date Collected (mo/dy/yr): 228/19 Tim	ne Collected: 0817	CAM CIPM	Weather: <u><u><u><u></u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>			
Date Collected (mo/dy/yr): 22819 Tim Types Ground Water D Surface Water Other: Sample Collected with: Bailer 29 Pump Other:	ne Collected: <u>0 </u>	□ AM □ PM Sample: □ Filtere pe:	Weather: <u><u><u><u></u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u></u><u></u><u><u></u><u><u></u></u><u></u><u><u></u><u></u><u></u></u></u></u></u></u></u></u>			
Date Collected (mo/dy/yr): 228/19 Tim Type: Collected Water Differed Water Other: Sample Collected with: Differed Bailer Property Other: Water Quality Instrument Data Collected with: Type: Differed Horib	ne Collected: <u>0 817</u> ту a U-22	□ AM □ PM Sample: □ Filtere pe:	Weather: <u>Sunn</u> d Confiltered Other: <u>lfic</u>			
Date Collected (mo/dy/yr): 228/19 Tim Typer Ground Water Disurface Water Other: Sample Collected with: Dialer Pump Other: Water Quality Instrument Data Collected with: Type: Difference Sample Decon Procedure: Sample collected with (circle or	Ty a U-22 D Horiba U-50 (he): decontaminated <u>all</u> tub	AM PM	Weather: <u>Sunn</u> d Confiltered Other: <u>lfic</u>			
Date Collected (mo/dy/yr): 228/19 Tim Type: Ground Water Disurface Water Other: Sample Collected with: Data Collected with: Type: Horib Water Quality Instrument Data Collected with: Type: Horib Sample Decon Procedure: Sample collected with (circle or Sample Description (Color, Turbidity, Odor, Other):	ne Collected: <u>0 817</u> ту a U-22	AM PM	Weather: <u>Sunn</u> d Confiltered Other: <u>lfic</u>			
Date Collected (mo/dy/yr): 228/19 Tim Typer Collected Water Differed Water Other: Sample Collected with: Differed Bailer 20 Pump Other: Water Quality Instrument Data Collected with: Type: Differed Horib	Ty a U-22 D Horiba U-50 (he): decontaminated <u>all</u> tub	AM PM	Weather: <u>Sunn</u> d Confiltered Other: <u>lfic</u>			
Date Collected (mo/dy/yr): 228/19 Tim Types Ground Water Description (Color, Turbidity, Odor, Other):	Ty a U-22 Atoriba U-50 (a U-	AM PM	Weather: <u>Sunn</u> d Confiltered Other: <u>lfic</u>			
Date Collected (mo/dy/yr): 228/19 Tim Typer Collected with: Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Horib Sample Decon Procedure: Sample collected with (circle or Sample Description (Color, Turbidity, Odor, Other):	Ty a U-22 Definition U-50 (ine): decontaminated <u>all</u> tub Clear No Clear No	AM PM	Weather: <u><u><u><u>u</u></u><u><u>u</u><u><u>u</u><u><u>u</u><u><u>u</u><u><u>u</u><u><u>u</u><u>u</u><u><u>u</u><u></u></u></u></u></u></u></u></u></u></u>	bine Other.		
Date Collected (mo/dy/yr): Z Z B / 1 9 Tim Types C Ground Water Surface Water Other:	Ty a U-22 Definition U-50 (ine): decontaminated <u>all</u> tub Clear No Clear No	AM PM	Weather: <u>Sunn</u> d Br Unfiltered Other: <u>UFIC</u> dedicated silicon and poly tu pphos (FILTER)[]	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Types Ground Water Surface Water Other:	Ty a U-22 Aboriba U-50 (a U-22 Aboriba U-50 (a U-22 Aboriba U-50 (a contaminated <u>all</u> tub (COD / TOC (Total Metals ate Sample Numbers:	AM PM	Weather: <u>Sunn</u> d Br Unfiltered Other: <u>UFIC</u> dedicated silicon and poly tu pphos (FILTER)[]	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Types Ground Water Surface Water Other:	Ty a U-22 Aftoriba U-50 (ite): decontaminated <u>all</u> tub Aftar No COD / TOC (Aftar Total Metals	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Typer C Ground Water Surface Water Other:	Ty a U-22 Aboriba U-50 (a U-22 Aboriba U-50 (a U-22 Aboriba U-50 (a contaminated <u>all</u> tub (COD / TOC (Total Metals ate Sample Numbers:	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Typer Collected (mo/dy/yr): ZZ8/19 Tim Typer Collected (mo/dy/yr): ZZ8/19 Tim Sample Collected with: Image: Sample Collected with: Image: Sample Collected with: Type: Image: Sample Collected with: Chlor, Other): Image: Sample Collected with: Chlor, Other): Image: Sample Collected with: Chlor / Fluor (unpres) TPH-D (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Time: Sample Collected With: Chlor / Fluor TPH-G (HCI) Image: Sample Collected With: Time: Sample Collected With: Chlor / Fluor Chlor / Fluor TPH-G (HCI) </td <td>Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a U-50 (a</td> <td>AM PM</td> <td>Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u></td> <td>Diss. Metals (HNO3)</td>	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): Z Z B / 1 9 Tim Types C Ground Water Surface Water Other:	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Types Ground Water Surface Water Other:	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Types Ground Water Surface Water Other:	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Types Ground Water Surface Water Other:	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		
Date Collected (mo/dy/yr): ZZ8/19 Tim Typer Collected (mo/dy/yr): ZZ8/19 Tim Typer Collected (mo/dy/yr): ZZ8/19 Tim Sample Collected with: Image: Sample Collected with: Image: Sample Collected with: Type: Image: Sample Collected with: Chlor, Other): Image: Sample Collected with: Chlor, Other): Image: Sample Collected with: Chlor / Fluor (unpres) TPH-D (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Chlor / Fluor (unpres) TPH-G (HCI) Image: Sample Collected With: Time: Sample Collected With: Chlor / Fluor TPH-G (HCI) Image: Sample Collected With: Time: Sample Collected With: Chlor / Fluor Chlor / Fluor TPH-G (HCI) </td <td>Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a U-50 (a</td> <td>AM PM</td> <td>Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u></td> <td>Diss. Metals (HNO3)</td>	Ty a U-22 Alforiba U-50 (a U-22 Afforiba U-50 (a	AM PM	Weather: <u><u><u>y</u></u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u>u</u> <u></u></u>	Diss. Metals (HNO3)		

0

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix F Sampling and Analysis Plan/ Quality Assurance Project Plan

Table of Contents

1.0	Introd	uction		F-1
2.0	Projec	t Organiz	zation and Responsibility	F-3
	2.1	MANAG	EMENT RESPONSIBILITIES	F-3
	2.2	QUALIT	Y ASSURANCE RESPONSIBILITIES	F-4
	2.3	LABORA	TORY RESPONSIBILITIES	F-4
	2.4	FIELD R	ESPONSIBILITIES	F-4
3.0	Data C	Quality O	bjectives	F-5
	3.1	LABORA	TORY QUALITY ASSURANCE OBJECTIVES	F-5
	3.2	FIELD Q	UALITY CONTROL PROCEDURES	F-6
	3.3	DATA R	EDUCTION, VALIDATION, AND REPORTING	F-6
	3.4	CORREC	TIVE ACTIONS	F-7
4.0	Invest	igation P	rotocols	F-9
	4.1	UTILITY	LOCATE AND PIPELINE SURVEYS	F-10
	4.2	WATER	LEVEL DATA COLLECTION	F-11
	4.3	LASER-I	NDUCED FLUORESCENCE INVESTIGATION	F-11
	4.4	DIRECT-	PUSH SOIL BORING SAMPLING	F-11
	4.5	HAND A	UGER SOIL BORING SAMPLING	F-12
	4.6	GROUN	DWATER SAMPLING	F-12
		4.6.1	Direct-Push Boring Groundwater Sampling	F-12
		4.6.2	Monitoring Well Groundwater Sampling	F-12
		4.6.3	Monitored Natural Attenuation	F-12
	4.7	SAMPLE	NOMENCLATURE	F-13
	4.8	SURVEY		F-13
	4.9	SOIL VA	POR POINT INSTALLATION AND SAMPLING	F-14
	4.10	DRAWD	OWN TESTING	F-14
	4.11	TRANSD	DUCER STUDY	F-15
	4.12	EQUIPN	1ENT DECONTAMINATION	F-16
	4.13	INVESTI	GATION-DERIVED WASTE	F-16
5.0	Labora	atory Ana	alysis	F-17
6.0	Refere	ences		F-19

List of Tables

- Table F.1Data Quality Assurance Criteria
- Table F.2
 Analytical Requirements, Methods, Preservation, Bottle Type, and Holding Times
- Table F.3Sample Collection by Area of Potential Concern
- Table F.4
 Analytical Methods, Detection Limits, and Reporting Limits

List of Figures

Figure F.1 Areas of Potential Concern and Proposed RI Data Collection Locations

List of Attachments

Attachment F.1 Standard Guidelines

List of Acronyms and Abbreviations

Acronym/	- 6
Abbreviation	Definition
AOPC	Area of potential concern
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and xylenes
сРАН	Carcinogenic polycyclic aromatic hydrocarbon
DIP	Ductile iron pipe
DRO	Diesel-range organics
Ecology	Washington State Department of Ecology
EDB	Ethylene dibromide
EDC	Ethylene dichloride
EIM	Environmental Information Management
EPH	Extractable petroleum hydrocarbons
GRO	Gasoline-range organics
HCID	Hydrocarbon identification
HPT	Hydraulic profiling tool
IDW	Investigation-derived waste
LNAPL	Light non-aqueous-phase liquid

Acronym/ Abbreviation	Definition
mm	Millimeters
MNA	Monitored natural attenuation
MSL	Mean sea level
MTBE	Methyl <i>tert</i> -butyl ether
MTCA	Model Toxics Control Act
NAD 83	North American Datum of 1983
NAVD 88	North American Vertical Datum of 1988
OIP	Optical Image Profiler
ORO	Oil-range organics
РАН	Polycyclic aromatic hydrocarbon
PID	Photoionization detector
PLP	Potentially liable party
Port	Port of Longview
PPE	Personal protective equipment
QA	Quality assurance
QAPP	Quality Assurance Project Plan
QC	Quality control
RI	Remedial Investigation
SAP	Sampling and Analysis Plan
Site	Port of Longview Total Petroleum Hydrocarbons Site
Standard	Standard Oil Company
ТРН	Total petroleum hydrocarbons
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound
VPH	Volatile petroleum hydrocarbons
Work Plan	Remedial Investigation Work Plan

This page intentionally left blank.

1.0 Introduction

This Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) presents the sample collection and laboratory analysis procedures that will be used to collect samples as part of the Remedial Investigation (RI) Work Plan (Work Plan) at the Port of Longview (Port) Total Petroleum Hydrocarbons (TPH) Site (the Site).

This page intentionally left blank.

2.0 **Project Organization and Responsibility**

The various quality assurance (QA) field, laboratory, and management responsibilities of key project personnel are defined below.

2.1 MANAGEMENT RESPONSIBILITIES

Lisa Hendriksen—PLP Group and Port of Longview

Lisa Hendriksen is the Project Coordinator for the potentially liable party (PLP) Group, and the primary point of contact for the PLP Group and Port. She will perform the following:

- Authorize and coordinate access for field activities.
- Coordinate PLP Group review and approval of reports (deliverables).
- Manage the disposal of any investigation-derived waste.

Scott Adamek—Floyd|Snider Project Manager

Scott Adamek, Project Manager, will have overall responsibility for project implementation. As Project Manager he will be responsible for maintaining QA on this project and ensuring that the sampling objectives are met. He will perform the following:

- Approve the SAP/QAPP.
- Monitor project activity and quality.
- Provide overview of field activities to the PLP Group.
- Prepare and review the draft investigation findings report.
- Provide technical review of findings during conference calls or meetings with the PLP Group.

Brett Beaulieu—Floyd|Snider Project Hydrogeologist

Brett Beaulieu, Project Hydrogeologist, will have overall responsibility for interpretation and presentation of data collected during the field investigation.

Specific responsibilities will include the following:

- Assist Project Manager and field lead with technical decisions including location changes, depth, and additional borings.
- Prepare and review draft investigation findings report, including assessment of groundwater flow and contaminant migration.

2.2 QUALITY ASSURANCE RESPONSIBILITIES

Chell Black—Floyd | Snider Data Manager

The Data Manager will be responsible for the data validation of all sample results from the analytical laboratories and entering the data into a database. Additional responsibilities include the following:

- Review of laboratory reports.
- Load analytical data to Washington State Department of Ecology's (Ecology's) Environmental Information Management (EIM) database.
- Advise on data corrective action procedures.
- QA and quality control (QC) on analytical data reports.
- Database management and queries.

2.3 LABORATORY RESPONSIBILITIES

An Ecology-accredited laboratory will perform all analytical services in support of the Work Plan activities.

Laboratory Project Manager

The Laboratory Project Manager will be responsible for the following:

- Coordinating laboratory analyses with Floyd|Snider.
- Reviewing and approving final analytical reports.
- Scheduling sample analyses.
- Overseeing data review.

2.4 FIELD RESPONSIBILITIES

Gabe Cisneros—Floyd | Snider Field Lead

The Field Lead will be responsible for leading and coordinating the day-to-day activities in the field. The Field Lead will report directly to the Floyd|Snider Project Manager.

Specific responsibilities include the following:

- Coordinating with the Project Manager.
- Coordinating and managing field staff including sampling staff and drillers.
- Reviewing field data including field logs and field measurement data.
- Adhering to the work schedule.
- Coordinating and overseeing subcontractors.
- Preparing the investigation findings report.

3.0 Data Quality Objectives

The objective of this section is to clarify QA objectives for field sampling and laboratory analyses. Specific procedures for sampling, chain of custody, laboratory instrument calibration, laboratory analysis, reporting of data, internal QC, audits, preventative maintenance of field/laboratory equipment, and corrective action are described in the following sections.

3.1 LABORATORY QUALITY ASSURANCE OBJECTIVES

Laboratory results will be evaluated against QA objectives for:

• Precision, defined as the relative percent difference between results for matrix spike and matrix spike duplicate analyses:

$$\mathsf{RPD} = \frac{(\mathsf{C}_1 - \mathsf{C}_2) \times 100\%}{(\mathsf{C}_1 + \mathsf{C}_2)/2}$$

Where:

RPD = relative percent difference

 C_1 = larger of the two observed values

 C_2 = smaller of the two observed values

• Accuracy, defined as the recovery of a spiked sample compared to a known quantity of spike:

$$%R = 100\% x (S-U)/C_{sa}$$

Where:

%R = percent recovery

S = measured concentration in the spiked aliquot

U = measured concentration in the unspiked aliquot

C_{sa} = actual concentration of spike added

- Comparability, defined as the confidence with which one dataset can be compared to another. Comparability is ensured by using standard U.S. Environmental Protection Agency (USEPA) methods and protocols.
- Completeness, defined as the proportion of data that are determined to be valid:

C = (Number of acceptable data points) x 100 (Total number of data points)

Results will be reviewed for analysis of method blanks, matrix spikes, duplicate samples, laboratory control samples, calibrations, performance evaluation samples, and interference checks as specified by the specific analytical methods. Laboratory QA objectives are summarized in Table F.1.

3.2 FIELD QUALITY CONTROL PROCEDURES

Trip blanks will be included in each cooler with samples being analyzed for gasoline-range organics (GRO) or volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and xylenes (BTEX); petroleum additives; and others, to ensure that the sample containers do not contribute to any detected analyte concentrations and to identify any artifacts of improper sample handling, storage, or shipping. A rinsate blank QC sample will also be collected for each sampling event on the non-dedicated field equipment (i.e., stainless steel bowl and spoon) to ensure field decontamination procedures are effective. All field QC samples will be documented in the field logbook and verified by the Field Lead or designee.

All samples will be transported in secured coolers filled with ice and accompanied by chain-of custody forms reviewed by the Field Lead. The sample custodian at the laboratory will verify that custody forms are properly signed upon receipt of samples and notify the Field Lead immediately if discrepancies are discovered between the custody forms and sample shipment. Sample handling will be performed according to the requirements of the analytical method. Specific sample handling requirements, including container types, preservatives, and holding times, are summarized in Table F.2.

3.3 DATA REDUCTION, VALIDATION, AND REPORTING

Initial data reduction, evaluation, and reporting at the laboratory will be carried out as described in the appropriate analytical protocols and the laboratory's QA Manual. The laboratory will be responsible for internal checks on data reporting and will correct errors identified during the QA review. The laboratory will be required to report, when applicable, a project narrative, sample IDs, chain of custody records, sample results, QA/QC summaries, method blank analysis, surrogate spike recovery, matrix spike recovery, and matrix duplicates.

Data validation will be performed by Floyd|Snider to ensure that the laboratory QA objectives described in Table F.1 have been met and that the laboratory has reported the required information as described above. The data quality review will follow USEPA National Functional Guidelines in accordance with the QAPP limits (USEPA 2017a and 2017b).

Data usability, conformance with the data quality objectives, and any deviations that may have affected the quality of the data, as well as the basis of application of qualifiers, will be included in the final reporting of the data. Any required corrective actions based on the evaluation of the analytical data will be determined by the laboratory Project Manager in consultation with the Floyd | Snider QA Manager and may include qualification or rejection of the data.

The Data Validation summary report will be presented as an appendix to the RI. Validated data will be entered into the project database and uploaded to Ecology's EIM database system.

3.4 CORRECTIVE ACTIONS

The Field Lead will be responsible for correcting field errors in sampling or documenting equipment malfunctions during the field sampling effort and will be responsible for resolving situations in the field that may result in non-compliance with the SAP/QAPP. All corrective measures will be immediately documented in the field logbook. Substantial deviations will be reported immediately to the Project Manager.

The laboratory is required to comply with their Standard Operating Procedures. The Laboratory Project Manager will be responsible for ensuring that appropriate corrective actions are initiated as required for conformance with this SAP/QAPP. All laboratory personnel will be responsible for reporting problems that may compromise the quality of the data.

This page intentionally left blank.

4.0 Investigation Protocols

The field investigation will consist of a utility and pipeline survey activities, water level measurement, direct-push (i.e., Geoprobe) soil boring sampling, real-time hydrocarbon compound delineation, drilling, installation of monitoring wells, a survey of existing and new monitoring wells, and groundwater sampling via monitoring wells and temporary well points installed in Geoprobe borings, and aquifer testing. Sample collection needs by location are presented in Table F.3. Details on sample collection methodologies are included in Floyd | Snider's Standard Operation Procedures, a copy of which will be carried in the field.

Field work will occur in two phases/mobilizations. The first mobilization will consist of using an Optical Image Profiler [OIP] by Geoprobe[®] and hydraulic profiling tool (HPT) attached to a directpush drill rig that will be used to investigate the potential for remaining light non-aqueous-phase liquid (LNAPL) and TPH impacts in the subsurface and to obtain hydrostratigraphic data in relevant areas of potential concern (AOPCs). The OIP can help provide rapid and cost-effective delineation of any remaining LNAPL or residual TPH impacts.

Technologies such as the OIP and Ultra Violet Optical Screening Tool can detect hydrocarbons within the GRO, diesel-range organics (DRO), and lighter polycyclic aromatic hydrocarbon (PAH) ranges but are not very effective identifying Bunker C. Technologies such as TarGOST can detect Bunker C but are not effective in detecting GRO and the lighter PAHs. Hence, due to the broad mix of petroleum fuel product impact to the subsurface, the OIP-HPT combination would provide the most effective direct sensing tools for high resolution site characterization of GRO, DRO, PAH, and Bunker C. OIP will provide visual and photographic confirmation of LNAPL. Product samples collected during the pipeline removal interim action activities will be sent to Columbia Technologies prior to conducting fieldwork in order to evaluate the LNAPL and applicable direct sensing tools.

The number of OIP borings may be increased or decreased in each AOPC, pending real-time OIP results, to delineate the extent of impacts based on OIP results in the field. The HPT, which will be used on select locations, utilizes pressure measurements to quantify the permeability of the medium the probe is being advanced through and estimate a hydraulic conductivity (k) value. To accomplish this, water is pumped through a down-hole transducer at approximately 250 milliliters per minute into the formation. Pressure and flow are plotted against depth, resulting in a line graph that provides permeability as a function of depth.

In addition to the OIP/HPT boring locations during the first phase, four to six direct-push boring locations will be advanced immediately adjacent to select OIP/HPT locations during the first phase of RI fieldwork in order to collect continuous soil samples and analytical data. The lithology and analytical results from these direct-push borings will be compared to the OIP/HPT results prior to proposing direct-push locations during the second phase of the RI activities. The select direct-push locations will be advanced in areas with significant impacts and varying geology to evaluate the OIP/HPT response data. The proposed OIP and HPT locations are shown on Figure F.1.

The second phase of field work will consist of a subsequent mobilization with a direct-push probe and a hollow-stem auger rig. The OIP results, along with results from previous investigations, will be used to determine where direct-push locations will be advanced. Samples collected from direct-push boring will help obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples in order to delineate the extent and to calculate the volume of any remaining TPH. At least one direct-push boring will be advanced in all AOPCs in order to obtain quantitative results and to delineate the vertical and lateral extent of TPH impacts. The second mobilization will also include the installation of monitoring wells with the hollow-stem auger rig and the installation of subslab Vapor Pins. The proposed monitoring well locations will be based on the OIP results and on data needs.

4.1 UTILITY LOCATE AND PIPELINE SURVEYS

The utility survey will be conducted using existing maps and conductible survey. For the conductible survey, a private utility will attach an electrical signal generator to conductible lines, to trace them at the ground surface. Boring locations will also be marked in advance as needed for public utility locate in order to avoid buried utilities during the investigation. If possible, marking will be done with a Port facilities representative present.

In addition, a limited video inspection will be conducted of accessible pipelines following the Pipeline Interim Action in conjunction with utility locating services. During the interim action, five distinct, exposed pipelines, labeled as lines A, B, C, D, and E, were cut and removed. Pipeline E was full of viscous Bunker C, and the product remaining in the pipeline north of the bulkhead was unable to be vacuumed out. All other pipelines had very little residual product, and the contents were vacuumed out. This is consistent with the Termination of License Agreement, in which Chevron Environmental Management Company reported that it had removed hydrocarbon liquids from the Standard Oil Company (Standard) pipelines, cleaned the Standard pipelines between the bulk tank farm and their terminus at the shipping berths, and flushed the Standard pipelines with water and air (Floyd|Snider 2019).

The pipelines are composed of ductile iron pipe (DIP) and are at least 6 inches and 8 inches in diameter. The previous utility locate conducted during the 2015 field investigation found that conductibility of pipes composed of DIP was low and using a radio frequency detector was useful only for a short range; as a result, the signal was lost beyond 50 feet from frequency source. A camera cable and sonde cable will be pushed, as far as reasonably possible (likely 100 – 200 feet northward from the access points near the bulkhead), into pipelines A, B, C, and D (refer to Drawing G1 of the Interim Action Completion Report; Floyd|Snider 2019) in order to video inspect the pipelines for cracks, holes, and the presence of remaining product, building on the results of the 2019 Pipeline Interim Action. An attempt will be made to use a tractor camera; however, it may not be feasible due to the small diameter of the pipelines and the presence of bends in the pipelines. Management of any remaining product encountered in the pipelines will be addressed in the Feasibility Study.

4.2 WATER LEVEL DATA COLLECTION

The depth to water at representative Site wells will be collected using an electronic water level tape. At wells where LNAPL has previously been present, an oil-water interface probe will be used to measure the depth to water and thickness of LNAPL floating on top of the water. While measuring the depth to water in wells that typically do not contain LNAPL, the electronic water level tape will be used and then inspected for sheen, drops of product, odor, or any other signs of LNAPL. If any signs of LNAPL on the water level tape exist, then the interface probe will be used to confirm the presence of LNAPL. Standard guidelines for water level measurement are included in Attachment F.1.

4.3 LASER-INDUCED FLUORESCENCE INVESTIGATION

An OIP sensor system and an HPT will be deployed with a standard direct-push drill rig. The OIP sensor is intended to provide rapid, real-time, in situ qualitative to semiquantitative information about the distribution of subsurface petroleum-impacted soil and extent of LNAPL both above and below the perched zone and lower water table. The sensor is intended as a method to delineate the boundaries of LNAPL extent and the subsurface contaminant plume prior to installing monitoring wells or collecting soil samples. It is not intended as a complete replacement for traditional soil samples and monitoring wells; but rather to maximize the effectiveness, and minimize the number, of conventional borings. The HPT, which will be used on select locations, utilizes pressure measurements to quantify the permeability of the medium the probe is being advanced through and estimate a hydraulic conductivity (k) value versus depth. Based on the semiquantitative OIP results and the HPT survey, additional strategic locations will be advanced with a direct-push rig in order to obtain quantitative soil and groundwater results. Subsequent direct-push borings will be advanced in order to collect vertical and lateral confirmation samples to delineate the potential extent and calculate a volume of TPH impacts remaining at the Site (refer to Section 4.4).

4.4 DIRECT-PUSH SOIL BORING SAMPLING

Based on the semiquantitative OIP results, additional strategic locations will need to be conducted with a direct-push rig in order to obtain quantitative soil and groundwater results. Direct-push locations will be selected to collect vertical and lateral confirmation samples to delineate the extent and calculate a volume of TPH contamination remaining at the Site. Direct-push locations will be spaced approximately every 50 feet to delineate the lateral extent of TPH impacted soil. In addition, at least one direct-push boring will be advanced in all areas that contains the greatest TPH contamination, based on OIP results, in order to collect soil samples and delineate the vertical extent TPH contamination.

Soil borings will be advanced using direct-push (i.e., Geoprobe) drilling, and the recovered soil samples will be logged continuously by field personnel. Field indications of contamination, including odor, staining, sheen, and elevated VOC concentrations measured by a photoionization detector (PID) will be recorded. Soil samples for laboratory analysis will be collected from the depth interval above the water table observed at the time of the drilling and

the depth interval with the greatest field indications of contamination. In some locations (refer to Section 5.0 of the Work Plan), additional soil samples will be collected, including surface soil samples collected from the upper 2 feet of soil. The goal is to define the lateral and vertical extent of contamination in all data gap areas. Therefore, the need for additional soil boring locations will be determined in the field and based on field screening observations on the initial proposed locations. Standard guidelines for logging soil descriptions and collecting samples are included in Attachment F.1.

4.5 HAND AUGER SOIL BORING SAMPLING

Soil borings will be advanced using hand auger tools and the recovered soil samples will be logged continuously by field personnel. Field indications of contamination, including odor, sheen, and elevated VOC concentrations measured by a PID, will be recorded. Soil samples will be collected from the ground surface and additional soil samples will be collected at depth until field indications of contamination are no longer observed. Additional surface samples may be collected to delineate the impacted area. Standard guidelines for logging soil descriptions and collecting samples are included in Attachment F.1.

4.6 GROUNDWATER SAMPLING

4.6.1 Direct-Push Boring Groundwater Sampling

Groundwater screening samples will be collected, at depths based on the OIP and/or HPT surveys, from select direct-push soil borings, using temporary well screens to collect samples from the upper 5 to 10 feet of groundwater encountered and purging until the groundwater is visibly clear. Boring locations designated for groundwater grab samples are shown on Figure F.1 and standard guidelines for collecting groundwater sample using a Geoprobe are included in Attachment F.1.

4.6.2 Monitoring Well Groundwater Sampling

All Site monitoring wells will be sampled using standard low-flow procedures, if sufficient water is present. If excessive siltation is noted in sampled wells, such as in wells MW-20 and MW-26, they may be redeveloped before sampling. After two rounds of groundwater sampling results, the number of monitoring wells to be sampled may be reduced pending consecutive results of non-detect or less than cleanup levels. Standard guidelines for low-flow sampling and well development procedures are included in Attachment F.1.

4.6.3 Monitored Natural Attenuation

Groundwater data will be collected from a subset of monitoring wells for natural attenuation parameters (nitrate, sulfate, manganese, alkalinity, methane, and the additional field measurement of ferrous iron) to provide an updated understanding of groundwater parameters and constituents indicative of biological degradation, including key nutrients and energy sources used by relevant bacteria. Natural attenuation is the unaided reduction of contaminant concentration and mass by using the natural assimilative capacity of a groundwater/soil system in situ. This ubiquitous process includes a variety of physical, chemical, or biological attributes under favorable conditions to reduce the toxicity, mobility, and concentration of contaminants without human intervention. The reduction in concentrations is due primarily to several fate and transport processes including destructive processes, such as biodegradation, and nondestructive mechanisms, such as dilution, sorption, volatilization, and dispersion (USEPA 1999).

During the biodegradation process of contaminants, several chemical compounds in groundwater are produced and can be used as indicators of natural attenuation. The parameters of natural attenuation processes that will be measured are redox potential, pH, conductivity, dissolved oxygen, nitrate, sulfate, ferrous iron, alkalinity, and methane. Many of these parameters will be plotted against DRO, oil-range organics (ORO), and GRO and the approximate distance of the monitoring well from the former LNAPL plume boundary and source areas (Ecology 2005). Plots will be constructed in order to depict varying levels of biodegradation across the dissolved plume and into uncontaminated groundwater.

4.7 SAMPLE NOMENCLATURE

Soil samples will be named according to their direct-push boring location, top depth in feet below ground surface (bgs), and bottom depth in feet bgs, separated by dashes. For example, the soil sample collected from direct-push (i.e., Geoprobe) boring location 31 from 8 to 8.5 feet bgs would be named "GP-31-8-8.5."

Monitoring well groundwater samples will be named according to the well location; for example, the sample collected from MW-23 on March 1, 2019, would be named "MW-23-030119." Groundwater grab samples collected from direct-push borings will be named according to the boring location appended with "GW" and separated by dashes; for example, the groundwater grab sample collected from GP-1 would be named "GP-1-GW".

4.8 SURVEY

A licensed surveyor will locate select station structures, property boundaries, and all existing and newly installed monitoring wells. At each monitoring well the top of the well casing and ground surface will be surveyed to the nearest 0.01 feet in the horizontal and vertical directions. Monitoring well coordinates will be reported relative to the in North American Datum of 1983(1991) (NAD 83[91]) Washington State Plane South. Elevations will be reported relative to the North American Vertical Datum of 1988 (NAVD 88) and Mean Sea Level (MSL). Well logs will include the Washington State Plane South coordinates of the well and the top of well casing elevation. The coordinate and elevation reference systems will be noted on the well logs. Sampling locations other than monitoring wells will be surveyed for horizontal location by field personnel using a hand-held sub-meter global positioning system.

4.9 SOIL VAPOR POINT INSTALLATION AND SAMPLING

A Cox-Colvin subslab Vapor Pin[®] will be installed in the northeastern corner of the former Warehouse slab in order to assess vapor intrusion from LNAPL present in monitoring well MW-9. The steps for Vapor Pin installation are as follows:

- Drill a 1.5-inch (38 millimeters [mm]) diameter hole at least 1.75 inches (45 mm) into the slab.
- Drill a 0.625-inch (16 mm) diameter hole through the slab and approximately 1 inch (25 mm) into the underlying soil to form a void. Hole must be 0.625 inches (16 mm) in diameter to ensure proper seal. Remove the drill bit, brush the hole with a bottle brush, and remove the loose cuttings with a vacuum.
- Place the lower end of Vapor Pin assembly into the drilled hole. Place the small hole located in the handle of the installation/extraction tool provided in the kit over the Vapor Pin to protect the barb fitting, and tap the Vapor Pin into place using a dead blow hammer or rubber mallet. Make sure the installation/extraction tool is aligned parallel to the Vapor Pin to avoid damaging the barb fitting.
- For flush mount installations, cover the Vapor Pin with a flush mount cover, using either the plastic cover or the optional stainless-steel secured cover also provided by Cox-Colvin.
- Allow 48 hours or more for the subslab soil-gas conditions to re-equilibrate prior to sampling.

After sufficient time has passed to allow for re-equilibrating, a 1-liter lab certified SUMMA[®] canister will be should be used for soil vapor collection, and a second SUMMA canister will be used for purging. Once the sample train has been set up and connected, a closed-valve test will be conducted, prior to soil vapor sample collection, to check for leaks in the sampling train. The closed-valve test will be conducted for approximately 5 minutes. After the closed-valve test, a minimum of three tubing volumes will be purged. Purging will be completed using a non-certified 1- or 6-liter SUMMA canister. After the sampling train has been purged, the subslab soil vapor sample will be collected over a 10-minute period at a flow rate of less than 167 milliliters per minute. The flow rate will be controlled by a flow regulator, which is set by the laboratory.

In addition to soil-gas sampling activities, leak testing will be conducted using either helium, isopropyl alcohol, or 1,1-difluoroethane (which is used in aerosol dusting sprays) as a tracer gas. Standard guidelines for Vapor Pin installation and soil vapor sampling are included in Attachment F.1.

4.10 DRAWDOWN TESTING

Drawdown testing will be conducted in accordance with standard methods for constant-rate discharge tests, as described in ASTM Method D4050 and summarized for Site use here.

Prior to the start of drawdown testing, a groundwater sample will be collected from the well to be pumped and will be analyzed for DRO, GRO, and BTEX in accordance with the procedures in

the SAP/QAPP. The results of this analysis will be used to ensure that the recovered groundwater is managed in accordance with substantive regulatory requirements.

New wells will be surveyed (location and elevation) and developed prior to drawdown testing. Additionally, the distance of the observation wells to the pumping well will be measured.

Baseline water levels will be measured during setup and confirmed immediately prior to the start of the test. Transducers will be installed in all wells and calibrated with hand measurements. A variable-speed submersible pump of suitable capacity (up to approximately 10 gallons per minute; e.g., Grundfos Redi-Flo 2) will be lowered into the pumping well. Pumping rates will be measured during the test using a meter or by filling a container of known volume in a measured time. Transducer data-logging capability will be tested prior to the start of the test.

If aquifer yield is sufficient, a preliminary yield test will be performed prior to the pumping test. The well will be pumped at a series of increasing rates, and the maximum sustainable rate of the pumping well for the duration of the test will be estimated based on extrapolation of drawdown measured in the well. Water levels will be allowed to recover to pre-pumping levels following the yield test prior to initiation of the pumping test.

Pumping will be initiated at the maximum sustainable rate estimated from preliminary yield testing. Pumping rates will be measured at 15-minute or greater intervals throughout the test, noted in a field logbook, and regulated as necessary using the electronic pump controls and/or a valve. The pumping rate will be controlled so that there will be no more than a 10 percent variation in rate during the test. Water will be conveyed by hose or tubing to a storage container for analysis and disposal as investigation-derived waste (IDW; refer to Section 4.13). The frequency of measurement by electronic data-logging of transducer will be suitable for the selected pump test analysis method and is expected to be at least 10 measurements for each logarithmic interval of time, in accordance with the ASTM standard. The duration of the pumping will be scheduled to last at least 100 minutes.

After pumping is stopped, data will continue to be logged to measure the aquifer recovery. A similar duration of time will be required for monitoring aquifer recovery after pumping is halted. Data logging will continue until the aquifer has recovered to within 5 percent of the total drawdown in the well being pumped. If appropriate based on results, drawdown test results will be analyzed with software (e.g., Aqtesolv) that utilizes a solution appropriate for the data to determine the transmissivity, horizontal hydraulic conductivity, storativity (early drawdown), specific yield (late drawdown), and vertical hydraulic conductivity for unconfined aquifers.

4.11 TRANSDUCER STUDY

Six monitoring wells, including three alluvial aquifer monitoring wells and three perched zone monitoring wells, will be instrumented with pressure transducers capable of measuring changes in water level of 0.01 feet or greater accuracy. The water level in each monitoring well will be measured at the time of installation and removal of the transducers. The transducers will collect data for approximately 3 days, at measurement intervals of 15 to 20 minutes. If unvented

transducers are used, measurements will be corrected for barometric pressure. Concurrent stage measurements from nearby National Oceanic and Atmospheric Administration monitoring station 9440422 on the Columbia River will be used for comparison to water levels in both the perched and the alluvial aquifer.

4.12 EQUIPMENT DECONTAMINATION

Field sampling equipment, such as stainless-steel bowls and the water level indicators, will be cleaned between uses at each sampling location. Equipment for reuse will be decontaminated according to the procedure below, before each sample interval:

- 1. Water will be sprayed over equipment to dislodge and remove any remaining soil.
- 2. Surfaces of equipment contacting sample material will be scrubbed with brushes using an Alconox solution.
- 3. Scrubbed equipment will be rinsed and scrubbed with clean water.
- 4. Equipment will undergo a final spray rinse of deionized water.
- 5. A rinsate blank QC sample will be collected by pouring laboratory-provided deionized water over the sampling equipment and collecting the rinsate in laboratory-provided bottles.

4.13 INVESTIGATION-DERIVED WASTE

Generated waste will be managed and disposed of in accordance with applicable waste management regulations. IDW includes the following liquids and solids:

- Purge water.
- Decontamination wash water.
- Soil drill cuttings, including non-soil debris that may be removed from the subsurface during drilling.
- Disposable materials used during field work that may be impacted by contaminated media, or decontamination wash water (e.g., disposable personal protective equipment [PPE], used filters, plastic sheeting, paper towels, and tubing).

IDW liquids, such as well development waters and decontamination fluids, will be placed in 55-gallon drums and appropriately labeled. The IDW will be stored on site pending waste profiling and proper disposal, which will be coordinated by the Port on behalf of the PLP Group. Material that is designated for offsite disposal will be transported to an offsite facility permitted to accept the waste. Manifests will be used as appropriate for disposal.

All disposable sampling material and PPE (e.g., paper towels, disposable coveralls, and gloves) used in sample processing will be placed in heavyweight garbage bags or other appropriate containers. Disposable supplies will be removed from the Site by sampling personnel and placed in a municipal solid waste refuse container for disposal at a solid waste landfill.

5.0 Laboratory Analysis

Given that the Site contains impacts from former diesel and/or gasoline sources, soil samples will initially be screened using hydrocarbon identification (HCID) by NWTPH-HCID. Soil samples will also be collected per Ecology guidance and USEPA Method 5035A for potential analysis of GRO and BTEX.

If the value of the HCID screening analysis for diesel or gasoline, or both, exceeds the reporting limits, then the appropriate analytical method will be analyzed for the product type detected, including the following:

- DRO and ORO by NWTPH-Dx (if diesel is detected by HCID)
- GRO by NWTPH-Gx (if gasoline is detected by HCID)
- BTEX by USEPA Method 8260 (if gasoline is detected by HCID)

Additional analyses will be conducted on selected soil samples if substantial petroleum impacts to soil are encountered, based on field screening observations. Additional analyses include the following:

- BTEX, methyl *tert*-butyl ether (MTBE), hexane, ethylene dibromide (EDB), and ethylene dichloride (EDC) by USEPA Method 8260C
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and naphthalenes by USEPA Method 8270D SIM
- Total lead by USEPA Method 6020
- Extractable petroleum hydrocarbons (EPH) and volatile petroleum hydrocarbons (VPH) by Methods NWEPH and NWVPH

The results from the additional analyses can be used to calculate Model Toxics Control Act (MTCA) Method B or Method C cleanup levels for TPH.

Groundwater samples collected from all wells at the Site will be analyzed for DRO, ORO, GRO, BTEX, and cPAHs. In accordance with MTCA Table 830-1, select wells located near former underground storage tanks will be analyzed for additional analyses, including naphthalenes, MTBE, EDB, EDC, and lead (Table F.3). Samples from another subset of spatially representative monitoring wells will be submitted for full suite of VOC analysis.

Select wells, shown in Table F.3, will be analyzed for monitored natural attenuation (MNA) parameters, and MNA monitoring will be conducted in accordance with Washington Administrative Code 173-340-820. Wells selected for MNA monitoring are based on source areas, well screen depths, and distance from source areas. After the first early rounds of groundwater monitoring results, the number of wells that will be monitored for natural attenuation may be

adjusted. In addition to the above analyses, the following geochemical parameters will be recorded in the field for MNA monitoring:

- Dissolved oxygen (Horiba)
- Redox potential (Horiba)
- pH (Horiba)
- Conductivity (Horiba)
- Temperature (Horiba)
- Ferrous iron (Hach Field Kits)

Additional geochemical MNA indicators that will be submitted to a laboratory for analysis will consist of the following:

- Nitrate by USEPA Method 300.0
- Manganese (soluble) by USEPA Method 200.8
- Sulfate by USEPA Method 300.0
- Methane by RSK-175
- Alkalinity by SM 2320B

Laboratory analytical methods, including reporting limits and quantitation limits, are presented in Table F.4.

Subslab soil-gas samples will be analyzed for the following:

- Air-phase petroleum hydrocarbons, BTEX, naphthalene, and isopropyl alcohol (optional) by USEPA Method TO-15
- Helium (optional) using ASTM D1946 by TO-15 for leak detection

Soil vapor concentrations will be compared to screening levels presented in the updated Table F.1 of Ecology's *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology 2018).

6.0 References

- Floyd|Snider. 2019. Port of Longview TPH Site Interim Action Completion Report. Prepared for Port of Longview. September.
- U.S. Environmental Protection Agency (USEPA). 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive No. 9200.4-17P. 21 April.
- _____. 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-2017-001/OLEM 9355.0-135. January.
- _____. 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-540-R-2017-002/OLEM 9355.0-136. January.
- Washington State Department of Ecology. 2005. *Guidance on Remediation of Petroleum-Contaminated Ground Water by Natural Attenuation.* Publication No. 05-09-091. July.
- _____. 2018. *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*. Publication no. 09-09-047. April.

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix F Sampling and Analysis Plan/ Quality Assurance Project Plan

Tables

Table F.1 Data Quality Assurance Criteria

Parameter	Reference	Precision (Relative Percent Difference)	Accuracy (Percent Difference from Standard)	Completeness (Percentage of Data Validated)
Soil	Kererence	Differencey	inom standardy	Vandatedy
DRO	NWTPH-Dx	± 20%	± 50%	95%
ORO	NWTPH-Dx	± 20%	± 50%	95%
GRO	NWTPH-Gx	± 20%	± 50%	95%
Volatile Organic Compounds	NWIPH-0X	1 20%	± 50%	95%
Benzene				
Toluene				
Ethylbenzene	USEPA Method 8021 or 8260			
Xylenes				
Naphthalene		± 20%	± 50%	95%
Methyl tert-butyl ether		220/0	2 3070	3370
Ethylene dichloride	USEPA Method 8260			
n-Hexane				
Ethylene dibromide				
•	arcinogenic Polycyclic Aromatic Hydroca	arbons		
Naphthalenes ⁽¹⁾				
Acenaphthylene				
Acenaphthene				
Fluorene				
Phenanthrene				
Anthracene				
Fluoranthene				
Pyrene				
Benzo(a)anthracene	USEPA Method 8270D SIM	± 20%	± 50%	95%
Chrysene				
Benzo(b)fluoranthene				
Benzo(k)fluoranthene				
Benzo(a)pyrene				
Indeno(1,2,3-c,d)pyrene				
Dibenzo(a,h)anthracene				
Benzo(g,h,i)perylene				
Metals				
Lead	USEPA Method 6020	± 20%	± 30%	95%
Physical Parameters and Convention		÷ 20/0	1 3070	3370
Grain size	ASTM D6913	± 30%	± 50%	95%
Porosity	ASTM D7263	± 20%	± 30%	95%
Bulk density	ASTM D5057	± 30%	± 30%	95%
Total organic carbon	USEPA 9060	± 50%	± 50%	95%
Water				
DRO	NWTPH-Dx	± 20%	± 60%	95%
ORO	NWTPH-Dx	± 20%	± 60%	95%
GRO	NWTPH-Gx	± 20%	± 60%	95%
Volatile Organic Compounds				
Benzene				
Toluene				
Ethylbenzene	USEPA Method 8021 or 8260			
Xylenes	——————————————————————————————————————			
Naphthalene		± 20%	± 30%	95%
Methyl tert-Butyl Ether		± 20/0	÷ 5070	
Ethylene Dichloride	USEPA Method 8260 ⁽²⁾			
n-Hexane				
ппелине	USEPA Method 8011			

Table F.1Data Quality Assurance Criteria

Parameter	Reference	Precision (Relative Percent Difference)	Accuracy (Percent Difference from Standard)	Completeness (Percentage of Data Validated)
Water (cont.)				
Semivolatile Organic Compounds/Caro	inogenic Polycyclic Aromatic Hydroca	arbons		
Naphthalenes ⁽¹⁾				
Acenaphthylene				
Acenaphthene				
Fluorene				
Phenanthrene				
Anthracene				
Fluoranthene				
Pyrene		. 200/	1.20%	05%
Benzo(a)anthracene	USEPA Method 8270D SIM	± 20%	± 30%	95%
Chrysene				
Benzo(b)fluoranthene				
Benzo(k)fluoranthene				
Benzo(a)pyrene				
Indeno(1,2,3-c,d)pyrene				
Dibenzo(a,h)anthracene				
Benzo(g,h,i)perylene				
Monitored Natural Attenuation Param	neters			
Nitrate	USEPA 300.0	± 20%	± 20%	95%
Sulfate	USEPA 300.0	± 20%	± 30%	95%
Manganese (soluble)	USEPA 200.8	± 20%	± 30%	95%
Alkalinity	SM 2320B	± 20%	± 20%	95%
Methane	RSK-175	± 20%	± 50%	95%
Ferrous iron (soluble)	Hach field kit	NA	NA	NA
Soil-Gas ⁽³⁾				
APH [EC5-8 aliphatics] fraction				
APH [EC9-12 aliphatics] fraction	MA-APH			90%
APH [EC9-10 aromatics] fraction				
Benzene				
Ethylbenzene		± 30%	± 30%	
Toluene	USEPA Method TO-15	± 3070	± 5070	
Xylenes, total				90%
Naphthalene				
Isopropyl alcohol (optional)				
Helium (optional)	ASTM D1946			

Note:

1 Under the MTCA rule, "naphthalenes" is the total of naphthalene, 1-methyl naphthalene, and 2-methyl naphthalene, and the analysis will include all three.

2 Volatile organic compounds of interest will be analyzed by USEPA Method 8260; however, the full suite of analytes will be requested using standard reporting limits and practical quantitation limits.

3 Select analytes are shown on this table; however, any additional additives that are detected in soil or groundwater will be analyzed in soil gas samples.

Abbreviations:

- APH Air-phase petroleum hydrocarbons
- DRO Diesel-range organics
- GRO Gasoline-range organics
- MTCA Model Toxics Control Act
 - NA Not applicable
- ORO Oil-range organics
- TPH Total petroleum hydrocarbons
- USEPA U.S. Environmental Protection Agency

 Table F.2

 Analytical Requirements, Methods, Preservation, Bottle Type, and Holding Times

Parameter	Reference	Bottle Type	Preservative	Holding Time
Soil				
DRO				
ORO	NWTPH-Dx	(1) 4-oz WMG	None, cool to ≤6 °C	14 days to extract, then 40 to analyze
GRO	NWTPH-Gx	(4) 40-mL glass VOA vials with PTFE Septum	Methanol and cool to ≤6 °C or none and cool to ≤6 °C	14 days to analyze with MeOH preservation or if none, 2 days at ≤6 °C, 14 days at ≤-7 °C
Volatile Organic Compounds		1	1	
Benzene				
Toluene	USEPA Method 8021 or			
Ethylbenzene	8260			
Xylenes	_	(4) 40-mL glass VOA vials with PTFE Septum	Methanol and cool to	14 days to analyze with MeOH
Methyl tert-butyl ether		(GRO, VOCs, and	≤6 °C or none and cool	preservation
Ethylene dichloride	_	SVOCs taken from the	to ≤6 °C	or if none, 2 days at ≤6 °C, 14 days at ≤-7 °C
Naphthalenes	USEPA Method 8260	same four VOA vials)		
n-Hexane	-			
Ethylene dibromide	_			
Semivolatile Organic Compoun	ds/Carcinogenic Polycyclic	Aromatic Hydrocarbons		
Naphthalenes ⁽¹⁾				
Acenaphthylene	_			
Acenaphthene	_			
Fluorene	_			
Phenanthrene	_			
Anthracene	_			
Fluoranthene	-	(4) 40-mL glass VOA		
Pyrene		vials with PTFE Septum	Methanol and cool to	14 days to analyze with MeOH preservation
Benzo(a)anthracene	USEPA Method 8270D SIM	(GRO, VOCs, and SVOCs taken from	≤6 °C or none and	or
	_	the same four VOA	cool to ≤6 °C	if none, 2 days at ≤6 °C, 14 days at ≤-7 °
Chrysene	_	vials)		
Benzo(b)fluoranthene	_			
Benzo(k)fluoranthene	_			
Benzo(a)pyrene	_			
Indeno(1,2,3-c,d)pyrene	_			
Dibenzo(a,h)anthracene	_			
Benzo(g,h,i)perylene				
Metals				
Lead	USEPA Method 6020	(1) 4-oz WMG	None, cool to ≤6 °C	6 months (or freeze for 1 year) 28 days for mercury
Conventionals				
Total organic carbon	USEPA 9060	500-mL plastic	None, cool to ≤6 °C	28 days
Water				
DRO	NWTPH-Dx	(2) 500-mL amber	None, cool to ≤6 °C	7 days to extract, then 40 days to analyze
ORO		glass		, auys to extract, then to days to analyze
GRO	NWTPH-Gx	(5) 40-mL glass VOA vials with PTFE Septum	Hydrochloric acid to pH ≤2.0, cool to ≤6 °C	14 days to analyze
Volatile Organic Compounds				
Benzene				
Toluene	USEPA Method 8021 or			
Ethylbenzene	8260			
Xylenes	1	(5) 40-mL glass VOA		
Methyl tert-butyl ether		vials with PTFE Septum (GRO, VOCs, and	Hydrochloric acid to	14 days to analyze
Ethylene dichloride		SVOCs taken from the same five VOA vials)	pH ≤2.0, cool to ≤6 °C	
Naphthalenes	USEPA Method 8260 ⁽²⁾	same nve vOA VIdis)	A VIdIS/	
n-Hexane	7			
Ethylene dibromide	USEPA Method 8011	1		

Table F.2
Analytical Requirements, Methods, Preservation, Bottle Type, and Holding Times

Parameter	Reference	Bottle Type	Preservative	Holding Time
Water (cont.)				
Semivolatile Organic Compound	s/Carcinogenic Polycyclic A	Aromatic Hydrocarbons		
Naphthalenes ⁽¹⁾				
Acenaphthylene				
Acenaphthene				
Fluorene				
Phenanthrene				
Anthracene				
Fluoranthene				
Pyrene	USEPA Method 8270D			
Benzo(a)anthracene	SIM	1-L amber glass	None, cool to ≤6 °C	Extract within 7 days, 40 days to analyze
Chrysene				
Benzo(b)fluoranthene				
Benzo(k)fluoranthene				
Benzo(a)pyrene				
Indeno(1,2,3-c,d)pyrene				
Dibenzo(a,h)anthracene				
Benzo(g,h,i)perylene				
Monitored Natural Attenuation	Parameters			
Nitrate	USEPA 300.0	250-mL poly	None, cool to ≤6 °C	48 hours to analyze
Sulfate	USEPA 300.0	250-mL poly	None, cool to ≤6 °C	28 days to analyze
Manganese (soluble)	USEPA 200.8	1-L poly	0.45 micron filter; nitric acid (HNO₃), cool to ≤6 °C	180 days to analyze
Alkalinity	SM 2320B	1-L poly	None, cool to ≤6 °C	28 days to analyze
Methane	RSK-175	(3) 40-mL glass VOA vials	Hydrochloric acid to pH ≤2.0, cool to ≤6 °C	14 days to analyze
Ferrous iron (soluble)	Hach field kit	NA	NA	24 hours
Soil-Gas ⁽³⁾				
APH [EC5-8 aliphatics] fraction				
APH [EC9-12 aliphatics] fraction	MA-APH			
APH [EC9-10 aromatics] fraction				
Benzene				
Ethylbenzene		1-L SUMMA silicone-	None	30 days
Toluene	USEPA Method TO-15	coated canister	None	50 0035
Xylenes, total				
Naphthalene				
Isopropyl alcohol (optional)				
Helium (optional)	ASTM D1946			

Note:

1 Under the MTCA rule, "naphthalenes" is the total of naphthalene, 1-methyl naphthalene, and 2-methyl naphthalene, and the analysis will include all three.

2 VOCs of interest will be analyzed by 8260; however, the full suite of analytes will be requested using standard reporting limits and practical quantitation limits.

3 Select analytes are shown on this table; however, any additional additives that are detected in soil or groundwater will be analyzed in soil gas samples.

Abbreviations:

°C Degrees Celsius
 APH Air-phase petroleum hydrocarbon
 DRO Diesel-range organics
 GRO Gasoline-range organics
 Liters
 MeOH Methanol
 mL Milliliters
 MTCA Model Toxics Control Act
 NA Not applicable

ORO Oil-range organics
oz Ounces
PTFE Polytetrafluoroethylene (Teflon)
SVOC Semivolatile organic compounds
TPH Total petroleum hydrocarbons
USEPA U.S. Environmental Protection Agency
VOA Volatile organic analysis
VOC Volatile organic compound
WMG Wide-mouth glass jar

Table F.3Sample Collection by Area of Potential Concern

	Soil San	nples	Gro	oundwater Samples	Soil-Ga	s Samples
Sample Location ID ⁽¹⁾	Sample Interval	Analyses ⁽²⁾	Sample Interval	Analyses ⁽³⁾	Sample Interval	Analyses
Soil Beneath Transit Shed 2 a	nd Southeastern and Southwestern Pipelines					
At least one boring location	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
At least one boring location	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)				
P3 and P4 (Southeastern Pipeline)	Surface sample and at depth until clean	DRO, ORO, GRO, BTEX, cPAHs				
P5 and P6 (Southwestern Pipeline)	Surface sample and at depth until clean	DRO, ORO, GRO, BTEX, cPAHs				
Soil and Groundwater Qualit	y near Former Aboveground Storage Tank Excavation	on .			· · ·	
At least two direct-push location	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
At least two direct-push locations	Above water table Most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
Soil Quality Near Former Me	chanic's Shop Underground Storage Tanks					
At least four direct-push locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs, and Lead)				
Presence of LNAPL near MW	-19					
At least two direct-push locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
	Surface soil (0–2 feet), above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
Soil, Groundwater, and Soil	/apor Quality on the Former Calloway Ross Parcel					
At least two direct-push locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs, and Lead)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes		
VP-1 and VP-2					1-inch sub-slab	APH, BTEX, naphthalene

Table F.3Sample Collection by Area of Potential Concern

	Soil San	nples	Gr	roundwater Samples	Soil-Ga	Gas Samples	
Sample Location ID ⁽¹⁾	Sample Interval	Analyses ⁽²⁾	Sample Interval	Analyses ⁽³⁾	Sample Interval	Analyses	
Soil and Groundwater Quality	y within Former Loading Rack Area						
MW-33	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs, and Lead)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs, and naphthalenes			
At least two direct-push locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)					
At least one boring location	Above water table in a location that is not impacted	тос					
Soil and Groundwater Quality	y near MW-26 and MW-28						
MW-34	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs, and Lead)					
At least two direct-push locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)					
At least one boring location	Above water table in a location that is not impacted	тос					
Army Reserve Underground S	Storage Tanks ⁽⁴⁾						
Geoprobe Locations	Above water table, most contaminated	HCID (hold for DRO, ORO, GRO, BTEX, cPAHs)	At depths based on OIP and HPT survey	DRO, ORO, GRO, BTEX, cPAHs			
Quarterly Site-Wide Groundw	vater Monitoring						
All Site Wells			Screened interval	DRO, ORO, GRO, BTEX, cPAHs			
MW-10, MW-12, MW-19, MW-28, MW-23, MW-34, MW-35			Screened interval	VOCs ⁽⁵⁾			
MW-3, MW-7, MW-10, UST-4			Screened interval	Table 830-1 Parameters (lead, EDB, EDC, MTBE, and naphthalenes)			
MW-10, MW-12, MW-14, MW-17, MW-18, MW-19, MW-20, MW-22, MW-23, MW-24, MW-25, MW-28, MW-29, MW-30, MW-31			Screened interval	Natural attenuation parameters ⁽⁶⁾ (nitrate, sulfate, manganese, alkalinity, methane, field measurements: ferrous iron, DO, redox, pH, temperature, conductivity)			

Table F.3Sample Collection by Area of Potential Concern

	Soil Samples		Groundwater Samples		Soil-Gas Samples	
Sample Location ID ⁽¹⁾	Sample Interval	Analyses ⁽²⁾	Sample Interval	Analyses ⁽³⁾	Sample Interval	Analyses
Physical Parameters						
MW-33, MW-34	Perched Zone (approximately 12 to 17 feet bgs) Silt underlying Perched Zone (approximately 17 to 20 feet bgs) Alluvial Aquifer (approximately 20 to 30 feet bgs)	Grain size analysis, porosity, bulk density, TOC				

Notes:

-- Not applicable.

1 Geoprobe locations will be determined based on OIP results. At this time, Figure F.1 does not show proposed Geoprobe locations in this area, only proposed OIP locations. Locations and proposed boring IDs will be updated prior to the second mobilization.

2 Selected soil samples with substantial petroleum impacts will be submitted for additional analyses. Refer to Section 5.0 of this appendix.

