

Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling

40600-HS-RPT-55107
Revision o
Proposed Grays Harbor Potash Export Facility
Potential Wetland Mitigation Site: IDD#1
Hoquiam, Washington

Submitted to BHP Billiton Canada, Inc.

Submitted by **BergerABAM**

A17.0202.00 8 August 2018

June 2018

Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility Project Potential Wetland Mitigation Site: IDD#1 Hoquiam, Washington

Submitted to:

BHP Billiton Canada, Inc. 130 Third Avenue South Saskatoon, SK S7K 1L3 Canada

July 2018

Submitted by:

BergerABAM 33301 Ninth Avenue South, Suite 300 Federal Way, Washington 98003-2600

Sally Fisher

Project Executive/Environmental Scientist

Victoria England, LG Project Manager/Senior Environmental Scientist

Project No. A17.0202.00

JUNE 2018

GROUNDWATER MONITORING WELL INSTALLATION, SOIL INVESTIGATION AND FIRST QUARTER GROUNDWATER SAMPLING -IDD#1 SITE SUMMARY REPORT

Proposed Grays Harbor Potash Export Facility Project Potential Wetland Mitigation Site: IDD#1 Hoquiam, Washington

TABLE OF CONTENTS

SECTI	UN		PAGE
1.0	INTRO	ODUCTION	1
	1.1	IDD#1 Site History	2
	1.2	Groundwater Monitoring Well Installation and Test Pits	2
2.0	MON	ITORING WELL INSTALLATION AND SAMPLING METHODS	3
	2.1	Site Soil Conditions	
	2.2	Monitoring Well Installation and Development	3
	2.3	Groundwater Sampling Methods	4
3.0	TEST	PIT EXCAVATION AND SAMPLING METHODS	5
	3.1	Soil Sampling Methods	5
4.0	RESU	JLTS - GROUNDWATER MONITORING JUNE 2018	6
	4.1	Groundwater Flow Conditions	6
	4.2	Chemical Analytical Results4.2.1 Groundwater	
5.0	RESU	JLTS - SOILS	
6.0	POTE	NTIAL SOURCES OF CONTAMINANTS IN SOIL AND GROUNDWATER	
	6.1	Metals in Groundwater	
	6.2	COCs in Soil	g
7.0	RECO	DMMENDATIONS	9
8.0	LIMIT	TATIONS	10
9.0	REFE	RENCES	10
LIST 0	F TAE	BLES	
Table A		mmary of Groundwater Elevations	
Table 2		tals in Groundwater	
Table 2		tals and Cyanide in Soil	
Table 3		yclinic Aromatic Hydrocarbons in Soil ect Volatile Organic Compounds in Soil	
Table 5		ect Volatile Organic Compounds in Son ect Volatile Organic Compounds in Groundwater	
Table 6		ect Dioxins/Furans in Soil	

Table 7 Select Dioxins/Furans in Groundwater

LIST OF FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Plan Test Pit and Monitoring Well Locations
- Figure 3 Groundwater Elevations and Estimated Groundwater Elevation Contours
- Figure 4 Groundwater COC Exceedances of MTCA CULs
- Figure 5 Groundwater COC Exceedances of Marine and/or Freshwater Aquatic Life Criteria
- Figure 6 Soil COC Exceedances of MTCA CULs

LIST OF APPENDICES

Appendix A Groundwater Sampling and Analysis Plan

Appendix B Boring Logs

Appendix C Environmental Services Network Northwest Chemical Analytical Laboratory Report

JUNE 2018

GROUNDWATER MONITORING WELL INSTALLATION, SOIL INVESTIGATION, AND FIRST QUARTER GROUNDWATER SAMPLING – IDD#1 SITE SUMMARY REPORT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT HOQUIAM, WASHINGTON

1.0 INTRODUCTION

This report summarizes the site conditions, groundwater monitoring well installation, and groundwater/soil sampling activities completed at the IDD#1 site (herein referred to as "the site," see Figure 1) in Hoquiam, Washington, on behalf of BHP Billiton Canada, Inc. (BHP). BHP is considering redevelopment of the IDD#1 site (Tax Parcels 056400600102 and 056400400100) for potential compensatory mitigation for wetland impacts related to development of the Proposed Grays Harbor Potash Export Terminal at Terminal 3 and surrounding parcels in Hoquiam, Washington. The proposed IDD#1 mitigation site is a Port of Grays Harbor (Port)-owned property, on the north shore of Grays Harbor.

The site is approximately 40 acres and is located at the east terminus of Earley Industrial Way in Hoquiam, Washington. The site is positioned to the immediate west of where the Hoquiam River empties into Grays Harbor. The site is former tidelands that were backfilled with material dredged from the Hoquiam and Chehalis River channels. The site's history is summarized in Section 1.1.

The majority of the site is undeveloped with a gravel road, which runs around the perimeter of the site along the berm that bounds the property on the west, south, and east sides. Previous wetland delineations revealed at least four on-site wetlands, the largest of which spans approximately 26 acres (Parametrix 2006). Culverts on the west and east sides of the site allow for tidal influence to the on-site wetlands. Tide gates do not appear to be fully operational and may only allow partial flow. The current site conditions are shown in Figure 2.

BergerABAM installed five new groundwater monitoring wells and collected sediment samples from 25 test pit locations at the site in June 2018 (Figure 2). The June 2018 soil and groundwater investigation was completed to evaluate subsurface conditions at the site in support of use of the site for potential wetland mitigation. Soil and groundwater samples were collected to evaluate subsurface conditions for construction and disposal purposes. Soil and groundwater samples were submitted to the chemical analytical laboratory (ESN Northwest) for the analysis of the following chemicals of concern (COCs): CRA 8 metals, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polycyclic chlorinated biphenyls (PCBs), northwest total petroleum hydrocarbons-diesel- and gasoline-range (NWTPHDx/Gx), dioxins/furans, and cyanide.

Previous sampling efforts at the site (CH2M Hill 2009) included installation and sampling from two groundwater wells. Staff scientists were unable to locate either well during the June 2018 site investigation. Soil samples were not analyzed during the 2009 WSDOT investigation but groundwater samples collected from two monitoring wells located in the IDD#1 site at that time contained concentrations of arsenic greater than the associated Model Toxics Control Act (MTCA) Method B cleanup level (CUL). The central portion of the site was not characterized during the 2009 WSDOT investigation.

1.1 IDD#1 Site History

The IDD#1 site was tideflats until the early 1900s when a strip along the north portion of the site was filled with dredged material to create uplands. The tidelands at the site were used for log rafting and storage associated with the Northwestern Lumber Company mill since the late 1800s. The site was used for the following activities based on the information in the 2007 Cultural Resources Survey Report completed for WSDOT (WSDOT 2007).

- A shingle mill was present on the northeast portion of the site between the early 1900s and the mid-1940s when it was demolished. The shingle mill ceased operation in 1929. During this time, the site was mainly tideflat with unstable foundation so any structures for the lumber company were pile-supported or situated on fill.
- An electric plant was built near the northeast corner of the IDD#1 site in 1883 and operated until approximately 1916 and was demolished by 1928.
- A residential community occupied the north portion of the site from the 1930s to 1950s. The structures associated with this community were demolished in the mid-1960s, and associated debris was spread over the north portion of the IDD#1 site.
- A fish product reduction facility operated on the east side of the site from approximately 1945 to 1965. The facility was demolished in the late 1960s.
- The tidelands remaining at the site were filled with material dredged from the Hoquiam and Chehalis River channels in the 1970s. A quarry rock and riprap berm was built around the site at approximately the same time creating the uplands of the site as they are today.

1.2 Groundwater Monitoring Well Installation and Test Pits

Five monitoring wells (MW-1 through MW-4 and MW-6¹) were installed in June 2018 to further evaluate groundwater conditions at the site. The new wells were developed and sampled for the first quarterly monitoring event, completed in June 2018, as described in this summary report. A total of 25 test pits were excavated with a backhoe in June 2018 to evaluate soil conditions at the site. The soil and groundwater data will be used to

June 2018 - Groundwater Monitoring Well Installation, Soil Investigation, and and First Quarter Groundwater Sampling - IDD#1 Site Summary Report Proposed Grays Harbor Potash Export Facility Project, IDD#1 Site Hoquiam, Washington

¹ Identification "MW-5" was not used as we were expecting WSDOT's monitoring well MW-5 to be onsite. However, that well is no longer there.

evaluate subsurface conditions relative to handling and disposal of dewatering water and soils during construction of the proposed mitigation site.

The well installation and soil investigations are described below in Sections 2.0 and 3.0, respectively, results of the first quarter of groundwater monitoring are summarized in Section 4.0, and results of soil sampling are described in Section 5.0.

2.0 MONITORING WELL INSTALLATION AND SAMPLING METHODS

BergerABAM installed and developed five groundwater monitoring wells (MW-1 through MW-4 and MW-6) at the site on 11 through 13 June 2018 in accordance with the Groundwater Sampling and Analysis Plan (SAP) included as Appendix A. The well locations are shown on Figure 2.

2.1 Site Soil Conditions

Soil samples were collected during well installation (test pit soil investigations are summarized in Section 5.0). The samples collected and chemical analyses performed are summarized below.

The soil encountered in the five monitoring well borings (MW-1 through MW-4 and MW-6) completed at the site generally consist of poorly graded sand from 0 to 5 feet below ground surface (bgs) with alternating layers of silty sand, sandy silt, and silt from 5 feet bgs to the completed depth of borings (15 to 20 feet bgs; see Appendix B for soil boring logs).

Soil samples were collected at the groundwater interface and/or where field screening indicated the potential presence of contamination. Soil in each groundwater boring and test pit was field screened (for staining, sheen, and volatile organics using a photoionization detector [PID]). Soil was field screened every 2 feet from 1 foot bgs to 12 feet bgs, in each of the test pits. Field screening did not indicate the presence of contaminants in the soil collected from borings MW-1, MW-2, MW-4, and MW-6. Soil samples were collected from boring MW-3 from 5 feet and 10 feet bgs based on low PID readings ranging from 0.0 to 12.0 ppm.

2.2 Monitoring Well Installation and Development

Installation of the monitoring wells (MW-1 through MW-4 and MW-6) was observed by a BergerABAM field scientist, who maintained a detailed log of the materials and depths of the well. The monitoring wells were constructed to a depth of approximately 15 to 20 feet bgs to evaluate shallow groundwater conditions at the site. Well screens were installed to intersect the groundwater table during seasonal high- and low-water conditions.

Wells were constructed in accordance with WAC 173-160 using 2-inch-diameter Schedule 40 PVC well casing with 10- or 20-slot well screens. Medium sand was placed in the borehole annulus surrounding the slotted portion of the well. Each well was completed by placing a bentonite seal and aboveground monument protected by three

bollards. A lockable Thermos-type cap was installed in the top of the PVC well casing. The depth to water in the monitoring well was measured prior to development. The total depth of the well was also measured and recorded.

Each monitoring well was developed to remove water (if any) introduced into the well during drilling, stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The well screen was gently surged with a bailer several times during development. Groundwater monitoring wells were developed by purging the well until conventional field parameters (such as temperature, conductivity, and pH) stabilized to within 10 percent over three consecutive measurements and/or until five well volumes had been removed. The removal rate and amount of groundwater removed was recorded during well development procedures. Groundwater removed from the wells during development was collected and stored in labeled 55-gallon drums pending analytical results.

Groundwater monitoring wells were surveyed to identify their lateral position and vertical elevation of the top of well casing (aboveground completion), top of well casing (PVC), and at ground level. The vertical datum was carried from a standard U.S. Geological Survey NGVD benchmark, which was used to establish a permanent benchmark at the site. A survey reference notch was established on each monitoring well casing.

2.3 Groundwater Sampling Methods

Groundwater sampling representing the first quarter of monitoring occurred on 13 and 14 June 2018. Well installation and sampling details are discussed in the SAP (Appendix A).

Groundwater levels were measured in each monitoring well prior to purging during each sampling event. Groundwater levels were measured relative to the casing rim elevations to the nearest 0.01 foot using an electric water level indicator. The direction of shallow groundwater flow at the site was interpreted based on field measurements and site topography.

Groundwater samples were collected from monitoring wells using a peristaltic pump and dedicated Teflon-lined polyethylene tubing.

The wells were purged prior to sample collection using low-flow/low-turbidity sampling techniques to minimize the suspension of sediment in the groundwater. The flow rate was less than 1 liter per minute. A water quality measuring system was used to monitor the following water quality parameters during purging.

- Electrical Conductivity
- Dissolved Oxygen
- pH

- Salinity
- Turbidity
- Temperature

Groundwater samples were collected after these parameters stabilized so that measured values varied less than 10 percent for three consecutive measurements. The stabilized field measurements were documented in the field log book. Soil cuttings from well installation, development water, and purge water were stored in secured, labeled 55-gallon drums pending analytical results.

Groundwater samples were collected into laboratory-provided sample containers (no preservative) for dissolved metals (to be lab filtered) and the other COCs identified in Section 1.0 after the wells were purged. The samples were collected directly from water flowing from the sampler tubing using the low-flow methodology described above. Each sample container was securely capped, labeled, and placed in a cooler with ice immediately upon collection. The well casing plug and monument cover lid were secured after each sampling event.

3.0 TEST PIT EXCAVATION AND SAMPLING METHODS

Excavation activities were monitored by a technical representative from BergerABAM and an archaeologist from ICF. The cultural resources specialist from the Quinault Indian Nation was also present during the first day of test pit investigations, 11 June. Field observations (including soil classification and logs) were detailed in daily field notes. Soil samples were evaluated for the potential presence of contamination using field screening techniques and for the potential presence of cultural resources. Observations of soil and conditions and soil field screening results for each test pit were included in the field notes. The archaeologist did not identify cultural artifacts of significance in any of the excavations completed for this site investigation.

3.1 Soil Sampling Methods

Soil samples were collected every 2 feet between 1 foot and 12 feet bgs using a track-mounted excavator. Samples were collected for analysis of the COCs identified in Section 1.0 if signs of contamination were observed during field screening (e.g., PID, sheen, and staining). Soil samples were collected from just above apparent groundwater level in each test pit if no indications (e.g., sheen, staining, and elevated PID readings) of contamination were observed.

Sample containers were labeled in the field and stored in an iced cooler prior to and during shipment to the chemical analytical laboratory. Incidental waste generated during this investigation (including discarded nitrile gloves, aluminum foil, tubing, and paper towels) was placed in plastic garbage bags and disposed of as solid waste.

Test pits were backfilled with the soil removed after the target depth was reached or if test pits could be excavated no farther (e.g., pits caving in). Each test pit was compacted to previous contours and conditions after they were backfilled.

4.0 RESULTS - GROUNDWATER MONITORING JUNE 2018

Groundwater samples collected from MW-1 through MW-4 and MW-6 (including a field duplicate from MW-6) were submitted for analysis of dissolved RCRA 8 metals, VOCs, PAHs, PCBs, NWTPHDx/Gx, dioxins/furans, and cyanide (see Appendix C for chemical analytical methods). Groundwater elevations were measured in each well at the time of sampling to evaluate current depth to groundwater and flow direction, as discussed below.

4.1 Groundwater Flow Conditions

Groundwater was measured at depths ranging from 2.33 feet bgs (Elevation 10.27 mean lower low water [MLLW]) to 6.77 feet bgs (Elevation 4.37 MLLW). The observed groundwater elevations indicated the groundwater surface generally follows topography except for an apparent groundwater mound in the western portion of the site. The general groundwater flow direction was to the south/southeast at the time of the sampling event. Groundwater elevations are shown in Table A and Figure 3.

4.2 Chemical Analytical Results

4.2.1 Groundwater

Groundwater samples were collected from the five new wells (MW-1 through MW-4 and MW-6) located throughout the site and submitted to the chemical analytical laboratory (Environmental Services Network Northwest [ESN Northwest] of Olympia, Washington) for analysis of dissolved RCRA 8 metals, VOCs, PAHs, PCBs, NWTPHDx/Gx, dioxins/furans, and cyanide.

The chemical analytical results were compared to the following.

- MTCA Methods A, B, and/or C CULs for groundwater
- Acute and chronic marine water aquatic life criteria
- Acute and chronic freshwater aquatic life criteria

The evaluation of acute and chronic marine and freshwater aquatic life criteria is needed for potential dewatering water disposal requirements and potential surface water quality conditions in the tidal channel proposed to be constructed on site for mitigation.

The laboratory did not complete cyanide analyses on the groundwater samples due to the laboratory preserving the samples in error prior to sending them to the cyanide analytical laboratory. Cyanide was not detected in any soil samples collected at the site. We have no reason to believe that cyanide is a COC at the IDD#1 site based on the 2018 soil results.

The groundwater chemical analytical results from the June 2018 sampling event are summarized below and in Tables 1, 5, and 7. The laboratory chemical analytical data report is included as Appendix C.

4.2.1.1 Results Relative to MTCA Criteria for Groundwater Quality

The following is a summary of the analytical results from the June 2018 (first quarter) of groundwater sampling at the site evaluated relative to MTCA criteria.

- Dissolved arsenic was detected in the groundwater samples collected from the monitoring wells at concentrations ranging from 3.2 μg/L (MW-1) to 58 μg/L (MW-3). The concentrations of arsenic in four of the groundwater samples (MW-2, MW-3, MW-4, and MW-6) were greater than MTCA Methods A, B, and C CULs for arsenic (18 μg/L, 58 μg/L, 34 μg/L, 34 μg/L, and 32 μg/L, respectively).
- Selenium was detected in the groundwater samples collected from the monitoring wells at concentrations ranging from <10 μ g/L to 160 μ g/L. The concentrations in two of the groundwater samples (MW-3 and MW-4) were greater then MTCA Method B CULs for selenium (160 μ g/L and 110 μ g/L, respectively).
- Isopropyltoluene was detected at 7.3 µg/L in samples collected at MW-3; however, no MTCA CULs have been established for this analyte. All other VOC samples were not detected in any of the groundwater samples collected.

The remaining dissolved metals analyzed (barium, cadmium, chromium, lead, mercury, and silver); dioxins/furans; PCBs; PAHs; and diesel-, heavy oil-, and gasoline-range petroleum hydrocarbons were either not detected or detected at concentrations less than the applicable MTCA CULs in all of the groundwater samples collected.

4.2.1.2 Results Relative to Acute and Chronic Marine and Freshwater Aquatic Life Criteria

The following is a summary of the analytical results from the June 2018 (first quarter) of groundwater sampling at the site evaluated relative to acute and chronic marine and freshwater aquatic life criteria.

- Dissolved arsenic concentrations were either not detected or detected at concentrations less than the applicable acute and chronic marine and freshwater aquatic life criteria in all of the monitoring wells sampled except MW-3. Dissolved arsenic concentrations in the sample collected from MW-3 (58 µg/L) is less than the applicable acute and chronic freshwater aquatic life criteria and the acute marine aquatic life criteria (360, 190, and 69 µg/L, respectively) but greater than the applicable chronic marine aquatic life criteria (36 µg/L).
- Dissolved chromium concentrations were either not detected or detected at concentrations less than the applicable acute and chronic marine and freshwater aquatic life criteria in all of the monitoring wells sampled except MW-2. Dissolved chromium concentrations in the sample collected from MW-2 (31 μ g/L) is less than the applicable acute and chronic marine aquatic life criteria (1100 and 50 μ g/L,

respectively) but greater than the applicable acute and chronic freshwater aquatic life criteria (15 and 10 μ g/L, respectively).

Speciation of the total chromium results from MW-2 were requested from the laboratory to evaluate the relative presence of hexavalent chromium or chromium III. However, due to the sample preservation error, the lab could not accurately complete the speciation on that sample. However, we have no reason to believe that chromium is a COC at the IDD#1 site due the lack of chromium exceedances in the other groundwater samples collected and the lack of chromium exceedances in soil samples collected at the site (as noted in Section 5.0)

• Dissolved selenium concentrations were either not detected or detected at concentrations less than the applicable acute and chronic marine and freshwater aquatic life criteria in all of the monitoring wells sampled except MW-3 and MW-4. Dissolved selenium concentrations in the samples collected from MW-3 (160 μ g/L) and MW-4 (110 μ g/L) are less than the applicable acute marine aquatic life criteria (290 μ g/L) but greater than the applicable acute and chronic freshwater aquatic, and chronic marine life criteria (20 μ g/L, 5 μ g/L, and 71 μ g/L, respectively).

Acute and chronic marine and freshwater aquatic life criteria have not been established for dioxins/furans or isopropyltoluene (the only VOC detected in any of the samples).

The remaining dissolved metals analyzed (barium, cadmium, lead, mercury, and silver); dioxins/furans; PCBs; PAHs; and diesel-, heavy oil-, and gasoline-range petroleum hydrocarbons were either not detected or detected at concentrations less than the acute and chronic marine and freshwater aquatic life criteria (where established).

5.0 RESULTS - SOILS

Soil samples were collected from 25 test pits (TP1 through TP25) and the 5 new monitoring well borings (MW-1 through MW-4 and MW-6) and submitted to the chemical analytical laboratory (ESN Northwest) for analysis of RCRA 8 metals, VOCs, PAHs, PCBs, NWTPHDx/Gx, dioxins/furans, and cyanide. The soil chemical analytical results from the June 2018 sampling event are summarized below and in Tables 2, 3, 4, and 6.

5.1.1.1 Results Relative to MTCA Criteria for Soils

The following is a summary of the analytical results from soil samples collected from monitoring well borings and test pits completed at the site evaluated relative to MTCA criteria.

- cPAHs were either not detected or detected at concentrations less than the applicable MTCA CULs in all of the samples collected, except for TP16-1@5.5′, in which the total toxic equivalency quotient (TEQ) MTCA Method A CUL of 0.1 mg/kg was exceeded. The TEQ concentration detected in sample TP16-1@5.5′ was 0.1734 mg/kg.
- Total TEQ of dioxins/furans was detected in the soil samples collected from the test pits at concentrations ranging from 0.0267 ng/kg (TP21-1@4.5') to 39 ng/kg

(TP9-1@6.5'). The concentrations of total TEQ in three of the 39 soil samples (MW-1@6', MW-4@5', and TP9-1@6.5') were greater than MTCA Methods B CULs for total TEQ (12.8 ng/kg). Total TEQ of dioxins/furans was detected in those samples (MW-1@6', MW-4@5', and TP9-1@6.5') at concentrations of 13.8, 13.4, and 39.6 ng/kg, respectively.

Gasoline-, heavy oil- and diesel-range petroleum hydrocarbons; arsenic; chromium; barium; cadmium; lead; mercury; selenium; silver; VOCs; PCBs; and cyanide were either not detected or detected at concentrations less than the applicable MTCA CULs in all of the samples collected.

6.0 POTENTIAL SOURCES OF CONTAMINANTS IN SOIL AND GROUNDWATER

6.1 Metals in Groundwater

Potential sources of the arsenic and selenium detected in groundwater at the site could include non-point off-site sources, such as the use of agricultural fertilizers and pesticides that migrated through rainwater and groundwater from upgradient of the site. The soil sampling results did not indicate the presence of an on-site source for arsenic and selenium as there were no metals exceedances of applicable criteria in any of the soil samples collected at the site.

6.2 COCs in Soil

Historical facilities that operated or were present on the north and northeast portion of the site include a former wood mill, electric plant, and shantytown. The cPAHs exceedance in one soil sample (TP-16) may be the result of treated wood debris and/or historic fires (e.g., associated with the shantytown cooking, heating or waste burning fires, and/or hog fuel burning associated with the mill). Similarly, dioxins/furans in soil could result from historical burning of wood or wood waste either associated with the mill operations or the shantytown.

The COC exceedances in the soil samples at the site are likely the result of the incorporation of wood waste and/or demolition debris from the former shantytown into the backfill on portions of the site.

7.0 RECOMMENDATIONS

We recommend that the investigation results be reported to the Washington State Department of Ecology (Ecology) in order to begin coordination with Ecology with regards to potential remediation of contamination encountered at the site in conjunction with the construction of the mitigation. Potential cleanup requirements may include

- Focused of removal of contaminated soil
- Potential placement of impermeable material to "cap" remaining contaminated soil, if any.
- Quarterly groundwater monitoring

8.0 LIMITATIONS

This report has been prepared for BHP for their use in evaluating and documenting the groundwater conditions at the proposed Grays Harbor Potash Export Facility. Environmental conditions may vary between the locations sampled or with time. The conditions described in this evaluation represent the areas sampled at the time of the investigation.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with the generally accepted environmental science practices for soil and groundwater characterization at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

9.0 REFERENCES

- CH2M Hill. 2009. Phase II Environmental Site Assessment: Anderson & Middleton Property Aberdeen Log Yard Property." CH2M Hill for WSDOT. November 2009.
- Environmental Services Network Northwest. 2018. "Analytical Data Report for the BHP Grays Harbor Potash Facility Project," June 2018.
- Parametrix. 2006. Final Wetland Delineation Report Grays Harbor Industrial Development District Property #1. Prepared by Parametrix, Bellevue, Washington. May 2006.
- Washington State Department of Ecology. 2013. "Model Toxics Control Act Regulation and Statute: MTCA Cleanup Regulation Chapter 173-340 WAC, Model Toxics Control Act Chapter 70.105D RCW, Uniform Environmental Covenants Act Chapter 64.70 RCW."
- Washington State Department of Transportation. 2007. Final Technical Summary Special Projects Construction Site. Preliminary Geological and Cultural Resources Subsurface Investigation. February 2007.

June 2018 Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility, IDD#1 Site Hoquiam, Washington

Tables

TABLE A. SUMMARY OF GROUNDWATER ELEVATIONS

PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

Monitoring Well ¹ and TOC Elevation	Date Monitored	Time Sampled	Tide Stage (ft MLLW)	Depth of Water from TOC (feet)	Groundwater Elevation (feet)
MW-1 - 15.61 ft	06/14/18	10:36 AM	1.23	9.21	6.4
MW-2 - 15.39 ft	06/14/18	10:45 AM	2.50	5.12	10.27
MW-3 - 15.22 ft	06/14/18	9:51 AM	-0.60	9.34	5.88
MW-4 - 14.82 ft	06/14/18	10:16 AM	0.60	8.1	6.72
MW-6 - 14.60 ft	06/14/18	10:25 AM	1.23	9.87	4.73

Notes:

TOC = top of casing

Tide stage obtained from NOAA Tide predictions for station 9441187:

https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9441187&units=standard&bdate=20180328&edate=20180328&timezone=LST/LD T&clock=12hour&datum=MLLW&interval=hilo&action=dailychart

¹Sampled by BergerABAM, see Figure 2 for well locations.

TABLE 1. METALS IN GROUNDWATER¹

PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY

HOQUIAM, WASHINGTON

Sample					Meta	ls (µg/L)			
Identification	Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MW-1	6/13/2018	3.2	<20	<2.0	<10	<2.0	<1.0	<10	<10
MW-2	6/13/2018	18	<20	<2.0	31	<2.0	<1.0	<10	<10
MW-3	6/14/2018	58	30	<2.0	<10	<2.0	<1.0	160	<10
MW-4	6/13/2018	34	74	<2.0	<10	<2.0	<1.0	110	<10
MW-6	6/13/2018	34	99	<2.0	<10	<2.0	<1.0	<10	<10
MTCA Method A C	leanup Level ²	5	NE	5	50	15	2	NE	NE
MTCA Method B C	leanup Level ²	4.8	3,200	8	NE ³	NE	NE	80	80
MTCA Method C (I Cleanup Level ³	ndustrial)	10.5	7,000	17.5	50*	15*	2*	175	175
Marine Water Aqua Criteria - Acute ⁴		69	NE	42	1,100	210	1.8	290	1.9
Marine Water Aqua Criteria - Chronic ⁴		36	NE	9.3	50	8.1	0.025	71	NE
Freshwater Aquati Acute ⁴	c Life Criteria -	360	NE	(I,c, dd)	15	(q, c, dd)	2.1	20	(y, a, dd)
Freshwater Aquat - Chronic ⁴	ic Life Criteria	190	NE	(j, d, dd)	10	(r, d, dd)	0.012	5	NE

Notes:

µg/l = microgram per liter

Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits

NE = Not established

<2 = The The analyte was not detected. The associated numerical value is the sample quantitation limit.

-- = not analyzed

Highlight indicates the detected concentration is greater than the applicable MTCA cleanup level.

Footnotes**:

- a An instantaneous concentration not to be exceeded at any time.
- c A 1-hour average concentration not to be exceeded more than once every three years on the average.
- d A 4-day average concentration not to be exceeded more than once every three years on the average.
- I ≤ (0.944)(e(1.128[in(hardness)]-3.828)) at hardness = 100. Conversion factor (CF) of 0.944 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.136672 [(In hardness)(0.041838)].
- $j \le (0.909)(e(0.7852[ln(hardness)]-3.490))$ at hardness = 100. Conversions factor (CF) of 0.909 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.101672 [(ln hardness)(0.041838)].
- q ≤ (0.791)(e(1.273[In(hardness)] 1.460)) at hardness = 100. Conversion factor (CF) of 0.791 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 [(In hardness)(0.145712)].
- $r \le (0.791)(e(1.273[ln(hardness)] 4.705))$ at hardness = 100. Conversion factor (CF) of 0.791 is hardness dependent. CF is calculated for other hardnesses as follows: CF = 1.46203 [(ln hardness)(0.145712)]. $y \le (0.85)(e(1.72[ln(hardness)] 6.52))$

limits unless the seasonal partitioning of the dissolved to total metals in the ambient water are known. When this information is absent, these metals criteria shall be applied as total recoverable values, determined by

¹Chemical Analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

² = samples were lab filtered

³Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. Non cancer values are used unless otherwise noted. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

⁴Washington State Department of Ecology Toxics Substances Criteria. https://fortress.wa.gov/ecy/publications/SummaryPages/0610091.html

^{*} MTCA Method A clean up level for unrestricted site use is listed because the MTCA Method C industrial clean up level is not established.

^{**} Footnotes extracted from Table 240 of Washington State Department of Ecology Toxics Substances Criteria. https://fortress.wa.gov/ecy/publications/SummaryPages/0610091.html

TABLE 2. METALS AND CYANIDE IN SOIL¹ PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

	Depth (feet below the				Tota	al Metals (mg/kç	1)				_
Sample Identification	ground surface)	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Cyanide
MW-1@6'	6	6/11/2018	<5.0	<50	<1.0	56	<5.0	<0.5	<20	<20	<0.1
MW-2@6'	6	6/11/2018	<5.0	<50	<1.0	18	<5.0	<0.5	<20	<20	<0.1
MW-3@5'	5	6/11/2018	<5.0	<50	<1.0	50.5	6.5	<0.5	<20	<20	<0.1
MW-3@10'	10	6/11/2018	<5.0	<50	<1.0	67.2	92	<0.5	<20	<20	No Sample
MW-4@5'	5	6/11/2018	<5.0	190	<1.0	53.8	76	<0.5	<20	<20	0.12
MW-6@6'	6	6/11/2018	<5.0	<50	<1.0	43.2	<5.0	<0.5	<20	<20	<0.1
TP1-1@4'	4	6/11/2018	14	92	<1.0	37	23	<0.5	<20	<20	0.12
TP1-2@9'	9	6/13/2018	9.2	99	<1.0	37.8	19	<0.5	<20	<20	<0.1
TP2-1@12'	12	6/13/2018	6.3	51	<1.0	48.4	9.4	<0.5	<20	<20	<0.1
TP3-1@6'	6	6/13/2018	6.8	<50	<1.0	55.1	5.0	<0.5	<20	<20	<0.1
TP4-1@5'	5	6/11/2018	<5.0	99	<1.0	39.6	5.7	<0.5	<20	<20	<0.1
TP4-2@12'	12	6/11/2018	<5.0	<50	<1.0	15	<5.0	<0.5	<20	<20	<0.1
TP5-1@10'	10	6/13/2018	7.7	54	<1.0	54.8	13	<0.5	<20	<20	<0.1
TP6-1@12'	12	6/13/2018	6.8	<50	<1.0	53.8	6.7	<0.5	<20	<20	<0.1
TP7-1@6'	6	6/13/2018	<5.0	50	<1.0	62.7	16	<0.5	<20	<20	<0.1
TP7-2@10'	10	6/13/2018	5.3	<50	<1.0	43.8	22	<0.5	<20	<20	<0.1
TP8-1@7'	7	6/12/2018	6.3	62	<1.0	55.8	9.6	<0.5	<20	<20	<0.1
TP8-2@8'	8	6/12/2018	5.9	<50	<1.0	42.6	<5.0	<0.5	<20	<20	<0.1
TP8-3@11'	11	6/12/2018	7.6	<50	<1.0	42	6.1	<0.5	<20	<20	<0.1
TP9-1@6.5'	6.5	6/12/2018	<5.0	160	<1.0	63.1	64	<0.5	<20	<20	<0.1
TP10-1@12'	12	6/11/2018	9.1	79	<1.0	43.2	13	<0.5	<20	<20	<0.1
TP10-2@4'	4	6/11/2018	<5.0	<50	<1.0	13	<5.0	<0.5	<20	<20	<0.1
TP11-1@9'	9	6/13/2018	8.3	55	<1.0	53.6	9.7	<0.5	<20	<20	<0.1
TP12-1@12'	12	6/13/2018	7.1	<50	<1.0	44.2	5.4	< 0.05	<20	<20	<0.1
TP13-1@12'	12	6/12/2018	7.2	<50	<1.0	44.2	6	<0.5	<20	<20	<0.1
TP14-1@6.5'	6.5	6/11/2018	<5.0	<50	<1.0	7.1	<5.0	<0.5	<20	<20	<0.1
TP15-1@5'	5	6/11/2018	8.5	66	<1.0	66.6	11	<0.5	<20	<20	<0.1
TP-16-1@5.5'	5.5	6/12/2018	6.5	<50	<1.0	47.7	5.8	<0.5	<20	<20	<0.1
TP17-1@4'	4	6/13/2018	6.7	<50	<1.0	51	6.1	<0.5	<20	<20	<0.1
TP17-2@8'	8	6/13/2018	6.9	<50	<1.0	57.1	7.3	<0.5	<20	<20	<0.1
TP18-1@12'	12	6/11/2018	6.3	<50	<1.0	42.4	5.5	<0.5	<20	<20	<0.1
TP19-1@5'	5	6/12/2018	10	52	<1.0	15.7	26	<0.5	<20	<20	<0.1
TP20-1@6'	6	6/11/2018	<5.0	<50	<1.0	5.5	<5.0	<0.5	<20	<20	<0.1
TP21-1@4.5'	4.5	6/11/2018	<5.0	<50	<1.0	78.4	<5.0	<0.5	<20	<20	<0.1
TP22-1@6'	6	6/12/2018	<5.0	<50	<1.0	72.6	<5.0	<0.5	<20	<20	<0.1
TP23-1@6'	6	6/12/2018	<5.0	<50	<1.0	77.8	<5.0	<0.5	<20	<20	<0.1
TP24-1@5.5'	5.5	6/12/2018	8.5	50	<1.0	48.2	9.6	<0.5	<20	<20	<0.1
TP24-2@10'	10	6/12/2018	6.2	<50	<1.0	51.4	22	<0.5	<20	<20	<0.1
TP25-1@5.5'	5.5	6/12/2018	<5.0	<50	<1.0	47.8	5	<0.5	<20	<20	<0.1
MTCA Method A Unrestric	•	evel ²	20	NE 40000	2	2,000	250	2	NE 400	NE 400	NE 40
MTCA Method B So	<u> </u>		24	16000	80	120,000	NE	NE	400	400	48
MTCA Method A Industri	al Soil Cleanup Le	vel ²	20	700,000*	2	5,250,000*	1000	2	17,500*	17,500*	2,100*

Notes:

Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits

ND = The analyte was not detected

NE = Not established

<5 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

mg/kg = milligram per kilogram

¹Chemical Analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

²Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. Non cancer values are used unless otherwise noted. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

³ Analyzed for chromium VI which was not detected; Therefore the reported value represents total chromium as chromium III

⁴ There is no industrial MTCA Method A or Method C clean up level for total chromium. The MTCA Method A clean up level for unrestricted use (19 mg/kg) is specific to chromium VI. The MTCA Method C clean up level for iunrestricted use (2,000 mg/kg) is specific to chromium III.

^{*} The MTCA Method C industrial clean up level is listed because the MTCA Method A industrial clean up level is not established.

TABLE 3. POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL¹ PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

							-									
Sample Identification	MW-1@6'	MW-2@6'	MW-3@5'	MW-3@10'	MW-4@5'	MW-5@10'	MW-6@6'	TP1-1@4'	TP1-2@9'	TP2-1@12'	TP3-1@6'	TP4-1@5'	TP4-2@12'	TP5-1@10'	TP6-1@12'	TP7-1@6'
Sample Depth (feet below the ground surface)	6	6	5	10	5	10	6	4	9	12	6	5	12	10	12	6
PAHs (mg/kg)																*
Acenaphthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Anthracene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo (ghi) perylene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenzofuran																
Fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1-Methylnaphthalene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
cPAHs (mg/kg)																
Benzo (a) anthracene (TEF 0.1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo (a) pyrene (TEF 1.0)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo (b+k) fluoranthene (TEF 0.1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chrysene (TEF 0.01)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenz (a,h) anthracene (TEF 0.1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Indeno (1,2,3-cd) pyrene (TEF 0.1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total TEQ of cPAHs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

PAHs = polycyclic aromatic hydrocarbons

cPAHs = carcinogenic polycyclic aromatic hydrocarbons.

NE = not established

TEF = toxic equivalency factor

Toxic Equivalency Quotient or TEQ = the sum of the TEF-modified cPAH constituents concentrations

Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits.

<0.02 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

mg/kg = milligram per kilogram

¹Chemical Analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

 $^{^2} Washington \ State \ Department \ of \ Ecology \ Model \ Toxics \ Control \ Act \ (MTCA) \ Cleanup \ Levels. \ https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx$

TABLE 3. POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL¹ PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

TP7-2@10'	TP8-1@7'	TP8-2@8'	TP8-3@11'	TP9-1@6.5'	TP10-1@12'	TP10-2@4'	TP11-1@9'	TP12-1@12'	TP13-1@12'	TP14-1@6.5'	TP15-1@5'	TP-16-1@5.5'	TP17-1@4'	TP17-2@8'	TP18-1@12'	TP19-1@5'	TP20-1@6'
10	7	8	11	6.5	12	4	9	12	12	6.5	5	5.5	4	8	12	5	6
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.78	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1.42	<0.02	<0.02	<0.02	<0.02	<0.02
< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.62	<0.02	<0.02	<0.02	<0.02	<0.02
0.14	<0.02	<0.02	<0.02	0.14	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	3.21	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.68	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.16	<0.02	<0.02	<0.02	<0.02	<0.02
< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.15	<0.02	<0.02	<0.02	<0.02	<0.02
< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	4.01	<0.02	<0.02	<0.02	<0.02	<0.02
0.16	<0.02	<0.02	<0.02	0.16	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	3.22	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.72	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	2.14	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	<0.02	<0.02	<0.02	<0.02	<0.02
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1734	ND	ND	ND	ND	ND

TABLE 3. POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL¹ PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

TP21-1@4.5'	TP22-1@6'	TP23-1@6'	TP24-1@5.5'	TP24-2@10'	TP25-1@5.5'			
4.5	6	6	5.5	10	5.5	MTCA Method A Unrestricted Soil Cleanup Level ²	MTCA Method B Soil Cleanup Level ²	MTCA Method C Soil Cleanup Level ²
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE NE	4,800	210,000
						NE NE	4,800 NE	210,000 NE
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	24,000	1,050,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	NE	NE 2 TO 2
						NE	80	3,500
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	3,200	140,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	3,200	140,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	5,600	245,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	320	14,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	5	1,600	70,000
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	NE	NE
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NE	2,400	105,000
	•		•		•			
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02]
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			MTCA Method A cPAH cleanup level
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			for the TEQ sum
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02]
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
ND	ND	ND	ND	ND	ND		0.1	

TABLE 4. SELECT VOLATILE ORGANIC COMPOUNDS IN SOIL^{1,2} PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY

HOQUIAM, WASHINGTON

	Donth /foot		VOCs (n	ng/kg)
Sample Identification	Depth (feet below the ground surface)	Date	Toluene	Isopropyltoluene
MW-1@6'	6	6/11/2018	<0.05	<0.05
MW-2@6'	6	6/11/2018	<0.05	<0.05
MW-3@5'	5	6/11/2018	<0.05	<0.05
MW-3@10'	10	6/11/2018	<0.05	<0.05
MW-4@5'	5	6/11/2018	<0.05	<0.05
MW-6@6'	6	6/11/2018	<0.05	<0.05
TP1-1@4'	4	6/11/2018	<0.05	<0.05
TP1-2@9'	9	6/13/2018	<0.05	<0.05
TP2-1@12'	12	6/13/2018	<0.05	<0.05
TP3-1@6'	6	6/13/2018	<0.05	<0.05
TP4-1@5'	5	6/11/2018	0.07	<0.05
TP4-2@12'	12	6/11/2018	<0.05	<0.05
TP5-1@10'	10	6/13/2018	<0.05	<0.05
TP6-1@12'	12	6/13/2018	<0.05	<0.05
TP7-1@6'	6	6/13/2018	<0.05	<0.05
TP7-2@10'	10	6/13/2018	<0.05	<0.05
TP8-1@7'	7	6/12/2018	<0.05	0.06
TP8-2@8'	8	6/12/2018	<0.05	<0.05
TP8-3@11'	11	6/12/2018	<0.05	<0.05
TP9-1@6.5'	6.5	6/12/2018	<0.05	<0.05
TP10-1@12'	12	6/11/2018	<0.05	<0.05
TP10-2@4'	4	6/11/2018	<0.05	<0.05
TP11-1@9'	9	6/13/2018	<0.05	<0.05
TP12-1@12'	12	6/13/2018	<0.05	<0.05
TP13-1@12'	12	6/12/2018	<0.05	<0.05
TP14-1@6.5'	6.5	6/11/2018	<0.05	<0.05
TP15-1@5'	5	6/11/2018	<0.05	<0.05
TP-16-1@5.5'	5.5	6/12/2018	<0.05	<0.05
TP17-1@4'	4	6/13/2018	<0.05	<0.05
TP17-2@8'	8	6/13/2018	<0.05	<0.05
TP18-1@12'	12	6/11/2018	<0.05	<0.05
TP19-1@5'	5	6/12/2018	<0.05	<0.05
TP20-1@6'	6	6/11/2018	<0.05	<0.05
TP21-1@4.5'	4.5	6/11/2018	<0.05	<0.05
TP22-1@6'	6	6/12/2018	<0.05	<0.05
TP23-1@6'	6	6/12/2018	<0.05	<0.05
TP24-1@5.5'	5.5	6/12/2018	<0.05	<0.05
TP24-2@10'	10	6/12/2018	<0.05	<0.05
TP25-1@5.5'	5.5	6/12/2018	<0.05	<0.05
MTCA Method A			7	NE
MTCA Method	I B Soil Cleanup	Level ³	6,400	NE
MTCA Method	l C Soil Cleanup	Level ³	280,000	NE

Notes:

NE = not established

mg/kg = milligrams per kilogram

 $Bold\ indicates\ the\ analyte\ was\ detected\ at\ a\ concentration\ greater\ than\ the\ laboratory\ method\ reporting\ limits.$

<0.05 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹Chemical analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

²Volatile organic compounds (VOCs) were analyzed by EPA Method 5035/8260B. The full list of VOCs were analyzed but only the detected VOCs are listed.

 $^{^3} Washington \ State \ Department \ of \ Ecology \ Model \ Toxics \ Control \ Act \ (MTCA) \ Cleanup \ Levels. \ https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx$

TABLE 5. SELECT VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER^{1,2} PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY

HOQUIAM, WASHINGTON

Sample		VOCs (ug/L)
Identification	Date	Isopropyltoluene
MW-1	6/11/2018	<1.0
MW-2	6/11/2018	<1.0
MW-3	6/11/2018	7.3
MW-4	6/11/2018	<1.0
MW-6	6/11/2018	<1.0
	oundwater Cleanup vel ³	NE
MTCA Method B Gr	NE	
MTCA Method C Gr Lev	NE	

¹Chemical analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

ug/L = micrograms per liter

Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits.

<1.0 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

²Volatile organic compounds (VOCs) were analyzed by EPA Method 5035/8260B. The full list of VOCs were analyzed but only the detected VOCs are listed.

³Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx NE = not established

TABLE 6. SELECT DIOXINS/FURANS IN SOIL¹ PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

		110 00 17 1111	, WASHINGTON DIOXINS/	/FURANS (ng/kg)
	Depth (feet below the ground			
Sample Identification	surface)	Date	2,3,7,8-TCDD	Total TEQ of dioxins/furans ³
MW-1@6'	6	6/11/2018	<0.462	13.8
MW-2@6'	6	6/11/2018	<0.463	0.539
MW-3@5'	5	6/11/2018	2.95	9.57
MW-3@10'	10	6/11/2018	No Sample	No Sample
MW-4@5'	5	6/11/2018	3.22	13.4
MW-6@6'	6	6/11/2018	1.46	4.5
TP1-1@4'	4	6/11/2018	2.77	10.2
TP1-2@9'	9	6/13/2018	1.69	6.46
TP2-1@12'	12	6/13/2018	1.92	4.91
TP3-1@6'	6	6/13/2018	1.39	2.85
TP4-1@5'	5	6/11/2018	0.597	2.39
TP4-2@12'	12	6/11/2018	1.67	6.34
TP5-1@10'	10	6/13/2018	3.17	10.3
TP6-1@12'	12	6/13/2018	1.23	2.71
TP7-1@6'	6	6/13/2018	2.28	8.98
TP7-2@10'	10	6/13/2018	<0.412	7.35
TP8-1@7'	7	6/12/2018	2.76	5.26
TP8-2@8'	8	6/12/2018	1.8	4.76
TP8-3@11'	11	6/12/2018	1.71	4.08
TP9-1@6.5'	6.5	6/12/2018	5.45	39.6
TP10-1@12'	12	6/11/2018	1.18	4.28
TP10-2@4'	4	6/11/2018	<0.394	0.15
TP11-1@9'	9	6/13/2018	3.74	10
TP12-1@12'	12	6/13/2018	3.28	3.99
TP13-1@12'	12	6/12/2018	1.58	3.1
TP14-1@6.5'	6.5	6/11/2018	<0.300	0.219
TP15-1@5'	5	6/11/2018	<0.425	0.178
TP-16-1@5.5'	5.5	6/12/2018	<0.417	3.55
TP17-1@4'	4	6/13/2018	1.44	4.89
TP17-2@8'	8	6/13/2018	3.47	7.87
TP18-1@12'	12	6/11/2018	1.75	3.85
TP19-1@5'	5	6/12/2018	2.44	8.38
TP20-1@6'	6	6/11/2018	<0.438	0.307
TP21-1@4.5'	4.5	6/11/2018	<0.374	0.0267
TP22-1@6'	6	6/12/2018	<0.340	0.0564
TP23-1@6'	6	6/12/2018	<0.367	0.336
TP24-1@5.5'	5.5	6/12/2018	3.05	8.44
TP24-2@10'	10	6/12/2018	2.1	4.95
TP25-1@5.5'	5.5	6/12/2018	<0.473	0.68
MTCA Method A So			NE	NE
MTCA Method B So	-		12.8	12.8
MTCA Method C So			16.8	16.8
Notes:				1 10.0

Notes:

ND = The analyte was not detected

NE = Not established

<.3 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

ng/kg = nanogram per kilogram

¹Chemical Analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

²Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. Cancer values are used unless otherwise noted. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

^{*} The MTCA Method C industrial clean up level is listed because the MTCA Method A industrial clean up level is not established. Bold indicates the analyte was detected at a concentration greater than the laboratory method reporting limits

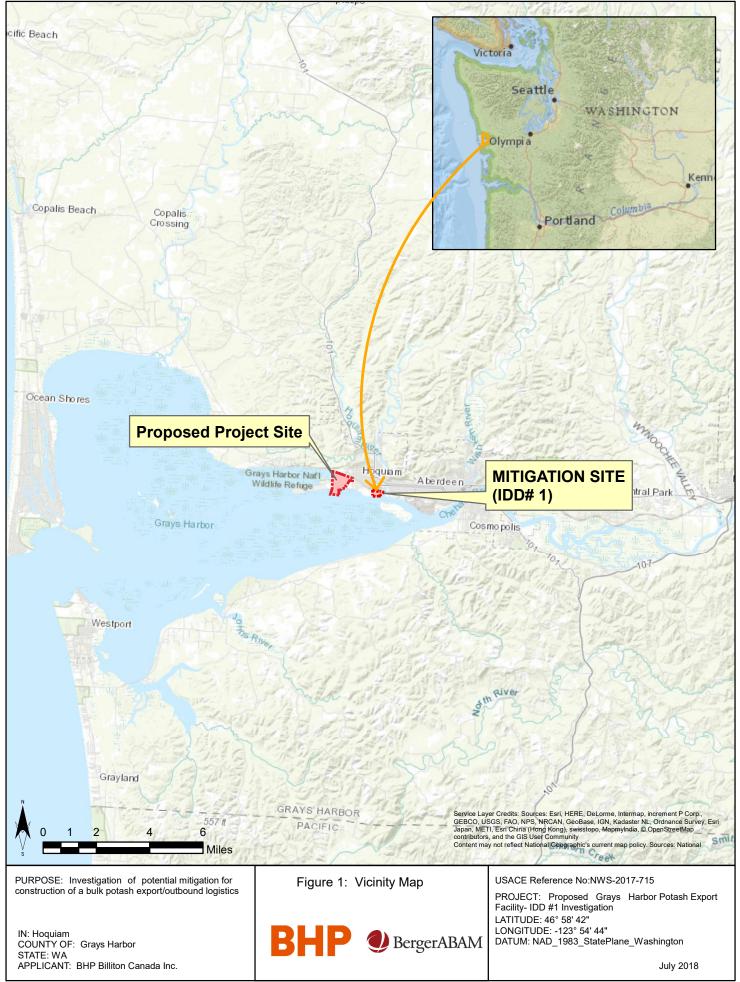
TABLE 7. SELECT DIOXINS/FURANS IN GROUNDWATER1

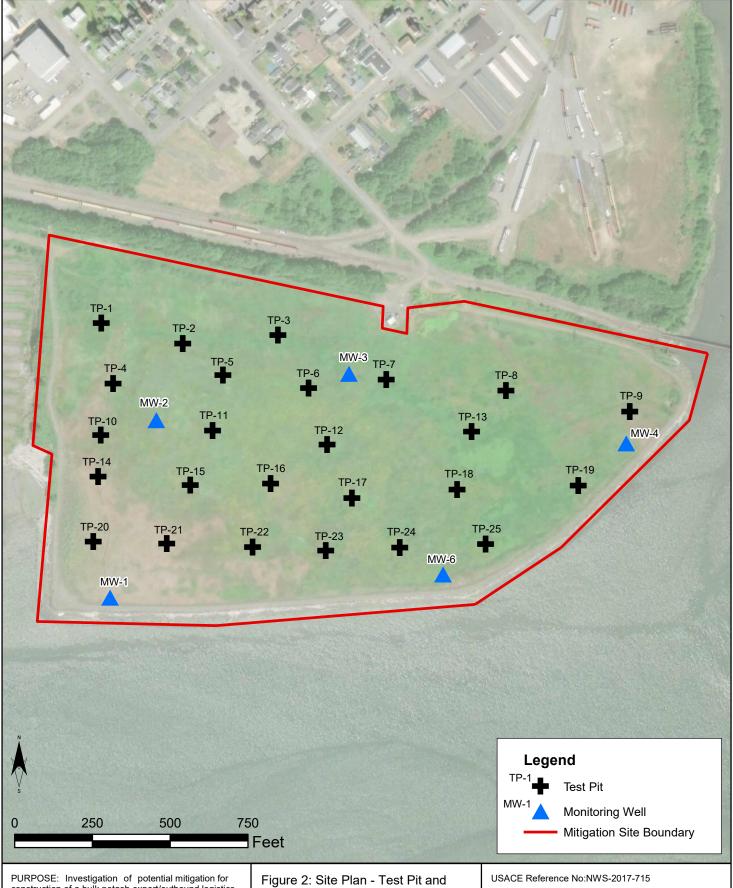
PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY HOQUIAM, WASHINGTON

		DIC	OXINS/FURANS (pg/L)
Sample Identification	Date	2,3,7,8-TCDD	Total TEQ of dioxins/furans ³
MW-1	6/11/2018	<6.13	0.0
MW-2	6/11/2018	<4.99	0.186
MW-3	6/11/2018	<7.83	0.0
MW-4	6/11/2018	<6.96	0.0
MW-5	6/11/2018	<5.05	0.0
MW-6	6/11/2018	<6.77	0.0
MTCA Method A Groundwa	ater		
Cleanup Level ²		NE	NE
MTCA Method B Groundwa	ater		
Cleanup Level ²		0.673	0.673
MTCA Method C Groundwa	ater		_
Cleanup Level*		6.73	6.73

¹Chemical Analysis was performed by Environmental Services Network Northwest; The laboratory report is included as Appendix C.

