SUBSURFACE INVESTIGATION

Time Oil Facility 01-169 851 Broadway Everett, Washington

June 21, 2005

Prepared for:

Time Oil Company 2737 West Commodore Way Seattle, Washington

Prepared by:

Sound Environmental Strategies Corporation 2400 Airport Way South, Suite 200 Seattle, Washington 98134-2020

Prepared by:

WAR

William H. Rodgers, REA, LG, LHG Senior Geologist Reviewed by:

7 Hale

Bert Q. Hyde, LG/ŁHG #1813 Principal Hydrogeologist

TABLE OF CONTENTS

EXE	CUT	IVE SUMMARYII
1.0	INTF	RODUCTION1
	1.1 1.2 1.3	BACKGROUND
2.0	SITE	CHARACTERISTICS
	2.1 2.2 2.3	TOPOGRAPHY2SURFACE HYDROLOGY2GEOLOGY AND GROUNDWATER HYDROLOGY2
3.0	INVE	ESTIGATION METHODS AND OBSERVATIONS
	3.1 3.2 3.3	SOIL BORING AND SAMPLING
4.0	INVE	ESTIGATION OBSERVATIONS AND RESULTS4
	4.1 4.2 4.3	FIELD OBSERVATIONS4GROUNDWATER ANALYTICAL RESULTS5SOIL ANALYTICAL RESULTS5
5.0	CON	ICLUSIONS AND RECOMMENDATIONS6
6.0	STA	NDARD LIMITATIONS7
7.0	REF	ERENCES7

TABLES

Table 1	Analytical Results	(GeoEngineers)
---------	--------------------	----------------

- Table 2 Groundwater Analytical Results
- Table 3 Soil Analytical Results

FIGURES

- Site Location Map Figure 1
- Figure 2 Site Plan
- Figure 3 **Geologic Cross Sections**

APPENDICES

- Standard Project Methods and Practices Appendix A
- Appendix B Boring Logs
- Appendix C Laboratory Reports

i. F\SES CURRENT PROJECTS\0440 Time Oil\NW WA Northwest Washington\0440-002 Everett 851 Broadway (01-169)\0440-002-01 Soil & GW Investigations\440-2 Deliverables\Subsurface Inv Rpt\440-2 Everett Subsurface Inv Rpt final.doc

EXECUTIVE SUMMARY

Sound Environmental Strategies Corporation completed a Subsurface Investigation of the Time Oil Facility 01-169 located at 851 Broadway, in Everett, Washington, in general accordance with ASTM 1903-97, *Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process*, and guidelines established by the Washington State Department of Ecology (Ecology). The objective of the investigation was to characterize and delineate contaminated soil remaining on site following an earlier remediation program. The investigation consisted of drilling 12 borings in areas along the perimeter of the former remediation excavation where low concentrations of gasoline-range petroleum hydrocarbon (GRPH) -contaminated soil is known to remain. Two of the borings were completed as monitoring wells, once of which was dry. Project work also included laboratory analysis of representative soil and groundwater samples, evaluation of analytical data, and preparation of this report.

Soil containing GRPH and benzene in concentrations greater than their respective Model Toxics Control Act (MTCA) Method A cleanup levels (cleanup levels) were identified along the northern and southwestern edges of the former remediation excavation. Toluene, ethylbenzene and xylenes concentrations, with one exception, were less than their respective cleanup levels. The GRPH-contaminated horizon appears to be approximately 3 to 4 feet thick, and occurs at depths ranging from 3 to 14 feet below ground surface (bgs), depending on location.

Only monitoring well MW-1, located in the northeastern corner of the former remediation excavation, produced any groundwater. The groundwater sample contained 3,140 µg/L GRPH, exceeding the 800 µg/L cleanup level. Monitoring well MW-2, which is 30 feet deep and located downgradient from southwestern corner of the former excavation, produced no groundwater. This suggests that the groundwater in MW-1 is perched within the backfilled excavation, and shallow groundwater is not present outside the UST system backfill. Soil samples collected from borings along the north and southwest edges of the former excavation contained GRPH and benzene in concentrations greater than their respective cleanup levels.

Additional soil remediation will be required to bring the site into unconditional compliance with MTCA regulations. The most widespread chemical of concern is benzene, and to a lesser degree, GRPH. A 48-inch diameter sewer main will require shoring to access some of the affected soil. Based on current information, approximately 180 to 200 tons of GRPH-contaminated soil will require excavation and off-site disposal. An additional 525 to 550 tons of overlying uncontaminated soil can be excavated and stockpiled for later use as backfill. It is also likely that groundwater within the permeable backfill of the former UST system excavation will need to be addressed to bring the site into compliance with MTCA.

1.0 INTRODUCTION

On behalf of the Time Oil Company (Time Oil), Sound Environmental Strategies Corporation (SES) completed a subsurface investigation of Facility 01-169 located at 851 Broadway in Everett, Washington (the site). This investigation was completed in general accordance with ASTM 1903-97, *Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process*, and Time Oil Site Assessment Guidelines. This report presents the results of the subsurface investigation work completed in October, 2004.

The location of the site is shown in Figure 1. The investigation consisted of subsurface exploration using a combination direct push and hollow-stem auger drilling rig. Boring locations are shown in Figure 2. This work was authorized by and completed on behalf of Time Oil in accordance with SES' proposal, dated August 11, 2004.

1.1 BACKGROUND

GeoEngineers documented the removal of four underground storage tanks (USTs), two fuel dispenser islands, associated distribution piping, and contaminated soil in a report dated March 22, 2004. Approximately 1,460 tons of gasoline-range petroleum hydrocarbons (GRPH) were hauled off site for disposal at Rinker Materials, in Everett, Washington.

GRPH concentrations exceeded the Model Toxics Control Act (MTCA) Method A cleanup levels (used for comparative purposes and hereafter referred to as "cleanup levels") in 14 of 21 soil samples collected from the sidewalls and bottom of the remediation excavation (Figure 2). Analytical results from this phase of work are summarized in Table 1. One soil sample collected from the northeast corner of the excavation at a depth of 15 feet below ground surface (bgs) contained 14,000 mg/kg GRPH and 42 mg/kg benzene. Soil samples collected from the excavation contained GRPH in concentrations ranging from 23 to 6,200 mg/kg, and benzene was detected at concentrations ranging from less than the detection limit to 3.6 mg/kg.

GeoEngineers concluded their report by stating that "gasoline-range hydrocarbons exceeding MTCA site-specific Method B cleanup levels remain on site, with the vertical and lateral extent of the impact being undefined by the UST removal." GeoEngineers also noted that MTCA worksheets predicted that shallow groundwater would be impacted by petroleum hydrocarbons at concentrations exceeding the cleanup levels. GeoEngineers recommended additional assessment of the site by drilling.

1.2 **PROJECT OBJECTIVES**

The objective(s) of the Subsurface Investigation were to:

- Assess the lateral and vertical extent of contaminated soil (requiring remediation under MTCA guidelines) remaining along the north, south, and west sides of the former excavation; and
- Ascertain whether groundwater inside and outside of the former UST excavation is contaminated with GRPH and BTEX in concentrations requiring further remediation.

1.3 SCOPE OF WORK

The scope of work for this investigation was developed through discussions with Time Oil representatives. Work on the project included the general following tasks:

- Use of a combination direct push/hollow-stem auger drilling unit to drill 12 borings, and build two monitoring wells;
- Collection and analysis of soil and groundwater samples for selected potential contaminants including GRPH, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and lead;
- Documenting observations in field notes and boring logs; and
- Preparation of this report.

A detailed description of SES' field procedures is presented In Appendix A.

2.0 SITE CHARACTERISTICS

At the time of the SES field effort, the site was developed with a single-story restaurant/store building, which was vacant. The western two-thirds of the site was paved with asphalt, and the eastern (rear) portion of the site was unpaved and covered with a mixture of native grasses. The extent of the excavation created during the UST removal and remediation effort was readily discernable by an area of fresh asphalt paving (shown in gray in Figure 2). There was a shipping container along the north end of the building.

2.1 TOPOGRAPHY

The polygonal, 0.43-acre site lies at an elevation of approximately 100 feet above mean sea level. The land surface slopes gently to the southwest toward a shallow depression centered at the intersection of Broadway Avenue North and Tower Street. Development in the immediate vicinity of the site is commercial.

2.2 SURFACE HYDROLOGY

Given the general southwesterly trend of topography in the immediate vicinity of the site, surface runoff flows to the southwest. On a larger scale, surface runoff flows to the northeast, toward the Snohomish River.

2.3 GEOLOGY AND GROUNDWATER HYDROLOGY

The site and surrounding area encompass a gently rolling upland deposited during the Vashon Stade of the last episode of continental glaciation, which ended approximately 13,500 years ago. Review of geologic maps (Newcomb, 1952) indicates that the site is underlain by Vashon Till, which consists of a dense heterogenous mixture of silt, sand, and gravel. The till is typically characterized by relatively low vertical hydraulic conductivity, and may contain lenses of perched groundwater. Based solely upon local topography, any shallow groundwater in the vicinity would likely flow in a generally southwesterly direction.

3.0 INVESTIGATION METHODS AND OBSERVATIONS

This section provides a summary of project field methods and observations made during the subsurface investigation of the site. Additional detail on general project methodologies is provided in Appendix A.

3.1 SOIL BORING AND SAMPLING

On October 6 and 7, 2004, 12 borings (B-1 through B-12) were advanced by a Washington State licensed driller (ESN) using a combination direct push/hollow-stem auger drilling rig. An SES Washington State licensed hydrogeologist was present on the site to direct drilling and sampling, and to visually classify soil in accordance with the Unified Soil Classification System (USCS). All borings were logged and soil cores assessed for chemical odors and staining. A photoionization detector (PID) was used to qualitatively assess core samples for the presence of ionizeable chemical contaminants. Observations, along with other relevant geologic and hydrologic conditions encountered during drilling, were recorded on boring logs, copies of which are presented in Appendix B.

Soil samples collected from clear plastic sleeves were placed in laboratory-prepared VOA vials labeled with boring number, sample interval, time, date, SES project number, and required analyses. Filled sample VOAs were placed immediately in a chilled ice chest and stored there until delivered to the project laboratory. Soil samples were not collected from intervals presenting no evidence (odor, PID reading, sheen) of contamination with petroleum hydrocarbon products.

Boring B-1, which was completed as a monitoring well (MW-1) was drilled to assess soil and groundwater conditions in the northeastern corner of the remediation excavation (the area with the deepest GRPH and BTEX impacts) where a soil sample collected during the earlier (GeoEngineers) remediation effort contained 14,000 mg/kg GRPH. Borings B-3, B-4, B-5, B-6, and B-8 were drilled along the western and southern edges of the remediation excavation to assess GRPH and BTEX impacts outside of the backfilled excavation. Boring B-7 was drilled to the north of the excavation to assess soil quality on the upgradient side of the excavation, primarily because evidence of contamination was noted while drilling MW-1. Boring B-9 was completed inside the south end of the backfilled excavation to assess conditions in this area. Borings B-2, B-10 (completed as monitoring well MW-2), B-11, and B-12 were completed to assess whether shallow groundwater was present and the lateral extent of any GRPH and/or BTEX impacted soil topographically downgradient from the backfilled excavation.

3.2 MONITORING WELLS AND GROUNDWATER SAMPLING

Two borings, MW-1 and MW-10, were completed as two-inch diameter monitoring wells. Each wellhead was protected with a steel, locking flush-mount monument.

Monitoring well MW-1 was constructed in the northeast corner of the backfilled excavation. The well was screened from 5 feet bgs to 20 feet bgs with 0.10 slot screen, and topped off with 5 feet of riser. The purpose of the well was to facilitate the collection of groundwater samples from what was the most highly contaminated portion of the former UST cavity, based on GeoEngineers earlier work.