3 Under the MTCA rule, "naphthalenes" is the total of naphthalene, 1-methyl naphthalene, and 2-methyl naphthalene, and the analysis will include all three.

⁴ Geoprobe locations will be determined based on initial building and historical reconnaissance and ground-penetrating radar survey. At this time, Figure F.1 does not show proposed Geoprobe locations in this area.

⁵ The VOCs of interest shown in Tables F.1 and F.4 will be analyzed by USEPA Method 8260; however, the full suite of analytes will be requested for this representative subset of monitoring wells using standard reporting limits and practical quantitation limits.

6 Proposed wells will be monitored for natural attenuation parameters and additional laboratory analyses. The number of wells and the selected wells may change after the initial results.

Abbreviations:

- APH Air-phase petroleum hydrocarbon
- bgs Below ground surface
- BTEX Benzene, toluene, ethylbenzene, and xylenes
- cPAH Carcinogenic polycyclic aromatic hydrocarbon
- DO Dissolved oxygen
- EDB Ethylene dibromide
- EDC Ethylene dichloride
- DRO Diesel-range organics
- GRO Gasoline-range organics
- HCID Hydrocarbon identification
- HPT Hydraulic profiling tool
- LNAPL Light non-aqueous-phase liquid
- MTBE Methyl tert-butyl ether
- MTCA Model Toxics Control Act
- OIP Optical Image Profiler
- ORO Oil-range organics
- USEPA U.S. Environmental Protection Agency
- VOC Volatile organic compound

Port of Longview TPH Site

 Table F.4

 Analytical Methods, Detection Limits, and Reporting Limits

		•	
NWTPH-Dx		5	25–50
NWTPH-Dx	mg/kg	5	25–50
NWTPH-Gx		0.3	2
USEPA 9060	mg/kg	0.06	0.1
		I	
		0.006	0.02
USEPA Method 8021 or		0.002	0.02
8260C		0.002	0.02
		0.006	0.06
	mg/kg	0.002	0.02
		0.00004–0.00007	0.005
USEPA Method 8260C		0.0025	0.005
			0.005
			0.005
Carcinogenic Polvcvclic Aromati	ic Hydrocarb		
		0.000051	
			-
			_
			_
			_
			_
			_
			-
SIM	mg/kg		0.01
			-
			-
			-
			_
			_
			_
			_
		0.000054	
LISERA Mathad 6020	ma/ka	0.02	1
USEPA Method 6020	iiig/ kg	0.02	
		0	50
	µg/L		50
NWTPH-GX		0	100
		0.02	1
<u> </u>			1
			1
			1
	1.		3
	µg/L		2
USEPA Method 8260C ⁽²⁾			2
			2
USEPA Method 8011B		0.17	5 0.01
	USEPA 9060 USEPA Method 8021 or 8260C USEPA Method 8260C USEPA Method 8260C USEPA Method 8260C USEPA Method 8270D SIM	USEPA 9060 mg/kg USEPA Method 8021 or 8260C mg/kg Markethod 8260C mg/kg USEPA Method 8270D mg/kg MUSEPA Method 8270D mg/kg USEPA Method 8021 or µg/L USEPA Method 8021 or µg/L	USEPA 9060 mg/kg 0.06 USEPA Method 8021 or 8260C 0.002 0.002 0.002 0.002 0.002 USEPA Method 8260C 0.0004-0.0007 0.0004-0.0007 USEPA Method 8260C 0.0004-0.0007 0.0004-0.0007 VOISEPA Method 8260C 0.000051 0.000051 VOISEPA Method 8260C 0.000051 0.000053 VISEPA Method 8270D 0.000053 0.000066 SIM 0.000066 0.000066 USEPA Method 8270D mg/kg 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.000066 0.00000

October 2019

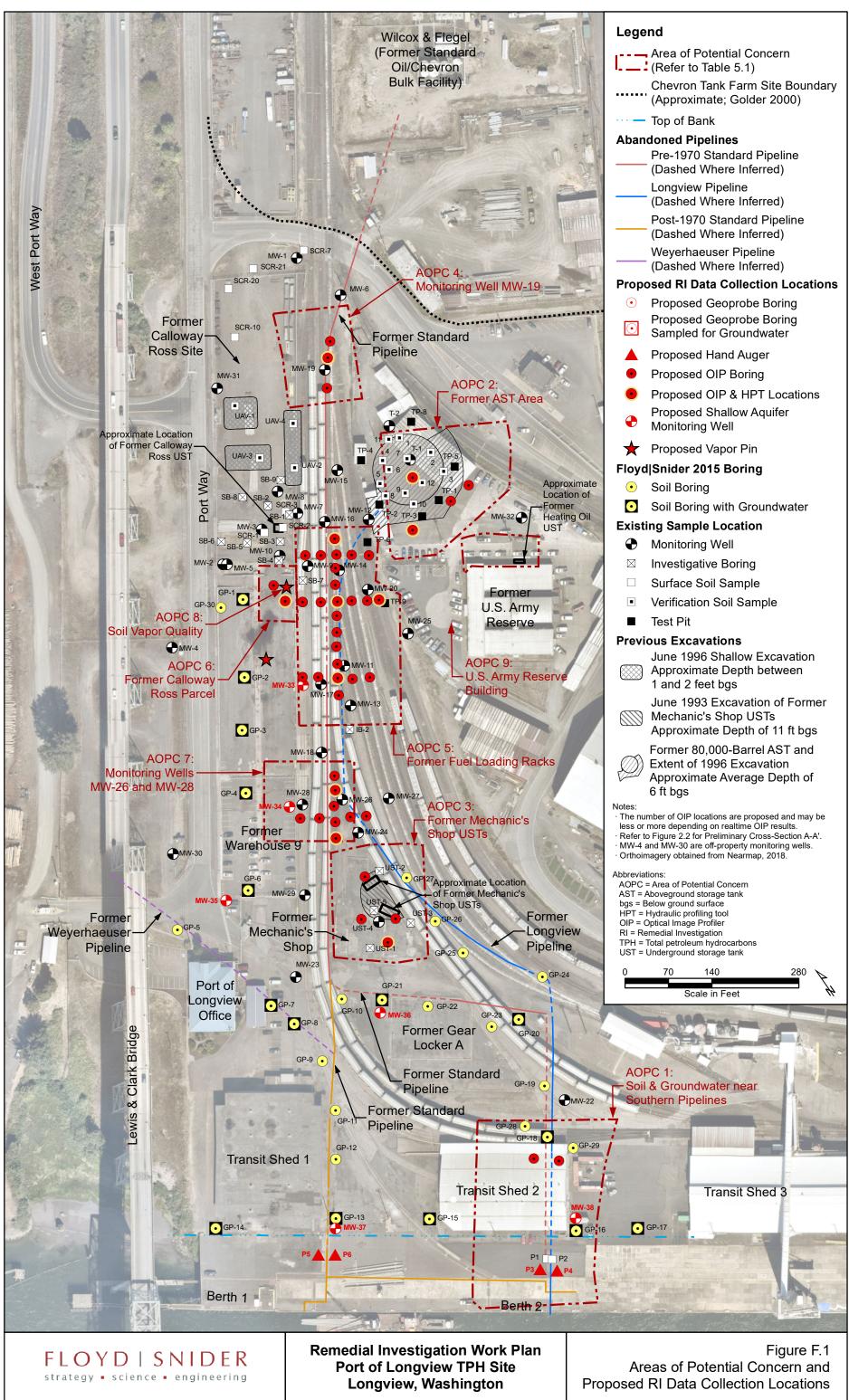
Parameter	Reference	Units	Estimated Detection Limit	Reporting Limit/PQL
Water (cont.)				
Semivolatile Organic Compounds/Ca	rcinogenic Polycyclic Aromat	ic Hydrocarb	ons	
Naphthalenes ⁽¹⁾			0.008	
Acenaphthylene	-	0.006		
Acenaphthene			0.007	
Fluorene			0.005	
Phenanthrene			0.01	-
Anthracene	-		0.007	-
Fluoranthene	-		0.006	
Pyrene	USEPA Method 8270D		0.006	
Benzo(a)anthracene	SIM	μg/L	0.007	0.04
Chrysene	_		0.008	-
Benzo(b)fluoranthene	_		0.007	-
Benzo(k)fluoranthene	_		0.008	_
Benzo(a)pyrene	_		0.012	-
Indeno(1,2,3-c,d)pyrene	_		0.016	_
Dibenzo(a,h)anthracene	_		0.026	-
Benzo(g,h,i)perylene	-		0.024	
Monitored Natural Attenuation Para	meters			
Nitrate	USEPA 300.0		4.61	300
Sulfate	USEPA 300.0		1.45	100
Manganese (Soluble)	USEPA 200.8	1.	0.0715	1
Alkalinity	SM 2320B	μg/L	1,250	2,500
Methane	RSK-175		2.32	8.63
Ferrous Iron (Soluble)	Hach field kit		200	200
Soil-Gas ⁽³⁾				
APH [EC5-8 aliphatics] fraction			46	46
APH [EC9-12 aliphatics] fraction	MA-APH		35	35
APH [EC9-10 aromatics] fraction			25	25
Benzene			0.022	0.32
Ethylbenzene			0.11	0.43
Toluene		μg/m³	0.13	0.38
Xylenes, total	USEPA Method TO-15	, U,	0.33	1.6
Naphthalene			0.073	0.26
Isopropyl Alcohol (optional for leak detection)			0.59	3.0
Helium (alternative option for leak detection)	ASTM D1946		0.17	0.6

Table F.4Analytical Methods, Detection Limits, and Reporting Limits

Note:

- 1 Under the MTCA rule, "naphthalenes" is the total of naphthalene, 1-methyl naphthalene, and 2-methyl naphthalene, and the analysis will include all three.
- 2 Volatile organic compounds of interest will be analyzed by USEPA Method 8260; however, the full suite of analytes will be requested using standard reporting limits and PQLs.
- 3 Select analytes are shown on this table; however, any additional additives that are detected in soil or groundwater will be analyzed in soil gas samples.

Abbreviations:


- APH Air-phase petroleum hydrocarbon
- DRO Diesel-range organics
- GRO Gasoline-range organics
- µg/L Micrograms per liter
- µg/m³ Micrograms per cubic meter
- mg/kg Milligrams per kilogram
- MTCA Model Toxics Control Act
- ORO Oil-range organics
- PQL Practical quantitation limit
- USEPA U.S. Environmental Protection Agency

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix F Sampling and Analysis Plan/ Quality Assurance Project Plan

Figure

Area of Potential Concern (Refer to Table 5.1) Chevron Tank Farm Site Boundary (Approximate; Golder 2000) Top of Bank Abandoned Pipelines (Dashed Where Inferred) Longview Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed OIP & HPT Locations Proposed Hand Auger Proposed OIP & HPT Locations Proposed OIP & HPT Locations Proposed Vapor Pin Floyd Snider 2015 Boring Osoil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample June 1996 Shallow Excavation Monitoring Well June 1996 Shallow Excavation Monitoris Shop USTs Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Escer more depending on reatime OIP results. Proteumer o	Legend
 (Approximate; Golder 2000) Top of Bank Abandoned Pipelines Pre-1970 Standard Pipeline (Dashed Where Inferred) Longview Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed OIP Boring Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Previous Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Pothomageny obtained from Nearmap, 2018. Abproximate Average Depth of 6 ft bgs NUMCH and W-30 are of-Froperty monitoring wells. Orthoimager Potient RAST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs	
Abandoned Pipelines Pre-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Weyerhaeuser Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations ● Proposed Geoprobe Boring Proposed Geoprobe Boring Sampled for Groundwater ▲ Proposed OIP & HPT Locations ● Proposed Vapor Pin Floyd Snider 2015 Boring ● Soil Boring ● Soil Boring ● Soil Boring Well ● Investigative Boring ● Surface Soil Sample ● Verification Soil Sample ● Test Pit Precoweu	
 Pre-1970 Standard Pipeline (Dashed Where Inferred) Longview Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed OIP Boring Proposed OIP & HPT Locations Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nete: The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-K. AW-4 and AW-30 are of-property monitoring wells The number of OIP locations are proposed and may be less or more depending on realtime OIP results. The number of OIP locations are proposed and may be less or more depending on realtime OIP results. ADPC - Area of Potential Concern AST = Aboveground storage tank bgs = Below ground storage tank bgs = Below ground storage tank bgs = Below ground storage tank	··· — Top of Bank
 (Dashed Where Inferred) Longview Pipeline (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Weyerhaeuser Pipeline (Dashed Where Inferred) Weyerhaeuser Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed OIP & HPT Locations Proposed OIP & HPT Locations Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nores: The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and WW-30 are off-property monitoring wells. Otherwater of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and WW-30 are off-property monitoring wells. Otherwater of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and WW-30 are off-property monitoring we	Abandoned Pipelines
 (Dashed Where Inferred) Post-1970 Standard Pipeline (Dashed Where Inferred) Weyerhaeuser Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed Geoprobe Boring Sampled for Groundwater Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Netestion Approximate Average Depth of 6 ft bgs Notestions Approximate Average Depth of 6 ft bgs 	
 (Dashed Where Inferred) Weyerhaeuser Pipeline (Dashed Where Inferred) Proposed RI Data Collection Locations Proposed RI Data Collection Locations Proposed Geoprobe Boring Sampled for Groundwater Proposed Geoprobe Boring Proposed Geoprobe Boring Proposed Hand Auger Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTS Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes The number of OIP locations are proposed and may be lass or more depending on realtime OIP results. Proterious Excavation Approximate Average Depth of 6 ft bgs Notes Approximate Average Depth of 6 ft bgs Notes Approximate Average Depth of 8 = Reevedind row learner, 2018. Abreviations: Abreviations: Aboveground storage tank Bgs = Below ground storage tank Q 70 140 280 	, °
(Dashed Where Inferred) Proposed RI Data Collection Locations Proposed Geoprobe Boring Sampled for Groundwater Proposed Hand Auger Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs 	•
 Proposed Geoprobe Boring Sampled for Groundwater Proposed Hand Auger Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring Well Investigative Boring Surface Soil Sample Surface Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTS Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nermer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nermer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nermer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs 	(Dashed Where Inferred)
 Proposed Geoprobe Boring Sampled for Groundwater Proposed Hand Auger Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Surface Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTS Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Test Pit 	Proposed RI Data Collection Locations
 Sampled for Groundwater Proposed Hand Auger Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Prevous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTS Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notest Netset Aproximate Average Depth of 8 ft bgs Notesting Concent AST and Approximate Average Depth of 8 ft bgs Previous Excavation Approximate Average Depth of 8 ft bgs Notesting Concent AST and Approximate Average Depth of 8 ft bgs Propoximate Average Depth of 9 ft bgs Notesting Concent AST and Proprise Concent AST and Approximate Average Depth of 8 ft bgs Aproximate Average Depth of 9 ft bgs Approximate Average Depth of 8 ft bgs Previous Concent AST Aboveground storage tank bgs = Below ground surface HT = Hydraulic profiling tool OP = Optical Image Profiler Remedial Investigation TH = Total profer Barbover Te and performer Approximate Average Depth of 9 F = Otal performer Previous Barbover Proversition Barbover Previous Barbover Storage tank bgs = Below ground surface HT = Hydraulic profiling tool OP = Optical Image Profiler Remedial Investigation TH = Total performer 	
 Proposed OIP Boring Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Netering are of Property monitoring wells. Previous are of Property monitoring wells. The number of OIP locations are proposed and may be less Mone of Property monitoring wells. Propoximate Average Depth of 6 ft bgs Notes Approximate Average Depth of 6 ft bgs 	Sampled for Groundwater
 Proposed OIP & HPT Locations Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Proposed Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notest Neter of OIP locations are proposed and may be lease The number of OIP locations are proposed and may be lease Refer to Figure 2.2 for Preliminary Cross-Section A.A.I. Mu4 and Mu-30 are off-property monitoring wells. Othor area of Potential Concern AST = Aboveground storage tank Bys = Below ground storage tank Bys = Below ground storage tank Bys = Below ground storage tank Mu4 and Mu-30 are off-property monitoring wells. O To 140 280 	
 Proposed Shallow Aquifer Monitoring Well Proposed Vapor Pin Floyd[Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Mune 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nomer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Neten Approximate Average Depth of 8 care and a feet bgs Mune 1996 Excavation Approximate Average Depth of 8 care and a feet bgs Mune 1996 Excavation Approximate Average Depth of 8 care and a feet bgs Mune 1996 Excavation Approximate Average Depth of 8 care and a feet bgs Multi Approximate Average Depth of 8 care and a feet bgs Multi Approximate Average Depth of 8 care and a feet bgs Multi Approximate Average Depth of 8 care and a feet property monitoring wells. Other Property monitoring wells. The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Multi Approximate Average Depth of 8 care aboveground surage 8 meredial investigation Multi Approximate Approximate Approximate 9 meredial investigation Multi Approximate Profiler 8 meredial investigation Multi Approximate Profiler 8 meredial investigation Multi Approximate Profiler 8 meredial investigation Multi Approximate Profiler 9 meredial investigation Multi Appro	- 1 - 5
 Monitoring Well Proposed Vapor Pin Floyd Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTS Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Nomer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Noterie Approximate Average Depth of 200 Bremer 80,000 Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 200 Refer to Figure 2.2 for Preliminary Cross-Section A.A'. Wed and dwa are off-property monitoring wells. Othorwations Apper Section Sample Section A.A'. Monitor of OIP locations are proposed and may be less or more depending on realtime OIP results. The number of OIP locations are proposed and may be less or more depending on realtime OIP results. The static profiling tool MOPC = Area of Potential Concern AST = Aboveground surfage HT = Hydraulic profiling tool OPC = Optical Image Profiler R Remedial Investigation TH = Total petroleum hydrocarbons Use Total petroleum hydrocarbons Use Total petroleum hydrocarbons Interground storage tank By Remedial Investigation TH = Total petroleum hydrocarbons Underground storage tank 	
 Floyd Snider 2015 Boring Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes • 1e number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Approximate Average Depth of 8 ft bgs Notes • 1e number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Otherwater Summary Cross-Section A-A'. • Meval and MW-30 are off-property monitoring wells. • Otherwater Summary Cross-Section A-A'. • Differential Concern AST Aboveground surface Below ground surface HT = Hydraulic profiling tool OIP = Optical Image Profiler R = Remedial Investigation TH = Total petroleum hydrocarbons UST = Underground storage tank By Enderground storage tank By Endergrou	
 Soil Boring Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Neten Neten Approximate Average Depth of 8 dt bgs Neten of OIP locations are proposed and may be less or more depending on realtime OIP results. Cothoimagery obtained from Nearmap, 2018. Othowagery obtained from Nearmap, 2018. 	🛧 Proposed Vapor Pin
 Soil Boring with Groundwater Soil Boring with Groundwater Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Neter of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MV-4 and MW-30 are off-property monitoring wells. Othoimagery obtained from Nearmap, 2018. MDCe - Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler R = Remedial Investigation TH = Total petroleum hydrocarbons UST = Underground storage tank M = 70 140 280 	Floyd Snider 2015 Boring
 Existing Sample Location Monitoring Well Investigative Boring Surface Soil Sample Surface Soil Sample Verification Soil Sample Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes • Nemer 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes • Net Of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-K. • W4 and MW-30 are off-property monitoring wells. • Othomagery obtained from Nearmap, 2018. Merey obtained from Nearmap, 2018. Aprovating a profiler Approvating profiler • Approvation Storage tank • Below ground storage tank • Test Aboveground storage tank • Below ground storage tank • Test Hydraulic profiling tool • Off a Hydraulic profiling tool • Off a Hydraulic profiling tool • Off a Hydraulic profiling tool • Test Hydraulic profiling tool • Depical Image Profiling • Testal petroleum hydrocarbons • Underground storage tank 	 Soil Boring
 Monitoring Well Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Tervious Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: Netent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: Approximate Average Depth of 6 ft bgs Notes: Approximate Average Depth of 6 ft bgs Notes: Approximate Average Depth of 6 ft bgs Approximate Average Depth of 6 ft bgs Notes: Approximate Average Depth of 6 ft bgs Approximate Average Depth of 6 ft bgs Notes: Approximate from Nearmap, 2018. MOPC = Area of Potential Concern AST = Aboveground storage tank Bgs = Below ground surface HT = Hydraulic profiling tool CHT = Hydraul	Soil Boring with Groundwater
 Investigative Boring Surface Soil Sample Verification Soil Sample Test Pit Terevious Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Nene Nenumber of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. W4 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018. Appreximate MCPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HT = Hydraulic profiling tool OP = Optical Image Profiler R Remedial Investigation TH = Total petroleum hydrocarbons Underground storage tank 	Existing Sample Location
 Surface Soil Sample Verification Soil Sample Test Pit Tevious Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Neter of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending on realtime OIP results. Othorware of OIP locations are proposed and may be less or more depending tool OP optical Image Profiler A Remedial Investigation TH = Total petroleum hydrocarbons Ust = Underground storage tank O 10 140 280 	Monitoring Well
 Verification Soil Sample Test Pit Tervious Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Nener 901 Plocations are proposed and may be less or more depending on realtime OIP results. Perter of OIP locations are proposed and may be less or more depending on realtime OIP results. The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Othomagery obtained from Nearmap, 2018. Approximate Average Depth of Burgery obtained from Nearmap, 2018. The provintioning wells. Othomagery obtained from Nearmap, 2018. Chroimager profiler Remedial Investigation TH = Total petroleum hydrocarbons UT = Underground storage tank Detail apper Profiler Remedial Investigation TH = Total petroleum hydrocarbons UT = Underground storage tank 	
 Test Pit Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Nenene of OIP locations are proposed and may be as or more depending on realtime OIP results. Pite number of OIP locations are proposed and may be as or more depending on realtime OIP results. Teneweis of OIP locations are proposed and may be as or more depending on realtime OIP results. Teneweis of OIP locations are proposed and may be as or more depending on realtime OIP results. Teneweis of OIP locations are proposed and may be as or more depending on realtime OIP results. Teneweis of OIP locations are proposed and may be as or more depending on realtime OIP results. Test Piter of Piter Piter	·
 Previous Excavations June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes Nenemer of OIP locations are proposed and may be less or more depending on realtime OIP results. Perfer to Figure 2.2 for Preliminary Cross-Section A-A'. W44 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018. ADPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HT = Hydraulic profiling tool OIP = Optical Image Profiler R = Remedial Investigation TH = Total petroleum hydrocarbons UT = Underground storage tank 	
June 1996 Shallow Excavation Approximate Depth between 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes • Net of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-A'. • MV-4 and MW-30 are off-property monitoring wells. • Orthoimagery obtained from Nearmap, 2018. Abbreviations: ADPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank 0 70 140 280	
 1 and 2 feet bgs June 1993 Excavation of Former Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: Notes: Net Hourser of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018. Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank 0 70 140 280 	June 1996 Shallow Excavation
 Mechanic's Shop USTs Approximate Depth of 11 ft bgs Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: • The number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-A'. • MW-4 and MW-30 are off-property monitoring wells. • Orthoimagery obtained from Nearmap, 2018. Abbreviations: MOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank 0 70 140 	1 and 2 feet bgs
Former 80,000-Barrel AST and Extent of 1996 Excavation Approximate Average Depth of 6 ft bgs Notes: • The number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-A'. • WW-4 and MW-30 are off-property monitoring wells. • Orthoimagery obtained from Nearmap, 2018. ADPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank	Mechanic's Shop USTs
Approximate Average Depth of 6 ft bgs Notes: • The number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-A'. • MW-4 and MW-30 are off-property monitoring wells. • Orthoimagery obtained from Nearmap, 2018. Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank	Former 80,000-Barrel AST and
Notes: • The number of OIP locations are proposed and may be less or more depending on realtime OIP results. • Refer to Figure 2.2 for Preliminary Cross-Section A-A'. • MW-4 and MW-30 are off-property monitoring wells. • Orthoimagery obtained from Nearmap, 2018. Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank	Approximate Average Depth of
 The number of OIP locations are proposed and may be less or more depending on realtime OIP results. Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018. Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank 	
 Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and MW-30 are off-property monitoring wells. Orthoimagery obtained from Nearmap, 2018. Abbreviations: AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank 	· The number of OIP locations are proposed and may be
AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons UST = Underground storage tank	Refer to Figure 2.2 for Preliminary Cross-Section A-A'. MW-4 and MW-30 are off-property monitoring wells.
	AOPC = Area of Potential Concern AST = Aboveground storage tank bgs = Below ground surface HPT = Hydraulic profiling tool OIP = Optical Image Profiler RI = Remedial Investigation TPH = Total petroleum hydrocarbons
Scale in Feet	0 70 140 280 P
	Scale in Feet

ts\POL-TPH\MXD\Remedial Investigation Work Plan\Figure F.1 Areas of Potential Concern and Proposed Data Collection Locations.mxd I:\GIS\Projec 9/16/2019

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix F Sampling and Analysis Plan/ Quality Assurance Project Plan

Attachment F.1 Standard Guidelines

F|S STANDARD GUIDELINE

Groundwater Sample Collection with a Direct-Push (i.e., Geoprobe) Drill Rig

DATE/LAST UPDATE: September 2015

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step-by-step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines for the sampling method they intend to use and should review and understand these procedures prior to going into the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

This standard guideline provides details necessary for collecting representative groundwater samples using a direct-push drill rig. These guidelines are designed to meet or exceed guidelines set forth by the Washington State Department of Ecology (Ecology).

2.0 Equipment and Supplies

Groundwater Sampling Equipment and Tools:

- Peristaltic pump and battery (typically provided by driller; confirm prior to mobilization)
- Water level meter
- Multi-parameter water quality meter (if applicable)
- Polyethylene tubing, Teflon tubing, or similar
- MasterFlex (silicone) tubing
- Filters (if field filtering)

- Tube cutters, razor blade, or scissors
- 55-gallon drum and clamp (or 5-gallon drum) and labels
- 5-gallon bucket
- Paper towels
- Alconox (or similar decontamination solution)
- Distilled or deionized water
- Spray bottles
- Trash bags

Lab Equipment:

- Sample jars/various types of pre-cleaned bottles (as applicable)
- Coolers
- Chain-of-Custody Forms
- Labels
- Ice
- Ziploc bags

Paperwork:

- Field notebook with site maps and previous boring logs, if available
- Sampling forms
- Purge water plan
- Rite-in-the-Rain pens, paper, and permanent markers
- Site-Specific Health and Safety Plan (HASP)
- Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP), or other similar work plan

Personal Protective Equipment (PPE):

- Steel-toed boots
- Safety vest
- Hard hat
- Nitrile gloves
- Safety glasses

- Rain gear
- Work gloves

3.0 Standard Procedures

The following sections describe the procedure for sampling groundwater using direct-push methods. Before entering the field, project considerations including the target aquifer or depth for sampling and screen placement (i.e., across or within the water table) should be discussed with the Project Manager. Any deviations from these procedures should be approved by the Project Manager and fully documented. Groundwater sampling from a direct-push boring consists of purging and sampling water within the borehole with a peristaltic pump. Direct-push drilling activities will typically follow Floyd|Snider Standard Guidelines for Soil Sampling.

3.1 CALIBRATION OF WATER QUALITY METERS

Water quality meters used during groundwater sampling (if applicable) will be calibrated prior to each sampling event. Calibration procedures are outlined in each instrument's specific user manual.

3.2 PURGING AND SAMPLING PROCEDURES

Once the direct-push drilling activities have reached the desired depth, a new polyvinyl chloride (PVC) or decontaminated stainless steel casing and screen is temporarily installed in the borehole by the driller. Record the depth-to-water and total depth of the well to calculate the volume (this is calculated by multiplying the area inside the casing by the height of water in the casing). Slowly lower new polyethylene or Teflon tubing down the temporary casing and use a peristaltic pump to purge and collect groundwater samples. The discharge line should be directed to a 55-gallon drum (or 5-gallon drum or bucket), provided by the drilling subcontractor to contain the purge water generated. Purging will continue until the groundwater is visually clear (if achievable) or at least 3 well volumes have been removed.

After the well has been purged and the sample bottles have been labeled, the groundwater sample will be collected by directly filling the laboratory-provided bottles from the pump discharge line. All sample containers should be filled with minimum disturbance by allowing the water to flow down the inside of the bottle or vial. When collecting a volatile organic compound (VOC) sample, fill to the top to form a meniscus over the mouth of the vial prior to placing the cap in order to eliminate air bubbles. Do not overfill preserved sample jars or pre-cleaned Volatile Organic Analyte (VOA) sampling vials.

If sampling for dissolved analytes (such as metals), collect these samples last and with attention to the flow direction arrow, fit an in-line filter at the end of the discharge line. A minimum of 0.5 to 1 liter of groundwater must pass through the filter prior to collecting the sample.

Sample labels will clearly identify the project name, sampler's initials, sample location and unique sample ID, analysis to be performed, date, and time. Upon collection, samples will be placed in a cooler maintained at a temperature of approximately 4 to 6 degrees Celsius (°C) using ice. Chain-of-Custody Forms will be completed. Upon transfer of the samples to the laboratory, the Chain-of-Custody Form will be signed by the persons transferring custody of the sample containers to document change in possession.

When sample collection is completed at a designated location, remove and properly dispose of the tubing and temporary well screen and casing. In most cases, this waste is considered solid waste and can be disposed of as refuse.

4.0 Decontamination

Prior to moving to the next sampling location, all reusable equipment that has come into contact with groundwater should be decontaminated using the processes described in this section.

Water Level Meter: The water level indicator and tape will be decontaminated between direct-push sampling locations and at the end the day by spraying the entire length of tape that came in contact with groundwater with an Alconox (or similar)/water mixture followed by a thorough rinse with distilled or deionized water.

Water quality sensors and flow-through cell (if used): Use distilled or deionized water to rinse the water quality sensors and flow-through cell. No other decontamination procedures are recommended since the equipment is sensitive. After the sampling event, the water quality meters will be cleaned and maintained according to the specific manual.

Submersible Pump: Decontaminating the pump requires running the pump in three progressively cleaner grades of water.

- 1. Fill a bucket with approximately 4 gallons or more to sufficiently cover the pump of an Alconox (or similar)/clean water solution. Place the pump and the length of the power cord (if applicable) that was in contact with water into the bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.
- 2. Fill a second bucket containing approximately 4 gallons or more to sufficiently cover the pump of clean water. Place the pump and cord into this bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.
- 3. Fill a third bucket with approximately 4 gallons or more to sufficiently cover the pump of distilled or deionized water. Place the pump and cord into this bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.

The Alconox/water solution may be re-used; however rinse water should be collected for disposal as described in Section 5.0 below. When done for the day, dry the exterior of the pump and cord with clean towels to the extent practical prior to storage: all decontaminated water (including Alconox solution) should be managed in accordance with Section 5.0 below.

All reusable equipment on the drill rig (such as casings and rods) that comes into contact with soil or groundwater will be decontaminated by the driller between locations. The drilling subcontractor will store all decontaminated water in labeled 55-gallon drums on-site for proper disposal unless otherwise specified.

5.0 Investigation-Derived Waste (IDW)

Unless otherwise specified in the project-specific work plan, water generated during groundwater sampling activities will be contained and stored in a designated area until it can be transported and disposed of off-site in accordance with applicable laws.

The approach to handling and disposal of these materials for a typical cleanup site is as follows.

For IDW that is containerized, (such as purge water), 55-gallon drums (or other smaller sized drums) approved by the Washington State Department of Transportation will be used for temporary storage pending profiling and disposal. Each container holding IDW will be sealed and labeled as to its contents (e.g., "purge water"), the dates on which the wastes were placed in the container, the owner's name, contact information for the field person who generated the waste, and the site name.

IDW containerized within drums will be characterized relative to applicable waste criteria using data from the sampling locations whenever possible. Material that is designated for off-site disposal will be transported to an off-site facility permitted to accept the waste. Manifests will be used, as appropriate, for disposal.

Disposable sampling materials and incidental trash such as paper towels and PPE used in sample processing will be placed in heavy-duty garbage bags or other appropriate containers and disposed of as trash in the municipal collection system.

6.0 Field Documentation

Drilling and groundwater sampling activities will be documented in field sampling forms and/or notebooks and Chain-of-Custody Forms. Information recorded will at a minimum include personnel present (including subcontractors), purpose of field event, weather conditions, sample collection date and times, sample analytes, depths to water, water quality field measurements (if collected), amount of purged water generated, and any deviations from the SAP.

F|S STANDARD GUIDELINE

Low-Flow Groundwater Sample Collection

DATE/LAST UPDATE: September 2015

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step-by-step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines for the sampling method they intend to use and should review and understand these procedures prior to going into the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

This standard guideline provides details necessary for collecting representative groundwater samples from monitoring wells using low-flow methods. These guidelines are designed to meet or exceed guidelines set forth by the Washington State Department of Ecology (Ecology). Low-Flow sampling provides a method to minimize the volume of water that is purged and disposed from a monitoring well, and minimizes the impact that purging has on groundwater chemistry during sample collection.

2.0 Equipment and Supplies

Groundwater Sampling Equipment and Tools:

- For wells with head less than 25 feet:
 - Peristaltic pump with fully-charged internal battery or standalone battery and appropriate connectors

- For wells with head greater than 25 feet:
 - Bladder pump and controller, as well as an air cylinder, or air compressor (with extension cord if near an electrical outlet; with battery and appropriate connectors or generator if not near an outlet)

OR

- Low-flow submersible pump and controller (with extension cord if near an electrical outlet; with battery and appropriate connectors or generator if not near an outlet)
- Multi-parameter water quality meter
- Water level meter
- Poly tubing
- Silicone tubing
- Filters (if field filtering)
- Tools for opening wells (1/2-inch, 9/16-inch, and 5/8-inch sockets, ratchet, screwdriver)
- Well keys
- Tube cutters, razor blade, or scissors
- 5-gallon buckets and clamp
- Paper towels
- Bailer or pump to drain well box if full of stormwater
- Hammer
- Alconox (or similar decontamination solution), deionized water, spray bottles
- Tape measure
- Trash bags

Lab Equipment:

- Sample jars/bottles
- Coolers
- Chain-of-Custody Forms
- Labels
- Ice
- Ziploc bags

Paperwork:

- Field notebook with site maps
- Table of well construction details and/or well logs, if available
- Sampling forms
- Purge water plan
- Rite-in-the-Rain pens, paper, and permanent markers
- Site-Specific Health and Safety Plan (HASP)
- Sampling and Analysis Plan (SAP) and/or Quality Assurance Project Plan (QAPP) (including tables of analytes and bottle types)

Personal Protective Equipment (PPE):

- Boots/waders
- Safety vest
- Safety glasses
- Rain gear
- Nitrile gloves
- Work gloves

3.0 Standard Procedures

Low-Flow groundwater sampling consists of purging groundwater within the well casing at a rate equal to or less than the flow rate of representative groundwater from the surrounding aquifer into the well screen. The flow rate will depend on the hydraulic conductivity of the aquifer and the drawdown, with the goal of minimizing drawdown within the monitoring well. Field parameters are monitored during purging and groundwater samples are collected after field parameters have stabilized. Deviations from these procedures should be approved by the Project Manager and fully documented.

3.1 CALIBRATION OF WATER QUALITY METERS

All multi-parameter water quality meters to be used will be calibrated prior to each sampling event. Calibration procedures are outlined in each instrument's specific user manual.

3.2 MONITORING, MAINTENANCE, AND SECURITY

Prior to sampling, depth to water and total depth measurements will be collected and recorded for accessible monitoring wells onsite (or an appropriate subset for larger sites). Check for an existing measuring point (notch or visible mark on top of casing). If a measuring point is not observed, a measuring point should be established on the north side of the casing. The conditions

of the well box and bolts will also be observed and deficiencies will be recorded on the sampling forms or logbook (i.e., missing or stripped bolt). The following should also be recorded:

- Condition of the well box, lid, bolts, locks, and gripper cap, if deficiencies
- Condition of gasket if deficient and if water is present in the well box
- Note any obstructions or kinks in the well casing
- Note any equipment in the well casing, such as transducers, bailers, or tubing
- Condition of general area surrounding the well, such as subsidence, potholes, or if the well is submerged within a puddle.

Replace any missing or stripped bolts, and redevelop wells if needed.

3.3 LOW-FLOW PURGING METHOD AND SAMPLING PROCEDURES

Groundwater samples will be collected using low-flow purging and sampling procedures consistent with Ecology guidelines and the U.S. Environmental Protection Agency (USEPA) standard operating procedures (USEPA 1996). The following describes the Low-Flow purging and sampling procedures for collecting groundwater samples using a peristaltic pump. If the water level is greater than 20 feet below ground surface (bgs), Grundfos or Geotech submersible pumps or bladder pumps can be used since their pumping rates can be adjusted to low-flow levels.

- Place the peristaltic pump and water quality equipment near the wellhead. Slowly lower new poly tubing down into the well casing approximately to the middle of the well screen. If the depth of the well screen is not known, lower the tubing to the bottom of the well, making sure that the tubing has not been caught on the slotted well casing, and then raise the tubing 3 to 5 feet off the bottom of the casing. Document the estimated depth of the tubing placement within the well. Connect the tubing to the peristaltic pump using new flex tubing and connect the discharge line to the flow-through cell of the water quality meter. The discharge line from the flow cell should be directed to a bucket to contain the purged water.
- If using a low-flow submersible pump, connect the pump head to dedicated or disposable tubing. If using a bladder pump, connect both the air intake and water discharge ports to decontaminated or disposable tubing, using the manufacturer's instructions to ensure a secure connection. Lower the pump with tubing into the well as described above and connect the water discharge tubing directly to the flowthrough cell.
- Measure the depth to water to the nearest 0.01 foot with a decontaminated water level meter and record the information on a sampling form.
- Start pumping the well at a purge rate of 0.1 to 0.2 liters per minute and slowly increase the rate. Purge rate is adjusted using a speed control knob or arrows on peristaltic and low-flow submersible pumps. The purge rate for bladder pumps is controlled by the air compressor, which first pressurizes the pump chamber in order

to compress the flexible bladder and force water through the discharge line, and then vents the chamber in order to allow the bladder to refill with water.

- A good rule of thumb is to pressurize to 10 psi + 0.5 psi/foot of tubing depth and begin with 4 discharge/refill cycles per minute; using greater air pressure and accelerating the pump cycles will increase the purge rate.
- Check the water level. If the water level is dropping, lower the purge rate. Maintain a steady flow with no or minimal drawdown (less than 0.33 feet according to USEPA 2002). Maintaining a drawdown of less than 0.33 feet may not be feasible depending on hydrogeological conditions. If possible, measure the discharge rate of the pump with a graduated cylinder or use a stopwatch when filling sampling jars (500 milliliters [mL] polyethylene or glass ambers) to estimate the rate. When purging water through a flow cell, the maximum flow rate for accurate water quality readings is about 0.5 liters per minute (L/minute).
- Monitor and record water quality parameters every three to five minutes after one tubing volume (including the volume of water in the flow cell) has been purged.
 - One foot of ¼-inch interior diameter tubing holds about 10 mL of water, and flowthrough cells typically hold less than 200 mL of water; one volume should be purged after about 5 minutes at a flow rate of 0.1 L/minute.
- Water-quality indicator parameters that will be monitored and recorded during purging include:
 - o pH
 - Specific conductivity
 - Dissolved oxygen
 - Temperature
 - o Turbidity
 - Oxidation reduction potential (ORP)
- Purging will continue until temperature, pH, turbidity, and specific conductivity are approximately stable (when measurements are within 10 percent) for three consecutive readings, or 30 minutes have elapsed. Because these field parameters (especially dissolved oxygen and ORP) may not reach the stabilization criteria, collection of the groundwater sample will be based on the professional judgment of field personnel at the time of sampling.
- The water sample can be collected once the criteria above have been met.
- If drawdown in the well cannot be maintained at 0.33 feet or less, reduce the flow or turn off the pump for 15 minutes and allow for recovery. If the water quality parameters have stabilized, and if at least two tubing volumes and the flow cell volume have been purged, then sample collection can proceed when the water level has recovered and the pump is turned back on. This should be noted on the sampling form.

- To collect the water sample, maintain the same pumping rate. After the well has been purged and the sample bottles have been labeled, the groundwater sample will be collected by directly filling the laboratory-provided bottles from the pump discharge line prior to passing through the flow cell. All sample containers should be filled with minimum disturbance by allowing the water to flow down the inside of the bottle or vial. When collecting a volatile organic compound (VOC) sample, fill to the top to form a meniscus over the mouth of the vial prior to placing the cap to eliminate air bubbles. Be careful not to overflow preserved bottles/pre-cleaned Volatile Organic Analyte (VOA) vials.
- If sampling for filtered metals, collect these samples last and fit an in-line filter at the end of the discharge line. Take note of the flow direction arrow on the filter prior to fitting. A minimum of 0.5 to 1 liter of groundwater must pass through the filter prior to collecting the sample.
- Sample labels will clearly identify the project name, sampler's initials, sample location and unique sample id, analysis to be performed, date, and time. After collection, samples will be placed in a cooler maintained at a temperature of approximately 4 to 6 degrees Celsius (°C) using ice. Chain-of-Custody Forms will be completed. Upon transfer of the samples to the laboratory, the Chain-of-Custody Form will be signed by the persons transferring custody of the sample containers to document change in possession.
- When sample collection is complete at a designated location, remove and properly dispose of the non-dedicated tubing. In most cases, this waste is considered solid waste and can be disposed of as refuse. Close and lock the well.

4.0 Decontamination

All reusable equipment that comes into contact with groundwater should be decontaminated using the processes described in this section prior to moving to the next sampling location.

Water Level Meter: The water level indicator and tape will be decontaminated between sampling locations and at the end the day by spraying the entire length of tape that came in contact with groundwater with an Alconox (or similar)/clean water solution followed by a thorough rinse with distilled or deionized water.

Water Quality Sensors and Flow-Through Cell: Distilled water or deionized water will be used to rinse the water quality sensors and flow-through cell. No other decontamination procedures are recommended since they are sensitive equipment. After the sampling event, the water quality meters will be cleaned and maintained according to the specific manual.

Submersible Pump (if applicable: Decontaminating the pump requires running the pump in three progressively cleaner grades of water.

1. Fill a bucket with approximately 4 gallons or more to sufficiently cover the pump of an Alconox (or similar)/clean water solution. Place the pump and the length of the

power cord (if applicable) that was in contact with water into the bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.

- 2. Fill a second bucket containing approximately 4 gallons or more to sufficiently cover the pump of clean water. Place the pump and cord into this bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.
- 3. Fill a third bucket with approximately 4 gallons or more to sufficiently cover the pump of distilled or deionized water. Place the pump and cord into this bucket and run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted.

Bladder Pump: Clean the inside and outside of the pump body with an Alconox (or similar)/clean water solution, followed by a thorough rinse with distilled or deionized water. The outside of the air supply line that came in contact with groundwater may also be cleaned with Alconox (or similar) solution and re-used; bladders and water discharge lines must be replaced after each sample is collected.

5.0 Investigation-Derived Waste (IDW)

Unless otherwise specified in the project work plan, water generated during groundwater sampling activities will be contained, transported, disposed of in accordance with applicable laws, and stored in a designated area until transported off-site for disposal.

The approach to handling and disposal of these materials for a typical cleanup site is as follows. For IDW that is containerized, such as purge water, 55-gallon drums (or other smaller sized drums) approved by the Washington State Department of Transportation will be used for temporary storage pending profiling and disposal. Each container holding IDW will be sealed and labeled as to its contents (e.g., "purge water"), the dates on which the wastes were placed in the container, the owner's name and contact information for the field person who generated the waste, and the site name.

IDW containerized within drums will be characterized relative to applicable waste criteria using data from the sampling locations whenever possible. Material that is designated for off-site disposal will be transported to an off-site facility permitted to accept the waste. Manifests will be used, as appropriate for disposal.

Disposable sampling materials and incidental trash such as paper towels and PPE used in sample processing will be placed in heavy-duty garbage bags or other appropriate containers and disposed of as trash in the municipal collection system.

6.0 Field Documentation

Groundwater sampling activities will be documented in field sampling forms and/or field notebooks, and Chain-of-Custody Forms. Information recorded will, at a minimum, include personnel present (including subcontractors or client representatives), purpose of field event, weather conditions, sample collection date and times, sample analytes, depths to water, water quality parameters, well box/lid conditions, amount of purged water generated, and any deviations from the SAP. Photographs of damaged well casings or well boxes should be taken.

7.0 References

- USEPA. 1996. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, Revision 2. Region 1. July 30, 1996.
- _____. 2002. Groundwater Sampling Guidelines for Superfund and CAR Project Managers. Office of Solid Waste and Emergency Response. EPA 542.S-02-001. May 2002.

F|S STANDARD GUIDELINE

Soil Logging

DATE/LAST UPDATE: August 2018

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step by step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines and should review and understand these procedures prior to going in the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

These soil logging standard guidelines should be used by the field staff performing subsurface investigations, such as a direct push or roto-sonic soil boring, installation of a monitoring well via hollow stem auger, or roto-sonic or mud rotary drilling. While many projects will not necessarily have a Licensed Geologist (LG) or Hydrogeologist (LHG) who reviews and stamps every boring log, it is important that the field staff discusses the soil logging needs for a particular investigation with the project geologist, the project manager, or whoever will ultimately be responsible for interpreting the findings of the field investigation. This discussion is in addition to field training and general knowledge about soil logging, and should happen prior to entering the field, with additional follow-up before drafting a final set of electronic logs, after the investigation is complete.

2.0 Equipment and Supplies

Logging Equipment and Tools:

- 100-foot tape measure or measuring wheel
- Handheld Global Positioning System (GPS; optional)
- Unified Soil Classification System (USCS) Soil Classification Field Guide

- Soil logging kit containing:
 - Stainless steel spoons
 - Paint scraper or trowel
 - Small Ziploc bags
 - o Small stainless steel bowls or black mining pans for sheen testing
 - Spray bottle filled with water
 - Paper towels (preferably white)
 - o Engineers tape
 - Note cards
 - Optional items include:
 - Empty VOA vials or small glass jars
 - Munsell color chart
 - Sieves
 - White and grayscale color cards for photographs
- Plastic sheeting and duct tape or clamps to cover the sampling table
- Camera
- Trash bags
- Coolers
- Jars
- Labels
- Ice

Paperwork:

- Work Plan and/or Sampling and Analysis Plan (SAP)/Quality Assurance Project Plan (QAPP)
- Health and Safety Plan (HASP)
- Copies of figures showing previous boring locations and boring logs from previous investigations, if available
- Boring log forms appropriate for drilling method, printed in Rite in the Rain paper and/or bound field notebook
- Permanent markers and pencils

Personal Equipment:

- Steel-toed boots
- Hard hat

- Safety vest
- Safety glasses
- Nitrile gloves
- Ear plugs
- Rain gear
- Work gloves

3.0 Standard Procedures

3.1 OFFICE PREPARATION

First, meet with the project manager or field manager to identify the key information and goals of the soil boring investigation. These may include fill history, known or suspected sources of contamination and potential field indications of these contaminants, identification of specific units, or important geotechnical measurements. If possible, select a boring log template that is appropriate for the project needs.

Next, review the work plan and all available existing materials such as cross-sections or boring logs from previous investigations to familiarize yourself with the site geology. In addition (or alternatively if other information is not available), you may also review a geologic map of the area from a reputable source such as United States Geological Survey (USGS).

Finally, check the area of the site where drilling will occur for underground objects. At minimum, a OneCall locate request should be made at least one week in advance of drilling in order to give public utility locators time to mark known buried utility lines. All planned boring locations should be marked on the ground with white spray paint prior to making a locate request. In almost all cases, a private utility locator should also clear the area of drilling any underground objects using electromagnetic techniques. If drilling is to occur in close proximity to buried utilities, the work plan may specify use of an air knife or vacuum to clear the borehole to a depth below the utility lines.

3.2 COLLECTING SOIL SAMPLES FOR CLASSIFICATION

- 1. Before beginning drilling, record the following information on each log:
 - a. Operator's name and company, equipment make/model, equipment measurements (i.e., sampler length and diameter, hammer weight and stroke if using hollow stem auger, boring diameter)
 - b. Your name, date, project, boring name and approximate descriptive location (i.e., where is the soil boring relative to known site features). Include a description of the ground surface and whether or not coring was necessary, if coring was necessary, include core diameter, concrete thickness, and subcontractor information.

- c. A small hand drawn map showing your location with measurements to a stationary reference point, or GPS coordinates (ideally, both). This is also a good place to note if you have had to move a boring location because of underground utilities, access issues, etc. It is important to note the reason for relocation and the direction and distance moved (i.e., moved 10 feet to the north due to presence of subsurface water line).
- 2. If you are using a hollow stem auger drilling method, it is important to communicate to the driller how often you would like a split spoon sample collected. Typically this would be continuous or every 5 feet but may be different depending on the project needs.
- 3. Note any feedback from the driller about the drilling conditions. This may include difficult drilling or rig chatter (usually caused by hard materials), heaving sands (usually caused by hydrostatic pressure on the borehole), caving, or hole instability.
- 4. For split spoon samples, record the number of hammer blows (blow counts) necessary to drive the sampler each 6-inch increment, as reported by the driller. If more than 50 blows are needed, record the distance that the sampler was driven in 50 blows (i.e., 2-inches in 50 blows). This is referred to as the standard penetration test.
- 5. Cover the sampling table with plastic sheeting. Lay an engineer's tape lengthwise across the sampling table. Once a sample has been collected, orient it on the table so that the top is aligned with the 0-foot mark on the tape.
- 6. Split open the sampler, core barrel liner, or sample collection bag. Record the depth interval that the sampler was driven and the depth interval of soil that was recovered. For split spoons or single-cased core barrels, such as Geoprobe direct-push rods, determine whether any loose 'slough' soil has been dislodged by the drilling equipment and deposited at the top of your core (AMS direct push rods are double cased and do not create slough). Do not include slough in the measurement of the soil recovered. Often the core will be filled with an uninterrupted column of soil that is shorter in length than the total drive interval. In such cases, record the recovery interval as it is situated in the core unless you are able to determine the actual depth where the soil sample originated. For the purposes of recording soil observations and collecting samples for analysis, assume that the recovered column of soil has been evenly compressed unless you are able to determine the interval(s) in which compression has occurred. Decompress the recovered soil when making further observations (e.g., if the recovered soil column is 80 percent of the length of the drive interval, assume 0.8 feet of recovered soil represent 1 foot of soil in situ).
- 7. Before further disturbing the soil, take volatile organic compound (VOC) measurements with a photoionization detector (PID), if using. Take measurements by making crevices in the soil with a spoon or scraper and inserting the PID probe into these openings. Alternatively, collect small spoonfuls of soil into Ziploc bag(s), seal the bag(s), gently shake the bag(s), and insert the PID probe through the top of the bag(s) and into the headspace once the soil vapor has been allowed to equilibrate with the

surrounding air (headspace method). The bag headspace screening method is typically more accurate and is useful at sites with low concentrations of VOCs, whereas the in-situ method is a faster and more qualitative method, best used at sites with higher VOC concentrations. If sampling for VOCs by the U.S. Environmental Protection Agency (USEPA) Method 5035, these soil samples should also be collected prior to disturbing the core. Soil sampling procedures using USEPA Method 5035 are described in detail in the Soil Sample Collection Standard Guideline.

8. Use a straight edge to scrape the soil level and expose the center of the core. Photograph the core alongside the measuring tape and an index card displaying the soil boring location/ID and depth interval.

3.3 SOIL CLASSIFICATION

Soils are described using the following characteristics: Color, consistency, MAJOR CONSTITUENT, minor constituent, geotechnical properties, moisture content, other observations (e.g. visual or olfactory indications of contamination). The USCS field guide is included in this guidance for reference. The steps below should help guide the logger in classifying soils according to the USCS.

- 1. Record the color of the soil. A descriptive color (i.e., light brown) or a color identified using the Munsell color chart are both valid.
- 2. Determine whether organic matter influences the properties of the material. If so, record as an organic soil.
- 3. If the soil is predominantly inorganic, identify whether the major constituent is coarse- or fine-grained. Coarse-grained soils include sands and gravels; fine-grained soils include silts and clays.
 - a. For coarse grained soils, determine:
 - i. Grain size(s) present including fine, medium, or coarse, and grain size distribution including well-graded (a mixture of fine to coarse grains) or poorly-graded (uniform in size). The USCS guide is helpful for determining grain sizes. If the major constituent is gravel, note its angularity using "rounded," "sub-angular" or "angular."
 - ii. Minor constituent(s). If a minor constituent represents less than approximately 15% of the sample, note this as "with [minor constituent]" and optionally, whether it is "trace" (<5%) or "few" (5-15%). If a minor constituent represents more than 15% of the sample, use "[minor constituent]-y." For example, a sand with 5% silt would be classified as a "SAND with trace silt" and sand with 30% silt would be classified as a "SILTY SAND." For coarse-grained soils with fines between 5% and 15%, the USCS includes several dashed classifications, such as SW-SM. It is often helpful to record an estimated percentage for soil constituents to aid in classification according to the USCS.

- b. For fine-grained soils, determine:
 - i. Major constituent. To determine whether a material is silt or clay, a simple settling test may be performed in a glass vial or gloved hand by spraying a small amount of the sample with water. Silt particles will settle out of suspension in water within a few minutes, whereas clay particles will remain suspended for a longer period of time.
 - Minor constituent(s). As described above, determine the approximate percentage and record as "with [minor constituent]" or "[minor constituent]-y" as appropriate. It is often helpful to record an estimated percentage to aid in classification according to the USCS.
 - iii. Geotechnical properties. Depending on project data needs, geotechnical properties may be optional but often provide helpful information. Geotechnical properties include plasticity (ranging from "non-plastic" to "highly plastic" as determined by a thread test) and consistency (ranging from "loose" to "very dense" for coarse-grained soils and "soft" to "hard" for fine-grained soils). When using split spoon samplers, blow counts recorded during the standard penetration test (also referred to as N-values) are used to determine consistency; when using direct-push or sonic drilling, consistency is described qualitatively.
- 4. Using the USCS guide and the description of the soil, determine the appropriate USCS symbol and record it on the log. If it is difficult to distinguish the major constituent of a soil, a borderline "/" symbol may be used to denote the two potential major constituents present. This is not the same as the USCS classifications that utilize a dash, such as SW-SM.
- Determine whether contacts between stratigraphic units are abrupt, or gradational. Note abrupt contacts using a solid line and gradational contacts using a dotted line. If the contact between units is not visible and was missed between sample depths, a dashed line is used.
- 6. If the site or area geology is known, and you are confident in your identification of a specific stratum, note the geologic unit. At a site where the geology is uncertain, you may make some more general notes about the depositional environment, such as identifying probable estuarine deposits, colluvium, glacial till, etc.
- Note the moisture content of the soil, using "dry," "moist," "wet," or "saturated." Mark the water table at the time of drilling on the log at the depth where saturated soil is first observed.

3.4 OTHER OBSERVATIONS

- 1. Record other materials observed in the sample. These may include minor amounts of rootlets or other plant matter, evidence of organisms such as shell fragments, and/or anthropogenic debris such as brick fragments, plastic, or metal debris.
- 2. Record potential indications of contamination. These may include odors, colored or black staining on soils, colored crystals, hydrocarbon sheens, or non-aqueous phase liquid (NAPL) product.
 - a. To test for hydrocarbon sheen, put a small amount of soil in a bowl, saturate with water and swirl, noting whether a rainbow sheen appears on the surface of the water. Alternatively, place a small amount of water in the bottom of the bowl and a small amount of soil along the side, then tilt the bowl so that the water slowly touches the soil. If observed, note the color of the sheen and describe as slight (discontinuous on the water surface), moderate (continuous but spreading slowly) or high (rainbow sheen covering entire surface water).
 - b. To test for the presence of NAPL, use a clean paper towel to blot the surface of the core and note the proportion of the towel that is saturated with oil (be sure to allow the towel to dry when blotting moist to wet soils to distinguish between saturation due to NAPL and due to water).
- 3. Note the final depth of the boring and any reasons for early termination of the boring (i.e., refusal).
- 4. If monitoring wells will be installed, follow the Standard Guidelines for monitoring well construction and well development.

4.0 Decontamination

All reusable equipment that comes into contact with soil should be decontaminated as follows prior to moving to the next sampling location.

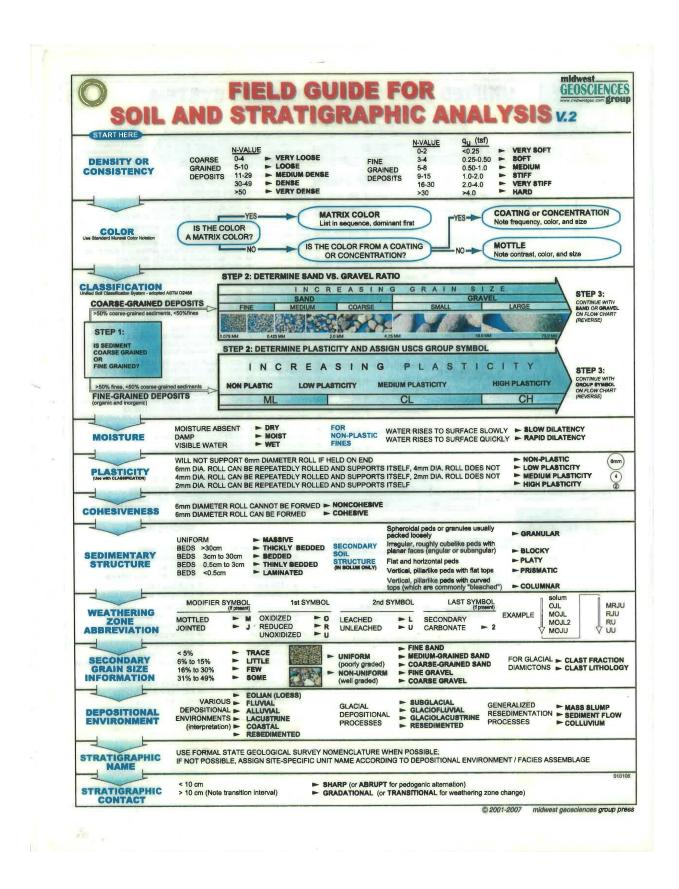
Split spoons, stainless steel bowls and spoons, and any other tools used for soil classification must be decontaminated between boring locations. If collecting soil samples for chemical analysis, split spoons and any tools used for sample processing must be decontaminated between each sample; alternatively, disposable bowls and spoons may be used. Equipment decontamination will consist of a tap water rinse to remove soil particles, followed by scrubbing with brushes and an alconox (or similar)/clean water solution and a final rinse with distilled or deionized water.