²Washington State Department of Ecology Model Toxics Control Act (MTCA) Cleanup Levels. Cancer values are used unless otherwise noted. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx


^{*} The MTCA Method C clean up level is listed because the MTCA Method A industrial clean up level is not established. pg/L = pictogram per liter


<5 = The analyte was not detected. The associated numerical value is the sample quantitation limit.

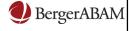
June 2018 Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility, IDD#1 Site Hoquiam, Washington

Figures

construction of a bulk potash export/outbound logistics

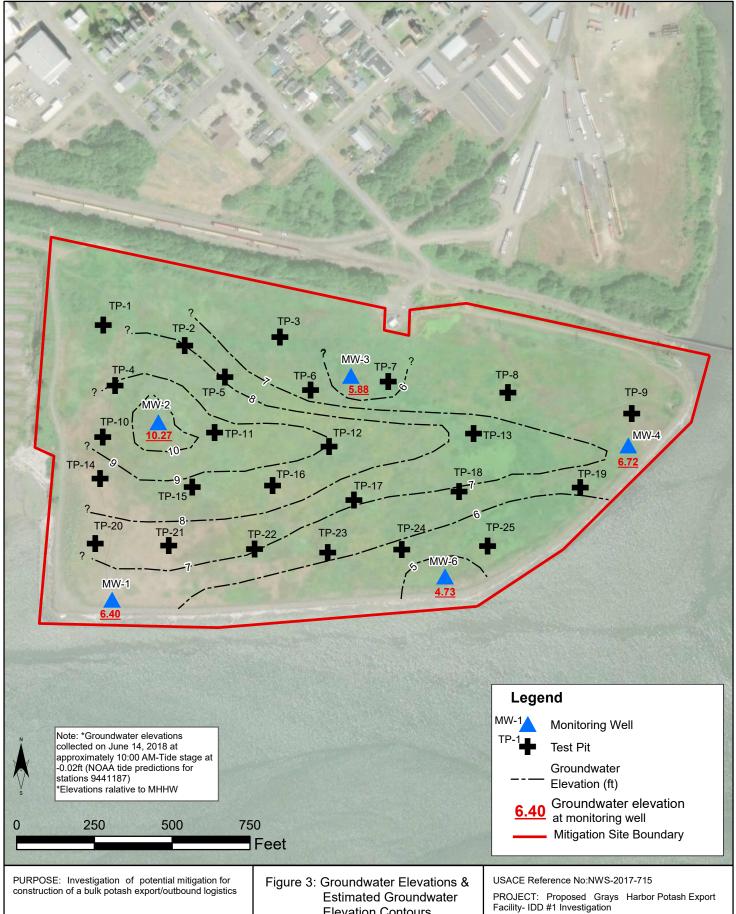
IN: Hoquiam


COUNTY OF: Grays Harbor

STATE: WA

APPLICANT: BHP Billiton Canada Inc.

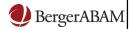
Monitoring Well Locations



PROJECT: Proposed Grays Harbor Potash Export Facility- IDD #1 Investigation

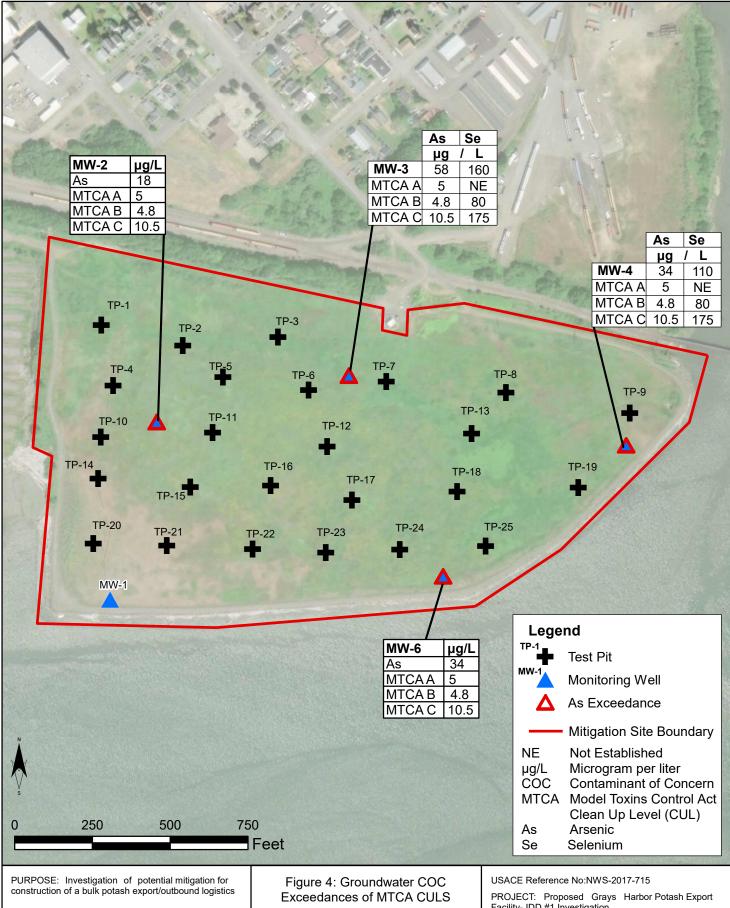
LATITUDE: 46° 58' 16.81" LONGITUDE: -123° 52' 54.61"

DATUM: NAD_1983_StatePlane_Washington


IN: Hoquiam

COUNTY OF: Grays Harbor

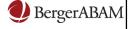
STATE: WA


APPLICANT: BHP Billiton Canada Inc.

Elevation Contours

LATITUDE: 46° 58' 16.81" LONGITUDE: -123° 52' 54.61"

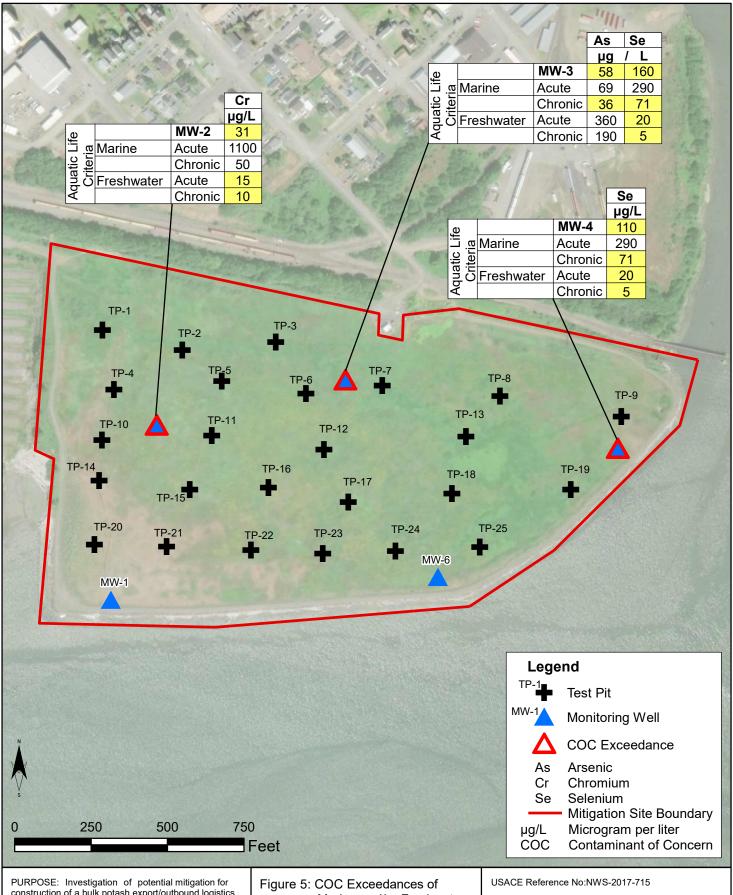
DATUM: NAD_1983_StatePlane_Washington


IN: Hoquiam

COUNTY OF: Grays Harbor

STATE: WA

APPLICANT: BHP Billiton Canada Inc.



PROJECT: Proposed Grays Harbor Potash Export Facility- IDD #1 Investigation

LATITUDE: 46° 58' 16.81"

LONGITUDE: -123° 52' 54.61"

DATUM: NAD _1983 _StatePlane _Washington

construction of a bulk potash export/outbound logistics

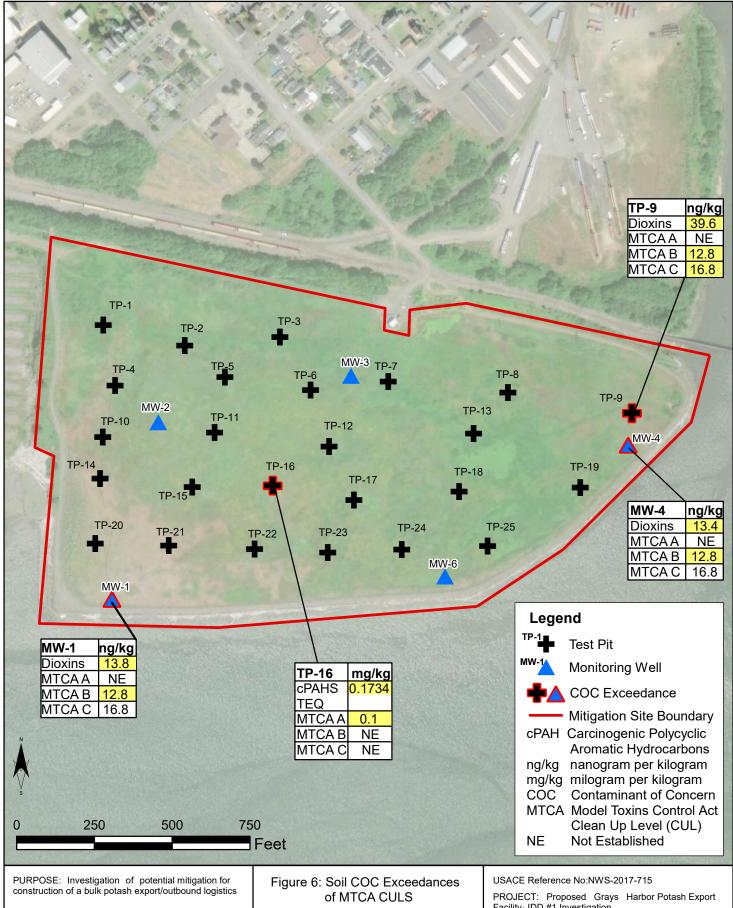
IN: Hoquiam

COUNTY OF: Grays Harbor

STATE: WA

APPLICANT: BHP Billiton Canada Inc.

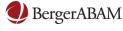
Marine and/or Freshwater Aquatic Life Criteria



PROJECT: Proposed Grays Harbor Potash Export Facility- IDD #1 Investigation LATITUDE: 46° 58' 16.81"

LONGITUDE: -123° 52' 54.61"

DATUM: NAD_1983_StatePlane_Washington

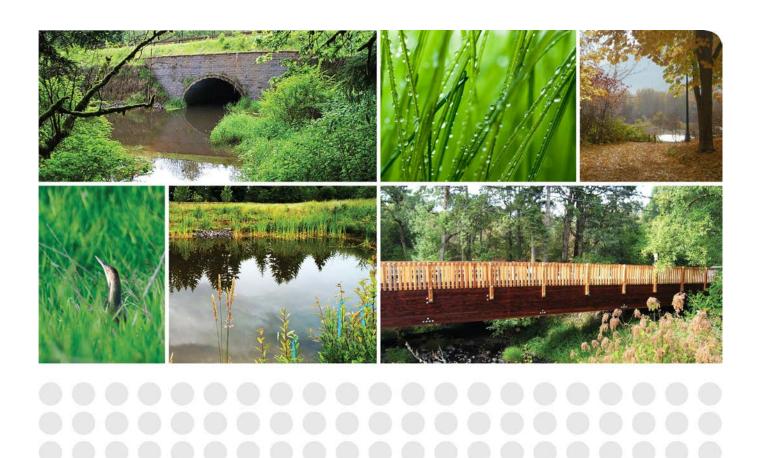

IN: Hoquiam

COUNTY OF: Grays Harbor

STATE: WA

APPLICANT: BHP Billiton Canada Inc.

Facility- IDD #1 Investigation LATITUDE: 46° 58' 16.81" LONGITUDE: -123° 52' 54.61"


DATUM: NAD_1983_StatePlane_Washington

June 2018 Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility, IDD#1 Site Hoquiam, Washington

Appendix A Groundwater Sampling and Analysis Plan

Proposed Grays Harbor Potash Export Facility –
Potential Wetland Mitigation Site: IDD #1
Groundwater and Soil Sampling and Analysis Plan

A17.0202.00 June 2018

Groundwater and Soil Sampling and Analysis Plan

Proposed Grays Harbor Potash Export Facility Potential Wetland Mitigation Site: IDD #1 Hoquiam, Washington

June 2018

GROUNDWATER AND SOIL SAMPLING AND ANALYSIS PLAN

Proposed Grays Harbor Potash Export Facility Potential Wetland Mitigation Site: IDD #1 Hoquiam, Washington

TABLE OF CONTENTS

SECT	ION		PAGE
1.0	INTRO	ODUCTION	1
2.0	PURF	POSE	1
3.0		DESCRIPTION	
0.0	3.1	Location and Use	
	3.2	Subsurface Conditions	
	0.2	3.2.1 Geology	
		3.2.2 Hydrogeology	2
4.0	SAMI	PLING AND ANALYSIS PLAN	2
	4.1	Analytical Program	2
	4.2	Well Installation	3
	4.3	Soil Sampling	3
5.0	GENE	RAL SAMPLING PROCEDURES AND EQUIPMENT	4
	5.1	Monitoring Well Construction and Development	
	5.2	Soil and Groundwater Sampling	5
	5.3	Soil Sampling	5
		5.3.1 Groundwater	
	5.4	Decontamination	
	5.5	Field Sampling Schedule	
	5.6	Sample Handling	
	5.7	Field Screening	
	5.8	Location Control	
	5.9	Investigation-Derived Waste	
6.0	SUMI	MARY REPORT	10
7.0	STUD	Y TEAM AND RESPONSIBILITIES	10
	7.1	Project Planning and Coordination	10
	7.2	Field Sample Collection	10
	7.3	Laboratory Analysis	11
	7.4	Quality Assurance/Quality Control Management	11
	7.5	Final Data Report	11
8.0	LIMIT	TATIONS	11
9.0	BIBLI	IOGRAPHY	12
10.0	ACRO	DNYMS AND ABBREVIATIONS	12

LIST OF TABLES

Table 1. Analytical Methods, Containers, and Holding Times8

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Proposed Monitoring Well Locations and Historical Sample Locations

GROUNDWATER AND SOIL SAMPLING AND ANALYSIS PLAN PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY POTENTIAL WETLAND MITIGATION SITE: IDD #1 HOQUIAM, WASHINGTON

1.0 INTRODUCTION

BHP Billiton Canada, Inc. (BHP) is considering redevelopment of the IDD #1 site (tax parcels #056400600102, #056400400100) in Hoquiam, Washington, for potential compensatory mitigation for proposed wetland impacts related to development of the Port of Grays Harbor (Port) Terminal 3 and surrounding parcels in Hoquiam, Washington. The proposed IDD #1 mitigation site (herein referred to as "the site," see Figure 1) is a Port-owned property, on the north shore of Grays Harbor.

This Sampling and Analysis Plan (SAP) describes the monitoring well installation, ground water sampling and test pit excavations for soil sampling where existing ground water and soil will be encountered if the site is developed as compensatory mitigation, and the associated sampling and analysis for hazardous materials characterization. BergerABAM will be installing four new groundwater monitoring wells, and collecting sediment samples at 25 test pit locations at the site (Figure 2). Soil samples will also be collected during monitoring well installation. There is the potential that a fifth well will be installed if the previously installed wells (WSDOT) are no longer usable at the site. The purpose of the investigation is to evaluate soil and groundwater conditions for disposal purposes and to evaluate for the potential presence of chemicals of concern (COCs) at the site including RCRA 8 metals, volatile organic compounds (VOCs), PAHs, polycyclic chlorinated biphenyls (PCBs), northwest total petroleum hydrocarbons-diesel- and gasoline-range (NWTPHDx/Gx), dioxins/furans and cyanide.

Previous sampling efforts at the IDD site (WSDOT, 2009) included installation and sampling from two groundwater wells (MW-1 and MW-5 on Figure 2). Soil samples were not analyzed at that time but the groundwater samples showed concentrations of arsenic in groundwater at concentrations greater than the associated Model Toxics Control Act (MTCA) Method B cleanup level (CUL) for arsenic. The central portion of the site was not characterized during the 2009 investigation.

2.0 PURPOSE

The purpose of the groundwater sampling is to establish baseline groundwater conditions, and evaluate dissolved metals concentrations over time (e.g., seasonal fluctuations). Soil sampling and analysis is being conducted to identify and characterize subsurface conditions including the potential presence of COCs at the site. These studies are being completed to evaluate subsurface conditions at the site in support of use of the site for potential wetland mitigation.

3.0 SITE DESCRIPTION

3.1 Location and Use

The site is approximately 42 acres and is located south of K Street and the Puget Sound and Pacific Rail Road, and east of Earley Industrial Way, in Hoquiam, Washington. The site is situated on the north shore of Grays Harbor, at the mouth, and just west of, the Hoquiam River. The site is owned by the Port. The site is currently vacant; aerial imagery indicates that vegetation is managed by mowing.

3.2 Subsurface Conditions

3.2.1 Geology

The site is located in the Puget-Willamette Lowland - Chehalis River Basin physiographic province. Site soil generally consists of very loose to very dense fill over estuarine and alluvial deposits (BergerABAM 2017b).

3.2.2 Hydrogeology

Shallow groundwater is present in the site area at approximately 4 to 8 feet below ground surface (bgs), based on previous investigations at the site (WSDOT, 2009). Groundwater aquifers in the study area occur primarily in shallow alluvium. Regional groundwater flow direction is anticipated to be to the southwest toward Grays Harbor.

Groundwater flow is expected to be tidally influenced and may fluctuate seasonally.

4.0 SAMPLING AND ANALYSIS PLAN

4.1 Analytical Program

The proposed laboratory analytical plan has been designed to fulfill the following data collection needs.

• Evaluate groundwater conditions at the site (including dissolved metals concentrations)

Evaluate subsurface soil conditions at the site for disposal, handling and mitigation design.

The soil samples will be submitted for chemical analysis in accordance with Washington Administrative Code (WAC) 173-340-830.

The following analytical methods will be used for the study.

- volatile organic compounds (VOCs) by EPA method 8260
- PAHs and polycyclic chlorinated biphenyls (PCBs) by EPA method 8270/8082
- diesel- and gasoline-range petroleum hydrocarbons by Ecology method Northwest Total Petroleum Hydrocarbons NWTPH Dx/Gx

- dioxins/furans
- cyanide
- RCRA 8 metals (including total chromium and speciation, if needed) using Environmental Protection Agency Method 6020.

Method reporting limit goals for chemical analyses will be based on MTCA Method A CULs, or standard Method B CULs, when Method A CULs have not been established.

4.2 Well Installation

Groundwater quality will be assessed by installing up to five monitoring wells and sampling groundwater from the new monitoring wells on a quarterly basis.

The proposed groundwater assessment will consist of the following specific tasks.

- An underground utility locate will be conducted in the area of the proposed boring locations prior to drilling to identify any subsurface utilities and/or potential underground physical hazards.
- Installation of four 2-inch-diameter groundwater monitoring wells using direct push drilling equipment in accordance with WAC 173-160. The 2-inch-diameter groundwater monitoring wells will be constructed with Schedule 40 polyvinyl chloride (PVC) casing and screens and pre-packed sand filter systems. We anticipate that the wells will be approximately 15 to 20 feet deep and include a 10-foot screened interval. The completed well depth will be based on the groundwater elevations and soil conditions encountered in each boring. The wells will be completed in aboveground monuments. The proposed well locations are shown on Figure 2.
- Field screen the soil from the surface to the bottom of each boring.
- Prepare field logs for each exploration in general accordance with American Society for Testing and Materials (ASTM) D 2488-90 and document sample collection depth.
- Survey the ground surface elevations and top-of-casing elevations for new monitoring wells, relative to an arbitrary site datum.
- Measure depth to water and check for the presence of light non-aqueous phase liquid in the monitoring wells.
- Collect groundwater samples from the monitoring wells using the procedures described in Section 5.2.2.
- Submit the samples to an analytical laboratory for chemical analysis of the COCs noted above.

4.3 Soil Sampling

Test pit investigation will be completed by an experienced environmental backhoe operator (Green Earthworks of Tacoma, Washington) and sampled by a qualified BergerABAM scientist. BergerABAM will coordinate and oversee all test pit activities. A licensed archaeologist (ICF) will be present during all test pit excavations to evaluate the

material for the presence of cultural artifacts. A brief summary of BergerABAM's task items follows.

- Conduct a standard one-call underground utility locate and a subcontracted on-site underground utility locate prior to beginning work.
- Complete up to 25 test pits in coordination with the backhoe operator at the approximate locations shown in Figure 2.
- Log the test pits from the surface to approximately 12 feet bgs.
- A minimum of one soil sample will be collected from each test pit (up to a total of 30 soil samples).
- Submit up to 30 soil samples that show the most field evidence of contamination (e.g., heavy sheen, staining or high photoionization detector reading) to an analytical laboratory for chemical analysis of: RCRA 8 metals, volatile organic compounds (VOCs), PAHs, polycyclic chlorinated biphenyls (PCBs), northwest total petroleum hydrocarbons-diesel- and gasoline-range (NWTPH Dx/Gx), dioxins/furans and cyanide.
- Prepare field logs for each exploration in general accordance with American Society for Testing and Materials D 2488-90 and document sample collection depth.
- Record the position of each exploration location using a submeter grade GPS instrument.

5.0 GENERAL SAMPLING PROCEDURES AND EQUIPMENT

This section specifies the field procedures, field quality assurance/quality control (QA/QC) protocol, and the chemical testing program to be implemented during the site assessment. The field and sampling procedures will include the following:

- Collection of soil and sediment samples
- Decontamination procedures
- Handling of investigation-derived waste

Disposable latex/nitrile gloves will be used and will be rinsed with distilled water before and after handling each individual sample (as appropriate) to prevent sample contamination during soil and groundwater sample collection. Gloves will be disposed of between samples to prevent cross contamination.

Logs and field notes of all samples will be maintained during sampling activities. The following will be included in the log:

- Station location determined in latitude and longitude using GPS
- Date and time of collection of each sample
- Names of field person(s) collecting and logging in the sample
- Sample characteristics, including grain size, density, presence of staining, and moisture for soil
- Sample characteristics, including appearance, odor, and presence/absence of sheen
- Weather conditions.

- Sample station number as derived from this sampling plan
- Depth intervals of each sample
- Depth of groundwater
- Any deviation from the sampling plan

5.1 Monitoring Well Construction and Development

Installation of the monitoring wells will be observed by a BergerABAM field scientist, who will maintain a detailed log of the materials and depths of the well. The monitoring wells will be constructed to a depth of approximately 15 to 20 feet to evaluate groundwater conditions. BergerABAM will attempt to install the well screens to intersect the groundwater table during seasonal high- and low-water conditions.

Wells will be constructed in accordance with WAC 173-160 using 2-inch-diameter Schedule 40 PVC well casing with 10- or 20-slot well screens. Medium sand will be placed in the borehole annulus surrounding the slotted portion of the well. Each well will be completed by placing a bentonite seal and aboveground monument protected by three bollards. A lockable Thermos-type cap will be installed in the top of the PVC well casing. The depth to water in the monitoring well will be measured prior to development. The total depth of the well will also be measured and recorded. Each monitoring well will be developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The well screen will be gently surged with a bailer several times after installation. Groundwater monitoring wells will be developed by purging the well until conventional field parameters (such as temperature, conductivity, and pH) stabilize to within 10 percent over three consecutive measurements and/or until five well volumes have been removed. The removal rate and amount of groundwater removed will be recorded during well development procedures. Groundwater removed from the wells during development will be collected and stored in labeled 55-gallon drums for subsequent characterization.

Groundwater monitoring wells will be surveyed to identify their lateral position and vertical elevation of the top of well casing (aboveground completion), top of well casing (PVC), and at ground level. The vertical datum will be carried from a standard U.S. Geological Survey NGVD benchmark, which will be used to establish a permanent benchmark at the site. A survey reference notch will be established on each monitoring well casing.

5.2 Soil and Groundwater Sampling

5.3 Soil Sampling

Excavation activities will be monitored by a technical representative from BergerABAM. Field observations (including soil classification and logs) will be detailed in daily field notes. Soil samples will be evaluated for the potential presence of contamination using

field screening techniques (see Section 5.6). Observations of soil and conditions and soil field screening results for each test pit will be included in the field notes.

Soil samples will be collected using a track mounted excavator, every 2-feet, between 1 foot and 12 feet bgs. Samples will be collected for analysis of the COCs identified above if signs of contamination are observed (PID, sheen, odor, etc.). Soil samples will be collected from just above apparent groundwater level in each boring if no indications of petroleum hydrocarbon contamination are observed.

Sample containers will be labeled in the field and stored in an iced cooler prior to and during shipment to the chemical analytical laboratory. Incidental trash generated during this investigation (including discarded nitrile gloves, aluminum foil, tubing, and paper towels) will be placed in plastic trash bags and disposed of as solid waste. Soil removed from test pits will be replaced and compacted to previous contours and conditions.

5.3.1 Groundwater

Groundwater levels will be measured in each monitoring well prior to purging during each sampling event. Groundwater levels will be measured relative to the casing rim elevations to the nearest 0.01 foot using an electric water level indicator. The direction of shallow groundwater flow at the site will be interpreted based on field measurements and site topography.

Groundwater samples will be collected from monitoring wells using a peristaltic pump and dedicated Teflon-lined polyethylene tubing.

The wells will be purged prior to sample collection using low-flow/low-turbidity sampling techniques to minimize the suspension of sediment in the groundwater. The flow rate will be less than 1 liter per minute. A water quality measuring system will be used to monitor the following water quality parameters during purging: electrical conductivity, dissolved oxygen, pH, salinity, turbidity and temperature. Samples will be collected after these parameters stabilize so that measured values vary less than 10 percent for three consecutive measurements. The stabilized field measurements will be documented in the field log book. Soil cuttings from well installation, development water and purge water will be stored in secured, labeled 55-gallon drums for subsequent characterization and disposal. Section 5.8 addresses the disposal of investigation-derived waste, such as purge water.

Groundwater samples will be collected into laboratory-provided sample containers (NO PRESERVATIVE) for dissolved metals (to be lab filtered) and the other COCs identified above after the wells are purged. The samples will be collected directly from water flowing from the sampler tubing using the low-flow methodology described above. Each sample container will be securely capped, labeled, and placed in a cooler with ice immediately upon collection. The well casing plug and monument cover lid will be secured after each sampling event.

5.4 Decontamination

All reusable samplers and miscellaneous sampling tools will be thoroughly cleaned prior to use according to the following procedure.

- Water rinse
- Wash with brush and phosphate-free detergent
- Triple rinse with distilled water

After cleaning, all sampling equipment not used immediately will be wrapped in aluminum foil and/or stored in plastic bags. The rule of "potential for contaminants" will be used such that any sampling equipment suspected of contamination will be rejected and decontaminated prior to use.

Tubing used for sampling will be single use Teflon-lined polyethylene tubing dedicated for a single monitoring well during a single monitoring event. The dedicated tubing will be discarded after use.

5.5 Field Sampling Schedule

Monitoring well installation will be completed using direct push drilling equipment owned and operated by Environmental Services Network Northwest. Installation will begin on 11 June 2018 and completed no later than 14 June 2018. The first quarter of groundwater samples will be collected 24 hours after installation/development is complete.

Excavation of test pits will be completed using a track mounted backhoe and other earth moving equipment owned and operated by Green Earthworks Inc. Excavation will begin on 11 June 2018 and will be completed no later than 14 June 2018.

5.6 Sample Handling

Sample handling procedures, including labeling, container and preservation requirements, and holding times are described in Table 1.

Table 1. Analytical Methods. Containers, and Holding Times

	Table 1. Analytical	Contai		lung rimes	Holding Time		
Parameter	Method Reference	Water	Soil	Preservation	Water	-	
	Wethou Reference	water	3011	Preservation	water	Solid	
Petroleum Hydrocarbons		0 40		1101 to mil 4			
Gasoline-range	NWTPH-G/AK101	2 ea 40-mL amber glass vial ⁽¹⁾	1 ea 5035 Kit	HCl to pH < 2.0 Cool ≤ 6°C	14 Days 7 Days ⁽²⁾	14 Days	
Diesel-range	NIM/TOLL Du / AI/ 4 OO	1 ea 500-mL AG	4-oz WMG	Cool ≤ 6°C	7 days	14 days	
Lube oil-range	NWTPH-Dx/AK102	1 ea 500-mL AG	4-oz WMG	Cool ≤ 6°C	7 days	14 days	
Volatile Organic Compound	is						
Benzene							
Toluene	0004 (0000	2 ea 40-mL	1 ea 5035	HCl to pH <	14 Days	1.4 Davis	
Ethylbenzene	8021/8260	vial ⁽¹⁾	Kit	2.0 Cool ≤ 6°C	7 Days ⁽²⁾	14 Days	
Total Xylenes				000 0			
Polycyclic Aromatic Hydroc	arbons	·	l	1			
Naphthalene							
2-Methylnaphthalene							
Total naphthalenes							
Acenaphthylene		1 00 500 ml AC		Cool ≤ 6°C			
Acenaphthene							
Anthracene							
Pyrene							
Benzo[g,h,i]perylene	8270 and 8270		4 \\\\\		7 Days	1.4 Dava	
Benzo[a]anthracene	SIM	1 ea 500-mL AG	4-oz WMG	C001 ≥ 6°C	7 Days	14 Days	
Chrysene							
Benzo[b]fluoranthene							
Benzo[k]fluoranthene							
Benzo(a)pyrene							
Indeno[1,2,3-cd]pyrene							
Dibenz[a,h]anthracene							
Total TEF-modified cPAHs							
RCRA Metals							
Arsenic							
Cadmium							
Chromium	7470 and 7471	500-mL HDPE	4-oz WMG	Cool ≤ 6°C	28 Days	28 Days	
Lead	1410 allu 1411	JOU-IIIL HUFE	4-02 WIVIG	C001 ≥ 0 C	20 Days	20 Days	
Mercury							
Zinc							
PCBs	8082	500-mL AG	4-oz WMG	Cool ≤ 6°C	7 Days	7 Days	
Dioxins/Furans	8290A	500-mL AG	4-oz WMG	Cool ≤ 6°C	30 Days	30 Days	

Notes:

(1) = No Headspace

(2) = When Unpreserved

(3) = Total Metals or Field-filtered Samples only AG = Amber Glass Boston Round Bottle

WMG = Wide Mouth Glass Jar WMGS = Wide Mouth Glass Jar with Septa HDPE = High-Density Polypropylene AHDPE= Amber HDPE

5.7 Field Screening

Soil samples collected from the test pits will be field screened for evidence of possible contamination. Field screening results will be recorded on the field logs. Screening results will be used to aid in the selection of soil samples to be submitted for chemical analysis. The following screening methods will be used: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening.

Visual Screening. The soil will be observed for unusual color and stains and/or odor indicative of possible contamination.

Water Sheen Screening. A portion of the soil sample will be placed in a pan containing distilled water. The water surface will be observed for signs of sheen. The following sheen classifications will be used.

Classification	Identifier	Description				
No Sheen	(NS)	No visible sheen on the water surface				
Slight Sheen	(SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly				
Moderate Sheen	(MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface				
Heavy Sheen	(HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen				

Headspace Vapor Screening. A portion of the soil sample will be placed into a resealable plastic bag for headspace vapor screening. Ambient air will be captured in the bag; the bag will be sealed and then shaken gently to expose the soil to the air trapped in the bag. The bag will remain closed for approximately 5 minutes at ambient temperature before the headspace vapors are measured. Vapors present within the sample bag's headspace will be measured by inserting the probe of a PID in a small opening in the bag. A PID measures the concentration of organic vapors ionizable by a 10.6 electron volt lamp in parts per million (ppm) and quantifies organic vapor concentrations in the range between 0.1 ppm and 2,000 ppm (isobutylene equivalent) with an accuracy of 1 ppm between 0 ppm and 100 ppm. The maximum value on the instrument and the ambient air temperature will be recorded on the field log for each sample. The PID will be calibrated to 100 ppm isobutylene.

5.8 Location Control

Station positions will be determined in latitude and longitude using a hand-held GPS unit (North American Datum 83) to the nearest 0.1 second. The accuracy of measured and recorded horizontal coordinates will be within 3 meters.

The top of casing and location of each completed monitoring well will be surveyed by a licensed surveyor (Berglund and Schmidt).

5.9 Investigation-Derived Waste

Incidental trash generated during this investigation (including discarded nitrile gloves, aluminum foil, tubing, and paper towels) will be placed in plastic trash bags and disposed of as solid waste.

A designated, on-site waste storage area will be established prior to initiating field activities. Soil cuttings, purge water, and decontaminated water generated from the well installation will be placed in secured, labeled 55-gallon drums and temporarily stored on site. The waste will be profiled for disposal based on subsurface soil samples. BergerABAM will procure a waste handler to transport all the waste to an appropriate off-site disposal/recycling facility after analytical results from the soil samples are received and evaluated.

6.0 SUMMARY REPORT

A written report will be prepared by BergerABAM documenting all activities associated with collection, transportation of samples, and chemical analysis. The chemical analytical report will be included as an appendix. At a minimum, the following will be included in the summary report.

- Type of sampling equipment used
- Protocols used during sampling and testing and an explanation of any deviations from the sampling plan protocols
- Methods used to locate the sampling positions with an accuracy of 3 meters
- Locations of the monitoring well borings
- A plan view of the site showing the monitoring well locations and inferred groundwater flow direction
- Chain-of-custody procedures used and explanation of any deviations from the sampling plan procedures
- Description of sampling procedures
- Data results relative to MTCA criteria for industrial land use

7.0 STUDY TEAM AND RESPONSIBILITIES

The SAP includes (1) project planning and coordination, (2) field sample collection, (3) laboratory preparation and analyses, (4) QA/QC management, and (5) final data report. The program will use the following team members and responsibilities.

7.1 Project Planning and Coordination

Ms. Victoria England of BergerABAM is the primary technical representative for characterization activities.

7.2 Field Sample Collection

Ms. April Ryckman of BergerABAM will provide overall direction to the field and laboratory programs and will coordinate field activities. She will be responsible for assuring that all the required logistics elements and protocols are followed, including accurate sample positioning, sample handling and field decontamination procedures,

physical evaluation and logging of samples, and chain-of-custody of the samples until delivered to the analytical laboratory.

7.3 Laboratory Analysis

Environmental Services Network Northwest in Olympia, Washington, will perform chemical analysis for this project.

7.4 Quality Assurance/Quality Control Management

Ms. Roesler will be the QA/QC representative. She will provide oversight for the field-sampling program and will be responsible for QA/QC oversight of the laboratory programs. Ms. Ryckman will also review laboratory QA/QC data to assure validity of data and conformance to QA/QC requirements and will provide a written QA/QC report.

7.5 Final Data Report

Ms. Roesler will be responsible for preparation of the final sampling data report identifying sample locations, field and laboratory methods, QA/QC, and data results.

8.0 LIMITATIONS

This work plan has been prepared for use by BHP. This work plan is not intended for use by others, and the information contained herein is not applicable to other sites.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this work plan was prepared. No warranty or other conditions, express or implied, should be understood.

9.0 BIBLIOGRAPHY

CH2MHill, 2009. "Phase II Environmental Site Assessment, Anderson & Middleton Property, Aberdeen Log Yard Property Prepared fro Washington State Department of Transportation. Novembery 2009

10.0 ACRONYMS AND ABBREVIATIONS

ASTM American Society for Testing and Materials

bgs below ground surface
BHP BHP Billiton Canada, Inc.

City City of Hoquiam
COC chemical of concern

CUL cleanup level

MTCA Model Toxics Control Act
PID photoionization detector
Port Port of Grays Harbor
ppm parts per million
PVC polyvinyl chloride

QA/QC quality assurance/quality control SAP Sampling and Analysis Plan

WAC Washington Administrative Code

June 2018 Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility, IDD#1 Site Hoquiam, Washington

Appendix B Boring Logs

SOIL CLASSIFICATION CHART

		110	SYME	BOLS	TYPICAL		
IMIA	AJOR DIVISO	NS	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES		
COARSE GRAINED	GRAVELY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES		
SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES		
	SAND AND	CLEAN SANDS	+ + + + + + + + + + + + + + + + + + + +	sw	WELL-GRADED SANDS, GRAVELLY SAND		
MORE THAN 50% RETAINED ON	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		
NO. 200 SIEVE	MORE THAN 50% OF COARSE FRACTION	OF COARSE FRACTION	OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND-SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND-CLAY MIXTURES		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC SILTS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
				OL	INORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		
MORE THAN 50% PASSING NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
F	HIGHLY ORGANIC	soils		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications.

ADDITIONAL MATERIAL SYMBOLS

SYME	BOLS	TYPICAL			
GRAPH	LETTER	DESCRIPTIONS			
	СС	CEMENT CONCRETE			
	AC	ASPHALT CONCRETE			
	CR	CRUSHED ROCK/QUARRY SPALLS			
	TS	TOPSOILS/FOREST DUFF/SOD			

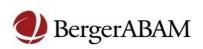
MEASURED GROUNDWATER LEVEL IN EXPLORATION, WELL, OR PIEZOMETER

GROUNDWATER OBSERVED AT TIME OF EXPLORATION

MEASURED FREE PRODUCT IN WELL OR PIEZOMETER

MEASURED FREE PRODUCT IN WELL OR PIEZOMETER

STRATIGRAPHIC CONTACT


TRATA OR GEOLOGIC UNITS

GRADUAL CHANGE BETWEEN SOIL STRATA OR GEOLOGIC UNITS APPROXIMATE LOCATION OF SOIL STRATA CHANGE WITHIN A GEOLOGIC SOIL UNIT

SHEEN CLASSIFICATION

NS NO VISIBLE SHEEN
SS SLIGHT SHEEN
MS MODERATE SHEEN
HS HIGH SHEEN
NT NOT TESTED

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be represented of subsurface conditions at other locations or times.

