

VIA ELECTRONIC MAIL

April 23, 2018

Dave Bartus USEPA Region 10 1200 Sixth Avenue Mail Code: AWT-150 Seattle, WA 98101

Greg Gould Washington Department of Ecology PO Box 47600 Olympia, WA 98504-7600

RE: Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility

Dear Messrs. Bartus and Gould:

In accordance with 40 Code of Federal Regulations (CFR) §260.22 and Washington Administrative Code (WAC) 173-303-910(3), Emerald Kalama Chemical, LLC (Emerald) and Fire Mountain Farms, Inc. (FMF) jointly petition the U.S. Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology) to exclude the mixture of industrial wastewater biological solids (IWBS) generated by Emerald at its Kalama facility, municipal wastewater treatment plant biosolids (biosolids) accepted by FMF, secondary wastewater treatment solids (SWTS) accepted by FMF, and wastewater treatment system solids (WTSS) from the Port of Longview accepted by FMF and currently stored at FMF's Newaukum Prairie facility, located at 349 State Route 508, Chehalis, Washington, from designation as a Resource Conservation and Recovery Act (RCRA) hazardous waste.

This petition establishes that the mixture of Emerald IWBS, municipal biosolids, SWTS, and WTSS, collectively known as mixed material, accepted by FMF, does not meet any of the criteria under which the waste carries the hazardous waste listings, that there are no factors other than those for which the waste was listed that could cause the waste to be a hazardous waste, that such factors do not warrant retaining the waste as a hazardous waste and that the mixed material is not a hazardous waste by operation of Subpart C of 40 CFR Part 261 or a dangerous waste by Chapter 173-303 WAC. In addition, the mixed material does not designate as a dangerous waste based on the criteria in WAC 173-303-100 (see Section 1.7, Evaluation of Dangerous Waste Criteria of the Waste Characterization Plan dated July 27, 2017; the Waste Characterization Plan is included in Appendix C of this petition).

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

The parties request EPA and Ecology approval to send the mixed material to a Subtitle D landfill. In accordance with the treatment variance, submitted concurrently, the waste meets applicable Land Disposal Restriction (LDR) treatment standards, based on the waste characterization sampling analytical results.

Name and address of petitioners (40 CFR 260.20(b)(1); WAC 173-303-910(1)(b)(i))

The joint petitioners for this matter are:

Emerald Kalama Chemical, LLC 1296 NW 3rd Street Kalama, WA 98625

Fire Mountain Farms, Inc. 856 Burnt Ridge Road Onalaska, WA 98570

Statement of petitioners' interest in the proposed action (40 CFR 260.20(b)(2); WAC 173-303-910(1)(b)(ii)).

Ecology has issued Administrative Order No. 10938 (Sept. 11, 2014) (Order) alleging that Emerald and FMF are co-generators of dangerous (i.e., hazardous)¹ waste at three FMF facilities. The alleged dangerous waste is comprised of a mixture of IWBS, municipal biosolids, SWTS, and WTSS accepted from various sources by FMF. The Emerald IWBS carry two listed hazardous waste codes – U019 (benzene) and U220 (toluene). The IWBS carry these two codes because material entering Emerald's wastewater treatment plant carries those two codes and, although the resulting sludge does not contain hazardous waste constituents for either benzene or toluene, the sludge retains the listing due to RCRA's derived-from rule. Further, because the IWBS are considered listed hazardous waste and, because as described below, Ecology alleges that the IWBS are not eligible for the so-called fertilizer exemption under Ecology regulations, Ecology has alleged that the mixed material is considered a listed hazardous waste. The Order requires Emerald and FMF to undertake four different corrective actions, the first three of which have been completed to Ecology's satisfaction. The fourth – cleanup and closure of the three units in which the mixed material is being stored – will generate wastes requiring disposal that are the subject of and reason for this delisting petition.

Emerald provided its IWBS to FMF pursuant to a long-standing recycling agreement between the two parties, under which FMF would recycle Emerald's material as a fertilizer. It was the parties' intent and understanding that this recycling arrangement was consistent with an Ecology regulation that exempts such waste-derived fertilizer from regulation as a hazardous waste. Although the practice continued for many years and with Ecology's knowledge, Ecology

¹ Ecology uses the term "dangerous waste" to refer to "hazardous waste" under RCRA. Although there are some state-only dangerous wastes, those state-only wastes are not at issue here. For purposes of this delisting petition, the terms mean the same thing and may be used interchangeably.

WA Department of Ecology

concluded in 2014 that the material is not eligible for the "fertilizer exemption," that the practice does not constitute legitimate recycling, that the Emerald material is a solid and hazardous waste and, therefore, that the mixed material is a solid and hazardous waste. Emerald immediately complied with an Ecology request to stop sending the IWBS to FMF for recycling and the mixed material is currently being stored at FMF's Burnt Ridge, Newaukum Prairie and Big Hanaford facilities. On September 11, 2014, Ecology issued the Order to both Emerald and FMF.

Emerald and FMF appealed Ecology's Order to the Washington State Pollution Control Hearings Board (PCHB) but on September 28, 2015, the PCHB ruled in favor of Ecology. Emerald and FMF filed separate appeals with Washington State Superior Court. Those appeals have been consolidated and are currently stayed by agreement of all parties. The parties have since negotiated an Agreement², dated June 3, 2016, which sets forth specific steps that Emerald and FMF agree to undertake to satisfy the remaining corrective action obligation in the Order. Among other things, the Agreement states that Emerald and FMF will file three separate delisting petitions covering the material currently stored in the three different FMF units. If the delisting petitions are granted, the parties intend to close the three units in accordance with an approved closure plan under the terms of the Agreement, and dispose of the mixed material in a Subtitle D landfill.

A description of the proposed action, including (where appropriate) suggested regulatory language (40 CFR 260.20(b)(3); WAC 173-303-910(1)(b)(iii)).

Emerald and FMF are seeking EPA and Ecology approval to delist the mixed material currently being stored at FMF's Newaukum Prairie facility with the following two conditions: (1) Disposal in a Subtitle D landfill, and (2) Compliance with the concentration-based LDRs for the following dangerous waste codes: U019, U154, U220, and F003, and obtaining a variance for the combustion LDR treatment standard for U001 wastes.³

A statement of the need and justification for the proposed action, including any supporting tests, studies, or other information (40 CFR 260.20(b)(4); WAC 173-303-910(1)(b)(iv)).

Emerald and FMF request the delisting of the RCRA waste codes attached to the mixed material, so that the material can be disposed of in a Subtitle D landfill rather than requiring that this benign material be sent to a RCRA Subtitle C landfill.

According to information provided by FMF, approximately 86 percent of the material in the Newaukum Prairie storage unit is municipal biosolids that would have been applied to the land if not for the fact that the material was mixed with Emerald IWBS. Federal and Washington State regulations allow, and even encourage the use of biosolids as a soil amendment. FMF indicates that less than 25 tons of IWBS remained in the storage unit when operations ceased in the spring

² Ecology. 2016a. Agreement for Conditional Compliance with Ecology Administrative Order No. 10938 During Judicial Review, Washington State Department of Ecology. June 3.

³ By seeking a treatment variance for U001 listed wastes, the parties are not waiving any argument they have made or may make in the future regarding the applicability of the LDR treatment standard for U001.

of 2014. The Emerald IWBS comprise about seven percent of the total mass of material in the storage unit. A list of sources and approximate quantities are provided in Table 1 below. This information was provided to Emerald by FMF.

Emerald's biological wastewater treatment plant treats process wastewater as well as groundwater containing contamination from historical spills. As part of that treatment process, the plant generates IWBS. Emerald's IWBS are basically the same material as municipal wastewater treatment plant (WWTP) biosolids. That is essentially the dead and decaying microorganisms used to digest and thereby chemically transform the undesirable components present in the wastewater into benign, and in many cases useful, compounds. IWBS are superior to biosolids in many ways because the processes that generate this material are consistent and the microorganisms are selected and conditioned by the nature of the wastewater. Therefore, the industrial WWTP can operate with exceptional efficiency to chemically transform the target chemicals into benign compounds.

Table 1
Sources of Material Stored in the Newaukum Prairie Storage Unit

	Tons
	(approximate
Source)
Emerald Kalama Chemical, LLC	24.7
Kitsap Municipal Wastewater Treatment Plant	66.7
Castle Rock Municipal Wastewater Treatment Plant	2.1
West Sound Utility District Wastewater Treatment Plant	42.8
Camas Municipal Wastewater Treatment Plant	20.4
McCleary Municipal Wastewater Treatment Plant	3.0
Aberdeen Municipal Wastewater Treatment Plant	49.7
Kalama Municipal Wastewater Treatment Plant	2.1
Gig Harbor Municipal Wastewater Treatment Plant	34.8
Grand Mound Municipal Wastewater Treatment Plant	8.0
Darigold - Industrial Wastewater Treatment Plant	21.1
Ocean Shores Municipal Wastewater Treatment Plant	30.9
Lacy Olympia Tumwater Thurston County Wastewater Treatment Plant	31.2
Port of Longview - Industrial Wastewater Treatment Plant	1.1
Lewis County Water Sewer District 6 Municipal Wastewater Treatment Plant	1.3
Total	339.9

WA Department of Ecology

The waste produced by a particular generating facility does not meet any of the criteria under which the waste was listed as a hazardous waste (40 CFR 260.22(a)(1), 260.22(b)) and there are no factors (including additional constituents) other than those for which the waste was listed that could cause the waste to be a hazardous waste (40 CFR 260.22(a)(2), 260.22(b); WAC 173-303-072(4)).

The majority of the mixed material (approximately 86 percent) is comprised of biosolids generated by municipal WWTPs. Municipal biosolids do not meet any of the criteria under which the mixed material is listed as a hazardous waste and there are no constituents (or other factors) that could cause the waste to be a hazardous waste. Biosolids are approved by EPA and Ecology for land application.

The mixed material contains approximately 21 tons of SWTS from the Darigold Chehalis facility. The Chehalis plant produces dry milk products. The SWTS do not meet any of the criteria under which the mixed material is listed as a hazardous waste and there are no constituents (or other factors) that could cause the waste to be a hazardous waste. Ecology granted the SWTS a beneficial use determination (BUD-SA-15-08) for application to agricultural fields as a nitrogen supplement.

The mixed material contains approximately 1 ton of WTSS from the Port of Longview. The Port operates a small wastewater treatment system to provide primary treatment of the water that was used to clean the dock, conveyor system, and associated sumps at Berth 2. Berth 2 is used to transfer nonhazardous materials. The WTSS does not meet any of the criteria for which the waste was listed as hazardous and there are no constituents (or other factors) that could cause the waste to be a hazardous waste.

The mixed material contains approximately 25 tons of IWBS. The IWBS are produced in Emerald's biological WWTP. The WWTP treats process wastewater as well as groundwater containing contamination from historical spills. As part of that treatment process, the plant generates IWBS. Emerald's IWBS are basically the same material as municipal biosolids. The Emerald IWBS do not meet any of the criteria for which the waste was listed as hazardous and there are no constituents (or other factors) that could cause the waste to be a hazardous waste.

The Kalama facility regularly sampled the IWBS and had the material analyzed for various chemical constituents on a monthly, quarterly, or annual basis. The data are provided in Table A-1, Routine Analytical Data, in Appendix A. Toluene was detected in one sample of the IWBS between 1998 and 2014 at a concentration of 69 micrograms per kilogram (parts per billion; ppb), reported on a dry weight basis⁴, which, as shown in Table A-1 in Appendix A, is significantly below the preliminary delisting levels developed by Ecology for the IWBS based on maximum allowable total concentrations (PDLs) and, for toluene, ⁵ maximum allowable toxicity

⁴ Contaminant concentrations reported on a dry weight basis are higher than they would be if they were reported on an as-received basis. Therefore, consideration of dry weight results in delisting decisions is conservative. The percent solids for this sample is 8.6 percent.

⁵ For other analytes listed on Table A-1 with identified TCLP-PDLs, TCLP analysis results provided on Table A-2 are compared to TCLP-PDLs.

WA Department of Ecology

characteristic leaching procedure (TCLP) concentrations (TCLP-PDLs) using EPA's Hazardous Waste Delisting Risk Assessment Software and provided to Emerald⁶, and the RCRA LDR treatment standard of 10 milligrams per kilogram (parts per million; ppm). Benzene was not detected during this time period. The detection limits for benzene and toluene are in the microgram per kilogram range (ppb). In contrast, the preliminary delisting levels and RCRA land disposal treatment standard for benzene and toluene are many orders of magnitude greater than the detection limits. Therefore, if present below the detection limit; the concentrations of benzene and toluene in the IWBS are likely at least three orders of magnitude below the relevant preliminary delisting levels and RCRA land disposal treatment standard.

Emerald had TCLP analyses performed on the IWBS in 2000 and in 2014. The results were consistent and all chemicals were below the TCLP-PDLs and the LDR treatment standards. The data are presented in Table A-2, TCLP (EPA Method 1311), in Appendix A. Emerald had fish bioassays performed on the IWBS in 2000 and 2014. The percent mortality of the rainbow trout was zero for both tests. Refer to Table A-3, Bioassay (Rainbow Trout), in Appendix A.

The IWBS likely do not contain any other chemical constituent that would cause it to be hazardous. The IWBS were analyzed for pH, cyanide, sulfide, flashpoint, methanol, and acetone. All of the results were either negative or non-detect. The results are presented in Table A-4, Miscellaneous Analyses, in Appendix A.

The mixed material should be acceptable for disposal in a Subtitle D landfill given that the IWBS likely do not contain any of the chemicals or exhibit any of the characteristics of the associated waste codes, and comprise approximately seven percent of the total mass of material in the Newaukum Prairie storage unit.

The waste does not exhibit the characteristic of ignitability and does not contain constituents for which the waste was listed $(40 \text{ CFR } 260.22(c), (d))^7$.

The majority of the mixed material (approximately 86 percent) is comprised of biosolids generated by municipal waste water treatment plants. Municipal biosolids do not do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes, and are approved by EPA and Ecology for land application.

The mixed material contains approximately 21 tons of SWTS from the Darigold Chehalis facility. The Chehalis plant produces dry milk products. The SWTS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes, and are approved for application to agricultural fields as a nitrogen supplement (BUD-SA-15-08).

⁶ Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

⁷ For some of the remaining EPA delisting petition requirements discussed in this petition, there is no corresponding WAC regulatory citation.

The mixed material contains approximately 1 ton of WTSS from the Port of Longview. The Port operates a small wastewater treatment system to provide primary treatment of the water that was used to clean the dock, conveyor system, and associated sumps at Berth 2. Berth 2 is used to transfer nonhazardous materials. The WTSS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes.

The mixed material contains approximately 25 tons of IWBS. The IWBS are produced in Emerald's biological WWTP. The WWTP treats process wastewater as well as groundwater containing contamination from historical spills. As part of that treatment process, the plant generates IWBS. Emerald's IWBS are basically the same material as municipal biosolids. The IWBS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor contain constituents for which the waste was listed (40 CFR 260.22(c), (d)).

Emerald performed a waste designation on the IWBS in 2000 and again in 2014. Emerald identified all hazardous waste streams that enter, or potentially enter, the wastewater treatment plant. Waste codes U001, U019, U154, U220, F003, and D018 apply to the wastewater treated in the WWTP. According to 40 CFR 261.3(g)(2)(ii); WAC 173-303-070(2)(c)(i), any waste that is listed on the basis of ignitability, corrosivity, or reactivity is not governed by the derived-from rule and so the listing code does not apply to the IWBS because the IWBS do not exhibit the characteristic. Therefore, F003 (spent non-halogenated solvents) does not apply because the IWBS are not ignitable (refer to Table A-4 in Appendix A). D018 (benzene) does not apply because that characteristic is not present in the IWBS (refer to Tables A-1 and A-2, in Appendix A).

Waste code U001 (acetaldehyde) applies to the wastewater entering Emerald's wastewater treatment plant; however, this code is listed solely on the basis of ignitability, the resulting IWBS do not exhibit the ignitability characteristic, and therefore the code does not carry through. Although Ecology agrees that the code does not carry through; Ecology has alleged that the WWTP must meet the combustion LDR treatment standard for U001, and has requested that Emerald file a treatment variance request for this waste code, separate from the delisting petition. The treatment variance request is being submitted concurrently.

40 CFR 268.40(j)⁸ unambiguously provides an alternate concentration-based LDR treatment standard for U154 (methanol). Therefore, as long as the concentration of methanol in the IWBS is below the standard, U154 does not apply. Methanol has not been detected in the IWBS (refer to Table A-4 in Appendix A).

Waste codes U019 (benzene) and U220 (toluene) apply to the IWBS because material entering Emerald's wastewater treatment plant carries those two codes and, although the resulting IWBS

_

⁸ There is no specific corresponding Washington State regulation.

WA Department of Ecology

do not contain either benzene or toluene, the IWBS retain the listing due to RCRA's derived-from rule.

Approximately 86 percent of the material in the Newaukum Prairie storage unit is municipal biosolids, approximately six percent is SWTS from Darigold, and approximately 0.3 percent is WTSS from the Port of Longview, which do not carry any RCRA waste codes or exhibit any hazardous characteristics; and the remaining approximately seven percent is Emerald IWBS. None of the individual components of the mixed material exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor contain constituents per 40 CFR 260.22(c), (d). Since none of the components of the mixed material is ignitable; the mixture of these materials is not likely to be ignitable, and is not likely to contain constituents for which the material was listed above either the PDLs or LDR treatment standards.

Demonstration samples must consist of enough representative samples, but in no case less than four samples, taken over a period of time sufficient to represent the variability or the uniformity of the waste (40 CFR 260.22(h); WAC 173-303-072(3))

The mixed material has been sampled and analyzed during two separate campaigns. In 2014, Pacific Groundwater Group (PGG) was contracted by FMF to sample and analyze the mixed material. Landau Associates Inc. (LAI) collected and analyzed samples in 2017, in accordance with the Waste Characterization Plan which was approved by EPA and Ecology (Appendix C).

FMF contracted with PGG to sample the mixed material in the Newaukum Prairie storage unit in July 2014. PGG collected 27 samples which were combined into three composite samples for analysis. The mixed material was tested for the following parameters/methods:

- Volatile Organic Compounds, Method 8260C
- Metals, Methods 6010C/7471A
- Semi-volatile Organic Compounds, Method 8270D
- Polychlorinated biphenyls, Method 8082A
- Pesticides, Method 8081B
- Dioxins/Furans, Method 1613B
- N-Nitrate, calculated
- N-Ammonia, Method 350.1M
- Total Kjeldahl Nitrogen, Method 351.2
- Nitrate and Nitrite, Method 353.2
- Nitrite, Method 353.2
- Total Solids, Method SM2540G
- Total Cyanide, Method 335.4
- pH, Method 9045

⁹ Note that percentages do not add up to 100 due to rounding.

WA Department of Ecology

Ecology developed preliminary delisting levels for the Newaukum Prairie storage unit based on PDLs and TCLP-PDLs using EPA's Hazardous Waste Delisting Risk Assessment Software and provided them to Emerald¹⁰. All analytes and parameters were non-detect or present at concentrations below the PDLs or TCLP-PDLs, multiplied by 20 in accordance with the rule of 20, except cobalt. The data from the PGG study are presented, on a dry weight basis¹¹, in Table B-1 in Appendix B.

Emerald contracted with LAI in 2017 to collect three core samples, which were analyzed for total cobalt on a dry weight basis ¹², and composited and analyzed for TCLP cobalt. The total cobalt concentrations were consistent with the results from the PGG results and the TCLP cobalt concentration was below the TCLP-PDL. The data from the LAI cobalt investigation are presented in Table B-3 in Appendix B.

As described in the Waste Characterization Plan, the analytical data from the 2014 PGG investigation and the 2017 LAI analysis of total and TCLP cobalt demonstrate that concentrations in the mixed material in the Newaukum Prairie storage unit are below the PDLs and TCLP-PDLs.

A comparison of the PGG data for benzene and toluene with the LDR levels for non-wastewater indicates that the concentration of benzene in the mixed material likely complies with the LDR treatment standards; however, the measured concentrations of toluene were greater than the LDR and samples were not analyzed for acetone or methanol. In order to ensure that there are no data gaps and to provide data to demonstrate compliance with LDRs, Emerald and FMF submitted a waste characterization plan, which was approved by EPA and Ecology, which proposed the following analyses:

- Volatile Organic Compounds, Method EPA SW8260C
 - o toluene
 - o benzene
 - o acetone
- Volatile Organic Compounds, Method EPA SW8015C
 - o methanol

• Total solids, EPA Method SM2540G-97

• pH, EPA Method 9045D

_

¹⁰ Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

¹¹ Contaminant concentrations reported on a dry weight basis are higher than they would be if they were reported on an as-received basis. Therefore, consideration of dry weight results in delisting decisions is conservative.

¹² Contaminant concentrations reported on a dry weight basis are higher than they would be if they were reported on an as-received basis. Therefore, consideration of dry weight results in delisting decisions is conservative.

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

LAI collected and analyzed 17 grab samples of the mixed material. The data from the waste characterization are presented, on an as-received basis ¹³, in Table B-4 in Appendix B. The concentrations of acetone, benzene, toluene, and methanol indicate that the concentrations in the mixed material are likely below the LDR treatment standards.

The IWBS are the only component of the mixed material that is alleged to carry RCRA waste codes, although these chemicals are not present above the detection limits in the IWBS. Emerald regularly collected and analyzed 323 samples of the IWBS for various constituents on a monthly, quarterly, or annual basis from January 1998 through April 2015. All of this data is summarized in Table A-1 (Appendix A) and illustrates the uniformity of the waste. Ecology developed preliminary delisting levels for the IWBS based on PDLs and TCLP-PDLs using EPA's Hazardous Waste Delisting Risk Assessment Software and provided them to Emerald¹⁴. As noted above, toluene was detected in one sample of IWBS between 1998 and 2014 at a concentration of 69 micrograms per kilogram (ppb), which is below the Newaukum Prairie PDL of 3.39E+10 ppb, the TCLP-PDL, multiplied by 20 in accordance with the rule of 20, of 2.50E+06 ppb, and the RCRA LDR treatment standard of 10 milligrams per kilogram (ppm). Benzene was not detected during this time period.

Emerald had TCLP analyses performed on the IWBS in 2000 and in 2014. The results were consistent and all chemicals were below the TCLP-PDLs and the LDR treatment standards. The data are presented in Table A-2, TCLP (EPA Method 1311), in Appendix A. Emerald had fish bioassays performed on the IWBS in 2000 and 2014. The percent mortality of the rainbow trout was zero for both tests. Refer to Table A-3, Bioassay (Rainbow Trout), in Appendix A.

Name and address of the laboratory facility performing the sampling or tests of the waste (40 CFR 260.22(i)(1); WAC 173-303-910(3)(c)(i)).

Emerald Kalama Chemical, LLC 1296 Third Street NW Kalama, WA 98625

Pacific Groundwater Group 2377 Eastlake Avenue East, Suite 200 Seattle, Washington 98102

Landau Associates, Inc. 130 2nd Avenue South Edmonds, WA 98020

 ¹³ EPA delisting guidance (EPA. 1993. Petitions to Delist Hazardous Wastes: A Guidance Manual. US
 Environmental Protection Agency. March) specifies that samples should be analyzed on an as-received basis.
 ¹⁴ Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

Analytical Resources, Inc. 4611 S. 134th Place Suite 100 Tukwila, WA 98168-3240

ALS Environmental ALS Group USA, Corp. 1317 South 13th Avenue Kelso, WA 98626

CH2MHILL 100 NE Circle Boulevard, Suite 300 Corvallis, OR 97330

Laucks Testing Laboratories, Inc. (now part of Pace Analytical) 940 South Harney Street Seattle, WA 98108

Parametrix, Inc. 5808 Lake Washington Blvd NE, Suite 200 Kirkland, WA 98033

PIXIS Labs (formerly Coffey Laboratories, Inc.) 12423 NE Whitaker Way Portland, OR 97230

Names and qualifications of the persons sampling and testing the waste (40 CFR 260.22(i)(2);WAC 173-303-910(3)(c)(ii)).

Persons sampling the waste:

Emerald Kalama Chemical, LLC:

A company that employs scientists, engineers, and other individuals with baccalaureate or post-graduate degrees in the natural sciences or engineering, and has sufficient training and experience to enable that individual to make sound professional judgements regarding the sampling of IWBS and other environmental media.

Pacific Groundwater Group

A consulting firm that specializes in water resources and environmental services. The staff includes Washington State licensed geologists and hydrogeologists. Sampling was conducted under the supervision of a state licensed geologist. State licensure indicates that the professional is able to make sound judgements and determinations in regards to environmental media sampling.

WA Department of Ecology

Landau Associates, Inc.

A consulting firm specializing in environmental investigation and remediation. The staff include Washington State licensed geologists, hydrogeologists, and engineers. Sampling was conducted under the supervision of a professional engineer experienced with environmental investigation and remediation. State licensure indicates that the professional is able to make sound judgements and determinations in regards to environmental media sampling.

Persons testing the waste:

Analytical Resources, Inc.

Analytical Resources, Inc. is accredited by Ecology to analyze solids and water for the methods and analytes associated with this work. Ecology provides accreditation through an application process that involves a review of a detailed procedure manual, quality assurance manual, proficiency testing study reports, and third-party certification documents. This accreditation has been updated annually as required by Ecology and was current during each year that analysis associated with this project was performed.

ALS Environmental

ALS Environmental is accredited by Ecology to analyze solids and water for the methods and analytes associated with this work. Ecology provides accreditation through an application process that involves review of a detailed procedure manual, quality assurance manual, proficiency testing study reports, and third-party certification documents. This accreditation has been updated annually as required by Ecology and was current during each year that analysis associated with this project was performed.

CH2MHILL

CH2MHILL was accredited by Ecology to analyze the analytes associated with this work. Ecology provided accreditation through an application process that involves a review of a detailed procedure manual, quality assurance manual, proficiency testing study reports, and third-party certification documents. This accreditation was updated annually as required by Ecology and was current during each year that analysis associated with this project was performed.

Laucks Testing Laboratories, Inc. (now part of Pace Analytical)

Laucks Testing Laboratories was accredited in accordance with the applicable requirements at the time the analyses were performed.

Parametrix, Inc.

Parametrix, Inc. was accredited in accordance with the applicable requirements in place at the time the analyses were performed.

PIXIS Labs (formerly Coffey Laboratories, Inc.)

PIXIS Labs was accredited in accordance with the applicable requirements in place at the time the analyses were performed.

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

The dates of sampling and testing (40 CFR 260.22(i)(3); WAC 173-303-910(3)(c)(iii)).

Refer to Tables A-1 through A-4 in Appendix A and Tables B-1 through B-4 in Appendix B.

The location of the generating facility (40 CFR 260.22(i)(4); WAC 173-303-910(3)(c)(iv)).

Emerald Kalama Chemical, LLC 1296 Third Street NW Kalama, WA 98625

Business Location: Physical Location:

Fire Mountain Farms, Inc.

856 Burnt Ridge Road
Onalaska, WA 98570

Fire Mountain Farms, Inc.

349 State Route 508
Chehalis, WA 98532

A description of the manufacturing processes or other operations and feed materials producing the waste and an assessment of whether such processes, operations, or feed materials can or might produce a waste that is not covered by the demonstration (40 CFR 260.22(i)(5); WAC 173-303-910(3)(c)(v)).

There are approximately 339.9 tons of material in the Newaukum Prairie storage unit. No new material has been added since Ecology mandated the cessation of activities in April 2014. Approximately 86 percent of the material in the storage unit is municipal biosolids, approximately 0.3 percent is WTSS from the Port of Longview, and approximately six percent is SWTS from a Darigold wastewater treatment plant. The remaining approximately seven percent is Emerald IWBS.¹⁵

Biosolids

Biosolids are created during the treatment of household wastewater/sewage. The WWTP uses physical, chemical, and biological means to treat the wastewater, control pathogens, and ultimately generate clean water and solid material. The water is discharged to an existing natural body of water and the solid portion undergoes further treatment. Additional water is removed from the solids and calcium oxide or calcium hydroxide is often added to neutralize the pH and to eliminate odors. The resulting solids, known as biosolids, are approved by the EPA and Ecology for beneficial land application.

According to the Ecology website, "Biosolids are a valuable resource because they contain important nutrients for plant growth and soil fertility such as nitrogen, phosphorous, and organic matter as well as essential nutrients such as copper, iron, molybdenum, and zinc. Biosolids are a great soil conditioner. They contain slow-releasing nutrients that are more eco-friendly than chemical fertilizers because they add organic matter to enrich depleted soils and fibrous matter to improve the soil's ability to hold water. This important recycled product can be used as a fertilizer and soil amendment on agricultural land, forests, mine and land reclamation sites.

.

¹⁵ Note that percentages do not add up to 100 due to rounding.

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

Treated biosolids come in various forms such as, rich moist soil, dried pellets, liquid, or compost."

Port of Longview WTSS

WTSS from the Port of Longview were placed in the Newaukum Prairie storage unit. The Port operates a small wastewater treatment system to provide primary treatment of the water that was used to clean the dock, conveyor system, and associated sumps at Berth 2. Berth 2 is used to transfer sodium carbonate, aluminum silicate (bentonite clay), soy meal, potassium salts (potash), dry distiller's grains, and magnesium silicate (talc) from railcars to ships. After loading, the dock and conveyor system are washed down with water. The water is directed to a series of tanks for pH adjustment, and solids settlement. The wastewater is sent to a municipal WWTP in accordance with State Waste Discharge Permit No. ST 6081. The WTSS are currently sent to a Subtitle D landfill. Based on a review of the materials transferred at Berth 2 and comparison with the PGG analytical results, there are likely no chemicals of concern associated with the WTSS in the mixed material.

Darigold SWTS

The Chehalis plant produces dry milk products. The facility's wastewater is biologically treated and the water is discharged in accordance with an Ecology-issued NPDES permit. The SWTS are the solid portion of the treated wastewater, which have historically been applied to agricultural fields as a nitrogen supplement. Ecology approved the SWTS for beneficial use (BUD-SA-15-08). Based on a review of the Darigold products and the Ecology-issued NPDES permit; there are likely no chemicals of concern associated with the SWTS (or other factors) that could cause it to be a hazardous waste.

Emerald Wastewater Treatment Plant Operation

The IWBS are produced by the Kalama facility's biological WWTP. The WWTP treats process wastewater as well as groundwater containing toluene contamination from historical spills. As part of that treatment process, the plant generates IWBS. Emerald's IWBS are basically the same material as municipal wastewater treatment plant biosolids. That is essentially the dead and decaying microorganisms used to digest and thereby chemically transform the undesirable components present in the wastewater into benign, and in many cases useful, compounds. IWBS are more consistent in composition than biosolids in many ways because the processes that generate this material are consistent and the microorganisms are selected and conditioned by the nature of the wastewater. Therefore, the industrial WWTP can operate with exceptional efficiency to chemically transform the target chemicals into benign compounds. Emerald's wastewater does not contain pathogens, hormones, prescription drugs, narcotics, or any other persistent and difficult to destroy chemicals.

The IWBS carry the waste codes for toluene (U220) and benzene (U019). The U220 code carries through from the treatment of contaminated groundwater. The Kalama facility periodically treats trace amounts of pure product benzene from de minimis spills that are captured by the treatment system; therefore the IWBS carry the listed dangerous waste code U019.

WA Department of Ecology

Although the IWBS carry these two codes, the concentrations of these chemicals measured in the IWBS have consistently been below detection limits or detected at concentrations many times below the preliminary delisting levels and land disposal treatment standards. The IWBS do not exhibit any dangerous waste characteristics. The IWBS also meet all land disposal treatment standards, which are intended to ensure that constituents present in dangerous waste are properly treated before the material can be disposed in a RCRA Subtitle C landfill. The Kalama facility regularly samples the IWBS for various constituents as previously discussed.

A description of the waste and an estimate of the average and maximum monthly and annual quantities of waste covered by the demonstration (40 CFR 260.22(i)(6); WAC 173-303-910(3)(c)(vi)).

The waste is a mixture comprised of approximately 86 percent municipal wastewater treatment plant biosolids, approximately six percent SWTS from a Darigold wastewater treatment plant, approximately 0.3 percent WTSS from the Port of Longview, and approximately seven percent Emerald IWBS. There is approximately 340 tons of material in the storage unit. No new material has been added since April 2014.

The majority of the mixed material (approximately 86 percent) is comprised of biosolids generated by municipal WWTPs. Municipal biosolids do not do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes, and are approved by EPA and Ecology for land application.

The mixed material contains approximately 21.1 tons of SWTS from the Darigold Chehalis facility. The Chehalis plant produces dry milk products. The SWTS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes, and are approved for application to agricultural fields as a nitrogen supplement (BUD-SA-15-08).

The mixed material contains approximately 1.1 ton of WTSS from the Port of Longview. The Port operates a small wastewater treatment system to provide primary treatment of the water that was used to clean the dock, conveyor system, and associated sumps at Berth 2. Berth 2 is used to transfer nonhazardous materials. The WTSS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor do they carry any RCRA waste codes.

The mixed material contains approximately 24.7 tons of IWBS. The IWBS are produced in Emerald's biological WWTP. The WWTP treats process wastewater as well as groundwater containing contamination from historical spills. As part of that treatment process, the plant generates IWBS. Emerald's IWBS are basically the same material as municipal biosolids. The IWBS do not exhibit the characteristic of ignitability as defined in 40 CFR 261.21(a)(i) and WAC 173-303-090(5)(a), nor contain constituents for which the waste was listed (40 CFR 260.22(c), (d)).

.

¹⁶ Note that percentages do not add up to 100 due to rounding.

Pertinent data on and discussion of the factors delineated in the respective criterion for listing a hazardous waste, where the demonstration is based on the factors in §261.11(a)(3) (40 CFR 260.22(i)(7); WAC 173-303-910(3)(c)(vii)).

These factors are:

- (i) The nature of the toxicity presented by the constituent.
- (ii) The concentration of the constituent in the waste.
- (iii) The potential of the constituent or any toxic degradation product of the constituent to migrate from the waste into the environment under the types of improper management considered in paragraph (a)(3)(vii) of this section.
- (iv) The persistence of the constituent or any toxic degradation product of the constituent.
- (v) The potential for the constituent or any toxic degradation product of the constituent to degrade into non-harmful constituents and the rate of degradation.
- (vi) The degree to which the constituent or any degradation product of the constituent bioaccumulates in ecosystems.
- (vii) The plausible types of improper management to which the waste could be subjected.
- (viii) The quantities of the waste generated at individual generation sites or on a regional or national basis.
- (ix) The nature and severity of the human health and environmental damage that has occurred as a result of the improper management of wastes containing the constituent.
- (x) Action taken by other governmental agencies or regulatory programs based on the health or environmental hazard posed by the waste or waste constituent.
- (xi) Such other factors as may be appropriate.

Substances will be listed on appendix VIII only if they have been shown in scientific studies to have toxic, carcinogenic, mutagenic or teratogenic effects on humans or other life forms.

(Wastes listed in accordance with these criteria will be designated Toxic wastes.)

The mixed material is not expected to contain any toxic constituents listed in Appendix VIII to Part 261 — Hazardous Constituents — or WAC 173-303-9905, other than those chemicals already listed in Appendices A and B, and shown to be well below the PDLs, TCLP-PDLs, and land disposal treatment standards. The action taken by EPA and Ecology is based on the regulatory interpretation that the IWBS carry RCRA waste codes, and even though said material does not contain those chemicals at concentrations anywhere approaching the PDLs, TCLP-PDLs, or LDRs, the action of commingling said material with biosolids has created the mixed material which now carries those waste codes. The mixed material has been determined not to exhibit the characteristics of ignitability, corrosivity, or reactivity. The mixed material does not exhibit the characteristic of toxicity, either by the federal or WA state definitions. The mixed material is not a persistent dangerous waste. There has been no damage to human health or the environment from the management of the mixed material.

A description of the methodologies and equipment used to obtain the representative samples (40 CFR 260.22(i)(8); WAC 173-303-910(3)(c)(viii)).

Mixed material samples collected from the Newaukum Prairie storage unit by LAI were handled in accordance with the Waste Characterization Plan. Samples from the storage unit were collected using a 2-inch-diameter clear sludge sampler with a flapper valve attached. They were placed in a shipping cooler and stored at less than 6 degrees Celsius (°C). Samples were transported to the laboratory within 48 hours of sample collection, and stored at the laboratory at less than 6°C. A complete description of the methodology and equipment that was used to sample the mixed material is presented in the Waste Characterization Report included in Appendix C.

The methodologies and equipment used by PGG to collect and analyze the mixed material are fully described in the Sludge Investigation Report which is included in Appendix C of this delisting petition.

The IWBS samples were collected from the chute that comes from the solids dewatering unit prior to entering the dewatering bin. Laboratory quality glass jars with Teflon lids were used to collect the samples. The samples were taken to the QA laboratory and immediately cooled to 6 °C. The samples were sent to the laboratory within 48 hours of collection.

A description of the sample handling and preparation techniques, including techniques used for extraction, containerization and preservation of the samples (40 CFR 260.22(i)(9); WAC 173-303-910(3)(c)(ix)).

Mixed material samples collected from the Newaukum Prairie storage unit by LAI were handled in accordance with the Waste Characterization Plan. Samples from the storage unit were collected using a 2-inch-diameter clear sludge sampler with a flapper valve attached. They were placed in a shipping cooler and stored at less than 6°C. Samples were transported to the laboratory within 48 hours of sample collection, and stored at the laboratory at less than 6°C. A complete description of the methodology and equipment that was used to sample the mixed material is presented in the Waste Characterization Report included in Appendix C.

The methodologies and equipment used by PGG to collect and analyze the mixed material are fully described in the Sludge Investigation Report which is included in Appendix C of this delisting petition.

The IWBS samples were collected from the chute that comes from the solids dewatering unit prior to entering the dewatering bin. Lab quality glass jars with Teflon lids were used to collect the samples. The samples were taken to the QA lab and immediately cooled to 6°C. The samples were sent to the laboratory within 48 hours of collection.

A description of the tests performed (including results) (40 CFR 260.22(i)(10); WAC 173-303-910(3)(c)(x)).

The mixed material has been sampled and analyzed during two separate campaigns. In 2014, PGG was contracted by FMF to sample and analyze the mixed material. LAI collected and analyzed samples in 2017, in accordance with the Waste Characterization Plan which was approved by EPA and Ecology (Appendix C).

FMF contracted with PGG to sample the mixed material in the Newaukum Prairie storage unit in July 2014. PGG collected 27 samples which were combined into three composite samples for analysis. The mixed material was tested for the following parameters/methods:

- Volatile Organic Compounds, Method 8260C
- Metals, Methods 6010C/7471A
- Semi-volatile Organic Compounds, Method 8270D
- Polychlorinated biphenyls, Method 8082A
- Pesticides, Method 8081B
- Dioxins/Furans, Method 1613B
- N-Nitrate, calculated
- N-Ammonia, Method 350.1M
- Total Kjeldahl Nitrogen, Method 351.2
- Nitrate and Nitrite, Method 353.2
- Nitrite, Method 353.2
- Total Solids, Method SM2540G
- Total Cyanide, Method 335.4
- pH, Method 9045

Ecology developed preliminary delisting levels for the Newaukum Prairie storage unit based on PDLs and TCLP-PDLs using EPA's Hazardous Waste Delisting Risk Assessment Software and provided them to Emerald¹⁷. All analytes and parameters were non-detect or present at concentrations below the PDLs or TCLP-PDLs except cobalt. The data from the PGG study are presented, on a dry weight basis¹⁸, in Table B-1 in Appendix B.

Emerald contracted with LAI in 2017 to collect three core samples, which were analyzed for total cobalt, reported on a dry weight basis, and composited and analyzed for TCLP cobalt. The total cobalt concentrations were consistent with the results from the PGG results and the TCLP cobalt concentration was below the TCLP-PDL. The data from the LAI cobalt investigation are presented in Table B-3 in Appendix B.

¹⁷ Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

¹⁸ Contaminant concentrations reported on a dry weight basis are higher than they would be if they were reported on an as-received basis. Therefore, consideration of dry weight results in delisting decisions is conservative.

WA Department of Ecology

As described in the Waste Characterization Plan, the analytical data from the 2014 PGG investigation and the 2017 LAI analysis of total and TCLP cobalt demonstrate that concentrations in the mixed material in the Newaukum Prairie storage unit are likely below the PDLs and TCLP-PDLs.

A comparison of the PGG data for benzene and toluene with the LDR levels for non-wastewater indicates that the concentration of benzene in the mixed material likely complies with the LDR treatment standards; however, the measured concentrations of toluene were greater than the LDR and samples were not analyzed for acetone or methanol. In order to ensure that there are no data gaps and to provide data to demonstrate compliance with LDRs, Emerald and FMF submitted a waste characterization plan, which was approved by EPA and Ecology, which proposed the following analyses:

- Volatile Organic Compounds, Method EPA SW8260C
 - o toluene
 - o benzene
 - o acetone
- Volatile Organic Compounds, Method EPA SW8015C
 - o methanol
- Total solids, EPA Method SM2540G-97
- pH, EPA Method 9045D

LAI collected and analyzed 17 grab samples of the mixed material. The data from the waste characterization are presented, on an as-received basis ¹⁹, in Table B-4 in Appendix B. The concentrations of acetone, benzene, toluene, and methanol indicate that the concentrations in the mixed material are likely below the PDL and LDR treatment standards.

The IWBS are the only component of the mixed material that is alleged to carry RCRA waste codes, although these chemicals are not present above the detection limits in the IWBS. Emerald regularly collected and analyzed 323 samples of the IWBS for various constituents on a monthly, quarterly, or annual basis from January 1998 through April 2015. All of this data is summarized in Table A-1 (Appendix A) and illustrates the uniformity of the waste. Ecology developed preliminary delisting levels for the IWBS based on PDLs and TCLP-PDLs using EPA's Hazardous Waste Delisting Risk Assessment Software and provided them to Emerald²⁰. As noted above, toluene was detected in one sample of IWBS between 1998 and 2014 at a concentration of 69 micrograms per kilogram (ppb), which is below the Newaukum Prairie PDL of 3.39E+10 ppb, the TCLP-PDL, multiplied by 20 in accordance with the rule of 20, of 2.50E+06 ppb, and the RCRA land disposal treatment standard of 10 milligrams per kilogram (ppm). Benzene was not detected during this time period.

EPA delisting guidance (EPA. 1993. Petitions to Delist Hazardous Wastes: A Guidance Manual. US
 Environmental Protection Agency. March) specifies that samples should be analyzed on an as-received basis.
 Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

Emerald had TCLP analyses performed on the IWBS in 2000 and in 2014. The results were consistent and all chemicals were below the TCLP-PDLs and the LDR treatment standards. The data are presented in Table A-2, TCLP (EPA Method 1311), in Appendix A. Emerald had fish bioassays performed on the IWBS in 2000 and 2014. The percent mortality of the rainbow trout was zero for both tests. Refer to Table A-3, Bioassay (Rainbow Trout), in Appendix A.

The names and model numbers of the instruments used in performing the tests (40 CFR 260.22(i)(11); WAC 173-303-910(3)(c)(xi)).

This information is not currently available to Emerald. However, all laboratories were accredited in accordance with the applicable requirements in place at the time the analyses were performed.

The following statement signed by the generator of the waste or his authorized representative: (40 CFR 260.22(i)(12); WAC 173-303-910(3)(c)(xii)).

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this demonstration and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Robert Thode

Mishoul Projection of rights

With reservation of rights Fire Mountain Farms, Inc.

President

Edward Gotch

Emerald Kalama Chemical, LLC

Chief Executive Officer

Elucal ?. got

- 20 -

Date: April 2444 2018

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

> Appendix A Emerald IWBS Analytical Data

				1		1				1		coutine Ar	iaiyiicai L	Jala												
	Total Solids %	рН	Benzene ppb As-received	Benzene ppb Dry Weight Basis	Toluene ppb As-received	Toluene ppb Dry Weight Basis	NH3, Nitrogen % Dry Weight Basis	Total Nitrogen Calc. % Dry Weight Basis	Organic Nitrogen % Dry Weight Basis	Nitrate Nitrogen % Dry Weight Basis	NO2+NO3 Nitrogen % Dry Weight Basis	Total Potassium % Dry Weight Basis	Total Sodium % Dry Weight Basis	Total Phosphorus % Dry Weight Basis	Copper ppm Dry Weight Basis	Nickel ppm Dry Weight Dasis	Basis	Cobalt ppm Dry Weight Basis	Lead ppm Dry Weight Basis	Basis	Basis	Selenium ppm Dry Weight Basis	Basis	Molybdenum ppm Dry Weight Basis	Mercury ppm Dry Weight Basis	Barium ppm Dry Weight Basis
LDR Treatment Std PDL			10,000 40,600,000		10,000 6,030,000,000											(a)	(a)		(a)	(a)	(a)	(a)	(a)		(a)	(a)
TCLP-PDL X 20			(b)		340,000										(b)	(b)	(b)		(b)	(b)	(b)	(b)	(b)		(b)	(b)
Sample Date			` '		Í										` '	` ′	,		. ,	, ,	. ,	. ,	. ,		` '	` '
1/6/1998	9.2	7.7	<30	<1700			0.0061	9.6	8.8	0.72	0.73	0.72	2.4	1.8	1,600	150	250	340	<33	<3.0	<3.0	<1.0	13	11	<0.8	91
1/14/1998 1/20/1998	9.2 8.2														1,800 2,000											
1/27/1998	9.2														2,000											+
2/3/1998	9.3														2,100	160	310	360								
2/10/1998	9.4														1,900											
2/17/1998 2/24/1998	9.2 9.8														1,900											
3/3/1998	11.2														1,500 1,300											+
3/10/1998	8.5														1,500	150	300	350								
3/17/1998	9														1,400											
3/24/1998 3/31/1998	7.9 8														1,400 1,400											
4/7/1998	8.6	7.5					0.26	8.2	7.9	0.0012	7.9	0.45	0.51	0.72	1,400	160	300	330	<82	<8	6	<5	13	12	<0.4	130
4/13/1998	8.8										-			-	1,200										-	
4/21/1998	8.9														1,300											
4/29/1998 5/5/1998	8.4 7.7														1,200 1,200											-
5/12/1998	8														1,600	160	300	790								
5/16/1998	8.7														1,600											
6/2/1998	8.1														2,300	130	280	550								
6/9/1998 6/16/1998	7.7 8.3														2,200 2,600	+										-
6/23/1998	9.1														2,200											
6/30/1998	9														2,600											
7/8/1998	8.8 8.7	6.6					0.29	9.2	8.8	0.0087		0.36	0.47	1.9	2,300 2,200	110	250	460	<110	<11	<5.4	<5.4	17	<11	1.8	110
7/14/1998 7/21/1998	9														2,200											+
8/5/1998	6.4														2,000											
8/12/1998	7.5														2,000											
8/18/1998 8/25/1998	7.4 6.7														2,000 2,500											
9/1/1998	8.3														2,600											
9/8/1998	8.1														2,700											
9/15/1998	7.5														2,900											
9/22/1998 9/29/1998	7.5 7.7														3,100 3,700	+										-
10/5/1998	7.3														3,400											
10/12/1998	6.3	8.1					0.42	11	10	<0.003	0.006	0.55	0.84	1.3	3,600	280	300	600	24	<13	<7	<35	21	19	0.56	87
10/20/1998 10/27/1998	9.4 7.9														3,500 2,800											
11/3/1998	8														3,000											+
11/10/1998	8.4														3,000											
11/17/1998	8.4														2,900											
11/24/1998 12/2/1998	7.7														2,400 2,600											
12/8/1998	7.3														2,700											
12/14/1998	7.5		_									_			2,700					,					_	
12/23/1998 12/29/1998	7.8 7.2				1										3,100 3,200											
1/5/1999	7.6	7.4	<300	<3800	<300	<3800	0.23	9.8	9.6	0.01	0.012	0.47	0.79	1.4	3,400	250	560	470	<58	<12	<5.7	<5.7	22	30	<0.5	120
1/13/1999	7.9										=			-	2,400											
1/19/1999	7.2														2,800											
1/26/1999 2/1/1999	7.4 7.4														2,600 2,500											
2/8/1999	7.6														2,400											\vdash
2/16/1999	7.5														2,400											
2/24/1999	9.1	igwdot			ļ										1,900											
3/3/1999 3/10/1999	9 8.8				1										2,000 2,600											+
3/16/1999	10.4				1										2,100											
3/25/1999	9.6														2,200											
3/30/1999	10.2	7.4					0.00	0.7	0.0	0.47		0.44	0.04	4.4	2,000	100	200	270	25	-10	-1.0	-00	14	10	-0.4	00
4/5/1999 4/13/1999	9.1	7.1		+	1		0.22	8.7	8.3	0.17		0.44	0.61	1.4	2,100 2,000	180	380	370	25	<16	<4.9	<20	11	12	<0.1	93
4/20/1999	8				1										2,100											
4/27/1999	7.8														2,000											
5/5/1999	7.3				1										1,800											\vdash
5/11/1999	7.4	1		1	1	l	I	l .	l .	l					1,800											

											F	Routine Ar	alytical [Data												
	Total Solids %	Benze ppb pH As-rece	ne pr Dry W	zene ob /eight sis	Toluene ppb As-received	Toluene ppb Dry Weight Basis	NH3, Nitrogen % Dry Weight Basis	Total Nitrogen Calc. % Dry Weight Basis	Organic Nitrogen % Dry Weight Basis	Nitrate Nitrogen % Dry Weight Basis	NO2+NO3 Nitrogen % Dry Weight Basis	Total Potassium % Dry Weight Basis	Total Sodium % Dry Weight Basis	Total Phosphorus % Dry Weight Basis	Copper ppm Dry Weight Basis	Nickel ppm Dry Weight Basis	Zinc ppm t Dry Weight Basis	Cobalt ppm Dry Weight Basis	Lead ppm Dry Weight Basis	Cadmium ppm Dry Weight Basis	ppm	Selenium ppm Dry Weight Basis	Chromium ppm Dry Weight Basis	Molybdenum ppm Dry Weight Basis	Mercury ppm Dry Weight Basis	Barium ppm Dry Weight Basis
LDR Treatment Std		10,00	0		10,000											(a)	(a)		(a)	(a)	(a)	(a)	(a)		(a)	(a)
PDL TCLP-PDL X 20		40,600, (b)	000		6,030,000,000 340,000										(b)	(b)	(b)		(b)	(b)	(b)	(b)	(b)		(b)	(b)
Sample Date		(5)			340,000										(15)	(6)	(6)		(b)	(1)	(6)	(1)	(D)		(b)	(6)
5/18/1999	9.4														2,000											
5/25/1999 6/1/1999	9.9 10														2,000 1,900											
6/7/1999	8.6														1,900											
6/15/1999	10														2,100											
6/23/1999 6/29/1999	9 9.5														2,000 1,800											-
7/6/1999	8.2														1,900											
7/14/1999 7/21/1999	9.5 9.1	7.4					0.12	8.9	8.8	<0.0001		0.3	0.46	1.7	1,700 1,900	170	270	370	<95	<9.5	5.8	<4.9	17	29	<0.1	110
7/27/1999	8.6														1,800											
8/3/1999	8.1														1,700	400	0.50	222								
8/10/1999 8/17/1999	6.3 8														1,600 1,700	180	250	360								-
8/24/1999	7.8														2,100											
9/2/1999	8.4								_						1,700	000	0=0	460								
9/7/1999 9/14/1999	8.4 7.5						-								1,600 1,500	230	250	490								+
9/21/1999	8.6														1,400											
9/28/1999	8.3	7.4					0.00	40	0.0	0.05	0.05	0.07	0.01	4.0	1,400	010	000	500	7.4	40	0.0	7.1	04	200	0.01	400
10/5/1999 10/12/1999	6.6 8.6	7.4					0.23	10	9.8	0.25	0.25	0.37	0.64	1.6	1,200 1,800	210	220	500	7.4	<12	9.8	7.1	21	22	0.31	100
10/20/1999	8														2,400											
10/26/1999	7.8														2,700	400	040	440								
11/2/1999 11/10/1999	7.8 8.1														2,600	180	240	410								
11/16/1999	8.1														2,900											
11/27/1999	7.6														3,100											
11/30/1999 12/4/1999	7.8 6.8														2,700 3,100	150	470	680								
12/14/1999	5.7														2,600			000								
12/20/1999 12/28/1999	6 5.8														2,400 2,200											<u> </u>
1/4/2000	6.7														1,600											-
1/10/2000	6.8	7.7 <6	<1	00	<6	<100	0.22	10	9.8	0.00086	0.00088	0.47	0.56	0.14	1,700	140	390	410	<11	<11	<11	6.4	16	<11	0.2	89
1/19/2000 1/24/2000	6.7 5.2														1,600 2.400		 									
2/1/2000	8.1														1,900											
2/8/2000	7.3														1,800	150	360	340								
2/15/2000 2/23/2000	8.1 8.6														1,800 1,500											
3/1/2000	8.9														1,300											
3/7/2000	9.4														1,200	440	200	440								
3/13/2000 3/21/2000	10.1 8.8						1								1,100 1,300	140	300	410								
3/27/2000	8.9														1,400											
4/4/2000 4/12/2000	9.5	7.1					0.15	8.4	8.2	<0.0002	<0.0002	0.4	0.44	0.2	1,500	150	360	480	11	<7.4	16	<7.4	26	7.9	<0.1	120
4/19/2000	9.1 8.9		_	+			1								1,200 1,100											
4/24/2000	8.9														1,200											
5/3/2000 5/9/2000	8.4 7.6						1								980 1,100	130	130	260								
5/16/2000	7.0														1,300											
5/23/2000	6.9								_					_	1,300											
5/30/2000 6/7/2000	5.9 6.4						-								1,300 1,400	140	350	1400								
6/12/2000	7														1,400	. 10	500	00								
6/20/2000	6.9														1,500											
6/27/2000 7/4/2000	7.3						1								1,400 1,300		+									\vdash
7/11/2000	8.2	7.7					0.36	7.8	7.4	<0.00061	<0.00061	0.36	0.55	1.8	1,200	180	260	910	<13	4.3	<14	<25	24	30	0.12	98
7/19/2000	7.1					-									1,300											
7/25/2000 8/9/2000	6.2 4.6						 								1,200 1,100		+	590								
8/15/2000	5.1														920											
8/24/2000	5.5														600											
8/29/2000 9/5/2000	5.5 6.5						 								730 690		+									
9/12/2000	7						<u> </u>								910			390								
		•					•																			

				1		1	1		1	1		Routine Ar	iaiyiicai L	ala	1					1				1		
LDD Treatment Std	Total Solids %	рН	Benzene ppb As-received	Benzene ppb Dry Weight Basis	Toluene ppb As-received	Toluene ppb Dry Weight Basis	NH3, Nitrogen % Dry Weight Basis	Total Nitrogen Calc. % Dry Weight Basis	Organic Nitrogen % Dry Weight Basis	Nitrate Nitrogen % Dry Weight Basis	NO2+NO3 Nitrogen % Dry Weight Basis	Total Potassium % Dry Weight Basis	Total Sodium % Dry Weight Basis	Total Phosphorus % Dry Weight Basis	Copper ppm Dry Weight Basis	Basis	Zinc ppm Dry Weight Basis	Cobalt ppm Dry Weight Basis	Basis	Cadmium ppm Dry Weight Basis	Basis	Selenium ppm Dry Weight Basis	Basis	Molybdenum ppm Dry Weight Basis	Mercury ppm Dry Weight Basis	Barium ppm Dry Weight Basis
LDR Treatment Std PDL		1	10,000 40,600,000		10,000											(a)	(a)		(a)	(a)	(a)	(a)	(a)		(a)	(a)
TCLP-PDL X 20			(b)		340,000										(b)	(b)	(b)		(b)	(b)	(b)	(b)	(b)		(b)	(b)
Sample Date																									•	
9/19/2000 9/27/2000	8.5 7.7	1													2,000 820			360								
10/2/2000	7.7	7.8					0.11	9.9	9.8	0.00055	0.00062	0.27	0.49	1.4	860	190	220	390	13	<11	<11	<15	18	<11	<1.4	93
10/11/2000	8														820											
10/17/2000	8.5														890											1
10/24/2000 10/30/2000	9	1													800 810											1
11/8/2000	7.7														920			510								
11/14/2000 11/21/2000	8.1 7.1														800 1,100											-
11/28/2000	7.1														890											
12/5/2000	6														1,000											
12/12/2000 12/19/2000	6.5 6.9														840 990											<u> </u>
12/26/2000	6.8	1													810											1
1/2/2001	6.5	8.1	<6	<97	<6	<97	0.17	9.9	9.7	0.0038	0.0038	0.34	0.55	1.4	950	150	290	230	10	<12	<12	<12	16	<12	<1.5	68
2/6/2001 3/7/2001	4.6 7.2														910 600	170	280 220	280								1
4/17/2001	8.2														830	84 140	960	160 210								
5/8/2001	7.8														3,100	180	870	470								
6/5/2001	6.9	7					0.54	11	10	<0.0028	<0.0028	0.42	<0.1	1.7	3,700	190	760	550	37	<10	<10	12	19	<10	<1.4	70
7/11/2001 8/3/2001	7.4 8.6	7.3					0.58	11	10	<0.013	0.0079	0.45	0.88	0.94	1,500 1,670	200 162	840 227	580 425	<8.3	<10	<10	<10	16	17	<1.4	980
9/4/2001	8														1,000	125	221	288								
10/10/2001	5.4	6.9					0.12	8.1	8.1	0.0042	<0.0019	0.61	1.2	0.84	978	168	267	329	<40	<2	<2	<2	14	<4	<0.2	61
11/6/2001 12/6/2001	4.1 4.7														1,370 1,820	197 137	328 385	405 513								
1/8/2002	7.3	7.3		<340		<340	0.12	8.5	8.5	<0.0014	<0.0014	0.47	0.52	0.8	1,300	112	304	304	<27	<1.4	<3.4	<3.4	9.5	3.3	<0.05	59.6
2/12/2002	8.2														1,320	140	374	512								
3/6/2002 4/9/2002	8.7 10.2	7.5					0.02	7	6.7	<0.0010	<0.0010	0.32	0.49	0.08	1,340 1,440	134 203	406 464	570 573	<78	<3.9	5.2	<3.9	18.2	<7.8	0.18	106
5/1/2002	10.6														1,190	172	510	424								
6/3/2002 7/9/2002	8.1	7.4					0.42	7.95	7.5	<0.0011	<0.0011	0.37	0.6	0.91	1,510 1,060	145 128	549 369	412 516	<76	<3.8	<3.8	<3.8	14	<7.6	0.09	90
8/3/2002	8.7	7.4					0.42	7.95	7.5	<0.0011	<0.0011	0.31	0.0	0.91	838	158	389	469	10</td <td>₹3.0</td> <td><3.0</td> <td><3.0</td> <td>14</td> <td><7.6</td> <td>0.09</td> <td>90</td>	₹3.0	<3.0	<3.0	14	<7.6	0.09	90
9/3/2002	9.6														834	157	300	359								
10/8/2002 11/6/2002	8.9 11.3	7.4					0.13	2.03	1.9	<0.0034	<0.0034	0.11	0.19	0.21	689 2,230	80 422	101 282	94 366	<12	<1.2	<2.9	<1.2	9.1	<2.3	0.04	23
12/3/2002	7.1														3,750	361	325	405								
1/14/2003	9.4	6.7		<54		<54	0.22	9.03	8.82	0.14	0.14	0.25	0.45	0.76	2,550	253	475	385	<71	<3.5	5.4	<3.5	24.1	11.1	0.13	112
2/4/2003 3/4/2003	8.7 8.65														2,060 1,320	218 140	467 405	579 350								
4/8/2003	8.74	7.54					0.18	8.71	8.53	0.0069	0.0069	0.41	0.51	0.62	1,250	92	101	306	<80	<4	5.4	<4	12.6	<8	0.14	93
5/6/2003	9.2														1,670	122	366	412								
6/3/2003 7/9/2003	7.4 6.9	7.21					0.38	8.38	7.86	0.0091	0.0091	0.46	1.06	0.75	1,380 1,060	152 131	231 261	277 287	<100	<5	<10	<10	16	16	0.3	105
8/5/2003	8.2	1.41			<u> </u>		0.00	0.00	7.00	0.0001	0.0031	0.70	1.00	0.10	764	118	172	170	100		<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	10	0.5	100
9/9/2003	9.86														455	72	133	202							_	
10/21/2003 11/4/2003	8.61 9.91	7 20			1		0.29	9.32	9.04	<0.0006	<0.0006	0.44	0.8	0.76	605 741	87 100	323 386	329 748	<70	<3.4	<8.4	<1.3	8	<6.7	<0.04	69
12/4/2003	6.24	7.23			<u> </u>		0.23	J.UZ	5.04	~J.UUUU	\J.0000	J.77	0.0	0.10	1,000	100	526	420	\10	\U. T	\U. 1	\1.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\U.U4	- 00
1/14/2004		7.03		<110		<110	0.22	8.05	7.74	0.0981	0.0981	0.37	0.35	0.76	1,110	84	617	744	<70	<3.5	<20	<8.8	12.2	<7.1	<0.04	78
2/3/2004 3/2/2004	10.9 10.9	\vdash			+										1,090 1,090	96 100	590 630	533 536				-				
4/5/2004	8.8	7.3			<u> </u>	_	0.27	8.21	7.94	<0.0012	<0.0012	0.5	0.42	0.98	994	188	888	791	<80	<4	<9	<9	10	<8	0.02	100
5/5/2004	11.2														967	110	749	746								
6/8/2004 7/6/2004	10.3	7.4			1		0.093	8.08	7.94	0.0342	0.0342	0.52	0.64	0.81	1,320 940	103 108	1,050 853	1,300 1,220	<70	<3.3	<3.3	<3.3	15.5	<6.5	0.04	89.4
8/3/2004	9.53						0.000	5.00		3.30-1 <u>L</u>	3.30-12	0.0 <u>L</u>	5.57	0.01	2,080	134	855	712	-110	10.0	-5.0	10.0	.5.0	10.0	0.01	55.7
9/8/2004	8.2	0.0					0.07	0.0	0.00	0.0000	0.0000	0.40	0.00	1.07	1,140	118	769	780	-00	2.0	4		10.4	-	-0.07	00.0
10/5/2004 11/2/2004	9.7	8.2			+		0.27	9.9	9.63	0.0096	0.0096	0.42	0.69	1.07	1,210 2,220	155 145	844 881	735 1.170	<60	3.2	<4	<3	19.4	6	<0.07	90.8
12/7/2004	8.79														1,500	93	909	1,100								
1/11/2005	7.73	7.34		<64		<64	0.21	9.64	9.43	0.0016	0.0016	0.43	0.41	0.83	958	82.1	970	517	<43	<2.1	<4.3	<4.3	11.3	<4.3	<0.05	86.7
2/1/2005 3/1/2005	6.07 4.87	\vdash			+										1,120 1,360	74.5 81.2	883 809	451 486				-				
4/6/2005	4.91	7.67					0.52	9.05	8.77	<0.0005	<0.0019	0.42	0.78	0.97	931	72.9	648	478	<138	<6.9	<6.9	<6.9	<13.8	<13.8	0.1	61.6
5/2/2005	11														1,670	87.1	658	580								
6/6/2005	9.38	ш		<u> </u>	I.	I	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>				1,270	158	838	728	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>

					•						F	Routine A	nalytical [Data												
	Total Solids %	pН	Benzene ppb As-received	Benzene ppb Dry Weight Basis	Toluene ppb As-received	Toluene ppb Dry Weight Basis	NH3, Nitrogen % Dry Weight Basis	Total Nitrogen Calc. % Dry Weight Basis	Organic Nitrogen % Dry Weight Basis	Nitrate Nitrogen % Dry Weight Basis	NO2+NO3 Nitrogen % Dry Weight Basis	Total Potassium % Dry Weight Basis	Total Sodium % Dry Weight Basis	Total Phosphorus % Dry Weight Basis	Copper ppm Dry Weight Basis	Nickel ppm Dry Weight Basis	Zinc ppm Dry Weight Basis	Cobalt ppm Dry Weight Basis	Lead ppm Dry Weight Basis	Cadmium ppm Dry Weight Basis	ppm	Selenium ppm t Dry Weight Basis	Chromium ppm Dry Weight Basis	Molybdenum ppm Dry Weight Basis	Mercury ppm Dry Weight Basis	Barium ppm Dry Weight Basis
LDR Treatment Std	70	рп	10,000	Dasis	10,000	Dasis	Dasis	Dasis	Dasis	Dasis	Dasis	Dasis	Dasis	Dasis	Dasis	(a)	(a)	Dasis	(a)	(a)	(a)	(a)	(a)	Dasis	(a)	(a)
PDL			40,600,000		6,030,000,000											()	()		()	(/	(-)	(-/	()		(-)	(/
TCLP-PDL X 20			(b)		340,000										(b)	(b)	(b)		(b)	(b)	(b)	(b)	(b)		(b)	(b)
Sample Date 7/6/2005	8 92	7.44					0.48			<0.0012	<0.0012	0.36	0.34	1.03	1,120	164	867	909	<75	<3.7	<3.7	<3.7	11.5	<7.5	0.05	95.5
8/2/2005	8.07	7					0.40			V0.0012	Q0.0012	0.00	0.04	1.00	7,520	398	912	1,140	110	νο.,	νο.,	νο.,	11.0	ν	0.00	56.6
9/7/2005	9.8						0.19	9.46	9.27	0.166	0.166				7,170	319	1,020	1,100								
10/5/2005 11/8/2005	9.57 8.49	6.89			1		0.09	8.13	8.04	0.11	0.11	0.57	0.56	0.97	3,270 1,700	235 189	821 668	751 1,100	<70	<3.5	3.7	<3.5	13.8	<6.9	0.3	70.1
12/6/2005	7.89	1													1,700	124	1,040	540				+				
1/10/2006		7.36	<5	<44	<5	<44	0.15	10.3	9.95	<0.0002	<0.0002	0.33	0.3	0.68	1,110	137	1,080	643	<60	<3	6.4	<3	11	<6	0.03	77
2/14/2006	11.5 12	1			1										1,940 1,900	215	1,350	910 719				1				
3/7/2006 4/4/2006		7.23					0.27	8.33	8.06	<0.0002	<0.0002	0.41	0.35	0.63	1,710	182 145	1,020 791	657	<57	<2.9	6.1	<2.9	11.4	<5.7	0.06	91.5
5/9/2006	10.2														973	110	768	1,170	-					-		
6/7/2006	9.5	7.00					0.00	0.05	0.40	0.000	0.000	0.5	0.00	0.00	1,200	134	990	984	-70		0.0		0.0	7.0	0.05	00
7/5/2006 8/9/2006	9.15 9.98	1.22			+		0.06	8.95	9.16	0.003	0.003	0.5	0.39	0.99	1,020 717	99 91	816 681	895 744	<70	<4	6.3	<4	9.9	<7.0	0.05	93
9/12/2006	10.7														616	100	680	710								
10/3/2006		6.93					0.13	7.47	6.95	<0.0002	<0.0002	0.35	0.41	0.75	440	111	744	645	<66	<3.3	<8.3	<8.3	9.4	7.2	0.03	61.7
11/8/2006 12/1/2006	7.6 10	-													1,570 1,210	154 139	624 712	599 595				+				
1/9/2007		6.77	<8.1	<130	<8.1	<130	0.22	6.99	7.28	<0.0004	<0.0004	0.43	0.28	0.84	1,780	106	719	883	<100	<5.0	6.6	<5.0	12	<10	0.04	94.1
2/6/2007	10.1														1,710	145	743	2,060								
3/6/2007 4/3/2007	10.3 9.62	6.00			1		0.09	7.83	7.81	0.002	0.03	0.43	0.028	0.72	2,320 1,540	89 107	636 684	1,190 1,180	<70	<3	7	<3	10	<7	0.03	72
5/9/2007	9.62	0.96					0.09	1.03	7.01	0.002	0.03	0.43	0.026	0.72	1,230	129	844	1,760	0</td <td><3</td> <td>'</td> <td><3</td> <td>10</td> <td><1</td> <td>0.03</td> <td>12</td>	<3	'	<3	10	<1	0.03	12
6/20/2007	9.01														670	87	853	1,190								
7/11/2007	8	7.34					0.17	9.18	8.7	0.06	0.1	0.69	0.52	12.2	913	111	899	1,150	<87	<4.4	5	<4.1	<8.7	<8.7	0.05	76.8
8/7/2007 9/24/2007	8.94 7.96														892 397	126 143	860 1,000	956 2,110				+				
10/9/2007	7.54	7.32					0.18	11.4	9.6	0.0049	0.0049	0.58	0.67	1.1	467	143	1,070	1,780	<4.4	<4.4	<4.4	<4.4	19	<8.7	<0.02	55.3
11/6/2007	7.96														442	116	802	1,150								
12/13/2007 1/9/2008	8.61 8.58	6.91	<5.5	<64	<5.5	<64	0.41	6.67	6.25	<0.0003	<0.0003	0.44	0.37	1.12	626 756	128 145	964 1,240	947 1,200	<76	<3.8	<3.9	<3.9	22.9	<7.6	0.03	84.8
2/6/2008	9.56	0.51	νο.σ	\04	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.41	0.07	0.23	VO.0000	VO.0003	0.44	0.01	1.12	626	183	1,110	940	\10	₹3.0	40.0	\\0.5	22.5	ντ.υ	0.05	04.0
3/5/2008	8.46														560	201	931	839								
4/15/2008 5/6/2008	10.8 9.54	7.3			1		0.24	7.61	8.21	<0.0005	<0.0005	0.7	0.4	0.92	423 358	179 201	706 744	686 614	<62	<3.1	<3.1	<3.1	15.4	6.2	0.05	71.6
6/11/2008	9.4														490	213	724	710								
7/17/2008	9.67	7.36					0.2	8.57	8.37	0.00052	0.00052	0.36	0.29	0.8	397	147	697	553	<70	<3.5	5	<3.5	14.2	<7.0	0.03	69.6
8/5/2008 9/9/2008	8.3 8.6				1										289 1,450	119 103	471 476	438 506				1				
10/10/2008	8.64	7.71					0.17	6.33	6.17	<0.00057	<0.00057	1.08	0.56	0.004	869	227	701	674	<15	<3.8	4.9	<3.7	13.1	<7.5	0.04	50.8
11/5/2008	8.64														491	176	595	495	_				-			
12/2/2008	8.35	7.50					0.054	7.45	7.4	0.00005	0.00005	0.07	0.0	2.05	594	150	622	471	.04	.4.4	4.4	4.4	40.0	0.4	0.00	70.0
1/6/2009 2/6/2009	8.73	7.52	<5.0		<5.0		0.051	7.45	7.4	0.00325	0.00325	0.67	0.3	2.65	614 516	174 225	699 679	472 449	<81	<4.1	<4.1	<4.1	12.8	<8.1	<0.03	72.2
3/5/2009	11														470	273	755	660								
4/14/2009	11.7						0.0175	6.59	6.25	<0.00043	<0.00043	4.36	0.24	4.64	356	301	673	567	<60	<2.8	3.4	<2.8	15.4	<5.7	<0.02	61.6
5/8/2009 6/11/2009	11.4 11.4			 	+	+									396 451	272 359	638 709	627 786				+				
7/9/2009		7.79					0.1	6.65	6.55	<0.00048	<0.00048	0.498	0.275	4.11	620	415	868	1,060	<60	<3.1	<20	<7.7	19.9	<6.2	0.05	95.1
8/4/2009	9.8	$\perp \Box$												·	465	316	688	830								
9/9/2009 10/6/2009	8.63 8.6	7.01		 	+	+	0.128	5.52	5.39	<0.00057	<0.00057	0.81	0.403	2.2	305 295	267 256	604 625	543 512	<80	<3.8	7.1	<3.7	11.7	<7.6	0.03	54.1
11/4/2009	8.42				<u> </u>		0.120	0.02	0.00	30.00001	30.00001	0.01	0100		223	164	448	439	-00	30.0		30.1	11.7	~1.0	0.00	54.1
12/8/2009	8.34														240	114	378	263								
1/11/2010 2/5/2010	8.01 8.87	7.16	<5	<63	<5	<63	0.127	15.7	15.6	<0.00063	<0.00063	0.83	0.361	11.2	243 236	121 113	449 883	257 248	<83.6	<4.2	<4.2	<4.2	<8.4	<8.4	<0.025	55.6
3/9/2010	8.69														312	148	900	361				+				
4/15/2010	9.5	7.41					0.226	7.81	7.59	0.00068	0.00109	0.602	0.411	16.9	775	161	676	368	<70	<4	<4	<4	15.6	<7	0.04	69.3
5/5/2010	10.4 10.7				1	1									500 401	171 127	574 539	364 398			1	+				
6/17/2010 7/3/2010		7.26		 	+	+	0.182	8.47	8.29	0.00069	0.0008	0.78	0.986	3.42	352	137	539	398 441	<72.6	<3.6	5.2	<3.6	12.7	11.2	<0.02	77.5
8/9/2010	9.93														249	142	607	718								
9/21/2010	9.5						0.010	7.4	7.00	0.0005	0.0005	0.077	0.400	0.00	1,350	165	511	532	.07		2.0		10.1		0.47	00.0
10/22/2010 11/17/2010	9.98 8.56	7.4		 	+	+	0.312	7.4	7.09	<0.0005	<0.0005	0.877	0.462	2.68	588 339	97.8	425 489	436 377	<67	<3.3	<3.3	<3.3	10.4	<6.7	0.17	63.2
12/14/2010	7.72				1	1	<u> </u>								342	95	546	398								
1/13/2011	7.46	7.31	<8	<110	<8	<110	0.141	9.15	9.01	<0.00066	<0.00066	0.684	0.486	1.91	421	71.5	520	364	<88.1	<4.4	<4.4	<4.4	11.7	<8.8	0.04	61.6
2/15/2011	8.31	-		 	1	1									321 356	84	568	415				+ -				
3/8/2011	7.05	1		1	1		l .	l	I	l	l				356	92	605	435	<u> </u>	I	l				l l	

	Total Solids	Benzene ppb	Benzene ppb Dry Weight	Toluene ppb	Toluene ppb Dry Weight	NH3, Nitrogen % Dry Weight	Total Nitrogen Calc. % Dry Weight		Nitrate Nitrogen % Dry Weight	NO2+NO3 Nitrogen % Dry Weight		Total Sodium % Dry Weight	Total Phosphorus % Dry Weight	Copper ppm Dry Weight	Nickel ppm Dry Weight	Zinc ppm Dry Weight		Lead ppm Dry Weight		Arsenic ppm Dry Weight		Chromium ppm Dry Weight	Molybdenum ppm Dry Weight	Mercury ppm Dry Weight	
OR Treatment Std	%	pH As-received 10.000	Basis	As-received 10,000	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis	Basis
PDL PDL		40.600.000		6,030,000,000											(a)	(a)		(a)	(a)	(a)	(a)	(a)		(a)	(a)
TCLP-PDL X 20		(b)		340,000										(b)	(b)	(b)		(b)	(b)	(b)	(b)	(b)		(b)	(b)
Sample Date																									
21/2011	8.9	7.39				0.174	8.02	7.85	0.00049	0.00077	0.678	0.27	2.46	380	95.8	689	578	4	0.72	3.2	3	14.1	3.64	0.039	101
1/2011 4/2011	8.93 9.07													304 400	69 95	529 764	453 633								+
1/2011	10.6	7.54				0.143	9.62	9.48	<0.00047	<0.00047	0.513	0.205	1.77	472	100	605	835	<61	<3.1	4.6	<3.2	15	<6.1	<0.09	92.1
4/2011	9.99					-	0.02							488	79	440	649								1
1/2011	9.6													314	77	324	485								
12/2011	9.55	7.58				0.107	9.86	9.75	<0.00052	<0.00052	0.536	0.337	1.33	278	69.4	312	624	<68.9	<3.5	3.5	<3.5	9.3	<6.89	<0.04	92.2
18/2011	9.64		1	1	1	+								264	58.9	351	546							1	+
2/2011 2/2012	11.9 9.29	7 44	+	+	+	0.377	9.17	8.79	0.00004	0.00009	0.601	0.321	1.58	279 264	177 74.8	461 401	619 708	<4.6	0.63	3.9	<0.5	8.2	4.72	0.027	102
6/2012	9.1	1.77		†		0.577	5.17	0.73	0.00004	3.00003	0.001	0.021	1.50	246	97.2	386	838	\7.0	0.00	0.0	70.0	0.2	7.12	0.021	102
/2012	8.9	7.36				0.151	9.8	9.65	< 0.00056	0.00199	0.549	0.22	2.49	243	102	424	506	<4.5	<0.2	3.3	<0.5	13.1	3.8	0.022	88.3
24/2012	8.97													200	80	285	1,750								
20/2012	8.81													200	90	393	1,310								
8/2012	7.7 7.7	7.51				1.77	8.36	8.18	<0.00065	<0.00065	0.91	0.474	3.34	630	63	331	1,030	<87	<4.3	4.4	<4.3	21.3	<8.7	<0.02	116
/2012 8/2012	9.07													335 408	80 50	300 210	715 618								+
21/2012	7.86	7.31				0.86	15	14.9	<0.00063	<0.00063	0.86	0.397	1.97	530	55	294	938	<84	<4.2	<17	<17	11.8	<8.4	<0.1	95.1
30/2012	9.15	7.01				0.00	10	1-1.0	40.00000	40.00000	0.00	0.007	1.07	591	81.7	558	1,230	10 -1	V1.2	<u> </u>	VII	11.0	νοτ	VO. 1	
/27/2012	8.46													428	70.3	554	827								1
6/2013	8.6	7.53	<58		69	0.218	11.5	11.28	<0.00058	<0.00058	0.903	0.247	1.71	388	82.8	652	759	<81.3	<4.1	<4.0	<4.0	15.5	<8.13	<0.11	99.5
27/2013	7.98													358	99.9	841	840								
27/2013	9.68	0.40				0.00	0.07	0.45	0.00004	0.00004	1.10	0.50	0.50	284	79	880	837	40	1.0	0.0	40	44.0	4.0	0.00	- 01.1
22/2013 22/2013	5.49 8.17	9.43				0.22	9.37	9.15	<0.00091	<0.00091	1.12	0.52	3.56	244 222	66.6 48.6	801 629	626 486	<12	<1.2	<6.0	<18	14.8	<4.8	<0.09	91.1
26/2013	9.82													1.600	175	975	997								+
7/2013	8.27	7.34				0.293	7.87	7.84	<0.0006	<0.0006	1.09	0.297	2.05	1,520	146	834	814	<10.8	<0.8	<4.0	<4.0	20.2	7.3	<0.17	104
5/2013	8.39													665	70.3	473	466								
1/2013	8.56													536	65.2	469	436								
14/2013	9.03	7.28				0.392	7.96	7.92	<0.00055	<0.00055	0.8	0.227	4.8	501	78.2	615	553	<7.8	<0.7	1.9	<3.7	12.6	3.8	<0.05	83.9
20/2013	9.32													448	91.1	671	3,660								
5/2013 /2014	9.02 8.58	7.45	<58		<58	0.149	8.7	8.55	<0.00058	<0.00058	0.848	0.444	3.19	392 308	87.1 147	615 584	2,580 1,410	<7.8	<0.78	2.7	<3.9	13.6	5.2	<0.19	97.5
1/2014	3.87	7.70	~30	1	\J 0	0.143	0.1	0.00	\U.UUUUU	\0.00000	0.040	U.7 44	5.13	245	122	504	738	\1.0	NO.10	4.1	\J.J	13.0	J.Z	NO. 10	91.3
1/2014	11.0													214	121	514	513								1
3/2014	9.32													192	126	589	730								
2/2014	9.28													202	118	578	646								
8/2014	10.4	6.55		ļ		0.183	5.41	5.23	<4.8	<4.8	0.571	0.201	1.52	171	115	480	615	<6.2	<0.6	2.4	<3.1	11.3	3.6	<0.08	77.9
6/2014 2/2014	9.7		-	1		+								586 482	171	586	973					 		1	+
2/2014 16/2014	10 7.24	7.46	+	 	+	0.444	7.13	6.69	<0.5	<6.9	1.03	0.404	1.73	482	162 145	611 610	937 846	<7.6	<0.8	3.9	<3.8	17	5.2	<0.13	95.1
24/2017	6.7	7.70	 	1	 	0.444	1.10	0.03	\U.U	\0. 0	1.03	0.704	1.13	277	129	595	726	\1.U	\0.0	5.5	\J.U	- ''	J.Z	NO. 10	33.1
5/2014	7.2					1								222	113	540	576					1			1
/2015	7.19	7.19 <290		<290		0.177	7.15	6.98	0.00681	0.00787	0.77	0.34	2.11	211	128	668	619	<8.9	<0.9	2.9	<4.4	17	3.6	<0.2	73.5
3/2015	8.71												-	306	142	658	645								
/2015	7.41			ļ										508	137	644	743								
/2015	6.28	7.2	1		ĺ	0.15	6.82	6.67	< 0.25	<8.0	1.2	0.495	0.163	617	142	667	765	<10.1	<1.0	3.3	<5.0	21.8	4.8	< 0.21	87.6

Table A-1

		-	Table CLP (EPA M				
			CEF (EFA W	LDR		Sample Date	
Analyte	Method	Units	TCLP-PDL	Treatment Standard	10/2/2000	5/9/2014	7/21/2014
,							
						Analysis Date	
					10/13-10/26/00	5/15/2014	7/29/2014
Silver	6010C	mg/L	3.29	0.14	<0.10	<0.1	<0.1
Barium	6010C	mg/L	50.5	21	0.77	<1.0	<1.0
Cadmium	6010C	mg/L	0.128	0.11	<0.010	<0.05	<0.05
Lead	6010C	mg/L	2.32	0.75	<0.10	<0.05	<0.05
Chromium	6010C	mg/L	1.21	0.6	<0.10	<0.05	<0.05
Selenium	6010C	mg/L	1.26 0.00321	5.7 5	<0.20 <0.20	<0.1	<0.1 <0.05
Arsenic	6010C	mg/L		_		<0.05	
Mercury	7470A 6010C	mg/L	0.0254 11.8	0.025	<0.005 0.29	<0.001 Not Analyzed	<0.001 Not Analyzed
Copper Nickel	6010C	mg/L	5.07	11	0.29	0.35	Not Analyzed
Zinc	6010C	mg/L mg/L	74.3	4.3	0.64	Not Analyzed	Not Analyzed
ZIIIC	60100	IIIg/∟	74.3	4.3	0.04	Not Arialyzeu	Not Arialyzeu
					Pre	p/Analysis Date	
					10/12/2000	Not Applicable	8/6/2014
2,4-D	8081	mg/L	2.16		< 0.0030	Not Analyzed	<0.1
2,4,5-TP	8081	mg/L	1.73		<0.0010	Not Analyzed	<0.02
		<u> </u>					
						Analysis Date	•
					10/17/2000	Not Applicable	8/8/2014
Chlordane	8081	mg/L	6.06E+03		<0.0010	Not Analyzed	< 0.0050
Endrin	8081	mg/L	2.88E+10		<0.00010	Not Analyzed	< 0.00050
Heptachlor	8081	mg/L	4.89E+24		<0.00005	Not Analyzed	<0.00050
Lindane	8081	mg/L	3.83E+17		<0.00005	Not Analyzed	<0.00050
Methoxychlor	8081	mg/L	1.17E+28		<0.00050	Not Analyzed	<0.0010
Toxaphene	8081	mg/L	1.24E+05		<0.0020	Not Analyzed	<0.010
Heptachlor epoxide	8081	mg/L	2.1E+25		<0.00005	Not Analyzed	<0.00050
						Analusia Data	
					10/13/2000	Analysis Date Not Applicable	8/2/2014
CI	0070	/1	1.08 ^(a)				
m,p-Cresol o-Cresol	8270	mg/L			<0.0040	Not Analyzed	<0.10
1,4-Dichlorobenzene	8270 8270	mg/L	10.8 0.178		<0.0040 <0.0040	Not Analyzed Not Analyzed	<0.10 See 8260
2,4-Dinitrotoluene	8270	mg/L mg/L	0.00619		<0.0040	Not Analyzed	<0.10
Hexachlorobenzene	8270	mg/L	0.00619		<0.0080	Not Analyzed	<0.10
Hexachloro-1,3-butadiene	8270	mg/L	0.0306		<0.0040	Not Analyzed	<0.10
Hexachloroethane	8270	mg/L	0.102		<0.0040	Not Analyzed	<0.10
Nitrobenzene	8270	mg/L	0.102		<0.0040	Not Analyzed	<0.10
Pentachlorophenol	8270	mg/L	0.00903		<0.0400	Not Analyzed	<0.25
2,4,5-Trichlorophenol	8270	mg/L	8.56		<0.0120	Not Analyzed	<0.10
2.4.6-Trichlorophenol	8270	mg/L	0.119		<0.0080	Not Analyzed	<0.10
Pyridine	8270	mg/L	0.216		<0.110	Not Analyzed	<0.50
		<u> </u>					
						Analysis Date	
					10/10/2000	Not Applicable	7/25/2014
Benzene	8260	mg/L	0.0765		<0.15	Not Analyzed	<0.20
Carbon Tetrachloride	8260	mg/L	0.0528		<0.15	Not Analyzed	<0.20
Chlorobenzene	8260	mg/L	1.72		<0.15	Not Analyzed	<0.20
Chloroform	8260	mg/L	0.0299		<0.15	Not Analyzed	<0.20
1,2-Dichloroethane	8260	mg/L	0.0394		<0.15	Not Analyzed	<0.20
1,4-Dichlorobenzene	8260	mg/L	0.178		See 8270	Not Analyzed	<0.20
1,1-Dichloroethylene	8260	mg/L	0.403		<0.15	Not Analyzed	<0.20
Methyl Ethyl Ketone	8260	mg/L	130		<0.25	Not Analyzed	<8.0
Tetrachloroethylene	8260	mg/L	0.00764		<0.15	Not Analyzed	<0.20
Trichloroethylene	8260	mg/L	0.0423		<0.15	Not Analyzed	<0.20
Vinyl Chloride	8260	mg/L	0.00301		<0.15	Not Analyzed	<0.080

Notes

Bioass	Table A-3 say (Rainbow Trout)	
	Sample Collection	Sample Collection
	Date: 10/3/2000	Date: 7/21/2014
	Test Initiation Date:	Test Initiation Date:
Method DOE 80-12	10/5/2000	8/1/2014
Sludge Concentration, mg/L	Percent Mortality	Percent Mortality
0	0	0
10	0	0
100	0	0

		· ·	Table A-4 neous Analyses				
Analysis	PDL	TCLP-PDLX20	Sample ID	Sample Date	Analysis Date	Method	Result
Flashpoint (Degrees Celcius)			SOMAT #1-4	7/21/2014	8/6/2014	1020A	> 110
Sulfide, reactive (mg/kg)			SOMAT #1-4	7/21/2014	7/25/2014	9034	<330
рН			SOMAT #1-4	7/21/2014	7/23/2014	9045D	5.32
Cyanide, weak acid dissociable (mg/kg)	167,000	86.4	SOMAT #1-4	7/21/2014	7/30/2014	SM 4500-CN-E	<2.0
Solids, total (percent)			SOMAT #1-4	7/21/2014	7/29/2014	160.3	9.71
Methanol (mg/kg)	1,070,000,000	2,160	Waste Activated Sludge	8/1/2001	8/8/2001	CLI SolventScan	<0.75
Acetone (μg/kg)	23,500,000,000	3,900,000	SOMAT	7/19/2001	7/24/2001	8260	<50

μg/kg = microgram per kilogram mg/kg = milligram per kilogram Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

Appendix B Mixed Material Analytical Results

Table B-1 Comparison of 2014 Sampling Results to Preliminary Delisting Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					Sample	e ID and Sampl	e Date
			Preliminary Delisting		NP-Comp-1	NP-Comp-2	NP-Comp-3
Analyte	CAS No.	Analysis Date	Levels (a)	TCLP-PDL X 20 (b)	7/7/2014	7/7/2014	7/7/2014
Volatiles (ug/kg dry weight; EPA Method 8260C)							
1,1,1-Trichloroethane	71-55-6	7/14/2014	1.46E+11	6.42E+09	3.9U	3.7U	3.20
1,1,2,2-Tetrachloroethane	79-34-5	7/14/2014	9.60E+07	2.54E+06	3.9U	3.7U	3.20
1,1,2-Trichloroethane 1.1-Dichloroethane	79-00-5 75-34-3	7/14/2014 7/14/2014	3.12E+08 1.12E+10	1.06E+04 2.92E+06	3.9U 3.9U	3.7U 3.7U	3.2l 3.2l
1,1-Dichloroethene	75-35-4	7/14/2014	1.71E+09	5.94E+04	3.9U	3.7U	3.20
1,2,4-Trichlorobenzene	120-82-1	7/14/2014	1.37E+10	5.46E+04	19U	19U	160
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	7/14/2014 7/14/2014	1.12E+10 4.91E+07	1.27E+06 5.80E+03	3.9U 3.9U	3.7U 3.7U	3.2l 3.2l
1,2-Dichloropropane	78-87-5	7/14/2014	3.61E+08	1.86E+04	3.9U	3.7U	3.20
1,3-Dichlorobenzene	541-73-1	7/14/2014			3.9U	3.7U	3.20
1,4-Dichlorobenzene	106-46-7	7/14/2014	1.27E+08	2.62E+04	91	120	9
2-Chloroethylvinylether Acrolein	110-75-8 107-02-8	7/14/2014 7/14/2014	 4.57E+05	2.78E+31	19U 190U	19U 190U	160
Acrylonitrile	107-13-1	7/14/2014	1.63E+07	1.25E+03	19U	19U	160
Benzene	71-43-2	7/14/2014	1.50E+08	1.13E+04	3.9U	3.7U	3.20
Bromodichloromethane	75-27-4	7/14/2014	1.49E+08	7.48E+03	3.9U	3.7U	3.20
Bromoform Bromomethane	75-25-2 74-83-9	7/14/2014 7/14/2014	2.39E+09 1.65E+07	8.38E+04 6.06E+26	3.9U 3.9U	3.7U 3.7U	3.2l 3.2l
Carbon Tetrachloride	56-23-5	7/14/2014	8.14E+07	7.78E+03	3.9U	3.7U	3.20
Chlorobenzene	108-90-7	7/14/2014	6.99E+09	2.54E+05	3.9U	3.7U	3.20
Chloroethane	75-00-3	7/14/2014	3.76E+08	1.28E+07	3.9U	3.7U	3.20
Chloroform Chloromethane	67-66-3 74-87-3	7/14/2014 7/14/2014	2.59E+07 1.20E+08	4.42E+03 3.34E+05	3.9U 3.9U	3.7U 3.7U	3.2l 3.2l
cis-1,3-Dichloropropene	10061-01-5	7/14/2014	3.42E+08	4.04E+32	3.9U 3.9U	3.7U 3.7U	3.20
Dibromochloromethane	124-48-1	7/14/2014	3.42E+08	7.68E+03	3.9U	3.7U	3.20
Ethylbenzene	100-41-4	7/14/2014	2.03E+10	2.34E+06	3.9U	4.60	3.5
Hexachlorobutadiene Methylene Chloride	87-68-3 75-09-2	7/14/2014	1.59E+06	4.50E+03	19U	19U	160
Methylene Chloride Naphthalene	75-09-2 91-20-3	7/14/2014 7/14/2014	5.89E+08 7.84E+08	4.36E+04 1.80E+03	7.8U 19U	7.5U 19U	6.5l
Tetrachloroethene	127-18-4	7/14/2014	6.07E+06	1.13E+03	3.9U	3.7U	3.20
Toluene	108-88-3	7/14/2014	3.39E+10	2.50E+06	140,000	150,000	130,00
trans-1,2-Dichloroethene	156-60-5	7/14/2014	8.08E+08	1.42E+05	3.9U	3.7U	3.20
trans-1,3-Dichloropropene Trichloroethene	10061-02-6 79-01-6	7/14/2014 7/14/2014	3.60E+08 2.19E+08	4.04E+32 6.24E+03	3.9U 3.9U	3.7U 3.7U	3.2l 3.2l
Vinyl Chloride	75-01-4	7/14/2014	4.42E+06	4.44E+02	3.9U	3.7U	3.20
•							
Metals (mg/kg dry weight; EPA Method 6010C/747							
Antimony	7440-36-0	7/14/2014	2.96E+05	1.50E+01	70U	80U	801
Arsenic Beryllium	7440-38-2 7440-41-7	7/14/2014 7/14/2014	4.33E+03 3.27E+04	4.66E-01 4.30E+01	70U 1U	80U 2U	80l 2l
Cadmium	7440-41-7	7/14/2014	1.63E+04	1.88E+01	3U	3U	31
Chromium	7440-47-4	7/14/2014	6.53E+03	1.23E+02	24	26	2
Cobalt	7440-48-4	7/14/2014	8.71E+03	1.18E+01	76	87	89
Copper Lead	7440-50-8 7439-92-1	7/14/2014 7/14/2014	1.67E+06 7.48E+06	1.56E+03 2.90E+02	440 30U	493 30U	50 3
Molybdenum	7439-92-1	7/14/2014	1.07E+07	1.80E+02	12	13	14
Nickel	7440-02-0	7/14/2014	3.27E+05	7.46E+02	30	30	3(
Selenium	7782-49-2	7/14/2014	1.15E+06	1.86E+02	70U	80U	801
Silver	7440-22-4	7/14/2014	1.69E+06	4.64E+02	4U	5U	51
Thallium Zinc	7440-28-0 7440-66-6	7/14/2014 7/14/2014	1.96E+02 4.32E+06	2.50E+00 1.10E+04	70U 950	80U 1,060	1,06
Mercury	7439-97-6	7/14/2014	6.42E+05	3.74E+00	1.2	0.9	1.
Semivolatiles (ug/kg dry weight; EPA Method 8270E							
1,2,4-Trichlorobenzene	120-82-1 95-50-1	7/17/2014 7/17/2014	1.37E+10	5.46E+04	420U 420U	380U 380U	300L 300L
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	122-66-7	7/17/2014	1.12E+10 9.17E+06	1.27E+06 7.66E+02	420U 420U	380U 380U	3000
1,3-Dichlorobenzene	541-73-1	7/17/2014			420U	380U	3000
1,4-Dichlorobenzene	106-46-7	7/17/2014	1.27E+08	2.62E+04	700	730	750
2,2'-Oxybis(1-Chloropropane)	108-60-1	7/17/2014			420U	380U	3000
2,4,6-Trichlorophenol 2,4-Dichlorophenol	88-06-2 120-83-2	7/17/2014 7/17/2014	7.90E+07 7.13E+08	1.76E+04 9.38E+04	2,100U 2,100U	1,900U 1,900U	1,500l 1,500l
2,4-Dichiorophenol	105-67-9	7/17/2014	1.80E+10	6.26E+05	420U	380U	3000
2,4-Dinitrophenol	51-28-5	7/17/2014	4.28E+09	6.38E+04	4,200U	3,800U	3,000
2,4-Dinitrotoluene	121-14-2	7/17/2014	1.84E+08	9.14E+02	2,100U	1,900U	1,500
2,6-Dinitrotoluene	606-20-2 91-58-7	7/17/2014 7/17/2014	1.84E+08	9.14E+02 5.64E+05	2,100U 420U	1,900U 380U	1,500t 300t
2-Chloronaphthalene 2-Chlorophenol	91-58-7 95-57-8	7/17/2014	2.09E+09 5.85E+09	1.59E+05	420U 420U	380U 380U	300
2-Nitrophenol	88-75-5	7/17/2014			420U	380U	3000
3,3'-Dichlorobenzidine	91-94-1	7/17/2014	6.01E+06	1.40E+03	2,100U	1,900U	1,500
4,6-Dinitro-2-Methylphenol	534-52-1	7/17/2014	2.14E+08	3.22E+03	4,200U	3,800U	3,000
4-Bromophenyl-phenylether 4-Chlorophenyl-phenylether	101-55-3 7005-72-3	7/17/2014 7/17/2014			420U 420U	380U 380U	300 300
4-Methylphenol	106-44-5	7/17/2014	8.44E+09	1.59E+05	2,400	2,400	2,60
4-Nitrophenol	100-02-7	7/17/2014			2,100U	1,900U	1,500
Acenaphthene	83-32-9	7/17/2014	3.18E+09	5.86E+05	420U	380U	300
Acenaphthylene Anthracene	208-96-8 120-12-7	7/17/2014 7/17/2014	3.60E+09	1.43E+06	420U 420U	380U 380U	300l
Anthracene Azobenzene	103-33-3	7/17/2014	3.60E+09 	1.43E+0b 	420U 420U		300
Benzo(a)anthracene	56-55-3	7/17/2014	2.38E+05	3.86E+03	420U	380U	300
Benzo(a)pyrene	50-32-8	7/17/2014	1.76E+04	1.45E+06	420U	380U	300
Benzo(b)fluoranthene	205-99-2	7/17/2014	1.39E+05	1.24E+07	420U	380U	3601
Benzo(g,h,i)perylene Benzo(k)fluoranthene	191-24-2 207-08-9	7/17/2014 7/17/2014	1.64E+06	3.68E+22	420U 420U	380U 380U	300 340 N
bis(2-Chloroethoxy) Methane	111-91-1	7/17/2014	6.42E+09	9.38E+04	420U 420U	380U 380U	300
Bis-(2-Chloroethyl) Ether	111-44-4	7/17/2014	1.20E+08	6.12E+03	420U	380U	300
bis(2-Ethylhexyl)phthalate	117-81-7	7/17/2014	1.35E+10	1.77E+33	19,000		19,00
Butylbenzylphthalate	85-68-7	7/17/2014	1.05E+09	2.20E+06	420U	380U	3000
Chrysene Dibenz(a,h)anthracene	218-01-9 53-70-3	7/17/2014 7/17/2014	2.33E+07 1.86E+04	3.86E+05 2.04E+16	420U 420U	380U 380U	3000 3000
Dibenz(a,n)anthracene Diethylphthalate	84-66-2	7/17/2014	5.83E+11	5.52E+07	420U 420U	380U 380U	3000
		, , ,		 -		2000	550

Comparison of 2014 Sampling Results to Preliminary Delisting Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					Sample	e ID and Samp	le Date
			Preliminary Delisting		NP-Comp-1	NP-Comp-2	NP-Comp-3
Analyte	CAS No.	Analysis Date	Levels (a)	TCLP-PDL X 20 (b)	7/7/2014	7/7/2014	7/7/2014
Di-n-Butylphthalate	84-74-2	7/17/2014	1.08E+09	1.36E+06	420U	380U	300U
Di-n-Octyl phthalate	117-84-0	7/17/2014	2.13E+10	1.43E+32	420U	380U	300U
Fluoranthene	206-44-0	7/17/2014	5.97E+07	1.36E+05	560	530	550
Fluorene	86-73-7	7/17/2014	9.77E+08	2.70E+05	420U	380U	300U
Hexachlorobenzene	118-74-1	7/17/2014	8.89E+03	4.96E+03	420U	380U	300U
Hexachlorobutadiene	87-68-3	7/17/2014	1.59E+06	4.50E+03	420U	380U	300U
Hexachlorocyclopentadiene	77-47-4	7/17/2014	3.62E+08	6.90E+31	2,100U	1,900U	1,500U
Hexachloroethane	67-72-1	7/17/2014	2.60E+07	1.51E+04	420U	380U	300U
Indeno(1,2,3-cd)pyrene	193-39-5	7/17/2014	4.38E+05	1.36E+14	450M	470M	450M
Isophorone	78-59-1	7/17/2014	6.44E+10	6.22E+05	420U	380U	300U
Naphthalene	91-20-3	7/17/2014	7.84E+08	1.80E+03	420U	380U	300U
Nitrobenzene	98-95-3	7/17/2014	1.07E+09	1.59E+04	420U	380U	300U
N-Nitrosodimethylamine	62-75-9	7/17/2014	1.68E+06	1.22E+01	2,100U	1,900U	1,500U
N-Nitroso-Di-N-Propylamine	621-64-7	7/17/2014	1.66E+07	8.88E+01	420U	380U	300U
N-Nitrosodiphenylamine	86-30-6	7/17/2014	1.07E+09	1.25E+05	420U	380U	300U
Pentachlorophenol	87-86-5	7/17/2014	1.56E+07	1.33E+03	2,100U	1,900U	1,500U
Phenanthrene	85-01-8	7/17/2014			420U	440	360
Phenol	108-95-2	7/17/2014	6.42E+11	9.56E+06	520	630	410
Pyrene	129-00-0	7/17/2014	1.07E+08	2.46E+05	450	420	450
Total Benzofluoranthenes	TOTBFA	7/17/2014			420U	380U	380M
PCBs (ug/kg dry weight; EPA Method 8082A)							
Aroclor 1016	12674-11-2	7/20/2014			9.8U	9.9U	NA
Aroclor 1221	11104-28-2	7/20/2014			9.8U	9.9U	NA NA
Aroclor 1232	11141-16-5	7/20/2014			9.8U	9.9U	NA
Aroclor 1242	53469-21-9	7/20/2014			9.8U	9.9U	NA
Aroclor 1248	12672-29-6	7/20/2014			49U	990	NA
Aroclor 1254	11097-69-1	7/20/2014			150U	150U	NA
Aroclor 1260	11096-82-5	7/20/2014			33	40	NA
Total PCBs (b)	1336-36-3	7/20/2014	5.72E+01	1.10E+13	33	40	NA
Pesticides (ug/kg dry weight; EPA Method 8081B)							
4,4'-DDD	72-54-8	7/17-7/19/2014	8.10E+03	1.22E+31	17U	17U	NA
4,4'-DDE	72-55-9	7/17-7/19/2014	4.20E+03	8.94E+21	17U	27U	NA
4,4'-DDT	50-29-3	7/17-7/19/2014	1.19E+03	5.36E+30	170U	100U	NA
Aldrin	309-00-2	7/17-7/19/2014	3.42E+01	2.74E+12	8.3U	8.3U	NA
alpha-BHC	319-84-6	7/17-7/19/2014	2.59E+05	5.78E+24	8.3U	13U	NA
beta-BHC	319-85-7	7/17-7/19/2014	3.62E+05	3.50E+02	22U	8.3U	NA
cis-Chlordane	5103-71-9	7/17-7/19/2014			40U	33U	NA
delta-BHC	319-86-8	7/17-7/19/2014			180U	200U	NA
Dieldrin	0.00.00	7/17-7/19/2014			NA	NA	NA
Endosulfan I	959-98-8	7/17-7/19/2014			8.3U	210	NA
Endosulfan II	33213-65-9	7/17-7/19/2014 7/17-7/19/2014			17U	17U	NA NA
Endosulfan Sulfate Endrin	1031-07-8 72-20-8	7/17-7/19/2014 7/17-7/19/2014	 4.46E+06	4.26E+15	140U 17U	120U 17U	NA NA
Endrin Endrin Aldehyde	72-20-8 7421-93-4	7/17-7/19/2014	4.40E+Ub	4.26E+15 	17U	17U	NA NA
gamma BHC (Lindane)	7421-93-4 58-89-9	7/17-7/19/2014	1.45E+06	5.64E+22	8.3U	8.3U	NA NA
Heptachlor	76-44-8	7/17-7/19/2014	3.27E+02	7.22E+29	8.3U	8.3U	NA NA
Heptachlor Epoxide	1024-57-3	7/17-7/19/2014	1.14E+04	3.10E+30	340U	280U	NA NA
Toxaphene	8001-35-2	7/17-7/19/2014	3.83E+02	1.83E+10	830U	830U	NA NA
trans-Chlordane	5103-74-2	7/17-7/19/2014			1,300U	1,400U	NA NA
		.,,,			_,	=,::::	
Dioxins/Furans (pg/g dry weight; EPA Method 1613E	3)						
2,3,7,8-TCDD	1746-01-6	9/4/2014	5.06E+00	2.22E+09	11.5U	11.2U	NA
Inorganic Parameters							
N-Nitrate (mg-N/kg dry weight; Calculated)	NITRATE	7/10/2014			1.48U	NA	NA
N-Ammonia (mg-N/kg dry weight; EPA 350.1M)	AMMONIA	not available			21,400	NA	NA
Total Kjeldahl Nitrogen (mg-N/kg dry weight; EPA 351.2)	KJELDHAL-N	7/10/2014			71,400	NA	NA
Nitrate+Nitrite (NO3+NO2) (mg-N/kg dry weight; EPA 353.2)	NITRATE-NITRITE	7/10/2014			4.01	NA	NA
N-Nitrite (mg-N/kg dry weight; EPA 353.2)	NITRITE	7/10/2014			6.09	NA	NA
Total Solids (% dry weight; SM2540G)	TS104	7/10/2014			6.43	6.51	6.69
Total Cyanide (mg/kg dry weight; EPA 335.4)	57-12-5	7/21/2014	9.36E+05	6.38E+02	1.73	1.69	1.87
pH (Std units dry weight; SM9045)	PH	7/9/2014			7.38	NA	NA

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology

Comments to Waste Characterization Plan).