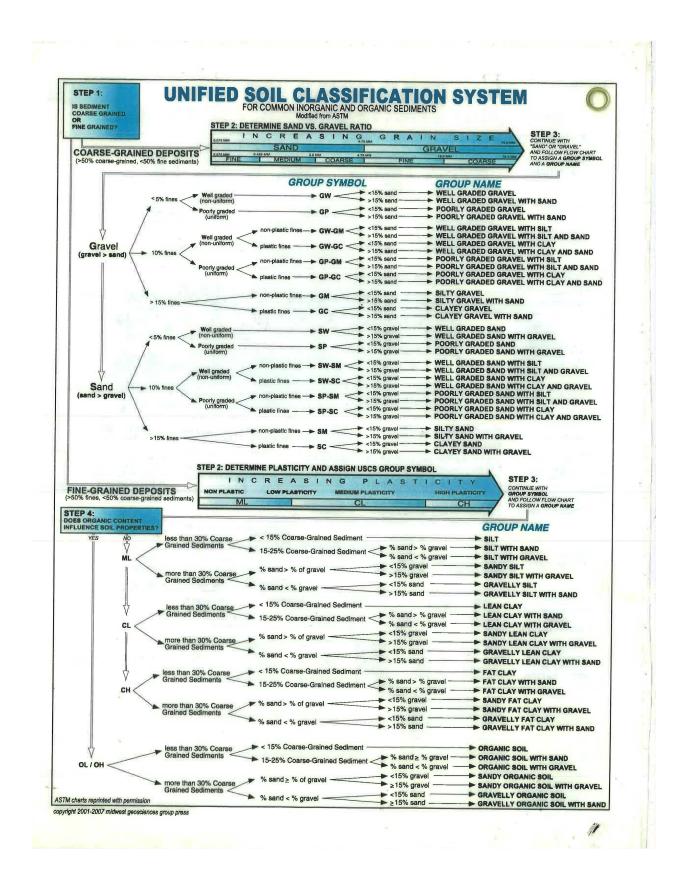
5.0 Investigation-Derived Waste

Unless otherwise specified in the project work plan, waste soils and other drilling materials generated during soil boring activities will be contained, transported, disposed of in accordance with applicable laws, and stored in a designated area until transported off-site for disposal.

FLOYD | SNIDER

The approach to handling and disposal of these materials is as follows. For investigation-derived waste (IDW) that is contained, such as waste soils, 55-gallon drums approved by the Washington State Department of Transportation (WSDOT) will be supplied by the driller and used for temporary storage pending profiling and disposal. Each container holding IDW will be sealed and labeled as to its contents (e.g., "soil cuttings"), the dates on which the wastes were placed in the container, the owner's name, contact information for the field person who generated the waste, and the site name.


Whenever possible, IDW contained within drums will be characterized relative to applicable waste criteria using data from the sampling locations. Material that is designated for off-site disposal will be transported to an off-site facility that is permitted to accept the waste. Manifests will be used as appropriate for disposal.


Disposable sampling materials and incidental trash such as paper towels and personal protective equipment (PPE) used in sample processing will be placed in heavy duty garbage bags or other appropriate containers and disposed of as solid waste in the municipal collection system (i.e., site dumpster).

6.0 Field Documentation

All observations should be recorded on a soil boring form appropriate for the drilling method or in a bound field notebook. Field staff should make an effort to record as much detail as possible in the field log. After the field work is complete, a set of final logs (usually electronic) that serve as the record for the project will be completed in consultation with the project manager or field manager.

Enclosure: USCS Soil Classification Field Guide

F|S STANDARD GUIDELINE

Soil Sample Collection

DATE/LAST UPDATE: May 2015

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step by step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines for the sampling method they intend to use and should review and understand these procedures prior to going into the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

This standard guideline presents commonly used procedures for collection of soil samples for characterization and laboratory analysis. The methods presented in this guideline apply to the collection of soil samples during the following characterization activities: soil borings via drilling, manual collection of shallow soil samples, test pit excavation, excavation confirmation, and stockpile characterization. Specific details regarding the collection of discrete and composite samples, and special sampling techniques for volatile organic compounds (VOCs) are also included. The guideline is intended to be used by staff who collect soil samples in the field.

It is important that the field staff completing the soil sample collection discusses the specific needs for a particular investigation with the project geologist, the project manager, or whoever will ultimately be responsible for interpreting the findings of the field investigation. This discussion is in addition to field training and general knowledge about soil sampling, and should happen prior to entering the field, with additional follow-up before finalizing the field forms, after the investigation is complete.

2.0 Equipment and Supplies

Soil Sampling Equipment and Tools:

- Tape measure or measuring wheel
- Stainless steel bowls and spoons
- Graduated plunger and collection tubes for VOC samples (if needed)
- Trash bags
- Decontamination tools including:
 - Paper towels
 - Spray bottles of alconox (or similar) solution
 - o Deionized or distilled water
- Adhesive drum labels, or paint or grease pen
- Washington State Department of Transportation- (WSDOT) approved drums for investigation-derived waste (IDW) disposal, if needed (if drilling, to be provided by driller)
- Camera
- Hand-held global position system (GPS; optional)
- Coolers, sample jars, labels, ice

Paperwork:

- Work Plan and/or Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP)
- Health and Safety Plan (HASP)
- Sample collection forms printed in Rite in the Rain paper, or Rite in the Rain field notebook

Personal Equipment:

- Steel-toed boots
- Safety vest
- Safety glasses
- Nitrile gloves
- Rain gear
- Work gloves

3.0 Standard Procedures

3.1 OFFICE PREPARATION

Prior to going into the field, review the SAP/QAPP tables to become familiar with the desired sample intervals, nomenclature, field Quality Assurance (QA) samples, analytes, sample containers, and holding times for each analytical method.

At least one week prior to sampling, coordinate with the laboratory specified in the SAP/QAPP to get coolers and appropriate sample containers. Familiarize yourself with the volume requirements and container types, preservation methods, and holding times for each class of analytes.

3.2 GENERAL SOIL SAMPLE COLLECTION PROCEDURES

- 1. Locate the desired sample location and depth interval using a handheld GPS or by taking field measurements from known site features. Note the soil type and any other observations or indications of contamination on a soil boring log, soil sample collection form or field notebook, as described in the Soil Logging Standard Guideline. Note the location and depth of the sample and take a photograph, if possible.
- Refer to subsections 3.2.1 through 3.2.4 for the appropriate soil collection procedures for drilling, shallow soil, test pit excavation, excavation confirmation, and stockpiles. If collecting samples for VOC analysis by the U.S. Environmental Protection Agency (USEPA) Method 5035, refer to Section 3.3 for specific sample collection procedures for this method. If composite soil sampling is recommended, refer to Section 3.4 for details.
- 3. Once soil has been collected from the desired depth or interval, mix thoroughly until the sample is homogenous in color, texture, and moisture.
- 4. Fill the required laboratory-provided jars, taking care not to overfill. If large gravels (diameter greater than ~ 1 inch) are encountered, these should be discarded to ensure that an adequate soil volume is collected for analysis. If necessary, use a clean paper towel to remove soil particles from the threaded mouth of the jar before securing lids to ensure a good seal.
- 5. Label each jar with the sample name, date, time, field staff initials and required analyses. If collecting a field duplicate, use the sample nomenclature specified in the work plan and note the field duplicate name and sample time in the sample log. If extra volume for matrix spike/matrix spike duplicate (MS/MSD) analysis is being collected, use the same name on all jars. Soil samples should be protected from moisture by placing the filled sample jars into separate sealed Ziploc bags before placing them into a cooler.

6. Complete a chain-of-custody form for all samples, including sample names, date and time of collection, number of containers, and required analyses and methods. Keep samples on ice to maintain temperatures of 4-6 degrees Celsius (°C) and transport to the laboratory under chain-of-custody procedures.

3.2.1 Soil Sample Collection via Drilling

These procedures should be used for drilling via direct-push, hollow stem auger, or roto-sonic methods where a pre-designated sample interval (i.e. 0 to 5 feet below ground surface [bgs]) is retrieved from the subsurface using a split spoon sampling device, lined core, or bag sampler.

- 1. Ensure that reusable sampling equipment has been thoroughly decontaminated prior to sampling.
- 2. Use a stainless steel spoon or trowel, or disposable scoop to remove an equal volume of soil across the targeted depth interval from the sampler.
 - a. If using a split spoon sampler or other reusable sampler, avoid collecting the soil that is touching the sides of the sampler to the extent practical.
 - b. If the soil touching a reusable sampler must be collected to obtain adequate volume for analysis, notify the PM and record in the field logbook.

3.2.2 Manual Collection of Shallow Soil Samples

These procedures should be used for shallow soil sampling via scoop, trowel, shovel, or hand auger.

- 1. Dig or auger to the bottom depth of the shallowest sample to be collected, using a tool that has been cleaned and decontaminated. Verify that the target depth has been reached using a measuring tape.
- 2. If using a scoop or trowel, collect the soil directly into a decontaminated stainless steel bowl.
- 3. If using a shovel, the soil may either be collected in bowls or set as aside on plastic sheeting in favor of collecting the sample from the sidewall of the hole. If sampling the sidewall, use a decontaminated or disposable scoop or trowel to collect soil from the target depth, or scrape along the sidewall to collect soil across a target depth interval. Transfer soil to a decontaminated stainless steel bowl, repeating until a sufficient volume has been collected.
- 4. If using a hand auger, empty the cylinder of the auger directly into a decontaminated stainless steel bowl. It may be necessary to empty the hand auger onto plastic sheeting or into a bowl in order to reach the target depth without overflowing the sampler.
- 5. Any soil from depth intervals that are not targeted for sampling should be set aside on plastic sheeting and returned to the hole after sampling.

3.2.3 Sample Collection from Test Pits or Limited Soil Excavations

These procedures should be used for collecting samples from test pit explorations excavated using a back hoe or excavator. These same general procedures should also be followed for post-excavation soil samples used to confirm that an excavation has removed contaminated material or to document post-excavation conditions after target excavation limits have been reached.

- 1. Measure the length, width, and depth of the test pit or excavation area to verify that the target extents have been reached. The lateral spacing of the test pit or excavation confirmation samples, or exact location of samples should be specified in the work plan and typically depend on the size of the excavation area but can vary significantly from project to project.
- 2. If not specified in the work plan, sidewall samples may be collected either midway between the ground surface and base of the excavation, or incrementally along the entire height of the sidewall. Both sidewall and base (bottom) samples should penetrate a minimum of 6 inches beyond the excavated surface.
- 3. If the test pit or excavation is less than 4 feet deep, or has been benched to accommodate safe entry, a sample may be collected directly from the sidewall(s). To collect soil from a sidewall, use a decontaminated or disposable scoop, trowel, or shovel to obtain soil from the desired depth or depth interval directly into a decontaminated stainless steel bowl.
- 4. If a test pit or excavation cannot be safely entered, instruct the excavator operator to scoop sidewall material from the target depth or depth interval. Collect the soil sample from the excavator bucket using a decontaminated stainless steel spoon, trowel, or disposal scoop, avoiding material that has come into contact with the teeth or sides of the bucket. Place an adequate volume of soil into a decontaminated stainless steel bowl. If necessary, follow the compositing procedures in Section 3.4.

3.2.4 Stockpile Sampling

These procedures should be used for classifying stockpiled soil, including excavated soil and imported backfill material.

1. Where potentially contaminated soils have been previously excavated and stockpiled on site, Washington State Department of Ecology (Ecology) guidance recommends using a decontaminated or disposable scoop or trowel, penetrating 6 to 12 inches beneath the surface of the pile at several locations until sufficient volume for analysis is achieved. A decontaminated shovel may also be used to facilitate collection of soil from large piles. The locations for soil collection should be where contamination is most likely to be present based on field screening (i.e. staining, odor, sheen, or elevated photoionization detector [PID] readings). If there are not field indications of contamination, the locations should be distributed evenly around the stockpile.

- 2. The stockpile may need to be broken up into sections for sample collection depending on the size of the pile (i.e., segregate the pile in half or quarters). If this is necessary, it is important to document where each set of samples were collected from (i.e., north quadrant) and create a field sketch of the pile for reference.
- 3. If a sampling frequency is not specified in the work plan, the general rule of thumb for contaminated soil stockpile profiling is to collect and submit 3 analytical samples (these samples can be multi-point composites or grabs) for stockpiles less than 100 cubic yards (CY), 5 samples for stockpiles between 100 and 500 CY, 7 samples for stockpiles 500 to 1,000 CY, 10 samples for stockpiles 1,000 to 2,000 CY, and 10 samples for stockpiles larger than 2,000 CY with an additional sample collected for every 500 CY of material. This rule of thumb is consistent with Ecology guidance for site remediation.
- 4. Samples for characterization of stockpiles of imported backfill or other presumed clean material should also be collected as described above. If not described in the work plan, the typical sample frequency for imported or clean material characterization is one sample per 500 CY.

3.3 SOIL SAMPLE COLLECTION FOR VOC ANALYSIS

If collecting soil samples for VOC analysis by USEPA Method 5035, collect these samples first before disturbing the soil. This method uses a soil volume gauge fitted with a disposable soil sampling plunger tube to collect a soil plug that can be discharged directly to a VOA vial, limiting the loss of volatiles during sampling. The collection of VOC samples using the 5035 method specifies use of an airtight VOA vial with a septum lid. Ecology's interpretation of the USEPA 5035 method allows for field preservation of the sample with methanol or sodium bisulfate, or laboratory preservation (i.e. field collection into an un-preserved vial). It is important to note that if laboratory preservation is the selected method, samples must be received at the laboratory within 48-hours of sample collection. The method of sample preservation for the 5035 method will vary for each site and is dependent on site-specific conditions. Preservation method selection should be coordinated with the laboratory and specified in the sampling plan.

- Note the volume of soil needed for analysis as specified by the laboratory (commonly 5 or 10 grams). Raise the handle of the soil volume gauge to the slot in the gauge body corresponding to the desired volume and turn clockwise until the tabs in the handle lock into the slot.
- 2. Insert a sample tube at the open end of the gauge body and turn clockwise until the tabs on the tube lock into the "O gram" slot. Remove the cap from the sample tube and press directly (where possible) into the shallow soil, soil core/sampler, excavation base or sidewall, or stockpile.
- 3. Continue pressing the sample tube until the plunger is stopped by the sample volume gauge. If a depth interval (for example 9 to10 feet) is targeted for VOC sampling, collect small volumes of soil across this interval until the sample tube is filled

4. Twist counterclockwise to disengage the sample tube, then depress the plunger to eject the soil plug directly into a laboratory-provided VOA vial. If multiple vials per sample are required, the same plunger may be re-used to fill the remaining vials.

3.4 COMPOSITE SAMPLE COLLECTION

For this guideline, composites are considered to be samples that are collected across more than one location, or multiple depth intervals at a single location. Samples collected over continuous depth intervals within a sampling device (i.e. split spoon) are addressed for each sampling method in Section 3.2 above.

Compositing of sample material may be performed in the field, or by the analytical laboratory. To collect a field composite sample, identify the locations and depth(s) that will comprise the composite. Collect soil from the first target sub-sample depth or depth interval and hold in a decontaminated stainless steel bowl, covered with aluminum foil to prevent cross contamination and label with the location and depth. Continue to collect and hold individual sub-samples until all components of the composite have been collected, then transfer an equal amount of each sub-sample to a clean bowl and homogenize. Fill necessary sample jars from homogenized composite. In some cases, project plans may require that each individual sample that comprised the composite be collected in jars and submitted to the laboratory in the event that individual sample analysis is desired, or if laboratory compositing is requested in addition to field compositing as a field quality control measure. In this case, label each individual jar, but indicate HOLD on the chain-of-custody, and note that the sample is part of composite XYZ.

To collect a laboratory composite sample, collect, and label each sub-sample using the procedures described above in Section 3.2. Record each sub-sample on the chain-of-custody form, and indicate on this form which samples should be composited by the laboratory and the desired name of the composite sample. It is important to communicate to the laboratory if discrete samples will also require analysis (in some cases) or only the composite sample.

4.0 Decontamination

All reusable equipment that comes into contact with soil should be decontaminated prior to moving to the next sampling location.

Stainless steel bowls and spoons, and any tools used for sample processing will be decontaminated between each sample; alternatively, disposable bowls and spoons may be used. Equipment decontamination will consist of a tap water rinse to remove soil particles, followed by scrubbing with brushes and an alconox (or other soap)/clean water solution and a final rinse with distilled or deionized water.

5.0 Investigation-Derived Waste

Unless otherwise specified in the project work plan, waste soils will be contained, transported, disposed of in accordance with applicable laws, and stored in a designated area until transported off-site for disposal.

The approach to handling and disposal of these materials is as follows. For IDW that is containerized, such as waste soils, 55-gallon drums approved by WSDOT will be used for temporary storage pending profiling and disposal. Each container holding IDW will be sealed and labeled as to its contents (e.g., "soil"), the dates on which the wastes were placed in the container, the owner's name and contact information for the field person who generated the waste, and the site name.

IDW that is placed into drums for temporary storage will be characterized relative to applicable waste criteria using data from the sampling locations whenever possible. Material that is designated for off-site disposal will be transported to an off-site facility permitted to accept the waste. Manifests will be used, as appropriate for disposal.

Disposable sampling materials and incidental trash such as paper towels and personal protective equipment (PPE) used in sample processing will be placed in heavy duty garbage bags or other appropriate containers and disposed of as solid waste in the municipal collection system (i.e., site Dumpster).

6.0 Field Documentation

All observations including sample collection locations, soil descriptions, sample depths, collection times, analyses, and field QC samples should be recorded on a boring log, soil sample collection form, or bound field notebook. Information recorded should additionally include personnel present (including subcontractors), purpose of field event, weather conditions, sample collection date and times, sample analytes, and any deviations from the SAP.

F|S STANDARD GUIDELINE

Vapor Intrusion

DATE/LAST UPDATE: February 2019

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step-by-step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines for the sampling method they intend to use and should review and understand these procedures prior to going into the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

This standard guideline provides details necessary to complete vapor intrusion monitoring, which may include soil vapor point and sub-slab installation, soil vapor point monitoring and/or sampling, indoor air sampling, and remediation system compliance monitoring. Field screening for volatile organic compounds (VOCs) is most often conducted with a photoionization detector (PID) and confirmed via analytical sample collection. The most common sampling methods are included herein. These guidelines are designed to meet or exceed guidelines set forth by the Draft Washington State Department of Ecology's (Ecology's), Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Ecology 2015 and 2018a). In addition, refer to Ecology's Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion: Implementation Memorandum No. 14 (Ecology 2016), Ecology's Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings: Implementation Memorandum No. 18 (Ecology 2018b), and the U.S. Environmental Protection Agency's (USEPA's) Technical Guide For Addressing Petroleum Vapor Intrusion At Leaking Underground Storage Tank Sites and OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (USEPA 2015a and 2015b). Defining the lateral and vertical inclusion zones will determine if soil vapor sampling is required. The Interstate Technology and Regulatory Council (ITRC) online guidance for soil vapor intrusion (ITRC 2014) is another good source of information.

2.0 Equipment and Supplies

The following is a list of typical equipment and supplies that may be necessary to complete vapor intrusion monitoring. It is important to note that this list is for a typical project; site-specific conditions may warrant additional or different equipment for completion of the work.

Sub-Slab, Soil Vapor Point, and Vapor Pin® Installation:

- Rotary hammer drill
- Drill bit
- Vapor point (AMS or similar)
- Stainless steel (SST) dummy tip (optional)
- Teflon[™], nylon, or stainless steel tubing
- Sand pack
- Bentonite chips
- Protective cover for permanent point
- Swagelok[®] on/off valve (optional)
- Caps or compression fittings
- Quick set (concrete) or hydraulic cement
- Paper towels
- Nylon ferrules
- Vapor Pin[®] Kits (Cox-Colvin & Associates), which include the following:
 - Brass or stainless steel Vapor Pins[®]
 - Vapor Pin[®] sleeves
 - Vapor Pin[®] caps
 - Plastic or stainless steel flush mount covers
 - Spanner screwdriver
 - Stainless steel drilling guide
 - Installation and extraction tool
 - o Bottle brush
 - Water dam for leak testing
 - Vapor Pin[®] Standard Operating Procedures (SOP)
- Shop vac

Soil Vapor Point or Remediation System Screening and/or Sampling:

- PID
- Connector
- Teflon™ or nylon tubing
- Air sampling pump or peristaltic pump
- Tedlar[®] bag or SUMMA[®] canisters
- Two adjustable wrenches (to tighten SUMMA[®] canister connections)
- Duplicate sampling (as necessary if duplicate sample collection is required)
- Soil gas manifolds
- Ferrules/fittings
- Helium (or other detection gas, such as isopropyl alcohol, if leak detection is necessary)
- Helium detector (if leak detection is necessary with helium)
- Soil vapor sampling sheet (attached)

Indoor Air Sampling:

- PID
- Flow regulator
- SUMMA[®] canisters (6-liter, lab certified)
- Sampling cane (optional)
- At least two adjustable wrenches
- Indoor air building survey form (enclosed)

3.0 Standard Procedures

Soil vapor samples and/or indoor air samples should be collected from a sufficient number of locations to assess the presence of VOCs and potential exposure to workers or occupants of potentially impacted buildings or future building locations.

3.1 PRE-SCREENING ASSESSMENT

When completing a vapor intrusion survey or indoor air sampling, it is important to complete a pre-sampling survey to document potential activities or storage items that may cause interference with sample results. Some important things to note (list is not comprehensive):

• If smoking has occurred in the building

- Storage of potential contaminants (cleaners, fuels, paints, or paint thinners, etc.)
- HVAC system operation (on or off)
- Temperature and weather (wind direction, barometric pressure, etc.)
- Vehicle maintenance or industrial activities on the property or in the immediate vicinity (especially upwind)
- If new carpet or furniture is present

A pre-sampling soil vapor building survey form can be found at the end of this document. Be mindful of your surroundings and make a comprehensive list of potential factors that may influence sample results.

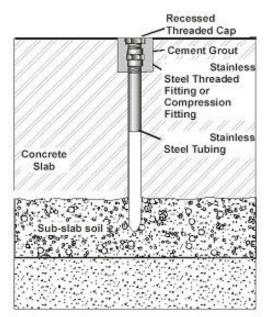
3.2 SOIL VAPOR POINT INSTALLATION

Soil vapor points can be installed along the outside perimeter of a building or in the lowest level of a building directly through the slab (or beneath the floor into the subsurface if there is not a slab). It is important to evaluate the presence of utilities prior to drilling into the subsurface or through a concrete slab.

If the sampling point is for one time use, tubing inserted into a hole drilled in the slab is sufficient. However, if the sampling is to be part of a long-term monitoring program, a more robust sampler, such as a Geoprobe or AMS probe for permanent soil gas point is recommended. Five different methods for installing soil vapor installation points are described here.

- 1. For temporary sub-slab points:
 - a. Drill a hole into the subsurface. Using a rotary hammer drill and a 3/8-inch drill bit (typical diameter size but not necessary), drill a hole through the concrete floor slab of the building and into the sub-slab material to some depth (e.g., 7 to 8 centimeters [cm] or 3 inches). Drilling into the sub-slab material will create an open cavity, which will prevent obstruction of the tubing intake by small pieces of gravel. Once the thickness of the slab is known, the tubing will be cut to ensure that the probe tubing does not reach the bottom of the hole in order to avoid obstruction with sub-slab material. Sample tubing can be placed directly into the sub-slab. Evaluate and note the sub-slab conditions.
 - b. Care should be taken to reduce cross-contaminating sub-slab vapor and indoor air vapor. This may be done by sealing the sample point with VOC-free hydraulic cement, hydrated bentonite, or with VOC-free putty to the top of the slab. Once sealed, wait 15 to 30 minutes before sampling.

2. Installation guidelines for a sub-slab Vapor Pin®:1


Figure 1. Assembled VAPOR PIN®

- a. Check for buried obstacles and utilities. Set up wet/dry vacuum to collect drill cuttings. Also, look for nearby cracks or other holes in the slab that may cause short circuiting and influence from indoor air.
- b. Drill a 1.5-inch (38 millimeters [mm]) diameter hole at least 1.75 inches (45 mm) into the slab. Use of a Vapor Pin[®] drilling guide is recommended in the SOP.
- c. Drill a 0.625-inch (16 mm) diameter hole through the slab and approximately 1 inch (25 mm) into the underlying soil to form a void. Hole must be 0.625 inches (16 mm) in diameter to ensure proper seal. The Cox-Colvin SOP recommends using the drill guide provided in the kit. Remove the drill bit, brush the hole with the bottle brush provided in the kit, and remove the loose cuttings with a vacuum.
- d. Place the lower end of Vapor Pin[®] assembly into the drilled hole. Place the small hole located in the handle of the installation/extraction tool provided in the kit over the vapor pin to protect the barb fitting, and tap the Vapor Pin[®] into place using a dead blow hammer or rubber mallet. Make sure the installation/extraction tool is aligned parallel to the Vapor Pin[®] to avoid damaging the barb fitting.
- e. For flush mount installations, cover the Vapor Pin[®] with a flush mount cover, using either the plastic cover or the optional stainless-steel Secure Cover provided by Vapor Pin[®].
- f. Allow 48 hours or more for the sub-slab soil-gas conditions to re-equilibrate prior to sampling.

¹ Additionally, refer to Cox-Colvin <u>SOP Installation and Extraction of the Vapor Pin®</u>, which is included with the Vapor Pin[®] kit.

- 3. Suggested installation guidelines for temporary outdoor soil gas points using a rotary hammer and drill bit:
 - a. Manufacturers, such as Geoprobe or AMS, make soil gas implant systems designed for use with their equipment. Stainless steel or polyvinyl chloride (PVC) screen can also be used to construct an appropriate soil gas point. The probe screen will be fitted with a Swagelok[®] or similar fitting and connected to a length of 0.25-inch outer diameter, rigid wall nylon or Teflon[™] tubing that will be above grade. Refer to the manufacturer or driller's instructions for specific details regarding assembly and deployment.
 - b. To seal the point, the implant should be surrounded with a clean sand pack. Concrete (VOC-free hydraulic cement preferred) should be used above the seal to the top of the slab. Placement of some sort of cap or protective device is recommended if the sampling point will remain in place for some time after the soil gas sample is collected. Once sealed, wait 15 to 30 minutes before sampling.
- 4. Suggested installation guidelines for outside permanent points installed with a Geoprobe rig or hand auger:
 - a. Advance the boring using a geoprobe or hand auger to the required maximum depth. Install a 6-inch long by 0.75-inch diameter stainless steel screen that is capped on the bottom end and fitted with a Swagelok® fitting connected on the other end (or similar approved screen or soil vapor point). Attach a length of 0.25-inch outer diameter rigid wall nylon or Teflon™ tubing to the probe screen that will be above grade. The above grade end of the probe should be fitted with a stainless steel Swagelok® on/off control valve or similar valve (optional), which is used to prevent short-circuiting of ambient air into the probes and to conduct closed-valve tests. Teflon™ tape should be used on threaded joints to ensure a good seal. Depending on the work plan, it might be necessary to collect an air equipment blank sample through the vapor probe components prior to installation.
 - b. The 6-inch screen tip should be vertically centered in a 1-foot long interval containing standard sand pack, resulting in 3 inches of sand above and below the screen. The sand pack will be covered with a 1-foot interval of dry granular bentonite, which should be covered with at least 2 feet of pre-hydrated granular bentonite. The dry granular bentonite is emplaced immediately above the sand pack to ensure that pre-hydrated granular bentonite slurry does not flow down to the probe screen and seal it. The remainder of the borehole will be filled with pre-hydrated granular bentonite slurry (mixed at the surface and poured in) to approximately 12 inches below ground surface (bgs). The top portion should be completed with a 1-foot thick cement cap. A flush-mounted well box or other suitable protective cover should be installed to protect the nylon/Teflon™ tubing and on/off control valve.

- 5. Suggested equipment and installation guidelines for permanent sub-slab vapor points within a building; however, site-specific conditions may warrant additional or different equipment for completion of the work:
 - a. To install the sub-slab vapor probes, a rotary hammer drill will be used to create a "shallow" hole (e.g., ¼-inch deep) that partially penetrates the slab (do not completely penetrate the slab). A portable vacuum can be used to remove the drill cuttings from the hole without compromising the soil vapor samples. Next, a smaller diameter "inner" hole (e.g., 0.8 cm or 5/16 inch diameter) will be drilled through the remainder of the slab and into the sub-slab material to some depth (e.g., 7 to 8 cm or 3 inches). Drilling into the sub-slab material will create an open cavity which will prevent obstruction of the probes by small pieces of gravel. Once the thickness of the slab is known, the tubing will be cut to ensure that the probe tubing does not reach the bottom of the hole and in order to avoid obstruction with sub-slab material.
 - b. Each sub-slab vapor point should consist of vacuum-rated Nylon, Teflon[™], or stainless steel tubing with ¼-inch outer diameter by 0.15-inch inner diameter, and stainless-steel compression to thread fittings (e.g., ¼-inch outer diameter Swagelok[®] (SS-400-7-4) NPT female thread connectors or similar equipment). This will be capped with sub-slab tamper resistant cap or other similar protective caps that will be inset into the floor to avoid trip hazards. When time to sample, the sub-slab tamper resistant cap will be removed and Nylon tubing will be attached to the sub-slab vapor point with a ¼-inch out diameter (SS-400-1-4) male NPT. Prior to the installation of one of the sub-slab vapor probes, an air equipment blank sample will be collected if required by the work plan (See Section 3.4.3).
 - c. Teflon[™] tape should be used with all stainless steel treads. All fittings should be attached prior to installing the probe in the sub-slab. A sub-slab tamper resistant cap will be used to ensure that the top of the probe is flush with the surface so as not to interfere with day-to-day use of the building. Portland cement can be used as a surface seal and allowed to cure for at least 24 hours prior to sampling. Hydraulic cement may also be used if free of VOCs, and requires less cure time (typically less than one hour) prior to sample collection. A typical soil gas probe schematic is provided here for reference.

Sub-slab soil gas probe schematic (Source: Ecology 2016a)

3.3 SOIL VAPOR POINT SAMPLING USING TEDLAR® BAGS

The objective of the vapor sampling procedures is to collect representative samples of the targeted media and analyze the gas for the presence of VOCs. Typically, a low volume air pump is used to pull a sample through the sampling train.

- 1. Connect proper tubing to your sampling point and to your low volume air pump.
- 2. Purge for 3 to 5 minutes to ensure that you are collecting a representative sample.
- 3. After purging, connect your Tedlar[®] bag to your air pump and collect your sample (Note: Tedlar[®] bags should be filled at a rate of approximately 5 liters per minute).
- 4. A PID is typically used in conjunction with sample collection in a Tedlar[®] bag.
 - a. Connect the PID probe to the sample container using a section of tubing
 - b. Use the PID to read the organic vapor level present in the sample.

Soil Vapor samples are typically collected into 1-liter Tedlar[®] bags and have a short (typically less than 72-hours) holding time. Samples collected into Tedlar[®] bags should be transported to the laboratory immediately under chain-of-custody protocol and stored in a dark container at ambient temperature during transport out of direct UV-light. Do not ship Tedlar[®] bags to the laboratory using an air transportation method as the pressure could compromise the sample or the bag. If air transport is necessary, do not completely fill the Tedlar[®] to avoid bursting. Soil vapor grab samples can also be collected into 1-liter SUMMA[®] canisters to provide additional holding time, lower laboratory method detection limits for some analytes, or sample delivery alternatives.

3.4 SOIL VAPOR AND SUB-SLAB SAMPLING WITH SUMMA® CANISTERS

Prior to soil vapor sampling, check all soil vapor sampling supplies to ensure the right sampling equipment arrived from the lab including duplicate Tees, if duplicate sample collection is necessary, and purging canisters. Conduct the following:

- Confirm that all SUMMA[®] canisters have at least 27 to 30 inches of mercury (in. Hg) prior to going out in the field to sample.
- Check and record all manifold and SUMMA[®] canister tags and numbers.
- Make sure all connections on the SUMMA[®] canisters and manifolds are tight.
- Order Helium (or other tracer gas) if needed and rent a helium detector.

Once the sub-slab or soil vapor probes are installed and the concrete well seal at each vapor point has fully cured, vapor sampling activities may commence (ideally a minimum of 2 hours is necessary for probe equilibration, depending on surface seal cure time). Alternatively, existing monitoring wells that are appropriately screened for a vapor intrusion assessment may be used. If indoor air samples will be collected, they may be collected simultaneously during the sub-slab sampling activities (details found in Section 3.6) if required by the work plan. If feasible, vapor sampling should not be conducted during or immediately after a significant rain event (i.e., greater than an inch of rainfall) due to the reduced effective diffusion coefficient and decrease in relative vapor saturation in the unsaturated zone. For sub-slab or soil vapor probe sampling, 1-liter lab certified SUMMA[®] canisters should be used in order to minimize the volume of soil vapor collected.

A closed-valve test should be conducted prior to soil vapor sample collection to check for leaks in the sampling train. A closed-valve test is conducted by capping the ends with proper Swagelok caps and/or closing any valves at the sampling point and purge canister. Once all ends are closed tight, turn the sampling canister valve on for 5 minutes. If the sampling train maintains its original vacuum for 5 minutes, the equipment will be assumed to be functional and there are no leaks. If the vacuum reading starts to drop, turn off the valves right away, check all connections, tighten if necessary, and re-test. If this passes, the only location that a leak can occur is from the soil ground seal around the vapor probe, which will be tested using helium or another tracer gas during sampling (See Section 3.4.1).

After the close-valve test, a minimum of three tubing volumes should be purged. Purging can be completed using a non-certified 6-Liter SUMMA[®] canister or a vacuum pump. The maximum flow rate during purging will not exceed the flow rate limit used for subsequent sampling and care will be taken not to over purge. An excel spreadsheet to help calculate tubing volume and purging time can be found at the end of this document.

After the sampling train has been purged, sub-slab soil vapor samples will be collected over a 10 minute period at a flow rate of less than 167 milliliters per minute (mL/min). The flow rate will be controlled by a flow regulator, which is set by the lab. Sub-slab soil vapor samples will be collected in laboratory-certified and pre-evacuated 1-liter SUMMA[®] canisters. Each SUMMA[®]

canister will be supplied with an analytical test report certifying that the canister is "clean" to concentrations less than the respective method detection limits (MDLs). Each canister will be equipped with a pre-calibrated flow controller sampling train to allow collection of the desired sample. Prior to collecting the samples, the SUMMA[®] canister ID numbers will be recorded in the field notebook along with the initial canister vacuums, prior to sampling.

Soil vapor samples will be collected per the following steps:

- 1. Opening the valve on the top of the SUMMA[®] canister and recording the time in the log book;
- 2. Observing the vacuum gauge on the sampling train to ensure that the vacuum in the canister is decreasing over time;
- 3. Shutting off the valve once the vacuum gage reads between 4.0 and 5.0 inches of mercury (in. Hg).

3.4.1 Leak Testing

In addition to soil gas sampling activities, leak testing may be required at sampling locations and should be conducted using the following soil gas sampling set-up procedures:

When helium is being used as a tracer gas:

- Place a large plastic bag (or other acceptable shroud) around the SUMMA[®] canister, sampling apparatus, and vapor probe.
- Cut a small hole in the bag to allow tubing to be inserted to introduce tracer gas, such as helium, and to subsequently fill the plastic bag.
- Keep the tracer gas (i.e., helium) concentration in the bag at 10 percent by volume or higher.

When isopropyl alcohol is being used as a tracer gas:

- Soak towels in isopropyl alcohol.
- Place soaked towels over the sampling probe and wrap around all connections.

Detections of the tracer gas in the soil gas samples would indicate that the canister, valves, or ground surface seal to the sample probe have potentially leaked ambient air into the sample. Small amounts of sample train leakage is permissible; however, the leak percentage should not exceed 10 percent of the soil gas results. If the leak percentage exceeds 10 percent, the sampling point may have to be resampled. The integrity of the soil vapor samples can be assessed by estimating the percent leakage as shown here in micrograms per square meter (μ g/m³):

% leakage = 100 x $\frac{\text{helium concentration in soil vapor sample } [\mu g/m^3]}{\text{average helium concentration measured inside the shroud } [\mu g/m^3]}$ The above equation for helium can be used because the known average helium concentration can be determined via field screening with a helium detector. Tracer gas leaks should not occur if the sampling train passes a properly performed closed-valve test and given the low flow rate of 167 mL/min.

3.4.2 Final Readings

Once the sampling is completed and the final vacuum is recorded, the sampling train will be removed from the canister and a Swagelok[®] cap will be tightly fitted to the inlet port of the canister. A PID can be used to record vapor readings from the manifold connection and logged in the notebook and/or soil vapor sampling sheet (enclosed). In addition, the initial canister vacuums, vacuum testing times, purging times, purged volumes, helium readings, sampling starts and times, final vacuum readings, and PID readings should be recorded on a vapor sampling sheet. Some of this information will also be required on the chain-of-custody.

3.4.3 Equipment Blank

Occasionally, the work plan requires an equipment blank to be collected. An equipment blank can be conducted by collecting a sample of clean air or nitrogen through the probe materials before installation in the ground. Analysis of the equipment blank can provide information on the cleanliness of new materials. Clean stainless steel, Nylon or Teflon[®] tubing and a certified regulator should be used. Lab-certified canisters (the sample canister and the source canister/cylinder, if applicable) or Tedlar[®] bags can be used to collect an equipment blank.

3.5 USE OF MONITORING WELLS FOR SOIL GAS SAMPLING

While dedicated soil gas probes are typically used to collect soil gas samples, existing monitoring wells that are appropriately located and screened can also be used for this purpose, with limitations. This is an advantage when evaluating the risk of vapor intrusion solely from contaminated aquifers (as compared to contaminated vadose zone soil) as the soil gas that will be sampled can reflect a soil gas sample that lies close to the zone of saturation and represents a worse case condition for equilibrium partitioning of contamination in groundwater to the gas phase. Also, monitoring wells are typically constructed at a deeper depth than soil vapor probes and are less influenced by changes in barometric pressure. They are also inherently constructed to be well sealed against breakthrough from atmospheric air (while purging and sampling). For an existing well to be used for soil gas sampling, it must have at least 2 to 3 feet of open screen above the water table during sample collection.

The main disadvantage of using existing monitoring wells is that the required purge volume would be much greater because of the significantly larger diameter of the well screen as compared to probes. This requires the use of a larger air pump or small blower instead of the SKC hand pump or peristaltic pump. While purging, care must be taken to minimize the vacuum in the well casing which may be large enough to raise the water column high enough to cover the exposed well screen and invalidate the use of the well for sampling soil gas. Appropriate

temporary fittings will need to be installed to allow the reduction of the well casing sufficient to allow connection to the collection tubing.

3.6 INDOOR AIR AND OUTDOOR AMBIENT AIR SAMPLE COLLECTION

Indoor air sampling should be conducted in an environment that is representative of normal building use. Indoor air and outdoor ambient air samples are typically collected into 6-liter SUMMA® canisters and can either be a grab (not often recommended) or time weighted samples. For time weighted samples, the laboratory will provide preprogrammed flow controllers for the samples for your desired sample duration. An 8-hour flow controller is the most common to assess typical working conditions or to provide a time-weighted average (TWA) to assess residential risk (a 24-hour flow controller may also be used for residential assessments). SUMMA® canisters should be placed in an area that is close to the breathing zone (i.e., 3 to 5 feet above the floor level), a sampling cane can be connected to the SUMMA® canister to sample indoor air at breathing zone height.

As a basic guideline and starting point, indoor air samples should at a minimum be collected from the basement (if applicable), first floor living or work area, and from outdoors (ambient/upwind). For a typical-size, one-floor residential building or a commercial building less than 1,500 square feet, USEPA recommends the collection of one time-integrated sample within the occupied area (USEPA 2015b). Other site-specific factors will influence the specific placement location of the SUMMA[®] canisters, such as proximity to subsurface source area(s) or penetrations through the slab or foundation.

Ambient air samples should be collected from a location protected from the elements (wind, rain, snow, or ice) and vehicle traffic on the upwind side of the building (5 to 15 feet away) during the same sampling event the indoor air samples are collected in order to provide information about the outside influences on indoor air quality (i.e., vapors from automotive fuels and exhaust). USEPA recommends that ambient air sampling begin at least 1 hour prior to indoor air sampling and should continue at least 30 minutes before indoor monitoring is complete (USEPA 2015b).

3.6.1 Connection Guidelines

Refer to specific guidelines provided by the laboratory, as equipment can be slightly different from lab to lab. It is important to note the initial vacuum reading on the gauge as well as the post-sampling vacuum. For reference, initial vacuum should be between 27 and 30 inches of mercury, while post-sample vacuum should be between 4 and 5 inches of mercury. Sample collection start and finish times should also be recorded. After sample collection, the SUMMA[®] canister valve should be shut and the flow controllers should be disconnected from the SUMMA[®] canisters. Both the controller and the canister ID (unique laboratory tracking ID) should be recorded on the chain-of-custody and the samples should be packed appropriately for delivery to the laboratory following chain-of-custody protocol.

3.6.2 Testing Method and Reporting Limit Considerations

Indoor air samples can be analyzed using various methods, such as TO-15, TO-15 SIM, and TO-17. When considering which analytical method to use, always consider current and future site use and analytical reporting limits to ensure that reporting limits for the selected methods can meet the cleanup levels applicable for the site.

3.7 REMEDIATION SYSTEM VAPOR SAMPLE COLLECTION

Remediation systems that have a soil vapor extraction (SVE) component often require compliance monitoring to evaluate mass removal and effluent discharge limits. Both screening (with a PID) and sampling are routinely conducted during active operation. Tedlar[®] bags are often used to simplify SVE system screening. Fill a bag following the procedures described in this section and use a PID to measure the VOCs in the sample. Record the maximum observed concentration. Vapor samples for laboratory analysis are most often collected in 1-liter Tedlar[®] bags, but SUMMA[®] canisters can also be used. It is a good idea to fill out the label on the Tedlar[®] bag prior to sample collection.

If the sample port is under vacuum (i.e., SVE manifold or wellhead), it is often necessary to reduce the flow somewhat and to use a hand or mechanical pump to extract the vapor from the line. If the sample port is under a high vacuum, it may be necessary to step down the flow (i.e., close the flow valve) in order to collect a sample. Follow steps in Section 3.3 for sample collection and delivery.

If the sample port is under pressure (i.e., SVE system discharge), the sample can be collected without the use of a pump. Simply attach a clean piece of tubing securely to the sample port, connect the Tedlar[®] bag to the tubing, open the Tedlar[®] bag, slowly open the sample port valve, and be careful not to overfill the bag. Remove the Tedlar[®] bag when full, close the Tedlar[®] bag (do not over-tighten), and close the sample port valve. Follow steps in Section 3.3 for sample delivery.

4.0 Field Documentation

Soil vapor probe and monitoring point installation field activities should be documented in field notebooks and completion diagrams or boring logs should be completed to document construction. Information recorded will include personnel present, total depth, type and length of implant or screen, screen and filter pack intervals, bentonite seal intervals and surface completion details. Photographs of construction activities should be taken. After probe and monitoring point installation is complete, location coordinates should be recorded with a global positioning system (GPS). If GPS cannot be used (i.e., location within a building), it is important to document the location by recording representative measurements to fixed points.

All sampling activities must be documented in a field notebook and/or on field forms appropriate for the sampling activity. Information recorded will include at a minimum personnel present,

date, and time of sample collection, length of sample purge time, and any deviations from the project's work plan or sampling and analysis plan.

Weather conditions should also be recorded and should include temperature, barometric pressure, wind direction and speed, humidity, and degree of cloud cover. Additional site-specific details should also be noted including surface soil conditions, presence of standing water, wet soil, irrigation activities, and if possible, groundwater elevations.

5.0 References

- Interstate Technology Regulatory Council (ITRC). 2014. Petroleum Vapor Intrusion: Fundamentals of Screening, Investigation, and Management. <<u>http://www.itrcweb.org/PetroleumVI-Guidance/</u>>. October.
- Washington State Department of Ecology (Ecology). 2015. Vapor Intrusion Table Update. (Replaces Table B-1 of Ecology's Guidance for Evaluating Soil Vapor Intrusion in Washington State). <<u>https://ecology.wa.gov/Asset-Collections/Doc-Assets/Regulations-</u> <u>Permits/Guidance-technicalassistance/Vapor-Intrusion/2015VaporIntrusionUpdates</u>>. 6 April.
- . 2016. Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion: Implementation Memorandum No. 14. Publication No. 16-09-046. 31 March.
- . 2018a. *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*. Review Draft. Prepared by the Toxics Cleanup Program. Publication No. 09-09-047. Originally published October 2009; revised April.
- . 2018b. Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings: Implementation Memorandum No. 18. Prepared by the Toxics Cleanup Program. Publication No. 17-09-043. January.
- U.S. Environmental Protection Agency (USEPA). 2015a. *Technical Guidance for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites*. Prepared by the Office of Underground Storage Tanks. EPA 510-R-15-001. June.
- _____. 2015b. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. Prepared by the Office of Solid Waste and Emergency Response. OSWER Publication 9200.2-154. June.

Enclosures: Indoor Air Building Survey Form Purge Volume Calculations during Soil Vapor Sampling Soil Vapor Sampling Sheet

INDOOR AIR BUILDING SURVEY FORM

Date:			
Site Name:			
Title:			
Building Use:			
Occupants:			
Building Address:			
Property Owner:			
Contact's Phone:			
Number of Occupants:			
Business or Residential:			
Building Characteristics			
Building Type:	Residential Multifamily		Office
	🗌 Commercial 📃 Industrial		Mall
Describe Building:			
Number of Floors Below Grade:	Basement	Slab-On-Grade	Crawl Space
Bldg Dimensions:	Width:	Length:	Height:
Basement Floor: Dirt / Co	oncrete / Painted?	Foundation Walls: Co	oncrete / Cinder Blocks / Stone

VENTILATION SYSTEM					
Central Air Condition	ling	Mechani	ical Fans	Bathro	oom Vans
Conditioning Units		Kitchen I	Range Hood	Outsic	de Air Intake
Other:					
HEATING SYSTEM					
Hot Air Circulation	Hot Air Ra	diation	🗌 Wood		Steam Radiation
🗌 Heat Pump	Hot Water	Radiation	Kerosene	Heater	Electric Baseboard
Other:					

Outside Contaminant Sources

Nearby surrounding property sources: Gas Stations / Emission Stacks

Soil Contamination: Petroleum Hydrocarbons / Solvents

Heavy Vehicle Traffic: Yes / No

Indoor Contaminant Sources

Identify all potential sources found in the building (including attached garages), the location of the source (floor and room), and whether the item was removed from the building 48 hrs prior to indoor sampling event. Any ventilation implemented after removal of the items should be completed at least 24 hours prior to the commencement of the indoor air sampling event.

Potential Sources	Location(s)	Removed (Yes / No / NA)
Gasoline storage cans		
Gas powered equipment		
Kerosene storage cans		
Paints / Thinners / Strippers		
Cleaning solvents / Dry cleaners		
Oven cleaners		
Carpet / upholstery cleaners		

INDOOR AIR BUILDING SURVEY FORM

Other house cleaning products		
Moth Balls		
Potential Sources	Location(s)	Removed (Yes / No / NA)
Polishes / waxes		
Insecticides		
Furniture / floor polish		
Nail polish / polish remover		
Hairspray		
Cologne / perfume		
Air fresheners		
Fuel tank (inside building)		
Wood stove or fireplace		
New furniture		
New carpeting / New flooring		
Hobbies – glues, paints		
Other:		
Other:		
Other:		

SAMPLING INFORMATION

Sampler(s)					
🗌 Indoor Air / Outdoor Air	Sub-slab	Soil Vapor Point	Exterior Soil Gas		
Tedlar [®] Bag	Sorbent	SUMMA®	Other		
Analytical Method: TO-15 / TO-17 / Other:					
WEATHER CONDITIONS					
Was there a significant rain event in the last 24 hours? Yes / No					
Temperature: Atmospheric Pressure: Pressur		e: Rising or Falling?			
Describe the general weather conditions:					
Wind Speed and Direction:					

PURGE VOLUME CALCULATIONS DURING SOIL VAPOR SAMPLING

Sample T	ubing Purge											
Tubing Length (feet)	Pi	Casing Radius (inches)	Area of Casing Radius (Pi(R ²)) (inches)	Length of casing (feet)	Conversion of feet to inches	Number of Casing Volumes to Purge	Conversion of cubic inches to mL	Purge Volume (mL)	Purge Volume (L)	Purge rate (mL/min)	Purge Time (min)	
5	3.141593	0.125	0.049087	5	60	1	16.387064	48.263888	0.048264	167	0.29	
5	3.141593	0.125	0.049087	5	60	3	16.387064	144.79166	0.144792	167	0.87	
5	3.141593	0.125	0.049087	5	60	7	16.387064	337.84721	0.337847	167	2.02	

Annular S	pace Purge											
Annular Space Length (inches)	Pi	Boring Radius (inches)	Area of Boring Radius (radius ²)	Volume of Annular Space (inches)	Assumed Porosity of Sand Pack*	Air Filled Volume of Annular Space (cubic inches)	Number of Casing Volumes to Purge	Conversion of cubic inches to mL	Purge Volume (mL)	Purge Volume (L)	Purge rate (mL/min)	Purge Time (min)
12	3.141593	2	12.56637	150.7964	0.3	45.23893	1	16.387064	741.3333	0.741333	167	4.44
12	3.141593	2	12.56637	150.7964	0.3	45.23893	3	16.387064	2224	2.224	167	13.32
12	3.141593	2	12.56637	150.7964	0.3	45.23893	7	16.387064	5189.333	5.189333	167	31.07

Summary of Purge Durations							
One Purge Volume	4.73						
Three Purge Volumes	14.18						
Seven Volumes	33.10						

SOIL VAPOR SAMPLING SHEET

Site Reference:

Date: _____

Address:

							Personn	el:							
	Vacuu	m Test		Pu	rging		Heli	ium		Sam	pling		Р	ID	
	Time	Time			Purging	Total					Canister Vacuum	Canister Vacuum			
Soil Vapor	Start	Stop	Time	Time	Rate	Volume			Time	Time	Before	After	Time of		
Sampling	Vacuum	Vacuum	Start	Stop	(mL/min			Reading		Stop	Sampling			PID	
Point ID	Testing	Testing	Purging	Purging		(mL)	Reading	(%)	Sampling	Sampling	(in Hg)	(in Hg)	Reading	Reading	Notes
					167										
					167										

Notes:

F|S STANDARD GUIDELINE

Well Development

DATE/LAST UPDATE: May 2015

These procedures should be considered standard guidelines and are intended to provide useful guidance when in the field, but are not intended to be step-by-step procedures, as some steps may not be applicable to all projects.

All field staff should be sufficiently trained in the standard guidelines and should review and understand these procedures prior to going in the field. It is the responsibility of the field staff to review the standard guidelines with the field manager or project manager and identify any deviations from these guidelines prior to field work. When possible, the project-specific Sampling and Analysis Plan should contain any expected deviations and should be referenced in conjunction with these standard guidelines.

1.0 Scope and Purpose

This Standard Guideline for Well Development presents commonly used procedures for monitoring well development for newly installed monitoring wells and/or existing wells that may require redevelopment. Monitoring well development restores hydraulic conductivity with the surrounding formations that were disturbed during the drilling process. Development removes residual fines from well filter pack materials and the borehole wall and reduces the turbidity of the water, which provides more representative groundwater samples. These wells may include groundwater monitoring wells, piezometers, or groundwater extraction wells. This guideline describes the purge and surge method of development and is intended to be used by field staff who are overseeing or completing well development. Often, the drilling subcontractors are asked to complete well development activities subsequent to new well installations, in which case, Floyd | Snider staff would oversee the development. Other development methods, such as jetting, are not described herein, but may be used if specified in the project-specific Work Plan or Sampling and Analysis Plan (SAP).

Well development shall be completed by continuous pumping at a steady rate using a portable pump and polyethylene tubing, with regular surging (e.g., using a surge block) to force water through the filter pack and surrounding formation. Wells should ideally be developed either during installation (following sand placement but prior to sealing) or soon after installation, unless otherwise specified in the work plan, using the described methodologies or equivalents. For wells that are completed using a grout or concrete seal, if development does not take place prior to sealing, it should be completed within 48 hours following well installation in order allow for grout and concrete to cure.

2.0 Equipment and Supplies

Well Development Equipment and Tools:

- Appropriate high volume pump (centrifugal, submersible, etc.) and correct diameter tubing, or bailer
- Hose clamps (optional)
- Power source (generator, 12-volt battery, or car battery) and appropriate power adapter for pump
- Water quality meter or turbidity meter (if needed)
- 2-, 4-, or 6-inch surge block (typically provided by the driller)
- Water level meter
- Washington State Department of Transportation (WSDOT)-approved 55-gallon drums
- Equipment decontamination supplies including:
 - Scrub brushes
 - Alconox or other soap
 - Distilled or deionized water
 - o Paper towels
- Trash bags
- Camera

Paperwork:

- Work Plan and/or SAP/Quality Assurance Project Plan (QAPP)
- Bound field notebook or appropriate field forms
- Well development form (printed on Rite in the Rain paper)
- Health and Safety Plan (HASP)
- Well installation forms (printed on Rite in the Rain paper)

Personal Equipment:

• Steel-toed boots

- Safety vest
- Safety glasses
- Nitrile gloves
- Rain gear
- Work gloves

3.0 Standard Procedures

3.1 OFFICE PREPARATION

Meet with the project manager to identify key information and goals of the well development, including how long after construction the wells should be developed. Determine if Floyd|Snider or the driller will be doing the development.

3.2 WELL DEVELOPMENT PROCEDURES

The following procedures are general guidelines for monitoring well development. These same procedures are also appropriate for extraction wells, injection wells, and/or piezometers. Specific instructions provided in individual work plans shall supersede these procedures in the event there are discrepancies.

Visually inspect all well development equipment for damage; repair as necessary.

- 1. Decontaminate all hoses, surge blocks, and/or submersible pump by scrubbing with brush and alconox or other soap solution and rinsing with deionized water.
- 2. Prior to development, use a water level meter to measure the depth in each well to the static water level and total depth to a reference mark on the top of the well casing.
- 3. Attach a length of clean or disposable tubing, approximately 5 feet longer than the well casing, to the outlet of the submersible pump.
- 4. Each well development cycle consists of surging followed by well evacuation (pumping). Surging may be accomplished with a surge block sized to fit snugly inside the well casing, or with the submersible pump. Surging using a pump increases the hydraulic gradient and velocity of groundwater near the well by drawing the water level down and moving more fine-grained soil particles into the well casing. Surging using a pump is only effective if the well produces enough water for continuous pumping and the pump is of a large enough diameter relative to the well casing. If pumping must be stopped to allow the well to recharge, a surge block is preferable for surging. If using a surge block, connect polyvinyl chloride (PVC) pipe or other rods longer than the well casing to the surge block. Lower the surging device into the well to a depth within the screened interval. A bailer can be used to surge in situations

when a surge block is not available and the well has insufficient recharge for the submersible pump.

- 5. During development, it is important to note the color and clarity of the water and any other visual or olfactory observations on the field form or in the field notebook. Note any significant changes as development progresses.
- 6. Surging should consist of a minimum of ten consecutive surges (i.e., quickly raise and lower surge block or pump in well) with an appropriately sized surge block or pump over the full length of the screen. For long well screens (greater than 10 feet), surging should be done in short intervals of 2 to 3 feet at a time. In cases where the screen extends to above the water table, clean water may have to be added to the well to develop the top of the filter pack.
- 7. After surging, water is purged from well until the pumped stream starts to run clear. At that point, stop pumping and initiate another surge cycle. If a well has more hydraulic head than the pump is able to overcome, or if an insufficient volume of water for pumping is present, a disposable bailer may also be used for purging.
- 8. Repeat this procedure until evacuated water is visibly clear and essentially free of sediment. Perform a minimum of three surge and pump cycles.
- 9. Well development will be terminated when the variation in the turbidity Nephelometric Turbidity Units (NTUs) readings is less than 10 percent or until the discharge is visibly clear and free of sediment after a minimum of three surge and purge cycles. As an alternative, periodic water samples can be collected for field measurements of temperature, specific conductivity, and pH; well development should continue until field parameters stabilize to within ±5 percent on three consecutive measurements or 10 well volumes have been purged. If it is not possible reduce the turbidity further, the well should be purged up to a maximum of four hours or as determined sufficient by the field geologist or project manager.
- 10. Report field observations and volume of water removed on the standard well development form (attached). Take final water level measurements and record then on the field form or in the field notebook.
- 11. Contain the purged water and manage in accordance with the project-specific SAP or Section 5.0 below. Prior to developing the next well or after the completion of development activities, decontaminate all reusable equipment used in development in accordance with Section 4.0 below.
- 12. If feasible, it is best to wait at least two weeks after development to sample the wells. Wells can be sampled a minimum of 48 hours after the completion of development if the project schedule requires a quick turnaround. However, the groundwater sample will be more representative of static conditions in the aquifer if allowed to stabilize for at least one to two weeks after development.