Project: Proposed Grays Harbor Potash	
Export Facility	
Project Location: IDD#1, Hoquiam, WA	
Project Number: A17.0202.00	

Date Dr	illed: 6/	11/18		Logged	d By: AR	Check	ed By: GR		
Drilling	Contrac	tor: ESN		Drilling	g Method: Auger - direct push	Sampl	ing Methods	:	
Auger Data: N/A Han				Hamm	er Data: N/A	Groundwater Level (ft bgs): 6			
Total De	epth (ft l	bgs): 15		Surface	e Elevation (ft): N/A	Datum	1:		
Depth (ft)	Graphic Log	Standard Penetration Test (SPT)	Water Level (ft)	Group Symbol	Material Description	Sheen	Headspace Vapor PID (ppm)	Notes/Sample ID	
0									
0				TS	Organic material - topsoil and grass	NS	0.0		
						NS	0.0		
5		_ \(\frac{\brace}{2} \)		SP	Brown to gray poorly graded coarse sand (dry to moist)	NS	0.0		
10						NS	0.0		
				SM	Gray poorly graded medium sand with silt (wet)	113	0.0		
15				M	Gray silt with fine sand (stiff)	NS	0.0		
					End of boring = 15 feet bgs				
					LOG OF BORING #				
					Project: Proposed Grays Harbor Po	otash			
	Be	rger/	ABA	M	Export Facility		ft = feet		
					Project Location: IDD#1, Hoquiam Project Number: A17.0202.00				

Date Dr	Date Drilled: 6/11/18 Logged			Logged	d By: AR	Check	ecked By: GR		
Drilling	Contract	or: ESN		Drilling	g Method: Auger - direct push	Sampl	ing Methods	5:	
Auger D	ata: N/A	١		Hammer Data: N/A			ndwater Level (ft bgs): 7		
Total De	epth (ft k	ogs): 15		Surface	e Elevation (ft): N/A	Datum:			
Depth (ft)	Graphic Log	Standard Penetration Test (SPT) Blows/foot	Water Level (ft)	Group Symbol	Material Description	Sheen	Headspace Vapor PID (ppm)	Notes/Sample ID	
0									
				TS	Organic material - topsoil and grass	NS	0.0		
						NS	0.0		
5				SP	Brown to gray poorly graded coarse sand (dry to moist)				
			∇			NS	0.0		
			- \\ \\ \\ \						
				SM	Gray medium sand with silt (wet)	NS	0.0		
10				SM	Gray medium sand (dense)	NS	0.0		
				SM	Gray medium sand with silt (wet, soft)	NS	0.0		
				ML	Gray silt with fine sand (wet)	NS	0.0		
15				ML	Gray silt (wet, stiff) with 1-inch lens of organic material at 52in.	NS	0.0		
					End of boring = 15 feet bgs				
				I	LOG OF BORING #	MW-2	<u>1</u> 2		
	Bei	rger/	ABA	M	Project: Proposed Grays Harbor Potash Export Facility			v ground surface	
	g Deigen ich ivi				Project Location: IDD#1, Hoquiam Project Number: A17.0202.00				

Date Dri	illed: 6/	11/18		Logge	d By: AR	Check	Checked By: GR			
Drilling (Contrac	tor: ESN		Drilling	g Method: Auger - direct push	Sampl	ing Metho	ds:		
Auger D	ata: N/A	4		Hamm	er Data: N/A	Groun	roundwater Level (ft bgs): 5			
Total De	epth (ft l	ogs): 15		Surfac	e Elevation (ft): N/A	Datum	n:			
Depth (ft)	Graphic Log	Standard Penetration Test (SPT) Blows/foot	Water Level (ft)	Group Symbol	Material Description	Sheen	Headspace Vapor PID (ppm)	Notes/Sample ID		
0										
				ZT .	Organic material - topsoil and grass	NS				
				J	Brown clay with coarse sand and gray coarse sand lens (dry to moist)	NS NS		Rust-orange areas of oxidation noted in brown clay		
5			- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	J	Dark gray clay with silt (wet)					
10					Brown silt with clay (wet)	NS				
					Wood debris	NS	12.0	Wood debris with strong creosote odor		
15				ML	Dark gray silt (wet)	NS	0.8			
					End of boring = 15 feet bgs					
					LOG OF BORING #	MW-3	<u> </u>	1		
BergerABAM			ABA	M	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA			ow ground surface		
					Project Number: A17.0202.00					

Date Dr	illed: 6/:	11/18		Logge	d By: AR	Check	ed By: GR		
Drilling	Contrac	tor: ESN		Drilling	g Method: Auger - direct push	Sampl	ing Methods	s:	
Auger D	ata: N/A	4		Hamm	ner Data: N/A	Groun	lwater Level (ft bgs): 5		
Total De	epth (ft l	ogs): 15		Surfac	e Elevation (ft): N/A	Datum	1:		
Depth (ft)	Graphic Log	Standard Penetration Test (SPT) Blows/foot	Water Level (ft)	Group Symbol	Material Description	Sheen	Headspace Vapor PID (ppm)	Notes/Sample ID	
0									
				TS	Organic material - topsoil and grass	NS	0.0		
				R	Cobble lens	NS	0.0		
				SC	Clayey sand with gravel (dry)	NS	0.0		
				ر ر	Brown clay (dry, stiff)	NS	0.0		
				CR	Cobble lens	NS	0.0		
5			_ ₩	CL	Gray to black clayey silt	NS	0.0		
			=		No recovery			Hit brick at 5- 10 ft and no further recovery possible. MW-4 sample taken at 5 ft bgs	
10					Brick				
15					No recovery			Material falling out of sampler, no recovery possible	
					End of boring = 15 feet bgs				
					_				
					LOG OF BORING #	MW-4	1		
	BergerABAM		M	Project: Proposed Grays Harbor Potash Export Facility		bgs = belov ft = feet	v ground surface		
					Project Location: IDD#1, Hoquiam	, WA			
					Project Number: A17.0202.00				

Date Dr	illed: 6/1	11/18		Logge	d By: AR	Check	ed By: GR	d By: GR		
Drilling	Contract	or: N/A		Drilling	g Method: Auger - direct push	Sampl	ing Metho	ds:		
Auger D	ata: N/A	\		Hamm	er Data: N/A	Groun	dwater Le	vel (ft bgs): 6		
Total De	epth (ft k	ogs): 14		Surfac	e Elevation (ft): N/A	Datum	1:			
Depth (ft)	Graphic Log	Standard Penetration Test (SPT) Blows/foot	Water Level (ft)	Group Symbol	Material Description	Sheen	Headspace Vapor PID (ppm)	Notes/Sample ID		
0										
				TS	Organic material - topsoil and grass	NS	0.0			
				SP	Brown coarse sand (dry)	NS	0.0			
5		_ ਊ _		ML	Gray silt with brown coarse sand lens (moist)	NS	0.0			
						NS	0.0			
10					Gray silt (wet, stiff)	NS	0.0			
15										
					End of boring = 15 feet bgs					
				-						
				_						
				-						
				J	LOG OF BORING #	MW-6	5			
	Bei	gerA	ABA	M	Project: Proposed Grays Harbor Potash Export Facility		ash bgs = below ground surface ft = feet			
					Project Location: IDD#1, Hoquiam Project Number: A17.0202.00	, WA				

Date: 11 June 2018	Depth to Water: 9.5'	Sample Station Number: TP1
Time: 10:00	Tide Stage & Info: 6.04'	Sampling Number: TP1-1@4'; TP1-2@9'
Temperature: 55°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.972033	Longitude: -123.885325	Datum: D_North_American_1983

_						
DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	NEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0,						
		SP	Brown coarse sand with silt (dry to			
2'		01	moist)	NS	0.6ppm	Logs and old piles present within the first 2'
						Significant milled timber and wood debris between 3' and 4'
4'		ML	Brown silt with coarse brown sand (dry to moist)	SS	2.1ppm	
4.5'-5'		ML	dark gray silt with coarse sand (dry to moist)	SS	1.9ppm	Hydraulic fill. Sampled (TP1-1@4') beneath a creosote treated log/pile
6'			to moist)			
7'		ML	Silt with wood debris (moist)		2.2ppm	
8'		IVIL	Sitt With Wood debris (moist)			
9'	₹	ML	Silt with coarse sand and wood debris (wet)	SS	3.0ppm	Sampled (TP1-2@9'). Groundwater at 9.5' bgs
10'				NS	2.7ppm	
		ML	dark grey silt (stiff, moist to wet) Bottom of test pit 12.0 ft bgs			
12'				NS		Hydraulic fill
	BergerAl	BAM	Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 13 June 2018	Depth to Water: >12'	Sample Station Number: TP2
Time: 8:13	Tide Stage & Info: -1.58'	Sampling Number: TP2-1@12'
Temperature: 54°F	Tide Station:	Sampling Methods: Excavator
Weather: Light Rain	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971885	Longitude: -123.884268	Datum: D_North_American_1983

_						
DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown silt with coarse brown and grey sand (dry to moist)			
2'				NS	0.6ppm	
		ML	Dark grey soft silt with coarse sand			
4'		MIL	(dry to moist)	NS	0.9ppm	
6'		ML	dark grey soft silt with sand and wood waste (moist)	NS	0.9ppm	significant wood waste/mill debris
8'		ML	Dark grey stiff silt with sand (dry to moist)	NS	1.3ppm	
10'				NS	1.3ppm	
12'		ML	Dark grey stiff silt with sand and wood waste (dry to moist)	NS	1.7ppm	Sampled (TP2-1@12')
Project: Proposed Grays Harbor Potash Ex Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million			

Date: 13 June 2018	Depth to Water: 7'	Sample Station Number: TP3
Time: 9:07	Tide Stage & Info: 0.04'	Sampling Number: TP3-1@6'
Temperature: 54°F	Tide Station:	Sampling Methods: Excavator
Weather: Light rain	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971993	Longitude: -123.883048	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0,						
2'		ML	Reddish brown soft silt with gray coarse sand (dry to moist)	NS	1.0ppm	
4'				NS	0.4ppm	
6'		N/I	dark grey soft silt with coarse sand	NS	1.1ppm	Sampled (TP3-1@6')
7'	₽	ML	(moist to saturated)			Ground water at 7' bgs
8'		ML	Grey stiff silt with coarse gray and coarse brown sand (saturated)	NS	0.5ppm	
		IVIL				
10'			Croy of the old will also the	NS	0.7ppm	
		ML	Grey stiff silt with significant wood debris (saturated)			
12'		ML	Grey stiff silt (moist)	NS	0.7ppm	
BergerABAM Facility Project Location:		Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 11 June 2018	Depth to Water: >12'	Sample Station Number: TP4
13:30:00 AM	Tide Stage & Info: 8.01'	Sampling Number: TP4-1@5', TP4-2@12'
Temperature: 60°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971505	Longitude: -123.885141	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'		SP	Loose brown coarse sand with silt			
2'		5	(dry to moist)	NS	0.5ppm	
3'		SP	Dark grey fill (coarse sand and silt) (dry to moist)			
4'		SP	Dark grey coarse sand with soft silt (dry to moist)	NS	0.5ppm	TP4-1@5'
5' 6'		SP	Coarse sand with wood waste/ dimensional lumber and gravel (dry to moist)	NS	0.7ppm	Slight sheen observed on water at bottom of the pit
		SP	Coarse gray sand, loose/unconsolidated (dry to moist)			
9.5'		ML	Dense silt with compacted coarse sand (dry to moist)	NS NS	0.4	hydraulic fill
10'			Stiff silt with coarse sand (moist)			
12'		ML	Bottom of test pit = 12ft bgs	NS	0.4ppm	TP4-2@12'
Project: Proposed Grays Harbor P Facility Project Location: IDD#1, Hoquiam Project Number: A17.0202.00				Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 13 June 2018	Depth to Water: 11'	Sample Station Number: TP5
Time: 10:29	Tide Stage & Info: 3.33'	Sampling Number: TP5-1@10'
Temperature: 56°F	Tide Station:	Sampling Methods: Excavator
Weather: Light rain	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971622	Longitude: -123.883734	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	NEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown and grey silt with coarse sand (dry to moist)			
2'				NS	1.0ppm	
		SC	Grey coarse sand with silt and			
4'		30	wood waste	NS	1.0ppm	
6'		ML	Grey silt with coarse sand (dry to moist)	NS	1.2ppm	
8'				NS	1.0ppm	
		ML	Grey silt with coarse sand (moist to saturated)			
10'				NS	1.0ppm	Sampled (TP5-1@10")
11'	록	ML	Grey silt with coarse sand (Saturated)			Groundwater at 11' bgs
12'		141	Bottom of test pit = 12ft bgs	NS	1.0ppm	
	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00				Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 13 June 2018	Depth to Water: >12'	Sample Station Number: TP6
Time: 11:13	Tide Stage & Info: 5.06'	Sampling Number: TP6-1@12'
Temperature: 58 ^o F	Tide Station:	Sampling Methods: Excavator
Weather: Overcast	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.97154	Longitude: -123.882623	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
			Brown silt with brown and grov			
		ML	Brown silt with brown and grey coarse sand (dry to moist)			
2'				SS	1.1ppm	
4'		ML	Very dark grey soft silt (dry to moist)	SS	0.9ppm	
6'				NS	0.9ppm	
8'		ML	Gray silt with wood debris and organic material (dry to moist)	NS	0.6ppm	
10'				NS	0.00ppm	
		ML	grey silt with coarse sand (moist)			
12'		IVIL	Bottom of test pit = 12ft bgs	NS	1.4ppm	Sampled (TP6-1@12')
BergerABAM Facility Project Location: ID		Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 13 June 2018	Depth to Water: 10.5'	Sample Station Number: TP7
Time: 10:00	Tide Stage & Info:	Sampling Number: TP7-1@6'; TP7-2@10'
Temperature: 76°F	Tide Station:	Sampling Methods: Excavator
Weather:Mostly Cloudy	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971642	Longitude: -123.881629	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Reddish brown silt with coarse sand (dry to moist)			
2'			dana (a. j. to molot)	NS	0.6ppm	
4'		ML	Reddish brown to grey silt with coarse sand and wood debris (dry to moist)	NS	0.2ppm	
6'				NS	2.2ppm	
6.5'		ML	Gray silt with organics (moist)			Perched water above wood waste at 6.5'
7'						Significant wood waste at 7'
8'		ML	Silt and coarse sand with wood waste (Saturated)	NS	0.4ppm	
10'				NS	2.8ppm	Sampled (TP7-2@10')
10.5'	₹	ML	Gray silt Bottom of test pit = 12ft bgs			Groundwater at 10.5' bgs
12'				SS	2.1ppm	
Project: Proposed Grays Harbor Facility Project Location: IDD#1, Hoquia Project Number: A17.0202.00			Export	bgs = below ground surface ft = feet ppm= parts per million		

Date: 12 June 2018	Depth to Water: 12'	Sample Station Number: TP8
14:13:00 AM	Tide Stage & Info: 8.62'	Sampling Number: TP8-1@7'; TP8-2@8'; TP8-3@11'
Temperature: 67°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971592	Longitude: -123.880083	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown silt with coarse sand (dry to			
2'		1012	moist)	NS	2.2ppm	
4'		ML	Gray silt with coarse sand and	NS	4.4ppm	
		IVIL	wood waste (dry to moist)			
6'		ML	Dark grey stiff silt with wood waste (dry to moist)	NS		
7'			Grey silt with wood waste (dry to	NS	2.2ppm	Sampled (TP8-1@7') Wood waste/mill waste consists of sawdust and dimensional lumber
8'		ML	moist)	NS	4.4ppm	Sampled (TP8-2@8') Sample taken from beneath possible creosote treated pile
10'				NS	3.3ppm	
11'		ML	Stiff gray silt (moist) Bottom of test pit = 12ft bgs	NS	3.1ppm	Sampled (TP8-3@11')
12'	₽					Groundwater at 12'
BergerABAM Facility Project Location:			Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 12 June 2018	Depth to Water: 7'	Sample Station Number: TP9
15:37:00 AM	Tide Stage & Info: 6.75'	Sampling Number: TP9-1@6.5'
Temperature: 70°F	Tide Station:	Sampling Methods: Excavator
Weather:Scattered Clouds	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971456	Longitude: -123.87848	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Grey, brown, and red silt, very stiff			
2'			(dry to moist)	NS	2.5ppm	
		ML	Soft reddish brown silt with coarse sand and very dark grey highly			
4'		IVIL	compacted silt (dry to moist)	NS	1.7ppm	Old brick and mortar
5' 6'		SP-SM	Brown and gray coarse sand with silt and brick and mortor (dry to moist)	NS	0.9ppm	Charcoal and ash observed
6.5'		ML	Stiff brown silt with coarse sand and fine gravel (dry to moist)	NS	1.8ppm	Sampled (TP9-1@6.5')
7'	₹					Groundwater at 7' bgs
8'		ML	Dark grey silt with coarse sand and	NS	1.9ppm	
10'		1412	mill/wood debris	NS	2.3ppm	
		ML	Dark grey laminated silt			
12'		IVIL	Bottom of test pit = 12ft bgs	NS	2.3ppm	
BergerABAM		BAM	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		bgs = below ground surface ft = feet ppm= parts per million	

Date: 11 June 2018	Depth to Water: 12.5'	Sample Station Number: TP10
Time: 12:05	Tide Stage & Info: 8.52'	Sampling Number: TP10-1@12'; TP10-2@4'
Temperature: 57°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971047	Longitude: -123.88527	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		SP-S,	Coarse brown sand with silt (dry to			
2'			moist)	NS	1.7ppm	
3.5'		SP-SM	Dark grey coarse sand with silt (dry to moist)			Hydraulic fill
4'		SP	Dark brown and grey coarse sand	NS	2.0ppm	Sampled (TP10-2@4')
4.5		5	(moist)			Perched water above impermeable later below
6'				NS	2.2ppm	
			Dark grove goars sand (mast-t)			
8'		SP	Dark grey coarse sand (moist) loose/unconsolidated fill sand	NS	2.1ppm	loose/unconsolidated fill sand
9'						Layer of wood waste (dimensional lumber) at 9'
10'			Coarso sand with silt fill	NS	2.0ppm	
		SP-SM	Coarse sand with silt fill Bottom of test pit = 12.5ft bgs			
12'	록			NS	2.6ppm	Sampled (TP10-1@12') Groundwater at 12.5'
	BergerABAM		Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		bgs = below ground surface ft = feet ppm= parts per million	

Date: 13 June 2018	Depth to Water: >9'	Sample Station Number: TP11
Time: 10:00	Tide Stage & Info: 2.16'	Sampling Number: TP11-1@9'
Temperature: 56°F	Tide Station:	Sampling Methods: Excavator
Weather:Mostly cloudy	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.97113	Longitude: -123.883833	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown and grey silt with coarse			
2'		IVIL	sand (dry to moist)	NS	0.7ppm	
4'		CD CM	Grey coarse sand with silt (dry to	NS	0.8ppm	
		SP-SM	moist)			
6'				NS	0.9ppm	Soils damp at 6'
		ML	Grey silt with coarse sand (wet)			
8'				NS	0.8ppm	Soils wet but not saturated
9'		ML	Dense/compacted grey silt with coarse sand (wet)	NS	1.0ppm	Soils saturated. Sampled (TP11-1@9') Groundwater below 9'
10'			Bottom of test pit = 9ft bgs			Could not excavate below 9' because side walls of the pit were collapsing in on the pit
101						
12'	Project: Proposed Grays Harb Facility Project Location: IDD#1, Hogo Project Number: A17.0202.00				<u>I</u> Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 13 June 2018	Depth to Water: >12'	Sample Station Number: TP12
14:07:00 AM	Tide Stage & Info: 9.32	Sampling Number: TP12-1@12'
Temperature: 62°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971047	Longitude: -123.882355	Datum: D_North_American_1983

DЕРТН - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		SM/ML	Brown coarse sand with silt over gray soft silt with sand			
2'				NS	1.0ppm	
4'		ML	Grey silt with coarse sand	SS	1.6ppm	
6'		ML	Grey silt with coarse sand and	SS	2.7ppm	
		IVIL	organics/rotting wood waste			
8'				SS	2.5ppm	
10'		ML	Grey silt Bottom of test pit = 12ft bgs	NS	1.9ppm	
			2011011101 test pit – 1211 bys			
12'				NS	1.4ppm	Sampled (TP12-1@12').
	③ BergerABAM		Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		bgs = below ground surface ft = feet ppm= parts per million	

Date: 12 June 2018	Depth to Water: >12'	Sample Station Number: TP13
13:05:00 AM	Tide Stage & Info: 8.95'	Sampling Number: TP13-1@12'
Temperature: 66°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.971219	Longitude: -123.880504	Datum: D_North_American_1983

10'		SM ML	Dary grey coarse sand with silt lenses Dark grey silt Bottom of test pit = 12ft bgs	NS NS	1.2ppm	Sampled (TP13-1@12')
8'		ML	Dark grey silt with coarse sand (moist)	NS	1.4ppm	
6'		SM	Dark grey coarse sand with silt and wood waste (moist)	NS	1.7ppm	
		ML	Brown silt with coarse sand and wood waste (moist)			
4'				NS	0.5ppm	
2'		ML	moist)	NS	0.6ppm	
		N. 41	Brown silt with coarse sand (dry to			
0'						
DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID

Date: 11 June 2018	Depth to Water: 7'	Sample Station Number: TP14
15:00:00 AM	Tide Stage & Info: 5.98'	Sampling Number: TP14-1@6.5'
Temperature: 62°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.97068	Longitude: -123.885283	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
2'		SP	Loose reddish brown coarse sand (dry to moist)	NS	1.7ppm	
4'				NS	1.4ppm	
6'		CD	Dark grey coarse sand with silt	NS	1.9ppm	
6.5'-7'	SP	5P	(moist to saturated)	NS	3.0ppm	Sampled (TP14-1@6.5'). Soil composed of hydraulic fill. Groundwater at 7'
8'		SP	Dark grey coarse sand (coarse, saturated)	NS	1.5ppm	
10'		SP	Dark brown coarse sand	NS	1.4ppm	
12'		ML	Silts with coarse sand and clay Bottom of test pit = 12ft bgs	NS	1.4ppm	
BergerABAM Facility Project Lo		BAM	Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 11 June 2018	Depth to Water: 5'	Sample Station Number: TP15
Time: 17:45	Tide Stage & Info: 2.29'	Sampling Number: TP15-1@5'
Temperature: 63°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970639	Longitude: -123.884092	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
			Brown coarse sand with silt (dry to moist)			
2'		SP-SM		NS	1.4ppm	
5'			Dark grey coarse sand (loose, moist) Bottom of test pit = 6ft bgs	NS	2.3ppm	Sampled (TP15-1@5')
6'	₽	SP				Groundwater at 6' bgs
						Unable to dig below 6'. Soils consist of loose/unconsolidated sands and side walls of the pit continue to collapse in on the pit.
8'						
10'						
12'						
BergerABAM Facility Project Location: IDD#1		Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 12 June 2018	Depth to Water: >8'	Sample Station Number: TP16	
Time: 16:54	Tide Stage & Info: 4.58'	Sampling Number: TP-16-1@5.5'	
Temperature: 67°F	Tide Station:	Sampling Methods: Excavator	
Weather: Mostly cloudy	9441187 Aberdeen, WA	Sampled By: Allison Kinney	
Latitude: 46.970683	Longitude: -123.88306	Datum: D_North_American_1983	

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		SP	Reddish brown coarse sand with silt (dry to moist)			
2'				NS	1.8ppm	
4'				NS	2.5ppm	
5.5'				NS	2.0ppm	
6'		SM	Dark grey, coarse sand with silt (wet) Bottom of test pit = 8ft bgs			Perched water above impermeable layer at 6'
8'				NS	1.8ppm	Unable to excavate below 8' because side walls of the pit continue to collapse in on the pit.
	Project: Proposed Grays Harbor P Facility Project Location: IDD#1, Hoquiam Project Number: A17.0202.00			Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 13 June 2018	Depth to Water: 8.5'	Sample Station Number: TP17
Time: 13:15	Tide Stage & Info: 8.77	Sampling Number: TP17-1@4'; TP17-2@8'
Temperature: 61°F	Tide Station:	Sampling Methods: Excavator
Weather: Partly Cloudy	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970587	Longitude: -123.882007	Datum: D_North_American_1983

						,
DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		SP	Grey and brown coarse sand with silt			
2'				NS	3.7ppm	
4'		ML	Grey silt with grey and brown coarse sand and organic material	SS	2.3ppm	Sampled (TP17-1@4')
5'		IVIL	(wet)			Perched water above impermeable layer at 5'
6'		ML	Grey silt with coarse sand and organics (moist)	SS	6.9ppm	
7.5			Dark black decomposing organic material			1.5 feet thick
8'		ML	Grey silt with coarse sand and	SS	1.8ppm	Sampled (TP17-2@8')
8.5'	₹	IVIL	organics (wet)			Groundwater at 8.5' bgs
10'		ML	Dark grey stiff silt (wet)	NS	3.9ppm	
12'		ML	Grey silt with stratified brown coarse sand lenses Bottom of test pit = 12ft bgs	NS	2.1ppm	
	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million		

Date: 11 June 2018	Depth to Water: >12'	Sample Station Number: TP18
Time: 12:15	Tide Stage & Info: 8.56'	Sampling Number: TP18-1@12'
Temperature: 57°F	Tide Station:	Sampling Methods: Excavator
Weather: Partly cloudy	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970704	Longitude: -123.880657	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
2'		SP-SM	Reddish brown coasre silty sand (dry to moist)	NS	0.6ppm	
4'				NS	0.4ppm	
6'		ML	Very dark stiff grey silt (dry to moist)	NS	0.7ppm	
8'				NS	0.5ppm	Sulfur-like odor. High organic content
		ML	Very dark grey silt and organics (dry to moist)			
10'				NS	0.6ppm	Sulfur-like odor. High organic content
12'	록	ML	Very dark grey silt with wood waste. (moist) Bottom of test pit = 12ft bgs	NS	0.7ppm	Sampled (TP18-1@12'). Soils damp. Likely just above the watertable.
	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00			Export	bgs = below ground surface ft = feet ppm= parts per million	

Date: 12 June 2018	Depth to Water: 6'	Sample Station Number: TP19
Time: 11:15	Tide Stage & Info: 6.84'	Sampling Number: TP19-1@5'
Temperature: 64°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970782	Longitude: -123.879101	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'		ML	Brown silt with coarse sand			
2'				NS	1.5ppm	
3'			Wood waste with quarry spals	140	Поррии	
4'		SP	grey and brown coarse sand (loose) with silt	NS	1.2ppm	
5'			Brown silt with extensive rotting	NS	2.0ppm	Sampled (TP19-1@5'). Smells of rotting wood/organic material
6'	₹		wood waste			Groundwater at 6'
8'				NS	0.6ppm	Large amount of mill waste/dimensional lumber
			Very fine dark grey saturated silt			
10'		ML	with dimensional lumber Bottom of test pit = 12ft bgs	NS	0.6ppm	Still signficant amount of mill waste/dimensional lumber, but less so than at 8'
12'				NS	0.5ppm	More mill waste/dimensional lumber
BergerABAM Facili		BAM	Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		bgs = below ground surface ft = feet ppm= parts per million	

Date: 11 June 2018	Depth to Water: 7'	Sample Station Number: TP20	
Time: 15:50	Tide Stage & Info: 4.69	Sampling Number: TP20-1@6'	
Temperature: 63°F	Tide Station:	Sampling Methods: Excavator	
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney	
Latitude: 46.970105	Longitude: -123.885308	Datum: D_North_American_1983	

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown silt with coarse sand and gravel (moist to dry)			
2'				NS	1.4ppm	
4'				NS	1.5ppm	
6'		SP	Brown coarse sand (loose) (wet)	NS	0.5ppm	Sampled (TP20-1@6')
7'	₽					Groundwater at 7' bgs
7.5"		SP-SM	Dark grey, coarse sand with silt (wet)	NS	1.4ppm	
			(,			
10'		SP	Dark grey and brow n coarse sand (wet)	NS	1.2ppm	
12'		SP	Dark grey coarse sand (wet) Bottom of test pit = 12ft bgs	NS	1.2ppm	
Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million			

Date: 11 June 2018	Depth to Water: 6'	Sample Station Number: TP21
Time: 17:00	Tide Stage & Info: 2.95'	Sampling Number: TP21-1@4.5'
Temperature: 63°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970116	Longitude: -123.884362	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
2'		SP	Brown to reddish brown coarse sand (loose, dry to moist)	NS	2.2ppm	
4'				NS	1.6ppm	
4.5'		5	P Dark brown coarse sand (loose, wet)	NS	1.1ppm	Sampled (TP21-1@4.5')
6'	록	SP				Groundwater at 6'
		CD	Reddish brown coarse sand (wet)			
8'		SP	Bottom of test pit = 8ft bgs	NS	0.8ppm	Could not excavate below 8'. Side walls of pit continue to collapes into pit.
BergerABAM Facility Project Location:			Project: Proposed Grays Harbor F Facility Project Location: IDD#1, Hoquian Project Number: A17.0202.00		Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 12 June 2018	Depth to Water: 7'	Sample Station Number: TP22	
Time: 7:26	Tide Stage & Info: -0.88	Sampling Number: TP22-1@6'	
Temperature: 50°F	Tide Station:	Sampling Methods: Excavator	
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney	
Latitude: 46.970117	Longitude: -123.883256	Datum: D_North_American_1983	

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
			Drown access and /laces) with all			
		SP-SM	Brown coarse sand (loose) with silt (dry to moist)			
2'				NS	1.5ppm	
		SP-SM	Brown coarse sand (loose) with			
4'		31 3111	soft grey silt (moist)	NS	1.2ppm	
6'		SP	Grey coarse sand with silt (moist) Bottom of test pit = 7ft bgs	NS	0.7ppm	
7'	록					Groundwater at approximately 7' bgs. Unnable to excavate below 7' side walls of pit continue to collapse into the pit
	9 BergerABAM		Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00		bgs = below ground surface ft = feet ppm= parts per million	

Date: 12 June 2018	Depth to Water: 7'	Sample Station Number: TP23
Time: 8:11	Tide Stage & Info: 0.32'	Sampling Number: TP23-1@6'
Temperature: 52⁰F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970114	Longitude: -123.882314	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	NEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		SP-SM	Coarse brown sand (loose) with silt			
2'		3F-3IVI	Coalse brown saird (100se) with sift	NS	1.1ppm	
4'				NS	1.1ppm	
6'		SP	Dark grey, coarse sand (loose)	NS	1.0ppm	Sampled (TP23-1@6')
7'	록					Groundwater at 7' bgs
8'		SP-SM	Dark grey coarse sand with silt lenses Bottom of test pit = 8ft bgs	NS	1.0ppm	Unable to excavate below 8°. Side walls of pit continue to collape into the pit.
Project: Proposed Grays Har Facility Project Location: IDD#1, Hoo Project Number: A17.0202.0					Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 12 June 2018	Depth to Water: approx. 11'	Sample Station Number: TP24
Time: 9:00	Tide Stage & Info: 2.03	Sampling Number: TP24-1@5.5'; TP24-2@10'
Temperature: 57°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970167	Longitude: -123.881363	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)	SHEEN	HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
0'						
		ML	Brown silt with coarse sand (dry to moist)			
2'				NS	0.8ppm	
4'			Grey silt with brown coarse sand	NS	1.1ppm	
5'		ML	(wet)			Perched water above laminated silt layer at 5'
5.5'		ML	Very fine dark grey silt (moist)	NS	1.8ppm	Sampled (TP24-1@5.5')
8'		ML	Dark grey silt with brown coarse sand and wood waste/debris/sawdust	NS	1.6ppm	
10'		ML	Dark grey silt with wood waste/debris/sawdust Bottom of test pit = 10ft bgs	NS	1.2ppm	Sampled (TP24-2@10'). Soils damp but not completely saturated, likely just above the water table.
						Unable to excavate deeper than 10'. Side walls continue to collapse into the pit
Project: Proposed Grays Have Facility Project Location: IDD#1, How Project Number: A17.0202.					<u> </u> Export	bgs = below ground surface ft = feet ppm= parts per million

Date: 12 June 2018	Depth to Water: 6'	Sample Station Number: TP25
Time: 10:05	Tide Stage & Info: 4.41'	Sampling Number: TP25-1@5.5'
Temperature: 60°F	Tide Station:	Sampling Methods: Excavator
Weather: Clear	9441187 Aberdeen, WA	Sampled By: Allison Kinney
Latitude: 46.970233	Longitude: -123.880261	Datum: D_North_American_1983

DEPTH - FT	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION (characteristics, density, grain size)		HEADSPACE VAPOR PID (ppm)	NOTES (odor, etc.)/Sample ID
O,						
			Grey and brown silt with coarse			
2'		SP	sand (moist to dry)	NS	1.0ppm	plant debris present
4'		ML	Dark grey silt (moist to dry)	NS	1.9ppm	
5.5'				NS	0.4ppm	Sampled (TP25-1@5.5')
6'	₹	SP-SC	Dark grey coarse sand with silt (wet)			Groundwater at 6' bgs
8'		SP	Dark grey coarse sand (loose)	NS		
9')) ř	Bottom of test pit = 9ft bgs	NS	0.8ppm	Unable to excavate below 9'. Side walls continue to collapse into the pit.
10'						
12'						
Project: Proposed Grays Harbor Potash Export Facility Project Location: IDD#1, Hoquiam, WA Project Number: A17.0202.00						bgs = below ground surface ft = feet ppm= parts per million

June 2018

Groundwater Monitoring Well Installation, Soil Investigation, and First Quarter Groundwater Sampling – IDD#1 Site Summary Report

Proposed Grays Harbor Potash Export Facility, IDD#1 Site Hoquiam, Washington

Appendix C
Environmental Services Network Northwest
Chemical Analytical Laboratory Report

Environmental

Services Network

08/01/2018

Spectra was unable to perform the Cyanide analysis on the water 06/13/18 samples and the Chromium Speciation from the IDD #1 Site due to the samples being preserved with Nitric Acid for RCRA8 analysis at ESN NW. An aliquot of the sample should have been removed from the original poly, and then forwarded to Spectra for analysis. The error was noted and performed correctly for future samples.

Thank you,

Jennifer Arnold

Lab Manager

ESN Northwest

360-459-4670

July 20, 2018

Victoria England BergerABAM 210 E 13th St, Ste. 300 Vancouver, WA 98660

Dear Ms. England:

Please find enclosed an analytical data report for the BHP Grays Harbor Potash Facility – IDD #1 Project in Hoquiam, Washington. Probe services were conducted on June 11, 2018. Soil and water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, VOC's by Method 8260, PAH's by Method 8270, PCB's by Method 8082, RCRA 8 Metals by Method 6020, Cyanide by Method SM4500-CN E, Hexavalent Chromium by Method SM3500-CR B, Dioxins, and water samples for Dissolved RCRA 8 Metals & Arsenic by Method 6020 on June 15 – July 9, 2018.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

ESN Northwest appreciates the opportunity to have provided services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

Michaela Korou

President

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank 1	6/14/2018	6/14/2018	106	nd	nd
LCS 1	6/14/2018	6/14/2018	105	99%	
TP1-1-4	6/14/2018	6/14/2018	98	nd	nd
TP1-2-9	6/14/2018	6/14/2018	93	nd	nd
TP10-1-12	6/14/2018	6/14/2018	107	nd	nd
TP10-2-4	6/14/2018	6/14/2018	101	nd	nd
TP4-1-5	6/14/2018	6/14/2018	88	nd	nd
TP14-1-6.5	6/14/2018	6/14/2018	100	nd	nd
TP20-1-6	6/14/2018	6/14/2018	95	nd	nd
TP21-1-4.5	6/14/2018	6/14/2018	120	nd	nd
TP15-1-5	6/14/2018	6/14/2018	133	nd	nd
TP4-2-12	6/14/2018	6/14/2018	121	nd	nd
TP4-2-12 Duplicate	6/14/2018	6/14/2018	120	nd	nd
Method Blank 2	6/14/2018	6/14/2018	109	nd	nd
LCS 2	6/14/2018	6/14/2018	102	109%	
MW-2-6	6/14/2018	6/14/2018	100	nd	nd
MW-1-6	6/14/2018	6/14/2018	132	nd	nd
MW-3-5	6/14/2018	6/14/2018	119	nd	nd
MW-3-10	6/14/2018	6/14/2018	111	nd	nd
MW-4-5	6/14/2018	6/14/2018	117	nd	nd
MW-5-10	6/14/2018	6/14/2018	127	nd	nd
MW-6-6	6/14/2018	6/14/2018	121	nd	nd
MW-6-6 Duplicate	6/14/2018	6/14/2018	116	nd	nd
Reporting Limits				50	100

[&]quot;---" Indicates not tested for component.

[&]quot;nd" Indicates not detected at the listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	6/19/2018	6/19/2018	98	nd	nd
LCS	6/19/2018	6/19/2018	105	92%	
TP8-2-8	6/19/2018	6/19/2018	132	nd	nd
TP8-3-11	6/19/2018	6/19/2018	111	nd	nd
TP9-1-6.5	6/19/2018	6/19/2018	106	nd	nd
TP8-1-7	6/19/2018	6/19/2018	109	nd	nd
TP13-1-12	6/19/2018	6/19/2018	93	nd	nd
TP18-1-12	6/19/2018	6/19/2018	86	nd	nd
TP24-2-10	6/19/2018	6/19/2018	103	nd	nd
TP25-1-5.5	6/19/2018	6/19/2018	96	nd	nd
TP19-1-5	6/19/2018	6/19/2018	112	nd	nd
TP23-1-6	6/19/2018	6/19/2018	102	nd	nd
TP22-1-6	6/19/2018	6/19/2018	102	nd	nd
TP24-1-5.5	6/19/2018	6/19/2018	102	nd	nd
TP16-1-5.5	6/19/2018	6/19/2018	99	nd	nd
TP16-1-5.5 Duplicate	6/19/2018	6/19/2018	95	nd	nd
Reporting Limits				50	100

[&]quot;---" Indicates not tested for component.

[&]quot;nd" Indicates not detected at the listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	6/20/2018	6/20/2018	94	nd	nd
LCS	6/20/2018	6/20/2018	103	101%	
TP12-1-12	6/20/2018	6/20/2018	96	nd	nd
TP17-2-8	6/20/2018	6/20/2018	86	nd	nd
TP7-2-10	6/20/2018	6/20/2018	90	nd	nd
TP17-1-4	6/20/2018	6/20/2018	80	nd	nd
TP11-1-9	6/20/2018	6/20/2018	70	nd	nd
TP5-1-10	6/20/2018	6/27/2018	80	nd	nd
TP7-1-6	6/20/2018	6/20/2018	80	nd	nd
TP2-1-12	6/20/2018	6/20/2018	78	nd	nd
TP3-1-6	6/20/2018	6/27/2018	68	nd	nd
TP6-1-12	6/20/2018	6/27/2018	72	nd	nd
TP6-1-12 Duplicate	6/20/2018	6/27/2018	58	nd	nd
Reporting Limits				50	100

[&]quot;---" Indicates not tested for component.

[&]quot;nd" Indicates not detected at the listed detection limits.

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(ug/L)	(ug/L)
Method Blank	6/27/2018	6/28/2018	97	nd	nd
LCS	6/27/2018	6/28/2018	72	94%	
MW-2	6/27/2018	6/28/2018	88	nd	nd
MW-1	6/27/2018	6/28/2018	97	nd	nd
MW-5	6/27/2018	6/28/2018	100	nd	nd
MW-6	6/27/2018	6/28/2018	102	nd	nd
MW-4	6/27/2018	6/28/2018	112	nd	nd
MW-3	6/27/2018	6/28/2018	88	nd	nd
Reporting Limits				250	500

[&]quot;---" Indicates not tested for component.

[&]quot;nd" Indicates not detected at the listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	6/15/2018	6/15/2018	119	nd
LCS	6/15/2018	6/15/2018	117	121%
TP1-1@4'	6/11/2018	6/15/2018	105	nd
TP1-2@9'	6/11/2018	6/15/2018	114	nd
TP10-1@12'	6/11/2018	6/15/2018	118	nd
TP10-1@12' Duplicate	6/11/2018	6/15/2018	113	nd
TP10-2@4'	6/11/2018	6/15/2018	113	nd
TP4-1@5'	6/11/2018	6/15/2018	114	nd
TP14-1@6.5'	6/11/2018	6/15/2018	112	nd
TP20-1@6'	6/11/2018	6/15/2018	110	nd
TP21-1@4.5'	6/11/2018	6/15/2018	110	nd
TP15-1@5'	6/11/2018	6/15/2018	104	nd
TP4-2@12'	6/11/2018	6/15/2018	111	nd
MW-2@6'	6/11/2018	6/15/2018	108	nd
MW-1@6'	6/11/2018	6/15/2018	106	nd
MW-3@5'	6/11/2018	6/15/2018	109	nd
MW-3@10'	6/11/2018	6/15/2018	110	nd
MW-4@5'	6/11/2018	6/19/2018	113	nd
MW-5@10'	6/11/2018	6/19/2018	108	nd
MW-6@6'	6/11/2018	6/15/2018	104	nd
MW-6@6' Duplicate	6/11/2018	6/15/2018	109	nd
Reporting Limits				10

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	6/19/2018	6/19/2018	110	nd
LCS	6/19/2018	6/19/2018	121	134%
TP8-2@8'	6/12/2018	6/19/2018	107	nd
TP8-3@11'	6/12/2018	6/19/2018	110	nd
TP9-1@6.5'	6/12/2018	6/19/2018	110	nd
TP8-1@7'	6/12/2018	6/19/2018	107	nd
TP13-1@12'	6/12/2018	6/19/2018	107	nd
TP18-1@12'	6/12/2018	6/19/2018	103	nd
TP24-2@10'	6/12/2018	6/19/2018	103	nd
TP25-1@5.5'	6/12/2018	6/19/2018	106	nd
TP19-1@5'	6/12/2018	6/19/2018	106	nd
TP23-1@6'	6/12/2018	6/19/2018	108	nd
TP22-1@6'	6/12/2018	6/19/2018	113	nd
TP22-1@6' Duplicate	6/12/2018	6/19/2018	109	nd
TP24-1@5.5'	6/12/2018	6/19/2018	113	nd
TP16-1@5.5'	6/12/2018	6/19/2018	111	nd
Reporting Limits				10

"nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	6/19/2018	6/19/2018	110	nd
LCS	6/19/2018	6/19/2018	121	134%
TP12-1@12'	6/13/2018	6/19/2018	109	nd
TP12-1@12'	6/13/2018	6/19/2018	109	nd
TP17-2@8'	6/13/2018	6/19/2018	107	nd
TP7-2@10'	6/13/2018	6/19/2018	107	nd
TP17-1@4'	6/13/2018	6/20/2018	112	nd
TP11-1@9'	6/13/2018	6/20/2018	113	nd
TP5-1@10'	6/13/2018	6/20/2018	110	nd
TP7-1@6'	6/13/2018	6/20/2018	111	nd
TP2-1@12'	6/13/2018	6/20/2018	110	nd
TP3-1@6'	6/13/2018	6/20/2018	113	nd
TP6-1@12'	6/13/2018	6/20/2018	110	nd
Reporting Limits				10

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

Berger ABAM
PROJECT PROPOSED GRAYS HARBOR
POTASH EXPORT FACILITY
PROJECT #A17.0202.00
Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

Sample	Date	Surrogate	Gasoline Range Organics
Number	Analyzed	Recovery (%)	(ug/L)
Method Blank	6/18/2018	108	nd
LCS	6/18/2018	116	147%
MW-2	6/18/2018	113	nd
MW-1	6/18/2018	106	nd
MW-5	6/18/2018	105	nd
MW-6	6/18/2018	112	nd
MW-4	6/18/2018	108	nd
MW-3	6/18/2018	110	nd
Reporting Limits			100

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	MB	LCS	LCSD	TP1-1-4	TP1-2-9	TP10-1-12	TP10-2-4
Date extracted		06/15/18	06/15/18	06/15/18	06/11/18	06/11/18	06/11/18	06/11/18
Date analyzed	(mg/Kg)	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18
% Moisture	<u> </u>				37%	36%	39%	21%
Dichlorodifluoromethane	0.05	nd			nd	nd	nd	nd
Chloromethane	0.05	nd			nd	nd	nd	nd
Vinyl chloride	0.02	nd	77%	118%	nd	nd	nd	nd
Bromomethane	0.05	nd			nd	nd	nd	nd
Chloroethane	0.05	nd			nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd	nd
Acetone	0.25	nd			nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	101%	89%	nd	nd	nd	nd
Methylene chloride	0.05	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd			nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd			nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd			nd	nd	nd	nd
Chloroform	0.05	nd	117%	102%	nd	nd	nd	nd
Bromochloromethane	0.05	nd			nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd			nd	nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd	nd
Benzene	0.02	nd	130%	116%	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	108%	95%	nd	nd	nd	nd
1,2-Dichloropropane	0.05	nd	119%	103%	nd	nd	nd	nd
Dibromomethane	0.05	nd			nd	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd			nd	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
Toluene	0.05	nd	97%	89%	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd			nd	nd	nd	nd
2-Hexanone	0.25	nd			nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd			nd	nd	nd	nd
Dibromochloromethane	0.05	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	105%	94%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	0.05	nd			nd	nd	nd	nd
Chlorobenzene	0.05	nd	100%	90%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
Ethylbenzene	0.05	nd	104%	98%	nd	nd	nd	nd
Xylenes	0.15	nd	76%	69%	nd	nd	nd	nd
Styrene	0.05	nd			nd	nd	nd	nd
Bromoform	0.05	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
Isopropylbenzene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd			nd	nd	nd	nd
Bromobenzene	0.05	nd			nd	nd	nd	nd

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	LCS	LCSD	TP1-1-4	TP1-2-9	TP10-1-12	TP10-2-4
Date extracted		06/15/18	06/15/18	06/15/18	06/11/18	06/11/18	06/11/18	06/11/18
Date analyzed	(mg/Kg)	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18
% Moisture					37%	36%	39%	21%
n-Propylbenzene	0.05	nd			nd	nd	nd	nd
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
Isopropyltoluene	0.05	nd			nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Naphthalene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
G								
Surrogate recoveries Dibromofluoromethane		1000/	0.07	020/	020/	0.40/	0.60/	020/
		100%	86%	82%	93%	94%	96%	92%
Toluene-d8		95%	88%	89%	97%	94%	95%	93%
4-Bromofluorobenzene		119%	118%	119%	105%	114%	118%	113%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits
Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Date extracted 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/11/18 06/15/18	-2-12 1/18 5/18 0% and and and and and and and and and and
% Moisture46%20%16%19%21%40Dichlorodifluoromethane0.05ndndndndndndChloromethane0.05ndndndndndndVinyl chloride0.02ndndndndndndBromomethane0.05ndndndndndnd	nd nd nd nd nd nd
% Moisture46%20%16%19%21%40Dichlorodifluoromethane0.05ndndndndndndChloromethane0.05ndndndndndndVinyl chloride0.02ndndndndndndBromomethane0.05ndndndndndnd	nd nd nd nd nd
Chloromethane0.05ndndndndndVinyl chloride0.02ndndndndndBromomethane0.05ndndndndnd	nd nd nd nd nd
Chloromethane0.05ndndndndndVinyl chloride0.02ndndndndndBromomethane0.05ndndndndnd	nd nd nd nd nd
Vinyl chloride 0.02 nd	nd nd nd nd
Bromomethane 0.05 nd nd nd nd nd n	nd nd nd
	nd nd
Chloroethane 0.05 nd nd nd nd nd n	nd
Trichlorofluoromethane 0.05 nd nd nd nd nd	d
Acetone 0.25 nd nd nd nd nd n	ıu
1,1-Dichloroethene 0.05 nd nd nd nd nd	nd
Methylene chloride 0.05 nd nd nd nd nd n	nd
Methyl-t-butyl ether (MTBE) 0.05 nd nd nd nd nd n	nd
,	nd
	nd
2-Butanone (MEK) 0.25 nd nd nd nd nd n	nd
cis-1,2-Dichloroethene 0.05 nd nd nd nd nd	nd
2,2-Dichloropropane 0.05 nd nd nd nd nd	nd
Chloroform 0.05 nd nd nd nd nd	nd
Bromochloromethane 0.05 nd nd nd nd nd	nd
1,1,1-Trichloroethane 0.05 nd nd nd nd nd	nd
1,2-Dichloroethane (EDC) 0.05 nd nd nd nd nd	nd
1,1-Dichloropropene 0.05 nd nd nd nd nd	nd
Carbon tetrachloride 0.05 nd nd nd nd nd n	nd
Benzene 0.02 nd nd nd nd nd	nd
Trichloroethene (TCE) 0.02 nd nd nd nd nd n	nd
1,2-Dichloropropane 0.05 nd nd nd nd nd	nd
Dibromomethane 0.05 nd nd nd nd nd	nd
Bromodichloromethane 0.05 nd nd nd nd nd	nd
4-Methyl-2-pentanone (MIBK) 0.25 nd nd nd nd nd	nd
cis-1,3-Dichloropropene 0.05 nd nd nd nd nd	nd
Toluene 0.05 0.07 nd nd nd n	nd
trans-1,3-Dichloropropene 0.05 nd nd nd nd nd	nd
1,1,2-Trichloroethane 0.05 nd nd nd nd nd	nd
2-Hexanone 0.25 nd nd nd nd nd	nd
1,3-Dichloropropane 0.05 nd nd nd nd nd	nd
Dibromochloromethane 0.05 nd nd nd nd nd	nd
	nd
1,2-Dibromoethane (EDB) 0.05 nd nd nd nd nd	nd
	nd
, , , ,	nd
y	nd
	nd
	nd
	nd
	nd
Isopropylbenzene 0.05 nd nd nd nd nd n	nd
, , , , , , , , , , , , , , , , , , ,	nd
Bromobenzene 0.05 nd nd nd nd nd	nd

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	TP4-1-5	TP14-1-6.5	TP20-1-6	TP21-4-4.5	TP15-1-5	TP4-2-12
Date extracted		06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18
Date analyzed	(mg/Kg)	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18	06/15/18
% Moisture		46%	20%	16%	19%	21%	40%
n-Propylbenzene	0.05	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Naphthalene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Surrogate recoveries							
Dibromofluoromethane		94%	102%	95%	90%	96%	90%
Toluene-d8		93%	96%	95%	94%	97%	93%
4-Bromofluorobenzene		114%	112%	110%	110%	104%	111%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	MW2-6	MW-1-6	MW-3-5	MW-3-10	MW-4-5	MW-5-10	MW-6-6
Date extracted	KL	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18
Date analyzed	(mg/Kg)	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/19/18	06/11/18
% Moisture	(mg/Kg)	34%	25%	40%	49%	28%	38%	34%
70 141015tare		3170	2370	1070	1970	2070	3070	3170
Dichlorodifluoromethane	0.05	nd						
Chloromethane	0.05	nd						
Vinyl chloride	0.03	nd						
Bromomethane	0.05	nd						
Chloroethane	0.05	nd						
Trichlorofluoromethane	0.05	nd						
Acetone	0.05	nd						
1,1-Dichloroethene	0.25	nd						
Methylene chloride	0.05	nd						
Methyl-t-butyl ether (MTBE)	0.05	nd						
trans-1,2-Dichloroethene	0.05	nd						
1,1-Dichloroethane	0.05	nd						
2-Butanone (MEK)	0.03	nd						
cis-1,2-Dichloroethene	0.25	nd						
2,2-Dichloropropane	0.05	nd						
Chloroform	0.05	nd						
Bromochloromethane	0.05	nd						
1,1,1-Trichloroethane	0.05	nd						
1,2-Dichloroethane (EDC)	0.05	nd						
1,1-Dichloropropene	0.05	nd						
Carbon tetrachloride	0.05	nd						
Benzene	0.03	nd						
Trichloroethene (TCE)	0.02	nd						
1,2-Dichloropropane	0.02	nd						
Dibromomethane	0.05	nd						
Bromodichloromethane	0.05		nd	nd	nd d	nd	nd d	nd d
		nd nd	nd d	nd	nd d	nd d	nd d	nd nd
4-Methyl-2-pentanone (MIBK)	0.25		nd d	nd	nd d	nd d	nd d	
cis-1,3-Dichloropropene	0.05 0.05	nd nd	nd nd	nd nd	nd nd	nd d	nd nd	nd nd
Toluene	0.05	nd nd	nd nd			nd		nd nd
trans-1,3-Dichloropropene				nd	nd 1	nd	nd 1	
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd 1	nd 1	nd 1	nd
2-Hexanone	0.25	nd	nd	nd	nd 1	nd	nd 1	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd 1	nd	nd 1	nd
Dibromochloromethane	0.05	nd	nd	nd	nd 1	nd	nd 1	nd 1
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd 1	nd	nd	nd 1
1,2-Dibromoethane (EDB)	0.05	nd						
Chlorobenzene	0.05	nd						
1,1,1,2-Tetrachloroethane	0.05	nd						
Ethylbenzene	0.05	nd						
Xylenes	0.15	nd						
Styrene	0.05	nd						
Bromoform	0.05	nd						
1,1,2,2-Tetrachloroethane	0.05	nd						
Isopropylbenzene	0.05	nd						
1,2,3-Trichloropropane	0.05	nd						
Bromobenzene	0.05	nd						

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MW2-6	MW-1-6	MW-3-5	MW-3-10	MW-4-5	MW-5-10	MW-6-6
Date extracted		06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18	06/11/18
Date analyzed	(mg/Kg)	06/15/18	06/15/18	06/15/18	06/15/18	06/19/18	06/19/18	06/15/18
% Moisture		34%	25%	40%	49%	28%	38%	34%
n-Propylbenzene	0.05	nd						
2-Chlorotoluene	0.05	nd						
4-Chlorotoluene	0.05	nd						
1,3,5-Trimethylbenzene	0.05	nd						
tert-Butylbenzene	0.05	nd						
1,2,4-Trimethylbenzene	0.05	nd						
sec-Butylbenzene	0.05	nd						
1,3-Dichlorobenzene	0.05	nd						
1,4-Dichlorobenzene	0.05	nd						
Isopropyltoluene	0.05	nd						
1,2-Dichlorobenzene	0.05	nd						
n-Butylbenzene	0.05	nd						
1,2-Dibromo-3-Chloropropane	0.05	nd						
1,2,4-Trichlorobenzene	0.05	nd						
Naphthalene	0.05	nd						
Hexachloro-1,3-butadiene	0.05	nd						
1,2,3-Trichlorobenzene	0.05	nd						
Surrogate recoveries								
Dibromofluoromethane		105%	97%	91%	97%	91%	97%	93%
Toluene-d8		94%	96%	93%	94%	91%	92%	97%
4-Bromofluorobenzene		108%	106%	109%	110%	113%	108%	104%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	MB	LCS	LCSD	TP8-2@8'	TP8-3@11'	TP9-1@6.5'	TP8-1@7'
Date extracted		06/19/18	06/19/18	06/19/18	06/12/18	06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
% Moisture	· · · · · · ·				40%	47%	20%	48%
Dichlorodifluoromethane	0.05	nd			nd	nd	nd	nd
Chloromethane	0.05	nd			nd	nd	nd	nd
Vinyl chloride	0.02	nd	86%	123%	nd	nd	nd	nd
Bromomethane	0.05	nd			nd	nd	nd	nd
Chloroethane	0.05	nd			nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd	nd
Acetone	0.25	nd			nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	107%	106%	nd	nd	nd	nd
Methylene chloride	0.05	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd			nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd			nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd			nd	nd	nd	nd
Chloroform	0.05	nd	121%	102%	nd	nd	nd	nd
Bromochloromethane	0.05	nd			nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd			nd	nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd	nd
Benzene	0.02	nd	137%	106%	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	110%	85%	nd	nd	nd	nd
1,2-Dichloropropane	0.05	nd	114%	90%	nd	nd	nd	nd
Dibromomethane	0.05	nd			nd	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd			nd	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
Toluene	0.05	nd	93%	75%	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd			nd	nd	nd	nd
2-Hexanone	0.25	nd			nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd			nd	nd	nd	nd
Dibromochloromethane	0.05	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	97%	76%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	0.05	nd			nd	nd	nd	nd
Chlorobenzene	0.05	nd	93%	75%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	,,,,	, , , ,	nd	nd	nd	nd
Ethylbenzene	0.05	nd	103%	84%	nd	nd	nd	nd
Xylenes	0.15	nd	73%	124%	nd	nd	nd	nd
Styrene	0.05	nd	, , , ,	12.73	nd	nd	nd	nd
Bromoform	0.05	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
Isopropylbenzene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd			nd	nd	nd	nd
Bromobenzene	0.05	nd			nd	nd	nd	nd
DIGINOUCILENC	0.03	iiu			114	IIU	nu	114