(b) TCLP-PDL x 20 represents the TCLP Preliminary Delisiting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, the resulting outputs were multiplied by 20 to be compared to the total analysis.

(c) Total PCBs is the sum of detected aroclors.

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

 $\mbox{\bf U}$ = Indicates the compound was not detected at the reported concentration. Bold = Detected concentration. = Exceedance of Preliminary Delisting Level. Box = Exceedance of TCLP-PDL X 20. NA = Not Applicable. = screening level not available EPA = US Environmental Protection Agency ID = identification = micrograms per kilogram ug/kg

= milligrams Nitrogen per kilogram mg-N/kg = milligrams per kilogram mg/kg pg/g = picogram per gram

Table B-2 Comparison of 2014 Sampling Results to Land Disposal Restriction Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

			Land Disposal Restriction		Samp	le ID and Sample	Date
		Analysis	Level (non-		NP-Comp-1	NP-Comp-2	NP-Comp-3
Analyte	CAS No.	Date	wastewater)	Units	7/7/2014	7/7/2014	7/7/2014
Acetone	67-64-1	NA	160,000	ug/kg dry weight	NA	NA	NA
Benzene	71-43-2	7/14/2014	10,000	ug/kg dry weight	3.9U	3.7U	3.2U
Methanol (a)	67-56-1	NA	0.75	mg/L	NA	NA	NA
Toluene	108-88-3	7/14/2014	10,000	ug/kg dry weight	140,000	150,000	130,000

(a) This LDR is a TCLP level.

NA = Indicates no past analysis was performed.

U = Indicates the compound was not detected at the reported concentration.

Bold = Detected concentration

NA = not applicable

= Detected analyte with concentration greater than the LDR Level.

EPA = US Environmental Protection Agency

ID = identification

ug/kg = micrograms per kilogram

mg/L = milligrams per liter

Comparison of 2014 and 2017 Cobalt Results to Preliminary Delisting Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					Sample ID and Sample Date				
		2014/2017	Preliminary Delisting	TCLP-Preliminary	NP-Comp-1	NP-Comp-2	NP-Comp-3	FMF_Newsed	
Analyte	CAS No.	Analysis Date	Level (a)	Delisting Level (a)	7/7/2014	7/7/2014	7/7/2014	5/1/2017	
Metals (mg/kg dry weight; EPA Method 6010C)									
Cobalt	7440-48-4	7/14/2014; 5/8/2017	8710		76	87	89	78.1	
TCLP Metals (mg/L; EPA Method 6010C)				-					
Cobalt	7440-48-4	NA; 5/4/2017		0.59	NA	NA	NA	0.184	

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

Analytical results indicate no exceedances of PDLs or TCLP-PDLs.

Bold = Detected concentration.

NA = Not Analyzed.

--- = screening level not available

EPA = US Environmental Protection Agency

ID = identification

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

TCLP = Toxicity Characteristic Leaching Procedure

Comparison of 2017 Sampling Results to Preliminary Delisting Levels and Land Disposal Restriction Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					Grid Location, Sample Location, Laboratory Sample ID, and Sample Date						
					Grid A2	Grid B2	Grid B3	Grid B6	Grid C2	Grid C4	
Analyte	CAS No.	Analysis Date	Land Disposal Restriction Level (non- wastewater)	Land Disposal Restriction Level x 20	NP-G-A2 1710005-05 8/29/2017	NP-G-B2 1710005-15 8/29/2017	NP-G-B3 1710005-16 8/29/2017	NP-G-B6 1710005-17 8/29/2017	NP-G-C2 1710005-11 8/29/2017	NP-G-C4 1710005-12 8/29/2017	
Volatile Organic Compounds (ug/kg as received; EPA Method 8260C)											
Acetone	67-64-1	9/7/2017	160,000		124	37.6	93.7	32.2	88.6	37.8	
Benzene	71-43-2	9/7/2017	10,000		0.98 U	0.96 U	0.96 U	0.89 U	0.89 U	0.91 U	
Toluene	108-88-3	9/7/2017	10,000		16.0	17.0	19.1	8.81	17.3	13.2	
Volatile Organic Compounds (mg/kg as received; EPA Method 8015C)											
Methanol	67-56-1	9/8-9/9/2017	0.75 mg/L (a)	15 mg/kg	10.0 U	10.0 U	9.1 U	9.9 U	9.6 U	9.8 U	
Conventionals											
pH (std units as received; EPA Method 9045D)		9/11/2017			7.33	7.57	7.43	7.44	7.47	7.37	
Total Solids (% as received; SM2540 G-97)		9/4/2017			7.75	8.29	8.04	8.60	8.39	7.88	

Comparison of 2017 Sampling Results to Preliminary Delisting Levels and Land Disposal Restriction Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					Grid Location, Sample Location, Laboratory Sample ID, and Sample Date						
					Grid C5	Grid C6	Grid D2	Grid D4	Grid D5	Grid E1	
Analyte	CAS No.	Analysis Date	Land Disposal Restriction Level (non- wastewater)	Land Disposal Restriction Level x 20	NP-G-C5 1710005-13 8/29/2017	NP-G-C6 1710005-14 8/29/2017	NP-G-D2 1710005-08 8/29/2017	NP-G-D4 1710005-09 8/29/2017	NP-G-D5 1710005-10 8/29/2017	NP-G-E1 1710005-04 8/29/2017	
Volatile Organic Compounds (ug/kg as received; EPA Method 8260C)											
Acetone	67-64-1	9/7/2017	160,000		38.1	39.7	72.8	84.1	76.3	175	
Benzene	71-43-2	9/7/2017	10,000		0.97 U	0.94 U	0.96 U	0.96 U	0.93 U	0.94 U	
Toluene	108-88-3	9/7/2017	10,000		13.8	16.0	22.9	20.3	15.9	300	
Volatile Organic Compounds (mg/kg as received; EPA Method 8015C)											
Methanol	67-56-1	9/8-9/9/2017	0.75 mg/L (a)	15 mg/kg	9.7 U	9.1 U	9.5 U	10.0 U	9.9 U	9.9 U	
Conventionals											
pH (std units as received; EPA Method 9045D)		9/11/2017			7.46	7.43	7.42	7.53	7.44	7.67	
Total Solids (% as received; SM2540 G-97)		9/4/2017			8.16	8.65	8.61	9.71	8.05	8.64	

Page 3 of 3

Table B-4

Comparison of 2017 Sampling Results to Preliminary Delisting Levels and Land Disposal Restriction Levels Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

					(Grid Location, San	nple Location, Lab	oratory Sample ID), and Sample Date	e
					Grid E2	Gri	d E4	Grid E6	Grid F3	Grid F5
							Dup of NP-G-E4			
			Land Disposal Restriction	Land Disposal	NP-G-E2	NP-G-E4	NP-G-DUP1	NP-G-E6	NP-G-F3	NP-G-F5
			Level (non-	Restriction	1710005-01	1710005-02	1710005-18	1710005-03	1710005-07	1710005-06
Analyte	CAS No.	Analysis Date	wastewater)	Level x 20	8/28/2017	8/28/2017	8/29/2017	8/28/2017	8/29/2017	8/29/2017
Volatile Organic Compounds (ug/kg as receive	ed; EPA Met	thod 8260C)								
Acetone	67-64-1	9/7/2017	160,000		34.0	82.9	111	46.3	103	78.7
Benzene	71-43-2	9/7/2017	10,000		0.95 U	0.99 U	0.88 U	0.91 U	0.88 U	0.95 U
Toluene	108-88-3	9/7/2017	10,000		261	25.1	36.0	17.0	127	18.6
Volatile Organic Compounds (mg/kg as receiv	ed; EPA Me	thod 8015C)								
Methanol	67-56-1	9/8-9/9/2017	0.75 mg/L (a)	15 mg/kg	9.8 U	10.0 U	9.7 U	9.8 U	9.0 U	10.0 U
Conventionals										
pH (std units as received; EPA Method 9045D)		9/11/2017			7.26	7.42	7.40	7.51	7.81	7.52
Total Solids (% as received; SM2540 G-97)		9/4/2017			5.55	8.85	10.46	8.57	9.07	8.78

Notes:

(a) This LDR is a TCLP level; analytical limitations would produce a reporting limit greater than the LDR. The total methanol concentration is compared to the TCLP LDR using the rule of 20.

U = Indicates the compound was not detected at the reported concentration.

Analytical results indicate no exceedances of LDRs, PDLs, or TCLP-PDLsx20.

Bold = Detected concentration

-- = not applicable

Abbreviations and Acronyms:

EPA = US Environmental Protection Agency

ID = identification

ug/kg = micrograms per kilogram

mg/L = milligrams per liter

Delisting Petition for Mixed Material Stored at Fire Mountain Farms Newaukum Prairie Facility USEPA WA Department of Ecology

Appendix C

Fire Mountain Farms, Inc. Results of Investigation of Sludge at Three Storage Sites (Pacific Groundwater Group 2014)

and

Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units, Lewis County, Washington (Landau Associates, Inc. July 2017)

and

Waste Characterization Report, Fire Mountain Farms Newaukum Prairie Storage Unit, Lewis County, Washington (Landau Associates, Inc. October 2017)

Fire Mountain Farms, Inc. Results of Investigation of Sludge at Three Storage Sites (Pacific Groundwater Group 2014)

FIRE MOUNTAIN FARMS, INC. RESULTS OF INVESTIGATION OF SLUDGE AT THREE STORAGE SITES

September 2014

FIRE MOUNTAIN FARMS, INC. RESULTS OF INVESTIGATION OF SLUDGE AT THREE STORAGE SITES

Prepared for:

Fire Mountain Farms, Inc. 349 State Route 508 Chehalis, WA 98532 360.266.0695 www.firemtn.us

Prepared by:

Pacific Groundwater Group 2377 Eastlake Avenue East, Suite 200 Seattle, Washington 98102 206.329.0141 www.pgwg.com

September 11, 2014 JW9901.01 FMF_SludgeReport_V4_rev091114_EcologyReview.docx

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY]
2.0	INTRODUCTION	1
3.0	BACKGROUND	
4.0	INVESTIGATIVE WORK PERFORMED	
4.		
	4.1.1 Newaukum Prairie Lagoon Field Investigation	
	4.1.2 Big Hanford Bunker Field Investigation	
	4.1.3 Burnt Ridge Lagoon Field Investigation	
4.	2 DATA VALIDATION	(
5.0	ANALYTICAL RESULTS	(
5.	1 NEWAUKUM PRAIRIE ANALYTICAL RESULTS	~
	5.1.1 Organic Results	
	5.1.2 Metals Results	8
	5.1.3 Inorganic Results	
	5.1.4 Total Coliform Results	
5.	2 BIG HANAFORD ANALYTICAL RESULTS	
	5.2.1 Organic Results	
	5.2.2 Metals Results	
	5.2.3 Inorganic Results	
_	5.2.4 Total Coliform Results	
5.	3 BURNT RIDGE ANALYTICAL RESULTS	
	5.3.1 Organic Results (Sludge Samples)	
	5.3.2 Metals Results (Sludge Samples)	
	5.3.3 Inorganic Results (Sludge Samples)	
	5.3.5 Total Coliform Results	
	·	
6.0	EVALUATION OF SLUDGE ANALYTICAL RESULTS	.12
6.		
	6.1.1 Liquid Waste Evaluation	
	6.1.2 Solid Acid Waste Evaluation	
	6.1.3 Extremely Hazardous Waste Evaluation	
	6.1.4 Total Organic/Carbonaceous Waste Evaluation	
_	6.1.5 Land Disposal Restriction Evaluation Summary	
6.		
6.	3 EVALUATION OF RESULTS - STATE BIOSOLIDS MANAGEMENT RULE	.16
7 0	DEEDENCES	1'

TABLES

Table 1: Chemical Analyses Performed on Each Sample Collected from Three Sludge Waste Sites at Fire Mountain Farms, Inc. Table 2: Subsamples (grab samples) Collected for each Composite Sample (Fire Mountain Farms, Inc.) Table 3: Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Table 4: Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Table 5: Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Table 6: Total Fecal Coliform Analytical Results (Fire Mountain Farms) Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Table 7: Table 8: Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation Table 9: Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation Table 10: Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation Land Disposal Restriction Evaluation (Fire Mountain Farms) Table 11: Table 12: Comparison of Detected Concentrations of Organics and Metals in FMF Sludge to U.S. EPA National Sewage Sludge Survey (NSSS) Dataset and WAC 173-308-160 (Biosolids Pollutant Limits) Parameter Exceedance Factors in Composite Sludge Samples from Fire Mountain Table 13: Farms, Inc. (Exceedance of the NSSS Mean)

FIGURES

Figure 1: Fire Mountain Farm Sampling Sites
Figure 2: Sludge Sample Locations at Newaukum Prairie
Figure 3: Sludge Sample Locations at Big Hanaford
Figure 4: Sludge Sample Locations at Burnt Ridge
Figure 5: Water Cap Sample Locations at Burnt Ridge

APPENDICES

Appendix A: Quality Assurance Quality Control


Appendix B: Field Photos

Appendix C: Laboratory Reports

SIGNATURE

This report, and Pacific Groundwater Group's work contributing to this report, were reviewed by the undersigned and approved for release.

Janet Knox Principal Geochemist Washington State Geologist No. 413

1.0 EXECUTIVE SUMMARY

This report documents the results of extensive sampling and analytical testing of biosolids (mixed sludge waste from various sources) currently being stored at three facilities operated by Fire Mountains Farms, Inc. (FMF) in Lewis County, Washington (Newaukum Prairie Impoundment, Burnt Ridge Lagoon, and Big Hanaford Bunker). Sludge samples were collected in July 2014 from each site and were analyzed for a comprehensive list of chemical compounds, including the full US Environmental Protection Agency (U.S. EPA) priority pollutant list for at least one composite sample at each site. A liquid sample was also collected from the water cap at the Burnt Ridge Lagoon.

Evaluation of the analytical results under the Washington State land disposal restriction for dangerous waste Chapter 173-303 of the Washington Administrative Code (WAC) indicate the sludge currently stored at all three facilities do not likely designate as wastes that would be restricted from land disposal (Section 6.1).

Evaluation of the analytical results under the Washington State Biosolids Management Rule (WAC 173-308) indicate the concentration of regulated pollutants in the FMF sludge are all below regulatory limits (WAC 173-308-160) and total fecal coliform concentrations meet the pathogen reduction requirements for Class B biosolids (WAC 173-308-170) (Section 6.3).

Comparison of the analytical results to mean sewage sludge concentrations from the U.S. EPA 1988 National Sewage Sludge Survey (NSSS) indicate chemical concentrations in the FMF sludge is either similar to or less than the mean concentrations calculated from the NSSS dataset except for the following chemicals (in order from highest to lowest exceedance of the NSSS dataset) (Section 6.2):

- Cobalt at all three sites
- 4-Methylphenol at Big Hanaford
- Toluene at Newaukum Prairie and Big Hanaford
- Phenol at Big Hanaford
- Molybdenum at all three sites

Although molybdenum concentrations exceeded the mean concentration in the NSSS dataset, they are below the ceiling limit for molybdenum in the State Biosolids Rule (WAC 173-308-160). Pollutant limits are not set for toluene, cobalt, 4-methylphenol, and phenol in the State Biosolids Rule.

Toluene was detected in four discrete liquid samples collected from each quadrant of the Burnt Ridge water cap at concentrations well below the Federal Maximum Contaminant Level (MCL) for drinking water. No other organic chemicals were detected in the water cap samples.

Seven metals were detected in the composite liquid sample from the Burnt Ridge water cap (all measured as totals): chromium, cobalt, copper, molybdenum, nickel, zinc, and mercury. The concentrations of chromium, copper, and mercury were all below the Federal MCL and the Washington State Standards for Groundwater (WAC 173-200). There is no state or federal standard for cobalt, molybdenum, or nickel.

2.0 INTRODUCTION

The purpose of this report is to document the investigation of biosolids (sludge waste) currently stored at three facilities operated by Fire Mountain Farms, Inc. in Lewis County, Washington. Pacific Groundwater Group (PGG) performed the investigation and prepared this report for Fire Mountain Farms, Inc. (FMF) to meet the requirements of an Administrative Order (Docket #10721) issued by the Washington Department of Ecology (Ecology) on June 2, 2014.

The purpose of the investigation was to conduct a rigorous characterization of the chemical composition of sludge waste being stored at the three facilities. The analytical results were then evaluated under the Land Disposal Restrictions under the Washington Dangerous Waste Regulations (Washington Administrative Code [WAC] 173-303-140) and Biosolids Management Code (WAC 173-308). Analytical results were also compared to the mean sewage sludge concentrations from the U.S. EPA 1988 National Sewage Sludge Survey (NSSS).

This work was performed, our findings obtained, and this report prepared, using generally accepted environmental investigation practices used at this time and in this vicinity, for exclusive application to the Fire Mountain Farm, Inc. sludge investigation, and for the exclusive use of Fire Mountain Farms, Inc. This is in lieu of other warranties, expressed or implied.

3.0 BACKGROUND

Fire Mountain Farms, Inc. (FMF) operates several facilities in Lewis County where biosolids are applied to fields as fertilizer under the Washington State General Permit for Biosolids Management. On June 2, 2014, FMF was issued an Administrative Order (AO), Docket #10721 by the Washington Department of Ecology (Ecology). Under the directive of the AO, Ecology required FMF to undergo a rigorous investigation to sample and characterize sludge currently stored at three of its facilities: Newaukum Prairie, Big Hanaford, and Burnt Ridge (Figure 1).

1. Newaukum Prairie Surface Impoundment

The Newaukum Prairie surface impoundment (Figure 2) was recently re-constructed and lined in 2013. The lagoon does not have a water cap. The dimensions of the sludge in July 2014 were estimated to be 8 to 9 feet thick, measuring roughly 100 feet by 100 feet at the bottom and 170 feet by 170 feet at the surface.

2. Big Hanaford Bunker

The Big Hanaford Bunker (Figure 3) is a covered concrete structure measuring approximately 100 feet by 60 feet in dimension and stores sludge estimated to be about 10 feet deep¹.

3. Burnt Ridge Surface Lagoon

The Burnt Ridge Lagoon (Figure 4) has a water cap approximately 14 feet deep above sludge and solids stored at the bottom. The surface water dimensions of the lagoon were measured by FMF personnel on June 25, 2014 to be 215 feet by 205 feet. The lagoon's sloped interior sides extend about 50 feet from the edge indicating the bottom area of the lagoon is about 115 feet by 105 feet. Limited sludge material is currently stored at the bottom of Burnt Ridge Lagoon. The sludge material is estimated to currently be 3 feet thick or less.

As stated in the AO, the investigative work was required to follow an Ecology-approved Quality Assurance Project Plan (QAPP) specifying a rigorous method of sampling (gridding, randomized sampling, compositing, etc.) to address the heterogeneity of the materials stored at the three sites. The QAPP was prepared by Pacific Groundwater Group in accordance with Ecology guidelines (Publication No. 04-03-030 July 2004) and was submitted to and approved by Ecology in July 2014 (PGG, 2014).

During conversations with Ecology while developing the QAPP, it was also agreed that the water cap at the Burnt Ridge Lagoon and groundwater monitoring wells downgradient of the Newaukum Prairie and Burnt Ridge storage site would also be sampled as part of this investigation.

4.0 INVESTIGATIVE WORK PERFORMED

This section summarizes the field investigative work performed to meet the requirements of the AO. Field investigative work included sampling of sludge wastes stored at three of the Fire Mountain Farms sites: Burnt Ridge, Newaukum Prairie, and Big Hanaford (Figure 1). The Burnt Ridge Lagoon water cap was also sampled as part of the investigation. Although not required by the AO, existing downgradient groundwater monitoring wells were sampled at the Newaukum Prairie and Big Hanaford sites; however, the results of the groundwater investigation will be summarized in a separate addendum to this report.

Results of this investigative work are summarized in Section 5 (Analytical Results).

4.1 FIELD INVESTIGATION

Samples were collected from the three storage sites (Burnt Ridge, Newaukum Prairie, and Big Hanaford) following the procedures outlined in the QAPP (PGG, 2014); field conditions required exceptions to the QAPP that were approved by Ecology and are described

¹ The concrete segments used to construct the bunker are 11.5 feet tall with a 6 inch thick poured concrete slab floor, making an effective depth of 11 feet. The top of the biosolids is 6 to 12 inches from the top of the bunker - for a total biosolids thickness of 10 to 10.5 feet.

below. At each site, several grab samples ("subsamples") were systematically collected by FMF personnel using various coring devices at prescribed horizontal spacing and random vertical depths. An x-y grid was staked out along the perimeter of each storage site to guide sample locations as specified in the QAPP (PGG, 2014). Sludge sample depths varied from near the surface to the bottom of the sludge material and were randomly selected in the field using a pre-generated table of random numbers in MS-Excel.

Three composited sludge samples from each storage site were submitted for laboratory analysis. Each composite consisted of up to nine discrete grab samples composited in the field (except for samples analyzed for volatile organic compounds (VOCs), which were composited by the lab in order to minimize volatilization to air). A composite liquid sample was also collected from the water cap at the Burnt Ridge Lagoon. Field compositing of grab samples was conducted by PGG personnel and followed the procedures documented in the QAPP (2014). Decontamination of sampling and compositing equipment also followed the procedures documented in the OAPP.

In accordance with the QAPP, the sludge samples were analyzed for a comprehensive list of chemical compounds, including the full US Environmental Protection Agency (USEPA) priority pollutants for at least one composited sludge sample collected from each site.

The water cap liquid sample collected at the Burnt Ridge site was analyzed for VOCs, Semi-VOCs, metals, nitrate, and total cyanide. The water cap sample was not analyzed for the full priority pollutants as stated in Section 4.7 of the QAPP (PGG, 2014). This deviation is due to Table 6 in the QAPP, which indicates sample parameters for the water cap were to be the same as the sample parameters for groundwater (VOCs, Semi-VOCs, metals, nitrate, and total cyanide).

Finally, in accordance with the pathogen reduction requirements in the State's Biosolids Management Rule (Chapter WAC 173-308-170) discrete grab samples of sludge from each site were submitted for Total Coliform analysis.

All samples were analyzed by Analytical Resources Inc. in Tukwila, Washington except for Total Coliform which was analyzed by Water Management Laboratories in Tacoma, Washington. The analytical methods were as specified in the QAPP and are shown with the analytical results in Tables 3, 4, 5, 6, and 7.

Details of the sampling conducted at each site are described below.

4.1.1 Newaukum Prairie Lagoon Field Investigation

Sludge grab samples at the Newaukum Prairie site were collected by FMF personnel on July 7, 2014 using a 1.5 inch sludge judge with a flapper valve. The location of each grab sample is shown in Figure 2. Depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (NP-Comp-1, NP-Comp-2, and NP-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Nine individual grab samples comprised each composited sludge sample (Figure 2 and Table 2). In accordance with the QAPP, fourteen individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 7, 2014).

4.1.2 Big Hanford Bunker Field Investigation

Sludge grab samples at the Big Hanaford site were collected by FMF personnel on July 8, 2014 using a 1.5 inch PVC casing pipe driven to the desired depth and samples collected from the final depth of casing using a 1 inch stainless steel, solid stem, hand auger. The PVC pipe was hand driven into the material allowing accessing for sample collection at depth with the hand auger. FMF personnel verified the sludge material was pushed to the outside of the PVC pipe by measuring depth inside the PVC pipe. If any sludge material were encountered inside the PVC pipe, FMF personnel used the hand auger to clean out materials to achieve sample depth, decontaminated the hand auger, and collected the sample. Sludge samples were obtained by "peeling" the material from the threads on the auger head.

The location of each grab sample is shown in Figure 3. Sample depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (BH-Comp-1, BH-Comp-2, and BH-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Six individual grab samples comprised each composited sludge sample (Figure 3 and Table 2). In accordance with the QAPP, seven individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 8, 2014).

4.1.3 Burnt Ridge Lagoon Field Investigation

Sludge grab samples at the Burnt Ridge Lagoon site were collected by FMF personnel on July 9, 2014 using a 1.5 inch sludge judge with a flapper valve. The location of each grab sample is shown in Figure 4. Sample depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (BR-Comp-1, BR-Comp-2, and BR-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Nine individual grab samples comprised each composited sludge sample (Figure 4 and Table 2). In accordance with the QAPP, seven individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 9, 2014).

The Burnt Ridge water cap was sampled on July 17, 2014. In accordance with the QAPP, water cap sample depths were not random as they were for the sludge samples, but instead targeted the lower part of the water column where chemical partitioning from the sludge and minimal volatilization to the atmosphere would likely results in the highest concentrations in the water. Except for the analysis of VOCs, one composited water sample was prepared in the field by PGG personnel from four individual grab samples collected at each quadrant of the lagoon (Figure 5 and Table 2). Four individual grab samples collected for VOC analysis could not be filled directly from the sludge judge sampler into 40 mL laboratory vials as specified in the QAPP. Instead, water samples were emptied from the sludge judge into 32 oz glass jars and immediately provided to PGG personnel at the shoreline. PGG personnel then filled the 40 mL laboratory vials. The pouring of the water sample twice could result in some of the VOCs volatilizing to the air and thus the water cap VOC results could be biased low. The four grab samples for VOC analysis were requested to be composited by the lab, but were instead analyzed individually.

Water cap grab samples were collected by FMF personnel using a 1.5 inch sludge judge with a flapper valve in tandem with a measuring rod. FMF personnel would drop the measuring rod to identify the sludge water cap interface, then using the sludge judge collect the water sample from approximately six inches above the sludge surface. In coordination PGG and FMF personnel would determine if any water/sludge was to be discarded from the bottom of sampler prior to bottle filling. All samples were placed in iced coolers and delivered to the lab on the same day (July 17, 2014).

4.2 DATA VALIDATION

Analytical data collected for this investigation have been validated in accordance with the QAPP, including both laboratory and field quality assurance quality control procedures (PGG, 2014). Appendix A contains the data validation. Some analyses required sample dilution which resulted in elevated laboratory reporting limits; however, the QA/QC data are satisfactory and indicate that the data are acceptable for the project purposes.

The Dioxin results were flagged "JEMPC" by the analytical laboratory, indicating the concentrations are "Estimated Maximum Possible Concentrations", and are less than the analytical reporting limits (RL or Practical Quantitation Limit, PQL). The analysis was challenging due to the sludge matrix and high moisture content. These estimated and qualified analytical results are considered not sufficiently accurate to serve as a basis for regulatory decisions.

5.0 ANALYTICAL RESULTS

This section provides a summary of the analytical results. Section 6.0 provides an evaluation of the sludge analytical results within the context of regulatory requirements.

The analytical results for sludge samples collected at all three sites show detections of a few volatile organic compounds (VOCs) and semi-VOCs; metals; PCBs² (Aroclor 1260), and Total Cyanide. Elevated concentrations of N-ammonia and total Kjeldahl nitrogen (TKN) were also detected in the sludge. Pesticides were not detected in the sludge at all three sites.

The dominant organic chemicals (greater than 10 ppm³) detected in the sludge were:

- Bis(2-ethylhexyl)phthalate (at all three sites)
- 4-Methylphenol (Big Hanaford)
- Toluene (Newaukum Prairie and Big Hanaford)
- Phenol (Big Hanaford)

The dominant metals detected in the sludge at all three sites were:

- Zinc (~ 900 1100 ppm)
- Copper (~ 400 to 500 ppm)

r orychiormated Diphenyis

² Polychlorinated Biphenyls

³ Parts per million. One ppm (1 mg/kg) = 1000 ug/kg (1000 parts per billion or ppb)

As described in Section 6.1, the concentrations of chemicals in the sludge at all three sites do not trigger the land disposal restrictions set forth in Chapter WAC 173-303-140. Furthermore, as described in Section 6.2, except for the chemicals toluene, 4-methylphenol, phenol, molybdenum, and cobalt, the chemical concentrations detected in sludge at the Fire Mountain Farm sites are similar to or less than the national averages calculated by the U.S. EPA as part of their National Sewage Sludge Survey (NSSS) from Publically Owned Treatment Works (POTW).

Analytical results for the water cap samples collected from the bottom of the Burnt Ridge Lagoon showed detections of toluene (26 to 41 ug/L), some metals, and very low levels of nitrite and nitrite+nitrate (0.014 and 0.051 mg/L as N respectively). Except for toluene, no other VOCs or Semi-VOCs were detected in the water cap sample, suggesting minimal leaching of organic parameters from the sludge. As mentioned above, groundwater samples have been collected at the Burnt Ridge and Newaukum Prairie sludge storage sites to assess potential historical leaching of chemicals in the sludge with transport to the groundwater. The results of the groundwater sampling will be submitted as an addendum to this report.

The geometric means of total fecal coliform results at the three sites were 44 MPN⁴ per gram (dw)⁵ at Burnt Ridge; 145 MPN per gram (dw) at Big Hanaford; and 3,056 MPN per gram (dw) at Newaukum Prairie. All values are well below the required threshold of 2,000,000 MPN per gram (dw) for Class B biosolids (WAC 173-308-170(5))⁶.

The analytical results for each storage site are described in more detail below. Section 6.0 provides describes the sludge analytical results within the context of regulatory requirements of land disposal restrictions under the State's Dangerous Waste Regulation (WAC 173-303-140), the State's Biosolids Management Rule (WAC 173-308), and comparison to the U.S. EPA National Sewage Sludge Survey (NSSS) dataset.

5.1 NEWAUKUM PRAIRIE ANALYTICAL RESULTS

Newaukum Prairie analytical results are shown in Table 3. Total Coliform Results are shown in Table 6. A summary is provided below.

5.1.1 **Organic Results**

The following organic chemicals were detected in the composite sludge samples collected at Newaukum Prairie (in order from highest concentrations to lowest concentrations):

- Toluene
- Bis(2-ethylhexyl)phthalate (BEHP)

⁴ MPN = Most Probable Number

⁵ dw = dry weight

⁶ Total coliform results were reported by the lab as wet weight concentrations and were converted to dry weight concentrations using the average total solids results from the three composited sludge samples at each location (see Tables 3, 4, and 5). There was very little variability in percent total solids between the three composited samples, suggesting the use of an average is acceptable.

- Phenols (4-methylphenol & Phenol)
- 1,4-dichlorobenzene
- PAHs⁷ (Fluoranthene; Indeno(1,2,3-cd)pyrene; Pyrene; Phenanthrene; Benzo(b)fluoranthene; Benzo(k)fluoranthene)
- PCBs (Aroclor 1260)
- Ethylbenzene

Toluene concentrations varied from 130 to 150 ppm, BEHP from 19 to 20 ppm, and 4-methylphenol from 2.4 to 2.6 ppm. The concentrations of all other detected organic chemicals were less than 1 ppm (Table 3).

5.1.2 Metals Results

The following metals were detected in sludge samples collected at Newaukum Prairie (in order from highest concentration to lowest concentration):

- Zinc (950 to 1060 ppm)
- Copper (440 to 503 ppm)
- Cobalt (76 to 89 ppm)
- Nickel (30 ppm)
- Chromium (24 to 27 ppm)
- Molybdenum (12 to 14 ppm)
- Mercury (0.9 to 1.2 ppm)

5.1.3 Inorganic Results

The following inorganics were detected in the sludge samples collected at Newaukum Prairie:

- N-Ammonia (21,400 mg/kg as N)
- TKN (71,400 mg/kg as N)
- Nitrate+Nitrite (4.01 mg/kg as N)
- Nitrite (6.09 mg/kg as N)
- Total Cyanide (1.73 mg/kg)

5.1.4 Total Coliform Results

Fourteen discrete sludge samples for Total Coliform analysis were collected from Newaukum Prairie (Table 6). Concentrations ranged from 504 MPN per grams (dw) to 14,060 MPN per grams (dw) with a geometric mean of 3,056 MPN per grams (dw).

5.2 BIG HANAFORD ANALYTICAL RESULTS

Big Hanaford analytical results are shown in Table 4. Total Coliform Results are shown in Table 6. A summary is provided below.

7

⁷ Polycyclic Aromatic Hydrocarbons

5.2.1 Organic Results

The following organic chemicals were detected in the composite sludge samples collected at Big Hanaford site (in order from highest concentrations to lowest concentrations):

- Phenols (4-methylphenol and phenol)
- Toluene
- Bis(2-ethylhexyl)phthalate (BEHP)
- N-nitrosodiphenylamine
- 1,4-dichlorobenzene
- PAHs (Fluoranthene)
- PCBs (Aroclor 1260)

4-Methylphenol concentrations varied from 480 to 720 ppm, phenol from 14 to 23 ppm, toluene from 8.3 to 120 ppm, and BEHP from 24 to 25 ppm, N-nitrodiphenylamine from 1.1 to 1.4 ppm, and 1,4-dichlorobenzene from 1 to 1.3 ppm. The concentrations of PAHs and PCBs were all below 1 ppm (Table 4).

Although fluoranthene was the only PAH detected at the Big Hanaford site, the laboratory reporting limits were elevated for the samples analyzed at this site compared to the other two sites due to laboratory dilution requirements (see Appendix A). Therefore, the PAHs that were detected at relatively low levels at the Newaukum Prairie and Burnt Ridge site could also be present at the Big Hanaford site below the laboratory reporting limit.

5.2.2 Metals Results

The following metals were detected in sludge samples collected at Big Hanaford site (in order from highest concentration to lowest concentration):

- Zinc (1030 to 1100 ppm)
- Copper (473 to 521 ppm)
- Cobalt (15 to 165 ppm)
- Nickel (27 to 42 ppm)
- Lead (20 to 30 ppm)
- Chromium (25 to 29 ppm)
- Molybdenum (12 to 15 ppm)
- Silver (4 to 6 ppm)
- Mercury (1 to 3 ppm)
- Cadmium (2 ppm)

5.2.3 Inorganic Results

The following inorganics were detected in the sludge samples collected at Big Hanaford site:

- N-Ammonia (24,800 mg/kg as N)
- TKN (76,800 mg/kg as N)

- Nitrate+Nitrite (7.01 mg/kg as N)
- Nitrite (7.86 mg/kg as N)
- Total Cyanide (1.6 to 2.39 mg/kg)

5.2.4 Total Coliform Results

Seven discrete sludge samples for Total Coliform analysis were collected from Big Hanaford site (Table 6). Concentrations ranged from 5 MPN per grams (dw) to 6,800 MPN per grams (dw) with a geometric mean of 145 MPN per grams (dw).

5.3 BURNT RIDGE ANALYTICAL RESULTS

Burnt Ridge analytical results are shown in Table 5 (sludge results) and Table 7 (water cap results). Total Coliform Results for the sludge are shown in Table 6. A summary is provided below.

5.3.1 Organic Results (Sludge Samples)

The following organic chemicals were detected in the composite sludge samples collected at the Burnt Ridge site (in order from highest concentrations to lowest concentrations):

- Bis(2-ethylhexyl)phthalate (BEHP)
- 4-Methylphenol
- 1,4-Dichlorobenzene
- PAHs (Fluoranthene, Indeno(1,2,3-cd)pyrene, Pyrene, Benzo(b)fluoranthene, and Benzo(k)fluoranthene)
- PCBs (Aroclor 1260)
- Toluene

BEHP concentrations varied from 9.1 to 12 ppm and 4-methylphenol from 0.46 to 1.1 ppm. All other organics had concentrations below 1 ppm. Toluene concentrations in the Burnt Ridge sludge was noticeably lower than the concentrations of toluene at the other two sites.

5.3.2 Metals Results (Sludge Samples)

The following metals were detected in sludge samples collected at the Burnt Ridge site (in order from highest concentration to lowest concentration):

- Zinc (876 to 969 ppm)
- Copper (379 to 417 ppm)
- Cobalt (37 to 48 ppm)
- Chromium (31 to 45 ppm)
- Nickel (28 to 45 ppm)
- Lead (30 to 40 ppm)
- Molybdenum (14 to 16 ppm)
- Silver (5 to 6 ppm)
- Cadmium (3 ppm)

Mercury (1 to 2 ppm)

5.3.3 Inorganic Results (Sludge Samples)

The following inorganics were detected in the sludge samples collected at the Burnt Ridge site:

- N-Ammonia (7,600 mg/kg as N)
- TKN (33,700 mg/kg as N)
- Nitrate+Nitrite (0.60 mg/kg as N)
- Nitrite (0.72 mg/kg as N)
- Total Cyanide (1.05 to 1.42 mg/kg)

The concentrations of N-Ammonia, TKN, Nitrate+Nitrite, and Nitrite were noticeably lower at the Burnt Ridge Site relative to the other two sites.

5.3.4 Burnt Ridge Water Cap Results

The only organic parameter detected in the water cap liquid sample was toluene with concentrations ranging from 26 ppb to 41 ppb (Table 7) – well below the Federal drinking water MCL (1000 ug/L)⁸. The following metals were detected in the water cap composite sample (from highest to lowest):

- Zinc (0.18 ppm)
- Copper (0.057 ppm)
- Nickel (0.02 ppm)
- Cobalt (0.017 ppm)
- Chromium (0.012 ppm)
- Molybdenum (0.006 ppm)
- Mercury (0.0003 ppm)

The concentration of chromium, copper, and mercury are all below the Federal MCL for drinking water (0.1, 1.3, and 0.002 ppm respectively) and the Washington State groundwater criteria in Chapter WAC 173-200 (0.05, 1.0, and 0.002 ppm respectively). There is no state or federal standard for cobalt, molybdenum, or nickel.

Low concentrations of nitrate+nitire (0.014 mg/L as N) and nitrite (0.051 mg/L as N) were also detected in the water cap sample - well below the federal drinking water MCL (10 and 1 mg/L as N respectively).

Except for the detection of toluene, no other VOCs or Semi-VOCs were detected in the liquid at the bottom of the Burnt Ridge lagoon, suggesting minimal leaching of organic parameters from the sludge. However, as explained above in Section 4.1.3, the water cap sample could not be poured directly into the 40 mL laboratory vials and instead were first emptied into 32 oz glass jars and then transferred to the 40 mL laboratory vials from the 32 oz jars. The pouring of the water sample twice could result in some VOCs volatilizing to the air and thus bias the results low.

⁸ Maximum Contaminant Level (MCL) for toluene = 1000 micrograms per liter (ug/L)

As mentioned above, groundwater samples have been collected at the Burnt Ridge and Newaukum Prairie storage sites to assess potential historical leaching of chemicals in the sludge with transport to the groundwater. The results of the groundwater sampling will be submitted as an addendum to this report.

5.3.5 Total Coliform Results

Seven discrete sludge samples for Total Coliform analysis were collected from Burnt Ridge site (Table 6). Concentrations ranged from 16 MPN per grams (dw) to 156 MPN per grams (dw) with a geometric mean of 44 MPN per grams (dw).

6.0 EVALUATION OF SLUDGE ANALYTICAL RESULTS

The following sections provide an evaluation of the sludge analytical results under the Washington State land disposal restriction for dangerous waste (WAC 173-303-140); comparison of the analytical results to the U.S. EPA National Sewage Sludge Survey; and evaluation under the Washington State Biosolids Management Rule (WAC 173-308).

6.1 EVALUATION OF RESULTS - STATE LAND DISPOSAL RESTRICTIONS FOR DANGEROUS WASTE

The sludge analytical results from each storage site were evaluated against land disposal restrictions under the State's Dangerous Waste Regulation (WAC 173-303-140). Under the State's code, the following wastes are restricted from land disposal (WAC 173-303-140 (4)):

- Disposal of extremely hazardous waste (EHW): Designated under WAC 173-303-100.
- 2. Disposal of Liquid Waste: Demonstrated using Method 9095 (Paint Filter Liquid Test)
- 3. Disposal of solid acid waste: $pH \le 2$ and $pH \ge 12.5$ (WAC 173-303-90(6)(a)(iii).
- 4. Disposal of organic/carbonaceous Waste: wastes containing combined organics > 10% (WAC 173-303-140(3)(c)).

6.1.1 Liquid Waste Evaluation

Because biosolids are applied as solids at the land surface, it is considered a valid assumption that the waste would not likely designate as a liquid waste. We understand that this restriction applies to land disposal of liquid wastes at a landfill.

6.1.2 Solid Acid Waste Evaluation

The pH results for the sludge samples collected at all three sites (Tables 3, 4, and 5) were relatively similar (7.91 at Big Hanaford, 7.43 at Burnt Ridge, 7.38 at Newaukum Prairie) and do not designate as a solid acid.

6.1.3 Extremely Hazardous Waste Evaluation

Under WAC 173-303-100, a waste is evaluated as extremely hazardous under the Toxicity Criteria (WAC 173-303-100(5)) and the Persistence Criteria (WAC 173-303-100(6)). For this evaluation we considered the full list of organic chemicals, metals, and cyanide analyzed at each of the three storage sites.

For detected chemicals, we used the maximum concentration reported for each site; a valid alternative approach would be to use an average or mean value. For non-detected chemicals we used the minimum laboratory reporting limit as an estimated concentration. The use of the laboratory reporting limit is considered an upper bound estimate of the actual concentration, which is some unknown value between zero and the reporting limit.

6.1.3.1 Toxicity Criteria (book designation method)

The toxicity criteria were evaluated using the book designation method. Under the book designation method, the toxicity category (X, A, B, C, or D) for each chemical constituent is determined from available toxicity data sources (WAC 173-303-100(5)(b)(i)). For this evaluation we used toxicity data from the current Hazardous Substances Data Bank (HSDB)⁹ and ECOTOXicology¹⁰.

An equivalent percent concentration (EC) is then determined by weighting the total percent concentration for each toxic category in the waste:

$$EC(\%) = \frac{\sum X\%}{1} + \frac{\sum A\%}{10} + \frac{\sum B\%}{100} + \frac{\sum C\%}{1000} + \frac{\sum D\%}{10,000}$$

The percent concentrations and associated toxic category for each chemical at each site are shown in Tables 8, 9, and 10.

A waste is designated as follows under the Toxicity Criteria (WAC 173-303-100(5)(b)(iii)):

- If EC(%) < 0.001%, the waste is not a toxic dangerous waste
- If EC(%) > 0.001% and < 1%, the waste is designated as dangerous waste (WT02)
- If EC(%) > 1%, the waste is designated as extremely hazardous waste (EHW) and would be restricted for land disposal.

The results show the EC(%) at the three storage sites range from 0.57 to 0.73% and therefore do not designate as EHW under the toxicity criteria (Table 11).

6.1.3.2 Persistence Criteria

The Persistence Criteria (WAC 173-303-100(6) considers chemical compounds which are either halogenated organic compounds (HOC) or polycyclic aromatic hydrocarbons (PAHs). Under the persistence criteria, the total HOC and PAH concentrations in the

_

⁹ http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

¹⁰ http://cfpub.epa.gov/ecotox/

waste are determined by summing the percent concentration for all HOC and all PAH compounds in the waste.

The percent concentrations and associated organic category (HOC or PAH) for each chemical at each site are shown in Tables 8, 9, and 10.

A waste is designated as follows under the Persistence Criteria (WAC 173-303=100(6)(d)):

- If total HOC = 0.01% to 1%, the waste is designated as dangerous waste (WP02)
- If total HOC > 1%, the waste is designated as extremely hazardous waste (EHW)
- If total PAH > 1%, the waste is designated as EHW

The results for the three storage sites show total percent HOC ranges from 0.13 to 0.46% (even with inclusion of the 2,3,7,8-TCDD Estimated Possible Maximum Concentrations) and total percent PAH ranges from 0.05% to 0.09% and therefore do not designate as EHW under the persistence criteria (Table 11).

6.1.4 Total Organic/Carbonaceous Waste Evaluation

Under the Land Disposal Restrictions (WAC 173-303-140), no person may dispose of organic carbonaceous waste defined as wastes containing combined organics > 10% (WAC 173-303-140(3)(c)).

The percent concentrations and organic designation for each chemical at each site are shown in Tables 8, 9, and 10.

The results for the three storage sites show the total percent organics at each site are 0.49%, 2.14%, and 10.26%. While two sites clearly do not designate as organic carbonaceous waste, Big Hanaford is marginally above 10% (Table 11). Our evaluation uses an upper bound estimate on non-detected chemicals and therefore the true value is most likely less than 10%. Also, our evaluation includes the 2,3,7,8-TCDD Estimated Possible Maximum Concentrations, which should be excluded.

Further, it appears that the sludge meets the requirements for Organic/Carbonaceous Waste Exemption (WAC 173-303-140), as it is 83.82 % water (Table 6) and with its water content, its caloric content is likely much less than 3000 BTU/LB:

- (c) Organic/carbonaceous waste exemption. Any person may request an exemption from the requirements in subsection (4) of this section by demonstrating to the department that:
 - (i) Alternative management methods for organic/carbonaceous waste are less protective of public health and the environment than stabilization or land-filling; or
 - (ii) (A)The organic/carbonaceous waste has a heat content less than 3,000 BTU/LB or contains greater than sixty-five percent water or other noncombustible moisture; and

(B) Incineration is the only management method available within a radius of one thousand miles from Washington state's border (i.e., recycling or treatment are not available).

6.1.5 Land Disposal Restriction Evaluation Summary

Our evaluation indicates that the sludge at all three storage sites do not designate as wastes that would be restricted from land disposal under the State's Dangerous Waste Regulation (Table 11). Furthermore, because our evaluation uses an upper bound estimated concentration for non-detected chemicals, our evaluation provides a "worst-case" evaluation. As a result, even under a "worst-case" evaluation, the sludge would not be restricted from land disposal under the State's Dangerous Waste Regulation (WAC 173-303-140).

6.2 EVALUATION OF RESULTS - THE NATIONAL SEWAGE SLUDGE SURVEY

To evaluate whether the chemicals detected in the FMF sludge are characteristic of standard biosolids, we compared the analytical results to the average concentrations measured in sewage sludge from wastewater treatment plants.

In 1988, the U.S. EPA conducted the National Sewage Sludge Survey (NSSS) to identify and estimate the concentrations of expected pollutants in sewage sludge. The NSSS dataset includes concentration data for over 400 pollutants from samples collected at 178 Publicly Owned Treatment Works (POTWs) throughout the nation practicing at least secondary treatment of wastewater (U.S. EPA 1992 and 1996). Samples were collected just prior to the use or disposal of the sewage sludge. The results were used in establishing the Federal Biosolids rule in CFR 40 Part 50¹¹. The U.S. EPA conducted statistical analyses of the NSSS dataset in 1992 (Round 1) and in 1996 (Round 2) and tabulated average concentrations, standard deviations, and percentiles for different pollutants (U.S. EPA 1992 and 1996).

Table 12 provides a comparison of the concentration of chemicals detected in the sludge at FMF relative to the mean concentrations calculated from the NSSS dataset (Round 1 and Round 2). The table provides a comparison of chemicals detected in at least one sample from the FMF site. Chemical concentrations from the FMF sites are shown in Table 12 as either the maximum detected value or as less than ("<") the minimum reporting limit (if the chemical was not detected at that site).

Mean values from the NSSS dataset are shown for both the Round 1 (U.S. EPA 1992) and Round 2 (U.S. EPA, 1996) analysis. Each round analyzed a different set of chemicals and a slightly different approach to calculating mean concentrations.

The mean value from the Round 1 NSSS dataset analysis is based on a multi-censored, maximum-likelihood estimation (MLE) statistical procedure for estimating non-detected concentrations for chemicals with a detection frequency greater than 10% (U.S. EPA,

¹¹ http://water.epa.gov/scitech/wastetech/biosolids/tnsss-overview.cfm#pastsurveys

1992). For chemicals with a detection frequency less than 10% the mean value is based on a non-parametric statistical method (U.S. EPA, 1992).

Two mean values were calculated during the Round 2 NSSS dataset analysis (U.S. EPA, 1996); one based on setting non-detections to a value of zero (a lower bound estimate) and another based on setting non-detections to the value of the reporting limit (an upper bound estimate).

The results show the chemical concentrations in the FMF sludge is either similar to or less than the mean chemical concentrations calculated from the NSSS dataset except for the following chemicals (in order from highest to lowest exceedance of the NSSS dataset) (Table 13):

- Cobalt at all three sites
- 4-Methylphenol at Big Hanaford
- Toluene at Newaukum Prairie and Big Hanaford
- Phenol at Big Hanaford
- Molybdenum at all three sites

Molybdenum concentrations in the FMF sludge (14 to 16 mg/kg) are only slightly higher than the mean concentration in the NSSS dataset (9.63 mg/kg) and well below the ceiling limit for Molybdenum (75 mg/kg) in the State Biosolids Rule (WAC 173-308-160).

Pollutant limits are not set for toluene, cobalt, 4-methylphenol, and phenol in the State Biosolids Rule.

6.3 EVALUATION OF RESULTS - STATE BIOSOLIDS MANAGEMENT RULE

Numerical limits for select metals are set under the State Biosolids Management Rule (WAC 173-308-160). The rule sets the maximum allowable concentration (ceiling limit) in biosolids that can be applied to land. The rule also sets pollutant concentration limits which, when achieved, relieves a biosolids facility operator from certain requirements related to recordkeeping, reporting, and labeling.

Comparison of the FMF sludge results to the rule limits show that all concentrations are below both the ceiling limits and the pollutant limits established under the rule (Table 12).

The geometric means of total fecal coliform results at the three sludge storage sites were 44 MPN per gram (dw) at Burnt Ridge; 145 MPN per gram (dw) at Big Hanaford; and 3,056 MPN per gram (dw) at Newaukum Prairie (Table 6). All values are well below the required threshold of 2,000,000 MPN per gram (dw) for Class B biosolids (WAC 173-308-170(5)).

7.0 REFERENCES

- Pacific Groundwater Group, 2014. Fire Mountain Farms, Inc. Quality Assurance Project Plan Investigation of Emerald Kalama Chemical Sludge Comingled with Biosolids from Other Permitted Sources at Three Storage Sites.
- U.S. Environmental Protection Agency, 1992. Statistical Support Documentation for the 40 CFR, Part 503. Final Standards for the Use or Disposal of Sewage Sludge Volume I. Final Report November 11, 1992
- U.S. Environmental Protection Agency, 1996. Technical Support Document for the Round Two Sewage Sludge Pollutants. EPA-822-R-96-003.

PgG

Table 1. Chemical Analyses Performed on Each Sample Collected from Three Sludge Waste Sites at Fire Mountain Farms, Inc. (see Table 6 for samples submitted for total coliform analysis)

					Sludge	Samples	les				>	Vater (Water Cap Sample	ble	
		7	-	:			_	ď	-			ú	- : :		
		Newa	Newaukum Prairie	rairie	BIB	Hanatord	p	Burnt	ıt Kıdge			Burn	Burnt Kidge		
		τ-qmoϽ-	z-dmoɔ-	e-dmoJ-	1-qmoJ-	-Comp-2	£-qmoJ-	1-qmoጋ-	z-dmoɔ-	-Comp-3	6-I-	8-11-	8-111-	2.8-VI-	dmoɔ-
CHEMICAL ANALYSIS	Method	dΝ	dΝ	dΝ	ВН	ВН	ВН	ЯЯ	ЯВ	ЯВ	-Я8	-Я8	-Я8	-Я8	-88
Volatile Organic Compounds	8260C	×	×	×	×	×	×	×	×	×	×	×	×	×	
Semi-Volatile Organic Compounds	SW8270D	×	×	×	×	×	×	×	×	×					×
Metals	6010C/7471A	×	×	×	×	×	×	×	×	×					×
Pesticides	SW8081B	×	×		×			×							
Polychlorinated Biphenyls (PCB Aroclors)	SW8082A	×	×		×			×							
Polychlorinated dibenzo-p-dioxin (2,3,7,8-TCDD)	EPA 1613B	×			×			×							
N-Nitrate	Calculated	×			×			×							×
N-Ammonia	EPA 350.1M	×			×			×							
Total Kjeldahl Nitrogen	EPA 351.2	×			×			×							
Nitrate + Nitrite (NO3+NO2)	EPA 353.2	×			×			×							×
N-Nitrite	EPA 353.2	×			×			×							×
Total Solids	SM2540G	×	×	×	×	×	×	×	×	×					
Total Cyanide	EPA 335.4	×	×	×	×	×	×	×	×	×					
hd	SW9045	×			×			×							

Note: All samples were composited "Comp" from discrete grab samples (see Table #) except for the analysis of Volatile Organic Compounds from the water cap at the Burnt Ridge Site.

Table 2. Subsamples (grab samples) Collected for each Composite Sample (Fire Mountain Farms, Inc.)

Burnt Ridge	Water Cap	Sample	ву-Сотр	BR-I-9	BR-II-8	BR-III-8	BR-IV-8.5					
		Samples	ВR-Comp-3	BR-A1-3-2	BR-A2-3-1	BR-A3-3-2	BR-B3-3-1	BR-B2-3-2	BR-B1-3-2	BR-C1-3-3	BR-C2-3-2	BR-C3-3-3
		Burnt Ridge Sludge Samples	S-qmoJ-88	BR-A1-2-3	BR-A2-2-2	BR-A3-2-2	BR-B3-2-3	BR-B2-2-1	BR-B1-2-3	BR-C1-2-2	BR-C2-2-2	BR-C3-2-1
		Burnt	BR-Comp-1	BR-A1-1-1	BR-A2-1-3	BR-A3-1-1	BR-B1-1-3	BR-B2-1-3	BR-B3-1-3	BR-C1-1-3	BR-C2-1-2	BR-C3-1-3
		Samples	BH-Comp-3	BH-A3-3-10	BH-A6-3-4.5 BR-A2-1-3	BH-B1-3-1	BH-B8-3-6	BH-C3-3-10	BH-C6-3-9			
		Big Hanaford Sludge Samples	Z-dmoJ-H8	BH-A2-2-11	BH-A5-2-4	BH-A8-2-9	BH-C1-2-1.5	BH-C4-2-10	BH-C7-2-2			
		Big Han	L-dmoJ-HB	BH-A7-1-2	BH-A1-1-0	BH-A4-1-7.5 BH-A8-2-9	BH-C2-1-8	BH-C5-1-10	BH-C8-1-4			
		ge Samples	6-qmoJ-9N	NP-A1-3-3	NP-A2-3-3	NP-A3-3-10	NP-B1-3-1	NP-B2-3-6	NP-B3-3-3	NP-C1-3-3	NP-C2-3-3	NP-C3-3-8
		Newaukum Prairie Sludge Samples	VP-Comp-2	NP-C1-2-6	NP-C2-2-5	NP-C3-2-7	NP-B1-2-4	NP-B2-2-6	NP-B3-2-2	NP-A3-2-10	NP-A2-2-5	NP-A1-2-7
		Newauku	1-qmoϽ- ۹ Ͷ	NP-A3-1-7	NP-A2-1-7	NP-A1-1-2	NP-B1-1-10	NP-B2-1-7	NP-B3-1-3	NP-C3-1-6	NP-C2-1-5	NP-C1-1-7

Sample ID Nomenclature for sludge samples (i.e. NP-A3-1-7)

NP = Site Name (Newaukum Prarire)

A3 = Grid Horizontal Location as Identified in QAPP

1 =Composite Number (in this case Comp-1)

7 = Sample Depth (7 feet)

Sample ID Nomenclature for water cap sample (i.e. BR-I-9)

BR = Site Name (Burnt Ridge)

I = Sampled Quadrant

9 = Sample Depth (9 feet)

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

		ANALYSIS		NP-Comp-1	NP-Comp-2	NP-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	N P	Z d	<u>Z</u>
Volatile Organic Compounds						
(VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	3.9U	3.7U	3.2U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,1,2-Trichloroethane	79-00-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,1-Dichloroethane	75-34-3	8260C	ug/kg	3.9U	3.7U	3.2U
1,1-Dichloroethene	75-35-4	8260C	ug/kg	3.9U	3.7U	3.2U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	19U	19U	16U
1,2-Dichlorobenzene	95-50-1	8260C	ug/kg	3.9U	3.7U	3.2U
1,2-Dichloroethane	107-06-2	8260C	ug/kg	3.9U	3.7U	3.2U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,3-Dichlorobenzene	541-73-1	8260C	ug/kg	3.9U	3.7U	3.2U
1,4-Dichlorobenzene	106-46-7	8260C	ug/kg	91	120	97
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	19U	19U	16U
Acrolein	107-02-8	8260C	ug/kg	190U	190U	160U
Acrylonitrile	107-13-1	8260C	ug/kg	19U	19U	16U
Benzene	71-43-2	8260C	ug/kg	3.9U	3.7U	3.2U
Bromodichloromethane	75-27-4	8260C	ug/kg	3.9U	3.7U	3.2U
Bromoform	75-25-2	8260C	ug/kg	3.9U	3.7U	3.2U
Bromomethane	74-83-9	8260C	ug/kg	3.9U	3.7U	3.2U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	3.9U	3.7U	3.2U
Chlorobenzene	108-90-7	8260C	ug/kg	3.9U	3.7U	3.2U
Chloroethane	75-00-3	8260C	ug/kg	3.9U	3.7U	3.2U
Chloroform	67-66-3	8260C	ug/kg	3.9U	3.7U	3.2U
Chloromethane	74-87-3	8260C	ug/kg	3.9U	3.7U	3.2U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	3.9U	3.7U	3.2U
Dibromochloromethane	124-48-1	8260C	ug/kg	3.9U	3.7U	3.2U
Ethylbenzene	100-41-4	8260C	ug/kg	3.9U	4.60	3.50
Hexachlorobutadiene	87-68-3	8260C	ug/kg	19U	19U	16U
Methylene Chloride	75-09-2	8260C	ug/kg	7.8U	7.5U	6.5U
Naphthalene	91-20-3	8260C	ug/kg	19U	19U	16U
Tetrachloroethene	127-18-4	8260C	ug/kg	3.9U	3.7U	3.2U
Toluene	108-88-3	8260C	ug/kg	140,000	150,000	130,000
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	3.9U	3.7U	3.2U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	3.9U	3.7U	3.2U
Trichloroethene	79-01-6	8260C	ug/kg	3.9U	3.7U	3.2U
Vinyl Chloride	75-01-4	8260C	ug/kg	3.9U	3.7U	3.2U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

				NP-Comp-1	NP-Comp-2	NP-Comp-3
		ANALYSIS		9	Ş	ပို
PARAMETERS	CAS ID	METHOD	UNITS	Z Z	<u>z</u>	Z
Metals						
Antimony	7440-36-0	6010C	mg/kg	70U	80U	80U
Arsenic	7440-38-2	6010C	mg/kg	70U	80U	80U
Beryllium	7440-41-7	6010C	mg/kg	1U	2U	2U
Cadmium	7440-43-9	6010C	mg/kg	3U	3U	3U
Chromium	7440-47-3	6010C	mg/kg	24	26	27
Cobalt	7440-48-4	6010C	mg/kg	76	87	89
Copper	7440-50-8	6010C	mg/kg	440	493	503
Lead	7439-92-1	6010C	mg/kg	30U	30U	30U
Molybdenum	7439-98-7	6010C	mg/kg	12	13	14
Nickel	7440-02-0	6010C	mg/kg	30	30	30
Selenium	7782-49-2	6010C	mg/kg	70U	80U	80U
Silver	7440-22-4	6010C	mg/kg	4U	5U	5U
Thallium	7440-28-0	6010C	mg/kg	70U	80U	80U
Zinc	7440-66-6	6010C	mg/kg	950	1,060	1,060
Mercury	7439-97-6	7471A	mg/kg	1.2	0.9	1.2
Semi-Volatile Organic Compounds						
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	420U	380U	300U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	420U	380U	300U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	420U	380U	300U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	420U	380U	300U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	700	730	750
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	420U	380U	300U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	2100U	1900U	1500U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	2100U	1900U	1500U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	420U	380U	300U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	4200U	3800U	3000U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	2100U	1900U	1500U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	2100U	1900U	1500U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	420U	380U	300U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	420U	380U	300U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	420U	380U	300U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	2100U	1900U	1500U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	4200U	3800U	3000U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	420U	380U	300U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	420U	380U	300U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	NP-Comp-1	NP-Comp-2	NP-Comp-3
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	2,400	2,400	2,600
4-Nitrophenol	100-02-7	SW8270D	ug/kg	2100U	1900U	1500U
Acenaphthene	83-32-9	SW8270D	ug/kg	420U	380U	300U
Acenaphthylene	208-96-8	SW8270D	ug/kg	420U	380U	300U
Anthracene	120-12-7	SW8270D	ug/kg	420U	380U	300U
Azobenzene	103-33-3	SW8270D	ug/kg	420U	380U	300U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	420U	380U	300U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	420U	380U	300U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	420U	380U	360M
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	420U	380U	300U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	420U	380U	340M
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	420U	380U	300U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	420U	380U	300U
bis (2-Ethylhexyl) phthalate	117-81-7	SW8270D	ug/kg	19,000	20,000	19,000
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	420U	380U	300U
Chrysene	218-01-9	SW8270D	ug/kg	420U	380U	300U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	420U	380U	300U
Diethylphthalate	84-66-2	SW8270D	ug/kg	420U	380U	300U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	420U	380U	300U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	420U	380U	300U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	420U	380U	300U
Fluoranthene	206-44-0	SW8270D	ug/kg	560	530	550
Fluorene	86-73-7	SW8270D	ug/kg	420U	380U	300U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	420U	380U	300U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	420U	380U	300U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	2100U	1900U	1500U
Hexachloroethane	67-72-1	SW8270D	ug/kg	420U	380U	300U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	450M	470M	450M
Isophorone	78-59-1	SW8270D	ug/kg	420U	380U	300U
Naphthalene	91-20-3	SW8270D	ug/kg	420U	380U	300U
Nitrobenzene	98-95-3	SW8270D	ug/kg	420U	380U	300U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	2100U	1900U	1500U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	420U	380U	300U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	420U	380U	300U
Pentachlorophenol	87-86-5	SW8270D	ug/kg	2100U	1900U	1500U
Phenanthrene	85-01-8	SW8270D	ug/kg	420U	440	360

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

				1p-1	1p-2	1p-3
		ANALYSIS		Som.	Som.	Com
PARAMETERS	CAS ID	METHOD	UNITS	NP-Comp-1	NP-Comp-2	NP-Comp-3
SVOC (cont.)						
Phenol	108-95-2	SW8270D	ug/kg	520	630	410
Pyrene	129-00-0	SW8270D	ug/kg	450	420	450
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	420U	380U	380M
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	49Y	99Y	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	150Y	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	33	40	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	17U	17U	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	17U	27Y	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	170Y	100Y	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.3U	8.3U	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.3U	13Y	NA
beta-BHC	319-85-7	SW8081B	ug/kg	22Y	8.3U	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	40Y	33Y	NA
delta-BHC	319-86-8	SW8081B	ug/kg	180Y	200Y	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	8.3U	21Y	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	17U	17U	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	140Y	120Y	NA
Endrin	72-20-8	SW8081B	ug/kg	17U	17U	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	17U	17U	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	8.3U	8.3U	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.3U	8.3U	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	340Y	280Y	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	830U	830U	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1300Y	1400Y	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	11.5U	11.2U	NA

Bold: Detected NA: Not Analyzed

^{2,3,7,8-}TCDD Est. Max Possible Concentration 2.76, 1.93 NP-Comp1, 2.

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

U: Not detected.

Y: Not detected at raised RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

		ANALYSIS		-Comp-1	NP-Comp-2	NP-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	N N	Z G	N N
Inorganic Parameters						
N-Nitrate	NITRATE	Calculated	mg-N/kg	1.48U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	21,400	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	71,400	NA	NA
Nitrate + Nitrite (NO3+NO2)	NITRATE-NITRITE	EPA 353.2	mg-N/kg	4.01	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	6.09	NA	NA
Total Solids	TS104	SM2540G	Percent	6.43	6.51	6.69
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.73	1.69	1.87
Ηq	PH	SW9045	std units	7.38	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

		ANALYSIS		BH-Comp-1	BH-Comp-2	BH-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	- B	<u>B</u>	<u> </u>
Volatile Organic Compounds (VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	780U	800U	860U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg ug/kg	780U 780U	800U	860U
1,1,2-Trichloroethane	79-00-5	8260C 8260C	ug/kg ug/kg	780U 780U	800U	860U
1,1-Dichloroethane	75-34-3	8260C	ug/kg ug/kg	780U 780U	800U	860U
1,1-Dichloroethene	75-35-4	8260C	ug/kg	780U	800U	860U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	3900U	4000U	4300U
1,2-Dichlorobenzene	95-50-1	8260C 8260C	ug/kg	780U	4000U	860U
1,2-Dichloroethane	107-06-2	8260C 8260C	ug/kg	780U	800U	860U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	780U	800U	860U
1,3-Dichlorobenzene	541-73-1	8260C 8260C	ug/kg	780U	800U	860U
1,4-Dichlorobenzene	106-46-7	8260C 8260C	ug/kg ug/kg	1,000	1,300	1,000
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	3900U	4000U	4300U
Acrolein	107-02-8	8260C 8260C	ug/kg	39000U	40000U	4300U
Acrylonitrile	107-02-8	8260C 8260C	ug/kg ug/kg	3900U	4000U	4300U
Benzene	71-43-2	8260C	ug/kg	780U	800U	860U
Bromodichloromethane	75-27-4	8260C	ug/kg	780U	800U	860U
Bromoform	75-25-2	8260C	ug/kg	780U	800U	860U
Bromomethane	74-83-9	8260C	ug/kg	780U	800U	860U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	780U	800U	860U
Chlorobenzene	108-90-7	8260C	ug/kg	780U	800U	860U
Chloroethane	75-00-3	8260C	ug/kg	780U	800U	860U
Chloroform	67-66-3	8260C	ug/kg	780U	800U	860U
Chloromethane	74-87-3	8260C	ug/kg	780U	800U	860U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	780U	800U	860U
Dibromochloromethane	124-48-1	8260C	ug/kg	780U	800U	860U
Ethylbenzene	100-41-4	8260C	ug/kg	780U	800U	860U
Hexachlorobutadiene	87-68-3	8260C	ug/kg	3900U	4000U	4300U
Methylene Chloride	75-09-2	8260C	ug/kg	1600U	1600U	1700U
Naphthalene	91-20-3	8260C	ug/kg	3900U	4000U	4300U
Tetrachloroethene	127-18-4	8260C	ug/kg	780U	800U	860U
Toluene	108-88-3	8260C	ug/kg	8,300	120,000	82,000
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	780U	800U	860U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	780U	800U	860U
Trichloroethene	79-01-6	8260C	ug/kg	780U	800U	860U
Vinyl Chloride	75-01-4	8260C	ug/kg	780U	800U	860U
,	.501 /	5_000	~0/ '\O	, 555	2000	5555

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

		ANALYSIS		BH-Comp-1	BH-Comp-2	BH-Comp-3
PARAMETERS Martala	CAS ID	METHOD	UNITS	8	<u> </u>	<u> </u>
Metals	7440.26.0	60106	ma/lea	2011	2011	2011
Antimony	7440-36-0	6010C	mg/kg	30U	30U	30U
Arsenic	7440-38-2	6010C	mg/kg	30U	30U	30U
Beryllium	7440-41-7	6010C	mg/kg	0.6U	0.6U	0.7U
Cadmium	7440-43-9	6010C	mg/kg	2	2	2
Chromium	7440-47-3	6010C	mg/kg	25	29	28
Cobalt	7440-48-4	6010C	mg/kg	15	64	165
Copper	7440-50-8	6010C	mg/kg	473	485	521
Lead	7439-92-1	6010C	mg/kg	30	20	20
Molybdenum	7439-98-7	6010C	mg/kg	12	15	13
Nickel	7440-02-0	6010C	mg/kg	27	38	42
Selenium	7782-49-2	6010C	mg/kg	30U	30U	30U
Silver	7440-22-4	6010C	mg/kg	6	4	4
Thallium	7440-28-0	6010C	mg/kg	30U	30U	30U
Zinc	7440-66-6	6010C	mg/kg	1,030	1,100	1,070
Mercury	7439-97-6	7471A	mg/kg	1	1.2	3
Semi-Volatile Organic Compounds						
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	580U	600U	720U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	580U	600U	720U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	570U	600U	710U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	580U	600U	720U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	860	750	720U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	580U	600U	720U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	2800U	3000U	3500U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	2800U	3000U	3500U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	580U	600U	720U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	5800U	6000U	7200U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	2800U	3000U	3500U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	2800U	3000U	3500U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	580U	600U	720U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	580U	600U	720U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	580U	600U	720U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	2800U	3000U	3500U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	5800U	6000U	7200U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	580U	600U	720U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	580U	600U	720U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BH-Comp-1	BH-Comp-2	BH-Comp-3
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	480,000	720,000	540,000
4-Nitrophenol	100-02-7	SW8270D	ug/kg	2800U	3000U	3500U
Acenaphthene	83-32-9	SW8270D	ug/kg	580U	600U	720U
Acenaphthylene	208-96-8	SW8270D	ug/kg	580U	600U	720U
Anthracene	120-12-7	SW8270D	ug/kg	580U	600U	720U
Azobenzene	103-33-3	SW8270D	ug/kg	580U	600U	720U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	580U	600U	720U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	580U	600U	720U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	570U	600U	710U
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	580U	600U	720U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	570U	600U	710U
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	580U	600U	720U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	580U	600U	720U
bis (2-Ethylhexyl) phthalate	117-81-7	SW8270D	ug/kg	25,000	25,000	24,000
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	580U	600U	720U
Chrysene	218-01-9	SW8270D	ug/kg	580U	600U	720U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	580U	600U	720U
Diethylphthalate	84-66-2	SW8270D	ug/kg	580U	600U	720U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	580U	600U	720U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	580U	600U	720U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	580U	600U	720U
Fluoranthene	206-44-0	SW8270D	ug/kg	640	600U	720U
Fluorene	86-73-7	SW8270D	ug/kg	580U	600U	720U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	580U	600U	720U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	580U	600U	720U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	2800U	3000U	3500U
Hexachloroethane	67-72-1	SW8270D	ug/kg	580U	600U	720U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	580U	600U	720U
Isophorone	78-59-1	SW8270D	ug/kg	580U	600U	720U
Naphthalene	91-20-3	SW8270D	ug/kg	580U	600U	720U
Nitrobenzene	98-95-3	SW8270D	ug/kg	580U	600U	720U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	2800U	3000U	3500U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	580U	600U	720U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	1200M	1100M	1400M
Pentachlorophenol	87-86-5	SW8270D	ug/kg	2800U	3000U	3500U
Phenanthrene	85-01-8	SW8270D	ug/kg	580U	600U	720U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

		ANALYSIS		BH-Comp-1	BH-Comp-2	BH-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	H H	H H	BH-
SVOC (cont.)						
Phenol	108-95-2	SW8270D	ug/kg	14,000	23,000	16,000
Pyrene	129-00-0	SW8270D	ug/kg	580U	600U	720U
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	580U	600U	720U
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	99Y	NA	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	NA	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	35	NA	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	17U	NA	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	17U	NA	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	120Y	NA	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.3U	NA	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.3U	NA	NA
beta-BHC	319-85-7	SW8081B	ug/kg	8.3U	NA	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	34Y	NA	NA
delta-BHC	319-86-8	SW8081B	ug/kg	180Y	NA	NA
Dieldrin	60-57-1	SW8081B	ug/kg	39Y	NA	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	22Y	NA	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	17U	NA	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	17U	NA	NA
Endrin	72-20-8	SW8081B	ug/kg	49Y	NA	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	77Y	NA	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	25Y	NA	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.3U	NA	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	690Y	NA	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	830U	NA	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1200Y	NA	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	5.71U	NA	NA

^{2,3,7,8-}TCDD Est. Max Possible Concentration 0.72 BH-Comp1

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

U: Not detected at RL.

Y: Not detected at RL (raised RL).

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BH-Comp-1	BH-Comp-2	BH-Comp-3
Inorganic Parameters						
N-Nitrate	NITRATE	Calculated	mg-N/kg	0.57U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	24,800	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	76,800	NA	NA
Nitrate + Nitrite (NO3+NO2)	FRATE-NITRITE	EPA 353.2	mg-N/kg	7.01	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	7.86	NA	NA
Total Solids	TS104	SM2540G	Percent	16.33	17.04	15.16
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.60	2.39	1.77
рН	PH	SW9045	std units	7.91	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Y: Not detected at RL (raised RL).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

Samples collected. 7/3/14				÷	Ċ.	က္
				BR-Comp-1	BR-Comp-2	BR-Comp-3
		ANALYSIS		ဝို	ဝို	ဝို
PARAMETERS	CAS ID	METHOD	UNITS	BR	BR	BR
Volatile Organic Compounds (VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	2.3U	2U	1.8U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg ug/kg	2.3U	2U	1.8U
1,1,2-Trichloroethane	79-00-5	8260C	ug/kg ug/kg	2.3U	2U	1.8U
1,1-Dichloroethane	75-34-3	8260C	ug/kg	2.3U	2U	1.8U
1,1-Dichloroethene	75-35-4	8260C	ug/kg ug/kg	2.3U	2U	1.8U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	12U	10U	9U
1,2-Dichlorobenzene	95-50-1	8260C	ug/kg	2.3U	2U	1.8U
1,2-Dichloroethane	107-06-2	8260C	ug/kg	2.3U	2U	1.8U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	2.3U	2U	1.8U
1,3-Dichlorobenzene	541-73-1	8260C	ug/kg	2.3U	2U	1.8U
1,4-Dichlorobenzene	106-46-7	8260C	ug/kg	48	26	32
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	12U	10U	9U
Acrolein	107-02-8	8260C	ug/kg	120U	100U	90U
Acrylonitrile	107-13-1	8260C	ug/kg	12U	10U	9U
, Benzene	71-43-2	8260C	ug/kg	2.3U	2U	1.8U
Bromodichloromethane	75-27-4	8260C	ug/kg	2.3U	2U	1.8U
Bromoform	75-25-2	8260C	ug/kg	2.3U	2U	1.8U
Bromomethane	74-83-9	8260C	ug/kg	2.3U	2U	1.8U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	2.3U	2U	1.8U
Chlorobenzene	108-90-7	8260C	ug/kg	2.3U	2U	1.8U
Chloroethane	75-00-3	8260C	ug/kg	2.3U	2U	1.8U
Chloroform	67-66-3	8260C	ug/kg	2.3U	2U	1.8U
Chloromethane	74-87-3	8260C	ug/kg	2.3U	2U	1.8U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	2.3U	2U	1.8U
Dibromochloromethane	124-48-1	8260C	ug/kg	2.3U	2U	1.8U
Ethylbenzene	100-41-4	8260C	ug/kg	2.3U	2U	1.8U
Hexachlorobutadiene	87-68-3	8260C	ug/kg	12U	10U	9U
Methylene Chloride	75-09-2	8260C	ug/kg	4.6U	4U	3.6U
Naphthalene	91-20-3	8260C	ug/kg	12U	10U	9U
Tetrachloroethene	127-18-4	8260C	ug/kg	2.3U	2U	1.8U
Toluene	108-88-3	8260C	ug/kg	20	35	19
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	2.3U	2U	1.8U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	2.3U	2U	1.8U
Trichloroethene	79-01-6	8260C	ug/kg	2.3U	2U	1.8U
Vinyl Chloride	75-01-4	8260C	ug/kg	2.3U	2U	1.8U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

Jumples conceted. 17 57 14				lb-1	p-2	p-3
		ANALYSIS		Corr	Com	Com
PARAMETERS	CAS ID	METHOD	UNITS	BR-Comp-1	BR-Comp-2	BR-Comp-3
Metals						
Antimony	7440-36-0	6010C	mg/kg	40U	30U	30U
Arsenic	7440-38-2	6010C	mg/kg	40U	30U	30U
Beryllium	7440-41-7	6010C	mg/kg	0.7U	0.7U	0.6U
Cadmium	7440-43-9	6010C	mg/kg	3	3	3
Chromium	7440-47-3	6010C	mg/kg	31	45	35
Cobalt	7440-48-4	6010C	mg/kg	43	48	37
Copper	7440-50-8	6010C	mg/kg	379	417	358
Lead	7439-92-1	6010C	mg/kg	40	30	30
Molybdenum	7439-98-7	6010C	mg/kg	14	16	16
, Nickel	7440-02-0	6010C	mg/kg	28	45	31
Selenium	7782-49-2	6010C	mg/kg	40U	30U	30U
Silver	7440-22-4	6010C	mg/kg	5	5	6
Thallium	7440-28-0	6010C	mg/kg	40U	30U	30U
Zinc	7440-66-6	6010C	mg/kg	886	969	876
Mercury	7439-97-6	7471A	mg/kg	1	1.9	1.8
Semi-Volatile Organic Compounds			J. J.			
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	260U	310U	260U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	260U	310U	260U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	260U	310U	260U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	260U	310U	260U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	480	540	260U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	260U	310U	260U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	1300U	1500U	1300U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	1300U	1500U	1300U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	260U	310U	260U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	2600U	3100U	2600U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	1300U	1500U	1300U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	1300U	1500U	1300U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	260U	310U	260U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	260U	310U	260U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	260U	310U	260U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	1300U	1500U	1300U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	2600U	3100U	2600U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	260U	310U	260U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	260U	310U	260U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

				BR-Comp-1	BR-Comp-2	.p-3
		ANALYSIS		Com	Som	Som
PARAMETERS	CAS ID	METHOD	UNITS	BR-(BR-(BR-Comp-3
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	1,100	450	460
4-Nitrophenol	100-02-7	SW8270D	ug/kg	1300U	1500U	1300U
Acenaphthene	83-32-9	SW8270D	ug/kg	260U	310U	260U
Acenaphthylene	208-96-8	SW8270D	ug/kg	260U	310U	260U
Anthracene	120-12-7	SW8270D	ug/kg	260U	310U	260U
Azobenzene	103-33-3	SW8270D	ug/kg	260U	310U	260U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	260U	310U	260U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	260U	310U	260U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	330M	310U	380M
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	260U	310U	260U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	330M	310U	360M
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	260U	310U	260U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	260U	310U	260U
bis (2-Ethylhexyl) phthalate	117-81-7	SW8270D	ug/kg	10,000	12,000	9,100
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	260U	310U	260U
Chrysene	218-01-9	SW8270D	ug/kg	260U	310U	260U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	260U	310U	260U
Diethylphthalate	84-66-2	SW8270D	ug/kg	260U	310U	260U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	260U	310U	260U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	260U	310U	260U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	260U	310U	260U
Fluoranthene	206-44-0	SW8270D	ug/kg	360	390	450
Fluorene	86-73-7	SW8270D	ug/kg	260U	310U	260U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	260U	310U	260U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	260U	310U	260U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	1300U	1500U	1300U
Hexachloroethane	67-72-1	SW8270D	ug/kg	260U	310U	260U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	260U	310U	400
Isophorone	78-59-1	SW8270D	ug/kg	260U	310U	260U
Naphthalene	91-20-3	SW8270D	ug/kg	260U	310U	260U
Nitrobenzene	98-95-3	SW8270D	ug/kg	260U	310U	260U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	1300U	1500U	1300U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	260U	310U	260U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	260U	310U	260U
Pentachlorophenol	87-86-5	SW8270D	ug/kg	1300U	1500U	1300U
Phenanthrene	85-01-8	SW8270D	ug/kg	260U	310U	260U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

				BR-Comp-1	BR-Comp-2	BR-Comp-3
		ANALYSIS		Con	Con	Con
PARAMETERS	CAS ID	METHOD	UNITS	BR-	BR-	BR-
SVOC (cont.)						
Phenol	108-95-2	SW8270D	ug/kg	260U	310U	260U
Pyrene	129-00-0	SW8270D	ug/kg	390	310	270
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	350M	310U	400M
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	98Y	NA	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	NA	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	61	NA	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	16U	NA	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	16U	NA	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	16U	NA	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.2U	NA	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.2U	NA	NA
beta-BHC	319-85-7	SW8081B	ug/kg	8.2U	NA	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	19Y	NA	NA
delta-BHC	319-86-8	SW8081B	ug/kg	110Y	NA	NA
Dieldrin	60-57-1	SW8081B	ug/kg	57Y	NA	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	14Y	NA	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	16U	NA	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	72Y	NA	NA
Endrin	72-20-8	SW8081B	ug/kg	25Y	NA	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	16U	NA	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	8.2U	NA	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.2U	NA	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	8.2U	NA	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	820U	NA	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1100Y	NA	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	2.35JEMPC	NA	NA

Bold: Detected NA: Not Analyzed

2,3,7,8-TCDD Est. Max Possible Concentration 2.35 BR-Comp1.