4.0 Decontamination

All reusable equipment that comes into contact with groundwater should be decontaminated as follows prior to moving to the next sampling location.

Water level meter and surge block: The water level indicator and tape will be decontaminated between sampling locations and at the end the day by spraying the entire length of tape that came in contact with groundwater with an Alconox (or similar)/clean water solution followed by a thorough rinse with distilled or deionized water. Surge block decontamination will consist of a tap water rinse to remove soil particles, followed by scrubbing with brushes and an alconox (or similar)/clean water solution and a final rinse with distilled or deionized water.

Submersible Pump: Decontaminating the pump requires running the pump in three progressively cleaner grades of water. Place the pump and the length of the power cord that was in contact with water into a bucket containing approximately four gallons of an Alconox (or similar)/clean water solution. Run the pump for approximately two minutes or until the volume of water in the bucket has been exhausted. Next, place the pump and cord into a second bucket containing approximately four gallons of clean water and run the pump for approximately two minutes or until the volume of water in the bucket containing approximately four gallons of distilled or deionized water and run the pump for approximately two minutes or until the volume of water in the bucket is exhausted. Lastly, place the pump and power cord into a third bucket containing approximately four gallons of distilled or deionized water and run the pump for approximately two minutes or until the volume of water in the bucket is exhausted. The soap/water solution and rinse water may be re-used. When done for the day, dry the exterior of the pump and power cord with clean paper towels to the extent practical prior to storage. All decontamination water and rinse water (including soapy solution) should be managed in accordance with Section 5.0 below.

5.0 Investigation-Derived Waste

Unless otherwise specified in the project work plan, well development and decontamination water generated during development and any drilling materials will be contained and stored in a designated area until transported off-site for disposal in accordance with applicable laws.

The approach to handling and disposal of these materials is as follows. For investigation-derived waste (IDW) that is contained, such as well development water, WSDOT-approved 55-gallon drums will be supplied by the driller and used for temporary storage pending profiling and disposal. Each container holding IDW will be sealed and labeled as to its contents (e.g., "MW-1 Well development water"), the date(s) on which the wastes were placed in the container, the owner's name, contact information for the field person who generated the waste, and the site name.

IDW contained within drums will be characterized relative to applicable waste criteria using data from the sampling locations whenever possible. Material that is designated for off-site disposal

will be transported to an off-site facility permitted to accept the waste. Manifests will be used as appropriate for disposal.

Disposable sampling materials and incidental trash such as paper towels and personal protective equipment (PPE) used in sample processing will be placed in heavy duty garbage bags or other appropriate containers and disposed of as trash in the municipal collection system (i.e., site dumpster).

6.0 Field Documentation

Well development procedures will be documented on the well development field form (attached) or a bound field notebook. Information recorded will at a minimum include date, personnel present (including subcontractors), purpose of field event, weather conditions, depth of water, well construction details for the well(s) being developed (i.e., diameter, total depth, screen interval), water quality field measurements (if collected), amount of purged water generated, and any deviations from the SAP.

Enclosure: Well Development Field Form

Well Development Field Form

Project Name:_____

FLOYD | SNIDER

Project Number:

Field Personnel:

Date: _____

Driller (if applicable):

Purge Data			
Well ID:	Total Well Depth:		Well Condition/Damage Description:
Well Casing Type/Diameter/Screened Level:		One Casing Volume (gal):	
Method of Development (Circle):		Equipment Used (type of	pump, etc.):
Surge Block Pump Surge Bailer			

Begin Purg	ge (time):				V	olume of	Schedu	e 40 PVC Pipe	
End Purge	(time): Irged (time):		Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)		
					1 ¼"	1.660"	1.380″	0.08	0.64
Purge Wat	ter Disposal Method (circle):			2″	2.375″	2.067"	0.17	1.45
On-site Sto	orage Tank On-site	Treatment Drum	Other:		3″	3.500"	3.068"	0.38	3.2
					4"	4.500"	4.026"	0.66	5.51
					6"	6.625″	6.065″	1.5	12.5
Time	Depth to Water (feet)	Vol. Purged (gallons)	Rate (gpm)	рН	Conductivity	Turl	oidity	Temp	Comments
						-			Prior to purging
	<u> </u>								
	<u> </u>	<u> </u>							
	·					·			
	<u> </u>	<u> </u>							
								<u> </u>	
Notes:									

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix G Health and Safety Plan

Table of Contents

1.0	Plan O	bjective	s and Applicability	G-1
2.0	Emerg	ency Co	ntacts and Information	G-3
	2.1	DIAL 91	1	G-3
	2.2	HOSPIT	AL AND POISON CONTROL	G-3
	2.3	PROVID	E INFORMATION TO EMERGENCY PERSONNEL	G-3
	2.4	FLOYD	SNIDER AND PORT OF LONGVIEW EMERGENCY CONTACTS	G-3
3.0	Backg	round In	formation	G-5
	3.1	SITE BA	CKGROUND	G-5
	3.2	SCOPE	OF WORK	G-5
4.0	Prima	ry Respo	nsibilities and Requirements	G-7
	4.1	PROJEC	T MANAGER	G-7
	4.2	HEALTH	I AND SAFETY OFFICER AND SITE SUPERVISOR	G-7
	4.3	SITE SA	FETY OFFICER	G-7
	4.4	FLOYD	SNIDER PROJECT PERSONNEL	G-7
	4.5	TRAINI	NG REQUIREMENTS	G-8
	4.6	MEDICA	AL SURVEILLANCE	G-8
5.0	Hazaro	d Evaluat	tion and Risk Analysis	G-9
	5.1	CHEMIC	CAL EXPOSURE HAZARDS	G-9
	5.2	FIRE AN	ID EXPLOSION HAZARDS	G-10
	5.3	PHYSIC	AL HAZARDS	G-11
		5.3.1	Cold Stress	G-13
		5.3.2	Heat Stress	G-16
		5.3.3	Biohazards	G-17
		5.3.4	Traffic Hazards	G-17
6.0	Site M	onitorin	g	G-19
7.0	Hazaro	d Analysi	s by Task	G-21
8.0	Persor	nal Prote	ctive Equipment	G-23
9.0	Site Co	ontrol an	d Communication	G-25
	9.1	SITE CO	NTROL	G-25
	9.2	COMM	UNICATION	G-25

FLOYD | SNIDER

10.0	Persor	Personal DecontaminationG-27						
11.0	Emerg	ency Response and Contingency Plan	G-29					
	11.1	MEDICAL EMERGENCIES	G-29					
	11.2	ACCIDENTAL RELEASE OF HAZARDOUS MATERIALS OR WASTES	G-30					
	11.3	GENERAL EMERGENCIES	G-30					
	11.4	EMERGENCY COMMUNICATIONS	G-30					
	11.5	EMERGENCY EQUIPMENT	G-30					
12.0	Admin	listrative	G-31					
	12.1	MEDICAL SURVEILLANCE	G-31					
	12.2	RECORD KEEPING	G-31					
13.0	Appro	vals	G-33					
14.0	Signat	ure Page	G-35					

List of Figures

Figure C 1	Droject Location Man
Figure G.1	Project Location Map

Figure G.2 Route to Hospital

List of Attachments

Attachment G.1 Daily Tailgate Safety Meeting Form

List of Acronyms and Abbreviations

Acronym/ Abbreviation	Definition
CRZ	Contamination reduction zone
EZ	Exclusion zone
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations Training
HSO	Health and Safety Officer
OIP	Optical image profiler
OSHA	Occupational Safety and Health Act
PID	Photoionization detector
PM	Project Manager
Port	Port of Longview
PPE	Personal protective equipment
Site	Port of Longview TPH Site
SS	Site Supervisor
SSO	Site Safety Officer
SZ	Support zone
WAC	Washington Administrative Code
WISHA	Washington Industrial Safety and Health Act

This page intentionally left blank.

1.0 Plan Objectives and Applicability

This Health and Safety Plan (HASP) has been written to comply with the standards prescribed by the Occupational Safety and Health Act (OSHA) and the Washington Industrial Safety and Health Act.

The purpose of this HASP is to establish protection standards and mandatory safe practices and procedures for all personnel involved with investigation activities including soil boring installation and soil and groundwater sample collection on behalf of the Port of Longview (Port) at the TPH Site (the Site). The Site is located at 10 E Port Way in Longview, Washington (Figure G.1). This HASP assigns responsibilities, establishes standard operating procedures, and provides for contingencies that may occur during field work activities. The plan consists of Site descriptions, a summary of work activities, an identification and evaluation of chemical and physical hazards, monitoring procedures, personnel responsibilities, a description of site zones, decontamination and disposal practices, emergency procedures, and administrative requirements.

The provisions and procedures outlined by this HASP apply to all Floyd|Snider personnel on-site. Contractors, subcontractors, other oversight personnel, and all other persons involved with the field work activities described herein are required to develop and comply with their own HASP. All Floyd|Snider staff conducting field activities are required to read this HASP and indicate that they understand its contents by signing the Health and Safety Officer/Site Supervisor's (HSO/SS) copy of this plan.

It should be noted that this HASP is based on information that was available as of the date indicated on the title page. It is possible that additional hazards that are not specifically addressed by this HASP may exist at the work site, or may be created as a result of on-site activities. It is the firm belief of Floyd|Snider that active participation in health and safety procedures and acute awareness of on-site conditions by all workers is crucial to the health and safety of everyone involved. Should project personnel identify a site condition that is not addressed by this HASP or have any questions or concerns about site conditions, they should immediately notify the HSO/SS and an addendum will be provided to this HASP.

The HSO/SS has field responsibility for ensuring that the provisions outlined herein adequately protect worker health and safety and that the procedures outlined by this HASP are properly implemented. In this capacity, the HSO/SS will conduct regular site inspections to ensure that this HASP remains current with potentially changing site conditions. The HSO/SS has the authority to make health and safety decisions that may not be specifically outlined in this HASP should site conditions warrant such actions. In the event that the HSO/SS leaves the Site while work is in progress, an alternate Site Safety Officer (SSO) will be designated. Personnel responsibilities are further described in Section 4.0.

This HASP has been reviewed by the Project Manager (PM) and the HSO/SS prior to commencement of work activities. All Floyd|Snider personnel shall review the plan and be familiar with on-site health and safety procedures. A copy of the HASP will be on-site at all times.

This page intentionally left blank.

2.0 Emergency Contacts and Information

2.1 DIAL 911

In the event of any emergency, DIAL 911 to reach fire, police, and first aid.

2.2 HOSPITAL AND POISON CONTROL

Nearest Hospital Location and Telephone:	PeaceHealth St. John Medical Center
(Refer to Figure G.2 for map and directions to	1615 Delaware Street
the hospital.)	Longview, WA 98632
Washington Poison Control Center:	(800) 222-1222

2.3 PROVIDE INFORMATION TO EMERGENCY PERSONNEL

All Floyd|Snider project personnel should be prepared to give the following information:

Information to give to Emergency Personnel					
Site Location:	Port of Longview				
(Refer to Figure G.1 for directions and map to the Site.)	10 E Port Way				
	Longview, WA 98632				
Number that you are calling from:	Look on the phone you are calling from.				
Describe accident and/or incident and numbers of personnel needing assistance:	Type of Accident Type(s) of Injuries				

2.4 FLOYD | SNIDER AND PORT OF LONGVIEW EMERGENCY CONTACTS

After contacting emergency response crews as necessary, contact the Floyd|Snider PM or a Principal to report the emergency. The Principal may then contact the Port or direct the field staff to do so.

Floyd | Snider Emergency Contacts:

Tom Colligan	Office: (206) 292-2078	Cell: (206) 276-8527
Kate Snider	Office: (206) 292-2078	Cell: (206) 375-0762
Scott Adamek	Office: (206) 292-2078	Cell: (206) 696-8661

Port of Longview Emergency Contacts:

Lisa Hendriksen	Office: (360) 425-3305	Direct Line: (360) 703-0207
Sean Kelly	Office: (360) 425-3305	Direct Line: (360) 430-7134

Washington State Department of Ecology Emergency Contacts:

National Response Center: (800) 424-8802 Washington Emergency Management Division: (800) 258-5990 Southwest Regional Office: (360) 407-6300

3.0 Background Information

3.1 SITE BACKGROUND

Floyd|Snider will be conducting remedial investigation activities at the Site. The purpose of the investigation is to fill data gaps related to the extent of soil and groundwater contamination at the Site. This work is being performed to determine vertical and lateral extents and the fate and transport of contaminants prior to preparing a feasibility study.

3.2 SCOPE OF WORK

The remedial investigation will consist of the following:

- Conducting a public and private locate
- Measuring water level elevations from representative wells
- Collecting groundwater samples from Site monitoring wells
- Surface and hand auger samples adjacent to Berth 2
- Advancing direct-push soil borings with and without optical image profiler (OIP) technology.
- Analyzing selected soil samples
- Collecting groundwater samples from direct-push locations
- Installing monitoring wells
- Developing and redeveloping wells
- Preparing a report documenting investigation results

This page intentionally left blank.

4.0 Primary Responsibilities and Requirements

4.1 **PROJECT MANAGER**

The PM will have overall responsibility for the completion of the project, including the implementation and review of this HASP. The PM will review health and safety issues as needed, and as consulted, and will have authority to allocate resources and personnel to safely accomplish the field work.

The PM will direct all Floyd|Snider personnel involved in field work at the Site. If the project scope changes, the PM will notify the HSO/SS so that the appropriate addendum can be included in the HASP. The PM will ensure that all Floyd|Snider personnel on-site have received the required training, are familiar with the HASP, and understand the procedures to follow should an accident and/or incident occur on-site.

4.2 HEALTH AND SAFETY OFFICER AND SITE SUPERVISOR

The HSO/SS will approve this HASP and any amendments, thereof, and will ultimately be responsible for full implementation of all elements of the HASP.

The HSO/SS will advise the PM and project personnel on all potential health and safety issues of the field investigation activities to be conducted at the Site. The HSO/SS will specify required exposure monitoring to assess Site health and safety conditions, modify the Site HASP based on field assessment of health and safety accidents and/or incidents, and recommend corrective action if needed. The HSO/SS will report all accidents and/or incidents to the PM. If the HSO/SS observes unsafe working conditions by Floyd|Snider personnel or any contractor personnel, the HSO/SS will suspend all work until the hazard has been addressed.

4.3 SITE SAFETY OFFICER

The SSO may be a person dedicated to this task, to assist the HSO/SS during field work activities. The SSO will ensure that all personnel have appropriate personal protective equipment (PPE) on site and that PPE is properly used. The SSO will assist the HSO/SS in field observation of Floyd|Snider personnel safety. If a health or safety hazard is observed, the SSO shall suspend all work activity. The SSO will conduct on-site safety meetings daily before work commences. All health and safety equipment will be calibrated daily and records kept in the daily field logbook and/or accompanying field daily forms. The SSO may perform exposure monitoring if needed and will ensure that equipment is properly maintained.

4.4 FLOYD | SNIDER PROJECT PERSONNEL

All Floyd|Snider project personnel involved in field work activities will take precautions to prevent accidents and/or incidents from occurring to themselves and others in the work areas. Employees will report all accidents, incidents, and/or other unsafe working conditions to the

HSO/SS or SSO immediately. Employees will inform the HSO/SS or SSO of any physical conditions that could impact their ability to perform field work.

4.5 TRAINING REQUIREMENTS

All Floyd|Snider project personnel must comply with applicable regulations specified in the Washington Administrative Code (WAC) Chapter 296-843, Hazardous Waste Operations Training (HAZWOPER), administered by the Washington State Department of Labor and Industries. Project personnel will be 40-hour HAZWOPER trained and maintain their training with an annual 8-hour refresher. Personnel with limited tasks and minimal exposure potential will be required to have 24-hour training and a site hazard briefing, and be escorted by a trained employee. Personnel with defined tasks that do not include potential contact with disturbed site soils or waste, groundwater, or exposures to visible dust (e.g., surveying) are not required to have any level of hazardous waste training beyond a site emergency briefing and hazard orientation by the HSO/SS. Floyd|Snider project personnel will fulfill the medical surveillance program requirements.

In addition to the 40-hour course and 8-hour refreshers, the HSO/SS will have completed an 8-hour HAZWOPER Supervisor training as required by WAC 296-843-20015. At least one person on-site during field work will have current cardiopulmonary resuscitation/First Aid certification. All field personnel must have a minimum of 3 days of hazardous materials field experience under the direction of a skilled supervisor. Documentation is readily available at the Floyd|Snider's main office.

Additional site-specific training that covers on-site hazards, PPE requirements, use and limitations, decontamination procedures, and emergency response information as outlined in this HASP will be given by the HSO/SS before on-site work activities begin. Daily health and safety meetings will be documented on the Daily Tailgate Safety Meeting form included as Attachment G.1.

4.6 MEDICAL SURVEILLANCE

All Floyd|Snider field personnel are required to participate in Floyd|Snider's medical surveillance program, which includes biennial audiometric and physical examinations for employees involved in HAZWOPER projects. The program requires medical clearance before respirator use or participating in HAZWOPER activities. Medical examinations must be completed before conducting field work activities and on a biennial basis.

5.0 Hazard Evaluation and Risk Analysis

In general, there are three broad hazard categories that may be encountered during site work: chemical exposure hazards, fire/explosion hazards, and physical hazards. Sections 5.1 through 5.3 discuss the specific hazards that fall within each of these broad categories.

5.1 CHEMICAL EXPOSURE HAZARDS

This section describes potential chemical hazards associated with soil boring installation and soil and groundwater sample collection. Based on previous site investigation information, the following chemicals have been detected at this Site:

- Diesel-range and heavy oil-range hydrocarbons in soil and groundwater
- Gasoline-range hydrocarbons in soil and groundwater
- Volatile organic compounds including benzene, toluene, ethylbenzene, and xylenes

Human health hazards of these chemicals are discussed in the table below. This information covers potential toxic effects which might occur if relatively significant acute and/or chronic exposure were to happen. This information does not mean that such effects will occur from planned site activities. Potential routes of exposure include inhalation, dermal contact, ingestion, and eye contact. The primary exposure route of concern during site work is ingestion of contaminated water or soil, though such exposure is considered unlikely and highly preventable. In general, the chemicals which may be encountered at this Site are not expected to be present at concentrations which could produce significant exposures. The types of planned work activities and use of monitoring procedures and protective measures will limit potential exposures at this Site. The use of appropriate PPE and decontamination practices will assist in controlling exposure through all pathways to the key contaminants of concern listed in the table below.

Chemical Hazard	DOSH Permissible Exposure Limits (8-hr TWA/STEL)	Greatest Historic Concentration	Routes of Exposure	Potential Toxic Effects
Diesel- and Heavy Oil- Range Hydrocarbons	None established	72,000 mg/kg (soil) 160,000 μg/L (groundwater)	Inhalation, skin/eye contact	Irritation to eyes, pulmonary function
Gasoline- Range Hydrocarbons	None	5,600 mg/kg (soil) 5,800 μg/L (groundwater)	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes, skin, mucus membranes; headache; fatigue; blurred vision; dizziness; slurred speech; confusion; convulsions; liver, kidney damage

Chemical Hazard	DOSH Permissible Exposure Limits (8-hr TWA/STEL)	Greatest Historic Concentration	Routes of Exposure	Potential Toxic Effects
Laboratory Preservatives (HCl, MeOH, Sodium Bisulfate, HNO ₃)	Not applicable	Not applicable	Dermal contact, eye contact	Irritation to skin or eyes; Avoid contact through proper use of PPE during sample handling and collection
Benzene	1 ppm/5 ppm	Unknown for soil 890 μg/L (groundwater)	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes, skin, mucus membranes; headache; fatigue; blurred vision; dizziness; convulsions; liver, kidney damage; carcinogenic
cPAHs	0.2 mg/m ³ 0.6 mg/m ³	0.95 mg/kg in soil (expressed in terms of benzo(a)pyrene TEQ)	Inhalation	Dermatitis; bronchitis; lung, skin, and stomach cancer

Abbreviations:

cPAH Carcinogenic polycyclic aromatic hydrocarbon

- DOSH Department of Safety and Health
 - HCl Hydrochloric acid
- HNO₃ Nitric acid
- MeOH Methanol
- µg/L Micrograms per liter
- mg/kg Milligrams per kilogram
- mg/m³ Milligrams per cubic meter
 - ppm Parts per million
 - STEL Short-term exposure limit
 - TEQ Toxic equivalent
 - TWA Time-weighted average

Chemical and physical properties for hazardous substances expected at the Site, including those listed above are located in the Material Safety Data Sheets notebook maintained in the field vehicle.

5.2 FIRE AND EXPLOSION HAZARDS

Flammable and combustible liquid hazards may occur from fuels and lubricants brought to the property to support heavy equipment. When on-site storage is necessary, such material will be stored in containers approved by the Washington State Department of Transportation in a location not exposed to strike hazards and provided with secondary containment. A minimum 2-A:20-B fire extinguisher will be located within 25 feet of the storage location and where

refueling occurs. Any subcontractors bringing flammable and combustible liquid hazards to the Site are responsible for providing appropriate material for containment and spill response, and such hazards should be addressed in their respective HASP. Transferring of flammable liquids (e.g., gasoline) will occur only after making positive metal to metal connection between the containers. A bonding strap may be necessary to achieve this. Storage of ignition and combustible materials will be kept away from storage and fueling operations.

5.3 PHYSICAL HAZARDS

When working in or around any hazardous or potentially hazardous substances or situations, all site personnel should plan all activities before starting any task. Site personnel shall identify health and safety hazards involved with the work planned and consult with the HSO/SS as to how the task can be performed in the safest manner. Personnel will also consult the HSO/SS if they have any concerns or uncertainties.

All field personnel will adhere to general safety rules including wearing appropriate PPE, hard hats, steel-toed boots, safety vests, and safety glasses. Eating, drinking, and/or use of tobacco or cosmetics will be restricted in all work areas. Personnel will prevent splashing of liquids containing chemicals and minimize dust emissions.

The following table summarizes a variety of physical hazards that may be encountered on the Site during work activities. For convenience, these hazards have been categorized into several general groupings with recommended preventative measures.

Hazard	Cause	Prevention
Head Strike	Falling and/or sharp objects, bumping hazards.	Hard hats will be worn by all personnel at all times when overhead hazards exist, such as during drilling activities and around large, heavy equipment.
Foot/ankle Twist, Crush, Slip/trip/fall	Sharp objects, dropped objects, uneven and/or slippery surfaces.	Steel-toed boots must be worn at all times on-site while heavy equipment is present. Pay attention to footing on uneven or wet terrain and do not run. Keep work areas organized and free from unmarked trip hazards.
Hand Cuts, Splinters, and Chemical Contact	Hands or fingers pinched or crushed, chemical hazards including dermal exposure to nitric acid or sulfuric acid preservative. Cut or splinters from handling sharp/rough objects and tools.	Nitrile safety gloves will be worn to protect the hands from dust and chemicals. Leather or cotton outer gloves will be used when handling sharp- edged rough materials or equipment. Refer to the preventive measures for Mechanical Hazards below.

Hazard	Cause	Prevention
Eye Damage from Flying Materials, or Splash Hazards	Sharp objects, poor lighting, exposure due to flying debris or splashes.	Safety glasses will be worn at all times on-site. If a pressure washer is used to decontaminate heavy equipment, a face shield will be worn over safety glasses or goggles. Care will be taken during decontamination procedures and groundwater sampling to avoid splashing or dropping equipment into decontamination water. Face shields may be worn over safety glasses if splashing is occurring during sampling or decontamination.
Electrical Hazards	Underground utilities, overhead utilities, electrical cord hazards.	Utility locator service will be used prior to any investigation to locate all underground utilities. Visual inspection of work areas will be conducted prior to starting work. Whenever possible, avoid working under overhead high voltage lines. Make sure that no damage to extension cords occurs. If an extension cord is used, make sure it is the proper size for the load that is being served and inspected prior to use for defects. The plug connection on each end should be of good integrity. Insulation must be intact and extend to the plugs at either end of the cord. All portable power tools will be inspected for defects before use and must either be a double- insulated design or grounded with a ground-fault circuit interrupter.
Mechanical Hazards	Heavy equipment such as drill rigs, service trucks, mowing equipment, saws, drills, etc. Conducting work in road right of ways (on the road shoulder).	Ensure the use of competent operators, backup alarms, regular maintenance, daily mechanical checks, and proper guards. Subcontractors will supply their own HASP. All project personnel will make eye contact with operator and obtain a clear "OK" before approaching or working within swing radius of heavy equipment, staying clear of swing radius. Obey on-site speed limits.
Traffic Hazards	Vehicle traffic and hazards when working near public right-of-ways. Railroad traffic and hazards when working near the rail line.	When working around active operations, orange cones and/or flagging will be placed around the work area. Multiple field staff will work together (buddy system) and spot traffic for each other if necessary. Avoid working with your back to traffic whenever possible. All work near the railroad tracks will be coordinated with the Port. Further details on traffic hazards are provided in Section 5.3.4.

Hazard	Cause	Prevention
Hearing Damage due to Noise	Machinery creating more than 85 decibels TWA, less than 115 decibels continuous noise, or peak at less than 140 decibels.	Wear earplugs or protective ear muffs when a conversational level of speech is difficult to hear at a distance of 3 feet; when in doubt, a sound level meter may be used on-site to document noise exposure.
Strains from Improper Lifting	Injury due to improper lifting techniques, overreaching/ overextending, or lifting overly heavy objects.	Use proper lifting techniques and mechanical devices where appropriate. The proper lifting procedure first involves testing the weight of the load by tipping it. If in doubt, ask for help. Do not attempt to lift a heavy load alone.
		Take a good stance and plant your feet firmly with legs apart, one foot farther back than the other. Make sure you stand on a level area with no slick spots or loose gravel. Use as much of your hands as possible, not just your fingers. Keep your back straight, almost vertical. Bend at the hips, holding load close to your body. Keep the weight of your body over your feet for good balance. Use large leg muscles to lift. Push up with one foot positioned in the rear as you start to lift. Avoid quick, jerky movements and twisting motions. Turn the forward foot and point it in the direction of the eventual movement. Never try to lift more than you are accustomed to.
Cold Stress	Cold temperatures and related exposure on and offshore.	Workers will wear appropriate clothing, stay dry, and take breaks in a heated environment when working in freezing temperatures. Further details on cold stress are provided in Section 5.3.1.
Heat Exposure	High temperatures exacerbated by PPE and/or dehydration.	Workers will ensure adequate hydration, shade, and breaks when temperatures are elevated. Further details on heat stress are provided in Section 5.3.2.
Accidents due to Inadequate Lighting	Improper illumination.	Work will proceed during daylight hours only or under sufficient artificial light.

Abbreviation:

PPE Personal protective equipment

5.3.1 Cold Stress

Exposure to moderate levels of cold can cause the body's internal temperature to drop to a dangerously low level, causing hypothermia. Symptoms of hypothermia include slow, slurred speech; mental confusion; forgetfulness; memory lapses; lack of coordination; and drowsiness.

To prevent hypothermia, site personnel will stay dry and avoid exposure. Site personnel will have access to a warm, dry area, such as a vehicle, to take breaks from the cold weather and warm up. Site personnel will be encouraged to wear sufficient clothing in layers such that outer clothing is wind- and waterproof and inner layers retain warmth (wool or polypropylene), if applicable. Site personnel will keep hands and feet well protected at all times. The signs and symptoms and treatment for hypothermia are summarized below:

Signs and Symptoms

- Mild hypothermia (body temperature of 98–90 °F)
 - o Shivering.
 - Lack of coordination, stumbling, fumbling hands.
 - Slurred speech.
 - Memory loss.
 - Pale, purplish gray, or dusky cold skin.
- Moderate hypothermia (body temperature of 90–86 °F)
 - Shivering stops.
 - Unable to walk or stand.
 - Confused and irrational.
- Severe hypothermia (body temperature of 86–78 °F)
 - Severe muscle stiffness.
 - Very sleepy or unconscious.
 - Ice-cold skin.
 - o Death.

Treatment of Hypothermia (Proper treatment depends on the severity of the hypothermia.)

- Mild hypothermia
 - Move to warm area.
 - Stay active.
 - Remove wet clothes and replace with dry clothes or blankets and cover the head.
 - Drink warm (not hot) sugary drinks.
- Moderate hypothermia
 - All of the above, plus:
 - call 911 for an ambulance.
 - cover all extremities completely.
 - place very warm objects such as hot packs or water bottles on the victim's head, neck, chest, and groin.

- Severe hypothermia
 - Call 911 for an ambulance.
 - Treat the victim very gently.
 - Do not attempt to re-warm—the victim should receive treatment in a hospital.

Frostbite

Frostbite occurs when the skin actually freezes and loses water. In severe cases, amputation of the frostbitten area may be required. While frostbite usually occurs when the temperatures are 30 °F or lower, windchill factors can allow frostbite to occur in above-freezing temperatures. Frostbite typically affects the extremities, particularly the feet and hands. Frostbite symptoms include cold, tingling, stinging, or aching feelings in the frostbitten area followed by numbness and skin discoloration: Paler skin may change from red to purple, then to white or very pale, and darker skin may become pale, dusky, or purplish. Frostbitten skin will be waxy and firm while still frozen and may redden, swell, or blister when thawed. Should any of these symptoms be observed, wrap the area in soft cloth—do not rub the affected area—and seek medical assistance. Call 911 if the condition is severe.

Protective Clothing

Wearing the right clothing is the most important way to avoid cold stress. The type of fabric also makes a difference. Cotton loses its insulation value when it becomes wet. Wool, on the other hand, retains its insulation even when wet. The following are recommendations for working in cold environments:

- Wear at least three layers of clothing:
 - An outer layer to break the wind and allow some ventilation (like Gortex or nylon).
 - A middle layer of down or wool to absorb sweat and provide insulation even when wet.
 - An inner layer of cotton or synthetic weave to allow ventilation.
- Wear a hat—up to 40 percent of body heat can be lost when the head is left exposed.
- Wear insulated boots or other footwear.
- Keep a change of dry clothing available in case work clothes become wet.
- Do not wear tight clothing—loose clothing allows better ventilation.

Work Practices

- Drinking: Drink plenty of liquids, avoiding caffeine and alcohol. It is easy to become dehydrated in cold weather.
- Work Schedule: If possible, heavy work should be scheduled during the warmer parts of the day. Take breaks out of the cold in heated vehicles.
- Buddy System: Try to work in pairs to keep an eye on each other and watch for signs of cold stress.

5.3.2 Heat Stress

To avoid heat-related illness, current regulations in WAC 296-62-095 through 296-62-09570 will be followed during all outdoor work activities. These regulations apply to any outdoor work environment from May 1 through September 30, annually when workers are exposed to temperatures above 89 °F when wearing breathable clothing, above 77 °F when wearing double-layered woven clothing such as jackets or coveralls, or above 52 °F when wearing non-breathing clothing such as chemical resistant suits or Tyvek. Floyd|Snider will identify and evaluate temperature, humidity, and other environmental factors associated with heat-related illness including but not limited to the provision of rest breaks that are adjusted for environmental factors, and encourage frequent consumption of drinking water. Drinking water will be provided and made readily accessible in sufficient quantity to provide at least 1 quart per employee per hour. All Floyd|Snider personnel will be informed and trained for responding to signs or symptoms of possible heat-related illness and accessing medical aid.

Employees showing signs or demonstrating symptoms of heat-related illness must be relieved from duty and provided with a sufficient means to reduce body temperature, including rest areas or temperature controlled environments (i.e., air conditioned vehicle). Any employee showing signs or demonstrating symptoms of heat-related illness must be carefully evaluated to determine whether it is appropriate to return to work or if medical attention is necessary.

Any incidence of heat-related illness must be immediately reported to the employer directly through the HSO/SS.

Condition	Signs/Symptoms	Treatment
Heat Cramps	Painful muscle spasms and heavy sweating.	Increase water intake, rest in shade/cool environment.
Heat Syncope	Brief fainting and blurred vision.	Increase water intake, rest in shade/cool environment.
Dehydration	Fatigue, reduced movement, headaches.	Increase water intake, rest in shade/cool environment.
Heat Exhaustion	Pale and clammy skin, possible fainting, weakness, fatigue, nausea, dizziness, heaving, sweating, blurred vision, body temperature slightly elevated.	Lie down in cool environment, increase water intake, and loosen clothing; call 911 for ambulance transport if symptoms continue once in cool environment.
Heat Stroke	Cessation of sweating, skin hot and dry, red face, high body temperature, unconsciousness, collapse, convulsions, confusion or erratic behavior, life threatening condition.	Medical Emergency! Call 911 for ambulance transport. Move victim to shade and immerse in water.

The signs, symptoms, and treatment of heat stress are given in the table on the next page.

If site temperatures are forecast to exceed 85 °F and physically demanding site work will occur in impermeable clothing, the HSO/SS will promptly consult with a certified industrial hygienist (CIH) and a radial pulse monitoring method will be implemented to ensure that heat stress is properly managed among the affected workers. The following heat index chart indicates the relative risk of heat stress:

	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
55	81	84	86	89	93	97	101	106	112	117	124	130	137			
60	82	84	88	91	95	100	105	110	116	123	129	137				
65	82	85	89	93	98	103	108	114	121	128	136					
70	83	86	90	95	100	105	112	119	126	134						
75	84	88	92	97	103	109	116	124	132							
80	84	89	94	100	106	113	121	129								
85	85	90	96	102	110	117	126	135								
90	86	91	98	105	113	122	131									
95	86	93	100	108	117	127										
100	87	95	103	112	121	132										

Temperature (°F)

5.3.3 Biohazards

Bees and other insects may be encountered during the field work tasks. Persons with allergies to bees will make the HSO/SS aware of their allergies and will avoid areas where bees are identified. Controls such as repellents, hoods, nettings, masks, or other personal protection may be used. Report any insect bites or stings to the HSO/SS and seek first aid if necessary.

Site personnel will maintain a safe distance from any urban wildlife encountered, including raccoons and rodents, to preclude a bite from a sick or injured animal. Personnel will be gloved and will use tools to lift covers from catch basins and monitoring wells.

5.3.4 Traffic Hazards

While work is being performed in active areas, barricades should be utilized. Spotters will be used to ensure traffic is monitored during work activities because signs, signals, and barricades do not always provide appropriate protection. All workers will wear reflective high visibility neon/orange vests. Work that will be conducted near the active railroad tracks will be coordinated with the Port to determine the best time to perform the work. Work will not be performed near the tracks during times when trains are active on the Site.

Likelihood of Heat Disorders with Prolonged Exposure or Strenuous Activity
Caution Extreme Caution Danger Extreme Danger

This page intentionally left blank.

6.0 Site Monitoring

This section describes site monitoring techniques and equipment that will be used during site field activities. The HSO/SS, or a designated alternate, is responsible for site control and monitoring activities.

Because the Site is currently active, and noise generating activities will be conducted within the site boundary, noise levels are expected to be below the allowable levels.

Visual monitoring for dust will be conducted by the HSO/SS to ensure inhalation of contaminated soil particles does not occur. It is not anticipated that dust will be generated, given that the Site is primarily concrete and asphalt. However, if visible dust is present in the work area, work will cease and the area will be cleared until the dust settles.

Contaminant concentrations in soil and groundwater at the Site are present at concentrations that are not expected to result in vapor concentrations that exceed allowable OSHA levels. All work will be conducted outdoors in an open-air ventilated environment. A photoionization detector (PID) will be used on-site for screening of soil samples collected. This PID will also be used to monitor vapor concentrations in breathing air of total volatile chemicals in parts per million that can be detected using this method. Should the PID read a sustained concentration of total volatile chemicals above the lowest action level for 15 minutes, the HSO/SS will stop work and evacuate the area until vapor concentrations return to background levels. As needed, actions may be taken to reduce exposure to vapor concentrations in the work area by covering exposed soil or drilling cuttings, and leaving the work area until odor dissipates.

The HSO/SS will visually inspect the work site at least daily to identify any new potential hazards. If new potential hazards are identified, immediate measures will be taken to eliminate or reduce the risks associated with these hazards.

Ambient air background PID readings should be measured prior to the start and during drilling activities to factor in other sources of volatiles, from upwind of the work area. Air monitoring levels from the work area should be adjusted to account for the background concentration.

Monitoring Equipment	Readings ⁽¹⁾	Action ⁽²⁾
PID	<1 ppmv (8-hour TWA for volatiles); <5 ppm for 15 minutes	Continue operations in Level D PPE
	>5 and <10 ppmv; intermittent	Identify source of concentrations if possible (vehicle emissions, exposed contaminated material, etc.) Implement engineering controls to reduce concentrations for continued operations (move work area upwind of operating equipment, cover exposed contaminated material, etc.); resume work only if PID indicates levels less than the OSHA PEL of 5 ppm in breathing zone.
	>10 ppmv; sustained	Stop operations and evacuate area, identify source of concentrations if possible (vehicle emissions, exposed contaminated material, etc.) Implement engineering controls to reduce concentrations for continued operations (move work area upwind of operating equipment, cover exposed contaminated material, etc.); resume work only if PID indicates levels less than the OSHA PEL of 5 ppm in breathing zone.

Notes:

1 Action levels prior to and during drilling activities.

2 OSHA STEL is a 15-minute TWA exposure that should not be exceeded at any time during a workday.

Abbreviations:

PEL Permissible Exposure Limit PPMV Parts per million volatile

7.0 Hazard Analysis by Task

The following section identifies potential hazards associated with each task listed in Section 3.2 of this HASP. Tasks have been grouped according to the types of potential hazard associated with them.

Task	Potential Hazard
Installation of Soil Borings, Soil Sampling and Groundwater Sampling from Direct-Push activities (Geoprobe and OIP)	Exposure to loud noise; overhead hazards; head, foot, ankle, hand, and eye hazards; electrical and mechanical hazards; lifting hazards; dust inhalation hazards; potential dermal or eye exposure to site contaminants in groundwater and soil; fall hazards; traffic hazards; and heat and cold exposure hazards.
Surface Soil and Hand Auger Soil Sampling	Chemical hazards include potential dermal or eye exposure to contaminants during soil sample collection and X-ray fluorescence readings. Physical hazards include slip, trip, or fall hazards, heat and cold exposure, biological hazards.
Well Redevelopment and Groundwater Sampling from Monitoring Wells	Chemical hazards include potential dermal or eye exposure to site contaminants in groundwater. Physical hazards include slip, trip, or fall hazards; heat and cold exposure hazards; and biological hazards.

This page intentionally left blank.

8.0 Personal Protective Equipment

All work involving heavy equipment or drilling will proceed in Level D PPE, which shall include hard hat, steel-toed boots, hearing protection, eye protection, and protective gloves.

All personnel will be properly fitted and trained in the use of PPE. The level of protection will be upgraded by the HSO/SS whenever warranted by conditions present in the work area. The HSO/SS will periodically inspect equipment such as gloves and hard hats for defects.

For all work involving potential exposure to soil or groundwater, workers will wear nitrile gloves and Level D PPE. Safety vests will be worn at all times on-site. Personnel will wear rain suits on windy, rainy days to prevent hypothermia. This page intentionally left blank.

9.0 Site Control and Communication

9.1 SITE CONTROL

The Site is active and secured by the Port. Pedestrians and other unauthorized personnel will not be allowed in the work area. Access to the work site will be restricted to designated personnel. The purpose of site control is to minimize the public's potential exposure to site hazards, to prevent vandalism in the work area and access by children and other unauthorized persons, and to provide adequate facilities for workers. Work will only be conducted when rail-line activities are not in operation.

Work area controls and decontamination areas will be provided to limit the potential for chemical exposure associated with site activities, and transfer of contaminated media from one area of the Site to another. The support zone (SZ) for the work area includes all areas outside the work area and decontamination areas. An exclusion zone (EZ), contamination reduction zone (CRZ), and SZ will be set up for work being conducted within the limits of the Site. Only authorized personnel shall be permitted access to the EZ/CRZ. Staff will decontaminate all equipment and gear as necessary prior to exiting the work area.

9.2 COMMUNICATION

All site work will occur in teams and the primary means of communication on site and with offsite contacts will be via cell phones. An agreed-upon system of alerting via air horns and/or vehicle horns may be used around heavy equipment to signal an emergency if shouting is ineffective.

This page intentionally left blank.

10.0 Personal Decontamination

A majority of field activities and sampling events are expected to be conducted using Level D PPE. Decontamination procedures for PPE will be followed to prevent off-site spread of contaminated soil or water. The HSO/SS will assess the effectiveness of decontamination procedures by visual inspection. Hands must be thoroughly washed before leaving the Site to eat, drink, or use tobacco.

This page intentionally left blank.

11.0 Emergency Response and Contingency Plan

This section defines the emergency action plan for the Site. It will be rehearsed with all site personnel and reviewed whenever the plan is modified or the HSO/SS believes that site personnel are unclear about the appropriate emergency actions.

A point of refuge will be identified by the HSO/SS and communicated to the field team each day. This point will be clear of adjacent hazards and preferably upwind or crosswind for the entire day. In an emergency, all site personnel and visitors will evacuate to the point of refuge for roll call. It is important that each person on-site understand their role in an emergency, and that they remain calm and act efficiently to ensure everyone's safety.

After each emergency is resolved, the entire project team will meet and debrief on the incident the purpose is not to fix blame, but to improve the planning and response to future emergencies. The debriefing will review the sequence of events, what was done well, and what can be improved. The debriefing will be documented in a written format and communicated to the PM. Modifications to the emergency plan will be approved by the PM.

Reasonably foreseeable emergency situations include medical emergencies, accidental release of hazardous materials (such as gasoline or diesel) or hazardous waste, and general emergencies such as vehicle accident, fire, thunderstorm, and earthquake. Expected actions for each potential incident are outlined below.

11.1 MEDICAL EMERGENCIES

In the event of a medical emergency, the following procedures should be used:

- 1. Stop any imminent hazard if you can safely do so.
- 2. Remove ill, injured, or exposed person(s) from immediate danger if moving them will clearly not cause them harm and no hazards exist to the rescuers.
- 3. Evacuate other on-site personnel to a safe place in an upwind or crosswind direction until it is safe for work to resume.

If serious injury or life-threatening condition exists, call 911 for paramedics, the fire department, and police.

Clearly describe the location, injury, and conditions to the dispatcher. Designate a person to go to the Site entrance and direct emergency equipment to the injured person(s). Provide the responders with a copy of this HASP to alert them to chemicals of potential concern.

- 4. Trained personnel may provide first aid/cardiopulmonary resuscitation if it is necessary and safe to do so. Remove contaminated clothing and PPE only if this can be done without endangering the injured person.
- 5. Call the HSO/SS and PM.
- 6. Immediately implement steps to prevent recurrence of the accident.

A map showing the nearest hospital location is attached to this HASP (refer to Section 2.0 for number and address).

11.2 ACCIDENTAL RELEASE OF HAZARDOUS MATERIALS OR WASTES

- 1. Evacuate all on-site personnel to a safe place in an upwind direction until the HSO/SS determines that it is safe for work to resume.
- 2. Instruct a designated person to contact the PM and confirm a response.
- 3. Contain the spill, if it is possible and can be done safely.
- 4. If the release is not stopped, call 911 to alert the fire department.
- 5. Contact the Washington State Emergency Response Commission at 1-800-258-5990 to report the release.
- 6. Initiate cleanup.
- 7. The PM will coordinate follow-up written reporting to Washington State Department of Ecology in the event of a reportable release of hazardous materials or wastes.

11.3 GENERAL EMERGENCIES

In the case of fire, explosion, earthquake, or imminent hazards, work shall be halted and all onsite personnel will be immediately evacuated to a safe place. The local police/fire department shall be notified if the emergency poses a continuing hazard by calling 911.

In the event of a thunderstorm, outdoor work will be discontinued until the threat of lightning has abated. During the incipient phase of a fire, the available fire extinguisher(s) may be used by persons trained in putting out fires, if it is safe for them to do so. Contact the fire department as soon as feasible.

11.4 EMERGENCY COMMUNICATIONS

In the case of an emergency, an air horn or car horn will be used as needed to signal the emergency. One long (5-second) blast will be given as the emergency/stop work signal. If the air horn is not working, a vehicle horn and/or overhead waving of arms will be used to signal the emergency. In any emergency, all personnel will evacuate to the designated refuge area and await further instruction.

11.5 EMERGENCY EQUIPMENT

The following minimum emergency equipment will be readily available on-site and functional at all times:

- First Aid Kit—contents approved by the HSO/SS.
- Sorbent materials capable of absorbing the volume of liquids/fuels brought to the Site by Floyd|Snider personnel.
- Portable fire extinguisher (2-A:10 B/C min).
- A copy of the current HASP.

12.0 Administrative

12.1 MEDICAL SURVEILLANCE

Floyd|Snider personnel involved with field activities must be covered under Floyd|Snider's medical surveillance program that includes biennial physical examinations. These medical monitoring programs must be in compliance with all applicable worker health and safety regulations.

12.2 RECORD KEEPING

The HSO/SS, or a designated alternate, will be responsible for keeping attendance lists of personnel present at site health and safety meetings, accident reports, and signatures of all personnel who have read this HASP.

This page intentionally left blank.

13.0 Approvals

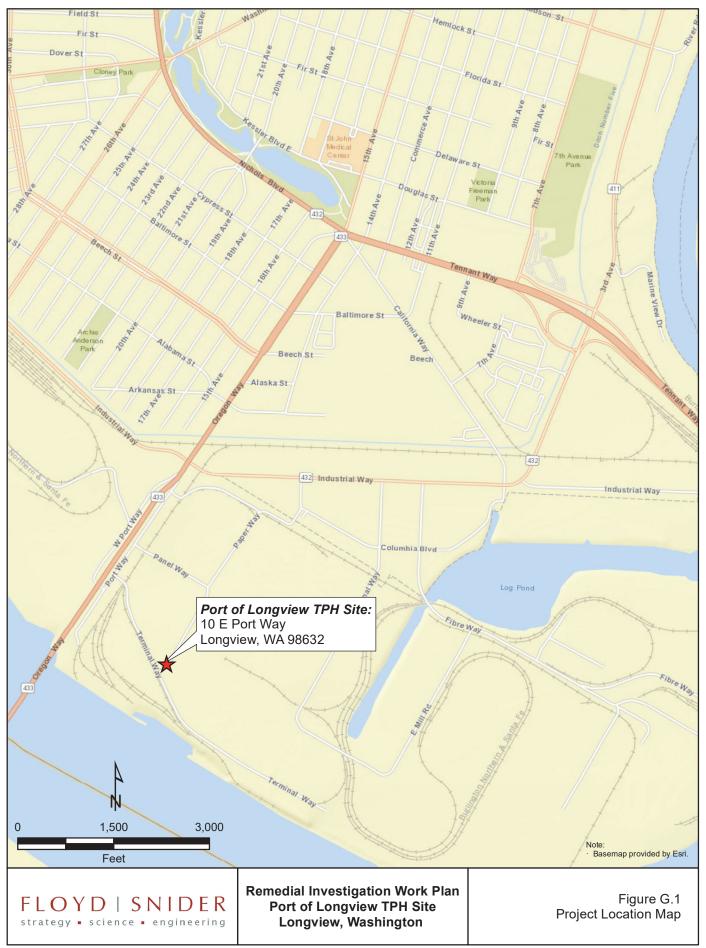
Project Manager	Date
Project Health & Safety Officer	Date

This page intentionally left blank.

14.0 Signature Page

I have read this Health and Safety Plan and understand its contents. I agree to abide by its provisions and will immediately notify the HSO/SS if site conditions or hazards not specifically designated herein are encountered.

Name (Print)	Signature	Date


This page intentionally left blank.

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix G Health and Safety Plan

Figures

I:\GIS\Projects\POL-TPH\MXD\HASP\Figure G.1 Project Location Map.mxd 5/14/2019

I:\GIS\Projects\POL-TPH\MXD\HASP\Figure G.2 Directions to Hospital Map.mxc 5/14/2019 Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix G Health and Safety Plan

Attachment G.1 Daily Tailgate Safety Meeting Form

Daily Tailgate Safety Meeting Form

Date:	Time:	
Project Name:		
Location:		
Meeting Conducted By:		
Topics Discussed:		
Physical Hazards:		
Chemical Hazards:		
Personal Protection:		
Decontamination:		
Special Site Considerations:		
On-site Emergency Contact: <u>Health & Safety C</u>		
Hospital:		

Tailgate Safety Meeting Attendees

<u>Name/C</u>	ompany (printed)		<u>Signatı</u>	ure
Conducted by:				
	Name	Sig	nature	Date

Port of Longview TPH Site

Remedial Investigation Work Plan

Appendix H Boring Logs

Ì

PROJECT NUMBER 40612

WELL NUMBER MW-1

OF 1 SHEET 1

POL008826

MONITORING WELL DRILLING & CONSTRUCTION LOG

PROJECT ____ Port of Longview

LOCATION 20 Port Way, Longview, Washington

DRILLING CONTRACTOR Hokkaido Drilling and Developing ELEVATION _____ DRILLING METHOD AND EQUIPMENT Mobile B-61 Hollow Stem Auger Drilling Rig

i B	DRILLING	METHO	D AND 8	EQUIPMI	ENT	0-91 WATERLEVEL est. 8'6" depth	_ LOGGER <u>C. Grant</u>
			SAMPLE	!	STANDARD	SOIL DESCRIPTION	WELL CONSTRUCTION
Ì	DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	PENETRATION TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	CASING TYPE, DIAMETER, SCREEN INTERVAL, SLOT SIZE, GRAVEL PACK GRADATION & INTERVAL, GROUT INTERVAL, ETC.
ł		1.0					Flush mount monument casing
4		2.5		10"	3-4-7 (11)	Silt, light brown, dry, silt(ML)	Bentonite seal to l' 3 ea 50# bags Wyoben
		5.0					enviro plug med. used 6'3" of 4" dia sch 40 PVC - blank casing
-1) 3	5_	<u>5.0</u> 6.5	·	18"	2-3-2 (5)	Sand, brown, loose, med. graines, - wet, to 5'5" then is a silt, grey, wet, w/charcoal and wood chips to	depth .
4		7.5		18"	3-2-6	6'3", then is a silty clay, grey green, dry, clay with organic odor	4" dia 20 slot sch 40 PVC screen - top of screen at 6'5" depth
Ą	ا . 10	<u>9.0</u> 10.0			(8)	Clay as above except moist, w/wood chips to 8'6", then is a fine sand	-V ATD
Ŷ		11.5		15"	2-2-2 (4)	<u>dark</u> grey, wet, loose, sand (SP) - Clay w/silt, grey, moist, soft, clay w/wood fibres (OH), to 11'2"	40 PVC screen used 6 ea 100# bags 10-20 CSSI
ħ	-	<u>13.0</u>		19"	6-4-3 (7)	then is a sand, saturated (SP) Interbedded sands and clay, grey,	silica sand used
	15					wet, loose, interbeds (SC)	Centralizing guides used
Ą						End boring at 16'10"	7" threaded bottom sump Bottom of screen @ 16'3"
1	-					÷ .	
Ð	-					-	-
1						· · ·	-
	-					·	· · ·
	-		÷		•	-	
1							•
1							
					L		-1 -1

PROJECT NUMBER 40612 WELL NUMBER MW2

SHEET OF

POL008827

.