Monitoring well MW-2 (constructed in Boring B-10) was drilled to the southwest and topographically downgradient of the backfilled excavation to assess groundwater conditions. The well was screened with 0.10 slot 2-inch PVC from 15 to 30 feet bgs, and topped with

15 feet of blank riser. This screened interval was selected to ensure that it was below the elevation of backfill in the excavation. To date, this monitoring well has not produced any groundwater, which suggests that shallow groundwater on the site is present only in the UST system excavation backfill in this area.

Thin zones of wet (but not saturated) soil were noted in borings B-4, B-5, B-6, B-7, B-8, B-11, and B-12 during drilling, as noted in the boring logs. To determine whether construction of monitoring wells in any of the borings was warranted, SES had the driller probe each boring with a steel rod after completion of the boring to determine whether the boring was likely to produce any groundwater. Initially, borings were allowed to remain open for an hour before probing and backfilling with bentonite chips. These borings remained dry, and monitoring wells therefore were installed in these borings.

The groundwater sample collected from monitoring well MW-1 was placed in laboratoryprepared glassware labeled with boring number, sample interval, time, date, SES project number, and required analyses. Filled sample containers were placed immediately in a chilled ice chest, and stored there until delivered to the project laboratory.

3.3 LABORATORY ANALYSIS

Selected soil and groundwater samples were submitted under chain-of-custody protocol to North Creek Analytical (NCA) in Bothell, Washington, for chemical analysis. A copy of the chain-of-custody form and laboratory-prepared analytical reports are provided in Appendix C. The single water sample was analyzed for GRPH, diesel-range petroleum hydrocarbons, VOCs, SVOCs, and lead. Seventeen soil samples were selected for analysis for GRPH and BTEX. Results are discussed in terms of cleanup levels in Section 4.2 of this report.

4.0 INVESTIGATION OBSERVATIONS AND RESULTS

4.1 FIELD OBSERVATIONS

In areas outside the former UST excavation, the site is underlain to depths of 10 to 14 feet bgs by dry to damp fill materials consisting of silty sand, sandy silt, gravel/sand/silt mixtures, and clay. There is a layer of slag up to 4-feet thick beneath the site along the southwestern portion of the study area. The slag consists of 0.2- to 0.5-inch diameter, dark gray to black, angular clasts. Native soil appears to be the clayey silts and sands observed from 9 to 12 feet bgs in of most of the borings. Figure 3 presents cross-sections that depict the distribution of the various soil types in the southwestern portion of the study area. The locations of Sections AA', BB', and CC' are shown as a dashed line in Figure 2.

Soil inside the former UST excavation appears to consist of dry sandy gravel pit run material. A thin layer of perched groundwater was noted at approximately 16.5 feet bgs near the base of the pit run backfill in boring MW-1 during drilling. Later measurement of the depth to groundwater, after monitoring well MW-1 had been constructed and groundwater levels allowed to equilibrate, indicated that groundwater is approximately 10 feet bgs in the vicinity of MW-1. Farther to the south within the former excavation in boring B-9 (Figure 2), no groundwater was detected. This suggests that the northeastern corner of the backfilled excavation, which was excavated to greater depths than elsewhere in the excavation, behaves as a "sump" into which water in the backfilled excavation drains and collects.

A 1 to 2-inch thick layer of perched groundwater was detected during drilling along the base of the slag layer in borings B-3, B-6, B-8, B-11, B-12, and in the boring for monitoring well MW-2. Monitoring well MW-2, which was drilled to a depth of approximately 30 feet and screened to prevent influx of water collected in excavation backfill, was dry when checked for water three days after the well had been constructed. The well remained dry when checked one week later. The absence of groundwater at 30 feet bgs suggests that, aside from a localized area of perched groundwater in the excavation backfill and a thin (1 to 2 inches) localized zone at the base of the slag fill layer, groundwater in the vicinity of the site is over 30 feet bgs.

4.2 GROUNDWATER ANALYTICAL RESULTS

The groundwater analytical results from the SES investigation are summarized in Table 2 and also in Figure 2. Copies of laboratory reports are presented in Appendix C.

The groundwater sample collected from monitoring well MW-1 contained 3,140 μ g/L GRPH, exceeding the 800 μ g/L cleanup level. Benzene, toluene, ethylbenzene, and total xylene concentrations were less than their respective cleanup levels. No diesel- or motor oil-range petroleum hydrocarbons were detected in the sample. Naphthalene, detected at a concentration of 19.1 μ g/L, was the only SVOC detected in the sample. The naphthalene concentration was less than the 160 μ g/L cleanup level. As noted earlier, monitoring well MW-2 was dry.

Groundwater at the site may be limited to the northeastern corner of the former UST hold. Given the apparent absence of groundwater elsewhere (B-9) in the excavation and at depth (MW-2), it appears that the groundwater encountered in monitoring well MW-1 is a localized occurrence. Since the UST system excavation was deepest in the vicinity of monitoring well MW-1, water infiltrating the relatively permeable excavation backfill collects at this sump-like location.

4.3 SOIL ANALYTICAL RESULTS

The soil sample collected from 16 feet bgs in boring B-7 contained 364 mg/kg GRPH, exceeding the 30 mg/kg cleanup level (Table 3, Figure 2). The soil sample also contained benzene (0.208 mg/kg) and xylenes (13.4 mg/kg) in concentrations exceeding their respective cleanup levels. Based on field evidence, the contaminated horizon appears to extend from 15.5 feet bgs to 16 feet bgs. The presence of GRPH, benzene, and xylenes in concentrations greater than their respective cleanup levels in this soil sample indicates that not all soil requiring remediation (soil containing GRPH and/or BTEX in concentrations exceeding cleanup levels but with concentrations sufficiently low to make in-field measurements ineffective) was removed from the area during remediation. Soil samples collected by GeoEngineers (EX-5-6, and EX-6-5) from depths of 5 to 7 feet bgs along the edges of the northeast portion of the UST system excavation, and analyzed for GRPH and BTEX, contained less than detectable concentrations of these contaminants (Table 1 and Figure 2). The depths from which these two samples were collected appear to have been higher in the soil column than the contamination detected at 16 feet bgs in boring B-7.

GRPH and benzene concentrations in soil samples collected from borings placed along the outside edge of the southwestern corner of the former remediation excavation (B-3, B-4, B-5, and B-6) contain GRPH and benzene in concentrations greater than their respective cleanup levels (Table 3, Figure 2). GRPH concentrations in soil samples collected from these borings ranged from less than detection to 338 mg/kg. Benzene concentrations ranged from less than the detection limit to 0.692 mg/kg. In GeoEngineer's compliance samples (EX-13-7, EX-14-7,

EX-23-6, EX-24-5, and EX-25-6) collected from the same area, GRPH concentrations ranged from 6 mg/kg to 6,200 mg/kg, and benzene concentrations ranged from less than 0.06 mg/kg to 3.6 mg/kg. Excavation farther to the southwest along the southwest end of the excavation during the earlier remediation effort was precluded by the presence of a 4-foot-diameter storm sewer main, which crosses the property. No evidence of contamination was noted in soil cores collected from boring B-8, and no samples were submitted for analysis. Based on field evidence and analytical results, the contaminated horizon along the southern edge of the former remediation excavation appears to occur from approximately 3 to 8 feet bgs. In the vicinity of boring B-6, there appear to be two contaminated horizons: one from 3 to 5 feet bgs, and another from 11 to 14 feet bgs.

The soil sample collected from 11 to 12 feet bgs in boring B-11 (located near the property boundary approximately 15 feet southwest of the former UST system excavation wall) contained 0.123 mg/kg benzene, exceeding the cleanup level. This occurrence appears to be related to the deeper contaminated horizon identified in boring B-6.

No evidence of contamination was noted while drilling borings B-2 or MW-2, which are both located on the downgradient side of the 4-foot-diameter storm sewer main. A sample of slag collected from the wet bottom of the slag interval in boring B-12 produced a PID reading of 1,280 ppm equivalent. Analysis of the sample indicates that, while GRPH and BTEX are present (Table 2 and Figure 2), concentrations are less than their respective cleanup levels. The data suggest that contaminated soil does not extend past the storm sewer main.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the information developed during this investigation, it appears that an as-yetundefined volume of soil along the north-central edge of the former remediation excavation, and along the south-central and southwestern edge of the excavation contain GRPH, benzene, and in one instance, xylenes, in concentrations greater than their respective cleanup levels. Earlier work by GeoEngineers (GeoEngineers, 2004) data suggest that soil (comprising the former bottom of the excavation) in the northwest corner of the UST system excavation remains contaminated with GRPH and some BTEX components. Excavation of affected soil along the southwest side of the excavation during the earlier remediation effort appears to have been precluded by the presence of a buried storm sewer main.

SES recommends excavating GRPH-contaminated soil along the southwestern corner and north-central edge of the former remediation excavation, where GRPH and BTEX were documented to be present during this investigation. Excavation activities would best be supported by an on-site laboratory, which would facilitate decisions regarding the extent of excavating required to bring the site into compliance with MTCA regulations. Based on currently available data, SES estimates that approximately 180 to 200 tons of contaminated soil will require excavation and disposal, and an additional 525 to 550 tons of overlying uncontaminated soil will require excavation and storage on site for later use as backfill.

Prior to excavation, SES will need to coordinate with the City of Everett to shore and excavate under the storm sewer main and along the Broadway right-of-way. The services of a geotechnical/structural engineer will likely be needed to ascertain whether (1) the storm sewer main will require stabilization/shoring while excavating along the southwest end of the former remediation excavation, or (2) removal of contaminated soil from below the sewer on a section-

by-section basis would eliminate the need for shoring, and (3) shoring excavation walls along the Broadway right-of-way would be required.

Perched groundwater in the localized sump-like area in the northeastern corner of the excavation contains 3,140 μ g/L GRPH, which exceeds the 800 μ g/L cleanup level. Some form of dewatering and treatment will be necessary to bring the site into compliance.

No groundwater was encountered to 30 feet bgs on the southwest side of the former remediation excavation, suggesting that deeper aquifers are unlikely to have been affected by the release. The only groundwater encountered in any of the borings (aside from boring B-1 in which monitoring MW-1 was built) occurred as a 1-to 2-inch thick seam at the bottom of the slag layer encountered in borings on the southwestern portion of the study area.

6.0 STANDARD LIMITATIONS

The findings and conclusions documented in this report have been prepared for the specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. A potential always remains for the presence of unknown, unidentified, or unforeseen subsurface contamination on portions of the property not sampled, such as under the building. No warranty, expressed or implied, is made. This report is for the exclusive use of the Time Oil and its representatives.

If new information is developed in future site work (which may include excavations, additional borings, or other studies), SES should be contracted to reevaluate the interpretations in this report, and to provide amendments as required.

7.0 REFERENCES

GeoEngineers, March 22, 2004, UST Removal Site Assessment, Time Oil Facility #01-169.

Newcomb, R.C., 1952, *Groundwater Resources of Snohomish County, Washington*, Water Supply Paper No. 1135, 133 pps., 2 plates, 6 tables, 19 figures.