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BR-Comp-1	BR-Comp-2	BR-Comp-3
Inorganic Parameters						
N-Nitrate	NITRATE	Calculated	mg-N/kg	0.6U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	7,600	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	33,700	NA	NA
Nitrate + Nitrite (NO3+NO2)	NITRATE-NITRITE	EPA 353.2	mg-N/kg	0.60	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	0.72	NA	NA
Total Solids	TS104	SM2540G	Percent	15.06	13.40	15.91
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.05	1.42	1.08
рН	PH	SW9045	std units	7.43	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 6. Total Fecal Coliform Analytical Results (Fire Mountain Farms)

					Geometric Mean
	MPN per 100 grams	MPN per grams	Total Solids	MPN per grams	MPN per grams
Sample Location and ID	(wet weight)	(wet weight)	(Percent)*	(dry weight)	(dry weight)
Newaukum Prairie					
NP-A3-1-7	49,000	490	6.54	7,489	3,056
NP-A2-1-7	17,000	170	6.54	2,598	
NP-A1-1-2	3,300	33	6.54	504	
NP-B1-1-10	49,000	490	6.54	7,489	
NP-B2-1-7	79,000	790	6.54	12,073	
NP-B3-1-3	17,000	170	6.54	2,598	
NP-C3-1-6	92,000	920	6.54	14,060	
NP-C1-1-7	8,400	84	6.54	1,284	
NP-C2-1-5	7,000	70	6.54	1,070	
NP-C1-2-6	18,000	180	6.54	2,751	
NP-C3-2-7	7,900	79	6.54	1,207	
NP-B1-2-4	49,000	490	6.54	7,489	
NP-B2-2-6	49,000	490	6.54	7,489	
NP-B3-2-2	4,900	49	6.54	749	
Big Hanaford					
BH-A4-1-3.5	7,900	79	16.18	488	145
BH-A7-1-1	330	3	16.18	20	
BH-C2-1-8	23,000	230	16.18	1,422	
BH-A5-2-4	2,300	23	16.18	142	
BH-A6-3-4.5	78	1	16.18	5	
BH-B8-3-6	110,000	1,100	16.18	6,800	
BH-C8-1-4	330	3	16.18	20	
Burnt Ridge					
BR-A1-1-1	330	3	14.79	22	44
BR-A2-1-3	330	3	14.79	22	
BR-A3-1-1	490	5	14.79	33	
BR-B1-1-3	2,300	23	14.79	156	
BR-B2-1-3	1,300	13	14.79	88	
BR-B3-1-3	230	2	14.79	16	
BR-C1-1-3	1,300	13	14.79	88	

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

					GRA	ΑВ		COMP
			Γ				τċ	d.
		ANALYSIS		6-	<u>~</u>	BR-III-8	BR-IV-8.5	BR-Comp
PARAMETERS	CAS ID	METHOD	UNITS	BR-I-9	BR-II-8	BR-	BR-	BR-
Volatile Organic Compounds			•					
(VOCs)								
1,1,1-Trichloroethane	71-55-6	8260C	ug/L	1U	1U	1U	1U	NA
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/L	1U	1U	1U	1U	NA
1,1,2-Trichloroethane	79-00-5	8260C	ug/L	1U	1U	1U	1U	NA
1,1-Dichloroethane	75-34-3	8260C	ug/L	1U	1U	1U	1U	NA
1,1-Dichloroethene	75-35-4	8260C	ug/L	1U	1U	1U	1U	NA
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
1,2-Dichlorobenzene	95-50-1	8260C	ug/L	1U	1U	1U	1U	NA
1,2-Dichloroethane	107-06-2	8260C	ug/L	1U	1U	1U	1U	NA
1,2-Dichloropropane	78-87-5	8260C	ug/L	1U	1U	1U	1U	NA
1,3-Dichlorobenzene	541-73-1	8260C	ug/L	1U	1U	1U	1U	NA
1,4-Dichlorobenzene	106-46-7	8260C	ug/L	1U	1U	1U	1U	NA
2-Chloroethylvinylether	110-75-8	8260C	ug/L	5U	5U	5U	5U	NA
Acrolein	107-02-8	8260C	ug/L	25U	25U	25U	25U	NA
Acrylonitrile	107-13-1	8260C	ug/L	5U	5U	5U	5U	NA
Benzene	71-43-2	8260C	ug/L	1U	1U	1U	1U	NA
Bromodichloromethane	75-27-4	8260C	ug/L	1U	1U	1U	1U	NA
Bromoform	75-25-2	8260C	ug/L	1U	1U	1U	1U	NA
Bromomethane	74-83-9	8260C	ug/L	5U	5U	5U	5U	NA
Carbon Tetrachloride	56-23-5	8260C	ug/L	1U	1U	1U	1U	NA
Chlorobenzene	108-90-7	8260C	ug/L	1U	1U	1U	1U	NA
Chloroethane	75-00-3	8260C	ug/L	1U	1U	1U	1U	NA
Chloroform	67-66-3	8260C	ug/L	1U	1U	1U	1U	NA
Chloromethane	74-87-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/L	1U	1U	1U	1U	NA
Dibromochloromethane	124-48-1	8260C	ug/L	1U	1U	1U	1U	NA
Ethylbenzene	100-41-4	8260C	ug/L	1U	1U	1U	1U	NA
Hexachlorobutadiene	87-68-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
Methylene Chloride	75-09-2	8260C	ug/L	5U	5U	5U	5U	NA
Naphthalene	91-20-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
Tetrachloroethene	127-18-4	8260C	ug/L	1U	1U	1U	1U	NA
Toluene	108-88-3	8260C	ug/L	35	31	41	26	NA
trans-1,2-Dichloroethene	156-60-5	8260C	ug/L	1U	1U	1U	1U	NA
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/L	1U	1U	1U	1U	NA
Trichloroethene	79-01-6	8260C	ug/L	1U	1U	1U	1U	NA
Vinyl Chloride	75-01-4	8260C	ug/L	1U	1U	1U	1U	NA

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

				GRAB				СОМР
		ANALYSIS		6-1	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
PARAMETERS	CAS ID	METHOD	UNITS	BR-I-9	BR-	BR-	BR-	BR-
Metals								
Antimony, Total	7440-36-0	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Arsenic, Total	7440-38-2	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Beryllium, Total	7440-41-7	SW6010C	mg/L	NA	NA	NA	NA	0.001U
Cadmium, Total	7440-43-9	SW6010C	mg/L	NA	NA	NA	NA	0.002U
Chromium, Total	7440-47-3	SW6010C	mg/L	NA	NA	NA	NA	0.012
Cobalt, Total	7440-48-4	SW6010C	mg/L	NA	NA	NA	NA	0.017
Copper, Total	7440-50-8	SW6010C	mg/L	NA	NA	NA	NA	0.057
Lead, Total	7439-92-1	SW6010C	mg/L	NA	NA	NA	NA	0.02U
Molybdenum, Total	7439-98-7	SW6010C	mg/L	NA	NA	NA	NA	0.006
Nickel, Total	7440-02-0	SW6010C	mg/L	NA	NA	NA	NA	0.02
Selenium, Total	7782-49-2	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Silver, Total	7440-22-4	SW6010C	mg/L	NA	NA	NA	NA	0.003U
Thallium, Total	7440-28-0	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Zinc, Total	7440-66-6	SW6010C	mg/L	NA	NA	NA	NA	0.18
Mercury, Total	7439-97-6	SW7470A	mg/L	NA	NA	NA	NA	0.0003
Semi-Volatile Organic Compounds								
(SVOCs)								
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/L	NA	NA	NA	NA	1U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/L	NA	NA	NA	NA	1U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/L	NA	NA	NA	NA	1U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/L	NA	NA	NA	NA	20U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2-Chloronaphthalene	91-58-7	SW8270D	ug/L	NA	NA	NA	NA	1U
2-Chlorophenol	95-57-8	SW8270D	ug/L	NA	NA	NA	NA	1U
2-Nitrophenol	88-75-5	SW8270D	ug/L	NA	NA	NA	NA	3U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/L	NA	NA	NA	NA	5U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/L	NA	NA	NA	NA	10U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/L	NA	NA	NA	NA	1U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/L	NA	NA	NA	NA	1U

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

			_		GRA	В		СОМР
		ANALYSIS		6-1	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
PARAMETERS	CAS ID	METHOD	UNITS	BR-I-9	BR-	BR-	BR-	BR-
SVOC (cont.)								
4-Methylphenol	106-44-5	SW8270D	ug/L	NA	NA	NA	NA	2U
4-Nitrophenol	100-02-7	SW8270D	ug/L	NA	NA	NA	NA	10U
Acenaphthene	83-32-9	SW8270D	ug/L	NA	NA	NA	NA	1U
Acenaphthylene	208-96-8	SW8270D	ug/L	NA	NA	NA	NA	1U
Anthracene	120-12-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Azobenzene	103-33-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(a)anthracene	56-55-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(a)pyrene	50-32-8	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/L	NA	NA	NA	NA	1U
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/L	NA	NA	NA	NA	1U
bis(2-Ethylhexyl)phthalate	117-81-7	SW8270D	ug/L	NA	NA	NA	NA	3U
Butylbenzylphthalate	85-68-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Chrysene	218-01-9	SW8270D	ug/L	NA	NA	NA	NA	1U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Diethylphthalate	84-66-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Dimethylphthalate	131-11-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Fluoranthene	206-44-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Fluorene	86-73-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Hexachlorobenzene	118-74-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Hexachlorobutadiene	87-68-3	SW8270D	ug/L	NA	NA	NA	NA	3U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/L	NA	NA	NA	NA	5U
Hexachloroethane	67-72-1	SW8270D	ug/L	NA	NA	NA	NA	2U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/L	NA	NA	NA	NA	1U
Isophorone	78-59-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Naphthalene	91-20-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Nitrobenzene	98-95-3	SW8270D	ug/L	NA	NA	NA	NA	1U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/L	NA	NA	NA	NA	3U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/L	NA	NA	NA	NA	1U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/L	NA	NA	NA	NA	1U
Pentachlorophenol	87-86-5	SW8270D	ug/L	NA	NA	NA	NA	10U
Phenanthrene	85-01-8	SW8270D	ug/L	NA	NA	NA	NA	1U

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

			_	GRAB				COMP
PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BR-I-9	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
SVOC (cont.)								
Phenol	108-95-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Pyrene	129-00-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/L	NA	NA	NA	NA	2U
Inorganic Parameters								
N-Nitrate	NITRATE	Calculated	mg-N/L	NA	NA	NA	NA	0.01U
Nitrate + Nitrite	NITRATE-NITRITE	EPA 353.2	mg-N/L	NA	NA	NA	NA	0.014
N-Nitrite	NITRITE	EPA 353.2	mg-N/L	NA	NA	NA	NA	0.051
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/L	NA	NA	NA	NA	0.005U

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
Volatile Organic Compounds (VOCs)					
1,1,1-Trichloroethane	ug/kg	3.2	3.20E-07	D	HOC
1,1,2,2-Tetrachloroethane	ug/kg	3.2	3.20E-07	С	HOC
1,1,2-Trichloroethane	ug/kg	3.2	3.20E-07	D	HOC
1,1-Dichloroethane	ug/kg	3.2	3.20E-07	D	HOC
1,1-Dichloroethene	ug/kg	3.2	3.20E-07	С	HOC
1,2,4-Trichlorobenzene	ug/kg	16	1.60E-06	С	HOC
1,2-Dichlorobenzene	ug/kg	3.2	3.20E-07	С	HOC
1,2-Dichloroethane	ug/kg	3.2	3.20E-07	D	HOC
1,2-Dichloropropane	ug/kg	3.2	3.20E-07	С	HOC
1,3-Dichlorobenzene	ug/kg	3.2	3.20E-07	С	HOC
1,4-Dichlorobenzene	ug/kg	See Semi-VOCs			
2-Chloroethylvinylether	ug/kg	16	1.60E-06	С	HOC
Acrolein	ug/kg	160	1.60E-05	Α	C-H
Acrylonitrile	ug/kg	16	1.60E-06	С	C-H
Benzene	ug/kg	3.2	3.20E-07	D	C-H
Bromodichloromethane	ug/kg	3.2	3.20E-07	D	HOC
Bromoform	ug/kg	3.2	3.20E-07	С	C-H
Bromomethane	ug/kg	3.2	3.20E-07	В	HOC
Carbon Tetrachloride	ug/kg	3.2	3.20E-07	С	HOC
Chlorobenzene	ug/kg	3.2	3.20E-07	С	HOC
Chloroethane	ug/kg	3.2	3.20E-07	No Data	HOC
Chloroform	ug/kg	3.2	3.20E-07	С	HOC
Chloromethane	ug/kg	3.2	3.20E-07	С	HOC
cis-1,3-Dichloropropene	ug/kg	3.2	3.20E-07	No Data	HOC
Dibromochloromethane	ug/kg	3.2	3.20E-07	D	HOC
Ethylbenzene	ug/kg	4.6	4.60E-07	С	C-H
Hexachlorobutadiene	ug/kg	16	1.60E-06	Α	HOC
Methylene Chloride	ug/kg	6.5	6.50E-07	D	HOC
Naphthalene	ug/kg	16	1.60E-06	С	C-H
Tetrachloroethene	ug/kg	3.2	3.20E-07	С	HOC
Toluene	ug/kg	150,000	1.50E-02	Α	C-H
trans-1,2-Dichloroethene	ug/kg	3.2	3.20E-07	D	HOC
trans-1,3-Dichloropropene	ug/kg	3.2	3.20E-07	No Data	HOC
Trichloroethene	ug/kg	3.2	3.20E-07	D	HOC
Vinyl Chloride	ug/kg	3.2	3.20E-07	D	HOC

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

		Max Detect Value or Min Reporting Limit (if not	Percent Concentration	Toxicity Category (See Note 1)	Organic Category (See Note 1)
PARAMETERS	UNITS	detected)	Per Cor	Tox (See	Org (Seel
Metals					
Antimony	mg/kg	70	7.00E-03	D	Non-Organic
Arsenic	mg/kg	70	7.00E-03	С	Non-Organic
Beryllium	mg/kg	1	1.00E-04	No Data	Non-Organic
Cadmium	mg/kg	3	3.00E-04	С	Non-Organic
Chromium	mg/kg	27	2.70E-03	D	Non-Organic
Cobalt	mg/kg	89	8.90E-03	С	Non-Organic
Copper	mg/kg	503	5.03E-02	No Data	Non-Organic
Lead	mg/kg	30	3.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	14	1.40E-03	В	Non-Organic
Nickel	mg/kg	30	3.00E-03	X	Non-Organic
Selenium	mg/kg	70	7.00E-03	С	Non-Organic
Silver	mg/kg	4	4.00E-04	X	Non-Organic
Thallium	mg/kg	70	7.00E-03	С	Non-Organic
Zinc	mg/kg	1,060	1.06E-01	D	Non-Organic
Mercury	mg/kg	1.2	1.20E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	See VOCs			
1,2-Dichlorobenzene	ug/kg	See VOCs		_	
1,2-Diphenylhydrazine	ug/kg	300	3.00E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	See VOCs		_	
1,4-Dichlorobenzene	ug/kg	750	7.50E-05	В	НОС
2,2'-Oxybis(1-Chloropropane)	ug/kg	300	3.00E-05	С	НОС
2,4,6-Trichlorophenol	ug/kg	1,500	1.50E-04	C	НОС
2,4-Dichlorophenol	ug/kg	1,500	1.50E-04	C	НОС
2,4-Dimethylphenol	ug/kg	300	3.00E-05	D	C-H
2,4-Dinitrophenol	ug/kg	3,000	3.00E-04	В	C-H
2,4-Dinitrotoluene	ug/kg		1.50E-04	С	C-H
2,6-Dinitrotoluene	ug/kg		1.50E-04	D	C-H
2-Chloronaphthalene	ug/kg		3.00E-05	D	HOC
2-Chlorophenol	ug/kg		3.00E-05	С	HOC
2-Nitrophenol	ug/kg		3.00E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg		1.50E-04	D	НОС
4,6-Dinitro-2-Methylphenol	ug/kg		3.00E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg		3.00E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	300	3.00E-05	В	HOC

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

		Max Detect Value or Min Reporting Limit (if not	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
PARAMETERS	UNITS	detected)	Per	To _s	Org
SVOC (cont.)					
4-Methylphenol	ug/kg	2,600	2.60E-04	С	C-H
4-Nitrophenol	ug/kg	1,500	1.50E-04	С	C-H
Acenaphthene	ug/kg	300	3.00E-05	В	PAH
Acenaphthylene	ug/kg	300	3.00E-05	No Data	PAH
Anthracene	ug/kg	300	3.00E-05	В	PAH
Azobenzene	ug/kg	300	3.00E-05	В	C-H
Benzo(a)anthracene	ug/kg	300	3.00E-05	Х	PAH
Benzo(a)pyrene	ug/kg	300	3.00E-05	X	PAH
Benzo(b)fluoranthene	ug/kg	360	3.60E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	300	3.00E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	340	3.40E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	300	3.00E-05	С	HOC
Bis-(2-Chloroethyl) Ether	ug/kg	300	3.00E-05	С	HOC
bis (2-Ethylhexyl) phthalate	ug/kg	20,000	2.00E-03	В	C-H
Butylbenzylphthalate	ug/kg	300	3.00E-05	С	C-H
Chrysene	ug/kg	300	3.00E-05	No Data	PAH
Dibenz(a,h)anthracene	ug/kg	300	3.00E-05	No Data	PAH
Diethylphthalate	ug/kg	300	3.00E-05	D	C-H
Dimethylphthalate	ug/kg	300	3.00E-05	D	C-H
Di-n-Butylphthalate	ug/kg	300	3.00E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	300	3.00E-05	D	C-H
Fluoranthene	ug/kg	560	5.60E-05	С	PAH
Fluorene	ug/kg	300	3.00E-05	В	PAH
Hexachlorobenzene	ug/kg	300	3.00E-05	D	HOC
Hexachlorobutadiene	ug/kg	See VOCs			HOC
Hexachlorocyclopentadiene	ug/kg	1,500	1.50E-04	X	HOC
Hexachloroethane	ug/kg	300	3.00E-05	В	HOC
Indeno(1,2,3-cd)pyrene	ug/kg	470	4.70E-05	No Data	PAH
Isophorone	ug/kg	300	3.00E-05	С	C-H
Naphthalene	ug/kg	See VOCs			
Nitrobenzene	ug/kg	300	3.00E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	1,500	1.50E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	300	3.00E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	300	3.00E-05	С	C-H
Pentachlorophenol	ug/kg	1,500	1.50E-04	Α	C-H
Phenanthrene	ug/kg	440	4.40E-05	Α	PAH

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
SVOC (cont.)					
Phenol	ug/kg	630	6.30E-05	С	C-H
Pyrene	ug/kg		4.50E-05	C	PAH
Total Benzofluoranthenes	ug/kg		3.80E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.8	9.80E-07	В	НОС
Aroclor 1221	ug/kg		9.80E-07	С	НОС
Aroclor 1232	ug/kg		9.80E-07	С	НОС
Aroclor 1242	ug/kg		9.80E-07	Α	НОС
Aroclor 1248	ug/kg		4.90E-06	Х	НОС
Aroclor 1254	ug/kg		1.50E-05	Х	НОС
Aroclor 1260	ug/kg		4.00E-06	Α	НОС
Pesticides					
4,4'-DDD	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDE	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDT	ug/kg	100	1.00E-05	X	HOC
Aldrin	ug/kg	8.3	8.30E-07	Х	HOC
alpha-BHC	ug/kg	8.3	8.30E-07	В	HOC
beta-BHC	ug/kg	8.3	8.30E-07	С	HOC
cis-Chlordane	ug/kg	33	3.30E-06	X	HOC
delta-BHC	ug/kg	180	1.80E-05	В	HOC
Endosulfan I	ug/kg	8.3	8.30E-07	X	HOC
Endosulfan II	ug/kg	17	1.70E-06	Х	HOC
Endosulfan Sulfate	ug/kg	120	1.20E-05	X	HOC
Endrin	ug/kg	17	1.70E-06	X	HOC
Endrin Aldehyde	ug/kg	17	1.70E-06	No Data	HOC
gamma-BHC (Lindane)	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor Epoxide	ug/kg	280	2.80E-05	Α	HOC
Toxaphene	ug/kg	830	8.30E-05	Х	HOC
trans-Chlordane	ug/kg	1,300	1.30E-04	Α	HOC
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	2.76	2.76E-04	X	HOC
Inorganic Parameters					
Total Cyanide	mg/kg	1.87	1.87E-04	В	Non-Organic

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
Volatile Organic Compounds (VOCs)	ONTIS	(ii flot detected)	<u> </u>	<u> </u>	<u> </u>
1,1,1-Trichloroethane	ug/kg	780	7.80E-05	D	НОС
1,1,2,2-Tetrachloroethane	ug/kg	780	7.80E-05	С	НОС
1,1,2-Trichloroethane	ug/kg	780	7.80E-05	D	НОС
1,1-Dichloroethane	ug/kg	780	7.80E-05	D	НОС
1,1-Dichloroethene	ug/kg	780	7.80E-05	C	HOC
1,2,4-Trichlorobenzene	ug/kg	See Semi-VOCs			
1,2-Dichlorobenzene	ug/kg	See Semi-VOCs			
1,2-Dichloroethane	ug/kg	780	7.80E-05	D	НОС
1,2-Dichloropropane	ug/kg	780	7.80E-05	С	НОС
1,3-Dichlorobenzene	ug/kg	See Semi-VOCs			
1,4-Dichlorobenzene	ug/kg	1,300	1.30E-04	В	НОС
2-Chloroethylvinylether	ug/kg	3,900	3.90E-04	С	НОС
Acrolein	ug/kg	39,000	3.90E-03	А	C-H
Acrylonitrile	ug/kg	3,900	3.90E-04	С	C-H
Benzene	ug/kg	780	7.80E-05	D	C-H
Bromodichloromethane	ug/kg	780	7.80E-05	D	НОС
Bromoform	ug/kg	780	7.80E-05	С	C-H
Bromomethane	ug/kg	780	7.80E-05	В	НОС
Carbon Tetrachloride	ug/kg	780	7.80E-05	С	НОС
Chlorobenzene	ug/kg	780	7.80E-05	С	НОС
Chloroethane	ug/kg	780	7.80E-05	No Data	НОС
Chloroform	ug/kg	780	7.80E-05	С	НОС
Chloromethane	ug/kg	780	7.80E-05	С	НОС
cis-1,3-Dichloropropene	ug/kg	780	7.80E-05	No Data	НОС
Dibromochloromethane	ug/kg	780	7.80E-05	D	HOC
Ethylbenzene	ug/kg	780	7.80E-05	С	C-H
Hexachlorobutadiene	ug/kg	See Semi-VOCs			
Methylene Chloride	ug/kg	1600	1.60E-04	D	HOC
Naphthalene	ug/kg	See Semi-VOCs			
Tetrachloroethene	ug/kg	780	7.80E-05	С	HOC
Toluene	ug/kg	120,000	1.20E-02	Α	C-H
trans-1,2-Dichloroethene	ug/kg	780	7.80E-05	D	HOC
trans-1,3-Dichloropropene	ug/kg	780	7.80E-05	No Data	HOC
Trichloroethene	ug/kg	780	7.80E-05	D	HOC
Vinyl Chloride	ug/kg	780	7.80E-05	D	НОС

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

HOC = Halogenated Organics

C-H = Carbon-Hydrogen Oranics PAH = Polyaromatic Hydrocarbons

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

		Max Detect Value or Min	Percent Concentration	Oxicity Category	Organic Category (See Note 1)
		Reporting Limit	Percent Concent	Foxicity See Note 1)	Organic (See Note 1)
PARAMETERS	UNITS	(if not detected)	- Pe	To (See	Or (See
Metals	,,			_	
Antimony	mg/kg	30	3.00E-03	D	Non-Organic
Arsenic	mg/kg	30	3.00E-03	С	Non-Organic
Beryllium	mg/kg	0.6	6.00E-05	No Data	Non-Organic
Cadmium	mg/kg	2	2.00E-04	C	Non-Organic
Chromium	mg/kg	29	2.90E-03	D	Non-Organic
Cobalt	mg/kg	165	1.65E-02	С	Non-Organic
Copper	mg/kg	521	5.21E-02	No Data	Non-Organic
Lead	mg/kg	30	3.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	15	1.50E-03	В	Non-Organic
Nickel	mg/kg	42	4.20E-03	X	Non-Organic
Selenium	mg/kg	30	3.00E-03	С	Non-Organic
Silver	mg/kg	6	6.00E-04	X	Non-Organic
Thallium	mg/kg	30	3.00E-03	С	Non-Organic
Zinc	mg/kg	1,100	1.10E-01	D	Non-Organic
Mercury	mg/kg	3	3.00E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,2-Dichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,2-Diphenylhydrazine	ug/kg	570	5.70E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,4-Dichlorobenzene	ug/kg	See VOCs			
2,2'-Oxybis(1-Chloropropane)	ug/kg	580	5.80E-05	С	HOC
2,4,6-Trichlorophenol	ug/kg	2,800	2.80E-04	С	HOC
2,4-Dichlorophenol	ug/kg	2,800	2.80E-04	С	HOC
2,4-Dimethylphenol	ug/kg	580	5.80E-05	D	C-H
2,4-Dinitrophenol	ug/kg	5,800	5.80E-04	В	C-H
2,4-Dinitrotoluene	ug/kg	2,800	2.80E-04	С	C-H
2,6-Dinitrotoluene	ug/kg	2,800	2.80E-04	D	C-H
2-Chloronaphthalene	ug/kg	580	5.80E-05	D	HOC
2-Chlorophenol	ug/kg	580	5.80E-05	С	HOC
2-Nitrophenol	ug/kg	580	5.80E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg	2,800	2.80E-04	D	HOC
4,6-Dinitro-2-Methylphenol	ug/kg	5,800	5.80E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg	580	5.80E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	580	5.80E-05	В	НОС

Note1

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
SVOC (cont.)					
4-Methylphenol	ug/kg	720,000	7.20E-02	С	C-H
4-Nitrophenol	ug/kg	2,800	2.80E-04	C	C-H
Acenaphthene	ug/kg	580	5.80E-05	В	PAH
Acenaphthylene	ug/kg	580	5.80E-05	No Data	PAH
Anthracene	ug/kg	580	5.80E-05	В	PAH
Azobenzene	ug/kg	580	5.80E-05	В	C-H
Benzo(a)anthracene	ug/kg	580	5.80E-05	X	PAH
Benzo(a)pyrene	ug/kg	580	5.80E-05	X	PAH
Benzo(b)fluoranthene	ug/kg	570	5.70E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	580	5.80E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	570	5.70E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	580	5.80E-05	С	НОС
Bis-(2-Chloroethyl) Ether	ug/kg	580	5.80E-05	С	HOC
bis(2-Ethylhexyl)phthalate	ug/kg	25,000	2.50E-03	В	C-H
Butylbenzylphthalate	ug/kg	580	5.80E-05	С	C-H
Chrysene	ug/kg	580	5.80E-05	No Data	PAH
Dibenz(a,h)anthracene	ug/kg	580	5.80E-05	No Data	PAH
Diethylphthalate	ug/kg	580	5.80E-05	D	C-H
Dimethylphthalate	ug/kg	580	5.80E-05	D	C-H
Di-n-Butylphthalate	ug/kg	580	5.80E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	580	5.80E-05	D	C-H
Fluoranthene	ug/kg	640	6.40E-05	С	PAH
Fluorene	ug/kg	580	5.80E-05	В	PAH
Hexachlorobenzene	ug/kg	580	5.80E-05	D	HOC
Hexachlorobutadiene	ug/kg	580	5.80E-05	Α	HOC
Hexachlorocyclopentadiene	ug/kg	2,800	2.80E-04	X	HOC
Hexachloroethane	ug/kg	580	5.80E-05	В	HOC
Indeno(1,2,3-cd)pyrene	ug/kg	580	5.80E-05	No Data	PAH
Isophorone	ug/kg	580	5.80E-05	С	C-H
Naphthalene	ug/kg	580	5.80E-05	С	C-H
Nitrobenzene	ug/kg	580	5.80E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	2,800	2.80E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	580	5.80E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	1,400	1.40E-04	С	C-H
Pentachlorophenol	ug/kg	2,800	2.80E-04	Α	C-H
Phenanthrene	ug/kg	580	5.80E-05	Α	PAH

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category See Note 1
SVOC (cont.)		(1 0	<u> </u>
Phenol	ug/kg	23,000	2.30E-03	С	C-H
Pyrene	ug/kg	580	5.80E-05	С	PAH
Total Benzofluoranthenes	ug/kg	580	5.80E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.9	9.90E-07	В	HOC
Aroclor 1221	ug/kg	9.9	9.90E-07	C	HOC
Aroclor 1232	ug/kg	9.9	9.90E-07	С	HOC
Aroclor 1242	ug/kg	9.9	9.90E-07	Α	HOC
Aroclor 1248	ug/kg	99	9.90E-06	X	HOC
Aroclor 1254	ug/kg	150	1.50E-05	X	HOC
Aroclor 1260	ug/kg	35	3.50E-06	Α	НОС
Pesticides					
4,4'-DDD	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDE	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDT	ug/kg	120	1.20E-05	X	HOC
Aldrin	ug/kg	8.3	8.30E-07	Х	HOC
alpha-BHC	ug/kg	8.3	8.30E-07	В	HOC
beta-BHC	ug/kg	8.3	8.30E-07	С	HOC
cis-Chlordane	ug/kg	34	3.40E-06	Х	HOC
delta-BHC	ug/kg	180	1.80E-05	В	HOC
Dieldrin	ug/kg	39	3.90E-06	X	HOC
Endosulfan I	ug/kg	22	2.20E-06	X	HOC
Endosulfan II	ug/kg	17	1.70E-06	X	HOC
Endosulfan Sulfate	ug/kg	17	1.70E-06	X	HOC
Endrin	ug/kg	49	4.90E-06	X	HOC
Endrin Aldehyde	ug/kg	77	7.70E-06	No Data	HOC
gamma-BHC (Lindane)	ug/kg	25	2.50E-06	X	HOC
Heptachlor	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor Epoxide	ug/kg	690	6.90E-05	Α	HOC
Toxaphene	ug/kg	830	8.30E-05	X	HOC
trans-Chlordane	ug/kg	1,200	1.20E-04	Α	HOC
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	0.72	7.20E-05	Х	НОС
Inorganic Parameters					
Total Cyanide	mg/kg	2.39	2.39E-04	В	Non-Organic

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

Volatile Organic Compounds (VOCs) 1,1,1-Trichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1,2,2-Tetrachloroethane ug/kg 1.8 1.80E-07 C HOC 1,1,2-Trichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg 5ee Semi-VOCs C HOC 2-Chloroethylvinylether ug/kg 9 9.00E-07 C HOC
1,1,2,2-Tetrachloroethane ug/kg 1.8 1.80E-07 C HOC 1,1,2-Trichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethene ug/kg 1.8 1.80E-07 C HOC 1,2,4-Trichlorobenzene ug/kg 9 9.00E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs C HOC
1,1,2-Trichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethene ug/kg 1.8 1.80E-07 C HOC 1,2,4-Trichlorobenzene ug/kg 9 9.00E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs See Semi-VOCs See Semi-VOCs
1,1-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,1-Dichloroethene ug/kg 1.8 1.80E-07 C HOC 1,2,4-Trichlorobenzene ug/kg 9 9.00E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs See Semi-VOCs See Semi-VOCs
1,1-Dichloroethene ug/kg 1.8 1.80E-07 C HOC 1,2,4-Trichlorobenzene ug/kg 9 9.00E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs See Semi-VOCs See Semi-VOCs
1,2,4-Trichlorobenzene ug/kg 9 9.00E-07 C HOC 1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs
1,2-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,2-Dichloroethane ug/kg 1.8 1.80E-07 D HOC 1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs See Semi-VOCs
1,2-Dichloroethaneug/kg1.81.80E-07DHOC1,2-Dichloropropaneug/kg1.81.80E-07CHOC1,3-Dichlorobenzeneug/kg1.81.80E-07CHOC1,4-Dichlorobenzeneug/kgSee Semi-VOCs
1,2-Dichloropropane ug/kg 1.8 1.80E-07 C HOC 1,3-Dichlorobenzene ug/kg 1.8 1.80E-07 C HOC 1,4-Dichlorobenzene ug/kg See Semi-VOCs
1,3-Dichlorobenzeneug/kg1.81.80E-07CHOC1,4-Dichlorobenzeneug/kgSee Semi-VOCs
1,4-Dichlorobenzene ug/kg See Semi-VOCs
2-Chloroethylvinylether ug/kg 9 9 00F-07 C HOC
2 of the control of t
Acrolein ug/kg 90 9.00E-06 A C-H
Acrylonitrile ug/kg 9 9.00E-07 C C-H
Benzene ug/kg 1.8 1.80E-07 D C-H
Bromodichloromethane ug/kg 1.8 1.80E-07 D HOC
Bromoform ug/kg 1.8 1.80E-07 C C-H
Bromomethane ug/kg 1.8 1.80E-07 B HOC
Carbon Tetrachloride ug/kg 1.8 1.80E-07 C HOC
Chlorobenzene ug/kg 1.8 1.80E-07 C HOC
Chloroethane ug/kg 1.8 1.80E-07 No Data HOC
Chloroform ug/kg 1.8 1.80E-07 C HOC
Chloromethane ug/kg 1.8 1.80E-07 C HOC
cis-1,3-Dichloropropene ug/kg 1.8 1.80E-07 No Data HOC
Dibromochloromethane ug/kg 1.8 1.80E-07 D HOC
Ethylbenzene ug/kg 1.8 1.80E-07 C C-H
Hexachlorobutadiene ug/kg 9 9.00E-07 A HOC
Methylene Chloride ug/kg 3.6 3.60E-07 D HOC
Naphthalene ug/kg 9 9.00E-07 C C-H
Tetrachloroethene ug/kg 1.8 1.80E-07 C HOC
Toluene ug/kg 35 3.50E-06 A C-H
trans-1,2-Dichloroethene ug/kg 1.8 1.80E-07 D HOC
trans-1,3-Dichloropropene ug/kg 1.8 1.80E-07 No Data HOC
Trichloroethene ug/kg 1.8 1.80E-07 D HOC
Vinyl Chloride ug/kg 1.8 1.80E-07 D HOC

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		lax Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category (See Note 1)	Organic Category
Metals					_
Antimony	mg/kg	30	3.00E-03	D	Non-Organic
Arsenic	mg/kg	30	3.00E-03	С	Non-Organic
Beryllium	mg/kg	0.6	6.00E-05	No Data	Non-Organic
Cadmium	mg/kg	3	3.00E-04	С	Non-Organic
Chromium	mg/kg	45	4.50E-03	D	Non-Organic
Cobalt	mg/kg	48	4.80E-03	С	Non-Organic
Copper	mg/kg	417	4.17E-02	No Data	Non-Organic
Lead	mg/kg	40	4.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	16	1.60E-03	В	Non-Organic
Nickel	mg/kg	45	4.50E-03	X	Non-Organic
Selenium	mg/kg	30	3.00E-03	С	Non-Organic
Silver	mg/kg	6	6.00E-04	X	Non-Organic
Thallium	mg/kg	30	3.00E-03	С	Non-Organic
Zinc	mg/kg	969	9.69E-02	D	Non-Organic
Mercury	mg/kg	1.9	1.90E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	VOC			
1,2-Dichlorobenzene	ug/kg	VOC			
1,2-Diphenylhydrazine	ug/kg	260	2.60E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	See VOCs			
1,4-Dichlorobenzene	ug/kg	540	5.40E-05	В	НОС
2,2'-Oxybis(1-Chloropropane)	ug/kg	260	2.60E-05	С	HOC
2,4,6-Trichlorophenol	ug/kg	1,300	1.30E-04	С	HOC
2,4-Dichlorophenol	ug/kg	1,300	1.30E-04	С	HOC
2,4-Dimethylphenol	ug/kg	260	2.60E-05	D	C-H
2,4-Dinitrophenol	ug/kg	2,600	2.60E-04	В	C-H
2,4-Dinitrotoluene	ug/kg	1,300	1.30E-04	С	C-H
2,6-Dinitrotoluene	ug/kg	1,300	1.30E-04	D	C-H
2-Chloronaphthalene	ug/kg	260	2.60E-05	D	HOC
2-Chlorophenol	ug/kg	260	2.60E-05	С	HOC
2-Nitrophenol	ug/kg	260	2.60E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg	1,300	1.30E-04	D	HOC
4,6-Dinitro-2-Methylphenol	ug/kg	2,600	2.60E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg	260	2.60E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	260	2.60E-05	В	НОС

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		ax Detect Value r Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
SVOC (cont.)					
4-Methylphenol	ug/kg	1,100	1.10E-04	С	C-H
4-Nitrophenol	ug/kg	1,300	1.30E-04	С	C-H
Acenaphthene	ug/kg	260	2.60E-05	В	PAH
Acenaphthylene	ug/kg	260	2.60E-05	No Data	PAH
Anthracene	ug/kg	260	2.60E-05	В	PAH
Azobenzene	ug/kg	260	2.60E-05	В	C-H
Benzo(a)anthracene	ug/kg	260	2.60E-05	X	PAH
Benzo(a)pyrene	ug/kg	260	2.60E-05	X	PAH
Benzo(b)fluoranthene	ug/kg	380	3.80E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	260	2.60E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	360	3.60E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	260	2.60E-05	С	НОС
Bis-(2-Chloroethyl) Ether	ug/kg	260	2.60E-05	С	HOC
bis (2-Ethylhexyl) phthalate	ug/kg	12,000	1.20E-03	В	C-H
Butylbenzylphthalate	ug/kg	260	2.60E-05	С	C-H
Chrysene	ug/kg	260	2.60E-05	No Data	PAH
Dibenz(a,h)anthracene	ug/kg	260	2.60E-05	No Data	PAH
Diethylphthalate	ug/kg	260	2.60E-05	D	C-H
Dimethylphthalate	ug/kg	260	2.60E-05	D	C-H
Di-n-Butylphthalate	ug/kg	260	2.60E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	260	2.60E-05	D	C-H
Fluoranthene	ug/kg	450	4.50E-05	С	PAH
Fluorene	ug/kg	260	2.60E-05	В	PAH
Hexachlorobenzene	ug/kg	260	2.60E-05	D	НОС
Hexachlorobutadiene	ug/kg	260	2.60E-05	А	НОС
Hexachlorocyclopentadiene	ug/kg	1,300	1.30E-04	Х	НОС
Hexachloroethane	ug/kg	260	2.60E-05	В	НОС
Indeno(1,2,3-cd)pyrene	ug/kg	400	4.00E-05	No Data	PAH
Isophorone	ug/kg	260	2.60E-05	С	C-H
Naphthalene	ug/kg	260	2.60E-05	С	C-H
Nitrobenzene	ug/kg	260	2.60E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	1,300	1.30E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	260	2.60E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	260	2.60E-05	С	C-H
Pentachlorophenol	ug/kg	1,300	1.30E-04	Α	C-H
Phenanthrene	ug/kg	260	2.60E-05	А	PAH

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		ax Detect Value r Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
SVOC (cont.)					
Phenol	ug/kg	260	2.60E-05	С	C-H
Pyrene	ug/kg	390	3.90E-05	С	PAH
Total Benzofluoranthenes	ug/kg	400	4.00E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.8	9.80E-07	В	HOC
Aroclor 1221	ug/kg	9.8	9.80E-07	С	HOC
Aroclor 1232	ug/kg	9.8	9.80E-07	С	HOC
Aroclor 1242	ug/kg	9.8	9.80E-07	Α	HOC
Aroclor 1248	ug/kg	98	9.80E-06	X	HOC
Aroclor 1254	ug/kg	150	1.50E-05	X	HOC
Aroclor 1260	ug/kg	61	6.10E-06	Α	НОС
Pesticides					
4,4'-DDD	ug/kg	16	1.60E-06	А	НОС
4,4'-DDE	ug/kg	16	1.60E-06	А	НОС
4,4'-DDT	ug/kg	16	1.60E-06	Х	НОС
Aldrin	ug/kg	8.2	8.20E-07	Х	НОС
alpha-BHC	ug/kg	8.2	8.20E-07	В	НОС
beta-BHC	ug/kg	8.2	8.20E-07	С	НОС
cis-Chlordane	ug/kg	19	1.90E-06	Х	НОС
delta-BHC	ug/kg	110	1.10E-05	В	НОС
Dieldrin	ug/kg	57	5.70E-06	Х	НОС
Endosulfan I	ug/kg	14	1.40E-06	Х	НОС
Endosulfan II	ug/kg	16	1.60E-06	Х	НОС
Endosulfan Sulfate	ug/kg	72	7.20E-06	Х	НОС
Endrin	ug/kg	25	2.50E-06	Х	НОС
Endrin Aldehyde	ug/kg	16	1.60E-06	No Data	НОС
gamma-BHC (Lindane)	ug/kg	8.2	8.20E-07	Х	НОС
Heptachlor	ug/kg	8.2	8.20E-07	Х	НОС
Heptachlor Epoxide	ug/kg	8.2	8.20E-07	Α	НОС
Toxaphene	ug/kg	820	8.20E-05	Х	НОС
trans-Chlordane	ug/kg	1,100	1.10E-04	Α	HOC
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	2.35	2.35E-04	X	НОС
Inorganic Parameters					
Total Cyanide	mg/kg	1.42	1.42E-04	В	Non-Organic

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

9 0.49% å Burnt Ridge Š 10.26% Yes Big Hanaford Organic/Carbonaceous Criteria Restriction ŝ å 2.14% Newaukum Prairie (WAC-173-303-Land Disposal Restriction Org./Carb % DW (WP02) DW (WP02) DW (WP02) >10%? 0.13% Sum% No 140) 0.05% Burnt Ridge 0.46% 0.09% õ Big Hanaford Persistence Criteria ŝ 0.15% 0.05% Newaukum Prairie Designation Persistence Restriction (WAC-Sum HOC% Sum PAH % Land Disposal 173-303-140) Persistence Cat. 0.377% 1.513% 10.487% 0.577% 9 0.565% 0.058% Burnt Ridge Toxicity Designation DW (WT02) DW (WT02) DW (WT02) Toxicity Critiera <a>?(Book Designation) 0.541% 1.707% 0.603% 10.370% 11.786% ŝ Big Hanaford 0.729% 0.402% 1.568% 3.154% 11.624% 0.568% S Newaukum Prairie 0.446% EC (%) Restriction (WAC-173-303-140) Toxic Cat. A (Sum %) B (Sum %) C (Sum %) D (Sum %) Land Disposal X (Sum%)

Table 11. Land Disposal Restriction Evaluation (Fire Mountain Farms) (WAC 173-303-100 and WAC 173-303-140)

Table 12. Comparison of Detected Concentrations of Organics and Metals in FMF Sludge to U.S. EPA National Sewage Sludge Survey (NSSS) Dataset and WAC 173-308-160 (Biosolids Pollutant Limits)

			:											
			detectior	Max Concentration (non- detections shown as < RL)	s < RL)	WAC 1/3-308- 160	2-308-		USEPA	USEPA National Sewage Sludge Survey Data	/age Sludge	Survey Da	ta	
		•						Rour	Round 1 (1992) ^{See Note 2}	e Note 2		Round 2 (1996) ^{See Note 3}	996) ^{See Note}	3
DETECTE	DETECTED PARAMETERS ^{See Note 1}	SLIND	Mewaukum Prairie	Big Hanaford	BabiA trnu8	JimiJ BuiliəO	Pollutant Limit	⁹ ercent Oetection	Mean	brabnatd	OS) noistion (SD) Percent Oetection	Mean ND = Zero)	50th Percentile (DD = Zero)	Mean (Ievel) - Min Level)
VOCs	:	-						.l	1		1)
	Ethylbenzene	ug/kg	150 (<1.8		<u> </u>	No Data	No Data	No Data	4%	24.80	0.00	995.0
Metals		20 20 20 20 20 20 20 20 20 20 20 20 20 2		150,000	າ		_	O Data	NO Data	NO Data	0 TO			1,700
	Cadmium	mg/kg <3	<3	2	3	85	39	%69			0.78 No Data	No Data	No Data	No Data
	Chromium	mg/kg	27	29	45			91%	124		34 No Data	No Data	No Data	No Data
	Cobalt	mg/kg	88	165	48			No Data	No Data		%6	1.15	0.00	24
	Copper	mg/kg	203	521	417	4,300	1,500	100%			110 No Data	No Data	No Data	No Data
	Lead	mg/kg	<30	30	40	840	300	80%	131		20 No Data	No Data	No Data	No Data
	Molybdenum	mg/kg	14	15	16	75		23%	9.63		2.03 No Data	No Data	No Data	No Data
	Nickel	mg/kg	30	45	45	420	420	%19	46		12.3 No Data	No Data	No Data	No Data
	Silver	mg/kg	<4	9	9			No Data	No Data		No Data	No Data	No Data	No Data
	Zinc	mg/kg	1,060	1,100	696	7,500	2,800	100%	T,		151 No Data	No Data	No Data	No Data
	Mercury	mg/kg	1.2	m	1.9	22	17	64%	5.3		2.03 No Data	No Data	No Data	No Data
Semi-VOCs	CS													
	1,4-Dichlorobenzene	ug/kg	750	1,300	540			No Data	No Data	No Data	2%	88.90	0.00	9,720
	4-Methylphenol	ug/kg	2,600	720,000	1,100		_	No Data	No Data	No Data	43%	46,200	202,000	52,300
	Benzo(b)fluoranthene	ug/kg	360 <570	<570	380		_	No Data	No Data	No Data	%9	181	0.0	9,830
	Benzo(k)fluoranthene	ug/kg	340 <570	<570	360			No Data	No Data	No Data	4%	136	0.0	9,790
	bis(2-Ethylhexyl)phthalate	ug/kg	20,000	25,000	12,000			%89	73,600	0 46,400	0 62%	20	148,000	55,800
	Fluoranthene	ug/kg	290	640	450			No Data	No Data	No Data	2%		0.0	9,950
	N-Nitrosodiphenylamine	ug/kg	<300	1,200 <260	360			No Data	No Data	No Data	1%	101	0.0	19,400
	Indeno(1,2,3-cd)pyrene	ug/kg	470	<580	400			No Data	No Data	No Data	%0	0.0	0.0	19,400
	Phenanthrene	ug/kg	440	> 085>	<260			No Data	No Data	No Data	No Data	No Data	No Data	No Data
	Phenol	ug/kg	630	23,000 <260	:260			No Data	No Data	No Data	34%	12,200		18,700
	Pyrene	ug/kg	450 <580	<580	390			No Data	No Data	No Data	2%	320	0.0	9,950
Other														
	Aroclor 1260	ug/kg		35	61			10%		62.3 (307) 35.1 (43.80)			0.00	337
	2,3,7,8-TCDD ^{3ee Note 4}	8/8d	2.76	0.72	2.35		<u>~</u>	No Data	No Data	No Data	16%	1.71	0.00	10.80
	Total Cyanide	mg/kg		2.39	1.42		_	No Data	No Data	No Data	37%	14.30	0.00	35.20

Shaded parameters and concentrations are above the mean values measured in the USEPA National Sewage Sludge Survey Note 1

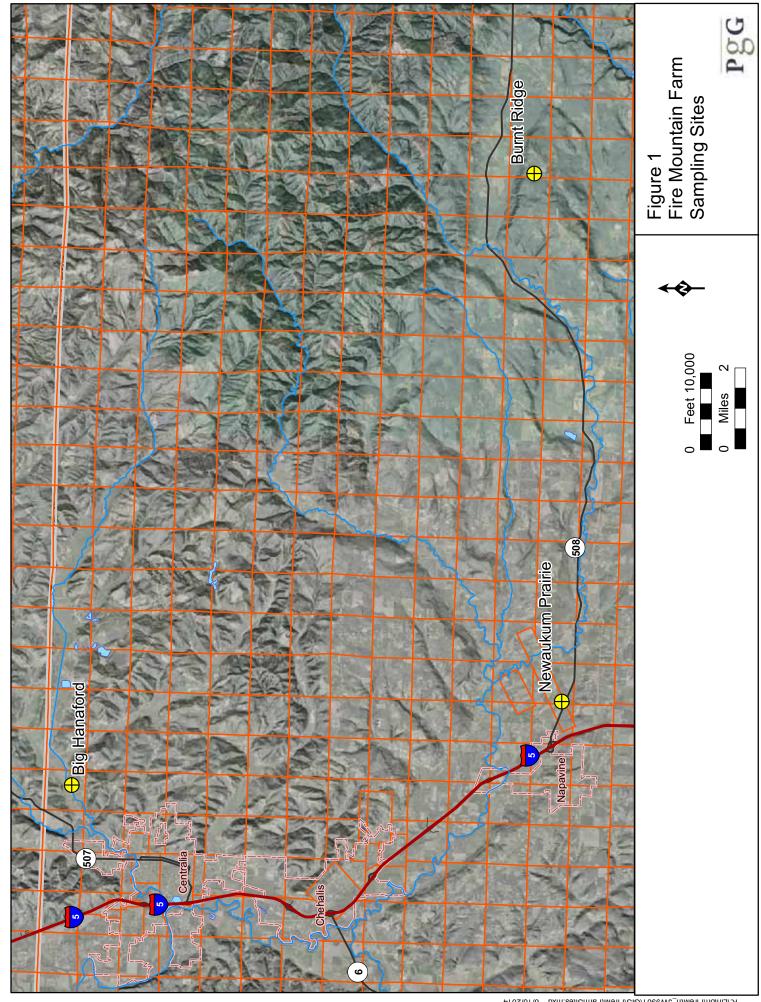
None of the metals regulated under Washington State Biosolids Management rule had concentrations exceeding the State's limits (Chapter WAC 173-308-160)

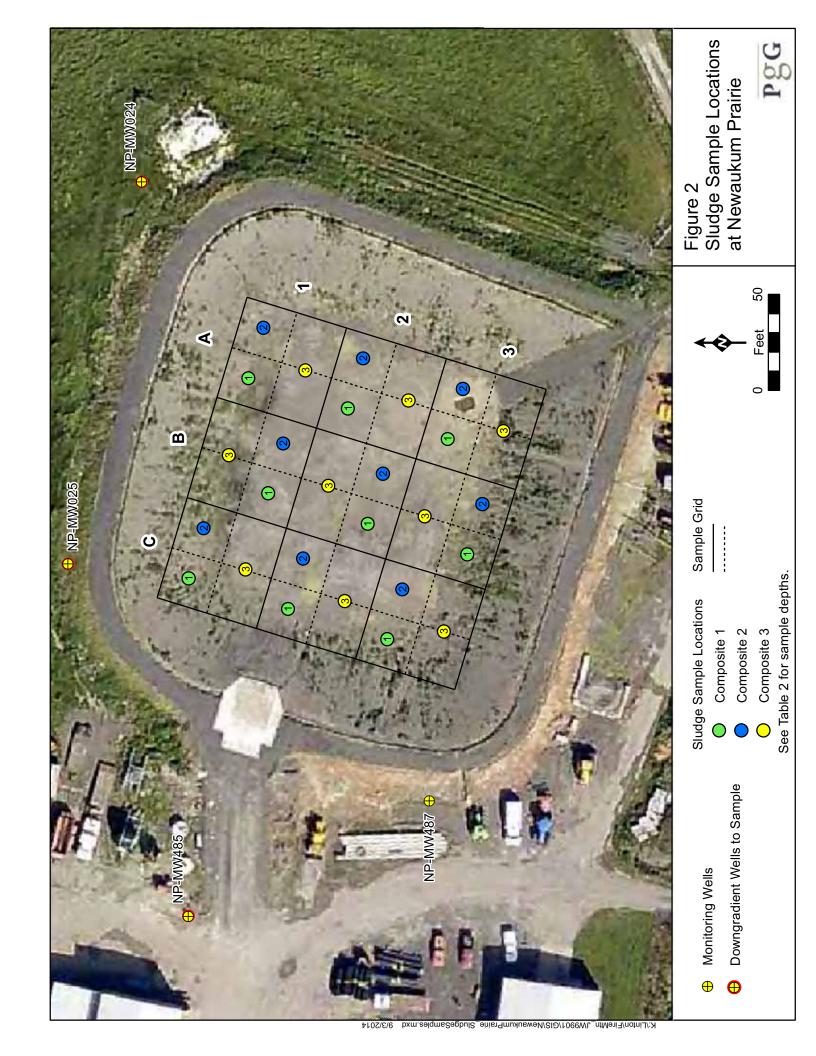
Values are from Tables 7-9 and 7-10 (U.S. EAP, 1992 Statistical Support Documentation for the 40 CFR, Part 503 - Final Standards for the Use or Disposal of Sewage Sludge) Note 2

For all parameters with detection frequency (df) > 10%, mean value is based on the "Multi-Censored, Maximum-Likelihood Method" under an assumption of a log normal distribution df </= 10%, mean value based on a non-parammetric method. Lower values for Aroclor 1260 assume non-detects = zero and higher value assumes non-detects = reporting limit

Tables 3 and 4 in Appendix B (U.S. EPA, 1996 Technical Support Document for the Round Two Sewage Sludge Pollutants) Note 3

2,3,7,8-TCDD were flagged by the analytical laboratory as Estimated Maximum Possible Concentration (JEMPC) due to sludge matrix and moisture content. JEMPC data is not considered sufficiently accurate to serve as a basis for regulatory decisions. Note 4


Page1of1


Table 13. Parameter Exceedance Factors in Composite Sludge Samples from Fire Mountain Farms, Inc. (Exceedance of the NSSS mean)

					Ехссе	Exccedance Factors in Composite Sluge Samples	rs in Compo	site Sluge S	amples			
			New	Newaukum Prairie	airie	B	Big Hanaford			Burnt Ridge	şe	
Parameter	Units	Units NSSS Mean Comp-1		Comp-2	Comp-3	Comp-1 (Comp-2 Comp-3		Comp-1	Comp-2	Comp-3	-3
Toluene	ug/kg	40,800	3.4	3.7	3.2	0.2	2.9	2.0	00.00	00.00	00	0.00
Cobalt	mg/kg	1.15	66.1	75.7	77.4	13.0	55.7	143.5	37.4	41.7	.7	32.2
Molybdenum	mg/kg	9.63	1.2	1.3	1.5	1.2	1.6	1.3	1.5		1.7	1.7
4-Methylphenol	ug/kg	46,200	0.02	0.05	0.06	10.4	15.6	11.7	0.02		0.01	0.01
Phenol	ug/kg	12,200	0.04	0.05	0.03	1.1	1.9	1.3	ND		ND	N

Exceedance Factor = NSSS Mean/Analytical Results.

Shaded = Exceedance Factor > 1 (analytical results are higher than the NSSS Mean value) Only the Parameters with EF > 1 in one or more samples from one or more sites are shown

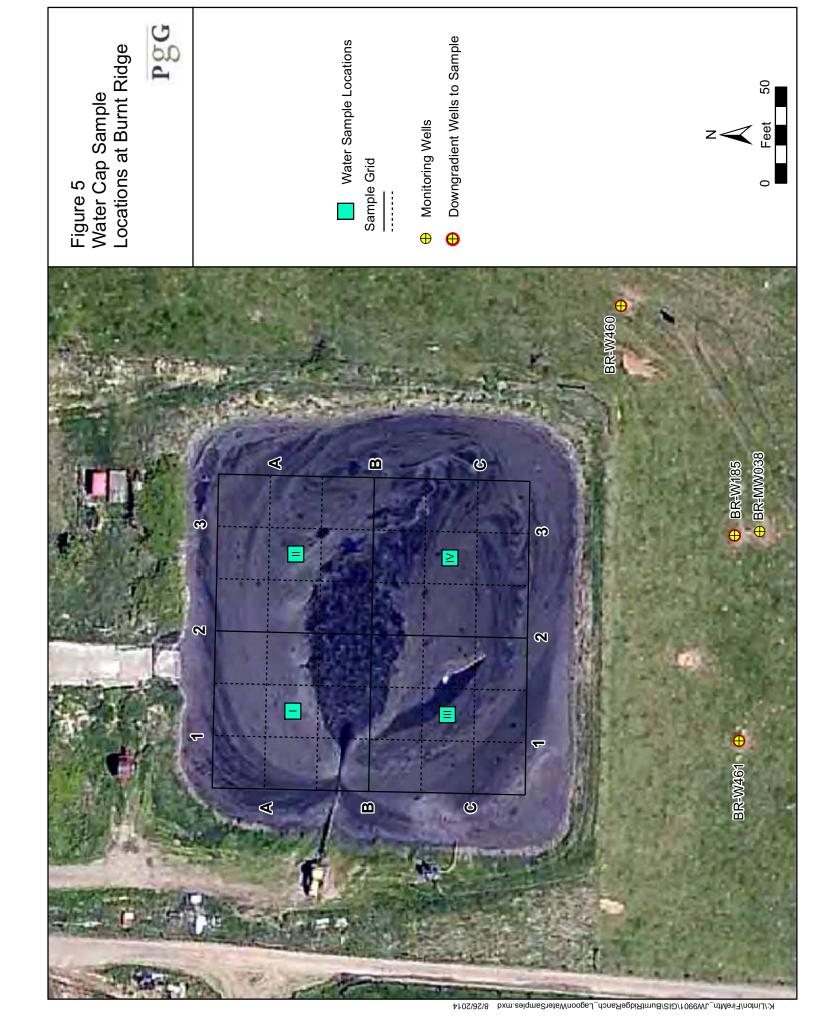



Figure 4 Sludge Sample Locations at Burnt Ridge Downgradient Wells to Sample See Table 2 for sample depths. Composite 1
Composite 2
Composite 3
Sample Grid Sludge Sample Locations Monitoring Wells ⊕ BR-MW038 ⋖ m හ ⊕ BR-W185 -ന 2 **—** <u>_</u> 8 8 2 BR-W461 🚓 m K:/Linton/FireMtn_JW9901/GIS/BurntRidgeRanch_SludgeSamples.mxd

PgG

APPENDIX A QUALITY ASSURANCE AND QUALITY CONTROL

Analytical data collected for this investigation have been validated in accordance with the QAPP, including both laboratory and field quality assurance quality control procedures (PGG, 2014). Tables A1 through A4 provide a summary of the quality assurance and quality control evaluation for each site

Sludge samples from the Newaukum Prairie, Big Hanaford, and Burnt Ridge storage sites were collected and delivered to Analytical Resources, Inc. (ARI) on July 7, through July 9, 2014. Water cap samples from the Burnt Ridge site were collected and delivered to Analytical Resources, Inc. (ARI) on July 17, 2014. Fecal coliform sludge samples were collected on July 7, through July 9, 2014 and run by Water Management Laboratories, Inc.

All analyses were completed within their respective holding times. Surrogate spikes, blank spikes, and standard references were added to samples for analyses, and recoveries were all within acceptable ranges. Method blanks were run for all analytes and no analytes were detected. Trip Blanks were submitted and analyzed for volatile constituents and none were detected. The Relative Percent Differences (RPD) for all matrix spike duplicates were generally within the required limits with exceptions noted below.

The QA/QC data are satisfactory and indicate that the data are acceptable for the projects purposes. The following irregularities are noted:

- Dioxin/Furan concentrations in the Fire Mountain Farms sludge samples were less than the lab reporting limit (RL), also referred to as the practical quantitation limit (PQL). To meet project purposes, PGG requested that the lab quantify concentrations less than the RL and above the method detection limit (MDL) instead of reporting the results as non-detect at the RL. Following standard procedure, Analytical Resources Incorporated (ARI) flagged all dioxin/furan concentrations between the RL and the MDL as estimated maximum possible concentration (JEMPC).
- Total Solids analysis were not run for lab batch YR29 (Big Hanaford sludge samples for VOC analysis). As authorized by PGG, ARI reported the VOC data using the total solids from samples associated with lab batch YQ99 (Big Hanaford sludge samples for SVOC, Dioxin/Furans, metals, pH, PCBs, Pesticides, and TKN).
- Laboratory Control Samples (LCS) were run for all batches and spike recovery for dibenz (a,h) anthracene was out of control low for all batches. All other spike recoveries were within laboratory control limits. dibenz (a,h) anthracene was not detected in any of the samples.
- Continuing calibrations for 2x dilution pesticides batches YQ84, YQ99, and YR00 were out of control low, reported data were in control.
- Continuing calibrations for semi-volatile batches YQ84, YQ99, and YR00 were out of control low; these compounds were not detected in any samples.
- The reporting limits for various batches and analyses were elevated resulting from sample dilutions. Semi-volatile reporting limits for batches YQ99 and YR00 were elevated due to sample dilutions resulting from matrix interference. Pesticide reporting limits for batches YQ84, YQ99 and YR00 were elevated due to sample dilutions resulting from matrix interference.
- Matrix spike was out of control high for mercury in lab batch YQ99 no other irregularities with this analysis.

- Matrix spike was out of control low for total cyanide in lab batch YQ84 no other irregularities with this analysis.
- Matrix spike relative percent difference was outside the laboratory control limits for lab batch YQ99, cobalt in sample BH-COMP1. All other analytes were in control and there were no other irregularities with this analysis.
- Continuing calibration was out of control low for batches YQ80, YQ96, and YR29, VOC analyses, bromomethane. All other constituents were in control, there were no other irregularities.
- Surrogate recoveries for d8-toluene in samples NP-COMP-2 and NP-COMP-3 were out of control low, samples were reanalyzed, and surrogate recoveries were in control.
- The matrix spike duplicate for 1,2,4-Trichlorobenzen in lab batch YQ80 was out of control low. All other recoveries were in control, and there were no other irregularities with the analyses.
- Continuing calibration was out of control low for lab batch YS17, 3,3-Dichlorobenzidine. All other analytes were in control, there were no other irregularities.
- Matrix spike matrix spike duplicate relative percent difference was low for lab batch YS17 nitrate/nitrite, water cap sample BR-COMP.

Table A1. Quality Assurance Quality Control Summary for Sludge Samples at Newaukum Prairie

July 9, 2014 July 9, 2014 July 10, 2014 July 10, 2014
July 17, 2014 July 14, 2014 July 20, 2014
po 9009
SIBROGATE SPIKES/Standard Reference Results (Conventionale) Ranke (metals)
G000 G000
NA Within Range
AN S
NA Within Range
NA
None None None
Good Good Good
ΦN
AN AN
NA
NA NA NA
:
NA N
NA
NA Nithin Range
W.#.ii.
Within Range Within Range NA
Good
Good Good

1. All other QA/QC = good, samples not flagged 2. RPD >30%, Samples "J" Flagged RPD = 2 x (C1 - C2) x 100/(C1 + C2)

Table A2. Quality Assurance Quality Control Summary for Sludge Samples at Big Hanaford

METHODOLOGY	177.10							apprils	Slidde	apprilS:	Sludge	Sludge
	agonic	Sludge	Sludge	egonic	- 1		ō	1	28220	OBPRIO - 0 0		
	VOCS SW8260	SVOCS SW8270	Metals						Hd	2,3,7,8 1CDD	Total Coliform	Total cyanide
Date Sampled	July 8, 2014		July 7, 2014		July 8, 2014	July 8, 2014		July 8, 2014	July 8, 2014	July 8, 2014	July 8, 2014	July 8, 2014
Date Extracted	July 15, 2014	July 14							July 14, 2014	September 1, 2014	July 8, 2014	July 21, 2014
Date Analyzed	July 15, 2014	July 17, 2014	July 15, 2014	July 10, 2014	July 20, 2014 Good	July 19, 2014	July 10, 2014	July 14, 2014	July 14, 2014	September 4, 2014	July 8, 2014	July 21, 2014
Acceptability		Good, cont calibration is out of c				Good, reporting due to so				Concentrations between PQL/RL and MDL flagged as estimated		P0000000000000000000000000000000000000
GATE SPIKES/Stand	ard Reference	SURROGATE SPIKES/Standard Reference Results (Conventionals)/Blank Spikes (metals)			With in Donor	\perp	With its D	Š	\$2			Within Dage
Sample Spike Recovery	Within Range	Within Range	Within Kange	Within F	Within Kange	Within H	Within Kange	AN S	V S	NA	V S	Within Kange
Acceptability	0.005	G000	G000	6000	600G	G000	D005	X V	¥ Z	AN I		5005
MS/MSD												
MS Recovery	Ž	Ž	Within Range , Matrix spike recovery was outside laboratory recovery limits for mercury, all other spike recoveries were within control limits.	Ž						Z		d Z
DMS Recovery	A Z	AN N		AN N	A N	AN AN	AN A	A N	A Z	AN	A Z	AN A
	Y Z	. ∠	Within Range excep MS RPD cadmium 30.8%, lead 40							Z Z		Š Ž
Acceptability	AN	NA		AN	ΥN	NA	AN	AN	AN	NA	AN	NA
METHOD BLANK Detections	None	None	None	None	None	None	None	None	Ϋ́	None	₹ Z	None
Acceptability	Good	Good	Good		Good		Good	Good	NA	Good		Good
TRIP BLANK												
Detections	ΨZ Z	AZ Z	₹Z	Υ S	Y Z	Y Z	₹ Ş	₹ Z	₹ Ş	AN N	₹ Ş	Y Z
mity	Y.	KY.						4		1		<u> </u>
FIELD BLANK	Ϋ́	AN						¥.		NA		Y :
Detections Acceptability	NAN	NA	NA	NA	N N	NA	NA	NA	N N	NA	NA NA	N N
FIELD DUPLICATES												
	AN	AN	NN	AN:	ΝA	AN	NA	AN :	AN:	NA	¥Z:	NA:
	₹ Z	AN Z	VX.					AN S	₹Z	AN S		Y Z
Acceptability	NA	AN.	AN					A A	AZ V	NA		A A
LAB DUPLICATES												
RPD Acceptability	Y Z	AN AN	AN N	AN A	AN N	Y Z	AN N	Within Range Good	Within Range Good	NA	NA N	Within Range Good
LAB CONTROL												
								:				:
Surrogate Recovery	Within Range	recoveries were in control. Within Range	NA AN	AZ Z	- 1		Within Range	AZ Z		Within Range	AZ Z	AZ Z
	Poop		N		Poop	Poop		N A	Poop	Poop		Z Z
Acceptability	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good

1. All other QA/QC = good, samples not flagged 2. RPD >30%, Samples "J" Flagged RPD = 2 x (C1 - C2) x 100/(C1 + C2)

Table A3. Quality Assurance Quality Control Summary for Sludge Samples at Burnt Ridge

Note that Continue	LAB BATCH ID	96bk			yr00		yr00	yr00	yr00	yr00			yr00
1985 1985	Method	OSCANOS SOUND	8 800/8		Sludge Nitrate/Nitrite	DCB	Sludge	Siudge	Sludge Spilos letoT	Hu Hu	9 2 5 6	Total Coliform	Sludge Total cyanide
The color of the	Date Sampled	July 9, 2014			9 vlnC		July 9, 2014					ш	July 9, 2014
The color	Date Extracted	July 15, 2014			July 10		July 14, 2014				1		July 21, 2014
The control of the	Date Analyzed	July 15, 2014			July 10	1	7/18/2014-7/19/2014	1					July 21, 2014
December Construction Construc	Holding Time	Good		1			Good	1	1	1	1		Good
			Good, cont				Good, raised reporting				Concentr between PQL/F		
State Recovery Mark Range With Range	Acceptability	Good			Good		ilmits due to sample dilution.		Good	Good		Good	Good
Since Recoomy Winterlange	SURROGATE SPIKES/Standard	Reference Results	(Conventionals)/Bla	Ink Spikes (meta	(s)			1 1					
1	Sample Spike Recovery	Within Range	Within	ΙI	Within F		Within Range	ΙI		NA		NA	Within Range
September Sept	Acceptability	Good					Good			N		Ϋ́	Good
1													
Name	MS/MSD												
Statement	MS Recovery	NA			AN		NA	AN	NA	NA		NA	AN AN
BLANK	DMS Recovery	₹Z :			₹ Z		Y :	Y :	Y :	ΨZ:		AN:	₹ Z
DELANK No. N	Surrogate Recovery	AN S			Y S		AN Z	Y S	AN S	ΨZ Z		AZ Z	Y Z
B	Acceptability	AN AN			Z Z		Y Y	Z Z	Z Z	Y Y		X Z	Z Z
DELLAIK Note	, and the second												
DELOKAK Note													
AMK Cool Cool Cool Cool Cool Cool Cool Cool NA NA <td>METHOD BLANK</td> <td>OCON</td> <td></td> <td></td> <td>OCON</td> <td></td> <td>acol</td> <td>ouch</td> <td>ou o N</td> <td>Ž</td> <td></td> <td>Ž</td> <td>ouoN</td>	METHOD BLANK	OCON			OCON		acol	ouch	ou o N	Ž		Ž	ouoN
Marine Range Mari	Acceptability	POOF			POOL		POOL	POOL	None	Z V		ΔZ Z	POOL
Market M	, and a second												
In the composition of the comp	TRIP BLANK												
LANK	Detections	None			₹ Z		A .	Y S	A S	ΨZ :		Y S	Y Z
LAMK	Acceptability	poog			AN		AN	A A	NA	NA		NA	A A
Name	FIELD BLANK	AN AN			₹ Z		₹Z	Y Z	Ϋ́Z	Š.		Ϋ́Z	Z Z
NA	Detections	AN			₹X		AN	¥Z	AN	NAN NAN		AN	Y Z
UPUICATES NA	Acceptability	AN			AN AN		AN	AN AN	AN	AN		AN	A N
NA													
NA	FIELD DUPLICATES												
NA	Sample:	AN 3			₹N S		AZ Z	Y Z	Y S	Y S		Y Z	₹ Z
NA	KPD	AN Z			₹Z		AN S	A S	AN 2	AN S		AN 2	Y Z
MA	Acceptability	AN			¥ Z		N	Z Z	Y.	Y.		Z	Z Z
Milkin Range Milk	LAB DUPLICATES												
Within Range	RPD	NA			AN		NA	NA	NA	NA		NA	NA
Within Range (control low for dibenz (a,h) anthracene, all other (a) and (a) and (b) and (c) an	Acceptability	NA			NA		AN	NA	NA	NA		NA	AN
Within Range LCS/LCSD spike recovery is out of control low for dibenz (a,h) anthracene, all other recoveries were in within Range with Range within Range within Range within Range within	I AB CONTROL												
virtin Range Within Range NA Within Range NA NAIHIN Range NA Within Range NA Within Range NA Mithin Range NA			Within Range, LCS/LCSD spike recovery is out of control low for dibenz (a,h)										
Virtuin Kange Wittin Range Wittin Range Wittin Range Wittin Range Wittin Range Wittin Range NA Wittin Range NA MAININ Range NA NA NA MA					2								Ž
Cool	Spike Recovery	Within Range			AN AN	Within W	Within Range	Within Range	AZ Z			A Z	A Z
9 poo 9 po	Acceptability	poog			AN		Poog	Poop	AN			AN	Z Z
Stability Good													
	COC	7000					0	7000	7000	boot		7000	7000
	Scoopias III	800						8	9	000		200	8

Table A4. Quality Assurance Quality Control Summary for Water Cap Samples at Big Hanaford

BATCH	ys16	ys17	ys17	ys17	ys17
METHODOLOGY	Watercap	Watercap	Watercap	Watercap	Watercap
Method	VOCS SW8260	SVOCS SW8270	Metals	Nitrate/Nitrite	Total cyanide
Date Sampled	July 17, 2014	July 17, 2014	July 17, 2014	July 17, 2014	July 17, 2014
Date Extracted	July 25, 2014	July 21, 2014	July 21, 2014	7/18/2014-7/23/2014	July 28, 2014
Date Analyzed	July 25, 2014	July 23, 2014	7/22/2014-7/24/2014	7/18/2014-7/23/2014	July 28, 2014
Holding Time	Good	Good	Good	Good	Good
Acceptability	Good	Good	Good	Good	Good
SURROGATE SPIKES/Sta	ndard Reference Re	sults (Conventional	ls)/Blank Spikes (metals	5)	
Sample Spike Recovery	Within Range	Within Range	Within Range	Within Range	Within Range
Acceptability	Good	Good	Good	Good	Good
MS/MSD					
				Within Range, Matrix spike matrix spike duplicate relative percent difference was low for lab batch YS17 nitrate/nitrite, water cap	
MS Recovery	NA	NA	NA	sample BR-COMP.	Within Range
DMS Recovery	NA NA	NA NA	NA	Within Range	Within Range
Surrogate Recovery	NA	NA	NA	Within Range	Within Range
RPD	NA	NA	NA	Within Range	Within Range
Acceptability	NA	NA	NA	Good	Good
METHOD BLANK					
Detections	None	None	None	None	None
Acceptability	Good	Good	Good	Good	Good
LAB DUPLICATES					
RPD	NA	NA	NA	Within Range	Within Range
Acceptability	NA	NA	NA	Good	Good
LAB CONTROL					
Spike Recovery	Within Range	Within Range	Within Range	NA	NA
Surrogate Recovery	Within Range	Within Range	Within Range	NA	NA
Acceptability	Good	Good	Good	NA	NA
сос					
Acceptability	Good	Good	Good	Good	Good

^{1.} All other QA/QC = good, samples not flagged

RPD = 2 x (C1 - C2) x 100/(C1 + C2)

^{2.} RPD >30%, Samples "J" Flagged

APPENDI B FIELD PHOTOS

Field Photos from Burnt Ridge Site:

Fire Mountain Farms, Inc. Sludge Investigation July 2014

Field Photos from Newaukum Prairie Site:

Fire Mountain Farms, Inc. Sludge Investigation July 2014

Field Photos from Big Hanaford Site:

Fire Mountain Farms, Inc. Sludge Investigation July 2014

APPENDI C LABORATORY REPORTS

Waste Characterization Plan Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Revision 3 July 27, 2017

Prepared for

Perkins Coie LLP Emerald Kalama Chemical, LLC

Waste Characterization Plan Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by:

Senior Project Engineer

Allison Bergseng, PE

Document reviewed by:

Dringing

Kristy J. Hendrickson, PE

Date: July 27, 2017 Project No.: 0066045.040

File path: P:\066\045\R\Waste Characterization Plan\WCP July 2017\Waste Char Plan 072717.docx

Project Coordinator: kes

TABLE OF CONTENTS

				<u>PAGE</u>
1.0		INTRO	DUCTION	1-1
	1.1		Burnt Ridge	1-4
	1.2		Newaukum Prairie	1-4
	1.3		Big Hanaford	1-5
	1.4		Prior Investigations	1-6
	1.5		Evaluation of Previous Results	1-6
	1.6		Selection of Analytes	1-8
		1.6.1	Metals	1-8
		1.6.2	Polychlorinated Biphenyls	1-9
		1.6.3	Toxaphene	1-10
		1.6.4	Dioxin	1-10
		1.6.5	N-Nitrosodimethylamine and N-Nitroso-Di-N-Propylamine	1-11
		1.6.6	Pentachlorophenol	1-11
		1.6.7	Acrylonitrile; Naphthalene; 2,4-Dinitrotoluene; and 2,6-Dinitrotoluene	1-11
		1.6.8	4-Methylphenol	1-12
	1.7		Evaluation of Dangerous Waste Criteria	1-12
		1.7.1	Ignitability, Corrosivity, Reactivity	1-12
		1.7.2	Toxicity	1-13
		1.7.3	Toxicity (Washington State)	1-13
		1.7.4	Persistence (Washington State)	1-14
2.0		FIELD I	NVESTIGATION	2-1
	2.1		Initial Reconnaissance Site Visit	2-1
	2.2		Mixed Material Sampling	2-1
		2.2.1	Sample Locations	2-1
		2.	2.1.1 Burnt Ridge and Newaukum Prairie	2-2
		2.	2.1.2 Big Hanaford	2-3
		2.2.2	Sampling Methodology	2-4
		2.	2.2.1 Burnt Ridge and Newaukum Prairie	2-4
		2.	2.2.2 Big Hanaford	2-5
		2.2.3	Equipment Decontamination	2-6
		2.2.4	Sample Documentation and Handling	2-7
3.0		SAMPI	E ANALYSIS	3-1
4.0		QUALI	TY ASSURANCE/QUALITY CONTROL	4-1
5.0		SCHED	ULE	5-1
6.0		REPOR	TING	6-1
7.0		REFER	ENCES	7-1

FIGURES

<u>Figure</u>	<u>Title</u>
1	Burnt Ridge Vicinity Map
2	Burnt Ridge Storage Unit Grid Locations
3	Burnt Ridge Storage Unit Design
4	Newaukum Prairie Vicinity Map
5	Newaukum Prairie Storage Unit Grid Locations
6	Newaukum Prairie Storage Unit Design
7	Big Hanaford Vicinity Map
8	Big Hanaford Storage Unit Grid Locations

TABLES

<u>Table</u>	<u>Title</u>
1	Mixed Material Sources
2	Prior Sampling Results, Fire Mountain Farms Burnt Ridge Storage Unit
3	Prior Sampling Results, Fire Mountain Farms Newaukum Prairie Storage Unit
4	Prior Sampling Results, Fire Mountain Farms Big Hanaford Storage Unit
5	Cobalt Characterization Results
6	Land Disposal Restriction Evaluation
7	Comparison of Metal Concentrations in the Mixed Material with EPA Sewage Sludge Data
8	PCB Concentrations in Mixed Material
9	Toxaphene Reporting Limits and Preliminary Delisting Levels
10	Dioxin Reporting Limits and Preliminary Delisting Levels
11	Chemical Concentrations in the Mixed Material for Comparison with the Toxicity Characteristics List
12	Chemical Composition of Emerald IWBS Compared with the Toxicity Characteristics List
13	Dangerous Waste Criteria – Persistence Values for the Mixed Material
14	Sampling Locations, Fire Mountain Farms Mixed Material Storage Units
15	Planned Analyses, Burnt Ridge Mixed Material Storage Unit
16	Planned Analyses, Newaukum Prairie Mixed Material Storage Unit
17	Planned Analyses, Big Hanaford Mixed Material Storage Unit

APPENDICES

<u>Appendix</u>	<u>Title</u>
Α	Pacific Groundwater Group Report: Results of Investigation of Sludge at Three Storage Sites
В	Pacific Groundwater Group: Fire Mountain Farms, Inc. Quality Assurance Project Plan
С	Cobalt Characterization Report, Fire Mountain Farms Newaukum Prairie & Burnt Ridge Impoundments, Lewis County, Washington
D	Health and Safety Plan
E	Quality Assurance Project Plan

LIST OF ABBREVIATIONS AND ACRONYMS

2,3,7,8-TCDD	2,3,7,8-tetrachlorodibenzodioxin
AMSA	Association of Metropolitan Sewerage Agencies
biosolids	sewage sludge from municipal wastewater treatment or septage
°C	degrees Celsius
су	cubic yards
DRAS	Delisting Risk Assessment Software
EC	equivalent concentration
Ecology	Washington State Department of Ecology
Emerald	Emerald Kalama Chemical, LLC
	U.S. Environmental Protection Agency
FMF	Fire Mountain Farms
	feet, foot
	geosynthetic clay liner
	global positioning system
	health and safety plan
	high-density polyethylene
	halogenated organic compound
	industrial wastewater treatment biological solids
	Landau Associates, Inc.
	land disposal restriction
	microgram per kilogram
	milligram per liter
-	mixture of industrial wastewater treatment biological solids
mixed material	biosolids, and wastewater-generated material from other sources
NPDES	
	polycyclic aromatic hydrocarbon
	polychlorinated biphenyl
	preliminary delisting level
	Preiminary densting lever
	publicly owned treatment works
	publicity owned treatment works parts per million
	Quality Assurance Project Plan
	Resource Conservation and Recovery Act
	, , , , , , , , , , , , , , , , , , , ,
	reporting limit
	square feet standard method
	semivolatile organic compound
	secondary wastewater treatment solids
	toxicity characteristic leaching procedure
TCLP-PDL	preliminary delisting level for protection of groundwater
	using toxicity characteristic leaching procedure

LIST OF ABBREVIATIONS AND ACRONYMS (CONT.)

TEQ	toxicity equivalence
TKN	Total Kjeldahl Nitrogen
TNSSS	Targeted National Sewage Sludge Survey
VOC	volatile organic compound
WTSS	wastewater treatment system solids
WWTP	wastewater treatment plant

1.0 INTRODUCTION

Landau Associates, Inc. (LAI) was retained by Perkins Coie LLP (Perkins) on behalf of Emerald Kalama Chemical, LLC (Emerald), to provide technical support and environmental services related to Administrative Order No. 10938 (Administrative Order) issued by the Washington State Department of Ecology (Ecology) to Emerald and Fire Mountain Farms, Inc. (FMF) (Ecology 2014) and the Agreement for Conditional Compliance with Ecology Administrative Order No 10938 During Judicial Review (Agreement) between Ecology, Emerald, and FMF, dated June 3, 2016 (Ecology 2016a).

According to Ecology, three storage units located at Newaukum Prairie, Burnt Ridge, and Big Hanaford, which are owned and operated by FMF, received industrial wastewater treatment biological solids (IWBS) from Emerald that are a listed dangerous/hazardous waste. Ecology alleges that Emerald's IWBS carry two listed hazardous waste codes: U019 (benzene) and U220 (toluene). As part of the Agreement, Emerald and FMF will petition Ecology and the US Environmental Protection Agency (EPA) to delist the mixed material in the three storage units. Once the mixed material is delisted, it will be placed in a Subtitle D landfill. No other disposal option is proposed.

The three storage units were used to hold biosolids, IWBS, and wastewater-generated material from other sources. This material will be referred to in this plan as "mixed material." Eighty-two percent of the mixed material is comprised of biosolids from municipal wastewater treatment plants (WWTP); however, material from four non-municipal WWTP sources, exclusive of the IWBS, was also placed into the storage units. These four sources are described below. All of the sources of the mixed material in each storage unit are listed in Table 1.

- The Burnt Ridge storage unit was used to contain runoff from the livestock barn lot. The
 runoff material is cow manure diluted with water. Cow manure has long been applied to farm
 fields to replenish nitrogen and other nutrients that are required by crops. Based on the
 source, there are likely no chemicals of concern associated with the cow manure in the mixed
 material.
- The Burnt Ridge and Newaukum Prairie storage units accepted secondary wastewater treatment solids (SWTS) from the Darigold Chehalis facility. The Chehalis plant produces dry milk products. The SWTS have historically been applied to agricultural fields as a nitrogen supplement. Ecology approved the SWTS for beneficial use (BUD-SA-15-08). Based on a review of the Darigold products, the Ecology-issued National Pollutant Discharge Elimination System (NPDES) permit, and a comparison with the PGG analytical results; there are likely no chemicals of concern associated with the SWTS in the mixed material.
- Material from Bio Recycling, a company that treats septage, was stored in the Big Hanaford
 unit. Septage is defined by the EPA as "the liquid and solid material pumped from a septic
 tank, cesspool, or other primary treatment source." After the septage is processed, the
 resulting biosolids meet EPA's Class B standards and are permitted for land application by
 Ecology. Based on a review of the Bio Recycling process and comparison with the PGG
 analytical results, there are likely no chemicals of concern associated with the biosolids in the
 mixed material.

• Wastewater treatment system solids (WTSS) from the Port of Longview were placed in the Newaukum Prairie storage unit. The Port operates a small wastewater treatment system to provide primary treatment of the water that was used to clean the dock, conveyor system, and associated sumps at Berth 2. Berth 2 is used to transfer sodium carbonate, aluminum silicate (bentonite clay), soy meal, potassium salts (potash), dry distiller's grains, and magnesium silicate (talc) from railcars to ships. After loading, the dock and conveyor system are washed down with water. The water is directed to a series of tanks for pH adjustment, and solids settlement. The wastewater is sent to a municipal WWTP in accordance with State Waste Discharge Permit No. ST 6081. The WTSS are currently sent to a Subtitle D landfill. Based on a review of the materials transferred at Berth 2 and comparison with the PGG analytical results, there are likely no chemicals of concern associated with the WTSS in the mixed material.

This waste characterization sampling plan is being prepared in response to the Agreement for purposes of waste characterization in the context of delisting the mixed material at the three storage units. Data obtained via implementation of the waste characterization sampling plan will be used to supplement analytical results from a 2014 investigation conducted by Pacific Groundwater Group (PGG) for FMF (PGG 2014a), and to fill identified data gaps. Prior to development of this sampling plan, data gaps were identified by reviewing the existing PGG data. Toward this effort, the PGG analytical data were compared to the Preliminary Delisting Levels (PDLs) and the Toxicity Characteristic Screening Levels (TCLP-PDL x 20). The validity and appropriateness of the data were considered in the context of characterizing the comingled materials at the three FMF storage units, with respect to the delisting.

Additionally, the PGG data were compared to concentration-based Land Disposal Restriction (LDR) levels. This comparison was performed for the purpose of evaluating compliance with these criteria in the event the waste is delisted.

Based on our review, the PGG data are considered valid for comparison with the regulatory levels and thresholds. The samples were collected in accordance with the Ecology-approved Quality Assurance Project Plan (QAPP) (PGG 2014b). At each of two storage units – Burnt Ridge and Newaukum Prairie – PGG collected 27 grab samples from various locations and depths. Due to the difficulty in reaching the center of the Big Hanaford storage unit, only 18 grab samples were planned and collected. For samples from both Burnt Ridge and Newaukum Prairie, one composite sample was made from nine grab samples, resulting in three composite samples for each storage unit. At Big Hanaford, three composite samples were created, each consisting of six grab samples. The method of sample collection produced composite samples that are representative of the mixed material.

The list of analytes for which each of the mixed material samples was tested was extensive and went beyond the chemical classes that would be expected to be present based on the mixed waste sources and the listed hazardous waste codes associated with the mixed waste. This fact makes it unlikely that any chemical present at a significant concentration with respect to the cited delisting decision criteria would have been overlooked.

The mixed material in the Burnt Ridge and Newaukum Prairie storage units is relatively homogenous. FMF utilized two propeller-driven mixers and a recirculation pump at each location to mix and aerate the mixed material. In contrast, the mixed material is stratified at the Big Hanaford storage unit. To better characterize the stratified material at Big Hanaford, core samples will be collected from various depths under the proposed sampling plan.

The homogeneous nature of the material stored in the Burnt Ridge and Newaukum Prairie storage units is evident in the PGG sampling results. The composite samples collected from the Burnt Ridge and Newaukum Prairie storage units exhibit less variability in chemical concentrations than the Big Hanaford composite samples. This indicates that the Burnt Ridge and Newaukum Prairie units are more homogenous as compared with the Big Hanaford storage unit.

The analytical data from the sampling described in this plan combined with the existing analytical data will support the delisting petitions and are anticipated to demonstrate that material in the three storage units will comply with applicable requirements.

Burnt Ridge and Newaukum Prairie are both lined storage units intended to hold mixed material that have a water cap (composed of precipitation) and a submerged mixed material zone. Big Hanaford is a covered concrete storage unit that contains mixed material only.

Although the delisting process for the mixed material must follow the regulations provided in 40 CFR 260.20, it is important to document supportive information in order to provide perspective regarding similar materials, their uses, and the associated regulations.

The mixed material is primarily composed of municipal WWTP biosolids (between 77 and 86 percent by mass, depending upon the unit). Biosolids from municipal WWTP sources have been approved for use as soil amendments by the EPA and Ecology.

Between 6 and 17 percent of the mixed material originates from other sources that do not use or produce Resource Conservation and Recovery Act (RCRA)-listed chemicals; such as manure from livestock handling, dairy products for human consumption, septage treatment, and bulk material transfer. The wastewater treatment solids from the dairy operations have been granted a beneficial use determination by Ecology. The biosolids from the septage treatment facility meet EPA's Class B standards and are permitted for land application by Ecology. The wastewater from the bulk material handling operation is sent to a municipal WWTP for secondary treatment and the solids from the primary treatment of the wastewater are disposed of in a subtitle D landfill.

The Emerald IWBS comprise between 5 and 8 percent of the mixed material by mass. Several fish bioassays have been performed on the IWBS; each time with zero mortality. On a routine basis, Emerald collected and analyzed 312 samples of the IWBS for various classes of chemicals including volatiles, semivolatiles, pesticides, and a number of inorganic parameters. The analytical data not only prove that the IWBS do not contain the chemicals associated with the RCRA waste codes in question,

but are better from a chemical contaminant perspective than the municipal WWTP biosolids that are currently land applied.

Despite the preponderance of evidence to indicate that the mixed material does not pose a risk to human health or the environment, after delisting the mixed material will be placed in a Subtitle D landfill which will prevent public exposure. No other disposal options are proposed.

1.1 Burnt Ridge

The FMF Burnt Ridge storage unit is located at 856 Burnt Ridge Road, in Onalaska, Washington (Figure 1). The storage unit is contained by an embankment constructed into sloping natural terrain. The unit is approximately square, as shown on Figure 2, with approximate dimensions of 220 feet (ft) on each side and a surface area at the top of about 48,000 square feet (sf). The level-top embankment matches existing grades on the north side, with perimeter berms on the south, east, and west sides that extend above surrounding grades. According to the design (Thode 1998), the internal slopes of the unit are 3 horizontal to 1 vertical (3H:1V), the external slopes of the perimeter berms are 2H:1V, and the storage unit is approximately 14 ft deep (Figure 3). According to the design drawing, the unit is lined with Claymax 600CL geosynthetic clay liner (GCL) material manufactured by Colloid Environmental Technologies Company. LAI assumes that approximately 12 inches of soil was placed on top of the liner in accordance with typical manufacturer recommendations for GCL installations.

The storage unit currently contains mixed material and accumulated precipitation. According to estimates made by PGG, and confirmed during the land application event in December 2014, the accumulated mixed material is 3 ft or less in thickness (PGG 2014a; see Appendix A). Based on the design dimensions and the estimated mixed material thickness, the storage unit is estimated to contain approximately 500,000 gallons or 2,350 cubic yards (cy) of saturated mixed material covered by a water cap.

FMF was preparing to reline the Burnt Ridge storage unit, therefore material was not added to the unit after 2013. The storage unit is equipped with two propeller-driven mixers and a recirculation pump. The mixed material in the Burnt Ridge storage unit is already several years old, is well-mixed, and is completely settled as the unit has not been mechanically disturbed for more than two years. Therefore, the collection of multiple core samples from various locations is appropriate to characterize the mixed material.

1.2 Newaukum Prairie

The FMF Newaukum Prairie storage unit is located at 349 State Route 508, in Chehalis, Washington (Figure 4). The storage unit is approximately square with a constructed berm on each side (Figure 5). According to the original design drawing, each side of the storage unit is approximately 220 ft in length with a total depth of 12 ft (Thode 1998). The berms are sloped 3H:1V on the interior and 2H:1V on the exterior of the storage unit, and the inside face of the berms is lined with a 3-ft layer of

compacted clay, according to the design drawing (Thode 1998). According to FMF, the storage unit was reconstructed and relined in 2013; the bottom of the storage unit reportedly has dimensions of roughly 148 ft by 148 ft and has a total depth of approximately 14 ft (Figure 6) (Thode 2013). The storage unit is lined with a dual liner system consisting of a 60 mil high-density polyethylene (HDPE) primary liner, a geonet leak detection layer, and a 30 mil HDPE secondary liner. At the toe of the concrete ramp in the northwest corner is a 2-ft deep sump. The bottom of the storage unit is graded at a 1% slope toward this sump causing slight variations in the total depth throughout the storage unit.

The storage unit currently contains saturated mixed material and accumulated precipitation. PGG estimated the mixed material thickness in July 2014 to be 8 to 9 ft. LAI measured the mixed material thickness in December 2015 and found that it varied between 2.5 and 5.2 ft thick; mixed material thickness at a location near the concrete ramp was 1.5 ft. Based on the reconstructed dimensions and the maximum 2015 measured mixed material thickness of 5.2 ft, the storage unit is estimated to contain approximately 1.1 million gallons or 5,200 cy of saturated mixed material covered by a water cap.

Material was added to the storage unit until Ecology ordered FMF to cease operations in 2014. The storage unit is equipped with two propeller-driven mixers and recirculation pump. The mixed material in the Newaukum Prairie storage unit is already several years old, is well-mixed, and is settled. Therefore, the collection of multiple core samples from various locations is appropriate to characterize the mixed material.

1.3 Big Hanaford

The FMF Big Hanaford storage unit is located at 307 Big Hanaford Road, in Centralia, Washington (Figure 7). Mixed material is stored at this facility in a roofed concrete storage unit (Figure 8). The metal roof is supported by wooden structural members that are anchored at grade. The floor of the structure is concrete. Concrete panels are used to contain the mixed material. The facility is approximately 100 ft long by 60 ft wide. The concrete panel height is approximately 11.5 ft; the mixed material was within about 1 ft of the top of the panels on October 21, 2015. Based on the dimensions and the estimated mixed material thickness, the storage unit is estimated to contain approximately 2,500 cy of wet mixed material.

Material was added to the Big Hanaford storage unit until Ecology ordered FMF to cease operations in 2014. The material was delivered to the storage unit via a ramp located on the south side of the unit. Trucks would back up to the ramp and dump the load of material into the storage unit. Although the bulk of the material is comprised of water, the material would ooze off in all directions, rather than flowing quickly. Mechanical means were used to push the mixed material outward from the offloading ramp in order to allow for the deposition of additional material. The physical layout of the storage unit and the nature of the mixed material resulted in horizontally stratified layers of material. Samples

collected from several depths and locations would therefore not be expected to be similar. Therefore, the collection of grab samples from various depths and locations is appropriate to characterize the mixed material.

1.4 Prior Investigations

FMF retained PGG to conduct an investigation of the mixed material at the three storage units in September 2014. The sampling is described in the investigation plan (PGG 2014b) included as Appendix B of this plan. Three composite mixed material samples were collected from each storage unit. At Burnt Ridge and Newaukum Prairie, each composite sample consisted of nine grab samples collected from various depths. Each composite sample collected at Big Hanaford consisted of six grab samples collected from various depths.

Each composite sample was analyzed for the following constituents or constituent groups: volatile organic compounds (VOCs) (EPA Method 8260C), semivolatile organic compounds (SVOCs) (EPA Method 8270D), total metals (EPA Methods 6010C/7471A), total cyanide (EPA Method 335.4), and total solids (Standard Method [SM] 2540G). The specific analytes included in the analysis are defined by the analytical method used for each group. Analytes are shown on Tables 2-4.

In addition, two composite samples from the Newaukum Prairie storage unit and one composite sample each from the Burnt Ridge and Big Hanaford storage units were analyzed for the remaining priority pollutants: pesticides (EPA Method 8081B); polychlorinated biphenyl (PCB) aroclors (EPA Method 8082A); dioxins and furans, reported as 2,3,7,8-tetrachlorodibenzodioxin toxicity equivalence (2,3,7,8-TCDD TEQ) (EPA Method 1613B); nitrite (EPA Method 353.2); ammonia (EPA Method 350.1M); Total Kjeldahl Nitrogen (TKN) (EPA Method 351.2); nitrate + nitrite (EPA Method 353.2); and pH (SM 9045); the concentration of nitrate was calculated by the analytical laboratory. Tables 2-4 show the analytical results for each of the composite samples at each of the storage units; detected concentrations are presented in bold font.

Fourteen grab samples from the Newaukum Prairie storage unit and seven grab samples each from the Burnt Ridge and Big Hanaford storage units were analyzed for total fecal coliform; results are presented in the PGG investigation report (PGG 2014a) included as Appendix A of this plan but are not used in the delisting evaluation.

1.5 Evaluation of Previous Results

Preliminary delisting levels based on maximum allowable total concentrations (PDLs) and maximum allowable toxicity characteristic leaching procedure (TCLP) concentrations (TCLP-PDLs) were developed by Ecology using EPA's Hazardous Waste Delisting Risk Assessment Software for each of the storage units and were provided to Emerald (Ecology 2016b). Analytical results for each storage unit were compared to the PDLs; there are no detected results from any of the three storage units that exceed the PDLs. Because the PGG samples were analyzed for total concentrations rather than

TCLP concentrations, the TCLP-PDLs were multiplied by 20 to account for the dilution by 20 that is part of the TCLP analysis prior to comparison to the analytical results, in accordance with what is known as the rule of 20. The concentration of cobalt in samples from each of the storage units and the concentration of 4-methylphenol in samples from Big Hanaford are the only detected results that exceed the TCLP-PDLs x 20. Tables 2-4 show the PDLs and the TCLP-PDLs x 20 as well as the analytical results for the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units, respectively. As discussed in detail in section 1.6.1, three additional samples each from the Burnt Ridge and Newaukum Prairie storage units were collected, composited into one sample for each storage unit, and analyzed for total and TCLP cobalt prior to the waste characterization sampling described in this plan (Table 5). Samples from Big Hanaford only will be collected and analyzed for cobalt during the waste characterization sampling described in this plan. Additionally, samples will be collected from Big Hanaford and analyzed for 4-methylphenol; cobalt; 2,4-dinitrotoluene; 2,6-dinitrotoluene; acrylonitrile; and naphthalene. Last, three samples from Big Hanaford will be analyzed for PCBs; this is further addressed in section 1.6.2.

Each chemical in the PGG study with an RL greater than the TCLP PDL X 20 is discussed below. The majority of the material is from municipal WWTPs. Biosolids generated from the treatment of municipal WWTPs have been analyzed for many of the chemicals included in the PGG study and the expected concentrations of these chemicals are well-documented. None of the chemicals are expected to be present at concentrations deemed to pose a risk to human health or the environment. The materials from Darigold, the Port of Longview, Bio Recycling, and the cow manure are not likely to contain any chemicals of concern as described in Section 1. Emerald's IWBS have either been analyzed for these chemicals, or the chemicals are known to not be present based on the chemistry used by the facility. In addition to these facts, the mixed material is not being used as a soil amendment, but will be placed in a Subtitle D landfill. No other disposal options are proposed.

A review of the investigation conducted by PGG indicates the following data gap: grab samples were not analyzed for any analytes except total fecal coliform; therefore, additional samples are needed to comply with the LDR treatment standards. LDR limits, as defined in 40 CFR 268, are used to determine restrictions on land disposal options for waste streams. In order to fill these data gaps, discrete grab samples will be collected and analyzed for acetone, benzene, methanol, and toluene, the parameters associated with the waste codes for which Emerald's IWBS were designated as listed waste. For the purpose of this evaluation, the LDR limits will be a secondary standard after analytes are compared to the PDLs. The LDR limits for the selected analytes are presented in Table 6, which also shows the analytical results for the composite PGG samples.

The PGG report and its associated results are still valid as each of the storage units has been non-operational since the 2014 investigation. No new waste was added to any storage unit and no active treatment was applied. In addition, the methods used by PGG for sample analysis are consistent with WAC 173-202-110(3)(c).

1.6 Selection of Analytes

Analytes to be tested were selected based on evaluation of the results provided in the PGG report (PGG 2014a) with the LDRs and the Hazardous Waste Delisting Risk Assessment Software (DRAS) generated preliminary delisting levels (PDLs) as both maximum allowable total concentrations, and the maximum allowable TCLP concentrations for each of the three storage units. Recommendations for analysis of previously non-detect analytes were made on the basis of a review of PGG data relative to these threshold concentrations. Analytes with a reporting limit (RL) in the PGG report that exceeded the PDL or TCLP-PDL x 20 are discussed below. Analytical results from the PGG investigation and RLs for non-detected analytes are shown in Tables 2-4.

1.6.1 Metals

Based on a comparison of the 2014 PGG data to the TCLP-PDL x 20 thresholds, four metals of potential concern were identified (i.e., where one or more maximum detected values or the RLs of non-detected chemicals exceeded the TCLP-PDL x 20 threshold): antimony (Burnt Ridge and Newaukum Prairie only), arsenic, cobalt, and thallium. Although antimony, arsenic, and thallium were not detected in samples from any of the three storage facilities, the RL for one of three composite samples from Burnt Ridge and the RLs for the composite samples from Newaukum Prairie exceed the antimony TCLP-PDLs x 20; the RLs for the composite samples from Big Hanaford do not exceed the antimony TCLP-PDL x 20. The RLs for the composite samples from Burnt Ridge, Newaukum Prairie, and Big Hanaford exceed the arsenic and thallium TCLP-PDLs x 20.

Cobalt was the only one of these metals detected in the mixed material. The Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report (EPA 2009) was reviewed in order to determine the expected range of these metals in municipal biosolids. A comparison of the data is provided in Table 7. The cobalt concentrations measured in the three storage units were all within the range established during the EPA survey and are similar to those found in soil (ATSDR 2004). The cobalt concentrations in the Burnt Ridge and Newaukum Prairie storage units were only 16 and 30 percent of the maximum value reported in the EPA report. The mixed materials in the Burnt Ridge and Newaukum Prairie storage units are homogenous, and the probability that additional samples would return a significantly different total cobalt concentration is low. However, because only a fraction of the cobalt in the mixed material is leachable, samples from each of these two storage units were collected, composited into one sample for each storage unit, and analyzed for total and TCLP cobalt prior to the waste characterization sampling described in this plan. The TCLP cobalt concentrations from these analyses were below the TCLP PDLs. The analytical results are presented in Table 5 and the report is included in Appendix C.

Although the maximum cobalt concentration measured in the Big Hanaford storage unit was below the maximum value reported in the EPA study; the material in the storage unit is heterogeneous. Therefore, the probability that additional samples collected from the storage unit could exceed the reported range for cobalt is significant. To address this potential concern, the 18 grab samples

collected from the Big Hanaford facility will be analyzed for cobalt. If the results from one or more samples exceed the TCLP-PDL x 20, the sample with the highest concentration will be analyzed for cobalt in TCLP extract as described in Section 3.0.

Antimony, arsenic, and thallium will not be added to the list of analytes. The RLs and corresponding Targeted National Sewage Sludge Survey (TNSSS) concentrations are presented in Table 7.

Antimony was not detected in the mixed material; RLs are provided in Table 7. Based on generator knowledge and the known uses of antimony, the metal is not present in the IWBS. Antimony is not used in any of the chemical manufacturing processes, is not a contaminant in any of the catalysts, nor is it used in any of the metal alloys present on the site. The concentration of antimony in biosolids has been documented by the EPA in the TNSSS report (Table 7). Based on the available information, it is not likely that the mixed material contains concentrations of antimony that would pose a risk to human health and the environment.

Arsenic was not detected in the mixed material; RLs are provided in Table 7. TCLP-prepared extracts of the IWBS have been analyzed for arsenic and the results have been below the RL, which is below the PDLs (Table 12). The concentration of arsenic in biosolids has been documented by the EPA in the TNSSS report (Table 7). Based on the available information, it is not likely that the mixed material contains concentrations of arsenic that would pose a risk to human health and the environment.

Thallium was not detected in the mixed material (RLs provided in Table 7) and is only used in a limited number of applications. For example, thallium sulfide is used in some photovoltaic cells to achieve greater efficiency in converting infrared radiation into electricity. There are no manufacturers of photovoltaic cells in any of the municipalities that have contributed biosolids or other material to the FMF storage units. Based on generator knowledge and the known uses of thallium, the metal is not present in the IWBS. Thallium is not used in any of the chemical manufacturing processes, is not a contaminant in any of the catalysts, nor is it used in any of the metal alloys present on the site. The concentration of thallium in biosolids has been documented by the EPA in the TNSSS report (Table 7). Because of the rarity, and limited application of thallium, this chemical is not likely to be present in the mixed material at concentrations that would pose a risk to human health or the environment.

1.6.2 Polychlorinated Biphenyls

The concentrations of PCBs detected in the mixed material are less than the respective PDLs. PCBs have not been manufactured or used in the United States since the 1979 ban. PCBs had been used in a wide variety of applications and are long-lived molecules; therefore, these chemicals are ubiquitous in the environment. The Association of Metropolitan Sewerage Agencies conducted a study analyzing 200 publicly owned treatment works (POTW) biosolids samples from 31 states and determined that the concentration of PCBs ranged from 0.06 to 261 micrograms per kilogram (μ g/kg) (AMSA 2001). The concentration of PCBs from each of the storage units and the respective PDLs are presented in Table 8.

Three samples from the 18 proposed at the Big Hanaford facility will be analyzed for PCBs. The three samples will be selected from among the 18 analyzed for volatiles, semivolatiles, and metals. Additional sample volume will be collected and stored for all 18 samples. The three samples to be analyzed for total PCBs will be selected by Ecology and EPA based on the results for other analytes.

Samples of mixed material from the Burnt Ridge and Newaukum Prairie storage units will not be analyzed for PCBs. The maximum measured concentrations in the storage units (2014 PGG data) are below the corresponding PDLs and within the measured range of PCBs determined to be in biosolids. The Burnt Ridge and Newaukum Prairie storage units are well mixed (based on the limited variation in concentration between PGG samples and the mixing operations described by FMF) and therefore the PCB concentrations are representative of the mixed material. PCBs have not been detected, nor are they expected to be present at any concentration above background levels in the Emerald IWBS.

1.6.3 Toxaphene

Toxaphene is a mixture of more than 600 congeners produced via reaction of camphene (terpene) and chlorine. Toxaphene was used as a pesticide in the United States until it was conditionally banned in 1982, and completely banned in 1990. Considered as a group, the congeners have a half-life in soil as long as 14 years. The predominant use of toxaphene was to control insects on cotton and other crops in the southern United States. All states with toxaphene warnings are located in the southern United States (ATSDR 2014). According to the EPA, the atmosphere is the most important environmental medium for the transport of toxaphene. Toxaphene binds strongly to soil/sediment particles; therefore, it is unlikely to contaminate groundwater (EPA 1999).

Toxaphene was not detected in any of the FMF samples collected by PGG; however, the RLs were all greater than the PDL. The RL and PDL concentrations are provided in Table 9.

No additional sampling for toxaphene is proposed. Toxaphene is not present in Emerald IWBS, nor is it expected to be present in the biosolids or other sources of the mixed material. Toxaphene has not been used in the United States for 16 years and none of the POTW sources of biosolids that comprise the mixed material originate from areas where toxaphene use was prevalent. Therefore; toxaphene is not expected to be present at concentrations that pose a risk to human health or the environment.

1.6.4 Dioxin

Dioxin, reported as a 2,3,7,8-TCDD TEQ, was not detected in any of the samples collected and analyzed by PGG; however, the RL for the Newaukum Prairie storage unit was greater than the corresponding PDL. 2,3,7,8-TCDD TEQ is appropriate to use for comparison with the PDLs because it is a weighted quantity measure based on the toxicity of each member of the dioxin and dioxin-like compounds category relative to the toxicity of 2,3,7,8-TCDD, widely accepted as the most toxic in the group of congeners collectively known as polychlorinated dibenzodioxins, or simply dioxins. Dioxins are not commercially manufactured chemicals, but are produced as byproducts from the combustion

of certain types of materials and during the production of some organic chemicals. The Association of Metropolitan Sewerage Agencies conducted a study analyzing 200 POTW biosolids samples from 31 states and determined that the concentration of dioxin ranged from 0.10 to 291 μ g/kg (AMSA 2001). The dioxin RLs for each of the storage units and the respective PDLs are presented in Table 10.