MONITORING WELL DRILLING & CONSTRUCTION LOG

PROJECT Port of Longview

J

Į

LOCATION _____ 20 Port Way, Longview, Washington

ELEVATION ______ DRILLING CONTRACTOR Hokkaido Drilling and Developing

DRILLING METHOD AND EQUIPMENT <u>Mobile B-61 Hollow Stem Auger Drilling Rig</u> START DATE <u>4-30-91</u> FINISH DATE <u>4-30-91</u> WATER LEVEL ______ LOGGER <u>C. Grant</u>

		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	WELL CONSTRUCTION
DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	CASING TYPE, DIAMETER, SCREEN INTERVAL, SLOT SIZE, GRAVEL PACK GRADATION & INTERVAL, GROUT INTERVAL, ETC.
1	1.0 2.5		10"	6-8-7 (15)	Poorly graded fine sand, brown,	Flush mount monument with concrete seal locking compression cap Bentonite plug to 1'
5 	<u>4.5</u> 6.0		18"	3-4-4 (8)	Poorly graded fine, sand w/silt brown to light grey, moist, sand _ with some silt (SP-SM)	3 ea 50" bags Wyoben envi plug med used, sand pack to 4' 6' of 4" dia sch 40 PVC blank casing
10	7.5 9.0		15"	3–3–5 (8)	Sand w/silt as above to 8'6" depth then grading to a silty fine sand saturated, loose, silty sand (SM)	silica sand used
-	<u>11.5</u> 13		18"	2-2-4 (6)	Silty sand (SM) as above to 11'9" then is a clay, dark grey, dry, clay w/wood fibres throughout and some silt and charcoal lenses (OH)	Bottom of screen at 12'5' slip cap bottom sump
- 15	<u>14.5</u>		18"	1-4-6 (10)	Clay (OH) as above to 14'2" then is a silt, dark grey, wet, loose - silt (ML)	
-					End boring at 14'6" depth -	•
ء - - -				-	-	

PROJECT	NUMBER
406	12

WELL NUMBER		
MW3	SHEET	OF 1

MONITORING WELL DRILLING & CONSTRUCTION LOG

PROJECT Port of Longview

jØ

ĵ)

jØ

j

J

J

1

j

1

1

20 Port Way, Longview, Washington LOCATION _

__ DRILLING CONTRACTOR ___ Hokkaido Drilling and Developing ELEVATION ____ DRILLING METHOD AND EQUIPMENT Mobile B-61 Hollow Stem Auger Drilling Rig

START DATE 5-1-91 FINISH DATE 5-1-91 WATER LEVEL _____ LOGGER C. Grant

	· .	SAMPLE		STANDARD	SOIL DESCRIPTION	WELL CONSTRUCTION
DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	PENETRATION TEST RESULTS 6"-6"-6" (N)	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	CASING TYPE, DIAMETER, SCREEN INTERVAL, SLOT SIZE, GRAVEL PACK GRADATION & INTERVAL, GROUT INTERVAL, ETC.
-	0.6	,			Deculu eraded fine cond w/silt	Flush mount monument with concrete seal, locking compression cap on casing Bentonite seal to l' depth
	<u>2.5</u> 4.0		17"	1-2-3 (5)	prown to grey, dry, loose, sand w/silt (SP-SM) to 3'6", then is a	4 ea 50# bags Wyoben enviro plug medium used 8'3" of 4" dia sch 40 PVC blank casing used
	6.0				graded sand, dry, loose sand with gravel to 3/8" (SW) Interbedded fine sands and silts,	
8_	7.5		18"	(7)	grey to brown, moist, loose, sand (SP-SM)	Top of sand pack @ 7'8" -
1	<u>9.0</u>		18" 18"	(4)	except wet, to 8'10", then is a silt w/clay, dark grey, moist, plastic, silt (MH)	PID = 5ppm Top of screen @ 8'5"
1	10.5 11.5			(7)	Interbedded clay silt/silt clay, wet w/wood fibres throughout (OH) Poorly graded fime sand w/silt, blue	PID = 757 ppm 5 ea 100∦ bags 10-20 CSSI
12	13.0		15"	4-3-4 (7)	grey, saturated, loose, sand with _ interbeds of clayey silt, (SP) with irridescent sheen	silica sand used _
-						10' of 4"'dia 20 slot sch 40 PVC screen used.
16					-	-
	17.5		15"	3-4-9 (13)	Interbedded clayey silt and silt, dark grey, wew, med dense, silt (MH) to 18'3", then is a well	Bottom of screen @ 18'5" 7" bottom sump
-	<u>19.0</u>			•	graded sand, blue grey, wet, med dense, sand (SW) - End boring at 19'	-
					Ling DOLLING GU LY	
-						
						POL00882

B

J

l

ſ

ſ

ſ

1

1

1

J

l

PROJECT NUMBER 40612

WELL NUMBER MW4

SHEET 1 OF 1

MONITORING WELL DRILLING & CONSTRUCTION LOG

PROJECT	PROJECT Port of Longview LOCATION 20 Port Way, Longview, Washington									
ELEVATION DRILLING CONTRACTOR _Hokkaido Drilling and Developing										
DRILLING METHOD AND EQUIPMENT MODILE B-01 Hollow Stem Auger Drilling Rig START DATE 5-2-91 FINISH DATE 5-2-91 WATER LEVEL LOGGER C. Grant										
		SAMPLE		STANDARD	SOIL DESCRIPTION	WELL CONSTRUCTION				
DEPTH BELOW SURFACE	INTERVAL	TYPE AND NUMBER	RECOVERY	PENETRATION TEST RESULTS 6"-6"-6" (N)		CASING TYPE, DIAMETER, SCREEN INTERVAL, SLOT SIZE, GRAVEL PACK GRADATION & INTERVAL, GROUT INTERVAL, ETC.				
					Crushed rock pavement to 1'	Flush mount monumnet with concrete seal, locking compression cap				
4						Bentonite seal to l' 6 ea 50# bags Wyoben Enviro plug medium used 7'2" of 4" dia sch 40 PVC				
						blank casing Sand pack to 5' 5 ea 100# bags 10-20 SCCI silica sand used				
	7.5									
8-	9.0		12"	5-10-17 (27)	Poorly graded fine to med <u>san</u> d, grey, moist, med dense, sand (SP) ⁻	Top of screen at 7'5" -				
	10.5		13"	6-9-9 (18)	Sand (SP) as above, except w/some silt and pumice fragments	10' of 4" dia 20 slot sch 40 PVC screen used				
12	12.0		13"	6-9-10 (19)	Poorly graded fine <u>san</u> d w/silt, grey brown, wet, med dense sand w/silt (SP-SM) to 11'3", then is	5 ea 100# bags 10-20 CSSI silica sand used				
					a silt 2/sand, grey, wet, med dense, silt (SM)					
-	•				:					
16						· -				
-	17.5									
	19.0		15"	3-7-7 (14)	Interbedded silt and silty fine sand and clayey silt, grey, wet med dense, silts (SC-SM)	Bottom of screen @ 17'5" . 7" bottom sump				
20				•	End boring @ 19'	•				
י ו										
	. 1					Į				

POL008829

DRILLING METHOD AND EQUIPMENT $_Mob1$ START DATE $\underline{5-3-91}$ FINISH DATE $\underline{5-3}$. FINISH DATE $\underline{5-3-91}$ FINISH PARE FINISH PARE FI	40612 MW5 MONITORING WELL DRILLING LOCATION 20 Port Way ING CONTRACTOR Hokkaido Drilling and 1e B-61 Hollow Stem Auger Drilling -91 WATER LEVEL SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	, Longview, Washington Developing Rig
ELEVATION DAILL DRILLING METHOD AND EQUIPMENTMOb1 START DATE _5-3-91 FINISH DATE _5-3: SAMPLE	ING CONTRACTOR <u>Hokkaido Drilling</u> and <u>le B-61 Hollow Stem Auger Drilling</u> <u>-91</u> WATER LEVEL SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	Developing Rig LOGGER C. Grant WELL CONSTRUCTION CASING TYPE, DIAMETER SCRE INTERVAL, SLOT SIZE, GRAVEL P GRADATION & INTERVAL, GROUT INTERVAL, ETC. Flush mount monument concrete seal, locking compression cap Bentonite seal to l' 8 ea 50# bags Wyoben Enviro plug medium us 12'1" of 2" dia sch 4
ELEVATION DAILL DRILLING METHOD AND EQUIPMENT $Mobil START DATE 5-3-91 FINISH DATE 5-3:TART DATE 5-3-91 FINISH DATE 5-3:TESTRESULTS0^{\circ} \cdot 6^{\circ} \cdot 6^{\circ}(N)4^{\circ} - 6^{\circ} \cdot 6^{\circ}(N)12^{\circ} - 5^{\circ} - 6^{\circ}11.018^{\circ} \cdot 6^{\circ} - 6^{\circ}12^{\circ} - 6^{\circ} \cdot 6^{\circ}12^{\circ} - 18^{\circ} \cdot 6^{\circ} \cdot 6^{\circ}12^{\circ} - 18^{\circ} \cdot 6^{\circ} \cdot 6^{\circ}18^{\circ} \cdot 6^{\circ} - 6^{\circ} - 6^{\circ}18^{\circ} \cdot 6^{\circ} - 6^{\circ} - 6^{\circ}18^{\circ} \cdot 6^{\circ} - 6^{\circ} - 6^{\circ} - 6^{\circ}$	ING CONTRACTOR <u>Hokkaido Drilling</u> and <u>le B-61 Hollow Stem Auger Drilling</u> <u>-91</u> WATER LEVEL SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	Developing Rig LOGGER C. Grant WELL CONSTRUCTION CASING TYPE, DIAMETER, SCRE INTERVAL, SLOT SIZE, GRAVELE GRADATION & INTERVAL, GROU INTERVAL, ETC. Flush mount monument concrete seal, locking compression cap Bentonite seal to 1' 8 ea 50# bags Wyoben Enviro plug medium us 12'1" of 2" dia sch
START DATE $5-3-91$ FINISH DATE $5-3$. SAMPLE STANDARD PENETRATION TEST RESULTS NOTE Note Note Standard Hondright Note Note Note Standard Hondright Note Note Standard Standard Hondright Note Note Note Standard Hondright Note Note Note Note Hondright Note Note Note Note Note Note Note Note Note <	-91	LOGGER <u>C. Grant</u> WELL CONSTRUCTION CASING TYPE, DIAMETER, SCRE INTERVAL, SLOT SIZE, GRAVEL GRADATION & INTERVAL, GROU INTERVAL, ETC. Flush mount monument concrete seal, locki compression cap Bentonite seal to 1' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
SAMPLE STANDARD PENETRATION TEST RESULTS NOTE NOTE NOTE <t< td=""><td>SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL</td><td>WELL CONSTRUCTION CASING TYPE, DIAMETER, SCR INTERVAL, SLOT SIZE, GRAVEL GRADATION & INTERVAL, GROU INTERVAL, ETC. Flush mount monument concrete seal, locki compression cap Bentonite seal to 1' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch</td></t<>	SOIL DESCRIPTION NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	WELL CONSTRUCTION CASING TYPE, DIAMETER, SCR INTERVAL, SLOT SIZE, GRAVEL GRADATION & INTERVAL, GROU INTERVAL, ETC. Flush mount monument concrete seal, locki compression cap Bentonite seal to 1' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	INTERVAL SLOT SIZE GRAVEL GRADATION & INTERVAL GROU INTERVAL ETC. Flush mount monument concrete seal, locki compression cap Bentonite seal to l' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SYMBOL	Flush mount monument concrete seal, locki compression cap Bentonite seal to l' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{c} 8 \\ - \\ 9.5 \\ 12 \\ - \\ 12.5 \\ 18'' \\ 6-4-4 \\ (8) \\ 18'' \\ 3-4-6 \\ (10) \\ 18'' \\ 3-4-3 \\ \end{array} $	Poorly graded fine <u>san</u> d w/silt,	concrete seal, locki compression cap Bentonite seal to l' 8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{c} $	Poorly graded fine <u>san</u> d w/silt,	8 ea 50# bags Wyoben Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Poorly graded fine <u>san</u> d w/silt,	Enviro plug medium u 12'1" of 2" dia sch
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Poorly graded fine <u>san</u> d w/silt,	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Poorly graded fine <u>san</u> d w/silt,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Poorly graded fine <u>san</u> d w/silt,	
$ \begin{array}{c} 9.5 \\ 11.0 \\ 12 \\ -12.5 \\ 18'' \\ 3-4-6 \\ (10) \\ 18'' \\ 3-4-3 \end{array} $	Poorly graded fine <u>san</u> d w/silt,	- · · ·
$12 - \frac{12.5}{12.5} - \frac{18'' & 6-4-4}{(8)} \\ 18'' & 3-4-6 \\ (10) \\ 18'' & 3-4-3 \\ \end{array}$	Poorly graded fine <u>san</u> d w/silt,	
$12 - \frac{11.0}{12.5} - \frac{18''}{6-4-4} + \frac{6-4-4}{(8)} + \frac{11.0}{(10)} + \frac{18''}{3-4-6} + \frac{3-4-6}{(10)} + \frac{18''}{3-4-3} + \frac{3-4-3}{(10)} + \frac{18''}{3-4-3} + \frac{18''}{3-3} + \frac{18''}{3-3} + \frac{18''}{3-3} + \frac{18''}{3-3} + \frac{18''}{3-3} + \frac{18''}{3-3} + \frac{18'''}{3-3} + \frac{18'''}{3-3} + \frac{18''''}{3-3} + 18''''''''''''''''''''''''''''''''''''$	Poorly graded fine <u>san</u> d w/silt,	1
$12 - \frac{11.0}{12.5} \qquad \begin{array}{c} (8) \\ 18'' & 3-4-6 \\ (10) \\ \hline & 18'' & 3-4-3 \end{array}$		
$12 - \frac{11.0}{12.5} \qquad 18'' \frac{3-4-6}{(10)} \\ 18'' 3-4-3$	grey brown, wet, loose, <u>san</u> d w/ interbedded silt & silty clay	-
12 - 12.5 (10) 18" 3-4-3	layers to .25" (SP-SM) Sand (SP-SM) as above, to 11'7"	
	then is a clay w/silt, grey, moist plastic, clay (OH) to 12'3", then is a clayey silt, grey moist,	Sand pack to 12'5" Top of screen @ 12'6
1_{140} (7)	loose silt w/organic fibres (OH)	6 ea 100# bags 10-20
14.0	Silty clay, grey, moist, firm, clay w/interbedded silt layers (OH	lotiton and used
15.5 (7)	Silty clay (OH), as above to 14'8"	
16	w/silt, grey, wet, loose sand w/ - silty clay interbeds (SP-SM)	10' of 2" dia 20'slo sch 40 PVC screen us
20		
21.0	-	
22.5 10" 3-4-5 (9)	Well graded fine to med sand with silt, grey, saturated , loose, sand w/silt (SP-SM)	Bottom of screen @ 2
	End boring at 22'8"	Sottom of screen @ 2. 5" bottom sump

POL008830

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-6 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

ł

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 12/9/92

	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION		
ELEV.	DESCRIPTION	GRAPHIC LOG	TER	BORING METHOD	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASIN	IG AUGERS: DEPTH TO W.L.:	
DEPTH		A B	¥õ	<u>ğ</u> M B			DEPTH	INSTALLATION DETAILS NOTES	
0.0	Railroad ballast				- o -		0.0 0.0-2.0	Flush mounted steel cap Cement seal	
1.5	Brown, fine to medium SAND, trace gravel				-		2.0-13.5	Bentonite chips	
	Iron staining @5.5' Increasing slit				- 5				
6.9	Gray silty CLAY to dayey SILT				-				
8.0	Gray, fine SAND grading coarser with depth			Hollow Stem Auger	- - - 10				
	Coarse purnice at 11.8			Τ	-				
					- 15		13.5-22.5	10x20 Sand	
15.0	Light gray to light brown, fine to medium SAND, trace coarse sand and silt Pumice layers			-	20		16.0-21.0	4* Schedule 40 0.010 slotted screen	
					-		21.0-21.5	Sump	
22.5	Bottom of Hole - 22.5 Below Ground Surface				-		-		
					- 25				
					-				
					- - 30				
DRILL F DRILLI DRILLE	NG CONTRACTOR: Geotech				CHECK	D: A. Templeton ED: T. Belunes 7/26/93	•	Golder	

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-7 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

PROJECT: Port of Longview

BORING DATE: 12/7/92

						<u> </u>		
ELEV.	STRATIGRAPHY	일종	۲.S	28	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	
DEPTH	DESCRIPTION	GRAPHIC LOG	TAN	BORING METHOD	ÖZ		DEPTH	INSTALLATION DETAILS
					- 0 -			
0.0	Brown to black silt, sand and gravel FILL				-		0.0 0.0-2.0	Flush mounted steel cap Cement seal
1.7	Brown, silty, fine to medium SAND		12.12		-		2.0-16.0	Bentonite chips
	· · ·		200-00 PM					
	iron staining				- 5			
5.3	Gray and orange, silty CLAY, iron stained				-			
7.3	Light gray SILT							
8.0	Light gray, fine to medium SAND, with silt layers wet at 8.3', sheen			Hollow Stem Auger	- 10			
10.7	Light gray, clayey SILT to silty CLAY			Т	-			
13.5	Gray, fine to medium SAND, some sitt coarse purnice layers				-			
	saturated				- 15			
	Saturated @14'				-		16.0-24.5	10x20 Sand
					-		18.0-23.0	4" Schedule 40 0.010 slotted screen
					- - 20			
			2 () () 2 () () 2 () 2 () 2 () 2 () 2 ()		-			
					-			
	Some SILT layers		10110100				23.0-23.5	Sump
24.5	Bottom of Hole - 24.5 Below Ground Surface		1		- 25	Protect and a set of the set of t	<u> </u>	· · · · · · · · · · · · · · · · · · ·
			1		-			
					-			
					-			
					- 30			
DRILLI DRILLI DRILLE	NG CONTRACTOR: Geotech	•				D: A. Templeton ED: T. Belunes 7/26/93		Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-8 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 12/8/92

	STRATIGRAPHY					INSTALLATION SKETCH		
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	BORING	DEPTH	SKETCH	HOLE DRILLE	NG AUGERS: DEPTH TO W.L.:
DEPTH		6	Ξž	ΒÅ			DEPTH	INSTALLATION DETAILS NOTES
0.0	Brown SiLT, SAND and gravel FILL				- 0 -		0.0 0.0-2.0	Flush mounted steel cap Cement seal
1.6	Gray, silty fine to medium SAND				-		2.0-15.35	Bentonite chips
					ſ			
					- 5			-
	Trace of roots				\mathbf{F}			
					Ļ			
7.8	Dark gray SILT and fine SAND							
8.2	Gray SILT Pink layer @ 9.2			nger	ſ			
				tem A	ŀ			
9.6	Gray fine SAND			Holtow Stem Auger	- 10			
			1	오	Ļ			
	_				1			
12.0	Gray SILT				Γ			
					ŀ			
13.9	Gray fine to medium SAND with SILT layers				-			
				1	- 15		1	
	Seturated O12						15.35-24.5	10x20 Sand
	Saturated @16							
			3]	†			
					ŀ		18.0-23.5	4" Schedule 40 0.010 slotted screen
					ŀ			
					- 20			
		1		l				
				1	ſ			
				[ŀ			
	Some SILT layers				┢		23.0-23.5	Sump
					Ļ			
24.5	Bottom of Hole - 24.5 Below Ground Surface		 		- 25		 	
					25		1	
					ſ			
				l	ŀ			
			1		ŀ			
							1	
					1			
					- 30	<u> </u>	l	·
DRILLI	RIG: CME-55				LOGGE	ED: A. Templeton		
DRILLI	NG CONTRACTOR: Geotech					ED: T. Belunes		Golder
DRILLE	R:				DATE:	7/26/93		

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-9 RECORD OF MONITORING WELL INSTALLATION

.

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 12/2/92

	STRATIGRAPHY					INSTALLATION		START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER NOTES	BORING METHOD	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.:
DEPTH		GRA	¥0 ₹2	M B0	50		DEPTH	INSTALLATION DETAILS NOTES
0.0	Brown, fine to coarse SAND and GRAVEL	2000 2000			- 0 -		0.0 0.0-2.0	Flush mounted steel cap Cement seal
1.5	Olive gray, fine to medium SAND				- 5		2.0-8.0	Bentonite chips
	Iron staining				-		6.0-20.0	10x20 Sand
7.5	Dark gray, fine to medium SAND, some SILT layers			Hollow Stern Auger	10		8.0-18.0	4* Schedule 40 0.010 slotted screen
	Odor, free product @10*			Hollow	-			
14.6	Pink silty CLAY to clayey SILT				- 15			
15.0	Gray, fine to medium SAND, some slit				-			
17.3 18.5	Gray-pink SILT and CLAY Gray, fine to medium SAND				-		18.0-18.5	Sump
	······							
20.0	Bottom of Hole - 20.0 Below Ground Surface				- 25			
DRILLI DRILLI DRILLE	NG CONTRACTOR: Geotech	<u> </u>	<u> </u>	(CHECK	:D: A. Templeton ED: T. Belunes 7/26/93	L	Golder
							· · · · · · · · · · · · · · · · · · ·	

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-10 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBEF: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION: SHEET 1 OF 1

PROJECT: Port of Longview **BORING DATE:** 12/7/92

	STRATIGRAPHY							START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.:
DEPTH		GRA	₹9	ВЩ			DEPTH	INSTALLATION DETAILS NOTES
0.0	Brown SAND and GRAVEL FILL				- 0 -		0.0 0.0-2.0	Flush mounted steel cap Cement seal
1.7	Brown, fine to medium SAND, trace gravel						2.0-16.0	Bentonite chips
7.1	Iron staining Gray SILT grading to fine to medium SAND			-	-			
8.4	Gray line to medium SAND, trace gravel			Hollow Stern Auger	- - 10 -			
11.3	Gray SILT and SAND layers				- 15			
17.3	Gray line to medium SAND, some silt layers				-		16.0-24.5	10x20 Sand 4* Schedule 40 0.010 slotted screen
20.0	Gray line to medium SAND, trace coarse sand				- 20 - -		23.0-23.5	Sump
24.5	Bottom of Hole - 24.5 Below Ground Surface				- 25			
					- 30			
DRILLI DRILLI DRILLE	NG CONTRACTOR: Geotech	<u> </u>				D: A. Templeton ED: T. Belunes 7/26/93		Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-11 RECORD OF MONITORING WELL INSTALLATION

.

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

L

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 12/3/92

	STRATIGRAPHY					INSTALLATION SKETCH		START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	TER TER	BORING METHOD	DEPTH IN FEET	SKEICH	HOLE DRILLE	G AUGERS: DEPTH TO W.L.:
DEPTH		GRAI	WATER	BOR	٥Z		DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad ballast				- 0 - -		0.0 0.0-2.0	Flush mounted steel cap Cement seal
2.5	Gray, fine to medium SAND and GRAVEL	a Do			-		2.0-5.0	Bentonite chips
3.4	Brown fine to medium SAND, trace gravel	000						
					- 5		-	
							5.0-18.0	10x20 Sand
					-		6.6-16.66	4" Schedule 40 0.010 slotted screen
				Auger	-			
	Iron staining			Hollow Stem Auger				
9.8	Light gray SILT, micaceous, petroleum odor			Hollow	- 10			
			1		-			
					-			
13.1	Gray and white, coarse SAND purnice layers				-			
	pumice layers				-			
					- 15			,
					-			
							16.66-17.16	Sump
17.8	Gray silty CLAY to clayey SILT				-		18.0-20.0	Bentonite chips
19.0	Light gray, fine to medium SAND	<u>Till</u>			-			
20.0	Bottom of Hole - 20.0' Below Ground Surface				- 20-			·
					1			
					- 25			
					-			
					-			
					-	- (- -
					- 30			
DRILL R	łG:				LOGGE	D: A. Templeton		
DRILLIN	IG CONTRACTOR: Geotech				СНЕСК	ED: T. Belunes		Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-12 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 12/4/92

—	STRATIGRAPHY	STRATIGRAPHY				START OF INSTALLATION		
ELEV,	DESCRIPTION	GRAPHIC	WATER	BORING	DEPTH	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.:
DEPTH		GRA	₹Ş	ВЩ			DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad ballast				- 0 - -		0.0 0.0-2.0	Flush mounted steel cap Cement seal
2.0	Light to dark brown line to medium SAND wet @4.5'				- 5		2.0-20.0	Bentonite chips
5.4	Gray SILT and SAND layers				-			
7.8	Gray-blue SILT			Hollow Stern Auger	- 10			
10.8	SILT and SAND layers Gray fine to medium SAND			Ĩ	-			
11.8	some silt layers Pink layer				- 15 -			-
18.6 19.0	Gray slity CLAY to clayey SILT Gray, line to medium SAND, some slit layers				-			
					- 20 -		20.0-28.5	10x20 Sand
					- - - 25		22.0-27.0	4" Schedule 40 0.010 slotted screen
					-		27.0-27.5	Sump
28.5	Bottom of Hole - 28.5 Below Ground Surface				- - 30	E 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199		-
DRILL F DRILLI DRILLE	NG CONTRACTOR: Geotech		<u> </u>	(CHECK	D: A. Templeton ED: T. Belunes 7/26/93	·	Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-13 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

I

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 5/26/93

	STRATIGRAPHY							START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.: 12.0
DEPTH		C GR	₹Ž	8 8 M			DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad ballast				- 0 -		0.0	Flush mounted steel cap Cement seal
1.0	Moist, brown, medium SAND, some silt and gravel				-		3.0-10.5	Bentonite chips
3.8	Moist, brown, fine sandy SILT				-			
4.3 5.0	Molst, brown, sitty medium SAND				- 5			
5.2	Moist, brown, medium SAND, some silt			iger	-			
8.5 8.9	Wet fine SAND Wet brown SILT			em Au	-			
10.0	Wet gray SILT			Hollow Stem Auger	- 10			
				포	-		10.5-18.5	10x20 Sand
11.5 12.0	Wet, gray CLAY Wet, gray medium SAND	777	T		-		}	
12.0	Wet, gray medium SAND							
					- 15		13.0-18.0	4* Schedule 40 0.010 slotted screen
16.5	Gray SILT							
17.5	Gray CLAY							
					-		18.0-18.5 18.5-19.9	Sump Bentonite chips
19.9	Bottom of Hole - 19,9 Below Ground Surface				- 20 - -			
					- - 25			
					-			
					-			
					- 30			
I			I					<u> </u>
	NG: CME-55 NG CONTRACTOR: Geolech R:			1		D: T. Belunes ED: T. Belunes 7/26/93		Golder

t

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-14 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 5/17/93

	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION		
ELEV.	DESCRIPTION	GRAPHIC LOG	ATER	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASIN	IG AUGERS: DEPTH TO W.L.: 8.0	
DEPTH		E J	ŠŽ	윊붳		- · ·	DEPTH	INSTALLATION DETAILS NOTES	
0.0	Railroad ballast				- o		0.0 0.0-2.9	Flush mounted steel cap Cement seal	
2.0	Moist, brown, medium SAND				-				
3.0	Moist, brown, fine sandy SILT, with gravel, places of bunker?				-		2.9-6.0	Bentonite chips	
<u>4.5</u> 5.0	Molst, brown, clayey SILT Molst, brown, medium SAND				- 5				
	Black staining, strong odor						6.0-12.5	10x20 Sand	
7.0	Wei, gray, clayey SILT, some wood, petroleum odor		¥	Hollow Stern Auger			7.0-12.0	4" Schedule 40 0.010 slotted screen	
10.2	Wet, gray, medium SAND, strong odor			Hollow St	- 10				
11.2	Wood-free product				-		12.0-12.5	Sump	
					- 15 				
DRILL	RIG: CME-55				- - - 30	D: T. Bolunes			
DRILLI	NG CONTRACTOR: Geolech R:					ED: T. Belunes		Golder	

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-15 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview

BORE	HOLE CONDITION:		_				BORING D	DATE: 5/18/93
	STRATIGRAPHY					INSTALLATION		START OF INSTALLATION
ELEV.		¥	e s	<u>ä</u> 8	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	
DEPTH	DESCRIPTION	GRAPHIC LOG	WATE	BORING	<u>N</u> OE		DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad ballast				- 0 -		0.0 0.0-2.8	Flush mounted steel cap Cement seal
2.2 2.5 3.5	FILL Moist, brown, clayey SILT Moist, brown, medium SAND				-		2.8-6.5	Bentonite chips
5.6	Moist, brown, clayey SILT				- 5			
6.6 7.0	Wet, gray and brown, clayey SiLT Wet, gray, silty fine SAND				-		6.5-19.0	10x20 Sand
7.6	Moist, gray SILT petroleum odor @ 8.5'			uger	-			
9.0	Molst, gray, clayey SILT slight odor			Hollow Stern Auger	- - 10 -		8.5-18.5	4" Schedule 40 0.010 slotted screen
11.5	Molst, gray, medium SAND petroleum odor @13.5		¥					
					- 15			
17.0	Wət, gray SiLT				-		10.5 10.0	S
19.0	Bottom of Hole - 19.0 Below Ground Surface						18.5-19.0	Sump
					- 20			
					-			
					- 25			
					-			
					- 30			
	RIG: CME-55 IG CONTRACTOR: Geotech		ه ا	1		D: T. Belunes ED: T. Belunes	•	Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-16 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

L

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 5/18/93

	STRATIGRAPHY							START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER NOTES	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.:
DEPTH		GRA	₹Q	N ^E			DEPTH	INSTALLATION DETAILS NOTES
0.0	Rairoad ballast				- o -		0.0 0.0-2.5	Flush mounted steel cap Cement seal
2.0	Moist, brown, silty, medium SAND				-			
<u>2.7</u> 3.0	SILT Molst, brown, medium SAND				5		2.5-4.5 4.5-16.0 4.5-14.5	Bentonite chips 10x20 Sand 4* Schedule 40 0.010 slotted screen
7.0	Moist to wet, gray, clayey SILT			5	-			
9.0	Wet, gray, clayey SILT Free product			Hollow Stem Auger	-			
10.0 10.8	Wet, gray, medium SAND Free product Wet, gray, clayey SILT Strong odor			Hollov	- 10 -			
12.0	Wet, gray, silty CLAY Strong odor; some product				- - -			
14.0	CLAY Iree product				F		14.5-15.0	Sump
15.0	Wet, gray SiLT, slight odor				- 15		16.0-19.0	Bentonite chips
17.0	Wet, gray medium SAND							
19.0	Bottom of Hole - 19.0' Below Ground Surface							
					- 20			
					-			
					- 25			
					- ·			
					-			
					- - 30	ı		
1	RIG: CME-55 NG CONTRACTOR: Geolech ER:					ID: T. Belunes ED: T. Belunes 7/23/93	<u> </u>	Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-17 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 5/19/93

	STRATIGRAPHY						1	START OF INSTALLATION	
ELEV.		l	œω	98	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE		
	DESCRIPTION	GRAPHIC 1 0G	WATER	BORING			DEPTH CASI	NG AUGERS: DEPTH TO W.L.:	
DEPTH		5	' 3ž	8Å			DEPTH	NOTES	
0.0	Raircad ballast	9999			- 0 -		0.0	Flush mounted steel cap	
0.0	Hatroad Gallast						0.0-3.0	Cement seai	
1.0	Moist brown medium SAND		ž.		F				
2.0	Bunker C Molst brown medium SAND				Ļ				
	MOIST DIOWIT MIGUIUM SAIND								
					F		3.0-6.5	Bentonite chips	
1			8 4	1	Ļ				
 			N.		ļ				
1			S.		- 5				
]	L				
					ŀ	50-14.90 State	6.5-19.0	10x20 Sand	
				1	F		0.5-19.0		
	Wet @ 8.0'				L		7.5-17.5	4" Schedule 40 0.010 slotted screen	
	Wei (gr b.)		č.	ngei	l I				
				Ē	F				
				Г.	L 10				
10.2	Molst to wet gray clayey SILT		-	Hollow Stem Auger					
	slight odor		=	1	F				
				ł	L				
12.2	Wet gray medium SAND				1				
	strong odor		8	1	F				
13.5	Wet gray medium SAND Free product				L				
	Free product strong odor		N.						
	•		84 57		- 15				
					L				
				ł	Г				
					╞				
			i.				17.5-18.0	Sump	
]	Γ		17.0-10.0	Sunp	
18.5	Wet gray medium SAND slight odor				╞		19.0-21.0		
19.5	Moist gray clayey SILT		4				19.0-21.0	Bentonite chips	
20.0	Wet gray medium SAND			l	- 20		ļ		
1			3	1	-	0,0,0,0	21.0-23.5	Heave	
							21.0-23.5	, Heave	
			2		Г				
			5 2	1	ŀ		}		
23.5	Bottom of Hole - 23.5' Below Ground Surface	-	`		[<u> </u>	······································	
1				1	Г				
			1		- 25]	.	
					L				
					ſ				
			1		ŀ				
1		1	1		L		ł		
					ſ				
					ŀ				
					L]		
					- 30		L	`	
DRILLI	DRILL RIG: CME-55 LOGGED: T, Belunes								
	NG CONTRACTOR: Geotech						Golder		
DRILLE				CHECKED: T. Belunes					

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-18 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 5/19/93

LCC. DESCRIPTION EVENT DEPTH CASING ALCERS DEPTH CASING ALCERS DEPTH OW		STRATIGRAPHY				INSTALLATION		START OF INSTALLATION
LDP/IN D_DEPTH D_DEPTH NOTES 0.0 Rathead balaut 0 0.0 0.0 0.0 Comment and 1.3 Molt break halaut 0 0 0.0 0.0 0.0 Comment and 1.3 Molt break halaut 0 0 0.0 0.0 0.0 Comment and 1.4 Molt break halaut 0 0 0.0 0.0 0.0 Comment and 1.4 Molt break halaut 0 0 0.0 0.0 0.0 Comment and 1.4 Molt break, status SMO (massive) 0 0 0.0 <	ELEV.	DESCRIPTION	S PHIC	ЩЩ ЩЩ	SOF H			NG AUGERS: DEPTH TO W.L.:
0.0 Failed balladi 0.0 Failed balladi 0.0 Failed balladi Convert stall 1.5 Molt beau, nectors 5MD (maxive) 0 0.0 6.75-18.5 Ubc20 Sand 1.5 Molt beau, nectors 5MD (maxive) 0 0.0 0.0 6.75-18.5 Ubc20 Sand 10.0 Molt, Bown, rativey SLT 0 0.0 0.0 0.0 10.0 4" Schedule 40 0.010 skilded acreen 10.0 Molt, Bown, rativey SLT 0 0.0	DEPTH		GRA	≸ĝ		£	DEPTH	INSTALLATION DETAILS NOTES
1.5 Molet, Boown, medium SAND (massive) 0.0-0.75 Bentorite artige 10.0 Molet, Brewn, dawy SLT 0.0-0.75 Bentorite artige 12.25 Molet, Brewn, dawy SLT 0.0-0.75 Bentorite artige 12.25 Molet, Brewn, dawy SLT 0.0-0.75 Bentorite artige 12.25 Molet, Brewn, dawy SLT 0.0-0.05 Sump 18.5 Bottorid Mole - 18.7 Betword Ground Surface 0.0-0.05 18.5 Bottorid Mole - 18.7 Betword Ground Surface 0.00000000000000000000000000000000000		•						
10.0 Molti, Drewn, daysy SLT 10 8.0-18.0 4" Schedule 40 0.010 aldited acreen 10.6 Molti, gay, city/ey SLT - - - - 12.25 Molti to wol, ging, medum SM0 - - - - 18.5 Battom of Hote - 18.5 Batwe Ground Surface - - - - 18.5 Battom of Hote - 18.5 Batwe Ground Surface - - - - - 18.5 Battom of Hote - 18.5 Batwe Ground Surface -							3.0-6.75	Bentonite chips
1000 Molst to weit, gray, medium SAND 1228 Molst to weit, gray, medium SAND 18.5 Bottom of Hole - 18.5 Bottom of Hole - 18.5 Below Ground Surface 1 - - - </td <td></td> <td></td> <td></td> <td></td> <td>er 1</td> <td></td> <td></td> <td></td>					er 1			
1000 Molst to weit, gray, medium SAND 1228 Molst to weit, gray, medium SAND 18.5 Bottom of Hole - 18.5 Bottom of Hole - 18.5 Below Ground Surface 1 - - - </td <td></td> <td></td> <td></td> <td></td> <td>v Stem Aug</td> <td></td> <td></td> <td></td>					v Stem Aug			
1225 Moist to wet, gray, medium SAND								1
12.25 Moist to well, gray, medium SAND 18.5 Bottom of Hole - 18.5	10.6	Moist, gray, clayøy SILT			Ť			
18.5 Bottom of Hole - 18.5' Below Ground Surface - - - <td>12.25</td> <td>Moist to wet, gray, medium SAND</td> <td></td> <td></td> <td>-</td> <td>5</td> <td></td> <td></td>	12.25	Moist to wet, gray, medium SAND			-	5		
DRILL RIG: CME-55 LOGGED: T. Belunes DRILL NG: CONTRACTOR: Geolech CHECKED: T. Belunes					F		18.0-18.5	Sump
DRILLING CONTRACTOR: Geotech CHECKED: T. Belunes		Bottom of Hole - 18.5 Below Ground Surface				5		· · · · ·
DRILLER: DATE: 7/26/93	DRILLIN	NG CONTRACTOR: Geotech	<u> </u>		LOG	GED: T. Belunes CKED: T. Belunes	<u> </u>	Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-19 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER:	933-9725
BOREHOLE LOCATIC	DN:
BOREHOLE CONDITI	ON:

SHEET 1 OF 1

PROJECT: Port of Longview

BORING DATE: 5/20/93

	STRATIGRAPHY						START OF INSTALLATION		
ELEV.	DESCRIPTION	GRAPHIC LOG	TER TES	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASIN	IG AUGERS: DEPTH TO W.L.:	
DEPTH		A S	₹S	MB			DEPTH	INSTALLATION DETAILS NOTES	
0.0	Raiiroad ballast				- o -		0.0 0.0-3.0	Flush mounted steel cap Cement seal	
2.0	Molst, black SAND Free product, Bunker?				-		3.0-13.0	- Bentonite chips	
4.0	Molst, gray, siity CLAY Free product @ 6.6			ger	- 5				
8.5	Moist, brown, fine to medium SAND Slight odor @ 10.5			Hollow Stem Auger	- - 10 -				
	Wet @12.6				- 15 -		13.0-19.0 13.5-18.5 18.5-19.0	10x20 Sand 4* Schedule 40 0.010 slotted screen	
19.0	Bottom of Hole - 19.0 Below Ground Surface				- 20				
					- 25 - - - 30			-	
	RIG: CME-55 NG CONTRACTOR: Geotech IR:	I	I	i	CHECK	D: J. Bach ED: T. Belunes 7/26/93	I	Golder	

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-20 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

I

SHEET 1 OF 1 PROJECT: Port of Longview BORING DATE: 5/20/93

	STRATIGRAPHY							START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASI	NG AUGERS: DEPTH TO W.L.:
DEPTH		8 2	₹S	8₽ B			DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad Ballast				- 0 - - -		0.0 0.0-3.0	Flush mounted steel cap Cement seal
<u>3.0</u> 3.5	Moist, hard, blackish brown to gray, sandy GRAVEL Bunker C (?) Moist, gray CLAY and GRAVEL				-		3.0-9.0	Bentonite chips
5.0	Moist, gray, silty, fine SAND with gravel				- 5			
10.5	Dark gray, sandy CLAY Wet @10.5				- 10		9.0-22.0	10x20 Sand
12.2	Moist to wet, gray fine SAND with gravel		Nordana A		-		11.5-21.5	4-inch schedule 40 0.010 slotted PVC screen
14.0	Wet, gray CLAY Sheen on water at 15.0°			Hollow Stern Auger	- 15			
28.5	Gray, fine to medium SAND with gravel Bottom of Hole - 28.5' Below Ground Surface				- - 20 - - - 25 -		21.5-22.0 22.0-28.5	Sump Bentonite chips
					- 30			
	RIG: CME-55 NG CONTRACTOR: Geotech IR:	L	<u> </u>			ED: J. Bach ED: T. Belunes 7/26/93	I	Golder

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-21 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

PROJECT: Port of Longview BORING DATE: 5/21/93

SHEET 1 OF 1

	STRATIGRAPHY						I	START OF INSTALLATION
ELEV.		Ů ₽ g	щŝ	₂ 8	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	
DEPTH	DESCRIPTION	GRAPHIC LOG	TEN N	BORING	BZ		DEPTH	INSTALLATION DETAILS
							UEPIH	NOTES
0.0	Gravel fill	0000	4		- 0 - -		0.0 0.0-3.0	Flush mounted steel cap Redi-Mix
1.5	Moist, medium gray, silty CLAY				-			·
2.5	Moist. gray. silty, tine SAND Moist. CLAY							
<u>2.9</u> 3.2	Moist, CLAY Moist, gray, silty, fine to medium SAND	- 111			Γ		3.0-11.0	Bentonite chips
					-		:	
	Wet @4.5				- 5			
					F			
	Increased clay content				ŀ			
8.0	Wet, gray, sandy CLAY			Hollow Stem Auger	[
9.0	Wet, gray CLAY			Stem	[
10.0	Wet, gray, silty, fine SAND			Non	- 10		10.0-17.0	10/20 Sand
				Ť	-		11.0-16.0	10-slot screen
					L			
					-			
					-			
			, ,		ŀ			
					- 15			
					F		1	
	Wet area Oll T				ŀ		17.0-19.0	Partacile shine
17.0	Wet, gray SILT						17.0-19.0	Bentonite chips
ļ			1		ſ		ļ	
19.0	Bottom of Hole - 19.0' Below Ground Surface		1-		<u>├</u> ──			
	· .	1	1		- 20			
					L			
1					Ī .			
			1		ŀ			
					-			
					Γ		1	
					- 25			
1]		L			
1			l					
			1	[ŀ	1		
		Į			ŀ			WELL DEVELOPMENT NOTES
					L		Drillers surged	I the sand pack at the completion of well installation
•								
					- 30			
DRILL	RIG: CME-55				LOGGE	ED: J. Bach		
	NG CONTRACTOR: Geotech					KED: T. Belunes		Golder
DRILLE	ER: Brad/Tim					7/26/93		Associates
					ares I liĝi			

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-22 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION:

BOREHOLE CONDITION:

SHEET 1 OF 1

PROJECT: Port of Longview BORING DATE: 3/1/94

				BORING DATE: 3/1/94			
ELEV.	STRATIGRAPHY DESCRIPTION	GRAPHIC LOG	WATER	DEPTH IN FEET	INSTALLATION SKETCH		START OF INSTALLATION ED TO: 33.4 OPEN TO: ING AUGERS: DEPTH TO W.L.:
DEPTH		A B A	MN	٥ <u>∠</u>		DEPTH	INSTALLATION DETAILS NOTES
0.0	Ambali			- 0 -			NOTED
0.5	Asphait Railroad Ballast PID = 0	4525				0.0-1.5 1.5-17.0	Cement Seal 3/8" Bentonite Chips
- 32	Brown medium SAND (FILL) PID = 0		t	•		1	
3.6	PID = 0 Brown medium SAND, trace gravel			- 5			
22.0	Brown SILT			20		17.0-31.8 20.2-30.2	10-20 SAND 4* Schedule 40 PVC 0.010 Slotted Screen
23.0	Brown medium SAND with gravel		*				
24.0	Gray clayey SILT, moist			25			-
26.5	Gray fine to medium SAND with SILT layers,	Ź	9 .5	30		31.8-32.8	Sump
33.4	Bottom of Hole - 33.4' Below ground surface		+	-+-			
				35		Well Developmen	WELL DEVELOPMENT NOTES -
		L	<u>_</u>	<u> </u>			
DRILL RIG DRILLING	: CONTRACTOR:				T. Norton		
DRILLER:				ECKED:	Sec. 1		Golder Associates
	**************************************		UA	TE:			- Associales

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-23 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION:

 $\{\cdot\}$

SHEET 1 OF 1

PROJECT: Port of Longview

BORE	HOLE CONDITION:			BORING DATE: 3/2/94					
	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION		
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE			
DEPTH		GRA	MN	υz		DEPTH	INSTALLATION DETAILS NOTES		
0.0	Asphalt	<u> </u>		- 0		0.000			
0.5	Brown sity GRAVEL	2000				0.0-2.5	Cement Seal		
		00							
2.2	IBrown medium SAND (damp)								
						25-19.0	3/8" Bentonite Chips -		
							-		
				- 5			-		
							-		
							-		
				- 10					
11.8 12.3	IBrown SILT IBrownish-gray fine SAND								
12.0							•		
							•		
14.5	Interbedded brown SILT and SAND			- 15			-		
							-		
18.0	Brown medium SAND						-		
						19.0-33.6	10-20 SAND		
20.0	Gray clayey SILT			- 20					
20.0							-		
							-		
						22.4-32.4	4* Schedule 40 PVC 0.010 Slotted Screen		
	wet to moist at 24 '						-		
				25			-		
25.5	Gray medium SAND, wet						-		
				- 1			-		
							-		
				Ĺ					
				- 30					
			1	t			-		
				+			-		
				$\left \right $		32.4-33.3	Sump		
33.6	Bottom of Hole - 33.6' Below ground surface	1	<u> </u>	├ ──┤	Franker er en en stelle Soldert				
	-			- 35					
				[~		Mall Day	WELL DEVELOPMENT NOTES		
						Well Developm	Indi Notes		
				t					
		<u> </u>	L	<u>+</u>		I			
DRILLI	RIG:			LOGGE	D: T. Norton				
DRILLING CONTRACTOR:									
DRILLE	R:			DATE:			Golder		

RECORD OF STANDPIPE/PIEZOMETER INSTAL RECORD OF MONITORING WELL INSTALLATION	
PROJECT NUMBER: 943-9735	SHEET 1 OF 1

BOREHOLE LOCATION: BOREHOLE CONDITION

1

L

PROJECT:	Port of Longview
BORING DA	TE: 3/3/94

						1		
ELEV.	STRATIGRAPHY	OH C	٤	DEPTH IN FEET	INSTALLATION SKETCH	START OF INSTALLATION HOLE DRILLED TO: 23.0 OPEN TO: DEPTH CASING AUGERS: DEPTH TO W.L.:		
DEPTH	DESCRIPTION	GRAPHIC LOG	WATER NOTES	öz		DEPTH	INSTALLATION DETAILS NOTES	
				- 0 -				
0.0	Railroad Ballast					0.0-1.5	Cernent Seal	
						1.5-7.0	3/8" Bentonite Chips	
				-				
				- 5			_	
5.5	Brown medium SAND							
L								
7.0 7.5	Brown SILT PID = 0					7.0-20.9	10-20 SAND	
	Brownish-gray fine to medium SAND							
						0.6.10.0	17 Sebedule 40 FWO 0.040 Slewed Second	
				- 10		9.6-19.6	4" Schedule 40 PVC 0.010 Slotted Screen -	
12.4	Gray SILT		1	-				
				-				
				15			-	
<u>15.2</u> 15.4	Gray clayey SILT, moist, odor PID = 1.2			ŀ				
	Gray medium SAND, trace gravel, wet, odor, sheen on water							
	allocit Cit Water							
18.2	Gray fine SAND, wet					Į		
						19.6-20.5	Sump	
20.4	Gray SILT, wet			20		10.0 20.0		
				t i		20.9-23.0	Bentonite Chips	
21.4	Gray clayey SILT							
22.6 23.0	Grav SAND (wet) Bottom of Hole - 23.0' Below ground surface							
	-			-				
				- 25			-	
		1		}				
		1		ļ				
		1		ļ				
				l		l		
			1	L_]		
				- 30			-	
		1		ſ				
				t				
			1	ł				
l				ŀ	l			
				- 35			WELL DEVELOPMENT NOTES	
l				ł		Well Developm		
			1	ŀ				
				ļ				
			1		PD. T Manhar		<u> </u>	
DRILL				CHECK	ED: T. Norton			
	NG CONTRACTOR:			DATE:			Golder	
DRILL			_	DATE:			- ANDURULO	

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-25 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION:

t

SHEET 1 OF 1 PROJECT: Port of Longview

BOREHOLE CONDITION: BORING DATE: 3/2/94 START OF INSTALLATION STRATIGRAPHY INSTALLATION SKETCH HOLE DRILLED TO: 18.7 OPEN TO: DEPTH IN FEET WATER ELEV. GRAPHIC DEPTH CASING AUGERS: DEPTH TO W.L.: 8 DESCRIPTION INSTALLATION DETAILS NOTES DEPTH DEPTH ٥ 0.0 Railroad Ballast 0.0-1.5 Coment Seal 1.3 Brown SILT 1.5-4.5 3/8" Bentonite Chips 3.6 Gray medium SAND 10-20 SAND 4.5-18.7 4.8 Gray SILT 5 7.4-7.7 Organic Layer Gray SILT 77 Gray fine SAND 8.0 7.8-17.8 4" Schedule 40 PVC 0.010 Slotted Screen wet at 9.5 10 10.5 silty clay zone Gray SILT and fine SAND, wet 12.5 Gray SILT Gray SILT to SILTY CLAY, wet 13.4 15 16.0 Gray medium SAND, wet 17.8-18.7 Sump 18.7 Bottom of Hole - 18.7' Below ground surface 20 25 30 35 WELL DEVELOPMENT NOTES Well Development Notes DRILL RIG: LOGGED: T. Norton DRILLING CONTRACTOR: CHECKED: Golder Associates DRILLER: DATE:

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-26 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION:

1

SHEET 1 OF 2

PROJECT: Port of Longview

BORE	HOLE CONDITION:					BORING D	ATE: 3/3/94
	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION
ELEV.		SHC DHC	ESE	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	
DEPTH	DESCRIPTION	GRAPHIC LOG	WATER NOTES	으길		DEPTH	INSTALLATION DETAILS NOTES
		100000		- 0			
0.0	Rairoad Ballast					0.0-1.5	Cement Seal
1.0	Brown medium SAND PID = 0					1.5-6.0	3/8" Bentonite Chips -
						1.5-6.0	Sro benothe Unips
							-
							-
				-5			-
						6.0-21.0	10-20 SAND
							-
							-
				- 10		9.4-19.4	4" Schedule 40 PVC 0.010 Slotted Screen
						a 10	
11.5	Gray clayey SILT						
12.8	Slight petroleum odor						_
12.0	Gray medium SAND, moist to wet, sheen on water						
	SHOOL OF WATCH						
15.5	Gray SILT, wet			- 15			
16.5	PiD = 100 at 17 '						-
10.5	Gray fine SAND, wet, sheen on warter						-
							-
							-
				20		19.4-20.3	Sump
20.8	Gray SILT, wet						-
21.8	Gray sity CLAY, odor	V///				21.0-32.0	3/8° Bentonite Chips
22.6	PID = 65 at 22' strong odor						-
	gray medium SAND, wet						_
	strong odor			- 25			_
							-
							-
	Silt at 28', sheen on water						_
29.0	Gray SILT, wet						-
30.4	Gray clayey SILT, wet			- 30			_
31.2	slight odor						
	Gray medium SAND, wet					32.0-43.5	- Skuff, collapsed hole
				t l			
							· · ·
				- 35		<u> </u>	WELL DEVELOPMENT NOTES
						Well Developm	nent Notes
	PID = 0 at 37.5 ft.			╞╴╽			
	Continued			<u> </u>			
DRILL	RIG:		_	LOGGED	: T. Norton		
	NG CONTRACTOR:			CHECKE			Golder
DRILLE	R:			DATE:			Golder
			_				

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-26 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION:

ļ

SHEET 2 OF 2

PROJECT: Port of Longview

BUR	HOLE CONDITION:					BORING L	DATE: 3/3/94
	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION
ELEV.		₽	πs	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	ID TO: 43.5 OPEN TO: NG AUGERS: DEPTH TO W.L.:
	DESCRIPTION	GRAPHIC LOG	WATER	ÖZ		DEPTH CASIN	INSTALLATION DETAILS
DEPTH		Ö	22			DEPTH	NOTES
35.0	Slight odor			- 35			AL //
30.0	Gray medium SAND, wet			-		32.0-43.5	Sluff, collapsed hole
	PID = 0 at 37.5'						
				•			
				- 40			
				-			
				-			
43.5	Bottom of hole - 43.5' Below ground surface	5-9-9-9-4 					
	g g						-
				- 45			_
				•			-
							-
				-			-
							-
				- 50			_
				-			-
							-
				-			-
				- 55			-
				-			-
				-			-
				-			-
				_			
				- 60			-
							-
				-			-
							-
				$\left \right $			-
				- 65			
				-			
				-			-
							-
				- 70			WELL DEVELOPMENT NOTES
				•		Well Developm	nent Notes
		[ŀ			
				ŀ			
DRILLI	RIG:		_	LOGGE	D: T. Norton		
	NG CONTRACTOR:			CHECK			
DRILLE				DATE:			Golder
				/			

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-27 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1

PROJECT: Port of Longview

BORING DATE: 3/21/94

Done	HOLE CONDITION:					I Donnie L	START OF INSTALLATION
ELEV.	STRATIGRAPHY	QH C	ES	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	D TO: 28.6 OPEN TO:
DEPTH	DESCRIPTION	GRAPHIC LOG	WATER	öz		DEPTH	INSTALLATION DETAILS NOTES
				- 0		DEFIN	Notes
0.0	Rairoad Ballast					0.0-2.0	Comont Seal
1.5	Gray medium SAND, damp						
						2.0-15.3	3/8" Bentonite Chips
				- 5			
	7.0-8.8 Gravels						
				- 10			_
11.4	PID = 0						
	Gray fine SAND, damp						
				- 15			_
						4.5-18.7	10-20 SAND
				[
18.1	Gray sandy SILT PID = 0		-				
19.2	Moist to moist		1 9.2	- 20		18.0-28.0	2" Schedule 40 PVC 0.010 Slotted Screen
	Gray clayaey SILT						
20.9	Gray fine sandy SILT, we t PID = 0						
]				
]	- 25			-
	Sik						
						28.0-28.6	Sump
28.6	Bottom of Hole - 28.6 Below ground surface]	-	In test state (1997)		
				- 30			-
				- 35			WELL DEVELOPMENT NOTES
				ŀ		Well Developm	
				ł			
			<u> </u>	<u> </u>		<u> </u>	
DRILL	RIG:			LOGGE	D: T. Norton		
	NG CONTRACTOR:			CHECK	ED:		Golder
DRILLE	R:			DATE:			

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-28 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER:	943-9735
-----------------	----------

BOREHOLE LOCATION:

1

SHEET 1 OF 1

PROJECT: Port of Longview

BORE	HOLE CONDITION:					BORING D	ATE: 3/22/94
	STRATIGRAPHY				INSTALLATION		START OF INSTALLATION
ELEV.		ОH с	ШS	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASIN	
DEPTH	DESCRIPTION	GRAPHIC LOG	WATER	Βz			INSTALLATION DETAILS
		0		 		DEPTH	NOTES
0.0	Asphalt	115252		- 0 -		0.0-2.0	Cernent Seal
0.5	Raiiroad Ballast			-		0.0 2.0	
				-		2.0-7.0	3/8" Bentonite Chips
3.3	Brown fine to medium SAND FILL			-			-
				- 5			-
				-			-
6.3	Gray fine to medium SAND, moist			-	12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (-
1						70015	10 00 0 0 0 0
						7.0-21.5	10-20 SAND -
				-			
				- 10			_
	wood at 11'						
						9.8-19.8	2" Schedule 40 PVC 0.010 Slotted Screen
	trace gravel at 12.8-13.3 PID = 58.7 at 14.6			-			-
				.			
	wet at 15						-
	odor, sheen on water PID = 60 at 15.5'	[- 15			-
16.5	Gray clayey SILT						
17.4	Gray silty fine SAND, wet						-
							-
	PID = 20 at 20' sheen			- 20		19.8-20.4	Sump —
				~			
							-
						21.5.00.0	Parterite Chine
22.3	interbedded CLAY and SILT, petroleum odor	44				21.5-26.0	Bentonite Chips
23.3	Gray medium SAND, wet	·····					
				- 25			-
	PID = 20 at 26'			-			-
			1			26.0-29.9	Skuff -
I						20.0-23.8	
l			1				-
							-
29.0	Gray SILT, wet PID = 0	-	1	- 30			
29.9	Bottom of Hole - 29.9' Below ground surface	1					
				[
		1	I	t l		l	-
1		1	1				
			1	Ļ			
		1	l			ļ	
				- 35			WELL DEVELOPMENT NOTES
			1	╞		Well Developm	nent Notes
ļ			1				
		1	<u> </u>	<u> </u>	l	L	
DRILL	ય G:			LOGGE	D: T. Norton		
DRILLI	NG CONTRACTOR:			CHECK	ED:		Golder
DRILLE	R:			DATE:			V Associates

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. MW-29 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 943-9735

BOREHOLE LOCATION: BOREHOLE CONDITION:

1

SHEET 1 OF 1

PROJECT: Port of Longview

BORING DATE: 6/3/94

	STRATIGRAPHY						START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	WATER	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE	IG AUGERS: DEPTH TO W.L.: 22.0
DEPTH	descrift kon	GRA	MAN	<u>⊔</u> ≤		DEPTH	INSTALLATION DETAILS NOTES
				- o			
0.0 0.3	Asphalt Railroad Ballast	25 25				0.0-2.0	Flush mounted steel cap Cement Seal
3.5	Brown fine to medium SAND, trace silt and gravel					2.0-15.0	3/8" Bentonite Chips
				- 5			-
				-			-
				- 10			-
							-
15.0	Brown clayey SILT			- 15			
15.7	Brown fine to medium SAND, moist			-		15.0-27.7	10-20 SAND
				-			
				- 20		17.2-27.2	2" Schedule 40 PVC 0.010 Slotted Screen
22.0	Gray sitty fine SAND, wet						
23.0	Gray clayey SILT, wet		⊻ 23.4	- 25			
25.0	Gray sity fine to medium SAND, moist			23		27.2-27.7	Sump
28.0	Bottom of Hole - 28.0' Below ground surface	<u>energi</u>	<u> </u>	 			
	-						-
				- 30			-
				t			
				Ļ		ļ	
				- 35			
						Well Developn	WELL DEVELOPMENT NOTES
DRILL	BIC:	1	<u>ــــــ</u>	1.000	iD: T. Norton	L	
i	nig: NG CONTRACTOR:			CHECK			Coldor
DRILLE				DATE:		<u></u>	Golder

PROJECT Port of Longview/CAP/WA	RECORD OF BOREHOLE MW-30
---------------------------------	--------------------------

SHEET 1 OF 1

PROJECT NUMBER: 983 9710

.

BORING LOCATION:

DATUM:

P	ROJ	ECT NUMBER: 983 9710	BOR	ING L	_00	ATIC	DN:					во	RING DATE	E: 6/.	24/98
	doh.	SOIL PROFILE		,		, –	s		s	1		PENETRA	TION RESISTAN	CE	PIEZOMETER
DEPTH FEET	BORING METHOD	DESCRIPTION		2HC	E		BLOWS / 6 IN.	N	Ę	PID		<u>10 2</u>			PIEZOMETER O GRAPHIC
DEPT	BORII		uscs	GRAPHIC LOG	NUMBER	TYPE	140 lb. hammer 30 inch drop		RECIALT		~			w	WATER LEVEL
- 0		Loose to compact, olive gray (5Y 4/1), fine to medium SAND, little silt, moist	SP											Flus Monun Ceme 2-Inc Sch. PVC Casi Bento Chip	
- 5					1	ss	5-8-10	18	14/18	0.0					
														10/2 Silic San	
- 10		Loose, olive gray (5Y 4/1), fine to coarse SAND, little silt, trace fine to coarse rounded gravel, moist	SP		2	SS.	6-5-5	10	15.5/18	0.0				2-inc Sch. PV(Scre (0.0 slot	559 ∪ 83 1100 10000
	1/4-inch I.D. HSA													-	490 600
- 15	4 1/4-inch	Loose, medium gray (N5), fine to medium SAND, wet Olive gray (5Y 3/2), fine sandy SILT with thin laminations of clayey silt, roots, wet	SP 		3•	ss	5-3-2	5	18/18	0.0	E				
- 20															
		Loose, dark gray (N3), silty fine to medium SAND, few silt lenses, wet	SP		4	ss	3-2-3	5	18/18	0.0	T				
- 25									· ·						
					5.	ss	3-4-6	10	18/18	0.0				Sic	wgh
- 30		Total depth 26.5 ft bgs • Samples submitted to a laboratory for analysis of total petroleum hydrocarbons													
DRIL	L	Mobile B-59	L	I	L	ـــــل ۱	OGGED: R. Blege	l n	1	<u> </u>		<u> </u>	 		L
		CONTRACTOR: Geo-Tech Explorations											(A)	Go	
I DRIL	LFR [.]	A. Pablo					DATE: 10/9/98						\sim	M220	JAICS

POL009060

PROJECT: Port of Longview/CAP/WA RECORD OF BOREHOLE MW-31

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 9710 BORING.LOCATION:

DATUM: BORING DATE: 6/24/98

					·											
E E	ETHOD	SOIL PROFILE	Ţ	1		I	· s	ample	ES			E	BLOWS/F			
DEPTH FEET	BORING METHOD	DESCRIPTION	uscs	GRAPHIC LOG	NUMBER	түрЕ	BLOWS / 6 IN.	N	RECIATT	PID) 10 V Wpt	VATER C	<u>ю з</u> а Юмтемі —уу	0 40 I,PERCEN	т	WATER
	8		5		z	<u> ۲</u>	30 inch drop		<u>~</u>		+					<u></u>
- 0		Thin surface soil Loose, dark yellowish brown (10YR 4/2), fine to medium SAND, slightly moist	SM												Filus Monum Cerne 2-inc Sch. 2-inc Sch. 2-inc Sch. Bentor Chip	
- 5		Loose, moderate yellowish brown (10YR 5/4), fine sandy SLT with thin sand laminations	SM		1	ss	2-3-3	6	1.2/1.5	0.0		-			10/2 Silic San	0
- 10		Loose, moderate yellowish brown (10YR 5/4), sity fine SAND, moist to wet, iron oxide staining from 10.0 to 10.5 ft	SM												2-inc Sch PVC Scree	
					2*	SS	3-3-3	6	1.3/1.5	0.0 ·					(0.0 1921	10 ►) 12.61
- 15	4 1/4-inch I.D. HSA	Loose, medium gray (N5), medium to coarse SAND, trace fine sand, wet, pumice common from 20.0 to 21.5 ft, 1-inch silt lense at 20.4 ft	- SP		3	ss	3-3-3	6	1.4/1.5	1.8	B					
-																
- 20					4.	ss	3-4-5	9		0.0	F				Sio	
	ŝ	Total depth 21.5 ft bgs • Samples submitted to a laboratory for analysis of total petroleum hydrocarbons														
- 25																
- 30																
		Mobile B-59 CONTRACTOR: Geo-Tech Explorations					LOGGED: R. Blege CHECKED:	:n		•	·			Â	Gd	der
DRIL	LER:	A. Pablo					DATE: 10/9/98								1550	Udles

PROJECT: Port of Longview/CAP/WA RECORD OF BOREHOLE MW-32

SHEET 1 OF 1

PROJECT NUMBER: 983 9710 BORING LOCATION:

....