FIGURES

	INSE	et: Si	te Pl	AN	N	
		800 ⁰⁰		tudy rea Buil	Iding	
Soil (mg/kg)	5' bgs		bgs		7' bgs	
GRPH	ND 0.053		ND		ND	
Benzene Toluene	0.055 ND		0.215 ND		0.124 ND	
Ethylbenzene	ND		ND		ND	
Xylènes	ND		0.384		0.305	
Soil (mg/kg)	4' bgs	Ę	5' bgs		7' bgs	
GRPH	ND 0.0597		ND		10.2	
Benzene Toluene	0.0597 ND		0.101 ND		0.196 ND	
Ethylbenzene	ND		0.0719		0.385	
Xylenes	ND		0.294		1.72	
Soil (mg/		' bgs	8' bç	gs		
GRPH Benzene	6	4.3 0.628	62.5 0.6		-	
Toluene		0.826	ND		-	
Ethylbenze	ne	1.44	ND)]	
Xylenes	(5.47	0.2	286		
2, No field evide	ence for cor	ntaminat	ion			
Soil (mg/kg	g) 4'	bgs	11.5′	bgs	14' bgs	
GRPH		3.4	338	-	101	

soil (mg/kg)	4' bgs	II.5' bgs	14' bgs
GRPH	18.4	338	101
Benzene	0.256	0.187	0.388
Toluene	ND	0.078	ND
Ethylbenzene	0.314	1.36	0.495
Xylenes	2.01	6.76	1.99

MW-2 (B-10) Dry on 10/7/04. No field evidence for contamination

Coil	(ma/ka)	12' bas	

Soil (mg/kg)	12' bgs
GRPH	20.6
Benzene	ND
ſoluene	ND
Ethylbenzene	0.107
Xylenes	0.120

B-12

A

TABLES

Table 1 Summary of Chemical Analytical Results - Soil¹ Time Oil Facility #01-169, Everett, Washington

Soil Sample Number	Date Sampled	Depth (feet)	GRPH ² (mg/kg)	Benzene ³ (mg/kg)	Toluene ³ (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes ³ (mg/kg)	Methyl Tert-Butyl Ether ³ (mg/kg)	1,2-Dichloroethane (EDC) ⁴ (µg/kg)	1,2-Dibromoethane (EDB) ⁴ (µg/kg)	Naphthalene ⁵ (mg/kg)	Lead ⁵ (mg/kg)
EX-1-14	12/02/03	14	120	0.2	< 0.1 ⁷	1.4	10	-	-	-	-	-
EX-2-13	12/02/03	13	12	0.07	0.1	0.3	2.3	-	-	-	-	-
EX-3-13	12/02/03	13	160	0.2	0.1	2.0	12	-	-	-	-	-
EX-4-13	12/02/03	13	4	< 0.03	< 0.05	0.1	0.3	-	-	-	-	< 4.2 ⁷
EX-5-6	12/02/03	6	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-6-5	12/02/03	5	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-9-7	12/02/03	7	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-11-7	12/02/03	7	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-12-7	12/02/03	7	<mark>69</mark>	0.3	< 0.05	0.3	2.1	-	-	-	-	-
EX-13-7	12/02/03	7	<mark>93</mark>	< 0.06	0.1	0.6	4.4	-	-	-	-	-
EX-14-7	12/02/03	7	23	0.2	1.4	0.4	2.0	-	-	-	-	-
EX-17-3	12/02/03	3	3,900	< 3.0 ⁷	10	22	150	-	-	-	-	-
EX-18-3	12/02/03	3	4,700	< 3.0 ⁷	50	39	220	-	-	-	-	-
EX-19-3C ⁸	12/02/03	3	990	0.8	3.4	9.0	51	-	-	-	-	-
EX-20-15 ⁹	12/02/03	15	14,000	42	33	200	1,100	< 20 ⁷	< 1,100 ⁷	< 1,100 ⁷	35	-
EX-21-17	12/02/03	17	< 3	< 0.03	< 0.05	< 0.05	< 0.2	< 0.1	< 11	< 11	< 0.02	-
EX-22-8	12/05/03	8	< 3	10	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-23-6	12/05/03	6	2,800	3.6	33	30	150	-	-	-	-	-
EX-24-5 ⁹	12/05/03	5	6,200	< 3.0 ⁷	7.1	<u>68</u>	320	-	-	-	-	-
EX-25-6	12/05/03	6	6	0.05	< 0.05	< 0.05	0.4	-	-	-	-	-
EX-26-5	12/05/03	5	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
EX-27-9 ¹⁰	12/05/03	9	< 3	< 0.03	< 0.05	< 0.05	< 0.2	-	-	-	-	-
DSP-1	12/02/03	1	310	0.3	0.6	2.8	18	-	-	-	-	< 4.7 ⁷
MTCA ¹¹ Met	thod A clear	nup levels	100/30 ¹²	0.03	7	6	9	100	N/L ¹³	5	5	250

1. Chemical analyses conducted by CCI Analytical Laboratories of Everett.

2. GRPH = Gasoline-range petroleum hydrocarbons by Northwest Method NWTPH-Gx.

3. Benzene, toluene, ethylbenzene, total xylenes, and methyl tert-butyl ether as analyzed by EPA Method 8021.

4. EDB and EDC analyzed by EPA 8260.

Naphthetene analyzed by EPA 8270 SIM. Expanded naphtalenes analytical data is presented in Attachment D.
 Lead analyzed by EPA 6010.

7. Laboratory reporting limits are increased because of sample dilution during analysis.

8. Composite sample collected below western fuel dispenser island.

9. Volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH) analyses by WDOE-VPH and WDOE-EPH, respectively. VPH and EPH analytical results are presented in Attachment D. 10. Sample collected from overexcavation completed beyond sample EX-19-3C.

11. MTCA = Washington State, Model Toxics Control Act, Method A Cleanup levels

12. 100 mg/kg when benzene is not present and 30 mg/kg when benzene is present.

13. MTCA Method A cleanup level for EDC is not available.

mg/kg = milligrams per kilogram. µg/kg = micrograms per kilogram. - = not analyzed.

Bold font indicates soil samples from areas of excavation with total petroleum hydrocarbon concentrations exceeding site-specific cleanup value of 3,176 mg/kg.

Red indicates concentration exceeding MTCA Method A cleanup level.

Table data taken from UST Removal Site Assessment (GeoEngineers, March 22, 2004).

Table 2

Summary of Analytical Results – Groundwater (µg/L)

Time Oil Facility #01-169

851 Broadway, Everett, Washington

Soil Sample Number		MW-1
Date Sampled	MTCA Method A Cleanup Levels	10/07/04
Depth (feet)		(ug/L)
Benzene	5	0.666
Toluene	1,000	0.736
Ethylbenzene	700	57.9/41.1
Total Xylenes	1,000	221.6/171
TPH-G	800/1,000	3,140
TPH-D	500	ND
TPH-Motor Oil	500	ND
n-Butylbenzene		27.2
Isopropylbenzene		11.5
Naphthalene	160	19.1
n-Propylbenzene		48.8
1,2,4-Trimethylbenzene		316
1,3,5-Trimethylbenzene		107
Semi-volatile Organics		ND
Lead	15	0.00109

Chemical analyses conducted by North Creek Analytical laboratory.

TPH-G = gasoline-range petroleum hydrocarbons by Northwest Method NWTPH-Gx.

TPH-D =diesel-range petroleum hydrocarbons by Northwest Method NWTPH-Dx.

Benzene, toluene, ethylbenzene, total xylenes as analyzed by EPA Method 8021.

MTCA = Washington State, Model Toxics Control Act, Method A Cleanup levels.

Red indicates concentration exceeding MTCA Method A cleanup level.

 μ g/L = micrograms per liter

Table 3 Summary of Analytical Results – Soil Time Oil Facility #01-169 851 Broadway, Everett, Washington

Soil Sample Number	Date Sampled	Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH-G (mg/kg)
B1-17	10/06/04	/04 17 ND		ND	ND	0.419	32.7
B1-18	10/06/04	18	ND	ND	ND	ND	ND
B3-7	10/06/04	7	0.628	0.0826	1.44	6.47	64.3
B3-8	10/06/04	8	0.692	ND	ND	0.286	62.5
B4-5	10/06/04	5	0.053	ND	ND	ND	ND
B4-6	10/06/04	6	0.215	ND	ND	0.384	ND
B4-7	10/06/04	7	0.124	ND	ND	0.305	ND
B5-4	10/06/04	4	0.0597	ND	ND	ND	ND
B5-5	10/06/04	5	0.101	ND	0.0719	0.294	ND
B5-7	10/06/04	7	0.196	ND	0.385	1.72	10.2
B6-4	10/06/04	4	0.256	ND	0.314	2.01	18.4
B6-11.5	10/06/04	11.5	0.187	0.0780	1.36	6.76	338
B6-14	10/06/04	14	0.388	ND	0.495	1.99	101
B-7-16	10/07/04	16	0.208	1.51	2.72	13.4	364
B-9-12	10/07/04	12	ND	ND	0.209	0.428	12.4
B11-12	10/07/04	12	0.123	0.0832	0.112	0.298	13.0
B12-12	10/07/04	12	ND	ND	0.107	0.120	20.6
MTCA Meth	od A cleanup	levels	0.03	7	6	9	100/30 ^a

Chemical analyses conducted by North Creek Analytical (NCA)

Benzene, toluene, ethylbenzene, total xylenes analyzed by EPA Method 8021.

MTCA = Washington State, Model Toxics Control Act, Method A Cleanup levels.

TPH-G = petroleum hydrocarbons as gasoline by Northwest Method NWTPH-Gx.

TPH-Dx = petroleum hydrocarbons as diesel by Northwest Method NWTPH-Dx.

mg/kg = micrograms per kilogram

Red indicates concentration exceeding MTCA Method A cleanup level.

 $^{\rm a}100~{\rm mg/kg}$ when benzene is not present and 30 mg/kg when benzene is present.

APPENDIX A

Standard Project Methods and Practices

STANDARD PROJECT METHODS AND PRACTICES

A.1 HEALTH AND SAFETY PLAN

As part of the investigation, SES prepared a project-specific Health and Safety Plan (HASP) in accordance with Chapter 296-62 of the Washington Administrative Code (WAC) and 29 CFR 1910.120 (Code of Federal Regulations). The HASP identified potential physical and chemical hazards associated with the investigation, and specified requirements regarding personal protection and safety monitoring protocols. Health and safety meetings were held on site at the beginning of each workday to review aspects of the HASP, and to provide on opportunity for SES site workers to discuss health and safety issues or concerns. On-site SES personnel involved with the field activities were required to be familiar with and comply with provisions stipulated in the HASP. Subcontractors on the site were required to have their own HASP identifying potential physical and chemical hazards associated with their own work practices.

A.2 UTILITY LOCATES

Before implementing the drilling program, the public underground utilities alert service was notified of drilling activities. The service contacted appropriate agencies and/or companies with underground utilities in the area. These agencies then marked the location of their utilities along the rights-of-way and property easements. Additionally a private locating service, Locating, Inc. was subcontracted by SES to check for on-site utilities and to clear each proposed drilling location.

A.3 DRILLING AND MONITORING WELL INSTALLATION

Borings and monitoring well installations were completed by ESN, of Olympia, Washington. Drilling procedures were as follows:

- Borings were completed using a combination hollow-stem auger/geoprobe direct push drill rig.
- Tools were cleaned before beginning each boring by following the decontamination procedures described in Section A.5.
- During drilling, soil cores were collected using a decontaminated, stainless steel sampler lined with clear PVC sleeves. At each interval, the sampler was driven 24 to 48 inches using hydraulic pressure.
- Selected recovered soil core was divided and a small portion was placed in a plastic bag with a small amount of water to visually assess the sample for the presence of stains and/or chemical films. Intervals selected for potential laboratory chemical analysis were left undisturbed and handled as described in Section A.4.
- Soil characteristics including texture, color, hardness, and moisture content were recorded on boring logs. Soil were classified using the Unified Soil Classification System (USCS). The depths of any changes in lithologies and first encountered groundwater were also noted on the boring logs.