No additional analyses for dioxin are proposed. Dioxins are not present in the Emerald IWBS because none of the chemical manufacturing processes use chlorine, which is required to produce this class of chemicals. Considering the dioxin concentration range reported by the Association of Metropolitan Sewerage Agencies (AMSA), the RLs from the PGG study, and the PDLs; dioxins are not likely to be present at concentrations that pose a risk to human health or the environment.

1.6.5 N-Nitrosodimethylamine and N-Nitroso-Di-N-Propylamine

N-nitrosodimethylamine and N-nitroso-di-n-propylamine were not detected in the mixed material. The RLs were greater than the TCLP-PDL x 20; however, these nitrosamine compounds will not be added to the analyte list. This class of chemicals is produced as byproducts in some industrial and natural processes. These chemicals can be found in some foods, especially cured and smoked meats, and malt beverages, at low concentration, typically in the part per billion range (NTP 2016). Tobacco smoke, some rubber compounds, cosmetics, and toiletries contain nitrosamine compounds. Emerald's IWBS do not contain these chemicals, because none of the chemical manufacturing processes create this class of chemicals. The concentrations of these chemicals present in the materials and products that might be sent to a municipal WWTP are likely to already be below the PDLs. Therefore, the concentrations of these chemicals would be even lower in the municipal biosolids and the other sources of the mixed material. For this reason, the mixed material is not expected to contain concentrations of these chemicals that would pose a risk to human health or the environment.

1.6.6 Pentachlorophenol

Pentachlorophenol was not detected in the mixed material. The RLs for the Newaukum Prairie and Big Hanaford storage units were greater than the TCLP-PDL x 20; however, pentachlorophenol will not be added to the analyte list. The RLs and the TCLP-PDL x 20 for pentachlorophenol are within the same order of magnitude. Emerald's IWBS do not contain pentachlorophenol. Pentachlorophenol is used in treatment of utility poles and rail ties and is unlikely to be present in municipal wastewater entering a POTW. Neither the biosolids nor the other sources of the mixed material are expected to contain concentrations of pentachlorophenol that would pose a risk to human health or the environment.

1.6.7 Acrylonitrile; Naphthalene; 2,4-Dinitrotoluene; and 2,6-Dinitrotoluene

Acrylonitrile; naphthalene; 2,4-dinitrotoluene; and 2,6-dinitrotoluene were not detected in the mixed material. However, the RLs for the Big Hanaford storage unit were greater than the TCLP-PDL x 20 for these chemicals. These four chemicals will be added to the analyte list for the Big Hanaford storage unit, only. If the results from one or more samples exceed the TCLP-PDL x 20 for one or more of these

analytes, the sample with the highest concentration of that analyte will be analyzed in TCLP extract as described in Section 3.0.

1.6.8 4-Methylphenol

4-Methylphenol was detected in the mixed material at concentrations within the same order of magnitude, but greater than the TCLP-PDL x 20 in the Big Hanaford storage unit. The 18 samples collected from the Big Hanaford storage unit will be analyzed for 4-methylphenol. If the results from one or more samples exceed the TCLP-PDL x 20, the sample with the highest concentration will be analyzed for 4-methylphenol in TCLP extract as described in Section 3.0.

1.7 Evaluation of Dangerous Waste Criteria

The data from the prior PGG report and known process knowledge were used to determine that no additional samples are required to further designate the mixed material. The sections below provide a discussion on each of the federal hazardous waste and Washington State dangerous waste criteria in comparison to the mixed materials.

1.7.1 Ignitability, Corrosivity, Reactivity

The mixed material is a combination of Emerald's IWBS, municipal wastewater treatment plant biosolids, and wastewater-generated material from other sources as described in Section 1.0. The mixed material is comprised of the dead and decaying bodies of the microorganisms used to digest and thereby chemically transform the undesirable components present in the wastewater into benign, and in many cases useful, compounds. During the wastewater treatment process, biosolids/IWBS are separated from the supernatant and allowed to fill transportable bins. Unless additional dewatering processes are implemented, the resulting biosolids/IWBS are about 10 percent solids and 90 percent water.

Neither the source material, nor the mixed material exhibit the characteristic of ignitability as defined in WAC 173-303-090(5). The mixed material in both the Burnt Ridge and Newaukum Prairie facilities has been kept in storage units that are open and exposed to precipitation. The mixed material has undergone additional degradation and is completely saturated with water. Although the Big Hanaford storage unit is covered to prevent the intrusion of precipitation, the mixed material still contains about 85 percent water. Since water will not ignite, and there are only a handful of organic chemicals present in the mixed material in the parts per million (ppm) range; it is physically impossible for the mixed material to burn.

The pH of the biosolids/IWBS varies depending upon the WWTP of origin, the method of pH adjustment, and whether alkaline chemicals were added to reduce pathogen concentrations and odor; however, the pH must be close to neutral because the microorganisms within the WWTPs would not survive, as is the case with Emerald's IWBS. The pH values reported by PGG for the three storage units were 7.38, 7.91, and 7.43 for the Newaukum Prairie, Big Hanaford, and Burnt Ridge facilities,

respectively (PGG 2014a). As these pH values are greater than 2 and less than 12.5, the mixed material does not exhibit the characteristic of corrosivity as defined in WAC 173-303-090(6).

The mixed material does not exhibit any of the characteristics that define "reactive" as listed in WAC 173-303-090(7). The mixed material is completely benign, can be handled without any special precautions, and does not present any danger to human health or the environment.

1.7.2 Toxicity

A comparison of the PGG data with the Toxicity Characteristics List (TCLP list) from WAC 173-303-090(8) indicates that the mixed material does not exhibit the characteristic of toxicity. The PGG analyses did not include a TCLP test. Therefore, as directed by Ecology, the values in the TCLP list were multiplied by a factor of 20 to allow for comparison with the total concentrations reported in the PGG study. The PGG data and the TCLP list are compared in Table 11.

The TCLP list contains 41 analytes (including heptachlor epoxide) and the PGG analyses included 31 of those 41 chemicals listed. There were seven chemicals from the TCLP list detected in the PGG study. The concentrations of all seven of these chemicals were below the threshold concentrations provided in the TCLP list. There were four chemicals included in the PGG study that had RLs that were greater than the threshold concentrations provided in the TCLP list. 2,4-Dinitrotoluene; heptachlor epoxide; and selenium all had RLs within the same order of magnitude as the TCLP list thresholds. The RLs for chlordane were an order of magnitude greater than the TCLP list threshold concentration. The 10 chemicals that were not included in the PGG analyses all have relatively high concentration thresholds and only cresols, pyridine, and methyl ethyl ketone can be produced through processes other than specific chemical synthesis.

The origin of the mixed material is known to be biosolids from several municipal WWTPs, IWBS from Emerald's WWTP, cow manure, SWTS from Darigold, WTSS from the Port of Longview, and biosolids from Bio Recycling. Emerald has analyzed the IWBS for toxicity in accordance with WAC 173-303-090(8), most recently in July 2014. None of the 41 chemicals on the TCLP list were detected in the IWBS. A fish bioassay performed on the IWBS also determined the material was not toxic. This data is presented in Table 12. It is logical to conclude that since the toxicity of the municipal WWTP biosolids and the other four sources of mixed material is not in question; and the IWBS have been proven not to be toxic; and the 31 of the possible 41 chemicals in the TCLP list were not detected in the mixed material, or were detected but had concentrations below the thresholds in the mixed material; the mixed material does not exhibit the characteristic of toxicity.

1.7.3 Toxicity (Washington State)

The PGG Report used the book designation procedure in WAC 173-303-100(5)(b) to calculate the toxicity equivalent concentrations (EC) of the mixed material in the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units as 0.577%, 0.568%, and 0.729%, respectively. These EC values were

calculated using incorrect toxic categories and assumed all chemicals that were included in the analyses were present at the RLs. Emerald repeated the book designations using the correct toxicity categories and determined that none of the mixed material is a toxic dangerous waste (all three ECs < 0.001).

The toxicity category for nickel that PGG used in the book designation process was incorrect. PGG performed the book designation with nickel categorized as "X." This category treats nickel as more toxic than both arsenic (category C) and mercury (category B), which is not accurate. A query of the EPA ECOTOX database returned four and five day LC50 concentrations for rainbow trout ranging between 15 and 56 milligrams per liter (mg/L). The lower concentration of 15 mg/L would put nickel into the "D" category.

The PGG report made a similar error for toluene. PGG performed the book designation with toluene categorized as "A." This category treats toluene as more toxic than benzene (category D), which is not accurate. The EPA ECOTOX database returned four and five day LC50 concentrations for rainbow trout ranging between 5.8 and 24 mg/L. The lower concentration of 5.8 mg/L would put toluene into the "C" category.

The PGG book designation used the RL for all non-detected analytes in the toxicity calculation. Because the analyte list for the mixed material was large, and EC calculation included non-detected chemicals, the results were skewed toward the high end of the range. The EC calculation must be based only on the concentrations of the chemicals detected as stated in WAC 173-303-100(5)(b)(i), which states that "A person must determine the toxic category for each known constituent." The inclusion of RLs for chemicals not detected in a substrate creates uncertainty because the size of the analyte list can become more important to the EC value than the chemicals actually present.

Emerald performed the book designation for toxicity EC using the maximum detected concentrations for all chemicals with toxicity data, and using the correct toxicity categories for nickel and toluene. The resulting ECs for the mixed material in the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units were 0.00065, 0.000077, and 0.00076, respectively. All of the mixed material should be considered "not a toxic dangerous waste." This conclusion is consistent with the sources and nature of the material known to be present in the storage units.

1.7.4 Persistence (Washington State)

PGG used the RL for all non-detected analytes in the persistence calculations. Because the analyte list for the mixed material was large, and persistence calculations included non-detected chemicals, the results were skewed toward the high end of the range. The persistence calculations must be based only on the concentrations of the chemicals detected as stated in WAC 173-303-100(6)(b), which states that "When a waste contains one or more halogenated organic compounds (HOC) for which the concentrations are known, the total halogenated organic compound concentration must be determined by summing the concentration percentages for all of the halogenated organic compounds

for which the concentration is known." And (c), which states "A person whose waste contains polycyclic aromatic hydrocarbons (PAH) as defined in WAC 173-303-040, must determine the total PAH concentration by summing the concentration percentages of each of the polycyclic aromatic hydrocarbons for which they know the concentration." The inclusion of RLs for chemicals not detected in a substrate creates uncertainty because the size of the analyte list can become more important to the persistence value than the chemicals actually present.

Emerald performed the persistence calculations using the maximum detected concentrations for all halogenated and polycyclic aromatic hydrocarbon species (Table 13). The resulting persistence values were all several orders of magnitude below the threshold of 0.01 percent, thus none of the mixed material should be considered "persistent dangerous waste." This conclusion is consistent with the sources and nature of the material known to be present in the storage units.

PGG sampled and analyzed the samples using Methods 8260 and 8270 for volatile and semivolatile compounds, respectively. These methods are specified by EPA for halogenated volatile/semivolatile, and PAH species that are used by Washington State to evaluate the persistence criteria.

2.0 FIELD INVESTIGATION

A field investigation will be conducted to collect samples that will provide additional information to support the delisting petitions for the mixed material. Grab samples will be collected and analyzed for the constituents identified in Sections 1.5 and 1.6.

The field investigation will consist of an initial reconnaissance site visit and the sampling event at each storage unit.

2.1 Initial Reconnaissance Site Visit

On November 9, 2016, representatives from FMF, Emerald, and LAI performed an initial site visit to each of the three locations: Big Hanaford, Burnt Ridge and Newaukum Prairie. The purpose of the site visit was to perform reconnaissance for the sampling methodology and observe the onsite conditions of each site. At the Burnt Ridge and Newaukum Prairie locations, each storage unit was found to have an adequate location to launch and recover a sampling boat. At Burnt Ridge, there was a grassy berm on the west end of the storage unit that a boat could be launched from; however, there was not a constructed boat launch area. A concrete-lined ramp in the northeast corner of the Newaukum Prairie storage unit was found to be adequate for launching and recovering a sampling boat. Both storage units at the time of the site visit appeared to have a sufficient water cap to allow for sampling boat access.

Onsite field staff also assessed the Big Hanaford storage unit for access, sampling methodology, and safety. Based on surficial probing and discussions with FMF, it appears that samples may be collected from a plywood sampling platform placed on top of the mixed material surface of the storage unit. The surficial solids appeared saturated and stiff; however, they showed signs of liquid deformation when disturbed. Due to the height of the storage unit (11-12 ft above the ground surface) and limited access locations (only accessible from the southern access ramp), a sampling platform of plywood could be constructed on the inside perimeter approximately 4 ft from the outside edge of the wall to provide safe access for sampling. It did not appear that fall protection tie-offs would be required if such a sampling platform was constructed.

2.2 Mixed Material Sampling

Mixed material sample locations and sample collection procedures for the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units are described in the sections below.

2.2.1 Sample Locations

Sample locations will be determined generally based on the simple random sampling strategy for the Burnt Ridge and Newaukum Prairie storage units (EPA 2015) and the systematic non-random sampling strategy for the Big Hanaford storage unit as adapted from EPA guidance (EPA 1993). The sample location selection procedure for each of the storage units is described in the sections below.

2.2.1.1 Burnt Ridge and Newaukum Prairie

According to an onsite interview with Robert Thode on November 9, 2016, the waste was placed into the storage units from the west weir dumping location at Newaukum Prairie and from the south weir dumping location at Burnt Ridge. The units were mixed at least annually utilizing two propeller-driven mixers and a recirculation pump. Prior to 2014, liquid and mixed material was pumped annually from each unit following the mixing operation. The liquid and mixed material was used as liquid fertilizer on nearby agricultural fields. Operations ceased and no additional material was placed in the Burnt Ridge storage unit after 2013. Material was placed in Newaukum Prairie until Ecology told FMF to cease accepting biosolids in 2014.

Sample locations for the Burnt Ridge and Newaukum Prairie storage units were determined using the simple random sampling strategy described in EPA's guidance document (EPA 2015) as described below and identified in Table 2-4 of the EPA guidance. This sampling strategy was selected based on the premise that the aerated units were well mixed during operations and the mixed material is likely homogeneous. Although the mixed material came from a variety of sources, Table 2-4 of the EPA guidance document suggests that a simple random sampling strategy is most appropriate where little to no information is available concerning the distribution of hazardous constituents. In this case the hazardous constituents of interest are associated with IWBS which, based on the aeration of the units, were likely spatially well mixed.

Each storage unit was divided into 25 ft by 25 ft grids. The grids were overlain on an aerial photograph of the storage unit to determine the sample locations. The x-axis was assigned a letter and the y-axis was assigned a number as shown on Figures 2 and 5. This resulted in 36 possible sample grid squares at each storage unit in which a random sample may be collected. The grid squares from which samples will be collected were selected using the random number generator function in Microsoft Excel. A column (core) of the total recoverable sludge depth will be collected from each randomly selected grid.

The number of random samples that will be collected in each storage unit has been selected with the goal of characterizing the spatial constituent variability in the sludge, in accordance with the EPA guidance document (EPA 2015). The proposed number of samples has been identified based on the total estimated volume of mixed material in each of the storage units, and is sufficient to represent the quantity and spatial variability of the mixed material. Based on an estimated *in situ* mixed material volume of approximately 2,350 cy in the Burnt Ridge storage unit, 11 random samples will be collected. Based on an estimated *in situ* mixed material volume of 5,200 cy at the Newaukum Prairie storage unit, 17 random samples will be collected. Although Ecology's Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2016c) is not applicable to the sampling described in this plan, the numbers of planned samples are consistent with the number of samples identified in the guidance for characterizing stockpiled soil. The randomly selected sample locations for each of the storage units are identified in Table 14 as well as on Figures 2 and 5.

2.2.1.2 Big Hanaford

According to an onsite interview with Robert Thode on November 9, 2016, the Big Hanaford storage unit received solids from the same sources as the Newaukum Prairie and Burnt Ridge storage units, including biosolids from municipalities and IWBS from Emerald. The mixed material was placed in the storage unit in uncompacted lifts. Material was trucked to the storage unit and end-dumped from the truck ramp on the south side of the storage unit. Material was laterally spread throughout the storage unit in lifts using a long-reach backhoe. The material was not mixed or removed after placement and no compaction was performed.

Sample locations for the Big Hanaford storage unit were determined using the systematic non-random sampling strategy (EPA 2015) as described below and identified in Table 2-4 of the Ecology guidance document. This sampling strategy was selected to spatially characterize the material that was likely not well mixed after placement in the storage unit. The variance in the PGG 2014 composite sample results for some parameters suggests that the concentrations of at least some parameters may vary spatially. Based on the EPA guidance document (EPA 2015), a systematic non-random sampling strategy is appropriate for modestly heterogeneous waste streams, which appears to best fit known information about the placed material.

The Big Hanaford storage unit was divided into grids measuring 8 cells by 3 cells (with grid dimensions approximately 10.5 ft by 18.5 ft). The grid was overlain on an aerial photograph of the storage unit to determine the sample locations. The x-axis was assigned a letter and the y-axis was assigned a number as shown on Figure 8. No samples will be collected from the center of the storage unit so that samples can be collected safely, and the grid locations in the center of the storage unit will not be included in the systematic non-random sample location selection. This will result in 18 possible sample grid rectangles in which a sample may be collected. In this approach, three depth ranges (depths) were identified in each grid. The A1 grid was selected for the first sample location; in the first grid the top depth will each be sampled. Moving clockwise from the A1 grid, the next grid will be sampled from the middle depth. Continuing on with this pattern, every grid will be sampled in the top, middle, or bottom depth. Figure 8 shows the sampling pattern and grid demarcation for sampling. Table 14 additionally lists the sample depth for each sampling grid.

The three depths will be defined by the depth of mixed material in the storage unit and will consist of the top, middle, and bottom vertical delineations within the mixed material. Based on measurements taken during the initial reconnaissance trip on November 9, 2016, the mixed material depth ranged from 10 to 11 ft in vertical depth. The top depth will be sampled from approximately 0-3.5 ft in depth from the surface of the mixed material, the middle depth will be sampled from approximately 3.5-7 ft in depth from the surface of the mixed material, and the bottom depth will be sampled from approximately 7-10 ft in depth from the surface of the mixed material. The depth divisions of each sample interval may be adjusted or revised based on field conditions observed during sampling; these adjustments will not impact the total number of samples planned in each of the depth intervals.

The number of samples that will be collected in each of the depths was selected to characterize the spatial constituent variability in the mixed material and evaluate the degree of heterogeneity. The systematic approach, which is similar to the sampling strategy discussed in EPA's Petitions to Delist Hazardous Wastes: A Guidance Manual (Second Edition) (EPA 1993), was selected to adequately characterize variability. If the sampling results identify hot spots, further sampling may be required to further delineate the area.

2.2.2 Sampling Methodology

Sample methodology for collection of the mixed material samples at the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units is described in the sections below. During all field sample activities, field staff will follow the site-specific health and safety plan (HASP), included in Appendix D, while on site and will place priority on safety around and on the storage units. If a sample cannot be collected safely, either it will be collected at another time when it can be collected safely or a sample will be collected from a different location where it can be collected safely. Deviations from the planned sampling locations will be documented in the sampling report described in Section 6.0.

2.2.2.1 Burnt Ridge and Newaukum Prairie

The proposed sample collection methodology requires that the mixed material is covered by a minimum of 1 ft of free water. If the minimum water cover is not present, representative mixed material samples may not be recoverable because a sampling boat will not be able to navigate the storage unit. If there is not sufficient water overlying the mixed material at a planned sampling location, the sample location will be moved to the nearest location where a minimum 1 ft depth of free water is present on top of the mixed material and a sample can be safely collected. If there is not enough water in the storage unit to safely launch a boat and collect samples, sampling will be postponed until sufficient water is present in the storage unit.

A 25-ft by 25-ft x-y grid will be staked out along the perimeter of each storage unit in order to help identify the location of each sample. The x-axis of the grid (north-south axis) will be lettered and the y-axis of the grid (east-west axis) will be numbered as described in Section 2.2.1.1 above. Figures 2 and 5 show the orientation and labeling of the grid system.

Following the demarcation of the sampling locations, a 12-ft aluminum row boat, or similar non-motorized water craft, will be used to access the sample locations listed in Table 14 and depicted on Figures 2 and 5. Samples will be collected from any accessible location within the 25-ft by 25-ft grid. The boat will be propelled by hand with oars and held in place at the sampling location with ropes secured to the bank. Efforts will be made to move the boat slowly through the water to minimize disturbance to settled mixed material.

Field staff will record the thickness of the water cap and the thickness of the mixed material at each location. If less than 2 ft of total depth of mixed material is found in a sampling grid, the sample

location will be moved to the nearest sampling grid with mixed material depth of greater than 2 ft. The location will be recorded using a handheld global positioning system (GPS) device. Field staff will also record observable and notable water or mixed material characteristics encountered in the field including but not limited to: density, viscosity, color, odor, and debris.

Mixed material sample columns (cores) will be collected using a 1.5-inch-diameter Sludge Judge with a ball valve attached or similar equipment with the same or larger diameter. If mixed material samples are unrecoverable with the Sludge Judge, a 2-inch-diameter AMS Multi-Stage Sludge Sampler with flapper valve and core catcher or Eckman Grab Sampler may be used. Field staff will utilize the design drawings (Figures 3 and 6) to estimate the depth to the liner (which in the case of Burnt Ridge includes a 1 ft clay layer). Field staff will not advance sampling equipment to within 1 ft of the estimated liner depth.

Multiple discrete cores may need to be collected from each sample location to provide adequate sample volume. Sample jars will be filled to minimize headspace in the container.

Mixed material samples will be analyzed for the analytes listed in Table 15 for Burnt Ridge and Table 16 for Newaukum Prairie. One duplicate sample will be collected from each storage unit.

Mixed material sample containers to be submitted for the analysis of VOCs will be filled first to minimize disturbance to the sample. Appropriate sample containers for each of the required analyses listed above are provided in Table 15 (Burnt Ridge) and Table 16 (Newaukum Prairie). Samples will be placed in a shipping cooler and will be stored at less than 6 degrees Celsius (°C). Samples will be transported to the laboratory within 6 days of sample collection, and will be stored at the laboratory at less than 6°C.

2.2.2.2 Big Hanaford

The Big Hanaford storage unit is approximately 100 ft long by 60 ft wide and the vertical concrete side panels that make up the walls of the storage unit are approximately 11.5 ft in height. There is approximately 8 ft of headspace between the top of the wall panels and the eaves of the roof. There is approximately 1 ft of freeboard from the top of the mixed material to the top of the concrete wall panels. An access abutment that is approximately 20 ft in width exists on the south side of the storage unit. A wooden gate exists on the west side of the storage unit but this does not currently provide an access point. The top thickness of each of the wall panels is approximately 8 inches.

Because of the restricted access to the storage unit, samples will be taken from a sampling platform secured to the side wall of the unit. The sampling platform will be placed on top of the mixed material. Field staff will access the sampling platform with a ladder where appropriate. This access restriction limits sample collection to locations near the side walls of the storage unit as described in Section 2.2.1.2 above. At no time will field staff walk directly on the accumulated mixed material. Field staff will utilize safety restraints and harnesses as fall protection in accordance with the HASP. If

samples cannot be collected safely from a certain location, samples will instead be collected at a different time or from a different location so they can be collected safely.

Samples will be collected below the mixed material surface. The mixed material will be sampled by fitting a disposable slip cap to the end of a section of PVC pipe and pushing the pipe by hand to the desired sampling depth. A narrow diameter hand auger will then be lowered through the PVC pipe and used to displace the slip cap and collect the sample from that depth. Sample locations and depths are identified in Table 14; grids are identified on Figure 8. All samples will be grab samples. The coordinates and position of each sample location will be determined using a combination of a handheld GPS¹ and hand measurements, as appropriate.

Field staff will also record observable and notable mixed material characteristics encountered in the field including but not limited to: density, viscosity, color, odor, and debris. Mixed material sample cores will be collected in the hand auger. Multiple, discrete cores may need to be collected from each sample location to provide adequate sample volume. Sample jars will be filled to minimize headspace in the container.

Mixed material samples will be analyzed for the analytes listed in Table 17 for Big Hanaford. One duplicate sample will be collected.

Additional sample containers will be collected and archived by the laboratory for the PCB analysis and potentially the TCLP analysis for cobalt; acrylonitrile; naphthalene; 2,4-dinitrotoluene; 2,6-dinitrotoluene; and 4-methylphenol, if needed. Mixed material samples to be submitted for the analysis of VOCs will be collected and preserved in accordance with EPA Method 5035A. Appropriate sample containers for each of the required analyses listed above are provided in Table 17. Samples will be placed in a shipping cooler and stored at less than 6°C. Samples will be transported to the laboratory within 6 days of sample collection, and will be stored at the laboratory at less than 6°C.

2.2.3 Equipment Decontamination

All non-dedicated field sampling equipment (e.g., stainless-steel bowls and spoons, buckets, mixed material samplers, augers, etc.) will be decontaminated between sampling locations in the following manner:

- Rinsed with clean water,
- Scrubbed with Alconox and water solution, and
- Rinsed with tap water.

¹ Handheld GPS unit will provide horizontal accuracy to within approximately 3 meters.

2.2.4 Sample Documentation and Handling

Samples will be transported to an analytical laboratory within 6 days of sample collection to meet the holding times provided in Tables 15-17. The transportation and handling of samples will be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to the release of samples. Samples will be logged on a chain-of-custody form and will be kept in coolers on ice, and maintained at less than 6°C until delivery to the analytical laboratory. The chain-of-custody form will accompany each shipment of samples to the laboratory.

A complete record of field activities will be maintained. Documentation necessary to meet quality assurance objectives for this project is described in Section 5.3 of the QAPP (Appendix E) and includes: field notes and sampling forms, sample container labels, and sample chain-of-custody forms. Original documentation will be kept in LAI's project files, and sampling documentation and other project records will be safeguarded to prevent loss, damage, or alteration.

If an error is made on a document, corrections will be made by drawing a single line through the error and entering the correct information. The erroneous information will not be obliterated. Corrections will be initialed and dated, and, if necessary, a footnote explaining the correction will be added. Errors will be corrected by the person who made the entry, whenever possible. Documentation will include:

- Recordkeeping by field personnel of primary field activities
- Recordkeeping of all samples collected for analysis
- Use of sample labels and chain-of-custody tracking forms for all samples collected for analysis.

Field report forms will provide descriptions of pertinent sampling activities, sampling personnel, weather conditions, and a record of any modifications to the procedures and plans identified in this plan. The field report forms are intended to provide sufficient data and observations to enable participants to reconstruct events that occurred during the sampling period.

After sample collection, the following information will be recorded on the field log sheet:

- Sample identification
- Date and time of sample collection
- Name of person collecting the sample
- Sample grid location and GPS coordinates
- Physical observations (including color, apparent grain size, presence of debris [e.g., wood debris], presence of sheen or other visible contamination, and odor).

Sample nomenclature will provide information regarding the facility (BR for the Burnt Ridge storage unit, NP for Newaukum Prairie storage unit, BH for the Big Hanaford storage unit); sample type (G-mixed material grab); sample grid location letter (A, B, C consistent with grid layout presented on Figures 2, 5, and 8) and sample grid location number; and the sample depth range for the Big

Hanaford samples (TP-top, MD-middle, BT-bottom). Blind field duplicates will be labeled with a Dup and a number instead of the sampling grid. For example:

- NP-G-A2: Newaukum Prairie storage unit, mixed material grab, sample grid A2.
- NP-G-Dup1: Newaukum Prairie storage unit, mixed material grab, blind field duplicate sample 1.
- BH-G-C8TP: Big Hanaford storage unit, mixed material grab, sample grid C8, top depth interval.

3.0 SAMPLE ANALYSIS

Samples will be analyzed for the analytes listed in Tables 15, 16, and 17 by an Ecology-accredited analytical laboratory by the analytical methods listed in the table. Results will be reported on an asreceived basis in accordance with section 8.2 of the EPA Delisting Guidance (EPA 1993). Analytes were selected based on comparison of the results from the PGG report (PGG 2014a) with the PDLs and TCLP-PDLs x 20. Tables 2-4 present the results from the PGG sample analysis. The selected analytes based on the PGG report include: acrylonitrile; cobalt; 2,4-dinitrotoluene; 2,6-dinitrotoluene; naphthalene; and 4-methylphenol at the Big Hanaford storage unit, as described in sections 1.5 and 1.6. Samples from Burnt Ridge and Newaukum Prairie were collected and analyzed for cobalt in order to determine the concentration of cobalt in the leachate. The results of the TCLP analyses indicated that cobalt is below the TCLP PDL and therefore no additional analyses for these two storage units is warranted, as discussed previously in this plan.

If the maximum total concentration of acrylonitrile; cobalt; 2,4-dinitrotoluene; 2,6-dinitrotoluene; naphthalene; or 4-methylphenol in a sample collected from the Big Hanaford storage unit exceeds the TCLP-PDL x 20; then a TCLP extraction will be performed on an archived sample and the extract will be analyzed for the exceeding analyte. The analysis will be performed using the laboratory method listed in Table 17. If more than one sample exceeds the TCLP-PDL x 20 for any one analyte, the sample with the highest total concentration will be selected. If the TCLP concentration of acrylonitrile; cobalt; 2,4-dinitrotoluene; 2,6-dinitrotoluene; naphthalene; or 4-methylphenol exceeds the TCLP-PDL, Emerald and FMF will consult with Ecology and EPA regarding TCLP analysis of applicable additional archived samples. Ecology and EPA have agreed that, due to the length of time the mixed material has been in the storage unit, samples held longer than the method holding time will be considered valid in all respects as long as they were stored in the appropriate containers at the required temperature.

Three samples from Big Hanaford will be selected by Ecology and EPA based on the results for other analytes for analysis of PCBs. Ecology and EPA have agreed that, due to the length of time the mixed material has been in the storage unit, samples held longer than the method holding time will be considered valid in all respects as long as they were stored in the appropriate containers at the required temperature.

All samples will be analyzed for F003 (acetone), U019 (benzene), U154 (methanol), and U220 (toluene) in order to demonstrate compliance with the LDRs. All of the samples will be analyzed for total acetone, benzene, methanol, and toluene. Although the methanol LDR is reported as a TCLP concentration; analytical limitations will produce an RL greater than the LDR limit. The total methanol concentration will be compared to the TCLP LDR using the rule of 20. If the sample exceeds the LDR using the rule of 20, Emerald and FMF will consult with Ecology and the EPA to determine further actions.

4.0 QUALITY ASSURANCE/QUALITY CONTROL

The Quality Assurance Project Plan is provided in Appendix E.

5.0 SCHEDULE

According to the Agreement, this plan is to be implemented within 30 days of Ecology approval. As discussed with Ecology, the schedule for implementation may be impacted by inclement weather. Sampling is planned to be completed by the end of fall 2017 or within 30 days of Ecology approval of the plan, whichever is later.

6.0 REPORTING

Upon completion of the sampling event and the receipt and validation of the laboratory results, a report will be prepared and submitted to Ecology and EPA. This report will detail sampling procedures, field observations, deviations from this plan, and the results of the sampling event. The report will include a discussion of the waste characterization. The analytical results will be summarized, compared to the PDLs and TCLP-PDLs (either by direct comparison in the event of a TCLP extraction or by the rule of 20 if no TCLP extraction was performed).

In addition, the concentrations of acetone, benzene, and toluene will be compared directly to the LDRs. The concentration of methanol will be compared to the LDR using the rule of 20.

A brief discussion of any additional sampling or hot spot delineation that may be appropriate may also be included in the final report. No additional sampling or hot spot delineation will occur without approval from Ecology and the EPA.

7.0 REFERENCES

AMSA. 2001. The AMSA 2000/2001 Survey of Dioxin-like Compounds in Biosolids: Statistical Analyses. Association of Metropolitan Sewerage Agencies. October 30.

ATSDR. 2004. Public Health Statement: Cobalt, CAS#: 7440-48-4. Agency for Toxic Substances and Disease Registry.

ATSDR. 2014. Public Health Statement: Toxaphene. Agency for Toxic Substances and Disease Registry.

Ecology. 2014. Letter: Administrative Order No. 10938. From Laurie G. Davies, Waste 2 Resources Program Manager, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 11.

Ecology. 2016a. Agreement for Conditional Compliance with Ecology Administrative Order No. 10938 During Judicial Review. Washington State Department of Ecology. June 3.

Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

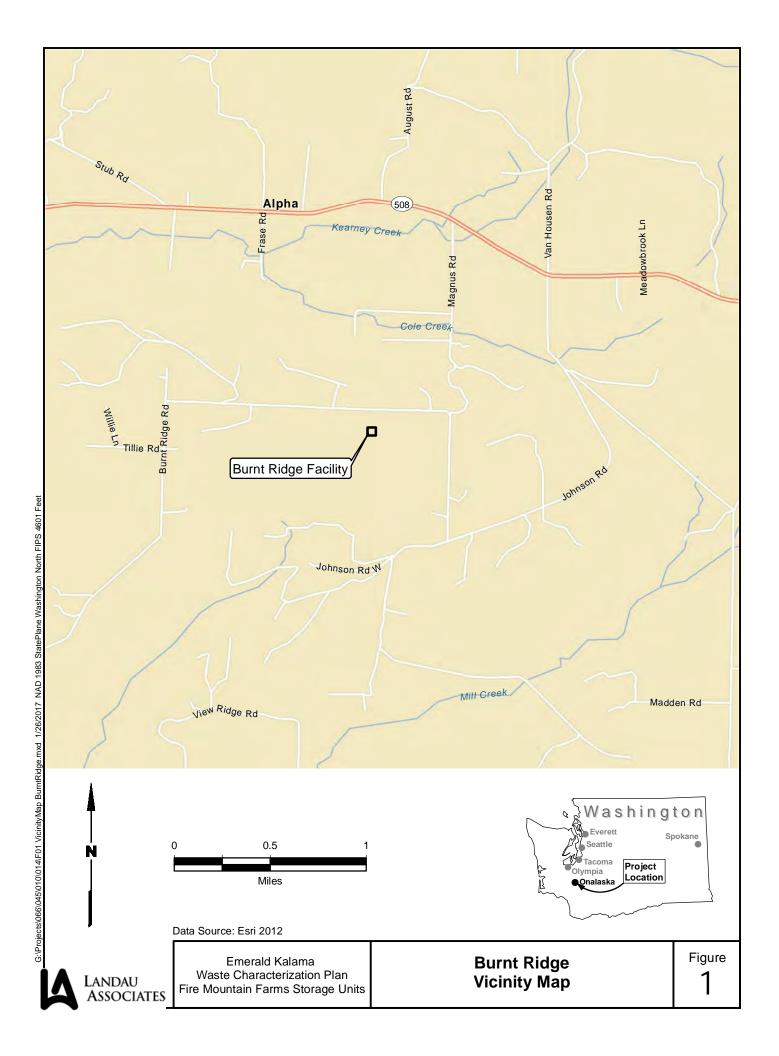
Ecology. 2016c. Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057. Washington State Department of Ecology. Revised June.

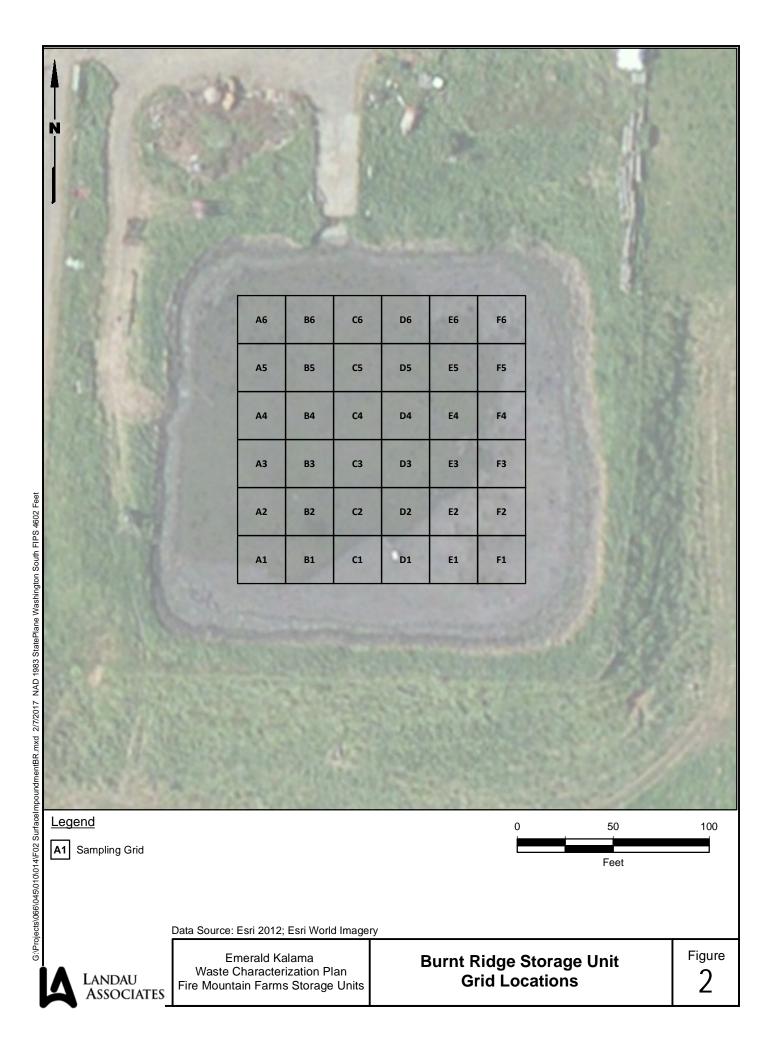
EPA. 1993. Petitions to Delist Hazardous Wastes: A Guidance Manual. US Environmental Protection Agency. March.

EPA. 1999. EPA Fact Sheet Toxaphene Update: Impact on Fish Advisories. United States Environmental Protection Agency.

EPA. 2009. Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report. United States Environmental Protection Agency. January.

EPA. 2015. Waste Analysis at Facilities that Generate, Treat, Store, and Dispose of Hazardous Wastes. EPA 530-R-12-001. U.S. Environmental Protection Agency. April.

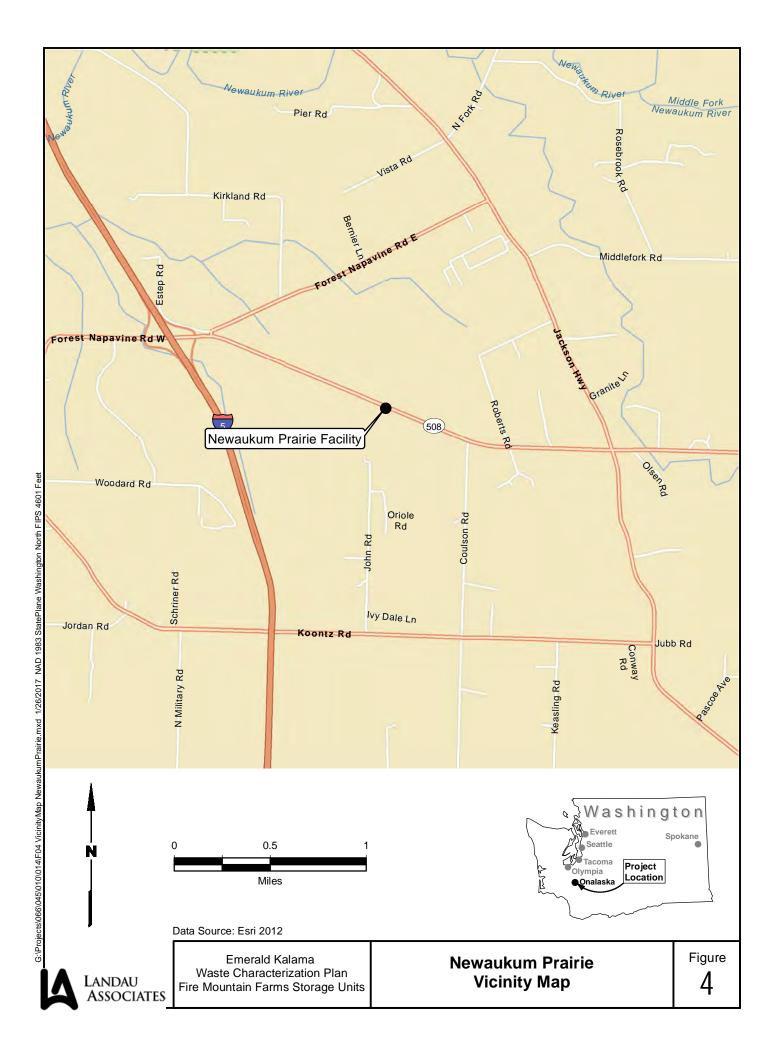

NTP. 2016. Report on Carcinogens, Fourteenth Edition. US Department of Health and Human Services, Public Health Service, National Toxicology Program.

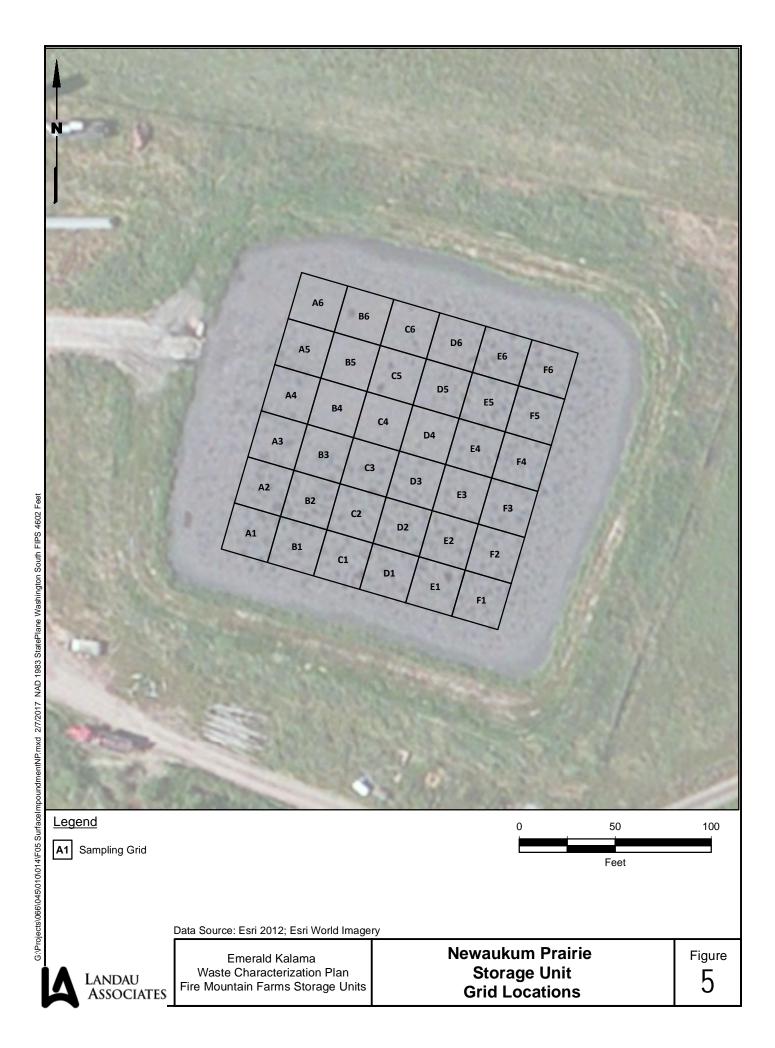

PGG. 2014a. Fire Mountain Farms, Inc. Results of Investigation of Sludge at Three Storage Sites. Pacific Groundwater Group. September 11.

PGG. 2014b. Final: Quality Assurance Project Plan Investigation of Emerald Kalama Chemical Sludge Comingled with Biosolids from Other Permitted Sources at Three Storage Sites. Pacific Groundwater Group. July 2.

Thode, James. 1998. Design Drawings: Fire Mountain Farms Burnt Ridge Lagoon and Newaukum Prairie Lagoon. August.

Thode, James. 2013. Drawings: Biosolids Lagoon Lining Project: Newaukum Prairie Storage Unit As-Built. October 3.


Burnt Ridge Lagoon 10 FREE BOARD 1. Slopes are 31 inside and 21 outside. 2. Fill material shall be placed in accordance with SCS construction LKISTING CRADE specification CS-15. 3. Approximate excavation is 8,940 CY and fill is 7,800 CY. Excess soil may be placed on the outside of dikes. 4. Drain pipe shall be 6' SCH 40 steel with flanged ends. The lagoon shall be sealed using Claynax 600CL geosynthetic clay liner manufactured by Calloid Environmental Technologies Company. 6. Installation of the sealing material shall be in accordance with the manufacturer recommendo tions. 7. The CSC Technician shall be notified FLEX HOSE W/FLDAT at least 24 hrs prior to placement of the sealing material. The top 6" of soil shall be striped prior to starting of cut and fill operations. 9. All disturbed and fill areas shall be seeded to grass upon the completion of construction. 10. Warning signs shall be placed on all sides on the lagoon. 6' DRAIN PIPE 11. Storage volume is 3,027,500 gal. W/VALVE FIRE MOUNTIAN FARMS BURNT RIDGE LAGOON 856 BURNT RIDGE RD. CINEBAR, WA AUGUST 1998



Emerald Kalama Waste Characterization Plan Fire Mountain Farms Storage Units

IRES

Burnt Ridge Storage Unit Design Figure 3

PLAN VIEW NTS

> BID-SOLIDS LAGOON LINING FIRE MOUNTIAN FARMS 349 SR 508 CHEHALIS, WA 98523 SEP 2013 SHEET 1 of 5

Emerald Kalama Waste Characterization Plan Fire Mountain Farms Storage Units

Newaukum Prairie Storage Unit Design Figure 6

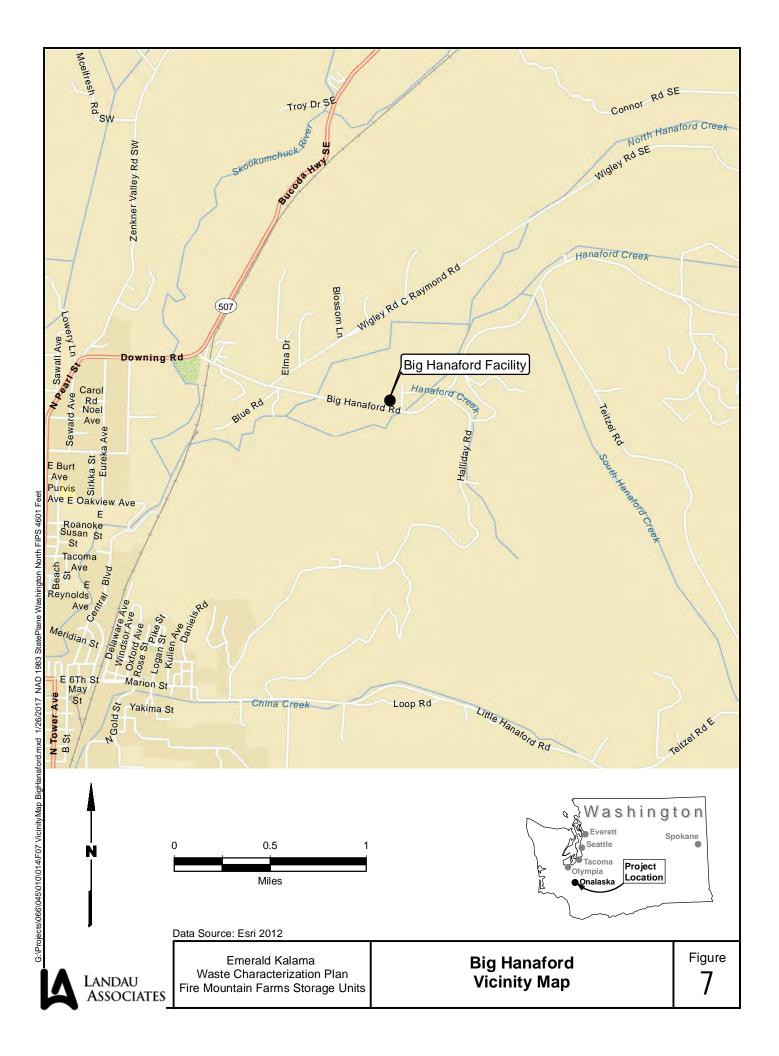


Table 1
Mixed Material Sources
Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units
Lewis County, Washington

	Big Hanaford	d Newaukum Prairie	Burnt Ridge
Biosolids Source	(tons)	(tons)	(tons)
Emerald Kalama Chemical, LLC	18.8	24.7	9.8
Kitsap Municipal Wastewater Treatment Plant	94.1	66.7	26.5
Castle Rock Municipal Wastewater Treatment Plant	3.5	2.1	0.8
West Sound Utility District Wastewater Treatment Plant	49.1	42.8	17.0
Camas Municipal Wastewater Treatment Plant	17.3	20.4	8.1
McCleary Municipal Wastewater Treatment Plant	3.7	3.0	1.2
Aberdeen Municipal Wastewater Treatment Plant	38.8	49.7	19.7
Kalama Municipal Wastewater Treatment Plant	4.5	2.1	0.8
Gig Harbor Municipal Wastewater Treatment Plant	38.3	34.8	13.8
Grand Mound Municipal Wastewater Treatment Plant		8.0	3.2
Darigold - Wastewater Treatment Plant		21.1	8.4
Ocean Shores Municipal Wastewater Treatment Plant		30.9	12.3
Lacey Olympia Tumwater Thurston County Wastewater Treatment Plant	33.0	31.2	
Bio Recycling - Private Wastewater Treatment Plant	63.5		
Port of Longview - Catch Basin Solids		1.1	
Lewis County Water Sewer District 6 Municipal Wastewater Treatment Plant	5.1	1.3	0.5
Cow Manure (Fire Mountain Farms water runoff from barn lot)			3.8
Ţ	otal 369.7	340.0	126.0

Landau Associates

Prior Sampling Results

Fire Mountain Farms Burnt Ridge Storage Unit

Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

				Sample	ID and Sampl	e Date
		Preliminary Delisting		BR-Comp-1	BR-Comp-2	BR-Comp-3
Analyte	CAS No.	Level (a)	TCLP-PDL X 20 (b)	7/9/2014	7/9/2014	7/9/2014
Volatiles (ug/kg; EPA Method 8260C)	74.55.6	2.455.44	4.405.40	2 211	211	4.6
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	2.45E+11 1.88E+08	1.40E+10 5.54E+06	2.3U 2.3U	2U 2U	1.8
1,1,2-Trichloroethane	79-00-5	5.25E+08	2.32E+04	2.3U	2U	1.5
L,1-Dichloroethane	75-34-3	1.88E+10	6.36E+06	2.3U	2U	1.
1,1-Dichloroethene 1.2.4-Trichlorobenzene	75-35-4 120-82-1	2.88E+09 2.49E+10	1.29E+05 1.19E+05	2.3U 12U	2U 10U	1.
1,2-Dichlorobenzene	95-50-1	2.19E+10	2.76E+06	2.3U	2U	1.
1,2-Dichloroethane	107-06-2	8.25E+07	1.26E+04	2.3U	2U	1.
1,2-Dichloropropane 1,3-Dichlorobenzene	78-87-5 541-73-1	7.06E+08	4.06E+04	2.3U 2.3U	2U 2U	1.
1,4-Dichlorobenzene	106-46-7	2.50E+08	5.70E+04	48	20 26	1.
2-Chloroethylvinylether	110-75-8			12U	10U	
Acrolein	107-02-8	7.68E+05	6.04E+31 2.74E+03	120U 12U	100U	g
Acrylonitrile Benzene	107-13-1 71-43-2	2.75E+07 2.51E+08	2.74E+03 2.46E+04	2.3U	10U 2U	1
Bromodichloromethane	75-27-4	2.51E+08	1.63E+04	2.3U	2U	1
Bromoform	75-25-2	4.68E+09	1.82E+05	2.3U	2U	1.
Bromomethane Carbon Tetrachloride	74-83-9 56-23-5	2.78E+07 1.37E+08	1.32E+27 1.70E+04	2.3U 2.3U	2U 2U	1
Chlorobenzene	108-90-7	1.37E+10	5.54E+05	2.3U	2U	1.
Chloroethane	75-00-3	6.33E+08	2.78E+07	2.3U	2U	1
Chloroform Chloromethane	67-66-3 74-87-3	4.35E+07	9.62E+03 7.28E+05	2.3U 2.3U	2U 2U	1.
cniorometnane cis-1,3-Dichloropropene	10061-01-5	2.02E+08 6.70E+08	8.78E+32	2.3U 2.3U	2U 2U	1. 1.
Dibromochloromethane	124-48-1	6.70E+08	1.67E+04	2.3U	2U	1
Ethylbenzene Hoveshlorehutzdiene	100-41-4	3.98E+10	5.10E+06	2.3U	2U	1
Hexachlorobutadiene Methylene Chloride	87-68-3 75-09-2	3.11E+06 9.90E+08	9.82E+03 9.48E+04	12U 4.6U	10U 4U	3
Naphthalene	91-20-3	1.43E+09	3.92E+03	12U	10U	3.
Tetrachloroethene	127-18-4	1.19E+07	2.46E+03	2.3U	2U	1.
Toluene trans-1,2-Dichloroethene	108-88-3 156-60-5	6.64E+10 1.36E+09	5.44E+06 3.08E+05	20 2.3U	35 2U	1.
trans-1,3-Dichloropropene	10061-02-6	7.06E+08	8.78E+32	2.3U	2U	1.
Trichloroethene	79-01-6	4.28E+08	1.36E+04	2.3U	2U	1.
Vinyl Chloride	75-01-4	7.44E+06	9.66E+02	2.3U	2U	1.
Metals (mg/kg; EPA Method 6010C/7471A)						
Antimony	7440-36-0	5.80E+05	3.24E+01	40U	30U	3
Arsenic	7440-38-2	8.48E+03	1.01E+00	40U	30U	3
Beryllium	7440-41-7	5.94E+04	9.14E+01	0.7U	0.7U	0
Cadmium Chromium	7440-43-9 7440-47-3	3.20E+04 1.19E+04	4.12E+01 2.54E+02	3 31	3 45	
Cobalt	7440-48-4	1.59E+04	2.54E+01	43	48	
Copper	7440-50-8	3.27E+06	3.34E+03	379	417	3
Lead Molybdenum	7439-92-1 7439-98-7	1.36E+07 1.93E+07	6.24E+02 3.94E+02	40 14	30 16	
Nickel	7440-02-0	5.94E+05	1.60E+03	28	45	
Selenium	7782-49-2	2.25E+06	3.96E+02	40U	30U	3
Silver Thallium	7440-22-4 7440-28-0	3.31E+06 3.83E+02	9.24E+02 5.44E+00	5 40U	30U	3
Zinc	7440-28-0	8.46E+06	2.40E+04	886	969	
Mercury	7439-97-6	1.16E+06	8.16E+00	1	1.9	
Semivolatiles (ug/kg; EPA Method 8270D) 1,2,4-Trichlorobenzene	120-82-1	2.49E+10	1.19E+05	260U	310U	26
1,2-Dichlorobenzene	95-50-1	2.19E+10	2.76E+06	260U	310U	26
1,2-Diphenylhydrazine	122-66-7	1.80E+07	1.67E+03	260U	310U	26
1,3-Dichlorobenzene	541-73-1	2.505.00	 F 70F : 0.4	260U	310U	26
1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane)	106-46-7 108-60-1	2.50E+08	5.70E+04 	480 260U	540 310U	26
2,4,6-Trichlorophenol	88-06-2	1.55E+08	3.82E+04	1,300U	1,500U	1,30
2,4-Dichlorophenol	120-83-2	1.40E+09	2.04E+05	1,300U	1,500U	1,30
2,4-Dimethylphenol 2,4-Dinitrophenol	105-67-9 51-28-5	3.52E+10 7.72E+09	1.36E+06 1.39E+05	260U 2,600U	310U 3,100U	2,60
2,4-Dinitrophenoi	121-14-2	3.60E+08	1.99E+03	1,300U	1,500U	1,30
2,6-Dinitrotoluene	606-20-2	3.60E+08	1.99E+03	1,300U	1,500U	1,30
2-Chloronaphthalene	91-58-7	4.08E+09	1.23E+06	260U	310U	26
2-Chlorophenol 2-Nitrophenol	95-57-8 88-75-5	1.14E+10 	3.48E+05	260U 260U	310U 310U	26
3,3'-Dichlorobenzidine	91-94-1	1.18E+07	3.04E+03	1,300U	1,500U	1,30
1,6-Dinitro-2-Methylphenol	534-52-1	3.86E+08	6.98E+03	2,600U	3,100U	2,60
1-Bromophenyl-phenylether 1-Chlorophenyl-phenylether	101-55-3 7005-72-3			260U 260U	310U 310U	26
4-Chlorophenyi-phenyiether 4-Methylphenol	106-44-5	1.65E+10	3.48E+05	1,100	450	20
1-Nitrophenol	100-02-7			1,300U	1,500U	1,30
Acenaphthulana	83-32-9	6.23E+09	1.28E+06	260U	310U	26
Acenaphthylene Anthracene	208-96-8 120-12-7	7.06E+09	3.12E+06	260U 260U	310U 310U	26
Azobenzene	103-33-3			260U	310U	26
Benzo(a)anthracene	56-55-3	4.65E+05	8.42E+03	260U	310U	26
Benzo(a)pyrene	50-32-8	3.45E+04	3.16E+06	260U	310U	20
Benzo(b)fluoranthene Benzo(g,h,i)perylene	205-99-2 191-24-2	2.72E+05 	2.70E+07 	330M 260U	310U 310U	38
Benzo(k)fluoranthene	207-08-9	3.22E+06	8.02E+22	330M	310U	36
ois(2-Chloroethoxy) Methane	111-91-1	1.16E+10	2.04E+05	260U	310U	2
Sis-(2-Chloroethyl) Ether	111-44-4	2.34E+08	1.33E+04	260U	310U	2
ois(2-Ethylhexyl)phthalate Butylbenzylphthalate	117-81-7 85-68-7	2.44E+10 2.06E+09	3.86E+33 4.80E+06	10,000 260U	12,000 310U	9,
Chrysene	218-01-9	4.57E+07	8.42E+05	260U	310U	2
Dibenz(a,h)anthracene	53-70-3	3.63E+04	4.44E+16	260U	310U	2
Diethylphthalate	84-66-2	1.14E+12	1.20E+08	260U	310U	20
Dimethylphthalate	131-11-3 84-74-2	3.86E+13 2.12E+09	6.94E+08 2.96E+06	260U 260U	310U 310U	20

Prior Sampling Results

Fire Mountain Farms Burnt Ridge Storage Unit

Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

			Sample	Sample ID and Sample Date				
		D. P. C. D. P. P. C.		BR-Comp-1	BR-Comp-2	BR-Comp-3		
Amalista	CAS No.	Preliminary Delisting	TCI D DDI V 20 /b)	7/9/2014	7/9/2014	7/9/2014		
Analyte	CAS NO.	Level (a)	TCLP-PDL X 20 (b)			7/9/2014		
Di-n-Octyl phthalate	117-84-0	4.18E+10	3.12E+32	260U	310U	260U		
Fluoranthene	206-44-0	1.17E+08	2.96E+05	360	390	450		
Fluorene Hexachlorobenzene	86-73-7	1.91E+09	5.90E+05	260U 260U	310U 310U	260U		
Hexachlorobutadiene Hexachlorobutadiene	118-74-1 87-68-3	1.74E+04 3.11E+06	1.08E+04 9.82E+03	260U 260U	310U 310U	260U 260U		
Hexachlorocyclopentadiene	77-47-4	7.08E+08	1.50E+32	1,300U	1,500U	1,300U		
Hexachloroethane	67-72-1	5.10E+07	3.30E+04	260U	310U	260U		
Indeno(1,2,3-cd)pyrene	193-39-5	8.57E+05	2.96E+14	260U	310U	400		
Isophorone	78-59-1	1.26E+11	1.35E+06	260U	310U	260U		
Naphthalene	91-20-3	1.43E+09	3.92E+03	260U	310U	260U		
Nitrobenzene	98-95-3	1.93E+09	3.48E+04	260U	310U	260U		
N-Nitrosodimethylamine	62-75-9	2.83E+06	2.66E+01	1,300U	1,500U	1,300U		
N-Nitroso-Di-N-Propylamine	621-64-7	3.26E+07	1.93E+02	260U	310U	260U		
N-Nitrosodiphenylamine	86-30-6	2.10E+09	2.72E+05	260U	310U	260U		
Pentachlorophenol	87-86-5	3.05E+07	2.90E+03	1,300U	1,500U	1,300U		
Phenanthrene	85-01-8			260U	310U	260U		
Phenol	108-95-2	1.16E+12	2.08E+07	260U	310U	260U		
Pyrene Total Benzofluoranthenes	129-00-0 TOTBFA	2.10E+08	5.34E+05	390 350M	310 310U	270 400M		
Total Berizonuorantrieries	TOTBFA			350101	3100	400101		
PCBs (ug/kg; EPA Method 8082A)								
Aroclor 1016	12674-11-2			9.8U	NA	NA		
Aroclor 1221	11104-28-2			9.8U	NA	NA		
Aroclor 1232	11141-16-5			9.8U	NA	NA		
Aroclor 1242	53469-21-9			9.8U	NA	NA		
Aroclor 1248	12672-29-6			98U	NA	NA		
Aroclor 1254	11097-69-1			150U	NA	NA		
Aroclor 1260	11096-82-5			61	NA	NA		
Total PCBs (c)	1336-36-3	1.12E+02	2.40E+13	61	NA	NA		
Pesticides (ug/kg; EPA Method 8081B)								
4,4'-DDD	72-54-8	1.59E+04	2.64E+31	16U	NA	NA		
4,4'-DDE	72-55-9	8.21E+03	1.95E+22	16U	NA NA	NA NA		
4,4'-DDT	50-29-3	2.33E+03	1.17E+31	16U	NA	NA		
Aldrin	309-00-2	6.70E+01	5.98E+12	8.2U	NA	NA		
alpha-BHC	319-84-6	5.07E+05	1.26E+25	8.2U	NA	NA		
beta-BHC	319-85-7	7.09E+05	7.60E+02	8.2U	NA	NA		
cis-Chlordane	5103-71-9			19U	NA	NA		
delta-BHC	319-86-8			110U	NA	NA		
Dieldrin				57U	NA	NA		
Endosulfan I	959-98-8			14U	NA	NA		
Endosulfan II	33213-65-9			16U	NA	NA		
Endosulfan Sulfate	1031-07-8			72U	NA	NA		
Endrin	72-20-8	8.73E+06	9.26E+15	25U	NA	NA		
Endrin Aldehyde	7421-93-4 58-89-9	2.83E+06	4 225, 22	16U 8.2U	NA	NA NA		
gamma BHC (Lindane) Heptachlor	58-89-9 76-44-8	2.83E+06 6.40E+02	1.23E+23 1.57E+30	8.2U 8.2U	NA NA	NA NA		
Heptachlor Epoxide	1024-57-3	6.40E+02 2.22E+04	6.74E+30	8.2U 8.2U	NA NA	NA NA		
Toxaphene	8001-35-2	7.50E+02	3.98E+10	820U	NA NA	NA NA		
trans-Chlordane	5103-74-2	7.302102		1,100U	NA NA	NA NA		
Dioxins/Furans (pg/g; EPA Method 1613B)								
2,3,7,8-TCDD	1746-01-6	9.90E+00	4.84E+09	2.35UJ	NA	NA		
Inorganic Parameters								
N-Nitrate (mg-N/kg; Calculated)	NITRATE			0.6U	NA	NA		
N-Ammonia (mg-N/kg; EPA 350.1M)	AMMONIA			7,600	NA NA	NA NA		
Total Kjeldahl Nitrogen (mg-N/kg; EPA 351.2)	KJELDHAL-N			33,700	NA NA	NA NA		
Nitrate+Nitrite (NO3+NO2) (mg-N/kg; EPA 353.2)	NITRATE-NITRITE			0.60	NA NA	NA NA		
N-Nitrite (mg-N/kg; EPA 353.2)	NITRITE			0.72	NA	NA		
Total Solids (%; SM2540G)	TS104			15.06	13.40	15.91		
Total Cyanide (mg/kg; EPA 335.4)	57-12-5	1.83E+06	1.39E+03	1.05	1.42	1.08		
pH (Std units; SM9045)	PH			7.43	NA	NA		

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

(b) TCLP-PDL x 20 represents the TCLP Preliminary Delisiting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, the resulting outputs were multiplied

by 20 to be compared to the total analysis. (c) Total PCBs is the sum of detected aroclors.

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

U = Indicates the compound was not detected at the reported concentration.

Bold = Detected concentration. = Exceedance of Preliminary Delisting Level. = Exceedance of TCLP-PDL X 20. = Reporting limit is greater than Preliminary Delisting Level or TCLP-PDL X 20. = Reporting limit is within one order of magnitude greater than either the Preliminary Delisting Level or TCLP-PDL X 20. = Not Applicable. NA = screening level not available ---= US Environmental Protection Agency EPA ID = identification = micrograms per kilogram ug/kg mg-N/kg = milligrams Nitrogen per kilogram = milligrams per kilogram mg/kg pg/g = picogram per gram

Prior Sampling Results

Fire Mountain Farms Newaukum Prairie Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

				Sample ID and Sample Date			
Avaluta	CAS No.	Preliminary Delisting	TCI D DDI V 30 /b)	NP-Comp-1	NP-Comp-2	NP-Comp-3	
Analyte	CAS NO.	Levels (a)	TCLP-PDL X 20 (b)	7/7/2014	7/7/2014	7/7/2014	
Volatiles (ug/kg; EPA Method 8260C) 1,1,1-Trichloroethane	71-55-6	1.46E+11	6.42E+09	3.9U	3.7U	3.2U	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	9.60E+07 3.12E+08	2.54E+06 1.06E+04	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
1,1-Dichloroethane	75-34-3	1.12E+10	2.92E+06	3.9U	3.7U	3.2U	
1,1-Dichloroethene 1.2.4-Trichlorobenzene	75-35-4	1.71E+09	5.94E+04	3.90	3.7U	3.2U	
1,2-Dichlorobenzene	120-82-1 95-50-1	1.37E+10 1.12E+10	5.46E+04 1.27E+06	19U 3.9U	19U 3.7U	16U 3.2U	
1,2-Dichloroethane	107-06-2	4.91E+07	5.80E+03	3.9U	3.7U	3.2U	
1,3-Dichloropenzene	78-87-5 541-73-1	3.61E+08 	1.86E+04	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
1,4-Dichlorobenzene	106-46-7	1.27E+08	2.62E+04	91	120	97	
2-Chloroethylvinylether Acrolein	110-75-8 107-02-8	 4.57E+05	2.78E+31	19U 190U	19U 190U	16U 160U	
Acrylonitrile	107-13-1	1.63E+07	1.25E+03	19U	19U	16U	
Bromodichloromethane	71-43-2 75-27-4	1.50E+08 1.49E+08	1.13E+04 7.48E+03	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
Bromoform	75-25-2	2.39E+09	8.38E+04	3.9U	3.7U	3.2U	
Bromomethane Carbon Tetrachloride	74-83-9 56-23-5	1.65E+07 8.14E+07	6.06E+26 7.78E+03	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
Chlorobenzene	108-90-7	6.99E+09	2.54E+05	3.9U	3.7U	3.2U	
Chloroform	75-00-3 67-66-3	3.76E+08	1.28E+07 4.42E+03	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
Chloromethane	74-87-3	2.59E+07 1.20E+08	4.42E+03 3.34E+05	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
cis-1,3-Dichloropropene	10061-01-5	3.42E+08	4.04E+32	3.9U	3.7U	3.2U	
Dibromochloromethane Ethylbenzene	124-48-1 100-41-4	3.42E+08 2.03E+10	7.68E+03 2.34E+06	3.9U 3.9U	3.7U 4.60	3.2U 3.50	
Hexachlorobutadiene	87-68-3	1.59E+06	4.50E+03	19U	19U	16U	
Methylene Chloride Naphthalene	75-09-2 91-20-3	5.89E+08 7.84E+08	4.36E+04 1.80E+03	7.8U 19U	7.5U 19U	6.5U 16U	
Tetrachloroethene	127-18-4	7.84E+08 6.07E+06	1.80E+03 1.13E+03	3.9U	3.7U	3.2U	
Toluene	108-88-3	3.39E+10	2.50E+06	140,000	150,000	130,000	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	156-60-5 10061-02-6	8.08E+08 3.60E+08	1.42E+05 4.04E+32	3.9U 3.9U	3.7U 3.7U	3.2U 3.2U	
Trichloroethene	79-01-6	2.19E+08	6.24E+03	3.9U	3.7U	3.2U	
Vinyl Chloride	75-01-4	4.42E+06	4.44E+02	3.9U	3.7U	3.2U	
Metals (mg/kg; EPA Method 6010C/7471A)							
Antimony	7440-36-0	2.96E+05	1.50E+01	70U	80U	80U	
Arsenic Beryllium	7440-38-2 7440-41-7	4.33E+03 3.27E+04	4.66E-01 4.30E+01	70U 1U	80U 2U	80U 2U	
Cadmium	7440-41-7	1.63E+04	1.88E+01	3U	3U	3U	
Chromium	7440-47-4	6.53E+03	1.23E+02	24	26	27	
Copper Co	7440-48-4 7440-50-8	8.71E+03 1.67E+06	1.18E+01 1.56E+03	76 440	87 493	503	
Lead	7439-92-1	7.48E+06	2.90E+02	30U	30U	30U	
Molybdenum Nickel	7439-98-7 7440-02-0	1.07E+07 3.27E+05	1.80E+02 7.46E+02	12 30	13 30	14 30	
Selenium	7782-49-2	1.15E+06	1.86E+02	70U	80U	80U	
Silver	7440-22-4	1.69E+06	4.64E+02	40	5U	5U	
Thallium Zinc	7440-28-0 7440-66-6	1.96E+02 4.32E+06	2.50E+00 1.10E+04	70U 950	80U 1,060	80U 1,060	
Mercury	7439-97-6	6.42E+05	3.74E+00	1.2	0.9	1.2	
Semivolatiles (ug/kg; EPA Method 8270D)							
1,2,4-Trichlorobenzene	120-82-1	1.37E+10	5.46E+04	420U	380U	300U	
1,2-Dichlorobenzene	95-50-1	1.12E+10	1.27E+06	420U	380U	300U	
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	122-66-7 541-73-1	9.17E+06 	7.66E+02	420U 420U	380U 380U	300U 300U	
1,4-Dichlorobenzene	106-46-7	1.27E+08	2.62E+04	700	730	750	
2,2'-Oxybis(1-Chloropropane) 2,4,6-Trichlorophenol	108-60-1 88-06-2	7.90E+07	1.76E+04	420U 2,100U	380U 1,900U	300U 1,500U	
2,4-Dichlorophenol	120-83-2	7.13E+08	9.38E+04	2,100U	1,900U	1,500U	
2,4-Dimethylphenol	105-67-9 51-28-5	1.80E+10 4.28E+09	6.26E+05	420U	380U 3,800U	300U 3,000U	
2,4-Dinitrophenol 2,4-Dinitrotoluene	121-14-2	4.28E+09 1.84E+08	6.38E+04 9.14E+02	4,200U 2,100U	1,900U	1,500U	
2,6-Dinitrotoluene	606-20-2	1.84E+08	9.14E+02	2,100U	1,900U	1,500U	
2-Chloronaphthalene 2-Chlorophenol	91-58-7 95-57-8	2.09E+09 5.85E+09	5.64E+05 1.59E+05	420U 420U	380U 380U	300U 300U	
2-Nitrophenol	88-75-5			420U	380U	300U	
3,3'-Dichlorobenzidine	91-94-1	6.01E+06	1.40E+03	2,100U	1,900U	1,500U	
4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether	534-52-1 101-55-3	2.14E+08 	3.22E+03	4,200U 420U	3,800U 380U	3,000U 300U	
4-Chlorophenyl-phenylether	7005-72-3			420U	380U	300U	
4-Methylphenol 4-Nitrophenol	106-44-5 100-02-7	8.44E+09	1.59E+05	2,400 2,100U	2,400 1,900U	2,600 1,500U	
Acenaphthene	83-32-9	3.18E+09	5.86E+05	420U	380U	300U	
Acenaphthylene Anthracene	208-96-8 120-12-7	 3.60E+09	 1.43E+06	420U 420U	380U 380U	300U 300U	
Anthracene Azobenzene	120-12-7	3.60E+09 	1.43E+06 	420U 420U	380U 380U	300U	
Benzo(a)anthracene	56-55-3	2.38E+05	3.86E+03	420U	380U	300U	
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	1.76E+04 1.39E+05	1.45E+06 1.24E+07	420U 420U	380U 380U	300U 360M	
Benzo(g,h,i)perylene	191-24-2			420U	380U	300U	
Benzo(k)fluoranthene	207-08-9	1.64E+06	3.68E+22	420U	380U	340M	
bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether	111-91-1 111-44-4	6.42E+09 1.20E+08	9.38E+04 6.12E+03	420U 420U	380U 380U	300U 300U	
bis(2-Ethylhexyl)phthalate	117-81-7	1.35E+10	1.77E+33	19,000	20,000	19,000	
Butylbenzylphthalate Chrysene	85-68-7 218-01-9	1.05E+09 2.33E+07	2.20E+06 3.86E+05	420U 420U	380U 380U	300U 300U	
		2.33E+07 1.86E+04	2.04E+16	420U 420U	380U 380U	300U	
Dibenz(a,h)anthracene	53-70-3	1.001.04					
Dibenz(a,n)anthracene Diethylphthalate Dimethylphthalate	84-66-2 131-11-3	5.83E+11 2.14E+13	5.52E+07 3.18E+08	420U 420U	380U 380U	300U 300U	

Prior Sampling Results

Fire Mountain Farms Newaukum Prairie Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

				Sample	e ID and Sampl	e Date
		Preliminary Delisting		NP-Comp-1	NP-Comp-2	NP-Comp-3
Analyte	CAS No.	Levels (a)	TCLP-PDL X 20 (b)	7/7/2014	7/7/2014	7/7/2014
Di-n-Octyl phthalate	117-84-0	2.13E+10	1.43E+32	420U	380U	300U
Fluoranthene	206-44-0	5.97E+07	1.36E+05	560	530	550
Fluorene	86-73-7	9.77E+08	2.70E+05	420U	380U	300U
Hexachlorobenzene	118-74-1	8.89E+03	4.96E+03	420U	380U	300U
Hexachlorobutadiene	87-68-3	1.59E+06	4.50E+03	420U	380U	300U
Hexachlorocyclopentadiene	77-47-4	3.62E+08	6.90E+31	2,100U	1,900U	1,500U
Hexachloroethane	67-72-1	2.60E+07	1.51E+04	420U	380U	300U
Indeno(1,2,3-cd)pyrene	193-39-5	4.38E+05	1.36E+14	450M	470M	450M
Isophorone	78-59-1	6.44E+10	6.22E+05	420U	380U	300U
Naphthalene	91-20-3	7.84E+08	1.80E+03	420U	380U	300U
Nitrobenzene	98-95-3	1.07E+09	1.59E+04	420U	380U	300U
N-Nitrosodimethylamine	62-75-9	1.68E+06	1.22E+01	2,100U	1,900U	1,500U
N-Nitroso-Di-N-Propylamine	621-64-7	1.66E+07	8.88E+01	420U	380U	300U
N-Nitrosodiphenylamine	86-30-6	1.07E+09	1.25E+05	420U	380U	300U
Pentachlorophenol	87-86-5	1.56E+07	1.33E+03	2,100U	1,900U	1,500U
Phenanthrene	85-01-8			420U	440	360
Phenol	108-95-2	6.42E+11	9.56E+06	520	630	410
Pyrene	129-00-0	1.07E+08	2.46E+05	450	420	450
Total Benzofluoranthenes	TOTBFA			420U	380U	380M
PCBs (ug/kg; EPA Method 8082A)						
Aroclor 1016	12674-11-2			9.8U	9.9U	NA
Aroclor 1221	11104-28-2			9.8U	9.9U	NA
Aroclor 1232	11141-16-5			9.8U	9.9U	NA
Aroclor 1242	53469-21-9			9.8U	9.9U	NA
Aroclor 1248	12672-29-6			49U	990	NA
Aroclor 1254	11097-69-1			150U	150U	NA
Aroclor 1260	11096-82-5			33	40	NA
Total PCBs (c)	1336-36-3	5.72E+01	1.10E+13	33	40	NA
Pesticides (ug/kg; EPA Method 8081B)						
4,4'-DDD	72-54-8	8.10E+03	1.22E+31	17U	17U	NA
4,4'-DDE	72-55-9	4.20E+03	8.94E+21	17U	27U	NA
4,4'-DDT	50-29-3	1.19E+03	5.36E+30	170U	100U	NA
Aldrin	309-00-2	3.42E+01	2.74E+12	8.3U	8.3U	NA
alpha-BHC	319-84-6	2.59E+05	5.78E+24	8.3U	13U	NA
beta-BHC	319-85-7	3.62E+05	3.50E+02	22U	8.3U	NA
cis-Chlordane	5103-71-9			40U	33U	NA
delta-BHC	319-86-8			180U	200U	NA
Dieldrin				NA	NA	NA
Endosulfan I	959-98-8			8.3U	21U	NA
Endosulfan II	33213-65-9			17U	17U	NA
Endosulfan Sulfate	1031-07-8			140U	120U	NA
Endrin	72-20-8	4.46E+06	4.26E+15	17U	17U	NA
Endrin Aldehyde	7421-93-4			17U	17U	NA
gamma BHC (Lindane)	58-89-9	1.45E+06	5.64E+22	8.3U	8.3U	NA
Heptachlor	76-44-8	3.27E+02	7.22E+29	8.3U	8.3U	NA
Heptachlor Epoxide	1024-57-3	1.14E+04	3.10E+30	340U	280U	NA
Toxaphene	8001-35-2	3.83E+02	1.83E+10	830U	830U	NA
trans-Chlordane	5103-74-2			1,300U	1,400U	NA
Dioxins/Furans (pg/g; EPA Method 1613B)						
2,3,7,8-TCDD	1746-01-6	5.06E+00	2.22E+09	11.5U	11.2U	NA
Inorganic Parameters						
N-Nitrate (mg-N/kg; Calculated)	NITRATE			1.48U	NA	NA
N-Ammonia (mg-N/kg; EPA 350.1M)	AMMONIA			21,400	NA	NA
Total Kjeldahl Nitrogen (mg-N/kg; EPA 351.2)	KJELDHAL-N			71,400	NA	NA
Nitrate+Nitrite (NO3+NO2) (mg-N/kg; EPA 353.2)	NITRATE-NITRITE			4.01	NA	NA
N-Nitrite (mg-N/kg; EPA 353.2)	NITRITE			6.09	NA	NA
Total Solids (%; SM2540G)	TS104			6.43	6.51	6.69
Total Cyanide (mg/kg; EPA 335.4)	57-12-5	9.36E+05	6.38E+02	1.73	1.69	1.87
pH (Std units; SM9045)	PH			7.38	NA	NA

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

(b) TCLP-PDL x 20 represents the TCLP Preliminary Delisiting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, the resulting outputs were multiplied by 20 to be compared to the total analysis.

(c) Total PCBs is the sum of detected aroclors.

M = Indicates an estimated value of analyte found and confirmed by analyst

but with low spectral match.

U = Indicates the compound was not detected at the reported concentration.

= Detected concentration. Bold = Exceedance of Preliminary Delisting Level. = Exceedance of TCLP-PDL X 20. = Reporting limit is greater than Preliminary Delisting Level or TCLP-PDL X 20. = Reporting limit is within one order of magnitude greater than either the Preliminary Delisting Level or TCLP-PDL X 20. = Not Applicable. NA = screening level not available ---= US Environmental Protection Agency EPA ID = identification = micrograms per kilogram ug/kg mg-N/kg = milligrams Nitrogen per kilogram mg/kg = milligrams per kilogram pg/g = picogram per gram

Prior Sampling Results

Fire Mountain Farms Big Hanaford Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

					le ID and Samp	
	CACAL	Preliminary	v (1)	BH-Comp-1	BH-Comp-2	BH-Comp-3
Analyte	CAS No.	Delisting Levels (a)	TCLP-PDL X 20 (b)	7/8/2014	7/8/2014	7/8/2014
/olatiles (ug/kg; EPA Method 8260C)	71-55-6	2.35E+11	1.31E+10	780U	800U	86
,1,2,2-Tetrachloroethane	79-34-5	1.78E+08	5.20E+06	780U	800U	86
,1,2-Trichloroethane	79-00-5	5.04E+08	2.18E+04	780U	800U	86
L,1-Dichloroethane	75-34-3 75-35-4	1.81E+10 2.77E+09	5.98E+06 1.22E+05	780U 780U	800U 800U	86 86
1,2,4-Trichlorobenzene	120-82-1	2.38E+10	1.12E+05	3,900U	4,000U	4,30
L,2-Dichlorobenzene	95-50-1	2.08E+10	2.60E+06	780U	800U	86
I,2-Dichloroethane I,2-Dichloropropane	107-06-2 78-87-5	7.92E+07 6.70E+08	1.19E+04 3.82E+04	780U 780U	800U 800U	86 86
L,3-Dichlorobenzene	541-73-1			780U	800U	86
1,4-Dichlorobenzene	106-46-7	2.37E+08	5.38E+04	1,000	1,300	1,0
2-Chloroethylvinylether	110-75-8	7.275.05	 F 70F - 21	3,900U	4,000U	4,30
Acrolein Acrylonitrile	107-02-8 107-13-1	7.37E+05 2.64E+07	5.70E+31 2.58E+03	39,000U 3,900U	40,000U 4,000U	43,00
Benzene	71-43-2	2.41E+08	2.32E+04	780U	800U	86
Bromodichloromethane	75-27-4	2.41E+08	1.53E+04	780U	800U	86
Bromoform Bromomethane	75-25-2 74-83-9	4.44E+09 2.67E+07	1.72E+05 1.24E+27	780U 780U	800U 800U	86 86
Carbon Tetrachloride	56-23-5	1.31E+08	1.60E+04	780U	800U	86
Chlorobenzene	108-90-7	1.30E+10	5.20E+05	780U	800U	86
Chloroethane	75-00-3	6.08E+08	2.62E+07	780U	800U	86
Chloroform Chloromethane	67-66-3 74-87-3	4.18E+07 1.94E+08	9.04E+03 6.84E+05	780U 780U	800U 800U	86 86
cis-1,3-Dichloropropene	10061-01-5	6.36E+08	8.26E+32	780U	800U	86
Dibromochloromethane	124-48-1	6.35E+08	1.57E+04	780U	800U	86
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	3.77E+10 2.95E+06	4.80E+06 9.24E+03	780U 3,900U	800U 4,000U	4,30
Methylene Chloride	75-09-2	9.50E+08	8.94E+04	1,600U	1,600U	1,70
Naphthalene	91-20-3	1.36E+09	3.70E+03	3,900U	4,000U	4,30
Tetrachloroethene Toluene	127-18-4	1.13E+07 6.30E+10	2.32E+03 5.12E+06	780U 8 300	800U	86
roluene trans-1,2-Dichloroethene	108-88-3 156-60-5	6.30E+10 1.30E+09	5.12E+06 2.90E+05	8,300 780U	120,000 800U	82,0 86
trans-1,3-Dichloropropene	10061-02-6	6.70E+08	8.26E+32	780U	800U	86
Trichloroethene	79-01-6	4.06E+08	1.28E+04	780U	800U	86
Vinyl Chloride	75-01-4	7.14E+06	9.08E+02	780U	800U	86
Metals (mg/kg; EPA Method 6010C/7471A)						
Antimony	7440-36-0	5.51E+05	3.04E+01	30U	30U	3
Arsenic	7440-38-2	8.05E+03	9.54E-01	30U	30U	3
Beryllium Cadmium	7440-41-7 7440-43-9	5.69E+04 3.04E+04	8.66E+01 3.88E+01	0.6U 2	0.6U 2	0.
Chromium	7440-47-3	1.14E+04	2.40E+02	25	29	
Cobalt	7440-48-4	1.52E+04	2.40E+01	15	64	1
Copper Lead	7440-50-8 7439-92-1	3.10E+06 1.30E+07	3.16E+03 5.88E+02	473 30	485 20	5
Molybdenum	7439-98-7	1.85E+07	3.70E+02	12	15	
Nickel	7440-02-0	5.69E+05	1.51E+03	27	38	
Selenium	7782-49-2	2.13E+06	3.74E+02	30U 6	30U 4	3
Silver Thallium	7440-22-4 7440-28-0	3.14E+06 3.64E+02	8.74E+02 5.12E+00	30U	30U	3
Zinc	7440-66-6	8.03E+06	2.26E+04	1,030	1,100	1,0
Mercury	7439-97-6	1.11E+06	7.68E+00	1	1.2	
Semivolatiles (ug/kg; EPA Method 8270D)						
1,2,4-Trichlorobenzene	120-82-1	2.38E+10	1.12E+05	580U	600U	72
1,2-Dichlorobenzene	95-50-1	2.08E+10	2.60E+06	580U	600U	72
1,2-Diphenylhydrazine	122-66-7	1.70E+07	1.57E+03	570U	600U	71
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	2.37E+08	 5.38E+04	580U 860	600U 750	72 72
2,2'-Oxybis(1-Chloropropane)	108-60-1	2.371+08	3.36L+04 	580U	600U	72
2,4,6-Trichlorophenol	88-06-2	1.47E+08	3.60E+04	2,800U	3,000U	3,50
2,4-Dichlorophenol	120-83-2 105-67-9	1.33E+09 3.34E+10	1.92E+05 1.28E+06	2,800U 580U	3,000U 600U	3,50 72
2,4-Dimethylphenol 2,4-Dinitrophenol	105-67-9 51-28-5	3.34E+10 7.39E+09	1.28E+06 1.31E+05	5,800U	6,000U	7,20
2,4-Dinitrotoluene	121-14-2	3.42E+08	1.87E+03	2,800U	3,000U	3,50
2,6-Dinitrotoluene	606-20-2	3.42E+08	1.87E+03	2,800U	3,000U	3,50
2-Chloronaphthalene 2-Chlorophenol	91-58-7 95-57-8	3.87E+09 1.09E+10	1.16E+06 3.26E+05	580U 580U	600U	72 72
2-Nitrophenol	88-75-5	1.09£+10	3.20L+03 	580U	600U	72
3,3'-Dichlorobenzidine	91-94-1	1.12E+07	2.86E+03	2,800U	3,000U	3,50
4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether	534-52-1 101-55-3	3.70E+08	6.58E+03	5,800U 580U	6,000U 600U	7,20 72
4-Bromopnenyi-pnenyietner 4-Chlorophenyl-phenylether	7005-72-3			580U 580U	600U	72
4-Methylphenol	106-44-5	1.57E+10	3.26E+05	480,000	720,000	540,0
4-Nitrophenol	100-02-7	 	4.205.20	2,800U	3,000U	3,50
Acenaphthene Acenaphthylene	83-32-9 208-96-8	5.91E+09 	1.20E+06	580U 580U	600U 600U	72 72
Anthracene	120-12-7	6.70E+09	2.92E+06	580U	600U	72
Azobenzene	103-33-3			580U	600U	72
Benzo(a)anthracene	56-55-3 50-32-8	4.42E+05 3.27E+04	7.92E+03 2.98E+06	580U 580U	600U	72 72
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	3.2/E+04 2.58E+05	2.98E+06 2.54E+07	580U 570U	600U	72
Benzo(g,h,i)perylene	191-24-2			580U	600U	72
Benzo(k)fluoranthene	207-08-9	3.06E+06	7.56E+22	570U	600U	71
ois(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether	111-91-1 111-44-4	1.11E+10 2.22E+08	1.92E+05 1.25E+04	580U 580U	600U	72
ois(2-Ethylhexyl)phthalate	111-44-4	2.22E+08 2.34E+10	1.25E+04 3.62E+33	25,000	25,000	24,0
Butylbenzylphthalate	85-68-7	1.96E+09	4.52E+06	580U	600U	72
Chrysene	218-01-9	4.33E+07	7.92E+05	580U	600U	72
Dibenz(a,h)anthracene Diethylphthalate	53-70-3 84-66-2	3.45E+04 1.08E+12	4.18E+16 1.13E+08	580U 580U	600U 600U	72 72
Diethylphthalate Dimethylphthalate	84-66-2 131-11-3	1.08E+12 3.70E+13	1.13E+08 6.54E+08	580U 580U	600U	72
Di-n-Butylphthalate	84-74-2	2.01E+09	2.78E+06	580U	600U	72

Prior Sampling Results

Fire Mountain Farms Big Hanaford Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units

Lewis County, Washington

				Sample ID and Sample Date				
				BH-Comp-1	BH-Comp-2	BH-Comp-3		
	CACNA	Preliminary	TOLD DDL V 20 (L)	•	·	•		
Analyte	CAS No.	Delisting Levels (a)	TCLP-PDL X 20 (b)	7/8/2014	7/8/2014	7/8/2014		
Di-n-Octyl phthalate	117-84-0	3.96E+10	2.92E+32	580U	600U	720U		
Fluoranthene	206-44-0	1.11E+08	2.78E+05	640	600U	720U		
Fluorene	86-73-7	1.82E+09	5.54E+05	580U	600U	720U		
Hexachlorobenzene	118-74-1	1.65E+04	1.02E+04	580U	600U	720U		
Hexachlorobutadiene	87-68-3	2.95E+06	9.24E+03	580U	600U	720U		
Hexachlorocyclopentadiene	77-47-4	6.72E+08	1.41E+32	2,800U	3,000U	3,500U		
Hexachloroethane	67-72-1	4.84E+07	3.10E+04	580U	600U	720U		
Indeno(1,2,3-cd)pyrene	193-39-5	8.14E+05	2.78E+14	580U	600U	720U		
Isophorone	78-59-1	1.20E+11	1.27E+06	580U	600U	720U		
Naphthalene	91-20-3	1.36E+09	3.70E+03	580U	600U	720U		
Nitrobenzene	98-95-3	1.85E+09	3.26E+04	580U	600U	720U		
N-Nitrosodimethylamine	62-75-9	2.72E+06	2.50E+01	2,800U	3,000U	3,500U		
N-Nitroso-Di-N-Propylamine	621-64-7	3.09E+07	1.82E+02	580U	600U	720U		
N-Nitrosodiphenylamine	86-30-6	1.99E+09	2.56E+05	1,200M	1,100M	1,400M		
Pentachlorophenol Phononthropo	87-86-5	2.89E+07	2.74E+03	2,800U	3,000U	3,500U		
Phenanthrene Phenol	85-01-8 108-95-2	 1.11E+12	 1.96E+07	580U	600U	720U		
				14,000 580U	23,000 600U	16,000		
Pyrene Total Benzofluoranthenes	129-00-0 TOTBFA	1.99E+08 	5.02E+05	580U 580U	600U	720U 720U		
Total Benzulluulantilenes	IOIBFA			5800	0000	7200		
PCBs (ug/kg; EPA Method 8082A)								
Aroclor 1016	12674-11-2			9.9U	NA	NA		
Aroclor 1221	11104-28-2			9.9U	NA	NA		
Aroclor 1232	11141-16-5			9.9U	NA	NA		
Aroclor 1242	53469-21-9			9.9U	NA	NA		
Aroclor 1248	12672-29-6			99U	NA	NA		
Aroclor 1254	11097-69-1			150U	NA	NA		
Aroclor 1260	11096-82-5			35	NA	NA		
Total PCBs (b)	1336-36-3	1.06E+02	2.26E+13	35	NA	NA		
Pesticides (ug/kg; EPA Method 8081B)								
4,4'-DDD	72-54-8	1.51E+04	2.50E+31	17U	NA	NA		
4,4'-DDE	72-55-9	7.80E+03	1.83E+22	17U	NA	NA		
4,4'-DDT	50-29-3	2.21E+03	1.10E+31	120U	NA	NA		
Aldrin	309-00-2	6.36E+01	5.64E+12	8.3U	NA	NA		
alpha-BHC	319-84-6	4.81E+05	1.18E+25	8.3U	NA	NA		
beta-BHC	319-85-7	6.73E+05	7.16E+02	8.3U	NA	NA		
cis-Chlordane	5103-71-9			34U	NA	NA		
delta-BHC	319-86-8			180U	NA	NA		
Dieldrin				39U	NA	NA		
Endosulfan I	959-98-8			22U	NA	NA		
Endosulfan II	33213-65-9			17U	NA	NA		
Endosulfan Sulfate	1031-07-8			17U	NA	NA		
Endrin	72-20-8	8.28E+06	8.72E+15	49U	NA	NA		
Endrin Aldehyde	7421-93-4			77U	NA	NA		
gamma BHC (Lindane)	58-89-9	2.69E+06	1.16E+23	25U	NA	NA		
Heptachlor	76-44-8	6.08E+02	1.48E+30	8.3U	NA	NA		
Heptachlor Epoxide	1024-57-3	2.11E+04	6.34E+30	690U	NA	NA		
Toxaphene trans-Chlordane	8001-35-2 5103-74-2	7.12E+02 	3.74E+10 	830U 1,200U	NA NA	NA NA		
and emotiume	3103-74-2			1,2000	INA	INA		
Dioxins/Furans (pg/g; EPA Method 1613B)								
2,3,7,8-TCDD	1746-01-6	9.39E+00	4.56E+09	5.71U	NA	NA		
Inorganic Parameters								
N-Nitrate (mg-N/kg; Calculated)	NITRATE			0.57U	NA	NA		
N-Ammonia (mg-N/kg; EPA 350.1M)	AMMONIA			24,800	NA	NA		
Total Kjeldahl Nitrogen (mg-N/kg; EPA 351.2)	KJELDHAL-N			76,800	NA	NA		
Nitrate+Nitrite (NO3+NO2) (mg-N/kg; EPA 353.2)	NITRATE-NITRITE			7.01	NA	NA		
N-Nitrite (mg-N/kg; EPA 353.2)	NITRITE			7.86	NA	NA		
	TS104			16.33	17.04	15.16		
10tal 50llus (%; 5lv12540ti)				10.00	17.04	15.10		
Total Solids (%; SM2540G) Total Cyanide (mg/kg; EPA 335.4)	57-12-5	1.74E+06	1.31E+03	1.60	2.39	1.77		

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

(b) TCLP-PDL x 20 represents the TCLP Preliminary Delisiting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, the resulting outputs were multiplied by 20 to be compared to the total analysis.

(c) Total PCBs is the sum of detected aroclors.

pg/g

M = Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

U = Indicates the compound was not detected at the reported concentration.

= picogram per gram

= Detected concentration. Bold = Exceedance of Preliminary Delisting Level. = Exceedance of TCLP-PDL X 20. = Reporting limit is greater than Preliminary Delisting Level or TCLP-PDL X 20. = Reporting limit is within one order of magnitude greater than either the Preliminary Delisting Level or TCLP-PDL X 20. = Not Applicable. NA = screening level not available EPA = US Environmental Protection Agency ID = identification = micrograms per kilogram ug/kg = milligrams Nitrogen per kilogram mg-N/kg = milligrams per kilogram mg/kg

Cobalt Characterization Results Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Newaukum Prairie Storage Unit

				Newaukum Prairie Sample ID and Sample Date			
		Preliminary Delisting	TCLP-Preliminary	NP-Comp-1	NP-Comp-2	NP-Comp-3	FMF_Newsed
Analyte	CAS No.	Level (a)	Delisting Level (a)	7/7/2014	7/7/2014	7/7/2014	5/1/2017
Metals (mg/kg; EPA Method 6010C)							
Cobalt	7440-48-4	8710		76	87	89	78.1
TCLP Metals (mg/L; EPA Method 6010C)							
Cobalt	7440-48-4		0.59	NA	NA	NA	0.184

Burnt Ridge Storage Unit

				Burnt Ridge Sample ID and Sample Date			
		Preliminary Delisting	TCLP-Preliminary	BR-Comp-1	BR-Comp-2	BR-Comp-3	FMF_Burntsed
Analyte	CAS No.	Level (a)	Delisting Level (a)	7/9/2014	7/9/2014	7/9/2014	5/1/2017
Metals (mg/kg; EPA Method 6010C)							
Cobalt	7440-48-4	15900		43	48	37	28.3
TCLP Metals (mg/L; EPA Method 6010C)							
Cobalt	7440-48-4		1.27	NA	NA	NA	0.108

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

Bold = Detected concentration.

NA = Not Analyzed.