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	LCS	LCSD	TP8-2@8'	TP8-3@11'	TP9-1@6.5'	TP8-1@7'
Date extracted		06/19/18	06/19/18	06/19/18	06/12/18	06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
% Moisture					40%	47%	20%	48%
n-Propylbenzene	0.05	nd			nd	nd	nd	nd
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
Isopropyltoluene	0.05	nd			nd	nd	nd	0.06
1,2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Naphthalene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		91%	96%	90%	92%	91%	92%	90%
Toluene-d8		92%	89%	82%	94%	92%	94%	95%
4-Bromofluorobenzene		110%	112%	117%	107%	110%	110%	107%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	TP13-1@12'	TP18-1@12'	TP24-2@10'	TP25-1@5.5'	TP19-1@5'	TP23-1@6'
Date extracted		06/12/18	06/12/18	06/12/18	06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
% Moisture		45%	41%	36%	27%	73%	15%
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	nd	nd
Chloromethane	0.05	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.05	nd	nd	nd	nd	nd	nd
Chloroethane	0.05	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
Acetone	0.25	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.05	nd	nd	nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Chloroform	0.05	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.05	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.05	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromomethane	0.05	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.05	nd	nd	nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.05	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
Toluene	0.05	nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd
2-Hexanone	0.05	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.25	nd	nd	nd	nd	nd	nd
Dibromochloromethane		nd	nd	nd	nd	nd	nd
	0.05 0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)							
1,2-Dibromoethane (EDB)	0.05	nd d	nd d	nd d	nd d	nd d	nd d
Chlorobenzene	0.05	nd 1	nd 1	nd	nd 1	nd 1	nd 1
1,1,1,2-Tetrachloroethane	0.05	nd 1	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.05	nd	nd	nd	nd	nd	nd
Bromoform	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.05	nd	nd	nd	nd	nd	nd

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	TP13-1@12'	TP18-1@12'	TP24-2@10'	TP25-1@5.5'	TP19-1@5'	TP23-1@6'
Date extracted		06/12/18	06/12/18	06/12/18	06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
% Moisture		45%	41%	36%	27%	73%	15%
n-Propylbenzene	0.05	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Naphthalene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Surrogate recoveries							
Dibromofluoromethane		91%	93%	92%	92%	95%	95%
Toluene-d8		94%	93%	94%	92%	95%	96%
4-Bromofluorobenzene		107%	103%	103%	106%	106%	108%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	TP22-1@6'	TP24-1@5.5'	TP16-1@5.5'
Date extracted		06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18
% Moisture		24%	44%	39%
Dichlorodifluoromethane	0.05	nd	nd	nd
Chloromethane	0.05	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd
Bromomethane	0.05	nd	nd	nd
Chloroethane	0.05	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd
Acetone	0.25	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd
Methylene chloride	0.05	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd	nd	nd
1,1-Dichloroethane	0.05	nd	nd	nd
2-Butanone (MEK)	0.25	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd
Chloroform	0.05	nd	nd	nd
Bromochloromethane	0.05	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd	nd	nd
1,1-Dichloropropene	0.05	nd	nd	nd
Carbon tetrachloride	0.05	nd	nd	nd
Benzene	0.02	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd
1,2-Dichloropropane	0.05	nd	nd	nd
Dibromomethane	0.05	nd	nd	nd
Bromodichloromethane	0.05	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd	nd	nd
Toluene	0.05	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd
2-Hexanone	0.25	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd
Dibromochloromethane	0.05	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd
1,2-Dibromoethane (EDB)	0.05	nd	nd	nd
Chlorobenzene	0.05	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd
Xylenes	0.15	nd	nd	nd
Styrene	0.05	nd	nd	nd
Bromoform	0.05	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd	nd	nd
Bromobenzene	0.05	nd	nd	nd
210.1100 citzone	0.05	114	114	114

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	TP22-1@6'	TP24-1@5.5'	TP16-1@5.5'
Date extracted		06/12/18	06/12/18	06/12/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18
% Moisture		24%	44%	39%
n-Propylbenzene	0.05	nd	nd	nd
2-Chlorotoluene	0.05	nd	nd	nd
4-Chlorotoluene	0.05	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd	nd	nd
tert-Butylbenzene	0.05	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	nd	nd
sec-Butylbenzene	0.05	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd	nd	nd
Isopropyltoluene	0.05	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd
n-Butylbenzene	0.05	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd	nd	nd
Naphthalene	0.05	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd	nd	nd
Surrogate recoveries				
Dibromofluoromethane		93%	92%	92%
Toluene-d8		90%	91%	91%
4-Bromofluorobenzene		113%	113%	111%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	MB	LCS	LCSD	TP12-1@12'	TP17-2@8'	TP7-2@10'	TP17-1@4'
Date extracted		06/19/18	06/19/18	06/19/18	06/13/18	06/13/18	06/13/18	06/13/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/20/18
% Moisture	(0 0)				38%	39%	39%	40%
Dichlorodifluoromethane	0.05	nd			nd	nd	nd	nd
Chloromethane	0.05	nd			nd	nd	nd	nd
Vinyl chloride	0.02	nd	86%	123%	nd	nd	nd	nd
Bromomethane	0.05	nd			nd	nd	nd	nd
Chloroethane	0.05	nd			nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd	nd
Acetone	0.25	nd			nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	107%	106%	nd	nd	nd	nd
Methylene chloride	0.05	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd			nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd			nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd			nd	nd	nd	nd
Chloroform	0.05	nd	121%	102%	nd	nd	nd	nd
Bromochloromethane	0.05	nd			nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd			nd	nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd	nd
Benzene	0.02	nd	137%	106%	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	110%	85%	nd	nd	nd	nd
1,2-Dichloropropane	0.05	nd	114%	90%	nd	nd	nd	nd
Dibromomethane	0.05	nd	111/0	7070	nd	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.05	nd			nd	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
Toluene	0.05	nd	93%	75%	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd	7570	7370	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd			nd	nd	nd	nd
2-Hexanone	0.03	nd			nd	nd	nd	nd
1,3-Dichloropropane	0.25	nd			nd	nd	nd	nd
Dibromochloromethane	0.05	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	0.03	nd	97%	76%	nd	nd	nd	nd
. ,	0.02	nd	9/70	/070	nd	nd		
1,2-Dibromoethane (EDB) Chlorobenzene	0.05		93%	75%			nd nd	nd nd
		nd d	9370	1370	nd	nd	nd d	nd d
1,1,1,2-Tetrachloroethane	0.05	nd	1020/	0.40/	nd	nd	nd	nd 4
Ethylbenzene	0.05	nd	103%	84%	nd	nd nd	nd nd	nd nd
Xylenes	0.15	nd	73%	124%	nd	nd d	nd	nd d
Styrene	0.05	nd			nd	nd 1	nd	nd
Bromoform	0.05	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
Isopropylbenzene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd			nd	nd	nd	nd
Bromobenzene	0.05	nd			nd	nd	nd	nd

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	LCS	LCSD	TP12-1@12'	TP17-2@8'	TP7-2@10'	TP17-1@4'
Date extracted		06/19/18	06/19/18	06/19/18	06/13/18	06/13/18	06/13/18	06/13/18
Date analyzed	(mg/Kg)	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/20/18
% Moisture					38%	39%	39%	40%
n-Propylbenzene	0.05	nd			nd	nd	nd	nd
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
Isopropyltoluene	0.05	nd			nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Naphthalene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		91%	96%	90%	94%	96%	104%	95%
Toluene-d8		92%	89%	82%	93%	92%	95%	91%
4-Bromofluorobenzene		110%	112%	117%	109%	107%	107%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	RL	TP11-1@9'	TP5-1@10'	TP7-1@6'	TP2-1@12'	TP3-1@6'	TP6-1@12'
Date extracted		06/13/18	06/13/18	06/13/18	06/13/18	06/13/18	06/13/18
Date analyzed	(mg/Kg)	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18
% Moisture	(0 0)	47%	49%	41%	45%	34%	36%
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	nd	nd
Chloromethane	0.05	nd	nd	nd	nd	nd	nd
Vinyl chloride	0.02	nd	nd	nd	nd	nd	nd
Bromomethane	0.05	nd	nd	nd	nd	nd	nd
Chloroethane	0.05	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd	nd	nd	nd	nd	nd
Acetone	0.25	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
Methylene chloride	0.05	nd	nd	nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Chloroform	0.05	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.05	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
Carbon tetrachloride	0.05	nd	nd	nd	nd	nd	nd
Benzene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromomethane	0.05	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.05	nd	nd	nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
Toluene	0.05	nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd
2-Hexanone	0.25	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.05	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	0.05	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Xylenes	0.15	nd	nd	nd	nd	nd	nd
Styrene	0.05	nd	nd	nd	nd	nd	nd
Bromoform	0.05	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd
Isopropylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd	nd	nd	nd	nd	nd
Bromobenzene	0.05	nd	nd	nd	nd	nd	nd

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	TP11-1@9'	TP5-1@10'	TP7-1@6'	TP2-1@12'	TP3-1@6'	TP6-1@12'
Date extracted		06/13/18	06/13/18	06/13/18	06/13/18	06/13/18	06/13/18
Date analyzed	(mg/Kg)	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18
% Moisture		47%	49%	41%	45%	34%	36%
n-Propylbenzene	0.05	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.05	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Isopropyltoluene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.05	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Naphthalene	0.05	nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd	nd	nd	nd	nd	nd
Surrogate recoveries							
Dibromofluoromethane		94%	96%	95%	100%	94%	100%
Toluene-d8		92%	93%	92%	93%	93%	94%
4-Bromofluorobenzene		113%	110%	111%	110%	113%	110%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 F lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

Analytical Results	RL	MB	LCS	LCSD	MW-2	MW-1	MW-5	MW-6
Date analyzed	(ug/L)	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18
Date analyzed	(ug/L)	00/10/10	00/10/10	00/10/10	00/10/10	00/10/10	00/10/10	00/10/10
Dichlorodifluoromethane	1.0	nd			nd	nd	nd	nd
Chloromethane	1.0	nd			nd	nd	nd	nd
Vinyl chloride	0.2	nd	107%	83%	nd	nd	nd	nd
Bromomethane	1.0	nd			nd	nd	nd	nd
Chloroethane	1.0	nd			nd	nd	nd	nd
Trichlorofluoromethane	1.0	nd			nd	nd	nd	nd
Acetone	10.0	nd			nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	100%	101%	nd	nd	nd	nd
Methylene chloride	1.0	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	1.0	nd			nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd			nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd			nd	nd	nd	nd
2-Butanone (MEK)	10.0	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd			nd	nd	nd	nd
2,2-Dichloropropane	1.0	nd			nd	nd	nd	nd
Chloroform	1.0	nd	118%	122%	nd	nd	nd	nd
Bromochloromethane	1.0	nd			nd	nd	nd	nd
1,1,1-Trichloroethane	1.0	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd			nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd			nd	nd	nd	nd
Carbon tetrachloride	1.0	nd			nd	nd	nd	nd
Benzene	1.0	nd	140%*	139%*	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	111%	115%	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	123%	122%	nd	nd	nd	nd
Dibromomethane	1.0	nd			nd	nd	nd	nd
Bromodichloromethane	1.0	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd			nd	nd	nd	nd
Toluene	1.0	nd	146%*	116%	nd	nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd			nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd			nd	nd	nd	nd
2-Hexanone	1.0	nd			nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd			nd	nd	nd	nd
Dibromochloromethane	1.0	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	111%	111%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	1.0	nd			nd	nd	nd	nd
Chlorobenzene	1.0	nd	107%	108%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd			nd	nd	nd	nd
Ethylbenzene	1.0	nd	130%	129%	nd	nd	nd	nd
Xylenes	3.0	nd	107%	93%	nd	nd	nd	nd
Styrene	1.0	nd			nd	nd	nd	nd
Bromoform	1.0	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd			nd	nd	nd	nd
Isopropylbenzene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd			nd	nd	nd	nd
Bromobenzene	1.0	nd			nd	nd	nd	nd
Diame Sellevile	1.0	114			114	110	110	110

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 F lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

	RL	MB	LCS	LCSD	MW-2	MW-1	MW-5	MW-6
Date analyzed	(ug/L)	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18	06/18/18
n-Propylbenzene	1.0	nd			nd	nd	nd	nd
2-Chlorotoluene	1.0	nd			nd	nd	nd	nd
4-Chlorotoluene	1.0	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
tert-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
sec-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
Isopropyltoluene	1.0	nd			nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
n-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Naphthalene	1.0	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		103%	84%	82%	93%	98%	93%	97%
Toluene-d8		92%	84%	84%	89%	91%	94%	92%
4-Bromofluorobenzene		108%	126%	117%	113%	106%	105%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

^{*} Analysis of LCS/LCSD yielded high recoveries for these analytes, because these analytes were not detected in samples, no further action was taken

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

Analytical Results	RL	MW-4	MW-3
Date analyzed	(ug/L)	06/18/18	06/18/18
Date analyzed	(ug/L)	00/10/10	00/10/10
Dichlorodifluoromethane	1.0	nd	nd
Chloromethane	1.0	nd	nd
Vinyl chloride	0.2	nd	nd
Bromomethane	1.0	nd	nd
Chloroethane	1.0	nd	nd
Trichlorofluoromethane	1.0	nd	nd
Acetone	10.0	nd	nd
1,1-Dichloroethene	1.0	nd	nd
Methylene chloride	1.0	nd	nd
Methyl-t-butyl ether (MTBE)	1.0	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd
1,1-Dichloroethane	1.0	nd	nd
2-Butanone (MEK)	10.0	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd
2,2-Dichloropropane	1.0	nd	nd
Chloroform	1.0	nd	nd
Bromochloromethane	1.0	nd	nd
1,1,1-Trichloroethane	1.0	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd
1,1-Dichloropropene	1.0	nd	nd
Carbon tetrachloride	1.0	nd	nd
Benzene	1.0	nd	nd
Trichloroethene (TCE)	1.0	nd	nd
1,2-Dichloropropane	1.0	nd	nd
Dibromomethane	1.0	nd	nd
Bromodichloromethane	1.0	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd
Toluene	1.0	nd	nd
trans-1,3-Dichloropropene	1.0	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd
2-Hexanone	1.0	nd	nd
1,3-Dichloropropane	1.0	nd	nd
Dibromochloromethane	1.0	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd
1,2-Dibromoethane (EDB)	1.0	nd	nd
Chlorobenzene	1.0	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd
Ethylbenzene	1.0	nd	nd
Xylenes	3.0	nd	nd
Styrene	1.0	nd	nd
Bromoform	1.0	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd
Isopropylbenzene	1.0	nd	nd
1,2,3-Trichloropropane	1.0	nd	nd
Bromobenzene	1.0	nd	nd
Dismoschizone	1.0	110	114

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

	RL	MW-4	MW-3
Date analyzed	(ug/L)	06/18/18	06/18/18
n-Propylbenzene	1.0	nd	nd
2-Chlorotoluene	1.0	nd	nd
4-Chlorotoluene	1.0	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	nd
tert-Butylbenzene	1.0	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd
sec-Butylbenzene	1.0	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd
Isopropyltoluene	1.0	nd	7.3
1,2-Dichlorobenzene	1.0	nd	nd
n-Butylbenzene	1.0	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd
1,2,4-Trichlorobenzene	1.0	nd	nd
Naphthalene	1.0	nd	nd
Hexachloro-1,3-butadiene	1.0	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd
Surrogate recoveries			
Dibromofluoromethane		94%	94%
Toluene-d8		92%	94%
4-Bromofluorobenzene		108%	110%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Analytical Results

	RL	MB	LCS 1	TP1-1-4	TP1-2-9	TP10-1-12	TP10-2-4	TP4-1-5	TP14-1-6.5	TP20-1-6	TP21-4-4.5	TP15-1-5
Date extracted		06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18
Date analyzed		06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18
Moisture, %	(mg/kg)			0%	36%	39%	21%	46%	20%	16%	19%	21%
Naphthalene	0.02	nd	113%	nd	nd	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.02	nd	107%	nd	nd	nd	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.02	nd	118%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthene	0.02	nd	120%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluorene	0.02	nd	124%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Phenanthrene	0.02	nd	110%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Anthracene	0.02	nd	108%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene	0.02	nd	109%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Pyrene	0.02	nd	104%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)anthracene*	0.02	nd	68%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene*	0.02	nd	147%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene*	0.02	nd	50%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.02	nd	108%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.02	nd	63%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.02	nd	97%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene*	0.02	nd	81%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.02	nd	65%	nd	nd	nd	nd	nd	nd	nd	nd	nd
Total Carcinogens				nd	nd	nd	nd	nd	nd	nd	nd	nd
Surrogate recoveries:												
2-Fluorobiphenyl	•	101%	96%	96%	94%	89%	83%	80%	91%	65%	100%	102%
p-Terphenyl-d14		107%	90%	100%	91%	104%	98%	85%	97%	95%	121%	130%

Data Qualifiers and Analytical Comments

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

nd - not detected at listed reporting limits

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Analytical Results

•	RL	MTH BLK	LCS	TP4-2-12	MW2-6	MW-1-6	MW-3-5	MW-3-10	MW-4-5	MW-5-10	MW-6-6
Date extracted		06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18
Date analyzed		06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18	06/14/18
Moisture, %	(mg/kg)			40%	34%	25%	49%	40%	28%	38%	34%
Naphthalene	0.02	nd	113%	nd							
2-Methylnaphthalene	0.02	nd	100%	nd							
1-Methylnaphthalene	0.02	nd	ns	nd							
Acenaphthylene	0.02	nd	114%	nd							
Acenaphthene	0.02	nd	119%	nd							
Fluorene	0.02	nd	117%	nd							
Phenanthrene	0.02	nd	98%	nd							
Anthracene	0.02	nd	114%	nd							
Fluoranthene	0.02	nd	104%	nd							
Pyrene	0.02	nd	96%	nd							
Benzo(a)anthracene*	0.02	nd	45%	nd							
Chrysene*	0.02	nd	166%	nd							
Benzo(b)fluoranthene*	0.02	nd	42%	nd							
Benzo(k)fluoranthene*	0.02	nd	51%	nd							
Benzo(a)pyrene*	0.02	nd	48%	nd							
Indeno(1,2,3-cd)pyrene*	0.02	nd	70%	nd							
Dibenzo(a,h)anthracene*	0.02	nd	76%	nd							
Benzo(ghi)perylene	0.02	nd	76%	nd							
Tatal Cambras				1	1	1	4	1	1	1	1
Total Carcinogens				nd							
Surrogate recoveries:											
2-Fluorobiphenyl		103%	94%	78%	84%	96%	91%	104%	82%	103%	105%
p-Terphenyl-d14		108%	80%	118%	96%	127%	118%	108%	116%	127%	122%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

A 1 c 1D 1c		Analys	sis of Polyr	nuclear Ar	omatic Hyd	lrocarbons i	in Soil by I	Method 8270)		
Analytical Results	RL	MB	LCS	TP8-2-8	TP8-3-11	TP9-1-6.5	TP8-1-7	TP13-1-12	TP18-1-12	TP24-2-10	TP25-1-5.5
Date extracted		06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
Date analyzed		06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
Moisture, %	(mg/kg)			40%	47%	20%	48%	45%	41%	36%	27%
Naphthalene	0.02	nd	112%	nd	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.02	nd	104%	nd	nd	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.02	nd	112%	nd	nd	nd	nd	nd	nd	nd	nd
Acenaphthene	0.02	nd	120%	nd	nd	nd	nd	nd	nd	nd	nd
Fluorene	0.02	nd	119%	nd	nd	nd	nd	nd	nd	nd	nd
Phenanthrene	0.02	nd	105%	nd	nd	nd	nd	nd	nd	nd	nd
Anthracene	0.02	nd	103%	nd	nd	nd	nd	nd	nd	nd	nd
Fluoranthene	0.02	nd	108%	nd	nd	0.14	nd	nd	nd	nd	nd
Pyrene	0.02	nd	103%	nd	nd	0.16	nd	nd	nd	nd	nd
Benzo(a)anthracene*	0.02	nd	79%	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene*	0.02	nd	131%	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene*	0.02	nd	77%	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.02	nd	98%	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.02	nd	71%	nd	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.02	nd	101%	nd	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene*	0.02	nd	84%	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.02	nd	83%	nd	nd	nd	nd	nd	nd	nd	nd
Total Carcinogens				nd	nd	nd	nd	nd	nd	nd	nd
Surrogate recoveries:											
2-Fluorobiphenyl		111%	96%	128%	64%	102%	108%	84%	61%	67%	55%
p-Terphenyl-d14		92%	83%	124%	104%	100%	105%	89%	82%	99%	91%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Analytical Results

·	RL	TP19-1-5	TP23-1-6	TP22-1-6	TP24-1-5.5	TP16-1-5.5
Date extracted		06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
Date analyzed		06/19/18	06/19/18	06/19/18	06/19/18	06/19/18
-		73%	15%	24%	44%	39%
Naphthalene	0.02	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.02	nd	nd	nd	nd	0.15
1-Methylnaphthalene	0.02	nd	nd	nd	nd	0.16
Acenaphthylene	0.02	nd	nd	nd	nd	nd
Acenaphthene	0.02	nd	nd	nd	nd	0.78
Fluorene	0.02	nd	nd	nd	nd	0.68
Phenanthrene	0.02	nd	nd	nd	nd	4.01
Anthracene	0.02	nd	nd	nd	nd	1.42
Fluoranthene	0.02	nd	nd	nd	nd	3.21
Pyrene	0.02	nd	nd	nd	nd	3.22
Benzo(a)anthracene*	0.02	nd	nd	nd	nd	0.72
Chrysene*	0.02	nd	nd	nd	nd	2.14
Benzo(b)fluoranthene*	0.02	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.02	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.02	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.02	nd	nd	nd	nd	0.50
Dibenzo(a,h)anthracene*	0.02	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.02	nd	nd	nd	nd	0.62
Total Carcinogens		nd	nd	nd	nd	nd
Surrogate recoveries:						
2-Fluorobiphenyl		78%	80%	76%	84%	104%
p-Terphenyl-d14		106%	98%	97%	96%	108%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Analytical Results	RL	MB	LCS	TP12-1-12	TP17-2-8	TP7-2-10	TP17-1-4	TP11-1-9	TP5-1-10	TP7-1-6
Date extracted	KL	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18
Date analyzed		06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18	06/20/18
Moisture, %	(mg/kg)	00/20/10	00/20/10	38%	39%	39%	40%	47%	49%	41%
Worsture, 70	(IIIg/Kg)			3070	37/0	3770	4070	4770	77/0	41/0
Naphthalene	0.02	nd	110%	nd	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.02	nd	103%	nd	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.02	nd	110%	nd	nd	nd	nd	nd	nd	nd
Acenaphthene	0.02	nd	119%	nd	nd	nd	nd	nd	nd	nd
Fluorene	0.02	nd	120%	nd	nd	nd	nd	nd	nd	nd
Phenanthrene	0.02	nd	100%	nd	nd	nd	nd	nd	nd	nd
Anthracene	0.02	nd	105%	nd	nd	nd	nd	nd	nd	nd
Fluoranthene	0.02	nd	105%	nd	nd	0.14	nd	nd	nd	nd
Pyrene	0.02	nd	100%	nd	nd	0.16	nd	nd	nd	nd
Benzo(a)anthracene*	0.02	nd	69%	nd	nd	nd	nd	nd	nd	nd
Chrysene*	0.02	nd	128%	nd	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene*	0.02	nd	83%	nd	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.02	nd	94%	nd	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.02	nd	76%	nd	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.02	nd	84%	nd	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene*	0.02	nd	95%	nd	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.02	nd	93%	nd	nd	nd	nd	nd	nd	nd
Total Carcinogens				nd	nd	nd	nd	nd	nd	nd
Total Carcinogons				IIG	iiu	IIG.	IIu	iiu	IIG	114
Surrogate recoveries:										
2-Fluorobiphenyl		111%	93%	109%	86%	94%	79%	67%	86%	80%
p-Terphenyl-d14		91%	79%	92%	81%	87%	76%	66%	75%	76%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270

Analytical Results

	RL	TP2-1-12	TP3-1-6	TP6-1-12
Date extracted		06/20/18	06/20/18	06/20/18
Date analyzed		06/20/18	06/27/18	06/27/18
		45%	34%	36%
NI-ulabalaua	0.02	1		1
Naphthalene	0.02	nd	nd	nd
2-Methylnaphthalene	0.02	nd	nd	nd
1-Methylnaphthalene	0.02	nd	nd	nd
Acenaphthylene	0.02	nd	nd	nd
Acenaphthene	0.02	nd	nd	nd
Fluorene	0.02	nd	nd	nd
Phenanthrene	0.02	nd	nd	nd
Anthracene	0.02	nd	nd	nd
Fluoranthene	0.02	nd	nd	nd
Pyrene	0.02	nd	nd	nd
Benzo(a)anthracene*	0.02	nd	nd	nd
Chrysene*	0.02	nd	nd	nd
Benzo(b)fluoranthene*	0.02	nd	nd	nd
Benzo(k)fluoranthene*	0.02	nd	nd	nd
Benzo(a)pyrene*	0.02	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.02	nd	nd	nd
Dibenzo(a,h)anthracene*	0.02	nd	nd	nd
Benzo(ghi)perylene	0.02	nd	nd	nd
Total Carcinogens		nd	nd	nd
Surrogate recoveries:				
2-Fluorobiphenyl		85%	77%	85%
p-Terphenyl-d14		74%	64%	67%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Water by Method 8270

Analytical Results

	Reporting	MTH BLK	LCS	MW-2	MW-1	MW-5	MW-6	MW-4	MW-3
Date extracted	Limits	06/27/18	06/27/18	06/27/18	06/27/18	06/27/18	06/27/18	06/27/18	06/27/18
Date analyzed	(ug/L)	06/28/18	06/28/18	06/28/18	06/28/18	06/28/18	06/28/18	06/28/18	06/28/18
Naphthalene	0.1	nd	111%	nd	nd	nd	nd	nd	nd
2-Methylnaphthalene	0.1	nd	99%	nd	nd	nd	nd	nd	nd
1-Methylnaphthalene	0.1	nd	ns	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.1	nd	109%	nd	nd	nd	nd	nd	nd
Acenaphthene	0.1	nd	119%	nd	nd	nd	nd	nd	nd
Fluorene	0.1	nd	119%	nd	nd	nd	nd	nd	nd
Phenanthrene	0.1	nd	102%	nd	nd	nd	nd	nd	nd
Anthracene	0.1	nd	104%	nd	nd	nd	nd	nd	nd
Fluoranthene	0.1	nd	102%	nd	nd	nd	nd	nd	nd
Pyrene	0.1	nd	97%	nd	nd	nd	nd	nd	nd
Benzo(a)anthracene*	0.1	nd	65%	nd	nd	nd	nd	nd	nd
Chrysene*	0.1	nd	136%	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranthene*	0.1	nd	85%	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene*	0.1	nd	97%	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene*	0.1	nd	77%	nd	nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene*	0.1	nd	105%	nd	nd	nd	nd	nd	nd
Dibenzo(a,h)anthracene*	0.1	nd	83%	nd	nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd	79%	nd	nd	nd	nd	nd	nd
T . 1.C . :				1	1	1	1	1	1
Total Carcinogens				nd	nd	nd	nd	nd	nd
Surrogate recoveries:									
2-Fluorobiphenyl		100%	105%	105%	104%	86%	116%	111%	110%
p-Terphenyl-d14		74%	79%	78%	83%	82%	98%	88%	88%

Data Qualifiers and Analytical Comments

Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Metals in Soil by EPA-6020 Series

Sample	Date	Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	6/14/2018	nd	nd	nd	nd	nd	nd	nd	nd
TP1-1@4'	6/14/2018	23	nd	71	14	nd	92	nd	nd
TP1-2@9'	6/14/2018	19	nd	72	9.2	nd	99	nd	nd
TP1-2@9' Duplicate	6/14/2018	19	nd	74	9.1	nd	110	nd	nd
TP10-1@12'	6/14/2018	13	nd	75	9.1	nd	79	nd	nd
TP10-2@4'	6/14/2018	nd	nd	13	nd	nd	nd	nd	nd
TP4-1@5'	6/14/2018	5.7	nd	23	nd	nd	99	nd	nd
TP14-1@6.5'	6/14/2018	nd	nd	7.1	nd	nd	nd	nd	nd
TP20-1@6'	6/14/2018	nd	nd	5.5	nd	nd	nd	nd	nd
TP21-1@4.5'	6/14/2018	nd	nd	25	nd	nd	nd	nd	nd
TP15-1@5'	6/14/2018	11	nd	100	8.5	nd	66	nd	nd
TP4-2@12'	6/14/2018	nd	nd	15	nd	nd	nd	nd	nd
MW-2@6'	6/14/2018	nd	nd	18	nd	nd	nd	nd	nd
MW-1@6'	6/14/2018	nd	nd	28	nd	nd	nd	nd	nd
MW-3@5'	6/14/2018	6.5	nd	29	nd	nd	nd	nd	nd
MW-3@10'	6/14/2018	92	nd	36	nd	nd	nd	nd	nd
MW-4@5'	6/14/2018	76	nd	47	nd	nd	190	nd	nd
MW-5@10'	6/14/2018	7.5	nd	35	5.5	nd	nd	nd	nd
MW-6@6'	6/14/2018	nd	nd	21	nd	nd	nd	nd	nd
MW-6@6' Duplicate	6/14/2018	5.2	nd	30	nd	nd	nd	nd	nd
Reporting Limits		5.0	1.0	5.0	5.0	20	50	20	0.5

[&]quot;nd" Indicates not detected at listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

QA/QC Data - Total Metals EPA-6020

Sample Number:	TP1-2@9'						
		Matrix Spik	te .	Mat	rix Spike Dupli	cate	RPD
	Spiked	Spiked Measured Spike			Spiked Measured Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	
	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)
Lead	81.0	81.5	101	83.3	83.7	100	0.1
Cadmium	81.0	58.8	72.6M	83.3	62.0	74.4M	2.5
Chromium	81.0	99.5	123	83.3	93.6	112	8.9
Arsenic	81.0	71.1	87.8	83.3	75.3	90.4	2.9
Silver	81.0	60.5	74.7M	83.3	63.3	76.0	1.7
Barium	81.0	92.6	114	83.3	83.4	100	13.2
Selenium	81.0	50.9	62.8M	83.3	53.5	64.2M	2.2
Mercury	8.10	6.71	82.8	8.33	7.09	85.1	2.7

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

M - Matrix Spike recovery failed due to matrix interference.

	Labo	ratory Control	l Sample
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Lead	100	104	104
Cadmium	100	88.7	88.7
Chromium	100	102	102
Arsenic	100	87.6	87.6
Silver	100	96.5	96.5
Barium	100	113	113
Selenium	100	80.0	80.0
Mercury	10.0	8.83	88.3

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Metals in Soil by EPA-6020 Series

Sample	Date	Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	6/26/2018	nd	nd	nd	nd	nd	nd	nd	nd
TP8-2@8'	6/26/2018	nd	nd	45	5.9	nd	nd	nd	nd
TP8-2@8' Duplicate	6/26/2018	nd	nd	42	5.0	nd	nd	nd	nd
TP8-3@11'	6/26/2018	6.1	nd	52	7.6	nd	nd	nd	nd
TP9-1@6.5'	6/26/2018	64	nd	42	nd	nd	160	nd	nd
TP8-1@7'	6/26/2018	9.6	nd	60	6.3	nd	62	nd	nd
TP13-1@12'	6/26/2018	6.0	nd	49	7.2	nd	nd	nd	nd
TP18-1@12'	6/26/2018	5.5	nd	46	6.3	nd	nd	nd	nd
TP24-2@10'	6/26/2018	22	nd	48	6.2	nd	nd	nd	nd
TP25-1@5.5'	6/26/2018	5.0	nd	35	nd	nd	nd	nd	nd
TP19-1@5'	6/26/2018	26	nd	51	10	nd	52	nd	nd
TP23-1@6'	6/26/2018	nd	nd	31	nd	nd	nd	nd	nd
TP22-1@6'	6/26/2018	nd	nd	36	nd	nd	nd	nd	nd
TP24-1@5.5'	6/26/2018	9.6	nd	54	8.5	nd	50	nd	nd
TP16-1@5.5'	6/26/2018	5.8	nd	42	6.5	nd	nd	nd	nd
TP16-1@5.5' Duplicate	6/26/2018	90	nd	44	6.5	nd	nd	nd	nd
Reporting Limits		5.0	1.0	5.0	5.0	20	50	20	0.5

[&]quot;nd" Indicates not detected at listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

QA/QC Data - Total Metals EPA-6020

Sample Number: T	TP8-2@8'							
		Matrix Spike			Matrix Spike Duplicate			
	Spiked	Spiked Measured Spike			Measured	Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery		
	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	
Lead	95.2	90.3	94.9	93.0	93.5	101	5.8	
Cadmium	95.2	82.1	86.2	93.0	81.0	87.1	1.0	
Chromium	95.2	122	128M	93.0	123	132M	3.3	
Arsenic	95.2	92.4	97.1	93.0	94.2	101	4.3	
Silver	95.2	79.6	83.6	93.0	80.5	86.6	3.5	
Barium	95.2	106	111	93.0	106	114	2.3	
Selenium	95.2	86.0	90.3	93.0	87.5	94.1	4.1	
Mercury	9.52	7.70	80.9	9.30	8.05	86.6	6.8	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

M - Matrix Spike recovery failed due to matrix interference.

	Labo	ratory Contro	l Sample
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Lead	100	90.5	90.5
Cadmium	100	90.3	90.3
Chromium	100	123	123
Arsenic	100	97.6	97.6
Silver	100	95.7	95.7
Barium	100	105	105
Selenium	100	90.8	90.8
Mercury	10.0	7.61	76.1

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Metals in Soil by EPA-6020 Series

Sample	Date	Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	6/26/2018	nd	nd	nd	nd	nd	nd	nd	nd
TP12-1@12'	6/26/2018	5.4	nd	46	7.1	nd	nd	nd	nd
TP17-2@8'	6/26/2018	7.3	nd	47	6.9	nd	nd	nd	nd
TP7-2@10'	6/26/2018	22	nd	43	5.3	nd	nd	nd	nd
TP7-2@10' Duplicate	6/26/2018	13	nd	45	5.2	nd	nd	nd	nd
TP17-1@4'	6/26/2018	6.1	nd	43	6.7	nd	nd	nd	nd
TP11-1@9'	6/26/2018	9.7	nd	58	8.3	nd	55	nd	nd
TP5-1@10'	6/26/2018	13	nd	66	7.7	nd	54	nd	nd
TP7-1@6'	6/26/2018	16	nd	49	nd	nd	50	nd	nd
TP2-1@12'	6/26/2018	9.4	nd	52	6.3	nd	51	nd	nd
TP2-1@12' Duplicate	6/26/2018	9.9	nd	56	7.1	nd	53	nd	nd
TP3-1@6'	6/26/2018	5.0	nd	43	6.8	nd	nd	nd	nd
TP6-1@12'	6/26/2018	6.7	nd	43	6.8	nd	nd	nd	nd
Reporting Limits		5.0	1.0	5.0	5.0	20	50	20	0.5

"nd" Indicates not detected at listed detection limits.

BergerABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

QA/QC Data - Total Metals EPA-6020

Sample Number:	TP7-2@10'		•					
		Matrix Spik	te	Mat	Matrix Spike Duplicate			
	Spiked	Spiked Measured Spike			Measured	Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery		
	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)	(%)	
Lead	92.6	87.4	94.4	77.8	69.0	88.7	6.2	
Cadmium	92.6	86.8	93.7	77.8	68.1	87.5	6.8	
Chromium	92.6	123.0	133M	77.8	97.2	125M	6.1	
Arsenic	92.6	97.1	105	77.8	78.6	101	3.7	
Silver	92.6	79.9	86.3	77.8	63.2	81.2	6.0	
Barium	92.6	103.0	111	77.8	81.0	104	6.6	
Selenium	92.6	92.3	100	77.8	73.4	94.3	5.5	
Mercury	9.26	8.50	91.8	7.78	6.91	88.8	3.3	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

M - Matrix Spike recovery failed due to matrix interference.

	Laha	matamy Cantua	Comple
		ratory Contro	Sample
	Spiked	Measured	Spike
	Conc.	Conc.	Recovery
	(mg/kg)	(mg/kg)	(%)
Lead	100	95.9	95.9
Cadmium	100	92.2	92.2
Chromium	100	108	108
Arsenic	100	95.3	95.3
Silver	100	90.8	90.8
Barium	100	107	107
Selenium	100	90.9	90.9
Mercury	10.0	8.64	86.4

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120%

Berger ABAM PROJECT PROPOSED GRAYS HARBOR POTASH EXPORT FACILITY PROJECT #A17.0202.00 Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Dissolved Metals in Water by EPA-6020 Method

Sample	Date	Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Method Blank	6/26/2018	nd	nd	nd	nd	nd	nd	nd	nd
MW-2	6/26/2018	nd	nd	31	18	nd	nd	nd	nd
MW-1	6/26/2018	nd	nd	nd	3.2	nd	nd	nd	nd
MW-5	6/26/2018	nd	nd	nd	32	nd	73	100	nd
MW-6	6/26/2018	nd	nd	nd	34	nd	99	nd	nd
MW-4	6/26/2018	nd	nd	nd	34	nd	74	110	nd
MW-4 Duplicate	6/26/2018	nd	nd	nd	36	nd	74	110	nd
MW-3	6/26/2018	nd	nd	nd	58	nd	30	160	nd
Reporting Limits		2.0	2.0	10	2.0	10	20	10	1.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Dissolved Metals EPA-6020

	Labo	ratory Control	Sample	Laboratory (Laboratory Control Sample Duplicate			
	Spiked	Spiked Measured Spike		Spiked	Measured	Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery		
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	
Lead	20	16.7	83.5	20	17.1	85.5	2.37	
Cadmium	20	17.9	89.5	20	18.2	91.0	1.66	
Chromium	20	20.4	102.0	20	19.9	99.5	2.48	
Arsenic	20	18.9	94.5	20	18.4	92.0	2.68	
Silver	20	16.5	82.5	20	16.7	83.5	1.20	
Barium	20	17.8	89.0	20	18.1	90.5	1.67	
Selenium	20	18.8	94.0	20	19.0	95.0	1.06	
Mercury	2.0	1.71	85.5	2.0	1.76	88.0	2.88	

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

SPECTRA Laboratories ...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

06/20/2018

ESN Northwest Project: Proposed Grays Harbor Potash

Sample Matrix: 1210 Eastside St SE Soil

Date Sampled:

Suite 200 06/11/2018 Olympia, WA 98501 Date Received: 06/13/2018

Attn: Julie Woods Spectra Project: 2018060369

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP1-1@4'	1	Total Cyanide	0.12	mg/Kg	SM 4500-CN E
TP1-2@9'	2	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP10-1@12'	3	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP10-2@4'	4	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP4-1@5'	5	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP14-1@6.5'	6	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP20-1@6'	7	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP21-1@4.5'	8	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP15-1@5'	9	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP4-2@12'	10	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
MW-2@6'	11	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
MW-1@6'	12	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
MW-3@5'	13	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
MW-4@5'	14	Total Cyanide	0.12	mg/Kg	SM 4500-CN E
MW-5@10'	15	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
MW-6@6'	16	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E

SPECTRA LABORATORIES

June 18, 2018

ESN Northwest

1210 Eastside St SE

Suite 200

Olympia, WA 98501

Units:

Spectra Project:

mg/Kg

2018060369

Applies to Spectra #

1-4

QUALITY CONTROL RESULTS

Total Cyanide in Solid/Oil - SM4500CN-E

Method Blank

Date Digested: 6/14/2018 Date Analyzed:

6/18/2018

Blank

Cyanide

< 0.01

Blank Spike (LCS)

Date Digested:

6/14/2018

Date Analyzed:

6/18/2018

Spike Added LCS

LCS

Cyanide

Conc. 0.100 0.101 %Rec 101.0

LCS Recovery limits 71-119%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested:

6/14/2018

Date Analyzed:

6/18/2018

Sample Spiked:

2018060369-1

MSD

Sample Spike Conc. Conc. 0.00 0.100

MS Conc.

MS %Rec

Conc

MSD

Cyanide

0.099

99.0

0.086

%Rec 86.0

RPD 14.1

Recovery Limits 62-114%

RPD Limit 20

SPECTRA LABORATORIES

ratory Manager

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

June 18, 2018

ESN Northwest

1210 Eastside St SE

Suite 200

Olympia, WA 98501

Units:

Spectra Project:

mg/Kg 2018060369

Applies to Spectra #

5-10

QUALITY CONTROL RESULTS

Total Cyanide in Solid/Oil - SM4500CN-E

Method Blank

Date Digested:

6/15/2018

Date Analyzed:

6/18/2018

Blank

Cyanide

< 0.01

Blank Spike (LCS)

Date Digested:

6/15/2018

Date Analyzed:

6/18/2018

Spike Added

0.100

LCS

LCS

Cyanide

Conc. 0.112 %Rec 112.0

0.086

LCS Recovery limits 71-119%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested:

6/14/2018

Date Analyzed:

6/18/2018

86.0

RPD

14.1

Sample Spiked:

2018060369-1

MS MS MSD

0.099

Sample Spike **MSD** Conc. Conc. Conc. %Rec Conc %Rec

99.0

Cyanide

Recovery Limits 62-114%

0.00

0.100

RPD Limit 20

SPECTRA LABORATORIES

boratory Manager

June 18, 2018

ESN Northwest

1210 Eastside St SE

Suite 200

Olympia, WA 98501

Units:

Spectra Project:

mg/Kg 2018060369

Applies to Spectra #

11-15

QUALITY CONTROL RESULTS

Total Cyanide in Solid/Oil - SM4500CN-E

Method Blank

Date Digested: 6/18/2018 Date Analyzed:

6/18/2018

Blank

Cyanide

< 0.01

Blank Spike (LCS)

Date Digested: 6/18/2018 Date Analyzed:

6/18/2018

Spike Added

LCS Conc.

LCS %Rec 98.0

Cyanide

0.100 0.098

LCS Recovery limits 71-119%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested:

6/14/2018

Date Analyzed:

6/18/2018

Sample Spiked:

2018060369-1

Sample Spike MS

MSD

MSD

86.0

Cyanide

Conc. Conc. 0.00 0.100 Conc.

0.099

MS %Rec 99.0

Conc 0.086 %Rec

RPD 14.1

Recovery Limits 62-114%

RPD Limit 20

SPECTRA LABORATORIES

aboratory Manager

06/28/2018

ESN Northwest

1210 Eastside St SE

Suite 200

Olympia, WA 98501

Attn: Julie Woods

Project:

Proposed Grays Harbor

Sample Matrix: Soil

Date Sampled:

06/12/2018

Date Received:

06/19/2018

Spectra Project: 2018060478

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP8-2@8'	1	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP8-3@11'	2	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP9-1@6.5'	3	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP8-1@7'	4	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP13-1@12'	5	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP18-1@12'	6	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP24-2@10'	7	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP25-1@5.5'	8	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP19-1@5'	9	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP23-1@6'	10	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP22-1@6'	11	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP24-1@5.5'	12	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP16-1@5.5'	13	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E

SPECTRA LABORATORIES

effect ooper, Laboratory Manager

a7/cmk

06/28/2018

Project: **ESN Northwest** Proposed Grays Harbor

Sample Matrix: Soil 1210 Eastside St SE

Date Sampled: 06/13/2018 Suite 200 Olympia, WA 98501 Date Received: 06/19/2018

Spectra Project: 2018060477 Attn: Julie Woods

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP12-1@12'	1	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP17-2@8'	2	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP7-2@10'	3	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP17-1@4'	4	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP11-1@9'	5	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP5-1@10'	6	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP7-1@6'	7	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP2-1@12'	8	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP3-1@6'	9	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP6-1@12'	10	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E

SPECTRA LABORATORIES

cooper, Laboratory Manager

Page 1 of 1

SPECTRA Laboratories ...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/09/2018

ESN Northwest 1210 Eastside St SE Suite 200

Olympia, WA 98501 Attn: Julie Woods

Proposed Grays Harbor Potash Project:

Date Received: 06/13/2018 Spectra Project: 2018060369

Client ID	Spectra # Analyte	Result	Units	Method	<u>Matrix</u>	Date Sampled
TP1-1@4'	1 Total Cyanide	0.12	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP1-1@4'	1 Total Chromium	37.0	mg/Kg	SW846 6010C	Soil	06/11/2018
TP1-1@4'	1 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
TP1-2@9'	2 Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP1-2@9'	2 Total Chromium	37.8	mg/Kg	SW846 6010C	Soil	06/11/2018
TP1-2@9'	2 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
TP10-1@12'	3 Total Cyanide	< 0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP10-1@12'	3 Total Chromium	43.2	mg/Kg	SW846 6010C	Soil	06/11/2018
TP10-1@12'	3 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
TP10-2@4'	4 Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP4-1@5'	5 Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP4-1@5'	5 Total Chromium	39.6	mg/Kg	SW846 6010C	Soil	06/11/2018
TP4-1@5'	5 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
TP14-1@6.5'	6 Total Cyanide	<0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
TP20-1@6'	7 Total Cyanide	< 0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
TP21-1@4.5'	8 Total Cyanide	<0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
TP21-1@4.5'	8 Total Chromium	78.4	mg/Kg	SW846 6010C	Soil	06/11/2018

^{*}Detection limit elevated due to matrix interference.

SPECTRA LABORATORIES

re Cooper, Laboratory Manager

SPECTRA Laboratories ...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/09/2018

ESN Northwest 1210 Eastside St SE Suite 200

Olympia, WA 98501

Attn: Julie Woods

Project:

Proposed Grays Harbor Potash

Date Received:

06/13/2018

Spectra Project: 2018060369

Client ID	Spectra # Anal	yte Result	Units	Method	Matrix	Date Sampled
TP21-1@4.5'	8 Hexavalent	Chromium <0.1	mg/Kg	SW846 7196A	Soil	06/11/2018
TP15-1@5'	9 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
TP15-1@5'	9 Total Cl	nromium 66.6	mg/Kg	SW846 6010C	Soil	06/11/2018
TP15-1@5'	9 Hexavalent	Chromium <0.1	mg/Kg	SW846 7196A	Soil	06/11/2018
TP4-2@12'	10 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
MW-2@6'	11 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
MW-1@6'	12 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
MW-1@6'	12 Total Ch	romium 56.0	mg/Kg	SW846 6010C	Soil	06/11/2018
MW-1@6'	12 Hexavalent	Chromium <0.5*	mg/Kg	SW846 7196A	Soil	06/11/2018
MW-3@5'	13 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN E	Soil	06/11/2018
MW-3@5'	13 Total Ch	romium 50.5	mg/Kg	SW846 6010C	Soil	06/11/2018
MW-3@5'	13 Hexavalent	Chromium <2*	mg/Kg	SW846 7196A	Soil	06/11/2018
MW-4@5'	14 Total C	Cyanide 0.12	mg/Kg	SM 4500-CN E	Soil	06/11/2018
MW-4@5'	14 Total Ch	romium 53.8	mg/Kg	SW846 6010C	Soil	06/11/2018
MW-4@5'	14 Hexavalent	Chromium <2*	mg/Kg	SW846 7196A	Soil	06/11/2018
MW-5@10'	15 Total C	Cyanide <0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
MW-5@10'	15 Total Ch	romium 67.2	mg/Kg	SW846 6010C	Soil	06/11/2018

^{*}Detection limit elevated due to matrix interference.

SPECTRA LABORATORIES

Cooper, Laboratory Manager

07/09/2018

ESN Northwest 1210 Eastside St SE

Suite 200

Olympia, WA 98501 Attn: Julie Woods

Proposed Grays Harbor Potash Project:

Date Received: 06/13/2018 Spectra Project: 2018060369

Client ID_	Spectra # Analyte	Result	<u>Units</u>	Method	<u>Matrix</u>	Date Sampled
MW-5@10'	15 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
MW-6@6'	16 Total Cyanide	< 0.1	mg/Kg	SM 4500-CN ⁻ E	Soil	06/11/2018
MW-6@6'	16 Total Chromium	43.2	mg/Kg	SW846 6010C	Soil	06/11/2018
MW-6@6'	16 Hexavalent Chromium	· <2*	mg/Kg	SW846 7196A	Soil	06/11/2018
TP1-2@9' Dup	17 Total Chromium	37.3	mg/Kg	SW846 6010C	Soil	06/11/2018
TP1-2@9' Dup	17 Hexavalent Chromium	<2*	mg/Kg	SW846 7196A	Soil	06/11/2018
MW-6@6' Dup	18 Total Chromium	44.8	mg/Kg	SW846 6010C	Soil	06/11/2018
MW-6@6' Dup	18 Hexavalent Chromium	ı <2*	mg/Kg	SW846 7196A	Soil	06/11/2018

SPECTRA LABORATORIES

Cooper, Laboratory Manager

^{*}Detection limit elevated due to matrix interference.