• Waste materials, including drill cuttings and decontamination water generated during the field program, were handled as described in Section A.5.

A.4 SAMPLE COLLECTION AND HANDLING PROCEDURES

A.4.1 Soil Samples

The sampler was opened longitudinally and the 24 and 48-inch plastic sample sleeves containing the undisturbed soil samples were extracted using decontaminated stainless steel sampling tools.

Soil was collected from selected areas throughout the 24 and 48 inch core run, and placed into laboratory-prepared 4 oz. glass sample jars. Each soil sample container was labeled as detailed in Section A.6.4, and recorded on the Chain-of-Custody form (see Section A.6.3). All samples were placed immediately into a chilled cooler maintained at 4 degrees Centigrade or lower, where they were stored until delivered to the project laboratory.

All sampling equipment was decontaminated, as detailed in Section A.5.

A.4.2 Groundwater Samples

Groundwater samples were collected using a peristaltic pump with dedicated tubing to prevent cross-contamination. Prior to the collection of groundwater samples, each monitoring well was purged of approximately three well volumes of water to ensure that the samples were representative of ambient conditions. Purge water was poured into a 10-gallon drum, and stored pending disposal. Water samples were collected directly from the PVC tubing output form the pump, and placed into appropriate laboratory-prepared glass containers, which were labeled as described in Section A.6.4 and placed into a chilled cooler maintained at 4 degrees Centigrade or lower until delivered to the project laboratory. Groundwater sample custody was documented as described in Section A.6.3.

A.5 EQUIPMENT DECONTAMINATION AND WASTE HANDLING

Field equipment decontamination procedures are intended to prevent cross-contamination from one boring to another, and from one sample to another. Non-expendable boring and sampling equipment was thoroughly cleaned between each use. Equipment or materials that could not be completely decontaminated, such as sleeves and disposable bailers, were discarded and new materials used.

Before and after each use, all down-hole equipment (i.e., split-spoon sampler, water level indicator, bailer, etc.) was washed in an aqueous solution of cleanser, and then rinsed with distilled or de-ionized water.

All potentially dangerous wastes, including gloves, samplers, sleeves, and wash water were placed in 10-gallon drums and left on site pending analysis. These materials can be disposed of during the remediation of the site, or alternatively can be picked up by a waste disposal company.

A.6 FIELD DOCUMENTATION

Physical parameters were documented throughout the project. Documentation included field notebooks, boring logs, hydrologic data sheets, sampling field data sheets, Chain-of-Custody forms, and sample labels. Each of the forms of documentation is described in detail below.

A.6.1 Field Documentation

Field data recorded at the time of sample collection provides an unambiguous record of each sample. Recorded field data included the following, as appropriate:

- Date of entry;
- Purpose of sampling;
- Description of sample(s);
- Number and size of sample(s) taken;
- Description of sampling point(s);
- Date and time of sample collection;
- Sample identification number(s);
- References, such as maps or photographs of the site;
- Written notes of field observations; and
- Any field measurements, such as pH, temperature, or resistance to penetration.

Field notes were as descriptive and as inclusive as possible; allowing independent parties to reconstruct sampling particulars from the recorded information. Language was objective, factual, and free of inappropriate terminology. Field personnel logged and signed data entries. All field documentation was retained and filed by SES.

A.6.2 Boring Logs

A written log was compiled for each boring by the attending geologist as the boring was advanced. Each log includes descriptions of lithologies, textures, grain sizes, colors, hardness, moisture, and other properties noted in the field. Soil types were classified using the Unified Soil Classification System. If the boring was completed as a monitoring well, well construction details were included on the boring log, and the approximate depth to groundwater was noted. At the completion of a drilling project, SES retained all original well log forms in the project file.

A.6.3 Chain-of-Custody Form

The Chain-of-Custody documents created whenever samples are collected, transferred, stored, analyzed, and destroyed are designed to create an accurate record of the possession and disposition of samples. Chain-of-Custody records can be used to trace the possession and handling of a sample from the moment of its collection through analysis and reporting of analytical values. On this project, SES' project geologist entered standard sample information on the project Chain-of-Custody form at the time each sample was collected.

The project Chain-of-Custody form included information regarding the site name, sample identification numbers (assigned by the sampler in the field), sample date(s), sample location(s), and the type of analysis required. Whenever the sample(s) were transferred from one party to another, both parties signed the Chain-of-Custody form and recorded the date and time of the transfer. The Chain-of-Custody form accompanied the samples through all custodial entities until received by the project laboratory, where the form is filed.

A.6.4 Sample Labels

Sample labels were filled out and affixed to appropriate containers at the time of sample collection. Each label was completed with indelible ink and included information regarding the SES project number and name, sample ID number, sample location, date and time of collection, analyte preservative(s), if any, and the sampler's initials.

A.7 ANALYTICAL LABORATORY TESTING PROGRAM

Samples intended for chemical analysis were submitted to [Lab name] of [city], Washington under chain-of-custody protocol. All samples were contained, handled, and analyzed in accordance with accepted U.S. Environmental Protection Agency (EPA) and/or Washington State Department of Ecology protocols.

A.7.1 Laboratory Reporting

Results from laboratory analyses are reported on Laboratory Data Sheets. The summary sheets present information including the sample date, sample identification numbers, and results of analyses. The laboratory manager or supervisor signs the data sheets.

Prior to reporting the analytical data, the data was reviewed and verified by the project chemist. The purpose of this review was to verify the following:

- All blanks, duplicates, and matrix and surrogate spike recoveries were within the quality.
- acceptance limits and all instrument calibrations were acceptable.
- All computations were performed correctly, and all sample results were correctly identified and reported. The analytical laboratory's project manager performs this review.

A.7.2 Laboratory Quality Assurance and Quality Control

The project laboratory was capable of performing analyses in accordance with the Federal Safe Drinking Water Act and Ecology regulations. In addition, the laboratory is accredited by Ecology for hazardous materials analysis. A copy of the laboratory's QA/QC manual and accreditation certificate are available for review upon request. Laboratory data quality was verified based on independent review by qualified SES personnel.

A.8 PROJECT REPORT QUALITY ASSURANCE

The quality of this report was assured through technical review of the report and other project deliverables by peers and SES principals. Individual sections of the report were reviewed by professionals with relevant technical expertise to ensure that data, technical issues, and regulatory interpretations are accurate and applicable. The Project Manager provided the complete draft deliverable (including all figures, tables, and appendices in final format) to the Principal-in-Charge for final review before submittal. The Principal-in-Charge is ultimately responsible for the technical quality of all client submittals generated as part of this project.

APPENDIX B Boring Logs

Notes					Boring:	ub " 90	undu co	il bolow fill is	act coture	sted	Drilling Co./Drill Drilling Method:	Com		
Shee	er app en on	water	in wa	shtub	after cleaning	auger.	indy so	II DEIOW TIII IS	not satura	neo.	Location: 15'	N, 12 VV from I	NAA CO	rner
		Cont							Water	Levels				
					, Mst = Moist				T Afte	er Completion	Surface Conditi		nalt	
					O = no odor,		-		1.000	ring Drilling	Total Depth (ft)			
W	O = v	weak	odor,	МО	= moderate of	odor, S	SO = s	strong odor	_	5 5	First GW Depth	(ft): 16		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on		Moisture Content	Well Detail
D							Fill			backfill to 16 feet				
16 —						\approx	GP				derate hydrocarb		Ţ	
17 —			100		B-1-17								-	
_					B-1-18			2% gravel,	weak hyd	well-sorted, medi rocarbon odor	um to fine-grained	I SAND, I TO		
8			100		D-1-10		SM	Monitoring	vell instal	led as depicted a	bove right, using 2	2-inch		
9			100		B-1-19 B-1-20			diameter P chips.	/C, 0.010	slot screen, 3-20	silica sand, and	1-3 bentonite		
.0					v	·		Boring term	inated at	20 feet below gro	und surface.			
21	Boring terminated at 20 feet below ground surface. Boring terminated at 20 feet below ground surface. Date Started: 10/6/2004 Date Started: 10/6/2004)

Loa	of	Expl	ora	tory	Boring:						Drilling Co./Drille	er: ESN	/ Don	
Votes			ora	,	Doningi						Drilling Method:	Prob	e	
											Location: 9' N	, 47' W from SV	V corn	er
	4	C							14/		-			
		Dry, D			, Mst = Moist	t. Wet	= Wet		Water Lev		Surface Condition	on: Asph	alt	
	-				O = no odor,				- I After C		Total Depth (ft) :	29		
					= moderate		-		∑ During	Drilling	First GW Depth	(ft) :		
			ery (_									t	
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on		Moisture Content	Well Detai
_				: :										
		3.7	100				<u>CL</u>	Moist, medi Damp, silty	<u>avel, sand FIL</u> i <u>um dense, gr</u> , gray, well-so 10% gravel cl	ay-blue CLA	/, plastic. nedium-grained SA , no hydrocarbon c	 ND, medium odor		
_								Gravel ends	s at 3.5 feet					
		1.8	100				SM							
		6	100				Pot shard - fill? wet from 7 to 8 feet, dry below							
_					No Samples		CL	Moist, blue-gray, plastic CLAY						
		6.3					SM	Damp, gray	y, silty, well-so	rted, medium	, no hydrocarbon o i-grained, dense S/	AND (wet 13		
			100					_ to 13.2 feet Damp, dens buff at 16 fe	se, plastic, silt	— — — — — — — ty CLAY, gray xide/buff 14 to		 t grades to carbon odor		
		0	100				CL-ML	Damp, grac hard, no hy	des to buff, sa drocarbon odd	ndy, silty CLA or	Y, oxide/buff mottl	ling, dense,		
		U	100			0	SP	Damp, gray well-sorted, <u>hydrocarbo</u>	, medium-graii	ND, angular g ned grades to	ravel to .25 inch, s silty sand at 24 fe	and et, no 		
_							SW- <u>SM</u>		<u>st to wet), gra</u>					
			100					Dry, buff, si dense, no h	ilty, well-sorted nydrocarbon o	d, fine-graine dor	d SAND with trace	gravel,		
			100				SM							
_				. :				Borina term	ninated at 29 fo	eet below arc	ound surface			
	SES	OUNI NVIR TRATI	D ONM EGIE	ENT. S	AL	851 I	North E	lity 01-169 Broadway ashington		ate Started: ate Finished: ogged By: V hk By: B.Q. ES Project N	10/6/2004 10/6/2004 V.H. Rodgers	E	NG LC 3-2	

Log	of	Expl	ora	torv	Boring:	5-3-1 -					Drilling Co.	/Driller:	ESN	/ Don	
Notes				.,							Drilling Met	hod:	Com	00	
											Location:	50' W of build 21' N of SW	ding, corner		
Mois				-	Mat M.		_ 147		<u>Water</u>	Levels	Curfer C		A - 1	alt	
					, Mst = Mois				🗶 Aft	er Completion	Surface Co		Asph 16	alt	
					O = no odor, = moderate				⊻ Du	ring Drilling	Total Depth First GW D		10		
		weak					50 - 3				T IISt GVV D				
Depth (feet)	Blow Count	DID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descriptio	on			Moisture Content	Well Detail
0 —							Fill	Croy fill with	acabalt						
1 —					B-3-1			<u> Gray fill wit</u> ł Damp, gray		ND with gravel to			^		
2		0	100		B-3-2										
3 —					B-3-3										
4 —		6			B-3-4			weak hydro	carbon o	dor at 3 to 4 feet					
		0													
5 —		0			B-3-5		SM								
6 —		Ū	100		B-3-6										
7 —		25			B-3-7										
ľ —		30						darker than	6 to 7 fo	ot interval, very fai	int to no hydr	ocarbon odor			
8 —		20			B-3-8			(moderate r	iyarocari	oon odor from 7 to	8 teet)				
9 —		20													
10 —		3	100												
10			100				Fill	Damp, coar	se, black	slag, no hydrocar	bon odor				
11 —										ry fine-grained, sa	ndy SILT, no	hydrocarbon			
12 —							ML	odor, grade		clay					
13 —								2-inch grave	el seam						
								Buff. plastic	hard s						
14 —			100						Buff, plastic, hard, silty CLAY						
15 —							CL-ML								
10															
16								<u>no hydrocar</u> Boring term	bon odo	r t 16 feet below gro	und surface				
17 —								2 string torm		s is is a solution gro	2.14 541400.				
18 —															
-															
19 —															
20															
WWW.	Session	OUN NVIR TRAT	ON/ EGIE		AL	8511	North E	lity 01-169 Broadway ashington		Date Started: Date Finished: Logged By: W Chk By: B.Q. SES Project No File ID.: CUPPOOR	10/6/2004 /.H. Rodgers Hyde o.: 0440-002	0.2		NG LC 3-3 e 1 of	