--- = screening level not available

EPA = US Environmental Protection Agency

ID = identification

mg/kg = milligrams per kilogram mg/L = milligrams per liter

TCLP = Toxicity Characteristic Leaching Procedure

Table 6 Land Disposal Restriction Evaluation Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

							F	acility Name,	Sample ID, an	d Sample Date			
		Land Disposal Restriction			Burnt Ridge			N	lewaukum Prair	ie		Big Hanaford	
		Level (non-		BR-Comp-1	BR-Comp-2	BR-Comp-3		NP-Comp-1	NP-Comp-2	NP-Comp-3	BH-Comp-1	BH-Comp-2	BH-Comp-3
Analyte	CAS No.	wastewater)	Units	7/9/2014	7/9/2014	7/9/2014		7/7/2014	7/7/2014	7/7/2014	7/8/2014	7/8/2014	7/8/2014
Acetone	67-64-1	160,000	ug/kg	NA	NA	NA		NA	NA	NA	NA	NA	NA
Benzene	71-43-2	10,000	ug/kg	2.3U	2U	1.8U		3.9U	3.7U	3.2U	780U	800U	860U
Methanol (a)	67-56-1	0.75	mg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA
Toluene	108-88-3	10,000	ug/kg	20	35	19		140,000	150,000	130,000	8,300	120,000	82,000

(a) This LDR is a TCLP level. EPA = US Environmental Protection Agency

NA = Indicates no past analysis was performed. ID = identification

 $\mbox{U = Indicates the compound was not detected at the reported concentration.} \qquad \mbox{ug/kg = micrograms per kilogram}$

Bold = Detected concentration mg/L = milligrams per liter

NA = not applicable

= Detected analyte with concentration greater than the LDR Level.

Table 7 Comparison of Metal Concentrations in the Mixed Material with EPA Sewage Sludge Data Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Motel	TNSSS Value (mg/kg)	PGG Maximum Detected Concentration or RL, mg/kg						
Metal	Minimum - Maximum	Burnt Ridge	Newaukum Prairie	Big Hanaford				
Antimony	0.45 - 26.6	40 U	80 U	30 U				
Arsenic	1.18 – 49.2	40 U	80 U	30 U				
Cobalt	0.87 – 290	48	89	165				
Thallium	0.02 - 1.7	40 U	80 U	30 U				

Notes:

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

EPA = US Environmental Protection Agency

mg/kg = milligrams per kilogram

PGG = Pacific Groundwater Group

RL = reporting limit

TNSSS = Targeted National Sewage Sludge Survey

Table 8 PCB Concentrations in Mixed Material Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

	PCB Concentration, μg/kg					
	Burnt Ridge	Newaukum Prairie	Big Hanaford			
PGG Maximum Measured Concentration	61	40	35			
DRAS Preliminary Delisting Level	112	57.2	106			

Abbreviations and Acronyms:

DRAS = Delisting Risk Assessment Software

μg/kg = micrograms per kilogram

PGG = Pacific Groundwater Group PCB = polychlorinated biphenyl

Table 9 Toxaphene Reporting Limits and Preliminary Delisting Levels Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

	Toxaphene Concentrations, μg/kg						
	Burnt Ridge	Newaukum Prairie	Big Hanaford				
PGG Reporting Limit	820 U	830 U	830 U				
DRAS Preliminary Delisting Level	750	383	712				

Notes:

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit. **Abbreviations and Acronyms:**

DRAS = Delisting Risk Assessment Software

PGG = Pacific Groundwater Group

μg/kg = micrograms per kilogram

Table 10 Dioxin Reporting Limits and Preliminary Delisting Levels Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

	Dioxin Concentrations, μg/kg					
	Burnt Ridge	Newaukum Prairie	Big Hanaford			
PGG Reporting Limit	2.35 U	11.5 U	5.71 U			
DRAS Preliminary Delisting Level	9.9	5.06	9.39			

Notes:

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

DRAS = Delisting Risk Assessment Software

μg/kg = micrograms per kilogram

PGG = Pacific Groundwater Group

Table 11
Chemical Concentrations in the Mixed Material for Comparison with the Toxicity Characteristics List
Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units
Lewis County, Washington

			Facility Name, Sample ID, Sample Date, and Results										
			Ne	waukum Pra	irie			Big Hanaford				Burnt Ridge	
	Toxicity Characte	rictics	NP-Comp-	NP-Comp-	NP-Comp-		BH-Comp-	BH-Comp-	BH-Comp-		BR-Comp-	BR-Comp-	BR-Comp-
Analyte	List (WAC 173-30)		7/7/2014	7/7/2014	7/7/2014		7/8/2014	7/8/2014	7/8/2014		7/9/2014	7/9/2014	7/9/2014
. ,	TCLP value x factor of 20	TCLP Units	.,.,===	.,,,===	7,1,202		1,0,000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,0,00		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Arsenic	100	mg/L	70U	80U	80U		30U	30U	30U		40U	30U	30U
Barium	2,000	mg/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
Benzene	10,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		NA	NA	NA
Cadmium	20	mg/L	3U	3U	3U		2	2	2		3	3	3
Carbon Tetrachloride	10,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
Chlordane	600	ug/L	1,300U	1,400U	NA		1,200U	NA	NA		1,100U	NA	NA
Chlorobenzene	2,000,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
Chloroform	120,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
Chromium	100	mg/L	24	26	27		25	29	28		31	45	35
2-Methylphenol (o-Cresol)	4,000,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
3-Methylphenol (m-Cresol)	4,000,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
4-Methylphenol (p-Cresol)	4,000,000	ug/L	2,400	2,400	2,600		480,000	720,000	540,000		1,100	450	460
Methylphenol (Cresol)	4,000,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
2,4-D	200,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
1,4-Dichlorobenzene	150,000	ug/L	700	730	750		860	750	720U		480	540	260U
1,2-Dichloroethane	10,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
1,1-Dichloroethene	14,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
2,4-Dinitrotoluene	2,600	ug/L	2,100U	1,900U	1,500U		2,800U	3,000U	3,500U		1,300U	1,500U	1,300U
Endrin	400	ug/L	17U	17U	NA		49U	NA	NA		25U	NA	NA
Heptachlor	160	ug/L	8.3U	8.3U	NA		8.3U	NA	NA		8.2U	NA	NA
Heptachlor Epoxide	160	ug/L	340U	280U	NA		690U	NA	NA		8.2U	NA	NA
Hexachlorobenzene	2,600	ug/L	420U	380U	300U		580U	600U	720U		260U	310U	260U
Hexachlorobutadiene	10,000	ug/L	420U	380U	300U		580U	600U	720U		260U	310U	260U
Hexachloroethane	60,000	ug/L	420U	380U	300U		580U	600U	720U		260U	310U	260U
Lead	100	mg/L	30U	30U	30U		30	20	20		40	30	30
gamma BHC (Lindane)	8,000	ug/L	8.3U	8.3U	NA		25U	NA	NA		8.2U	NA	NA
Mercury	4	mg/L	1.2	0.9	1.2		1	1.2	3		1	1.9	1.8
Methoxychlor	200,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA

Table 11
Chemical Concentrations in the Mixed Material for Comparison with the Toxicity Characteristics List
Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units
Lewis County, Washington

			Facility Name, Sample ID, Sample Date, and Results										
			Ne	waukum Pra	irie			Big Hanaford		Burnt Ridge			
	Toxicity Characte	ristics	NP-Comp- 1	NP-Comp- 2	NP-Comp-		BH-Comp- 1	BH-Comp- 2	BH-Comp- 3		BR-Comp- 1	BR-Comp- 2	BR-Comp- 3
Analyte	List (WAC 173-303	3-090)	7/7/2014	7/7/2014	7/7/2014		7/8/2014	7/8/2014	7/8/2014		7/9/2014	7/9/2014	7/9/2014
	TCLP value x factor of 20	TCLP Units											
2-Butanone (MEK)	4,000,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
Nitrobenzene	40,000	ug/L	420U	380U	300U		580U	600U	720U		260U	310U	260U
Pentachlorophenol	2,000,000	ug/L	2,100U	1,900U	1,500U		2,800U	3,000U	3,500U		1,300U	1,500U	1,300U
Pyridine	100,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
Selenium	20	mg/L	70U	80U	80U		30U	30U	30U		40U	30U	30U
Silver	100	mg/L	4U	5U	5U		6	4	4		5	5	6
Tetrachloroethene	14,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
Toxaphene	10,000	ug/L	830U	830U	NA		830U	NA	NA		820U	NA	NA
Trichloroethene	10,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		2.3U	2U	1.8U
2,4,5-Trichlorophenol	8,000,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
2,4,6-Trichlorophenol	40,000	ug/L	2,100U	1,900U	1,500U		2,800U	3,000U	3,500U		NA	NA	NA
2,4,5-TP (Silvex)	20,000	ug/L	NA	NA	NA		NA	NA	NA		NA	NA	NA
Vinyl Chloride	4,000	ug/L	3.9U	3.7U	3.2U		780U	800U	860U		NA	NA	NA

Concentrations of organic chemicals in FMF samples are reported as ug/kg Concentrations of metals in FMF samples are reported as mg/kg

Bold Detected

Not detected, but RL above threshold

Not included in the analyses

Table 12
Chemical Composition of Emerald IWBS Compared with the Toxicity Characteristics List
Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units
Lewis County, Washington

	Reporting Limit	Toxicity Characteristics List
Analyte	(mg/L)	Concentration Thresholds (mg/L)
Arsenic	0.05 U	5
Barium	1 U	100
Benzene	0.2 U	0.5
Cadmium	0.05 U	1
Carbon Tetrachloride	0.2 U	0.5
Chlordane	0.005 U	0.03
Chlorobenzene	0.2 U	100
Chloroform	0.2 U	6
Chromium	0.05 U	5
2-Methylphenol (o-Cresol)	0.1 U	200
3-Methylphenol (m-Cresol)	0.1 U	200
4-Methylphenol (p-Cresol)	0.1 U	200
Methylphenol (Cresol)	0.1 U	200
2,4-D	0.1 U	10
1,4-Dichlorobenzene	0.2 U	7.5
1,2-Dichloroethane	0.2 U	0.5
1,1-Dichloroethene	0.7 U	0.7
2,4-Dinitrotoluene	0.1 U	0.13
Endrin	0.0005 U	0.02
Heptachlor	0.0005 U	0.008
Heptachlor epoxide	0.0005 U	0.008
Hexachlorobenzene	0.1 U	0.13
Hexachlorobutadiene	0.1 U	0.5
Hexachloroethane	0.1 U	3
Lead	0.05 U	5
Gamma BHC (Lindane)	0.0005 U	0.4
Mercury	0.001 U	0.2
Methoxychlor	0.001 U	10
2-Butanone (MEK)	8 U	200
Nitrobenzene	0.1 U	2
Pentachlorophenol	0.25 U	100
Pyridine	0.5 U	5
Selenium	0.1 U	1
Silver	0.1 U	5
Tetrachloroethene	0.2 U	0.7
Toxaphene	0.01 U	0.5
Trichloroethene	0.2 U	0.5
2,4,5-Trichlorophenol	0.1 U	400
2,4,6-Trichlorophenol	0.1 U	2
2,4,5-TP	0.02 U	1
Vinyl Chloride	0.08 U	0.2

Notes:

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Abbreviations and Acronyms:

IWBS = industrial wastewater treatment biological solids

mg/L = milligrams per liter

Dangerous Waste Criteria – Persistence Values for the Mixed Material Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Persistence	Burnt Ridge	Newaukum Prairie	Big Hanaford	
Halogenated Organics	0.0000601	0.000016	0.0001335	
Polycyclic Aromatic Hydrocarbons	0.000122	0.000262	0.000064	

Notes:

All values are expressed as total concentration percentage as described in the Washington State Department of Ecology persistence criteria using waste knowledge method (WAC 173-303-100[6]).

Sampling Locations, Fire Mountain Farms Mixed Material Storage Units Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Storage Unit Name	Grid Letter	Grid Number	Depth
Newaukum Prairie	С	6	N/A
Newaukum Prairie	E	2	N/A
Newaukum Prairie	E	4	N/A
Newaukum Prairie	А	2	N/A
Newaukum Prairie	С	2	N/A
Newaukum Prairie	С	5	N/A
Newaukum Prairie	F	3	N/A
Newaukum Prairie	В	2	N/A
Newaukum Prairie	D	2	N/A
Newaukum Prairie	F	5	N/A
Newaukum Prairie	С	4	N/A
Newaukum Prairie	E	6	N/A
Newaukum Prairie	D	5	N/A
Newaukum Prairie	В	3	N/A
Newaukum Prairie	D	4	N/A
Newaukum Prairie	Е	1	N/A
Newaukum Prairie	В	6	N/A
Burnt Ridge	С	2	N/A
Burnt Ridge	E	4	N/A
Burnt Ridge	D	4	N/A
Burnt Ridge	А	2	N/A
Burnt Ridge	D	5	N/A
Burnt Ridge	В	1	N/A
Burnt Ridge	E	6	N/A
Burnt Ridge	E	2	N/A
Burnt Ridge	В	3	N/A
Burnt Ridge	А	1	N/A
Burnt Ridge	E	5	N/A
Big Hanaford	A	1	Тор
Big Hanaford	А	2	Middle
Big Hanaford	А	3	Bottom
Big Hanaford	А	4	Middle
Big Hanaford	А	5	Тор
Big Hanaford	А	6	Middle
Big Hanaford	А	7	Bottom
Big Hanaford	A	8	Middle
Big Hanaford	В	1	Middle
Big Hanaford	В	8	Тор
Big Hanaford	С	1	Bottom
Big Hanaford	С	2	Middle
Big Hanaford	С	3	Тор
Big Hanaford	С	4	Middle
Big Hanaford	С	5	Bottom
Big Hanaford	С	6	Middle
Big Hanaford	С	7	Тор
Big Hanaford	С	8	Middle

⁽a) Top sampling depth is approximately 0-3.5 ft, middle sample depth is approximately 3.5-7 ft, and bottom depth is approximately 7-10 ft.

All depths are measured from the surface of the mixed material.

Planned Analyses

Burnt Ridge Mixed Material Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Analysis	Analytes to be Reported	CAS No.	Laboratory Method	Containers	Hold Time	Preservation
Volatiles			SW-846 8260C	2- 2 ounce jars with septa lid	14 days	<6 degrees C
	Toluene ¹	108-88-3				
	Benzene ¹	71-43-2				
	Acetone ¹	67-64-1				
				1-2 ounce jar with septa		
Methanol		67-56-1	SW-846 8015C	lid	14 days	<6 degrees C
Total Solids			SM2540G	4 ounce jar	N/A	N/A
				Shared with total solids		
pН			SM9045	sample	14 days	<6 degrees C

 $^{^{\}rm 1}$ Sample result to be compared to Land Disposal Restriction criterion.

CAS = Chemical Abstracts Service

N/A = not applicable

Table 16 Planned Analyses

Newaukum Prairie Mixed Material Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

Analysis	Analytes to be Reported	CAS No.	Laboratory Method	Containers	Hold Time	Preservation
Volatiles			SW-846 8260C	2- 2 ounce jars with septa lid	14 days	<6 degrees C
	Toluene ¹	108-88-3				
	Benzene ¹	71-43-2				
	Acetone ¹	67-64-1				
Methanol		67-56-1	SW-846 8015C	1-2 ounce jar with septa lid	14 days	<6 degrees C
Total Solids			SM2540G	4 ounce jar	N/A	N/A
рН			SM9045	Shared with total solids sample	14 days	<6 degrees C

¹ Sample result to be compared to Land Disposal Restriction criterion.

CAS = Chemical Abstracts Service

N/A = not applicable

TCLP = toxicity characteristic leaching procedure

Planned Analyses

Big Hanaford Mixed Material Storage Unit Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

	Analytes to be		Laboratory			
Analysis	Reported	CAS No.	Method	Containers	Hold Time	Preservation
Volatiles			SW-846 8260C	2- 2 ounce jars with septa lid	14 days	<6 degrees C
	Toluene ¹	108-88-3				
	Benzene ¹	71-43-2				
	Acetone ¹	67-64-1				
	Acrylonitrile ^{2,3}	107-13-1				
Methanol ²		67-56-1	SW-846 8015C	1-2 ounce jar with septa lid	14 days	<6 degrees C
Total Metal	s ³		SW-846 6010C	1-8-ounce jar	6 months	<6 degrees C
	Cobalt ²	7440-48-4				
Semivolatile	es ³		SW-846 8270D	2-8-oz jars	14 days	<6 degrees C
	4-Methylphenol ²	106-44-5				
	2,4-Dinitrotoluene ²	121-14-2				
	2,6-Dinitrotoluene ²	606-20-2				
	Naphthalene ²	91-20-3				
PCBs ⁴			SW-846 8082A	1-8-ounce jar	N/A	<6 degrees C
Total Solids			SM2540G	4 ounce jar	N/A	N/A
рН			SM9045	Shared with total solids sample	14 days	<6 degrees C

 $^{^{1}}$ Sample result to be compared to Land Disposal Restriction criterion.

by Ecology and EPA after receipt of the initial sampling results, and results will be compared to the Preliminary Delisting Level.

CAS = Chemical Abstracts Service

N/A = not applicable

TCLP = toxicity characteristic leaching procedure

² Sample result to be compared to Preliminary Delisting Levels (PDL, TCLP-PDLx20, and, if TCLP samples are analyzed, TCLP-PDL).

³ This includes additional sample collection for TCLP analysis that may be required upon receipt of results.

⁴ This analysis will only be run on three of the collected samples; the samples selected for PCB analysis will be determined

Pacific Groundwater Group Report: Results of Investigation of Sludge at Three Storage Sites

FIRE MOUNTAIN FARMS, INC. RESULTS OF INVESTIGATION OF SLUDGE AT THREE STORAGE SITES

September 2014

FIRE MOUNTAIN FARMS, INC. RESULTS OF INVESTIGATION OF SLUDGE AT THREE STORAGE SITES

Prepared for:

Fire Mountain Farms, Inc. 349 State Route 508 Chehalis, WA 98532 360.266.0695 www.firemtn.us

Prepared by:

Pacific Groundwater Group 2377 Eastlake Avenue East, Suite 200 Seattle, Washington 98102 206.329.0141 www.pgwg.com

September 11, 2014 JW9901.01 FMF_SludgeReport_V4_rev091114_EcologyReview.docx

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
3.0	BACKGROUND	2
4.0	INVESTIGATIVE WORK PERFORMED	
+. U		
4.		
	4.1.1 Newaukum Prairie Lagoon Field Investigation	
	4.1.2 Big Hanford Bunker Field Investigation	
	4.1.3 Burnt Ridge Lagoon Field Investigation	
4.	.2 DATA VALIDATION	6
5.0	ANALYTICAL RESULTS	6
5.	.1 NEWAUKUM PRAIRIE ANALYTICAL RESULTS	7
	5.1.1 Organic Results	7
	5.1.2 Metals Results	8
	5.1.3 Inorganic Results	8
	5.1.4 Total Coliform Results	
5.	.2 BIG HANAFORD ANALYTICAL RESULTS	
	5.2.1 Organic Results	9
	5.2.2 Metals Results	9
	5.2.3 Inorganic Results	9
	5.2.4 Total Coliform Results	10
5.	.3 BURNT RIDGE ANALYTICAL RESULTS	10
	5.3.1 Organic Results (Sludge Samples)	10
	5.3.2 Metals Results (Sludge Samples)	10
	5.3.3 Inorganic Results (Sludge Samples)	11
	5.3.4 Burnt Ridge Water Cap Results	11
	5.3.5 Total Coliform Results	12
5.0	EVALUATION OF SLUDGE ANALYTICAL RESULTS	12
6.	.1 EVALUATION OF RESULTS - STATE LAND DISPOSAL RESTRICTIONS FOR DANGEROUS WASTE	12
	6.1.1 Liquid Waste Evaluation	12
	6.1.2 Solid Acid Waste Evaluation	
	6.1.3 Extremely Hazardous Waste Evaluation	
	6.1.4 Total Organic/Carbonaceous Waste Evaluation	
	6.1.5 Land Disposal Restriction Evaluation Summary	
6.		
6.	.3 EVALUATION OF RESULTS - STATE BIOSOLIDS MANAGEMENT RULE	16
7 N	DEFEDENCES	17

TABLES

Table 1: Chemical Analyses Performed on Each Sample Collected from Three Sludge Waste Sites at Fire Mountain Farms, Inc. Table 2: Subsamples (grab samples) Collected for each Composite Sample (Fire Mountain Farms, Inc.) Table 3: Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Table 4: Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Table 5: Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Table 6: Total Fecal Coliform Analytical Results (Fire Mountain Farms) Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Table 7: Table 8: Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation Table 9: Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation Table 10: Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation Land Disposal Restriction Evaluation (Fire Mountain Farms) Table 11: Comparison of Detected Concentrations of Organics and Metals in FMF Sludge to Table 12: U.S. EPA National Sewage Sludge Survey (NSSS) Dataset and WAC 173-308-160 (Biosolids Pollutant Limits) Parameter Exceedance Factors in Composite Sludge Samples from Fire Mountain Table 13: Farms, Inc. (Exceedance of the NSSS Mean)

FIGURES

Figure 1: Fire Mountain Farm Sampling Sites
Figure 2: Sludge Sample Locations at Newaukum Prairie
Figure 3: Sludge Sample Locations at Big Hanaford
Figure 4: Sludge Sample Locations at Burnt Ridge
Figure 5: Water Cap Sample Locations at Burnt Ridge

APPENDICES

Appendix A: Quality Assurance Quality Control

Appendix B: Field Photos

Appendix C: Laboratory Reports

SIGNATURE

This report, and Pacific Groundwater Group's work contributing to this report, were reviewed by the undersigned and approved for release.

Janet Knox Principal Geochemist Washington State Geologist No. 413

1.0 EXECUTIVE SUMMARY

This report documents the results of extensive sampling and analytical testing of biosolids (mixed sludge waste from various sources) currently being stored at three facilities operated by Fire Mountains Farms, Inc. (FMF) in Lewis County, Washington (Newaukum Prairie Impoundment, Burnt Ridge Lagoon, and Big Hanaford Bunker). Sludge samples were collected in July 2014 from each site and were analyzed for a comprehensive list of chemical compounds, including the full US Environmental Protection Agency (U.S. EPA) priority pollutant list for at least one composite sample at each site. A liquid sample was also collected from the water cap at the Burnt Ridge Lagoon.

Evaluation of the analytical results under the Washington State land disposal restriction for dangerous waste Chapter 173-303 of the Washington Administrative Code (WAC) indicate the sludge currently stored at all three facilities do not likely designate as wastes that would be restricted from land disposal (Section 6.1).

Evaluation of the analytical results under the Washington State Biosolids Management Rule (WAC 173-308) indicate the concentration of regulated pollutants in the FMF sludge are all below regulatory limits (WAC 173-308-160) and total fecal coliform concentrations meet the pathogen reduction requirements for Class B biosolids (WAC 173-308-170) (Section 6.3).

Comparison of the analytical results to mean sewage sludge concentrations from the U.S. EPA 1988 National Sewage Sludge Survey (NSSS) indicate chemical concentrations in the FMF sludge is either similar to or less than the mean concentrations calculated from the NSSS dataset except for the following chemicals (in order from highest to lowest exceedance of the NSSS dataset) (Section 6.2):

- Cobalt at all three sites
- 4-Methylphenol at Big Hanaford
- Toluene at Newaukum Prairie and Big Hanaford
- Phenol at Big Hanaford
- Molybdenum at all three sites

Although molybdenum concentrations exceeded the mean concentration in the NSSS dataset, they are below the ceiling limit for molybdenum in the State Biosolids Rule (WAC 173-308-160). Pollutant limits are not set for toluene, cobalt, 4-methylphenol, and phenol in the State Biosolids Rule.

Toluene was detected in four discrete liquid samples collected from each quadrant of the Burnt Ridge water cap at concentrations well below the Federal Maximum Contaminant Level (MCL) for drinking water. No other organic chemicals were detected in the water cap samples.

Seven metals were detected in the composite liquid sample from the Burnt Ridge water cap (all measured as totals): chromium, cobalt, copper, molybdenum, nickel, zinc, and mercury. The concentrations of chromium, copper, and mercury were all below the Federal MCL and the Washington State Standards for Groundwater (WAC 173-200). There is no state or federal standard for cobalt, molybdenum, or nickel.

2.0 INTRODUCTION

The purpose of this report is to document the investigation of biosolids (sludge waste) currently stored at three facilities operated by Fire Mountain Farms, Inc. in Lewis County, Washington. Pacific Groundwater Group (PGG) performed the investigation and prepared this report for Fire Mountain Farms, Inc. (FMF) to meet the requirements of an Administrative Order (Docket #10721) issued by the Washington Department of Ecology (Ecology) on June 2, 2014.

The purpose of the investigation was to conduct a rigorous characterization of the chemical composition of sludge waste being stored at the three facilities. The analytical results were then evaluated under the Land Disposal Restrictions under the Washington Dangerous Waste Regulations (Washington Administrative Code [WAC] 173-303-140) and Biosolids Management Code (WAC 173-308). Analytical results were also compared to the mean sewage sludge concentrations from the U.S. EPA 1988 National Sewage Sludge Survey (NSSS).

This work was performed, our findings obtained, and this report prepared, using generally accepted environmental investigation practices used at this time and in this vicinity, for exclusive application to the Fire Mountain Farm, Inc. sludge investigation, and for the exclusive use of Fire Mountain Farms, Inc. This is in lieu of other warranties, expressed or implied.

3.0 BACKGROUND

Fire Mountain Farms, Inc. (FMF) operates several facilities in Lewis County where biosolids are applied to fields as fertilizer under the Washington State General Permit for Biosolids Management. On June 2, 2014, FMF was issued an Administrative Order (AO), Docket #10721 by the Washington Department of Ecology (Ecology). Under the directive of the AO, Ecology required FMF to undergo a rigorous investigation to sample and characterize sludge currently stored at three of its facilities: Newaukum Prairie, Big Hanaford, and Burnt Ridge (Figure 1).

1. Newaukum Prairie Surface Impoundment

The Newaukum Prairie surface impoundment (Figure 2) was recently re-constructed and lined in 2013. The lagoon does not have a water cap. The dimensions of the sludge in July 2014 were estimated to be 8 to 9 feet thick, measuring roughly 100 feet by 100 feet at the bottom and 170 feet by 170 feet at the surface.

2. Big Hanaford Bunker

The Big Hanaford Bunker (Figure 3) is a covered concrete structure measuring approximately 100 feet by 60 feet in dimension and stores sludge estimated to be about 10 feet deep¹.

3. Burnt Ridge Surface Lagoon

The Burnt Ridge Lagoon (Figure 4) has a water cap approximately 14 feet deep above sludge and solids stored at the bottom. The surface water dimensions of the lagoon were measured by FMF personnel on June 25, 2014 to be 215 feet by 205 feet. The lagoon's sloped interior sides extend about 50 feet from the edge indicating the bottom area of the lagoon is about 115 feet by 105 feet. Limited sludge material is currently stored at the bottom of Burnt Ridge Lagoon. The sludge material is estimated to currently be 3 feet thick or less.

As stated in the AO, the investigative work was required to follow an Ecology-approved Quality Assurance Project Plan (QAPP) specifying a rigorous method of sampling (gridding, randomized sampling, compositing, etc.) to address the heterogeneity of the materials stored at the three sites. The QAPP was prepared by Pacific Groundwater Group in accordance with Ecology guidelines (Publication No. 04-03-030 July 2004) and was submitted to and approved by Ecology in July 2014 (PGG, 2014).

During conversations with Ecology while developing the QAPP, it was also agreed that the water cap at the Burnt Ridge Lagoon and groundwater monitoring wells downgradient of the Newaukum Prairie and Burnt Ridge storage site would also be sampled as part of this investigation.

4.0 INVESTIGATIVE WORK PERFORMED

This section summarizes the field investigative work performed to meet the requirements of the AO. Field investigative work included sampling of sludge wastes stored at three of the Fire Mountain Farms sites: Burnt Ridge, Newaukum Prairie, and Big Hanaford (Figure 1). The Burnt Ridge Lagoon water cap was also sampled as part of the investigation. Although not required by the AO, existing downgradient groundwater monitoring wells were sampled at the Newaukum Prairie and Big Hanaford sites; however, the results of the groundwater investigation will be summarized in a separate addendum to this report.

Results of this investigative work are summarized in Section 5 (Analytical Results).

4.1 FIELD INVESTIGATION

Samples were collected from the three storage sites (Burnt Ridge, Newaukum Prairie, and Big Hanaford) following the procedures outlined in the QAPP (PGG, 2014); field conditions required exceptions to the QAPP that were approved by Ecology and are described

¹ The concrete segments used to construct the bunker are 11.5 feet tall with a 6 inch thick poured concrete slab floor, making an effective depth of 11 feet. The top of the biosolids is 6 to 12 inches from the top of the bunker - for a total biosolids thickness of 10 to 10.5 feet.

below. At each site, several grab samples ("subsamples") were systematically collected by FMF personnel using various coring devices at prescribed horizontal spacing and random vertical depths. An x-y grid was staked out along the perimeter of each storage site to guide sample locations as specified in the QAPP (PGG, 2014). Sludge sample depths varied from near the surface to the bottom of the sludge material and were randomly selected in the field using a pre-generated table of random numbers in MS-Excel.

Three composited sludge samples from each storage site were submitted for laboratory analysis. Each composite consisted of up to nine discrete grab samples composited in the field (except for samples analyzed for volatile organic compounds (VOCs), which were composited by the lab in order to minimize volatilization to air). A composite liquid sample was also collected from the water cap at the Burnt Ridge Lagoon. Field compositing of grab samples was conducted by PGG personnel and followed the procedures documented in the QAPP (2014). Decontamination of sampling and compositing equipment also followed the procedures documented in the QAPP.

In accordance with the QAPP, the sludge samples were analyzed for a comprehensive list of chemical compounds, including the full US Environmental Protection Agency (USEPA) priority pollutants for at least one composited sludge sample collected from each site.

The water cap liquid sample collected at the Burnt Ridge site was analyzed for VOCs, Semi-VOCs, metals, nitrate, and total cyanide. The water cap sample was not analyzed for the full priority pollutants as stated in Section 4.7 of the QAPP (PGG, 2014). This deviation is due to Table 6 in the QAPP, which indicates sample parameters for the water cap were to be the same as the sample parameters for groundwater (VOCs, Semi-VOCs, metals, nitrate, and total cyanide).

Finally, in accordance with the pathogen reduction requirements in the State's Biosolids Management Rule (Chapter WAC 173-308-170) discrete grab samples of sludge from each site were submitted for Total Coliform analysis.

All samples were analyzed by Analytical Resources Inc. in Tukwila, Washington except for Total Coliform which was analyzed by Water Management Laboratories in Tacoma, Washington. The analytical methods were as specified in the QAPP and are shown with the analytical results in Tables 3, 4, 5, 6, and 7.

Details of the sampling conducted at each site are described below.

4.1.1 Newaukum Prairie Lagoon Field Investigation

Sludge grab samples at the Newaukum Prairie site were collected by FMF personnel on July 7, 2014 using a 1.5 inch sludge judge with a flapper valve. The location of each grab sample is shown in Figure 2. Depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (NP-Comp-1, NP-Comp-2, and NP-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Nine individual grab samples comprised each composited sludge sample (Figure 2 and Table 2). In accordance with the QAPP, fourteen individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 7, 2014).

4.1.2 Big Hanford Bunker Field Investigation

Sludge grab samples at the Big Hanaford site were collected by FMF personnel on July 8, 2014 using a 1.5 inch PVC casing pipe driven to the desired depth and samples collected from the final depth of casing using a 1 inch stainless steel, solid stem, hand auger. The PVC pipe was hand driven into the material allowing accessing for sample collection at depth with the hand auger. FMF personnel verified the sludge material was pushed to the outside of the PVC pipe by measuring depth inside the PVC pipe. If any sludge material were encountered inside the PVC pipe, FMF personnel used the hand auger to clean out materials to achieve sample depth, decontaminated the hand auger, and collected the sample. Sludge samples were obtained by "peeling" the material from the threads on the auger head.

The location of each grab sample is shown in Figure 3. Sample depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (BH-Comp-1, BH-Comp-2, and BH-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Six individual grab samples comprised each composited sludge sample (Figure 3 and Table 2). In accordance with the QAPP, seven individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 8, 2014).

4.1.3 Burnt Ridge Lagoon Field Investigation

Sludge grab samples at the Burnt Ridge Lagoon site were collected by FMF personnel on July 9, 2014 using a 1.5 inch sludge judge with a flapper valve. The location of each grab sample is shown in Figure 4. Sample depths are noted in Table 2. Three composited sludge samples were prepared by PGG personnel and submitted for laboratory analysis (BR-Comp-1, BR-Comp-2, and BR-Comp-3 in Table 1), except for VOC samples, which were composited by the lab to minimize volatilization. Nine individual grab samples comprised each composited sludge sample (Figure 4 and Table 2). In accordance with the QAPP, seven individual grab samples were submitted for Total Coliform analysis. All samples were placed in iced coolers and delivered to the lab on the same day (July 9, 2014).

The Burnt Ridge water cap was sampled on July 17, 2014. In accordance with the QAPP, water cap sample depths were not random as they were for the sludge samples, but instead targeted the lower part of the water column where chemical partitioning from the sludge and minimal volatilization to the atmosphere would likely results in the highest concentrations in the water. Except for the analysis of VOCs, one composited water sample was prepared in the field by PGG personnel from four individual grab samples collected at each quadrant of the lagoon (Figure 5 and Table 2). Four individual grab samples collected for VOC analysis could not be filled directly from the sludge judge sampler into 40 mL laboratory vials as specified in the QAPP. Instead, water samples were emptied from the sludge judge into 32 oz glass jars and immediately provided to PGG personnel at the shoreline. PGG personnel then filled the 40 mL laboratory vials. The pouring of the water sample twice could result in some of the VOCs volatilizing to the air and thus the water cap VOC results could be biased low. The four grab samples for VOC analysis were requested to be composited by the lab, but were instead analyzed individually.

Water cap grab samples were collected by FMF personnel using a 1.5 inch sludge judge with a flapper valve in tandem with a measuring rod. FMF personnel would drop the measuring rod to identify the sludge water cap interface, then using the sludge judge collect the water sample from approximately six inches above the sludge surface. In coordination PGG and FMF personnel would determine if any water/sludge was to be discarded from the bottom of sampler prior to bottle filling. All samples were placed in iced coolers and delivered to the lab on the same day (July 17, 2014).

4.2 **DATA VALIDATION**

Analytical data collected for this investigation have been validated in accordance with the QAPP, including both laboratory and field quality assurance quality control procedures (PGG, 2014). Appendix A contains the data validation. Some analyses required sample dilution which resulted in elevated laboratory reporting limits; however, the QA/QC data are satisfactory and indicate that the data are acceptable for the project purposes.

The Dioxin results were flagged "JEMPC" by the analytical laboratory, indicating the concentrations are "Estimated Maximum Possible Concentrations", and are less than the analytical reporting limits (RL or Practical Quantitation Limit, PQL). The analysis was challenging due to the sludge matrix and high moisture content. These estimated and qualified analytical results are considered not sufficiently accurate to serve as a basis for regulatory decisions.

5.0 **ANALYTICAL RESULTS**

This section provides a summary of the analytical results. Section 6.0 provides an evaluation of the sludge analytical results within the context of regulatory requirements.

The analytical results for sludge samples collected at all three sites show detections of a few volatile organic compounds (VOCs) and semi-VOCs; metals; PCBs² (Aroclor 1260), and Total Cyanide. Elevated concentrations of N-ammonia and total Kjeldahl nitrogen (TKN) were also detected in the sludge. Pesticides were not detected in the sludge at all three sites.

The dominant organic chemicals (greater than 10 ppm³) detected in the sludge were:

- Bis(2-ethylhexyl)phthalate (at all three sites)
- 4-Methylphenol (Big Hanaford)
- Toluene (Newaukum Prairie and Big Hanaford)
- Phenol (Big Hanaford)

The dominant metals detected in the sludge at all three sites were:

- Zinc (~ 900 1100 ppm)
- Copper (~ 400 to 500 ppm)

² Polychlorinated Biphenyls

³ Parts per million. One ppm (1 mg/kg) = 1000 ug/kg (1000 parts per billion or ppb)

As described in Section 6.1, the concentrations of chemicals in the sludge at all three sites do not trigger the land disposal restrictions set forth in Chapter WAC 173-303-140. Furthermore, as described in Section 6.2, except for the chemicals toluene, 4-methylphenol, phenol, molybdenum, and cobalt, the chemical concentrations detected in sludge at the Fire Mountain Farm sites are similar to or less than the national averages calculated by the U.S. EPA as part of their National Sewage Sludge Survey (NSSS) from Publically Owned Treatment Works (POTW).

Analytical results for the water cap samples collected from the bottom of the Burnt Ridge Lagoon showed detections of toluene (26 to 41 ug/L), some metals, and very low levels of nitrite and nitrite+nitrate (0.014 and 0.051 mg/L as N respectively). Except for toluene, no other VOCs or Semi-VOCs were detected in the water cap sample, suggesting minimal leaching of organic parameters from the sludge. As mentioned above, groundwater samples have been collected at the Burnt Ridge and Newaukum Prairie sludge storage sites to assess potential historical leaching of chemicals in the sludge with transport to the groundwater. The results of the groundwater sampling will be submitted as an addendum to this report.

The geometric means of total fecal coliform results at the three sites were 44 MPN⁴ per gram (dw)⁵ at Burnt Ridge; 145 MPN per gram (dw) at Big Hanaford; and 3,056 MPN per gram (dw) at Newaukum Prairie. All values are well below the required threshold of 2,000,000 MPN per gram (dw) for Class B biosolids (WAC 173-308-170(5))⁶.

The analytical results for each storage site are described in more detail below. Section 6.0 provides describes the sludge analytical results within the context of regulatory requirements of land disposal restrictions under the State's Dangerous Waste Regulation (WAC 173-303-140), the State's Biosolids Management Rule (WAC 173-308), and comparison to the U.S. EPA National Sewage Sludge Survey (NSSS) dataset.

5.1 NEWAUKUM PRAIRIE ANALYTICAL RESULTS

Newaukum Prairie analytical results are shown in Table 3. Total Coliform Results are shown in Table 6. A summary is provided below.

5.1.1 **Organic Results**

The following organic chemicals were detected in the composite sludge samples collected at Newaukum Prairie (in order from highest concentrations to lowest concentrations):

- Toluene
- Bis(2-ethylhexyl)phthalate (BEHP)

⁴ MPN = Most Probable Number

⁵ dw = dry weight

⁶ Total coliform results were reported by the lab as wet weight concentrations and were converted to dry weight concentrations using the average total solids results from the three composited sludge samples at each location (see Tables 3, 4, and 5). There was very little variability in percent total solids between the three composited samples, suggesting the use of an average is acceptable.

- Phenols (4-methylphenol & Phenol)
- 1.4-dichlorobenzene
- PAHs⁷ (Fluoranthene; Indeno(1,2,3-cd)pyrene; Pyrene; Phenanthrene; Benzo(b)fluoranthene; Benzo(k)fluoranthene)
- PCBs (Aroclor 1260)
- Ethylbenzene

Toluene concentrations varied from 130 to 150 ppm, BEHP from 19 to 20 ppm, and 4-methylphenol from 2.4 to 2.6 ppm. The concentrations of all other detected organic chemicals were less than 1 ppm (Table 3).

5.1.2 Metals Results

The following metals were detected in sludge samples collected at Newaukum Prairie (in order from highest concentration to lowest concentration):

- Zinc (950 to 1060 ppm)
- Copper (440 to 503 ppm)
- Cobalt (76 to 89 ppm)
- Nickel (30 ppm)
- Chromium (24 to 27 ppm)
- Molybdenum (12 to 14 ppm)
- Mercury (0.9 to 1.2 ppm)

5.1.3 Inorganic Results

The following inorganics were detected in the sludge samples collected at Newaukum Prairie:

- N-Ammonia (21,400 mg/kg as N)
- TKN (71,400 mg/kg as N)
- Nitrate+Nitrite (4.01 mg/kg as N)
- Nitrite (6.09 mg/kg as N)
- Total Cyanide (1.73 mg/kg)

5.1.4 Total Coliform Results

Fourteen discrete sludge samples for Total Coliform analysis were collected from Newaukum Prairie (Table 6). Concentrations ranged from 504 MPN per grams (dw) to 14,060 MPN per grams (dw) with a geometric mean of 3,056 MPN per grams (dw).

5.2 BIG HANAFORD ANALYTICAL RESULTS

Big Hanaford analytical results are shown in Table 4. Total Coliform Results are shown in Table 6. A summary is provided below.

_

⁷ Polycyclic Aromatic Hydrocarbons

5.2.1 Organic Results

The following organic chemicals were detected in the composite sludge samples collected at Big Hanaford site (in order from highest concentrations to lowest concentrations):

- Phenols (4-methylphenol and phenol)
- Toluene
- Bis(2-ethylhexyl)phthalate (BEHP)
- N-nitrosodiphenylamine
- 1,4-dichlorobenzene
- PAHs (Fluoranthene)
- PCBs (Aroclor 1260)

4-Methylphenol concentrations varied from 480 to 720 ppm, phenol from 14 to 23 ppm, toluene from 8.3 to 120 ppm, and BEHP from 24 to 25 ppm, N-nitrodiphenylamine from 1.1 to 1.4 ppm, and 1,4-dichlorobenzene from 1 to 1.3 ppm. The concentrations of PAHs and PCBs were all below 1 ppm (Table 4).

Although fluoranthene was the only PAH detected at the Big Hanaford site, the laboratory reporting limits were elevated for the samples analyzed at this site compared to the other two sites due to laboratory dilution requirements (see Appendix A). Therefore, the PAHs that were detected at relatively low levels at the Newaukum Prairie and Burnt Ridge site could also be present at the Big Hanaford site below the laboratory reporting limit.

5.2.2 Metals Results

The following metals were detected in sludge samples collected at Big Hanaford site (in order from highest concentration to lowest concentration):

- Zinc (1030 to 1100 ppm)
- Copper (473 to 521 ppm)
- Cobalt (15 to 165 ppm)
- Nickel (27 to 42 ppm)
- Lead (20 to 30 ppm)
- Chromium (25 to 29 ppm)
- Molybdenum (12 to 15 ppm)
- Silver (4 to 6 ppm)
- Mercury (1 to 3 ppm)
- Cadmium (2 ppm)

5.2.3 Inorganic Results

The following inorganics were detected in the sludge samples collected at Big Hanaford site:

- N-Ammonia (24,800 mg/kg as N)
- TKN (76,800 mg/kg as N)

- Nitrate+Nitrite (7.01 mg/kg as N)
- Nitrite (7.86 mg/kg as N)
- Total Cyanide (1.6 to 2.39 mg/kg)

5.2.4 Total Coliform Results

Seven discrete sludge samples for Total Coliform analysis were collected from Big Hanaford site (Table 6). Concentrations ranged from 5 MPN per grams (dw) to 6,800 MPN per grams (dw) with a geometric mean of 145 MPN per grams (dw).

5.3 BURNT RIDGE ANALYTICAL RESULTS

Burnt Ridge analytical results are shown in Table 5 (sludge results) and Table 7 (water cap results). Total Coliform Results for the sludge are shown in Table 6. A summary is provided below.

5.3.1 Organic Results (Sludge Samples)

The following organic chemicals were detected in the composite sludge samples collected at the Burnt Ridge site (in order from highest concentrations to lowest concentrations):

- Bis(2-ethylhexyl)phthalate (BEHP)
- 4-Methylphenol
- 1,4-Dichlorobenzene
- PAHs (Fluoranthene, Indeno(1,2,3-cd)pyrene, Pyrene, Benzo(b)fluoranthene, and Benzo(k)fluoranthene)
- PCBs (Aroclor 1260)
- Toluene

BEHP concentrations varied from 9.1 to 12 ppm and 4-methylphenol from 0.46 to 1.1 ppm. All other organics had concentrations below 1 ppm. Toluene concentrations in the Burnt Ridge sludge was noticeably lower than the concentrations of toluene at the other two sites.

5.3.2 Metals Results (Sludge Samples)

The following metals were detected in sludge samples collected at the Burnt Ridge site (in order from highest concentration to lowest concentration):

- Zinc (876 to 969 ppm)
- Copper (379 to 417 ppm)
- Cobalt (37 to 48 ppm)
- Chromium (31 to 45 ppm)
- Nickel (28 to 45 ppm)
- Lead (30 to 40 ppm)
- Molybdenum (14 to 16 ppm)
- Silver (5 to 6 ppm)
- Cadmium (3 ppm)

Mercury (1 to 2 ppm)

5.3.3 Inorganic Results (Sludge Samples)

The following inorganics were detected in the sludge samples collected at the Burnt Ridge site:

- N-Ammonia (7,600 mg/kg as N)
- TKN (33,700 mg/kg as N)
- Nitrate+Nitrite (0.60 mg/kg as N)
- Nitrite (0.72 mg/kg as N)
- Total Cyanide (1.05 to 1.42 mg/kg)

The concentrations of N-Ammonia, TKN, Nitrate+Nitrite, and Nitrite were noticeably lower at the Burnt Ridge Site relative to the other two sites.

5.3.4 Burnt Ridge Water Cap Results

The only organic parameter detected in the water cap liquid sample was toluene with concentrations ranging from 26 ppb to 41 ppb (Table 7) – well below the Federal drinking water MCL (1000 ug/L)⁸. The following metals were detected in the water cap composite sample (from highest to lowest):

- Zinc (0.18 ppm)
- Copper (0.057 ppm)
- Nickel (0.02 ppm)
- Cobalt (0.017 ppm)
- Chromium (0.012 ppm)
- Molybdenum (0.006 ppm)
- Mercury (0.0003 ppm)

The concentration of chromium, copper, and mercury are all below the Federal MCL for drinking water (0.1, 1.3, and 0.002 ppm respectively) and the Washington State groundwater criteria in Chapter WAC 173-200 (0.05, 1.0, and 0.002 ppm respectively). There is no state or federal standard for cobalt, molybdenum, or nickel.

Low concentrations of nitrate+nitire (0.014 mg/L as N) and nitrite (0.051 mg/L as N) were also detected in the water cap sample - well below the federal drinking water MCL (10 and 1 mg/L as N respectively).

Except for the detection of toluene, no other VOCs or Semi-VOCs were detected in the liquid at the bottom of the Burnt Ridge lagoon, suggesting minimal leaching of organic parameters from the sludge. However, as explained above in Section 4.1.3, the water cap sample could not be poured directly into the 40 mL laboratory vials and instead were first emptied into 32 oz glass jars and then transferred to the 40 mL laboratory vials from the 32 oz jars. The pouring of the water sample twice could result in some VOCs volatilizing to the air and thus bias the results low.

⁸ Maximum Contaminant Level (MCL) for toluene = 1000 micrograms per liter (ug/L)

As mentioned above, groundwater samples have been collected at the Burnt Ridge and Newaukum Prairie storage sites to assess potential historical leaching of chemicals in the sludge with transport to the groundwater. The results of the groundwater sampling will be submitted as an addendum to this report.

5.3.5 Total Coliform Results

Seven discrete sludge samples for Total Coliform analysis were collected from Burnt Ridge site (Table 6). Concentrations ranged from 16 MPN per grams (dw) to 156 MPN per grams (dw) with a geometric mean of 44 MPN per grams (dw).

6.0 EVALUATION OF SLUDGE ANALYTICAL RESULTS

The following sections provide an evaluation of the sludge analytical results under the Washington State land disposal restriction for dangerous waste (WAC 173-303-140); comparison of the analytical results to the U.S. EPA National Sewage Sludge Survey; and evaluation under the Washington State Biosolids Management Rule (WAC 173-308).

6.1 EVALUATION OF RESULTS - STATE LAND DISPOSAL RESTRICTIONS FOR DANGEROUS WASTE

The sludge analytical results from each storage site were evaluated against land disposal restrictions under the State's Dangerous Waste Regulation (WAC 173-303-140). Under the State's code, the following wastes are restricted from land disposal (WAC 173-303-140 (4)):

- Disposal of extremely hazardous waste (EHW): Designated under WAC 173-303-100.
- 2. Disposal of Liquid Waste: Demonstrated using Method 9095 (Paint Filter Liquid Test)
- 3. Disposal of solid acid waste: $pH \le 2$ and $pH \ge 12.5$ (WAC 173-303-90(6)(a)(iii).
- 4. Disposal of organic/carbonaceous Waste: wastes containing combined organics > 10% (WAC 173-303-140(3)(c)).

6.1.1 Liquid Waste Evaluation

Because biosolids are applied as solids at the land surface, it is considered a valid assumption that the waste would not likely designate as a liquid waste. We understand that this restriction applies to land disposal of liquid wastes at a landfill.

6.1.2 Solid Acid Waste Evaluation

The pH results for the sludge samples collected at all three sites (Tables 3, 4, and 5) were relatively similar (7.91 at Big Hanaford, 7.43 at Burnt Ridge, 7.38 at Newaukum Prairie) and do not designate as a solid acid.

6.1.3 Extremely Hazardous Waste Evaluation

Under WAC 173-303-100, a waste is evaluated as extremely hazardous under the Toxicity Criteria (WAC 173-303-100(5)) and the Persistence Criteria (WAC 173-303-100(6)). For this evaluation we considered the full list of organic chemicals, metals, and cyanide analyzed at each of the three storage sites.

For detected chemicals, we used the maximum concentration reported for each site; a valid alternative approach would be to use an average or mean value. For non-detected chemicals we used the minimum laboratory reporting limit as an estimated concentration. The use of the laboratory reporting limit is considered an upper bound estimate of the actual concentration, which is some unknown value between zero and the reporting limit.

6.1.3.1 Toxicity Criteria (book designation method)

The toxicity criteria were evaluated using the book designation method. Under the book designation method, the toxicity category (X, A, B, C, or D) for each chemical constituent is determined from available toxicity data sources (WAC 173-303-100(5)(b)(i)). For this evaluation we used toxicity data from the current Hazardous Substances Data Bank (HSDB)⁹ and ECOTOXicology¹⁰.

An equivalent percent concentration (EC) is then determined by weighting the total percent concentration for each toxic category in the waste:

$$EC(\%) = \frac{\sum X\%}{1} + \frac{\sum A\%}{10} + \frac{\sum B\%}{100} + \frac{\sum C\%}{1000} + \frac{\sum D\%}{10,000}$$

The percent concentrations and associated toxic category for each chemical at each site are shown in Tables 8, 9, and 10.

A waste is designated as follows under the Toxicity Criteria (WAC 173-303-100(5)(b)(iii)):

- If EC(%) < 0.001%, the waste is not a toxic dangerous waste
- If EC(%) > 0.001% and < 1%, the waste is designated as dangerous waste (WT02)
- If EC(%) > 1%, the waste is designated as extremely hazardous waste (EHW) and would be restricted for land disposal.

The results show the EC(%) at the three storage sites range from 0.57 to 0.73% and therefore do not designate as EHW under the toxicity criteria (Table 11).

6.1.3.2 Persistence Criteria

The Persistence Criteria (WAC 173-303-100(6) considers chemical compounds which are either halogenated organic compounds (HOC) or polycyclic aromatic hydrocarbons (PAHs). Under the persistence criteria, the total HOC and PAH concentrations in the

_

⁹ http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

¹⁰ http://cfpub.epa.gov/ecotox/

waste are determined by summing the percent concentration for all HOC and all PAH compounds in the waste.

The percent concentrations and associated organic category (HOC or PAH) for each chemical at each site are shown in Tables 8, 9, and 10.

A waste is designated as follows under the Persistence Criteria (WAC 173-303=100(6)(d)):

- If total HOC = 0.01% to 1%, the waste is designated as dangerous waste (WP02)
- If total HOC > 1%, the waste is designated as extremely hazardous waste (EHW)
- If total PAH > 1%, the waste is designated as EHW

The results for the three storage sites show total percent HOC ranges from 0.13 to 0.46% (even with inclusion of the 2,3,7,8-TCDD Estimated Possible Maximum Concentrations) and total percent PAH ranges from 0.05% to 0.09% and therefore do not designate as EHW under the persistence criteria (Table 11).

6.1.4 Total Organic/Carbonaceous Waste Evaluation

Under the Land Disposal Restrictions (WAC 173-303-140), no person may dispose of organic carbonaceous waste defined as wastes containing combined organics > 10% (WAC 173-303-140(3)(c)).

The percent concentrations and organic designation for each chemical at each site are shown in Tables 8, 9, and 10.

The results for the three storage sites show the total percent organics at each site are 0.49%, 2.14%, and 10.26%. While two sites clearly do not designate as organic carbonaceous waste, Big Hanaford is marginally above 10% (Table 11). Our evaluation uses an upper bound estimate on non-detected chemicals and therefore the true value is most likely less than 10%. Also, our evaluation includes the 2,3,7,8-TCDD Estimated Possible Maximum Concentrations, which should be excluded.

Further, it appears that the sludge meets the requirements for Organic/Carbonaceous Waste Exemption (WAC 173-303-140), as it is 83.82 % water (Table 6) and with its water content, its caloric content is likely much less than 3000 BTU/LB:

- (c) Organic/carbonaceous waste exemption. Any person may request an exemption from the requirements in subsection (4) of this section by demonstrating to the department that:
 - (i) Alternative management methods for organic/carbonaceous waste are less protective of public health and the environment than stabilization or landfilling; or
 - (ii) (A)The organic/carbonaceous waste has a heat content less than 3,000 BTU/LB or contains greater than sixty-five percent water or other noncombustible moisture; and

(B) Incineration is the only management method available within a radius of one thousand miles from Washington state's border (i.e., recycling or treatment are not available).

6.1.5 Land Disposal Restriction Evaluation Summary

Our evaluation indicates that the sludge at all three storage sites do not designate as wastes that would be restricted from land disposal under the State's Dangerous Waste Regulation (Table 11). Furthermore, because our evaluation uses an upper bound estimated concentration for non-detected chemicals, our evaluation provides a "worst-case" evaluation. As a result, even under a "worst-case" evaluation, the sludge would not be restricted from land disposal under the State's Dangerous Waste Regulation (WAC 173-303-140).

6.2 EVALUATION OF RESULTS - THE NATIONAL SEWAGE SLUDGE SURVEY

To evaluate whether the chemicals detected in the FMF sludge are characteristic of standard biosolids, we compared the analytical results to the average concentrations measured in sewage sludge from wastewater treatment plants.

In 1988, the U.S. EPA conducted the National Sewage Sludge Survey (NSSS) to identify and estimate the concentrations of expected pollutants in sewage sludge. The NSSS dataset includes concentration data for over 400 pollutants from samples collected at 178 Publicly Owned Treatment Works (POTWs) throughout the nation practicing at least secondary treatment of wastewater (U.S. EPA 1992 and 1996). Samples were collected just prior to the use or disposal of the sewage sludge. The results were used in establishing the Federal Biosolids rule in CFR 40 Part 50¹¹. The U.S. EPA conducted statistical analyses of the NSSS dataset in 1992 (Round 1) and in 1996 (Round 2) and tabulated average concentrations, standard deviations, and percentiles for different pollutants (U.S. EPA 1992 and 1996).

Table 12 provides a comparison of the concentration of chemicals detected in the sludge at FMF relative to the mean concentrations calculated from the NSSS dataset (Round 1 and Round 2). The table provides a comparison of chemicals detected in at least one sample from the FMF site. Chemical concentrations from the FMF sites are shown in Table 12 as either the maximum detected value or as less than ("<") the minimum reporting limit (if the chemical was not detected at that site).

Mean values from the NSSS dataset are shown for both the Round 1 (U.S. EPA 1992) and Round 2 (U.S. EPA, 1996) analysis. Each round analyzed a different set of chemicals and a slightly different approach to calculating mean concentrations.

The mean value from the Round 1 NSSS dataset analysis is based on a multi-censored, maximum-likelihood estimation (MLE) statistical procedure for estimating non-detected concentrations for chemicals with a detection frequency greater than 10% (U.S. EPA,

¹¹ http://water.epa.gov/scitech/wastetech/biosolids/tnsss-overview.cfm#pastsurveys

1992). For chemicals with a detection frequency less than 10% the mean value is based on a non-parametric statistical method (U.S. EPA, 1992).

Two mean values were calculated during the Round 2 NSSS dataset analysis (U.S. EPA, 1996); one based on setting non-detections to a value of zero (a lower bound estimate) and another based on setting non-detections to the value of the reporting limit (an upper bound estimate).

The results show the chemical concentrations in the FMF sludge is either similar to or less than the mean chemical concentrations calculated from the NSSS dataset except for the following chemicals (in order from highest to lowest exceedance of the NSSS dataset) (Table 13):

- Cobalt at all three sites
- 4-Methylphenol at Big Hanaford
- Toluene at Newaukum Prairie and Big Hanaford
- Phenol at Big Hanaford
- Molybdenum at all three sites

Molybdenum concentrations in the FMF sludge (14 to 16 mg/kg) are only slightly higher than the mean concentration in the NSSS dataset (9.63 mg/kg) and well below the ceiling limit for Molybdenum (75 mg/kg) in the State Biosolids Rule (WAC 173-308-160).

Pollutant limits are not set for toluene, cobalt, 4-methylphenol, and phenol in the State Biosolids Rule.

6.3 EVALUATION OF RESULTS - STATE BIOSOLIDS MANAGEMENT RULE

Numerical limits for select metals are set under the State Biosolids Management Rule (WAC 173-308-160). The rule sets the maximum allowable concentration (ceiling limit) in biosolids that can be applied to land. The rule also sets pollutant concentration limits which, when achieved, relieves a biosolids facility operator from certain requirements related to recordkeeping, reporting, and labeling.

Comparison of the FMF sludge results to the rule limits show that all concentrations are below both the ceiling limits and the pollutant limits established under the rule (Table 12).

The geometric means of total fecal coliform results at the three sludge storage sites were 44 MPN per gram (dw) at Burnt Ridge; 145 MPN per gram (dw) at Big Hanaford; and 3,056 MPN per gram (dw) at Newaukum Prairie (Table 6). All values are well below the required threshold of 2,000,000 MPN per gram (dw) for Class B biosolids (WAC 173-308-170(5)).

7.0 REFERENCES

- Pacific Groundwater Group, 2014. Fire Mountain Farms, Inc. Quality Assurance Project Plan Investigation of Emerald Kalama Chemical Sludge Comingled with Biosolids from Other Permitted Sources at Three Storage Sites.
- U.S. Environmental Protection Agency, 1992. Statistical Support Documentation for the 40 CFR, Part 503. Final Standards for the Use or Disposal of Sewage Sludge Volume I. Final Report November 11, 1992
- U.S. Environmental Protection Agency, 1996. Technical Support Document for the Round Two Sewage Sludge Pollutants. EPA-822-R-96-003.

PgG

Table 1. Chemical Analyses Performed on Each Sample Collected from Three Sludge Waste Sites at Fire Mountain Farms, Inc. (see Table 6 for samples submitted for total coliform analysis)

					Sludg	Sludge Samples	oles					Water	Water Cap Sample	nple	
		Newai	Newaukum Prairie	rairie	Big	Hanaford	rd	Bur	Burnt Ridge	0)		Bur	Burnt Ridge	a)	
		1-qmo2	Z-dmoJ	g-dmo5	L-dmoJ	Z-dmoJ	6-qmoJ	1-qmoJ	Z-dmoጋ	S-qmoJ	6-	8-1	8-II	5.8-√	dwog
CHEMICAL ANALYSIS	Method	-dN	-dN	-dN	-H8	-H8	BH-	-Я8	-Я8	-Я8	I-Я8	I-88	I-Я8	I-Я8)-Я8
Volatile Organic Compounds	8260C	×	×	×	×	×	×	×	×	×	×	×	×	×	
Semi-Volatile Organic Compounds	SW8270D	×	×	×	×	×	×	×	×	×					×
Metals	6010C/7471A	×	×	×	×	×	×	×	×	×					×
Pesticides	SW8081B	×	×		×			×							
Polychlorinated Biphenyls (PCB Aroclors)	SW8082A	×	×		×			×							
Polychlorinated dibenzo-p-dioxin (2,3,7,8-TCDD)	EPA 1613B	×			×			×							
N-Nitrate	Calculated	×			×			×							×
N-Ammonia	EPA 350.1M	×			×			×							
Total Kjeldahl Nitrogen	EPA 351.2	×			×			×							
Nitrate + Nitrite (NO3+NO2)	EPA 353.2	×			×			×							×
N-Nitrite	EPA 353.2	×			×			×							×
Total Solids	SM2540G	×	×	×	×	×	×	×	×	×					
Total Cyanide	EPA 335.4	×	×	×	×	×	×	×	×	×					×
hd	SW9045	×			×			×							

Note: All samples were composited "Comp" from discrete grab samples (see Table #) except for the analysis of Volatile Organic Compounds from the water cap at the Burnt Ridge Site.

									Burnt Ridge Water Cap
η	rairie Slud،	Newaukum Prairie Sludge Samples	Big Han	Big Hanaford Sludge Samples	Samples	Burnt	Burnt Ridge Sludge Samples	Samples	Sample
	NP-Comp-2	K-qmoJ-4N	1-qmoJ-H8	Z-dmoJ-H8	E-qmoJ-H8	L-qmoጋ-ЯВ	BR-Comp-2	BR-Comp-3	дшоጋ-ЯВ
ĮΞ	NP-C1-2-6	NP-A1-3-3	BH-A7-1-2	BH-A2-2-11	BH-A3-3-10	BR-A1-1-1	BR-A1-2-3	BR-A1-3-2	BR-I-9
Ż	NP-C2-2-5	NP-A2-3-3	BH-A1-1-0	BH-A5-2-4	BH-A6-3-4.5	BR-A2-1-3	BR-A2-2-2	BR-A2-3-1	BR-II-8
Ż	NP-C3-2-7	NP-A3-3-10	BH-A4-1-7.5	BH-A8-2-9	BH-B1-3-1	BR-A3-1-1	BR-A3-2-2	BR-A3-3-2	BR-III-8
Ż	NP-B1-2-4	NP-B1-3-1	BH-C2-1-8	BH-C1-2-1.5	BH-B8-3-6	BR-B1-1-3	BR-B3-2-3	BR-B3-3-1	BR-IV-8.5
Ż	NP-B2-2-6	NP-B2-3-6	BH-C5-1-10	BH-C4-2-10	BH-C3-3-10	BR-B2-1-3	BR-B2-2-1	BR-B2-3-2	
Ż	NP-B3-2-2	NP-B3-3-3	BH-C8-1-4	BH-C7-2-2	BH-C6-3-9	BR-B3-1-3	BR-B1-2-3	BR-B1-3-2	
Ź	NP-A3-2-10	NP-C1-3-3				BR-C1-1-3	BR-C1-2-2	BR-C1-3-3	
Ž	NP-A2-2-5	NP-C2-3-3				BR-C2-1-2	BR-C2-2-2	BR-C2-3-2	
Ż	NP-A1-2-7	NP-C3-3-8				BR-C3-1-3	BR-C3-2-1	BR-C3-3-3	

Sample ID Nomenclature for sludge samples (i.e. NP-A3-1-7)

NP = Site Name (Newaukum Prarire)

A3 = Grid Horizontal Location as Identified in QAPP

1 = Composite Number (in this case Comp-1)7 = Sample Depth (7 feet)

Sample ID Nomenclature for water cap sample (i.e. BR-I-9)

BR = Site Name (Burnt Ridge)

I = Sampled Quadrant

9 = Sample Depth (9 feet)

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	NP-Comp-1	NP-Comp-2	NP-Comp-3
Volatile Organic Compounds						
(VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	3.9U	3.7U	3.2U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,1,2-Trichloroethane	79-00-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,1-Dichloroethane	75-34-3	8260C	ug/kg	3.9U	3.7U	3.2U
1,1-Dichloroethene	75-35-4	8260C	ug/kg	3.9U	3.7U	3.2U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	19U	19U	16U
1,2-Dichlorobenzene	95-50-1	8260C	ug/kg	3.9U	3.7U	3.2U
1,2-Dichloroethane	107-06-2	8260C	ug/kg	3.9U	3.7U	3.2U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	3.9U	3.7U	3.2U
1,3-Dichlorobenzene	541-73-1	8260C	ug/kg	3.9U	3.7U	3.2U
1,4-Dichlorobenzene	106-46-7	8260C	ug/kg	91	120	97
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	19U	19U	16U
Acrolein	107-02-8	8260C	ug/kg	190U	190U	160U
Acrylonitrile	107-13-1	8260C	ug/kg	19U	19U	16U
Benzene	71-43-2	8260C	ug/kg	3.9U	3.7U	3.2U
Bromodichloromethane	75-27-4	8260C	ug/kg	3.9U	3.7U	3.2U
Bromoform	75-25-2	8260C	ug/kg	3.9U	3.7U	3.2U
Bromomethane	74-83-9	8260C	ug/kg	3.9U	3.7U	3.2U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	3.9U	3.7U	3.2U
Chlorobenzene	108-90-7	8260C	ug/kg	3.9U	3.7U	3.2U
Chloroethane	75-00-3	8260C	ug/kg	3.9U	3.7U	3.2U
Chloroform	67-66-3	8260C	ug/kg	3.9U	3.7U	3.2U
Chloromethane	74-87-3	8260C	ug/kg	3.9U	3.7U	3.2U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	3.9U	3.7U	3.2U
Dibromochloromethane	124-48-1	8260C	ug/kg	3.9U	3.7U	3.2U
Ethylbenzene	100-41-4	8260C	ug/kg	3.9U	4.60	3.50
Hexachlorobutadiene	87-68-3	8260C	ug/kg	19U	19U	16U
Methylene Chloride	75-09-2	8260C	ug/kg	7.8U	7.5U	6.5U
Naphthalene	91-20-3	8260C	ug/kg	19U	19U	16U
Tetrachloroethene	127-18-4	8260C	ug/kg	3.9U	3.7U	3.2U
Toluene	108-88-3	8260C	ug/kg	140,000	150,000	130,000
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	3.9U	3.7U	3.2U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	3.9U	3.7U	3.2U
Trichloroethene	79-01-6	8260C	ug/kg	3.9U	3.7U	3.2U
Vinyl Chloride	75-01-4	8260C	ug/kg	3.9U	3.7U	3.2U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

		ANALYSIS		NP-Comp-1	NP-Comp-2	NP-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	NP-C	NP-G	NP-6
Metals						
Antimony	7440-36-0	6010C	mg/kg	70U	80U	80U
Arsenic	7440-38-2	6010C	mg/kg	70U	80U	80U
Beryllium	7440-41-7	6010C	mg/kg	1U	2U	2U
Cadmium	7440-43-9	6010C	mg/kg	3U	3U	3U
Chromium	7440-47-3	6010C	mg/kg	24	26	27
Cobalt	7440-48-4	6010C	mg/kg	76	87	89
Copper	7440-50-8	6010C	mg/kg	440	493	503
Lead	7439-92-1	6010C	mg/kg	30U	30U	30U
Molybdenum	7439-98-7	6010C	mg/kg	12	13	14
Nickel	7440-02-0	6010C	mg/kg	30	30	30
Selenium	7782-49-2	6010C	mg/kg	70U	80U	80U
Silver	7440-22-4	6010C	mg/kg	4U	5U	5U
Thallium	7440-28-0	6010C	mg/kg	70U	80U	80U
Zinc	7440-66-6	6010C	mg/kg	950	1,060	1,060
Mercury	7439-97-6	7471A	mg/kg	1.2	0.9	1.2
Semi-Volatile Organic Compounds						
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	420U	380U	300U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	420U	380U	300U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	420U	380U	300U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	420U	380U	300U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	700	730	750
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	420U	380U	300U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	2100U	1900U	1500U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	2100U	1900U	1500U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	420U	380U	300U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	4200U	3800U	3000U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	2100U	1900U	1500U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	2100U	1900U	1500U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	420U	380U	300U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	420U	380U	300U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	420U	380U	300U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	2100U	1900U	1500U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	4200U	3800U	3000U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	420U	380U	300U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	420U	380U	300U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	NP-Comp-1	NP-Comp-2	NP-Comp-3
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	2,400	2,400	2,600
4-Nitrophenol	100-02-7	SW8270D	ug/kg	2100U	1900U	1500U
Acenaphthene	83-32-9	SW8270D	ug/kg	420U	380U	300U
Acenaphthylene	208-96-8	SW8270D	ug/kg	420U	380U	300U
Anthracene	120-12-7	SW8270D	ug/kg	420U	380U	300U
Azobenzene	103-33-3	SW8270D	ug/kg	420U	380U	300U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	420U	380U	300U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	420U	380U	300U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	420U	380U	360M
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	420U	380U	300U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	420U	380U	340M
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	420U	380U	300U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	420U	380U	300U
bis(2-Ethylhexyl)phthalate	117-81-7	SW8270D	ug/kg	19,000	20,000	19,000
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	420U	380U	300U
Chrysene	218-01-9	SW8270D	ug/kg	420U	380U	300U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	420U	380U	300U
Diethylphthalate	84-66-2	SW8270D	ug/kg	420U	380U	300U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	420U	380U	300U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	420U	380U	300U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	420U	380U	300U
Fluoranthene	206-44-0	SW8270D	ug/kg	560	530	550
Fluorene	86-73-7	SW8270D	ug/kg	420U	380U	300U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	420U	380U	300U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	420U	380U	300U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	2100U	1900U	1500U
Hexachloroethane	67-72-1	SW8270D	ug/kg	420U	380U	300U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	450M	470M	450M
Isophorone	78-59-1	SW8270D	ug/kg	420U	380U	300U
Naphthalene	91-20-3	SW8270D	ug/kg	420U	380U	300U
Nitrobenzene	98-95-3	SW8270D	ug/kg	420U	380U	300U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	2100U	1900U	1500U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	420U	380U	300U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	420U	380U	300U
Pentachlorophenol	87-86-5	SW8270D	ug/kg	2100U	1900U	1500U
Phenanthrene	85-01-8	SW8270D	ug/kg	420U	440	360

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

				ıp-1	ıp-2	p-3
		ANALYSIS		ν	ΩO	λου
PARAMETERS	CAS ID	METHOD	UNITS	NP-Comp-1	NP-Comp-2	NP-Comp-3
SVOC (cont.)				-		
Phenol	108-95-2	SW8270D	ug/kg	520	630	410
Pyrene	129-00-0	SW8270D	ug/kg	450	420	450
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	420U	380U	380M
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.8U	9.9U	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	49Y	99Y	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	150Y	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	33	40	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	17U	17U	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	17U	27Y	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	170Y	100Y	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.3U	8.3U	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.3U	13Y	NA
beta-BHC	319-85-7	SW8081B	ug/kg	22Y	8.3U	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	40Y	33Y	NA
delta-BHC	319-86-8	SW8081B	ug/kg	180Y	200Y	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	8.3U	21Y	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	17U	17U	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	140Y	120Y	NA
Endrin	72-20-8	SW8081B	ug/kg	17U	17U	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	17U	17U	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	8.3U	8.3U	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.3U	8.3U	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	340Y	280Y	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	830U	830U	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1300Y	1400Y	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	11.5U	11.2U	NA

Bold: Detected NA: Not Analyzed

^{2,3,7,8-}TCDD Est. Max Possible Concentration 2.76, 1.93 NP-Comp1, 2.

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

U: Not detected.

Y: Not detected at raised RL.

Table 3. Sludge Analytical Results - Newaukum Prairie Lagoon (Fire Mountain Farms) Samples collected: 7/7/14

				NP-Comp-1	NP-Comp-2	NP-Comp-3
		ANALYSIS		Ş	Ş	Ÿ
PARAMETERS	CAS ID	METHOD	UNITS	Z G	Z G	<u>z</u>
Inorganic Parameters						
N-Nitrate	NITRATE	Calculated	mg-N/kg	1.48U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	21,400	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	71,400	NA	NA
Nitrate + Nitrite (NO3+NO2)	NITRATE-NITRITE	EPA 353.2	mg-N/kg	4.01	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	6.09	NA	NA
Total Solids	TS104	SM2540G	Percent	6.43	6.51	6.69
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.73	1.69	1.87
рН	PH	SW9045	std units	7.38	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

		ANALYSIS		BH-Comp-1	BH-Comp-2	BH-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	Ħ B	<u>B</u> H	<u>B</u> H
Volatile Organic Compounds (VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	780U	800U	860U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg	780U	800U	860U
1,1,2-Trichloroethane	79-00-5	8260C	ug/kg	780U	800U	860U
1,1-Dichloroethane	75-34-3	8260C	ug/kg	780U	800U	860U
1,1-Dichloroethene	75-35-4	8260C	ug/kg	780U	800U	860U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	3900U	4000U	4300U
1,2-Dichlorobenzene	95-50-1	8260C	ug/kg	780U	800U	860U
1,2-Dichloroethane	107-06-2	8260C	ug/kg	780U	800U	860U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	780U	800U	860U
1,3-Dichlorobenzene	541-73-1	8260C	ug/kg	780U	800U	860U
1,4-Dichlorobenzene	106-46-7	8260C	ug/kg	1,000	1,300	1,000
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	3900U	4000U	4300U
Acrolein	107-02-8	8260C	ug/kg	39000U	40000U	43000U
Acrylonitrile	107-13-1	8260C	ug/kg	3900U	4000U	4300U
Benzene	71-43-2	8260C	ug/kg	780U	800U	860U
Bromodichloromethane	75-27-4	8260C	ug/kg	780U	800U	860U
Bromoform	75-25-2	8260C	ug/kg	780U	800U	860U
Bromomethane	74-83-9	8260C	ug/kg	780U	800U	860U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	780U	800U	860U
Chlorobenzene	108-90-7	8260C	ug/kg	780U	800U	860U
Chloroethane	75-00-3	8260C	ug/kg	780U	800U	860U
Chloroform	67-66-3	8260C	ug/kg	780U	800U	860U
Chloromethane	74-87-3	8260C	ug/kg	780U	800U	860U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	780U	800U	860U
Dibromochloromethane	124-48-1	8260C	ug/kg	780U	800U	860U
Ethylbenzene	100-41-4	8260C	ug/kg	780U	800U	860U
Hexachlorobutadiene	87-68-3	8260C	ug/kg	3900U	4000U	4300U
Methylene Chloride	75-09-2	8260C	ug/kg	1600U	1600U	1700U
Naphthalene	91-20-3	8260C	ug/kg	3900U	4000U	4300U
Tetrachloroethene	127-18-4	8260C	ug/kg	780U	800U	860U
Toluene	108-88-3	8260C	ug/kg	8,300	120,000	82,000
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	780U	800U	860U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	780U	800U	860U
Trichloroethene	79-01-6	8260C	ug/kg	780U	800U	860U
Vinyl Chloride	75-01-4	8260C	ug/kg	780U	800U	860U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

		ANALYSIS		BH-Comp-1	BH-Comp-2	BH-Comp-3
PARAMETERS	CAS ID	METHOD	UNITS	- B		<u>B</u>
Metals						
Antimony	7440-36-0	6010C	mg/kg	30U	30U	30U
Arsenic	7440-38-2	6010C	mg/kg	30U	30U	30U
Beryllium	7440-41-7	6010C	mg/kg	0.6U	0.6U	0.7U
Cadmium	7440-43-9	6010C	mg/kg	2	2	2
Chromium	7440-47-3	6010C	mg/kg	25	29	28
Cobalt	7440-48-4	6010C	mg/kg	15	64	165
Copper	7440-50-8	6010C	mg/kg	473	485	521
Lead	7439-92-1	6010C	mg/kg	30	20	20
Molybdenum	7439-98-7	6010C	mg/kg	12	15	13
Nickel	7440-02-0	6010C	mg/kg	27	38	42
Selenium	7782-49-2	6010C	mg/kg	30U	30U	30U
Silver	7440-22-4	6010C	mg/kg	6	4	4
Thallium	7440-28-0	6010C	mg/kg	30U	30U	30U
Zinc	7440-66-6	6010C	mg/kg	1,030	1,100	1,070
Mercury	7439-97-6	7471A	mg/kg	1	1.2	3
Semi-Volatile Organic Compounds						
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	580U	600U	720U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	580U	600U	720U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	570U	600U	710U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	580U	600U	720U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	860	750	720U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	580U	600U	720U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	2800U	3000U	3500U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	2800U	3000U	3500U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	580U	600U	720U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	5800U	6000U	7200U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	2800U	3000U	3500U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	2800U	3000U	3500U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	580U	600U	720U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	580U	600U	720U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	580U	600U	720U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	2800U	3000U	3500U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	5800U	6000U	7200U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	580U	600U	720U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	580U	600U	720U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BH-Comp-1	BH-Comp-2	BH-Comp-3
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	480,000	720,000	540,000
4-Nitrophenol	100-02-7	SW8270D	ug/kg	2800U	3000U	3500U
Acenaphthene	83-32-9	SW8270D	ug/kg	580U	600U	720U
Acenaphthylene	208-96-8	SW8270D	ug/kg	580U	600U	720U
Anthracene	120-12-7	SW8270D	ug/kg	580U	600U	720U
Azobenzene	103-33-3	SW8270D	ug/kg	580U	600U	720U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	580U	600U	720U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	580U	600U	720U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	570U	600U	710U
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	580U	600U	720U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	570U	600U	710U
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	580U	600U	720U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	580U	600U	720U
bis(2-Ethylhexyl)phthalate	117-81-7	SW8270D	ug/kg	25,000	25,000	24,000
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	580U	600U	720U
Chrysene	218-01-9	SW8270D	ug/kg	580U	600U	720U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	580U	600U	720U
Diethylphthalate	84-66-2	SW8270D	ug/kg	580U	600U	720U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	580U	600U	720U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	580U	600U	720U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	580U	600U	720U
Fluoranthene	206-44-0	SW8270D	ug/kg	640	600U	720U
Fluorene	86-73-7	SW8270D	ug/kg	580U	600U	720U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	580U	600U	720U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	580U	600U	720U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	2800U	3000U	3500U
Hexachloroethane	67-72-1	SW8270D	ug/kg	580U	600U	720U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	580U	600U	720U
Isophorone	78-59-1	SW8270D	ug/kg	580U	600U	720U
Naphthalene	91-20-3	SW8270D	ug/kg	580U	600U	720U
Nitrobenzene	98-95-3	SW8270D	ug/kg	580U	600U	720U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	2800U	3000U	3500U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	580U	600U	720U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	1200M	1100M	1400M
Pentachlorophenol	87-86-5	SW8270D	ug/kg	2800U	3000U	3500U
Phenanthrene	85-01-8	SW8270D	ug/kg	580U	600U	720U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

				BH-Comp-1	BH-Comp-2	BH-Comp-3
		ANALYSIS		Ö	Cor	Ş
PARAMETERS	CAS ID	METHOD	UNITS	H H	뀲	BH
SVOC (cont.)						
Phenol	108-95-2	SW8270D	ug/kg	14,000	23,000	16,000
Pyrene	129-00-0	SW8270D	ug/kg	580U	600U	720U
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	580U	600U	720U
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.9U	NA	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	99Y	NA	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	NA	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	35	NA	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	17U	NA	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	17U	NA	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	120Y	NA	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.3U	NA	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.3U	NA	NA
beta-BHC	319-85-7	SW8081B	ug/kg	8.3U	NA	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	34Y	NA	NA
delta-BHC	319-86-8	SW8081B	ug/kg	180Y	NA	NA
Dieldrin	60-57-1	SW8081B	ug/kg	39Y	NA	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	22Y	NA	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	17U	NA	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	17U	NA	NA
Endrin	72-20-8	SW8081B	ug/kg	49Y	NA	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	77Y	NA	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	25Y	NA	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.3U	NA	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	690Y	NA	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	830U	NA	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1200Y	NA	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	5.71U	NA	NA

^{2,3,7,8-}TCDD Est. Max Possible Concentration 0.72 BH-Comp1

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

U: Not detected at RL.

Y: Not detected at RL (raised RL).

Table 4. Sludge Analytical Results - Big Hanaford Bunker (Fire Mountain Farms) Samples collected: 7/8/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BH-Comp-1	BH-Comp-2	BH-Comp-3
Inorganic Parameters	CASTE	WEITIOD	014113	ш		
N-Nitrate	NITRATE	Calculated	mg-N/kg	0.57U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	24,800	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	76,800	NA	NA
Nitrate + Nitrite (NO3+NO2)	ΓRATE-NITRITE	EPA 353.2	mg-N/kg	7.01	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	7.86	NA	NA
Total Solids	TS104	SM2540G	Percent	16.33	17.04	15.16
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.60	2.39	1.77
рН	PH	SW9045	std units	7.91	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

U: Not detected at RL.

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

Jumples concercu. 17 57 14				0-1	2-5	2-3
		ANIALVEIC		BR-Comp-1	BR-Comp-2	BR-Comp-3
DADAMETERS	CACID	ANALYSIS	LIMITC	٦. ب	R-C	R-C
PARAMETERS	CAS ID	METHOD	UNITS	<u> </u>	<u> </u>	<u></u>
Volatile Organic Compounds (VOCs)						
1,1,1-Trichloroethane	71-55-6	8260C	ug/kg	2.3U	2U	1.8U
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/kg	2.3U	2U	1.8U
1,1,2-Trichloroethane	79-00-5	8260C	ug/kg	2.3U	2U	1.8U
1,1-Dichloroethane	75-34-3	8260C	ug/kg	2.3U	2U	1.8U
1,1-Dichloroethene	75-35-4	8260C	ug/kg	2.3U	2U	1.8U
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/kg	12U	10U	9U
1,2-Dichlorobenzene	95-50-1	8260C	ug/kg	2.3U	2U	1.8U
1,2-Dichloroethane	107-06-2	8260C	ug/kg	2.3U	2U	1.8U
1,2-Dichloropropane	78-87-5	8260C	ug/kg	2.3U	2U	1.8U
1,3-Dichlorobenzene	541-73-1	8260C	ug/kg	2.3U	2U	1.8U
1,4-Dichlorobenzene	106-46-7	8260C	ug/kg	48	26	32
2-Chloroethylvinylether	110-75-8	8260C	ug/kg	12U	10U	9U
Acrolein	107-02-8	8260C	ug/kg	120U	100U	90U
Acrylonitrile	107-13-1	8260C	ug/kg	12U	10U	9U
Benzene	71-43-2	8260C	ug/kg	2.3U	2U	1.8U
Bromodichloromethane	75-27-4	8260C	ug/kg	2.3U	2U	1.8U
Bromoform	75-25-2	8260C	ug/kg	2.3U	2U	1.8U
Bromomethane	74-83-9	8260C	ug/kg	2.3U	2U	1.8U
Carbon Tetrachloride	56-23-5	8260C	ug/kg	2.3U	2U	1.8U
Chlorobenzene	108-90-7	8260C	ug/kg	2.3U	2U	1.8U
Chloroethane	75-00-3	8260C	ug/kg	2.3U	2U	1.8U
Chloroform	67-66-3	8260C	ug/kg	2.3U	2U	1.8U
Chloromethane	74-87-3	8260C	ug/kg	2.3U	2U	1.8U
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/kg	2.3U	2U	1.8U
Dibromochloromethane	124-48-1	8260C	ug/kg	2.3U	2U	1.8U
Ethylbenzene	100-41-4	8260C	ug/kg	2.3U	2U	1.8U
Hexachlorobutadiene	87-68-3	8260C	ug/kg	12U	10U	9U
Methylene Chloride	75-09-2	8260C	ug/kg	4.6U	4U	3.6U
Naphthalene	91-20-3	8260C	ug/kg	12U	10U	9U
Tetrachloroethene	127-18-4	8260C	ug/kg	2.3U	2U	1.8U
Toluene	108-88-3	8260C	ug/kg	20	35	19
trans-1,2-Dichloroethene	156-60-5	8260C	ug/kg	2.3U	2U	1.8U
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/kg	2.3U	2U	1.8U
Trichloroethene	79-01-6	8260C	ug/kg	2.3U	2U	1.8U
Vinyl Chloride	75-01-4	8260C	ug/kg	2.3U	2U	1.8U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

7-7-2				BR-Comp-1	BR-Comp-2	BR-Comp-3
		ANALYSIS		Con	Con	Con
PARAMETERS	CAS ID	METHOD	UNITS	BR-	BR-	BR-
Metals						
Antimony	7440-36-0	6010C	mg/kg	40U	30U	30U
Arsenic	7440-38-2	6010C	mg/kg	40U	30U	30U
Beryllium	7440-41-7	6010C	mg/kg	0.7U	0.7U	0.6U
Cadmium	7440-43-9	6010C	mg/kg	3	3	3
Chromium	7440-47-3	6010C	mg/kg	31	45	35
Cobalt	7440-48-4	6010C	mg/kg	43	48	37
Copper	7440-50-8	6010C	mg/kg	379	417	358
Lead	7439-92-1	6010C	mg/kg	40	30	30
Molybdenum	7439-98-7	6010C	mg/kg	14	16	16
Nickel	7440-02-0	6010C	mg/kg	28	45	31
Selenium	7782-49-2	6010C	mg/kg	40U	30U	30U
Silver	7440-22-4	6010C	mg/kg	5	5	6
Thallium	7440-28-0	6010C	mg/kg	40U	30U	30U
Zinc	7440-66-6	6010C	mg/kg	886	969	876
Mercury	7439-97-6	7471A	mg/kg	1	1.9	1.8
Semi-Volatile Organic Compounds						
(SVOCs)						
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/kg	260U	310U	260U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/kg	260U	310U	260U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/kg	260U	310U	260U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/kg	260U	310U	260U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/kg	480	540	260U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/kg	260U	310U	260U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/kg	1300U	1500U	1300U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/kg	1300U	1500U	1300U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/kg	260U	310U	260U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/kg	2600U	3100U	2600U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/kg	1300U	1500U	1300U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/kg	1300U	1500U	1300U
2-Chloronaphthalene	91-58-7	SW8270D	ug/kg	260U	310U	260U
2-Chlorophenol	95-57-8	SW8270D	ug/kg	260U	310U	260U
2-Nitrophenol	88-75-5	SW8270D	ug/kg	260U	310U	260U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/kg	1300U	1500U	1300U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/kg	2600U	3100U	2600U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/kg	260U	310U	260U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/kg	260U	310U	260U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

•				BR-Comp-1	BR-Comp-2	BR-Comp-3
		ANALYSIS		Con	Con	Con
PARAMETERS	CAS ID	METHOD	UNITS	BR-	BR-	BR ₋
SVOC (cont.)						
4-Methylphenol	106-44-5	SW8270D	ug/kg	1,100	450	460
4-Nitrophenol	100-02-7	SW8270D	ug/kg	1300U	1500U	1300U
Acenaphthene	83-32-9	SW8270D	ug/kg	260U	310U	260U
Acenaphthylene	208-96-8	SW8270D	ug/kg	260U	310U	260U
Anthracene	120-12-7	SW8270D	ug/kg	260U	310U	260U
Azobenzene	103-33-3	SW8270D	ug/kg	260U	310U	260U
Benzo(a)anthracene	56-55-3	SW8270D	ug/kg	260U	310U	260U
Benzo(a)pyrene	50-32-8	SW8270D	ug/kg	260U	310U	260U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/kg	330M	310U	380M
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/kg	260U	310U	260U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/kg	330M	310U	360M
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/kg	260U	310U	260U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/kg	260U	310U	260U
bis(2-Ethylhexyl)phthalate	117-81-7	SW8270D	ug/kg	10,000	12,000	9,100
Butylbenzylphthalate	85-68-7	SW8270D	ug/kg	260U	310U	260U
Chrysene	218-01-9	SW8270D	ug/kg	260U	310U	260U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/kg	260U	310U	260U
Diethylphthalate	84-66-2	SW8270D	ug/kg	260U	310U	260U
Dimethylphthalate	131-11-3	SW8270D	ug/kg	260U	310U	260U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/kg	260U	310U	260U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/kg	260U	310U	260U
Fluoranthene	206-44-0	SW8270D	ug/kg	360	390	450
Fluorene	86-73-7	SW8270D	ug/kg	260U	310U	260U
Hexachlorobenzene	118-74-1	SW8270D	ug/kg	260U	310U	260U
Hexachlorobutadiene	87-68-3	SW8270D	ug/kg	260U	310U	260U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/kg	1300U	1500U	1300U
Hexachloroethane	67-72-1	SW8270D	ug/kg	260U	310U	260U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/kg	260U	310U	400
Isophorone	78-59-1	SW8270D	ug/kg	260U	310U	260U
Naphthalene	91-20-3	SW8270D	ug/kg	260U	310U	260U
Nitrobenzene	98-95-3	SW8270D	ug/kg	260U	310U	260U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/kg	1300U	1500U	1300U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/kg	260U	310U	260U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/kg	260U	310U	260U
Pentachlorophenol	87-86-5	SW8270D	ug/kg	1300U	1500U	1300U
Phenanthrene	85-01-8	SW8270D	ug/kg	260U	310U	260U

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

M: Est. value (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

				BR-Comp-1	BR-Comp-2	BR-Comp-3
		ANALYSIS		Çor	Ş	Ş
PARAMETERS	CAS ID	METHOD	UNITS	BR	BR	BR
SVOC (cont.)						
Phenol	108-95-2	SW8270D	ug/kg	260U	310U	260U
Pyrene	129-00-0	SW8270D	ug/kg	390	310	270
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/kg	350M	310U	400M
PCB (Aroclors)						
Aroclor 1016	12674-11-2	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1221	11104-28-2	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1232	11141-16-5	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1242	53469-21-9	SW8082A	ug/kg	9.8U	NA	NA
Aroclor 1248	12672-29-6	SW8082A	ug/kg	98Y	NA	NA
Aroclor 1254	11097-69-1	SW8082A	ug/kg	150Y	NA	NA
Aroclor 1260	11096-82-5	SW8082A	ug/kg	61	NA	NA
Pesticides						
4,4'-DDD	72-54-8	SW8081B	ug/kg	16U	NA	NA
4,4'-DDE	72-55-9	SW8081B	ug/kg	16U	NA	NA
4,4'-DDT	50-29-3	SW8081B	ug/kg	16U	NA	NA
Aldrin	309-00-2	SW8081B	ug/kg	8.2U	NA	NA
alpha-BHC	319-84-6	SW8081B	ug/kg	8.2U	NA	NA
beta-BHC	319-85-7	SW8081B	ug/kg	8.2U	NA	NA
cis-Chlordane	5103-71-9	SW8081B	ug/kg	19Y	NA	NA
delta-BHC	319-86-8	SW8081B	ug/kg	110Y	NA	NA
Dieldrin	60-57-1	SW8081B	ug/kg	57Y	NA	NA
Endosulfan I	959-98-8	SW8081B	ug/kg	14Y	NA	NA
Endosulfan II	33213-65-9	SW8081B	ug/kg	16U	NA	NA
Endosulfan Sulfate	1031-07-8	SW8081B	ug/kg	72Y	NA	NA
Endrin	72-20-8	SW8081B	ug/kg	25Y	NA	NA
Endrin Aldehyde	7421-93-4	SW8081B	ug/kg	16U	NA	NA
gamma-BHC (Lindane)	58-89-9	SW8081B	ug/kg	8.2U	NA	NA
Heptachlor	76-44-8	SW8081B	ug/kg	8.2U	NA	NA
Heptachlor Epoxide	1024-57-3	SW8081B	ug/kg	8.2U	NA	NA
Toxaphene	8001-35-2	SW8081B	ug/kg	820U	NA	NA
trans-Chlordane	5103-74-2	SW8081B	ug/kg	1100Y	NA	NA
Polychlorinated dibenzo-p-dioxin						
2,3,7,8-TCDD	1746-01-6	EPA 1613B	pg/g	2.35JEMPC	NA	NA

Bold: Detected NA: Not Analyzed

2,3,7,8-TCDD Est. Max Possible Concentration 2.35 BR-Comp1.

J: Est. (less than RL).

M: Est. (detected and confirmed but with low spectral match).

Table 5. Sludge Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/9/14

PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BR-Comp-1	BR-Comp-2	BR-Comp-3
Inorganic Parameters						
N-Nitrate	NITRATE	Calculated	mg-N/kg	0.6U	NA	NA
N-Ammonia	AMMONIA	EPA 350.1M	mg-N/kg	7,600	NA	NA
Total Kjeldahl Nitrogen	KJELDAHL-N	EPA 351.2	mg-N/kg	33,700	NA	NA
Nitrate + Nitrite (NO3+NO2)	NITRATE-NITRITE	EPA 353.2	mg-N/kg	0.60	NA	NA
N-Nitrite	NITRITE	EPA 353.2	mg-N/kg	0.72	NA	NA
Total Solids	TS104	SM2540G	Percent	15.06	13.40	15.91
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/kg	1.05	1.42	1.08
рН	PH	SW9045	std units	7.43	NA	NA

EMPC: Est. Max Possible Concentration.

J: Est. value (less than RL).