DATUM: BORING DATE: 60400

	ę	SOIL PROFILE					S	AMPLI	ES			TRATION RESIST		
DEPTH FEET	BORING METHOD	DESCRIPTION	uscs	GRAPHIC LOG	NUMBER	түре	BLOWS / 6 IN. 140 lb. hammer 30 inch drop	N	RECIATT	PID	0 10 WATER Wp		- <u>></u> 1	PIEZOMETEF O GRAPHIC WATER LEVEL
- 0		Gravel Roadbed (cuttings)			-								Flush Moun Monum	- r1773
		Moderate yellowish brown (10YR 5/4), sitty SAND (cuttings)											Ceme 2-ind Sch.4 PVC	
i i		Gray SILT (cuttings)											Casin	
- 5		Very loose, dark gray (N3), sity fine SAND (cuttings)	SM		1	ss	3.2.2	4	0/1.8		•		Benton Chips 10/20 Silica Sano	80
-	-												2-inc	
- 10		Lose, interfingering layers of olive gray (5Y 3/2), sity fine SAND and SILT, roots and wood fragments common, wet	SM		2*	ss	3-4-5	9	1.5/1.5	0.0			2-ind Sch.4 PVC Scree (0.01 slots	
- 15	4 1/4-inch I.D. HSA				3	ss	4-5-7	12	1.5/1.5	0.0				
- 20	4													
-		Compact, medium gray (N5), silty fine SAND, interfingering with SILT, trace coarse sand, wet	SM		4.	ss	4-5-5	10	1.5/1.5	0.0	M		Sło	
-		Total depth 21.5 ft bgs • Samples submitted to a laboratory for analysis of total petroleum hydrocarbons						-						
- 25							· .							
- 30														
DRIL	L RIG:	Mobile B-59	L	1	· ·	<u>ن</u> ر	LOGGED: R. Blege	<u>≀</u> n	1	L	L		 5	
DRIL	LING	CONTRACTOR: Geo-Tech Explorations										<u>A</u>	Gok	der
DRIL	LER:	A, Pablo				1	DATE: 10/9/98						Asso	ciates

						CATION:		Longviev nance/St		-	r –	BORING DATE	: 7/22/93
DEPTH FEET	BORING METHOD	SAMPLING METHOD	SOIL PROFILE	GRAPHIC LOG	nscs	DEPTH (feet)	MAS	PLES Handwork	ANALY RESU BTEX (ppm)	TPH (ppm)	HEADSPACE ANALYSIS (ppm)	WELL CONSTRUCTION DIAGRAM	NOTE PIEZOME STANDP INSTALLA
0			3" Asphalt GRAVEL SUBGRADE Dark yellowish brown (10YR 4/2), fine to medium SAND, little silt, dry, (FILL)	0	SM	0.0	5%						Borehole Aban 1207 Start drilli
5			Moderate reddish-brown (10YR 4/6),				25%	1					1229 - Sample UST1-7/22-5
10			silty, fine to medium SAND, trace gravel (iron-oxide staining) Intertaminated, dark yeliowish brown (10 YR 4/2), fine to medium SAND and pale brown fine, sandy SILT, slightly moist Brownish-gray (5YR 4/1), clayey SILT, moist Dark yeliowish brown (10YR 4/2), fine to coarse SAND, trace gravel, trace silt		SM SP/ML CL-ML SW	9.2 10.0 10.4 11.0	50%						
15	6.25" O.D. Hollow Stern Auger	. Split Barrel Core Tube	Dark yellowish brown (10YR 4/2), fine to coarse SAND, little silt		SM	14.0	40%	2			0.0		1235 - Sample UST1-7/22-14
20	, 6.25° O.	3.5° O.D.					25%				0.0	.	
25			Medium dark gray (10YR 4/2), fine to medium <u>sandy SILT, little gravel, WET (First water)</u> Olive gray (5YR 3/2) fine sandy SILT. Trace rootlets. Wet.		ML	23.0 24.0	100%	3					1258 - Sample UST1-7/22-24
			Dark gray (N3), fine to coarse SAND, little silt, wet		SM	27.0	100%						1337 - End Dril
30			Bottom of Hole @29.0' Below Ground Surface			29.0							
35													

1

Ì

Î

Ĵ

1

Ĵ

Î

,

			NUMBER: 933-9729 BC			CATION:		Longview nance/Sh PLES	ANALY			BORING DATE:	7/23/93
BORING METHOD	SAMPLING	METHOD	DESCRIPTION	GRAPHIC LOG	nscs	DEPTH (feet)	RECATT	NUMBER	BTEX (ppm)	TPH (ppm)	HEADSPACE ANALYSIS (ppm)	WELL CONSTRUCTION DIAGRAM	NOTE PIEZOME STANDP INSTALLA
	+	+	Dark yellowish brown (10YR 4/2), silty, sandy GRAVEL (Railroad Ballast and Fill)	000		0.0	100%						0850-Start d Borehole Abandoned
			Dark yellowish brown (10YR 4/2), fine to medium SAND, little silt, (FILL)		SM		100%	1			0.0		Tip reading 2 0859 - Samp UST2-7/23-5
5		-	Olive gray (5Y 3/2), fine to medium SAND, some coarse sand, little sit				100%	2			0.0	: .	0910 - Samp UST2-7/23-1
0.D. Hollow Stem Auger	Bonol Care Tubo		Olive gray (5Y 3/2), fine to medium SAND, some coarse sand, little silt Dark yellowish brown (10 YR 4/2) silty fine SAND, some iron-oxide staining Dark gray (N3), clayey SILT, little fine sand, moist Dark gray (N3), fine to medium SAND, little silt, moist Moderate yellowish brown (10YR 5/4)		SM SM CL-ML SM	<u>13.5</u> 13.8 14.6 15.2	100%	3					1020 - Samp UST2-7/23-1
6.25" O.D. H	a-0 40 5 c		Gravelly, medium SAND, gravel consists of pumice fragments Dark gray (N3), fine to coarse SAND, wet, pumice fragments common Olive gray (5Y 4/1), clayey SILT, taminated with light brownish gray (5YR 6/1), clayey SILT Olive gray (5Y 3/2) silty fine SAND, wet		SW SW CL-ML SM	18.0 18.5 22.0 22.6	75%	4			0.0 0.0		1031 - Samp UST2-7/23-2
5			Bottom of Hole @24.0' Below Ground Surface			24.0				_			
5													
5													

Ĵ

J

Ĵ

Í

Ì.

1

Ĵ

			NUMBER: 933-9729 BC			CATION:	Port of Mainter	nance/Sh	nop Fac	-		BORING DATE:	7/23/93
	DOH		SOIL PROFILE				SAM	PLES	ANALY RESL	TICAL JLTS	(md		NOTES
DEPTH FEET	BORING METHOD	SAMPLING METHOD	DESCRIPTION	GRAPHIC LOG	nscs	DEPTH (feet)	REC/ATT	NUMBER	BTEX (ppm)	TPH (ppm)	HEADSPACE ANALYSIS (ppm)	WELL CONSTRUCTION DIAGRAM	PIEZOMET STANDPIF INSTALLAT
0			Dark yellowish brown (10YR 4/2), gravelly	80°		0.0	100%						1309-Start dri
			SAND (FILL and BALLAST) Dark yellowish brown (10YR 4/2), silty, fine to medium SAND (FILL)	50	SM	1.25							Borehole Abandoned
5							100%	1					1319 - Sampl UST3-7/23-5
	Ja	8	Iron-oxide staining at 8 feet Dark gray (N3), fine to medium SAND, little silt,		SM	8.5	100%			i .			
10	6.25" O.D. Hollow Stern Auger	Split Barrel Core Tube	slightly moist Dark yellowish brown (10YR 4/2), silty, fine to medium SAND, thin laminations of iron-oxide stained material		SM	9.3	100%	2			0.0		1328 - Sample UST3-7/23-10
	O.D. H	O.D. Spli	Dark gray (N3), silty fine SAND Dark gray (N3) fine to coarse SAND. Little fine		SM SW	<u>12.7</u> 13.0							
15	6.25	3.5" O	gravel. Trace slit. Moist, slight petroleum odor.				100%	3			16.4 0.0		1409 - Sampi UST3-7/23-14
			Wet material at 18 feet Dark yellowish brown (10YR 4/2), sitty, fine to		SM	18.5	60%	· 4				<u> </u>	1415 - Sampl UST3-7/23-18
20			medium SAND Interlaminated, olive gray (5Y 3/2), silty, fine SAND and clayey SILT Olive gray (5Y 3/2) clayey SILT, plant roots		SM/ML	19.5 20.5	75%						
			common Bottom of Hole @21.5' Below Ground Surface			21.5	100%						1420 - End Dr
25													
30													
95													
35													

Ĩ

J

Î

Â

J

Î

P	ROJ	ECT	NUMBER: 933-9729 BO	RING	LOC	CATION	Mainter	Longviev nance/St		-		BORING DATE:	7/26/93
	DOH		SOIL PROFILE			1	SAM	PLES	ANALY RESI	TICAL JLTS	, îŭ		NOTES
DEPTH FEET	BORING METHOD	SAMPLING METHOD	DESCRIPTION	GRAPHIC LOG	nscs	DEPTH (feet)	REC/ATT	NUMBER	BTEX (ppm)	TPH (ppm)	HEADSPACE ANALYSIS (ppm)	WELL CONSTRUCTION DIAGRAM	PIEZOMETI STANDPIP INSTALLATI
D			4" Asphait Gravel subgrade Dark yellowish brown (10YR 4/2) fine to medium SAND, little sitt (FILL)	0°	SM	0.0	5%					Flush- Mount Monument 2.0	0937-Start dril
5							100%	1			5.6	Bentonite Chips 2°, Sch 40 PVC Casing & Screen (0.020° slots)	1004 - Sample UST4-7/26-5
1							100%					5015)	
10	6.25" O.D. Hollow Stem Auger	Barrel Core Tube	Olive gray (5Y 3/2), silty fine SAND iron-oxide staining, petroleum odor		SM	10.3 11.0	100%	2			110		1021 - Sample UST4-7/28-10
	25° O.D. Holi	5" O.D. Split B	Light olive gray (5Y 5/2) to dark yellowish brown (10YR 4/2) fine to medium SAND, little silt				100%					11.08	
15	9	3.5	Light olive gray (5Y 5/2) to olive gray (5Y 3/2) silty fine to medium SAND		SM	14.0	100%	3			41.7	Top of Screen @14.28	1106 - Sample UST4-7/26-15
			Dark gray (N3), medium SAND, little coarse sand, trace silt		SP	18.2	100%					18.44 V 7/26/93 1613	
20			Dark gray (N3), sitly, fine to medium SAND, little coarse sand, wet		SM	19.0	90%	4				1613 EE	1127 - Sample UST4-7/26-20
			Dark gray (N3) gravely, fine to coarse SAND		-SW-	22.5					101		
			Olive gray (5Y 3/2), silty fine SAND, few wood fragments, wet		SM	22.8							
25			Bottom of Hole @24.0' Below Ground Surface			24.0						Bottom of Green @24.28 Total Depth @25.0 feet → 6.25" ┝	
30												Note: Driller overdrilled to 25 feet while cleaning out borehole.	
35													
	L RIG:						ED: R. Bieg						

Ĩ

Î

Į

J

1

Î

POL008888

1			RECORD OF BOREHOLE UST 5								SHEET <u>1</u> OF <u>1</u> DATUM: MSL					
Р	ROJ	ECT NUMBER: 943 9735		B	BORING			ON:				В	DRING	DATE	E: 6/	3/94
	ВР	SOIL PROFILE						SAMPLES				PENET	ATION F	ESISTAN	ICE	PIEZONETER
CEET	MET			C	ELEV.	~		BLOWS / 6 IN.						μ <u>μ</u>	<u>ه د</u>	PIEZOMETER GRAPHIC
рертн	BORING	DESCRIPTION	nscs	GRAPH LOG	DEPTH	NUMBEI	ТҮРЕ	140 lb. harmmer 30 inch drop	N	REC/AT	Wr				NT WI	WATER LEVEL
L334 HLd30	4-Inch HSA BORING METHOD	DESCRIPTION Brown SAND and coarse GRAVEL FILL Brown fine to medium SAND, some gravel, black staining at 8.0-10.0' Gray fine to medium SAND, trace sitt and gravel 15.0-19.0 staining Brown medium to coarse SAND and fine to coarse GRAVEL Gray to brown sitty fine to coarse SAND, trace gravel, wet Bottom of Hole at 24.0'				NUMBER	TYPE	140 lb. harmmer		RECATT						
- 30																-
DRIL		CME-75 CONTRACTOR:	1	1	Ć	Ð	Go	lder ociates	<u>د</u>	<u> </u>		L		LOGGED CHECKE DATE: 8	D:	1

POL000945

.

·) [

RECORD OF STANDPIPE/PIEZOMETER INSTALLATION BOREHOLE NO. IB-2 RECORD OF MONITORING WELL INSTALLATION

PROJECT NUMBER: 933-9725 BOREHOLE LOCATION: BOREHOLE CONDITION:

SHEET 1 OF 1 PROJECT: Port of Longview

BORING DATE: 12/4/92

	STRATIGRAPHY							START OF INSTALLATION
ELEV.	DESCRIPTION	GRAPHIC LOG	TER	BORING	DEPTH IN FEET	INSTALLATION SKETCH	HOLE DRILLE DEPTH CASIN	NG AUGERS: DEPTH TO W.L.: 13.0
DEPTH		AR 2	₹Ş	B <u></u>			DEPTH	INSTALLATION DETAILS NOTES
0.0	Railroad ballast				- o -			
1.8	Gray, tine to medium SAND, trace gravel			n Auger	- 5			-
9.7	Iron Staining Gray SILT, Iron stained			Hollow Stem Auger	- 10			-
12.0	Gray, fine to medium SAND, some silt layers		×		- 15			-
<u>17.3</u> 17.8	SILT Gray SILT to sitty CLAY							
19.6	pink layer Grav. line to medium SAND				- 20			
20.0	Bottom of Hole - 20.0 Below Ground Surface				- 25			
					- 30			
DRILL F DRILLI DRILLE	NG CONTRACTOR: Geotech					D: A. Templeton ED: T. Belunes 8/5/93		Golder

				mited, Inc.	PROJECT NUMBER BORING NL 40612 SB1	MUER	SHEET 1 OF 1
	1081 Long	Colur view, \			SOIL BOR	ING I	LOG
	r_Por	t of	Long	view	LOCATION 20	Port	Way, Longview, Washing
LEVAT	10N			•	DRILLING CONTRACTOR Hokkaido Dril		
RILLIN	IG METH	OD AND	EQUIPM	ENT Mobile	e B-61 Hollow Stem Auger Drilling	_	
ATER	LEVEL AI	ND DATE	E			/91	LOGGER_C. Grant
₹r		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
					Top l' - crushed rock pavement		* ************************************
						1	
•	1.0				No recovery	1	
-	-		0	3-7-7		{	
•			ľ	(14)		1	
.5 _	2.5				No recovery w/1.5" ID split spoom	-	Rock in sampler head
-			0	6-9-7	w/3" ID split spoon poorly graded	1	Redrive 3" ID split
			8"	(16) 2-3-11	sand, grey, dry, med dense, sand (SP)		spoon
				(14)	Poorly graded sand as above to		
					4'5" then in contact with a silt		
0				4-3-3	grey, moist, loose silt w/some iron stain and fine grained sand_		
-	5.5		17"	(6)	lenses throughout (ML)		
•					Silt (ML) as above to 6'8", then	1	PID = 27 ppm
-	1				is a poorly graded sand, grey, wet, loose, fine to coarse sand		frridescent sheen on spoon
-	7.0		10"	5-4-4	w/an odor of petroleum (SP)		spoon
5	/.0		10	(0)		1	
5 -	-				Sand (SP) as above, except -		GW at approx 7' depth
-	1			3-2-2	saturated to 8' – then is a silt, grey, wet, loose silt (ML)	1	PID = 167 ppm
	8.5		16"	(4)	End boring at 8.5"		6 ea 50# bags Wyoben
-							enviro plug medium us to abandon boring
					-		
•							
•							
•]						
•	1					1	1
-	1				-	1	
•						1	
•	-					1	
-	1 1					1	
	-					ł	
	1		1			1	

Í

PO	L0	08	7	0	9
----	----	----	---	---	---

Dotro	Journ G	Contin	o Unti	mited in a	PROJECT NUMBER	BORING NU	MBER	
	1081			mited, Inc. Blvd.	40612	SB2		SHEET 1 OF 1
•			WA 98			SOIL BORI	NGL	.0G
PAOJEC	r_Por	t of	Long	view		LOCATION 20	Port	Way, Longview, Washing
LEVAT				· Mohdi	DRILLING CONTRACTOR H			g and Developing
	G METH			ENTMOD1		FINISH_ 5-1		LOGGER_C. Grant
VATER	LEVEL AI			STANDARD	SOIL DESCRIPTION			COMMENTS
BELOW			· · · · ·	PENETRATION TEST <u>RESULTS</u>	SOIL DESCRIPTION SOIL NAME, COLOR, MOISTURE RELATIVE DENSITY OR CONSIS	CONTENT,	LIC LIC	DEPTH OF CASING, DRILLING RATE,
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	STRUCTURE, MINERALOGY, US		SYMBOLIC LOG	DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
					3" asphalt pavement co	ver	[
- 2.5 - -	2.5		15"	3-3-6 (9)	Poorly graded fine sar brown, dry, sand w/occ charcoal lenses to 3' a silt, grey, silt w/w to 3'6" then is a well grey, moist, fine to c	asional 2", then is- wood fibres graded sand	•	PID = 7.1 ppm odor of petroleum
					grey, moise, rine to t	(SW)		
5.0						-		
J.0 _	1					_		
	6.0		Ì		At 6' is a well graded	- I sand as		
-			15"	4-3-3 (6)	above to 6'8", then is graded fine sand w/sil grey, wet, loose, sand then is a clay w/ silt	a poorly " .t, dark . l to 7'3",		PID = 1000+ ppm
7.5	7.5				grey, plastic clay (OH			
-	9.0		18"	2-2-2 (4)	Clay, as above, except w occasional fine graine lenses, to 8'8", then i graded fine sand w/sil	d sand s a poorly		PID = 2000 ppm odor of petroleum
10.0 <u> </u>	10.5		17"	5-4-6 (10)	wet, loose, fine sand Sand as above to 9'3", clay w/silt, grey blue	(SP-SM) then is a_		PID = 690 ppm
-					plastic, clay w/wood f	ibres to		odor of petroleum
					9'8", then is a poorly fine sand w/silt, grey loose, fine sand (SP-S	blue, wet,		
12.5_					End boring at 10.5'			-
-						-		
-						-		
-						-		
			1					
•			ŀ			-		

.

n •	troleum Services Unlimited, Inc. 40612 BORING NUMBER						J				
Petro	leum S	service	es Unli	mited, Inc.	40612	SB3			SHEET	l OF	1
	Long	Colui view,	mbia E WA 98	31Vd. 3632	SO	IL BORI	NGI	.0G			
PROJEC	T_PO1	t of	Long	view	LOC	ATION 20	Por	: Way,	Longview	, Wash	ingto
ELEVAT				•	DRILLING CONTRACTOR Hokka	aido Dri	11in				
DRILLIN	G METH	OD AND	EQUIPM	ENT Mobile	e B-61 Hollow Stem Auger D				·		
WATER	LEVEL A		E	<u> </u>	START <u>5-1-91</u> FIN	изн <u>5-1-</u>	<u>91</u>	LO	GGER <u>C.G</u>	rant	
30		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION				COMM	ENTS	
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST <u>RESULTS</u> 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONT RELATIVE DENSITY OR CONSISTENCY STRUCTURE, MINERALOGY, USCS GRU SYMBOL	SOIL	LOG LOG		DEPTH OF C. DRILLING RA DRILLING FL TESTS AND INSTRUMEN	TE. UID LOSS,	
											-
-										,	-
-						_					
2.5_											
								l			
-						-					-
-						-					-
-	4.0				Poorly graded fine sand w/ brown, dry, loose, sand (S						-
	-		18"	2-2-3	to 4'11", then is a silt,	brown,		PID =	32.5 ppm	1	-
5_				(5)	loose, silt with iron stai	n –		ł			-
-	.5.5				throughout (ML), to 5'4", t a clayey silt, grey blue,						-
-					(OH) w/an odor of petroleu	m _					-
								l			
	7.0				Silt w/sand, grey blue, we	t. 10054					
7.5					silt (ML), to 7'9" then is	a well		PID -	177 ppm		-
	1		16"	4-4-5	graded fine to coarse sand	, blue,			of petrol	eum	-
-	0 -			(9)	wet, loose sand (SW) to 8' then is a poorly graded fi	ne sand					-
-	8.5		·		w/silt, grey blue, wet, lo	ose, .					-
-	{				sand w/wood chips (SP-SM)	-					-
-						ŀ					-
10 _	10.0				Poorly graded fine sand w/	silt _					_
-					(SP-SM) as above, to 10'7"	, then			30 ppm		
_]		18"	.2-2-3	is a silt, blue grey, mois (OH), to 10!10", then is a	t, silt silty)dor	of petrol	eum	
	11.5			(5)	clay, black, moist, clay w	íth					-1
-					organic fibres throughout	(OH) ⁻					-1
12.5					to ll'2", then is a clay, dry, plastic, clay (OH)	grey, - _					-
-					End boring at 11'6"	-		Envir	50# bags o plug me andon bor	dium us	sed.
-						-					-
	J]		.								I

	leum S 1081			imited, Inc.	40612	SB4	4	SHEET 1 OF 1						
• •			WA 98		SOIL	SOIL BORING LOG								
	T_POI	ct of	Long	view	LOCATIO	DN 20	Port	t Way, Longview, Washing						
	ION			•	DRILLING CONTRACTOR_Hokkaid	lo Dril	lling	g and developing						
LLIN	G METH	OD AND	EQUIPM	IENT Mobile	B-61 Hollow Stem Auger Dril									
TERI	LEVEL AI		E	STANDARD	START_5-2-91FINISH	<u>5-2-</u>	-91							
5E		SAMPLE	·	PENETRATION				COMMENTS						
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOI STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	IL I	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION						
·					Top 8" is a crushed rock pave	ement								
-						1								
-						-								
-			ł			-								
-						-								
.5_														
•	1					-								
-						-								
7	4.0				Poorly graded fine sand, grey dry, med dense, sand (SP), to									
-			18"	7-7-6	then is a silt, brown, soft, s									
-			10	(13)	w/iron stain througout (ML) t									
	5.5			()	5'4" then is a clayey silt, g blue, dry silt (CL-ML)	grey								
					bide, dry siit (CL-ML)		•							
-						1								
-						-								
1	7.0				Well graded sand, blue grey, loose, sand w/occasional pebb			DTD = 1/7 nor						
.5_					(SW), to 8'2", then is a poor	rlv -		PID = 147 ppm Odor of petroleum						
-			14"	(9)	graded fine sand, blue grey,	- -								
	8.5				saturated, sand (SP)	_								
-														
۲ م	10.0					-								
0 _	10.0		····		Poorly graded sandy silt, blu			PID = 32 ppm						
-			18"		grey, wet, loose, silt (ML) t			Odor of petroleum						
-			10		lO'7", then is an interbedded and clay, blue grey, wet (ML)									
-	11.5				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_								
					End boring at 11'6"			10 ea 50# bags Wyoben						
2.5						1		enviro plug medium use						
د. ر								to abandon boring						
-						-								
-						-								
-						-								
-			ļ											
					· ·									

I,

POL008712

•

Petroleum Services Unlimited, Inc. 1081 Columbia Blvd.					PROJECT NUMBER BORN 40612	ING NUMB SB5	ER	SHEET	1	of 1		
	1081	Colu		Blvd.	SOIL B	ORIN	GLOG				-	
	T_Por	t of	Long	view		. 20 P	Port Way.	Longview	y. Wa	shi	ne	
HOJEC		2 01	Long	•	DRILLING CONTRACTOR Hokkaido							
		DD AND	EQUIPM	ENT MODIL	e B-61 Hollow Stem Auger Drill							
ATER L	LEVEL AN		E		START_5-2-91FINISH	5-2-9	1LO	GGER <u>C.</u> G	rant			
*	SAMPLE DENETRAT			STANDARD PENETRATION	SOIL DESCRIPTION		COMMENTS					
DEPTH BELOW SURFACE (FT)	NTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST <u>RESULTS</u> 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC	100	DEPTH OF C DRILLING R DRILLING FL TESTS AND INSTRUMEN	IUID LO	SS,		
00	=	+ 2	<u> </u>		Top 8" is a crushed rock pave							
-					iop o ib a crabhea rock pave	-						
-						1						
]						
2.5	1					1						
_ر.،	1					-						
-					· · ·	-						
-						-	Į					
-	4.0				Poorly graded fine to med san	a						
-		l			brown, dry, med dense, sand (-	ł					
5			13.5'				1					
-	5.5			(11)		-1						
4						-						
-						-						
-						-						
-	7.0				Poorly graded fine sand w/silt	+ -						
7.5_					brown grey, moist, loose, was							
_			17"	4-4-4	sand w/occasional silt lenses							
1	8.5			(3)	piesces of charcoal (SP-SM)	1						
-	<u></u>					-1						
-						-						
-						-	ľ					
) _	10.0]		Silt, grey blue, wet, stiff, s	silt						
-					(OL) to 10'8", then is a claye	ey _		= 12.7ppm				
			18"		silt, grey blue, moist, silt v	with	Jugor	of petro	reum			
	11.5				woodchips throughout (OH)							
		·····			Silt w/sand grey, wet, firm, s	silt	PID -	= 15.8				
1	(Í		18"	2-3-4	with organic fibres (OL) to 12 then is a clayey silt, grey bl	lue.		of petro	leum			
2.5_				(7)	moist, firm, silt with woodchi							
~	13.0				and charcoal throughout (OH)	-		•				
-					End boring at 13'		Envir	a 50# bag o plug mo andon bo:	edium			

Petroleum Services Unlimited, Inc.				•••	PROJECT NUMBER	BORING NU	MBER	
Petro					40612	SB6		SHEET 1 OF 1
			mbia I WA 98		SO	IL BORI	NG L	.0G
PROJEC	T Por	t of	Long	view	100	ATION 20	Port	: Way Longview Washingto
ELEVAT				•	DRILLING CONTRACTOR_Hokk	aido Dri	lling	and Developing
			EQUIPM	ENT Mobile	B-61 Hollow Stem Auger D			
WATER						NISH <u>5-2</u> -		LOGGER C. Grant
	r	SAMPLE						COMMENTS
₿E			r	PENETRATION TEST		ENT		
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	<u>RESULTS</u> 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONT RELATIVE DENSITY OR CONSISTENCY STRUCTURE, MINERALOGY, USCS GR SYMBOL	SOIL	LOG SYMBOLIC	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
					Top 6-8" is a crushed roc ment	k pave		
-					Soil cuttings are a fine grain sand, brown, dry	to med		
2.5_					11/			- -
-						-		
5_								-
-								-
						1 		-
7.5						-		
-	8.5				Interbedded brown and gre layers, moist, soft, silt	(OL)		PID = 0.0 ppm -
- - 10	10.0		18"	5-4-4 (8)	to 9' then is a clay w/si grey blue, dry, soft, cla interbedded silt (OH)			Odor of petroleum _
			13"	3-4-4 (8)	Clay (OH) as above, to ll is a silt, grey, moist, s silt (OL)			
12.5	11.5		15"		Clay, grey, plastic, soft (OH), to ll'10" then is a w/sand, grey blue, wet, 1 silt (OL)	silt		PID'= 3.7 ppm
	13.0				End boring at 13'	-		9 ea 50# bags Wyoben Enviro plug medium used to abandon boring
-						•		_

Petroleum Services Unlimited, Inc. 1081 Columbia Blvd. Longview, WA 98632

PROJECT NUMBER 40612 BORING NUMBER SHEET 1

SOIL BORING LOG

PROJE	ст_Ро	rt of	Long	vlew			Way, Longview, Washington				
ELEVATION DRILLING CONTRACTOR Hokkaido Drilling and Developing DRILLING METHOD AND EQUIPMENT Mobile B-61 Hollow Stem Auger Drilling Rig											
DRILLIN	IG METH	OD AND	EQUIPM	ENT_MODILE							
WATER	LEVELA			STANDARD	START <u>5-2-91</u> FINISH <u>5-2</u>	-91	LOGGER C. Grant				
₿F	[SAMPLE	l	PENETRATION							
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION				
					Top 24" is a crushed rock pave∺ ment		-				
2.5					-		- - -				
5	4.0		15"	5-7-11	Poorly graded fine sand, dry, - med dense, sand (SP)		-				
	5.5			(18)	-		- - -				
7.5	7.5				- Clayey silt, grey blue, wet, silt w/irridescent sheen and		PID = 133 ppm -				
	9.0		18"	2-1-1 (2)	organic fibres, charcoal pieces (OL) to 8'3", then is a clay w/silt, dark grey, slightly plastic, dry to moist, soft,		-				
10					clay with some wood fibres (CL-ML) End boring at 9'		- − 7 ea 50# bags Wyoben _				
	-				-		Enviro plug med used to abandon boring				
-							-				
	-				-						
ł	1				•						

OF 1

1081 Columbia Bivd. Longview, WA 98632 40012 SHEET 1 or 1 40012 SHEET 1 or 1 1081 Columbia Bivd. Longview, WA 98632 SOIL BORING LOG ROUGET PORT Of Longview Control Colombia Bivd. Longview, WA 98632 PROJECT PORT Of Longview Control Colombia Bivd. Longview, WA 98632 PROJECT PORT Of Longview Control Colombia Bivd. Description Solution Stem Auger Drilling Rig Status of the status of the sta						PROJECT NUMBER	BORING NU	MBEA					
Longview, WA 98632 SOIL BORING LOG PROJECT_POTE of Longview LOCATION_20 POTE May; Longview, Mashing and the definition of the complete of Longview, Mashing and Developing Description Description Description Standards Description Standards Soil and the description Standards Description Standards Soil and the description Soil and the description Soil and the description <	Petro					40612	SB8			SHEET	1	OF	1
ALEVATION													
ALEVATION	PROJEC	Po Po	rt of	Long	view	LOC	ATION 20) Port	: Way';	Longvi	ew,	Wash	ing
VATER LEVEL AND DATE	ELEVAT	ION			•	DRILLING CONTRACTOR Hokk	aido Dri	.11ing	and				
Stanpit France France France Comments 1 1 1 1 Soil DESCRIPTION Comments 1 1 1 1 Soil DESCRIPTION Comments 1 1 1 1 Soil DESCRIPTION Description 1 1 1 1 1 Soil DESCRIPTION Description 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	DAILLIN	IG METH	IOD AND	EQUIPM	IENT Mobile					•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WATER	LEVEL A	ND DAT	E		START_5-2-91FIN	ызн <u>5-2</u> -	-91		GER_C.	Gran	<u>it</u>	
2.5 5.0 7.5 7.5 9.0 9.0 16" 2-3-3 (6) Clay (OH), as above, to 9'7" then is a clay w/silt, fire clay (OH) 9.0 10 10.5 16" 3-5-5 (10) 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10 10 10 10 10 10 10 10 10 10 10 .	¥c		SAMPLE	:	PENETRATION	SOIL DESCRIPTION				COM	MENT	s	
2.5 5.0 7.5 7.5 9.0 9.0 16" 2-3-3 (6) Clay (OH), as above, to 9'7" then is a clay w/silt, fire clay (OH) 9.0 10 10.5 16" 3-5-5 (10) 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10 10 10 10 10 10 10 10 10 10 10 .	DEPTH BELO SURFACE (FT	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	<u>RESULTS</u> 6"-6"-6"	RELATIVE DENSITY OR CONSISTENCY STRUCTURE, MINERALOGY, USCS GR	, SOIL	SYMBOLIC LOG		DRILLING I DRILLING I TESTS AND	RATE, FLUID D	LOSS,	
sand and gravel. sand and gravel. sand and gravel. sand and gravel. 7.5 $7.57.5$ $7.59.09.09.016''$ $2-3-3(6)9.016''$ $3-5-5(10)16''$ $3-5-5(10)16''$ $3-5-5(10)16''$ $3-5-5(10)16''$ $3-5-5(10)16''$ $3-5-5(10)10 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10.510 - 10 - 10.510 -$						Top 3" is an asphalt pav	ement .						
5.0 7.5 7.5 9.0 16" 2-3-3 (6) 10.5 10 10.5 10 10.5 10 10 10 10 10 10 10 10 10 10	•						k brown						
7.5 7.5 9.0 16" 2-3-3 (6) 9.0 16" 2-3-3 (6) 9.0 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" Odor of petroleum ID = 4.8 ppm Odor of petroleum ID = 50# bags Wyoben Enviro plug med used to abandon boring	2.5						-						_
7.5 7.5 9.0 16" 2-3-3 (6) 9.0 16" 2-3-3 (6) 9.0 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" Odor of petroleum ID = 4.8 ppm Odor of petroleum ID = 50# bags Wyoben Enviro plug med used to abandon boring	-	-					-						
7.5 7.5 9.0 16" 2-3-3 (6) 9.0 16" 2-3-3 (6) 9.0 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" Odor of petroleum ID = 4.8 ppm Odor of petroleum ID = 50# bags Wyoben Enviro plug med used to abandon boring	-	-		1									
7.5 7.5 9.0 16" 2-3-3 (6) 9.0 16" 2-3-3 (6) 9.0 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" Odor of petroleum ID = 4.8 ppm Odor of petroleum ID = 50# bags Wyoben Enviro plug med used to abandon boring						· ·	-			1			
7.5 7.5 9.0 16" 2-3-3 (6) 9.0 16" 2-3-3 (6) 9.0 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" Odor of petroleum ID = 4.8 ppm Odor of petroleum ID = 50# bags Wyoben Enviro plug med used to abandon boring							-						
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring	5.0	l	[· _						_
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring			}				_						
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring			ł	}									
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring		[l	ļ			-						
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring	-	1					-	1					
Poorly graded fine sand w/silt brown, loose, sand (SP) to 8'1" then is a clay w/silt, dark grey dry, plastic, firm clay (OH)PID = 7.9 ppm Odor of petroleum9.016" 2-3-3 (6)Clay (W), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016" 3-5-5 (10)Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1010.5End of boring at 10'6"10 ea 50# bags Wyoben Enviro plug med used to abandon boring	7.5	7 5		·			-	1					•
1016"2-3-3 (6)brown, roose, sand (Sr) to 8 1 then is a clay w/silt, dark grey dry, plastic, firm clay (OH)Odor of petroleum9.0016"2-3-3 (6)Clay (VH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lensesPID = 4.8 ppm Odor of petroleum1016"3-5-5 (10)Silt w/interbeds of fine sand and clay lenses10 ea 50# bags Wyoben Enviro plug med used to abandon boring	-	1.5							PID	= 7.9	ppm		-
9.0 (6) dry, plastic, firm clay (OH) 9.0 Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10.5 16" 3-5-5 (10) silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10.5 10 silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10.5 10 silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10 silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10 silt w/interbeds of fine sand and clay lenses PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 ea 50# bags Wyoben PID = 4.8 ppm 10 <	-			16"	2-3-3							eum	
10 - 10.5 16" 3-5-5 (10) 16" 3-5-5 (10) Clay (OH), as above, to 9'7" then is a silt, grey, moist, loose silt w/interbeds of fine sand and clay lenses End of boring at 10'6" 10 ea 50# bags Wyoben Enviro plug med used to abandon boring	-				(6)								
10 - 10.5 16" 3-5-5 (10) 10.5 10.5 10.5 10" 3-5-5 (10) 10 and clay lenses End of boring at 10'6" 10 ea 50# bags Wyoben Enviro plug med used to abandon boring	-	9.0				$(0H)$ as above to 9^{17}	7 ¹¹ then		חדס	- / 8 -			
10 - (10) and clay lenses 10.5 (10) and clay lenses End of boring at 10'6" 10 ea 50# bags Wyoben Enviro plug med used to abandon boring	-					is a silt, grey, moist, 1	loose 7					eum	
End of boring at 10'6" I l0 ea 50# bags Wyoben Enviro plug med used to abandon boring	10 -			16‼	1		sand _						
Enviro plug med used to abandon boring		10.5			(10)	-	-			#			
	-					End of boring at 10'6"	-		Env:	iro plug	g me	d us	
	-						-						
	12.5						-						-
	-						r-					•	-
	**						-						-
	-						-						
	-					be-	-						
		.					,						

Í

Petro	leum S	Service	es Unli	mited, Inc.	PROJECT NUMBER 40612	BORING NU SB9	MBER	SHEET I OF I
	1081	Colu	mbia I WA 98	3lvd.		L BORI	NGL	
<u></u>	- Poi	rt of	Long	view	1	20	Por	<u> Way, Longview, Washingtor</u>
ELEVAT					DRILLING CONTRACTOR Hokka			
DRILLIN	G METH	OD AND	EQUIPM	ENT Mobil	e B-61 Hollow Stem Auger Dr			
WATER	1			STANDARD	STARTFINISH5-3-91			LOGGER C. Grant
₿E	SAMPLE		PENETRATION TEST	SOIL DESCRIPTION				
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	<u>RESULTS</u> 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CONTE RELATIVE DENSITY OR CONSISTENCY, STRUCTURE, MINERALOGY, USCS GRO SYMBOL	SOIL	LOG SYMBOLIC	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
	1.				Top 8-12" is a crushed roc	k		
					pavement	-	ļ	
					Drill cuttings and a brown	sand -		-
						-		
2.5						-		-
						-		
.	ł					-		
] .						-		
						-		
5_		İ				_		_
						-		_
.								
						-		
7.5					Silty clay, grey, dry, firm	,		
-			18"	2-2-3 (5)	slightly plastic, clay w/o fibres throughout (OH), to then is a silt, grey, mois silt (OL)	rganic 8'8", -		PID = 11.7 ppm Odor of petroleum - -
-	9.0			·	Silt (OL), as above, to 9'	6" them		PID = 10,3 ppm
10 -			16.5"	4-6-4 (10)	is a poorly graded fine sa silt, dark grey, moist to loose, sand (SP-SM)			Odor of petroleum
	10.5			(10)	roose, sand (or SH)	-		-
					End boring at 10'6"			10 ea 50∦ bags Wyoben Enviro plug med used to abandon boring -
-						-		
12. <u>5</u>						-		-
1						-		
1 -						-		
						-		
						_		

•

					PROJECT NUMBER	BORING NU	MBER				
Petro				imited, Inc.	40612	SB10		SHEET 1 OF 1			
•		Colui view,			S	SOIL BORING LOG					
PROJE	T Por	t of	Long	view		CATION 20	Por	t Way, Longview, Washingt			
	10N				DRILLING CONTRACTOR Hok	kaido Dri	lling	g and Developing			
DRILLIN	IG METH	OD AND	EQUIPN	HENT Mobile	e B-61 Hollow Stem Auger						
WATER	LEVEL A		E			INISH <u>5-3</u>	-91	LOGGER C. Grant			
¥c.	SAMPLE			STANDARD PENETRATION	SOIL DESCRIPTION			COMMENTS			
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST <u>RESULTS</u> 6"-6"-6" (N)	SOIL NAME, COLOR, MOISTURE CON RELATIVE DENSITY OR CONSISTENC STRUCTURE, MINERALOGY, USCS G SYMBOL	CY, SOIL	SYMBOLIC LOG	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION			
;		[Top 8-12" is a crushed ro	ock	[
					pavement			-			
	-						1	-			
						•	ļ	_			
	1]				
2.5						-					
]					-	}				
•	1					-					
	1	ļ				-					
	-					-		-			
	-	ł				-		4			
5_						• _	l ·	_			
-						-					
•						-					
•	-					-		-			
						-		-			
7.5 -	7.5				Clay w/silt, grey, moist,			-			
-					silt (OL), to 8', then is poorly graded sand w/silt	a -		PID = 6.7 ppm			
-			17"	4-2-2	moist, very loose, sand w/sill	, grey, organic _					
	9.0			(4)	fibres (SP-SM)	-					
•					Silt, grey, moist, soft, to 9'7", then is a clay w						
10	1		1.8"		light grey, wet, soft, cl			PID = 3.1 ppm -			
				(3)	to 9'10", then is a silt	w/sand -		-			
	10.5				wet, loose, silt w/clay l	enses .	ł	-			
					End boring at 10'6"	-		9 ea 50∦ bags Wyoben –			
						-		Enviro plug medium used-			
								to abandon boring			
12.5						-					
	1					-		-1			
•						-		-			
-						-		-			
-						-					
_											
•								1			
		,	I	ı (الارتها والمحمومة مرتورة الروار فا		ι.	Fish and the second s			

.

ľ

L

POL008718

Test Pit Logs

Test Pit 1 11/23/92 South side of Bunker C Tank

<u>Depth ft.</u>	Description
0-2	Moist brown sand, some silt and clay fill. Hard dark grey bunker layer at 1.5 ft. Tile pipeline at 1.5 ft. , oily sheen on water in pipeline.

2-6.5 Grey clayey silt, decaying organic odor. Wood at 6.5 ft. PID 3.2 ppm at 4.0 ft.

Test Pit 2 11/23/92 West side of Bunker C Tank

0-2 Brown to yellow sand and cobble Fill, some pieces of bu

2-2.5 Gray clayey silt

2.5-4 Light brown clayey silt

- 4-7 Light brown silty fine to medium sand
- 7-11 Grey clayey silt, with fine sands and wood fragments, strong petroleum odor.

Water entering pit from 3.5 and 5 ft., sheen on water from 3.5 ft. PID readings of 9.7 ppm and 8.0 ppm from 7 and 11 ft., rspectively.

Test Pit 3 11/23/92 South side of Bunker C Tank.

- 0-1.5 Brown silty sand.
- 1.5-5 Grey silty sand to sandy silt, strong petroleum odor. PID at 2 ft 33.4 ppm, sample TP-3-2(d).
- 5-8 Grey clayey silt with wood fragments. PID at 8 ft 365 ppm, sample TP-3-8.
- 8-10 Grey fine sand, some silt, strong petroleum odor.

PID reading from soil pile vary from 55 to 365 ppm

Golder Associates

POL008838

July 27, 1993

Test Pit 4 11/23/92 Northwest side of Bunker C Tank.

<u>Depth Ft.</u>	Description
0-2.5	Moist, brown sandy silt.
2.5-3	Brown-grey medium sand, some silt.
3-6	Moist, mottled brown silty fine sand, some clay.
6-8	Moist, brown clayey silt.
8-12	Grey fine to medium sand, some silt.
12-15	Wet, mottled gray silt.

Test Pit 5 11/23/92 East side of Bunker C Tank

0-1.5	Brown clayey silt, some sand. Water entering pit at 1.5 feet.
1.5-2.0	Grey to black hard materail, possible Bunker C spill.
2-3	Moist, grey sand to sandy silt.
3-5	Moist, grey silty fine to medium sand.
5-6	Moist to wet, grey silty clay to clayey silt, water at 5 feet.
6-13	Wet, grey clayey silt

Test Pit 6 11/23/92 South of Bunker C Tank by Army Reserve Property

0-15. Crushed rosk fill.

1.5-2 Hard grey Bunker C (?)

2-6 Brown clayey fine sandy silt.

6-7 Wet, mottled brown clayey silt.

Golder Associates

July 27, 1993

7-10 Wet, grey clayey silt

10-11 Grey medium sand, strong odor

Test Pit 7 11/23/92 West side of tank.

Depth ft.Description0-1.5Brown clayey silt.1.5-2Black chunks of tar like material.

Test Pit 8 11/23/92 East side of Tank

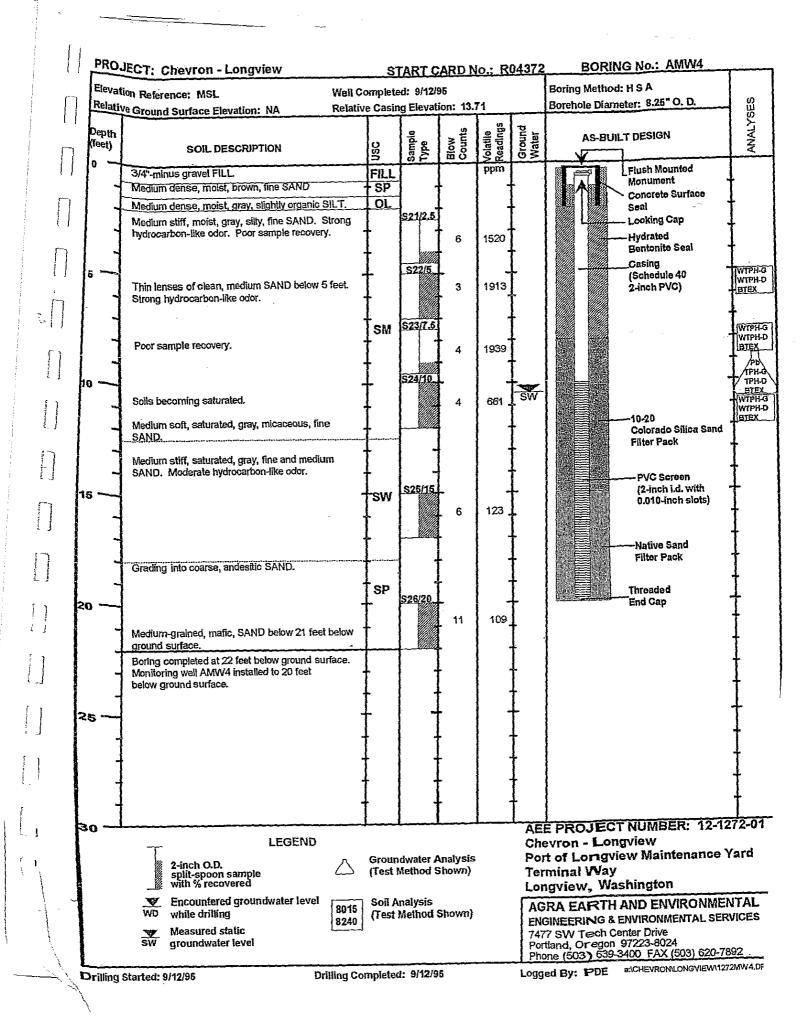
0-4 Moist, brown clayey sandy silt4-7 Grey medium sand.

7 Wet grey silt

Excavation appears "Clean".

Test Pit 9 11/23/92

South of Tank by Army Reserve property.


0-1.5	Crushed rock and clay, silt, sand fill.
1.5-3	Moist, mottled, brown sandy clayey silt.
3-6.5	Grey brown silty sand.
6.5-10	Moist to wet, grey sandy silt, some wood fragment.
10-16	Dry to moist, grey clay, some silt
16	Wet grey sand, strong petroleum odor.

Golder Associates

PROJECT:	Chevron - Longview		ST	ART C	ARD N	<u>o.: R</u>	04372	BORIN	G No.: AMW1	— —
Elevation Refer				d: 9/11// g Elevat)5 ion: 13.3	33		Boring Method Borehole Diam	: H S A eter: 8.25" O. D.	្រុ
Depth (feet)	SOIL DESCRIPTION		nsc	Sample Type	Blow Counts	Volatile Readings	Ground Water	AS-BUI	LT DESIGN	ANALYSES
0 <u>3/4"-min</u>	nus gravel FILL.	· · ·	FILL			ppm			Flush Mounted	
- Medium	stiff, moist, red-brown, medium SAND.		- SP	- S1/2.5	- 5	-			Monument Concrete Surface Seal Locking Cap — Hydrated	Ī
5 Medium	dense, moist, gray SILT. Mild organic od	lor.	L ML		- - 5	- 345	-		Bentonite Seal Casing (Schedule 40 2-inch PVC)	WIPH WIPH BTEX
SAND, 1	ft, wet, dark gray, silty, fine and medium nterbedded with thin silt lenses. Strong rbon-like odor.	-	TSW with ML	53/7.5 54/10	2	- 1510 - 15 -	SW .			
	dense, saturated, gray, coarse, andesitic Mild organic odor.			-		ـــــــــــــــــــــــــــــــــــــ			—10-20 Colorado Silica Sand Filter Pack	
		-	SP	- 55/15 	9	- 23 -			PVC Screen (2-inch i.d. with 0.010-inch slots) Native Sand Filter Pack	
20 Medium becomin	stiff, saturated, dark gray, fine SAND, ng coarser with depth. Mild organic odor.	-	• •	 	8	8 _	-		_Threaded End Cap	
25	,	-	- SP -	 	- 5	- 11				
Monitor ground native s and pre sand in	completed at 27 feet below ground surface ing well AMW1 installed to 22.5 feet below surface. Note - significant volume of heav and flowed into auger during well installat vented placement of engineered filter-pac the interval 14'-25' below ground surface.	v /ing ìon k	-		-	-			NUMBER: 12-12	72-01
30	LEGEND 2-inch O.D. split-spoon sample with % recovered	\bigtriangleup	(Test	Viethod (Analysis Shown)		Che Por Ter	evron - Long	view w Maintenance \	
WD WD SW	Encountered groundwater level while drilling Measured static groundwater level	8015 8240		nalysis Method	Shown)		ENC 747 Por	SINEERING & El 7 SW Tech Cen tland, Oregon 9	ND ENVIRONMENT VVIRONMENTAL SER ter Drive 7223-8024 00 FAX (503) 620-76	VICES

PROJ	ECT: Chevron - Longview		START C	ARD N	lo.: R()4372	BORING No.: AMW2	
	on Reference: MSL re Ground Surface Elevation: NA	Well Comple Relative Cas			27		Boring Method: H S A Borehole Diameter: 8,25" O. D.	<i>о</i>
Depth (feet)	SOIL DESCRIPTION	nsc	Sample Type	Blow Counts	Volatile Readings	Ground Water	AS-BUILT DESIGN	ANALYSES
° -	3/4"-minus gravel FILL.	FIL			ppm		Flush Mounted Monument Concrete Surface Seal	
	Soft, moist, gray, silly, fine SAND. Strong hydrocarbon-like odor. Poor sample recovery.	4		4	800	- -	Locking Cap 	
δ	Mild organic odor.	SN		3	27	- - -	(Schodule 40 2-inch PVC)	
-	Medium dense, moist, brown-gray, micaceous Mild organic odor.	SILT.	S107.5	7	63	•		WTP WTP BTE
10	Medium soft, wet to saturated, dark gray, med SAND. Mild organic odor.		<u>511/10</u>	n/a	- 16 -	SW		
	Medium dense, wet, gray SILT. Medium stiff, saturatéd, dark gray, coarse, an SAND.	desitic				•		BTE
15		+ SF	5 <u>S12/15</u>	n/a	21	- -	PVC Screen (2-inch i.d. with 0.010-inch slots)	-
	Medium stiff, wet, gray SILT. Medium stiff, saturated, dark gray, coarse, and SAND.	ML desitic	•	+		-	Native Sand Filter Pack	•
20 — -		ļsF	S <u>13/20</u>	8	23	-	Threaded End Cap	-
	Boring completed at 22 feet below ground sur Monitoring well AMW2 installed to 20 feet below ground surface.	face.			-	-		•
25			-			-		-
+ + +					•	•		•
30 —	LEGEND 2-inch O.D. splif-spoon sample with % recovered	∠⊃ (Tee	undwater i st Method		<u>. </u>	Che Por Ter	E PROJECT NUMBER: 12-1272 evron - Longview rt of Longview Maintenance Yai rminal Way ngview, Washington	
	WD Encountered groundwater level WD while drilling WD Measured static SW groundwater level	8015 8240 (Te	l Analysis st Method	Shown)		ENG 747 Por	BRA EARTH AND ENVIRONMENT GINEERING & ENVIRONMENTAL SERVIC 77 SW Tech Center Drive rtland, Oregon 97223-8024 one (503) 639-3400 FAX (503) 620-7892	CES
rilling	Started: 9/11/95 Dri	lling Comple	ted: 9/11/5	95			ed By: PDE a: ACHEVRONALONGVIEWA1272MV	

PROJ	ECT: Chevron - Longview	<u>s</u> 1	FART C	ARD N	<u>o.:</u> RI	04372	BORING	G No.: AMW3	Ī
		ell Complete elative Casin			00		Boring Method: Borehole Diame		្ល
Depth (feet)	SOIL DESCRIPTION	nsc	Sample Type	Blow Counts	Volatie Readings	Ground Water	AS-BUILT	r design	ANALYSES
0	3/4"-minus gravel FILL. Soft, moist, brown, micaceous, silty, fine SAND.	+FILL	<u>\$14/2.5</u>	-	ppm -	-		Flush Mounted Monument Concrete Surface Seal Locking Cap	+
- - 5	Poor sample recovery.	Ţsm ↓		3	11 - 16	•		Hydrated Bentonite Seal Casing (Schedule 40 2-inch PVC)	
	Brown, clean, medium SAND lens. Silty, fine SAND.		<u>\$16/7,5</u>] -
	Medium soft, moist, brown, medium SAND. San coarsening with depth, becoming saturated.			5	21				
10		SP	S17/10	- 4	- 21	-SW			WTP WTP BIE
-	Medium soft, saturated, gray, micaceous, fine SAND.	_ SP	518/12.5	4	- 21			10-20 Colorado Silica Sand Filter Pack - PVC Screen	WTP
15	Medium dense, saturated, gray, coarse, andesitio SAND.		<u>S19/15</u>	8	- 24	-		(2-inch i.d. with 0.010-inch slots)	WTF
-		SP			-	-		-Native Sand Filter Pack Fhreaded	+
20		+	520/20	5	24		SIGNOR AND	Ênd Cap	
	Boring completed at 22 feet below ground surfac Monitoring well AMW3 installed to 20 feet below ground surface.	e.	-		-				+
25				-	_	-			
4		Ī			-	•			
30	LEGEND 2-inch O.D. split-spoon sample with % recovered		l Idwater / Method \$		Į	Che Por Ter	evron - Longv	/ Maintenance Y	
Image: Solid Shown of the second static groundwater level Solid Analysis (Test Method Shown) Image: Solid Shown of the second static groundwater level Solid Analysis (Test Method Shown) Image: Solid Shown of the second static groundwater level Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test Method Shown) Image: Solid Analysis (Test Method Shown) Solid Analysis (Test						/ICES			

PRO.	JECT:	Chevron - Longview		<u>S1</u>	ART C	ARD N	<u>o.:_R</u>	<u>04372</u>	BORING	No.: AMW5	
		rence: MSL d Surface Elevation: NA			d: 9/12/! g Elevat		55		Boring Method: H Borehole Diameter		ų
Depth (feet)	ve Groun	SOIL DESCRIPTION		USC	Sample Type	Blow . Counts	Volatile Readings	Ground Water	AS-BUILT I	DESIGN	
o — -	3/4"-mi	nus gravel FILL.		FILL		•	ppm		M A M	ush Mounted onument onorete Surface	ł
-		oist, brown, slightly gravelly, medi SAND. Poor recovery.	ium and .	sw	<u>527/2.5</u>	4	7	•	L L	eal ooking Cap ydrated entonite Seal	Ī
δ —	Very so	nt, moist, brown-gray, silty, fine S	AND.	SM	S28/5	2	- 8 -		c	asing chedule 40 inch PVC)	
-	Soft. m	oist, brown, medium SAND.		SP	S29/7.5	-	-				
-	silty, very	iense, moist to saturated, brown-l fine SAND, interbedded with gray clean SAND.	ight gray, y fine and	SM with SW	S30/10	7	12 -				
10	Dense, SAND.	saturated, brown-gray, coarse, a	ndesitic	[9	7 _	ŚŴ)-20 plorado Siliĉa Sand	
-	UAND.	•	-		- 		-		Fi	iter Pack PVC Screen 2-inch i.d. with	
16 -			-	SP -		- 6	6),010-inch slots) lative Sand	
-			-	- -	- S32/20		-		Th	ilter Pack	
20 -			-	- -		4	5		En	d Cap	
	Monitor	completed at 22 feet below ground ing well AMW5 installed to 20 fee round surface.	d surface. t	-	-		-				╉
25			-	- -	-		-	-		•	†
-					-			ŗ			Ţ
30 <u> </u>									E PROJECT NU	IMBER: 12-12	72-0
		LEGEN 2-inch O.D. split-spoon sample with % recovered	\bigtriangleup		dwater A Method S			Che Por Ter	vron - Longvie t of Longview I minal Way gview, Washin	w Waintenance Ya	
	WD	Encountered groundwater lev while drilling	vel 8015		nalysis Method :	Showay		AG	RA EARTH AND		