Loa	of	Expl	ora	torv	Boring:						Drilling Co	./Drille	er: ESN	/ Don	
Notes				,							Drilling Me	ethod:	Com	bo	
											Location:	29' \ 14' I	N of building, N of SW corne	r	
		Cont							Water	r Levels					
					, Mst = Moist				🗴 Aft	ter Completion	Surface Co			nalt	
					O = no odor, = moderate o					ring Drilling	Total Dept				
	0-1	weak		, 100			50 = 5				First GW [Jepth	(ft) :		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descriptio	on			Moisture Content	Well Detail
0 —							Fill	0 1 611							
1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — 11 — 12 —		3 10 6 10	100		B-4-4 B-4-5 B-4-6 B-4-7		SP- SM	Gravel fill, a Damp, buff Wet Wet Moist, blue- inches							
12								Boring term	Boring terminated at 12 feet below ground surface.						
14 —															
15 —															
16 —															
17 —															
10	8														
18 —															
19 —															
20 —															
A CAR	Everett Facility 01- 851 North Broadw Everett, Washingt									Date Started: Date Finished: Logged By: W Chk By: B.Q. SES Project NG File ID.: THE OLE	10/6/2004 /.H. Rodgers Hyde o.: 0440-00	2		NG LC B-4 e 1 of	

Loa	of	Expl	ora	torv	Boring:						Drilling Co./[Driller: ES	SN / Dor	1
Notes				,							Drilling Meth	od: Co	ombo	
											Location:	13' W, 1' N of B4	4	
	4	0							14/		-			
		Cont			, Mst = Moist	. Wet	= Wet			Levels	Surface Con	dition: As	sphalt	
	-				O = no odor,					er Completion	Total Depth			
					= moderate				⊥⊻ Du	ring Drilling	First GW De			
Depth (feet)	Blow Count	0	Sample Recovery	Sample Interval		Lithography	USCS Class						Moisture Content	Well Detail
	B	DIA	Sa	Sa	Sample ID	Lit	ŝ			Descripti	on		Ŭ	
0 — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 —		3 2.5 0 27 8	100		B-5-4 B-5-5 B-5-6 B-5-7		Fill SM Fill SM	Asphalt, gra Damp, blue 3 to 6 feet - Wet, 5 to 6. 6 to 7 feet - Damp, dark Damp, dark Damp, blue hydrocarbor						
12								no hydrocar	bon odor					
- 16								Boring term	Boring terminated at 16 feet below ground surface.					
17														
18 —														
10														
19 —														
20 —														
Everett Facility 01-1 851 North Broadwa Everett, Washingto										Date Started: Date Finished: Logged By: V Chk By: B.Q. SES Project N File ID.:	10/6/2004 V.H. Rodgers Hyde o.: 0440-002		DRING L B-5 Page 1 o	

Loa	of	Expl	ora	torv	Boring:						Drilling Co	./Driller:	ESN /	/ Don			
Notes				,							Drilling Me	thod:	Comb	00			
											Location:		f building SW corner				
		Cont							Water	Levels							
					, Mst = Moist				▼ Aft	er Completion	Surface C		Aspha	alt			
					O = no odor,					ring Drilling	Total Dept		16				
VV	0 = 1	weak	oaor,	, MO	= moderate	odor, s	50 = 5	strong odor			First GW [Jeptn (ft) :					
Depth (feet)	Blow Count	DID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on			Moisture Content	Well Detail		
0 —								Acabalt									
1										, silty, gravelly SA	 ND						
· -	· · · · · · · · · · · · · · · · · · ·																
5	5 —																
6 —		0	100														
		1				0											
/		0															
8 —		Ū						vvet, black	siag, ver	y strong hydrocarb	on odor						
		0															
9		0					Fill										
10 —			100														
11		800															
-		85			B-6-11.5		SM	↓ ↓ Globules in	sheen te	est at 11.3 to 11.5	feet		1				
12 —								Damp, orga	Slobules in sheen test at 11.3 to 11.5 feet								
13 —								moderate h	ydrocarb	on odor	iou, olayey c	, wear					
		300															
14 —			100		B-6-14		ML										
15 —																	
		8															
								Boring term	inated at	16 feet below gro	und surface						
-								8 1 C									
19 —																	
20 —																	
Everett Facility 01-1 851 North Broadwa Everett, Washingto										Date Started: Date Finished: Logged By: V Chk By: B.Q. SES Project File ID.: CHRORY	10/6/2004 V.H. Rodgers Hyde o.: 0440-00	2		NG L0 3-6 e 1 of			

Log	of	Exp	lora	torv	Boring:						Drilling Co./	Driller: ES	SN / Don				
Notes				,	20						Drilling Meth	nod: Co	ombo				
											Location:	26' N, 33' W of N	IW corn	er			
									1		_						
		Con			, Mst = Mois	+ 10/0+	- 10/01		Water	Levels	Surface Cor		phalt				
									📕 🗶 Aft	er Completion	Total Depth		-				
					D = no odor, = moderate				⊻ Du	iring Drilling	First GW De		-				
			1		modorato				1		1 1130 000 DC	γρατ (π) .		Т			
Depth (feet)	Blow Count	DID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on		Moisture Content	Well Detail			
0 —								A h - lt									
	1										grained, well- grained, well- hydrocarbon c	sorted SAND, dor					
4 — 5 — 6 — 7 — 8 — 9 —		6 0	100				SM	gravel	Same as above, but moist to wet with lenses plant material, 30% gravel Very faint hydrocarbon odor 7 to 8 feet								
10			100				ML	Wet, brown	, clayey S	SILT, weak hydroc	arbon odor						
		0	100				CL	Damp, gray hydrocarbor	-green, s n odor	ilty CLAY, mottlec	l with oxide sp	ots, plastic, no					
15 110 B-7-16 Moist								odor to 15.7 Moist Buff, slightly	' feet / silty, fin	e-grained, well-so e to medium-grair							
19 — 20 —		20															
21								Boring term	inated at	20 feet below gro	und surface.						
Everett Facility 01-169 851 North Broadway Everett, Washington								Broadway		Date Started: Date Finished: Logged By: W Chk By: B.Q. SES Project No File ID.: Chemotry	10/7/2004 /.H. Rodgers Hyde o.: 0440-002		RING LO B-7				

Log	ofl	Expl	ora	tory	Boring:					Drilling Co./Drill		/ Don	
Notes										Drilling Method:		00	
										Location: 57' 14'	W of building S of NW corner		
Mois							- \\/		ter Levels	Surface Conditi	an: Aanh	alt	
					, Mst = Moist			Y /	After Completion			ait	
					0 = no odor, = moderate o				During Drilling	Total Depth (ft) First GW Depth			
			1									+	
Depth (feet)	Blow Count	DID	Sample Recovery	Sample Interval	Querra la ID	Lithography	USCS Class		Desciel			Moisture Content	Well Detail
0 -	B	ā	ů	Š	Sample ID		D		Descripti	on		Σ	
1 — 2 — 3 — 4 —			85				SW- SM	y silty, fine-grained S ed with oxide stain, i	AND with sporadi No hydrocarbon oc				
5 — 6 — 7 — 8 —			75					Black, angular sla feet, no hydrocarb					
9 — 10 — 11 — 12 —		0	100				SP- SM ML		SAND, no hydrocarb			-	
12 13 14 15 16 17 18 19 20	Boring terminated at 12 feet below ground surface.												
20 —	20 Date Started: 10/7/2004 Date Started: 10/7/2004 Date Started: 10/7/2004 NVIRONMENTAL TRATEGIES 851 North Broadway Everett, Washington Www.soundenvironmental.com Everett Facility 01-169 BORING L BORING L Bore Started: 10/7/2004 BORING L Date Started: 10/7/2004 BORING L Bore Started: 10/7/2004 Bore Started: 10/7/2004 Bore Started: 10/7/2004 Bore Started: 10/7/2004											B-8	

Log	of	Expl	ora	tory	Boring:						Drilling Co	./Driller:	ESN	/ Don		
Notes					Ŭ						Drilling Me	thod:	Comb	00		
											Location:	41' N, 31'	W of SW	corne	r	
Mois	turo	Con	tont						Motor	Levels	-					
					, Mst = Mois	t, Wet	= Wet				Surface Co	ondition:	Aspha	alt		
Hydr	ocal	rbon	Odo	r: N	O = no odor,	VFO =	= very	faint odor		er Completion ring Drilling	Total Dept	h (ft) :	12			
W	0 = \	weak	odor	, MO	= moderate	odor, S	SO = s	trong odor	⊥⊻ Du	ning Dhilling	First GW [Depth (ft) :				
Depth (feet)	Blow Count	DIA	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on			Moisture Content	Well Detail	
0 —							Fill	A and alt and								
1		18	100 100 100		B-9-12		SP CL-ML	Asphalt, gra Tank excav 9.5 to 10.8 f								
12								Boring term	nated at	12 feet below aro	und surface.					
12 B-9-12 M3442 Boring terminated at 12 feet below ground surface. 13 14 15 16 16 16 17 18 19 10 19 10 10 10 10 10 10 10 10 10																
A.	15	OUNI)							Date Started:						
WWW.	Sound	NVIR	ON/M EGIE		AL	851 N	lorth E	ity 01-169 Broadway ashington		Date Finished: Logged By: W Chk By: B.Q. SES Project No File ID.: CHEORED	/.H. Rodgers Hyde o.: 0440-002	,	B	BORING LOG B-9 Page 1 of 1		
												I				

Log	of	Expl	ora	tory	Boring:						Drilling Co.	/Driller:	ESN /	Don	
Notes		-Ap.	ora	,	Doningi						Drilling Met	thod:	Comb	0	
110100											Location:	60' W of build N of SW corn			7'
		Cont							Water	Levels					
	-			· · ·	, Mst = Moist				▼ Aft	er Completion	Surface Co		Aspha	alt	
					O = no odor,					ring Drilling	Total Depth		30		
W	O = v	weak	odor,	MO	= moderate of	odor, S	50 = s	trong odor			First GW D	epth (ft) :			
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on			Moisture Content	Well Detail
0							_Eill_	Asphalt, gra	avel				1		
1 2 3 4 5 6 7			100				SM	Gray-green	, silty, fin	e-grained, well-so hydrocarbon odor		amp, grading t	to		
8									ilar, slag eet		to 12.2 feet,		n		
13 14 15			100				CL-ML	well-sorted,	fine-grai	silty CLAY, plasti ned sand from 15 t, no hydrocarbon	.8 to 16 feet,	ed with damp grading t	to		
17 18 19 19 19 19 10 <								harder drillin sand pulled	ng to 30 f up to 13 well insta √C, 0.010	30 feet, driller repo feet. Driller tried t feet as auger pul	o end sand a led out. bove right, us	t 14 feet but we	t, et		
31 <u></u> 32								Boring term	inated at	t 30 feet below gro	ound surface.				
Everett Facility 01- 851 North Broadw Everett, Washingt										Date Started: Date Finished: Logged By: V Chk By: B.Q. SES Project N File ID.: CHROR	10/7/2004 V.H. Rodgers Hyde o.: 0440-002	2	BORII MW-2 Page	2 (B-1	0)