Table 6. Total Fecal Coliform Analytical Results (Fire Mountain Farms)

					Geometric Mean
	MPN per 100 grams	MPN per grams	Total Solids	MPN per grams	MPN per grams
Sample Location and ID	(wet weight)	(wet weight)	(Percent)*	(dry weight)	(dry weight)
Newaukum Prairie					
NP-A3-1-7	49,000	490	6.54	7,489	3,056
NP-A2-1-7	17,000	170	6.54	2,598	
NP-A1-1-2	3,300	33	6.54	504	
NP-B1-1-10	49,000	490	6.54	7,489	
NP-B2-1-7	79,000	790	6.54	12,073	
NP-B3-1-3	17,000	170	6.54	2,598	
NP-C3-1-6	92,000	920	6.54	14,060	
NP-C1-1-7	8,400	84	6.54	1,284	
NP-C2-1-5	7,000	70	6.54	1,070	
NP-C1-2-6	18,000	180	6.54	2,751	
NP-C3-2-7	7,900	79	6.54	1,207	
NP-B1-2-4	49,000	490	6.54	7,489	
NP-B2-2-6	49,000	490	6.54	7,489	
NP-B3-2-2	4,900	49	6.54	749	
Big Hanaford					
BH-A4-1-3.5	7,900	79	16.18	488	145
BH-A7-1-1	330	3	16.18	20	
BH-C2-1-8	23,000	230	16.18	1,422	
BH-A5-2-4	2,300	23	16.18	142	
BH-A6-3-4.5	78	1	16.18	5	
BH-B8-3-6	110,000	1,100	16.18	6,800	
BH-C8-1-4	330	3	16.18	20	
Burnt Ridge					
BR-A1-1-1	330	3	14.79	22	44
BR-A2-1-3	330	3	14.79	22	
BR-A3-1-1	490	5	14.79	33	
BR-B1-1-3	2,300	23	14.79	156	
BR-B2-1-3	1,300	13	14.79	88	
BR-B3-1-3	230	2	14.79	16	
BR-C1-1-3	1,300	13	14.79	88	

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

				GRAB				COMP
			Γ				5.	ď
		ANALYSIS		6-	<u>~</u>	8-	8- <u>></u>	Con
PARAMETERS	CAS ID	METHOD	UNITS	BR-I-9	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
Volatile Organic Compounds								
(VOCs)								
1,1,1-Trichloroethane	71-55-6	8260C	ug/L	1U	1U	1U	1U	NA
1,1,2,2-Tetrachloroethane	79-34-5	8260C	ug/L	1U	1U	1U	1U	NA
1,1,2-Trichloroethane	79-00-5	8260C	ug/L	1U	1U	1U	1U	NA
1,1-Dichloroethane	75-34-3	8260C	ug/L	1U	1U	1U	1U	NA
1,1-Dichloroethene	75-35-4	8260C	ug/L	1U	1U	1U	1U	NA
1,2,4-Trichlorobenzene	120-82-1	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
1,2-Dichlorobenzene	95-50-1	8260C	ug/L	1U	1U	1U	1U	NA
1,2-Dichloroethane	107-06-2	8260C	ug/L	1U	1U	1U	1U	NA
1,2-Dichloropropane	78-87-5	8260C	ug/L	1U	1U	1U	1U	NA
1,3-Dichlorobenzene	541-73-1	8260C	ug/L	1U	1U	1U	1U	NA
1,4-Dichlorobenzene	106-46-7	8260C	ug/L	1U	1U	1U	1U	NA
2-Chloroethylvinylether	110-75-8	8260C	ug/L	5U	5U	5U	5U	NA
Acrolein	107-02-8	8260C	ug/L	25U	25U	25U	25U	NA
Acrylonitrile	107-13-1	8260C	ug/L	5U	5U	5U	5U	NA
Benzene	71-43-2	8260C	ug/L	1U	1U	1U	1U	NA
Bromodichloromethane	75-27-4	8260C	ug/L	1U	1U	1U	1U	NA
Bromoform	75-25-2	8260C	ug/L	1U	1U	1U	1U	NA
Bromomethane	74-83-9	8260C	ug/L	5U	5U	5U	5U	NA
Carbon Tetrachloride	56-23-5	8260C	ug/L	1U	1U	1U	1U	NA
Chlorobenzene	108-90-7	8260C	ug/L	1U	1U	1U	1U	NA
Chloroethane	75-00-3	8260C	ug/L	1U	1U	1U	1U	NA
Chloroform	67-66-3	8260C	ug/L	1U	1U	1U	1U	NA
Chloromethane	74-87-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
cis-1,3-Dichloropropene	10061-01-5	8260C	ug/L	1U	1U	1U	1U	NA
Dibromochloromethane	124-48-1	8260C	ug/L	1U	1U	1U	1U	NA
Ethylbenzene	100-41-4	8260C	ug/L	1U	1U	1U	1U	NA
Hexachlorobutadiene	87-68-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
Methylene Chloride	75-09-2	8260C	ug/L	5U	5U	5U	5U	NA
Naphthalene	91-20-3	8260C	ug/L	2.5U	2.5U	2.5U	2.5U	NA
Tetrachloroethene	127-18-4	8260C	ug/L	1U	1U	1U	1U	NA
Toluene	108-88-3	8260C	ug/L	35	31	41	26	NA
trans-1,2-Dichloroethene	156-60-5	8260C	ug/L	1U	1U	1U	1U	NA
trans-1,3-Dichloropropene	10061-02-6	8260C	ug/L	1U	1U	1U	1U	NA
Trichloroethene	79-01-6	8260C	ug/L	1U	1U	1U	1U	NA
Vinyl Chloride	75-01-4	8260C	ug/L	1U	1U	1U	1U	NA

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

				GRAB				СОМР
		ANALYSIS		BR-I-9	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
PARAMETERS	CAS ID	METHOD	UNITS	BR	BR	BR	BR	BR
Metals								
Antimony, Total	7440-36-0	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Arsenic, Total	7440-38-2	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Beryllium, Total	7440-41-7	SW6010C	mg/L	NA	NA	NA	NA	0.001U
Cadmium, Total	7440-43-9	SW6010C	mg/L	NA	NA	NA	NA	0.002U
Chromium, Total	7440-47-3	SW6010C	mg/L	NA	NA	NA	NA	0.012
Cobalt, Total	7440-48-4	SW6010C	mg/L	NA	NA	NA	NA	0.017
Copper, Total	7440-50-8	SW6010C	mg/L	NA	NA	NA	NA	0.057
Lead, Total	7439-92-1	SW6010C	mg/L	NA	NA	NA	NA	0.02U
Molybdenum, Total	7439-98-7	SW6010C	mg/L	NA	NA	NA	NA	0.006
Nickel, Total	7440-02-0	SW6010C	mg/L	NA	NA	NA	NA	0.02
Selenium, Total	7782-49-2	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Silver, Total	7440-22-4	SW6010C	mg/L	NA	NA	NA	NA	0.003U
Thallium, Total	7440-28-0	SW6010C	mg/L	NA	NA	NA	NA	0.05U
Zinc, Total	7440-66-6	SW6010C	mg/L	NA	NA	NA	NA	0.18
Mercury, Total	7439-97-6	SW7470A	mg/L	NA	NA	NA	NA	0.0003
Semi-Volatile Organic Compounds								
(SVOCs)								
1,2,4-Trichlorobenzene	120-82-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,2-Dichlorobenzene	95-50-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,2-Diphenylhydrazine	122-66-7	SW8270D	ug/L	NA	NA	NA	NA	1U
1,3-Dichlorobenzene	541-73-1	SW8270D	ug/L	NA	NA	NA	NA	1U
1,4-Dichlorobenzene	106-46-7	SW8270D	ug/L	NA	NA	NA	NA	1U
2,2'-Oxybis(1-Chloropropane)	108-60-1	SW8270D	ug/L	NA	NA	NA	NA	1U
2,4,6-Trichlorophenol	88-06-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dichlorophenol	120-83-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dimethylphenol	105-67-9	SW8270D	ug/L	NA	NA	NA	NA	3U
2,4-Dinitrophenol	51-28-5	SW8270D	ug/L	NA	NA	NA	NA	20U
2,4-Dinitrotoluene	121-14-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2,6-Dinitrotoluene	606-20-2	SW8270D	ug/L	NA	NA	NA	NA	3U
2-Chloronaphthalene	91-58-7	SW8270D	ug/L	NA	NA	NA	NA	1U
2-Chlorophenol	95-57-8	SW8270D	ug/L	NA	NA	NA	NA	1U
2-Nitrophenol	88-75-5	SW8270D	ug/L	NA	NA	NA	NA	3U
3,3'-Dichlorobenzidine	91-94-1	SW8270D	ug/L	NA	NA	NA	NA	5U
4,6-Dinitro-2-Methylphenol	534-52-1	SW8270D	ug/L	NA	NA	NA	NA	10U
4-Bromophenyl-phenylether	101-55-3	SW8270D	ug/L	NA	NA	NA	NA	1U
4-Chlorophenyl-phenylether	7005-72-3	SW8270D	ug/L	NA	NA	NA	NA	1U

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

			_	GRAB				COMP
					~	8	8.5	dw
		ANALYSIS		BR-I-9	BR-II-8	R-III-8	BR-IV-8.	BR-Comp
PARAMETERS	CAS ID	METHOD	UNITS	BR	BR	BR	BR	BR
SVOC (cont.)								
4-Methylphenol	106-44-5	SW8270D	ug/L	NA	NA	NA	NA	2U
4-Nitrophenol	100-02-7	SW8270D	ug/L	NA	NA	NA	NA	10U
Acenaphthene	83-32-9	SW8270D	ug/L	NA	NA	NA	NA	1U
Acenaphthylene	208-96-8	SW8270D	ug/L	NA	NA	NA	NA	1U
Anthracene	120-12-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Azobenzene	103-33-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(a)anthracene	56-55-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(a)pyrene	50-32-8	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(b)fluoranthene	205-99-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(g,h,i)perylene	191-24-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Benzo(k)fluoranthene	207-08-9	SW8270D	ug/L	NA	NA	NA	NA	1U
bis(2-Chloroethoxy) Methane	111-91-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Bis-(2-Chloroethyl) Ether	111-44-4	SW8270D	ug/L	NA	NA	NA	NA	1U
bis(2-Ethylhexyl)phthalate	117-81-7	SW8270D	ug/L	NA	NA	NA	NA	3U
Butylbenzylphthalate	85-68-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Chrysene	218-01-9	SW8270D	ug/L	NA	NA	NA	NA	1U
Dibenz(a,h)anthracene	53-70-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Diethylphthalate	84-66-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Dimethylphthalate	131-11-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Di-n-Butylphthalate	84-74-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Di-n-Octyl phthalate	117-84-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Fluoranthene	206-44-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Fluorene	86-73-7	SW8270D	ug/L	NA	NA	NA	NA	1U
Hexachlorobenzene	118-74-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Hexachlorobutadiene	87-68-3	SW8270D	ug/L	NA	NA	NA	NA	3U
Hexachlorocyclopentadiene	77-47-4	SW8270D	ug/L	NA	NA	NA	NA	5U
Hexachloroethane	67-72-1	SW8270D	ug/L	NA	NA	NA	NA	2U
Indeno(1,2,3-cd)pyrene	193-39-5	SW8270D	ug/L	NA	NA	NA	NA	1U
Isophorone	78-59-1	SW8270D	ug/L	NA	NA	NA	NA	1U
Naphthalene	91-20-3	SW8270D	ug/L	NA	NA	NA	NA	1U
Nitrobenzene	98-95-3	SW8270D	ug/L	NA	NA	NA	NA	1U
N-Nitrosodimethylamine	62-75-9	SW8270D	ug/L	NA	NA	NA	NA	3U
N-Nitroso-Di-N-Propylamine	621-64-7	SW8270D	ug/L	NA	NA	NA	NA	1U
N-Nitrosodiphenylamine	86-30-6	SW8270D	ug/L	NA	NA	NA	NA	1U
Pentachlorophenol	87-86-5	SW8270D	ug/L	NA	NA	NA	NA	10U
Phenanthrene	85-01-8	SW8270D	ug/L	NA	NA	NA	NA	1U

Table 7. Water Cap Analytical Results - Burnt Ridge Lagoon (Fire Mountain Farms) Samples collected: 7/17/14

			_	GRAB				COMP
PARAMETERS	CAS ID	ANALYSIS METHOD	UNITS	BR-I-9	BR-II-8	BR-III-8	BR-IV-8.5	BR-Comp
SVOC (cont.)								
Phenol	108-95-2	SW8270D	ug/L	NA	NA	NA	NA	1U
Pyrene	129-00-0	SW8270D	ug/L	NA	NA	NA	NA	1U
Total Benzofluoranthenes	TOTBFA	SW8270D	ug/L	NA	NA	NA	NA	2U
Inorganic Parameters								
N-Nitrate	NITRATE	Calculated	mg-N/L	NA	NA	NA	NA	0.01U
Nitrate + Nitrite	NITRATE-NITRITE	EPA 353.2	mg-N/L	NA	NA	NA	NA	0.014
N-Nitrite	NITRITE	EPA 353.2	mg-N/L	NA	NA	NA	NA	0.051
Total Cyanide	TOT CYANIDE	EPA 335.4	mg/L	NA	NA	NA	NA	0.005U

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	LIMITO	Max Detect Value or Min Reporting Limit (if not	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
Volatile Organic Compounds (VOCs)	UNITS	detected)	<u>a</u> 0	L s	<u> </u>
1,1,1-Trichloroethane	ug/kg	3.2	3.20E-07	D	НОС
1,1,2,2-Tetrachloroethane	ug/kg	3.2	3.20E-07 3.20E-07	C	HOC
1,1,2-Trichloroethane	ug/kg	3.2	3.20E-07 3.20E-07	D	НОС
1,1-Dichloroethane	ug/kg	3.2	3.20E-07 3.20E-07	D	HOC
1,1-Dichloroethene	ug/kg	3.2	3.20E-07 3.20E-07	C	HOC
1,2,4-Trichlorobenzene	ug/kg ug/kg	16	1.60E-06	С	НОС
1,2-Dichlorobenzene					НОС
1,2-Dichloroethane	ug/kg	3.2	3.20E-07 3.20E-07	C	HOC
·	ug/kg	3.2		D	HOC
1,2-Dichloropropane	ug/kg	3.2	3.20E-07	C C	
1,3-Dichlorobenzene	ug/kg	3.2	3.20E-07	C	HOC
1,4-Dichlorobenzene	ug/kg	See Semi-VOCs	1 605 06		HOC
2-Chloroethylvinylether Acrolein	ug/kg	16	1.60E-06	C	HOC
	ug/kg	160	1.60E-05	A	C-H
Acrylonitrile	ug/kg	16	1.60E-06	С	C-H
Benzene	ug/kg	3.2	3.20E-07	D	C-H
Bromodichloromethane	ug/kg	3.2	3.20E-07	D	НОС
Bromoform	ug/kg	3.2	3.20E-07	C	C-H
Bromomethane	ug/kg	3.2	3.20E-07	В	HOC
Carbon Tetrachloride	ug/kg	3.2	3.20E-07	С	НОС
Chlorobenzene	ug/kg	3.2	3.20E-07	С	HOC
Chloroethane	ug/kg	3.2	3.20E-07	No Data	HOC
Chloroform	ug/kg	3.2	3.20E-07	С	НОС
Chloromethane	ug/kg	3.2	3.20E-07	С	НОС
cis-1,3-Dichloropropene	ug/kg	3.2	3.20E-07	No Data	HOC
Dibromochloromethane	ug/kg	3.2	3.20E-07	D	HOC
Ethylbenzene	ug/kg	4.6	4.60E-07	С	C-H
Hexachlorobutadiene	ug/kg	16	1.60E-06	Α	HOC
Methylene Chloride	ug/kg	6.5	6.50E-07	D	HOC
Naphthalene	ug/kg	16	1.60E-06	С	C-H
Tetrachloroethene	ug/kg	3.2	3.20E-07	С	HOC
Toluene	ug/kg	150,000	1.50E-02	Α	C-H
trans-1,2-Dichloroethene	ug/kg	3.2	3.20E-07	D	HOC
trans-1,3-Dichloropropene	ug/kg	3.2	3.20E-07	No Data	HOC
Trichloroethene	ug/kg	3.2	3.20E-07	D	HOC
Vinyl Chloride	ug/kg	3.2	3.20E-07	D	HOC

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category (See Note 1)	Organic Category (See Note 1)
Metals					
Antimony	mg/kg	70	7.00E-03	D	Non-Organic
Arsenic	mg/kg	70	7.00E-03	С	Non-Organic
Beryllium	mg/kg	1	1.00E-04	No Data	Non-Organic
Cadmium	mg/kg	3	3.00E-04	С	Non-Organic
Chromium	mg/kg	27	2.70E-03	D	Non-Organic
Cobalt	mg/kg	89	8.90E-03	С	Non-Organic
Copper	mg/kg	503	5.03E-02	No Data	Non-Organic
Lead	mg/kg	30	3.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	14	1.40E-03	В	Non-Organic
Nickel	mg/kg	30	3.00E-03	X	Non-Organic
Selenium	mg/kg	70	7.00E-03	С	Non-Organic
Silver	mg/kg	4	4.00E-04	X	Non-Organic
Thallium	mg/kg	70	7.00E-03	С	Non-Organic
Zinc	mg/kg	1,060	1.06E-01	D	Non-Organic
Mercury	mg/kg	1.2	1.20E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	See VOCs			
1,2-Dichlorobenzene	ug/kg	See VOCs			
1,2-Diphenylhydrazine	ug/kg	300	3.00E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	See VOCs			
1,4-Dichlorobenzene	ug/kg		7.50E-05	В	HOC
2,2'-Oxybis(1-Chloropropane)	ug/kg	300	3.00E-05	С	HOC
2,4,6-Trichlorophenol	ug/kg	1,500	1.50E-04	С	НОС
2,4-Dichlorophenol	ug/kg	1,500	1.50E-04	С	НОС
2,4-Dimethylphenol	ug/kg	300	3.00E-05	D	C-H
2,4-Dinitrophenol	ug/kg	3,000	3.00E-04	В	C-H
2,4-Dinitrotoluene	ug/kg	1,500	1.50E-04	С	C-H
2,6-Dinitrotoluene	ug/kg		1.50E-04	D	C-H
2-Chloronaphthalene	ug/kg		3.00E-05	D	HOC
2-Chlorophenol	ug/kg	300	3.00E-05	С	HOC
2-Nitrophenol	ug/kg	300	3.00E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg	1,500	1.50E-04	D	HOC
4,6-Dinitro-2-Methylphenol	ug/kg		3.00E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg	300	3.00E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	300	3.00E-05	В	НОС

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
	UNITS	detected)	<u> </u>	<u>⊢ s</u>	0 &
SVOC (cont.)	4	2.522	0.605.04	•	
4-Methylphenol	ug/kg	2,600	2.60E-04	С	C-H
4-Nitrophenol	ug/kg	1,500	1.50E-04	С	C-H
Acenaphthene	ug/kg	300	3.00E-05	В	PAH
Acenaphthylene	ug/kg	300	3.00E-05	No Data	PAH
Anthracene	ug/kg	300	3.00E-05	В	PAH
Azobenzene	ug/kg	300	3.00E-05	В	C-H
Benzo(a)anthracene	ug/kg	300	3.00E-05	X	PAH
Benzo(a)pyrene	ug/kg	300	3.00E-05	Х	PAH
Benzo(b)fluoranthene	ug/kg	360	3.60E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	300	3.00E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	340	3.40E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	300	3.00E-05	C	HOC
Bis-(2-Chloroethyl) Ether	ug/kg	300	3.00E-05	C	HOC
bis(2-Ethylhexyl)phthalate	ug/kg	20,000	2.00E-03	В	C-H
Butylbenzylphthalate	ug/kg	300	3.00E-05	С	C-H
Chrysene	ug/kg	300	3.00E-05	No Data	PAH
Dibenz (a, h) anthracene	ug/kg	300	3.00E-05	No Data	PAH
Diethylphthalate	ug/kg	300	3.00E-05	D	C-H
Dimethylphthalate	ug/kg	300	3.00E-05	D	C-H
Di-n-Butylphthalate	ug/kg	300	3.00E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	300	3.00E-05	D	C-H
Fluoranthene	ug/kg	560	5.60E-05	С	PAH
Fluorene	ug/kg	300	3.00E-05	В	PAH
Hexachlorobenzene	ug/kg	300	3.00E-05	D	HOC
Hexachlorobutadiene	ug/kg	See VOCs			HOC
Hexachlorocyclopentadiene	ug/kg	1,500	1.50E-04	X	HOC
Hexachloroethane	ug/kg	300	3.00E-05	В	HOC
Indeno(1,2,3-cd)pyrene	ug/kg	470	4.70E-05	No Data	PAH
Isophorone	ug/kg	300	3.00E-05	С	C-H
Naphthalene	ug/kg	See VOCs			
Nitrobenzene	ug/kg	300	3.00E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	1,500	1.50E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	300	3.00E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	300	3.00E-05	С	C-H
Pentachlorophenol	ug/kg	1,500	1.50E-04	Α	C-H
Phenanthrene	ug/kg	440	4.40E-05	Α	PAH

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 8. Newaukum Prairie Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
SVOC (cont.)					
Phenol	ug/kg	630	6.30E-05	С	C-H
Pyrene	ug/kg	450	4.50E-05	C	PAH
Total Benzofluoranthenes	ug/kg	380	3.80E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.8	9.80E-07	В	НОС
Aroclor 1221	ug/kg	9.8	9.80E-07	С	НОС
Aroclor 1232	ug/kg	9.8	9.80E-07	С	НОС
Aroclor 1242	ug/kg	9.8	9.80E-07	Α	НОС
Aroclor 1248	ug/kg	49	4.90E-06	Х	НОС
Aroclor 1254	ug/kg	150	1.50E-05	Х	НОС
Aroclor 1260	ug/kg	40	4.00E-06	Α	НОС
Pesticides					
4,4'-DDD	ug/kg	17	1.70E-06	Α	НОС
4,4'-DDE	ug/kg	17	1.70E-06	Α	НОС
4,4'-DDT	ug/kg	100	1.00E-05	X	НОС
Aldrin	ug/kg	8.3	8.30E-07	Х	HOC
alpha-BHC	ug/kg	8.3	8.30E-07	В	НОС
beta-BHC	ug/kg	8.3	8.30E-07	С	НОС
cis-Chlordane	ug/kg	33	3.30E-06	X	НОС
delta-BHC	ug/kg	180	1.80E-05	В	HOC
Endosulfan I	ug/kg	8.3	8.30E-07	X	HOC
Endosulfan II	ug/kg	17	1.70E-06	X	HOC
Endosulfan Sulfate	ug/kg	120	1.20E-05	X	НОС
Endrin	ug/kg	17	1.70E-06	X	НОС
Endrin Aldehyde	ug/kg	17	1.70E-06	No Data	НОС
gamma-BHC (Lindane)	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor Epoxide	ug/kg	280	2.80E-05	Α	HOC
Toxaphene	ug/kg	830	8.30E-05	X	HOC
trans-Chlordane	ug/kg	1,300	1.30E-04	Α	HOC
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	2.76	2.76E-04	X	НОС
Inorganic Parameters					
Total Cyanide	mg/kg	1.87	1.87E-04	В	Non-Organic

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
Volatile Organic Compounds (VOCs)					
1,1,1-Trichloroethane	ug/kg	780	7.80E-05	D	HOC
1,1,2,2-Tetrachloroethane	ug/kg	780	7.80E-05	С	HOC
1,1,2-Trichloroethane	ug/kg	780	7.80E-05	D	HOC
1,1-Dichloroethane	ug/kg	780	7.80E-05	D	HOC
1,1-Dichloroethene	ug/kg	780	7.80E-05	С	HOC
1,2,4-Trichlorobenzene	ug/kg	See Semi-VOCs			
1,2-Dichlorobenzene	ug/kg	See Semi-VOCs			
1,2-Dichloroethane	ug/kg	780	7.80E-05	D	HOC
1,2-Dichloropropane	ug/kg	780	7.80E-05	С	HOC
1,3-Dichlorobenzene	ug/kg	See Semi-VOCs			
1,4-Dichlorobenzene	ug/kg	1,300	1.30E-04	В	HOC
2-Chloroethylvinylether	ug/kg	3,900	3.90E-04	С	HOC
Acrolein	ug/kg	39,000	3.90E-03	Α	C-H
Acrylonitrile	ug/kg	3,900	3.90E-04	С	C-H
Benzene	ug/kg	780	7.80E-05	D	C-H
Bromodichloromethane	ug/kg	780	7.80E-05	D	HOC
Bromoform	ug/kg	780	7.80E-05	С	C-H
Bromomethane	ug/kg	780	7.80E-05	В	HOC
Carbon Tetrachloride	ug/kg	780	7.80E-05	С	HOC
Chlorobenzene	ug/kg	780	7.80E-05	С	HOC
Chloroethane	ug/kg	780	7.80E-05	No Data	HOC
Chloroform	ug/kg	780	7.80E-05	С	HOC
Chloromethane	ug/kg	780	7.80E-05	С	HOC
cis-1,3-Dichloropropene	ug/kg	780	7.80E-05	No Data	HOC
Dibromochloromethane	ug/kg	780	7.80E-05	D	HOC
Ethylbenzene	ug/kg	780	7.80E-05	С	C-H
Hexachlorobutadiene	ug/kg	See Semi-VOCs			
Methylene Chloride	ug/kg	1600	1.60E-04	D	HOC
Naphthalene	ug/kg	See Semi-VOCs			
Tetrachloroethene	ug/kg	780	7.80E-05	С	HOC
Toluene	ug/kg	120,000	1.20E-02	Α	C-H
trans-1,2-Dichloroethene	ug/kg	780	7.80E-05	D	HOC
trans-1,3-Dichloropropene	ug/kg	780	7.80E-05	No Data	HOC
Trichloroethene	ug/kg	780	7.80E-05	D	HOC
Vinyl Chloride	ug/kg	780	7.80E-05	D	HOC

Note1

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

HOC = Halogenated Organics

C-H = Carbon-Hydrogen Oranics

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category (See Note 1)	Organic Category
Metals					
Antimony	mg/kg	30	3.00E-03	D	Non-Organic
Arsenic	mg/kg	30	3.00E-03	С	Non-Organic
Beryllium	mg/kg	0.6	6.00E-05	No Data	Non-Organic
Cadmium	mg/kg	2	2.00E-04	С	Non-Organic
Chromium	mg/kg	29	2.90E-03	D	Non-Organic
Cobalt	mg/kg	165	1.65E-02	С	Non-Organic
Copper	mg/kg	521	5.21E-02	No Data	Non-Organic
Lead	mg/kg	30	3.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	15	1.50E-03	В	Non-Organic
Nickel	mg/kg	42	4.20E-03	Х	Non-Organic
Selenium	mg/kg	30	3.00E-03	С	Non-Organic
Silver	mg/kg	6	6.00E-04	Х	Non-Organic
Thallium	mg/kg	30	3.00E-03	С	Non-Organic
Zinc	mg/kg	1,100	1.10E-01	D	Non-Organic
Mercury	mg/kg	3	3.00E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,2-Dichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,2-Diphenylhydrazine	ug/kg	570	5.70E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	580	5.80E-05	С	HOC
1,4-Dichlorobenzene	ug/kg	See VOCs			
2,2'-Oxybis(1-Chloropropane)	ug/kg	580	5.80E-05	С	HOC
2,4,6-Trichlorophenol	ug/kg	2,800	2.80E-04	С	HOC
2,4-Dichlorophenol	ug/kg	2,800	2.80E-04	С	HOC
2,4-Dimethylphenol	ug/kg	580	5.80E-05	D	C-H
2,4-Dinitrophenol	ug/kg	5,800	5.80E-04	В	C-H
2,4-Dinitrotoluene	ug/kg	2,800	2.80E-04	С	C-H
2,6-Dinitrotoluene	ug/kg	2,800	2.80E-04	D	C-H
2-Chloronaphthalene	ug/kg	580	5.80E-05	D	HOC
2-Chlorophenol	ug/kg	580	5.80E-05	С	HOC
2-Nitrophenol	ug/kg	580	5.80E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg	2,800	2.80E-04	D	HOC
4,6-Dinitro-2-Methylphenol	ug/kg	5,800	5.80E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg	580	5.80E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	580	5.80E-05	В	НОС

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
	ONTIS	(ii flot detected)		<u>L</u> S)	<u>o</u> s
SVOC (cont.)	4	700.000	7.005.00		
4-Methylphenol	ug/kg	720,000	7.20E-02	С	C-H
4-Nitrophenol	ug/kg	2,800	2.80E-04	C	C-H
Acenaphthene	ug/kg	580	5.80E-05	В	PAH
Acenaphthylene	ug/kg	580	5.80E-05	No Data	PAH
Anthracene	ug/kg	580	5.80E-05	В	PAH
Azobenzene	ug/kg	580	5.80E-05	В	С-Н
Benzo(a)anthracene	ug/kg	580	5.80E-05	Х	PAH
Benzo(a)pyrene	ug/kg	580	5.80E-05	Х	PAH
Benzo(b)fluoranthene	ug/kg	570	5.70E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	580	5.80E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	570	5.70E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	580	5.80E-05	С	HOC
Bis-(2-Chloroethyl) Ether	ug/kg	580	5.80E-05	С	HOC
bis (2-Ethylhexyl) phthalate	ug/kg	25,000	2.50E-03	В	C-H
Butylbenzylphthalate	ug/kg	580	5.80E-05	С	C-H
Chrysene	ug/kg	580	5.80E-05	No Data	PAH
Dibenz(a,h)anthracene	ug/kg	580	5.80E-05	No Data	PAH
Diethylphthalate	ug/kg	580	5.80E-05	D	C-H
Dimethylphthalate	ug/kg	580	5.80E-05	D	C-H
Di-n-Butylphthalate	ug/kg	580	5.80E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	580	5.80E-05	D	C-H
Fluoranthene	ug/kg	640	6.40E-05	С	PAH
Fluorene	ug/kg	580	5.80E-05	В	PAH
Hexachlorobenzene	ug/kg	580	5.80E-05	D	HOC
Hexachlorobutadiene	ug/kg	580	5.80E-05	Α	HOC
Hexachlorocyclopentadiene	ug/kg	2,800	2.80E-04	X	HOC
Hexachloroethane	ug/kg	580	5.80E-05	В	HOC
Indeno(1,2,3-cd)pyrene	ug/kg	580	5.80E-05	No Data	PAH
Isophorone	ug/kg	580	5.80E-05	С	C-H
Naphthalene	ug/kg	580	5.80E-05	С	C-H
Nitrobenzene	ug/kg	580	5.80E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	2,800	2.80E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	580	5.80E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	1,400	1.40E-04	С	C-H
Pentachlorophenol	ug/kg	2,800	2.80E-04	Α	C-H
Phenanthrene	ug/kg	580	5.80E-05	Α	PAH

Note1

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

HOC = Halogenated Organics

C-H = Carbon-Hydrogen Oranics PAH = Polyaromatic Hydrocarbons

Table 9. Big Hanaford Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category (See Note 1)
SVOC (cont.)		(1 0	<u> </u>
Phenol	ug/kg	23,000	2.30E-03	С	C-H
Pyrene	ug/kg	580	5.80E-05	С	PAH
Total Benzofluoranthenes	ug/kg	580	5.80E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.9	9.90E-07	В	HOC
Aroclor 1221	ug/kg	9.9	9.90E-07	С	HOC
Aroclor 1232	ug/kg	9.9	9.90E-07	С	HOC
Aroclor 1242	ug/kg	9.9	9.90E-07	Α	HOC
Aroclor 1248	ug/kg	99	9.90E-06	Х	HOC
Aroclor 1254	ug/kg	150	1.50E-05	X	HOC
Aroclor 1260	ug/kg	35	3.50E-06	Α	НОС
Pesticides					
4,4'-DDD	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDE	ug/kg	17	1.70E-06	Α	HOC
4,4'-DDT	ug/kg	120	1.20E-05	X	HOC
Aldrin	ug/kg	8.3	8.30E-07	Х	HOC
alpha-BHC	ug/kg	8.3	8.30E-07	В	HOC
beta-BHC	ug/kg	8.3	8.30E-07	С	HOC
cis-Chlordane	ug/kg	34	3.40E-06	Х	HOC
delta-BHC	ug/kg	180	1.80E-05	В	HOC
Dieldrin	ug/kg	39	3.90E-06	X	HOC
Endosulfan I	ug/kg	22	2.20E-06	X	HOC
Endosulfan II	ug/kg	17	1.70E-06	X	HOC
Endosulfan Sulfate	ug/kg	17	1.70E-06	X	HOC
Endrin	ug/kg	49	4.90E-06	X	HOC
Endrin Aldehyde	ug/kg	77	7.70E-06	No Data	HOC
gamma-BHC (Lindane)	ug/kg	25	2.50E-06	X	HOC
Heptachlor	ug/kg	8.3	8.30E-07	X	HOC
Heptachlor Epoxide	ug/kg	690	6.90E-05	Α	HOC
Toxaphene	ug/kg	830	8.30E-05	X	HOC
trans-Chlordane	ug/kg	1,200	1.20E-04	Α	HOC
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	0.72	7.20E-05	Х	НОС
Inorganic Parameters					
Total Cyanide	mg/kg	2.39	2.39E-04	В	Non-Organic

Toxicity Categories based on toxicity data

from HSDB or ECOTOX online databases [WAC 173-303-100(5)(b)(i)]

Organic Catogories:

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS	UNITS	Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
Volatile Organic Compounds (VOCs)					
1,1,1-Trichloroethane	ug/kg	1.8	1.80E-07	D	HOC
1,1,2,2-Tetrachloroethane	ug/kg	1.8	1.80E-07	С	HOC
1,1,2-Trichloroethane	ug/kg	1.8	1.80E-07	D	HOC
1,1-Dichloroethane	ug/kg	1.8	1.80E-07	D	HOC
1,1-Dichloroethene	ug/kg	1.8	1.80E-07	С	HOC
1,2,4-Trichlorobenzene	ug/kg	9	9.00E-07	С	HOC
1,2-Dichlorobenzene	ug/kg	1.8	1.80E-07	С	HOC
1,2-Dichloroethane	ug/kg	1.8	1.80E-07	D	HOC
1,2-Dichloropropane	ug/kg	1.8	1.80E-07	С	HOC
1,3-Dichlorobenzene	ug/kg	1.8	1.80E-07	С	НОС
1,4-Dichlorobenzene	ug/kg	See Semi-VOCs			
2-Chloroethylvinylether	ug/kg	9	9.00E-07	С	НОС
Acrolein	ug/kg	90	9.00E-06	Α	C-H
Acrylonitrile	ug/kg	9	9.00E-07	С	C-H
Benzene	ug/kg	1.8	1.80E-07	D	C-H
Bromodichloromethane	ug/kg	1.8	1.80E-07	D	HOC
Bromoform	ug/kg	1.8	1.80E-07	С	C-H
Bromomethane	ug/kg	1.8	1.80E-07	В	HOC
Carbon Tetrachloride	ug/kg	1.8	1.80E-07	С	HOC
Chlorobenzene	ug/kg	1.8	1.80E-07	С	НОС
Chloroethane	ug/kg	1.8	1.80E-07	No Data	НОС
Chloroform	ug/kg	1.8	1.80E-07	С	НОС
Chloromethane	ug/kg	1.8	1.80E-07	С	НОС
cis-1,3-Dichloropropene	ug/kg	1.8	1.80E-07	No Data	НОС
Dibromochloromethane	ug/kg	1.8	1.80E-07	D	НОС
Ethylbenzene	ug/kg	1.8	1.80E-07	С	C-H
Hexachlorobutadiene	ug/kg	9	9.00E-07	А	НОС
Methylene Chloride	ug/kg	3.6	3.60E-07	D	НОС
Naphthalene	ug/kg	9	9.00E-07	С	C-H
Tetrachloroethene	ug/kg	1.8	1.80E-07	С	НОС
Toluene	ug/kg	35	3.50E-06	А	C-H
trans-1,2-Dichloroethene	ug/kg	1.8	1.80E-07	D	HOC
trans-1,3-Dichloropropene	ug/kg	1.8	1.80E-07	No Data	НОС
Trichloroethene	ug/kg	1.8	1.80E-07	D	НОС
Vinyl Chloride	ug/kg	1.8	1.80E-07	D	НОС

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		lax Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
Metals					
Antimony	mg/kg	30	3.00E-03	D	Non-Organic
Arsenic	mg/kg	30	3.00E-03	С	Non-Organic
Beryllium	mg/kg	0.6	6.00E-05	No Data	Non-Organic
Cadmium	mg/kg	3	3.00E-04	С	Non-Organic
Chromium	mg/kg	45	4.50E-03	D	Non-Organic
Cobalt	mg/kg	48	4.80E-03	С	Non-Organic
Copper	mg/kg	417	4.17E-02	No Data	Non-Organic
Lead	mg/kg	40	4.00E-03	No Data	Non-Organic
Molybdenum	mg/kg	16	1.60E-03	В	Non-Organic
Nickel	mg/kg	45	4.50E-03	Х	Non-Organic
Selenium	mg/kg	30	3.00E-03	С	Non-Organic
Silver	mg/kg	6	6.00E-04	Х	Non-Organic
Thallium	mg/kg	30	3.00E-03	С	Non-Organic
Zinc	mg/kg	969	9.69E-02	D	Non-Organic
Mercury	mg/kg	1.9	1.90E-04	В	Non-Organic
Semi-Volatile Organic Compounds					
(SVOCs)					
1,2,4-Trichlorobenzene	ug/kg	VOC			
1,2-Dichlorobenzene	ug/kg	VOC			
1,2-Diphenylhydrazine	ug/kg	260	2.60E-05	В	C-H
1,3-Dichlorobenzene	ug/kg	See VOCs			
1,4-Dichlorobenzene	ug/kg	540	5.40E-05	В	HOC
2,2'-Oxybis(1-Chloropropane)	ug/kg	260	2.60E-05	С	HOC
2,4,6-Trichlorophenol	ug/kg	1,300	1.30E-04	С	HOC
2,4-Dichlorophenol	ug/kg	1,300	1.30E-04	С	HOC
2,4-Dimethylphenol	ug/kg	260	2.60E-05	D	C-H
2,4-Dinitrophenol	ug/kg	2,600	2.60E-04	В	C-H
2,4-Dinitrotoluene	ug/kg	1,300	1.30E-04	С	C-H
2,6-Dinitrotoluene	ug/kg	1,300	1.30E-04	D	C-H
2-Chloronaphthalene	ug/kg	260	2.60E-05	D	HOC
2-Chlorophenol	ug/kg	260	2.60E-05	С	HOC
2-Nitrophenol	ug/kg	260	2.60E-05	С	C-H
3,3'-Dichlorobenzidine	ug/kg	1,300	1.30E-04	D	HOC
4,6-Dinitro-2-Methylphenol	ug/kg	2,600	2.60E-04	Α	C-H
4-Bromophenyl-phenylether	ug/kg	260	2.60E-05	С	C-H
4-Chlorophenyl-phenylether	ug/kg	260	2.60E-05	В	НОС

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		ax Detect Value r Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category (See Note 1)	Organic Category
SVOC (cont.)					
4-Methylphenol	ug/kg	1,100	1.10E-04	С	C-H
4-Nitrophenol	ug/kg	1,300	1.30E-04	С	C-H
Acenaphthene	ug/kg	260	2.60E-05	В	PAH
Acenaphthylene	ug/kg	260	2.60E-05	No Data	PAH
Anthracene	ug/kg	260	2.60E-05	В	PAH
Azobenzene	ug/kg	260	2.60E-05	В	C-H
Benzo(a)anthracene	ug/kg	260	2.60E-05	X	PAH
Benzo(a)pyrene	ug/kg	260	2.60E-05	X	PAH
Benzo(b)fluoranthene	ug/kg	380	3.80E-05	No Data	PAH
Benzo(g,h,i)perylene	ug/kg	260	2.60E-05	No Data	PAH
Benzo(k)fluoranthene	ug/kg	360	3.60E-05	No Data	PAH
bis(2-Chloroethoxy) Methane	ug/kg	260	2.60E-05	С	HOC
Bis-(2-Chloroethyl) Ether	ug/kg	260	2.60E-05	С	HOC
bis (2-Ethylhexyl) phthalate	ug/kg	12,000	1.20E-03	В	C-H
Butylbenzylphthalate	ug/kg	260	2.60E-05	С	C-H
Chrysene	ug/kg	260	2.60E-05	No Data	PAH
Dibenz(a,h)anthracene	ug/kg	260	2.60E-05	No Data	PAH
Diethylphthalate	ug/kg	260	2.60E-05	D	C-H
Dimethylphthalate	ug/kg	260	2.60E-05	D	C-H
Di-n-Butylphthalate	ug/kg	260	2.60E-05	С	C-H
Di-n-Octyl phthalate	ug/kg	260	2.60E-05	D	C-H
Fluoranthene	ug/kg	450	4.50E-05	С	PAH
Fluorene	ug/kg	260	2.60E-05	В	PAH
Hexachlorobenzene	ug/kg	260	2.60E-05	D	НОС
Hexachlorobutadiene	ug/kg	260	2.60E-05	А	НОС
Hexachlorocyclopentadiene	ug/kg	1,300	1.30E-04	Х	НОС
Hexachloroethane	ug/kg	260	2.60E-05	В	НОС
Indeno(1,2,3-cd)pyrene	ug/kg	400	4.00E-05	No Data	PAH
Isophorone	ug/kg	260	2.60E-05	С	C-H
Naphthalene	ug/kg	260	2.60E-05	С	C-H
Nitrobenzene	ug/kg	260	2.60E-05	D	C-H
N-Nitrosodimethylamine	ug/kg	1,300	1.30E-04	В	C-H
N-Nitroso-Di-N-Propylamine	ug/kg	260	2.60E-05	D	C-H
N-Nitrosodiphenylamine	ug/kg	260	2.60E-05	C	C-H
Pentachlorophenol	ug/kg	1,300	1.30E-04	A	C-H
Phenanthrene	ug/kg	260	2.60E-05	A	РАН

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

Table 10. Burnt Ridge Sludge - Parameters for Land Disposal Restriction Evaluation (see Table 11)

PARAMETERS		Max Detect Value or Min Reporting Limit (if not detected)	Percent Concentration	Toxicity Category	Organic Category
SVOC (cont.)					
Phenol	ug/kg	260	2.60E-05	С	C-H
Pyrene	ug/kg	390	3.90E-05	С	PAH
Total Benzofluoranthenes	ug/kg	400	4.00E-05	Not Applicable	Not Applicable
PCB (Aroclors)					
Aroclor 1016	ug/kg	9.8	9.80E-07	В	HOC
Aroclor 1221	ug/kg	9.8	9.80E-07	С	HOC
Aroclor 1232	ug/kg	9.8	9.80E-07	С	HOC
Aroclor 1242	ug/kg	9.8	9.80E-07	Α	HOC
Aroclor 1248	ug/kg	98	9.80E-06	Х	HOC
Aroclor 1254	ug/kg	150	1.50E-05	Х	HOC
Aroclor 1260	ug/kg	61	6.10E-06	Α	HOC
Pesticides					
4,4'-DDD	ug/kg	16	1.60E-06	А	НОС
4,4'-DDE	ug/kg	16	1.60E-06	А	НОС
4,4'-DDT	ug/kg	16	1.60E-06	Х	НОС
Aldrin	ug/kg	8.2	8.20E-07	Х	НОС
alpha-BHC	ug/kg	8.2	8.20E-07	В	НОС
beta-BHC	ug/kg	8.2	8.20E-07	С	НОС
cis-Chlordane	ug/kg	19	1.90E-06	Х	НОС
delta-BHC	ug/kg	110	1.10E-05	В	НОС
Dieldrin	ug/kg	57	5.70E-06	Х	HOC
Endosulfan I	ug/kg	14	1.40E-06	Х	HOC
Endosulfan II	ug/kg	16	1.60E-06	Х	НОС
Endosulfan Sulfate	ug/kg	72	7.20E-06	Х	HOC
Endrin	ug/kg	25	2.50E-06	Х	HOC
Endrin Aldehyde	ug/kg	16	1.60E-06	No Data	HOC
gamma-BHC (Lindane)	ug/kg	8.2	8.20E-07	X	HOC
Heptachlor	ug/kg	8.2	8.20E-07	X	HOC
Heptachlor Epoxide	ug/kg	8.2	8.20E-07	Α	HOC
Toxaphene	ug/kg	820	8.20E-05	X	HOC
trans-Chlordane	ug/kg	1,100	1.10E-04	Α	НОС
Polychlorinated dibenzo-p-dioxin					
2,3,7,8-TCDD	pg/g	2.35	2.35E-04	X	НОС
Inorganic Parameters					
Total Cyanide	mg/kg	1.42	1.42E-04	В	Non-Organic

Note2:

Tox. Cat. from $\ensuremath{\mathsf{HSDB}}$ or $\ensuremath{\mathsf{ECOTOX}}$

HOC: Halogenated C-H: Carbon-Hydrogen

9 0.49% å Burnt Ridge Š 10.26% Yes Big Hanaford Organic/Carbonaceous Criteria Restriction ŝ å 2.14% Newaukum Prairie (WAC-173-303-Land Disposal Restriction Org./Carb % Designation DW (WP02) DW (WP02) DW (WP02) >10%? 0.13% Sum% No 140) աոς 0.05% Burnt Ridge 0.46% 0.09% õ Big Hanaford Persistence Criteria ŝ 0.15% 0.05% Newaukum Prairie Persistence Sum HOC% Sum PAH % Land Disposal Restriction (WAC-173-303-140) Persistence Cat. 0.377% 1.513% 10.487% 0.577% 9 0.565% 0.058% Burnt Ridge Toxicity Designation DW (WT02) DW (WT02) DW (WT02) Toxicity Critiera <a>?(Book Designation) 0.541% 1.707% 0.603% 10.370% 11.786% ŝ Big Hanaford 0.729% 0.402% 1.568% 3.154% 11.624% 0.568% S Newaukum Prairie 0.446% EC (%) Restriction (WAC-173-303-140) Toxic Cat. A (Sum %) B (Sum %) C (Sum %) D (Sum %) Land Disposal X (Sum%)

Table 11. Land Disposal Restriction Evaluation (Fire Mountain Farms) (WAC 173-303-100 and WAC 173-303-140)

Table 12. Comparison of Detected Concentrations of Organics and Metals in FMF Sludge to U.S. EPA National Sewage Sludge Survey (NSSS) Dataset and WAC 173-308-160 (Biosolids Pollutant Limits)

			:	:										
			detectior	iviax concentration (non- detections shown as < RL)	s < RL)	WAC 1/3-308- 160	3-308-		USEPA	USEPA National Sewage Sludge Survey Data	/age Sludge	Survey Da	ta	
								Rour	Round 1 (1992) ^{See Note 2}	e Note 2		Round 2 (1996) ^{See Note 3}	996) ^{See Note}	3
DETECTE	DETECTED PARAMETERS ^{See Note 1}	SLIND	Vewaukum Prairie	Big Hanaford	9gbiA trnu8	JimiJ BniliəC	Pollutant Limit	Percent Detection	Vean	brabnatd	Oeviation (SD) Percent Oetection	Mean ND = Zero)	50th Percentile MD = Zero)	Mean ND - Min Level)
VOCs		-				,		.l	1	5) 3) ;
	Ethylbenzene	ug/kg	150 (<1.8			No Data No Data	No Data	No Data	4 4 %	24.80	0.00	995.0
Metals		2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		120,000	າ		_	C Cata	NO Data	NO Data	0 10			1,700
	Cadmium	mg/kg <3	<3	2	3	85	39	%69			0.78 No Data	No Data	No Data	No Data
	Chromium	mg/kg	27	29	45			91%	124		34 No Data	No Data	No Data	No Data
	Cobalt	mg/kg	88	165	48			No Data	No Data		%6	1.15	0.00	24
	Copper	mg/kg	203	521	417	4,300	1,500	100%			110 No Data	No Data	No Data	No Data
	Lead	mg/kg	<30	30	40	840	300	80%	131		20 No Data	No Data	No Data	No Data
	Molybdenum	mg/kg	14	15	16	75		23%	9.63		2.03 No Data	No Data	No Data	No Data
	Nickel	mg/kg	30	42	45	420	420	%19	46		12.3 No Data	No Data	No Data	No Data
	Silver	mg/kg	4	9	9			No Data	No Data		No Data	No Data	No Data	No Data
	Zinc	mg/kg	1,060	1,100	696	7,500	2,800	100%	1,220		151 No Data	No Data	No Data	No Data
	Mercury	mg/kg	1.2	3	1.9	22	17	64%	5.3		2.03 No Data	No Data	No Data	No Data
Semi-VOCs	స													
	1,4-Dichlorobenzene	ug/kg	750	1,300	540			No Data	No Data	No Data	2%		0.00	9,720
	4-Methylphenol	ug/kg	2,600	720,000	1,100			No Data	No Data	No Data	43%	46,200	202,000	52,300
	Benzo(b)fluoranthene	ug/kg	360 <570	<570	380			No Data	No Data	No Data	%9		0.0	9,830
	Benzo(k)fluoranthene	ug/kg	340 <570	<570	360			No Data	No Data	No Data	4%	136	0.0	9,790
	bis(2-Ethylhexyl)phthalate	ug/kg	20,000	25,000	12,000			%89	73,600	0 46,400	9	50,500	148,000	55,800
	Fluoranthene	ug/kg	260	640	450			No Data	No Data	No Data	2%	331	0.0	9,950
	N-Nitrosodiphenylamine	ug/kg	<300	1,200 <260	360			No Data	No Data	No Data	1%	101	0.0	19,400
	Indeno(1,2,3-cd)pyrene	ug/kg	470	<580	400			No Data	No Data	No Data	%0	0.0	0.0	19,400
	Phenanthrene	ug/kg	440	> 085>	<260			No Data	No Data	No Data	No Data	No Data	No Data	No Data
	Phenol	ug/kg	630	23,000 <260	:260			No Data	No Data	No Data	34%	12,200	0.0	18,700
	Pyrene	ug/kg	450 <580	<580	390			No Data	No Data	No Data	2%	320	0.0	9,950
Other														
	Aroclor 1260	ug/kg		35	61			10%		62.3 (307) 35.1 (43.80)			0.00	337
	2,3,7,8-TCDD ^{3ee Note 4}	B/Bd	2.76	0.72	2.35		_	No Data	No Data	No Data	16%	1.71	0.00	10.80
	Total Cyanide	mg/kg	1.87	2.39	1.42		_	No Data	No Data	No Data	37%		0.00	35.20

Shaded parameters and concentrations are above the mean values measured in the USEPA National Sewage Sludge Survey Note 1

None of the metals regulated under Washington State Biosolids Management rule had concentrations exceeding the State's limits (Chapter WAC 173-308-160)

Values are from Tables 7-9 and 7-10 (U.S. EAP, 1992 Statistical Support Documentation for the 40 CFR, Part 503 - Final Standards for the Use or Disposal of Sewage Sludge)

For all parameters with detection frequency (df) > 10%, mean value is based on the "Multi-Censored, Maximum-Likelihood Method" under an assumption of a log normal distribution df </= 10%, mean value based on a non-parammetric method. Lower values for Aroclor 1260 assume non-detects = zero and higher value assumes non-detects = reporting limit Note 2

Tables 3 and 4 in Appendix B (U.S. EPA, 1996 Technical Support Document for the Round Two Sewage Sludge Pollutants) Note 3

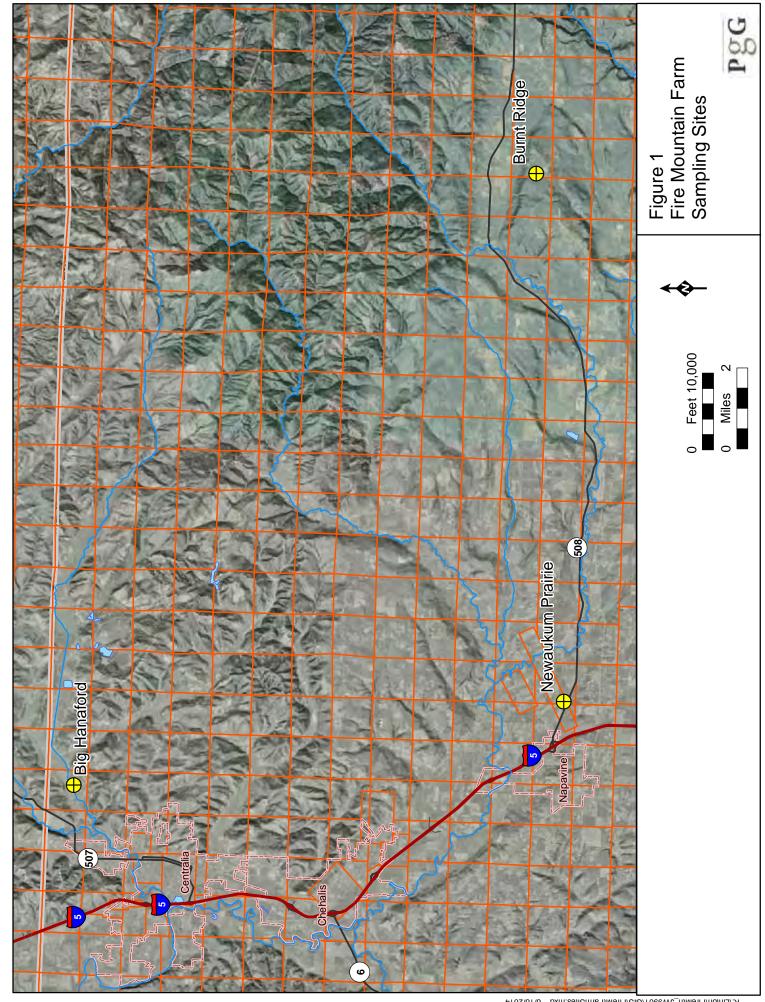

2,3,7,8-TCDD were flagged by the analytical laboratory as Estimated Maximum Possible Concentration (JEMPC) due to sludge matrix and moisture content. JEMPC data is not considered sufficiently accurate to serve as a basis for regulatory decisions. Note 4

Table 13. Parameter Exceedance Factors in Composite Sludge Samples from Fire Mountain Farms, Inc. (Exceedance of the NSSS mean)

					Ехссе	Exccedance Factors in Composite Sluge Samples	rs in Compos	site Sluge S	amples			
			Nev	Newaukum Prairie	airie	B	Big Hanaford			Burnt Ridge	3e	
Parameter	Units	Units NSSS Mean Comp-1		Comp-2	Comp-3	Comp-1	Comp-2 Comp-3		Comp-1	Comp-2	Comp-3	-3
Toluene	ug/kg	40,800	3.4	3.7	3.2	0.2	2.9	2.0	00.00		0.00	0.00
Cobalt	mg/kg	1.15	66.1	75.7	77.4	13.0	55.7	143.5	37.4	41.7	.7	32.2
Molybdenum	mg/kg	9.63	1.2	1.3	1.5	1.2	1.6	1.3	1.5		1.7	1.7
4-Methylphenol	ug/kg	46,200	0.05	0.05	90.00	10.4	15.6	11.7	0.02	J	0.01	0.01
Phenol	ug/kg	12,200	0.04	0.05	0.03	1.1	1.9	1.3	ND		ND	ND

Exceedance Factor = NSSS Mean/Analytical Results.

Shaded = Exceedance Factor > 1 (analytical results are higher than the NSSS Mean value) Only the Parameters with EF > 1 in one or more samples from one or more sites are shown

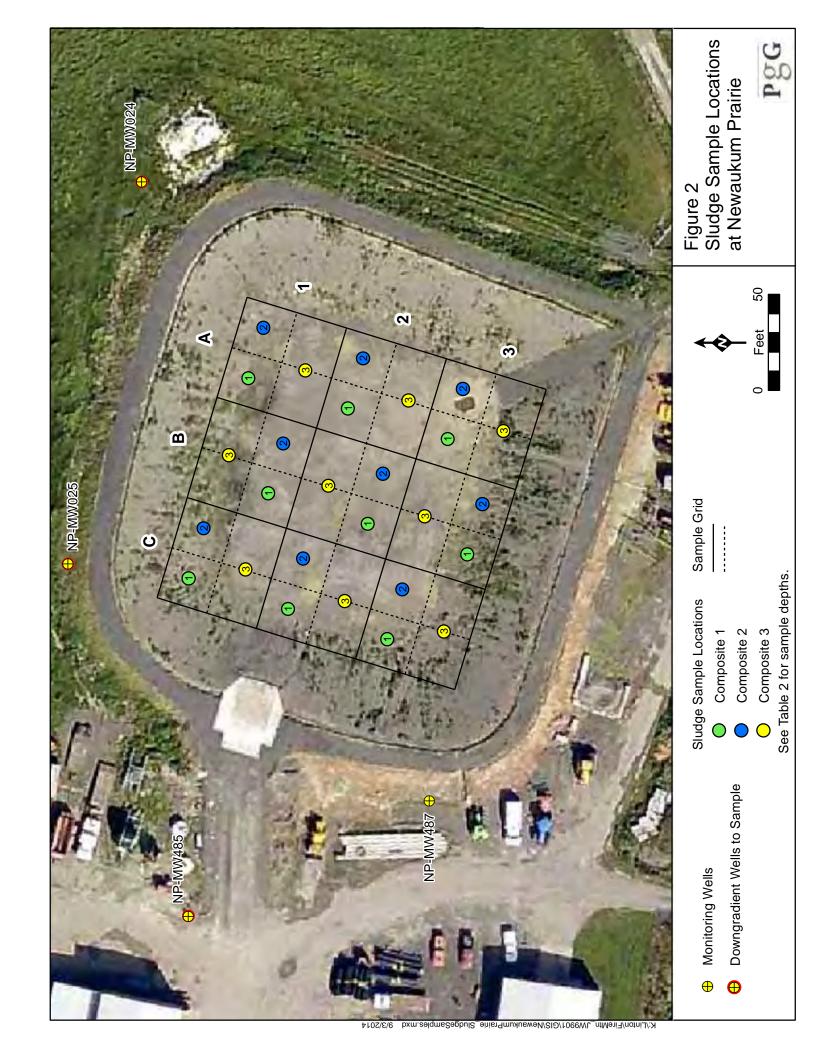
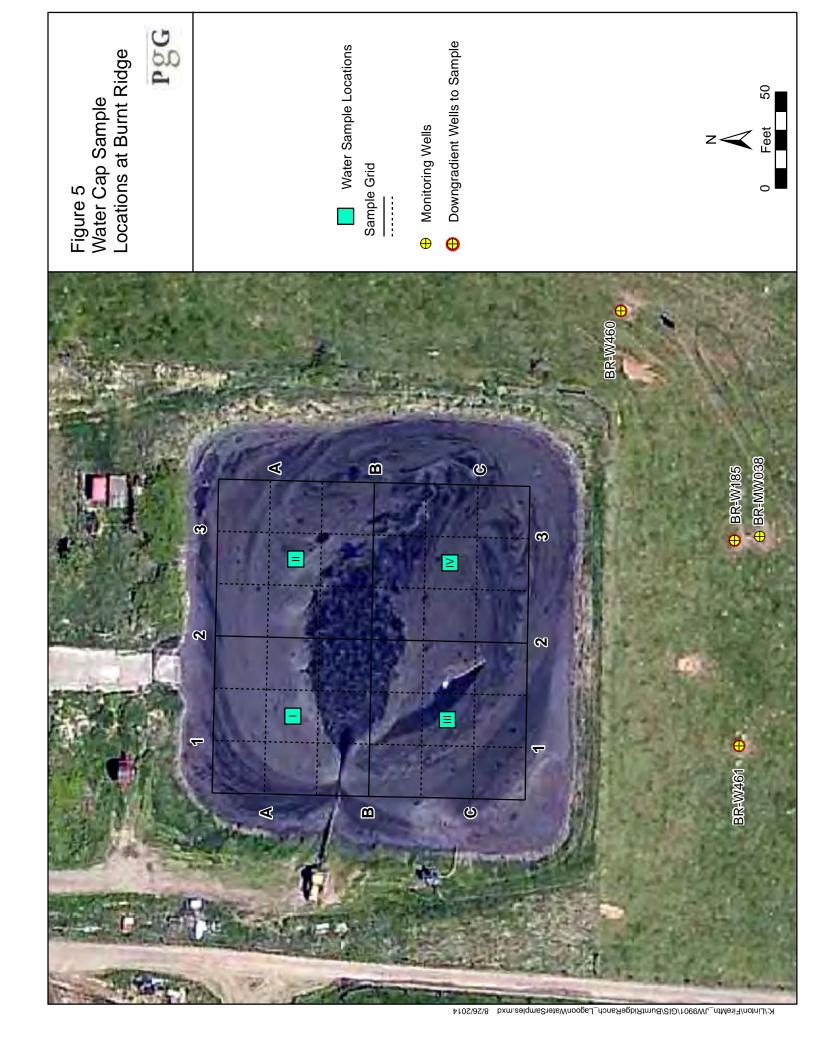



Figure 4 Sludge Sample Locations at Burnt Ridge Downgradient Wells to Sample See Table 2 for sample depths. Sludge Sample Locations Composite 2
Composite 3
Sample Grid Composite 1 Monitoring Wells ⊕ BR-MW038 ⋖ m හ ⊕ BR-W185 -ന 2 <u>~</u> <u>_</u> 8 8 2 -BR-W461 m K:/Linton/FireMtn_JW9901/GIS/BurntRidgeRanch_SludgeSamples.mxd

PgG

APPENDIX A QUALITY ASSURANCE AND QUALITY CONTROL

Analytical data collected for this investigation have been validated in accordance with the QAPP, including both laboratory and field quality assurance quality control procedures (PGG, 2014). Tables A1 through A4 provide a summary of the quality assurance and quality control evaluation for each site

Sludge samples from the Newaukum Prairie, Big Hanaford, and Burnt Ridge storage sites were collected and delivered to Analytical Resources, Inc. (ARI) on July 7, through July 9, 2014. Water cap samples from the Burnt Ridge site were collected and delivered to Analytical Resources, Inc. (ARI) on July 17, 2014. Fecal coliform sludge samples were collected on July 7, through July 9, 2014 and run by Water Management Laboratories, Inc.

All analyses were completed within their respective holding times. Surrogate spikes, blank spikes, and standard references were added to samples for analyses, and recoveries were all within acceptable ranges. Method blanks were run for all analytes and no analytes were detected. Trip Blanks were submitted and analyzed for volatile constituents and none were detected. The Relative Percent Differences (RPD) for all matrix spike duplicates were generally within the required limits with exceptions noted below.

The QA/QC data are satisfactory and indicate that the data are acceptable for the projects purposes. The following irregularities are noted:

- Dioxin/Furan concentrations in the Fire Mountain Farms sludge samples were less than the lab
 reporting limit (RL), also referred to as the practical quantitation limit (PQL). To meet project
 purposes, PGG requested that the lab quantify concentrations less than the RL and above the
 method detection limit (MDL) instead of reporting the results as non-detect at the RL. Following
 standard procedure, Analytical Resources Incorporated (ARI) flagged all dioxin/furan
 concentrations between the RL and the MDL as estimated maximum possible concentration
 (JEMPC).
- Total Solids analysis were not run for lab batch YR29 (Big Hanaford sludge samples for VOC analysis). As authorized by PGG, ARI reported the VOC data using the total solids from samples associated with lab batch YQ99 (Big Hanaford sludge samples for SVOC, Dioxin/Furans, metals, pH, PCBs, Pesticides, and TKN).
- Laboratory Control Samples (LCS) were run for all batches and spike recovery for dibenz (a,h) anthracene was out of control low for all batches. All other spike recoveries were within laboratory control limits. dibenz (a,h) anthracene was not detected in any of the samples.
- Continuing calibrations for 2x dilution pesticides batches YQ84, YQ99, and YR00 were out of control low, reported data were in control.
- Continuing calibrations for semi-volatile batches YQ84, YQ99, and YR00 were out of control low; these compounds were not detected in any samples.
- The reporting limits for various batches and analyses were elevated resulting from sample dilutions. Semi-volatile reporting limits for batches YQ99 and YR00 were elevated due to sample dilutions resulting from matrix interference. Pesticide reporting limits for batches YQ84, YQ99 and YR00 were elevated due to sample dilutions resulting from matrix interference.
- Matrix spike was out of control high for mercury in lab batch YQ99 no other irregularities with this analysis.

- Matrix spike was out of control low for total cyanide in lab batch YQ84 no other irregularities with this analysis.
- Matrix spike relative percent difference was outside the laboratory control limits for lab batch YQ99, cobalt in sample BH-COMP1. All other analytes were in control and there were no other irregularities with this analysis.
- Continuing calibration was out of control low for batches YQ80, YQ96, and YR29, VOC analyses, bromomethane. All other constituents were in control, there were no other irregularities.
- Surrogate recoveries for d8-toluene in samples NP-COMP-2 and NP-COMP-3 were out of control low, samples were reanalyzed, and surrogate recoveries were in control.
- The matrix spike duplicate for 1,2,4-Trichlorobenzen in lab batch YQ80 was out of control low. All other recoveries were in control, and there were no other irregularities with the analyses.
- Continuing calibration was out of control low for lab batch YS17, 3,3-Dichlorobenzidine. All other analytes were in control, there were no other irregularities.
- Matrix spike matrix spike duplicate relative percent difference was low for lab batch YS17 nitrate/nitrite, water cap sample BR-COMP.

Table A1. Quality Assurance Quality Control Summary for Sludge Samples at Newaukum Prairie

Maching Mach	SVOCS SW8270 July 9, 2014 July 14, 2014 July 17, 2014 Good, Continuing calibration is out of control low. Seults (Conventionals)/Bla Within Range Good	Metals Metals July 9, 2014 July 10, 2014 July 14, 2014 Good Good Within Range Good Nothin Range Good Metals	Nitrate/Nitrite July 9, 2014 July 10, 2014 July 10, 2014 Good Good	PCBs A July 9 July 16 July 20	Pesticides July 9, 2014 July 14, 2014	July 9, 2014 July 10, 2014	Total Solids July 9, 2014 July 10, 2014	July 9, 2014 July 9, 2014	2,3,7,8 TCDD July 9, 2014	Total Coliform July 7, 2014	Total cyanide July 9, 2014
ate Sampled July 7, 2014 ate Extracted July 14, 2014 ate Analyzed July 14, 2014 olding Time Good coeptability Good coeptability Within Range coeptability Good SMSD Within Range (out of control low 1, 2,4 MS Recovery Within Range (out of control low 1, 2,4 MS Recovery Within Range (out of control low 1, 2,4 MS Recovery Within Range (out of control low 1, 2,4 within Range (out of control low 1, 2,4 within Range (out of control low 1, 2,4 within Range (out of coutrol low 1, 2,4 within Range (control low 1, 2,4 within Range (c	July 9, 2014 July 14, 2014 July 17, 2014 July 17, 2014 Good, continuing calibration is out of control low. Seults (Conventionals)/Bla Within Range Good		July 9, 2014 July 10, 2014 July 10, 2014 Good Good		July 9, 2014 July 14, 2014		July 9, 2014	July 9, 2014 July 9, 2014	July 9, 2014	July 7, 2014	July 9, 2014
tale Extracted July 14, 2014 Good Septability Good Septability Good Septability Within Range Secovery Within Range (out of control low 1,2,4 Within Range (out of contro	July 14, 2014 July 17, 2014 Good, continuing calibration is out of control low. Within Range Within Range Good		July 10, 2014 July 10, 2014 Good	July 16 July 20	July 14, 2014		July 10, 2014	July 9, 2014			
Internalyzed July 14, 2014 Good Good Good Good Good Good Good Goo	July 17, 2014 Good, continuing calibration is out of control low. Within Range Good Good NA		July 10, 2014 Good Good	July 20				7 700	September 1, 2014	July 7, 2014	July 21, 2014
receptability Good might be seen to be seen	Good, continuing calibration is out of control low. seuts (Conventionals)/Blan Within Range Good Good		poog g	ı	7/17/2014-7/19/2014		July 10, 2014	July 9, 2014	September 4, 2014	July 7, 2014	July 21, 2014
IRROGATE SPIKES/Standard Reference Reample Solie Recovery Ceptability SMSD SRecovery Within Range (out of control low 1.2,4 trichlorobenzene)	sults (Conventionals)/Bla				Good, raised reporting limits due to sample dilution		00000	00000	Concentrations between PQL/RL and MDL flagged as	5000	D C
IRROGATE SPIKES/Standard Reference Ree mple Spike Recovery Within Range Stacovery Stacovery Within Range (out of control low 1.2.4 trichlorobenzene) Trogate Recovery Trogate Recovery Within Range (out of control low 1.2.4 Trogate Recovery Within Range Of Control low 1.2.4 Trogate Recovery Within Range Of Control low 1.2.4 Trichlorobenzene) Within Range Of Control low 1.2.4 Trichlorobenzene) Within Range Of Control Range	Soults (Conventionals)/Blad			3						8	
W viti	Within Karge Good Good NA NA NA	Within Kange Good NA	s)								4
With of co	S Z Z	N AA	Within Range	Within Range	Within Range	Y Z	∀Z Z	¥ ₹	₹ Z	A Z	Within Range
Writing of control trice	X	AN A	D005	0000	00005	Y Z	¥ Z	¥Z	NA.	¥ Z	0005
With Of CC tricky	Ϋ́Z	∢ Z									
Witi			Within Range	AN	AN	NA	A N	NA	NA NA	NA	Within Range
With of co											matrix spike recovery for total cyanide was out of cotrol low, all
2	đ Z	đ Z	Within Range	d Z	d Z	đ Z	d Z	đ Z	d Z		other spike recoveries were within lab control limits.
		Y X	Within Range		AN	¥ Z	ĄZ	¥Z	Y Y	Ą	Within Range
		¥.	Within Range		AN	AN	Ϋ́	Y.	NA	A N	Within Range
THOD BLANK	NA	AN	Good	AN	NA	AN	NA	AN	NA	AN	Good
THOD BI ANK											
Since of the state	4 4 4	9	Į.	4	4	4	4	2	2	2	i i
Acceptability Good	poog	Poop	Boob	Good	Good	Poop	Good	NA	Pioob	NA	Good
NA IS GIGH											
Detections	YZ.	₹Z	ď Z	₹ Z	AN	ď Z	₹ Z	¥Z	₹Z	¥Z	Ϋ́Z
ıty		AN	NA	AN	Y Z	AN	AN	AN	Ϋ́Z	AN	AN AN
FIELD BLANK NA		NA	AN	AA	¥Z	AN	AN	A A	Z Y	A N	AN AN
Detections	AN	AN	ΥN	AN	N	A N	A A	ΑN	ΥN	AN	ΥN
Acceptability		AZ	AN	Υ Y	AN	ď Z	NA	AA	Ϋ́Z	AA	¥Z
UPLICATES											
Sample: NA		₹ Z	₹ Z	₹ Z	AZ Z	₹ Z	₹ Z	₹ Z	₹ Z	₹ Z	Ϋ́ Z
Acceptability NA	AZ N	Z Z	Z Z	X X	AN N	Z Z	Ž Z	S S	YZ Z	A A	Z Z
AB DIIBLICATES											
		AN	Within Range	AN	AN	A N	AN	Within Range	Ϋ́Z	AN	Within Range
Acceptability	NA	NA	Good	AN	NA	AN	AN	Good	NA	NA	Good
LAB CONTROL											
		1	:				:				:
Spike Recovery Within Range In Surrogate Recovery Within Range	recoveries were in control. Within Range	Within Range Within Range	A Z	A A	Within Range Within Range	Within Range Within Range	A X	Within Range Within Range	Within Range Within Range	A Z	₹ Z
	Good	Good	AN	AN	Good	Good	AN	Good	Good	AN	Ϋ́
303											
Acceptability Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good

Table A2. Quality Assurance Quality Control Summary for Sludge Samples at Big Hanaford

Material Designation Material Designation					96py	96py	96py	96py				96py
March Range	3000	0000		A Catal	Sludge	Sludge	Sludge	Sludge	Slud	Sludge	- 11	Sludge
100 100	VOCS SW826	20	V			Pesticides		lotal Solids	1			
1,00,115,2014 1,00,17,2014 1,0,0,17,2014 1,	July 8, 201.		July 7,		- 1 '	July 8, 2014	July 8, 2014	5	July 8		- 1	
Coord Coor	July 15, 2014		71 Vinc.			July 19, 2014	July 10, 2014		July 14			
Coord controlling Coord Coor	Good				1 1	Good	Good			Good	Good	Good
Febres/Standard Reference Results (Conventionals) Plants Spiless (medis) Mithin Range Within Range Wit	300g	Gc calibration is				Good, raised reporting limits due to sample dilution.	Good	Good	Good	Concentrations between PQL/RL and MDL flagged as estimated		Good
Mithin Range Within Range Good	PIKES/Standard Reference	e Results (Conventionals)/	als)									
Victor Coord Coo	Scovery Within Range	e Within Range		Within Range	Within Range	Within Range		NA	NA	NA	NA.	Within Range
Within Range , Neurix spike recovery Within Range , CScool Within Range , Within Range , CScool Within Range , Within Range , CScool Within Range , CScool Within Range , Within Range , Within Range , CScool GScool G	Goog			Good	Good	Good	Good	AN		AN N		Good
Vittin Range Vitt												
OVA NA Within Range except the following processory NA	Ž		Vi f		ď Z	¥ Z	₹ Z	Z				¥ Z
ANK NA					NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
NA					∢ Z	Y Y	Y Z	N A	N AN	ÄN N		∢ Z
None	Ϋ́N				AN	ΑN	AN	N	AN	NA	AN	AN
None	<u></u>											
CATES Good Good Good Good Good Good Good Go					None	None	None	None	NA	None	AZ Z	None
K	Goog				Good	Good	Good	Good		Good		Good
NA												
K NA NA </td <td>Ż</td> <td></td> <td></td> <td></td> <td>A N</td> <td>A N</td> <td>A Z</td> <td>NA N</td> <td>AN A</td> <td>NA</td> <td>NA</td> <td>A N</td>	Ż				A N	A N	A Z	NA N	AN A	NA	NA	A N
S NA Good	Z				AZ Z	Y Z	Z	AN		Ϋ́		Z
S NA Cood Good	N				AN	NA	NA	NA		NA	NA	AN
NA	√N				AN	AN	AN	NA		AN		AN
NA												
NA	Ż				AN AN	AN N	A A	NA NA	NA AN	AN N	A Z	AN A
NA	Ź				AN	Y V	Y A	NA	N A	A N		Y A
NA	S											
NA NA NA NA NA Within Range, LCS/LCSD spike recovery is out of control low for dibenz (a,h) anthracene, all other writin Range recoveries were in control. Within Range writin Range writin Range writin Range writin Range Good Within Range Within Range Good Within Range Good Within Range Good Within Range Good					Ϋ́Z	ΥN	Ϋ́	Within Range	Within Range	NA	AN	Within Range
Within Range, LCS/LCSD spike recovery is out of control low for dibenz (a,h) anthracene, all other within Range recoveries were in control. Within Range Within Range Within Range Within Range Within Range Good Good Good Good Good Good Good Goo	Ż				AN	ΥZ		Good			NA	Good
Within Range , LCS/LCSD spike recovery is out of control low for dibenz (a,h) and within Range recovertess were in control. Within Range recovertess were in control. Within Range Within Range Within Range Within Range Within Range Cood Good Good Good Good Good Good Good												
Within Range Within Range NA NA Within Range Good Good Good Good Good Good Good Good Good Good				d Z	Within Range	Within Range	Within Range	Ž				∀ 2
Nability Good Good Good Good Good Good Good	Within			A N	Within Range Good	Within Range Good	Within Range Good	A Z	Within Range Good	Within Range Good	A Z	A Z
Stability Good Good Good Good Good Good												
	(G00)				Good	Good	Good	Good	Good	Good	Poog	Good

1. All other QA/QC = good, samples not flagged 2. RPD >30%, Samples "J" Flagged RPD = 2 x (C1 - C2) x 100/(C1 + C2)

Table A3. Quality Assurance Quality Control Summary for Sludge Samples at Burnt Ridge

1,005.8 control 1,005.8 co	LAB BATCH ID METHODOLOGY	Sludge	yr00	yr00	yr00	yr00	yr00	yr00	yr00	yr00		Sludge	yr00 Sludge
Second 1967 2019 2019	q	VOCS SW8260	SVOCS	Metals	Nitrate/Nitrite	PCBs Aroclor	Pesticides		Total Solids	H	2.3.7.8 TCDD	Total C	Total cyanide
Second July 15, 2014 Jul	Sampled	July 9, 2014			July 9,	July 9, 2014	July 9, 2014		July 9, 2014	July 9, 2014			July 9, 2014
1995 1995	Extracted	July 15, 2014		1	July 10,	July 16, 2014	July 14, 2014		July 14, 2014	July 14, 2014	September 1, 2014	July 9, 2014	July 21, 2014
Second	Analyzed	July 15, 2014			July 10,	July 20, 2014	7/18/2014-7/19/2014		July 14, 2014	July 14, 2014			July 21, 2014
COOK Control Cook Cook	g Time	Good		ı		Good	Good		Good	Good	l		Good
SECONSTITE Coord			Good, continuing				Good, raised reporting				betwe		
SECONSTEENTEENSENDERS STRIKES	tability	Good		Good	Good		limits due to sample dilution.		Good	Good	MDL flagged as estimated	Good	Good
SECONDENSITY Within Range Good Good	d - 1 - Mountain												
SED	OGATE SPIKES/Standard K	Within Range	(Conventionals)/Blar	Mithin Range	Within R	Within Range	Within Range	- 1	ΔN	AN		₫Z	Within Range
NA	tability	PooD				poog	Boog		NA NA	NA	AN	AN	Boob
SED NA													
Name	SD												
Name	ecovery	NA		NA	NA	NA	NA		AN	NA			NA
Accoraty NA	Recovery	NA		AN AN	NA	AN	NA		A A	NA			NA
According Marin Range Ma	gate Recovery	Y Z		₹ Z	₹ Z	₹Z Z	Y Z		₹ Z	₹ Z	₹ Z	₹ Z	₹ Z
Mone	tability	Y Z		X X	X X	X X	AZ Z		Y Z	Y X			Z Z
None													
None	NA IG CO												
BLANK Good	ions	None		None	None	None	None	None	None	Z	None		None
BLANK None NA NA <t< td=""><td>tability</td><td>Good</td><td></td><td>Good</td><td>Good</td><td>Good</td><td>Good</td><td></td><td>Good</td><td>AN</td><td></td><td>ΥZ</td><td>Good</td></t<>	tability	Good		Good	Good	Good	Good		Good	AN		ΥZ	Good
BLANK Name NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Definity Good NA	BLANK	adoN		42	ΔZ	₹Z	δN		N N	\delta z		₹Z	ΔN
DELLANK NA	tability	Good		AN	AN	AN	AN		Z Z	AN	AN	AN	Y N
DUPLICATES													
DUPLICATES	BLANK	NA		AN	AN :	NA	NA		₹Z	NA	AN:	NA	AN
DEDIPLICATES	tions	AN A		AN S	AN S	AN A	NA NA		₹ Z	AN A		AN S	¥ Z
DUPLICATES NA	rability	Y.		Ϋ́Σ	2	KZ	AN.		Y Z	Y		KZ.	2
Ne: NA NA NA NA NA NA Stability NA NA NA NA NA NA DUPLICATES NA NA NA NA NA NA DUPLICATES NA NA NA NA NA NA DUPLICATES NA NA NA NA NA NA Stability NA NA NA NA NA NA CONTROL Within Range Control low for	DUPLICATES												
CONTROL NA NA <t< td=""><td>le:</td><td>NA</td><td></td><td>Ϋ́</td><td>AN</td><td>AN</td><td>NA</td><td></td><td>¥ V</td><td>NA</td><td>AN</td><td>AN</td><td>AN</td></t<>	le:	NA		Ϋ́	AN	AN	NA		¥ V	NA	AN	AN	AN
CONTROL NA NA <t< td=""><td></td><td>Y :</td><td></td><td>ΨZ:</td><td>YY.</td><td>₹ Z</td><td>AN :</td><td></td><td>₹ Z</td><td>¥.</td><td></td><td>ΨZ:</td><td>₹ Z</td></t<>		Y :		ΨZ:	YY.	₹ Z	AN :		₹ Z	¥.		ΨZ:	₹ Z
DUPLICATES NA Cood Cood <td>rtability</td> <td>NA</td> <td></td> <td>AN</td> <td>AN</td> <td>AN</td> <td>NA</td> <td></td> <td>AN AN</td> <td>NA</td> <td></td> <td>AN</td> <td>A N</td>	rtability	NA		AN	AN	AN	NA		AN AN	NA		AN	A N
CONTROL NA NA <t< td=""><td>UPLICATES</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	UPLICATES												
CONTROL NA NA NA NA NA CONTROL Within Range control Within Range ate Recovery LCS/LCSD spike control low for dibenz (a,h) anthracene, all other recovery A within Range control. NA NA Within Range within Range within Range within Range within Range within Range control. Within Range within Range within Range control. Within Range control. Within Range control. Within Range control. Within Range control. W		NA		NA	NA	AN	NA		AN	NA	NA	NA	NA
CONTROL Within Range. Within Range	rtability	NA		AN	NA	NA	NA		AN	NA		AN	AN
Within Range LCS/LCSD spike recovery is out of control low for dibenz (a,h) anthracene, all other recovery Within Range wortein NA NA Within Range Within Range Within Range Within Range ontrol. Nathin Range Within Range Within Range Within Range Within Range within Range ontrol. Stability Good Good Good Good Good Good Good Goo	CONTROL												
Recovery Writhin Range Writhin Range Within Range <td></td> <td></td> <td>Within Range, LCS/LCSD spike recovery is out of control low for dibenz (an)</td> <td></td>			Within Range, LCS/LCSD spike recovery is out of control low for dibenz (an)										
gate Recovery Within Range	Recovery	Within Range	reco	Z	Y V	Within Range	Within Range	Within	Z	Within Range	Within		Z
Otability Good Good NA Good Good Atability Good	yate Recovery	Within Range		AN	NA	Within Range	Within Range	Within	A A	Within Range		NA	NA
Stability Good Good Good Good Good Good Good	ntability	Good		AN	AN	Good	Good		AN	Good			NA
stability Good Good Good Good Good Good						+							
	rtability	Good		Good	Good	Good	Good	Good	Good	Good	Good	Good	Good

^{1.} All other QA/QC = good, samples not flagged 2. RPD >30%, Samples "J" Flagged RPD = $2\times(C1\cdot C2)\times100/(C1+C2)$

Table A4. Quality Assurance Quality Control Summary for Water Cap Samples at Big Hanaford

BATCH	ys16	ys17	ys17	ys17	ys17
METHODOLOGY	Watercap	Watercap	Watercap	Watercap	Watercap
Method	VOCS SW8260	SVOCS SW8270	Metals	Nitrate/Nitrite	Total cyanide
Date Sampled	July 17, 2014	July 17, 2014	July 17, 2014	July 17, 2014	July 17, 2014
Date Extracted	July 25, 2014	July 21, 2014	July 21, 2014	7/18/2014-7/23/2014	July 28, 2014
Date Analyzed	July 25, 2014	July 23, 2014	7/22/2014-7/24/2014	7/18/2014-7/23/2014	July 28, 2014
Holding Time	Good	Good	Good	Good	Good
Acceptability	Good	Good	Good	Good	Good
SURROGATE SPIKES/Sta	ndard Reference Re	sults (Conventiona	ls)/Blank Spikes (metals	s)	
Sample Spike Recovery	Within Range	Within Range	Within Range	Within Range	Within Range
Acceptability	Good	Good	Good	Good	Good
MS/MSD					
				Within Range, Matrix spike matrix spike duplicate relative percent difference was low for lab batch YS17 nitrate/nitrite, water cap	
MS Recovery	NA	NA	NA	sample BR-COMP.	Within Range
DMS Recovery	NA NA	NA	NA	Within Range	Within Range
Surrogate Recovery	NA	NA	NA	Within Range	Within Range
RPD	NA	NA	NA	Within Range	Within Range
Acceptability	NA	NA	NA	Good	Good
METHOD BLANK					
Detections	None	None	None	None	None
Acceptability	Good	Good	Good	Good	Good
LAB DUPLICATES					
RPD	NA	NA	NA	Within Range	Within Range
Acceptability	NA	NA	NA	Good	Good
LAB CONTROL					
Spike Recovery	Within Range	Within Range	Within Range	NA	NA
Surrogate Recovery	Within Range	Within Range	Within Range	NA	NA
Acceptability	Good	Good	Good	NA	NA
сос					
Acceptability	Good	Good	Good	Good	Good

^{1.} All other QA/QC = good, samples not flagged

RPD = 2 x (C1 - C2) x 100/(C1 + C2)

^{2.} RPD >30%, Samples "J" Flagged

APPENDI B FIELD PHOTOS

Field Photos from Burnt Ridge Site:

Fire Mountain Farms, Inc. Sludge Investigation July 2014

<u>Field Photos from Newaukum Prairie Site:</u>

Fire Mountain Farms, Inc. Sludge Investigation July 2014

Field Photos from Big Hanaford Site:

Fire Mountain Farms, Inc. Sludge Investigation July 2014

APPENDI C LABORATORY REPORTS

Pacific Groundwater Group: Fire Mountain Farms, Inc. Quality Assurance Project Plan

FIRE MOUNTAIN FARMS, INC.
QUALITY ASSURANCE PROJECT PLAN
INVESTIGATION OF
EMERALD KALAMA CHEMICAL SLUDGE COMINGLED
WITH BIOSOLIDS FROM OTHER PERMITTED SOURCES
AT THREE STORAGE SITES

FIRE MOUNTAIN FARMS, INC. QUALITY ASSURANCE PROJECT PLAN INVESTIGATION OF EMERALD KALAMA CHEMICAL SLUDGE COMINGLED WITH BIOSOLIDS FROM OTHER PERMITTED SOURCES AT THREE STORAGE SITES

Prepared for:

Fire Mountain Farms, Inc. 349 State Route 508 Chehalis, WA 98532 360.266.0695 www.firemtn.us

Prepared by:

Pacific Groundwater Group 2377 Eastlake Avenue East, Suite 200 Seattle, Washington 98102 206.329.0141 www.pgwg.com

July 2, 2014 JW9901.01 FireMountain_QAPP_EcologyFinal_v3.docx

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	PURPOSE AND OBJECTIVES	2
4.0	PROJECT ORGANIZATION AND HEALTH AND SAFETY	2
4.1	PROJECT ORGANIZATION	2
4.2	PGG HEALTH AND SAFETY	3
5.0	SLUDGE AND WATER CAP SAMPLING PROCEDURES	3
5.1		
5.2		
	5.2.1 Burnt Ridge Sludge Sample Grid	
	5.2.2 Burnt Ridge Sludge Subsample Collection Procedure	
	5.2.3 Burnt Ridge Transfer of Sludge Subsamples to Lab Containers	
5.3		
	5.3.1 Burnt Ridge Water Sample Grid	
	5.3.2 Burnt Ridge Water Subsample Collection Procedure	
5.4	5.3.3 Burnt Ridge Transfer of Water Subsamples to Lab Containers	
	Newaukum Frairie Studge Sampling Frocedures	
	5.4.2 Newaukum Prairie Subsample Collection Procedure	
	5.4.3 Newaukum Prairie Transfer of Subsamples to Lab Containers	
5.5	v v 1	
	5.5.1 Big Hanaford Sample Grid	
	5.5.2 Big Hanaford Subsample Collection Procedure	
	5.5.3 Big Hanaford Transfer of Subsamples to Lab Containers	
5.6		
5.7		
5.8	SLUDGE SAMPLE TRANSPORT TO LAB	18
6.0	GROUNDWATER SAMPLING PROCEDURES	19
6.1		
6.2		
6.3		
6.4		
6.5	GROUNDWATER SAMPLE TRANSPORT TO LAB	22
7.0	QUALITY ASSURANCE AND QUALITY CONTROL	22
7.1	FIELD QUALITY CONTROL	
7.2	Laboratory Quality Control	23
	7.2.1 Quality Assurance Objectives	
7	7.2.2 Laboratory Data Review	
8.0	DATA EVALUATION AND REPORTING	24
9.0	REFERENCES	24

TABLES

Table 1:	Burnt Ridge Lagoon Sludge/Biosolids Sample Scheme
Table 2:	Newaukum Prairie Impoundment (Lagoon) Sludge/Biosolids Sample Scheme
Table 3.	Big Hanaford Bunker Sludge/Biosolids Sample Scheme
Table 4:	Sludge/Biosolids Analytical Parameters List
Table 5:	Monitoring Well Information for Fire Mountain Farms Impoundments
Table 6:	Groundwater Analytical Parameter List

FIGURES

Figure 1: Fire Mountain Farm Sampling Sites

Figure 2: Burnt Ridge Lagoon Site

Figure 3: Newaukum Prairie Lagoon Site

Figure 4: Big Hanaford Bunker Site

SIGNATURE

This report, and Pacific Groundwater Group's work contributing to this report, were reviewed by the undersigned and approved for release.

Janet NKx

Janet K. Knox Principal Geochemist Washington State Geologist No. 413

1.0 INTRODUCTION

Pacific Groundwater Group (PGG) has prepared this Quality Assurance Project Plan (QAPP) for Fire Mountain Farms, Inc. (FMF) for sampling and investigative work to be conducted at three biosolids storage sites operated by FMF. The investigative work is being conducted to meet the requirements of an Administrative Order (Docket #10721) issued by the Washington Department of Ecology (Ecology) on June 2, 2014.

This QAPP has been prepared in accordance with Ecology guidelines for preparing QAPPs for environmental studies (Publication No. 04-03-030 July 2004). Investigative work specified in this QAPP will commence as soon as the final QAPP is approved by Ecology. Once approved, the field work should be able to commence with about one week of preparation time.

BACKGROUND

Fire Mountain Farms, Inc. (FMF) operates several facilities in Lewis County where biosolids are applied to fields as fertilizer under the Washington State General Permit for Biosolids Management. On June 2, 2014 FMF was issued an Administrative Order (AO), Docket #10721 by Ecology.

The AO was issued in response to Ecology's uncertainty in the current designation of waste generated at Emerald Kalama Chemical. FMF has been receiving clarifier solids from Emerald Kalama Chemical's wastewater treatment plant and mixing it with biosolids managed under FMF's General Permit for Biosolids (Chapter 173-308 WAC). As stated in the AO, although material from Emerald Kalama Chemical was registered through the year 2003 with the Washington State Department of Agriculture for use as a waste-derived commercial fertilizer product, the material being sent to FMF is not currently registered nor has it been tested for designation and there is concern it may designate as a listed dangerous waste under Chapter 173-303 WAC. As stated in the AO, Ecology is currently conducting an investigation into the designation and characteristics of the material received from Emerald Kalama Chemical.

Under the AO, Ecology is requiring FMF to cease receiving materials from Emerald Kalama Chemical and to cease land application of all stored materials currently mixed with wastes received from Emerald Kalama Chemical. Ecology is also requiring FMF to undergo a rigorous investigation to sample and characterize the material at the three FMF sites where material mixed with wastes from Emerald Kalama Chemical is currently being stored (Figure 1):

- Newaukum Prairie Surface Impoundment
- Burnt Ridge Surface Lagoon
- Big Hanaford Bunker

As stated in the AO, sample collection must follow an Ecology approved QAPP that shall specify a rigorous method of sampling (gridding, randomized sampling, compositing, etc.) to address the heterogeneity of the materials stored at the three sites.

The AO requested that Ecology be notified of the vector attraction reduction (VAR) option to be used at each site listed above. For the Burnt Ridge and Newuakum Prairie sites, FMF uses the Volatile Solids Reduction (Alternative 1) in accordance with Chapter 173-308-180(1)(a) of the Biosolids Management Rule. For the Big Hanaford Bunker Site, FMF uses the Incorporation Option (Section 10.5.2) in the Washington State General Permit for Biosolids Management.

2.0 PURPOSE AND OBJECTIVES

The purpose of this plan is to present field and analytical procedures that will be used to characterize the material at the three FMF sites where material mixed with wastes from Emerald Kalama Chemical is currently being stored (Figure 1):

- Newaukum Prairie Impoundment
- Burnt Ridge Lagoon
- Big Hanaford Bunker

Three downgradient groundwater monitoring wells at the Burnt Ridge and Newaukum Prairie will also be sampled to characterize groundwater quality in the vicinity of those sites. This plan also presents the field and analytical procedures to collect those groundwater samples.

This plan presents field observations and sampling procedures, analytical methods, and data evaluation methods to be implemented for this investigation. The plan also identified data quality objectives and quality control measures and validation procedures.

This QAPP has been prepared in accordance with Ecology guidelines for preparing QAPPs for environmental studies (Publication No. 04-03-030 July 2004).

3.0 PROJECT ORGANIZATION AND HEALTH AND SAFETY

The following section describes project organization and responsibilities for conducting the work in this QAPP.

3.1 PROJECT ORGANIZATION

The project team is formed by Fire Mountain Farms Inc. (FMF), Pacific Groundwater Group (PGG), and Washington State Department of Ecology (Ecology):

FMF: Robert Thode (Owner)

PGG: Janet Knox (Principal)

Linton Wildrick (Project Manager)

Dawn Chapel (Assistant Project Manager)

Travis Klaas (Field Geologist)

Ecology: Jamie Olivarez (Site Manager)

Peter Lyon (Waste 2 Resources Program)

Tom Culhane (Hydrogeologist)

FMF is owned by Robert Thode. Mr. Thode and his employees will assist PGG with site access and field sampling. FMF will follow their own health and safety plan for conducting their work. PGG personnel will be responsible for project management, data collection, data management, and reporting. Ecology is the lead regulatory agency for the project. Ecology staff will provide regulatory oversight and approvals.

3.2 PGG HEALTH AND SAFETY

PGG will be responsible for the health and safety of PGG personnel conducting the field investigation and will follow their own health and safety plan. All PGG field personnel will have 40 hour HAZWOPER training. PGG personnel will wear the following personal protective equipment during sludge sampling:

- Disposable Tyvek suits or chest waders to keep sludge materials off personal clothing
- Knee high rubber boots
- Safety Glasses
- Respirator (to be worn if odors become strong)
- Disposable Nitrile Gloves (during sampling and decontamination)

4.0 SLUDGE AND WATER CAP SAMPLING PROCEDURES

Sludge samples will be collected at the following storage sites at Fire Mountain Farms:

- Burnt Ridge Lagoon (Figure 2)
- Newaukum Prairie Impoundment (Figure 3)
- Big Hanaford Bunker (Figure 4)

A composite liquid sample will also be collected from the water cap at the Burnt Ridge Lagoon. The purpose of sampling the three storage sites is to fully characterize the material currently stored at those sites. A rigorous characterization strategy is required to address the heterogeneity of the material. The sludge sample strategy will be the same at all three sites:

A uniform grid will be staked out at each site and samples will be collected using coring devices at various locations and depths (details described below for each site).
 The grid will be staked out using measuring tapes. Three composited samples will be collected at each site. Each composited sample will consist of pooling together a number of subsamples collected at prescribed locations and depths within the gridded area (see details below).

- At the Burnt Ridge site, a composited sample of the water cap (liquid) will also be collected. The composited sample will consist of pooling together a number of subsamples collected at prescribed locations and depths within the gridded area (see details below).
- Sampling equipment will be thoroughly decontaminated between sites (see below).
 During subsampling at each site, sample core tools will be rinsed of sludge (as described below) but not decontaminated. Since the samples are to be composited, it is not necessary to decontaminate equipment between subsamples at a particular site.

FMF personnel will be responsible for collection of actual sludge cores and liquids. FMF personnel will follow their own health and safety plan to collect the samples. PGG personnel will observe sampling work performed by FMF personnel and coordinate with sample locations. PGG will composite the core and liquid samples and fill laboratory bottles. PGG will also maintain detailed field notes including:

- Maps of site grid pattern (see below) and detailed notes on location of each subsample and associated grid coordinates.
- Take photos of sampling activity and photos of all composited samples (each photo of composited sample will have a sample ID placed next to the sample to be able identify it later).
- Visual appearance of each subsample will be noted on field sheets (color, consistency, odor, or any other notable observation).

Sludge samples from each site may be sampled with slightly different coring tools to contend with site specific conditions at each site. The coring tools recommended for each site have been field tested by FMF personnel and should be capable of collecting samples through most of the thickness of sludge materials stored at each site (see below). Although the following methods have been considerably thought-out and tested, unforeseen field conditions may warrant alteration of the methods described below. Ecology personnel will be on-site overseeing field work and will be available to consult. No deviations from the methods described below will occur without Ecology approval.

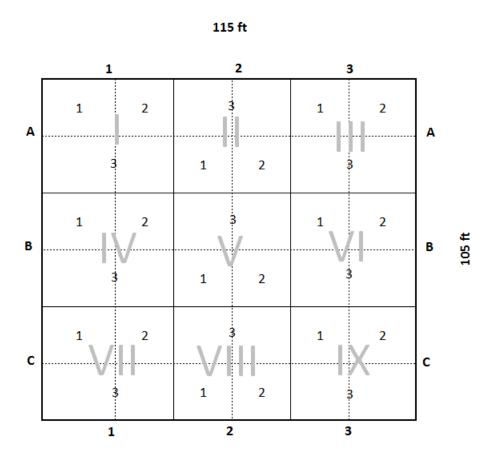
The following sections describe the necessary field equipment for conducting the sludge sampling followed by detailed sampling procedures to be conducted at each site.

4.1 SLUDGE AND WATER CAP SAMPLING FIELD EQUIPMENT LIST

- Sample bottles, cooler, labels, COC forms, and ice
- Packing Tape
- 3 boxes of Zip-Lock b ags
- 250 yards of heavy mil plastic sheeting
- 50 survey stakes
- Sledge hammer
- Two 50 foot measuring tape

- Fifteen foot measuring rod
- 10 stainless steel sampling spoons
- 5 stainless steel measuring cups
- 3 large (8 quarts) stainless steel mixing bowls
- 16 glass sampling jars with lids (32 oz)
- 1 gallon glass jar
- Field labels (at least 100)
- 6 black sharpie pens and 4 regular pens
- Camera
- Two boxes of nitrile sampling gloves
- Alconox detergent
- Long handled scrub brushes (including one bottle brush 1.5 inch and 2 inch diameter)
- 15 gallons of De-ionized water
- 1.5-inch sludge judge sampler
- 2-inch AMS sludge/sediment sampler with 10 ft extensions and 4 ft core catcher
- Twenty 4-ft AMS core liner/caps.
- Hand Auger with 10 ft extensions
- Post hole digger
- Shovel
- Five 5-gallon plastic buckets with lids
- Field Maps and field notebook
- Sampling forms
- Duct Tape
- Calculator, watch, and ruler

4.2 BURNT RIDGE SLUDGE SAMPLING PROCEDURES


The Burnt Ridge Lagoon has a water cap approximately 14 feet deep above sludge and solids stored at the bottom. The percent solids in the sludge are estimated to be 4 to 6%. The surface water dimensions of the lagoon were measured by FMF personnel on June 25, 2014 to be 215 ft by 205 ft. The lagoon's sloped interior sides extend about 50 feet from the edge indicating the bottom area of the lagoon is about 115 ft by 105 ft. Limited sludge material is currently stored at the bottom of Burnt Ridge Lagoon. The sludge material is estimated to be 3 ft thick or less.

FMF personnel will collect the core subsamples following their own guidelines and health and safety plans. It is recommended that sludge samples from the Burnt Ridge Lagoon be collected with a 1.5-inch Sludge Judge coring tool or similar device. The tool assembly comes in incremental sections that screw together and has a ball valve that allows water and sludge material into the core when lowered and seals the sample when raised. To minimize collection of water above the sludge in the sampler, a coupler with a T-valve could be added to the assembly at approximately 10 feet above the bottom of the core tool to allow water drainage while pulling the tool assembly up.

4.2.1 Burnt Ridge Sludge Sample Grid

A grid of 9 equal sections (labelled with roman numerals in figure below) will be staked out and coordinates labelled on all four sides of lagoon to delineate the bottom sludge extents:

Note: 1, 2, and 3 within the above grid refer to Composite Samples 1, 2, and 3 in Table 1.

Nine subsamples for each composite will be collected from a section of the grid by FMF personnel following their own health and safety plan (Table 1). This sampling pattern results in a subsample location spacing of about 20 to 35 feet.

Each subsample will be labeled based on grid location and composite number (BR-A1-1, BR-A2-1, etc.). The depth interval of the subsample will be noted on sample field sheets. Because the sludge material at the Burnt Ridge lagoon is estimated to be no more than

about 3 feet thick, vertical characterization of the material at this site will not be required. About 3 ft of material will be required per subsample in order to collect 5 liters of a composite sample (total estimated volume required by the lab for a sample with 4 to 6% total solids). PGG personnel will keep detailed field notes of all sample locations, ID's, and depth intervals.

4.2.2 Burnt Ridge Sludge Subsample Collection Procedure

FMF personnel will use their own health and safety plan to collect subsample cores. It is recommended that a 1.5 inch sludge judge with 1 ft incremental markings and a T-valve coupler for drainage be used to collect the samples as follows:

- 1. Wearing clean nitrile sampling gloves, carefully lower clean 1.5 inch sludge judge into the water and through the underlying sludge until refusal. Given the fluid loose nature of the sludge, refusal will likely be the bottom of the clay lined lagoon.
- 2. Pull up sludge judge tool slowly, disconnecting connections along the way. Use a T-valve coupler to drain access water above sludge sample.
- 3. Slowly empty sludge from core tool by tilting the end of the core slightly horizontal and using index finger to lift the ball valve as the sludge is carefully emptied into a clean 1-liter glass sample jar. Care should be taken to not let lagoon water above the sludge enter the sample jar.
- 4. Collect at least 1 liter of sludge material for each subsample ¹. This may require more than one core be collected for each subsample at the Burnt Ridge site. One 3-ft length core collected in a 1.5 inch core device will yield about 1 liter of material.
- 5. Cap and label sample jar based on composite number and grid location.
- 6. Rinse sludge material out of the core using a hose followed by rinse with deionized water.
- 7. Continue with steps #1 through #6 until all subsamples have been collected.

4.2.3 Burnt Ridge Transfer of Sludge Subsamples to Lab Containers

The follow procedures will be used (in order) by PGG personnel to transfer subsamples collected in the 1 liter jars into laboratory supplied containers:

For volatile organic compounds (VOC) EPA Method 8260:

• Subsamples will be transferred directly from the 1 liter glass jar to lab containers (not mixed in field) and composited by lab to minimize disturbance and volatilization.