Н

FLOV		PROJECT: POL-TPH	LOCATIO	N: 10 Port V		BORING ID: GP-1
	DISNIDER	LOGGED BY:	BORING	Longview	v, vvA	
strategy •	science • engineering	G. Cisneros				
DRILLED BY:		1	NORTHIN			ASTING:
Brian, ESN DRILLING EQUIP				2.598299		1017608.66501
Geoprobe	- WIEIN I .		SURFAC			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	OD:		TOTAL D	EPTH (ft bgs):		EPTH TO WATER (ft bgs):
			25			17.5 and 21.75
SAMPLING MET Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		RILL DATE: 9/15/2015
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Asphalt Top 6 inches.					
	Road Base FILL.					
XFILL×	2					
	Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen:			
	moist.		,		5.1	
2 —						
					- 0	
	•				5.8	
3 —	: Same as above; no odor; no :	sheen: moist.				
					5.6	
					5.0	
4 —						
5 —	: Same as above; no odor; no	sheen; moist.				
	•					
6 —	:				9.4	
_						
7 —	Brown, medium dense, fine f	o coarse SAND with	10% fine red			
	grains; no odor; no sheen.					
8					7.6	
9						
	•					
- SP						
10	:					
ABBREVIATIONS			NOTES:			
ft bgs = feet bel ppm = parts per	low ground surface USCS = Unified r million = denotes	Soil Classification System groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-1
	science • engineering	LOGGED BY: G. Cisneros	BORING L	OCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292952	G : 2.598299	I	EASTING: 1017608.66501
RILLING EQUIF Geoprobe	PMENT:		SURFACE		C	COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING METH	OD:		TOTAL DI 25	EPTH (ft bgs):	[DEPTH TO WATER (ft bgs): 17.5 and 21.75
AMPLING MET	HOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:	[DRILL DATE : 9/15/2015
Depth USCS (feet) Symbol		otion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 — 15 —	Same as above; no odor; no Brown, medium dense, fine t moist. Same as above; no odor; no	o medium SAND ; no	odor; no sheen;		7.6 6.3 5.6	
16 —	Same as above; no odor; no Same as above; wet perched				6.0 7.0	
18 - ML	Olive gray, stiff SILT with mo no odor; no sheen; moist.	derate plasticity and	organic debris;		117.4	
19	Olive gray, medium dense, fi odor; no sheen; moist.	ne SAND with 5% sili	t; moderate		360.4	GP-1-19.5-20@1500
20	s.		NOTES:			-
	low ground surface USCS = Unified	Soil Classification System groundwater table				

FLO	YDISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev	Vay, v, WA	BORING ID: GP-1
	y • science • engineering	LOGGED BY: G. Cisneros	BORING I	OCATION:		·
DRILLED BY Brian, ES			NORTHIN	G : 2.598299		EASTING: 1017608.66501
DRILLING E Geoprobe	QUIPMENT:		SURFACE ELEVATIO			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING M	IETHOD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 17.5 and 21.75
SAMPLING Continuo	METHOD/SAMPLER LENGTH: US		BORING 2"	DIAMETER:	1	DRILL DATE: 9/15/2015
	SCS Soil Descrip mbol (color, texture, moisture, MAJOR Co	otion and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 —	SP Brown, medium dense, fine t moist.	o medium SAND ; no o	odor; no sheen;		10.3	GP-1-21-21.5@1505
22	∷::∵ │	slight odor; no sheen;	wet.		27.0	GP-1-21-21.5@1505
23 —	Gray, medium dense, fine to clasts; no odor; no sheen; sa		% fine red		23.1	
24 —	SP: Same as above; no odor; no	sheen; saturated.			10.5	
25						GP-1-GW@1516
ABBREVIAT ft bgs = fee ppm = part	et below ground surface USCS = Unified	Soil Classification System groundwater table	NOTES:			

			PROJECT:	LOCATIO	N: 10 Port \	Vay,	BORING ID:
FL	ΟY	DISNIDER	POL-TPH		Longview	v, ŴA	GP-2
		science engineering	LOGGED BY:	BORING	LOCATION:		
Seruc	cgy -	Science - engineering	G. Cisneros				
DRILLE	D BY:			NORTHIN	IG:	E	ASTING:
Brian,	ESN			29284	8.310601		1017538.62636
DRILLIN	IG EQUIP	MENT:		SURFAC	E	С	OORDINATE SYSTEM:
Geopi	robe			ELEVATI	ON:		SPCS WA S NAD83 FT
DRILLIN	IG METHO	DD:		TOTAL D	EPTH (ft bgs):	D	EPTH TO WATER (ft bgs):
				25			16.5 and 21
SAMPLI	NG METH	IOD/SAMPLER LENGTH:		BORING	DIAMETER:	D	RILL DATE:
Contir				2"			9/15/2015
Depth	USCS	Soil Descri	otion and Observations		Drive/	PID	
(feet)	Symbol	(color, texture, moisture, MAJOR C		g, sheen, debris, etc.)	Recovery	(ppm)	Sample ID
0	AS	Asphalt Top 3 inches.					
	8388	Road Base FILL.					
_	¦λfillλ						
1							
		Brown, medium dense, fine t	o medium SAND ; no	o odor; no sheen;			
_		moist.				1.8	
						1.0	
2 —							
2		1					
_		•					
3 —							
Ŭ		Same as above; no odor; no	sheen; moist.				
_		•				5.3	
		•					
4 —							
-							
5 —		· Brown, medium dense, fine t		th amall 2 inch			
		layers of crushed gray rock a					
-		feet bgs; no odor; no sheen;	moist.			8.9	
6 —							
		,					
-						4.3	
		•					
7 —							
		•					
8 —		Light brown, medium dense,	fine to coarse SANI	D ; no odor; no		5.6	
		sheen.		-			
_							
9 —	1						
-	 Г	•					
10	SP	•					
	VIATIONS	·		NOTES:			
ft bgs	= feet belo	ow ground surface USCS = Unified	Soil Classification Systen				
ppm =	parts per	million	groundwater table				

FLOY	D SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview	Vay, /, WA	BORING ID: GP-2
	science • engineering	LOGGED BY: G. Cisneros	BORING I	OCATION:		
ORILLED BY:		1	NORTHIN	G:	E	EASTING:
Brian, ESN			292848	3.310601		1017538.62636
DRILLING EQUI Geoprobe	PMENT:		SURFACE		C	COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	IOD:		TOTAL DI 25	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 16.5 and 21
SAMPLING MET Continuous	THOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:	[DRILL DATE : 9/15/2015
Depth USCS (feet) Symbo		ption and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11	Light brown, medium dense, sheen; moist.	, fine to medium SANI	D; no odor; no		8.3	
12 —	Same as above; no odor; no	o sheen; moist.			7.1	
14 —	Gray staining from 14.5 to 1 no sheen; moist.	5.5 feet bgs; slight ode	or at 14.5 feet;		6.1 6.3	
16 —	Brown, medium dense, fine moist.	to medium SAND ; no	odor; no sheen;		5.6	GP-2-16-16.5@1353
17	Gray, medium dense, fine to saturated.	o medium SAND ; sligh	it odor; no		7.6	
18 —	Gray medium dense, fine to saturated.	medium SAND ; no oc	dor; no sheen;		7.4	
19 — ML	: Olive, stiff, sandy SILT ; no o	dor; no sheen; moist.			6.6	
20	IS:		NOTES:			
	elow ground surface USCS = Unified	Soil Classification System	-			

FLOYD SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port W Longview	Vay, v WA	BORING ID: GP-2
strategy - science - engineering	LOGGED BY:	BORING L		, •••	
DRILLED BY:	G. Cisneros	NORTHIN	<u>c</u> .		ASTING:
Brian, ESN			8.310601		1017538.62636
DRILLING EQUIPMENT: Geoprobe		SURFACE			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL DI 25	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 16.5 and 21
SAMPLING METHOD/SAMPLER LENGTH: Continuous			DIAMETER:		RILL DATE: 9/15/2015
Depth USCS (feet) Symbol (color, texture, moisture, MAJOR Co	otion and Observations ONSTITUENT, odor, staining, sh	neen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
 Gray, medium dense, fine to clasts; no odor; no sheen; sa SP: Same as above; no odor; no 	iturated.	0% fine red		7.3	
25					GP-2-GW@1411
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified 3 ppm = parts per million		NOTES:			

E L S	ov		PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longvie		BORING ID: GP-3
		D SNIDER science • engineering	LOGGED BY:	BORING		N, VVA	
Strat	egy •	science • engineering	G. Cisneros				
DRILLEI				NORTHIN			ASTING:
Brian,		MENT			0.862706		1017486.36455
Geopi		MENT.		SURFAC			SPCS WA S NAD83 FT
DRILLIN	IG METHO	DD:		TOTAL D	EPTH (ft bgs):	D	EPTH TO WATER (ft bgs):
				25			16.5
Contir		IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		PRILL DATE: 9/15/2015
Depth (feet)	USCS Symbol	Soil Descrip (color, texture, moisture, MAJOR Co	otion and Observations DNSTITUENT, odor, staining	, sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 3 inches.					
_	XXX	Road Base FILL.					
1 —		Brown, medium dense, fine t	o medium SAND; no	o odor; no sheen;	-		
		moist.	,	, - ,			
_	- 						
2 —							
-	-					51.7	GP-3-2-3@1240
3 —		Wood at 3.5 feet bgs.					
_						3.4	
	SP	Same as above with 10% fin	e gravel; no odor; no	sheen.		•••	
4 —							
-							
5 —							
		Brown, medium dense, fine t moist.	o meaium SAND ; no	o odor; no sneen;			
-						7.7	
_							
6 —							
-		Drown modium donoo fino f		100/ rounded	-		
	ŚŴ.	Brown, medium dense, fine t gravel and 5% silt; no odor; r		10% Tounded			
7 —	••••	Brown, medium dense, fine t		o odor; no sheen;			
		moist.	·	,		6.2	
		•				0.2	
8 —							
-						6.2	
9 —							
Ŭ							
10							
 ABBRE	<u></u> VIATIONS	·		NOTES:		1	I
ft bgs		ow ground surface USCS = Unified	Soil Classification System groundwater table				
ppm =	· parts per		groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATION: 10 Port Way, Longview, WA BORING ID: BORING LOCATION:				
	science • engineering	LOGGED BY: G. Cisneros					
RILLED BY: Brian, ESN			NORTHI		E	EASTING: 1017486.36455	
DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: SAMPLING METHOD/SAMPLER LENGTH:		SURFAC ELEVAT			COORDINATE SYSTEM: SPCS WA S NAD83 F1		
			DEPTH (ft bgs):	[DEPTH TO WATER (ft bgs): 16.5		
			DIAMETER:		DRILL DATE:		
Continuous	1		2"	.		9/15/2015	
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR C		neen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
11 — 12 — 13 — 14 —	Same as above; no odor; no				5.3		
15 — SP 16 —	Same as above; no odor; no	sheen; wet.			5.2	GP-3-16-16.5@1246	
17 — 11 17 — 11 11 11 11 11 11 11 11 11 11 11 11 11	Brown to gray, fine to mediu saturated.	m SAND ; no odor; no s	sheen;		5.5		
18 —	Same as above; no odor; no	sheen; saturated.			4.6		
20							
BBREVIATIONS	S: ow ground surface USCS = Unified	Soil Classification System	NOTES:				

FLOV		PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview	Vay,	BORING ID: GP-3
	DISNIDER	LOGGED BY:	BORING	Longview	V, VVA	
strategy •	science 🔸 engineering	G. Cisneros	Dorand	LooAnon.		
DRILLED BY: Brian, ESN			NORTHIN 29278	\G : 0.862706	1	E ASTING : 1017486.36455
DRILLING EQUIP Geoprobe	MENT:		SURFAC ELEVATI		(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:		TOTAL D	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 16.5
	IOD/SAMPLER LENGTH:		BORING	DIAMETER:	1	DRILL DATE:
Continuous Depth USCS	Soil Descri	otion and Observations	2"	Drive/	PID	9/15/2015
(feet) Symbol	(color, texture, moisture, MAJOR C	ONSTITUENT, odor, staining, s		Recovery	(ppm)	Sample ID
21	Brown to gray, fine to medius saturated. Same as above; no odor; no		sneen,		3.4	
22	Olive brown, stiff SILT with lo		no sheen;		3.2	
24 — ML 	Gray, medium dense, fine to grains; no odor; no sheen; sa		10% fine red		2.1	
			NOTES:			
ABBREVIATIONS ft bgs = feet belo ppm = parts per	w ground surface USCS = Unified	Soil Classification System groundwater table	NOTES:			

	PROJECT:	LOCATIO	N: 10 Port V	Vay,	BORING ID:
FLOYD SNIDER	POL-TPH		Longviev	v, ŴA	GP-4
strategy • science • engineering	LOGGED BY:	BORING I	OCATION:		
strategy - science - engineering	G. Cisneros				
DRILLED BY:		NORTHIN	G:	E	EASTING:
Brian, ESN			1.507727		1017433.34722
DRILLING EQUIPMENT:		SURFACE			OORDINATE SYSTEM:
Geoprobe		ELEVATIO			SPCS WA S NAD83 FT
DRILLING METHOD:					
DRILLING METHOD:		25	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 21.5 and 24
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING	DIAMETER:		DRILL DATE : 9/15/2015
		2			0/10/2010
(feet) Symbol (color, texture, moisture, MAJOR C	otion and Observations DNSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ AS Asphalt Top 3 inches.					
_XXX Road Base FILL.					
	a ma a dia sea OANID			4.6	
Brown, medium dense, fine t	o medium SAND ; no o	odor; no sheen;			
² ML Sandy SILT lens at 2 feet bg					
Brown, medium dense, fine t	o medium SAND ; no o	odor; no sheen;		5.8	
moist.				5.6	
3					
SP					
4					
Same as above; no odor; no	sheen; moist.				
5					
••••• Brown, medium dense, fine t	o coarse SAND with F	S% eilt and 5%			
••••••••••••••••••••••••••••••••••••••				7.7	
⁶ Brown, medium dense, fine t	o medium SAND: no o	odor; no sheen:			
moist.		- , · · · · · · · · · · · · · · · ·			
7 —					
				~ ~	
				6.1	
⁸ Same as above; no odor; no	sheen; moist.				
9					
ABBREVIATIONS:		NOTES:			
ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes	Soil Classification System groundwater table				

FLOYE) SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port Wa Longview,	ay, WA	BORING ID: GP-4
		LOGGED BY: G. Cisneros	BORING I	OCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292694	G : 1.507727		ASTING : 1017433.34722
DRILLING EQUIPME Geoprobe	NT:		SURFACE		C	OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:			TOTAL DI 25	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 21.5 and 24
SAMPLING METHOD	D/SAMPLER LENGTH:		BORING I 2"	DIAMETER:		RILL DATE : 9/15/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	tion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 —	ame as above; no odor; no	sheen; moist.			4.7	
13 ML B	rown, stiff SILT with low pla rown, medium dense, fine to loist.		odor; no sheen;		4.5	
14 — 15 — 16 —	ame as above; no odor; no	sheen; moist.			5.7	
17	ame as above; no odor; no	sheen; moist to wet.			3.0	
20 ABBREVIATIONS: ft bgs = feet below g ppm = parts per mil	ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:			

ELOV		PROJECT: POL-TPH	LOCATIC	N: 10 Port \ Longviev		BORING ID: GP-4
	D SNIDER science • engineering	LOGGED BY:	BORING		<i>w</i> , <i>w</i> ,	
strategy -	science engineering	G. Cisneros				
DRILLED BY: Brian, ESN			NORTHIN			EASTING:
DRILLING EQUIP	MENT		SURFAC	4.507727		1017433.34722 COORDINATE SYSTEM:
Geoprobe ELEVATION:				SPCS WA S NAD83 FT		
DRILLING METHO	DD:			EPTH (ft bgs):		DEPTH TO WATER (ft bgs):
			25			21.5 and 24
Continuous	OD/SAMPLER LENGTH:		2"	DIAMETER:		DRILL DATE: 9/15/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
	Same as above; no odor; no	sheen; wet.			6.0	
21	Samo ao abayo: no odor: no	shoop: saturated			4.0	GP-4-21-21.5@1204
22	I I I I I Brown, medium dense, silty, fine SAND : no odor: no sheen:					
SM :	saturated. Brown, stiff, sandy SILT ; no	odor; no sheen; moist			4.7	
23 — ML					2.4	
24 •	Brown to gray, medium dens fine red grains; no odor; no s		ND with 10%			
25						GP-4-GW@
ABBREVIATIONS ft bgs = feet belo ppm = parts per	w ground surface USCS = Unified	Soil Classification System	NOTES:			

-	<u> </u>		PROJECT:	LOCATIO	אי: 10 Port \		BORING ID: GP-5
FL(YC	DISNIDER	POL-TPH		Longview	v, WA	GP-5
strate	egy .	science • engineering	LOGGED BY:	BORING	LOCATION:		
			G. Cisneros				
DRILLED Brian,				NORTHI 20257	NG: 6.577732		ASTING: 1017216.47276
DRILLING		MENT		SURFAC			OORDINATE SYSTEM:
Geopro				ELEVAT			SPCS WA S NAD83 FT
DRILLING	G METHO	OD:		TOTAL	DEPTH (ft bgs):	D	EPTH TO WATER (ft bgs):
				25			20
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		PRILL DATE: 9/17/2015		
	USCS Symbol	(color, texture, moisture, MAJOR Co	otion and Observations DNSTITUENT , odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 3 inches.			-		
_	Conc.	Concrete.					
	XFILL X	Road Base FILL.			-		
		Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;			
		moist.					
2 —							
		•				1.1	
		•				1.1	
3 —							
		•					
4 —		•					
-							
5 —							
Ŭ		Brown, medium dense, fine t subrounded gravel; no odor;		h 5%			
						1.0	
6 —						1.3	
7		1					
8 —		Same as above; no odor; no	sheen; moist.			2.5	
9 —							
		•					
10		•					
ABBREV ft bas =		S: ow ground surface USCS = Unified \$	Soil Classification System	NOTES:			
ppm = p	parts per	million	groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longviev		BORING ID: GP-5
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
RILLED BY:			NORTHIN	IG:	I	EASTING:
Brian, ESN			292576	6.577732		1017216.47276
RILLING EQUIF Geoprobe	PMENT:		SURFACI		(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D 25	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 20	
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:	I	D RILL DATE : 9/17/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Brown, medium dense, fine f moist. Same as above; no odor; no		odor; no sheen;		3.2	
15 —	Brown, medium dense, fine t moist.	to medium SAND ; no	odor; no sheen;		1.2	
17 —	Gray, fine to medium SAND	; no odor; no sheen; v	vet.		4.0	
19 —					2.9	GP-5-19-19.5@0820
ML	Olive gray, stiff SILT with lov	v plasticity; no odor; n	io sheen; wet.			
20						
BBREVIATION	S.		NOTES:			

	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview	Vay,	BORING ID: GP-5	
FLOYD SNIDER	LOGGED BY:	BORING		v, vv 		
strategy - science - engineering	G. Cisneros					
DRILLED BY: Brian, ESN	-	NORTHIN 292576	G: 6.577732	E	EASTING: 1017216.47276	
DRILLING EQUIPMENT:			E	c	OORDINATE SYSTEM:	
Geoprobe		ELEVATIO			SPCS WA S NAD83 FT	
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 20	
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		9/17/2015	
Depth USCS (feet) Symbol (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, sl	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
21 — SP 22 — Olive gray, stiff, sandy SILT odor; no sheen; saturated. 23 — ML 24 — Olive gray, medium dense, fi sheen; saturated. 25 — SP 26 — SP 27 — SP 28 — SP 29 — SP 29 — SP 20 — SP 20 — SP 20 — SP 20 — SP 20 — SP 21 — SP 21 — SP 22 — SP 23 — ML 24 — SP 25 — SP 25 — SP 25 — SP 25 — SP 25 — SP 26 — SP 27 — SP 28 — SP 29 — SP 29 — SP 20 — SP 21 — SP 22 — SP 23 — SP 24 — SP 25 — SP 26 — SP 27 — SP 28 — SP 29 — SP 20	n; saturated. with low to moderate p	plasticity; no		2.8 3.4 3.1		
ABBREVIATIONS:		NOTES:				
ft bgs = feet below ground surface USCS = Unified S ppm = parts per million = denotes	Soil Classification System groundwater table					

		PROJECT:	LOCATIO	N: 10 Port \	Vay,	BORING ID:
FLOY	DISNIDER	POL-TPH		Longview	v, ŴA	GP-6
	science • engineering	LOGGED BY:	BORING	LOCATION:		
strategy	science - engineering	G. Cisneros				
DRILLED BY:			NORTHIN	IG:	E	ASTING:
Brian, ESN			292563	3.555458		1017346.54222
DRILLING EQUIP	MENT:		SURFAC	E	С	OORDINATE SYSTEM:
Geoprobe			ELEVATI			SPCS WA S NAD83 FT
DRILLING METHO	00:		τοται σ	EPTH (ft bgs):		EPTH TO WATER (ft bgs):
			20			16.5
SAMPLING METH	OD/SAMPLER LENGTH:			DIAMETER:		RILL DATE:
Continuous			2"			9/15/2015
Depth USCS	Soil Dosori	ption and Observations		Drive/	PID	
(feet) Symbol	(color, texture, moisture, MAJOR C		sheen, debris, etc.)	Recovery	(ppm)	Sample ID
⁰ AS	Asphalt Top 3 inches.					
	Road Base FILL.					
TXFILLX						
· · · · · · · · · · · · · · · · · · ·	Brown, medium dense, fine t		n 5%			
	subrounded gravel; no odor;	no sheen; moist.			2.1	
					2.1	
2						
-						
3 —					3.6	
Č					0.0	
_						
4 —						
	Same as above; no sheen; n	io odor; moist.				
_					4.2	
5 —						
-	Brown, medium dense, fine t	o medium SAND with	n 5%			
	subrounded gravel and crush					
6 —	5	. ,	,		1.8	
7 —						
7					1.7	
8	Same as above; no sheen; n	io odor; moist.				
9 —: SP						
10						
ABBREVIATIONS			NOTES:			
ft bgs = feet belo	w ground surface USCS = Unified	Soil Classification System	Collected groundw	ater at 1324		
ppm = parts per	million	groundwater table				

FLOYD SNIDER POL-TPH		PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-6
strategy .	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY : Brian, ESN			NORTHIN 292563	IG: 3.555458		EASTING: 1017346.54222
ORILLING EQUIP Geoprobe	MENT:		SURFAC	E ON:	(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	OD:		TOTAL D 20	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 16.5
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:	I	DRILL DATE: 9/15/2015
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR C			Drive/ Recovery	PID (ppm)	Sample ID
11	Brown, medium dense, fine t gravel clasts; no odor; no sh Same as above; moist to we sheen.	een; moist.			3.0	
14 — 15 — 16 —	Brown, medium dense, fine t wet to saturated at 16.5 feet		odor; no sheen;		3.7 2.0	GP.6.16.17@1117
17 — 	Brown, medium dense, fine t grains; no odor; no sheen; sa		10% white		3.1	GP-6-16-17@1117
19 - ML	Olive gray, stiff, fine, sandy \$	SILT; no odor; no shee	en; wet.		2.4	GP-6-GW@1324

		PROJECT: POL-TPH	LOCATIO	N: 10 Port Longviev	Way, ∧ \M∆	BORING ID: GP-7
	(D SNIDER	LOGGED BY:	BORING	LOCATION:	W, WA	
strategy •	science engineering	G. Cisneros				
DRILLED BY:			NORTHI	NG:	E	ASTING:
Brian, ESN			29239	0.444892		1017269.96574
DRILLING EQU Geoprobe	DRILLING EQUIPMENT: Geoprobe		SURFAC ELEVATI			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING MET	HOD:		TOTAL D	DEPTH (ft bgs):	D	PEPTH TO WATER (ft bgs): 26
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		9/15/2015	
Depth USC (feet) Symb	(color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, sh	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ AS						
<u>XFILL</u>	Road Base FILL.		F 0/	-		
1	Brown, medium dense, fine t subrounded gravel; no odor;		5%		3.0	
2	Same as above; no odor; no	sheen; moist.			1.0	
4	Brown, medium dense, fine t	to medium SAND with t	5%			
6	subrounded gravel; no odor;	no sheen; moist.			2.4	
8	Same as above; no odor; no	sheen; moist.			2.0	
9						
ABBREVIATIO	below ground surface USCS = Unified		NOTES:			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview	Vay, /, WA	BORING ID: GP-7
	science • engineering	LOGGED BY: G. Cisneros	BORING I	OCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292390	G :).444892		EASTING: 1017269.96574
DRILLING EQUIPMENT: Geoprobe DRILLING METHOD:		SURFACE	E		COORDINATE SYSTEM: SPCS WA S NAD83 FT	
		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 26	
SAMPLING METH Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		9/15/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR Co	otion and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Brown, medium dense, fine t 5% silt; no odor; no sheen; n Same as above; no odor; no	noist.	n 5% gravel and		3.5	
15 — 16 — 17 —	Same as above; no odor; no	sheen; moist.			2.2	
18					4.0	
19 <u> SM</u>	Brown, medium dense, silty, Brown, medium dense, fine t 5% silt; no odor; no sheen; n	o medium SAND with				
<u>20</u> 20		Soil Classification System	NOTES:			1

FLOYD SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-7
strategy - science - engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Brian, ESN		NORTHIN 292390	IG :).444892	I	EASTING: 1017269.96574
DRILLING EQUIPMENT: Geoprobe		SURFACI	E	(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 26
SAMPLING METHOD/SAMPLER LENGTH: Continuous			DIAMETER:		DRILL DATE: 9/15/2015
	tion and Observations		Drive/ Recovery	PID (ppm)	Sample ID
21 - SP 22 - SP 23 - ML 24 - ML	sheen; moist.			3.3 3.5 3.4	
25 — Brown, medium dense, fine to odor; no sheen; moist.	o medium SAND with	n 5% silt; no		1.3	GP-7-25.5-26@0851
²⁶ Same as above; no odor; no	sheen; wet.			2.8	
 SP SP Same as above with shells at saturated. 	: 28 feet bgs; no odor	r; no sheen;		3.5	
29		NOTES:		3.4	
ft bgs = feet below ground surface USCS = Unified S	Soil Classification System groundwater table				

	PROJECT:	LOCATIO	N: 10 Port V	Vay,			
FLOYD SNIDER	POL-TPH		Longviev	v, WA	GP-8		
strategy - science - engineering	LOGGED BY:	BORING	BORING LOCATION:				
	G. Cisneros						
DRILLED BY:		NORTHIN			ASTING:		
Brian, ESN			1.944418		1017283.86709		
DRILLING EQUIPMENT: Geoprobe		SURFAC			OORDINATE SYSTEM: SPCS WA S NAD83 FT		
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	DI	EPTH TO WATER (ft bgs):		
		30			26		
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		RILL DATE : 9/15/2015		
(feet) Symbol (color, texture, moisture, MAJOR C	iption and Observations CONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID		
⁰ AS Asphalt Top 3 inches.							
-XXX Road Base FILL.							
Brown, medium dense, fine	to medium SAND; no	odor; no sheen;					
moist.							
2							
3 —				3.3			
Same as above; no odor; no	o sneen; moist.						
4							
5							
Same as above; no odor; no	o sheen; moist.						
6 —				3.0			
7 —							
8 - Come es abayes no adar no	aboon maint			2.8			
Same as above; no odor; no	o sheen; moist.						
9							
10							
ABBREVIATIONS:		NOTES:					
ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denote	Soil Classification System s groundwater table						
	S groundwater table						

Littategy + science + engineering Lodgeb P: G. Cleneros BORINE LOCATION: RILLED BY Brain, ESN 202343418 FASTING: 1017283.86709 RILLEG ECUIPMENT: Geoprobe 20234349.44418 COORDINATE SYSTEM: SPC-5 WAR NUAS A SUDESCRIPT COORDINATE SYSTEM: SPC-5 WAR NUAS A SUDESCRIPT Continuous COORDINATE SYSTEM: SPC-5 WAR NUAS A COORDINATE SYSTEM: SPC-5 WAR NUAS A COORDINATE SYSTEM: SPC-5 WAR NUAS A SUDESCRIPT Continuous COORDINATE SYSTEM: SPC-5 WAR NUAS A SUDESCRIPT SPC-5 WAR	FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port W Longview	/ay, , WA	BORING ID: GP-8
RILLED BY: Brian, ESN Brian,				BORING I	OCATION:		
RILLING EQUIPMENT: Geoprobe Barbuno MEHOD: RILLING MEHOD: RILLING MEHOD: RILLING MEHOD: RILLING MEHOD: RILLING MEHOD: RILLING MEHOD: RILLING MEHOD: Syncb JAMETER: Soft Soft Contexture medium MAUGE Complian and Observations Contexture medium MAUGE Complian and Observations Soft Soft Contexture medium MAUGE Complian and Observations Soft Soft Contexture medium MAUGE Complian and Observations Soft Soft Contexture medium MAUGE Complian and Observations Soft Soft Soft Contexture medium MAUGE Compliant and Observations Soft Soft Contexture medium MAUGE Compliant and Observations (contexture medium MAUGE Compliant and Observations Soft Soft Contexture medium MAUGE Compliant and Observations Soft Soft Contexture medium MAUGE Compliant and Observations Soft Soft Contexture medium MAUGE Compliant and Observations Soft Soft Soft Soft Contexture medium MAUGE Compliant and Observations Soft Soft Soft Soft Soft Soft Soft Soft	DRILLED BY:			NORTHIN	G:	E	EASTING:
Geoprobe ELEVATION: SPCS WA S NAD83 FT RILLIA DEFTH (It beg): 26 MPL-ING METHOD: SAMPLER LENGTH: 27 Solid USCS Coor, todue, module, MAJOR CONSTRUENT, oder, seming, about, solids, etc.) Sprith USCS Coor, todue, module, MAJOR CONSTRUENT, oder, seming, about, solids, etc.) The Servery Pills Sample ID Sample ID	Brian, ESN			292344	.944418		1017283.86709
30 26 BORING DUE THE: DRILL DATE: OPINION: 2" OPINION: Soil Description and Observations Opinion Opinion	DRILLING EQUIPI Geoprobe	MENT:					COORDINATE SYSTEM: SPCS WA S NAD83 FT
Continuous 2" 9/15/2015 Depth Sub Description and Observations (color, texture, meature, MAJOR CONSTITUENT, oor, channing, sheen, detore, etc.) Driver Recovery Pin Sample ID 11	DRILLING METHO	DD:			EPTH (ft bgs):	C	
(feet) Symbol (toot, tasture, modulum, MAJOR CONSTITUENT, odor, staming, show, dotrs, set.) Recovery (ppm) Sample ID 11 - Brown, medium dense, fine to medium SAND; no odor, no sheen; 3.3 3.3 12 - Same as above; no odor; no sheen; moist. 3.3 3.3 13 - - - 3.3 14 - - - - - 16 - Server, medium dense, fine to medium SAND with 5% medium red grains (Dredge FiLL); no odor; no sheen; moist. 4.6 - 17 - - - - - - 18 - - - - - - 19 - - - - - - 20 - - - - - - 19 - - - - - - - 20 - - - - - - - 16 - - - - - - - - -	SAMPLING METH Continuous	OD/SAMPLER LENGTH:			DIAMETER:		
11 - 3.9 12 - Same as above; no odor, no sheen; moist. 3.9 13 - - 14 - - 15 - - 16 - SP Brown, medium dense, fine to medium SAND with 5% medium red grains (Dredge FILL); no odor; no sheen; moist. 4.6 18 - 4.6 19 - 4.6		Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations	, sheen, debris, etc.)			Sample ID
Brown, medium dense, fine to medium SAND with 5% medium red grains (Dredge FILL); no odor; no sheen; moist. 17	11 — 12 — 13 — 14 — 15 — SP	moist.					
19	16 — 						
ft bgs = feet below ground surface USCS = Unified Soil Classification System	19 — 20 —					4.6	
tt bgs = teet below ground surface USCS = Unified Soil Classification System	ABBREVIATIONS						
ppm = parts per million	ft bgs = feet belo	w ground surface USCS = Unified S		ו			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-8
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Brian, ESN			NORTHI	NG : 4.944418		EASTING: 1017283.86709
DRILLING EQUIP Geoprobe	MENT:		SURFAC ELEVATI	E		COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	OD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 26
	HOD/SAMPLER LENGTH:		BORING	DIAMETER:		DRILL DATE:
Continuous Depth USCS			2"	Drive/	PID	9/15/2015
(feet) Symbol	(color, texture, moisture, MAJOR Co		heen, debris, etc.)	Recovery	(ppm)	Sample ID
21	Same as above; no odor; no Same as above; no odor; no Same as above; no odor; no	sheen; moist.			4.3	
25					3.6	GP-8-25.5-26@1011
27 —	Brown, medium dense, fine t saturated.	o medium SAND ; no o	odor; no sheen;		3.3	
28 —					2.0	
29 —						GP-8-GW@
30	1					
ABBREVIATIONS ft bgs = feet belo ppm = parts per	ow ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:			

	PROJECT:	LOCATIO	N: 10 Port V	Vay,	BORING ID:
FLOYD SNIDER	POL-TPH		Longviev	v, ŴA	GP-9
strategy • science • engineering	BORING I	OCATION:			
strategy - scrence - engineering	G. Cisneros				
DRILLED BY:		NORTHIN	G:	E	ASTING:
Brian, ESN		292269	9.877327		1017286.47024
DRILLING EQUIPMENT:		SURFACI		C	OORDINATE SYSTEM:
Geoprobe		ELEVATIO	ON:		SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs):
		30			28
SAMPLING METHOD/SAMPLER LENGTH:			DIAMETER:		RILL DATE:
Continuous		2"			9/16/2015
Depth USCS Soil Descri	otion and Observations		Drive/	PID	
(feet) Symbol (color, texture, moisture, MAJOR C	ONSTITUENT, odor, staining,	sheen, debris, etc.)	Recovery	(ppm)	Sample ID
⁰ Asphalt Top 6 inches.					
AS					
Road Base FILL ; slight odor	; no sheen.				
				3.4	
				5.4	
2					
Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;			
moist.					
3					
				1.4	
SP					
4					
5					
Gray to dark brown, medium	dense sandy CPAV	EL and crushed			
• SW • rock; no odor; no sheen.	dense, sandy GRAV				
6 Brown, medium dense, fine t	o medium SAND: no	odor: no sheen:		1.0	
moist.					
7 - 222					
8				1.1	
9					
10					
		NOTES:			
ft bgs = feet below ground surface USCS = Unified	Soil Classification System				
ppm = parts per million	groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev	Vay, v, WA	BORING ID: GP-9
	science • engineering		BORING L	OCATION:		
RILLED BY:			NORTHIN			EASTING:
Brian, ESN	MENT.).877327 -		1017286.47024
Geoprobe			SURFACE	ON:		COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING METH	OD:		TOTAL DE	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 28
AMPLING MET	HOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:		DRILL DATE: 9/16/2015
Depth USCS (feet) Symbol		ription and Observations CONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 – GW	Dark brown to gray, mediun	n dense, sandy crushe	ed rock FILL ; no		1.3	
12 -	odor; no sheen; moist. Brown, medium dense, fine moist.	to medium SAND ; no	odor; no sheen;		1.5	
13 — - SP					0.9	
14 —						
15 —	Brown, medium dense, grav	velly, fine to coarse S	AND with 5%		2.2	
16 — SW	silt; no odor; no sheen; mois Brown, medium dense, fine	st.				
17	moist.				1.7	
18 — 	Same as above; gray, fine s	SAND: no odor: no sh	een [.] moist			
19 —		, no odol, no sin	oon, moiot.		2.1	
20	•					

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	Longviev		BORING ID: GP-9
	science • engineering	LOGGED BY: G. Cisneros	BORING L	OCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292269	G : 9.877327	E	EASTING: 1017286.47024
ORILLING EQUIP Geoprobe	MENT:		SURFACE			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:		TOTAL DI 30	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 28
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:		PRILL DATE: 9/16/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR Co	otion and Observations DNSTITUENT , odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 - SW	Brown, medium dense, grave silt; no odor; no sheen; moist Brown, medium dense, fine t moist.				2.6	
22 —						
23 —					2.2	
24 —						
25 — 	Gray, medium dense, fine to	medium SAND ; no c	odor; no sheen;		3.6	
26 —	wet.					
27 —	Same as above; no odor; no	sheen; saturated.			4.8	GP-9-27.5-28@0945
28					2.5	
29 —					2.3	

E L S	ov		PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longviev	Way,	BORING ID: GP-10
		DISNIDER	LOGGED BY:	BORING		v, vvA	
Strate	egy •	science 🖡 engineering	G. Cisneros				
DRILLE				NORTHI		E	EASTING:
Brian,		MENT			3.466198		1017369.43114
Geopr	robe			SURFAC	ON:		SPCS WA S NAD83 FT
DRILLIN	G METHO	DD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 21.5 and 28.25
SAMPLI Contir		IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		9/16/2015
Depth (feet)	USCS Symbol	(color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining, sl	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 3 inches. Road Base FILL .			-		
-							
1	XX						
1 —		Brown, medium dense, fine t odor; no sheen; moist.	o medium SAND with	5% gravel; no			
2 —							
_		•					
		•					
3 —						3.5	
_							
4 —							
_							
5 —		Same as above; no odor; no	sheen; moist.				
_							
6 —						3.2	
_		•					
7 —	SP···						
_							
8 —						3.4	
_							
9 —							
_							
		•					
	/IATIONS	<u>.</u>		NOTES:			
ft bgs :		ow ground surface USCS = Unified	Soil Classification System				
- ppm –	Paris per		Signifumater lable				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-10
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
RILLED BY : Brian, ESN			NORTHIN 292333	IG : 3.466198		EASTING: 1017369.43114
DRILLING EQUIF Geoprobe	PMENT:		SURFACI		(COORDINATE SYSTEM: SPCS WA S NAD83 F1
DRILLING METH	OD:		TOTAL D 30	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 21.5 and 28.25
SAMPLING MET Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	1	DRILL DATE: 9/16/2015
Depth USCS (feet) Symbol		iption and Observations CONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 — ML	Brown, medium dense, fine gravel; no odor; no sheen; n Brown, stiff SILT with low pla Brown, medium dense, silty	noist. asticity; no odor; no sh	neen; moist.		1.8 2.8 0.9	
15	Brown, medium dense, sity moist.				3.3 2.0	
18 — 19 — ML	Brown, stiff, sandy SILT with moist. Brown, medium dense, fine moist.				3.2	
20			NOTES:			
	low ground surface USCS = Unified	Soil Classification System s groundwater table	NOTES.			

FLOYDISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-10
	LOGGED BY: G. Cisneros	BORING L	OCATION:		
DRILLED BY: Brian, ESN		NORTHIN 292333	G: .466198		EASTING: 1017369.43114
DRILLING EQUIPMENT: Geoprobe		SURFACE ELEVATIO		(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL DE 30	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 21.5 and 28.25
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING E 2"	DIAMETER:	1	DRILL DATE: 9/16/2015
Depth USCS Soil Descrip (feet) Symbol (color, texture, moisture, MAJOR CO	tion and Observations INSTITUENT , odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 — SP 21 — Perched zone at 21.5 feet bg 22 — Olive gray, stiff SILT with high 23 — ML		o sheen; moist.		2.2	
 Wood at 24.25 feet bgs. Brown, medium dense, fine to odor; no sheen; moist. 	o medium SAND with 5	5% gravel; no		2.1	
26 Olive, stiff SILT with high plas	sticity; no odor; no she	en; moist.		3.1	
 28 Gray, medium dense, fine to grains; no odor; no sheen; sa 29 SP: 		6 fine red		2.9	GP-10-28-28.5@0820
30				1.2	
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified S		NOTES:			

	~ ~ ~ ~		PROJECT:	LOCATIO	N: 10 Port		BORING ID: GP-11
FL	ΟY	DISNIDER	POL-TPH		Longviev	w, WA	GP-11
		science • engineering	LOGGED BY:		LOCATION:	_	
			G. Cisneros		of pipeline		
DRILLE Brian,				NORTHIN 292192	IG: 2.993596	E	A STING: 1017258.79383
DRILLIN Geopr	G EQUIP obe	MENT:		SURFAC			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	G METHO	DD:		TOTAL D	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 27.5
SAMPLI Contir		IOD/SAMPLER LENGTH:			DIAMETER:		PRILL DATE: 9/16/2015
Depth (feet)	USCS Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 6 inches.					
_	70						
		Road Base FILL .					
1 —	(CFILL)						
_	$\infty\infty$	Brown, medium dense, fine t	o medium SAND; no	odor; no sheen;		1.1	
2 —		moist.					
-							
-							
3 —							
	<u>о</u> р						
_	SP					0.9	
4 —							
_							
5 —							
_		Dark brown, medium dense,	sandy, crushed rock	FILL; no odor;			
6 —	P GW' ○ ● (no sheen; moist.	-			0.7	
		Brown, medium dense, fine t moist.	to medium SAND ; no	odor; no sneen;			
-							
7 —							
-						0.8	
8 —							
_	SP						
9 —							
_							
10				NOTES:			
ft bgs :	/IATIONS = feet belo	ow ground surface USCS = Unified	Soil Classification System	NUTES.			
ppm =	parts per	million	groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-11
	science • engineering			OCATION: of pipeline		
DRILLED BY: Brian, ESN	NORTHING:			EASTING: 1017258.79383		
DRILLING EQUIP Geoprobe	MENT:		SURFACE			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	OD:		TOTAL DI 30	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 27.5
SAMPLING METI Continuous	HOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:	1	DRILL DATE : 9/16/2015
Depth USCS (feet) Symbol	Soil Desc (color, texture, moisture, MAJOR	ription and Observations CONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11	Dark brown to gray, mediur	n dense, sandy crushe	d rock FILL ; no		1.4	
12	odor; no sheen; moist. Brown, medium dense, fine moist.	-				
13			-14		0.9	
15 —:::SP·	Brown, medium dense, silty sheen; moist. . Brown, medium dense, fine moist.				1.0	
16 — SW	Brown, medium dense, gra subrounded gravel and 5%				1.4	
17	Brown, medium dense, fine moist. Brown to olive gray, silty SA moist.				10	
					1.2	
19	Gray, medium dense, fine t moist.	o medium SAND ; no oo	dor; no sheen;			

FLC	ΟY	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longviev		BORING ID: GP-11	
		science • engineering	LOGGED BY: G. Cisneros		BORING LOCATION: 5' East of pipeline			
D RILLED I Brian, E			NORTHING: EA				EASTING: 1017258.79383	
Geopro		MENT:		SURFAC			COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLING	METHO	DD:		TOTAL D 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 27.5	
Continu		OD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/16/2015	
	USCS Symbol	(color, texture, moisture, MAJOR C			Drive/ Recovery	PID (ppm)	Sample ID	
21 —	SP	Brown to olive gray, medium odor; no sheen; moist.	dense, fine to mediun	n SAND ; no		1.0		
24 —						1.2		
26 — 27 —		Olive gray, medium dense, s silt and some wood debris; n				3.8	GP-11-27-27.5@0908	
28 —	SM	Same as above; no odor; no	sheen; wet to saturate	ed.		0.8		
29	ML	Olive, stiff, sandy SILT with I	ow plasticity; no odor;	no sheen; wet.				
ABBREVI		: by ground surface USCS = Unified s	Soil Classification System	NOTES:				
ppm = p	arts per	million = denotes	groundwater table					

	PROJECT:	LOCATIO	N: 10 Port		BORING ID: GP-12
FLOYDISNIDER	POL-TPH		Longvie	<i>N</i> , WA	07-12
strategy • science • engineering	LOGGED BY: G. Cisneros		LOCATION:		
DRILLED BY:	G. CISHEIOS		of pipeline	c	EASTING:
Brian, ESN			7.372664		1017213.48767
DRILLING EQUIPMENT:		SURFAC		c	OORDINATE SYSTEM:
Geoprobe		ELEVATI			SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	0	DEPTH TO WATER (ft bgs):
		30			26.5
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		PRILL DATE: 9/16/2015
(feet) Symbol (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ Asphalt Top 6 inches.					
XXXX Road Base FILL.			-		
				3.8	
				3.0	
Brown, medium dense, fine	to medium SAND with 1	10% gravel:			
no odor; no sheen; moist.		io /o gravel,			
2					
3				4.2	
4					
5					
Light brown, medium dense, red grains; no odor; no shee		with 5% fine			
				4.2	
6					
7					
8				5.1	
9				1	
10	1				
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified		NOTES:			
ppm = parts per million = denotes	s groundwater table				

FL (ΟY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-12
		science • engineering	LOGGED BY:		LOCATION:		
			G. Cisneros		of pipeline		
DRILLED				NORTHIN			ASTING:
Brian,					7.372664		1017213.48767
Geopr	G EQUIP obe	MENT:		SURFACE			COORDINATE SYSTEM: SPCS WA S NAD83 F
RILLIN	G METHO	DD:		TOTAL D 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs) : 26.5
		IOD/SAMPLER LENGTH:			DIAMETER:		RILL DATE:
Contin	nuous	1		2"			9/16/2015
Depth (feet)	USCS Symbol	Soil Descri (color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
_						6.3	
11 —	-SW-	Gray, gravelly, SAND with cr	rushed rock; no odor;	no sheen;			
_		moist.					
		Brown, medium dense, fine t moist.	o medium SAND ; no	odor; no sheen;			
12 —							
_							
13 —							
13 -							
_						6.6	
14 —							
_							
15 —							
-							
_		Brown, medium dense, fine t	o medium SAND with	10% fine red			
		grains; no odor; no sheen; m					
16 —						6.7	
17 —							
_							
18 —						6.3	
10						0.3	
_							
19 —							
_	SP						
20 —							
ABBREV	/IATIONS			NOTES:			•
ft bgs =		ow ground surface USCS = Unified	Soil Classification System				
PP''' -	parto por		3.54.14.14.16.14.010				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longviev	Vay, v, WA	BORING ID: GP-12
	science • engineering	LOGGED BY:		LOCATION:		
DRILLED BY:		G. Cisneros		of pipeline		EASTING:
Brian, ESN				7.372664		1017213.48767
DRILLING EQUI Geoprobe	PMENT:		SURFAC ELEVATI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	IOD:		30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 26.5
SAMPLING MET Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE: 9/16/2015
Depth USCS (feet) Symbo		iption and Observations CONSTITUENT, odor, staining, st	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 22 23 24 25 26 27 28 28 29 SM	Wood encountered between Brown, medium dense, fine moist. Gray, fine to medium SAND Same as above; saturated a Olive, stiff SILT with high pla Gray, medium dense, silty S sheen; saturated.	to medium SAND ; no c 9; no odor; no sheen; we and wood at 27.75 feet asticity; no odor; no she	ogs. een; wet.		 2.8 2.9 5.1 4.5 2.9 5.3 5.1 4.2 	GP-12-26-26.5@1017
30						
ABBREVIATION	S.		NOTES:			
	s. low ground surface USCS = Unified					

		PROJECT:	LOCATIO	N: 10 Port \		BORING ID: GP-13
FLO	YDISNIDER	POL-TPH		Longview	v, WA	92-13
strategy	 science • engineering 	LOGGED BY:		OCATION:		
		G. Cisneros		of pipeline		
DRILLED BY: Brian, ESN			NORTHIN 292040	G :).434655	E	EASTING: 1017159.27063
DRILLING EQ			SURFACE			OORDINATE SYSTEM:
Geoprobe			ELEVATIO			SPCS WA S NAD83 FT
DRILLING ME	THOD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 27
SAMPLING M Continuou	ETHOD/SAMPLER LENGTH: S		BORING 2"	DIAMETER:		9/16/2015
Depth US (feet) Sym	bol (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
	Asphalt Top 6 inches.					
	XX Road Base FILL.					
, 🕅	\otimes					
' TXX	\otimes					
_XFil	XX LX					
🕅	×					
2 – 💥	\otimes					
	\times					
	Brown, medium dense, fine t	to medium SAND ; no	odor; no sheen;			
3 —	moist.				4.6	
4						
SI	P					
5 —						
	Brown, medium dense, fine t	to medium SAND with	10% gravel;			
6 —	no odor; no sheen; moist.				6.4	
_						
	Brown, medium dense, fine t	to coarse SAND with ²	10% gravel; no			
-i-si	••• odor; no sheen; moist.					
8	Brown, medium dense, fine t	to medium SAND : no	odor; no sheen:		6.5	
	moist.		,			
9						
SI	P · · ·					
10						
			NOTES:			
ft bgs = feet	below ground surface USCS = Unified	Soil Classification System				
ppm = parts	per million v = denotes	groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-13
	rategy - science - engineering LOGGED BY: BORING LOCATION:					
ORILLED BY:		G. Cisneros	5' East			EASTING:
Brian, ESN			-	0.434655		1017159.27063
DRILLING EQUIF Geoprobe	PMENT:		SURFACE		C	COORDINATE SYSTEM: SPCS WA S NAD83 F1
DRILLING METH	OD:		TOTAL DE 30	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 27
SAMPLING MET Continuous	HOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:	C	9/16/2015
Depth USCS (feet) Symbol		ption and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11					5.7	
_	Brown, medium dense, grave silt; no odor; no sheen; mois	t.				
12 —	Brown, medium dense, fine t moist.	to medium SAND ; no o	odor; no sheen;			
13 —					5.8	
14						
15	Same as above with 10% gr	avel; no odor; no shee	n.		4.0	
17 - 17						
	Same as above with 5% gra	vel; no odor; no sheen	I.			
18					4.2	
19						
	:		NOTES:			
ABBREVIATION	5.		INUILO.			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-13
	science • engineering	LOGGED BY:		LOCATION:		
DRILLED BY : Brian, ESN		G. Cisneros	NORTHIN 292049	9.434655		EASTING: 1017159.27063
DRILLING EQUIP Geoprobe	MENT:		SURFACI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:		TOTAL D 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 27
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/16/2015
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR Co			Drive/ Recovery	PID (ppm)	Sample ID
21 — SP 22 — 23 — 24 — 25 —	Brown, medium dense, fine t moist. Same as above with 5% fine				5.3	
26 —	Gray, medium dense, fine to	medium SAND with 5	% fine red		5.5	
27	grains; no odor; no sheen; w				4.9	GP-13-26.5-27@1119
28 —	Same as above; no odor; no	sheen; saturated.			4.8	
29 —						
30						GP-13-GW@1130
ABBREVIATIONS	ow ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:			

E L I	ΟY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port Longviev	Nay, w, WA	BORING ID: GP-14
		science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLE	DBY:			NORTHI	NG:	E	ASTING:
	Brian, ESN			29214	7.66449		1016991.25362
DRILLIN Geopr	G EQUIP obe	MENT:		SURFAC ELEVAT			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	G METHO	DD:		TOTAL I 30	DEPTH (ft bgs):		DEPTH TO WATER (ft bgs): 26.5
SAMPLI Contir		IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		9/16/2015
Depth (feet)	USCS Symbol	Soil Descri (color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining, sl	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 6 inches.					
_		Road Base FILL .					
1 —	FILLS						
-							
2 —	∞	Brown, medium dense, fine t		5%	-		
_		subrounded gravel; no odor;	no sneen, moist.			3.0	
3 —							
_							
4 —							
_							
5 —							
_						4.2	
6 —							
_							
7 —							
0	SP						
8 —						5.3	
_							
9 —							
-							
	/IATIONS			NOTES:			
ft bgs = ppm =	= feet belo parts per	w ground surface USCS = Unified sufface USCS = Unified sufface USCS = Unified sufface uses	Soil Classification System				

	roject: POL-TPH	LOCATIO	N: 10 Port W Longview		BORING ID: GP-14
strategy - science - engineering	OGGED BY: G. Cisneros	BORING L	OCATION:		
DRILLED BY: Brian, ESN		NORTHIN 292147			ASTING: 1016991.25362
DRILLING EQUIPMENT: Geoprobe		SURFACE		с	OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL DE	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 26.5
SAMPLING METHOD/SAMPLER LENGTH: Continuous			DIAMETER:		9/16/2015
Depth USCS Soil Description (feet) Symbol (color, texture, moisture, MAJOR CONS	on and Observations STITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
 Brown, medium dense, fine to moist. 11	medium SAND ; no	odor; no sheen;		5.7	
 Brown, medium dense, fine to r moist. 16	medium SAND ; no	odor; no sheen;		5.6	
18 Brown, stiff, sandy SILT with lo moist.				5.1 5.7	
19 - : : : : : : : : : : : : : : : : : : :	SAND; no odor; no	o sneen; moist			
20 HILLER		NOTES:			

FLOYDISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-14
strategy • science • engineering	LOGGED BY: G. Cisneros	BORING I	LOCATION:		
DRILLED BY: Brian, ESN		NORTHIN 292147	I G: 7.66449	I	EASTING: 1016991.25362
DRILLING EQUIPMENT: Geoprobe		SURFACE		(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	ľ	DEPTH TO WATER (ft bgs): 26.5
Continuous		BORING 2"	DIAMETER:	1	DRILL DATE: 9/16/2015
Depth USCS Soil Descri (feet) Symbol (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 — 22 — 23 — 24 — 25 — SP - - - - - - - - - - - - -	to medium SAND ; no o	odor; no sheen;		4.6 2.8 2.4	
Gray, medium dense, fine to moist.	medium SAND ; no oc	lor; no sheen;		5.4	GP-14-26-26.5@1219
27	sheen; saturated.				
28				2.4	
29 — · · · · · · · · · · · · · · · · · ·					
30 <u>Leteration</u> ABBREVIATIONS:	Soil Classification System	NOTES:			-

	PROJECT:	LOCATIO	N: 10 Port \		BORING ID: GP-15
FLOYDISNIDER	POL-TPH		Longviev	w, WA	GF-15
strategy - science - engineering	LOGGED BY:	BORING	LOCATION:		
	G. Cisneros				
DRILLED BY: Brian, ESN		NORTHIN 29196	IG : 2.269443	E	E ASTING: 1017282.09882
DRILLING EQUIPMENT: Geoprobe		SURFAC ELEVATI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs):
		30			27.5
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		DRILL DATE: 9/16/2015
Depth USCS Soil Descri (feet) Symbol (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ Asphalt Top 6 inches.					
Road Base FILL.					
				1.1	
Light brown, medium dense,	fine to medium SANE); no odor; no			
2					
				1.3	
3					
4					
⁵ Brown to light brown, medium odor; no sheen; moist.	n dense, fine to mediu	ım SAND ; no			
				1.6	
6					
7 -					
⁸ Same as above; no odor; no	sheen; moist.			1.5	
9					
		NOTES			
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified ppm = parts por million		NOTES:			
ppm = parts per million	groundwater table				

G. Cisneros G. Cisneros G. Cisneros G. Cisneros G. Cisneros I G. Cisneros I Sampling EQUIPMENT: Geoprobe GRILLING METHOD: SAMPLING METHOD/SAMPLER LENGTH:		69443 TH (ft bgs): METER: Drive/		ASTING: 1017282.09882 OORDINATE SYSTEM: SPCS WA S NAD83 FT EPTH TO WATER (ft bgs): 27.5 RILL DATE: 9/16/2015 Sample ID
Brian, ESN DRILLING EQUIPMENT: Geoprobe Second	291962.26 SURFACE ELEVATION: TOTAL DEPT 30 BORING DIAN 2" etc.)	'H (ft bgs): METER: Drive/	PID (ppm)	1017282.09882 OORDINATE SYSTEM: SPCS WA S NAD83 FT EPTH TO WATER (ft bgs): 27.5 RILL DATE: 9/16/2015
DRILLING EQUIPMENT: Seeprobe Image: Continuous and Constructions (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, fireto medium SAND with 5% gravel; no odor; no sheen; moist. Image: Construction of the section of the sectin of the section of the section of the sectin of the se	SURFACE ELEVATION: TOTAL DEPT 30 BORING DIAI 2" etc.)	'H (ft bgs): METER: Drive/	PID (ppm)	SPCS WA S NAD83 FT EPTH TO WATER (ft bgs): 27.5 RILL DATE: 9/16/2015
SAMPLING METHOD/SAMPLER LENGTH: Continuous I Depth (feet) USCS Symbol Soil Description and Observations (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, gravel; no odor; no sheen; moist. Light brown, medium dense, fine to medium SAND with 5% gravel; no odor; no sheen; moist. 11	30 BORING DIAI 2" etc.) R	METER:	PID (ppm)	27.5 RILL DATE: 9/16/2015
Continuous Depth (feet) USCS Symbol Soil Description and Observations (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, debris, included the second state of the second stat	2" etc.) R	Drive/	PID (ppm)	9/16/2015
(feet) Symbol (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, Light brown, medium dense, fine to medium SAND with 5% gravel; no odor; no sheen; moist. gravel; no odor; no sheen; moist. 11			(ppm)	Sample ID
11 — gravel; no odor; no sheen; moist.			1.4	
 13 Same as above; no odor; no sheen; moist. 14			1.3	
 Same as above; no odor; no sheen; moist. 16			1.4	
 18 - Same as above; no odor; no sheen; moist. 19 - Same as above; no odor; no sheen; moist. 			1.1	
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified Soil Classification System				1