Log	of	Expl	ora	tory	Boring:						Drilling Co./Dril	ler: ESN	/ Don	
Notes					Ū						Drilling Method	: Com	ю	
									Location: 12	W, 8.8' S of B6				
Mois	ture	Con	tent:						Water	Levels	-			
					Mst = Mois	t, Wet	= Wet	t			Surface Condit	ion: Asph	alt	
Hydr	ocal	bon	Odo	r: NG) = no odor,	VFO =	= very	faint odor		er Completion ring Drilling	Total Depth (ft)	: 16		
W	0 = 1	weak	odor,	, MO	= moderate	odor, S	SO = s	strong odor	⊥ <u>v</u> Du	ning Drining	First GW Dept	n (ft) :		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on		Moisture Content	Well Detail
0 —						A 4 4		0						
1										ty, fine-grained, w		/ / / / / / / / / / /		
5 — 6 — 7 —	Image: Second state of the second s													
8 — 9 — 10 — 11 —		25	100		B-11-12		Fill	Dry, black, a	angular s	slag, no hydrocarb	on odor			
12 — 13 — 14 —		0	100		D-11-12		SP- SM	Damp, gray, from 11.5 to	Damp, gray, plastic, clayey, silty SAND, no hydrocarbon odor. Wet from 11.5 to 12.5 feet with moderate hydrocarbon odor					
								no recovery						
								Boring termi	nated at	16 feet bgs.				
17														
18 —	18 —													
10														
19 — —														
20 —												1		
WWW	sound	OUN NVIR TRAT	ON/ EGIE	-	۸L	851 N	North E	lity 01-169 Broadway ashington		Date Started: Date Finished: Logged By: W Chk By: B.Q. SES Project NM File ID.:	10/7/2004 /.H. Rodgers Hyde	E	NG LC 3-11 e 1 of 1	

Log	of	Expl	ora	torv	Boring:						Drilling Co./I	Driller: E	SN / Don				
Notes					2000						Drilling Meth	nod: C	Combo				
	•										Location:	23' S, 12' W of	B6				
											-						
					, Mst = Moist	Mot			Water	Levels	Surface Cor	dition: 4	sphalt				
	-									er Completion	Total Depth		6				
					O = no odor, = moderate				⊻ Du	ring Drilling	First GW De						
	-								I			1 \ \/ -		1			
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class			Descripti	on		Moisture Content	Well Detail			
0	B B B B Concrete Damp to dry, tan, silty, fine-grained, well-sorted SAND, 10% gravel to 1.75 inches, no hydrocarbon odor B B SW-SM SM B B SM SM											_ ~ to					
5 — 6 — 7 —	-		100				ML	Damp, gray, fine-grained, sandy SILT with clay, slightly plastic, no hydrocarbon odor ML Wet from 6 to 6.8 feet									
8 — 9 — 10 — 11 —	-	22	75				Fill			lag, no hydrocarb							
12 — 13 —	-	80	0		B-12-12		SW- SM			<u>5 feet with moder</u> clayey, silty SAN							
14 — 15 — 	-							no recovery	/								
17 Boring terminated at 16 feet below ground surface. 18 19 20 10																	
20 Date Started: 10/7/2004 Date Started: 10/7/2004 Date Started: 10/7/2004 <td< td=""><td></td></td<>																	
APPENDIX C Laboratory Reports

Sound Environmental Strategies Corporation

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

22 November 2004

Bill Rodgers Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

RE: Time Oil Everett

Enclosed are the results of analyses for samples received by the laboratory on 10/08/04 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill Project Manager

CASE NARRATIVE for B4J0410

Client: Sound Environmental Strategies Project Manager: Bill Rodgers Project Name: Time Oil Everett Project Number: 440-2

1.0 DESCRIPTION OF CASE

One (1) water and Four (4) soil samples were submitted for the analysis of:

- Gasoline Range Hydrocarbons and BTEX by NWTPH-G and EPA 8021B
- Semivolatile Petroleum Products by NWTPH-Dx
- Total Metals by EPA 6000/7000 Series Methods
- Volatile Organic Compounds by EPA Method 8260B
- Semivolatile Organic Compounds by EPA Method 8270C

2.0 COMMENTS ON SAMPLE RECEIPT

The samples were received 8th October 2004 at a temperature of 5.4°C and logged in 12th October 2004. Project samples B-7-16 and B-9-12 were received in pre-tared 40mL voa vials. These vials were weighed in the laboratory in order to calculate the mass of the soil plug. 10mL's of Methanol was injected into the voa vials prior to analysis.

3.0 PREPARATION AND ANALYSIS

Gasoline Range Hydrocarbons and BTEX by NWTPH-G and EPA 8021B

Project samples B-7-16 and B-9-12 are reported on an as received basis since the dry weight could not be determined on the sample provided. No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Semivolatile Petroleum Products by NWTPH-Dx

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Total Metals by EPA 6000/7000 Series Methods

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Amar Gill Project Manager North Creek Analytical

CASE NARRATIVE for B4J0410

Volatile Organic Compounds by EPA Method 8260B

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Semivolatile Organic Compounds by EPA Method 8270C

The recovery for acid surrogates, 2-FP and Phenol-d6 in project sample MW-1 were below control limits. The sample was extracted into analytical batch 4J13066 for which the following QC failures were observed. All surrogate recoveries were below control limits in the batch Blank other then p-Terphenyld14. The percent recovery for the following compounds was below control limits in both the Blank Spike and Blank Spike duplicate, 4-Chloro-3-methylphenol, 2-Chlorophenol and Phenol. Recovery of Pentachlorophenol was below control limits in the Blank Spike. Recovery of Acenaphthalene was below control limits in the Blank Spike Duplicate. The Relative Percent Difference of spike compounds, 1,4-Dichlorobenzene and Pentachlorophenol were outside control limits. Recoveries of acid surrogates, 2-FP, Phenol-d6 and 2,4,6-TBP were below control limits in both the Blank Spike and Blank Spike Duplicate. Since only a single liter sample volume was provided for this analysis, re-extraction and re-analysis was not possible.

Amar Gill Project Manager North Creek Analytical

		8		CHAIN			DY					
Send Report To	11 Kobgen		SAMF	LERS (sig	nature)	34	D				Page	# of
Company <u>Sound E</u>	nvironmental St.	ategies	PROJ	ECT NAM	V			1.1	 PO #	-1Γ	TUR	NAROUND TIME
Address 2100 Kin	wit than 5	# 200	-	440-	-2	2	Cust	SQN	rU#	1 10	RUSH	d (2 Weeks)
Address 216 Air	WA.	6/34/	REMA	RKS	- ch	ain or				R	ush charg	ges authorized by:
Phone # <u>(206) 306-1900</u>	Fax #_(206) 3			RKS Revie	,ea	G	pos/	BTE	7	<u> </u>	Dispose (Return s	PLE DISPOSAL after 30 days amples
		T		1			ANA	LVSEQ	REQUES		WIII Call	with instructions
-			•			m	0 2					
Sample ID	Lab ID Date	Time Sa	ample Type	# of	TPH-Diesel TPH-Gasoline	BTEX by 8021B	VUUs by 8260 SVOCs by 8270	5	No.			
				container	日 日 日 日 日 日 日 日 日 日 日 日 日	N N N		M 18C	5			Notes
mis ~1	┼──┼───					EE S	SVC V	X	17/2			
B-7-16	10-7-07	12:00 4	Duter	6	XX	XX		X	X	╉╾╉╸		2-0.36
		09:50 5	•.!	2	X	<u> </u>	1-1	+		++		Y-U04
13-9-12		10:19 5	i./	8	X		╂╌╂			+-+	_ <u> </u> k	Sos/BIER
134-12		14:55 3	0.1	1			╉╾╂			+ + + + + + + + + + + + + + + + + + +		
812-12		15:30 5			-		╂╌╂╴					
		12.30 02	2.7	/	$-\Lambda$		1		·			J.
		~		·	<u> </u>							
				· .							┽╌╂	
					. T			++			┽┽	
						-		┽╾╀			┼╌╂	
								+			<u> </u>	
Friedman & Bruya, Inc.	SIGN	TURE	L	L								5-4° wto
Contril ITT	alinquished by:	410A			INT NAM	Æ		ļ	COMPA	NY	DA	TE TIME
Seattle, WA 98119-2029	regived by: HERMAN ROL	l'aux		Lilliam 1		ser		5	23		10-0	
Rei (200) 285-8282 Rei	linguished by:	land		rema	m'll	Olin	nel .	\mathcal{N}	CA		10-4	
(=00) 200-5044 Rec	ceived by:	+7 /	- 74	ERMan	Koly	Net		N	2A		10-	E
	Ð	over-	P6	mory	TOA			Ner	<u>-</u>			104 1637

	/			SAMPLE				rod	Y								
Send Report To	ill Ro	feel		SAMPI	LERS (signe	ature)	,1	11	h				}	r	Page #	¢0	f
Company <u>Sound</u> Address Ziés A: City, State, ZIP <u>Seattle</u>	Environm	o ental Stra	tegies # 202	PROJE	$\frac{PROJECT NAME/NO.}{PO \#}$								TURNAROUND TIME Standard (2 Weeks) O RUSH Rush charges authorized by:				
City, State, ZIP <u>Seattle</u> Phone # <u>(206) 306-1900</u>		_ ?& #(206) <u>30</u>		REMA	RS		Į.	6	os/	137	A			1 🛛 Ket	spose turn s	PLE DISPC after 30 day amples with instruc	s
			1	T			1		AN	ALYS	SES I	EQUI	ESTEI)		1	
Sample II)	Lab ID	Date	Time	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	VOCa hy 8960	SVOCs by 8270	HFS		Total Lead				No	tes
mw ~1		10-7-04		Water	4	X	K/		X		X	X				2-0.5	-11U
B-7-16 13-9-12				50.1	4.		X				· 、				+	4-00. Cos/Bi	4- 75-
13-1-12		·	· · · · · · · · · · · · · · · · · · · ·	S.i. /	8.		<u> </u>	. 								1	
312-12				50,1 5			}_										
				50.1			4									V	
			~					-									
						·											
													<u> </u>				
Duisday 0 D																5-4"	ofa
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquish	SIGN/	ATURE		() //. —	RINTI	NAM	C				CON	IPAN	Y		DATE	TIM
Seattle, WA 98119-2029	Received by SHERMI		land	47 C	Allian		19	en v			5	$\frac{1}{\sqrt{2}}$			10	-8.04	
Ph. (206) 285-8282	Relinquishe	d by:	land		Theman HERMAN	en vo		<u>Hu</u>	nl		$\frac{\mathcal{N}}{\mathcal{N}}$	$\frac{2}{2}$	<u> [4]</u>				2:00
Fax (206) 283-5044	Received by		Toot		RANY							10,	/-/	· ·		in .	63
	ノ		5				DN	8			NC	1			10	18/04/16	30

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	B4J0410-01	Water	10/07/04 12:00	10/08/04 16:30
B-7-16	B4J0410-02	Soil	10/07/04 09:50	10/08/04 16:30
B-9-12	B4J0410-03	Soil	10/07/04 10:19	10/08/04 16:30
B11-12	B4J0410-04	Soil	10/07/04 14:55	10/08/04 16:30
B12-12	B4J0410-05	Soil	10/07/04 15:30	10/08/04 16:30