07/05/2018

Project: **ESN Northwest** Proposed Grays Harbor

Sample Matrix: Soil 1210 Eastside St SE

Suite 200 Date Sampled: 06/12/2018

Olympia, WA 98501 Date Received: 06/19/2018

Attn: Julie Woods Spectra Project: 2018060478

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP8-2@8'	1	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP8-2@8'	1	Total Chromium	42.6	mg/Kg	SW846 6010C
TP8-2@8'	1	Hexavalent Chromium	<1*	mg/Kg	SW846 7196A
TP8-3@11'	2	Total Cyanide	< 0.1	mg/Kg	SM 4500-CN E
TP8-3@11'	2	Total Chromium	42.0	mg/Kg	SW846 6010C
TP8-3@11'	2	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP9-1@6.5'	3	Total Cyanide	< 0.1	mg/Kg	SM 4500-CN E
TP9-1@6.5'	3	Total Chromium	63.1	mg/Kg	SW846 6010C
TP9-1@6.5'	3	Hexavalent Chromium	<0.5*	mg/Kg	SW846 7196A
TP8-1@7'	4	Total Cyanide	< 0.1	mg/Kg	SM 4500-CN E
TP8-1@7'	4	Total Chromium	55.8	mg/Kg	SW846 6010C
TP8-1@7'	4	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP13-1@12'	5	Total Cyanide	< 0.1	mg/Kg	SM 4500-CN ⁻ E
TP13-1@12'	5	Total Chromium	44.2	mg/Kg	SW846 6010C
TP13-1@12'	5	Hexavalent Chromium	<1*	mg/Kg	SW846 7196A
TP18-1@12'	6	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP18-1@12'	6	Total Chromium	42.4	mg/Kg	SW846 6010C
TP18-1@12'	6	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP24-2@10'	7	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP24-2@10'	7	Total Chromium	51.4	mg/Kg	SW846 6010C
TP24-2@10'	7	Hexavalent Chromium	<5*	mg/Kg	SW846 7196A
TP25-1@5.5'	8	Total Cyanide	< 0.1	mg/Kg	SM 4500-CN E

^{*}Detection limit elevated due to matrix interference.

SPECTRA LABORATORIES

ey Cooper, Laboratory Manager

a7/mkw

07/05/2018

ESN Northwest Project: Proposed Grays Harbor

1210 Eastside St SE Sample Matrix: Soil

Suite 200 Date Sampled: 06/12/2018

Olympia, WA 98501 Date Received: 06/19/2018
Attn: Julie Woods Spectra Project: 2018060478

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP25-1@5.5'	8	Total Chromium	47.8	mg/Kg	SW846 6010C
TP25-1@5.5'	8	Hexavalent Chromium	<0.5*	mg/Kg	SW846 7196A
TP19-1@5'	9	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP19-1@5'	9	Total Chromium	15.7	mg/Kg	SW846 6010C
TP19-1@5'	9	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP23-1@6'	10	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP23-1@6'	10	Total Chromium	77.8	mg/Kg	SW846 6010C
TP23-1@6'	10	Hexavalent Chromium	<0.1	mg/Kg	SW846 7196A
TP22-1@6'	11	Total Cyanide	<0.1	mg/Kg	SM 4500-CN E
TP22-1@6'	11	Total Chromium	72.6	mg/Kg	SW846 6010C
TP22-1@6'	11	Hexavalent Chromium	<0.1	mg/Kg	SW846 7196A
TP24-1@5.5'	12	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP24-1@5.5'	12	Total Chromium	48.2	mg/Kg	SW846 6010C
TP24-1@5.5'	12	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP16-1@5.5'	13	Total Cyanide	<0.1	mg/Kg	SM 4500-CN ⁻ E
TP16-1@5.5'	13	Total Chromium	47.7	mg/Kg	SW846 6010C
TP16-1@5.5'	13	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A

SPECTRA LABORATORIES

They Cooper, Laboratory Manager

a7/mky

^{*}Detection limit elevated due to matrix interference.

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

7/5/2018

ESN Northwest

12010 Eastside St. SE.

Suite 200

Olympia, WA. 98501

Units:

mg/Kg

Spectra Project:

2018060478

Applies to Spectra #'s

1-13

Analyst:

SCJ

QUALITY CONTROL RESULTS

ICP Metals SW846 6010C - Soil/Solid

Method Blank

Date Digested: 7/3/2018 Date Analyzed:

7/5/2018

Element

Chromium

Blank Result

< 0.7

Laboratory Control Sample (LCS)

Date Digested:

7/3/2018

Date Analyzed:

LCS

Conc.

198.7

7/5/2018

Element Chromium Spike Added

200.0

LCS

%Rec 99.4

LCS Recovery limits 80-120%

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Date Digested:

7/3/2018

Date Analyzed:

7/5/2018

Sample Spiked: 2018060478-1

Element

Chromium

Sample Spike Conc. Conc.

200.0

85.1

MS Conc.

276.3

MS %Rec

95.6

MSD Conc

274.9

MSD %Rec

94.9

RPD 0.7

Comment:

Recovery Limits 75-125%

RPD Limit 20

SPECTRA LABORATORIES

y Cooper Laboratory Manager

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/05/2018

ESN Northwest Project: Proposed Grays Harbor

Sample Matrix: 1210 Eastside St SE Soil

Suite 200 Date Sampled:

06/13/2018 Olympia, WA 98501 Date Received: 06/19/2018 Attn: Julie Woods Spectra Project: 2018060477

Client ID	Spectra #	Analyte	Result	<u>Units</u>	Method
TP12-1@12'	1	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP12-1@12'	1	Total Chromium	44.2	mg/Kg	SW846 6010C
TP12-1@12'	1	Hexavalent Chromium	<0.5*	mg/Kg	SW846 7196A
TP17-2@8'	2	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP17-2@8'	2	Total Chromium	57.1	mg/Kg	SW846 6010C
TP17-2@8'	2	Hexavalent Chromium	<1*	mg/Kg	SW846 7196A
TP7-2@10'	3	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP7-2@10'	3	Total Chromium	43.8	mg/Kg	SW846 6010C
TP7-2@10'	3	Hexavalent Chromium	<0.5*	mg/Kg	SW846 7196A
TP17-1@4'	4	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP17-1@4'	4	Total Chromium	51.0	mg/Kg	SW846 6010C
TP17-1@4'	4	Hexavalent Chromium	<0.5*	mg/Kg	SW846 7196A
TP11-1@9'	5	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP11-1@9'	5	Total Chromium	53.6	mg/Kg	SW846 6010C
TP11-1@9'	5	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP5-1@10'	6	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP5-1@10'	6	Total Chromium	54.8	mg/Kg	SW846 6010C
TP5-1@10'	6	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP7-1@6'	7	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP7-1@6'	7	Total Chromium	62.7	mg/Kg	SW846 6010C
TP7-1@6'	7	Hexavalent Chromium	<2*	mg/Kg	SW846 7196A
TP2-1@12'	8	Total Cyanide	< 0.2	mg/Kg	SM 4500-CN E

^{*}Detection limit elevated due to matrix interference.

SPECTRA LABORATORIES

Cooper, Laboratory Manager

Page 1 of 2

07/05/2018

ESN Northwest Project: Proposed Grays Harbor

1210 Eastside St SE Sample Matrix: Soil

Suite 200 Date Sampled: 06/13/2018

Olympia, WA 98501 Date Received: 06/19/2018
Attn: Julie Woods Spectra Project: 2018060477

Client ID	Spectra #	Analyte	Result	Units	Method
TP2-1@12'	8	Total Chromium	48.4	mg/Kg	SW846 6010C
TP2-1@12'	8	Hexavalent Chromium	<1*	mg/Kg	SW846 7196A
TP3-1@6'	9	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP3-1@6'	9	Total Chromium	55.1	mg/Kg	SW846 6010C
TP3-1@6'	9	Hexavalent Chromium	<0.2*	mg/Kg	SW846 7196A
TP6-1@12'	10	Total Cyanide	<0.2	mg/Kg	SM 4500-CN E
TP6-1@12'	10	Total Chromium	53.8	mg/Kg	SW846 6010C
TP6-1@12'	10	Hexavalent Chromium	<1*	mg/Kg	SW846 7196A

SPECTRA LABORATORIES

They Cooper, Laboratory Manager

a7/mky

^{*}Detection limit elevated due to matrix interference.

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO# 18-AL0615-4
	1210 Eastside Street SE, Suite #200	
	Olympia, WA 98501	Date Sampled 6/11/2018
Project Manager	Steve Loague	Date Received 6/15/2018
Project Name	Proposed Grays Harbors	Date Reported 6/20/2018
Client Project#	A17.0202.00	

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061518-1

Client sample ID					TP1-1@4'	TP1-2-9	TP10-1-12	TP10-2-4	TP4-1-5
Lab ID	MRL	Unit	MTH BLK	LCS	18-AL0615-1-1	18-AL0615-1-2	18-AL0615-1-3	18-AL0615-1-4	18-AL0615-1-5
Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018
Date Analyzed			6/15/2018	6/15/2018	6/17/2018	6/17/2018	6/17/2018	6/17/2018	6/17/2018
Moiture (%)					25%	28%	31%	21%	23%
A1016	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	98%	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
Surrogate Recov	veries								
Decachlorobiphen	nyl		88%	112%	75%	68%	78%	70%	73%
Tetrachloro-m-xyle	ene		109%	111%	72%	69%	90%	110%	125%

Acceptable Recovery Limits:

Surrogates/LCS 60-150%
MS/MSD 50-150%
Acceptable RPD limit: 30%

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0615-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/11/2018
Project Manager	Steve Loague	Date Received	6/15/2018
Project Name	Proposed Grays Harbors	Date Reported	6/20/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061518-1

Client sample II)		TP14-1-6.5	TP20-1-6	TP21-1-4.5	TP15-1-5	TP4-2-12	MW2-6
Lab ID	MRL	Unit	18-AL0615-1-6	18-AL0615-1-7	18-AL0615-1-8	18-AL0615-1-9	18-AL0615-1-10	18-AL0615-1-11
Matrix			Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018
Date Analyzed			6/17/2018	6/17/2018	6/17/2018	6/17/2018	6/17/2018	6/17/2018
Moiture (%)			25%	26%	24%	24%	28%	27%
A1016	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
Surrogate Reco	veries							
Decachlorobiphe	nyl		75%	74%	85%	77%	74%	72%
Tetrachloro-m-xy	lene		91%	85%	96%	71%	89%	93%

Acceptable Recovery Limits:

Surrogates/LCS 60-150% MS/MSD 50-150% Acceptable RPD limit: 30%

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0615-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/11/2018
Project Manager	Steve Loague	Date Received	6/15/2018
Project Name	Proposed Grays Harbors	Date Reported	6/20/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061518-1

Client sample ID			MW1-6	MW3-5	MW4-5	MW5-10	MW6-6
Lab ID	MRL	Unit	18-AL0615-1-12	18-AL0615-1-13	18-AL0615-1-14	18-AL0615-1-15	18-AL0615-1-16
Matrix			Soil	Soil	Soil	Soil	Soil
Date Extracted			6/15/2018	6/15/2018	6/15/2018	6/15/2018	6/15/2018
Date Analyzed			6/17/2018	6/17/2018	6/17/2018	6/17/2018	6/17/2018
Moiture (%)			28%	25%	26%	28%	28%
A1016	0.10	mg/Kg	nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd	nd	nd	nd	nd
Surrogate Recov	eries						
Decachlorobipher	nyl		81%	79%	71%	67%	69%
Tetrachloro-m-xyl	ene		106%	95%	86%	86%	84%

Acceptable Recovery Limits:

Surrogates/LCS 60-150% MS/MSD 50-150% Acceptable RPD limit: 30%

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0615-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/11/2018
Project Manager	Steve Loague	Date Received	6/15/2018
Project Name	Proposed Grays Harbors	Date Reported	6/20/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061518-1

			MS	MSD	MSD
Client sample ID			MW6-6	MW6-6	MW6-6
Lab ID	MRL	Unit	18-AL0615-1-16	18-AL0615-1-16	18-AL0615-1-16
Matrix			Soil	Soil	Soil
Date Extracted			6/15/2018	6/15/2018	6/15/2018
Date Analyzed			6/17/2018	6/17/2018	6/17/2018
Moiture (%)			28%	28%	28%
A1016	0.10	mg/Kg			
A1221	0.10	mg/Kg			
A1232	0.10	mg/Kg			
A1242	0.10	mg/Kg			
A1248	0.10	mg/Kg			
A1254	0.10	mg/Kg			
A1260	0.10	mg/Kg	95%	78%	20%
A1262	0.10	mg/Kg			
Surrogate Recov	eries				
Decachlorobiphen			91%	84%	
Tetrachloro-m-xyle			104%	91%	

Acceptable Recovery Limits:

Surrogates/LCS 60-150% MS/MSD 50-150% Acceptable RPD limit: 30%

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0615-4
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/11/2018
Project Manager	Steve Loague	Date Received	6/15/2018
Project Name Client Project#	Proposed Grays Harbors A17.0202.00	Date Reported	6/20/2018
•			

Data Qualifiers and Comments:

Results reported on dry-weight basis for soil samples.

- MRL- Method Reporting Limit
 - nd- Indicates the analyte is not detected at the listing reporting limit.
 - **C-** Coelution with other compounds.
 - M- % Recovery of surrogate, MS/MSD is out of the acceptable limit due to matrix effect.
 - **B-** Indicates the analyte is detected in the method blank associated with the sample.
 - **J-** The analyte is detected at below the reporting limit.
 - **E-** The result reported exceeds the calibration range, and is an estimate.
 - D- Sample required dilution due to matrix. Method Reporting Limits were elevated due to dilutions.
 - H- Sample was received or analyzed past holding time
 - Q- Sample was received with head space, improper preserved or above recommended temperature.
 - I- Due to insufficient sample, LCS/LCS DUP were analyzed in place of MS/MSD.
 - **R-** The recovery of this analyte in QC sample failed high, but the analyte was not detected in all related samples. No action was taken.
- R-1- The RPD value for the MS/MSD was outside of QC acceptance limits however both recoveries were acceptable. All related samples were "nd". No action was taken.

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/12/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-4

Client sample ID					TP8-2@8'	TP8-3@11'	TP9-1@6.5'	TP8-1@7'	TP13-1@12'
Lab ID	MRL	Unit	MTH BLK	LCS	18-AL0619-6-1	18-AL0619-6-2	18-AL0619-6-3	18-AL0619-6-4	18-AL0619-6-5
Matrix			Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/20/2018
Moiture (%)					38%	40%	25%	44%	37%
A1016	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	98%	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd		nd	nd	nd	nd	nd
Surrogate Recove	eries								
Decachlorobipheny	/l		88%	112%	75%	68%	78%	70%	73%
Tetrachloro-m-xyle	ne		109%	111%	72%	69%	90%	110%	125%

Acceptable Recovery Limits:

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com

website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/12/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-4

Client sample ID			TP18-1@12'	TP24-2@10'	TP25-1@5.5'	TP19-1@5'	TP23-1@6'	TP22-1@6'
Lab ID	MRL	Unit	18-AL0619-6-6	18-AL0619-6-7	18-AL0619-6-8	18-AL0619-6-9	18-AL0619-6-10	18-AL0619-6-11
Matrix			Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/20/2018	6/20/2018	6/20/2018	6/20/2018	6/20/2018	6/20/2018
Moiture (%)			38%	31%	38%	56%	13%	22%
A1016	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
Surrogate Recov	eries							
Decachlorobiphen	yl		75%	74%	85%	77%	74%	72%
Tetrachloro-m-xyle	ene		91%	85%	96%	71%	89%	93%

Acceptable Recovery Limits:

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/12/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-4

					MS	MSD	MSD
Client sample ID			TP24-1@5.5'	TP16-1@5.5'	TP23-1@6'	TP23-1@6'	TP23-1@6'
Lab ID	MRL	Unit	18-AL0619-6-12	18-AL0619-6-13	18-AL0619-6-10	18-AL0619-6-10	18-AL0619-6-10
Matrix			Soil	Soil	Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/20/2018	6/20/2018	6/20/2018	6/20/2018	6/20/2018
Moiture (%)			38%	40%	28%	28%	28%
A1016	0.10	mg/Kg	nd	nd			
A1221	0.10	mg/Kg	nd	nd			
A1232	0.10	mg/Kg	nd	nd			
A1242	0.10	mg/Kg	nd	nd			
A1248	0.10	mg/Kg	nd	nd			
A1254	0.10	mg/Kg	nd	nd			
A1260	0.10	mg/Kg	nd	nd	95%	78%	20%
A1262	0.10	mg/Kg	nd	nd			
Surrogate Recov	eries						
Decachlorobiphen	ıyl		81%	79%	91%	84%	
Tetrachloro-m-xyle	ene		106%	95%	104%	91%	

Acceptable Recovery Limits:

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com

website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/13/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-3

Client sample ID					TP12-1@12'	TP17-2@8'	TP7-2@10'	TP17-1@4'
Lab ID	MRL	Unit	MTH BLK	LCS	18-AL0619-6-14	18-AL0619-6-15	18-AL0619-6-16	18-AL0619-6-17
Matrix			Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Moiture (%)					33%	31%	32%	40%
A1016	0.10	mg/Kg	nd		nd	nd	nd	nd
A1221	0.10	mg/Kg	nd		nd	nd	nd	nd
A1232	0.10	mg/Kg	nd		nd	nd	nd	nd
A1242	0.10	mg/Kg	nd		nd	nd	nd	nd
A1248	0.10	mg/Kg	nd		nd	nd	nd	nd
A1254	0.10	mg/Kg	nd		nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	77%	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd		nd	nd	nd	nd
Surrogate Recove	eries							
Decachlorobipheny	/l		88%	104%	71%	79%	76%	67%
Tetrachloro-m-xyle	ne		90%	94%	87%	81%	83%	82%

Acceptable Recovery Limits:

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/13/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-3

Client sample ID			TP11-1@9'	TP5-1@10'	TP7-1@6'	TP2-1@12'	TP3-1@6'	TP6-1@12'
Lab ID	MRL	Unit	18-AL0619-6-18	18-AL0619-6-19	18-AL0619-6-20	18-AL0619-6-21	18-AL0619-6-22	18-AL0619-6-23
Matrix			Soil	Soil	Soil	Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Moiture (%)			39%	42%	34%	45%	29%	34%
A1016	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1221	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1232	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1242	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1248	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1254	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1260	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
A1262	0.10	mg/Kg	nd	nd	nd	nd	nd	nd
Surrogate Recov	eries							
Decachlorobiphen	yl		74%	68%	66%	81%	77%	74%
Tetrachloro-m-xyle	ene		81%	86%	86%	90%	71%	89%

Acceptable Recovery Limits:

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/13/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Soil by EPA 8082A/3550C

Accu Lab Analytical Batch# AL061918-3

			MS	MSD	MSD
Client sample ID			TP17-1@4'	TP17-1@4'	TP17-1@4'
Lab ID	MRL	Unit	18-AL0619-6-17	18-AL0619-6-17	18-AL0619-6-17
Matrix			Soil	Soil	Soil
Date Extracted			6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/19/2018	6/19/2018	6/19/2018
Moiture (%)			40%	40%	40%
A1016	0.10	mg/Kg			
A1221	0.10	mg/Kg			
A1232	0.10	mg/Kg			
A1242	0.10	mg/Kg			
A1248	0.10	mg/Kg			
A1254	0.10	mg/Kg			
A1260	0.10	mg/Kg	81%	89%	10%
A1262	0.10	mg/Kg			
Surrogate Recove	eries				
Decachlorobipheny	yl		71%	79%	
Tetrachloro-m-xyle	ne		87%	93%	
Acceptable Recovery Lin	mits:				
Surrogates/LC	CS .	60-150%			

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/13,14/2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Polychlorinated Biphenyls in Water by EPA 8082A/3510C

Accu Lab Analytical Batch# AL061918-5

Client sample ID)				MW-2	MW-1	MW-5	MW-6
Lab ID	MRL	Unit	MTH BLK	LCS	18-AL0619-6-24	18-AL0619-6-25	18-AL0619-6-26	18-AL0619-6-27
Matrix			Water	Water	Water	Water	Water	Water
Date Extracted			6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018	6/19/2018
Date Analyzed			6/22/2018	6/22/2018	6/22/2018	6/22/2018	6/22/2018	6/22/2018
A1016	0.10	mg/L	nd		nd	nd	nd	nd
A1221	0.10	mg/L	nd		nd	nd	nd	nd
A1232	0.10	mg/L	nd		nd	nd	nd	nd
A1242	0.10	mg/L	nd		nd	nd	nd	nd
A1248	0.10	mg/L	nd		nd	nd	nd	nd
A1254	0.10	mg/L	nd		nd	nd	nd	nd
A1260	0.10	mg/L	nd	76%	nd	nd	nd	nd
A1262	0.10	mg/L	nd		nd	nd	nd	nd
Surrogate Reco	veries							
Decachlorobiphe	nyl		79%	88%	72%	92%	129%	82%
Tetrachloro-m-xy	lene		92%	86%	110%	105%	107%	86%

Acceptable Recovery Limits:

Email: lisa@accu-lab.com website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6	
	1210 Eastside Street SE, Suite #200			
	Olympia, WA 98501	Date Sampled	6/13,14/2018	
Project Manager	Steve Loague	Date Received	6/19/2018	
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018	
Client Project#	A17.0202.00			

Polychlorinated Biphenyls in Water by EPA 8082A/3510C

Accu Lab Analytical Batch# AL061918-5

Client sample ID)		MW-4	MW/3
Lab ID	MRL	Unit	18-AL0619-6-28	18-AL0619-6-29
Matrix			Water	Water
Date Extracted			6/19/2018	6/19/2018
Date Analyzed			6/22/2018	6/22/2018
	·			
A1016	0.10	mg/L	nd	nd
A1221	0.10	mg/L	nd	nd
A1232	0.10	mg/L	nd	nd
A1242	0.10	mg/L	nd	nd
A1248	0.10	mg/L	nd	nd
A1254	0.10	mg/L	nd	nd
A1260	0.10	mg/L	nd	nd
A1262	0.10	mg/L	nd	nd
Surrogate Reco	veries			
Decachlorobiphe	nyl		86%	78%
Tetrachloro-m-xy	lene		69%	101%

Acceptable Recovery Limits:

website: www.accu-lab.com

Tel: (425) 214-5858 (425) 214-5868 Email: lisa@accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	18-AL0619-6
	1210 Eastside Street SE, Suite #200		
	Olympia, WA 98501	Date Sampled	6/12, 13,14 /2018
Project Manager	Steve Loague	Date Received	6/19/2018
Project Name	Proposed Grays Harbor	Date Reported	6/22/2018
Client Project#	A17.0202.00		

Data Qualifiers and Comments:

Results reported on dry-weight basis for soil samples.

- MRL- Method Reporting Limit
 - nd- Indicates the analyte is not detected at the listing reporting limit.
 - **C-** Coelution with other compounds.
 - M- % Recovery of surrogate, MS/MSD is out of the acceptable limit due to matrix effect.
 - **B-** Indicates the analyte is detected in the method blank associated with the sample.
 - **J-** The analyte is detected at below the reporting limit.
 - **E-** The result reported exceeds the calibration range, and is an estimate.
 - D- Sample required dilution due to matrix. Method Reporting Limits were elevated due to dilutions.
 - H- Sample was received or analyzed past holding time
 - Q- Sample was received with head space, improper preserved or above recommended temperature.
 - I- Due to insufficient sample, LCS/LCS DUP were analyzed in place of MS/MSD.
 - **R-** The recovery of this analyte in QC sample failed high, but the analyte was not detected in all related samples. No action was taken.
- **R-1-** The RPD value for the MS/MSD was outside of QC acceptance limits however both recoveries were acceptable. All related samples were "nd". No action was taken.

June 20, 2018 Ceres ID: 12138

ESN Northwest, Inc. 1210 Eastside Street SE Olympia, WA 98501

The following report contains the results for the sixteen soil samples received on June 13, 2018. These samples were analyzed for tetra through octa chlorinated dibenzo-p-dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

This work was authorized under the Project Name: Proposed Grays Harbor Potash Export & Facility.

Sample results are reported on a dry weight basis.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Confirmation analysis was performed on the samples which had concentrations above the method calibration limit for the 2,3,7,8-TCDF on a Quadrex Q-225 column for isomer specificity.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID: 12138-001	Sample ID TP1-1@4'	Date Received 6/13/2018	Collection Date &Time 6/11/2018 10:45
12138-002	TP1-2@9'	6/13/2018	6/11/2018 11:08
12138-003	TP10-1@12'	6/13/2018	6/11/2018 13:00
12138-004	TP10-2@4'	6/13/2018	6/11/2018 13:15
12138-005	TP4-1@5'	6/13/2018	6/11/2018 13:45
12138-006	TP14-1@6.5'	6/13/2018	6/11/2018 15:20
12138-007	TP20-1@6'	6/13/2018	6/11/2018 16:15
12138-008	TP21-1@4.5'	6/13/2018	6/11/2018 17:15
12138-009	TP15-1@5'	6/13/2018	6/11/2018 17:55
12138-010	TP4-2@12'	6/13/2018	6/11/2018 14:15
12138-011	MW-2@6'	6/13/2018	6/11/2018 10:30
12138-012	MW-1@6'	6/13/2018	6/11/2018 12:00
12138-013	MW-3@5'	6/13/2018	6/11/2018 18:10
12138-014	MW-4@5'	6/13/2018	6/11/2018 16:12
12138-015	MW-5@10'	6/13/2018	6/11/2018 13:45
12138-016	MW-6@6'	6/13/2018	6/11/2018 13:40

Section II: Data Summary

Quality Assurance Sample
Method BlankQC Batch #: 1798
Matrix: SoilDate Received: NA
Date Extracted: 6/13/2018Project ID: Proposed Grays Harbor PotashSample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.394	0.172	0.500		13C-2378-TCDD	96.0	40-135	
12378-PeCDD	DL= 0.291	0.327	2.50		13C-12378-PeCDD	97.0	40-135	
123478-HxCDD	DL= 0.785	0.327	2.50		13C-123478-HxCDD	64.5	40-135	
123678-HxCDD	DL= 0.750	0.655	2.50		13C-123678-HxCDD	75.8	40-135	
123789-HxCDD	DL= 0.749	0.315	2.50		13C-1234678-HpCDD	72.4	40-135	
1234678-HpCDD	DL= 1.77	0.409	2.50		13C-OCDD	70.1	40-135	
OCDD	DL= 1.23	1.01	5.00		13C-2378-TCDF	92.2	40-135	
2,3,7,8-TCDF	DL= 0.367	0.0886	0.500		13C-12378-PeCDF	74.4	40-135	
12378-PeCDF	DL= 0.259	0.412	2.50		13C-23478-PeCDF	87.1	40-135	
23478-PeCDF	DL= 0.200	0.422	2.50		13C-123478-HxCDF	79.5	40-135	
123478-HxCDF	DL= 0.522	0.518	2.50		13C-123678-HxCDF	98.2	40-135	
123678-HxCDF	DL= 0.449	0.533	2.50		13C-234678-HxCDF	78.8	40-135	
234678-HxCDF	DL= 0.539	0.319	2.50		13C-123789-HxCDF	63.3	40-135	
123789-HxCDF	DL= 1.06	0.425	2.50		13C-1234678-HpCDF	75.8	40-135	
1234678-HpCDF	DL= 0.574	0.279	2.50		13C-1234789-HpCDF	63.0	40-135	
1234789-HpCDF	DL= 1.20	0.378	2.50					
OCDF	DL= 1.41	0.461	5.00]			
Totals	Conc. (pg/g)	EN	IPC		CRS			
Total TCDD	DL= 0.394				37Cl4-2378-TCDD	131	40-135	
Total PeCDD	DL= 0.291							
Total HxCDD	DL= 0.785				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	DL= 1.77				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.367				ratio failure.			
Total PeCDF	DL= 0.259				(a) - Lower control limit - U	pper control	imit	
Total HxCDF	DL= 1.06				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	DL= 1.20				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1798
 Date Extracted: 6/13/2018

 Matrix: Soil
 ZB-5MS Analysis: 6/14/2018

 Project ID: Proposed Grays Harbor Potash
 Sample Size: 10.00 g

	LCS1	LCS2					
Analyte	% Rec.	% Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	101	99.5	1.06	13C-2378-TCDD	109	108	40-135
12378-PeCDD	111	108	1.94	13C-12378-PeCDD	125	114	40-135
123478-HxCDD	106	115	5.76	13C-123478-HxCDD	65.4	82.2	40-135
123678-HxCDD	111	117	3.72	13C-123678-HxCDD	71.7	85.2	40-135
123789-HxCDD	127	129	1.10	13C-1234678-HpCDD	85.9	98.0	40-135
1234678-HpCDD	112	112	0.00	13C-OCDD	77.8	98.7	40-135
OCDD	112	114	1.25	13C-2378-TCDF	97.1	106	40-135
2,3,7,8-TCDF	116	115	0.61	13C-12378-PeCDF	121	115	40-135
12378-PeCDF	114	119	3.03	13C-23478-PeCDF	113	92.4	40-135
23478-PeCDF	118	117	0.60	13C-123478-HxCDF	87.3	105	40-135
123478-HxCDF	120	121	0.59	13C-123678-HxCDF	105	125	40-135
123678-HxCDF	111	111	0.00	13C-234678-HxCDF	88.0	107	40-135
234678-HxCDF	108	112	2.57	13C-123789-HxCDF	68.6	90.1	40-135
123789-HxCDF	121	119	1.18	13C-1234678-HpCDF	89.1	96.8	40-135
1234678-HpCDF	113	113	0.00	13C-1234789-HpCDF	78.0	89.7	40-135
1234789-HpCDF	115	116	0.61				
OCDF	87.7	93	4.15				
				CRS			

| Client Sample ID: TP1-1@4'
Project ID: Proposed Grays Harbor Potash Exp	Ceres Sample ID: 12138-001	Date Received: 6/13/2018
QC Batch #: 1798	Date Extracted: 6/13/2018	
Date Collected: 6/11/2018	Matrix: Soil	ZB-5MS Analysis: 6/14/2018
Time Collected: 10:45	Sample Size: 16.42 g % Solids: 60.9	Q-225 Analysis: 6/19/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.77	0.172	0.500		13C-2378-TCDD	118	40-135	
12378-PeCDD	3.72	0.327	2.50		13C-12378-PeCDD	70.8	40-135	
123478-HxCDD	1.97	0.327	2.50	J	13C-123478-HxCDD	93.9	40-135	
123678-HxCDD	3.65	0.655	2.50		13C-123678-HxCDD	101	40-135	
123789-HxCDD	6.06	0.315	2.50		13C-1234678-HpCDD	97.5	40-135	
1234678-HpCDD	24.8	0.409	2.50		13C-OCDD	75.9	40-135	
OCDD	127	1.01	5.00		13C-2378-TCDF	115	40-135	
2,3,7,8-TCDF	7.99	0.0886	0.500		13C-12378-PeCDF	86.3	40-135	
12378-PeCDF	2.42	0.412	2.50	J	13C-23478-PeCDF	87.2	40-135	
23478-PeCDF	2.67	0.422	2.50		13C-123478-HxCDF	108	40-135	
123478-HxCDF	2.08	0.518	2.50	J	13C-123678-HxCDF	116	40-135	
123678-HxCDF	1.26	0.533	2.50	J	13C-234678-HxCDF	111	40-135	
234678-HxCDF	1.07	0.319	2.50	J	13C-123789-HxCDF	101	40-135	
123789-HxCDF	DL= 0.193	0.425	2.50		13C-1234678-HpCDF	42.6	40-135	
1234678-HpCDF	10.4	0.279	2.50		13C-1234789-HpCDF	91.9	40-135	
1234789-HpCDF	DL= 0.490	0.378	2.50					
OCDF	9.56	0.461	5.00					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	95.5				37Cl4-2378-TCDD	104	40-135	
Total PeCDD	96.5							
Total HxCDD	78.0				DL - Signifies Non-Detect	(ND) at samp	e specific detection I	imit.
Total HpCDD	49.2				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	125				ratio failure.			
Total PeCDF	48.5	50.2	2		(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	19.7				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	26.5				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 10.2 pg/g

| Client Sample ID: TP1-2@9'
Project ID: Proposed Grays Harbor Potash Exp	Ceres Sample ID: 12138-002	Date Received: 6/13/2018
QC Batch #: 1798	Date Extracted: 6/13/2018	
Date Collected: 6/11/2018	Matrix: Soil	ZB-5MS Analysis: 6/14/2018
Time Collected: 11:08	Sample Size: 14.95 g % Solids: 66.5	Q-225 Analysis: 6/19/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.69	0.172	0.503		13C-2378-TCDD	108	40-135	
12378-PeCDD	2.24	0.327	2.52	J	13C-12378-PeCDD	86.1	40-135	
123478-HxCDD	1.25	0.327	2.52	J	13C-123478-HxCDD	84.9	40-135	
123678-HxCDD	2.46	0.655	2.52	J	13C-123678-HxCDD	90.2	40-135	
123789-HxCDD	4.64	0.315	2.52		13C-1234678-HpCDD	82.1	40-135	
1234678-HpCDD	16.0	0.409	2.52		13C-OCDD	61.6	40-135	
OCDD	84.5	1.01	5.03		13C-2378-TCDF	106	40-135	
2,3,7,8-TCDF	6.13	0.0886	0.503		13C-12378-PeCDF	81.9	40-135	
12378-PeCDF	1.58	0.412	2.52	J	13C-23478-PeCDF	85.5	40-135	
23478-PeCDF	1.61	0.422	2.52	J	13C-123478-HxCDF	95.6	40-135	
123478-HxCDF	1.43	0.518	2.52	J	13C-123678-HxCDF	104	40-135	
123678-HxCDF	0.829	0.533	2.52	J	13C-234678-HxCDF	97.1	40-135	
234678-HxCDF	0.552	0.319	2.52	J	13C-123789-HxCDF	89.2	40-135	
123789-HxCDF	DL= 0.269	0.425	2.52		13C-1234678-HpCDF	44.7	40-135	
1234678-HpCDF	8.78	0.279	2.52		13C-1234789-HpCDF	73.9	40-135	
1234789-HpCDF	DL= 0.484	0.378	2.52					
OCDF	6.85	0.461	5.03					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	86.5				37Cl4-2378-TCDD	95.0	40-135	
Total PeCDD	60.3							
Total HxCDD	52.5				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	33.0				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	89.8			Χ	ratio failure.			
Total PeCDF	28.3	28.0	6		(a) - Lower control limit - U	pper control l	limit	
Total HxCDF	12.2				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	20.0				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 6.46 pg/g

| Client Sample ID: TP10-1@12'
Project ID: Proposed Grays Harbor Potash Exp	Ceres Sample ID: 12138-003	Date Received: 6/13/2018
QC Batch #: 1798	Date Extracted: 6/13/2018	
Date Collected: 6/11/2018	Matrix: Soil	ZB-5MS Analysis: 6/14/2018
Time Collected: 13:00	Sample Size: 14.23 g % Solids: 70.9	Q-225 Analysis: 6/19/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.18	0.172	0.496		13C-2378-TCDD	111	40-135	
12378-PeCDD	1.36	0.327	2.48	J	13C-12378-PeCDD	83.8	40-135	
123478-HxCDD	DL= 0.499	0.327	2.48		13C-123478-HxCDD	89.5	40-135	
123678-HxCDD	2.36	0.655	2.48	J	13C-123678-HxCDD	97.1	40-135	
123789-HxCDD	2.89	0.315	2.48		13C-1234678-HpCDD	89.2	40-135	
1234678-HpCDD	21.6	0.409	2.48		13C-OCDD	64.0	40-135	
OCDD	165	1.01	4.96		13C-2378-TCDF	103	40-135	
2,3,7,8-TCDF	DL= 0.371	0.0886	0.496		13C-12378-PeCDF	77.8	40-135	
12378-PeCDF	DL= 0.396	0.412	2.48		13C-23478-PeCDF	82.2	40-135	
23478-PeCDF	0.594	0.422	2.48	J	13C-123478-HxCDF	101	40-135	
123478-HxCDF	1.68	0.518	2.48	J	13C-123678-HxCDF	109	40-135	
123678-HxCDF	0.998	0.533	2.48	J	13C-234678-HxCDF	107	40-135	
234678-HxCDF	0.694	0.319	2.48	J	13C-123789-HxCDF	93.8	40-135	
123789-HxCDF	DL= 0.292	0.425	2.48		13C-1234678-HpCDF	40.1	40-135	
1234678-HpCDF	42.9	0.279	2.48		13C-1234789-HpCDF	78.8	40-135	
1234789-HpCDF	DL= 0.565	0.378	2.48					
OCDF	20.4	0.461	4.96					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	9.87				37Cl4-2378-TCDD	92.1	40-135	
Total PeCDD	11.6	14.8	В					
Total HxCDD	32.7				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	58.4				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	20.1				ratio failure.			
Total PeCDF	15.3	16.3	3		(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	36.5				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	95.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.28 pg/g

 Client Sample ID: TP10-2@4'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-004
 Date Received: 6/13/2018

 QC Batch #: 1798
 Date Extracted: 6/13/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/14/2018

 Time Collected: 13:15
 Sample Size: 12.45 g % Solids: 80.3
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.394	0.172	0.500		13C-2378-TCDD	95.2	40-135	
12378-PeCDD	DL= 0.454	0.327	2.50		13C-12378-PeCDD	73.3	40-135	
123478-HxCDD	DL= 0.561	0.327	2.50		13C-123478-HxCDD	75.6	40-135	
123678-HxCDD	DL= 0.621	0.655	2.50		13C-123678-HxCDD	83.3	40-135	
123789-HxCDD	0.837	0.315	2.50	J	13C-1234678-HpCDD	74.4	40-135	
1234678-HpCDD	3.18	0.409	2.50		13C-OCDD	58.2	40-135	
OCDD	17.1	1.01	5.00		13C-2378-TCDF	96.9	40-135	
2,3,7,8-TCDF	DL= 0.277	0.0886	0.500		13C-12378-PeCDF	71.3	40-135	
12378-PeCDF	DL= 0.366	0.412	2.50		13C-23478-PeCDF	59.0	40-135	
23478-PeCDF	DL= 0.414	0.422	2.50		13C-123478-HxCDF	100	40-135	
123478-HxCDF	DL= 0.353	0.518	2.50		13C-123678-HxCDF	107	40-135	
123678-HxCDF	DL= 0.331	0.533	2.50		13C-234678-HxCDF	96.4	40-135	
234678-HxCDF	DL= 0.330	0.319	2.50		13C-123789-HxCDF	83.8	40-135	
123789-HxCDF	DL= 0.562	0.425	2.50		13C-1234678-HpCDF	43.3	40-135	
1234678-HpCDF	2.94	0.279	2.50		13C-1234789-HpCDF	67.2	40-135	
1234789-HpCDF	DL= 0.863	0.378	2.50					
OCDF	DL= 1.59	0.461	5.00					
Totals	Conc. (pg/g)	EMP	C		<u>CRS</u>			
Total TCDD	1.00				37Cl4-2378-TCDD	82.7	40-135	
Total PeCDD	DL= 0.454							
Total HxCDD	7.43				DL - Signifies Non-Detect	(ND) at samp	e specific detection l	imit.
Total HpCDD	7.77				EMPC - Estimated Maximo	um Possible (Concentration due to	ion abundance
Total TCDF		1.0	7		ratio failure.			
Total PeCDF	DL= 0.414				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	1.44				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	5.78				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.150 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	0.597	0.172	0.496		13C-2378-TCDD	96.8	40-135	
12378-PeCDD	0.853	0.327	2.48	J	13C-12378-PeCDD	75.3	40-135	
123478-HxCDD	DL= 0.562	0.327	2.48		13C-123478-HxCDD	84.3	40-135	
123678-HxCDD	1.83	0.655	2.48	J	13C-123678-HxCDD	89.1	40-135	
123789-HxCDD	2.59	0.315	2.48		13C-1234678-HpCDD	72.6	40-135	
1234678-HpCDD	21.5	0.409	2.48		13C-OCDD	64.6	40-135	
OCDD	174	1.01	4.96		13C-2378-TCDF	94.8	40-135	
2,3,7,8-TCDF	DL= 0.390	0.0886	0.496		13C-12378-PeCDF	70.2	40-135	
12378-PeCDF	DL= 0.343	0.412	2.48		13C-23478-PeCDF	70.4	40-135	
23478-PeCDF	DL= 0.316	0.422	2.48		13C-123478-HxCDF	101	40-135	
123478-HxCDF	0.618	0.518	2.48	J	13C-123678-HxCDF	109	40-135	
123678-HxCDF	0.435	0.533	2.48	J	13C-234678-HxCDF	106	40-135	
234678-HxCDF	DL= 0.232	0.319	2.48		13C-123789-HxCDF	94.6	40-135	
123789-HxCDF	DL= 0.346	0.425	2.48		13C-1234678-HpCDF	44.5	40-135	
1234678-HpCDF	12.2	0.279	2.48		13C-1234789-HpCDF	64.9	40-135	
1234789-HpCDF	DL= 0.761	0.378	2.48					
OCDF	12.2	0.461	4.96					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	3.86				37Cl4-2378-TCDD	82.2	40-135	
Total PeCDD	4.46	6.8	5					
Total HxCDD	19.0				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	49.1				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	4.53				ratio failure.			
Total PeCDF	3.22				(a) - Lower control limit - U	Ipper control I	limit	
Total HxCDF	10.9				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	35.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 2.39 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.300	0.172	0.495		13C-2378-TCDD	111	40-135	
12378-PeCDD	DL= 0.421	0.327	2.48		13C-12378-PeCDD	80.7	40-135	
123478-HxCDD	DL= 0.275	0.327	2.48		13C-123478-HxCDD	79.9	40-135	
123678-HxCDD	0.573	0.655	2.48		13C-123678-HxCDD	83.1	40-135	
123789-HxCDD	1.13	0.315	2.48		13C-1234678-HpCDD	92.1	40-135	
1234678-HpCDD	3.30	0.409	2.48		13C-OCDD	69.2	40-135	
OCDD	21.3	1.01	4.95		13C-2378-TCDF	107	40-135	
2,3,7,8-TCDF	DL= 0.302	0.0886	0.495		13C-12378-PeCDF	74.0	40-135	
12378-PeCDF	DL= 0.281	0.412	2.48		13C-23478-PeCDF	74.4	40-135	
23478-PeCDF	DL= 0.244	0.422	2.48		13C-123478-HxCDF	99.2	40-135	
123478-HxCDF	DL= 0.220	0.518	2.48		13C-123678-HxCDF	115	40-135	
123678-HxCDF	DL= 0.188	0.533	2.48		13C-234678-HxCDF	105	40-135	
234678-HxCDF	DL= 0.204	0.319	2.48		13C-123789-HxCDF	97.3	40-135	
123789-HxCDF	DL= 0.310	0.425	2.48		13C-1234678-HpCDF	51.9	40-135	
1234678-HpCDF	0.907	0.279	2.48		13C-1234789-HpCDF	81.8	40-135	
1234789-HpCDF	DL= 0.395	0.378	2.48					
OCDF	DL= 0.865	0.461	4.95					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	0.875	1.2	0		37Cl4-2378-TCDD	94.1	40-135	
Total PeCDD		1.7	5					
Total HxCDD	7.88				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	7.84				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.302				ratio failure.			
Total PeCDF	DL= 0.281				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	0.958				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	3.04				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.219 pg/g

 Client Sample ID: TP20-1@6'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-007
 Date Received: 6/13/2018

 QC Batch #: 1798
 Date Extracted: 6/13/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/14/2018

 Time Collected: 17:15
 Sample Size: 11.68 g % Solids: 85.1
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.438	0.172	0.503		13C-2378-TCDD	103	40-135	
12378-PeCDD	DL= 0.735	0.327	2.52		13C-12378-PeCDD	82.4	40-135	
123478-HxCDD	DL= 0.361	0.327	2.52		13C-123478-HxCDD	93.6	40-135	
123678-HxCDD	0.798	0.655	2.52	J	13C-123678-HxCDD	108	40-135	
123789-HxCDD	1.17	0.315	2.52	J	13C-1234678-HpCDD	108	40-135	
1234678-HpCDD	6.91	0.409	2.52		13C-OCDD	73.6	40-135	
OCDD	53.9	1.01	5.03		13C-2378-TCDF	108	40-135	
2,3,7,8-TCDF	DL= 0.326	0.0886	0.503		13C-12378-PeCDF	72.7	40-135	
12378-PeCDF	DL= 0.432	0.412	2.52		13C-23478-PeCDF	72.6	40-135	
23478-PeCDF	DL= 0.372	0.422	2.52		13C-123478-HxCDF	131	40-135	
123478-HxCDF	DL= 0.230	0.518	2.52		13C-123678-HxCDF	119	40-135	
123678-HxCDF	DL= 0.216	0.533	2.52		13C-234678-HxCDF	132	40-135	
234678-HxCDF	DL= 0.208	0.319	2.52		13C-123789-HxCDF	106	40-135	
123789-HxCDF	DL= 0.372	0.425	2.52		13C-1234678-HpCDF	66.9	40-135	
1234678-HpCDF	2.35	0.279	2.52	J	13C-1234789-HpCDF	90.2	40-135	
1234789-HpCDF	DL= 0.390	0.378	2.52					
OCDF	3.82	0.461	5.03	J				
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	2.43				37Cl4-2378-TCDD	90.8	40-135	
Total PeCDD	DL= 0.735							
Total HxCDD	9.32				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	16.9				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.326				ratio failure.			
Total PeCDF	DL= 0.432				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	2.56				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	6.93				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.307 pg/g

Quality Assurance Sample
Method BlankQC Batch #: 1803
Matrix: SoilDate Extracted: 6/17/2018
ZB-5MS Analysis: 6/18/2018Project ID: Proposed Grays Harbor PotashSample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.375	0.172	0.500		13C-2378-TCDD	81.7	40-135	
12378-PeCDD	DL= 0.550	0.327	2.50		13C-12378-PeCDD	69.3	40-135	
123478-HxCDD	DL= 0.830	0.327	2.50		13C-123478-HxCDD	58.2	40-135	
123678-HxCDD	DL= 0.807	0.655	2.50		13C-123678-HxCDD	71.9	40-135	
123789-HxCDD	DL= 0.798	0.315	2.50		13C-1234678-HpCDD	82.0	40-135	
1234678-HpCDD	DL= 0.817	0.409	2.50		13C-OCDD	79.6	40-135	
OCDD	DL= 0.859	1.01	5.00		13C-2378-TCDF	79.9	40-135	
2,3,7,8-TCDF	DL= 0.267	0.0886	0.500		13C-12378-PeCDF	64.6	40-135	
12378-PeCDF	DL= 0.763	0.412	2.50		13C-23478-PeCDF	64.9	40-135	
23478-PeCDF	DL= 0.681	0.422	2.50		13C-123478-HxCDF	85.8	40-135	
123478-HxCDF	DL= 0.614	0.518	2.50		13C-123678-HxCDF	94.6	40-135	
123678-HxCDF	DL= 0.615	0.533	2.50		13C-234678-HxCDF	78.3	40-135	
234678-HxCDF	DL= 0.656	0.319	2.50		13C-123789-HxCDF	74.1	40-135	
123789-HxCDF	DL= 1.08	0.425	2.50		13C-1234678-HpCDF	90.6	40-135	
1234678-HpCDF	DL= 0.394	0.279	2.50		13C-1234789-HpCDF	88.1	40-135	
1234789-HpCDF	DL= 0.679	0.378	2.50					
OCDF	DL= 1.14	0.461	5.00					
Totals	Conc. (pg/g)	EN	IPC		CRS			
Total TCDD	DL= 0.375				37Cl4-2378-TCDD	68.8	40-135	
Total PeCDD	DL= 0.550							
Total HxCDD	DL= 0.830				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	limit.
Total HpCDD	DL= 0.817				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.267				ratio failure.			
Total PeCDF	DL= 0.763				(a) - Lower control limit - U	Ipper control	limit	
Total HxCDF	DL= 1.08				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	DL= 0.679				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1800
 Date Extracted: 6/17/2018

 Matrix: Soil
 ZB-5MS Analysis: 6/18/2018

 Project ID: Proposed Grays Harbor Potash
 Sample Size: 10.00 g

110jour 121 110posed	LCS1	LCS2		201 10.00 g	•		
Analyte	% Rec.	% Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	106	102	2.72	13C-2378-TCDD	87.1	94.2	40-135
12378-PeCDD	102	105	2.05	13C-12378-PeCDD	87.2	89.7	40-135
123478-HxCDD	112	116	2.48	13C-123478-HxCDD	82.8	75.8	40-135
123678-HxCDD	115	119	2.42	13C-123678-HxCDD	96.6	85.5	40-135
123789-HxCDD	111	129	10.61	13C-1234678-HpCDD	83.1	107	40-135
1234678-HpCDD	107	110	1.96	13C-OCDD	79.6	112	40-135
OCDD	111	116	3.12	13C-2378-TCDF	95.9	93.3	40-135
2,3,7,8-TCDF	106	111	3.26	13C-12378-PeCDF	80.4	87.1	40-135
12378-PeCDF	103	106	2.03	13C-23478-PeCDF	77.2	83.6	40-135
23478-PeCDF	104	104	0.00	13C-123478-HxCDF	80.3	99.5	40-135
123478-HxCDF	120	125	2.89	13C-123678-HxCDF	82.3	110	40-135
123678-HxCDF	107	112	3.23	13C-234678-HxCDF	73.3	91.2	40-135
234678-HxCDF	111	114	1.89	13C-123789-HxCDF	82.1	86.4	40-135
123789-HxCDF	113	119	3.66	13C-1234678-HpCDF	93.5	112	40-135
1234678-HpCDF	107	110	1.96	13C-1234789-HpCDF	82.9	109	40-135
1234789-HpCDF	109	110	0.65				
OCDF	114	124	5.94				
				CRS			
				37Cl4-2378-TCDD	73.9	76.9	40-135
				(a) Limits based on me	thod acceptance cr	iteria.	