PgG

¹ Given the anticipated low total percent solids in the sludge (~4 to 6 %) about 4 liters of material will be required per composited sample.

- Use a clean stainless steel spoon to carefully transfer each subsample directly into laboratory supplied septa jars (Table 4). Fill material to top of jar.
- Clearly note on the lab chain-of-custody which VOC subsamples will be composited by lab

For Fecal Coliform Analysis:

- Select 7 subsamples randomly to transfer directly to lab containers²
- Use a clean stainless steel spoon to transfer each subsample directly into laboratory supplied jars. Fill material to top of jar.

For all other analytes, composite subsamples (Table 1) as follows:

- Use a clean stainless steel measuring cup to transfer 4.5 cups from each subsample into a clean 8 quart stainless steel bowl.
- Use a clean stainless steel sampling spoon to thoroughly mix the material in the stainless steel bowl (mix for at least 30 seconds).
- Use a clean stainless steel spoon to transfer mixed material (small portions at a time) directly into laboratory supplied jars.

All sample jars will be labeled with the following information:

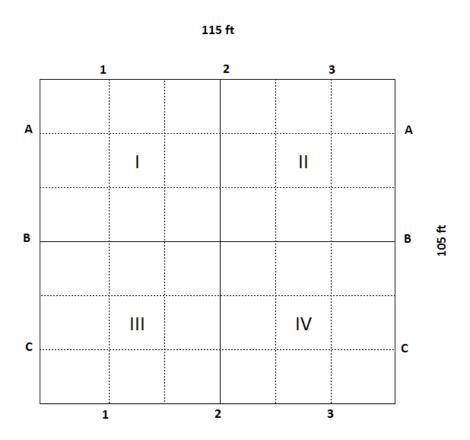
- Project name and number
- o Name of collector
- o Date and time of collection
- o Place of collection
- o The sample designation, which shall be the subsample ID
- o Analysis being requested (i.e. EPA Method 8270 VOC)
- o Presence of any preservative

Place all labelled sample containers in a cooler at 4°C with sufficient chemical ice to retain a cold temperature for 24 hours (see below for procedures on transport of samples to lab).

4.3 BURNT RIDGE WATER CAP SAMPLING PROCEDURES

FMF personnel will collect surface water (water cap) subsamples from the Burnt Ridge Lagoon following FMF guidelines and health and safety plans. It is recommended that water samples from the Burnt Ridge Lagoon be collected with a 1.5-inch Sludge Judge coring tool or similar device and that the water samples be collected with this tool before the sludge samples are collected (see Section 5.2). The tool assembly comes in incre-

2



² In accordance with WAC 173-308-170(5) and WAC 173-308-150, a minimum of seven samples are required to be collected over a 1 year period for biosolids volume less than 320 tons dry weight. Less than 320 tons of dry weight material is stored at Burnt Ridge, therefore 7 samples will be collected with this current investigation.

mental sections that screw together and has a ball valve at the bottom that allows water into the core when lowered and seals the sample when raised. With this tool the entire 14-ft water column can be sampled. However, chemical concentrations in the water are likely to be highest near the lower part of the water column where chemical partitioning from the bottom sludge to the overlying water can occur and where volatilization of VOCs from the surface water to the atmosphere is minimal. Therefore collection of water samples will focus on the lower part of the water column (~ bottom 3 feet). Details of the sampling method are described below.

4.3.1 Burnt Ridge Water Sample Grid

The same grid established for sampling the sludge at the Burnt Ridge Lagoon (see Section 5.2.1) will be used to guide collection of four water subsamples within each quadrant of the Lagoon (identified with roman numerals below):

4.3.2 Burnt Ridge Water Subsample Collection Procedure

FMF personnel will follow the FMF health and safety plan to collect the four water subsamples. Except for VOC analysis, PGG will composite the samples and fill laboratory bottles on the shore. Subsamples for VOC analysis will be transferred directly to lab containers from the sludge judge tool and composited later by the lab to minimize disturbance and volatilization.

It is recommended that a 1.5 inch sludge judge with 1 ft incremental markings be used to collect the water subsamples as follows:

- 1. Using a 15-ft (or greater) measuring rod, measure the depth of the water column at the location where the sample will be collected prior to using the sludge judge to collect the sample.
- 2. Wearing clean nitrile sampling gloves, carefully lower clean 1.5 inch sludge judge into the water to within 6 inches of the top of the underlying sludge. A 6-inch sample separation will minimize collection of sludge into the sampler.
- 3. Pull up sludge judge tool slowly, disconnecting upper connections along the way, but retaining the lower 5 feet of water.
- 4. Using a second set of clean nitrile sampling glove, slowly transfer water from the bottom of the core tool (by tilting the end of the core slightly horizontal and using index finger to tap the ball valve) and pour sample directly into the laboratory supplied 40 mL vials for VOC analysis. Fill vials to top carefully with no head-space by forming slight meniscus before securing cap.
- 5. Transfer additional water from the core into a 32 oz glass jars (0.25 gallons). Approximately 3-ft of water from a 1.5-inch diameter core will fill a 32 oz glass jar.
- 6. Cap and label sample jar based on quadrant location for each subsample (i.e. I, II, II, or IV).
- 7. Empty remaining water back into the lagoon.
- 8. Rinse core using with de-ionized water.
- 9. Continue with steps #1 through #8 until all four subsamples have been collected.

4.3.3 Burnt Ridge Transfer of Water Subsamples to Lab Containers

The follow procedures will be used by PGG personnel to composite and transfer water subsamples collected in the 32 oz jars into laboratory supplied containers:

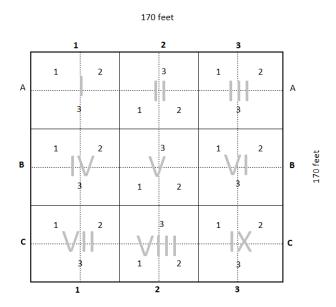
- Slowly pour the four 32 oz subsamples into a 1 gallon glass jar.
- Slowly swirl combined water with clean stainless steel stirring rod for at least 30 seconds.
- Transfer mixed water directly into laboratory supplied jars.

All sample jars will be labeled with the following information:

- o Project name and number
- Name of collector
- Date and time of collection

- Place of collection
- The sample designation, which shall be the subsample ID (i.e. BR-I, BR-II, BR-III, and BR-IV)
- o Analysis being requested (i.e. EPA Method 8270 VOC)
- o Presence of any preservative

Place all labelled sample containers in a cooler at 4°C with sufficient chemical ice to retain a cold temperature for 24 hours (see below for procedures on transport of samples to lab).


4.4 NEWAUKUM PRAIRIE SLUDGE SAMPLING PROCEDURES

The Newaukum Prairie lagoon was recently re-constructed and lined. The lagoon does not have a water cap. The current dimensions of the sludge are estimated to be 8 to 9 ft thick measuring roughly 100 ft by 100 ft at the bottom and 170 ft by 170 ft at the surface. The percent solids in the sludge are estimated to be about 7%.

It is recommended that sludge samples from the Newaukum Prairie Lagoon be collected with a 1.5-inch Sludge Judge coring tool. The tool assembly comes in sections that screw together and has a ball valve that allows sludge material into the core when lowered and seals the sample when raised.

4.4.1 Newaukum Prairie Sample Grid

A grid of 9 equal sections (labelled with roman numerals in figure below) will be staked out and coordinates labelled on all four sides of the lagoon to delineate the sludge extents:

Note: 1, 2, and 3 within the above grid refer to Composite Samples 1, 2, and 3 in Table 2.

Nine subsamples for each composite will be collected from a section of the grid by FMF personnel following their own health and safety plan (Table 2). This sampling pattern results in a subsample location spacing of about 30 to 55 feet.

Each subsample will be labeled based on grid location and composite number (i.e. A1-1, A2-1, and A3-1). The depth interval of the sampled core will be noted on sample field sheets (i.e. 0 to 3 feet, 3 to 6 feet, and 6 to 9 feet). The sludge material at the Newaukum Prarie is estimated to be 8 to 9 ft thick and will require vertical characterization.

Since at least 3 ft of material is required for each subsample³, vertical characterization will be based on collecting 3 ft section of subsamples within the core. The sampled 3 ft interval will be chosen randomly. Selection of random depth intervals will be based on a pre-generated table of random numbers in MS Excel. PGG personnel will keep detailed field notes of all sample locations, IDs, and depth intervals.

4.4.2 Newaukum Prairie Subsample Collection Procedure

FMF personnel will use their own health and safety plan to collect subsample cores. It is recommended that a 1.5 inch sludge judge with 1 ft incremental markings be used to collect the samples as follows:

- 1. Wearing clean nitrile sampling gloves, carefully lower clean 1.5 inch sludge judge into the water and through the underlying sludge until refusal. Given the loose nature of the sludge, refusal will likely be the bottom of the plastic lined lagoon.
- 2. Pull up sludge judge tool slowly.
- 3. Slowly empty sludge from core tool by tilting the end of the core slightly horizontal and using index finger to lift the ball valve as the sludge is carefully emptied into a clean 1-liter glass sample jar. Only the material from the target depth interval will be filled into the glass sample jar, the remaining material will be slowly emptied back into the lagoon.
- 4. Collect at least 1 liter of sludge material for each subsample. One 3-ft length core collected in a 1.5 inch core device will yield about 1 liter of material.
- 5. Cap and label sample jar with composite number and grid location.
- 6. Rinse sludge material out of the core using a hose followed by rinse with deionized water.
- 7. Continue with steps #1 through #6 until all subsamples have been collected.

³ About 3 ft of material will be required per subsample in order to collect 5 liters of a composite sample (total estimated volume required by the lab for a sample with 7% total solids)

4.4.3 Newaukum Prairie Transfer of Subsamples to Lab Containers

The follow procedures will be used (in order) by PGG personnel to transfer subsamples collected in the 1 liter jars into laboratory supplied containers:

For volatile organic compounds (VOC) EPA Method 8260:

- Subsamples will be transferred directly from the 1 liter glass jar to lab containers (not mixed in field) and composited by lab to minimize disturbance and volatilization.
- Use a clean stainless steel spoon to carefully transfer each subsample directly into laboratory supplied septa jars (Table 4). Fill material to top of jar.
- Clearly note on the lab chain-of-custody which VOC subsamples will be composited by lab.

For Fecal Coliform Analysis:

- Select 14 subsamples randomly to transfer directly to lab containers⁴
- Use a clean stainless steel spoon to transfer each subsample directly into laboratory supplied jars. Fill material to top of jar.

For all other analytes, composite subsamples (Table 2) as follows:

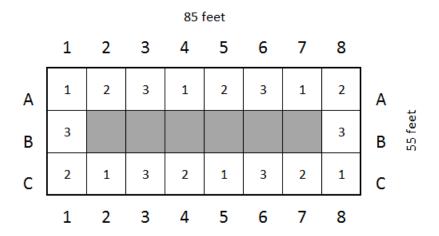
- Use a clean stainless steel measuring cup to transfer 4.5 cups from each subsample into a clean 8 quart stainless steel bowl.
- Use a clean stainless steel sampling spoon to thoroughly mix the material in the stainless steel bowl (mix for at least 30 seconds).
- Use a clean stainless steel spoon to transfer mixed material (small portions at a time) directly into laboratory supplied jars.

All sample jars will be labeled with the following information:

- o Project name and number
- Name of collector
- Date and time of collection
- o Place of collection
- o The sample designation, which shall be the subsample ID
- o Analysis being requested (i.e. EPA Method 8270 VOC)
- Presence of any preservative

⁴ In accordance with WAC 173-308-170(5) and WAC 173-308-150, a minimum of twenty eight samples are required to be collected over a 1 year period for biosolids volume between 320 and 1653 tons dry weight. Approximately 600 tons of dry weight material is stored at Newaukum Prairie. Seven samples were already collected in March 2014 and another 7 samples will be collected 30 days prior to application, therefore 14 samples will be collected with this current investigation.

Place all labelled sample containers in a cooler at 4°C with sufficient chemical ice to retain a cold temperature for 24 hours (see below for procedures on transport of samples to lab).


4.5 BIG HANAFORD BUNKER SLUDGE SAMPLING PROCEDURES

The Hanaford bunker is approximately 100 ft by 60 ft in dimension (outside of concrete wall) and stores sludge and solids estimated to be about 10 ft deep⁵. The Percent solids are estimated to be 14 to 20%.

It is recommended that sludge samples from the Hanaford bunker be collected with a combination of tools: hand augers, post hole digger, and 2-inch AMS sludge/sediment sampler with a 4 ft length core chamber and core catcher. The core chamber comes in 1 ft sections so sample cores can be collected in 1 ft increments up to 4 ft. FMF personnel have field tested the material and are able to dig a 5 ft deep hole without the material caving in. Used with the AMS sludge/sediment sampler, samples up to 9 ft deep can be collected from this site. It is also recommended that additional hand augers with 10 ft extensions and shovels be on site as well to assist with unforeseen conditions.

4.5.1 Big Hanaford Sample Grid

A grid measuring 8 cells by 3 cells will be staked out and coordinates labelled on all four sides of the bunker:

Note: 1, 2, and 3 within the above grid refer to Composite Samples 1, 2, and 3 in Table 3.

⁵ The concrete segments used to construct the bunker are 11.5 feet tall with a 6 inch thick poured concrete slab floor, making an effective depth of 11 feet. The top of the biosolids is 6 to 12 inches from the top of the bunker - for a total biosolids thickness of 10 to 10.5 feet.

Six subsamples cores will be collected for each composite from a prescribed grid cell by FMF personnel following their own health and safety plan (Table 3). This sampling pattern results in a subsample location spacing of about 10 to 20 feet.

Each subsample core will be labeled based on grid location, composite number, and depth interval (i.e. A1-1, A4-1, and A7-1, etc.). The depth interval of the subsample will be noted on sample field sheets. The sludge material in the bunker is estimated to be 10 ft thick and will require vertical characterization.

Less than 1 ft of material is required per subsample in order to collect 1.25 liters of composite sample (total estimated volume required by the lab for a sample with 14 to 20 % total solids).

Since less than 1 ft of material is required for each subsample, vertical characterization will be based on collecting 1 ft sections of material from the cores. The target 1 ft interval will be chosen randomly based on whole numbers ranging from 1 to the total depth of the sludge (i.e. 10 ft) or to the total depth that can be sampled with equipment (i.e. 9 ft). Selection of random depth intervals will be based on a pre-generated table of random numbers in MS Excel. PGG personnel will keep detailed field notes of all sample locations, IDs, and depth intervals.

4.5.2 Big Hanaford Subsample Collection Procedure

FMF personnel will use their own health and safety plan to collect subsample cores from the Bunker sludge. It is recommended that a digging tool, such as a post-hole digger, be used to make a hole and expose a desired sample interval and then a 2-inch AMS sludge/sediment sampler with a 4 ft length core catcher to collect the sample. The core chamber comes in 1 ft sections so sample cores can be collected in 1 ft increments up to 4 ft from the bottom of the dug hole. The AMS extensions should be marked with 1 ft increments to guide collection.

- After digging to desired depth and wearing clean nitrile sampling gloves, carefully lower the clean 2-inch AMS sampler to the target interval. Pull up core tool slowly.
- 2. Slowly empty the core material from the desired 1-ft interval into a clean large stainless steel bowl (8 quart bowl), cover with aluminum foil, and label. Label information will include composite number, grid location, and 1-ft interval (i.e. 8 to 9 ft). PGG will transfer core material from the bowl into lab containers as described below.
- 3. Empty remaining core material into a bucket to later be returned to the bunker (after completion of sampling).
- 4. Rinse core barrel with hose and rinse with de-ionized water
- 5. Continue with steps #1 through #4 until all subsamples have been collected.

4.5.3 Big Hanaford Transfer of Subsamples to Lab Containers

PGG personnel will transfer the subsamples collected by FMF personnel into laboratory supplied containers as follows (in order):

For volatile organic compounds (VOC) EPA Method 8260:

- Subsamples will be transferred directly to lab containers (not mixed in field) and composited by lab to minimize disturbance and volatilization.
- Use a clean EnCore sampler (EPA Method 5035) to transfer each subsample directly into laboratory supplied vials.
- Clearly note on the lab chain-of-custody which VOC subsamples will be composited by lab.

For Fecal Coliform Analysis:

- Select 7 random subsamples and transfer directly to lab containers⁶.
- Use a clean stainless steel spoon to transfer material from the stainless steel bowls directly into laboratory supplied jars. Fill material to top of jar.

For all other analytes, composite subsamples (Table 3) as follows:

- Use a clean stainless steel measuring cup to transfer 2 cups from each subsample into a clean 8 quart stainless steel bowl.
- Use a clean stainless steel sampling spoon to thoroughly mix the material in the stainless steel bowl (mix for at least 30 seconds).
- Use a clean stainless steel spoon to transfer mixed material (small portions at a time) directly into laboratory supplied jars.

All sample jars will be labeled with the following information:

- o Project name and number
- Name of collector
- Date and time of collection
- o Place of collection
- o The sample designation, which shall be the subsample ID
- o Analysis being requested (i.e. EPA Method 8270 VOC)
- o Presence of any preservative

⁶ In accordance with WAC 173-308-170(5) and WAC 173-308-150, a minimum of seven samples are required to be collected over a 1 year period for biosolids volume less than 320 tons dry weight. Less than 320 tons of dry weight material is stored at Big Hanaford, therefore 7 samples will be collected with this current investigation.

Place all labelled sample containers in a cooler at 4°C with sufficient chemical ice to retain a cold temperature for 24 hours (see below for procedures on transport of samples to lab).

4.6 SLUDGE EQUIPMENT DECONTAMINATION PROCEDURES

Sampling equipment (spoons, bowls, jars, and coring equipment) will be decontaminated between sampling the three different sites. The decontamination equipment list is as follows:

- De-ionized (DI) water
- Low phosphate detergent (such a Alconox)
- Paper towels
- Nitrile Gloves
- Heavy duty trash bags
- 5 gallon buckets with lids
- Clean heavy mil plastic sheeting
- Long handled brushes

The decontamination procedure is as follows:

- Lay out heavy mil plastic sheeting roughly 10 x 10 feet in area and conduct decontamination on sheeting.
- Wipe off all loose materials on sampling equipment with paper towels and dispose of towels in heavy duty trash bag.
- Hold sample equipment over 5 gallon bucket and rinse with DI water.
- Mix detergent with DI water in clean 5 gallon bucket.
- Hold equipment over the bucket and use detergent mix and brushes to scrub all equipment parts (including interior of coring devices) to remove residues.
- Hold sample equipment over 5 gallon bucket and rinse with DI water.
- Hold equipment over the bucket and use detergent mix and brushes a second time to scrub all equipment parts (including interior of coring devices) to remove any remaining residues.
- Hold sample equipment over 5 gallon bucket and rinse with DI water thoroughly (at least three times).
- Wrap sampling and coring equipment in clean heavy mil plastic for transport to the next sampling site.
- Dispose of 10 ft by 10 ft heavy mil plastic sheeting in heavy duty trash bag.
- Secure rinsate water collected in 5 gallon buckets with lids. Rinsate water will be stored on site and disposed of with groundwater purge water (see below).

4.7 SLUDGE LABORATORY PARAMETERS AND ANALYTICAL METHODS

In accordance with the AO, samples collected from each of the three storage facilities will be analyzed for the following parameters:

- One composite sample from each site will be analyzed for EPA priority pollutants, molybdenum, cobalt, pH, total kjeldahl nitrogen (TKN), ammonia-nitrogen, nitratenitrogen and percent total solids (results will be reported as mass per dry weight).
- Two composite samples from each site will be analyzed for EPA method 8260 VOCs, EPA method 8270 Semi-VOCs, and metals (results will be reported as mass per dry weight).
- Subsamples from each site will be analyzed for Fecal Coliform as described above (results will be reported as Colony Forming Units per dry weight).

Additionally, the liquid sample collected from the Burnt Ridge Lagoon will be analyzed for EPA priority pollutants, molybdenum, cobalt, pH, TKN, ammonia-nitrogen, and nitrate-nitrogen (results will be reported as mass per liquid volume).

Analysis methods, holding times, and preservations are provided in Table 4 and are in accordance with Section 9.6 of the Biosolids General Permit and the lab's standard operating procedures.

4.8 SLUDGE SAMPLE TRANSPORT TO LAB

All samples will be secured in coolers and chilled with ice packs to 4°C directly after sample is transferred to laboratory bottles.

Fecal coliform samples will be transported to Dragon Analytical by FMF personnel within 24 hours of sample collection to meet the required holding times (Table 4). Dragon Analytical is accredited by Ecology to perform Fecal Coliform count analysis using EPA method 1680 for solid and chemical materials. EPA method 1680 is an approved analysis for Biosolids in the General Permit (Table 3 Section 9.6 General Permit for Biosolids Management).

All other samples will be transported to Analytical Resources, Inc (ARI) by PGG personnel upon completion of sampling all three facilities. ARI is accredited by Ecology to perform the remaining analyses for solid and chemical materials and for water materials.

Laboratory chain-of-custody form(s) must be completed for each set of samples sent to the labs and placed in the shipping cooler for travel with the sample shipment. These forms are provided by the analytical laboratory as a record for tracking samples from the point of collection to the laboratory. Upon transfer of sample possession to subsequent custodians, this form will be signed by the person taking custody of the sample container. As part of the chain-of-custody procedure, each sample container being delivered will be tracked by the Site name, sample number, analytical testing to be performed, and other pertinent information.

5.0 GROUNDWATER SAMPLING PROCEDURES

The following existing downgradient monitoring wells will be sampled at the Burnt Ridge and Newaukum Prairie Lagoons:

- Burnt Ridge: BR-W185, BR-W460, and BR-W461 (Figure 2)
- Newaukum Prairie: NP-MW485, NP-MW024, and NP-MW025 (Figure 3)

Monitoring well information is provided in Table 5. These wells are routinely sampled by PGG biannually for analysis of Fecal Coliform, Nitrate-Nitrite, and Ammonia as part of the General Permit requirements for FMF.

The purpose of sampling downgradient groundwater monitoring wells is to evaluate potential migration (in the past or currently) of contaminants from the nearby lagoons to the underlying aquifer.

Groundwater samples will be collected by PGG personnel with assistance from FMF personnel. The wells will be sampled using a portable Grundfos Redi-Flo 2 Reel E-Z pump system with disposable polyethylene discharge tubing. The REEL E-Z system is a compact convenient way to store, move, clean, and operate the Grundfos ® Rediflo-2® environmental pump. The pump is operated using a generator and a variable frequency drive control box. The entire system can be rented locally for a reasonable cost.

Wells will be purged until select field parameters reach stabilization (see following section). Field meters will be calibrated in accordance with manufacturer guidelines. Purge volumes will be measured with a graduated 5-gallon bucket. All field measurements will be recorded on field sampling forms. All purged groundwater and decontamination water will be contained in a 55 gallon drums and secured with a lid for transport and disposal at Certified Cleaning Services, Inc. in Tacoma (or similar environmental cleaning facility), unless the analytical results from the wells are approved for disposal at the lagoon by Ecology after reporting.

The following sections describe all necessary field equipment and sampling procedures in more detail.

5.1 GROUNDWATER SAMPLING EQUIPMENT LIST

- Grundfos Redi-Flo 2 Reel E-Z pump
- Variable frequency drive control box
- Generator
- 200 feet of 3/8-inch polyethylene tubing and extra clamps
- Sample bottles, cooler, labels, COC forms, and ice
- 100 ft electronic well sounder
- Packing Tape

- 3 boxes of Zip-Lock bags
- 6 black sharpie pens and 4 regular pens
- Camera
- Alconox detergent
- Long handled scrub brushes
- Two 55 gallon drums with lids
- One box of disposable Nitrile sampling gloves
- Oakton Field meter or similar (ph/EC/Temp)
- Calibration solutions for field meter
- 15 gallons of De-ionized water
- Three 5-gallon plastic buckets with lids
- Three 5-gallon buckets with 1 gallon increments marked on sides
- Two large clips (to hold discharge tubing in bucket)
- Field Maps and field notebook
- Sampling forms
- Duct Tape
- Calculator, watch, and ruler

5.2 GROUNDWATER SAMPLING COLLECTION PROCEDURE

The following steps will be followed for collection of groundwater samples:

- 1. Collect static water level prior to installing portable pump. Static water levels will be measured using a decontaminated electronic well sounder (see decontamination procedures below). The measuring point will be the top of the well casing. Depth to water will be recorded on sampling field form to the nearest 0.01 foot.
- 2. Lower clean pump and connected discharge tubing (see decontamination procedures below) slowly to the bottom of the well and tag well bottom. Once pump is at the bottom of the well, lift up the pump approximately 6 inches and lock off the reel.
- 3. Calculate and record casing storage volume as reference on sampling field form.
- 4. Begin pumping well and quickly adjust the flow rate to about 0.5 to 1 gallon per minute (gpm).
- 5. Collect and monitor purge water volume in 5-gallon buckets with 1-ft increments marked on side.

- 6. During purging, measure, and record the following field parameters every few minutes:
 - Depth to Water
 - o pH
 - o Electrical Conductivity
 - o Temperature
 - o Cumulative purge water volume
- 7. Sampling may begin when the field parameters are reasonably stable between two consecutive measurements as indicated below:
 - o pH measurements that do not vary by more than 0.1 pH units between readings
 - Electrical conductivity and temperature do no indicate a trend (continuous increase or decrease between readings) and to not vary by more than 10 percent between readings.
 - o If the field water quality parameters listed above continually change in an upward or downward trend, purge until reasonable stability is achieved (but at least three casing volumes), then sample.
- 8. Collect samples of water for analysis parameters listed in Table 6. Collect samples in a manner that minimizes contact of the samples with air. Collect samples in the following order: volatile organic compounds, other organics, and then inorganic constituents. Hands and clothing shall be clean when sampling. Clean, disposable, latex gloves shall be worn when filling bottles. Follow individual sample container requirements for sample collection, handling, preservation, and shipment. Sample containers for volatile organic analyses should contain no bubbles (head space) after filling.
- 9. Record sample identification data on container, on the sampling field data sheet, and on the sample chain of custody record. The sample label shall include at least the following information:
 - Project name and number
 - o Name of collector
 - o Date and time of collection
 - o Place of collection
 - o The sample designation which shall be the well number
 - Presence of any preservative
- 10. Place samples in a cooler at 4°C with sufficient chemical ice to retain a cold temperature for 24 hours.

5.3 GROUNDWATER EQUIPMENT DECONTAMINATION PROCEDURES

After sampling each well, all field equipment will be decontaminated with a low phosphate detergent (such as Alconox) diluted in de-ionized water as follows:

- Electric wells sounders will be scrubbed the length of the sounder that was submerged in the well and then thoroughly rinsed three times with de-ionized water.
- The pump will be placed into a clean 5 gallon bucket filled with the detergent and de-ionized water. The outside of the pump and connecting power cables that were submerged in the well will be scrubbed with detergent water. The pump will be turned on to circulate the detergent water through the interior of the pump. The pump and cable will then be thoroughly rinsed three times with de-ionized water. The pump will be placed into a 5 gallon bucket filled with at least 2 gallons of de-ionized water and then turned on to circulate the rinse water through the interior of the pump.

5.4 GROUNDWATER LABORATORY PARAMETERS AND ANALYTICAL METHODS

Groundwater samples will be analyzed for VOC EPA method 8260, Semi-VOC method 8270, total metals (priority pollutants, molybdenum, and cobalt), and nitrate as nitrogen (Table 6).

5.5 GROUNDWATER SAMPLE TRANSPORT TO LAB

All samples will be secured in coolers and chilled with ice packs to 4°C directly after sample is collected in laboratory bottles.

All samples will be transported to Analytical Resources, Inc. by PGG personnel upon completion of sampling all wells.

Laboratory chain-of-custody form(s) must be completed for each set of samples sent to the labs and placed in the shipping cooler for travel with the sample shipment. These forms are provided by the analytical laboratory as a record for tracking samples from the point of collection to the laboratory. Upon transfer of sample possession to subsequent custodians, this form will be signed by the person taking custody of the sample container. As part of the chain-of-custody procedure, each sample container being delivered will be tracked by the Site name, sample number, analytical testing to be performed, and other pertinent information.

6.0 QUALITY ASSURANCE AND QUALITY CONTROL

The following sections describe the quality assurance/quality control (QA/QC) measures to be performed during the investigative work.

6.1 FIELD QUALITY CONTROL

In addition to field measures described above to assure clean and representative samples are collected, the following additional field quality control measures will be taken:

- For sludge samples, field duplicate composite samples are not recommended as field composite variability can be assessed from the analysis of two other composites.
- For sludge and groundwater sampling, a laboratory trip blank for EPA Method 8260 VOCs will be provided by the laboratory in order to assess cross contamination during sample transport of samples. The laboratory will prepare 40-ml VOC containers with laboratory supplied water for transport with the clean bottles from the lab to the field and back to the lab. The analytical laboratory will analyze the trip blank for the presence of volatile organic compounds.

6.2 LABORATORY QUALITY CONTROL

Analytical Resources, Inc. (ARI) will perform all analyses except for Fecal Coliform which will be performed by Dragon Analytical. Both ARI and Dragon Analytical are accredited in accordance with WAC 173-50 for the analyses being performed.

ARI will follow their standard QA protocol during analysis of samples:

6.2.1 Quality Assurance Objectives

Quality assurance objectives for analytical data are usually expressed in terms of bias and precision. The investigation data will be evaluated using the parameters discussed below.

Bias. A matrix spike is prepared by adding a known amount of a pure compound to the environmental sample. A blank spike is prepared by adding a known amount of a pure compound to a laboratory-prepared blank sample. The spikes check for analytical interferences. The calculated percent recovery of the spike is taken as a measure of the bias of the total analytical method. When there is no change in volume due to the spike, percent recovery is calculated as follows:

Where:

PR = percent recovery

O = measured value of analyte concentration after addition of spike

X = measured value of analyte concentration in the sample before the spike is added

T = value of the spike

Tolerance limits for the acceptable percent re-covery of matrix spikes and blank spikes are established by the lab in accordance with CLP Guidelines.

Precision. Laboratory replicates are used to indicate precision. Laboratory replicates are aliquots made in the laboratory of the same sample and each aliquot is treated the same

throughout the analytical method. The percent difference between the values of the replicates, as calculated below, is taken as a measure of the precision of the analytical method.

Where:

RPD = relative percent difference

D1 = first aliquot value

D2 = second aliquot (replicate) value

If the precision values for the laboratory replicate are outside the laboratory tolerance limit, the laboratory should recheck the calculations and/or identify the problem. Reanalysis may be required. If the precision values for either the laboratory replicate or field duplicate are outside the tolerance limit, sample results associated with the out-of-control precision results may be qualified at the time of validation.

6.2.2 Laboratory Data Review

Analytical data will be evaluated by PGG with respect to the requirements and objectives of the project. PGG will evaluate the data following Level III data validation guidelines. These guidelines require the lab to report method blank, matrix spike and lab replicate results, but not raw data or instrument calibration information. These guidelines are found in the CLP Guidelines (USEPA 2008 and 2010).

7.0 DATA EVALUATION AND REPORTING

Sludge analytical results will be evaluated under the Land Disposal Restriction Code (Chapter 173-303-140 WAC) and the Biosolids Management code (Chapter 173-308 WAC).

Groundwater results will be evaluated under the groundwater quality standards for the State of Washington (Chapter 173-200 WAC).

Results will be summarized in a technical report with comparison to project objectives and quality control.

8.0 REFERENCES

USEPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review

USEPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Table 1. Burnt Ridge Lagoon Sludge and Water Sample Scheme

Sludge Composite	Sludge Composite	Sludge Composite	Water Composite
Sample 1	Sample 2	Sample 3	Sample 1
Composite of 9 separate	Composite of 9 separate	Composite of 9 separate	
"subsamples" collected	"subsamples" collected	"subsamples" collected	
from grid sections A1, A2,	from grid sections A1, A2,	from grid sections A1, A2,	Composite of 4 separate
A3, B1, B2, B3, C1, C2,	A3, B1, B2, B3, C1, C2,	A3, B1, B2, B3, C1, C2,	"subsamples" collected
and C3 (within those	and C3 (within those	and C3 (within those	from each quadrant I, II,
sections as shown in	sections as shown in	sections as shown in	III, IV (as shown in
Section 5.2.1 of main	Section 5.2.1 of main	Section 5.2.1 of main	Section 5.3.1 of main
text)	text)	text)	text)
			VOCs (EPA Method
EPA Priority Pollutants,	VOCs (EPA Method	VOCs (EPA Method	8260), SVOCs (EPA
molybdenum, cobalt, pH,	8260), SVOCs (EPA	8260), SVOCs (EPA	Method 8270), EPA
TKN, ammonia-nitrogen,	Method 8270), EPA	Method 8270), EPA	Priority Pollutant Metals,
nitrate-nitrogen, and	Priority Pollutant Metals,	Priority Pollutant Metals,	Molybdenum and Cobalt,
percent total solids	Molybdenum and Cobalt	Molybdenum and Cobalt	and nitrate-nitrogen

Notes:

For the sludge, 7 randomly selected subsamples will also be analyzed for Total Fecal Coliform in accordace with WAC 173-308-170(5) and WAC 173-308-150.

For VOC Method 8260 Anlaysis, subsamples will be transferred directly into lab containers (not mixed in field) and composited by the lab to minimize distrubance and volatilization.

Table 2. Newaukum Prairie Impoundment (Lagoon) Sludge Sample Scheme

Composite Sample 1	Composite Sample 2	Composite Sample 3
Composite of 9 separate	Composite of 9 separate	
"subsamples" collected	"subsamples" collected	Composite of 9 separate
from grid sections A1,	from grid sections A1,	"subsamples" collected
A2, A3, B1, B2, B3, C1,	A2, A3, B1, B2, B3, C1,	from grid sections A1, A2,
C2, and C3 (within those	C2, and C3 (within those	A3, B1, B2, B3, C1, C2, and
sections as shown in	sections as shown in	C3 (within those sections
Section 5.3.1 of main	Section 5.3.1 of main	as shown in Section 5.3.1
text)	text)	of main text)
EPA Priority Pollutants,	VOCs (EPA Method	VOCs (EPA Method 8260),
molybdenum, cobalt, pH,	8260), SVOCs (EPA	SVOCs (EPA Method
TKN, ammonia-nitrogen,	Method 8270), EPA	8270), EPA Priority
nitrate-nitrogen, and	Priority Pollutant Metals,	Pollutant Metals,
percent total solids	Molybdenum and Cobalt	Molybdenum and Cobalt

Notes:

For the sludge, 14 randomly selected subsamples will also be analyzed for Total Fecal Coliform in accordace with WAC 173-308-170(5) and WAC 173-308-150.

For VOC Method 8260 Anlaysis, subsamples will be transferred directly into lab containers (not mixed in field) and composited by the lab to minimize distrubance and volatilization.

Table 3. Big Hanaford Bunker Sludge Sample Scheme

Composite Sample 1	Composite Sample 2	Composite Sample 3
Composite of 6 separate	Composite of 6 separate	Composite of 6 separate
"subsamples" collected	"subsamples" collected	"subsamples" collected
from grid sections A1,	from grid sections A2,	from grid sections A3,
A4, A7, C8, C5, C2 (as	A5, A8, C7, C4, C1 (as	A6, B8, C6, C3, B1 (as
shown in Section 5.4.1 of	shown in Section 5.4.1 of	shown in Section 5.4.1 of
main text)	main text)	main text)
EPA Priority Pollutants,	VOCs (EPA Method	VOCs (EPA Method
molybdenum, cobalt, pH,	8260), SVOCs (EPA	8260), SVOCs (EPA
TKN, ammonia-nitrogen,	Method 8270), EPA	Method 8270), EPA
nitrate-nitrogen, and	Priority Pollutant Metals,	Priority Pollutant Metals,
percent total solids	Molybdenum and Cobalt	Molybdenum and Cobalt

Notes:

For the sludge, 7 randomly selected subsamples will also be analyzed for Total Fecal Coliform in accordace with WAC 173-308-170(5) and WAC 173-308-150.

For VOC Method 8260 Anlaysis, subsamples will be transferred directly into lab containers (not mixed in field) and composited by the lab to minimize distrubance and volatilization.

	Priorotiy Pollutant				Standard No of		
Analytical Parameters	(Yes/No)	Units	Method	Hold Time	Bottles (see note)	Bottles	Preservative
Volatile Organic Compounds							
1,1,1-trichloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,1,2,2-tetrachloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,1,2-trichloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,1-dichloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,1-dichloroethylene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,2,4-trichlorobenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,2-dichlorobenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,2-dichloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,2-dichloropropane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,2-trans-dichloroethylene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,3-dichlorobenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,3-dichloropropylene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
1,4-dichlorobenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
2-chloroethyl vinyl ethers	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Acrolein	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Acrylonitrile	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Benzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Bromoform	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Bromomethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Carbon tetrachloride	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Chlorobenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Chloroethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Chloroform	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Chloromethane	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Ethylbenzene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Methylene chloride	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Naphthalene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Tetrachloroethylene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Toluene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Trichloroethylene	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Vinyl chloride	YES	ug/kg	EPA 8260	14 days OR 2 days (unpreserved)	3 OR 2	40 mL GV OR 2 oz septa jar	NaHSO4 (2), Methanol (2) OR None
Semi-Volatile Organic Compounds							
2,2-Oxybis(1-Chloropropane)	YES	ug/kg	EPA 8270	14 Days	1-Jan	8 oz WMG	4°C
2,4,6-trichlorophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2,4-dichlorophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2,4-dimethylphenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2,4-dinitrophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2,4-dinitrotoluene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2,6-dinitrotoluene	YES		EPA 8270	•	1	8 oz WMG	4°C
•		ug/kg		14 Days	1		
2-chloronaphthalene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2-chlorophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
2-nitrophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
3,3-dichlorobenzidine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C

of 4 Fire Mountain Farms, Inc. QAPP

	Priorotiy Pollutant				Standard No of		
Analytical Parameters	(Yes/No)	Units	Method	Hold Time	Bottles (see note)	Bottles	Preservative
Semi-Volatile Organic Compounds (cont.)	, , ,						
4-bromophenyl phenyl ether	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
4-chlorophenyl phenyl ether	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
4-nitrophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Acenaphthene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Acenaphthylene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Anthracene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Azobenzene/1,2-diphenyl hydrazine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Benzidine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
benzo(a) anthracene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Benzo(a)pyrene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Benzo(b) fluoranthene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Benzo(ghi) perylene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Benzo(k) fluoranthene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Bis(2-chloroethoxy) methane	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Bis(2-chloroethyl) ether	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Bis(2-ethylhexyl) phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Butyl benzyl phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Chrysene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Dibenzo(,h) anthracene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Diethyl Phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Dimethyl phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Di-N-Butyl Phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Di-n-octyl phthalate	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Fluoranthene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Fluorene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Hexachlorobenzene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Hexachlorobutadiene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Hexachlorocyclopentadiene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Hexachloroethane	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Indeno (1,2,3-cd) pyrene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Isophorone	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Nitrobenzene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
N-nitrosodimethylamine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
N-nitrosodi-n-propylamine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
N-nitrosodiphenylamine	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Pentachlorophenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Phenanthrene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Phenol	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C
Pyrene	YES	ug/kg	EPA 8270	14 Days	1	8 oz WMG	4°C

2 of 4 Fire Mountain Farms, Inc. QAPP

Table 4. Sludge/Biosolids Analytical Parameters List

	Priorotiy Pollutant				Standard No of		
Analytical Parameters	(Yes/No)	Units	Method	Hold Time	Bottles (see note)	Bottles	Preservative
Pesticides							
4,4-DDD	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
4,4-DDE	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
4,4-DDT	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Aldrin	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Alpha-BHC	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Alpha-endosulfan	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Beta-BHC	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Beta-endosulfan	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Chlordane	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Delta-BHC	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Dieldrin	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Endosulfan sulfate	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Endrin	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Endrin aldehyde	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Gamma-BHC	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Heptachlor	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Heptachlor epoxide	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
Toxaphene	YES	ug/kg	EPA 8081B	14 Days	1	8 oz WMG	4°C
PCBs							
PCB-1016 (Arochlor 1016)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1221 (Arochlor 1221)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1232 (Arochlor 1232)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1242 (Arochlor 1242)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1248 (Arochlor 1248)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1254 (Arochlor 1254)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
PCB-1260 (Arochlor 1260)	YES	ug/kg	EPA 8082A	14 Days	1	8 oz WMG	4°C
Dioxin							
2,3,7,8-TCDD	YES	ug/kg	EPA 1613B	1 year	2	8 oz WMG (amber)	4°C

Page 3 of 4 Fire Mountain Farms, Inc. QAPP

Table 4. Sludge/Biosolids Analytical Parameters List

	Priorotiy Pollutant				Standard No of		
Analytical Parameters	(Yes/No)	Units	Method	Hold Time	Bottles (see note)	Bottles	Preservative
Metals							
Antimony	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Arsenic	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Beryllium	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Cadmium	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Chromium	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Copper	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Cyanide, Total	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Lead	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Mercury	YES	mg/kg	EPA Method 7470 or 7471	6 months	1	4 oz. WMG	4°C
Nickel	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Selenium	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Silver	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Thallium	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Zinc	YES	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Molybdenum	NO	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Cobalt	NO	mg/kg	EPA 6010	6 months	1	4 oz. WMG	4°C
Conventionals							
рН	NO	Standard	EPA Method 9045D	NA	1	4 oz. WMG	4°C
TKN	NO	mg/kg	EPA Method 4500	28 days	1	4 oz. WMG	4°C
Ammonia-Nitrogen	NO	mg/kg	EPA Method 4500	28 days	1	4 oz. WMG	4°C
Nitrate Nitrogen	NO	mg/kg	EPA Method 4500	7 Days	1	4 oz. WMG	4°C
Total Solids	NO	Percent	EPA Method 2540	7 Days	1	4 oz. WMG	4°C
Coliform							
Total Fecal Coliform	NO	CFU per dry weight	EPA Method 1680	24 hours	1	100 mL Glass	4°C

Note: Unpreserved septa jars (2 oz each) will be used for samples collected from Newaukum Prairie Impoundment and Burnt Ridge Lagoon (percent solids < 10%)

Preserved vials (40 mL each) will be used for samples collected from Big Hanaford Bunker (percent solids > 10%)

For all samples collected at the Newaukum Prairie Impoundment and Burnt Ridge Lagoon collect 4 times the standard number of bottles (due to lower total percent solids) The standard number of bottles may be used for samples collected at the Big Hanaford Bunker site.

Table 5. Monitoring Well Information for Fire Mountain Farms Impoundments

Monitoring Well Name	•		Measuring Point (feet, arbitrary datum)	Measuring Point Description
BR-MW184	AHM 184	46.5		Top of 2-inch PVC casing, north side
BR-MW185	AHM 185	24		Top of 2-inch PVC casing, north side
BR-MW460	ACF 460	18.8	97.56	Top of 2-inch PVC casing, north side
BR-MW461	ACF 461	15.5	99.88	Top of 2-inch PVC casing, north side
BR-MW038	AKL 038	67		Top of 2-inch PVC casing, north side
NP-MW024	AHL 024	24	99.39	Top of 2-inch PVC casing, north side
NP-MW025	AHL 025	24		Top of 2-inch PVC casing, north side
NP-MW485	AEK 485	31	100.25	Top of 6-inch steel casing, north side
NP-MW487	AEK 487	37	101.03	Top of 6-inch steel casing, north side
NP-PW620	AEF 620	43	104.67	Top of 6-inch steel casing, north side
W1-MW186	AHM 186	16.5		Top of 2-inch PVC casing, north side
W1-MW187	AHM 187	16.5		Top of 2-inch PVC casing, north side

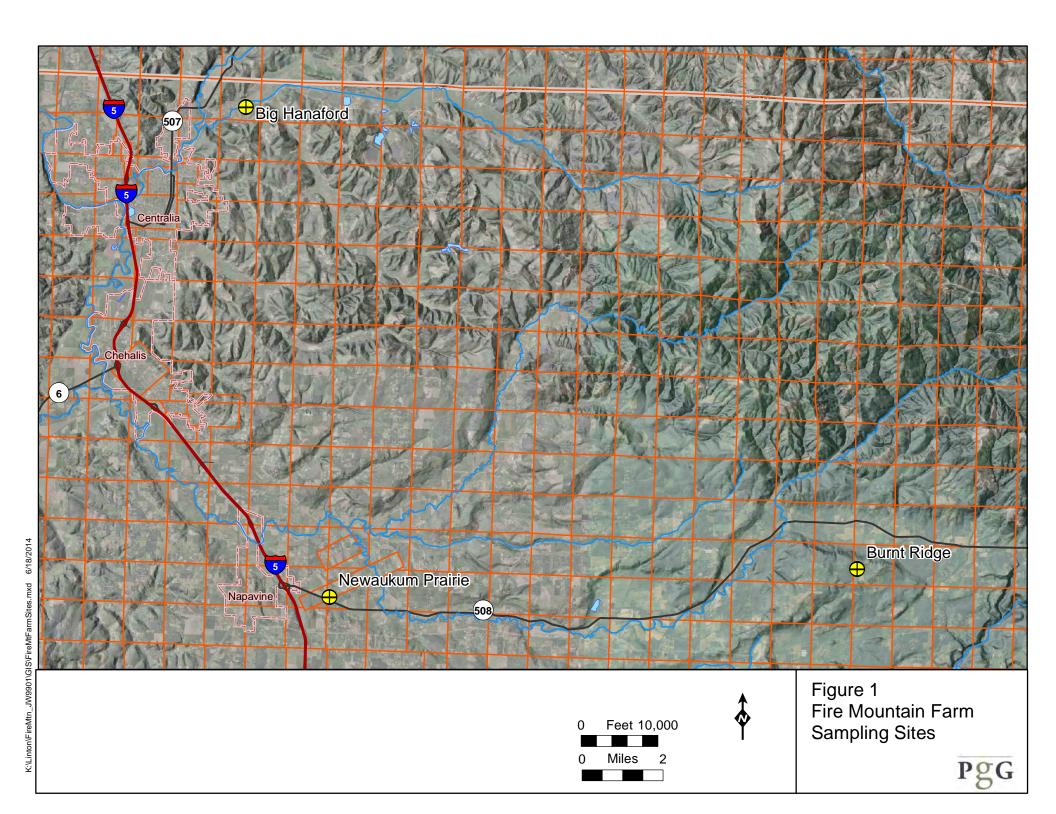
Wells to be sampled are highlighted Depth in feet below ground surface

Table 6. Groundwater and Burnt Ridge Water Analytical Parameters List

	Priorotiy Pollutant					
Analytical Parameters	(Yes/No)	Method	Hold Time	No of Bottles	Bottles	Preservative
Volatile Organic Compounds						
1,1,1-trichloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,1,2,2-tetrachloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,1,2-trichloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,1-dichloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,1-dichloroethylene	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,2,4-trichlorobenzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,2-dichlorobenzene	YES	EPA 8260	7 Days	3	40 mL GV	НС
1,2-dichloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,2-dichloropropane	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,2-trans-dichloroethylene	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,3-dichlorobenzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,3-dichloropropylene	YES	EPA 8260	7 Days	3	40 mL GV	HC
1,4-dichlorobenzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
2-chloroethyl vinyl ethers	YES	EPA 8260	7 Days	3	40 mL GV	HC
Acrolein	YES	EPA 8260	7 Days	3	40 mL GV	HC
Acrylonitrile	YES	EPA 8260	7 Days	3	40 mL GV	HC
Benzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Bromoform	YES	EPA 8260	7 Days	3	40 mL GV	HC
Bromomethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
Carbon tetrachloride	YES	EPA 8260	7 Days	3	40 mL GV	HC
Chlorobenzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Chloroethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
Chloroform	YES	EPA 8260	7 Days	3	40 mL GV	HC
Chloromethane	YES	EPA 8260	7 Days	3	40 mL GV	HC
Ethylbenzene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Methylene chloride	YES	EPA 8260	7 Days	3	40 mL GV	HC
Naphthalene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Tetrachloroethylene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Toluene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Trichloroethylene	YES	EPA 8260	7 Days	3	40 mL GV	HC
Vinyl chloride	YES	EPA 8260	7 Days	3	40 mL GV	НС
Semi-Volatile Organic Compounds						
2,2-Oxybis(1-Chloropropane)	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°0
2,4,6-trichlorophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
2,4-dichlorophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°0
2,4-dimethylphenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°(
2,4-dinitrophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°(
2,4-dinitrophenoi	YES	EPA 8270		2	500 mL (Amber)	4°(
•			7 Days		· · ·	4°(
2,6-dinitrotoluene	YES	EPA 8270	7 Days	2	500 mL (Amber)	
2-chloronaphthalene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°(
2-chlorophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
2-nitrophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°0
3,3-dichlorobenzidine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°0

e1of3 Fire Mountain Farms, Inc. QAPP

Table 6. Groundwater and Burnt Ridge Water Analytical Parameters List


	Priorotiy Pollutant					
Analytical Parameters	(Yes/No)	Method	Hold Time	No of Bottles	Bottles	Preservative
Semi-Volatile Organic Compounds (cont.)						
4-bromophenyl phenyl ether	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
4-chlorophenyl phenyl ether	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
4-nitrophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Acenaphthene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Acenaphthylene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Anthracene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Azobenzene/1,2-diphenyl hydrazine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Benzidine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
benzo(a) anthracene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Benzo(a)pyrene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Benzo(b) fluoranthene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Benzo(ghi) perylene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Benzo(k) fluoranthene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Bis(2-chloroethoxy) methane	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Bis(2-chloroethyl) ether	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Bis(2-ethylhexyl) phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Butyl benzyl phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Chrysene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Dibenzo(,h) anthracene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Diethyl Phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Dimethyl phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Di-N-Butyl Phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Di-n-octyl phthalate	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Fluoranthene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Fluorene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Hexachlorobenzene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Hexachlorobutadiene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Hexachlorocyclopentadiene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Hexachloroethane	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Indeno (1,2,3-cd) pyrene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Isophorone	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Nitrobenzene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
N-nitrosodimethylamine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
N-nitrosodi-n-propylamine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
N-nitrosodiphenylamine	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Pentachlorophenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Phenanthrene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Phenol	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C
Pyrene	YES	EPA 8270	7 Days	2	500 mL (Amber)	4°C

2of3 Fire Mountain Farms, Inc. QAPP

Table 6. Groundwater and Burnt Ridge Water Analytical Parameters List

	Priorotiy Pollutant					
nalytical Parameters	(Yes/No)	Method	Hold Time	No of Bottles	Bottles	Preservative
letals						
Antimony	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Arsenic	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Beryllium	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Cadmium	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Chromium	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Copper	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Cyanide, Total	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Lead	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Mercury	YES	EPA Method 7470 or 7471	6 months	1	500 mL HDPE	HNO
Nickel	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Selenium	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Silver	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Thallium	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Zinc	YES	EPA 6010	6 months	1	500 mL HDPE	HNO
Molybdenum	NO	EPA 6010	6 months	1	500 mL HDPE	HNO
Cobalt	NO	EPA 6010	6 months	1	500 mL HDPE	HNO
onventionals						
Nitrate Nitrogen	NO	EPA Method 4500	48 hours	1	500 mL HDPE	4°C

Page3of3 Fire Mountain Farms, Inc. QAPP

Monitoring Wells

Downgradient Wells to Sample

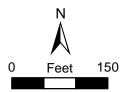


Figure 2 Burnt Ridge Lagoon Site

Monitoring Wells

Downgradient Wells to Sample

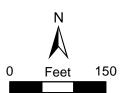


Figure 3 Newaukum Prairie Lagoon Site

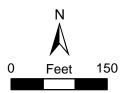


Figure 4 Big Hanaford Bunker Site

Cobalt Characterization Report, Fire Mountain Farms Newaukum Prairie & Burnt Ridge Impoundments, Lewis County, Washington

Cobalt Characterization Report Fire Mountain Farms Newaukum Prairie & Burnt Ridge Impoundments Lewis County, Washington

June 2, 2017

Prepared for

Emerald Kalama Chemical, LLC Perkins Coie, LLP

Cobalt Characterization Report Fire Mountain Farms Newaukum Prairie & Burnt Ridge Impoundments Lewis County, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by: Kenneth L. Keic Ken Reid, LEG

Date: June 2, 2017 Project No.: 0066045.060

File path: \\edmdata01\projects\066\045\R\Cobalt Characterization\FMF_Newaukum & Burnt Ridge Cobalt Data

Rpt_052617.docx
Project Coordinator: kes

TABLE OF CONTENTS

	<u>PA</u>	GE
INTRODUCTIO	NN	1
Backgroun	nd	1
Cobalt Cha	aracterization Sampling	1
Cobalt Cha	aracterization Analytical Results	2
Waste Ma	anagement	2
Use of this	s Report	2
REFERENCES		4
	FIGURES	
<u>Figure</u>	<u>Title</u>	
1	Vicinity Map	
2	Newaukum Prairie Cobalt Characterization Sampling Locations	
3	Burnt Ridge Cobalt Characterization Sampling Locations	
	TABLES	
<u>Table</u>	<u>Title</u>	
1	Cobalt Analytical Results	
	APPENDICES	
<u>Appendix</u>	<u>Title</u>	
Α	Laboratory Reports	

LIST OF ABBREVIATIONS AND ACRONYMS

Administrative Order	Administrative Order No. 10938
Ecology	Washington State Department of Ecology
Emerald	Emerald Kalama Chemical, LLC
EPA	US Environmental Protection Agency
FMF	Fire Mountain Farms, Inc.
ft	feet/foot
IWBS	industrial wastewater treatment biological solids
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
TCLP	toxicity characteristic leaching procedure

INTRODUCTION

This document describes the investigation activities performed to evaluate the cobalt concentration in Fire Mountain Farms, Inc. (FMF) Newaukum Prairie and Burnt Ridge surface impoundments located in Lewis County, Washington (Figure 1) in support of the plan to manage mixed biosolids/industrial wastewater treatment biological solids (known as "mixed material") per Administrative Order No. 10938 (Administrative Order) issued by the Washington State Department of Ecology (Ecology) to Emerald Kalama Chemical, LLC (Emerald) and FMF on September 11, 2014.

Background

The Newaukum Prairie and Burnt Ridge impoundments are each approximately 48,400 square feet (220 feet [ft] by 220 ft) with constructed berms on each side. The Newaukum Prairie impoundment's berm is elevated above the surrounding topography on all sides and was constructed with a synthetic liner. The Burnt Ridge impoundment's berm is elevated above the surrounding topography on the east, west, and southern sides and has a clay liner and soil cap. Both impoundments contain a mixture of Emerald industrial wastewater treatment biological solids (IWBS) and biosolids from other sources (jointly referred to as mixed material) and overlying accumulated precipitation.

Landau Associates was contracted to sample the mixed material and help Emerald determine the cobalt concentration in each impoundment prior to conducting a more thorough mixed material characterization currently planned to occur later in 2017.

Cobalt Characterization Sampling

Landau Associates staff arrived at the impoundment in the early morning on May 1, 2017 and met with FMF employees. Three cores of mixed material, which ranged from 3 to 5 ft in length, were collected from each of the two impoundments (for a total of six cores) using FMF's biosolids sampling equipment. The approximate location of each core is shown on Figures 2 and 3. Each set of three cores was composited to make two analytical samples that represent the mixed material in each impoundment. Composite samples were created by homogenizing equivalent volumes from each set of three cores with stainless steel bowls and spoons. The homogenized composite samples were placed into laboratory supplied jars and labeled with appropriate site and sampling location information. The sample identification nomenclature was as follows:

 \underline{F} ire \underline{M} ountain \underline{F} arms_ \underline{N} ewaukum Prairie \underline{S} ediment_ \underline{M} onth Day Year

FMF_Newsed_050117

and

<u>Fire Mountain Farms_Burnt</u> Ridge <u>Sediment_Month Day Year</u>

FMF_Burntsed_050117

Cobalt Characterization Report

The sample jars were placed on ice immediately after being filled and delivered to the analytical laboratory (Analytical Resources, Inc. of Tukwila, Washington) by Landau Associates under standard chain-of-custody procedures. The samples were analyzed on a standard turnaround time. Both composite samples were analyzed for the following chemical constituents:

- Cobalt by US Environmental Protection Agency (EPA) Method 6010C
- Toxicity Characteristic Leaching Procedure (TCLP) Cobalt by EPA Method 6010C on TCLP extracts.

The analytical results underwent standard data validation and quality assurance checks by Landau Associates and are provided in Table 1. The laboratory report is provided as Appendix A.

Cobalt Characterization Analytical Results

Preliminary Delisting Levels were calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology in a September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology comments to Waste Characterization Plan.

The analytical results for the composite samples presented in Table 1 are briefly summarized below:

• Newaukum Prairie Impoundment:

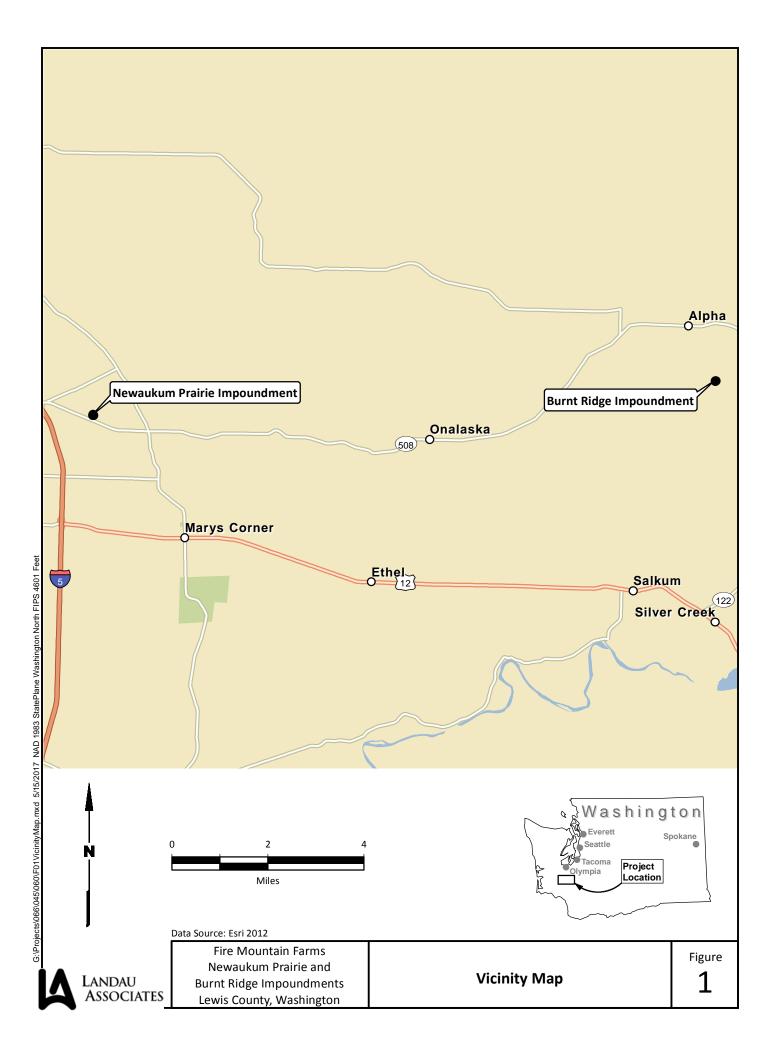
- Cobalt was detected at 78.1 milligrams per kilogram (mg/kg), which is less than the calculated Preliminary Delisting Level of 8,710 mg/kg.
- TCLP Cobalt was detected at 0.184 milligrams per liter (mg/L), which is less than the calculated TCLP Preliminary Delisting Level of 0.59 mg/L.

• Burnt Ridge Impoundment:

- Cobalt was detected at 28.3 mg/kg, which is less than the calculated Preliminary Delisting Level of 15,900 mg/kg.
- TCLP Cobalt was detected at 0.108 mg/L, which is less than the calculated TCLP Preliminary Delisting Level of 1.27 mg/L.

Waste Management

The stainless steel bowls and spoons and Fire Mountain Farms' biosolids sampling device were decontaminated with Alconox and double-rinsed using deionized water and tap water prior to sampling each impoundment. The accumulated decontamination water along with the unused mixed material sample were discharged back to each impoundment after sampling activities were complete.


Use of this Report

This cobalt characterization report has been prepared for the exclusive use of Perkins Coie LLP and their client, Emerald Kalama Chemical, LLC, and applicable regulatory agencies for specific application to the Fire Mountain Farms Newaukum Prairie and Burnt Ridge Impoundments. No other party is

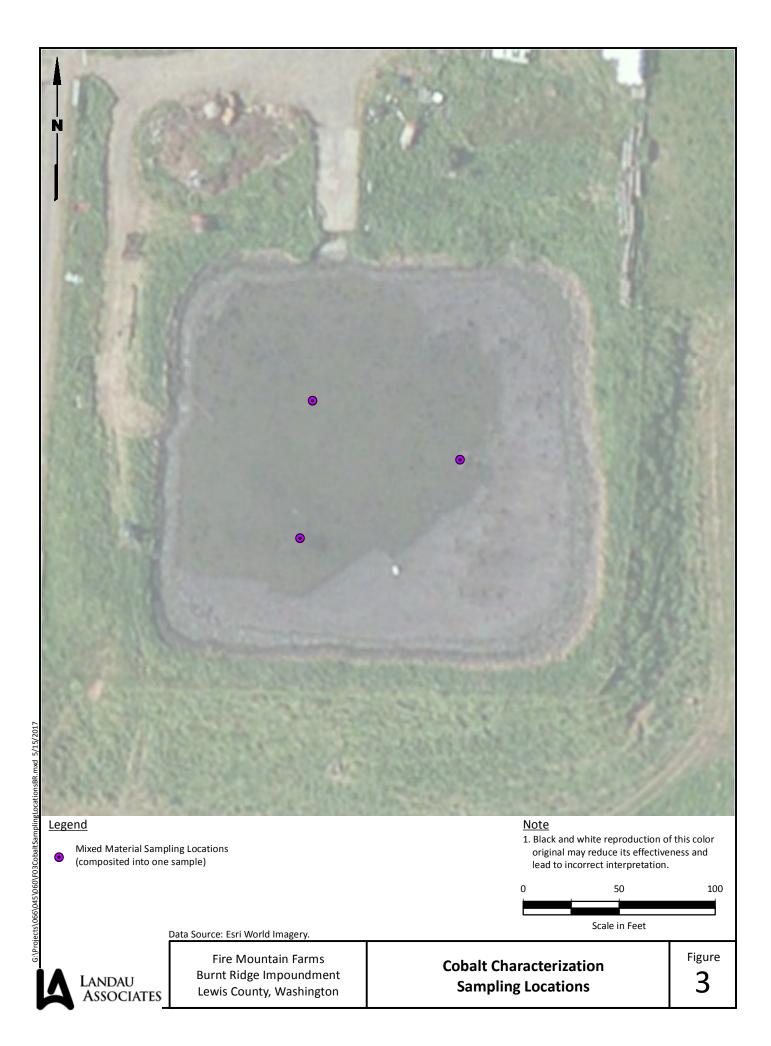
entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

REFERENCES


Ecology. 2016. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

(composited into one sample)

original may reduce its effectiveness and lead to incorrect interpretation.


Data Source: Google Earth Pro.

Landau Associates

Fire Mountain Farms Newaukum Prairie Impoundment Lewis County, Washington

Cobalt Characterization Sampling Locations

Figure 2

Table 1

Cobalt Characterization Results Fire Mountain Farms Newaukum Prairie and Burnt Impoundments Lewis County, Washington

Newaukum Prairie Storage Unit

				Newaukum Prairie Sample ID and Sample Date			Sample Date
		Preliminary Delisting	TCLP-Preliminary	NP-Comp-1	NP-Comp-2	NP-Comp-3	FMF_Newsed
Analyte	CAS No.	Level (a)	Delisting Level (a)	7/7/2014	7/7/2014	7/7/2014	5/1/2017
Metals (mg/kg; EPA Method 6010C)							
Cobalt	7440-48-4	8710		76	87	89	78.1
TCLP Metals (mg/L; EPA Method 6010C)							
Cobalt	7440-48-4		0.59	NA	NA	NA	0.184

Burnt Ridge Storage Unit

				Burnt Ridge Sample ID and Sample Date			
		Preliminary Delisting	TCLP-Preliminary	BR-Comp-1	BR-Comp-2	BR-Comp-3	FMF_Burntsed
Analyte	CAS No.	Level (a)	Delisting Level (a)	7/9/2014	7/9/2014	7/9/2014	5/1/2017
Metals (mg/kg; EPA Method 6010C)							
Cobalt	7440-48-4	15900		43	48	37	28.3
TCLP Metals (mg/L; EPA Method 6010C)							
Cobalt	7440-48-4		1.27	NA	NA	NA	0.108

(a) Preliminary Delisting Level calculated using EPA's Hazardous Waste Delisting Risk Assessment Software, as identified by the Washington State Department of Ecology (September 23, 2016 letter to Mr. Jarrod Kocin, Emerald Kalama Chemical, LLC, re: EPA and Ecology Comments to Waste Characterization Plan).

Bold = Detected concentration.

NA = Not Analyzed.

--- = screening level not available

EPA = US Environmental Protection Agency

ID = identification

mg/kg = milligrams per kilogram mg/L = milligrams per liter

TCLP = Toxicity Characteristic Leaching Procedure

Laboratory Reports

09 May 2017

Ken Reid Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: FMF Cobalt Sampling

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in itentirety.

Accreditation # 66169

Sel Botte

(7E0026

| Seattle/Edmonds (425) 778-0907 | Tacoma (253) 926-2493 | Spokane (509) 327-9737 | ASSOCIATES | Portland (503) 542-1080 |

Chain-of-Custody Record

Date 5/

Consider Many Elle Calant Son Allen	5.0		11	1117			Testing Parameters	meters	Turnaround Time
Project Name / Arr condition	The state of the s	Lolec	Project No.	Cho	Ī	DO 00		1	/ / ZStandard
Sampler's Name Len Leid					1 1	PAS CARS			│
٤	Lis H	Hudrigan	1	11 11		722 mg 1			
Send Results To LC	= 0	ì	Lrish	No. of		מלים			Observations/Comments
Sample I.D.	Date 5/.1/7	Ime	Matrix	Containers				1	
B. w. tral	5/1/7	S.	220	Jir	٧ ٪			1 40	 Allow water samples to settle, collect aliquot from clear portion
			+	1				1,	X_NWTPH-Dx - run acid wash/silica gel cleanup
									run samples standardized to
									product
									Analyze for EPH if no specific product identified
								7	VOC/BTEX/VPH (soll):
									non-preserved
									preserved w/rietrianor preserved w/sodium bisulfate
									Freeze upon receipt
									Dissolved metal water samples field filtered
									Other
								1 4	
Special Shipment/Handling or Storage Requirements	CM- 14	2						Method of Shipment	of It
		Received by	yc.	2		Relinquished by	λc		Received by
Signature	los	Signature	1000	2 2	بدار	Signature			Signature
Printed Name		Printed Name	1	BH		Printed Name			Printed Name
Sompany 155	5	Company				Company			Company
Time Till	A	Date 5/1/2017 Time (5:50	1/2017	7 Time (c	2:50	Date	Time		Date

YELLOW COPY - Laboratory

Cooler Receipt Form

ARI Client: Landau	Associates	Project Name: FMF ()	sbalt Sa	molange	
COC No(s):	NA	Delivered by: Fed-Ex UPS Co	17-17-17	1	
Assigned ARI Job No: 17E	50026				
reliminary Examination Phase		Tracking No:			NA
Were intact, properly signed and	d dated custody seals attached	to the outside of to coolor?		VEO	100
Were custody papers included v				YES	NO
Were custody papers properly fi				YES)	NO
Temperature of Cooler(s) (°C) (i	recommended 2.0-6.0 °C for cl	hemistry) 5.8		(YE)	NO
f cooler temperature is out of co	ompliance fill out form 00070F		Temp Gun I	D#: D009	1266
ooler Accepted by:	PM	Date: 5/1/2017 Tim	16.0		
	Complete custody form	ns and attach all shipping documents			
g-In Phase:		an empping documents			
las a temperature blank includ	od in the earl0				
Vas a temperature blank includ				YES	NO
What kind of packing material		rap Wet loe Gel Packs Baggies Foam	Block Paper	Other:	
			NA	YES	NO
				YES	NO
				YES	NO
ere all bottle labels complete a	ınd legible?			(YES)	NO
id the number of containers list	ed on COC match with the nur	mber of containers received?		YES	NO
id all bottle labels and tags agr	ee with custody papers?	***************************************		YES	NO
ere all bottles used correct for	the requested analyses?			(YES)	NO
o any of the analyses (bottles)	require preservation? (attach r	preservation sheet, excluding VOCs)	(NA)	YES	
ere all VOC vials free of air bu	bbles?			200	NO
		***************************************	(NA)	YES	NO
			(M)	(YES)	NO
as Sample Split by ARI: (N			(NA)	Date the	
	D.4.4	Equipment:	10 No.	Split by:	-
mples Logged by:	PIM Da	te: 5/1/2017 Time:	16:49		
	** Notify Project Manag	ger of discrepancies or concerns **	,,,		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sam	ple ID on CO	OC .
	1 3				
		2-2			
dditional Notes, Discrepancie	s, & Resolutions:	ve - Lege			
			2		
/: Da	te:				
Small Air Bubbles Peabubb		Small → "sm" (<2 mm)			
= 2mm 2-4 mm	5 >4mm	Peabubbles > "pb" (2 to < 4 mm)			
00	0 0 0 0	Large > "lg" (4 to < 6 mm)			
محمد المحمد	——————————————————————————————————————	Headspace → "hs" (>6 mm)			-

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FMF_Newsed_050117	17E0026-01	Solid	01-May-2017 10:00	01-May-2017 15:50
FMF Burntsed 050117	17E0026-02	Solid	01-May-2017 13:00	01-May-2017 15:50

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

Case Narrative

Total and TCLP Metals -

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Newsed_050117 17E0026-01 (Solid)

Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 05/01/2017 10:00

 Instrument: ICP2
 Analyzed: 08-May-2017 15:49

Sample Preparation: Preparation Method: SWC EPA 3050B

Preparation Batch: BFE0136Sample Size: 1.01 g (wet)Dry Weight:0.10 gPrepared: 04-May-2017Final Volume: 50 mL% Solids: 9.68

Detection Reporting CAS Number Dilution Limit Limit Result Units Notes Analyte 7440-48-4 0.293 Cobalt 2 3.07 78.1 mg/kg

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Newsed_050117 17E0026-01 (Solid)

Metals and Metallic Compounds

 Method: SM 2540 G-97
 Sampled: 05/01/2017 10:00

 Instrument: N/A
 Analyzed: 09-May-2017 10:12

Sample Preparation: Preparation Method: No Prep-Metals

Preparation Batch: BFE0202 Sample Size: 10 g (wet)
Prepared: 08-May-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 9.68 %

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Newsed_050117 17E0026-01 (Solid)

TCLP Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 05/01/2017 10:00

 Instrument: ICP2
 Analyzed: 04-May-2017 11:36

Sample Preparation: Preparation Method: LEN Digestion of EPA 1311 Elutriate

Preparation Batch: BFE0092 Sample Size: 25 mL (wet)
Prepared: 03-May-2017 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Notes Analyte 7440-48-4 0.0014 0.0150 0.184 Cobalt mg/L

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Burntsed_050117 17E0026-02 (Solid)

Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 05/01/2017 13:00

 Instrument: ICP2
 Analyzed: 08-May-2017 15:53

Sample Preparation: Preparation Method: SWC EPA 3050B

Preparation Batch: BFE0136Sample Size: 1.069 g (wet)Dry Weight:0.20 gPrepared: 04-May-2017Final Volume: 50 mL% Solids: 18.50

Detection Reporting CAS Number Limit Limit Dilution Result Units Notes Analyte 7440-48-4 0.145 Cobalt 1.52 28.3 2 mg/kg

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Burntsed_050117 17E0026-02 (Solid)

Metals and Metallic Compounds

 Method: SM 2540 G-97
 Sampled: 05/01/2017 13:00

 Instrument: N/A
 Analyzed: 09-May-2017 10:12

Sample Preparation: Preparation Method: No Prep-Metals

Preparation Batch: BFE0202 Sample Size: 10 g (wet)
Prepared: 08-May-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 18.50 %

Analytical Report

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

FMF_Burntsed_050117 17E0026-02 (Solid)

TCLP Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 05/01/2017 13:00

 Instrument: ICP2
 Analyzed: 08-May-2017 14:56

Sample Preparation: Preparation Method: LEN Digestion of EPA 1311 Elutriate

Preparation Batch: BFE0093 Sample Size: 25 mL (wet)
Prepared: 03-May-2017 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Notes Analyte 7440-48-4 0.0014 0.0150 0.108 Cobalt mg/L

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

Metals and Metallic Compounds - Quality Control

Batch BFE0136 - SWC EPA 3050B

Instrument: ICP2 Analyst: TCH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFE0136-BLK1)				Prepa	ared: 04-Ma	y-2017 An	alyzed: 08-	May-2017	15:33		
Cobalt	ND	0.0287	0.300	mg/kg							U
LCS (BFE0136-BS1)				Prepa	ared: 04-May	y-2017 An	alyzed: 08-	May-2017	15:12		
Cobalt	50.1	0.0287	0.300	mg/kg	50.0		100	80-120			

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

TCLP Metals and Metallic Compounds - Quality Control

Batch BFE0092 - LEN Digestion of EPA 1311 Elutriate

Instrument: ICP2 Analyst: TCH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFE0092-BLK1)	Prepared: 03-May-2017 Analyzed: 04-May-2017 11:01										
Cobalt	0.0018	0.0014	0.0150	mg/L							J

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

TCLP Metals and Metallic Compounds - Quality Control

Batch BFE0093 - LEN Digestion of EPA 1311 Elutriate

Instrument: ICP2 Analyst: TCH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFE0093-BLK1)	Prepared: 03-May-2017 Analyzed: 08-May-2017 14:35										
Cobalt	ND	0.0014	0.0150	mg/L							U

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

Certified Analyses included in this Report

Analyte Certifications

EPA 6010C in Solid

Cobalt NELAP,WADOE,DoD-ELAP
Cobalt NELAP,WADOE,DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017
WA-DW	Ecology - Drinking Water	C558	06/30/2017

Analytical Report

Landau Associates, Inc. Project: FMF Cobalt Sampling

130 2nd Avenue S.Project Number: 66045Reported:Edmonds WA, 98020Project Manager: Ken Reid09-May-2017 15:13

Notes and Definitions

U This analyte is not detected above the applicable reporting or detection limit.

J Estimated concentration value detected below the reporting limit.

D The reported value is from a dilution

B This analyte was detected in the method blank.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

Health and Safety Plan

WORK LOCATION PERSONNEL PROTECTION AND SAFETY EVALUATION FORM

Attach Pertinent Documents/Data Fill in Blanks <u>As Appropriate</u>

Job No.:	006645.030.031		
Prepared by:	Christel Olsen	Reviewed by:	Christine Kimmel
Date:	July 7, 2016	Date:	July 13, 2016

A. WORK LOCATION DESCRIPTION

- 1. Project Name: Emerald Kalama Mixed Material Characterization Sampling
- **2. Location:** Mixed material sampling at three locations (Burnt Ridge, Newaukum Prairie, and Big Hanaford) in Lewis County, Washington
- 3. Anticipated Activities:
- Mixed material depth and thickness measurements.
- Mixed material sampling using either a sludge judge or hand auger.

Big Hanaford activities will be performed at an elevation of approximately 6 to 8 feet above ground surface to access the mixed material contained within the storage unit. This access will be gained by a ladder and sampling will be performed on a platform. Fall protection will be implemented for all work where a fall of greater than 4 feet in height is possible. Newaukum Prairie and Burnt Ridge activities will be on water with access by row boat. The boat will be tied-in from multiple points at the shoreline to stabilize boat during sampling (because an anchor cannot be used). Mixed material will be collected from the bottom of the storage unit using a sludge judge with extension rods.

- **4. Size:** Each site is approximately 2 acres in total area;
 - Newaukum Prairie is approximately 1.2 acres; Burnt Ridge is approximately 1.1 acres; Big Hanaford is approximately 6,000 square feet in area.
- **5. Surrounding Population:** Agricultural and forested properties
- 6. Buildings/Homes/Industry: Dispersed farm houses and agricultural facilities
- **7. Topography:** The area topography is generally flat agricultural land with some rolling hills in the vicinity.
- **8.** Anticipated Weather: Work is outdoors, Spring-Summer 2017; Sunny, cloudy, or rainy, 40 to
- **9. Unusual Features:** Mixed material density in the Big Hanaford storage unit is unknown,

extreme caution should be used when working around and on the $\mbox{\sc mixed}$

material.

10. Site History:

Industrial wastewater treatment biological solids (IWBS) generated during the wastewater treatment process by Emerald Kalama Chemical, LLC (Emerald) were stored in the storage units by Fire Mountain Farms (FMF) together with mixed material from other locations. The mixed material is considered by the Washington Department of Ecology (Ecology) to be a dangerous waste. Emerald is working with Ecology and the US Environmental Protection Agency (EPA) to delist the mixed material. The Newaukum Prairie storage unit was originally designed and constructed in 1998 and relined in 2013. The Burnt Ridge storage unit was designed and constructed in 1998. Little is known about the history of the Big Hanaford storage unit. No facility has accepted new waste since 2014.

B. HAZARD DESCRIPTION						
1. Background Review: Complete Partial						
If partial, why? Available information regarding constituent concentrations in mixed material in the storage units was reviewed.						
2. Hazardous Level: B C D D Unknown						
Justification: Limited potential for exposure due to types of compounds used onsite, low anticipated concentrations, and sampling methodology.						
3. Types of Hazards: (Attach additional sheets as necessary)						
A. 🔀 Chemical 🔀 Inhalation 🗌 Explosive						
☐ Biological ☐ Ingestion ☐ O2 Def. ☐ Skin Contact						
Describe:						
Possible contact with mixed material, inhalation of vapors, or ingestion of mixed material or water. Disposable gloves will be worn and face will be washed prior to eating lunch or stopping work for the day.						
B. Physical Cold Stress Noise Heat Stress Other						
Describe: Physical hazards associated with working outside and around heavy equipment at the site. Appropriate clothing will be worn to mitigate heat or cold stress. Drowning hazard may be present at the Burnt Ridge and Newaukum Prairie storage units. Life vest must be worn at all times during sampling at these locations. Slips, trips, and falls in boat, on platform, and on HDPE liner (at Newaukum Prairie). Do not walk or stand on storage unit liner. Fall protection devices will be worn when working on elevated platforms greater than 4 ft.						
C. Radiation						
<u>Describe:</u>						

4. Nature of Hazards:

	<u>Describe</u> : Potential for volatile constituents to be released from mixed
	material during sampling activities.
Mixed Material	<u>Describe</u> : Possible chemical exposure during sampling. Potential for
	contact with or ingestion of mixed material. Potential for submersion
	and suffocation in unstable mixed material storage unit.
Surface Water	Describe: Potential for drowning at the Burnt Ridge and Newaukum
	Prairie storage units. Potential for contact with or ingestion of
	potentially contaminated water.
Groundwater	Describe:
Other	Describe:

5. Chemical Contaminants of Concern N/A

Contaminant	PEL (ppm)	I.D.L.H. (ppm)	Source/Quantity Characteristics	Route of Exposure	Symptoms of Acute Exposure	Instruments Used to Monitor Contaminant
Benzene	1	500	Unknown concentrations in mixed material.	Inhalation, absorption, ingestion, and dermal contact	Irritated eyes, skin, nose and respiratory system; dizziness; headache, nausea, staggered gait; anorexia, lassitude; dermatitis; bone marrow depression [carcinogenic]	PID meter
Toluene	200	500	Unknown concentrations in mixed material.	Inhalation, absorption, ingestion, and dermal contact	Irritated eyes and nose; lassitude, confusion, euphoria, dizziness, headache; dilated pupils, lacrimation; anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver failure, kidney damage	PID meter
Phenol	5	250	Unknown concentrations in mixed material	Inhalation, skin absorption, ingestion, and dermal contact	Irritated eyes, nose, throat; anorexia; lassitude; liver, kidney damage; skin burns; convulsions	PID meter
4- Methylphenol	2.3	250	Unknown concentrations in mixed material	Inhalation, skin absorption, ingestion, and dermal contact	Irritated eyes, skin, mucous membrane; central nervous system effects; confusion, depression, respiratory failure; skin burns; lung, liver, kidney, pancreas damage	PID meter

Notes: PEL = Permissible exposure limit.

IDLH = Immediately dangerous to life and health [National Institute for Occupational Safety and Health (NIOSH)].

STEL=Short Term Exposure Limit

PID= Photoionization Detector mobile meter

6. Physical Hazards of Concern N/A

Hazard	Description	Location	Procedures Used to Monitor Hazard
Vehicles and heavy equipment used at the site	Any area	Any area	Alert observation of surroundings, use of brightly colored safety vest. Stand clear of equipment and avoid pinch points. Make eye contact with operator prior to advancing. Verify working backup alarms on equipment.
Slips, trips, and falls	Any area	Any area The storage unit liner at Newaukum Prairie is known to be extremely slippery.	The HDPE liner at Newaukum Prairie is very slippery. Do not walk on storage unit liners. Alert observation of surroundings; awareness of uneven ground and ditches.
Drowning	While navigating the boat and walking near storage unit	Newaukum Prairie and Burnt Ridge storage units	Wear life vest at all times and stay in the boat during storage unit sampling.

Suffocation	Mixed material stability and depth of storage unit is unknown.	Big Hanaford	Stay on sampling platform. Do not walk directly on mixed material. Use fall protection (safety recovery harness and clip on retrieval line) when working at heights greater than 4 ft around the mixed material storage unit. Wear secured recovery harness at all times when on the sampling platform.
Heat Stress/Cold Stress	Heat exhaustion, heat stress, and heat cramps	Any area	Wear appropriate clothing and layers, take breaks as needed, drink water and eat food throughout the work day, avoid caffeine.
Biological hazards	Snakes, rats, spiders, bees, and ticks	Area surrounding storage units	Identify if members of sampling crew are allergic to any insects and identify proper emergency procedure; wear long pants and long sleeved shirt; inspect clothing and body for insects or insect bites/stings.
Electrocution	Wiring of aerating units	Storage unit areas	Confirm aerators have been disconnected from power source use a Lockout/Tag out method to eliminate potential energizing of equipment during sampling activities.

Location:	
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	_
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	_
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:
Location:	_
Percent O _{2:}	Percent LEL:
Radioactivity:	PID:
FID:	Other:
Other:	Other:
Other:	Other:

7.

8.

C. PERSONAL PROTECTIVE EQUIPMENT **Level of Protection** \boxtimes D Па Пв \Box c Location/Activity: All site activities, skin cover, gloves, boots, eye protection, hard hat. \boxtimes c Πа Пв \Box D Location/Activity: Based on air monitoring results for all locations. See Attachment A for action levels. 2. Protective Equipment (specify probable quantity required) Clothing N/A Respirator | N/A SCBA, Airline Fully Encapsulating Suit Full-Face Respirator Chemically Resistant Splash Suit Half-Face Respirator (Cart. organic Apron, Specify: vapor) (Only if upgrade to Level C) Tyvek Coverall (only if upgrade to Level C) Escape mask None Saranex Coverall Other: Reflective Safety Vest Other: Other: Work clothes, long pants and sleeved shirt, sunblock, and life safety vest Head & Eye N/A Hand Protection N/A Hard Hat Undergloves; Type: Nitrile Goggles Gloves; Type: Nitrile and leather gloves when using sampling equipment Face Shield Overgloves; Type: Safety Eyeglasses None Other: hearing protection if heavy Other: sampling equipment is utilized Foot Protection N/A Neoprene Safety Boots with Steel Toe/Shank Disposable Overboots Other: Steel-toe work boots

3.	Monitoring Equipment \[\] N/A						
	☐ cgi	□ PID					
	O² Meter	☐ FID					
	Rad Survey	Other Visible indicates of dust					
	□ Detector Tubes (benzene						
	<u>Туре</u> :						
D. F	D. PERSONNEL DECONTAMINATION (ATTACH DIAGRAM)						
	Required	☐ Not Required					
Wash hands and face prior to stopping for eating or drinking and at the end of the shift prior to leaving the site. Replace PPE on a frequent basis. Rinse off boots and other non-disposable gear with tap water.							
1	EQUIPMENT DECONTAMINATION (ATTACH DI	AGRAM)					
	Required	■ Not Required					
	If required, describe and list equipment: Non-dedicated or non-disposable sampling epling locations using a tap water and alconox sowed with a distilled water rinse.	• •					

E. P	ERSONNEL			
	Name	Work Location Title/Task	Medical Current	Fit Test Current
1.	Ken Reid	Site Senior Geologist	\boxtimes	\boxtimes
2.	Devan Brandt	Senior Staff Geologist	\boxtimes	\boxtimes
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
Site	Safety Coordinator: Ken Reid			

F. ACTIVITIES COVERED UNDER THIS PLAN

Task No.	Description	Preliminary Schedule
1	Big Hanaford: Mixed material sampling from storage unit using a hand auger.	Spring-Summer 2017
2	Newaukum Prairie: Mixed material sampling from row boat using sludge judge with extension to reach mixed material at bottom of the storage unit. Anchor from shore.	Spring-Summer 2017
3	Burnt Ridge: Mixed material sampling from row boat using sludge judge with extension to reach mixed material at bottom of the storage unit. Anchor from shore.	Spring-Summer 2017

G. SUBCONTRACTOR'S HEALTH AND SAFETY PROGRAM EVALUATION

N/A

Name and Address of Subcontractor:

EVALUATION CRITERIA

Item	Adequate	Inadequate	Comments
Medical Surveillance Program			
Personal Protective Equipment Availability			
Onsite Monitoring Equipment Availability			
Safe Working Procedures Specification			
Training Protocols			
Ancillary Support Procedures (if any)			
Emergency Procedures			
Evacuation Procedures Contingency Plan			
Decontamination Procedures Equipment			
Decontamination Procedures Personnel			
GENERAL HEALTH AND SAFETY PROGRAM EVALUATION:	Adequat	e 🗌 Inad	equate
Additional Comments:			
Evaluation Conducted By:			Date:

EMERGENCY FACILITIES AND NUMBERS

Hospital: Providence Centralia Hospital

914 S Scheuber Rd Centralia, WA 98531 (425) 261-2000

Directions from Newaukum Prairie:

Head SOUTHWEST on E Forest Napavine Rd towards Kirkland Rd	0.4 miles
Turn LEFT onto Forest Rd	150 ft
Turn RIGHT onto Main Ave	440 ft
Turn RIGHT to merge onto I-5 N toward Seattle	0.4 miles
MERGE onto 1-5 N	9.4 miles
Take EXIT 81 for WA-507N/Mellen St toward City Center	0.6 miles
Continue on to Ellsbury St	0.3 miles
Turn LEFT on Mellen St	0.2 miles
Continue onto Cooks Hill Rd	0.4 miles
Turn Left onto S Scheuber Rd	0.4 miles
Destination on the LEFT	0.1 miles

Total Estimated Time: 14 minutes Total Estimated

Distance: 12 miles

Directions from **Burnt Ridge**:

Head WEST on Burnt Ridge Rd toward Tillie Rd	3.9 miles
Turn RIGHT onto Jorgensen Rd	2.7 miles
Turn LEFT onto WA-508 W/Main Ave	9.5 miles
Turn RIGHT to merge onto I-5 N toward Seattle	9.8 miles
Take EXIT 81 for WA-507N/Mellen St toward City Center	0.6 miles
Continue on to Ellsbury St	0.3 miles
Turn LEFT on Mellen St	0.2 miles
Continue onto Cooks Hill Rd	0.4 miles
Turn Left onto S Scheuber Rd	0.4 miles
Destination on the LEFT	0.1 miles

Total Estimated Time: 36 minutes Total Estimated

Distance: 27.5 miles

Directions from **Big Hanaford**:

Head WEST on Big Hanaford Rd/Hanaford Valley Rd toward Blue Rd	1.1 miles
Turn LEFT onto WA-507 S	3.6 miles
Turn RIGHT onto W Cherry St	0.2 miles
Turn LEFT onto Alder St	0.3 miles
Turn RIGHT onto Mellen St	0.6 miles
Continue onto Cooks Hill Rd	0.4 miles
Turn Left onto S Scheuber Rd	0.4 miles
Destination on the LEFT	0.1 miles

Total Estimated Time: 15 minutes Total Estimated

Distance: 6.3 miles

Emergency Transportation Systems (Fire, Police, Ambulance) – 911

Emergency Contacts:

	Offsite	Onsite
Kris Hendrickson	Landau Associates Project Manager	425-778-0907 office 206-910-1378 cell
Allison Bergseng	Landau Associates Task Manager	425-329-0253 office 503-459-8124 cell
Christine Kimmel	Landau Associates Health and Safety Manager	425-778-0907 office 206-786-3801 cell

In the event of an emergency, do the following:

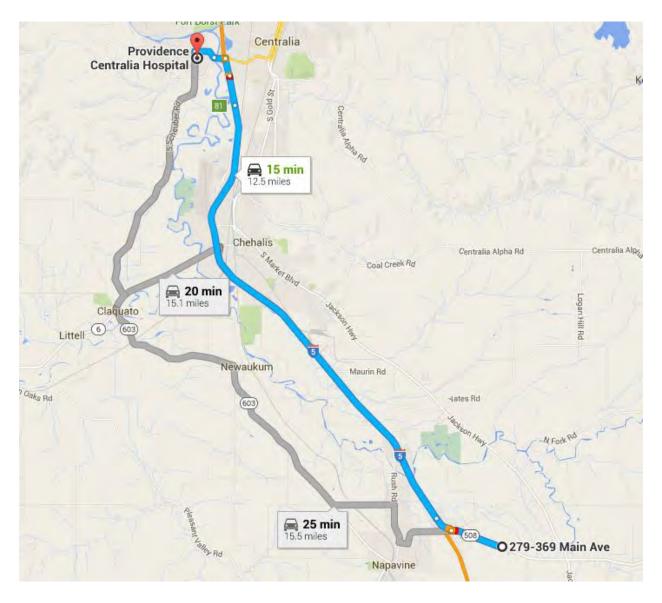
- 1. Call for help as soon as possible. Call 911. Give the following information:
 - WHERE the emergency is use cross streets or landmarks
 - PHONE NUMBER you are calling from
 - WHAT HAPPENED type of injury
 - WHAT is being done for the victim(s)
 - YOU HANG UP LAST let the person you called hang up first.
- 2. If the victim can be moved, paramedics will transport to the hospital. If the injury or exposure is not life threatening, decontaminate the individual first. If decontamination is not feasible, wrap the individual in a blanket or sheet of plastic prior to transport.
- 3. Notify the Project Manager (Kris Hendrickson 206-910-1378).

Emergency Routes - Maps - See last 3 pages

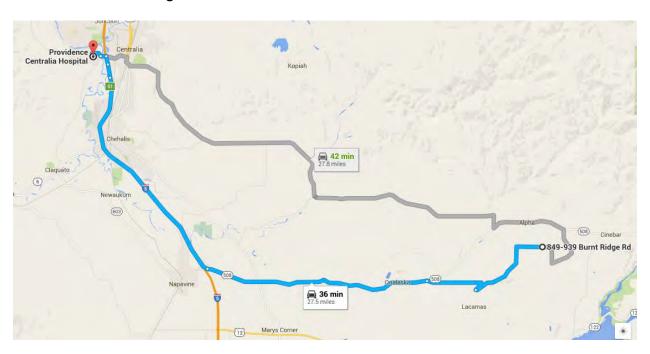
HEALTH AND SAFETY PLAN APPROVAL/SIGN OFF FORMAT

I have read, understood, and agreed with the information set forth in this Health and Safety Plan (and attachments) and discussed in the Personnel Health and Safety briefing.

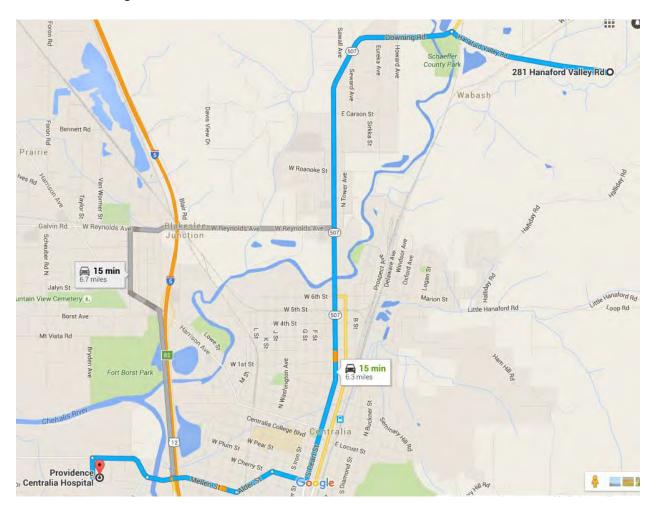
Name	Signature	Date
Name	Signature	Date
Ken Reid	Kenneth O. Kein	7/13/16
Site Safety Coordinator	Signature	Date
Christine Kimmel	Christino Kimmel	7/13/16
Landau Health and Safety Manager	Signature	Date
Kris Hendrickson	Fristy of Hendrickson	7/13/16
Project Manager	Signature	Date
Personnel Health and Safety Briefing Co	onducted By:	
Name	Signature	Date


ATTACHMENT A

ACTION LEVELS FOR RESPIRATORY PROTECTION


Monitoring Parameter	Reading	Level of Protection
VOC's`	PID reading >10 ppm in breathing zone for more than 15 minutes or >35 ppm for momentary peak.	Evacuate the area or upgrade to Level C - half-face respirator with organic vapor / HEPA cartridge.
VOC's	>10 ppm and <50 ppm	Temporarily stop work to allow vapors to return to baseline-proceed with upgrade to Level C
VOC's	>50 ppm	Stop Work, contact H&S Manager

Emergency Routes – Maps


Directions from Newaukum Prairie:

Directions from **Burnt Ridge**:

Directions from **Big Hanaford**:

Quality Assurance Project Plan

Quality Assurance Project Plan Waste Characterization Plan Fire Mountain Farms Mixed Material Storage Units Lewis County, Washington

July 27, 2017

Prepared for

Perkins Coie LLP Emerald Kalama Chemical, LLC

130 2nd Avenue South Edmonds, WA 98020 (425) 778-0907

TABLE OF CONTENTS

			PAGE
1.0	IN	NTRODUCTION	1-1
2.0	PI	ROJECT TEAM ORGANIZATION AND RESPONSIBILITIES	2-1
3.0	Q	QUALITY ASSURANCE OBJECTIVES	3-1
3	.1	Data Quality Objectives	3-1
3	.2	Data Quality Indicators	3-1
	3.2.	1 Representativeness	3-1
	3.2.	2 Comparability	3-1
	3.2.	3 Precision	3-2
	3.2.	4 Accuracy	3-2
	3.2.	5 Bias	3-3
	3.2.	6 Sensitivity	3-3
	3.2.	7 Completeness	3-3
4.0	LA	ABORATORY METHODS	4-1
5.0	Q	QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS	5-1
5	.1	Laboratory Instrument Calibration	5-1
5	.2	Field Equipment Calibration	5-1
5	.3	Field Documentation	5-1
5	.4	Sample Handling Procedures and Transfer of Custody	5-2
5	.5	Field and Laboratory Quality Control Samples	
	5.5.	1 Field Duplicates	5-3
	5.5.	2 Field Trip Blanks	5-3
	5.5.	3 Laboratory Matrix Spike	5-3
	5.5.	4 Laboratory Matrix Spike Duplicate	5-3
	5.5.	, ,	
	5.5.	6 Laboratory Method Blanks	5-4
	5.5.	7 Laboratory Control Sample	5-4
	5.5.	8 Surrogate Spikes	5-4
5	.6	Laboratory QA/QC for Chemical and Conventional Analyses	5-4
6.0	C	ORRECTIVE ACTIONS	6-1
7.0	D.	ATA VERIFICATION AND VALIDATION	7-1
8.0	D.	PATA MANAGEMENT PROCEDURES	8-1
9.0	RI	EFERENCES	9-1

TABLES

<u>Table</u> <u>Title</u>

- E-1 Measurement Quality Objectives
- E-2 Method Detection Limits and Reporting Limits

LIST OF ABBREVIATIONS AND ACRONYMS

ARI Analytical Resources, Inc.
COC
DQO data quality objective
DQIdata quality indicator
EcologyWashington State Department of Ecology
EDD electronic data deliverable
EPAUS Environmental Protection Agency
ISO International Organization for Standardization
IECInternational Electrochemical Commission
LAILandau Associates, Inc.
LOQlimit of quantitation
LCSlaboratory control sample
LCSDlaboratory control sample duplicate
MQO measurement quality objective
MS matrix spike
MSDmatrix spike duplicate
PCBpolychlorinated biphenyl
QAPP quality assurance project plan
QA/QC quality assurance/quality control
RPDrelative percent difference
TCLP toxicity characteristic leaching procedure
TNI

1.0 INTRODUCTION

This quality assurance project plan (QAPP) establishes the quality assurance/quality control (QA/QC) procedures to support the waste characterization at the Fire Mountain Farms mixed material storage units located in Lewis County, Washington. This QAPP is an appendix to the Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units, Lewis County, Washington. The primary objective of this QAPP is to provide QA/QC procedures consistent with accepted procedures such that the data collected will be adequate for use in delisting decisions for the mixed material in the Fire Mountain Farms storage units. This QAPP was prepared using the Washington State Department of Ecology's (Ecology's) Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies (Ecology 2004) and the US Environmental Protection Agency's (EPA's) Guidance for Quality Assurance Project Plans (EPA 2002). The planned scope of the waste characterization, as described in the plan, includes collection of mixed material samples from the Burnt Ridge, Newaukum Prairie, and Big Hanaford storage units, and submittal of the samples to a laboratory for analysis. This QAPP presents the project quality objectives, laboratory methods, QA/QC requirements, corrective actions, and data management procedures for the waste characterization.