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-15
	science • engineering	LOGGED BY: G. Cisneros	BORING I	OCATION:		
RILLED BY : Brian, ESN			NORTHIN 291962	G : 2.269443	E	EASTING: 1017282.09882
RILLING EQUIPI Geoprobe	MENT:		SURFACE		C	COORDINATE SYSTEM: SPCS WA S NAD83 FT
ORILLING METHO)D:		TOTAL DI 30	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 27.5
AMPLING METH	IOD/SAMPLER LENGTH:			DIAMETER:	C	DRILL DATE: 9/16/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21 — 22 — 23 — 24 —	Brown, medium dense, fine t moist.	o medium SAND ; no			1.5 1.8	
25	Brown, medium dense, fine t subrounded gravel; no odor;		ו 5%		2.6	
27	Gray, medium dense, fine to grains; no odor; no sheen; w		5% fine red		1.8	GP-15-27-27.5@1320
28 —						
29 — ML/SM	Olive gray, medium dense/st odor; no sheen; saturated to		silty SAND ; no		2.8	
1						GP-15-GW@1335

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-16
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
RILLED BY: Brian, ESN			NORTHI 29181	NG : 1.257642	E	EASTING: 1017464.66298
RILLING EQUIP Geoprobe	MENT:			SURFACE COORDINATE SYST ELEVATION: SPCS WA S NA		
DRILLING METHOD:			TOTAL D	DEPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 28
AMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	C	DRILL DATE: 9/16/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Asphalt Top 6 inches.					
	Road Base FILL .					
2	Light brown, medium dense, fine gravel; no odor; no shee		AND with 5%			
3					2.1	
4						
5	Brown, medium dense, medi subrounded gravel; no odor;		with 10% fine			
6					2.4	
8	Same as above; no odor; no	sheen; moist.				
9					2.1	
10 BBREVIATIONS			NOTES:			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	ON: 10 Port V Longview		BORING ID: GP-16
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Brian, ESN DRILLING EQUIP Geoprobe	MENT:		NORTHI 29181 SURFAC ELEVAT	1.257642 E	c	EASTING: 1017464.66298 COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:			DEPTH (ft bgs):	D	DEPTH TO WATER (ft bgs):
SAMPLING METH	IOD/SAMPLER LENGTH:		30 BORING	DIAMETER:		28 DRILL DATE:
Continuous	· · · · · · · · · · · · · · · · · · ·		2"			9/16/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR Co	otion and Observations DNSTITUENT , odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Light brown, medium dense, fine gravel; no odor; no shee Same as above; no odor; no	n; moist.	AND with 5%		2.6	
15 —	Brown, medium dense, fine t subrounded gravel; no odor;		า 10%			
17					2.2	
18 —	Same as above; no odor; no	sheen; moist.			1.6	
20	:		NOTES:			
	ow ground surface USCS = Unified	Soil Classification System groundwater table	-			

F 1 5	ov		PROJECT: POL-TPH	LOCATIO	N: 10 Port V	Nay,	BORING ID: GP-16
		DISNIDER	LOGGED BY:	BOBING	Longviev	V, VVA	
strat	egy •	science • engineering	G. Cisneros	DORING	LOCATION.		
DRILLE				NORTHIN	G:	E	ASTING:
Brian,				291811	1.257642		1017464.66298
	DRILLING EQUIPMENT: Geoprobe			SURFACI			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	DRILLING METHOD:			TOTAL D 30	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 28
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:		RILL DATE: 9/16/2015	
Depth (feet)	USCS Symbol	(color, texture, moisture, MAJOR C			Drive/ Recovery	PID (ppm)	Sample ID
		Brown, medium dense, fine t subrounded gravel and 5% a					
_		moist.	ingulai gravel, no ouo	i, no sneen,			
21 —							
-	SW.					2.1	
22 —							
22							
-							
23 —		Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;			
-		moist.				3.4	
24 —							
_							
25 —							
_							
26 —						2.1	
-	SP						
27 —							
		Gray, medium dense, fine to grains; no odor; no sheen; w		10% fine red			
		, , , , , , , , , , , , , , , , , , ,	-			3.1	
28 🔫							GP-16-27.5-28@1424
20						0.7	
29 —						2.7	
_							
							GP-16-GW@1439
30 —		1		NOTES:			
ft bgs	VIATIONS = feet belo	ow ground surface USCS = Unified	Soil Classification System				
ppm =	parts per	million	groundwater table				

FLOV		PROJECT: POL-TPH	LOCATIO	DN: 10 Port \	Nay,	BORING ID: GP-17		
	DISNIDER	LOGGED BY:	BORING	Longview, WA GP-17 BORING LOCATION:				
strategy •	science • engineering	G. Cisneros	Dorand	LOOATION.				
DRILLED BY:				NORTHING: EASTING:				
Brian, ESN				7.351966		1017548.36186		
DRILLING EQUIP Geoprobe	MENT:		SURFAC			OORDINATE SYSTEM: SPCS WA S NAD83 FT		
DRILLING METH	OD:		TOTAL D	DEPTH (ft bgs):		PEPTH TO WATER (ft bgs): 26.5		
SAMPLING METI Continuous	SAMPLING METHOD/SAMPLER LENGTH: Continuous			DIAMETER:		PRILL DATE: 9/17/2015		
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining,	, sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID		
0 AS	Asphalt Top 6 inches.							
	Road Base FILL.							
1 - FILL					1.3			
	Deddieb brown, medium den			_				
	Reddish brown, medium der moist.	ise, fine SAND , no o	uor, no sneen,					
2 —	•							
_					2.8			
3 —								
	•							
4 —								
5 —	Same as above; no odor; no	sheen; moist.						
_					5.3			
6 —	Light brown, medium dense,		D with 5%					
_	subrounded gravel; no odor;	no sneen, moist.						
7								
	:							
8 —	Same as above; no odor; no	sheen: moist			3.7			
		Sheen, moist.						
9 —								
	1 5:		NOTES:					
	ow ground surface USCS = Unified	Soil Classification System						
, p		• • • • • • •						

FLOYDISNID	ER PROJECT:	LOCATIO	DN: 10 Port V Longview		BORING ID: GP-17
strategy • science • engine		BORING	LOCATION:		
DRILLED BY: Brian, ESN		NORTHIN 20175	NG : 7.351966		EASTING: 1017548.36186
DRILLING EQUIPMENT: Geoprobe	SURFAC	E	(COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLING METHOD:		TOTAL D	DEPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 26.5
SAMPLING METHOD/SAMPLER LENGTH: Continuous			DIAMETER:		DRILL DATE: 9/17/2015
Depth USCS S	oil Description and Observations		Drive/	PID	
11 — 12 — 13 —	MAJOR CONSTITUENT, odor, staining, sh odor; no sheen; moist.	neen, debris, etc.)	Recovery	(ppm) 1.8 0.7	Sample ID
 15 — Same as above; no c 16 — SP 17 — SP 	odor; no sheen; moist.			1.8	
18	Im dense, fine to medium SAN	ID ; no odor;		1.9	
20 ABBREVIATIONS: ft bgs = feet below ground surface USCS ppm = parts per million	= Unified Soil Classification System = denotes groundwater table	NOTES:			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longvie	Nay, w, WA	BORING ID: GP-17		
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:				
RILLED BY:			NORTHI	NORTHING: EASTING:				
Brian, ESN			291757.351966 1017548			1017548.36186		
Geoprobe	PMENT:			SURFACECOORDINATE SYSELEVATION:SPCS WA S N				
RILLING METH	OD:		TOTAL I 30	DEPTH (ft bgs):		DEPTH TO WATER (ft bgs): 26.5		
SAMPLING MET Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE: 9/17/2015		
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID		
21 — 22 — 23 — 24 —	Same as above; no odor; no Brownish gray, medium dens fine red grains and 1/2-inch sheen; moist.	se, fine to medium S A	AND with 5% o odor; no		2.5			
25 —	Same as above; no odor; no	sheen; moist to wet.			2.2			
26	Gray, medium dense, fine to grains; no odor; no sheen; s		0% fine red		2.3	GP-17-26-26.5@0924		
27 — 28 — 29 —	Same as above; no odor; no	sheen; saturated.			2.1			
						GP-17-GW@0934		
30	2.		NOTES:		I			
	low ground surface USCS = Unified	Soil Classification System						

-	<u> </u>		PROJECT:	LOCATIO	ON: 10 Port \		BORING ID: GP-18
FL(ΟY	DISNIDER	POL-TPH		Longvie	w, WA	GF-10
strate	egy .	science • engineering	LOGGED BY:		LOCATION:		
			G. Cisneros	5' VVes	t of pipeline		
	DRILLED BY: Brian, ESN				NG: 1.594646		ASTING: 1017513.07725
DRILLIN Geopr		MENT:		SURFAC ELEVAT			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	DRILLING METHOD:			TOTAL 1 30	DEPTH (ft bgs):		EPTH TO WATER (ft bgs): 28
SAMPLING METHOD/SAMPLER LENGTH:					DIAMETER:	D	RILL DATE : 9/16/2015
Contin Depth	USCS	Soil Descri	ption and Observations		Drive/	PID	
(feet) 0	Symbol	(color, texture, moisture, MAJOR Co Asphalt Top 6 inches.	ONSTITUENT, odor, staining,	sheen, debris, etc.)	Recovery	(ppm)	Sample ID
_	AS						
		Road Base FILL .					
1 —							
_	XFILLX					3.2	
2 —							
		Brown, medium dense, fine t 10% gravel; no odor; no she		10% silt and			
3 —			- ,			4.8	
4 —							
	SW						
5 —		Same as above; no odor; no	sheen; moist.				
_							
6 —						2.0	
Ŭ		Light brown, medium dense, subrounded gravel; no odor;		D with 5%		2.0	
_							
7 —							
8 —							
		Same as above; no odor; no	sheen; moist.				
9 —						5.7	
ft bgs =	/IATIONS = feet belo parts per	ow ground surface USCS = Unified	Soil Classification System	NOTES:			
- 1114 PPIII -	parts her		groundwater table				

RILLED BY: Brian, ESN RILLING EQUIPMENT: Geoprobe RILLING METHOD:		5' West NORTHIN 291961 SURFACE	OCATION: of pipeline G: .594646	E	
Brian, ESN RILLING EQUIPMENT: Geoprobe	G. Cisneros	NORTHIN 291961 SURFACE	G:	E	
Brian, ESN RILLING EQUIPMENT: Geoprobe		291961 SURFACE			ASTING:
Geoprobe					1017513.07725
RILLING METHOD:		ELEVATIO	SURFACE COORDINATE SYS ELEVATION: SPCS WA S N		
		TOTAL D	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 28
AMPLING METHOD/SAMPLER LENGT	1 :	BORING 2"	DIAMETER:		RILL DATE: 9/16/2015
Depth USCS feet) Symbol (color, texture, moistu	Soil Description and Observations re, MAJOR CONSTITUENT, odor, staining, sh	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
 subrounded grave 11	ense, fine to medium SAND with ; no odor; no sheen; moist. ense, fine to medium SAND; no o			4.9 5.9	
14	o odor; no sheen; moist.				
 16	o odor; no sheen; moist.			3.7	
18					
19					
BBREVIATIONS:		NOTES:			
ft bgs = feet below ground surface USC ppm = parts per million	S = Unified Soil Classification System = denotes groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-18
	science • engineering	LOGGED BY: G. Cisneros		LOCATION:		
RILLED BY:		G. CISHEIOS	5' West of pipeline NORTHING: EASTING:			FASTING
Brian, ESN			-	1.594646		1017513.07725
DRILLING EQUIPMENT: Geoprobe			SURFACE		(COORDINATE SYSTEM: SPCS WA S NAD83 F
RILLING METHO	DD:		TOTAL D	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 28
AMPLING METH	HOD/SAMPLER LENGTH:		BORING	DIAMETER:		DRILL DATE:
Continuous			2"			9/16/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	iption and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
	Brown, medium dense, fine 5% silt; no odor; no sheen; r		0% gravel and		3.7	
3	Brown, medium dense, fine odor; no sheen; moist.	to medium SAND with	5% gravel; no		2.9 6.7	
4	Olive gray, medium dense, s sheen; moist.	silty SAND ; moderate o	odor; moderate		14.0	
5 - SM 	. Dark brown, medium dense, gravel; no odor; no sheen.	, fine to medium SAND	9 with 5%		6.7	
7	Olive gray, medium dense, s odor; moderate sheen; wet.	silty SAND /sandy SIL T	r ; moderate		46.7	GP-18-27-28@1531
²⁸	Dark gray, medium dense, fi slight sheen; saturated.	ine to medium SAND ;	slight odor;		7.5	
9	Same as above; no odor; no	o sheen; saturated.			6.6	GP-18-29-30@1536
BBREVIATIONS	: by ground surface USCS = Unified		NOTES:			

FLOV		PROJECT: POL-TPH	LOCATIO	DN: 10 Port	Way,	BORING ID: GP-19
	DISNIDER	LOGGED BY:	BOBING	Longviev	W, VVA	
strategy •	science • engineering	G. Cisneros	BORING	LUCATION.		
DRILLED BY:			NORTHI	NG:	E	EASTING:
Brian, ESN			29203	1.916154		1017556.63986
DRILLING EQUII Geoprobe	PMENT:		SURFAC			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	IOD:			EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs):
SAMPLING METHOD/SAMPLER LENGTH:			30 BOBING	DIAMETER:		24 DRILL DATE:
Continuous			2"	DIAMETER.		9/17/2015
Depth USCS (feet) Symbo	I (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, st	neen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Asphalt Top 6 inches.					
	Road Base FILL.			-		
	X				0.3	
FILL	3				0.0	
- &&&	X					
	3					
2	Light brown, medium dense, subrounded gravel; no odor;		with 5%			
_		no sneen, moist.				
3 —					4.6	
_						
4 —	Same as above; no odor; no	sheen; moist.				
_						
5 —					7.1	
-						
	•					
6	Same as above; no odor; no	sheen; moist.				
_						
7 —					5.3	
_	.:					
8 —	Same as above; no odor; no	sheen; moist.				
	•					
9 —					4.0	
	·:		NOTER			
ABBREVIATION ft bgs = feet be	low ground surface USCS = Unified	Soil Classification System	NOTES:			
ppm = parts pe	er million v = denotes	groundwater table				

FLOYD	SNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longview	/ay, v, WA	BORING ID: GP-19
	ience • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		1
RILLED BY: Brian, ESN			NORTHIN 29203	IG : 1.916154	E	EASTING: 1017556.63986
DRILLING EQUIPMEN Geoprobe	NT:		SURFAC	E	COORDINATE SYSTEM: SPCS WA S NAD83 F1	
DRILLING METHOD:	RILLING METHOD: TOTAL DEPTH (ft bgs): 30				C	DEPTH TO WATER (ft bgs): 24
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:	6	DRILL DATE: 9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	tion and Observations DNSTITUENT , odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11	ght brown, fine to coarse S heen; moist. ame as above; no odor; no	-	no odor; no		4.4	
14 — 15 — 16 —	ame as above; no odor; no	sheen; moist.			4.8	
17 — 18 — 19 —	ame as above; no odor; no	sheen; moist.			3.2	
20 ABBREVIATIONS: ft bgs = feet below c	ground surface USCS = Unified S	Soil Classification System	NOTES:			

FLOYE	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port W Longview		BORING ID: GP-19
	ience • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Brian, ESN			NORTHIN 29203 ²	IG: 1.916154		EASTING: 1017556.63986
DRILLING EQUIPME Geoprobe			SURFACI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD	RILLING METHOD: TOTAL DEPTH (ft bgs): 30				C	DEPTH TO WATER (ft bgs): 24
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:		9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	tion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
	rown, medium dense, fine to noist.	o coarse SAND ; no o	odor; no sheen;		1.6	
22						
ML w	Dlive, stiff SILT with high plas ret. Gray, medium dense, fine to				2.2	
24 •	ret to saturated. name as above; no odor; no					GP-19-23.5-24@1435
26 —					1.9	
27 — SP S	ame as above; no odor; no	sheen; saturated.			2.6	
28 —	ame as above; no odor; no	sheen; saturated.				
29					2.3	
ABBREVIATIONS:	ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:			

-		PROJECT:	LOCATIO	N: 10 Port \			
FLO	YDISNIDER	POL-TPH		Longview	v, WA	GP-20	
	 science engineering 	LOGGED BY:	BORING	BORING LOCATION:			
		T. Gardner-Brown					
DRILLED BY: Brian, ESI			NORTHI			ASTING: 1017584.18033	
			SURFAC	3.288955			
	DRILLING EQUIPMENT: Geoprobe			E ON:		OORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLING ME	DRILLING METHOD:			EPTH (ft bgs):	D	PEPTH TO WATER (ft bgs): 25	
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:		PRILL DATE : 9/17/2015	
	SCS Soil Description Soil Description (color, texture, moisture, MAJOR Color)	otion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
0 A	Asphalt Top 6 inches.						
	XX Road Base FILL.			-			
	<u>й</u> Х						
	XX						
_	Light brown, medium dense,						
2							
3 —					4.3		
: ::S	P · · ·						
	Same as above; no odor; no	sheen; moist.					
4							
	Same as above; no odor; no	sheen: moist.					
_							
5 —							
		D. libela bistoria el res		-			
Ś	 Fine to coarse, gravelly SAN M• no odor; no sheen; moist. 	D, likely historical toa					
6	Light brown to gray, medium	dense, fine to mediu	m SAND ; no		5.2		
	odor; no sheen; moist.						
7 —							
8					5.7		
					0.1		
9							
10			NOTES				
ABBREVIATI ft bgs = feet	t below ground surface USCS = Unified	Soil Classification System	NOTES: Groundwater colle	cted at 1350			
ppm = parts	s per million 🔹 = denotes	groundwater table					

FLO	YDISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longviev		BORING ID: GP-20
	 science engineering 	LOGGED BY: T. Gardner-Brown	BORING I	OCATION:		
RILLED BY: Brian, ESN		-	NORTHIN 292143	G : 3.288955		EASTING: 1017584.18033
Geoprobe			SURFACE			COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING ME	ETHOD:		TOTAL DI 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 25
AMPLING N Continuou	IETHOD/SAMPLER LENGTH: IS		BORING I 2"	DIAMETER:		DRILL DATE : 9/17/2015
Depth US (feet) Syn		ption and Observations ONSTITUENT, odor, staining, she	een, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 —	Light brown, medium dense, angular gravel; no odor; no s		with 15%		4.9	
12	Refusal at 12 feet bgs; rusty pipeline. Moved boring locat Brown, medium dense, fine moist.	ion approximately 15 to	the northwest.			
14 —					4.1	
16 — 17 —	Same as above; no odor; no	sheen; moist.			5.5	
M	Brown, stiff SILT with low pla	asticity; no odor; no she	en; moist.			
18	Brown to gray, medium dens no sheen; moist.	se, fine to medium SAN	D ; no odor;		5.6	
19					6.2	
ABBREVIATI	t below ground surface USCS = Unified		NOTES: Groundwater collec	ted at 1350		1

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longview		BORING ID: GP-20
	science 🖡 engineering	LOGGED BY: T. Gardner-Brown	BORING	LOCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292143	IG: 3.288955		EASTING: 1017584.18033
DRILLING EQUIP Geoprobe	MENT:		SURFAC ELEVATI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:		TOTAL D 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 25
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	tion and Observations DNSTITUENT, odor, staining, she	en, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
SP 21	Brown, medium dense, fine t subangular gravel; no odor; r		0%		5.9	
22 —	Gray, medium dense, fine to moist.	medium SAND ; no odo	r; no sheen;			
23ML	Olive, stiff SILT with high pla	sticity; no odor; no shee	en; moist.		6.4	
24	Gray, medium dense, fine to saturated.	medium SAND with 5%	ő gravel;		4.9	GP-20-24-25@1340
25 SP	· ·					
27 — SM	Reddish brown to gray, silty, saturated.	fine SAND ; no odor; no	o sheen;		5.1	
28 —	. Gray, medium dense, fine to saturated.	medium SAND ; no odo	r; no sheen;			
29 — SP					5.2 6.5	
30		Г.				
ABBREVIATIONS ft bgs = feet belo ppm = parts per	ow ground surface USCS = Unified \$		NOTES: Groundwater colle	cted at 1350		

LOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev	Vay, v, WA	BORING ID: GP-21
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
RILLED BY:			NORTHI	NG:	E	EASTING:
Brian, ESN				5.653404		1017421.7143
RILLING EQUIP Geoprobe	MENT:		SURFAC ELEVAT		COORDINATE SYSTEM: SPCS WA S NAD83 F	
RILLING METH	OD:		TOTAL E	DEPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 21.5 and 26
AMPLING METI Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	[DRILL DATE : 9/17/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Asphalt Top 6 inches.				,	
	Road Base FILL .					
1 — ŰFILLŐ					0.7	
	Brown, medium dense, fine subrounded gravel; no odor;		5%			
2 —						
					1.7	
3						
4	Same as above; no odor; no	sheen; moist.				
5 —	Same as above; no odor; no	sheen; moist.				
_						
6					2.6	
_						
7 —: SP						
8 —	Reddish brown, medium der	nse, fine to medium S 4	AND with a		5.2	
	1-inch silt layer at 8.5 feet bo					
9 —						
			NOTES:			<u> </u>
BBREVIATIONS	S: ow ground surface USCS = Unified	Soil Classification System	Groundwater colle	octed at 1128		

	roject: POL-TPH	LOCATIC	N: 10 Port V Longviev		BORING ID: GP-21
strategy - science - engineering	DGGED BY: G. Cisneros				
RILLED BY: Brian, ESN		NORTHIN 292294	IG : 5.653404	I	EASTING: 1017421.7143
RILLING EQUIPMENT: Geoprobe		SURFAC	E	(COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING METHOD:		TOTAL D	EPTH (ft bgs):	[DEPTH TO WATER (ft bgs): 21.5 and 26
SAMPLING METHOD/SAMPLER LENGTH: BORING DIA Continuous 2"			DIAMETER:	[DRILL DATE: 9/17/2015
Depth USCS Soil Descriptio (feet) Symbol (color, texture, moisture, MAJOR CONS	n and Observations STITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
Brown, medium dense, fine to c odor; no sheen; moist.				4.6	
12 Same as above; no odor; no sh					
13 — ML - ML	moderate plasticity	; no odor; no		4.5	
14 Brown, medium dense, fine to r moist.	nedium SAND ; no	odor; no sheen;			
Same as above; no odor; no sh	ieen; moist.			3.6	
17 — 11 · · · · · · · · · · · · · · · · ·					
¹⁸ Same as above with 1-inch silt odor; no sheen; moist.	layers at 17.5 and	18 feet bgs; no		2.5	
19					
20		NOTES:			

	PROJECT: POL-TPH	LOCATIO	N: 10 Port V	Vay,	BORING ID: GP-21
FLOYD SNIDER			Longviev	v, WA	01-21
strategy • science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY:		NORTHIN	G:	E	EASTING:
Brian, ESN		292295	5.653404		1017421.7143
DRILLING EQUIPMENT: Geoprobe		SURFACI		C	COORDINATE SYSTEM:
					SPCS WA S NAD83 FT
DRILLING METHOD:	30	EPTH (ft bgs):	Ľ	DEPTH TO WATER (ft bgs): 21.5 and 26	
SAMPLING METHOD/SAMPLER LENGTH: Continuous	BORING 2"	DIAMETER:	[DRILL DATE : 9/17/2015	
(feet) Symbol (color, texture, moisture, MAJOR C			Drive/ Recovery	PID (ppm)	Sample ID
Brown, medium dense, fine t	o medium SAND ; no o	odor; no sheen;			
				4.0	
21					
					GP-21-21-21.5@1101
Same as above; saturated.				7.5	
22					
Olive, stiff SILT with modera	te to high plasticity; no	odor; no		6.1	
23 — I I I sheen; moist to wet.					
24 — ML Como os shava na sidar na					
Same as above; no odor; no	sheen; moist.				
25 —					
Gray, medium dense, fine to	medium SAND; no oc	lor; no sheen;		1.9	
26					GP-21-25.5-26@1158
27				5.5	
				0.0	
28					
Same as above; no odor; no	sheen; saturated.				
29				6.1	
				0.1	
30					
ABBREVIATIONS:		NOTES:			
ft bgs = feet below ground surface USCS = Unified	Soil Classification System groundwater table	Groundwater collect	cted at 1128		

E D S	οv		PROJECT: POL-TPH	LOCATIO	N: 10 Port Longvie		BORING ID: GP-22
	FLOYD SNIDER strategy • science • engineering			BORING		<i>vv, vv</i>	
Strat	eyy •	science • engineering	G. Cisneros		of pipeline in	Transe	ct Shed 1
			NORTHIN		E	EASTING:	
Brian,					4.571626		1017476.03572
Geopi				SURFAC ELEVATI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	G METHO	DD:			EPTH (ft bgs):		DEPTH TO WATER (ft bgs):
SAMPLI		HOD/SAMPLER LENGTH:		30 BORING	DIAMETER:		29.5 DRILL DATE:
Contir		· · · · · · · · · · · · · · · · · · ·		2"			9/17/2015
Depth (feet)	USCS Symbol	(color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 6 inches.					
	FILLS						
1 —		Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;	-		
_		moist.				1.1	
2 —							
		•					
_							
3 —						1.6	
_		Same as above; no odor; no	sheen: moist.				
4 —							
_							
5 —		· · Light brown, medium dense, · sheen; moist.	fine to medium SAN) no odor; no			
_							
6 —						2.0	
_							
/ —		Same as above; no odor; no	sheen; moist.				
-		•				1.6	
8 —							
_							
9 —		•					
9 —							
_							
10		•		1			
ft bgs	/IATIONS = feet belo	ow ground surface USCS = Unified	Soil Classification System	NOTES: Flooring is elevate	d from surround	ding groun	id surface ∼2'
ppm =	parts per	million	groundwater table				

FLOYI	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port W Longview	ay, WA	BORING ID: GP-22
	cience • engineering	LOGGED BY: G. Cisneros		LOCATION: of pipeline in T	ranseo	ct Shed 1
DRILLED BY: Brian, ESN				NORTHING:EASTING:292244.5716261017476.03572SURFACECOORDINATE SYSTELEVATION:SPCS WA S NA		
DRILLING EQUIPM Geoprobe	IENT:					
DRILLING METHO	D:		total d 30	EPTH (ft bgs):		EPTH TO WATER (ft bgs): 29.5
SAMPLING METHO Continuous	DD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		RILL DATE: 9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
	Brown, medium dense, fine t subrounded gravel; no odor;		ו 5%		1.9	
12 — SP	Same as above; no odor; no	sheen; moist.				
13					1.4	
15	Same as above; no odor; no	sheen; moist.			1.9	
	Brown, medium dense, fine t 1-inch silt layers; no odor; no		rbedded with			
18					2.7	
20 ABBREVIATIONS:	w ground surface USCS = Unified S	Coll Classification Curtain	NOTES: Flooring is elevate	d from surroundir		t surface ~?'

			PROJECT:	LOCATIO	N: 10 Port V	Vay,	BORING ID:		
F	OY	DISNIDER	POL-TPH		Longview, WA GP-22				
		science • engineering	LOGGED BY:	BORING	LOCATION:	·			
	- 37		G. Cisneros	South o	of pipeline in	Transe	ect Shed 1		
DRILLEI				NORTHIN	IG:	E	EASTING:		
Brian,	ESN			292244	4.571626		1017476.03572		
	IG EQUIP	MENT:		SURFAC		C	COORDINATE SYSTEM:		
Geopi				ELEVATI	UN:		SPCS WA S NAD83 FT		
DRILLING METHOD:			TOTAL D 30	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 29.5			
SAMPLING METHOD/SAMPLER LENGTH: Continuous			BORING 2"	DIAMETER:	C	9/17/2015			
Depth	USCS	Soil Deseri	otion and Observations		Drive/	PID			
(feet)	Symbol			heen, debris, etc.)	Recovery	(ppm)	Sample ID		
21 — 22 — 23 —	- ML SP	Brown, medium dense, fine t moist. Olive, stiff SILT with low plas Olive gray, medium dense, fi sheen; wet.	sticity; no odor; no she	en; moist.		1.9 2.3			
24 — 25 —		Olive, stiff SILT with high pla				3.2			
	SP	subrounded gravel; no odor;				1.8			
27 — 		Same as above; no odor; no	sheen; moist.			1.9			
		Olive, stiff, sandy SILT ; no o							
-	SP	Gray, medium dense, fine to grains; no odor; no sheen; sa		% fine red		3.0	GP-22-29-29.5@1021		
30 —	<u></u>	<u>ا</u>							
ft bgs	VIATIONS = feet bele parts per	ow ground surface USCS = Unified	Soil Classification System	NOTES: Flooring is elevated	d from surround	ing grour	nd surface ~2'		

-	0 V		PROJECT:	LOCATIO	ON: 10 Port		BORING ID: GP-23
FL	OY	DISNIDER	POL-TPH		Longview	N, WA	GF-23
strat	egy .	science • engineering	LOGGED BY:	BORING	LOCATION:		
			G. Cisneros				
DRILLE Brian,				NORTHI 29215	NG: 8.666646		A STING: 1017542.18923
DRILLIN Geop	I G EQUIP robe	MENT:		SURFAC ELEVAT			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	DRILLING METHOD:			TOTAL D	DEPTH (ft bgs):		EPTH TO WATER (ft bgs): 27.5
	SAMPLING METHOD/SAMPLER LENGTH: Continuous				DIAMETER:	D	RILL DATE : 9/17/2015
Depth (feet)	USCS Symbol	Soil Descri (color, texture, moisture, MAJOR C	otion and Observations DNSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	AS	Asphalt Top 6 inches.					
_	XFILL						
1 —		Light brown, medium dense, angular to subrounded grave					
2 —							
3 —		Same as above; no odor; no	sheen: moist			6.5	
4 —			,				
5 —	SP	Same as above; no odor; no	sheen; moist.				
6 —						4.2	
7 —		Rusty/reddish brown, mediur odor; no sheen.	n dense, fine to med	ium SAND ; no			
8 —						4.5	
9 —		Refusal at 9 feet bgs. Encou abandoned pipeline. Moved to the south.	intered rusty metal; I boring location appro	ikely the oximately 10 feet			
	VIATIONS	<u>۶</u> .		NOTES:			1
ft bgs		ow ground surface USCS = Unified	Soil Classification System groundwater table				

FLO	ΟΥ	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev	Vay, v, WA	BORING ID: GP-23	
		science • engineering	LOGGED BY: G. Cisneros	BORING I	OCATION:		·	
RILLED Brian,				NORTHIN 292158	G : 3.666646		EASTING: 1017542.18923	
	G EQUIPI	MENT:		SURFACE	E		COORDINATE SYSTEM: SPCS WA S NAD83 FT	
RILLIN	G METHC	DD:		TOTAL D	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 27.5	
AMPLIN Contin		IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	1	DRILL DATE : 9/17/2015	
Depth (feet)	USCS Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
		Gray, fine to coarse SAND w sheen; moist.	ith 15% angular grave	el; no odor; no		4.5		
11 —		sneen, moist.				1.9	GP-23-10.5-11@1222	
_	SW							
12 —		Brown, medium dense, fine t	o medium SAND ; no o	odor; no sheen;				
_		moist.				1.3		
13 —								
14 —								
15 —		Same as above; no odor; no	sheen; moist.					
16 —						3.1		
17 —	SP							
		Same as above; no odor; no	sheen; moist.					
18 —						1.7		
19 —								
20 —								
ft bgs =	/IATIONS = feet belo parts per	ow ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:				

FLO	Y D S N I D E R	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longview		BORING ID: GP-23
	 science - engineering 	LOGGED BY: G. Cisneros	BORING I	OCATION:		
DRILLED BY: Brian, ESN			NORTHIN 292158	G: 3.666646		EASTING: 1017542.18923
DRILLING EQ Geoprobe	UIPMENT:		SURFACE		(COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING ME	THOD:		TOTAL DI 30	EPTH (ft bgs):	I	DEPTH TO WATER (ft bgs): 27.5
Continuous	ETHOD/SAMPLER LENGTH:		BORING I 2"	DIAMETER:		DRILL DATE: 9/17/2015
Depth US0 (feet) Sym		ption and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
21	•• Brown to gray, fine to coarse	SAND with angular	gravel and 5%		2.1	
_ _	W silt; no odor; no sheen; mois	t.				
22	Brown, medium dense, fine t moist.	to medium SAND ; no	odor; no sheen;			
23 — SI					2.0	
24	⊖:: Olive, stiff SILT with high pla L	sticity; no odor; no sł	heen; moist.		3.1	
25 —	Gray, medium dense, fine to moist to wet.	medium SAND ; no c	odor; no sheen;		4.8	
26					1.0	
27					1.9	GP-23-27-27.5@1241
28 —						
29 —	Same as above; no odor; no	sheen; saturated.			4.6	
30 ABBREVIATIO ft bgs = feet ppm = parts	below ground surface USCS = Unified	Soil Classification System	NOTES:			

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-24
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
RILLED BY: Brian, ESN			NORTHI	NG : 7.904933	E	EASTING: 1017655.17749
RILLING EQUIPI Geoprobe	MENT:		SURFAC	E	0	COORDINATE SYSTEM: SPCS WA S NAD83 F
RILLING METHO	DD:		TOTAL D	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 21
AMPLING METH	OD/SAMPLER LENGTH:			DIAMETER:	[DRILL DATE : 9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ AS	Rail Line Base FILL. Crushe					
1	Light brown, medium dense, sheen; moist.	fine to medium SANI	D ; no odor; no		3.2	
2	Same as above; no odor; no	sheen; moist.				
4 —	Brown to light brown, mediur odor; no sheen; moist.	n dense, fine to medi	um SAND ; no		4.0	
6						
8	Same as above; no odor; no	sheen; moist.			3.4	
9					1.4	
BBREVIATIONS	w ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:		-	

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longviev		BORING ID: GP-24
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Brian, ESN DRILLING EQUIP	MENT:		SURFAC	7.904933 E	c	ASTING: 1017655.17749 OORDINATE SYSTEM:
Geoprobe	יחר		ELEVATI	EPTH (ft bgs):		SPCS WA S NAD83 FT PEPTH TO WATER (ft bgs):
			25	EPTH (IL bgs):		21
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		RILL DATE : 9/17/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR Co	otion and Observations ONSTITUENT, odor, staining,	, sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Same as above; no odor; no Same as above; no odor; no				2.3 2.4 1.6	
15 <u>-</u> 16 <u>-</u> 17 <u>-</u>	Same as above; no odor; no	sheen; moist.			2.1	
18 —	Same as above; no odor; no	sheen; moist.			3.2	
ABBREVIATIONS ft bgs = feet belo ppm = parts per	ow ground surface USCS = Unified S	Soil Classification System groundwater table	NOTES:			

		PROJECT:	LOCATIO	N: 10 Port V	Vay,	BORING ID: GP-24	
FLOY	DISNIDER	POL-TPH	Edigview, WA				
strategy • s	cience • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:			
DRILLED BY: Brian, ESN			NORTHIN 29217	IG : 7.904933	E	EASTING: 1017655.17749	
	IENT:		SURFAC	E	c	COORDINATE SYSTEM:	
Geoprobe	-		ELEVATI			SPCS WA S NAD83 FT	
DRILLING METHO	D:		25	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 21	
SAMPLING METHO Continuous	OD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	[DRILL DATE: 9/17/2015	
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR Co	otion and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
	Brown, medium dense, fine t grains; no odor; no sheen; w		5% fine red		0.6	GP-24-20-20.5@1519	
22	Olive, stiff SILT with high pla	sticity; no odor; no she	een; wet.				
_ 23					2.5		
	Olive gray, medium dense, fi sheen; saturated.	ne to medium SAND ;	no odor; no		2.0		
ABBREVIATIONS:			NOTES:				
	w ground surface USCS = Unified	Soil Classification System groundwater table					

		PROJECT:	LOCATIO	N: 10 Port \	Nay,	
FLOY	YDISNIDER	POL-TPH		Longview	v, ŴA	GP-25
	 science engineering 	LOGGED BY:	BORING	LOCATION:		
		G. Cisneros				
DRILLED BY:			NORTHIN		E	EASTING:
Brian, ESN				2.681266		1017572.25179
DRILLING EQU Geoprobe	JIPMENT:	SURFAC		C	COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLING MET	THOD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs):
			25			20.5
SAMPLING ME Continuous	ETHOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:	C	DRILL DATE: 9/17/2015
Depth USC (feet) Symb	(color, texture, moisture, MAJOR C	-	, sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0	Rail Line Base FILL . Crushe	d angular gravel.				
– AS						
1 —		to medium SAND; no	odor; no sheen;			
	moist.	, -	· · · · ·			
2						
	승규는 것을 가지 않는 것을 하는 것을 수 있다. 물건을 하는 것을 하는 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 것을 수 있는 것을 것을 수 있는 것을 것을 것을 수 있는 것을 것을 수 있는 것을 것을 것을 것을 것을 것을 것을 것을 것 같이. 않는 것을 것 않는 것을 것 않는 것을 것 같이 않는 것 않는					
-					3.4	
3 — 						
	Same as above; no odor; no	sheen; moist.				
4 —						
5						
5 — 						
\rightarrow • (Crushed rock and sandy GR	AVEL; no odor; no s	heen; saturated.		3.1	
) O) GV						
÷						
	Brown, medium dense, fine t	to medium SAND ; no	o odor; no sheen;			
7 —	moist.					
-					2.8	
8 —						
	Same as above; no odor; no	sheen; moist.				
9 —						
					4.0	
10						
ABBREVIATIO			NOTES:			
	below ground surface USCS = Unified	Soil Classification System				
		. J. Sananator table				

13	S	N	ID	ER	PROJE POL	:ст: -TPH			LOCATIO) Port \ ongvie			ORING	^{ID:} G	P-25
				ering	LOGGE	ED BY: isneros			BORING	LOCAT	ION:					
									NORTHII 29228		266		EAST 101		25179	
:									SURFAC ELEVAT						e sys t A S N/	т ем : AD83 F
DRILLING METHOD:								TOTAL D)EPTH	(ft bgs):		DEPT 20.		VATER	(ft bgs):	
AMP	MPLEF	R LEN	GTH:						BORING 2"	DIAME	TER:			. DATE 7/201		
			oisture,	MAJOR	CONSTITU	l Observation ENT, odor, sta	ns aining, sh	neen, debri	s, etc.)		rive/ overy	PID (ppm)		Sample	ID
ופ מי <u>vn,</u> ו	as a	bove	; no o	odor; n) with	10% sil	t; no			4.1				
	n, me een; i			se, silt	y, sandy,	angular (GRAV	EL; no	odor;			3.1				
vn, i st.		dium	dens	se, fine	e to medi	um SAND); no o	odor; no	sheen;			2.4				
ie a	as a	bove	; no (odor; n	o sheen	; moist to v						1.4				
			USCS	= Unifie	d Soil Clas	sification Syvater table		NOTES:					1.4	1.4	1.4	1.4

FLOYD SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev	Vay, v. WA	BORING ID: GP-25	
strategy • science • engineering	LOGGED BY:	BORING LOCATION:				
DRILLED BY:	G. Cisneros		NORTHING: EASTING:			
Brian, ESN			2.681266		EASTING: 1017572.25179	
DRILLING EQUIPMENT: Geoprobe		SURFACI			COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLING METHOD:		TOTAL D	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 20.5	
SAMPLING METHOD/SAMPLER LENGTH: Continuous		BORING 2"	DIAMETER:		DRILL DATE: 9/17/2015	
Depth USCS Soil Descr (feet) Symbol (color, texture, moisture, MAJOR C	iption and Observations CONSTITUENT, odor, staining, sh	neen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
Same as above; no odor; no 21 22 22 3 4 23 24 24 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	se, fine to medium SAN			2.8 3.4 1.8	GP-25-20-20.5@1550	
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified		NOTES:				

		PROJECT:	LOCATIO	N: 10 Port		BORING ID: GP-26
FLOYD	ISNIDER	POL-TPH		Longvie	w, WA	GF-20
strategy • scie	nce • engineering	LOGGED BY:	BORING L	OCATION:		
		G. Cisneros		-		
DRILLED BY: Brian, ESN			NORTHIN 292349	G:).864424	E	ASTING: 1017564.72411
DRILLING EQUIPMENT: Geoprobe			SURFACE ELEVATIO			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:			TOTAL DI 30	EPTH (ft bgs):	D	EPTH TO WATER (ft bgs): 19.5
SAMPLING METHOD/SA	AMPLER LENGTH:			DIAMETER:		RILL DATE:
Continuous			2	D : /		9/18/2015
	color, texture, moisture, MAJOR C	-	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ AS Rail	Line Base FILL . Crushe	d angular gravel.				
Brov mois	vn, medium dense, fine t	o medium SAND ; no	odor; no sheen;			
	bl.				1.3	
2 —					2.6	
3 — SP						
Sam	e as above; no odor; no	sheen; moist.			2.4	
4 —						
5 —						
•••• Dark	brown, gravelly, fine to	coarse SAND with 15	5% angular		2.6	
grav	el and 5% silt (FILL ?); n	o odor; no sheen; mo	ist.			
Brov	vn, fine to medium SANI	J ; no odor; no sneen.				
7 — SP						
8 I Rede	dish brown, stiff SILT wit	th 10% fine sand; no o	odor; no sheen;			
Brov	vn, medium dense, fine t	o medium SAND ; no	odor; no sheen;		2.9	
9 — mois	st.					
10						
ABBREVIATIONS: ft bgs = feet below grou	und surface USCS = Unified		NOTES:			
ppm = parts per million	= denotes	groundwater table				

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longviev		BORING ID: GP-26
	science • engineering	LOGGED BY: G. Cisneros	BORING LOCATION:			
RILLED BY: Brian, ESN			NORTHI 29234	NG : 9.864424		EASTING: 1017564.72411
RILLING EQUIP	MENT:		SURFAC	E		COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING METHO)D:		TOTAL D	DEPTH (ft bgs):		DEPTH TO WATER (ft bgs): 19.5
AMPLING METH	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE: 9/18/2015
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Same as above; no odor; no Same as above; no odor; no Same as above; no odor; no	sheen; moist.			2.6 2.2 2.2	GP-26-14-14.5@0915
15 — 16 • \$Ŵ•	Dark brown, medium dense, 20% angular gravel and 5% s	gravelly, fine to coars silt; no odor; no sheer	n; moist.			
17	Brown, medium dense, fine t moist.	o meaium SAND ; no	oaor; no sneen;		1.4	
19 —	Gray, fine to medium SAND ;	no odor; no sheen; w	vet.		3.3	
	Same as above; no odor; no	sheen; saturated.				GP-26-19-19.5@0920

FLOYDIS	SNIDER PROJECT:		ON: 10 Port Way, Longview, W	A BORING ID: GP-26
strategy • science			LOCATION:	
PRILLED BY: Brian, ESN		NORTHI 29234	NG: 9.864424	EASTING: 1017564.72411
RILLING EQUIPMENT : Geoprobe		SURFAC		COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHOD:		TOTAL I 30	DEPTH (ft bgs):	DEPTH TO WATER (ft bgs): 19.5
SAMPLING METHOD/SAMPL Continuous	ER LENGTH:	BORING 2"	DIAMETER:	DRILL DATE : 9/18/2015
Depth USCS (feet) Symbol (color, t	Soil Description and Obse exture, moisture, MAJOR CONSTITUENT, o	rvations dor, staining, sheen, debris, etc.)	Drive/ PI Recovery (pp	
22	ff SILT with high plasticity; no o		2.4	
 25 saturated 26 saturated 27 saturated 	edium dense, fine to medium SA d. • above; no odor; no sheen; satu		2.	9
28			2.:	3

		PROJECT:	LOCATIO	N: 10 Port		BORING ID: GP-27
FLOY	DISNIDER	POL-TPH		Longviev	w, WA	GP-27
	science • engineering	LOGGED BY:	BORING	LOCATION:		
		G. Cisneros				
DRILLED BY: Trevor, ESN			NORTHIN 292434	IG: 4.344428		EASTING: 1017567.29016
DRILLING EQUIP Geoprobe	MENT:		SURFAC			OORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METHO	DD:		TOTAL D	EPTH (ft bgs):	D	EPTH TO WATER (ft bgs):
			25			14.5
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		9/18/2015
Depth USCS (feet) Symbol	(color, texture, moisture, MAJOR C		sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Rail Line Base FILL . Crushe	d angular gravel.				
1 —	Brown, medium dense, fine t moist.	o medium SAND ; no	odor; no sheen;			
					1.4	
2 —					1.4	
3 —						
4	Same as above; no odor; no	sheen; moist.				
5 — SP					1.4	
6	Same as above; no odor; no	sheen; moist.				
7					1.7	
8	Same as above; no odor; no	sheen; moist.				
9 —					2.1	
	Olive gray, stiff SILT with lov	v plasticity; no odor; n	o sheen; moist.			
ML						
ABBREVIATIONS ft bgs = feet belo ppm = parts per	ow ground surface USCS = Unified	Soil Classification System	NOTES:			

ET 7	ΟV	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port Longviev	Nay, w. WA	BORING ID: GP-27
		science • engineering	LOGGED BY: G. Cisneros	BORING I	LOCATION:	,	
DRILLE				NORTHIN	G:	E	EASTING:
	r, ESN				1.344428		1017567.29016
Geopr	G EQUIP robe	MENT:		SURFACE			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLIN	G METHO	OD:		TOTAL D	EPTH (ft bgs):	C	DEPTH TO WATER (ft bgs): 14.5
SAMPLI Contir		HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/18/2015
Depth (feet)	USCS Symbol	Soil Descri (color, texture, moisture, MAJOR C	otion and Observations ONSTITUENT, odor, staining, s	heen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
- 11 —		Brown, medium dense, fine t moist.	o medium SAND ; no o	odor; no sheen;		2.2	
12 — - 13 —	SP	Gray SAND ; no odor; no she Same as above; slight odor a		en; moist.		2.9	
_ 14 —	 SM ML	Olive, silty SAND ; moderate Olive SILT with low plasticity wet. Gray to brown, medium dens	; moderate odor; mod	erate sheen;		106.0	GP-27-14-14.5@0832
15 — - 16 —		slight sheen; saturated.				26.0	
17 —		Same as above; no odor; no	sheen; saturated.			4.8	GP-27-17-18@0853
18 —		Coarse white grains at 18 to	18.25 feet bgs.			3.4	
19 — 	SP	Same as above; no odor; no	sheen; saturated.				
ft bgs :	/IATIONS = feet belo parts per	ow ground surface USCS = Unified	Soil Classification System	NOTES:			1

E L		PROJECT: POL-TPH	LOCATIO	N: 10 Port V	Vay,	BORING ID: GP-27	
	OYD SNIDEI egy • science • engineerin		Longview, WA GP-27 BORING LOCATION:				
Strat	egy • science • engineerin	G. Cisneros					
DRILLE Trevo	D BY: or, ESN		NORTHIN 292434	IG: 4.344428		EASTING: 1017567.29016	
DRILLIN Geop	NG EQUIPMENT: robe		SURFAC ELEVATI			COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLI	NG METHOD:		TOTAL D 25	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 14.5	
	ING METHOD/SAMPLER LENGTH: nuous		BORING 2"	DIAMETER:		DRILL DATE: 9/18/2015	
Depth (feet)	USCS Symbol (color, texture, moisture, MAJO	scription and Observations R CONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
21 — 22 — 22 — 23 — 24 —	Coarse white grains at 21 Gray, medium dense, fine grains; no odor; no sheen Olive brown, stiff SILT wit saturated.	to coarse SAND with 10; saturated.			2.7 3.1 3.3 1.7		
	VIATIONS:		NOTES:				
ft bgs	= feet below ground surface USCS = Unifi	ed Soil Classification System otes groundwater table					

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port W Longview	/ay, , WA	BORING ID: GP-28
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY:		I	NORTHIN	G:	E	ASTING:
Trevor, ESN			291996	6.858807		1017494.02952
DRILLING EQUIP Geoprobe	MENT:		SURFACI			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING METH	DD:		TOTAL D 30	EPTH (ft bgs):		28
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		PRILL DATE : 9/18/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR Co	otion and Observations DNSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
0 AS	Asphalt Top 6 inches.					
	Road Base FILL.					
1 — ĈFILLO XXXX					1.3	
2 —	Brown, medium dense, fine t moist.	o medium SAND ; no	odor; no sheen;			
3 —					0.8	
4	Same as above; no odor; no	sheen; moist.				
5 —	Light brown, medium dense, sheen; moist.	fine to coarse SAND	; no odor; no		4.2	
6 — 7 —					2.5	
-	Same as above with 5% roun moist.	nded gravel; no odor;	no sheen;			
8						
9					2.3	
	۹ ۲۰		NOTES:			1
	ow ground surface USCS = Unified	Soil Classification System groundwater table	Groundwater colled	cted at 1200		

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIC	N: 10 Port V Longviev		BORING ID: GP-28
	science • engineering	LOGGED BY: G. Cisneros	BORING	LOCATION:		
DRILLED BY: Trevor, ESN DRILLING EQUIP	MENT:		NORTHIN 291990 SURFAC ELEVATI	6.858807 E	C	EASTING: 1017494.02952 COORDINATE SYSTEM:
Geoprobe	DD:			EPTH (ft bgs):		SPCS WA S NAD83 FT DEPTH TO WATER (ft bgs):
			30	(28
SAMPLING METH Continuous	IOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		9/18/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining,	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 21 \\ 21 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22$	No recovery between 10 feet in hole.		LUSI Sample			
<u>20</u> —			NOTES			
ABBREVIATIONS ft bgs = feet belo ppm = parts per	ow ground surface USCS = Unified	Soil Classification System	NOTES: Groundwater colle	cted at 1200		
Phili - hairs hei		Sigunawaler lable				

LOYD SNIDER PROJECT: POL-TPH		LOCATION: 10 Port Way, Longview, WA				
strategy • science • engineering						
DRILLED BY: Trevor, ESN DRILLING EQUIPMENT:		NORTHI 29199 SURFAC	6.858807		EASTING: 1017494.02952 COORDINATE SYSTEM:	
Geoprobe		ELEVAT			SPCS WA S NAD83 FT	
DRILLING METHOD:		TOTAL D	DEPTH (ft bgs):		EPTH TO WATER (ft bgs): 28	
Continuous		BORING 2"	DIAMETER:		RILL DATE : 9/18/2015	
Depth USCS Soil Descr (feet) Symbol (color, texture, moisture, MAJOR C	ription and Observations CONSTITUENT, odor, staining, sh	neen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
21						
22 —						
23 —						
24 —						
25						
26 —						
27						
28						
29						
30		NOTEO				
ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified ppm = parts per million	Soil Classification System s groundwater table	NOTES: Groundwater colle	ected at 1200			

FLOY	/ D SNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port \ Longvie	Vay, v, WA	BORING ID: GP-29
strategy - science - engineering G. Cisneros		BORING	LOCATION:			
DRILLED BY: Trevor, ESN	V		NORTHII 29192	NG: 3.179687		EASTING: 1017537.41072
DRILLING EQU Geoprobe	JIPMENT:		SURFAC			COORDINATE SYSTEM: SPCS WA S NAD83 FT
DRILLING MET	HOD:		TOTAL E 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 27.5
SAMPLING ME Continuous	THOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE: 9/18/2015
Depth USC (feet) Symb	S Soil Descri ool (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
⁰ AS	Asphalt Top 4 inches.					
	Road Base FILL.					
	X					
	X				5.8	
			100/			
	Brown, medium dense, fine t gravel; no odor; no sheen; m		10% angular			
2 —	····					
					1.4	
					1.4	
3 —						
4						
5						
	Same as above; no odor; no	sheen; moist.				
-					2.1	
6						
_						
7						
_						
8 —						
	遺					
9 —						
10						
ABBREVIATIO	NS: below ground surface USCS = Unified	Soil Classification System	NOTES:			
ppm = parts p	per million	groundwater table				

FLOYDISNIDER PROJECT: strategy • science • engineering POL-TPH LOGGED BY: G. Cisneros		LOCATION: 10 Port Way, Longview, WA				
		BORING				
RILLED BY: Trevor, ESN			NORTHIN 291923	IG : 3.179687		EASTING: 1017537.41072
RILLING EQUIP Geoprobe	MENT:		SURFAC	E		COORDINATE SYSTEM: SPCS WA S NAD83 F1
DRILLING METH	OD:		TOTAL D 30	EPTH (ft bgs):		DEPTH TO WATER (ft bgs): 27.5
SAMPLING METI Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/18/2015
Depth USCS (feet) Symbol	Soil Descri (color, texture, moisture, MAJOR C	ption and Observations ONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11 — 12 — 13 — 14 —	Light brown, medium dense, subrounded gravel; no odor; Same as above; no odor; no	no sheen; moist.	D with 5%		1.6	
14 — 15 — 16 —	Brown, medium dense, fine t moist.	o medium SAND ; no	odor; no sheen;		1.2	
17	Same as above; no odor; no	sheen [,] moist			2.8	
19		unour, moiot.			1.4	

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port V Longviev		BORING ID: GP-29		
strategy • science • engineering G. Cisneros			BORING I	BORING LOCATION:				
RILLED BY : Trevor, ESN		I	NORTHIN 291923	I G: 3.179687	1	EASTING: 1017537.41072		
RILLING EQUIPM Geoprobe	ENT:		SURFACE	I	(COORDINATE SYSTEM: SPCS WA S NAD83 FT		
RILLING METHO	D:		TOTAL D	EPTH (ft bgs):	1	DEPTH TO WATER (ft bgs): 27.5		
AMPLING METHO	DD/SAMPLER LENGTH:		BORING	DIAMETER:	1	DRILL DATE: 9/18/2015		
Depth USCS (feet) Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID		
21	Brown, medium dense, fine t moist. Same as above; no odor; no Olive gray, silty SAND with 2 24.25 feet bgs; no odor; no s	sheen; moist. 0% silt and 1/4-inch v			1.2 1.7 1.2			
	Olive, stiff SILT ; no odor; no				2.8	GP-29-25-25.5@1015		
	Brown to gray, medium dens no sheen; wet.	e, line to medium SA	ND, no odor;		2.9			
27	Crow fine to modium CAND				3.1	GP-29-27-27.5@1020		
20	Gray, fine to medium SAND ; Same as above; no odor; no		aturated.		2.3			
30 ·····	v ground surface USCS = Unified S		NOTES:					

FI	OV	DISNIDER	PROJECT: POL-TPH	LOCATIO	CATION: 10 Port Way, Longview, WA		BORING ID: GP-30	
strategy - science - engineering			LOGGED BY: BORING LOCATION: G. Cisneros					
DRILLEI	D BY:		G. CISHEIOS	NORTHIN		E	EASTING:	
					2.155627		1017572.12614	
Geop	I G EQUIP robe	MENT:		SURFAC		C	COORDINATE SYSTEM: SPCS WA S NAD83 FT	
DRILLIN	IG METHO	DD:		TOTAL D	EPTH (ft bgs):	[DEPTH TO WATER (ft bgs): 16.5 and 19.75	
SAMPLI Contir		IOD/SAMPLER LENGTH:			DIAMETER:	[DRILL DATE : 9/18/2015	
Depth (feet)	USCS Symbol	Soil Descrip (color, texture, moisture, MAJOR CO	otion and Observations DNSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID	
0	AS	Asphalt Top 6 inches.			-			
_	X	Road Base FILL .						
1 —		Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;		1.3		
-		moist.						
2 —								
-						1.4		
3 —		Same as above; no odor; no	sheen: moist					
_			sheen, moist.					
4 —						1.6		
_		Same as above; no odor; no	sheen; moist.					
5 —		•						
-		Crushed rock FILL .				3.7		
6 —		Brown, medium dense, fine t	o medium SAND ; no	odor; no sheen;				
7 —		moist.						
-								
8 —	SP					2.3		
_								
9 —		Same as above; no odor; no	sheen; moist.					
_						2.1		
10		•						
ft bgs	VIATIONS = feet belo	ow ground surface USCS = Unified S	Soil Classification System	NOTES:				
ppm =	parts per		groundwater table					

FLOY	DISNIDER	PROJECT: POL-TPH	LOCATIO	N: 10 Port Longviev		BORING ID: GP-30
	science • engineering		BORING	LOCATION:		
RILLED BY:			NORTHI			EASTING:
				2.155627		1017572.12614
Geoprobe			SURFAC ELEVAT	ION:		COORDINATE SYSTEM: SPCS WA S NAD83 FT
RILLING METH	OD:		TOTAL 1 20	DEPTH (ft bgs):		DEPTH TO WATER (ft bgs): 16.5 and 19.75
Continuous	HOD/SAMPLER LENGTH:		BORING 2"	DIAMETER:		DRILL DATE : 9/18/2015
Depth USCS (feet) Symbol	Soil Desc (color, texture, moisture, MAJOR	ription and Observations CONSTITUENT, odor, staining, s	sheen, debris, etc.)	Drive/ Recovery	PID (ppm)	Sample ID
11	Same as above; no odor; no Reddish brown, stiff SILT w moist. Brown to gray, medium den no sheen; moist to wet. Gray, medium dense, fine to saturated.	<i>v</i> ith low plasticity; no oc nse, fine to medium SA	ND; no odor;		1.2 1.5 1.2 2.1	GP-30-16-16.5@1112
18	Olive gray, stiff SILT with hi	iah plasticity: no odor: ı	no sheen:	-		
- ML 19	saturated.		,		1.9	
▼ SML	Olive gray, silty, fine to mee saturated.	dium SAND ; no odor; n	o sheen;			GP-30-19.5-20@1120
20					1	