 Client Sample ID: TP21-1@4.5'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-008
 Date Received: 6/13/2018

 QC Batch #: 1803
 Date Extracted: 6/17/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/18/2018

 Time Collected: 17:15
 Sample Size: 12.28 g
 % Solids: 83.3
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.374	0.172	0.489		13C-2378-TCDD	98.1	40-135	
12378-PeCDD	DL= 0.473	0.327	2.44		13C-12378-PeCDD	69.1	40-135	
123478-HxCDD	DL= 0.525	0.327	2.44		13C-123478-HxCDD	96.2	40-135	
123678-HxCDD	DL= 0.552	0.655	2.44		13C-123678-HxCDD	109	40-135	
123789-HxCDD	DL= 0.527	0.315	2.44		13C-1234678-HpCDD	91.9	40-135	
1234678-HpCDD	1.97	0.409	2.44		13C-OCDD	61.2	40-135	
OCDD	9.44	1.01	4.89		13C-2378-TCDF	99.1	40-135	
2,3,7,8-TCDF	DL= 0.290	0.0886	0.489		13C-12378-PeCDF	78.5	40-135	
12378-PeCDF	DL= 0.250	0.412	2.44		13C-23478-PeCDF	69.9	40-135	
23478-PeCDF	DL= 0.250	0.422	2.44		13C-123478-HxCDF	115	40-135	
123478-HxCDF	DL= 0.232	0.518	2.44		13C-123678-HxCDF	125	40-135	
123678-HxCDF	DL= 0.224	0.533	2.44		13C-234678-HxCDF	117	40-135	
234678-HxCDF	DL= 0.228	0.319	2.44		13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.351	0.425	2.44		13C-1234678-HpCDF	100	40-135	
1234678-HpCDF	0.417	0.279	2.44		13C-1234789-HpCDF	99.0	40-135	
1234789-HpCDF	DL= 0.414	0.378	2.44					
OCDF	DL= 1.11	0.461	4.89					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	0.714				37Cl4-2378-TCDD	86.5	40-135	
Total PeCDD	DL= 0.473							
Total HxCDD	3.24				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	4.39				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.290				ratio failure.			
Total PeCDF	DL= 0.250				(a) - Lower control limit - U	pper control l	limit	
Total HxCDF	DL= 0.351				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	1.03				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0267 pg/g

 Client Sample ID: TP-15-1@5'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-009
 Date Received: 6/13/2018

 QC Batch #: 1803
 Date Extracted: 6/17/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/18/2018

 Time Collected: 17:55
 Sample Size: 12.79 g % Solids: 78.6
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.425	0.172	0.498		13C-2378-TCDD	93.7	40-135	
12378-PeCDD	DL= 0.703	0.327	2.49		13C-12378-PeCDD	70.8	40-135	
123478-HxCDD	DL= 0.515	0.327	2.49		13C-123478-HxCDD	84.9	40-135	
123678-HxCDD	DL= 0.570	0.655	2.49		13C-123678-HxCDD	92.2	40-135	
123789-HxCDD	1.23	0.315	2.49	J	13C-1234678-HpCDD	85.2	40-135	
1234678-HpCDD	3.98	0.409	2.49		13C-OCDD	57.2	40-135	
OCDD	22.6	1.01	4.98		13C-2378-TCDF	95.4	40-135	
2,3,7,8-TCDF	DL= 0.452	0.0886	0.498		13C-12378-PeCDF	72.2	40-135	
12378-PeCDF	DL= 0.493	0.412	2.49		13C-23478-PeCDF	70.9	40-135	
23478-PeCDF	DL= 0.467	0.422	2.49		13C-123478-HxCDF	107	40-135	
123478-HxCDF	DL= 0.288	0.518	2.49		13C-123678-HxCDF	112	40-135	
123678-HxCDF	DL= 0.282	0.533	2.49		13C-234678-HxCDF	102	40-135	
234678-HxCDF	DL= 0.309	0.319	2.49		13C-123789-HxCDF	96.2	40-135	
123789-HxCDF	DL= 0.444	0.425	2.49		13C-1234678-HpCDF	86.2	40-135	
1234678-HpCDF	0.873	0.279	2.49	J	13C-1234789-HpCDF	91.3	40-135	
1234789-HpCDF	DL= 0.618	0.378	2.49					
OCDF	DL= 2.36	0.461	4.98					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	1.02				37Cl4-2378-TCDD	81.7	40-135	
Total PeCDD	DL= 0.703							
Total HxCDD	6.67				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	8.67				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.452				ratio failure.			
Total PeCDF	DL= 0.493				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	0.536				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	2.54				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.178 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.67	0.172	0.500		13C-2378-TCDD	106	40-135	
12378-PeCDD	1.70	0.327	2.50	J	13C-12378-PeCDD	88.6	40-135	
123478-HxCDD	DL= 0.869	0.327	2.50		13C-123478-HxCDD	94.4	40-135	
123678-HxCDD	3.67	0.655	2.50		13C-123678-HxCDD	98.8	40-135	
123789-HxCDD	4.65	0.315	2.50		13C-1234678-HpCDD	100	40-135	
1234678-HpCDD	37.3	0.409	2.50		13C-OCDD	78.8	40-135	
OCDD	307	1.01	5.00		13C-2378-TCDF	115	40-135	
2,3,7,8-TCDF	1.27	0.0886	0.500		13C-12378-PeCDF	87.9	40-135	
12378-PeCDF	DL= 0.546	0.412	2.50		13C-23478-PeCDF	92.1	40-135	
23478-PeCDF	0.725	0.422	2.50	J	13C-123478-HxCDF	114	40-135	
123478-HxCDF	3.84	0.518	2.50		13C-123678-HxCDF	124	40-135	
123678-HxCDF	1.92	0.533	2.50	J	13C-234678-HxCDF	113	40-135	
234678-HxCDF	0.861	0.319	2.50	J	13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.649	0.425	2.50		13C-1234678-HpCDF	101	40-135	
1234678-HpCDF	63.6	0.279	2.50		13C-1234789-HpCDF	107	40-135	
1234789-HpCDF	1.40	0.378	2.50	J				
OCDF	50.5	0.461	5.00					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	13.3				37Cl4-2378-TCDD	89.8	40-135	
Total PeCDD	12.9	15.	3					
Total HxCDD	38.1				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	84.2				EMPC - Estimated Maxim	um Possible	Concentration due to	ion abundance
Total TCDF	43.1			Х	ratio failure.			
Total PeCDF	34.8			Х	(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	68.4				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	129				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 6.34 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.463	0.172	0.503		13C-2378-TCDD	95.0	40-135	
12378-PeCDD	DL= 0.667	0.327	2.52		13C-12378-PeCDD	75.3	40-135	
123478-HxCDD	DL= 0.542	0.327	2.52		13C-123478-HxCDD	86.3	40-135	
123678-HxCDD	1.12	0.655	2.52	J	13C-123678-HxCDD	100	40-135	
123789-HxCDD	2.33	0.315	2.52	J	13C-1234678-HpCDD	89.3	40-135	
1234678-HpCDD	14.7	0.409	2.52		13C-OCDD	90.0	40-135	
OCDD	67.5	1.01	5.03		13C-2378-TCDF	104	40-135	
2,3,7,8-TCDF	DL= 0.379	0.0886	0.503		13C-12378-PeCDF	74.8	40-135	
12378-PeCDF	DL= 0.598	0.412	2.52		13C-23478-PeCDF	78.1	40-135	
23478-PeCDF	DL= 0.528	0.422	2.52		13C-123478-HxCDF	109	40-135	
123478-HxCDF	DL= 0.469	0.518	2.52		13C-123678-HxCDF	117	40-135	
123678-HxCDF	DL= 0.430	0.533	2.52		13C-234678-HxCDF	107	40-135	
234678-HxCDF	DL= 0.467	0.319	2.52		13C-123789-HxCDF	92.3	40-135	
123789-HxCDF	DL= 0.735	0.425	2.52		13C-1234678-HpCDF	89.3	40-135	
1234678-HpCDF	2.46	0.279	2.52	J	13C-1234789-HpCDF	93.2	40-135	
1234789-HpCDF	DL= 1.73	0.378	2.52					
OCDF	7.62	0.461	5.03					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	1.63				37Cl4-2378-TCDD	94.4	40-135	
Total PeCDD	DL= 0.667							
Total HxCDD	16.2				DL - Signifies Non-Detect	(ND) at samp	e specific detection l	imit.
Total HpCDD	30.1				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.379				ratio failure.			
Total PeCDF	DL= 0.598				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	3.26				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	0.246				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.539 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.462	0.172	0.498		13C-2378-TCDD	101	40-135	
12378-PeCDD	DL= 0.988	0.327	2.49		13C-12378-PeCDD	84.8	40-135	
123478-HxCDD	DL= 0.670	0.327	2.49		13C-123478-HxCDD	87.0	40-135	
123678-HxCDD	DL= 0.677	0.655	2.49		13C-123678-HxCDD	94.7	40-135	
123789-HxCDD	1.46	0.315	2.49	J	13C-1234678-HpCDD	89.9	40-135	
1234678-HpCDD	6.51	0.409	2.49		13C-OCDD	67.7	40-135	
OCDD	34.6	1.01	4.98		13C-2378-TCDF	108	40-135	
2,3,7,8-TCDF	5.86	0.0886	0.498		13C-12378-PeCDF	80.3	40-135	
12378-PeCDF	2.41	0.412	2.49	J	13C-23478-PeCDF	85.0	40-135	
23478-PeCDF	5.08	0.422	2.49		13C-123478-HxCDF	112	40-135	
123478-HxCDF	74.7	0.518	2.49		13C-123678-HxCDF	115	40-135	
123678-HxCDF	30.4	0.533	2.49		13C-234678-HxCDF	103	40-135	
234678-HxCDF	4.21	0.319	2.49		13C-123789-HxCDF	93.2	40-135	
123789-HxCDF	DL= 0.483	0.425	2.49		13C-1234678-HpCDF	91.6	40-135	
1234678-HpCDF	26.3	0.279	2.49		13C-1234789-HpCDF	94.1	40-135	
1234789-HpCDF	23.9	0.378	2.49					
OCDF	20.7	0.461	4.98					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	DL= 0.462				37Cl4-2378-TCDD	103	40-135	
Total PeCDD	DL= 0.988							
Total HxCDD	9.33				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	14.8				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	38.6				ratio failure.			
Total PeCDF	53.9				(a) - Lower control limit - U	pper control l	limit	
Total HxCDF	190				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	79.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 13.8 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.95	0.172	0.493		13C-2378-TCDD	91.1	40-135	
12378-PeCDD	3.47	0.327	2.46		13C-12378-PeCDD	71.0	40-135	
123478-HxCDD	DL= 0.925	0.327	2.46		13C-123478-HxCDD	80.2	40-135	
123678-HxCDD	5.37	0.655	2.46		13C-123678-HxCDD	87.6	40-135	
123789-HxCDD	8.35	0.315	2.46		13C-1234678-HpCDD	85.6	40-135	
1234678-HpCDD	69.8	0.409	2.46		13C-OCDD	71.1	40-135	
OCDD	505	1.01	4.93		13C-2378-TCDF	101	40-135	
2,3,7,8-TCDF	3.46	0.0886	0.493		13C-12378-PeCDF	68.1	40-135	
12378-PeCDF	DL= 1.47	0.412	2.46		13C-23478-PeCDF	67.4	40-135	
23478-PeCDF	DL= 1.26	0.422	2.46		13C-123478-HxCDF	106	40-135	
123478-HxCDF	2.13	0.518	2.46		13C-123678-HxCDF	117	40-135	
123678-HxCDF	1.70	0.533	2.46		13C-234678-HxCDF	101	40-135	
234678-HxCDF	DL= 0.448	0.319	2.46		13C-123789-HxCDF	90.3	40-135	
123789-HxCDF	DL= 0.663	0.425	2.46		13C-1234678-HpCDF	83.9	40-135	
1234678-HpCDF	19.1	0.279	2.46		13C-1234789-HpCDF	93.3	40-135	
1234789-HpCDF	DL= 1.13	0.378	2.46					
OCDF	40.5	0.461	4.93					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	20.8	24.	3		37Cl4-2378-TCDD	78.1	40-135	
Total PeCDD	21.0							
Total HxCDD	70.4				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	148				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	26.7	38.	4		ratio failure.			
Total PeCDF	12.7				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	31.0				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	55.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 9.57 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers					
2,3,7,8-TCDD	3.22	0.172	0.490		13C-2378-TCDD	107	40-135						
12378-PeCDD	4.02	0.327	2.45		13C-12378-PeCDD	95.0	40-135						
123478-HxCDD	2.28	0.327	2.45	J	13C-123478-HxCDD	92.7	40-135						
123678-HxCDD	8.16	0.655	2.45		13C-123678-HxCDD	101	40-135						
123789-HxCDD	10.2	0.315	2.45		13C-1234678-HpCDD	88.8	40-135						
1234678-HpCDD	103	0.409	2.45		13C-OCDD	68.2	40-135						
OCDD	730	1.01	4.90		13C-2378-TCDF	112	40-135						
2,3,7,8-TCDF	10.5	0.0886	0.490		13C-12378-PeCDF	88.5	40-135						
12378-PeCDF	1.64	0.412	2.45	J	13C-23478-PeCDF	91.6	40-135						
23478-PeCDF	2.62	0.422	2.45		13C-123478-HxCDF	112	40-135						
123478-HxCDF	3.44	0.518	2.45		13C-123678-HxCDF	114	40-135						
123678-HxCDF	1.42	0.533	2.45	J	13C-234678-HxCDF	105	40-135						
234678-HxCDF	1.14	0.319	2.45	J	13C-123789-HxCDF	95.3	40-135						
123789-HxCDF	DL= 0.385	0.425	2.45		13C-1234678-HpCDF	93.0	40-135						
1234678-HpCDF	31.0	0.279	2.45		13C-1234789-HpCDF	98.6	40-135						
1234789-HpCDF	1.74	0.378	2.45	J									
OCDF	75.1	0.461	4.90										
Totals	Conc. (pg/g)	EMF	C		CRS								
Total TCDD	44.5				37Cl4-2378-TCDD	91.1	40-135						
Total PeCDD	40.5												
Total HxCDD	85.1				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.					
Total HpCDD	227				EMPC - Estimated Maxim	um Possible (Possible Concentration due to ion abundance						
Total TCDF	65.5	68.	3		ratio failure.								
Total PeCDF	29.5				(a) - Lower control limit - L	a) - Lower control limit - Upper control limit							
Total HxCDF	52.1				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic					
Total HpCDF	102				Equivalent Factors.	Equivalent Factors.							

Total Toxic Equivalency (TEQ min.) (b): 13.4 pg/g

 Client Sample ID: MW-5@10'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-015
 Date Received: 6/13/2018

 QC Batch #: 1803
 Date Extracted: 6/17/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/19/2018

 Time Collected: 13:45
 Sample Size: 15.99 g
 % Solids: 63.1
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers		
2,3,7,8-TCDD	1.47	0.172	0.496		13C-2378-TCDD	109	40-135			
12378-PeCDD	1.68	0.327	2.48	J	13C-12378-PeCDD	87.1	40-135			
123478-HxCDD	DL= 0.581	0.327	2.48		13C-123478-HxCDD	84.5	40-135			
123678-HxCDD	1.62	0.655	2.48	J	13C-123678-HxCDD	99.6	40-135			
123789-HxCDD	5.24	0.315	2.48		13C-1234678-HpCDD	OCDD 87.2 40-135				
1234678-HpCDD	7.56	0.409	2.48		13C-OCDD	71.9	40-135			
OCDD	22.9	1.01	4.96		13C-2378-TCDF	104	40-135			
2,3,7,8-TCDF	DL= 0.399	0.0886	0.496		13C-12378-PeCDF	85.1	40-135			
12378-PeCDF	DL= 0.550	0.412	2.48		13C-23478-PeCDF	86.9	40-135			
23478-PeCDF	DL= 0.496	0.422	2.48		13C-123478-HxCDF	100	40-135			
123478-HxCDF	DL= 0.426	0.518	2.48		13C-123678-HxCDF	78-HxCDF 113 40-				
123678-HxCDF	DL= 0.354	0.533	2.48		13C-234678-HxCDF	103 40-135				
234678-HxCDF	DL= 0.362	0.319	2.48		13C-123789-HxCDF	3C-123789-HxCDF 94.1 4				
123789-HxCDF	DL= 0.568	0.425	2.48		13C-1234678-HpCDF	13C-1234678-HpCDF 90.9 40				
1234678-HpCDF	DL= 0.726	0.279	2.48		13C-1234789-HpCDF	93.5	40-135			
1234789-HpCDF	DL= 0.972	0.378	2.48							
OCDF	DL= 1.80	0.461	4.96							
Totals	Conc. (pg/g)	EMP	C		CRS					
Total TCDD	5.35	6.25	5		37Cl4-2378-TCDD	98.5	40-135			
Total PeCDD	9.06									
Total HxCDD	26.1				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.		
Total HpCDD	16.2				EMPC - Estimated Maximu	EMPC - Estimated Maximum Possible Concentration due to ion abund				
Total TCDF	1.51				ratio failure.					
Total PeCDF	DL= 0.550				(a) - Lower control limit - U	pper control I	imit			
Total HxCDF	DL= 0.568				(b) - TEQ based on (2005)	World Health	o Organization (WHO) Toxic		
Total HpCDF	DL= 0.972				Equivalent Factors.					

Total Toxic Equivalency (TEQ min.) (b): 3.92 pg/g

 Client Sample ID: MW-6@6'

 Project ID: Proposed Grays Harbor Potash Exp
 Ceres Sample ID: 12138-016
 Date Received: 6/13/2018

 QC Batch #: 1803
 Date Extracted: 6/17/2018

 Date Collected: 6/11/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/19/2018

 Time Collected: 13:40
 Sample Size: 15.77 g % Solids: 64.4
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.46	0.172	0.492		13C-2378-TCDD	115	40-135	
12378-PeCDD	1.38	0.327	2.46	J	13C-12378-PeCDD	89.0	40-135	
123478-HxCDD	0.748	0.327	2.46	J	13C-123478-HxCDD	82.2	40-135	
123678-HxCDD	2.51	0.655	2.46		13C-123678-HxCDD			
123789-HxCDD	4.92	0.315	2.46		13C-1234678-HpCDD	88.0	40-135	
1234678-HpCDD	33.0	0.409	2.46		13C-OCDD	71.0	40-135	
OCDD	272	1.01	4.92		13C-2378-TCDF	114	40-135	
2,3,7,8-TCDF	0.916	0.0886	0.492		13C-12378-PeCDF			
12378-PeCDF	DL= 0.317	0.412	2.46		13C-23478-PeCDF	81.0	40-135	
23478-PeCDF	DL= 0.324	0.422	2.46		13C-123478-HxCDF			
123478-HxCDF	1.15	0.518	2.46	J	13C-123678-HxCDF	HxCDF 118 40-1		
123678-HxCDF	0.570	0.533	2.46	J	13C-234678-HxCDF 102 40		40-135	
234678-HxCDF	DL= 0.400	0.319	2.46		13C-123789-HxCDF	89.5	40-135	
123789-HxCDF	DL= 0.653	0.425	2.46		13C-1234678-HpCDF	88.3	40-135	
1234678-HpCDF	15.7	0.279	2.46		13C-1234789-HpCDF	92.0	40-135	
1234789-HpCDF	DL= 0.987	0.378	2.46					
OCDF	30.7	0.461	4.92					
Totals	Conc. (pg/g)	EMP	С		CRS			
Total TCDD	6.33				37Cl4-2378-TCDD	104	40-135	
Total PeCDD	10.0	11.0)					
Total HxCDD	35.4				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	70.6				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	7.78	9.01	1		ratio failure.	ratio failure.		
Total PeCDF	6.15				(a) - Lower control limit - U	pper control l	limit	
Total HxCDF	17.0				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	39.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.50 pg/g

Section VI: Sample Tracking

ESN	Environmental	
TANKS THE PARTY OF	The second secon	

CHAIN-OF-CUSTODY RECORD

NORTHWEST, II																										
ESN Northwest CLIENT: 1210 Eastside Street SE, Suite 200											_	DAT	E:	Lø) - [1-8			F	PAGI	E	1	_ OF			_]
ADDRES Olympia, WA	98501											PROJECT NAME: Proposed (Stays Harbor Potash LOCATION: Export + Facility													_	
PHONE:FAX:																						_				
CLIENT PROJECT #:PROJECT					NAG	ER: _					_	COLI	ECT									C	OLLECTIO	DN: 6"	11-1	<u>S</u>
Compile Number		Sample	Container	AMALY	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	it of	100°	orivo	821981 841981	95 C	S SE	BOST AS	Metals	perior of	ositie ositie	Suit	Suite	1947	9/	NOT				Total Number of Containers	1
	pth Time		Туре	Y XY	<u> </u>	YY	- 3	7	5°/ Q	<u> </u>	<u>/ c</u>	<u>/ & / </u>	<u> </u>		<u>/ 9</u>	-	<u> </u>	$\langle \cdot \rangle$	-	\prec	NO	LJ				<u>ı z</u>
1. TP1-1 Q Y' 4' 2. TP1-2@9' 9'	. /	<u>501L</u>		\vdash	_	++							-				+	쓔	+	+					$\vdash \vdash$	\dashv
3. TP10-1012 12				\vdash	_	++			1			_	+					$\dagger \dagger$		+					H	\dashv
4. TPID-2@ 4' 4		$\neg \vdash$					+	+										#							H	一
5.70-105'5						\dagger	+										1	$\dagger \dagger$	\top	1						\exists
6-114-106516																		11	\top			······································			П	
7. TD20-106' C	1615	-				\Box		\top										$\dagger \dagger$		1					\Box	
8. TP21-104,5-4.																	1	11								
9. TPIS-1051 5				Ħ				1										Π								
10. TP4-2@12' 12																	Ī	Π								
11. MW-2@61 6	1 1030																									
12.MW-1@616	1200																									
13. MW-3@51 5	1810																									
14 MW-3@10' 10	5' 1809								士				_		_						- No	Sa	mol	೭	Ш	
15.MW-4@57 5	1/16/2																	Ш							Ш	
16.MW-5@151/0	1345																	\bot							Ш	
17-MW-6@61 6	1340	4															<u></u>	1								
18.																										
RELINQUISHED BY (Signature)	DAT	E/TIME	RECE	CEIVED BY (Signature) DATE/TIME						SAMPLE RECEIPT							LA	LABORATORY NOTES:								
Jana I Miland	In-1.	216	(/_		. //						OTAL NUMBER OF CONTAINERS							4								
Jung Myd	<u> </u>		Hill	<u> </u>	<u> </u>	9	6/					CHAIN OF CUSTODY SEALS Y/N/NA							_						İ	
RELINQUISHED BY (Signature)	DAT	E/TIME	RECE	IVED B	Y (Signa	ature)		DAT	E/TIN			EALS INTACT? Y/N/NA ECEIVED GOOD COND./COLD							\dashv							
											NOTI			, JIVD.	, соп			L		\dashv	urn Aro	und Tim	ne: 24 HF	R 48 H	R / 5 [) YAQ

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 Phone: 360-459-4670 Fax: 360-459-3432 Website: www.esnnw.com Page 2-Mail: Info@esnnw.com

Sample Receipt Check List Logged by:

(initials)

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

July 2, 2018 Ceres ID: 12147

ESN Northwest, Inc. 1210 Eastside Street SE Olympia, WA 98501

The following report contains the results for the thirteen soil samples received on June 19, 2018. These samples were analyzed for tetra through octa chlorinated dibenzo-p-dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

This work was authorized under the Project Name: Proposed Grays Harbor IDD #1 Site.

Sample results are reported on a dry weight basis.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Confirmation analysis was performed on the samples which had concentrations above the method calibration limit for the 2,3,7,8-TCDF on a Quadrex Q-225 column for isomer specificity.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID: 12147-001	Sample ID TP8-2@8'	<u>Date Received</u> 6/19/2018	Collection Date &Time 6/12/2018 14:53
12147-002	TP8-3@11'	6/19/2018	6/12/2018 15:14
12147-003	TP9-1@6.5'	6/19/2018	6/12/2018 16:09
12147-004	TP8-1@7'	6/19/2018	6/12/2018 14:32
12147-005	TP13-1@12'	6/19/2018	6/12/2018 13:26
12147-006	TP18-1@12'	6/19/2018	6/12/2018 12:43
12147-007	TP24-2@10'	6/19/2018	6/12/2018 9:47
12147-008	TP25-1@5.5'	6/19/2018	6/12/2018 10:17
12147-009	TP19-1@5'	6/19/2018	6/12/2018 11:40
12147-010	TP23-1@6'	6/19/2018	6/12/2018 8:27
12147-011	TP22-1@6'	6/19/2018	6/12/2018 7:50
12147-012	TP24-1@5.5'	6/19/2018	6/12/2018 9:19
12147-013	TP16-1@5.5'	6/19/2018	6/12/2018 17:00

Section II: Data Summary

Quality Assurance Sample
Method BlankQC Batch #: 1807
Matrix: SoilDate Received: NA
Date Extracted: 6/23/2018Project ID: Proposed Grays Harbor IDD #1 SiteSample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.248	0.172	0.500		13C-2378-TCDD	85.0	40-135	
12378-PeCDD	DL= 0.355	0.327	2.50		13C-12378-PeCDD	74.7	40-135	
123478-HxCDD	DL= 0.955	0.327	2.50		13C-123478-HxCDD	59.9	40-135	
123678-HxCDD	DL= 1.03	0.655	2.50		13C-123678-HxCDD	64.3	40-135	
123789-HxCDD	DL= 1.03 DL= 0.992	0.315	2.50		13C-1234678-HpCDD	74.9	40-135	
1234678-HpCDD	DL= 1.18	0.409	2.50		13C-OCDD	90.3	40-135	
OCDD	DL= 1.10 DL= 1.01	1.01	5.00		13C-2378-TCDF	88.2	40-135	
2,3,7,8-TCDF	DL= 0.240	0.0886	0.500		13C-12378-PeCDF	71.4	40-135	
12378-PeCDF	DL= 0.352	0.412	2.50		13C-23478-PeCDF	70.7	40-135	
23478-PeCDF	DL= 0.341	0.422	2.50		13C-123478-HxCDF	77.0	40-135	
123478-HxCDF	DL= 0.321	0.518	2.50		13C-123678-HxCDF	96.6	40-135	
123678-HxCDF	DL= 0.259	0.533	2.50		13C-234678-HxCDF	80.5	40-135	
234678-HxCDF	DL= 0.313	0.319	2.50		13C-123789-HxCDF	79.4	40-135	
123789-HxCDF	DL= 0.529	0.425	2.50		13C-1234678-HpCDF	74.1	40-135	
1234678-HpCDF	DL= 0.484	0.279	2.50		13C-1234789-HpCDF	75.0	40-135	
1234789-HpCDF	DL= 0.797	0.378	2.50					
OCDF	DL= 0.942	0.461	5.00					
Totals	Conc. (pg/g)		IPC		<u>CRS</u>			
Total TCDD	DL= 0.248				37Cl4-2378-TCDD	76.4	40-135	
Total PeCDD	DL= 0.355							
Total HxCDD	DL= 1.03				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	DL= 1.18				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.240				ratio failure.			
Total PeCDF	DL= 0.352				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	DL= 0.529				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	DL= 0.797				Equivalent Factors.		- ,	-

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Project ID: Proposed Grays Harbor IDD #1
 Sample Size: 10.00 g

	LCS1	LCS2					
Analyte	% Rec.	% Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	103	111	5.29	13C-2378-TCDD	107	102	40-135
12378-PeCDD	106	106	0.00	13C-12378-PeCDD	103	101	40-135
123478-HxCDD	112	113	0.63	13C-123478-HxCDD	74.6	80.0	40-135
123678-HxCDD	111	121	6.10	13C-123678-HxCDD	87.2	86.5	40-135
123789-HxCDD	121	123	1.16	13C-1234678-HpCDD	88.2	90.2	40-135
1234678-HpCDD	103	106	2.03	13C-OCDD	95.2	94.6	40-135
OCDD	109	112	1.92	13C-2378-TCDF	108	116	40-135
2,3,7,8-TCDF	101	107	4.08	13C-12378-PeCDF	96.0	94.4	40-135
12378-PeCDF	93	92.8	0.15	13C-23478-PeCDF	104	95.0	40-135
23478-PeCDF	93.4	89	3.41	13C-123478-HxCDF	82.2	88.1	40-135
123478-HxCDF	99.8	103	2.23	13C-123678-HxCDF	83.3	103	40-135
123678-HxCDF	96.4	101	3.30	13C-234678-HxCDF	91.4	95.6	40-135
234678-HxCDF	103	106	2.03	13C-123789-HxCDF	94.0	93.2	40-135
123789-HxCDF	105	106	0.67	13C-1234678-HpCDF	91.7	84.6	40-135
1234678-HpCDF	92.8	94.2	1.06	13C-1234789-HpCDF	92.1	87.8	40-135
1234789-HpCDF	93.6	93.8	0.15				
OCDF	101	106	3.42				
				CRS			

 Client Sample ID: TP8-2@8'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-001
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 14:53
 Sample Size: 16.59 g % Solids: 60.2
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.80	0.172	0.501		13C-2378-TCDD	110	40-135	
12378-PeCDD	1.95	0.327	2.50	J	13C-12378-PeCDD	101	40-135	
123478-HxCDD	0.619	0.327	2.50	J	13C-123478-HxCDD	85.1	40-135	
123678-HxCDD	1.29	0.655	2.50	J	13C-123678-HxCDD	92.7	40-135	
123789-HxCDD	5.22	0.315	2.50		13C-1234678-HpCDD	103	40-135	
1234678-HpCDD	7.13	0.409	2.50		13C-OCDD	88.3	40-135	
OCDD	20.7	1.01	5.01		13C-2378-TCDF	124	40-135	
2,3,7,8-TCDF	0.950	0.0886	0.501		13C-12378-PeCDF	98.4	40-135	
12378-PeCDF	DL= 0.393	0.412	2.50		13C-23478-PeCDF	102	40-135	
23478-PeCDF	DL= 0.693	0.422	2.50		13C-123478-HxCDF	109	40-135	
123478-HxCDF	0.585	0.518	2.50	J	13C-123678-HxCDF	123	40-135	
123678-HxCDF	0.303	0.533	2.50	J	13C-234678-HxCDF	110	40-135	
234678-HxCDF	0.328	0.319	2.50	J	13C-123789-HxCDF	109	40-135	
123789-HxCDF	DL= 0.204	0.425	2.50		13C-1234678-HpCDF	88.2	40-135	
1234678-HpCDF	0.655	0.279	2.50	J	13C-1234789-HpCDF	107	40-135	
1234789-HpCDF	DL= 0.634	0.378	2.50					
OCDF	DL= 1.32	0.461	5.01					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	19.9	20.8	8		37Cl4-2378-TCDD	106	40-135	
Total PeCDD	15.2							
Total HxCDD	28.4				DL - Signifies Non-Detect (ND) at samp	le specific detection	imit.
Total HpCDD	14.4				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	15.2				ratio failure.			
Total PeCDF	1.24				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	2.36				(b) - TEQ based on (2005)	World Healtl	h Organization (WHC) Toxic
Total HpCDF	0.655				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.76 pg/g

 Client Sample ID: TP8-3@11'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-002
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 15:14
 Sample Size: 18.64 g % Solids: 53.4
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.71	0.172	0.503		13C-2378-TCDD	110	40-135	
12378-PeCDD	1.59	0.327	2.51	J	13C-12378-PeCDD	110	40-135	
123478-HxCDD	0.594	0.327	2.51	J	13C-123478-HxCDD	85.3	40-135	
123678-HxCDD	1.21	0.655	2.51	J	13C-123678-HxCDD	86.5	40-135	
123789-HxCDD	4.78	0.315	2.51		13C-1234678-HpCDD	108	40-135	
1234678-HpCDD	5.89	0.409	2.51		13C-OCDD	92.8	40-135	
OCDD	23.1	1.01	5.03		13C-2378-TCDF	122	40-135	
2,3,7,8-TCDF	0.529	0.0886	0.503		13C-12378-PeCDF	103	40-135	
12378-PeCDF	DL= 0.251	0.412	2.51		13C-23478-PeCDF	108	40-135	
23478-PeCDF	DL= 0.290	0.422	2.51		13C-123478-HxCDF	109	40-135	
123478-HxCDF	DL= 0.221	0.518	2.51		13C-123678-HxCDF	124	40-135	
123678-HxCDF	DL= 0.212	0.533	2.51		13C-234678-HxCDF	115	40-135	
234678-HxCDF	DL= 0.204	0.319	2.51		13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.296	0.425	2.51		13C-1234678-HpCDF	92.8	40-135	
1234678-HpCDF	DL= 0.503	0.279	2.51		13C-1234789-HpCDF	111	40-135	
1234789-HpCDF	DL= 0.583	0.378	2.51					
OCDF	DL= 0.768	0.461	5.03					
Totals	Conc. (pg/g)	EMP	С		CRS			
Total TCDD	12.6	13.5	5		37Cl4-2378-TCDD	108	40-135	
Total PeCDD	11.4							
Total HxCDD	27.7				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	13.1				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	2.00	2.26	6		ratio failure.			
Total PeCDF	DL= 0.290				(a) - Lower control limit - U	pper control l	limit	
Total HxCDF	DL= 0.296				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	DL= 0.583				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.08 pg/g

 Client Sample ID: TP9-1@6.5'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-003
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 16:09
 Sample Size: 16.65 g
 % Solids: 60.5
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	5.45	0.172	0.497		13C-2378-TCDD	106	40-135	
12378-PeCDD	11.0	0.327	2.48		13C-12378-PeCDD	105	40-135	
123478-HxCDD	7.26	0.327	2.48		13C-123478-HxCDD	84.0	40-135	
123678-HxCDD	17.6	0.655	2.48		13C-123678-HxCDD	86.1	40-135	
123789-HxCDD	21.2	0.315	2.48		13C-1234678-HpCDD	109	40-135	
1234678-HpCDD	73.2	0.409	2.48		13C-OCDD	95.1	40-135	
OCDD	129	1.01	4.97		13C-2378-TCDF	127	40-135	
2,3,7,8-TCDF	25.7	0.0886	0.497		13C-12378-PeCDF	97.3	40-135	
12378-PeCDF	18.8	0.412	2.48		13C-23478-PeCDF	103	40-135	
23478-PeCDF	17.1	0.422	2.48		13C-123478-HxCDF	115	40-135	
123478-HxCDF	57.0	0.518	2.48		13C-123678-HxCDF	127	40-135	
123678-HxCDF	16.3	0.533	2.48		13C-234678-HxCDF	119	40-135	
234678-HxCDF	11.4	0.319	2.48		13C-123789-HxCDF	110	40-135	
123789-HxCDF	0.866	0.425	2.48	J	13C-1234678-HpCDF	98.3	40-135	
1234678-HpCDF	96.1	0.279	2.48		13C-1234789-HpCDF	114	40-135	
1234789-HpCDF	2.59	0.378	2.48					
OCDF	41.0	0.461	4.97					
Totals	Conc. (pg/g)	EMF	PC 25		CRS			
Total TCDD	308				37Cl4-2378-TCDD	88.4	40-135	
Total PeCDD	200							
Total HxCDD	228				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	119				EMPC - Estimated Maximi	um Possible	Concentration due to	ion abundance
Total TCDF	272	270	6		ratio failure.			
Total PeCDF	179				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	172				(b) - TEQ based on (2005)	World Healtl	h Organization (WHC) Toxic
Total HpCDF	113				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 39.6 pg/g

 Client Sample ID: TP8-1@7'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-004
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 14:32
 Sample Size: 17.47 g % Solids: 57.6
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.76	0.172	0.497		13C-2378-TCDD	96.4	40-135	
12378-PeCDD	1.71	0.327	2.49	J	13C-12378-PeCDD	98.1	40-135	
123478-HxCDD	0.432	0.327	2.49	J	13C-123478-HxCDD	79.4	40-135	
123678-HxCDD	1.27	0.655	2.49	J	13C-123678-HxCDD	83.5	40-135	
123789-HxCDD	4.53	0.315	2.49		13C-1234678-HpCDD	109	40-135	
1234678-HpCDD	5.77	0.409	2.49		13C-OCDD	94.1	40-135	
OCDD	17.7	1.01	4.97		13C-2378-TCDF	112	40-135	
2,3,7,8-TCDF	0.864	0.0886	0.497		13C-12378-PeCDF	95.3	40-135	
12378-PeCDF	DL= 0.451	0.412	2.49		13C-23478-PeCDF	97.5	40-135	
23478-PeCDF	DL= 0.408	0.422	2.49		13C-123478-HxCDF	113	40-135	
123478-HxCDF	DL= 0.265	0.518	2.49		13C-123678-HxCDF	126	40-135	
123678-HxCDF	DL= 0.268	0.533	2.49		13C-234678-HxCDF	111	40-135	
234678-HxCDF	DL= 0.262	0.319	2.49		13C-123789-HxCDF	108	40-135	
123789-HxCDF	DL= 0.356	0.425	2.49		13C-1234678-HpCDF	89.2	40-135	
1234678-HpCDF	1.62	0.279	2.49	J	13C-1234789-HpCDF	111	40-135	
1234789-HpCDF	DL= 0.315	0.378	2.49					
OCDF	1.21	0.461	4.97	J]			
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	18.7				37Cl4-2378-TCDD	84.6	40-135	
Total PeCDD	14.3							
Total HxCDD	25.1				DL - Signifies Non-Detect	(ND) at samp	e specific detection l	imit.
Total HpCDD	11.8				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	10.6				ratio failure.			
Total PeCDF	0.989				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	1.62				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	2.77				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 5.26 pg/g

 Client Sample ID: TP13-1@12'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-005
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 13:26
 Sample Size: 18.36 g % Solids: 54.9
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.58	0.172	0.497		13C-2378-TCDD	83.7	40-135	
12378-PeCDD	1.13	0.327	2.49	J	13C-12378-PeCDD	101	40-135	
123478-HxCDD	DL= 0.849	0.327	2.49		13C-123478-HxCDD	68.9	40-135	
123678-HxCDD	DL= 0.873	0.655	2.49		13C-123678-HxCDD	72.5	40-135	
123789-HxCDD	3.51	0.315	2.49		13C-1234678-HpCDD	99.7	40-135	
1234678-HpCDD	3.39	0.409	2.49		13C-OCDD	85.4	40-135	
OCDD	10.1	1.01	4.97		13C-2378-TCDF	108	40-135	
2,3,7,8-TCDF	DL= 0.168	0.0886	0.497		13C-12378-PeCDF	77.7	40-135	
12378-PeCDF	DL= 0.343	0.412	2.49		13C-23478-PeCDF	89.9	40-135	
23478-PeCDF	DL= 0.295	0.422	2.49		13C-123478-HxCDF	103	40-135	
123478-HxCDF	DL= 0.329	0.518	2.49		13C-123678-HxCDF	114	40-135	
123678-HxCDF	DL= 0.293	0.533	2.49		13C-234678-HxCDF	96.5	40-135	
234678-HxCDF	DL= 0.306	0.319	2.49		13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.436	0.425	2.49		13C-1234678-HpCDF	87.3	40-135	
1234678-HpCDF	DL= 0.313	0.279	2.49		13C-1234789-HpCDF	98.2	40-135	
1234789-HpCDF	DL= 0.372	0.378	2.49					
OCDF	DL= 0.610	0.461	4.97]			
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	13.2				37Cl4-2378-TCDD	81.2	40-135	
Total PeCDD	6.79	9.79	9					
Total HxCDD	19.3				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	7.54				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	0.934	1.40)		ratio failure.			
Total PeCDF	DL= 0.343				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	DL= 0.436				(b) - TEQ based on (2005)	World Health	o Organization (WHO) Toxic
Total HpCDF	DL= 0.372				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 3.10 pg/g

 Client Sample ID: TP18-1@12'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-006
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 12:43
 Sample Size: 16.81 g % Solids: 60.3
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.75	0.172	0.493		13C-2378-TCDD	95.9	40-135	
12378-PeCDD	1.45	0.327	2.47	J	13C-12378-PeCDD	90.2	40-135	
123478-HxCDD	DL= 0.372	0.327	2.47		13C-123478-HxCDD	75.7	40-135	
123678-HxCDD	1.06	0.655	2.47	J	13C-123678-HxCDD	84.8	40-135	
123789-HxCDD	4.86	0.315	2.47		13C-1234678-HpCDD	113	40-135	
1234678-HpCDD	5.10	0.409	2.47		13C-OCDD	93.2	40-135	
OCDD	16.8	1.01	4.93		13C-2378-TCDF	120	40-135	
2,3,7,8-TCDF	DL= 0.243	0.0886	0.493		13C-12378-PeCDF	87.3	40-135	
12378-PeCDF	DL= 0.293	0.412	2.47		13C-23478-PeCDF	93.5	40-135	
23478-PeCDF	DL= 0.258	0.422	2.47		13C-123478-HxCDF	114	40-135	
123478-HxCDF	DL= 0.212	0.518	2.47		13C-123678-HxCDF	127	40-135	
123678-HxCDF	DL= 0.191	0.533	2.47		13C-234678-HxCDF	118	40-135	
234678-HxCDF	DL= 0.186	0.319	2.47		13C-123789-HxCDF	115	40-135	
123789-HxCDF	DL= 0.277	0.425	2.47		13C-1234678-HpCDF	97.2	40-135	
1234678-HpCDF	DL= 0.412	0.279	2.47		13C-1234789-HpCDF	108	40-135	
1234789-HpCDF	DL= 0.552	0.378	2.47					
OCDF	DL= 0.810	0.461	4.93]			
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	7.74				37Cl4-2378-TCDD	92.2	40-135	
Total PeCDD	11.2							
Total HxCDD	24.8				DL - Signifies Non-Detect	(ND) at samp	e specific detection l	imit.
Total HpCDD	10.9				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	0.870	1.32	2		ratio failure.			
Total PeCDF	DL= 0.293				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	DL= 0.277				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	DL= 0.552				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 3.85 pg/g

 Client Sample ID: TP24-2@10'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-007
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 9:47
 Sample Size: 15.35 g % Solids: 64.9
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.10	0.172	0.502		13C-2378-TCDD	95.0	40-135	
12378-PeCDD	2.13	0.327	2.51	J	13C-12378-PeCDD	104	40-135	
123478-HxCDD	DL= 0.447	0.327	2.51		13C-123478-HxCDD	75.8	40-135	
123678-HxCDD	1.41	0.655	2.51	J	13C-123678-HxCDD	81.3	40-135	
123789-HxCDD	4.58	0.315	2.51		13C-1234678-HpCDD	104	40-135	
1234678-HpCDD	5.65	0.409	2.51		13C-OCDD	83.3	40-135	
OCDD	22.3	1.01	5.02		13C-2378-TCDF	113	40-135	
2,3,7,8-TCDF	0.618	0.0886	0.502		13C-12378-PeCDF	98.7	40-135	
12378-PeCDF	DL= 0.810	0.412	2.51		13C-23478-PeCDF	102	40-135	
23478-PeCDF	DL= 0.652	0.422	2.51		13C-123478-HxCDF	97.4	40-135	
123478-HxCDF	DL= 0.430	0.518	2.51		13C-123678-HxCDF	124	40-135	
123678-HxCDF	DL= 0.329	0.533	2.51		13C-234678-HxCDF	113	40-135	
234678-HxCDF	DL= 0.328	0.319	2.51		13C-123789-HxCDF	110	40-135	
123789-HxCDF	DL= 0.475	0.425	2.51		13C-1234678-HpCDF	91.6	40-135	
1234678-HpCDF	DL= 0.427	0.279	2.51		13C-1234789-HpCDF	108	40-135	
1234789-HpCDF	DL= 0.520	0.378	2.51					
OCDF	DL= 1.03	0.461	5.02					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	11.4				37CI4-2378-TCDD	85.5	40-135	
Total PeCDD	9.84							
Total HxCDD	25.4				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	11.9				EMPC - Estimated Maximo	um Possible (Concentration due to	ion abundance
Total TCDF	2.52	3.54	4		ratio failure.			
Total PeCDF	DL= 0.810				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	DL= 0.475				(b) - TEQ based on (2005)	World Health	Organization (WHC) Toxic
Total HpCDF	DL= 0.520				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.95 pg/g

 Client Sample ID: TP25-1@5.5'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-008
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 10:17
 Sample Size: 13.96 g % Solids: 72.3
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.473	0.172	0.496		13C-2378-TCDD	105	40-135	
12378-PeCDD	DL= 0.644	0.327	2.48		13C-12378-PeCDD	92.8	40-135	
123478-HxCDD	DL= 0.396	0.327	2.48		13C-123478-HxCDD	73.7	40-135	
123678-HxCDD	1.64	0.655	2.48	J	13C-123678-HxCDD	79.0	40-135	
123789-HxCDD	2.73	0.315	2.48		13C-1234678-HpCDD	99.7	40-135	
1234678-HpCDD	9.11	0.409	2.48		13C-OCDD	95.7	40-135	
OCDD	68.0	1.01	4.96		13C-2378-TCDF	126	40-135	
2,3,7,8-TCDF	DL= 0.376	0.0886	0.496		13C-12378-PeCDF	82.8	40-135	
12378-PeCDF	DL= 0.674	0.412	2.48		13C-23478-PeCDF	85.4	40-135	
23478-PeCDF	DL= 0.599	0.422	2.48		13C-123478-HxCDF	103	40-135	
123478-HxCDF	DL= 0.340	0.518	2.48		13C-123678-HxCDF	122	40-135	
123678-HxCDF	DL= 0.290	0.533	2.48		13C-234678-HxCDF	127	40-135	
234678-HxCDF	DL= 0.254	0.319	2.48		13C-123789-HxCDF	126	40-135	
123789-HxCDF	DL= 0.346	0.425	2.48		13C-1234678-HpCDF	103	40-135	
1234678-HpCDF	5.51	0.279	2.48		13C-1234789-HpCDF	100	40-135	
1234789-HpCDF	DL= 0.333	0.378	2.48					
OCDF	7.61	0.461	4.96					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	1.87				37Cl4-2378-TCDD	85.3	40-135	
Total PeCDD	DL= 0.644							
Total HxCDD	17.9				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	25.3				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	1.93				ratio failure.			
Total PeCDF	DL= 0.674				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	6.94				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic
Total HpCDF	13.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.680 pg/g

 Client Sample ID: TP19-1@5'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-009
 Date Received: 6/19/2018

 QC Batch #: 1807
 Date Extracted: 6/23/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/24/2018

 Time Collected: 11:40
 Sample Size: 31.54 g % Solids: 31.7
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.44	0.172	0.500		13C-2378-TCDD	94.4	40-135	
12378-PeCDD	2.40	0.327	2.50	J	13C-12378-PeCDD	92.5	40-135	
123478-HxCDD	3.57	0.327	2.50		13C-123478-HxCDD	67.2	40-135	
123678-HxCDD	5.25	0.655	2.50		13C-123678-HxCDD	72.0	40-135	
123789-HxCDD	8.77	0.315	2.50		13C-1234678-HpCDD	104	40-135	
1234678-HpCDD	48.9	0.409	2.50		13C-OCDD	104	40-135	
OCDD	350	1.01	5.00		13C-2378-TCDF	127	40-135	
2,3,7,8-TCDF	2.12	0.0886	0.500		13C-12378-PeCDF	81.7	40-135	
12378-PeCDF	DL= 0.429	0.412	2.50		13C-23478-PeCDF	82.0	40-135	
23478-PeCDF	0.783	0.422	2.50	J	13C-123478-HxCDF	114	40-135	
123478-HxCDF	2.09	0.518	2.50	J	13C-123678-HxCDF	130	40-135	
123678-HxCDF	1.45	0.533	2.50	J	13C-234678-HxCDF	117	40-135	
234678-HxCDF	DL= 0.503	0.319	2.50		13C-123789-HxCDF	117	40-135	
123789-HxCDF	DL= 0.676	0.425	2.50		13C-1234678-HpCDF	96.5	40-135	
1234678-HpCDF	37.0	0.279	2.50		13C-1234789-HpCDF	119	40-135	
1234789-HpCDF	DL= 1.07	0.378	2.50					
OCDF	52.5	0.461	5.00					
Totals	Conc. (pg/g)	EMP	C		<u>CRS</u>			
Total TCDD	40.6				37Cl4-2378-TCDD	98.6	40-135	
Total PeCDD	26.4							
Total HxCDD	62.0				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	111				EMPC - Estimated Maximo	um Possible (Concentration due to	ion abundance
Total TCDF	27.0	28.	1		ratio failure.			
Total PeCDF	11.0				(a) - Lower control limit - U	Ipper control I	imit	
Total HxCDF	38.2				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	75.8				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 8.38 pg/g