2.0 PROJECT TEAM ORGANIZATION AND RESPONSIBILITIES

The project team organizational structure was developed based on the requirements of the field and laboratory activities. The key positions and associated responsibilities are described below:

- Emerald Kalama Project Manager Responsible for overseeing the implementation of the Administrative Order and Agreement and communicating status and issues related to the waste characterization to Ecology and EPA.
- Landau Associates, Inc. (LAI) Project Manager Responsible for implementation of all aspects
 of the waste characterization plan. Specific responsibilities include review and approval of
 revisions to waste characterization documentation, overseeing that all technical procedures
 are followed, reporting of deviations from the Ecology-approved Waste Characterization Plan
 including this QAPP to the Emerald Kalama Project Manager, and overseeing that data
 collected will satisfy the QA objectives discussed in Section 3.0 of this document.
- LAI Quality Assurance Manager Responsible for insuring that data is of sufficient quality to achieve the Data Quality Objectives (DQOs) presented in this QAPP.
- Ecology Project Manager Responsible for overseeing the implementation of the Administrative Order and the Agreement, both with Emerald Kalama and Fire Mountain Farms.
- Analytical Laboratory Project Manager Responsible for providing sample bottles, performing chemical analyses per the QAPP, and reporting of data as required by the QAPP.
 The analytical laboratory at the date of this report is Analytical Resources, Inc. (ARI), located in Tukwila, Washington.

3.0 QUALITY ASSURANCE OBJECTIVES

This section presents the QA/QC objectives and processes including DQOs, Data Quality Indicators (DQIs), Measurement Quality Objectives (MQOs), and QC procedures for field and laboratory work.

DQOs are established when the data will be used to make a critical decision, such as to determine compliance with a standard. MQOs specify how good the data must be in order to fulfill the project's objectives; they are the acceptance thresholds for DQIs. The DQIs used to assess the acceptability of the data are precision, accuracy, representativeness, comparability, and completeness.

3.1 Data Quality Objectives

DQOs specify the environmental decisions that the data will support and the corresponding level of data quality required to ensure decisions are based on sound scientific data. The DQOs for this project are in support of the overall objective of the waste characterization plan, which is to provide sufficient data, analysis, and evaluations to determine if the mixed material in the three storage units meets the federal and state hazardous waste delisting criteria. To achieve the overall objective, the DQOs will be to obtain data that are representative of mixed material characteristics and that are comparable to selected screening criteria, as described below.

3.2 Data Quality Indicators

Data quality indicators are discussed in the following sections; their associated MQOs are presented in Table E-1.

3.2.1 Representativeness

Representativeness expresses the degree to which data accurately and precisely represent an actual condition or characteristic of a population. Representativeness can be evaluated using replicate samples, representative sampling locations, and blanks. Representativeness for the waste characterization sampling will be accomplished using appropriate selection of sampling locations for the mixed material at each storage unit. A detailed description of sample locations is provided in Section 2.2.1 of the waste characterization plan. To determine that the analytical results are representative of the sampled item and not influenced by cross-contamination, method blanks will be analyzed with each analysis as described in Section 5.0.

3.2.2 Comparability

Comparability expresses the confidence with which one data set can be evaluated in relation to another data set. For this work, comparability of data will be established through the use of standard analytical methodologies with analytical limits of quantitation (LOQs) that can meet delisting and Land Disposal Restriction criteria to the extent practicable, standard reporting formats, and common traceable calibration and reference materials. Methods to be used for analysis of samples are discussed in Section 4.0.

3.2.3 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average values. Analytical precision is measured through matrix spike/matrix spike duplicate (MS/MSD) and/or through laboratory control sample/laboratory control sample duplicate (LCS/LCSD) samples for organic analyses and through laboratory duplicate samples for inorganic analyses.

Analytical precision measurements will be carried out on project-specific samples at a minimum frequency of 1 per sample analysis group or 1 in 20 samples, whichever is more frequent, as practicable. Laboratory precision will be evaluated against quantitative relative percent difference (RPD) performance criteria provided by the laboratory.

Field precision will be evaluated by the collection of field duplicates, where collection of the additional volume needed is practical, at a minimum frequency of 1 per sampling event or 1 in 20 samples, per facility per method. Materials such as soil, sediment, and sludge are typically more heterogeneous than materials such as groundwater. For this reason, control limits for the field duplicates and replicates will be 50 percent unless the duplicate sample values are within five times the reporting limit, in which case the control limit interval will be plus or minus three times the reporting limit. In the event the control limit is exceeded, the sample results may be qualified as estimated, in accordance with EPA National Functional Guidelines (EPA 2016a, b) before being compared to the regulatory criteria.

Precision measurements can be affected by the nearness of a chemical concentration to the method detection limit, where the percent error (expressed as RPD) increases. The equation used to express precision is as follows:

$$RPD = \left| \frac{C_1 - C_2}{(C_1 + C_2)/2} \right| \times 100$$

where: C_1 = first sample value

C₂ = second sample value (duplicate) RPD = relative percent difference.

3.2.4 Accuracy

Accuracy is an expression of the degree to which a measured or computed value represents the true value. Field accuracy is controlled by adherence to sample collection procedures as outlined in the waste characterization plan.

Analytical accuracy may be assessed by analyzing "spiked" samples with known standards (surrogates, laboratory control samples, and/or matrix spike) and measuring the percent recovery. To the extent where collection of the additional volume is practical, project samples will be selected for matrix

spike/matrix spike duplicate analyses. Accuracy measurements on matrix spike samples will be carried out at a minimum frequency of 1 per laboratory analysis group. Surrogate recoveries will be determined for every sample analyzed for organics.

Laboratory accuracy will be evaluated against quantitative matrix spike and surrogate spike recovery performance criteria provided by the laboratory. Accuracy can be expressed as a percentage of the true or reference value, or as a percent recovery in those analyses where reference materials are not available and spiked samples are analyzed. The equation used to express accuracy is as follows:

$$\frac{Percent}{Recovery} = \frac{(Spiked Sample Result - Unspiked Sample Result)}{Amount of Spike Added} \times 100$$

Control limits for percent recovery for samples will be laboratory acceptance limits. Laboratory control limits reflect the performance of the instrument for the matrix being analyzed and are established in accordance with US Department of Defense/US Department of Energy Quality Systems Manual (QSM 5.0), in addition to International Organization for Standardization (ISO)/International Electrochemical Commission (IEC) 17025:2005(E) and the NELAC Institute (TNI) Standards (2009), and are considered during data validation. Data may be qualified and considered biased high if the recovery is greater than the upper recovery control limit or considered biased low if the recovery is less than the lower recovery control limit. An example of recovery control limits is the control limits determined by the analytical laboratory based on the TNI Standards for the cobalt analysis in the Cobalt Characterization Report included as Appendix C to the Waste Characterization Plan. The recovery control limits were 80-120 percent.

3.2.5 Bias

Bias is the systematic or persistent distortion of a measured process that causes errors in one direction. Bias of the laboratory results will be evaluated based on analysis of method blanks and matrix spike samples as described in Section 5.5.

3.2.6 Sensitivity

Sensitivity is the ability to discern the difference between very small amounts of a substance. For the purposes of this project, sensitivity is the lowest concentration that can be accurately detected by the analytical method. The analytical method will be considered sufficiently sensitive if the laboratory reporting limits are below project screening levels. Proposed method and LOQs are discussed in Section 4.0.

3.2.7 Completeness

Field completeness is calculated as the number of actual samples collected divided by the number of planned samples. Analytical completeness is calculated as the number of valid data points divided by the total number of data points requested. Data points are considered invalid if they are rejected

during data validation. The data validation approach for this project is provided in Section 7.0. The QA objectives for field and analytical completeness during this project will be 90 percent, which is supported by the sample design described in Section 2.2 of the Waste Characterization Plan. Ninety percent completeness would be 10 valid samples from the Burnt Ridge storage unit, 16 valid samples from the Newaukum Prairie storage unit, and 17 valid samples from the Big Hanaford storage unit, which will provide adequate information for evaluation of compliance with regulatory requirements to support delisting. Completeness will be routinely determined and compared to this control criterion.

4.0 LABORATORY METHODS

Mixed material samples from the storage units at Burnt Ridge, Newaukum Prairie, and Big Hanaford will be analyzed for selected volatile organic compounds (acetone, benzene, methanol, and toluene), total solids, and pH. Samples from Big Hanaford will be analyzed for total acrylonitrile; cobalt; 4-methylphenol; 2,4-dinitrotoluene; 2,6-dinitrotoluene; and naphthalene as well. For Big Hanaford, additional sample volume will be collected and archived by the laboratory for analysis of polychlorinated biphenyls (PCBs); acrylonitrile; cobalt; 4-methylphenol; 2,4-dinitrotoluene; 2,6-dinitrotoluene; and naphthalene with toxicity characteristic leaching procedure (TCLP) extraction, if necessary. Samples will be selected for additional analysis as described in Section 3.0 of the Waste Characterization Plan. Specific analytes, laboratory methods, method detection limits, and reporting limits are summarized in Table E-2 of this QAPP.

Descriptions of sample containers, preservation, and holding times are provided in Tables 15, 16, and 17 of the Waste Characterization Plan.

5.0 QUALITY ASSURANCE/QUALITY CONTROL REQUIREMENTS

This section describes the procedures that will be implemented to: 1) ensure sample integrity from the time of sample collection to the time of analysis in the laboratory, 2) obtain the appropriate chemical and physical data, 3) collect field and laboratory quality control samples, 4) monitor performance of the laboratory measurement systems, 5) correct any deviations from the methods or QA requirements established in this QAPP, and 6) report and validate the data.

5.1 Laboratory Instrument Calibration

The Analytical Laboratory Project Manager is responsible for maintaining laboratory instruments in proper working order including routine maintenance and calibration, and training of personnel in maintenance and calibration procedures. Laboratory instruments will be properly calibrated with appropriate check standards and calibration blanks for each parameter before beginning each analysis. Instrument performance check standards, where required, and calibration blank results will be recorded in a laboratory logbook dedicated to each instrument. At a minimum, the preventive maintenance schedules outlined in the EPA methods and in the equipment manufacturers' instructions will be followed. Laboratory calibration procedures and schedules will be as described in the laboratory quality systems manual.

5.2 Field Equipment Calibration

No field measurements using equipment requiring calibration are planned for this waste characterization.

5.3 Field Documentation

A complete record of all field activities will be maintained for the duration of the field phase of the work. Documentation will include the following:

- Daily recordkeeping by field personnel of all field activities
- Recordkeeping of all samples collected for analysis (field sampling forms)
- Use of sample labels and tracking forms for all samples collected for analysis.

The field logs will provide a description of all sampling activities, sampling personnel, weather conditions, and a record of all modifications to the procedures and plans identified in the Waste Characterization Plan. The field logs are intended to provide sufficient data and observations to enable participants to reconstruct events that occurred during the sampling period.

Sample possession and handling will also be documented so that it is traceable from the time of sample collection to the laboratory and data analysis. Sample chain-of-custody (COC) forms and procedures are described in Section 2.2.4 of the Waste Characterization Plan and Section 5.4 of this QAPP.

5.4 Sample Handling Procedures and Transfer of Custody

Samples submitted to the analytical laboratory will be collected in the appropriate sample containers and preserved as specified in Tables 15, 16, and 17 of the Waste Characterization Plan. The storage temperatures and maximum holding times for physical/chemical analyses are also provided in Tables 15, 16, and 17 of the Waste Characterization Plan.

The transportation and handling of samples will be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to release of samples. Samples will be logged on a COC form and will be kept in coolers on ice until delivery to the analytical laboratory. The project laboratory is located in Tukwila, Washington and therefore, samples may be shipped to the laboratory, delivered by courier, or may be hand delivered at the end of a sampling week, if sample holding times can still be met. The laboratory will provide appropriate packing material for shipping the samples so that damage to the samples is avoided. Samples may be sent to the project analytical laboratory in batches, if appropriate based on sample holding times. The COC will accompany each cooler in a shipment of samples to the laboratory. Each cooler will also have custody seals placed on the outside to indicate if tampering has taken place during shipment. Cooler receipt forms will be filled out by the analytical laboratory. Upon receipt, custody seals will be inspected and the COC form signed and dated by laboratory personnel. Laboratory personnel will verify sample numbers and the condition of each sample. Shipping manifests and COC forms signed and dated by laboratory personnel will be considered sufficient documentation of sample custody transfer from the sampler, through the shipping agent, to the analytical laboratory. A copy of each COC form will be retained by the sampling team for the project file and the duplicate copies will be sent with the samples. Bills of lading will also be retained as part of the documentation for the COC records. In conjunction with data reporting, the laboratory will return the original COC forms to the LAI Project Manager for inclusion in the central project file.

5.5 Field and Laboratory Quality Control Samples

Field and analytical laboratory QC samples will be collected to evaluate data precision, accuracy, representativeness, completeness, and comparability of the analytical results for this investigation. QC samples are described below. The frequency at which they will be collected and/or analyzed is also described. The performance-based laboratory control limits, developed in accordance with US Department of Defense/US Department of Energy Quality Systems Manual (QSM 5.0) in addition to ISO/ IEC 17025:2005(E) and TNI Standards, will be used in the evaluation of laboratory data quality. QC limits will be evaluated both as part of the reporting process by the laboratory and as a component of the Level IIA verification and validation process. If QC limits are exceeded, corrective actions will be implemented as detailed in Section 6.0 and analytical results will be qualified in accordance with the validation guidance listed in Section 7.0. In the event that QC issues are identified, LAI's Quality Assurance Manager will notify the LAI Project Manager. The LAI Project Manager will notify Emerald Kalama and Fire Mountain Farms, who will in turn discuss and determine

the potential impacts to data quality and the appropriate corrective action with the Ecology and EPA Project Managers. Possible corrective actions are presented in Section 6.0.

5.5.1 Field Duplicates

A field duplicate will be collected at a frequency of at least 1 per 20 samples per chemical analysis and per facility, not including QC samples, but not less than one field duplicate per sampling event (any continuous sampling period not interrupted by more than 5 days) for mixed material samples. The field duplicate will consist of a split sample collected at a single sample location. Field duplicates will be collected by alternately filling sample containers for both the original and the corresponding duplicate sample at the same location to decrease variability between the duplicates. Field duplicate sample results will be used to evaluate data precision. MQOs for field duplicates are presented in Table E-1. These QC results will be evaluated in accordance with the data validation guidelines presented in Section 7.0 of this QAPP.

5.5.2 Field Trip Blanks

Field trip blanks will consist of de-ionized or distilled water sealed in a sample container provided by the analytical laboratory. The trip blank will accompany samples collected for the analysis of volatile organic compounds during transportation to and from the field, and then will be returned to the laboratory with each shipment. The trip blank will remain unopened until submitted to the laboratory for analysis. One trip blank per cooler containing samples for volatile organic compound analysis will be evaluated to determine possible sample contamination during transport. MQOs for field trip blanks are presented in Table E-1. These QC results will be evaluated in accordance with the corrective actions and data validation guidelines presented in Sections 6.0 and 7.0 of this QAPP, respectively.

5.5.3 Laboratory Matrix Spike

A minimum of one laboratory MS per 20 samples, or one MS sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be collected for all organic and inorganic analyses, to the extent where collecting extra volume is practical. The matrix spikes will be analyzed using project samples. These analyses will be conducted to provide information on accuracy and to verify that extraction and concentration levels are acceptable. The laboratory spikes will follow EPA guidance for matrix spikes.

5.5.4 Laboratory Matrix Spike Duplicate

A minimum of one laboratory MSD per 20 samples, or one MSD sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be collected for all organic and inorganic analyses, to the extent where collecting extra volume is practical. The analysis of MSD samples will be conducted to provide information on the precision of chemical analyses. The laboratory spikes will follow EPA guidance for matrix spike duplicates.

5.5.5 Laboratory Duplicates

A minimum of one laboratory duplicate per 20 samples, or one laboratory duplicate sample per batch of samples if fewer than 20 samples are obtained in a sample event, will be analyzed for metals. These analyses will be conducted to provide information on the precision of chemical analyses. The laboratory duplicates will follow EPA guidance in the analytical method.

5.5.6 Laboratory Method Blanks

A minimum of one laboratory method blank per 20 samples, one every 12 hours, or one per batch of samples analyzed (if fewer than 20 samples are analyzed in a sample event) will be analyzed for all parameters to assess possible laboratory contamination. De-ionized water will be used whenever possible. Method blanks will contain all reagents used for analysis. The generation and analysis of additional method, reagent, and glassware blanks may be necessary to verify that laboratory procedures do not contaminate samples. MQOs for laboratory method blanks are presented in Table E-1. These QC results will be evaluated in accordance with the corrective actions and data validation guidelines presented in Sections 6.0 and 7.0 of this QAPP, respectively.

5.5.7 Laboratory Control Sample

A minimum of one laboratory control sample per 20 samples, or one laboratory control sample per sample batch if fewer than 20 samples are obtained in a sample event, will be analyzed for all parameters. MQOs for laboratory control samples are presented in Table E-1.

5.5.8 Surrogate Spikes

All project samples analyzed for organic compounds will be spiked with appropriate surrogate compounds as defined by the analytical methods. MQOs for surrogate spikes are presented in Table E-1.

5.6 Laboratory QA/QC for Chemical and Conventional Analyses

QA/QC for chemical testing includes laboratory instrument and analytical method QA/QC. Instrument QA/QC monitors the performance of the instrument and method QA/QC monitors the performance of sample preparation procedures. The analytical laboratory will be responsible for instrument and method QA/QC. QA/QC procedures to be conducted by the laboratory for analysis of samples will be in accordance with methods specified in Table E-2.

When an instrument or method control limit is exceeded, the laboratory will contact the LAI Project Manager immediately. The laboratory will be responsible for correcting the problem and will reanalyze the samples within the sample holding time if sample reanalysis is appropriate. Corrective actions are described further in Section 6.0.

6.0 CORRECTIVE ACTIONS

Corrective actions will be needed for two categories of nonconformance:

- Deviations from the methods or QA requirements established in this QAPP
- Equipment or analytical malfunctions.

Corrective action procedures to be implemented based on detection of unacceptable data are developed on a case-by-case basis. Such actions may include one or more of the following:

- Altering procedures in the field
- Using a different batch of sample containers
- Performing an audit of field or laboratory procedures
- Reanalyzing samples (if holding times allow)
- Resampling and analyzing
- Evaluating sampling and analytical procedures to determine possible causes of the discrepancies
- Accepting the data without action, acknowledging the level of uncertainty
- Rejecting the data as unusable.

During field activities and sample collection, the field personnel will be responsible for conducting and reporting required corrective actions. A description of any action taken will be entered in the daily field notebook. The LAI Project Manager will be consulted immediately if field conditions are such that conformance with this QAPP is not possible.

During laboratory analysis, the laboratory QA officer will be responsible for taking required corrective actions in response to equipment malfunctions. If an analysis does not meet DQOs outlined in this QAPP, corrective action will follow the guidelines in the noted EPA analytical methods and the EPA guidelines for data validation for organics (EPA 2016b) and inorganics analyses (EPA 2016a). At a minimum, the laboratory will be responsible for monitoring the following:

- Calibration check compounds must be within performance criteria specified in the EPA
 method or corrective action must be taken prior to initiation of sample analyses. No analyses
 may be performed until these criteria are met.
- Before processing any samples, the analyst should demonstrate, through analysis of a reagent blank that interferences from the analytical system, glassware, and reagents are within acceptable limits. Each time a set of samples is extracted or there is a change in reagents, a reagent blank should be processed as a safeguard against chronic laboratory contamination. The blank samples should be carried through all stages of the sample preparation and measurement steps.
- Method blanks should, in general, be below instrument detection limits. If contaminants are
 present, then the source of contamination must be investigated, corrective action taken and

- documented, and all samples associated with a contaminated blank reanalyzed. If, upon reanalysis, blanks do not meet these requirements, the LAI Project Manager will be notified immediately to discuss whether analyses may proceed.
- Surrogate spike analysis must be within the specified range for recovery limits for each analytical method used or corrective action must be taken and documented. Corrective action includes: 1) reviewing calculations, 2) checking surrogate solutions, 3) checking internal standards, and 4) checking instrument performance. Subsequent action could include recalculating the data and/or reanalyzing the sample if any of the above-described checks reveal a problem. If the problem is determined to be caused by matrix interference, reanalysis may be waived if so directed following consultation with the LAI Project Manager. If the problem cannot be corrected through reanalysis, the laboratory will notify the LAI Project Manager prior to data submittal so that additional corrective action can be taken, if appropriate.
- If the recovery of a surrogate compound in the method blank is outside the recovery limits, the blank will be reanalyzed along with all samples associated with that blank. If the surrogate recovery is still outside the limits, the LAI Project Manager will be notified immediately to discuss whether analyses may proceed.
- If quantitation limits or matrix spike control limits cannot be met for a sample, the LAI Project Manager will be notified immediately to discuss corrective action required.
- With the exception of TCLP analyses, if holding times are exceeded, all positive and undetected results may need to be qualified as estimated concentrations. If holding times are grossly exceeded, the LAI Project Manager may determine the data to be unusable.

If analytical conditions are such that nonconformance with this QAPP is indicated, the LAI Project Manager will be notified as soon as possible so that any additional corrective actions can be taken. The Analytical Laboratory Project Manager will then document the corrective action by a memorandum submitted to LAI. A narrative describing the anomaly; the steps taken to identify and correct the anomaly; and any recalculation, re-analyses, or re-extractions will be submitted with the data package in the form of a cover letter.

7.0 DATA VERIFICATION AND VALIDATION

All data will be verified and validated to determine that the results are acceptable and meet the quality objectives described in Section 3.0. Prior to submitting a laboratory report, the laboratory will verify that all the data are consistent, correct, and complete, with no errors or omissions.

Validation of the data will be performed in accordance with guidance from applicable portions of the National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA 2016a), the National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2016b), analytical methods, LAI data validation standard operating procedures, and this QAPP. LAI will conduct an EPA Level IIA-equivalent validation and verification, the components of which are listed below. Level IIA validation is performed primarily from information contained on sample result forms and sample related QC summary forms; raw data is not reviewed during this process.

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were conducted.
- Verification that quality control samples were analyzed as specified in this QAPP and the Waste Characterization Plan.
- Evaluation of sample holding times. Ecology and EPA have agreed that, due to the length of time the mixed material has been in the storage units, TCLP samples held longer than the method holding time will be considered valid with respect to the holding time as long as they were stored in the appropriate containers at the required temperature.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, laboratory duplicate and/or replicate results, and laboratory control sample results. Due to the inherent heterogeneity of the sample matrix and in accordance with National Functional Guidelines for Organic Data Review (EPA 2016b) and the National Functional Guidelines for Inorganic Data Review (EPA 2016a), field duplicate results that exceed the specified control limit will not be rejected, rather they will be qualified as estimated.
- Evaluation of reporting limits compared to target reporting limits specified in the QAPP and the Waste Characterization Plan.

In the event that a portion of the data is outside the DQO limits or the EPA guidance (EPA 2016a, b), or sample collection and/or documentation practices are deficient, corrective action(s) will be initiated. Corrective action, as described in Section 6.0, will be determined by the LAI's QA officer in consultation with the LAI Project Manager and may include any of the following:

Rejection of the data and resampling

- Qualification of the data
- Modified field and/or laboratory procedures.

If the available data for use in decision making is less than the completeness MQO of 90 percent, the LAI Project Manager will notify Emerald Kalama and Fire Mountain Farms, who will in turn discuss and determine the potential impacts to decision making and the appropriate corrective action with the Ecology and EPA Project Managers.

8.0 DATA MANAGEMENT PROCEDURES

All laboratory analytical results, including QC data, will be submitted electronically to LAI by the analytical laboratory. Analytical data will be provided by the laboratory in an electronic (pdf) report format and an Electronic Data Deliverable (EDD). Project EDDs will be compared to the laboratory report for accuracy and completeness. Laboratory deliverables will be saved in the project folder, which is on a secure server that is routinely backed up. The LAI quality reviewer for this project is responsible to the LAI Project Manager for conducting checks for internal consistency, transmittal errors, laboratory protocols, and for complete adherence to the QC elements in this work plan.

9.0 REFERENCES

Ecology. 2004. Guidelines for Preparating Quality Assurance Project Plans for Environmental Studies. Publication No. 04-03-030. Washington State Department of Ecology. July.

EPA. 2002. Guidance for Quality Assurance Project Plans, EPA QA/G-5. EPA/240/R-02-009. US Environmental Protection Agency. December.

EPA. 2016a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Publication No. OLEM 9355.0-133, EPA-540-R-2016-001. Office of Superfund Remediation and Technology Innovation (OSRTI), US Environmental Protection Agency. September.

EPA. 2016b. National Functional Guidelines for Organic Superfund Methods Data Review. Publication No. OLEM 9355.0-134, EPA-540-R-2016-002. Office of Superfund Remediation and Technology Innovation (OSRTI), US Environmental Protection Agency. September.

NELAC. 2009. 2009 TNI Standard, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis. The NELAC Institute. September 8.

Table E-1
Measurement Quality Objectives
Quality Assurance Project Plan
Fire Mountain Farms Storage Units
Lewis County, Washington

DQI	QC Sample or Activity Used to Assess MQO	мдо	Frequency	Sampling or Analytical DQI
	Mixed Material Samples Analyzed for Vola	tile Organic Compounds by SW-846 8	260C or 8015C	
Representativeness	Cooler Temperature	< 6°C	All project samples	S
Bias	Surrogates	Recoveries within laboratory- specified control limits	All project and QA samples	А
Accuracy	LCS/LCSD	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	А
Precision	LCS/LCSD and MS/MSD	PDs within laboratory-specified 1 per 20 samples or one per ontrol limits analytical batch		А
Method performance for matrix, bias	MS/MSD	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	S&A
Precision	Field Duplicates	RPD <50%	1 per 20 samples or one per analytical group	S&A
Bias/Contamination	Method Blank, Trip Blank	Target analytes not detected at concentrations > 1/2 the RL	1 method blank per 20 samples, 1 every 12 hours, or 1 per analytical batch	S&A
Analytical Completeness	Number of usable (not rejected) results out of total number of results	90%	N/A	S&A
Field Completeness	Number of samples collected out of planned samples	90%	N/A	S

Table E-1
Measurement Quality Objectives
Quality Assurance Project Plan
Fire Mountain Farms Storage Units
Lewis County, Washington

DQI	QC Sample or Activity Used to Assess MQO	МОО	Frequency	Sampling or Analytical DQI		
Mixe	ed Material Samples Analyzed for Total or 1	TCLP Semivolatile Organic Compound	s by SW-846 8270D			
Representativeness	Cooler Temperature	< 6°C	All project samples	S		
Bias	Surrogates	Recoveries within laboratory- specified control limits Recoveries within laboratory- specified control limits Reposition of the project and QA samples 1 per 20 samples or one per analytical batch 1 per 20 samples or one per analytical batch		Α		
Accuracy	LCS/LCSD	Recoveries within laboratory- specified control limits	' '	Α		
Precision	LCS/LCSD and MS/MSD	RPDs within laboratory-specified control limits	· · · · · · · · · · · · · · · · · · ·	А		
Method performance for matrix, bias	MS/MSD	Recoveries within laboratory- specified control limits	, , , , , , , , , , , , , , , , , , , ,			
Precision	Field Duplicates	RPD <50%	1 per 20 samples or one per analytical group	S&A		
Bias/Contamination	Method Blank	Target analytes not detected at concentrations > 1/2 the RL	1 method blank per 20 samples, 1 every 12 hours, or 1 per analytical batch	S&A		
Analytical Completeness	Number of usable (not rejected) results out of total number of results	90%	N/A	S&A		
Field Completeness	Number of samples collected out of planned samples	90%	N/A	S		

Table E-1
Measurement Quality Objectives
Quality Assurance Project Plan
Fire Mountain Farms Storage Units
Lewis County, Washington

DQI	QC Sample or Activity Used to Assess MQO	мдо	Frequency	Sampling or Analytical DQI	
	Mixed Material Samples Analyzed fo	r Polychlorinated Biphenyls by SW-8	46 8082A		
Representativeness	Cooler Temperature	< 6°C	All project samples	S	
Bias	Surrogates	Recoveries within laboratory- specified control limits	А		
Accuracy	LCS/LCSD	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	А	
Precision	LCS/LCSD and MS/MSD	RPDs within laboratory-specified control limits	А		
Method performance for matrix, bias	MS/MSD	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	S&A	
Precision	Field Duplicates	RPD <50%	1 per 20 samples or one per analytical group	S&A	
Bias/Contamination	Method Blank	Target analytes not detected at concentrations > 1/2 the RL	1 method blank per 20 samples, 1 every 12 hours, or 1 per analytical batch	S&A	
Analytical Completeness	Number of usable (not rejected) results out of total number of results	90%	N/A	S&A	
Field Completeness	Number of samples collected out of planned samples	90%	N/A	S	

Table E-1
Measurement Quality Objectives
Quality Assurance Project Plan
Fire Mountain Farms Storage Units
Lewis County, Washington

DQI	QC Sample or Activity Used to Assess MQO	мдо	Frequency	Sampling or Analytical DQI
	Mixed Material Samples Analyzed	for Total or TCLP Metals by SW-846	6010C	
Representativeness	Cooler Temperature	< 6°C	All project samples	S
Accuracy	LCS	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	Α
Precision	LCS and MS/Laboratory Duplicate	RPDs within laboratory-specified control limits	1 per 20 samples or one per analytical batch	А
Method performance for matrix, bias	MS/Laboratory Duplicate	Recoveries within laboratory- specified control limits	1 per 20 samples or one per analytical batch	S&A
Precision	Field Dunlicates RPD <50% '		1 per 20 samples or one per analytical group	S&A
Bias/Contamination	Method Blank	Target analytes not detected at concentrations > 1/2 the RL	1 method blank per 20 samples, 1 every 12 hours, or 1 per analytical batch	S&A
Analytical Completeness	Number of usable (not rejected) results out of total number of results	90%	N/A	S&A
ield Completeness Number of samples collected out of planned samples		90%	N/A	S

Abbreviations/Acronyms:

A = analytical MSD = matrix spike duplicate

 $^{\circ}$ C = degrees Celsius N/A = not applicable DQI = data quality indicator QC = quality control LCS = laboratory control spike RL = reporting limit

LCSD = laboratory control spike RPD = relative percent difference

MQO = measurement quality S = sampling

MS = matrix spike TCLP = toxicity characteristic leaching procedure

Table E-2 Method Detection Limits and Reporting Limits Quality Assurance Project Plan Fire Mountain Farms Storage Units Lewis County, Washington

	ARI Method	ARI Reporting	ARI TCLP
Analytes	Detection Limit	Limit ¹	Reporting Limit ²
VOCs by SW-846 8260C			
Acetone	45.2 μg/kg	250 μg/kg	
Benzene	8.20 μg/kg	50.0 μg/kg	
Toluene	8.60 μg/kg	50.0 μg/kg	
Acrylonitrile	14.7 μg/kg	250 μg/kg	10 μg/L
VOCs by SW-846 8015C			
Methanol	3.84 mg/kg	10.0 mg/kg	
SVOCs by SW-846 8270D			
4-Methylphenol	22.4 μg/kg	67.0 μg/kg	20 μg/L
2,4-Dinitrotoluene	96 μg/kg	330 μg/kg	30 μg/L
2,6-Dinitrotoluene	96 μg/kg	330 μg/kg	30 μg/L
Naphthalene	14.9 μg/kg	67.0 μg/kg	10 μg/L
PCBs by SW-846 8082A			
Aroclor 1016	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1221	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1232	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1242	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1248	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1254	8.00 μg/kg	20.0 μg/kg	10 μg/L
Aroclor 1260	9.28 μg/kg	20.0 μg/kg	10 μg/L
Metals by SW-846 6010C			
Cobalt	0.0439 mg/kg	0.300 mg/kg	0.0150 mg/L

- 1. Project samples will be reported on an as-received basis. Reporting limits may be elevated as a result of sample dilution required due to presence of other chemicals.
- 2. Reporting limits may be elevated as a result of sample dilution required due to the presence of other chemicals.

Abbreviations/Acronyms:

ARI = Analytical Resources, Inc.

μg/kg = micrograms per kilogram

 μ g/L = micrograms per liter

mg/kg = milligram per kilogram

mg/L = milligram per liter

PCB = polychlorinated biphenyl

SVOC = semivolatile organic compound

TCLP = toxicity characteristic leaching procedure

VOC = volatile organic compound

Waste Characterization Report, Fire Mountain Farms Newaukum Prairie Storage Unit, Lewis County, Washington (Landau Associates, Inc. October 2017)

Waste Characterization Report Fire Mountain Farms Newaukum Prairie Storage Unit Lewis County, Washington

October 12, 2017

Prepared for

Perkins Coie LLP Emerald Kalama Chemical, LLC

Waste Characterization Report Fire Mountain Farms Newaukum Prairie Storage Unit Lewis County, Washington

This document was prepared by, or under the direct supervision of, the technical professionals noted below.

Document prepared by: Kenneth J. Reid

Senior Geologist, LEG

Kenneth J. Reid

Date: October 12, 2017
Project No.: 0066045.040.041

File path: P:\066\045\R\Waste Characterization Report - Newaukum Prairie\Final Report\FMF_NP Waste Char Data

Rpt_101217.docx Project Coordinator: kes

TABLE OF CONTENTS

	<u>PAGE</u>
INTRODUCTION	1
MIXED MATERIAL SAMPLING	2
MIXED MATERIAL ANALYTICAL RESULTS	3
DECONTAMINATION AND WASTE MANAGEMENT	4
CONCLUSIONS	4
USE OF THIS REPORT	5
REFERENCES	5

FIGURES

- Figure 1. Vicinity Map
- Figure 2. Mixed Material Sampling Locations

TABLES

- Table 1. Mixed Material Sources
- Table 2. Mixed Material Sample Collection Log
- Table 3. Waste Characterization Analytical Results

APPENDIX

Appendix A. Laboratory Report and Data Validation Memorandum

INTRODUCTION

This report documents the waste characterization activities conducted in August and September 2017 to evaluate the mixed material present in the Fire Mountain Farms, Inc. (FMF) Newaukum Prairie storage unit located in Lewis County, Washington (Figure 1). The data collection, sampling, and analysis discussed in this report was conducted in accordance with the July 27, 2017 Waste Characterization Plan (LAI 2017b) approved by the Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA) (Ecology 2017).

Landau Associates, Inc. (LAI) was retained by Perkins Coie LLP (Perkins) on behalf of Emerald Kalama Chemical, LLC (Emerald), to provide technical support and environmental services related to Administrative Order No. 10938 (Administrative Order) issued by Ecology to Emerald and FMF (Ecology 2014) and the Agreement for Conditional Compliance with Ecology Administrative Order No 10938 During Judicial Review (Agreement) between Ecology, Emerald, and FMF, dated June 3, 2016 (Ecology 2016a).

The FMF Newaukum Prairie storage unit is located at 349 State Route 508, in Chehalis, Washington (Figure 1). The storage unit is approximately square with a constructed berm on each side (Figure 2). According to the original design drawing, each side of the storage unit is approximately 220 feet (ft) in length with a total depth of 12 ft (Thode 1998). The berms are sloped 3H:1V on the interior and 2H:1V on the exterior of the storage unit, and the inside face of the berms is lined with a 3-ft layer of compacted clay, according to the design drawing (Thode 1998). According to FMF, the storage unit was reconstructed and relined in 2013 and has a total depth of approximately 14 ft; the bottom of the storage unit reportedly has dimensions of roughly 148 ft by 148 ft (Figure 6) (Thode 2013). The storage unit is lined with a dual liner system consisting of a 60 mil high-density polyethylene (HDPE) primary liner, a geonet leak detection layer, and a 30 mil HDPE secondary liner.

The Newaukum Prairie storage unit was used to hold biosolids, industrial wastewater treatment biological solids (IWBS), and wastewater-generated material from other sources. This material will be referred to in this report as "mixed material." The sources of the mixed material are listed in Table 1. According to Ecology, the IWBS received from Emerald are a listed dangerous/hazardous waste. Ecology alleges that Emerald's IWBS carry two listed hazardous waste codes: U019 (benzene) and U220 (toluene). As part of the Agreement, Emerald and FMF will petition Ecology and the EPA to delist the mixed material in this storage unit. The work completed in this report supports this delisting objective.

Ecology developed preliminary delisting levels for the Newaukum Prairie storage unit based on maximum allowable total concentrations (PDLs) and maximum allowable toxicity characteristic leaching procedure (TCLP) concentrations (TCLP-PDLs) using EPA's Hazardous Waste Delisting Risk Assessment Software and provided them to Emerald (Ecology 2016b). As described in the Waste

Characterization Plan, the previously existing analytical data from a 2014 investigation conducted by Pacific Groundwater Group (PGG) for FMF (PGG 2014) and a 2017 analysis of total and TCLP cobalt (LAI 2017a) demonstrate that concentrations in the material in the Newaukum Prairie storage unit are below the PDLs and TCLP-PDLs.

The sampling described in this report was conducted to provide analytical data for comparison to the concentration-based Land Disposal Restriction (LDR) levels for the purpose of evaluating compliance with these criteria in the event the waste is delisted. The samples were analyzed for the waste codes corresponding to acetone (F003), benzene (U019), methanol (U154), and toluene (U220), as requested by the EPA and Ecology. The analytical data from this sampling demonstrate that the mixed material concentrations in the Newaukum Prairie storage unit are below the LDR levels for each of these parameters.

MIXED MATERIAL SAMPLING

LAI staff collected the mixed material samples from the Newaukum Prairie storage unit on August 28 and 29, 2017 in accordance with the Waste Characterization Plan. In the Waste Characterization Plan, the storage unit was divided into 25 ft by 25 ft grids and 17 grid squares to be sampled were determined using the simple random sampling strategy. After staking out a basic sampling grid along the perimeter of the storage unit for points of reference, a 12-ft aluminum row boat was used to access the sampling locations. A Trimble global positioning system (GPS) with a sub-meter accuracy was used to navigate to each sampling location. As shown on Figure 2, a sample was collected in each of the 17 grid locations identified in the Waste Characterization Plan. Each sample was collected in the approximate center of the grid, except four samples in grids where the water overlying the mixed material was not deep enough to allow for unimpeded navigation by the sampling boat (grids B2, B6, C5, and D2). In those grids, the sampling location was moved slightly and the sample was collected from an accessible portion of the grid. All grids identified for sampling had a total depth of mixed material of greater than 2 ft; therefore, no sample locations were moved from the identified location due to insufficient sludge in the grid.

At the time of sample collection, the water cap covering the mixed material ranged from 0 to 6 ft in depth. The Waste Characterization Plan states that samples would be collected if the water cap was at least 1 ft deep. The purpose of this requirement was to allow for safe passage of the boat used for sampling. Because the surface of the mixed material varied and therefore the water cap depth varied, the boat was able to navigate to each of the grids identified for sampling to safely to collect a sample regardless of water cap thickness. In addition, because the sampling boat was protected from the wind by the storage unit berm, ropes were not necessary to hold it in place during sampling. This is a minor deviation from the work plan; however, the work was completed consistent with the intent of the plan.

At each sampling location, LAI field staff recorded the grid location, sample name, date and time of sample collection, and thickness of the water cap, calculated the thickness of the mixed material, and described the color, viscosity, density, odor, and the presence of any debris. This information is presented on Table 2.

The mixed material was sampled with a custom-made, 2-inch diameter, clear sludge sampler with a flapper valve to maximize sample retention (developed and constructed by FMF). Following collection in the sampling tube, mixed material was placed in a stainless steel bowl and samples for volatile organic compounds (VOC) analysis were immediately collected. The mixed material in the bowl was then homogenized and collection of the samples for determination of pH and total solids was completed. Samples were placed in laboratory supplied jars, filled to minimize headspace in the container, and labeled with appropriate site and sampling location information. The sample identification nomenclature was as follows:

Newaukum Prairie -
$$G$$
rab – Grid Number

 V
 V
 V
 V

The samples were placed in a cooler on ice immediately after sampling and delivered to the analytical laboratory, Analytical Resources, Inc. of Tukwila, Washington, by LAI under standard chain-of-custody procedures within 6 days of sample collection.

MIXED MATERIAL ANALYTICAL RESULTS

All 17 samples (and one duplicate sample) were analyzed for the following chemical constituents:

- Benzene, toluene, acetone by EPA Method 8020C
- Methanol by EPA Method 8015C
- Total Solids by EPA Method SM 2540G
- pH by EPA 9045D.

The analytical results underwent data validation and verification by LAI, were compared to the Land Disposal Restriction Levels (LDRs) for non-wastewater, and are provided in Table 3. All data is acceptable with no qualifications and the data completeness is 100 percent. Results are reported on an as-received basis in accordance with section 8.2 of the EPA Delisting Guidance (EPA 1993). The laboratory report and data validation report are provided as Appendix A.

The analytical results for mixed material samples are presented in Table 3 and are briefly summarized below:

VOCs:

- Benzene was not detected above the laboratory reporting limit, which ranged from 0.88 to 0.99 micrograms per kilogram ($\mu g/kg$). All reporting limits are less than the benzene LDR of 10,000 $\mu g/kg$.
- Toluene was detected at concentrations ranging from 8.81 to 300 μg/kg. All measured concentrations are less than the toluene LDR of 10,000 μg/kg.
- Acetone was detected at concentrations ranging from 32.2 to 175 μg/kg. All measured concentrations are less than the acetone LDR of 160,000 μg/kg.

Methanol:

Methanol was not detected above the laboratory reporting limit, which ranged from 9.1 to 10.0 micrograms per kilogram (mg/kg). Although the methanol LDR is identified as a TCLP concentration, analytical limitations would produce a reporting limit greater than the LDR limit. As described in the Waste Characterization Plan, samples were analyzed for total methanol and the results are compared to the TCLP LDR using the rule of 20. All reporting limits are less than the methanol LDR multiplied by 20 (rule of 20) of 15 mg/kg.

Total Solids:

 Total solids ranged from 5.55% to 10.46%. There are no regulatory criteria for total solids.

pH:

 pH ranged from 7.26 to 7.81. The pH demonstrates the mixed material does not exhibit the characteristic of corrosivity.

DECONTAMINATION AND WASTE MANAGEMENT

Before the initial sampling and between every sample collected, all sampling equipment was rinsed with tap water to remove the solids, washed with Alconox soap, rinsed in tap water to remove the Alconox, and then rinsed in DI water.

All decontamination water and unused mixed material collected during this sampling effort was discharged to the storage unit at the toe of the loading ramp. The E1 and E2 samples were collected prior to the discharge to avoid any potential impacts to the samples near the ramp.

CONCLUSIONS

All mixed material samples were collected and analyzed in accordance with the Waste Characterization Plan. No deviations from the Waste Characterization Plan were necessary, except as described previously in this report. All samples meet the LDRs for acetone, benzene, toluene, and methanol. No additional sampling or hot spot delineation is necessary.

USE OF THIS REPORT

This waste characterization report has been prepared for the exclusive use of Perkins Coie LLP and their client, Emerald Kalama Chemical, LLC, and applicable regulatory agencies for specific application to the Fire Mountain Farms Newaukum Prairie storage unit. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of LAI. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

REFERENCES

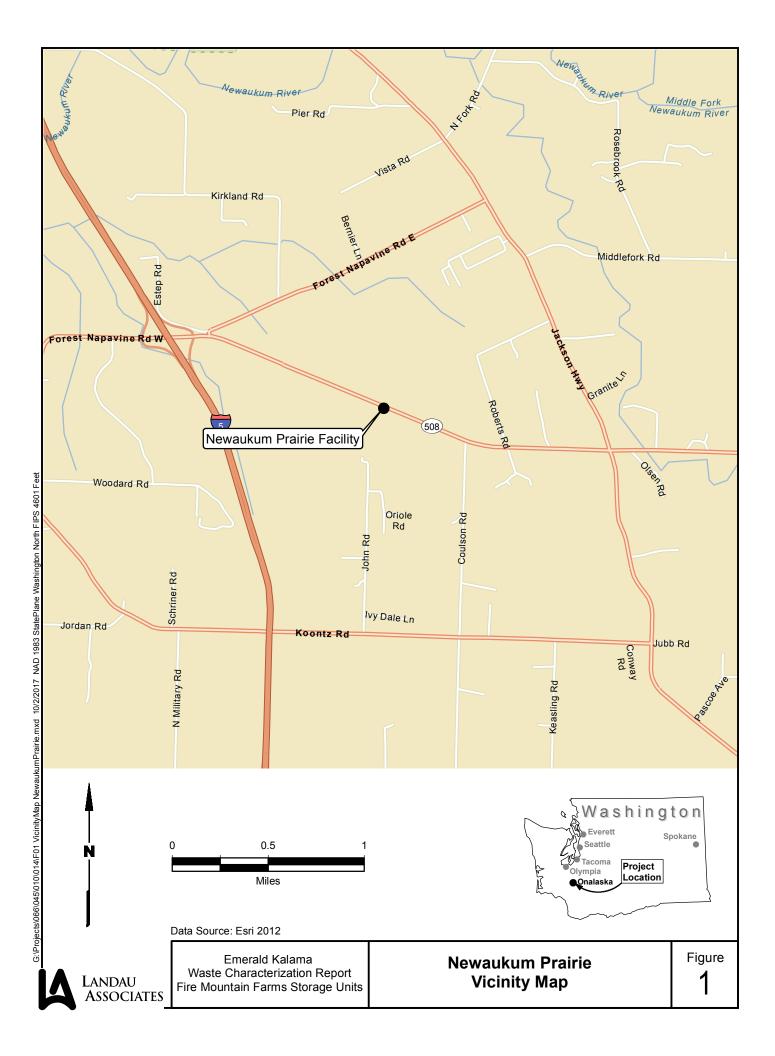
Ecology. 2014. Letter: Administrative Order No. 10938. From Laurie G. Davies, Waste 2 Resources Program Manager, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 11.

Ecology. 2016a. Agreement for Conditional Compliance with Ecology Administrative Order No. 10938 During Judicial Review. Washington State Department of Ecology. June 3.

Ecology. 2016b. Letter: EPA and Ecology Comments to Waste Characterization Plan. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical, LLC. September 23.

Ecology. 2017. Letter: Waste Characterization Plan Approval. From Laurie G. Davies, Waste 2 Resources Program, Washington State Department of Ecology, to Jarrod Kocin, Emerald Kalama Chemical LLC. August 8.

EPA. 1993. Petitions to Delist Hazardous Wastes: A Guidance Manual. US Environmental Protection Agency. March.


LAI. 2017a. Cobalt Characterization Report, Fire Mountain Farms Newaukum Prairie & Burnt Ridge Impoundments, Lewis County, Washington. Landau Associates, Inc. June 2.

LAI. 2017b. Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units, Lewis County, Washington. Landau Associates, Inc. July 27.

PGG. 2014. Fire Mountain Farms, Inc. Results of Investigation of Sludge at Three Storage Sites. Pacific Groundwater Group. September 11.

Thode, James. 1998. Design Drawings: Fire Mountain Farms Burnt Ridge Lagoon and Newaukum Prairie Lagoon. August.

Thode, James. 2013. Drawings: Biosolids Lagoon Lining Project: Newaukum Prairie Storage Unit As-Built. October 3.

Table 1 Mixed Material Sources

Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

	Amount
Biosolids Source	(tons)
Emerald Kalama Chemical, LLC	24.7
Kitsap Municipal Wastewater Treatment Plant	66.7
Castle Rock Municipal Wastewater Treatment Plant	2.1
West Sound Utility District Wastewater Treatment Plant	42.8
Camas Municipal Wastewater Treatment Plant	20.4
McCleary Municipal Wastewater Treatment Plant	3.0
Aberdeen Municipal Wastewater Treatment Plant	49.7
Kalama Municipal Wastewater Treatment Plant	2.1
Gig Harbor Municipal Wastewater Treatment Plant	34.8
Grand Mound Municipal Wastewater Treatment Plant	8.0
Darigold - Wastewater Treatment Plant	21.1
Ocean Shores Municipal Wastewater Treatment Plant	30.9
Lacey Olympia Tumwater Thurston County Wastewater Treatment Plant	31.2
Port of Longview - Catch Basin Solids	1.1
Lewis County Water Sewer District 6 Municipal Wastewater Treatment Plant	1.3
Tot	al 340.0

Table 2 Mixed Material Sample Collection Log Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

Grid	Sample ID	Sample Date	Sample Time	Water Depth (ft)	Mixed Material Thickness* (ft)	Sampling Tube Length (ft)	Sample Tube Stickup (above water surface at full push depth) (ft)	Sample Description	Comments
E2	NP-G-E2	8/28/2017	13:20	6.65	2.25	12.3	3.4	Black, fine-grained organics with trace wood debris; sewage-like odor (very soft, wet)	
E4	NP-G-E4	8/28/2017	13:45	2.9	5.4	12.3	4.0	Black, fine-grained organics with trace wood debris; sewage-like odor (very soft, wet)	NP-G-Dup1 @ 13:00
E6	NP-G-E6	8/28/2017	14:45	0.65	7.25	12.3	4.4	Black, fine-grained organics with trace small gravel; sewage-like odor (very soft, wet)	
E1	NP-G-E1	8/29/2017	8:30	6.0	2.3	12.3	4.0	Black, fine-grained organics; sewage-like odor (very soft, wet)	
A2	NP-G-A2	8/29/2017	9:00	0.0	8.2	12.3	4.1	Black, fine-grained organics; sewage-like odor (very soft, wet)	
F5	NP-G-F5	8/29/2017	9:25	0.0	6.5	12.3	5.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
F3	NP-G-F3	8/29/2017	9:50	6.0	2.5	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
D2	NP-G-D2	8/29/2017	10:10	3.4	5.2	12.3	3.7	Black, fine-grained organics; sewage-like odor (very soft, wet)	
D4	NP-G-D4	8/29/2017	10:30	1.2	7.3	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
D5	NP-G-D5	8/29/2017	11:00	1.3	7.0	12.3	4.0	Black, fine-grained organics with trace wood debris; sewage-like odor (very soft, wet)	
C2	NP-G-C2	8/29/2017	12:35	1.5	7.0	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
C4	NP-G-C4	8/29/2017	13:00	1.3	7.2	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
C5	NP-G-C5	8/29/2017	13:15	0.9	7.3	12.3	4.1	Black, fine-grained organics; sewage-like odor (very soft, wet)	
C6	NP-G-C6	8/29/2017	13:55	0.0	8.3	12.3	4.0	Black, fine-grained organics; sewage-like odor (very soft, wet)	
B2	NP-G-B2	8/29/2017	14:20	1.5	7.0	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
В3	NP-G-B3	8/29/2017	14:40	1.2	7.3	12.3	3.8	Black, fine-grained organics; sewage-like odor (very soft, wet)	
В6	NP-G-B6	8/29/2017	15:00	0.0	8.3	12.3	4.0	Black, fine-grained organics; sewage-like odor (very soft, wet)	

Notes:

 $\hbox{* Calculated Mixed Materials Thickness = Sampling Tube Length - Sample Tube Stickup - Water Depth}\\$

E2 = Grid Location

ft = Feet

G = Grab Sample

NP = Newaukum Prarie

Table 3 Waste Characterization Analytical Results Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

			Grid Location, Sample Location, Laboratory Sample ID, and Sample Date									
				Grid A2	Grid B2		Grid B3		Grid B6	Grid C2		Grid C4
Analyte	CAS No.	Land Disposal Restriction Level (non- wastewater)	Land Disposal Restriction Level x 20	NP-G-A2 1710005-05 8/29/2017	NP-G-B2 1710005-15 8/29/2017		NP-G-B3 1710005-16 8/29/2017		NP-G-B6 1710005-17 8/29/2017	NP-G-C2 1710005-11 8/29/2017		NP-G-C4 1710005-12 8/29/2017
Volatile Organic Compounds (ug/k	g; EPA Meth	od 8260C)										
Acetone	67-64-1	160,000		124	37.6		93.7		32.2	88.6		37.8
Benzene	71-43-2	10,000		0.98 U	0.96	U	0.96	U	0.89 U	0.89	U	0.91 U
Toluene	108-88-3	10,000		16.0	17.0		19.1		8.81	17.3		13.2
Volatile Organic Compounds (mg/k	ı kg; EPA Metl	nod 8015C)										
Methanol	67-56-1	0.75 mg/L (a)	15 mg/kg	10.0 U	10.0	C	9.1	U	9.9 U	9.6	U	9.8 U
Conventionals												
pH (std units; EPA Method 9045D)				7.33	7.57		7.43		7.44	7.47		7.37
Total Solids (%; SM2540 G-97)				7.75	8.29		8.04		8.60	8.39		7.88

Table 3 Waste Characterization Analytical Results Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

		Grid Location, Sample Location, Laboratory Sample ID, and Sample Date											
				Grid C5	Grid C6	Grid D2		Grid D4		Grid D5		Grid E1	
Analyte	CAS No.	Land Disposal Restriction Level (non- wastewater)	Land Disposal Restriction Level x 20	NP-G-C5 1710005-13 8/29/2017	NP-G-C6 1710005-14 8/29/2017	NP-G-D2 1710005-08 8/29/2017		NP-G-D4 1710005-09 8/29/2017		NP-G-D5 1710005-10 8/29/2017		NP-G-E1 1710005-04 8/29/2017	
Volatile Organic Compounds (ug/kg	g; EPA Meth	od 8260C)											
Acetone	67-64-1	160,000		38.1	39.7	72.8		84.1		76.3		175	
Benzene	71-43-2	10,000		0.97 U	0.94 U	0.96	U	0.96	U	0.93	U	0.94	U
Toluene	108-88-3	10,000		13.8	16.0	22.9		20.3		15.9		300	
Volatile Organic Compounds (mg/k	ı (g; EPA Metl	nod 8015C)											
Methanol	67-56-1	0.75 mg/L (a)	15 mg/kg	9.7 U	9.1 U	9.5	U	10.0	U	9.9	U	9.9	U
Conventionals													
pH (std units; EPA Method 9045D)				7.46	7.43	7.42		7.53		7.44		7.67	
Total Solids (%; SM2540 G-97)				8.16	8.65	8.61		9.71		8.05		8.64	

Table 3 **Waste Characterization Analytical Results** Fire Mountain Farms Newaukum Prairie Mixed Material Storage Unit Lewis County, Washington

			Grid Location, Sample Location, Laboratory Sample ID, and Sample Date									
				Grid E2		Grid	d E4		Grid E6	Grid F3		Grid F5
Analyte	CAS No.	Land Disposal Restriction Level (non- wastewater)	Land Disposal Restriction Level x 20	NP-G-E2 1710005-01 8/28/2017	NP-G-E4 1710005-02 8/28/2017		Dup of NP-G- NP-G-DUP1 1710005-18 8/29/2017	<u>L</u>	NP-G-E6 1710005-03 8/28/2017	NP-G-F3 1710005-07 8/29/2017		NP-G-F5 1710005-06 8/29/2017
Volatile Organic Compounds (ug/k	g; EPA Meth	od 8260C)										
Acetone	67-64-1	160,000		34.0	82.9		111		46.3	103		78.7
Benzene	71-43-2	10,000		0.95 U	0.99	U	0.88	U	0.91 U	0.88	C	0.95 U
Toluene	108-88-3	10,000		261	25.1		36.0		17.0	127		18.6
Volatile Organic Compounds (mg/k	ı kg; EPA Metl	nod 8015C)										
Methanol	67-56-1	0.75 mg/L (a)	15 mg/kg	9.8 U	10.0	U	9.7	U	9.8 U	9.0	U	10.0 U
Conventionals												
pH (std units; EPA Method 9045D)				7.26	7.42		7.40		7.51	7.81		7.52
Total Solids (%; SM2540 G-97)				5.55	8.85		10.46		8.57	9.07		8.78

Notes:

(a) This LDR is a TCLP level; analytical limitations would produce a reporting limit greater than the LDR. The total methanol concentration is compared to the TCLP ID = identification LDR using the rule of 20.

U = Indicates the compound was not detected at the reported concentration.

Bold = Detected concentration

-- = not applicable

Abbreviations and Acronyms:

EPA = US Environmental Protection Agency

ug/kg = micrograms per kilogram

mg/L = milligrams per liter

Laboratory Report and Data Validation Memorandum

14 September 2017

Ken Reid Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Fire Mountain Farms- Newaukum Prairie

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)
Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Sel Both

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

ACCA

PJLA Testing
Accreditation # 66169

| Seattle/Edmonds (425) 778-0907 | Tacoma (253) 926-2493 | Spokane (509) 327-9737 | Portland (503) 542-1080 |

of Date Page

Date 7/1/17 Page 1 of 1		T. Constitution of T.	Standard	Accelerated		Observations/Comments		Allow water samples to settle, collect aliquot from clear portion	T. T	NW IPH-UX - run acid wash silica gel cleanup	Analyze for EPH if no specific product	identified	III STEED AND THE	VOC/BIEX/VPH (SOII):	non-preserved	preserved w/methanol	preserved w/sodium bisulfate	Freeze upon receipt	Dissolved metal water samples field filtered	Other // /	100 R P				Method of LAI	Received by	Signature
(School) S	Testing Parameters						;	×															W.		N Sh	Re	JS SIE
ecord	7	S. S	3	500 A 100 700 700 700 700 700 700 700 700 700	100	A ST		, s	· '}	, 'Y	K.	イイ	X X	スネ	4	K	4.	+	* *	7 7	**	<i>i</i>	* *	7		Relinquished by	Signature
Chain-of-Cu	₹	Preme		Allisa Brasen);	No. of Containers	ru		4	*	*	*	3	X	*	*	7	7	*	*	>	٨	\ \ \	7		(100	THE HOM
Seattle/Edmonds (425) 778-0907 Tacoma (253) 926-2493 Spokane (509) 327-9737 Portland (503) 542-1080	Farms Project No. 06604	3	Down Brendt	which sen /		Date Time Matrix	7 1320	345	7 1445	8/24/17 0830 /	00900 /	0925	0550	0/0	1030	0011	1235	1300	(3.15	1355	1420	1440	V 1500 V	8/18/11 1300	3	Received by	Signature A WWY & Th
LANDAU Tacoma (A Sasociatie/E Spokane (B Spokane C Spoka	Project Name Fire Manths Fa	Project Location/Event	Sampler's Name Lea Red	/ " "	Send Results To	Sample I.D.	NP-6-E2	NP-67-E4	NP-4- 66	NP-67- EI	NP-64- 42		1		NP-64- DH	No-ca- 05	NP-61- C2	NP-9-64	ND-9-15	X	' X	1	-6 - B6	NP-62-DUPI	Special Shipment/Handling or Storage Requirements めいづし	Relinquished by	Signature /

12/2014

Time

Printed Name

Printed Name Signature

Printed Name Shelly FISHE

Printed Name Signature

Company Date

Company

Date

PINK COPY - Client Representative Time

YELLOW COPY - Laboratory

WHITE COPY - Project File

Time 0947

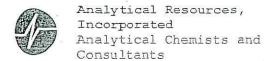
Date 9/11/17

Time 6947

Date 9/ Company

Company

Project No. 066045 W.M. — We was been previous Bread Alliss Brasser 1345 1030 1030 1100 1235 1355 1420 1410 1500 1610 1700 1	Page of of	Testing Varameters		/////	Accelerated]	Observations/Comments	,	Allow water samples to settle, collect aliquot from clear portion	energy lon coilin down bive any - MATDH-NA	ייי איי וייי איי דרודיטא - דיווי מכום שמאון אווכם צפו כופמו	— Analyze for EPH if no specific product	identified	VOC/DITEX AVBIL (2011).	VOC/BIEA/VFH (soil):	non-preserved	preserved w/mechanol	preserved W/sodium bisuitate		—— Dissolved metal water samples held hitered	Other C. 35	Sio D			Method of bAI	Received by	Signature	Printed Name	Company
242-1080 Project No. 066045 W.A We want ham. Prairie Browned A. Missu Brassen. No. of		کر ج	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	るべき	TA.	les de la	A CALLED	4		,									-							Relinquished by	Signature	Frinted Name	Company
242-1080 Project No W.A. — Lychickswell 1345 1100 1100 1100 1235 1345 1345 1345 1345 1345 1345 1345 13		2660WS	Drawing		Praser.	**	No. of Containers	70	, , , , , , , , , , , , , , , , , , ,	*	*	S	*	>	>	7	*	*	*	>	7	>		>		1. 37. (m.)	١.	3-	Time
1 (503) 1 (503	Spokane (509) 327-9737 Portland (503) 542-1080		1 43	to soil or	Kris Luchrichson	· ·						0000	0925	09.50	0/0	1030	001	5621	1388	315	1355	1420	1440				9	аше	Company


Cooler Receipt Form

ARI Client: Landau	Project Name: Napavine	
COC No(s):	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:	-
Assigned ARI Job No: 17 I OOS	Teaching Ma	tonoe:
Preliminary Examination Phase:	Tracking No:	NA
Were intact, properly signed and dated custody seals attached to	to the outside of to cooler?	Coi
Were custody papers included with the cooler?		10
Were custody papers properly filled out (ink, signed, etc.)		nut stance
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for che Time:		10
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: 100 250	65
Cooler Accepted by:		
Complete custody forms	s and attach all shipping documents	
Log-In Phase:	*	
Was a temperature blank included in the cooler?	VF0 6	
WARREST AND AND THE SECOND STATE OF THE SECOND	YES (No specifice) Gel Packs Baggies Foam Block Paper Other:	
Was sufficient ice used (if appropriate)?		$\overline{5}$
Were all bottles sealed in individual plastic bags?	123	1
Did all bottles arrive in good condition (unbroken)?		
		0
Were all bottle labels complete and legible?		0
Did the number of containers listed on COC match with the number of containers listed on the number of containers listed on the number of containers listed on con		0
Did all bottle labels and tags agree with custody papers?		0
Were all bottles used correct for the requested analyses?		0
Do any of the analyses (bottles) require preservation? (attach pre	reservation sheet, excluding VOCs) NA YES N	0
Were all VOC vials free of air bubbles?	NA YES N	
Was sufficient amount of sample sent in each bottle?		
Date VOC Trip Blank was made at ARI		O
Was Sample Split by ARI : NA YES Date/Time:	202	-
	Equipment: Split by:	
Samples Logged by: Date	e:	
4)0.00	er of discrepancies or concerns **	
	and the second of the second o	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC	
	Sample ID on Coc	
SE 1		
Additional Notes, Discrepancies, & Resolutions:		
, , , , , , , , , , , , , , , , , , , ,		
	57 g	
F **	The state of the s	
By: Date:	¥ 80	
Small Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm" (<2 mm)	
= 2mm 2-4 mm > 4 mm	Peabubbles > "pb" (2 to < 4 mm)	
	Large → "lg" (4 to < 6 mm)	
	Headspace → "hs" (>6 mm)	8
	The state of the s	

0016F 3/2/10

Cooler Receipt Form

Revision 014

Cooler Temperature Compliance Form

Cooler#: Tempe	erature(°C):	
Sample ID	Bottle Count	Bottle Type
all samples >6.00		,
mor samples / 6.00		
(m) **		(4)
*		
		·
5	*	
9		
Cool #	1(%0)	en .
Cooler#: Tempe	rature(°C): Bottle Count	Down Time
Sample 10	Dottie Count	Bottle Type
		*
		4
	1	
		*
	8	
•		S 10 10 10 10 10 10 10 10 10 10 10 10 10
*		
Cooler#:Tempe	rature(°C):	
Sample ID	Bottle Count	Bottle Type
	1	
*		8
		8
4		
Cooler#: Tempe Sample ID	rature(°C):	I B. W. =
Sample ID	Bottle Count	Bottle Type
	8	9
*	- N	
	*	
Completed by:	Date	e: 91117 Time: 955

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
NP-G-E2	17I0005-01	Solid (as-rec)	28-Aug-2017 13:20	01-Sep-2017 09:47
NP-G-E4	17I0005-02	Solid (as-rec)	28-Aug-2017 13:45	01-Sep-2017 09:47
NP-G-E6	17I0005-03	Solid (as-rec)	28-Aug-2017 14:45	01-Sep-2017 09:47
NP-G-E1	17I0005-04	Solid (as-rec)	29-Aug-2017 08:30	01-Sep-2017 09:47
NP-G-A2	17I0005-05	Solid (as-rec)	29-Aug-2017 09:00	01-Sep-2017 09:47
NP-G-F5	17I0005-06	Solid (as-rec)	29-Aug-2017 09:25	01-Sep-2017 09:47
NP-G-F3	17I0005-07	Solid (as-rec)	29-Aug-2017 09:50	01-Sep-2017 09:47
NP-G-D2	17I0005-08	Solid (as-rec)	29-Aug-2017 10:10	01-Sep-2017 09:47
NP-G-D4	17I0005-09	Solid (as-rec)	29-Aug-2017 10:30	01-Sep-2017 09:47
NP-G-D5	17I0005-10	Solid (as-rec)	29-Aug-2017 11:00	01-Sep-2017 09:47
NP-G-C2	17I0005-11	Solid (as-rec)	29-Aug-2017 12:35	01-Sep-2017 09:47
NP-G-C4	17I0005-12	Solid (as-rec)	29-Aug-2017 13:00	01-Sep-2017 09:47
NP-G-C5	17I0005-13	Solid (as-rec)	29-Aug-2017 13:15	01-Sep-2017 09:47
NP-G-C6	17I0005-14	Solid (as-rec)	29-Aug-2017 13:55	01-Sep-2017 09:47
NP-G-B2	17I0005-15	Solid (as-rec)	29-Aug-2017 14:20	01-Sep-2017 09:47
NP-G-B3	17I0005-16	Solid (as-rec)	29-Aug-2017 14:40	01-Sep-2017 09:47
NP-G-B6	17I0005-17	Solid (as-rec)	29-Aug-2017 15:00	01-Sep-2017 09:47
NP-G-DUP1	17I0005-18	Solid (as-rec)	29-Aug-2017 13:00	01-Sep-2017 09:47

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Case Narrative

Volatiles - EPA Method SW8260C

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

The Matrix Spike/Matrix Spike duplicate recoveries and RPD were within limits.

Methanol - EPA Method SW8015

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements with the exception of CCV1 and CCV2 which are out of control high. All associated samples are non-detect and no further action was required.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

The Matrix Spike/Matrix Spike duplicate recoveries and RPD were within limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S. Project Number: 066045 Reported:
Edmonds WA, 98020 Project Manager: Ken Reid 14-Sep-2017 12:50

Sample duplicate RPDs were within limits.

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E2 17I0005-01 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/28/2017 13:20

 Instrument: NT2
 Analyzed: 07-Sep-2017 14:14

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.29 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.73 Acetone 34.0 ug/kg 71-43-2 U Benzene 1 0.95 ND ug/kg 108-88-3 Е Toluene 0.95 309 1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 98.0 % Surrogate: Toluene-d8 77-120 % 94.3 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E2 17I0005-01 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/28/2017 13:20

 Instrument: FID7
 Analyzed: 08-Sep-2017 14:08

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.08 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.8 U Methanol ND mg/kg Surrogate: o-Cresol 30-160 % 71.6 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E2 17I0005-01 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/28/2017 13:20

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.34 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.26 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E2 17I0005-01 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/28/2017 13:20

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 5.55 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E2 17I0005-01RE1 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/28/2017 13:20

 Instrument: NT2
 Analyzed: 07-Sep-2017 22:33

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 1.04 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 24.0 67-64-1 Acetone 122 ug/kg 71-43-2 ND U Benzene 1 4.81 ug/kg 108-88-3 Toluene 4.81 1 261 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 98.5 % Surrogate: Toluene-d8 77-120 % 95.3 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E4 17I0005-02 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/28/2017 13:45

 Instrument: NT2
 Analyzed: 07-Sep-2017 14:37

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.04 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.96 Acetone 82.9 ug/kg 71-43-2 U Benzene 1 0.99 ND ug/kg 108-88-3 Toluene 1 0.99 25.1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 94.7 % Surrogate: Toluene-d8 77-120 % 94.1 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S. Project Number: 066045 Reported: Edmonds WA, 98020 Project Manager: Ken Reid 14-Sep-2017 12:50

NP-G-E4 17I0005-02 (Solid (as-rec))

Glycols

Method: EPA 8015C Sampled: 08/28/2017 13:45 Instrument: FID7 Analyzed: 08-Sep-2017 14:40

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.02 g (wet)

Prepared: 08-Sep-2017 Final Volume: 2 g

	Prepared: 08-Sep-2017	rmai voiume: 2	g				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	10.0	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	66.5	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E4 17I0005-02 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/28/2017 13:45

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.42 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes
pH 1 0.01 7.42 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E4 17I0005-02 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/28/2017 13:45

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.85 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E6 17I0005-03 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/28/2017 14:45

 Instrument: NT2
 Analyzed: 07-Sep-2017 14:59

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.49 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.55 Acetone 46.3 ug/kg 71-43-2 U Benzene 1 0.91 ND ug/kg 108-88-3 Toluene 0.91 1 17.0 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 94.8 % Surrogate: Toluene-d8 77-120 % 90.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E6 17I0005-03 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/28/2017 14:45

 Instrument: FID7
 Analyzed: 08-Sep-2017 15:11

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.1 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting CAS Number Limit Analyte Dilution Result Units Notes 67-56-1 9.8 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 59.6 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E6 17I0005-03 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/28/2017 14:45

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.29 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.51 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E6 17I0005-03 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/28/2017 14:45

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.57 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E1 17I0005-04 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 08:30

 Instrument: NT2
 Analyzed: 07-Sep-2017 15:22

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.34 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

			Donoutino			
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Acetone	67-64-1	1	4.68	175	ug/kg	
Benzene	71-43-2	1	0.94	ND	ug/kg	U
Toluene	108-88-3	1	0.94	261	ug/kg	Е
Surrogate: 1,2-Dichloroethane-d4			80-149 %	96.0	%	
Surrogate: Toluene-d8			77-120 %	93.7	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E1 17I0005-04 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 08:30

 Instrument: FID7
 Analyzed: 08-Sep-2017 15:43

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.05 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.9 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 62.8 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E1 17I0005-04 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 08:30

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.32 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.67 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E1 17I0005-04 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 08:30

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.64 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-E1 17I0005-04RE1 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 08:30

 Instrument: NT2
 Analyzed: 07-Sep-2017 22:56

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 1.08 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 23.1 Acetone 143 ug/kg 71-43-2 U Benzene 1 4.63 ND ug/kg 108-88-3 Toluene 4.63 300 1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 98.9 % Surrogate: Toluene-d8 77-120 % 96.6 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-A2 17I0005-05 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 09:00

 Instrument: NT2
 Analyzed: 07-Sep-2017 15:45

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.11 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Acetone	67-64-1	1	4.89	124	ug/kg	
Benzene	71-43-2	1	0.98	ND	ug/kg	U
Toluene	108-88-3	1	0.98	16.0	ug/kg	
Surrogate: 1,2-Dichloroethane-d4			80-149 %	96.4	%	
Surrogate: Toluene-d8			77-120 %	90.8	%	

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-A2 17I0005-05 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 09:00

 Instrument: FID7
 Analyzed: 08-Sep-2017 16:14

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.01 g (wet)

Prepared: 08-Sep-2017 Final Volume: 2 g

	rieparea. oo sep 2017	i mai voiame. 2	. 5				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	10.0	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	66.1	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-A2 17I0005-05 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 09:00

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.06 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.33 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-A2 17I0005-05 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 09:00

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 7.75 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F5 17I0005-06 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 09:25

 Instrument: NT2
 Analyzed: 07-Sep-2017 16:08

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.26 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.75 Acetone 78.7 ug/kg 71-43-2 U Benzene 1 0.95 ND ug/kg 108-88-3 Toluene 0.95 1 18.6 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 92.7 % Surrogate: Toluene-d8 77-120 % 92.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F5 17I0005-06 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 09:25

 Instrument: FID7
 Analyzed: 08-Sep-2017 16:46

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

	110puisus 00 Sep 2017	1 11101 (0101110) 2	. 5				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	10.0	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	69.0	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F5 17I0005-06 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 09:25

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.44 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.52 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F5 17I0005-06 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 09:25

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.78 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F3 17I0005-07 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 09:50

 Instrument: NT2
 Analyzed: 07-Sep-2017 16:30

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.69 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.39 Acetone 103 ug/kg 71-43-2 U Benzene 1 0.88 ND ug/kg 108-88-3 Toluene 0.88 1 127 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 96.9 % Surrogate: Toluene-d8 77-120 % 92.5 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S. Project Number: 066045 Reported: Edmonds WA, 98020 Project Manager: Ken Reid 14-Sep-2017 12:50

NP-G-F3 17I0005-07 (Solid (as-rec))

Glycols

Method: EPA 8015C Sampled: 08/29/2017 09:50 Instrument: FID7 Analyzed: 08-Sep-2017 17:17

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.57 g (wet) arad: 09 San 2017 Final Volume: 2 o

	Prepared: 08-Sep-2017	Final Volume: 2	g				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	9.0	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	68.6	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F3 17I0005-07 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 09:50

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.01 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.81 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-F3 17I0005-07 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 09:50

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 9.07 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D2 17I0005-08 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 10:10

 Instrument: NT2
 Analyzed: 07-Sep-2017 16:53

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.22 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.79 Acetone 72.8 ug/kg 71-43-2 U Benzene 1 0.96 ND ug/kg 108-88-3 Toluene 0.96 22.9 1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 94.5 % Surrogate: Toluene-d8 77-120 % 94.7 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D2 17I0005-08 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 10:10

 Instrument: FID7
 Analyzed: 08-Sep-2017 17:49

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.26 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.5 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 64.5 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D2 17I0005-08 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 10:10

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.77 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.42 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D2

17I0005-08 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 10:10

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.61 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D4 17I0005-09 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 10:30

 Instrument: NT2
 Analyzed: 07-Sep-2017 17:16

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.23 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.78 Acetone 84.1 ug/kg 71-43-2 U Benzene 1 0.96 ND ug/kg 108-88-3 Toluene 0.96 20.3 1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 95.2 % Surrogate: Toluene-d8 77-120 % 92.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D4 17I0005-09 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 10:30

 Instrument: FID7
 Analyzed: 08-Sep-2017 18:20

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting CAS Number Limit Analyte Dilution Result Units Notes 67-56-1 10.0 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 65.8 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D4

17I0005-09 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 10:30

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.28 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.53 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D4

17I0005-09 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 10:30

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 9.71 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D5 17I0005-10 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 11:00

 Instrument: NT2
 Analyzed: 07-Sep-2017 17:39

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.36 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.66 Acetone 76.3 ug/kg 71-43-2 U Benzene 1 0.93 ND ug/kg 108-88-3 Toluene 1 0.93 15.9 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 93.7 % Surrogate: Toluene-d8 77-120 % 94.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S. Project Number: 066045 Reported: Edmonds WA, 98020 Project Manager: Ken Reid 14-Sep-2017 12:50

NP-G-D5 17I0005-10 (Solid (as-rec))

Glycols

Method: EPA 8015C Sampled: 08/29/2017 11:00 Instrument: FID7 Analyzed: 08-Sep-2017 18:52

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.03 g (wet)

Prepared: 08-Sep-2017 Final Volume: 2 g

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methanol	67-56-1	1	9.9	ND	mg/kg	U
Surrogate: o-Cresol			30-160 %	69.8	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D5

17I0005-10 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 11:00

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.46 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.44 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-D5 17I0005-10 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 11:00

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.05 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C2 17I0005-11 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 12:35

 Instrument: NT2
 Analyzed: 07-Sep-2017 18:01

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.59 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Acetone	67-64-1	1	4.47	88.6	ug/kg	
Benzene	71-43-2	1	0.89	ND	ug/kg	U
Toluene	108-88-3	1	0.89	17.3	ug/kg	
Surrogate: 1,2-Dichloroethane-d4			80-149 %	95.7	%	
Surrogate: Toluene-d8			77-120 %	93.8	%	

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C2

17I0005-11 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 12:35

 Instrument: FID7
 Analyzed: 08-Sep-2017 19:56

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.23 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Units Analyte CAS Number Dilution Result Notes 67-56-1 9.6 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 63.7 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C2

17I0005-11 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 12:35

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.06 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.47 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C2

17I0005-11 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 12:35

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Reporting Limit Result Units Notes

Total Solids 1 0.04 8.39 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C4 17I0005-12 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 13:00

 Instrument: NT2
 Analyzed: 07-Sep-2017 18:24

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.48 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.56 Acetone 37.8 ug/kg 71-43-2 U Benzene 1 0.91 ND ug/kg 108-88-3 Toluene 1 0.91 13.2 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 93.7 % Surrogate: Toluene-d8 77-120 % 92.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C4

17I0005-12 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 13:00

 Instrument: FID7
 Analyzed: 08-Sep-2017 20:27

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.11 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.8 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % 69.0 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C4

17I0005-12 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 13:00

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.39 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.37 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C4

17I0005-12 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 13:00

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 7.88 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C5 17I0005-13 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 13:15

 Instrument: NT2
 Analyzed: 07-Sep-2017 18:47

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.16 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.84 Acetone 38.1 ug/kg 71-43-2 U Benzene 1 0.97 ND ug/kg 108-88-3 Toluene 1 0.97 13.8 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 93.1 % Surrogate: Toluene-d8 77-120 % 93.0 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S. Project Number: 066045 Reported: Edmonds WA, 98020 Project Manager: Ken Reid 14-Sep-2017 12:50

NP-G-C5 17I0005-13 (Solid (as-rec))

Glycols

Method: EPA 8015C Sampled: 08/29/2017 13:15 Instrument: FID7 Analyzed: 08-Sep-2017 20:59

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.15 g (wet) Final Volume: 2 g Prepared: 08-Sep-2017

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.7 U Methanol ND mg/kg Surrogate: o-Cresol

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30-160 %

71.6

%

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C5

17I0005-13 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 13:15

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.16 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.46 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C5

17I0005-13 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 13:15

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.16 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C6 17I0005-14 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 13:55

 Instrument: NT2
 Analyzed: 07-Sep-2017 19:09

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.32 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.70 Acetone 39.7 ug/kg 71-43-2 U Benzene 1 0.94 ND ug/kg 108-88-3 Toluene 0.94 1 16.0 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 95.9 % Surrogate: Toluene-d8 77-120 % 93.3 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C6 17I0005-14 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 13:55

 Instrument: FID7
 Analyzed: 08-Sep-2017 21:31

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.49 g (wet)

Prepared: 08-Sep-2017 Final Volume: 2 g

	rieparea: 00 Sep 2017	i mai voiame. 2	5 5				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	9.1	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	67.1	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C6 17I0005-14 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 13:55

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.11 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.43 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-C6 17I0005-14 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 13:55

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.65 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B2 17I0005-15 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 14:20

 Instrument: NT2
 Analyzed: 07-Sep-2017 19:32

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.2 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

1 1 1 1		8				
			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Acetone	67-64-1	1	4.81	37.6	ug/kg	
Benzene	71-43-2	1	0.96	ND	ug/kg	U
Toluene	108-88-3	1	0.96	17.0	ug/kg	
Surrogate: 1,2-Dichloroethane-d4			80-149 %	94.1	%	
Surrogate: Toluene-d8			77-120 %	93.1	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B2 17I0005-15 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 14:20

 Instrument: FID7
 Analyzed: 08-Sep-2017 22:02

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

	rieparea. 00 Sep 2017	i mai voidine. 2	5				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	10.0	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	69.7	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B2 17I0005-15 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 14:20

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.62 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.57 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B2

17I0005-15 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 14:20

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Reporting Limit Result Units Notes

Total Solids 1 0.04 8.29 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B3 17I0005-16 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 14:40

 Instrument: NT2
 Analyzed: 07-Sep-2017 19:54

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.22 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.79 Acetone 93.7 ug/kg 71-43-2 U Benzene 1 0.96 ND ug/kg 108-88-3 Toluene 0.96 19.1 1 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 95.8 % Surrogate: Toluene-d8 77-120 % 92.8 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B3 17I0005-16 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 14:40

 Instrument: FID7
 Analyzed: 08-Sep-2017 22:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.47 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-56-1 9.1 ND U Methanol mg/kg Surrogate: o-Cresol 30-160 % % 72.8

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B3

17I0005-16 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 14:40

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.33 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.43 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B3 17I0005-16 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 14:40

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 8.04 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B6 17I0005-17 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 15:00

 Instrument: NT2
 Analyzed: 07-Sep-2017 20:17

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.59 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

1	1		9				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Acetone		67-64-1	1	4.47	32.2	ug/kg	
Benzene		71-43-2	1	0.89	ND	ug/kg	U
Toluene		108-88-3	1	0.89	8.81	ug/kg	
Surrogate: 1,2-Dichloroethane-d4				80-149 %	97.9	%	
Surrogate: Toluene-d8				77-120 %	92.5	%	

%

71.5

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B6 17I0005-17 (Solid (as-rec))

Glycols

Surrogate: o-Cresol

 Method: EPA 8015C
 Sampled: 08/29/2017 15:00

 Instrument: FID7
 Analyzed: 08-Sep-2017 23:05

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.06 g (wet)
Prepared: 08-Sep-2017 Final Volume: 2 g

 Reporting

 Analyte
 CAS Number
 Dilution
 Limit
 Result
 Units
 Notes

 Methanol
 67-56-1
 1
 9.9
 ND
 mg/kg
 U

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30-160 %

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B6 17I0005-17 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 15:00

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.2 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

pH 1 0.01 7.44 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-B6

17I0005-17 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 15:00

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Reporting Limit Result Units Notes

Total Solids 1 0.04 8.60 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-DUP1 17I0005-18 (Solid (as-rec))

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 08/29/2017 13:00

 Instrument: NT2
 Analyzed: 07-Sep-2017 20:40

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BFI0123 Sample Size: 5.68 g (wet)
Prepared: 07-Sep-2017 Final Volume: 5 g

Reporting Limit Analyte CAS Number Dilution Result Units Notes 67-64-1 4.40 Acetone 111 ug/kg 71-43-2 U Benzene 1 0.88 ND ug/kg 108-88-3 Toluene 1 0.88 36.0 ug/kg Surrogate: 1,2-Dichloroethane-d4 80-149 % 95.8 % Surrogate: Toluene-d8 77-120 % 92.4 %

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-DUP1

17I0005-18 (Solid (as-rec))

Glycols

 Method: EPA 8015C
 Sampled: 08/29/2017 13:00

 Instrument: FID7
 Analyzed: 09-Sep-2017 00:39

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BFI0047 Sample Size: 5.16 g (wet)

Prepared: 08-Sep-2017 Final Volume: 2 g

	Trepured: 00 Sep 2017	i mai voiame. 2	5				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methanol		67-56-1	1	9.7	ND	mg/kg	U
Surrogate: o-Cresol				30-160 %	78.1	%	

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-DUP1

17I0005-18 (Solid (as-rec))

Wet Chemistry

 Method: EPA 9045D
 Sampled: 08/29/2017 13:00

 Instrument: Accumet AR60
 Analyzed: 11-Sep-2017 15:35

Sample Preparation: Preparation Method: EPA 9045D

Preparation Batch: BFI0062 Sample Size: 20.15 g (wet)
Prepared: 05-Sep-2017 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

PH 1 0.01 7.40 pH Units

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

NP-G-DUP1

17I0005-18 (Solid (as-rec))

Wet Chemistry

 Method: SM 2540 G-97
 Sampled: 08/29/2017 13:00

 Instrument: N/A
 Analyzed: 04-Sep-2017 00:38

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BFI0205 Sample Size: 10 g (wet)
Prepared: 04-Sep-2017 Final Volume: 10 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.04 10.46 %

Analytical Resources, Inc.

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Volatile Organic Compounds - Quality Control

Batch BFI0123 - No Prep - Volatiles

Instrument: NT2 Analyst: LH

		Rej	porting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFI0123-BLK1)				Prepa	ared: 07-Sep	o-2017 Ana	alyzed: 07-	Sep-2017 13	3:42		
Acetone	ND		5.00	ug/kg							U
Benzene	ND		1.00	ug/kg							U
Toluene	ND		1.00	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4		49.4		ug/kg	50.0		98.9	80-149			
Surrogate: Toluene-d8		50.1		ug/kg	50.0		100	77-120			
LCS (BFI0123-BS1)				Prepa	ared: 07-Sep	5-2017 Ana	alyzed: 07-	Sep-2017 12	2:56		
Acetone	257		5.00	ug/kg	250		103	48-137			
Benzene	51.2		1.00	ug/kg	50.0		102	80-120			
Toluene	49.9		1.00	ug/kg	50.0		99.8	75-120			
Surrogate: 1,2-Dichloroethane-d4		50.5		ug/kg	50.0		101	80-149			
Surrogate: Toluene-d8		50.5		ug/kg	50.0		101	77-120			
LCS Dup (BFI0123-BSD1)				Prepa	ared: 07-Sep	o-2017 Ana	alyzed: 07-	Sep-2017 13	3:19		
Acetone	255		5.00	ug/kg	250		102	48-137	0.59	30	
Benzene	52.0		1.00	ug/kg	50.0		104	80-120	1.56	30	
Toluene	50.1		1.00	ug/kg	50.0		100	75-120	0.47	30	
Surrogate: 1,2-Dichloroethane-d4		48.2		ug/kg	50.0		96.3	80-149			
Surrogate: Toluene-d8		49.7		ug/kg	50.0		99.5	77-120			
Matrix Spike (BFI0123-MS1)	Sour	rce: 17I0005	-17	Prepa	ared: 07-Sep	o-2017 Ana	alyzed: 07-	Sep-2017 21	1:48		
Acetone	227		4.13	ug/kg	207	32.2	94.3	48-137			
Benzene	40.8		0.83	ug/kg	41.3	ND	98.7	80-120			
Toluene	45.2		0.83	ug/kg	41.3	8.81	88.0	75-120			
Surrogate: 1,2-Dichloroethane-d4		47.4		ug/kg	50.0	49.0	94.8	80-149			
Surrogate: Toluene-d8		47.1		ug/kg	50.0	46.2	94.2	77-120			
Recovery limits for target analytes in MS/MSD (QC samples are adv	visory only.									
Matrix Spike Dup (BFI0123-MSD1)	Sour	rce: 17I0005	-17	Prepa	ared: 07-Sep	o-2017 Ana	alyzed: 07-	Sep-2017 22	2:11		
Acetone	258		4.85	ug/kg	243	32.2	93.0	48-137	12.80	30	
Benzene	50.2		0.97	ug/kg	48.5	ND	103	80-120	20.80	30	
Toluene	54.5		0.97	ug/kg	48.5	8.81	94.2	75-120	18.80	30	
Surrogate: 1,2-Dichloroethane-d4		47.5		ug/kg	50.0	49.0	94.9	80-149			_
G . TI 1 10		47.0									

Analytical Resources, Inc.

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

94.4

77-120

ug/kg

50.0

46.2

47.2

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Volatile Organic Compounds - Quality Control

Batch BFI0123 - No Prep - Volatiles

Instrument: NT2 Analyst: LH

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (BFI0123-MSD1) Source: 1710005-17 Prepared: 07-Sep-2017 Analyzed: 07-Sep-2017 22:11

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Glycols - Quality Control

Batch BFI0047 - No Prep-Organics

Instrument: FID7 Analyst: ML

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
QC Sample/Analyte	Resuit	Limit	Units	Level	Resuit	70KEC	Lillius	KrD	LIIIII	Notes
Blank (BFI0047-BLK1)			Prepa	ared: 04-Sep	-2017 Ana	alyzed: 08-	Sep-2017 12	2:49		
Methanol	ND	10.0	mg/kg							U
Surrogate: o-Cresol		9.97	mg/kg	10.0		99.7	30-160			
LCS (BFI0047-BS1)			Prepa	ared: 04-Sep	-2017 Ana	alyzed: 08-	Sep-2017 13	3:37		
Methanol	103	10.0	mg/kg	100		103	30-160			
Surrogate: o-Cresol		9.66	mg/kg	10.0		96.6	30-160			
Matrix Spike (BFI0047-MS1)	Sourc	e: 17I0005-17	Prepa	ared: 04-Sep	-2017 Ana	alyzed: 08-	Sep-2017 23	3:36		
Methanol	39.4	9.6	mg/kg	28.6	ND	138	30-160			
Surrogate: o-Cresol		2.10	mg/kg	2.86	2.13	73.6	30-160			
Recovery limits for target analytes in MS/MSD Q	C samples are advis	sory only.								
Matrix Spike Dup (BFI0047-MSD1)	Sourc	e: 17I0005-17	Prepa	ared: 04-Sep	-2017 Ana	alyzed: 09-	Sep-2017 00	0:08		
Methanol	41.8	9.8	mg/kg	29.5	ND	142	30-160	6.07	30	
Surrogate: o-Cresol		2.06	mg/kg	2.95	2.13	69.7	30-160			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Wet Chemistry - Quality Control

Batch BFI0062 - EPA 9045D

Instrument: Accumet AR60 Analyst: F

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
LCS (BFI0062-BS1)	Prepared: 05-Sep-2017 Analyzed: 11-Sep-2017 15:35										
рН	7.05	0.01	pH Units	7.00		101	0-200				
Duplicate (BFI0062-DUP1)	Source:	1710005-17	Prepa	red: 05-Sep	-2017 Ana	lyzed: 11-S	Sep-2017 15	:35			
рН	7.40	0.01	pH Units		7.44			0.54	20		

Analytical Resources, Inc.

Landau Associates, Inc. Project: Fire Mountain Farms- Newaukum Prairie

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Wet Chemistry - Quality Control

Batch BFI0205 - No Prep Wet Chem

Instrument: N/A

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Blank (BFI0205-BLK1)		Prepared: 04-Sep-2017 Analyzed: 04-Sep-2017 00:38										
Total Solids	ND	0.04	%							U		
Duplicate (BFI0205-DUP1)	Source:	Source: 17I0005-01			-2017 Ana	alyzed: 04-S	Sep-2017 00	:38				
Total Solids	5.49	0.04	%		5.55			1.08	20			

Analytical Resources, Inc.

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Certified Analyses included in this Report

Analyte Certifications

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	09/01/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	02/07/2019
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2018
WADOE	WA Dept of Ecology	C558	06/30/2018
WA-DW	Ecology - Drinking Water	C558	06/30/2018

Analytical Resources, Inc.

130 2nd Avenue S.Project Number: 066045Reported:Edmonds WA, 98020Project Manager: Ken Reid14-Sep-2017 12:50

Notes and Definitions

				r detection limi	

Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD,

<20% drift or minimum RRF)

E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

* Flagged value is not within established control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

Technical Memorandum

TO: Kristy Hendrickson, Project Manager

FROM: Kristi Schultz and Danille Jorgensen

DATE: October 2, 2017

RE: Fire Mountain Farms Newaukum Prairie Storage Unit

Waste Characterization Sampling

Laboratory Data Verification and Validation

This technical memorandum provides the results of a focused data verification and validation associated with 18 mixed material samples collected at the Fire Mountain Farms Newaukum Prairie Storage Unit. Samples were analyzed by Analytical Resources, Inc. (ARI) located in Tukwila, Washington. This data quality evaluation covers ARI data package 1710005. Samples submitted to ARI were analyzed for volatile organic compounds ([VOCs]; US Environmental Protection Agency [EPA] Method SW8260C), methanol (EPA Method SW8015C), pH (EPA Method 9045D), and total solids (Method SM2540 G-97).

The verification and validation check was conducted in accordance with guidance from applicable portions of EPA's *National Functional Guidelines for Organic Data Review* (EPA 2016b) and *National Functional Guidelines for Inorganic Data Review* (EPA 2016a), Landau Associates data validation standard operating procedures, and the project-specific quality assurance project plan (QAPP; LAI 2017a). Landau Associates performed an EPA-equivalent Level IIA verification and validation check on each laboratory data package, which included the following:

- Verification that the laboratory data package contained all necessary documentation
 (including chain-of-custody records; identification of samples received by the laboratory; date
 and time of receipt of the samples at the laboratory; sample conditions upon receipt at the
 laboratory; date and time of sample analysis; explanation of any significant corrective actions
 taken by the laboratory during the analytical process; and, if applicable, date of extraction,
 definition of laboratory data qualifiers, all sample-related quality control data, and quality
 control acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that quality control samples were analyzed as specified in the project QAPP (LAI 2017a) and the Waste Characterization Plan (LAI 2017b).
- Evaluation of sample holding times.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.
- Evaluation of reporting limits compared to target reporting limits specified in the project QAPP (LAI 2017a) and the Waste Characterization Plan (LAI 2017b).
- Evaluation of overall data quality and completeness of analytical data.

Data validation qualifiers are added to the sample results, as appropriate, based on the verification and validation check. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below. All data was found to be acceptable with no qualifications.

Chain-of-Custody Records

A signed chain-of-custody (COC) record was attached to the data packages. The laboratory received all samples in good condition. All analyses were performed as requested. No special cleanups or handling methods were requested.

Upon receipt by ARI, the sample container information was compared to the associated chain-of-custody and the cooler temperature was recorded. The cooler was received with a temperature slightly greater than (7.7°C) the EPA-recommended limit of ≤6°C. Ambient temperatures at the time of sampling were approximately 32°C, and the assumption is made the temperature of the sample matrix in the exposed impoundment was higher than normal. Field staff regularly replenished ice in the sample coolers prior to delivery to the lab. No qualification of the data was determined necessary.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data was necessary.

Blank Results

Laboratory Method Blanks

At least one method blank was analyzed as required by the analytical method with each batch of samples. Target analytes were not detected at concentrations greater than the reporting limits in the associated method blanks. No qualification of the data was necessary.

Field Trip Blanks

Trip blank samples were not submitted for VOC analysis with the sample batch although a trip blank was included in a cooler provided to the laboratory at the same time. Review of the VOC and methanol analytical results indicated any possible sample contamination that may have occurred during transport would have had little impact on the sample results, as all reported concentrations were below the target Land Disposal Restriction (LDR) levels. No qualification of the data was determined necessary.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for the VOCs analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits. No qualification of the data was necessary.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) and Laboratory Duplicate Results

At least one matrix spike and/or matrix spike duplicate (MS/MSD) or laboratory duplicate was analyzed with each batch of samples. Recoveries and RPDs for the MS/MSDs and laboratory duplicates were within the current laboratory-specified control limits No qualification of the data was determined necessary.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD) Results

At least one laboratory control sample and/or laboratory control sample duplicate (LCS/LCSD) was analyzed with each batch of samples. Recoveries and RPDs for the laboratory control samples and associated duplicates were within the current laboratory-specified control limits. No qualification of the data was determined necessary.

Blind Field Duplicate Results

As specified in the QAPP, blind field duplicate samples were collected at a rate of one blind field duplicate sample per 20 samples per chemical analysis and per facility (not including QC samples), but not less than one blind field duplicate per sampling event. One pair of blind field duplicate mixed material samples (NP-G-DUP/NP-G-E4) was submitted for analysis with data package 1710005.

A project-specified control limit of 50 percent was used to evaluate the RPDs between the duplicate samples. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits. No qualification of the data was necessary.

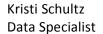
Quantitation Limits

Project-specified quantitation limits were met for all samples except for instances where concentrations required dilution of the sample extracts.

Audit/Corrective Action Records

No audits were performed or required. No corrective action records were generated for this sample batch. Based on the laboratory's case narratives, continuing calibration verification (CCV) recovery results were within laboratory-specified control limits, with the following exceptions:

 The CCV recoveries were above the laboratory-specified control limit for methanol in data package 1710005. Methanol was not detected at concentrations greater than the reporting limit in the associated samples. No qualification of the data was necessary.


Completeness and Overall Data Quality

The completeness for this data set is 100 percent, which meets the project-specified goal of 90 percent minimum.

Data precision was evaluated through field duplicates, laboratory control sample duplicates, matrix spike duplicates, and laboratory duplicates. Data accuracy was evaluated through laboratory control samples, matrix spikes, and surrogate spikes. No data were rejected.

LANDAU ASSOCIATES, INC.

Kristi Sh

Danille Jorgensen

Environmental Data Manager

DRJ/kes

[P:\066\045\T\DATA\DV MEMOS\NEWAUKUM PRAIRIE WASTE CHAR SAMPLING DV MEMO.DOCX]

References

- EPA. 2016a. National Functional Guidelines for Inorganic Superfund Methods Data Review. edited by Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, DC: US Environmental Protection Agency.
- EPA. 2016b. National Functional Guidelines for Organic Superfund Methods Data Review. edited by Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, DC: US Environmental Protection Agency.
- LAI. 2017a. Quality Assurance Project Plan, Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units, Lewis County, Washington. Edmonds, Washington: Landau Associates,
- LAI. 2017b. Waste Characterization Plan, Fire Mountain Farms Mixed Material Storage Units, Lewis County, Washington. Edmonds, Washington: Landau Associates, Inc.