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Reported: 11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Project Manager: Bill Rodgers

Units ed: 10/08/04 ug/l "	Dilution 16:30 1 "	Batch 4J15007 "	Prepared 10/16/04		Method NWTPH-Gx/8021B	Notes
ug/l "	1 "				NWTPH-Gx/8021B	
"					NWTPH-Gx/8021B	
"		"	"			
				"	"	
"		"	"	"	"	
	"	"	"	"	"	
"	"	"	"	"	"	
		"	"	"	"	S-04
		"	"	"	"	
10/08/04 16	:30					
mg/kg wet	1	4J16004	10/17/04	10/18/04	NWTPH-Gx/8021B	
"	"	"	"	"	"	
"	"	"	"	"	"	
"	"	"	"	"	"	
"	"	"	"	"	"	
		"	"	"	"	S-04
		"	"	"	"	
10/08/04 16	:30					
mg/kg wet	1	4J16004	10/17/04	10/18/04	NWTPH-Gx/8021B	
"	"	"	"	"	"	
"	"	"	"	"	"	
"	"	"	"	"	"	
"	"	"	"	"	n	
		"	"	"	"	
		"	"	"	"	
	" 10/08/04 16 mg/kg wet " " " 10/08/04 16 mg/kg wet " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " mg/kg wet 1 4J16004 " "	" " " " " " " " " " " " " 1 4J16004 10/17/04 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "	n n n n n n n n n n n n n n n n n n n n n n n n mg/kg wet 1 4J16004 10/17/04 10/18/04 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n	""""""""""""""""""""""""""""""""""""

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B11-12 (B4J0410-04) Soil	Sampled: 10/07/04 14:55	Received:	10/08/04 16:3	0					
Gasoline Range Hydrocarb	oons 13.0	5.00	mg/kg dry	1	4J19004	10/19/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.123	0.0300	"	"	"	"	"	"	
Toluene	0.0832	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.112	0.0500	"	"	"	"	"	"	
Xylenes (total)	0.298	0.100		"	"	"	"	"	
Surrogate: 4-BFB (FID)	59.8 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	86.8 %	53-142			"	"	"	"	
B12-12 (B4J0410-05) Soil	Sampled: 10/07/04 15:30	Received:	10/08/04 16:3	0					A-01
Gasoline Range Hydrocarb	oons 20.6	5.00	mg/kg dry	1	4J19004	10/19/04	10/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.107	0.0500	"	"	"	"	"	"	
Xylenes (total)	0.120	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	84.0 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	99.1 %	53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water Sample	ed: 10/07/04 12:	00 Receive	d: 10/08/04	16:30					
Diesel Range Hydrocarbons	ND	0.500	mg/l	1	4J14064	10/14/04	10/18/04	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	1.00	"	"	"	"	"	"	
Surrogate: 2-FBP	93.8 %	50-150			"	"	"	"	
Surrogate: Octacosane	<i>99.2 %</i>	50-150			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Lead	0.00109	0.00100	mg/l	1	4J13009	10/13/04	10/14/04	EPA 6020			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	R Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water	Sampled: 10/07/04 12:00	Received	l: 10/08/04	16:30					
Acetone	ND	200	ug/l	10	4J13028	10/13/04	10/13/04	EPA 8260B	
Benzene	ND	10.0	"	"	"	"	"	"	
Bromobenzene	ND	10.0	"	"	"	"	"	"	
Bromochloromethane	ND	10.0	"	"	"	"	"	"	
Bromodichloromethane	ND	10.0	"	"	"	"	"	"	
Bromoform	ND	10.0	"	"	"	"	"	"	
Bromomethane	ND	20.0	"	"	"	"	"	"	
2-Butanone	ND	100	"	"	"	"	"	"	
n-Butylbenzene	27.2	10.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	10.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	10.0	"	"	"	"	"	"	
Carbon disulfide	ND	10.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	10.0	"	"	"	"	"	"	
Chlorobenzene	ND	10.0	"	"	"	"	"	"	
Chloroethane	ND	10.0	"	"	"	"	"	"	
Chloroform	ND	10.0	"	"	"	"	"	"	
Chloromethane	ND	50.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	10.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	10.0	"	"	"	"	"	"	
Dibromochloromethane	ND	10.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	50.0	"	"	"	"	"	"	
1,2-Dibromoethane	ND	10.0	"	"	"	"	"	"	
Dibromomethane	ND	10.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	10.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	10.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	10.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	10.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	10.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	10.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	10.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	10.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	10.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	10.0		"	"	"	"	"	
1,3-Dichloropropane	ND	10.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	10.0		"		"	"	"	
1,1-Dichloropropene	ND	10.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	10.0		"		"	"	"	
trans-1,3-Dichloropropene	ND	10.0		"		"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water	Sampled: 10/07/04 12:00	Received	l: 10/08/04	16:30					
Ethylbenzene	57.9	10.0	ug/l	10	4J13028	10/13/04	10/13/04	EPA 8260B	
Hexachlorobutadiene	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20.0	"	"	"	"	"	"	
2-Hexanone	ND	100	"	"	"	"	"	"	
Isopropylbenzene	11.5	10.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	10.0	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	100	"	"	"	"	"	"	
Methylene chloride	ND	50.0	"	"	"	"	"	"	
Naphthalene	19.1	10.0	"	"	"	"	"	"	
n-Propylbenzene	48.8	10.0	"	"	"	"	"	"	
Styrene	ND	10.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	10.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	10.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	10.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	10.0	"	"	"	"	"	"	
Tetrachloroethene	ND	10.0	"	"	"	"	"	"	
Toluene	ND	10.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	10.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	10.0	"	"	"	"	"	"	
Trichloroethene	ND	10.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	10.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	10.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	316	10.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	107	10.0	"	"	"	"	"	"	
Vinyl chloride	ND	10.0	"	"	"	"	"	"	
o-Xylene	19.7	10.0	"	"	"	"	"	"	
m,p-Xylene	219	20.0	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	108 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	99.0 %	70-130			"	"	"	"	
Surrogate: 4-BFB	96.5 %	70-130			"	"	"	"	
Acetone	ND	10.0	"	"	4J13040	10/13/04	10/13/04	"	
Benzene	0.460	0.200	"	"	"	"	"	"	
Bromobenzene	ND	0.500	"	"		"	"	"	
Bromochloromethane	ND	0.200	"	"		"	"	"	
Bromodichloromethane	ND	0.200	"	"	"	"	"	"	
Bromoform	ND	0.200	"	"	"	"	"	"	
Bromomethane	ND	2.00	"	"	"	"	"	"	
2-Butanone	ND	2.00	"	"	"	"	"	"	
	112	2.00							

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water S	ampled: 10/07/04 12:00	Received	: 10/08/04	16:30					
n-Butylbenzene	18.5	0.200	ug/l	1	4J13040	10/13/04	10/13/04	EPA 8260B	E
sec-Butylbenzene	4.41	0.200	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.500	"	"	"	"	"	"	
Carbon disulfide	ND	0.500	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.200	"	"	"	"	"	"	
Chlorobenzene	ND	0.200	"	"	"	"	"	"	
Chloroethane	ND	1.00	"	"	"	"	"	"	
Chloroform	ND	0.200	"	"	"	"	"	"	
Chloromethane	ND	1.00	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.500	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.500	"	"	"	"	"	"	
Dibromochloromethane	ND	0.200	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.500	"	"	"	"	"	"	
1,2-Dibromoethane	ND	0.200	"	"	"	"	"	"	
Dibromomethane	ND	0.200	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.200	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.200	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.200	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.200	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.200	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.200	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.200	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.200	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.200	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.200	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.500	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.200	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.200	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.200	"	"	"	"	"	"	
Ethylbenzene	59.4	0.200	"	"	"	"	"	"	E-01
Hexachlorobutadiene	ND	0.500	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	2.00	"	"	"	"	"	"	
Isopropylbenzene	14.6	0.500	"	"	"	"	"	"	Е
p-Isopropyltoluene	9.03	0.200	"	"	"	"		"	E
4-Methyl-2-pentanone	ND	2.00	"		"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project: Time Oil Eve Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

	F	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water	Sampled: 10/07/04 12:00	Received	1: 10/08/04	16:30					
Naphthalene	19.0	0.500	ug/l	1	4J13040	10/13/04	10/13/04	EPA 8260B	Е
n-Propylbenzene	52.2	0.500	"	"	"	"	"	"	E-01
Styrene	ND	0.500	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.200	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.200	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.200	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.500	"	"	"	"	"	"	
Tetrachloroethene	ND	0.200	"	"	"	"	"	"	
Toluene	0.690	0.200	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.200	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.200	"	"	"	"	"	"	
Trichloroethene	ND	0.200	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.500	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	131	0.200	"	"	"	"	"	"	E-01
1,3,5-Trimethylbenzene	83.9	0.500	"	"	"	"	"	"	E-01
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	22.8	0.250	"	"	"	"	"	"	E
m,p-Xylene	131	0.500	"	"	"	"	"	"	E-01
Surrogate: 1,2-DCA-d4	102 % 7	0-130			"	"	"	"	
Surrogate: Toluene-d8	99.0 % 70	0-130			"	"	"	"	
Surrogate: 4-BFB	102 % 7	0-130			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (B4J0410-01) Water	Sampled: 10/07/04 12:00	Received	: 10/08/04	16:30					Х
Acenaphthene	ND	21.3	ug/l	1	4J13066	10/13/04	10/27/04	EPA 8270C	
Acenaphthylene	ND	21.3	"			"	"	"	
Aniline	ND	21.3	"	"		"	"	"	
Anthracene	ND	21.3	"	"		"	"	"	
Benzo (a) anthracene	ND	21.3	"			"	"	"	
Benzo (a) pyrene	ND	21.3	"			"	"	"	
Benzo (b) fluoranthene	ND	21.3	"	"		"	"	"	
Benzo (k) fluoranthene	ND	21.3	"	"		"	"	"	
Benzo (ghi) perylene	ND	21.3	"	"	"	"	"	"	
Benzoic Acid	ND	42.6	"	"		"	"	"	
Benzyl alcohol	ND	21.3	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	21.3	"	"		"	"	"	
Bis(2-chloroethyl)ether	ND	21.3	"	"		"	"	"	
Bis(2-chloroisopropyl)ether	ND	21.3	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	106	"	"		"	"	"	
4-Bromophenyl phenyl ether	ND	21.3	"	"		"	"	"	
Butyl benzyl phthalate	ND	21.3	"	"	"	"	"	"	
Carbazole	ND	21.3	"	"		"	"	"	
4-Chloroaniline	ND	21.3	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	21.3	"	"		"	"	"	
2-Chloronaphthalene	ND	21.3	"	"	"	"	"	"	
2-Chlorophenol	ND	21.3	"	"		"	"	"	
4-Chlorophenyl phenyl ether	ND	21.3	"	"		"	"	"	
Chrysene	ND	21.3	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	21.3	"	"		"	"	"	
Dibenz (a,h) anthracene	ND	21.3	"	"		"	"	"	
Dibenzofuran	ND	21.3	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	21.3	"	"		"	"	"	
1,3-Dichlorobenzene	ND	21.3	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	21.3	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	21.3	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	21.3	"	"	"	"	"	"	
Diethyl phthalate	ND	21.3	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	21.3	"	"	"	"	"	"	
Dimethyl phthalate	ND	21.3	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	21.3	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	42.6	"	"		"	"	"	
2,4-Dinitrotoluene	ND	21.3	"	"	"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