Quality Assurance Sample
Method BlankQC Batch #: 1808
QC Batch #: 1808Date Received: NA
Date Extracted: 6/25/2018Matrix: SoilZB-5MS Analysis: 6/27/2018Project ID: Proposed Grays Harbor IDD #1Sample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.462	0.172	0.500		13C-2378-TCDD	83.8	40-135		
12378-PeCDD	DL= 0.897	0.327	2.50		13C-12378-PeCDD	71.5	40-135		
123478-HxCDD	DL= 1.03	0.327	2.50		13C-123478-HxCDD	62.8	40-135		
123678-HxCDD	DL= 1.02	0.655	2.50		13C-123678-HxCDD	81.2	40-135		
123789-HxCDD	DL= 0.999	0.315	2.50		13C-1234678-HpCDD	76.6	40-135		
1234678-HpCDD	DL= 1.20	0.409	2.50		13C-OCDD	71.3	40-135		
OCDD	DL= 2.14	1.01	5.00		13C-2378-TCDF	91.5	40-135		
2,3,7,8-TCDF	DL= 0.436	0.0886	0.500		13C-12378-PeCDF	82.5	40-135		
12378-PeCDF	DL= 0.622	0.412	2.50		13C-23478-PeCDF	80.2	40-135		
23478-PeCDF	DL= 0.579	0.422	2.50		13C-123478-HxCDF	85.9	40-135		
123478-HxCDF	DL= 0.593	0.518	2.50		13C-123678-HxCDF	96.4	40-135		
123678-HxCDF	DL= 0.562	0.533	2.50		13C-234678-HxCDF	87.2	40-135		
234678-HxCDF	DL= 0.668	0.319	2.50		13C-123789-HxCDF	83.7	40-135		
123789-HxCDF	DL= 1.08	0.425	2.50		13C-1234678-HpCDF	82.5	40-135		
1234678-HpCDF	DL= 0.788	0.279	2.50		13C-1234789-HpCDF	79.1	40-135		
1234789-HpCDF	DL= 1.38	0.378	2.50						
OCDF	DL= 2.12	0.461	5.00						
Totals	Conc. (pg/g)	EN	IPC		CRS				
Total TCDD	DL= 0.462				37Cl4-2378-TCDD	79.6	40-135		
Total PeCDD	DL= 0.897								
Total HxCDD	DL= 1.03				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.	
Total HpCDD	DL= 1.20				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.436				ratio failure.				
Total PeCDF	DL= 0.622				(a) - Lower control limit - U	Ipper control	limit		
Total HxCDF	DL= 1.08			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	DL= 1.38				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

Quality Assurance SamplesDate Received: NALaboratory Control SamplesQC Batch #: 1808Date Extracted: 6/25/2018Matrix: SoilZB-5MS Analysis: 6/27/2018Project ID: Proposed Grays Harbor IDD #1Sample Size: 10.00 g

3 130 9 117 3 121 2 116	6.84 1.20 4.83	13C-2378-TCDD 13C-12378-PeCDD 13C-123478-HxCDD	96.2 113	98.3 113	40-135 40-135
3 121				113	40-135
	4.83	13C-123478-HxCDD	05.0		
116			85.3	79.2	40-135
2 110	3.57	13C-123678-HxCDD	94.0	91.8	40-135
3 115	1.82	13C-1234678-HpCDD	105	113	40-135
) 114	2.53	13C-OCDD	97.4	108	40-135
124	2.32	13C-2378-TCDF	122	118	40-135
5 124	5.33	13C-12378-PeCDF	119	121	40-135
1 112	0.63	13C-23478-PeCDF	121	117	40-135
6 109	1.97	13C-123478-HxCDF	110	107	40-135
9 110	0.65	13C-123678-HxCDF	121	123	40-135
9 108	0.65	13C-234678-HxCDF	109	109	40-135
5 108	1.32	13C-123789-HxCDF	104	100	40-135
9 114	3.17	13C-1234678-HpCDF	106	113	40-135
110	0.00	13C-1234789-HpCDF	108	120	40-135
2 109	116.17				
5 127	1.12				
		CRS			
		37Cl4-2378-TCDD	91.1	93.5	40-135
	0 114 0 124 5 124 1 112 6 109 9 110 9 108 6 108 9 114 0 110 2 109	114 2.53 124 2.32 124 5.33 1 112 0.63 1 109 1.97 1 10 0.65 1 108 0.65 1 108 1.32 1 110 0.00 1 110 0.00 1 110 0.00 1 110 1.00	114 2.53 13C-OCDD 124 2.32 13C-2378-TCDF 124 5.33 13C-12378-PeCDF 1 112 0.63 13C-23478-PeCDF 1 109 1.97 13C-123478-HxCDF 1 10 0.65 13C-123678-HxCDF 1 108 0.65 13C-234678-HxCDF 1 108 1.32 13C-123789-HxCDF 1 114 3.17 13C-1234678-HpCDF 1 10 0.00 13C-1234789-HpCDF 1 10 116.17 1 112	114 2.53 13C-OCDD 97.4 124 2.32 13C-2378-TCDF 122 125 124 5.33 13C-12378-PeCDF 119 1 112 0.63 13C-23478-PeCDF 121 1 109 1.97 13C-123478-HxCDF 110 1 10 0.65 13C-123678-HxCDF 121 1 108 0.65 13C-234678-HxCDF 109 1 108 1.32 13C-123789-HxCDF 104 1 114 3.17 13C-1234678-HpCDF 106 1 10 0.00 13C-1234789-HpCDF 108 1 10 0.00 13C-1234789-HpCDF 108	114 2.53 13C-OCDD 97.4 108 124 2.32 13C-2378-TCDF 122 118 15 124 5.33 13C-12378-PeCDF 119 121 11 112 0.63 13C-23478-PeCDF 121 117 16 109 1.97 13C-123478-HxCDF 110 107 19 110 0.65 13C-123678-HxCDF 121 123 19 108 0.65 13C-234678-HxCDF 109 109 16 108 1.32 13C-123789-HxCDF 104 100 19 114 3.17 13C-1234678-HpCDF 106 113 10 110 0.00 13C-1234789-HpCDF 108 120 CRS CRS

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.367	0.172	0.497		13C-2378-TCDD	97.7	40-135	
12378-PeCDD	DL= 0.528	0.327	2.48		13C-12378-PeCDD	97.9	40-135	
123478-HxCDD	DL= 0.531	0.327	2.48		13C-123478-HxCDD	89.5	40-135	
123678-HxCDD	DL= 0.563	0.655	2.48		13C-123678-HxCDD	100	40-135	
123789-HxCDD	DL= 0.535	0.315	2.48		13C-1234678-HpCDD	110	40-135	
1234678-HpCDD	2.87	0.409	2.48		13C-OCDD	83.6	40-135	
OCDD	16.5	1.01	4.97		13C-2378-TCDF	123	40-135	
2,3,7,8-TCDF	DL= 0.401	0.0886	0.497		13C-12378-PeCDF	107	40-135	
12378-PeCDF	DL= 0.572	0.412	2.48		13C-23478-PeCDF	112	40-135	
23478-PeCDF	DL= 0.467	0.422	2.48		13C-123478-HxCDF	109	40-135	
123478-HxCDF	DL= 0.424	0.518	2.48		13C-123678-HxCDF	117	40-135	
123678-HxCDF	DL= 0.388	0.533	2.48		13C-234678-HxCDF	118	40-135	
234678-HxCDF	DL= 0.344	0.319	2.48		13C-123789-HxCDF	116	40-135	
123789-HxCDF	DL= 0.475	0.425	2.48		13C-1234678-HpCDF	105	40-135	
1234678-HpCDF	DL= 0.592	0.279	2.48		13C-1234789-HpCDF	123	40-135	
1234789-HpCDF	DL= 0.740	0.378	2.48					
OCDF	DL= 2.37	0.461	4.97					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	DL= 0.367				37Cl4-2378-TCDD	93.9	40-135	
Total PeCDD	DL= 0.528							
Total HxCDD	3.93				DL - Signifies Non-Detect	(ND) at sample	e specific detection l	imit.
Total HpCDD	5.24				EMPC - Estimated Maximi	um Possible C	Concentration due to	ion abundance
Total TCDF	DL= 0.401				ratio failure.			
Total PeCDF	DL= 0.572				(a) - Lower control limit - U	Ipper control li	imit	
Total HxCDF	DL= 0.475				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	DL= 0.740				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.336 pg/g

 Client Sample ID: TP22-1@6'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-011
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 7:50
 Sample Size: 12.9 g % Solids: 77.9
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.340	0.172	0.498		13C-2378-TCDD	92.7	40-135	
12378-PeCDD	DL= 1.20	0.327	2.49		13C-12378-PeCDD	116	40-135	
123478-HxCDD	DL= 0.562	0.327	2.49		13C-123478-HxCDD	91.7	40-135	
123678-HxCDD	DL= 0.563	0.655	2.49		13C-123678-HxCDD	101	40-135	
123789-HxCDD	DL= 0.550	0.315	2.49		13C-1234678-HpCDD	105	40-135	
1234678-HpCDD	3.98	0.409	2.49		13C-OCDD	78.6	40-135	
OCDD	21.7	1.01	4.98		13C-2378-TCDF	119	40-135	
2,3,7,8-TCDF	DL= 0.382	0.0886	0.498		13C-12378-PeCDF	124	40-135	
12378-PeCDF	DL= 0.906	0.412	2.49		13C-23478-PeCDF	130	40-135	
23478-PeCDF	DL= 0.799	0.422	2.49		13C-123478-HxCDF	122	40-135	
123478-HxCDF	DL= 0.262	0.518	2.49		13C-123678-HxCDF	127	40-135	
123678-HxCDF	DL= 0.256	0.533	2.49		13C-234678-HxCDF	119	40-135	
234678-HxCDF	DL= 0.236	0.319	2.49		13C-123789-HxCDF	116	40-135	
123789-HxCDF	DL= 0.371	0.425	2.49		13C-1234678-HpCDF	105	40-135	
1234678-HpCDF	1.01	0.279	2.49	J	13C-1234789-HpCDF	1,110	40-135	
1234789-HpCDF	DL= 0.552	0.378	2.49					
OCDF	DL= 1.52	0.461	4.98					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	DL= 0.340				37Cl4-2378-TCDD	93.7	40-135	
Total PeCDD	DL= 1.20							
Total HxCDD	7.39				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	8.79				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.382				ratio failure.			
Total PeCDF	DL= 0.906				(a) - Lower control limit - L	Ipper control I	imit	
Total HxCDF	DL= 0.371				(b) - TEQ based on (2005)	World Health	Organization (WHC) Toxic
Total HpCDF	2.84				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0564 pg/g

 Client Sample ID: TP24-1@5.5'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12147-012
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/12/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 19:19
 Sample Size: 16.88 g
 % Solids: 59.6
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.05	0.172	0.497		13C-2378-TCDD	83.1	40-135	
12378-PeCDD	2.93	0.327	2.49		13C-12378-PeCDD	102	40-135	
123478-HxCDD	DL= 1.16	0.327	2.49		13C-123478-HxCDD	88.9	40-135	
123678-HxCDD	4.97	0.655	2.49		13C-123678-HxCDD	94.9	40-135	
123789-HxCDD	6.65	0.315	2.49		13C-1234678-HpCDD	98.0	40-135	
1234678-HpCDD	54.7	0.409	2.49		13C-OCDD	73.4	40-135	
OCDD	402	1.01	4.97		13C-2378-TCDF	98.0	40-135	
2,3,7,8-TCDF	2.04	0.0886	0.497		13C-12378-PeCDF	113	40-135	
12378-PeCDF	DL= 0.850	0.412	2.49		13C-23478-PeCDF	118	40-135	
23478-PeCDF	DL= 0.722	0.422	2.49		13C-123478-HxCDF	109	40-135	
123478-HxCDF	1.81	0.518	2.49		13C-123678-HxCDF	120	40-135	
123678-HxCDF	0.749	0.533	2.49		13C-234678-HxCDF	112	40-135	
234678-HxCDF	DL= 0.539	0.319	2.49		13C-123789-HxCDF	104	40-135	
123789-HxCDF	DL= 0.786	0.425	2.49		13C-1234678-HpCDF	92.8	40-135	
1234678-HpCDF	16.3	0.279	2.49		13C-1234789-HpCDF	109	40-135	
1234789-HpCDF	DL= 0.836	0.378	2.49					
OCDF	40.2	0.461	4.97					
Totals	Conc. (pg/g)	EMP	C		<u>CRS</u>			
Total TCDD	18.4				37Cl4-2378-TCDD	80.2	40-135	
Total PeCDD	26.9							
Total HxCDD	62.8				DL - Signifies Non-Detect	(ND) at samp	e specific detection I	imit.
Total HpCDD	119				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	18.8	19.9	9		ratio failure.			
Total PeCDF	7.24				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	30.7				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	56.0				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 8.44 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.417	0.172	4.96		13C-2378-TCDD	87.5	40-135		
12378-PeCDD	DL= 0.944	0.327	2.48		13C-12378-PeCDD	97.0	40-135		
123478-HxCDD	DL= 0.964	0.327	2.48		13C-123478-HxCDD	84.3	40-135		
123678-HxCDD	8.00	0.655	2.48		13C-123678-HxCDD	90.1	40-135		
123789-HxCDD	6.55	0.315	2.48		13C-1234678-HpCDD	67.8	40-135		
1234678-HpCDD	115	0.409	2.48		13C-OCDD	49.4	40-135		
OCDD	748	1.01	4.96		13C-2378-TCDF	98.0	40-135		
2,3,7,8-TCDF	1.07	0.0886	0.496		13C-12378-PeCDF	112	40-135		
12378-PeCDF	DL= 1.14	0.412	2.48		13C-23478-PeCDF	117	40-135		
23478-PeCDF	DL= 0.936	0.422	2.48		13C-123478-HxCDF	106	40-135		
123478-HxCDF	2.36	0.518	2.48		13C-123678-HxCDF	117	40-135		
123678-HxCDF	0.969	0.533	2.48		13C-234678-HxCDF	108	40-135		
234678-HxCDF	0.948	0.319	2.48		13C-123789-HxCDF	107	40-135		
123789-HxCDF	DL= 0.390	0.425	2.48		13C-1234678-HpCDF	90.3	40-135		
1234678-HpCDF	17.5	0.279	2.48		13C-1234789-HpCDF	64.3	40-135		
1234789-HpCDF	DL= 1.63	0.378	2.48						
OCDF	45.0	0.461	4.96						
Totals	Conc. (pg/g)	EMF	C		CRS				
Total TCDD	7.78				37CI4-2378-TCDD	83.4	40-135		
Total PeCDD	DL= 0.944								
Total HxCDD	54.4				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.	
Total HpCDD	210				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance	
Total TCDF	13.9				ratio failure.				
Total PeCDF	6.90				(a) - Lower control limit - Upper control limit				
Total HxCDF	28.6			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	53.6				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 3.55 pg/g

Section VI: Sample Tracking

ESN	Environmental
CONTINUED INC.	

CHAIN-OF-CUSTODY RECORD

ESN No	rthwes	t															4			1									
CLIENT: 1210 Ea	stside	Street	SE, Sui	te 200										DA	λTE:		lo -	17	7 -	*			PA	\GE	1	_OF	\bot		_
ADDRESS: Olympia	a, WA	98501	L	•										PR	ROJE	СТ	NA	ME	:	20	00	Sa	<u>J</u>	Gra	ip	Har	60		
PHONE:				EAX:	k	15(a e	2S/	ሳስ	W	. (Q)n/	k		CA ⁻						,		5	ite	U	• •			
CLIENT PROJECT #	;			PROJEC	•	•		•							LLE			•			ŧ	'n	K	me	DA	TE OF	10-1	رح	- 18
								<u>~</u>	7	$\overline{}$	7	$\overline{}$	_									_			7	LLLCTION		T	
					ا غ	, kg/, kg/,	ises of	dine	//	.cv/	Solivol Serivol	3°/	/ /0/	/ S. /.	ed of	eigh s	detals	//	PAR POST	./.	/ .e. /	//	Sin				r Par	uers in	ry nber
			Sample	Container	MAL		3 ⁶⁹ /6	8//	\8\ ⁰		30)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>`</u>			15		250	?/sii		Sii		> *	//			Total Numbe	ontai	Laboratory Note Numbe
Sample Number	Depth	Time	Туре	Туре	\R\\ 2	/ <u>8</u> */	<u> </u>	6 7/3	0 3		26. S	8219 81 841,581	\$ 280 \$ 280 \$ 280	<u> </u>	3/1	<u> </u>	9/ 8	<u> </u>	2/5/2	e/3i/80/3i	e/sii	\geq	\angle	/ NOTE	S		- F	g g	Labo Note
1. TP8 -2@8"	8'	1453	SOIL																		V								
2.TP8-3@11'		1514	1																		1								
	65'				П		ſ														T								
4. TP8-1@7'		1432																			1								
5. TP13-1@12'		1326			\Box		1														1								
6. TP18-12/		1243			17																\top								
7. TP24-2@101	 	447						T													+					-	\dashv		
	5,5'				1 1			1		·											+								
9. TP19-105'	51	1140						+													+							\dashv	
10-TP23-106'	6	827		1	+																+						\neg		
11. TP22-1@6'	(a)	750			t		+	1													╁								
12.TPZ4-1@55'					$\dagger \dagger \dagger$		+	+	t^-												1								
13. TP16-1055			4	~ ,	+		- 														1								
14.	3.3	1700			+		1														Ŧ								
15.					$\dagger \dagger \dagger$			\dagger																	·····		-		
15. 16. 17.					+			-	 								\neg												
17		 			1-1		+	\vdash																					
18.					T		4	-																					
RELINQUISHED BY (Signatu	re)	DA1	TE/TIME	RECE	IVED E	BY (Sign	ature	 :)	<u> </u>	DATE	/TIM	IE			L	l	AMP	LE RE	CEIP	т		<u> </u>	1	LABORATO	RY NO	TES:		!	
1/1	1	· / · ·	/			[in		,	. [-	тот	AL N	UMBI											٠.			
(DNAKIA)		10-1	8-18	Janes	MA		2	\$/(\	9/18	1	4.1	4	СНА	IN OI	F CUS	TODY	/ SEA	LS Y/	N/N	4				1-43		TF	T		
REVINQUISHED BY (Signatu	re)	DAT	TE/TIME	RECE	IVED E	3Y (Sign	ature)			/TIM		SEAI	LS IN	TACT	? Y/N	/NA							ラバ	9	()	1		
. 0									•				REC	EIVE) GO	DD CC	OND.	/COL	.D										
													ТОИ	ES:										Turn Arour	d Time:	: 24 HR	48 HR	5 [YAC

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 Phone: 360-459-4670 Fax: 360-459-3432

Website: www.esnnw.com Page 22 of 24 E-Mail: info@esnnw.com Sample Receipt Check List Logged by:

___(initials)

Ceres ID: 12147		Date/Time: 14-14
Client Project ID: Proposed Grays Harbor		Received Temp: 4/ °C
Client Project ID: Proposed Grays Harbor		Received Temp: 4/ C Acceptable: Y/ N
Chain of Custody Relinquished by signed?		/ Receptable 17 N
Chain of Custody Received by signed?		
Custody Seals?	Present?	Y/N
	Intact?	Y / N
	NA:	NA
Unlabeled / Illegible Samples		Y (N)
Proper Containers:		J'N
Preservation Acceptable (Chemical or Temperatur	<u>r</u> e)?	(Ý)/ N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH:		Y/N/NA Y/N
List COC discrepancies:		
Jalialia		
List Damaged Samples:		

Effective Date: 3/19/18

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

July 2, 2018 Ceres ID: 12148

ESN Northwest, Inc. 1210 Eastside Street SE Olympia, WA 98501

The following report contains the results for the ten soil samples received on June 19, 2018. These samples were analyzed for tetra through octa chlorinated dibenzo-p-dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

This work was authorized under the Project Name: Proposed Grays Harbor IDD #1 Site.

Sample results are reported on a dry weight basis.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Confirmation analysis was performed on the samples which had concentrations above the method calibration limit for the 2,3,7,8-TCDF on a Quadrex Q-225 column for isomer specificity.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID: 12148-001	Sample ID TP12-1@12'	Date Received 6/19/2018	Collection Date &Time 6/13/2018 14:36
12148-002	TP17-2@8'	6/19/2018	6/13/2018 13:40
12148-003	TP7-2@10'	6/19/2018	6/13/2018 12:57
12148-004	TP17-1@4'	6/19/2018	6/13/2018 13:26
12148-005	TP11-1@9'	6/19/2018	6/13/2018 10:20
12148-006	TP5-1@10'	6/19/2018	6/13/2018 10:51
12148-007	TP7-1@6'	6/19/2018	6/13/2018 12:20
12148-008	TP2-1@12'	6/19/2018	6/13/2018 8:50
12148-009	TP3-1@6'	6/19/2018	6/13/2018 9:22
12148-010	TP6-1@12'	6/19/2018	6/13/2018 11:38

Section II: Data Summary

Quality Assurance Sample
Method BlankQC Batch #: 1808
Matrix: SoilDate Extracted: 6/25/2018
ZB-5MS Analysis: 6/27/2018Project ID: Proposed Grays Harbor IDD #1Sample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 0.462	0.172	0.500		13C-2378-TCDD	83.8	40-135		
12378-PeCDD	DL= 0.897	0.327	2.50		13C-12378-PeCDD	71.5	40-135		
123478-HxCDD	DL= 1.03	0.327	2.50		13C-123478-HxCDD	62.8	40-135		
123678-HxCDD	DL= 1.02	0.655	2.50		13C-123678-HxCDD	81.2	40-135		
123789-HxCDD	DL= 0.999	0.315	2.50		13C-1234678-HpCDD	76.6	40-135		
1234678-HpCDD	DL= 1.20	0.409	2.50		13C-OCDD	71.3	40-135		
OCDD	DL= 2.14	1.01	5.00		13C-2378-TCDF	91.5	40-135		
2,3,7,8-TCDF	DL= 0.436	0.0886	0.500		13C-12378-PeCDF	82.5	40-135		
12378-PeCDF	DL= 0.622	0.412	2.50		13C-23478-PeCDF	80.2	40-135		
23478-PeCDF	DL= 0.579	0.422	2.50		13C-123478-HxCDF	85.9	40-135		
123478-HxCDF	DL= 0.593	0.518	2.50		13C-123678-HxCDF	96.4	40-135		
123678-HxCDF	DL= 0.562	0.533	2.50		13C-234678-HxCDF	87.2	40-135		
234678-HxCDF	DL= 0.668	0.319	2.50		13C-123789-HxCDF	83.7	40-135		
123789-HxCDF	DL= 1.08	0.425	2.50		13C-1234678-HpCDF	82.5	40-135		
1234678-HpCDF	DL= 0.788	0.279	2.50		13C-1234789-HpCDF	79.1	40-135		
1234789-HpCDF	DL= 1.38	0.378	2.50						
OCDF	DL= 2.12	0.461	5.00						
Totals	Conc. (pg/g)	EN	IPC		CRS				
Total TCDD	DL= 0.462				37Cl4-2378-TCDD	79.6	40-135		
Total PeCDD	DL= 0.897								
Total HxCDD	DL= 1.03				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.	
Total HpCDD	DL= 1.20				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 0.436				ratio failure.				
Total PeCDF	DL= 0.622				(a) - Lower control limit - U	Ipper control	limit		
Total HxCDF	DL= 1.08			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	DL= 1.38				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Project ID: Proposed Grays Harbor IDD #1
 Sample Size: 10.00 g

	LCS1	LCS2					
Analyte	% Rec.	% Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	118	130	6.84	13C-2378-TCDD	96.2	98.3	40-135
12378-PeCDD	119	117	1.20	13C-12378-PeCDD	113	113	40-135
123478-HxCDD	113	121	4.83	13C-123478-HxCDD	85.3	79.2	40-135
123678-HxCDD	122	116	3.57	13C-123678-HxCDD	94.0	91.8	40-135
123789-HxCDD	118	115	1.82	13C-1234678-HpCDD	105	113	40-135
1234678-HpCDD	110	114	2.53	13C-OCDD	97.4	108	40-135
OCDD	120	124	2.32	13C-2378-TCDF	122	118	40-135
2,3,7,8-TCDF	115	124	5.33	13C-12378-PeCDF	119	121	40-135
12378-PeCDF	111	112	0.63	13C-23478-PeCDF	121	117	40-135
23478-PeCDF	106	109	1.97	13C-123478-HxCDF	110	107	40-135
123478-HxCDF	109	110	0.65	13C-123678-HxCDF	121	123	40-135
123678-HxCDF	109	108	0.65	13C-234678-HxCDF	109	109	40-135
234678-HxCDF	106	108	1.32	13C-123789-HxCDF	104	100	40-135
123789-HxCDF	109	114	3.17	13C-1234678-HpCDF	106	113	40-135
1234678-HpCDF	110	110	0.00	13C-1234789-HpCDF	108	120	40-135
1234789-HpCDF	1112	109	116.17				
OCDF	125	127	1.12				
				CRS			

 Client Sample ID: TP12-1@12'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-001
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 14:36
 Sample Size: 15.4 g % Solids: 64.6
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.28	0.172	0.503		13C-2378-TCDD	94.8	40-135	
12378-PeCDD	DL= 1.89	0.327	2.51		13C-12378-PeCDD	110	40-135	
123478-HxCDD	DL= 1.55	0.327	2.51		13C-123478-HxCDD	85.3	40-135	
123678-HxCDD	DL= 1.50	0.655	2.51		13C-123678-HxCDD	98.0	40-135	
123789-HxCDD	6.28	0.315	2.51		13C-1234678-HpCDD	90.3	40-135	
1234678-HpCDD	7.79	0.409	2.51		13C-OCDD	75.8	40-135	
OCDD	22.8	1.01	5.03		13C-2378-TCDF	113	40-135	
2,3,7,8-TCDF	DL= 0.450	0.0886	0.503		13C-12378-PeCDF	117	40-135	
12378-PeCDF	DL= 0.674	0.412	2.51		13C-23478-PeCDF	127	40-135	
23478-PeCDF	DL= 0.609	0.422	2.51		13C-123478-HxCDF	103	40-135	
123478-HxCDF	DL= 0.833	0.518	2.51		13C-123678-HxCDF	113	40-135	
123678-HxCDF	DL= 0.780	0.533	2.51		13C-234678-HxCDF	109	40-135	
234678-HxCDF	DL= 0.756	0.319	2.51		13C-123789-HxCDF	96.6	40-135	
123789-HxCDF	DL= 1.18	0.425	2.51		13C-1234678-HpCDF	92.5	40-135	
1234678-HpCDF	DL= 1.18	0.279	2.51		13C-1234789-HpCDF	102	40-135	
1234789-HpCDF	DL= 1.53	0.378	2.51					
OCDF	DL= 3.54	0.461	5.03					
Totals	Conc. (pg/g)	EMP	С		<u>CRS</u>			
Total TCDD	7.35				37Cl4-2378-TCDD	102	40-135	
Total PeCDD	DL= 1.89							
Total HxCDD	28.0				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	18.0				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	DL= 0.450				ratio failure.			
Total PeCDF	DL= 0.674				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	DL= 1.18				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	DL= 1.53				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 3.99 pg/g

 Client Sample ID: TP17-2@8'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-002
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 13:40
 Sample Size: 16.07 g % Solids: 62
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.47	0.172	0.502		13C-2378-TCDD	81.2	40-135	
12378-PeCDD	2.08	0.327	2.51	J	13C-12378-PeCDD	106	40-135	
123478-HxCDD	1.37	0.327	2.51	J	13C-123478-HxCDD	85.2	40-135	
123678-HxCDD	4.01	0.655	2.51		13C-123678-HxCDD	95.8	40-135	
123789-HxCDD	6.21	0.315	2.51		13C-1234678-HpCDD	97.1	40-135	
1234678-HpCDD	40.6	0.409	2.51		13C-OCDD	83.7	40-135	
OCDD	309	1.01	5.02		13C-2378-TCDF	107	40-135	
2,3,7,8-TCDF	2.29	0.0886	0.502		13C-12378-PeCDF	114	40-135	
12378-PeCDF	DL= 0.583	0.412	2.51		13C-23478-PeCDF	124	40-135	
23478-PeCDF	DL= 0.541	0.422	2.51		13C-123478-HxCDF	109	40-135	
123478-HxCDF	1.80	0.518	2.51	J	13C-123678-HxCDF	117	40-135	
123678-HxCDF	1.22	0.533	2.51	J	13C-234678-HxCDF	112	40-135	
234678-HxCDF	DL= 0.397	0.319	2.51		13C-123789-HxCDF	104	40-135	
123789-HxCDF	DL= 0.628	0.425	2.51		13C-1234678-HpCDF	95.5	40-135	
1234678-HpCDF	12.8	0.279	2.51		13C-1234789-HpCDF	111	40-135	
1234789-HpCDF	DL= 0.661	0.378	2.51					
OCDF	27.6	0.461	5.02					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	10.1				37Cl4-2378-TCDD	76.5	40-135	
Total PeCDD	13.2							
Total HxCDD	47.6				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	86.0				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	8.88				ratio failure.			
Total PeCDF	5.78				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	18.5				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	36.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 7.87 pg/g

 Client Sample ID: TP7-2@10'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-003
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 12:57
 Sample Size: 18.46 g % Solids: 54.3
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 0.412	0.172	0.499		13C-2378-TCDD	99.4	40-135	
12378-PeCDD	4.65	0.327	2.50		13C-12378-PeCDD	108	40-135	
123478-HxCDD	1.08	0.327	2.50	J	13C-123478-HxCDD	91.1	40-135	
123678-HxCDD	3.03	0.655	2.50		13C-123678-HxCDD	97.6	40-135	
123789-HxCDD	7.22	0.315	2.50		13C-1234678-HpCDD	92.0	40-135	
1234678-HpCDD	24.2	0.409	2.50		13C-OCDD	68.5	40-135	
OCDD	156	1.01	4.99		13C-2378-TCDF	127	40-135	
2,3,7,8-TCDF	1.99	0.0886	0.499		13C-12378-PeCDF	127	40-135	
12378-PeCDF	1.83	0.412	2.50	J	13C-23478-PeCDF	132	40-135	
23478-PeCDF	1.68	0.422	2.50	J	13C-123478-HxCDF	105	40-135	
123478-HxCDF	1.62	0.518	2.50	J	13C-123678-HxCDF	115	40-135	
123678-HxCDF	1.13	0.533	2.50	J	13C-234678-HxCDF	113	40-135	
234678-HxCDF	0.788	0.319	2.50	J	13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.315	0.425	2.50		13C-1234678-HpCDF	92.8	40-135	
1234678-HpCDF	15.8	0.279	2.50		13C-1234789-HpCDF	103	40-135	
1234789-HpCDF	DL= 0.536	0.378	2.50					
OCDF	17.0	0.461	4.99					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	27.6				37Cl4-2378-TCDD	105	40-135	
Total PeCDD	35.8							
Total HxCDD	44.1				DL - Signifies Non-Detect	(ND) at samp	e specific detection I	imit.
Total HpCDD	48.7				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	51.8	53.	1		ratio failure.			
Total PeCDF	20.2				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	19.7				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	31.9				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 7.35 pg/g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.44	0.172	5.03		13C-2378-TCDD	100	40-135	
12378-PeCDD	1.90	0.327	2.52	J	13C-12378-PeCDD	109	40-135	
123478-HxCDD	DL= 0.840	0.327	2.52		13C-123478-HxCDD	79.5	40-135	
123678-HxCDD	3.82	0.655	2.52		13C-123678-HxCDD	85.5	40-135	
123789-HxCDD	6.18	0.315	2.52		13C-1234678-HpCDD	114	40-135	
1234678-HpCDD	30.3	0.409	2.52		13C-OCDD	95.7	40-135	
OCDD	218	1.01	5.03		13C-2378-TCDF	127	40-135	
2,3,7,8-TCDF	0.986	0.0886	0.503		13C-12378-PeCDF	119	40-135	
12378-PeCDF	DL= 0.564	0.412	2.52		13C-23478-PeCDF	117	40-135	
23478-PeCDF	DL= 0.530	0.422	2.52		13C-123478-HxCDF	95.3	40-135	
123478-HxCDF	DL= 0.749	0.518	2.52		13C-123678-HxCDF	111	40-135	
123678-HxCDF	DL= 0.616	0.533	2.52		13C-234678-HxCDF	102	40-135	
234678-HxCDF	DL= 0.645	0.319	2.52		13C-123789-HxCDF	97.0	40-135	
123789-HxCDF	DL= 0.933	0.425	2.52		13C-1234678-HpCDF	103	40-135	
1234678-HpCDF	7.72	0.279	2.52		13C-1234789-HpCDF	130	40-135	
1234789-HpCDF	DL= 0.643	0.378	2.52					
OCDF	18.1	0.461	5.03					
Totals	Conc. (pg/g)	EMF	C		CRS			
Total TCDD	5.57				37Cl4-2378-TCDD	93.8	40-135	
Total PeCDD	12.5							
Total HxCDD	43.3				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.
Total HpCDD	64.9				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	4.98				ratio failure.			
Total PeCDF	4.20				(a) - Lower control limit - U	pper control	limit	
Total HxCDF	12.1				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	23.1				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.89 pg/g

 Client Sample ID: TP11-1@9'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-005
 Date Received: 6/19/2018

 QC Batch #: 1808
 Date Extracted: 6/25/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/27/2018

 Time Collected: 10:20
 Sample Size: 18.71 g % Solids: 53.7
 Q-225 Analysis: 7/1/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	3.74	0.172	0.498		13C-2378-TCDD	95.5	40-135	
12378-PeCDD	3.06	0.327	2.49		13C-12378-PeCDD	107	40-135	
123478-HxCDD	1.41	0.327	2.49	J	13C-123478-HxCDD	89.3	40-135	
123678-HxCDD	5.64	0.655	2.49		13C-123678-HxCDD	91.3	40-135	
123789-HxCDD	8.73	0.315	2.49		13C-1234678-HpCDD	99.9	40-135	
1234678-HpCDD	66.8	0.409	2.49		13C-OCDD	89.3	40-135	
OCDD	480	1.01	4.98		13C-2378-TCDF	117	40-135	
2,3,7,8-TCDF	3.59	0.0886	0.498		13C-12378-PeCDF	115	40-135	
12378-PeCDF	DL= 0.500	0.412	2.49		13C-23478-PeCDF	125	40-135	
23478-PeCDF	DL= 0.425	0.422	2.49		13C-123478-HxCDF	104	40-135	
123478-HxCDF	1.74	0.518	2.49	J	13C-123678-HxCDF	119	40-135	
123678-HxCDF	0.781	0.533	2.49	J	13C-234678-HxCDF	109	40-135	
234678-HxCDF	DL= 0.383	0.319	2.49		13C-123789-HxCDF	103	40-135	
123789-HxCDF	DL= 0.551	0.425	2.49		13C-1234678-HpCDF	98.3	40-135	
1234678-HpCDF	20.7	0.279	2.49		13C-1234789-HpCDF	110	40-135	
1234789-HpCDF	1.29	0.378	2.49	J				
OCDF	41.6	0.461	4.98					
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	23.1				37Cl4-2378-TCDD	96.7	40-135	
Total PeCDD	25.6	28.2	2					
Total HxCDD	70.1				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	145				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	27.3				ratio failure.			
Total PeCDF	8.85				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	28.2				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	59.5				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 10.0 pg/g

Quality Assurance SampleDate Received: NAMethod BlankQC Batch #: 1809Date Extracted: 6/29/2018Matrix: SoilZB-5MS Analysis: 6/30/2018Project ID: Proposed Grays Harbor IDD #1Sample Size: 10.00 g

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers		
2,3,7,8-TCDD	DL= 0.324	0.172	0.500		13C-2378-TCDD	85.8	40-135			
12378-PeCDD	DL= 0.573	0.327	2.50		13C-12378-PeCDD	75.1	40-135			
123478-HxCDD	DL= 0.640	0.327	2.50		13C-123478-HxCDD	61.8	40-135			
123678-HxCDD	DL= 0.643	0.655	2.50		13C-123678-HxCDD	74.1	40-135			
123789-HxCDD	DL= 0.627	0.315	2.50		13C-1234678-HpCDD	69.8	40-135			
1234678-HpCDD	DL= 0.905	0.409	2.50		13C-OCDD	67.0	40-135			
OCDD	DL= 1.47	1.01	5.00		13C-2378-TCDF	83.6	40-135			
2,3,7,8-TCDF	DL= 0.294	0.0886	0.500		13C-12378-PeCDF	71.2	40-135			
12378-PeCDF	DL= 0.308	0.412	2.50		13C-23478-PeCDF	66.6	40-135			
23478-PeCDF	DL= 0.308	0.422	2.50		13C-123478-HxCDF	68.8	40-135			
123478-HxCDF	DL= 0.456	0.518	2.50		13C-123678-HxCDF	83.6	40-135			
123678-HxCDF	DL= 0.361	0.533	2.50		13C-234678-HxCDF	69.9	40-135			
234678-HxCDF	DL= 0.513	0.319	2.50		13C-123789-HxCDF	65.1	40-135			
123789-HxCDF	DL= 0.865	0.425	2.50		13C-1234678-HpCDF	72.8	40-135			
1234678-HpCDF	DL= 0.420	0.279	2.50		13C-1234789-HpCDF	57.6	40-135			
1234789-HpCDF	DL= 0.932	0.378	2.50							
OCDF	DL= 1.34	0.461	5.00							
Totals	Conc. (pg/g)	EN	IPC		CRS					
Total TCDD	DL= 0.324				37Cl4-2378-TCDD	71.6	40-135			
Total PeCDD	DL= 0.573									
Total HxCDD	DL= 0.643				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	limit.		
Total HpCDD	DL= 0.905				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance		
Total TCDF	DL= 0.294				ratio failure.					
Total PeCDF	DL= 0.308				(a) - Lower control limit - U	pper control	limit			
Total HxCDF	DL= 0.865				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	DL= 0.932				Equivalent Factors.					

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/g

 Quality Assurance Samples
 Date Received: NA

 Laboratory Control Samples
 QC Batch #: 1809
 Date Extracted: 6/29/2018

 Matrix: Soil
 ZB-5MS Analysis: 6/30/2018

 Project ID: Proposed Grays Harbor IDD #1
 Sample Size: 10.00 g

	LCS1	LCS2					
Analyte	% Rec.	% Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	106	105	0.67	13C-2378-TCDD	97.3	95.3	40-135
12378-PeCDD	103	110	4.65	13C-12378-PeCDD	102	100	40-135
123478-HxCDD	108	108	0.00	13C-123478-HxCDD	88.4	72.5	40-135
123678-HxCDD	103	111	5.29	13C-123678-HxCDD	100	83.8	40-135
123789-HxCDD	105	124	11.73	13C-1234678-HpCDD	81.4	86.8	40-135
1234678-HpCDD	106	105	0.67	13C-OCDD	101	82.0	40-135
OCDD	111	109	1.29	13C-2378-TCDF	101	97.7	40-135
2,3,7,8-TCDF	99.7	100	0.21	13C-12378-PeCDF	93.6	86.0	40-135
12378-PeCDF	94	97	2.22	13C-23478-PeCDF	92.2	87.0	40-135
23478-PeCDF	89	93.4	3.41	13C-123478-HxCDF	98.4	83.8	40-135
123478-HxCDF	99.6	101	0.99	13C-123678-HxCDF	122	85.7	40-135
123678-HxCDF	95.6	91.6	3.02	13C-234678-HxCDF	96.5	80.7	40-135
234678-HxCDF	95.8	94.6	0.89	13C-123789-HxCDF	70.4	78.5	40-135
123789-HxCDF	98.2	100	1.28	13C-1234678-HpCDF	83.3	83.6	40-135
1234678-HpCDF	93.4	96.4	2.24	13C-1234789-HpCDF	83.8	74.5	40-135
1234789-HpCDF	97	102	3.55				
OCDF	96.9	95	1.40				
				CRS			
				37Cl4-2378-TCDD	82.7	81.1	40-135
				(a) Limits based on me	thod acceptance cr	iteria.	

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	3.17	0.172	0.502		13C-2378-TCDD	109	40-135		
12378-PeCDD	2.72	0.327	2.51		13C-12378-PeCDD	105	40-135		
123478-HxCDD	1.38	0.327	2.51	J	13C-123478-HxCDD	95.6	40-135		
123678-HxCDD	6.34	0.655	2.51		13C-123678-HxCDD	104	40-135		
123789-HxCDD	7.64	0.315	2.51		13C-1234678-HpCDD	88.2	40-135		
1234678-HpCDD	88.2	0.409	2.51		13C-OCDD	78.8	40-135		
OCDD	694	1.01	5.02		13C-2378-TCDF	100	40-135		
2,3,7,8-TCDF	5.52	0.0886	0.502		13C-12378-PeCDF	106	40-135		
12378-PeCDF	0.581	0.412	2.51	J	13C-23478-PeCDF	107	40-135		
23478-PeCDF	1.15	0.422	2.51	J	13C-123478-HxCDF	106	40-135		
123478-HxCDF	2.52	0.518	2.51		13C-123678-HxCDF	114	40-135		
123678-HxCDF	1.07	0.533	2.51	J	13C-234678-HxCDF	114	40-135		
234678-HxCDF	0.660	0.319	2.51	J	13C-123789-HxCDF	111	40-135		
123789-HxCDF	DL= 0.249	0.425	2.51		13C-1234678-HpCDF	94.7	40-135		
1234678-HpCDF	37.4	0.279	2.51		13C-1234789-HpCDF	101	40-135		
1234789-HpCDF	1.67	0.378	2.51	J					
OCDF	63.0	0.461	5.02						
Totals	Conc. (pg/g)	EMP	C		CRS				
Total TCDD	21.0				37Cl4-2378-TCDD	100	40-135		
Total PeCDD	26.3	27.9	9						
Total HxCDD	76.9				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.	
Total HpCDD	203				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance	
Total TCDF	39.1	40.0)		ratio failure.				
Total PeCDF	19.9	20.5	5		(a) - Lower control limit - Upper control limit				
Total HxCDF	47.0				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	107				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 10.3 pg/g

 Client Sample ID: TP7-1@6'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-007
 Date Received: 6/19/2018

 QC Batch #: 1809
 Date Extracted: 6/29/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/30/2018

 Time Collected: 12:20
 Sample Size: 17.26 g % Solids: 57.5
 Q-225 Analysis: 7/2/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	2.28	0.172	0.504		13C-2378-TCDD	102	40-135	
12378-PeCDD	2.37	0.327	2.52	J	13C-12378-PeCDD	100	40-135	
123478-HxCDD	1.34	0.327	2.52	J	13C-123478-HxCDD	97.5	40-135	
123678-HxCDD	6.36	0.655	2.52		13C-123678-HxCDD	98.8	40-135	
123789-HxCDD	6.70	0.315	2.52		13C-1234678-HpCDD	97.5	40-135	
1234678-HpCDD	93.5	0.409	2.52		13C-OCDD	91.7	40-135	
OCDD	660	1.01	5.04		13C-2378-TCDF	112	40-135	
2,3,7,8-TCDF	4.03	0.0886	0.504		13C-12378-PeCDF	98.8	40-135	
12378-PeCDF	1.17	0.412	2.52	J	13C-23478-PeCDF	103	40-135	
23478-PeCDF	1.77	0.422	2.52	J	13C-123478-HxCDF	112	40-135	
123478-HxCDF	2.31	0.518	2.52	J	13C-123678-HxCDF	121	40-135	
123678-HxCDF	1.40	0.533	2.52	J	13C-234678-HxCDF	111	40-135	
234678-HxCDF	1.05	0.319	2.52	J	13C-123789-HxCDF	110	40-135	
123789-HxCDF	DL= 0.454	0.425	2.52		13C-1234678-HpCDF	101	40-135	
1234678-HpCDF	28.0	0.279	2.52		13C-1234789-HpCDF	118	40-135	
1234789-HpCDF	1.32	0.378	2.52	J				
OCDF	47.3	0.461	5.04]			
Totals	Conc. (pg/g)	EMP	C		CRS			
Total TCDD	33.2				37Cl4-2378-TCDD	91.3	40-135	
Total PeCDD	31.0							
Total HxCDD	68.1				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.
Total HpCDD	235				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	47.1				ratio failure.			
Total PeCDF	23.8				(a) - Lower control limit - Upper control limit			
Total HxCDF	33.3				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	70.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 8.98 pg/g

 Client Sample ID: TP2-1@12'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-008
 Date Received: 6/19/2018

 QC Batch #: 1809
 Date Extracted: 6/29/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/30/2018

 Time Collected: 8:50
 Sample Size: 18.72 g % Solids: 53.2
 Q-225 Analysis: 7/2/2018

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	1.92	0.172	0.502		13C-2378-TCDD	94.2	40-135	
12378-PeCDD	2.19	0.327	2.51	J	13C-12378-PeCDD	91.3	40-135	
123478-HxCDD	0.567	0.327	2.51	J	13C-123478-HxCDD	86.3	40-135	
123678-HxCDD	1.26	0.655	2.51	J	13C-123678-HxCDD	88.4	40-135	
123789-HxCDD	4.33	0.315	2.51		13C-1234678-HpCDD	85.8	40-135	
1234678-HpCDD	6.72	0.409	2.51		13C-OCDD	71.4	40-135	
OCDD	18.5	1.01	5.02		13C-2378-TCDF	101	40-135	
2,3,7,8-TCDF	1.13	0.0886	0.502		13C-12378-PeCDF	86.6	40-135	
12378-PeCDF	DL= 0.271	0.412	2.51		13C-23478-PeCDF	91.3	40-135	
23478-PeCDF	DL= 0.240	0.422	2.51		13C-123478-HxCDF	96.3	40-135	
123478-HxCDF	DL= 0.198	0.518	2.51		13C-123678-HxCDF	105	40-135	
123678-HxCDF	DL= 0.174	0.533	2.51		13C-234678-HxCDF	98.3	40-135	
234678-HxCDF	DL= 0.207	0.319	2.51		13C-123789-HxCDF	96.7	40-135	
123789-HxCDF	DL= 0.314	0.425	2.51		13C-1234678-HpCDF	87.2	40-135	
1234678-HpCDF	DL= 0.294	0.279	2.51		13C-1234789-HpCDF	94.2	40-135	
1234789-HpCDF	DL= 0.432	0.378	2.51					
OCDF	DL= 0.560	0.461	5.02]			
Totals	Conc. (pg/g)	EMP	С		CRS			
Total TCDD	21.5				37Cl4-2378-TCDD	90.2	40-135	
Total PeCDD	19.3							
Total HxCDD	29.0				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.
Total HpCDD	14.0				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance
Total TCDF	14.5	14.9	9		ratio failure.			
Total PeCDF	1.14				(a) - Lower control limit - U	pper control I	imit	
Total HxCDF	DL= 0.314				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic
Total HpCDF	DL= 0.432				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 4.91 pg/g

 Client Sample ID: TP3-1@6'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-009
 Date Received: 6/19/2018

 QC Batch #: 1809
 Date Extracted: 6/29/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/30/2018

 Time Collected: 9:22
 Sample Size: 14.27 g % Solids: 70.6
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	1.39	0.172	0.497		13C-2378-TCDD	86.9	40-135		
12378-PeCDD	0.939	0.327	2.48	J	13C-12378-PeCDD	82.1	40-135		
123478-HxCDD	DL= 0.518	0.327	2.48		13C-123478-HxCDD	81.0	40-135		
123678-HxCDD	1.08	0.655	2.48	J	13C-123678-HxCDD	87.3	40-135		
123789-HxCDD	2.58	0.315	2.48		13C-1234678-HpCDD	79.7	40-135		
1234678-HpCDD	9.61	0.409	2.48		13C-OCDD	71.9	40-135		
OCDD	62.1	1.01	4.97		13C-2378-TCDF	95.8	40-135		
2,3,7,8-TCDF	DL= 0.320	0.0886	0.497		13C-12378-PeCDF	74.2	40-135		
12378-PeCDF	DL= 0.335	0.412	2.48		13C-23478-PeCDF	81.5	40-135		
23478-PeCDF	DL= 0.267	0.422	2.48		13C-123478-HxCDF	87.7	40-135		
123478-HxCDF	DL= 0.215	0.518	2.48		13C-123678-HxCDF	93.6	40-135		
123678-HxCDF	DL= 0.200	0.533	2.48		13C-234678-HxCDF	90.9	40-135		
234678-HxCDF	DL= 0.230	0.319	2.48		13C-123789-HxCDF	96.6	40-135		
123789-HxCDF	DL= 0.311	0.425	2.48		13C-1234678-HpCDF	73.4	40-135		
1234678-HpCDF	3.82	0.279	2.48		13C-1234789-HpCDF	97.3	40-135		
1234789-HpCDF	DL= 0.281	0.378	2.48						
OCDF	5.10	0.461	4.97						
Totals	Conc. (pg/g)	EMP	C		CRS				
Total TCDD	7.33	7.90	0		37Cl4-2378-TCDD	76.4	40-135		
Total PeCDD	5.29	6.93	3						
Total HxCDD	15.7				DL - Signifies Non-Detect ((ND) at samp	le specific detection l	imit.	
Total HpCDD	22.7				EMPC - Estimated Maximu	ım Possible (Concentration due to	ion abundance	
Total TCDF	0.834				ratio failure.				
Total PeCDF	0.900				(a) - Lower control limit - Upper control limit				
Total HxCDF	3.91				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic) Toxic	
Total HpCDF	9.28				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 2.85 pg/g

 Client Sample ID: TP6-1@12'

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12148-010
 Date Received: 6/19/2018

 QC Batch #: 1809
 Date Extracted: 6/29/2018

 Date Collected: 6/13/2018
 Matrix: Soil
 ZB-5MS Analysis: 6/30/2018

 Time Collected: 11:38
 Sample Size: 15.61 g % Solids: 63.7
 Q-225 Analysis: NA

Analyte	Conc. (pg/g)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	1.23	0.172	0.503		13C-2378-TCDD	100	40-135		
12378-PeCDD	1.04	0.327	2.52	J	13C-12378-PeCDD	103	40-135		
123478-HxCDD	DL= 0.391	0.327	2.52		13C-123478-HxCDD	92.5	40-135		
123678-HxCDD	0.794	0.655	2.52	J	13C-123678-HxCDD	104	40-135		
123789-HxCDD	3.02	0.315	2.52		13C-1234678-HpCDD	87.4	40-135		
1234678-HpCDD	5.14	0.409	2.52		13C-OCDD	82.6	40-135		
OCDD	19.1	1.01	5.03		13C-2378-TCDF	118	40-135		
2,3,7,8-TCDF	DL= 0.166	0.0886	0.503		13C-12378-PeCDF	107	40-135		
12378-PeCDF	DL= 0.197	0.412	2.52		13C-23478-PeCDF	113	40-135		
23478-PeCDF	DL= 0.167	0.422	2.52		13C-123478-HxCDF	97.4	40-135		
123478-HxCDF	DL= 0.207	0.518	2.52		13C-123678-HxCDF	110	40-135		
123678-HxCDF	DL= 0.167	0.533	2.52		13C-234678-HxCDF	108	40-135		
234678-HxCDF	DL= 0.190	0.319	2.52		13C-123789-HxCDF	111	40-135		
123789-HxCDF	DL= 0.266	0.425	2.52		13C-1234678-HpCDF	84.1	40-135		
1234678-HpCDF	DL= 0.346	0.279	2.52		13C-1234789-HpCDF	107	40-135		
1234789-HpCDF	DL= 0.386	0.378	2.52						
OCDF	DL= 0.579	0.461	5.03						
Totals	Conc. (pg/g)	EMF	C		CRS				
Total TCDD	9.16				37CI4-2378-TCDD	95.1	40-135		
Total PeCDD	7.07	8.0	7						
Total HxCDD	16.3				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	imit.	
Total HpCDD	12.4				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance	
Total TCDF	1.14				ratio failure.				
Total PeCDF	DL= 0.197				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 0.266				(b) - TEQ based on (2005) World Health Organization (WHO) Toxic				
Total HpCDF	DL= 0.386				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 2.71 pg/g

Section VI: Sample Tracking

ESN	Environmental
NORTHWEST, INC.	Sarvices Network

ECN	Northy				-										- 4		_ K	4							,		
CLIENT: 1210	Eastsic	le Stre	et SE. S	Suite 200	-							_	DA	TE:	<u></u>	-1.	51	8			PAG	ìE	4	0	F		
ADDRESS: Olym	pia, W	A 985	501	200									PR	OJECT	NA	ME	: <u>P</u> i	top)	<u>05</u> 6	od (bra	11	1	ubc			
PHONE:			· .	_*****		Jak	<u> </u>	SNV	بلا),CC	N	2	LO	CATIC	N: _	11	D	#	1	S	ite	U		.,			
CLIENT PROJECT #				_ PROJEC	TMA	NAG	ER:					_	со	LLECT	OR:	4	06	1	K	4 F	11/6	SON	Kinn	DATE C	TION:	2-13-	5
					AMALY	<u> </u>	esi siii	<u>/</u>	$\overline{}$	$\overline{/}$		$\overline{/}$	7	LLECT SO NOTE OF	135	7	9 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\overline{/}$	人	V	//	//		/			
					JAL	/&/.					8/2	9/8	જે.જે	se nei'	Mez	\ \}.6			e/.e	4	X,	//	_			umb	tory dm b
Comendo Necesbou	l <u> </u>		Sample		K.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	24 25 ST	./S)		o de	610/67 81/80/	89/	25%	\$ [*] \\$ [*]	Z/.	20 E.	2 Sign	0%	2/2/			/,,,	TEC			tal N	Laboratory Note Number
Sample Number	Depth		Type	Туре	/ <u>\\</u>	<u> </u>	\(\frac{\fin}}}}{\fint}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}{\fint}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\fint{\frac{\fin}{\fint}}}}}}}}}}}}}}}}}}}}}}}}}}}}{\frac	8/ 30/3	\$\frac{1}{2} \cdot \frac{1}{2}	%	<u> </u>	0 /0 8 0	× &	4	QY V	<u> </u>	<u> </u>	Sir Sir		"	-	NC	TES			ᆙᄬ	S E
1. [P12-1@12'			SOL	 	-		ļ <u> </u>				_				-				X	_							
2.TP17-2081	81	1340																	Ш								
3-TD7-2@10'	10	1257																									
4-TP17-1@4'		1326																	П								\Box
5. TPII- 1@9'		/DZO																	П							1	
6. TP5-1@10'		1051																1	Ħ		\top					1	
7-TP7-1@61	12	1220																	П								
8-1P2-1Q12'	12'	850																7	T	\top	\top					1	
9-1P3-LD6'	6	922																	П								
		1138	A																\prod								
11.																											
12.																											
13.																											
14.															'												
15.																											
16.																				T						1	
17.														-													
18.											ヿ															1	
RELINQUISHED BY (Signatur	re)	DAT	E/TIME	RECE	IVED B	Y (Signa	ture)		DATE	/TIM	E				SAMP	LE RE	CEIP	<u>_</u> Г				ABORA	TORY	NOTES:			-
	010	İn	10 10	1		<u></u>		./_	1					MBER C											_		
_ pylodywy	rd_	<u> </u>	10.18	Jan	M		<u> 56,</u>	<u> [[7][</u>	18/	14-1	_	_		CUSTO		LS Y/	N/NA	١	\perp		<	511)	TA	7		
RELINQUISHED BY (Signatur	re)	ĎAT	E/TIME	// RECE	IVED B	Y (Signa	ture)		DATE	/TIM	E	SEAL	S INT	ACT? Y/	N/NA				\perp		'	ノル		14	1		
' V												RECE	IVED	GOOD	COND.	/COL	D										
												NOT	ES:								1	Turn Ar	ound T	ime: 24	HR 48	HR 5	DAY

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 Phone: 360-459-4670 Fax: 360-459-3432

Website: www.esnnw.com Page 19 of 21 E-Mail: info@esnnw.com Sample Receipt Check List Logged by:

(initials)

		D
Ceres ID: 12148		Date/Time! 14:14
Client Project ID: Projected Grays Harbor		Received Temp; 4.) °C
IDD#15:te		Acceptable: Y/N
Chain of Custody Relinquished by signed?		YN
Chain of Custody Received by signed?		Y)/ N
Custody Seals?	Present?	Y / N
	Intact?	Y / N
	NA:	NA
Unlabeled / Illegible Samples		Y (N)
Proper Containers:		Ø/ N
Preservation Acceptable (Chemical or Temperatu	re)?	(D) N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH:		Y/N/NA Y/N
List COC discrepancies:		
Je blight		
List Damaged Samples:		

Effective Date: 3/19/18 Page 20 of 21

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

June 29, 2018 Ceres ID: 12149

ESN Northwest, Inc. 1210 Eastside Street SE Olympia, WA 98501

The following report contains the results for the six aqueous samples received on June 19, 2018. These samples were analyzed for tetra through octa chlorinated dibenzo-p-dioxins and dibenzofurans by EPA method 8290A. Routine turn-around time was provided for this work.

This work was authorized under the Project Name: Proposed Grays Harbor IDD #1 Site.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The "H" qualifier on the sample ID: MW/3 signifies that the percent recovery for an internal standard is below the method limits. The results were deemed acceptable due to the signal to noise for the internal standard chromatograph peaks being >10:1 and the detection limits calculated off of the internal standard were below the method lower calibration limit.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

ihedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID:	Sample ID	Date Received	Collection Date & Time
12149-001	MW-2	6/19/2018	6/13/2018 16:35
12149-002	MW-1	6/19/2018	6/13/2018 13:34
12149-003	MW-5	6/19/2018	6/13/2018 14:09
12149-004	MW-6	6/19/2018	6/13/2018 12:49
12149-005	MW-4	6/19/2018	6/13/2018 13:51
12149-006	MW/3	6/19/2018	6/13/2018 9:33

Section II: Data Summary

Quality Assurance Sample
Method BlankDate Received: NA
QC Batch #: 1810
Matrix: AqueousDate Extracted: 6/27/2018Project ID: Proposed Grays Harbor IDD #1Sample Size: 0.500 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 5.48	0.887	10.0		13C-2378-TCDD	82.5	40-135		
12378-PeCDD	DL= 8.62	2.56	50.0		13C-12378-PeCDD	75.9	40-135		
123478-HxCDD	DL= 9.39	3.08	50.0		13C-123478-HxCDD	58.0	40-135		
123678-HxCDD	DL= 8.87	5.29	50.0		13C-123678-HxCDD	72.6	40-135		
123789-HxCDD	DL= 8.89	13.1	50.0		13C-1234678-HpCDD	70.3	40-135		
1234678-HpCDD	DL= 17.6	5.15	50.0		13C-OCDD	59.5	40-135		
OCDD	DL= 34.8	8.50	100		13C-2378-TCDF	78.2	40-135		
2,3,7,8-TCDF	DL= 5.49	0.733	10.0		13C-12378-PeCDF	72.6	40-135		
12378-PeCDF	DL= 4.00	2.96	50.0		13C-23478-PeCDF	68.5	40-135		
23478-PeCDF	DL= 3.65	5.40	50.0		13C-123478-HxCDF	73.0	40-135		
123478-HxCDF	DL= 5.14	3.93	50.0		13C-123678-HxCDF	82.9	40-135		
123678-HxCDF	DL= 4.57	2.94	50.0		13C-234678-HxCDF	67.7	40-135		
234678-HxCDF	DL= 5.83	4.32	50.0		13C-123789-HxCDF	65.4	40-135		
123789-HxCDF	DL= 9.79	4.70	50.0		13C-1234678-HpCDF	69.1	40-135		
1234678-HpCDF	DL= 10.1	4.24	50.0		13C-1234789-HpCDF	64.8	40-135		
1234789-HpCDF	DL= 20.2	5.74	50.0						
OCDF	DL= 39.4	11.7	100						
Totals	Conc. (pg/L)	EMI	PC PC		CRS				
Total TCDD	DL= 5.48				37Cl4-2378-TCDD	70.7	40-135		
Total PeCDD	DL= 8.62								
Total HxCDD	DL= 9.39				DL - Signifies Non-Detect	(ND) at samp	le specific detection	imit.	
Total HpCDD	DL= 17.6				EMPC - Estimated Maximi	um Possible	Concentration due to	ion abundance	
Total TCDF	DL= 5.49				ratio failure.				
Total PeCDF	DL= 4.00				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 9.79			(b) - TEQ based on (2005) World Health Organization (WHO) Toxic					
Total HpCDF	DL= 20.2				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

Quality Assurance SamplesDate Received: NALaboratory Control SamplesQC Batch #: 1810Date Extracted: 6/27/2018Matrix: AqueousZB-5MS Analysis: 6/28/2018Project ID: Proposed Grays Harbour IDD #1Sample Size: 0.500 L

Analyte	LCS1 % Rec.	LCS2 % Rec.	%RSD	Labeled Standards	LCS1 % Rec.	LCS2 % Rec	Limits (a)
2,3,7,8-TCDD	103	104	0.68	13C-2378-TCDD	102	99.5	40-135
12378-PeCDD	103	106	2.03	13C-12378-PeCDD	107	105	40-135
123478-HxCDD	113	106	4.52	13C-123478-HxCDD	74.2	78.1	40-135
123678-HxCDD	107	115	5.10	13C-123678-HxCDD	83.7	86.2	40-135
123789-HxCDD	123	121	1.16	13C-1234678-HpCDD	92.5	94.5	40-135
1234678-HpCDD	104	108	2.67	13C-OCDD	89.0	92.8	40-135
OCDD	111	114	1.89	13C-2378-TCDF	105	110	40-135
2,3,7,8-TCDF	98.8	98.4	0.29	13C-12378-PeCDF	96.9	96.4	40-135
12378-PeCDF	97.4	96.6	0.58	13C-23478-PeCDF	86.8	97.0	40-135
23478-PeCDF	95.8	89	5.20	13C-123478-HxCDF	93.8	90.1	40-135
123478-HxCDF	104	109	3.32	13C-123678-HxCDF	103	103	40-135
123678-HxCDF	98	98.8	0.57	13C-234678-HxCDF	87.3	87.8	40-135
234678-HxCDF	104	98.2	4.06	13C-123789-HxCDF	77.9	82.6	40-135
123789-HxCDF	107	99.8	4.92	13C-1234678-HpCDF	89.6	92.7	40-135
1234678-HpCDF	98.2	99.2	0.72	13C-1234789-HpCDF	86.7	86.8	40-135
1234789-HpCDF	99.6	103	2.37				
OCDF	104	108	2.67				
				CRS			
				37Cl4-2378-TCDD	86.0	84.0	40-135
				(a) Limits based on met	thod acceptance ci	iteria.	

 Client Sample ID: MW-2

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-001
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.484 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 4.99	0.887	10.3		13C-2378-TCDD	60.0	40-135	
12378-PeCDD	DL= 8.50	2.56	51.7		13C-12378-PeCDD	72.8	40-135	
123478-HxCDD	DL= 11.1	3.08	51.7		13C-123478-HxCDD	45.4	40-135	
123678-HxCDD	DL= 11.6	5.29	51.7		13C-123678-HxCDD	52.9	40-135	
123789-HxCDD	DL= 11.1	13.1	51.7		13C-1234678-HpCDD	52.5	40-135	
1234678-HpCDD	15.9	5.15	51.7	J	13C-OCDD	41.9	40-135	
OCDD	90.4	8.50	103	J	13C-2378-TCDF	61.9	40-135	
2,3,7,8-TCDF	DL= 6.53	0.733	10.3		13C-12378-PeCDF	70.2	40-135	
12378-PeCDF	DL= 7.20	2.96	51.7		13C-23478-PeCDF	62.2	40-135	
23478-PeCDF	DL= 7.67	5.40	51.7		13C-123478-HxCDF	53.7	40-135	
123478-HxCDF	DL= 5.40	3.93	51.7		13C-123678-HxCDF	60.2	40-135	
123678-HxCDF	DL= 5.07	2.94	51.7		13C-234678-HxCDF	52.8	40-135	
234678-HxCDF	DL= 5.44	4.32	51.7		13C-123789-HxCDF	48.6	40-135	
123789-HxCDF	DL= 9.85	4.70	51.7		13C-1234678-HpCDF	47.9	40-135	
1234678-HpCDF	DL= 9.41	4.24	51.7		13C-1234789-HpCDF	54.0	40-135	
1234789-HpCDF	DL= 14.2	5.74	51.7					
OCDF	DL= 26.2	11.7	103					
Totals	Conc. (pg/L)	EMF	PC .		CRS			
Total TCDD	DL= 4.99				37Cl4-2378-TCDD	125	40-135	
Total PeCDD	DL= 8.50							
Total HxCDD	DL= 11.6				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	limit.
Total HpCDD	31.7				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	19.2				ratio failure.			
Total PeCDF	DL= 7.67				(a) - Lower control limit - U	Ipper control	limit	
Total HxCDF	DL= 9.85				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	DL= 14.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.186 pg/L

 Client Sample ID: MW-1

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-002
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.488 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 6.13	0.887	10.2		13C-2378-TCDD	65.9	40-135	
12378-PeCDD	DL= 6.90	2.56	51.2		13C-12378-PeCDD	59.0	40-135	
123478-HxCDD	DL= 7.41	3.08	51.2		13C-123478-HxCDD	47.5	40-135	
123678-HxCDD	DL= 8.15	5.29	51.2		13C-123678-HxCDD	55.2	40-135	
123789-HxCDD	DL= 7.62	13.1	51.2		13C-1234678-HpCDD	53.0	40-135	
1234678-HpCDD	DL= 11.0	5.15	51.2		13C-OCDD	44.2	40-135	
OCDD	DL= 28.2	8.50	102		13C-2378-TCDF	74.2	40-135	
2,3,7,8-TCDF	DL= 4.21	0.733	10.2		13C-12378-PeCDF	57.7	40-135	
12378-PeCDF	DL= 7.18	2.96	51.2		13C-23478-PeCDF	55.2	40-135	
23478-PeCDF	DL= 7.20	5.40	51.2		13C-123478-HxCDF	58.3	40-135	
123478-HxCDF	DL= 5.65	3.93	51.2		13C-123678-HxCDF	66.0	40-135	
123678-HxCDF	DL= 5.15	2.94	51.2		13C-234678-HxCDF	58.2	40-135	
234678-HxCDF	DL= 5.72	4.32	51.2		13C-123789-HxCDF	54.4	40-135	
123789-HxCDF	DL= 9.11	4.70	51.2		13C-1234678-HpCDF	50.0	40-135	
1234678-HpCDF	DL= 9.36	4.24	51.2		13C-1234789-HpCDF	52.8	40-135	
1234789-HpCDF	DL= 13.6	5.74	51.2					
OCDF	DL= 18.5	11.7	102					
Totals	Conc. (pg/L)	EMF	PC .		CRS			
Total TCDD	DL= 6.13				37Cl4-2378-TCDD	124	40-135	
Total PeCDD	DL= 6.90							
Total HxCDD	DL= 8.15				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	DL= 11.0				EMPC - Estimated Maxim	um Possible	Concentration due to	ion abundance
Total TCDF	6.55				ratio failure.			
Total PeCDF	DL= 7.20				(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	DL= 9.11				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	DL= 13.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

 Client Sample ID: MW-5

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-003
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.488 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 5.05	0.887	10.2		13C-2378-TCDD	80.4	40-135	
12378-PeCDD	DL= 10.1	2.56	51.2		13C-12378-PeCDD	70.9	40-135	
123478-HxCDD	DL= 9.17	3.08	51.2		13C-123478-HxCDD	55.5	40-135	
123678-HxCDD	DL= 10.7	5.29	51.2		13C-123678-HxCDD	60.8	40-135	
123789-HxCDD	DL= 9.75	13.1	51.2		13C-1234678-HpCDD	71.4	40-135	
1234678-HpCDD	DL= 15.0	5.15	51.2		13C-OCDD	61.8	40-135	
OCDD	DL= 21.1	8.50	102		13C-2378-TCDF	87.2	40-135	
2,3,7,8-TCDF	DL= 4.02	0.733	10.2		13C-12378-PeCDF	75.9	40-135	
12378-PeCDF	DL= 6.32	2.96	51.2		13C-23478-PeCDF	75.9	40-135	
23478-PeCDF	DL= 5.83	5.40	51.2		13C-123478-HxCDF	68.7	40-135	
123478-HxCDF	DL= 5.81	3.93	51.2		13C-123678-HxCDF	78.1	40-135	
123678-HxCDF	DL= 4.79	2.94	51.2		13C-234678-HxCDF	71.5	40-135	
234678-HxCDF	DL= 5.79	4.32	51.2		13C-123789-HxCDF	71.6	40-135	
123789-HxCDF	DL= 8.58	4.70	51.2		13C-1234678-HpCDF	66.6	40-135	
1234678-HpCDF	DL= 8.43	4.24	51.2		13C-1234789-HpCDF	70.3	40-135	
1234789-HpCDF	DL= 13.3	5.74	51.2					
OCDF	DL= 18.8	11.7	102					
Totals	Conc. (pg/L)	EMF	c		CRS			
Total TCDD	DL= 5.05				37Cl4-2378-TCDD	133	40-135	
Total PeCDD	DL= 10.1							
Total HxCDD	DL= 10.7				DL - Signifies Non-Detect	(ND) at samp	le specific detection l	limit.
Total HpCDD	DL= 15.0				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 4.02				ratio failure.			
Total PeCDF	DL= 6.32				(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	DL= 8.58				(b) - TEQ based on (2005)	World Healtl	n Organization (WHO) Toxic
Total HpCDF	DL= 13.3				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

 Client Sample ID: MW-6

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-004
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.487 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 6.77	0.887	10.3		13C-2378-TCDD	60.5	40-135	
12378-PeCDD	DL= 9.87	2.56	51.3		13C-12378-PeCDD	58.4	40-135	
123478-HxCDD	DL= 19.6	3.08	51.3		13C-123478-HxCDD	40.7	40-135	
123678-HxCDD	DL= 20.3	5.29	51.3		13C-123678-HxCDD	47.3	40-135	
123789-HxCDD	DL= 19.5	13.1	51.3		13C-1234678-HpCDD	53.0	40-135	
1234678-HpCDD	DL= 16.0	5.15	51.3		13C-OCDD	43.3	40-135	
OCDD	DL= 42.4	8.50	103		13C-2378-TCDF	64.4	40-135	
2,3,7,8-TCDF	DL= 4.83	0.733	10.3		13C-12378-PeCDF	59.5	40-135	
12378-PeCDF	DL= 5.54	2.96	51.3		13C-23478-PeCDF	58.5	40-135	
23478-PeCDF	DL= 5.80	5.40	51.3		13C-123478-HxCDF	61.3	40-135	
123478-HxCDF	DL= 7.64	3.93	51.3		13C-123678-HxCDF	67.3	40-135	
123678-HxCDF	DL= 6.87	2.94	51.3		13C-234678-HxCDF	48.2	40-135	
234678-HxCDF	DL= 10.8	4.32	51.3		13C-123789-HxCDF	54.8	40-135	
123789-HxCDF	DL= 13.8	4.70	51.3		13C-1234678-HpCDF	52.9	40-135	
1234678-HpCDF	DL= 10.8	4.24	51.3		13C-1234789-HpCDF	55.0	40-135	
1234789-HpCDF	DL= 16.6	5.74	51.3					
OCDF	DL= 28.5	11.7	103					
Totals	Conc. (pg/L)	EMF	PC .		CRS			
Total TCDD	DL= 6.77				37Cl4-2378-TCDD	130	40-135	
Total PeCDD	DL= 9.87							
Total HxCDD	DL= 20.3				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	DL= 16.0				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 4.83				ratio failure.			
Total PeCDF	DL= 5.80				(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	DL= 13.8				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	DL= 16.6				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

 Client Sample ID: MW-4

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-005
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.491 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 6.96	0.887	10.2		13C-2378-TCDD	71.8	40-135	
12378-PeCDD	DL= 11.1	2.56	50.9		13C-12378-PeCDD	65.6	40-135	
123478-HxCDD	DL= 14.4	3.08	50.9		13C-123478-HxCDD	53.0	40-135	
123678-HxCDD	DL= 12.5	5.29	50.9		13C-123678-HxCDD	69.1	40-135	
123789-HxCDD	DL= 13.0	13.1	50.9		13C-1234678-HpCDD	61.1	40-135	
1234678-HpCDD	DL= 23.6	5.15	50.9		13C-OCDD	56.2	40-135	
OCDD	DL= 70.0	8.50	102		13C-2378-TCDF	84.0	40-135	
2,3,7,8-TCDF	DL= 4.39	0.733	10.2		13C-12378-PeCDF	65.0	40-135	
12378-PeCDF	DL= 9.79	2.96	50.9		13C-23478-PeCDF	69.5	40-135	
23478-PeCDF	DL= 8.78	5.40	50.9		13C-123478-HxCDF	64.7	40-135	
123478-HxCDF	DL= 8.73	3.93	50.9		13C-123678-HxCDF	75.8	40-135	
123678-HxCDF	DL= 7.62	2.94	50.9		13C-234678-HxCDF	69.3	40-135	
234678-HxCDF	DL= 8.36	4.32	50.9		13C-123789-HxCDF	63.8	40-135	
123789-HxCDF	DL= 14.5	4.70	50.9		13C-1234678-HpCDF	59.0	40-135	
1234678-HpCDF	DL= 16.8	4.24	50.9		13C-1234789-HpCDF	69.7	40-135	
1234789-HpCDF	DL= 22.1	5.74	50.9					
OCDF	DL= 59.1	11.7	102					
Totals	Conc. (pg/L)	EMF	PC		CRS			
Total TCDD	DL= 6.96				37Cl4-2378-TCDD	134	40-135	
Total PeCDD	DL= 11.1							
Total HxCDD	DL= 14.4				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	DL= 23.6				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 4.39				ratio failure.			
Total PeCDF	DL= 9.79				(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	DL= 14.5				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC) Toxic
Total HpCDF	DL= 22.1				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

 Client Sample ID: MW/3

 Project ID: Proposed Grays Harbor IDD #1
 Ceres Sample ID: 12149-006
 Date Received: 6/19/2018

 QC Batch #: 1810
 Date Extracted: 6/27/2018

 Date Collected: 6/13/2018
 Matrix: Aqueous
 ZB-5MS Analysis: 6/28/2018

 Time Collected: 16:35
 Sample Size: 0.486 L
 Q-225 Analysis: NA

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 7.83	0.887	10.3		13C-2378-TCDD	41.6	40-135	
12378-PeCDD	DL= 8.66	2.56	51.4		13C-12378-PeCDD	47.6	40-135	
123478-HxCDD	DL= 13.8	3.08	51.4		13C-123478-HxCDD	35.2	40-135	Н
123678-HxCDD	DL= 14.7	5.29	51.4		13C-123678-HxCDD	39.4	40-135	Н
123789-HxCDD	DL= 13.9	13.1	51.4		13C-1234678-HpCDD	42.1	40-135	
1234678-HpCDD	DL= 20.1	5.15	51.4		13C-OCDD	27.0	40-135	Н
OCDD	DL= 57.4	8.50	103		13C-2378-TCDF	46.4	40-135	
2,3,7,8-TCDF	DL= 8.56	0.733	10.3		13C-12378-PeCDF	50.0	40-135	
12378-PeCDF	DL= 10.0	2.96	51.4		13C-23478-PeCDF	46.2	40-135	
23478-PeCDF	DL= 8.95	5.40	51.4		13C-123478-HxCDF	43.4	40-135	
123478-HxCDF	DL= 7.05	3.93	51.4		13C-123678-HxCDF	50.0	40-135	
123678-HxCDF	DL= 6.62	2.94	51.4		13C-234678-HxCDF	43.8	40-135	
234678-HxCDF	DL= 7.48	4.32	51.4		13C-123789-HxCDF	35.7	40-135	Н
123789-HxCDF	DL= 15.1	4.70	51.4		13C-1234678-HpCDF	36.1	40-135	Н
1234678-HpCDF	DL= 12.5	4.24	51.4		13C-1234789-HpCDF	29.2	40-135	Н
1234789-HpCDF	DL= 26.3	5.74	51.4					
OCDF	DL= 47.4	11.7	103					
Totals	Conc. (pg/L)	EMF	PC .		CRS			
Total TCDD	DL= 7.83				37Cl4-2378-TCDD	133	40-135	
Total PeCDD	DL= 8.66							
Total HxCDD	DL= 14.7				DL - Signifies Non-Detect	(ND) at samp	le specific detection	limit.
Total HpCDD	DL= 20.1				EMPC - Estimated Maxim	um Possible	Concentration due to	ion abundance
Total TCDF	21.9				ratio failure.			
Total PeCDF	DL= 10.0				(a) - Lower control limit - L	Ipper control	limit	
Total HxCDF	DL= 15.1				(b) - TEQ based on (2005)	World Healtl	n Organization (WHC)) Toxic
Total HpCDF	DL= 26.3				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

Section VI: Sample Tracking

ESN Enviro	mnenta	ı)												C	H	ΑI	N	-C)F·	-C	USTO	DY	REC	OF	RD
ESN North 1210 East Olympia,		reet Sl	E, Suite	200										DA	TE:	10-	13.	18		10-	14	-18	PA	IGE	(OF		
ADDRESS	WA 9	8301											_	PRO	OJE	CT I	NAN	ME:	Pí	00	05	se o		Oracs	Ha	tb8/	<u> </u>	
PHONE: 360-4	59-1	1107	0	EAX:	la	<u>60</u>	65) 	AL	ا. ا	(0)	M	_	LO	CAT	101	۷: <u>]</u>	FI	O	*	1	<u>Ş</u>	14					
CLIENT PROJECT #	:			PROJEC	T MA	NAG	ER:						_	CO	LLE	СТС	R:	A	or;	1	Ri	AC	<m< th=""><th>1cv1</th><th>DATE (</th><th>OF CTION:</th><th>6-13</th><th>-18</th></m<>	1cv1	DATE (OF CTION:	6-13	-18
				6	ARIALY.	\$2 / \$00/0 \$8*/	er of	dine	/56) () () ()		210	10 00	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Se Sul	ide N	etals	/sos	O OR	Cuit	e lite		M		7		Total Number of Containers	atory
Sample Number	Depth	Time	Sample Type	Container Type	/RY	\&\\	&\\&	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2/30	5/3	EEE SE			% (S	A VI	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	N KS	8	9/8	Sit	5/<	ZZ,		NOTES	<u>,</u>		Total of Cor	Labor
1. MW-Z		1635	WATER																	Ī	X							
2. MW-1		1334																										
3.MW-5		1409																										
4.MW-6		1249																										
5. MW -4		1351																										
6. MW/3		933	4																		6							
6. MW/3 7.																												
8.																												
9.																												
10.																												
11.																												
12.																												
13.																												
14.																												
15.																												
16.																												
17.																												
18.																												
RELINCUISHED BY (Signatu	re)	DAT	E/TIME	RECE	IVED B	Y (Signa	ature)			ATE,	/TIMI	E	L			S/	MPL	E RE	CEIPT	- '				LABORATOR	/ NOTES	:		<u> </u>
Landli	MI	1/1	9-18-1	y Z	- 141	(S		6/	(8/	1 18 1	14-,	111		AL NU N OF										-Ai	<u> </u>	(AT	,	
RELINQUISHED BY (Signatur	re)	V DAT	TE/TIME	RECE	IVED B	Y (Signa	ture)			ATE,	/TIMI	E	SEAL	S INT	ACT?	Y/N,	/NA							ノバ		•		
()													RECE	IVED	GOC	D CC	ND./	COL)									
V													NOTE	ES:										Turn Around	Time: 2	4 HR 48	HR 5	DAY

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 Phone: 360-459-4670 Fax: 360-459-3432 Website: www.esnnw.com Page F.Mail: mfo@esnnw.com Sample Receipt Check List Logged by:

(initials)

	Date//Time/ 14:14
	Received Temp: 4.) °C
<u> </u>	Acceptable: (Y) / N
	Y)/ N
Present?	Y/N
T , ,0	\$7 / \$T
Intact?	Y/N
NA:	(NA)
	N/N)
**************************************	9 /N
?	Y) N
•	Y / N NA Y / N
<u>(</u>	
	Present? Intact? NA:

Effective Date: 3/19/18

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

NORTHWEST, INC.	ESN
Services Network	Environnental

ADDRESS: 3380 MAN AND SAFE AND WAR MADOS PHONE: 206 920 8304 FAX. CHENT PROJECT #: ATT. 0202-100 PROJECT MANAGER: W. C. TYPE Sample Number Death Time Type PROJECT WARAGER: W. C. TYPE Sample Number Death Time Ty	NO LIB	Turn Around Time: 24 HB 48		NOTES:							
DATE: DIAL NAME: PROJECT NAME:	VIII-			RECEIVED GOOD COND./COLD							
PROJECT NAME: Proposed GRAPS HARBORA PAGES THE Sample Container Proposed GRAPS HARBORA PAGES Type Roje Container Proposed GRAPS HARBORA PAGES THE LOCATION: Top #1 STATE COLLECTOR: Proposed GRAPS HARBORA PAGES TOP THE CONTAINER PROPOSED CONTAINERS TOP THE RECEIVED BY GRAPS HARBORA PAGES TOTAL NUMBER OF CONTAINERS TOTAL NUMBER OF GUSTNAMES TOTAL NUMBER OF CONTAINERS TOTAL NUMBER OF CONTAINER				SEALS INTACT? Y/N/NA	DATE/TIME	VED BY (Signature)	RECE	E/TIME	DAT	:ure)	RELINQUISHED BY (Signat
PAGE TOTAL ATT AU. S. A FECTIVED BY (Signature) DATE: DIMIN B. PAGE PROJECT NAME: PROPOSED CARAPY SHREEDING FOR AND COLLECTOR: Apr. Proposed Carapy Shreeding for Angel State Shreet			A	CHAIN OF CUSTODY SEALS Y/N/N	-			-		1	4 milan
DATE: DITION PAGE OF P				TOTAL NUMBER OF CONTAINERS	81110	SAMOS GAS			6/11/1		In. O Wich
DNESS: 33801 94% AU. S. NEGRERAL WOM, WA 94003 IENT PROJECT #: AIT-0201-DO PROJECT MANAGER: VICTORIA England COLLECTOR: Project Schlady Hardena Project Ray (1984)		LABORATORY NOTES:	PT	SAMPLE RECEI	DATE/TIME	VED BY (Signature)	RECEI	E/TIME	DAT	:ure)	RELINQUISHED BY (Signat
DRESS; 3380 94% AU. S. NF288 and Way WA 99003 PROJECT NAME: Proposed Gasty MR2820 R. Porting PROJECT NAME: Proposed Gasty Propose	•		i							7	18.
E. 206 9(1) 830 9 PROJECT MANAGER: VI CHORINA SAGINAL COLLECTOR: PARCE TOTAL NOTES FROJECT #: A17.0202.00 PROJECT MANAGER: VI CHORINA SAGINAL COLLECTOR: PARCE TOTAL NOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VI CHORINA SAGINAL COLLECTOR: PARCE TOTAL PROJECT ROTAL PROJECT ROT	5 (X	X	×	*	+	+	1340	6	1 6 P
SS: 33301 9 th AU. S. Nederal way, WA 9903 PROJECT #: A17.0207.00 PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APAN PROJECT MANAGER: VICTORIA ENG	0		X	×	X	7			1345	101	16.MW-50 101
SS: 3380 9th Au. S. AFEDERIAL WAY, WAR 97003 PROJECT NAME: PROJECT NAME: PROPOSED CONTRACT PROJECT NAME: PROPOSED CONTRACT PROJECT NAME: P	5	1 March Color	*	7	X	X			1612	2	7
DATE: DILLE CREATION OF PAGE OF THE DORES: 2380 9 40 AU. S. A FEDERAL WAY, WA 9003 PROJECT NAME: Proposed Lowy Hardson formed to the page of the page	2	the most		7	X 9	ナメ			KOS	0	50
SS: 5380 944 AU. S. A FEDERIC MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF PROJECT #: ALT. 0201. DO PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF PROJECT #: ALT. 0201. DO PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT #: ALT. 0201. DO PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT MANAGER: VICTORIA ENGLAND COLLECTOR: APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF POTES OF PROJECT OR APUN PAGE OF PROJEC	6		×	7	XXX	X			1810	S	NN-3@
SS: 5380 944 AU. S. ATERICAL WOLL, WA 94003 PROJECT NAME: ROPOSED GRAMS HARRING PORMA 206 920 8307 FAX: LOCATION: IDO # STEEL STEEL PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN ENGland COLLECTOR: APAIN PACEMAN FORMA COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN ENGland COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN ENGland COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT NAME: ROPOSED GRAMS HARRING PORMA COLLECTOR: APAIN PACEMAN STASSAM DOTES PROJECT NAME: ROPOSED GRAMS HARRING PORMA COLLECTOR: APAIN PACEMAN AND COLLECTOR: APAIN PACEMAN AND COLLECTOR: APAIN PACEMAN AND COLLECTOR. PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIAN COLLECTOR: APAIN PACEMAN AND COLLECTION NOTES 1.00 1 10.045 501.1 VINF. AND XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6		XX	8	7 7 X	*			1700	0	0
S: 3380 944 AU. S. NFEDERAL WAY WA 99003 PROJECT NAME: PROPOSED GRAYS HARBOR POTRIAL PROJECT #, 417 0207 DO PROJECT MANAGER: Victoria England COLLECTOR: HOW PACKING POTRIAL OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too #1 SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE SITE OF 191 1008 Sample Container PACKING RESIDENCE FOR ACCURATION: Too SITE SITE SITE SITE SITE SITE SITE SITE	5		X	X	X X	× ×			1030	6	0
DATE: DIN 16 PAGE OF 206 920 8307 FAX: COLECT #: A17.0202.00 PROJECT MANAGER: Victorian Empland COLLECTOR: How Page 10 Stree OJECT #: A17.0202.00 PROJECT MANAGER: Victorian Empland COLLECTOR: How Page 10 Stree Umber Depth Time Type Type Replaced Street Stre	0		XX	*	X	X			1415	121	10
SS: 33801 9th Au. S. NTEderal word, WA 99003 206 920 8307 FAX: PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIA EMAINA COLLECTOR: April Date of 18788979 DATE: PROJECT #: A17.0202.00 PROJECT MANAGER: VICTORIA EMAINA COLLECTOR: April Day Common Collection In location: Type Type Type Type Type Type Type Type	6		メメ	×	×	×			1458	N	1015-105
DATE: DITTORY PAGE OF DATE: DITTORY WAS AND A PAGE OF DATE: DITTORY HADROIR POTAGE IONE: 206 920 8307 FAX: FAX: COLECT NAME: Proposed GAPYS HADROIR POTAGE IOCATION: IDO #1 SITE COLECTOR: PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR: PAR STAP DATE OF TAXISANDER POTAGE FOR THE TIME TIME TYPE TYPE TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR: PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR: PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PROJECT MANAGER: VI CADITOR EMPLOYED FOR AND COLLECTOR PAR STAP DATE OF TAXISANDER PAR STAP DATE OF TAXIS	8		X	*	X X	×				4.5	-
DATE: DITTOR PAGE TO PHANCE DATE: DITTOR PAGE PAGE PAGE OF DATE: DITTOR PAGE OF DATE: DITTOR PAGE OF DATE: DITTOR PAGE OF	6		X	×	X	*			1615	e.	[P20-16]
DDRESS: 33301 9th RU. S. NFEDERIAL WOLL, WA 99003 HONE: 206 920 8307 FAX: LIENT PROJECT #: A17.0202.00 PROJECT MANAGER: VI CHOIM EMPLAND COLLECTOR: April DATE of COLLECTION Sample Number Depth Time Type Type Type Type Type Type Type Typ	6		×	*	×××	*			-	6	TPIH-1
DDRESS: 33301 9th AU. S. NFEDERIAL WORM, WA 99003 HONE: 206 920 8307 FAX: LIENT PROJECT #: A17.0202.00 PROJECT MANAGER: VICTOR ENGLAND COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: I DO # 1 SITE LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTOR: April Proposed Grays HACKOR POTALA LOCATION: TO # 1 SITE COLLECTION TO # 1 SITE COLLECTION A X X X X X X X X X X X X X X X X X X	6		X	×	×	×			1345	J	14-11
ENUMBER Depth Time Type Type Type AT AT AT AT AT AT AT AT AT AT AT AT AT	6		×	×	XXX	×			1315	Ē	P10-2
DATE: DIN 1 18 PAGE OF	6		XX	×	X	×			1300	12	0
DDRESS: 33801 9th Au. 5. A rederal way, WA 94003 HONE: 206 920 8307 FAX: LIENT PROJECT #: A17.0202.00 PROJECT MANAGER: VI CHORING ENGLAND COLLECTOR: April Project Sample Container Fix At Sie Gel Gel At State	9		X X	*	X	×			1108	مَ	P1-2
PAGE PAGE OF AND OF SOME PAGE OF AND OF SOME PAGE OF AND OF SOME PAGE OF AND OF	1 0		X	X	X	X	07/	-	1045	4,	TP1-1
#: A17.0202,00 PROJECT MANAGER: Victoria England COLLECTOR: April Pyckman Collection	of Containers Laboratory	1000	No Suite	S SOR S SOR	LOC 8260 Senniol 83	Por Gasor Oi				Dept	Sample Number
1 9th Au. S. A Federal way, WA 99003 PROJECT NAME: Proposed GRAYS HARBOR POTANH 920 8307 FAX: LOCATION: IDO # 1 SITE	81/11/18	COLLECTION:	Ryckma	COLLECTO	11	MANAGER:	ROJECT	00	7.020		CLIENT PROJECT #
1 9th Au. S. N Tederal way, WA 99003 PROJECT NAME: Proposed GRAYS HARROR POTANT		1,	1151	LOCATION: IDO			AX:			920	206
DATE: OI) PAGE	yport Face	HARROY POTANH	roposed her	_ PROJECT NAME:	99003	Mary	ederal	>	h Au.		ADDRESS: 33801
		_		0 11		<u></u>	202		985	CR	CLIEIVI.

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501

Phone: 360-459-4670 Fax: 360-459-3432

NORTHWEST, INC.	ESN
Services Network	Environnental

Website: www.esnnw.com	Website: ww			4670	Phone: 360-459-4670	ld.	-		200	Eastside Street SE, Suite 200	1210 Eas
48 HR (5 DAY)	Turn Around Time: 24 HR 4			NOTES:	10-14-11	(XWON			1 11 11	7	
			RECEIVED GOOD COND./COLD	RECEIVED O		5	01.0	47	6/14/18 1415	1	2
			CT? Y/N/NA	SEALS INTA	DATE/TIME	(Signature)	RECEIVED BY	DATE/TIME	DAT	RELINQUISHED BY (Signature)	RELINOL
			CHAIN OF CUSTODY SEALS Y/N/NA	_	51/21/	1	More	0	11/4	100	
			ABER OF CONTAINERS	TOTAL NUN	SHIDITAL		1	14/2 AS	11/2	1	
	LABORATORY NOTES:		SAMPLE RECEIPT		DATE/TIME	(Signature)	REÇEIVED BY (Signature)	DATE/TIME	DAT	RELINQUISHED BY (Signature)	RELINQU
											18.
											17.
											16.
											15.
e		7									14.
5		X.		×	X	X	4	+	5.51 (700	16-10551 S	13.7
4		*		+	+	\ \ \	+	4	151919	P24-105,5'S	12. TE
		*		4					150	22-186' 6	11.78
		*							6' 827	P23-186' (10. TP
		*							140	0	9.TP19-
		7		2					5.51 1017	1055	81P2S
		*							0, 444	-20101 1	7. TP24
		X							2' 1243	-10121	818L9
		X							1 1326	-	5. TP13
		* ;							M32	7 1071	4. 188
		X ,		7		× -			15091	-1 66,51 6.0	3. TP9
_;		*		/ /	<u></u>	X +			1' 514	-3@ 111	2.798
6		4		X	8		YOU SOUR	2011 N	81 HS3	-2081	1.708
Fotal Number of Containers Laboratory Note Number	NOTES	No suite	Ashestos Play	CI PESTICI	PAL OF	PATES OF OFF	TO ANA	Sample C	Depth Time	Sample Number D	Sam
81/21/0	DATE OF COLLECTION:	ntinnec	COLLECTOR: MUSC	and COL	ria Eng	NAGER: Victory	PROJECT MANAGER:	9	17.002	CLIENT PROJECT #: A 7.002	CLIEN
		ISIte	LOCATION: IDD#				FAX:		60ts	PHONE: 281 898	PHON
Expert facility	Harbor Riter	sed brays	PROJECT NAME: Proposed	PRO	8003	EA.	Federal Way	Ne.S.	9th A	ADDRESS: 33301	ADDR
	PAGE OF	P,	E: 6/12/18	DAT					ABAN	IT: Ber ger	CLIENT:

Olympia, Washington 98501

Fax: 360-459-3432

ORTHWEST, INC.	ESN
Services Netw	Environnents

osite: www.esn			159-4670	Phone: 360-459-4670				uite 200 11	Olympia Washington 98501
Turn Around Time: 24 HR 48 HR 5 DAY	Turn		NOTES:	CX 10141	TOWEN IND	5	1, 1, 1,		
		ED GOOD COND./COLD	RECEIVED			47/	6/4/12 14/7		1
		VTACT? Y/N/NA	ME SEALS INTA	DATE/TIME	RECEIVED BY (Signature)		DATE/TIME		RELINQUISHED BY (Signature)
		DF CUSTODY SEALS Y/N/NA	CHAIN OF C	7,4,0	10		1		1
		/BER (TOTAL NUN	14 N H 16)	45	C/14/2 1415	_	IN
LABORATORY NOTES:	LABO	SAMPLE RECEIPT	NE	DATE/TIME	RECE/V6D BY (Signature)	REC	DATE/TIME	ure)	RELINQUISHED BY (Signature)
									18.
									17.
									16.
									15.
									14.
									13.
									12.
6	2								11.
	K	×	×	X	X	—	1138	12'	10-TP6-1@12
6	X	X	×	X	X		922	6	9. TP3-10.6'
6	X	×	×	×	×		050	12:	8. TP2-1@ 12'
5	X	×	×	×	×		1220	C	7. Tr7-1061
6	X	×	×	×	X		1051	0.	6. TP5-1010
6 (×	X	×	X	×		1020	ā	5.TP11-109
6	X	×	×	×	×		1326	Ť	4. Tr17-104
6	X	X	X	×	×		4521	10.	3. TP7-2010
6	X	×	X	×	×		1340	cò	2.TP17-2081
6	×			×		VOA JAG	1436 Soi	12'	1. 1P12-1@12'
Total Number of Containers Laboratory	CASIS C	S. S. S. S. S. S. S. S. S. S. S. S. S. S	(1,800)	COC STEDE	PHODESES OF SES	e Container Type	Sample Time Type	Depth	Sample Number
COLLECTION: 6.13.18	Cinney	COLLECTOR: Allison k	sland c	ctorias	PROJECT MANAGER:	PROJEC	0202.0	AIT	CLIENT PROJECT #: A) =
	site	LOCATION: IDO#			L	FAX:	870g	898	PHONE: 231
or Potash Export Facility	Grays Havis	PROJECT NAME: Proposed		A 9803	Val War W	S. Fede	9th Ave	301 0	ADDRESS: 33
OF /	PAGE	DATE: 6.13.18	D				T	er-ABA	CLIENT: Berse

Olympia, Washington 98501

Fax: 360-459-3432

NORTHWEST, INC.	ESN
Services Network	Environmental

Website: www.esnnw.com	570	Phone: 360-459-4670			1210 Eastside Street SE, Suite 200
Turn Around Time: 24 HR 48 HR 5 DAY	NOTES:				
	RECEIVED GOOD COND./COLD		<		
	SEALS INTACT? Y/N/NA	DATE/TIME	RECEIVED BY (Signature)	DATE/TIME	RÉLINQUISHED BY (Signature)
	CHAIN OF CUSTODY SEALS Y/N/NA	0-19-10			May
	TOTAL NUMBER OF CONTAINERS	N III	7	SIN 81/19	
LABORATORY NOTES:	SAMPLE RECEIPT	DATE/TIME 1	RECEIVED BY (Signature)	DATE/TIME	RELINQUISHED BY (Signature)
					18.
					17.
					16.
					15.
					14.
					13.
c c					12.
4118					11.
MW-3 to ken on					10.
					9.
running angluses.					
filter before					7.
turbid please 7	チースナ	アメメ	アア	433 🔻	6. MW / S
IF MW-2 to 7	×	XXX	××	1351	5. MW-4
	X	×××	× ×	1249	
+ preserve +	X	XX	メメ	1409	3. MW-S
イラへ	× ×	Υ Υ Χ	メメ	1334	2. MW-/
CAS metals 7	×	XX	_	1635 water	1. MW-2
Total Number of Containers Laboratory Note Number	SO SO SO SO SO SO SO SO SO SO SO SO SO S	LOC & GOLD SERVICE SER	Container ANALYSIS OF SOINE	Sample Time Type	Sample Number Depth
DATE OF COLLECTION:	and COLLECTOR: April Lycky	toria Engla	PROJECT MANAGER:	2,00	CLIENT PROJECT #: 17.070
	LOCATION: TOO # (Site		FAX:		PHONE: 28/ 8985709
rbor Patasi	PROJECT NAME: Company to brown	ON 003	Federal way, wax a	s.	ADDRESS: 33361 941
PAGE OF	DATE: 6/13/18+6/14/18PAGE			TM M	CLIENT: Berger RBAW

Olympia, Washington 98501

Fax: 360-459-3432