MW-1 (B4J0410-01) Water Sampled: 10/07/04 12:00 Received: 10/08/04 16:30 X 2.6-Dinitroluene ND 21.3 " <td< th=""><th></th><th></th><th>Reporting</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			Reporting							
2.6-Dinitratoluene ND 21.3 ug/l 1 4J13066 10/13/04 EPA 8270C Fluoranthene ND 21.3 """"""""""""""""""""""""""""""""""""	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Fluoranthene ND 21,3 ND 21,3 ND	MW-1 (B4J0410-01) Water	Sampled: 10/07/04 12:0	0 Received	l: 10/08/04	16:30					X
Havamente ND 21.3 " <	2,6-Dinitrotoluene	ND	21.3	ug/l	1	4J13066	10/13/04	10/27/04	EPA 8270C	
Hexachlorobutadiene ND 21.3 " <th"< th=""> " " "<td>Fluoranthene</td><td>ND</td><td>21.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th"<>	Fluoranthene	ND	21.3	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND 21.3 " <t< td=""><td>Fluorene</td><td>ND</td><td>21.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Fluorene	ND	21.3	"	"	"	"	"	"	
Inclusion ND 21.3 "	Hexachlorobenzene	ND	21.3	"	"	"	"	"	"	
Hexachlorethane ND 21.3 " <th"< th=""> " "</th"<>	Hexachlorobutadiene	ND	21.3	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND 21.3 " <th< td=""><td>Hexachlorocyclopentadiene</td><td>ND</td><td>21.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Hexachlorocyclopentadiene	ND	21.3	"	"	"	"	"	"	
Isophorone ND 21.3 "	Hexachloroethane	ND	21.3	"	"	"	"	"	"	
2-MethylpaphhaleneND21.3"" <t< td=""><td>Indeno (1,2,3-cd) pyrene</td><td>ND</td><td>21.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Indeno (1,2,3-cd) pyrene	ND	21.3	"	"	"	"	"	"	
2-MethylphenolND21.3"""<	Isophorone	ND	21.3	"	"	"	"	"	"	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Methylnaphthalene	ND	21.3	"	"	"	"	"	"	
Naphthalene ND 21.3 """"""""""""""""""""""""""""""""""""	2-Methylphenol	ND	21.3	"	"	"	"	"	"	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 & 4-Methylphenol	ND	21.3	"	"	"	"	"	"	
3-Nitroaniline ND 21.3 " "	Naphthalene	ND	21.3	"	"	"	"	"	"	
4-Nitroaniline ND 21.3 " " <th"< th=""> " "</th"<>	2-Nitroaniline	ND	21.3	"	"	"	"	"	"	
Nitrobenzene ND 21.3 "	3-Nitroaniline	ND	21.3	"	"	"	"	"	"	
NID 21.3 2-Nitrophenol ND 21.3 " </td <td>4-Nitroaniline</td> <td>ND</td> <td>21.3</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	4-Nitroaniline	ND	21.3	"	"	"	"	"	"	
4-Nitrophenol ND 21.3 " <th"< th=""> " "</th"<>	Nitrobenzene	ND	21.3	"	"	"	"	"	"	
4-Nitrophenol ND 21.3 " <th"< th=""> " "</th"<>	2-Nitrophenol	ND	21.3	"	"	"	"	"	"	
N-Nitrosodiphenylamine ND 21.3 "	4-Nitrophenol	ND	21.3	"	"	"	"	"	"	
Di-n-octyl phthalate ND 21.3 " </td <td>N-Nitrosodi-n-propylamine</td> <td>ND</td> <td>21.3</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	N-Nitrosodi-n-propylamine	ND	21.3	"	"	"	"	"	"	
Pentachlorophenol ND 21.3 """"""""""""""""""""""""""""""""""""	N-Nitrosodiphenylamine	ND	21.3	"	"	"	"	"	"	
Phenanthrene ND 21.3 """"""""""""""""""""""""""""""""""""	Di-n-octyl phthalate	ND	21.3	"	"	"	"	"	"	
Phenol ND 21.3 "	Pentachlorophenol	ND	21.3	"	"	"	"	"	"	
Pyrene ND 21.3 "	Phenanthrene	ND	21.3	"	"	"	"	"	"	
1,2,4-Trichlorobenzene ND 21.3 "	Phenol	ND	21.3	"	"	"	"	"	"	
1,2,4+11chilorobenzelle ND 21.3 "	Pyrene	ND	21.3	"	"	"	"	"	"	
2,4,6-Trichlorophenol ND 21.3 " S-04 " <th< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td>21.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	1,2,4-Trichlorobenzene	ND	21.3	"	"	"	"	"	"	
2,4,6-Intentolopitetion IND 21.5 Surrogate: 2-FBP 70.5 % 41-129 " Sourcogate: Nitrobenzene-d5 72.3 % 44-124 " <th"< th=""> " " <th"< th=""></th"<></th"<>	2,4,5-Trichlorophenol	ND	21.3	"	"	"	"	"	"	
Surrogate: 2-FP 14.5 % 18-124 " " " " " Sourd Sourd Sourd Sourd Sourd Sourd " " " " Sourd Sourd Sourd Sourd " " " " " " Sourd Sourd Sourd Sourd " " " " " " Sourd Sourd Sourd " " " " " " " " Sourd " " " " " " Sourd Sourd </td <td>2,4,6-Trichlorophenol</td> <td>ND</td> <td>21.3</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2,4,6-Trichlorophenol	ND	21.3	"	"	"	"	"	"	
Surrogate: 2-FP 14.5 % 18-124 " " " " " Sourd Sourd Sourd Sourd Sourd Sourd " " " " Sourd Sourd Sourd Sourd " " " " " " Sourd Sourd Sourd Sourd " " " " " " Sourd Sourd Sourd " " " " " " " " Sourd " " " " " " Sourd Sourd </td <td>Surrogate: 2-FBP</td> <td>70.5 %</td> <td>41-129</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Surrogate: 2-FBP	70.5 %	41-129			"	"	"	"	
Surrogate: Nitrobenzene-d5 72.3 % 44-124 "	-		18-124			"	"	"	"	S-04
Surrogate: Phenol-d6 37.1 % 25-122 " " " " " " Surrogate: p-Terphenyl-d14 90.9 % 10-132 " " " " " "	8		44-124			"	"	"	"	
Surrogate: p-Terphenyl-d14 90.9 % 10-132 " " " " "						"	"	"	"	
	-		10-132			"	"	"	"	
	Surrogate: 2,4,6-TBP	91.9 %	19-132			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 11 of 35

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020 Project: Time Oil Everett Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B11-12 (B4J0410-04) Soil	Sampled: 10/07/04 14:55	Received:	10/08/04 16	5:30					
Dry Weight	88.0	1.00	%	1	4J19032	10/19/04	10/20/04	BSOPSPL003R08	
<u>B12-12 (B4J0410-05) Soil</u>	Sampled: 10/07/04 15:30	Received:	10/08/04 16	5:30					
Dry Weight	91.5	1.00	%	1	4J19032	10/19/04	10/20/04	BSOPSPL003R08	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

		Ν	North Cre	ek Anal	ytical - E	Bothell					
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Prepared 10/16/04				Lever	Result	/utele	Linits	Iu D	Linit	10005
	-	Using E	CPA 5030B (<u>r/1)</u>							
Blank (4J15007-BLK)											
Gasoline Range Hydrocar	bons	ND	50.0	ug/l							
Benzene		ND	0.500	"							
Toluene		ND	0.500	"							
Ethylbenzene		ND	0.500	"							
Xylenes (total)		ND	1.00	"							
Surrogate: 4-BFB (FID)		40.4		"	48.0		84.2	58-144			
Surrogate: 4-BFB (PID)		41.8		"	48.0		87.1	68-140			
LCS (4J15007-BS1)											
Gasoline Range Hydrocar	bons	506	50.0	ug/l	502		101	80-120			
Benzene		5.72	0.500	"	6.21		92.1	80-120			
Toluene		32.7	0.500	"	34.9		93.7	80-120			
Ethylbenzene		7.96	0.500	"	8.38		95.0	80-120			
Xylenes (total)		39.5	1.00	"	40.6		97.3	80-120			
Surrogate: 4-BFB (FID)		48.8		"	48.0		102	58-144			
Surrogate: 4-BFB (PID)		42.8		"	48.0		89.2	68-140			
LCS Dup (4J15007-B	SD1)										
Gasoline Range Hydrocar		532	50.0	ug/l	502		106	80-120	5.01	25	
Benzene		5.82	0.500	"	6.21		93.7	80-120	1.73	25	
Toluene		33.4	0.500	"	34.9		95.7	80-120	2.12	25	
Ethylbenzene		8.15	0.500	"	8.38		97.3	80-120	2.36	25	
Xylenes (total)		40.5	1.00	"	40.6		99.8	80-120	2.50	25	
Surrogate: 4-BFB (FID)		50.3		"	48.0		105	58-144			
Surrogate: 4-BFB (PID)		43.2		"	48.0		90.0	68-140			
Matrix Spike (4J1500	7-MS1)					Source: 1	34J0318- 0)1			
Gasoline Range Hydrocar		1160	50.0	ug/l	502	660	99.6	58-129			
Benzene		8.22	0.500	"	6.21	2.43	93.2	46-130			
Toluene		34.8	0.500	"	34.9	0.736	97.6	60-124			
Ethylbenzene		9.16	0.500	"	8.38	0.292	106	56-141			
Xylenes (total)		42.7	1.00	"	40.6	2.21	99.7	66-132			
Surrogate: 4-BFB (FID)		80.1		"	48.0		167	58-144			S-0
Surrogate: 4-BFB (PID)		54.4		"	48.0		113	68-140			5-0

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

R

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

Reported:

11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

Project Number: 440-2

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J15007: Prepared 10/16/04	Using El	PA 5030B ((P/T)							
Matrix Spike Dup (4J15007-MSD1)					Source: I	34J0318-0)1			
Gasoline Range Hydrocarbons	1100	50.0	ug/l	502	660	87.6	58-129	5.31	25	
Benzene	7.94	0.500	"	6.21	2.43	88.7	46-130	3.47	40	
Toluene	33.6	0.500	"	34.9	0.736	94.2	60-124	3.51	40	
Ethylbenzene	8.61	0.500	"	8.38	0.292	99.3	56-141	6.19	40	
Xylenes (total)	40.9	1.00	"	40.6	2.21	95.3	66-132	4.31	40	
Surrogate: 4-BFB (FID)	78.8		"	48.0		164	58-144			S-04
Surrogate: 4-BFB (PID)	54.0		"	48.0		112	68-140			
Batch 4J16004: Prepared 10/17/04	Using El	PA 5030B ((MeOH)							
Blank (4J16004-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	mg/kg							
Benzene	ND	0.0300	"							
Toluene	ND	0.0500	"							
Ethylbenzene	ND	0.0500	"							
Xylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	2.42		"	2.40		101	50-150			
Surrogate: 4-BFB (PID)	2.46		"	2.40		102	53-142			
LCS (4J16004-BS1)										
Gasoline Range Hydrocarbons	27.8	5.00	mg/kg	25.1		111	75-125			
Benzene	0.329	0.0300	"	0.310		106	75-125			
Toluene	1.75	0.0500	"	1.75		100	75-125			
Ethylbenzene	0.441	0.0500	"	0.419		105	75-125			
Xylenes (total)	2.13	0.100	"	2.03		105	75-125			
Surrogate: 4-BFB (FID)	2.67		"	2.40		111	50-150			

"

2.40

2.39

North Creek Analytical - Bothell

Surrogate: 4-BFB (PID)

Amar Gill, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99.6

53-142

Seattle, WA/USA 98134-2020

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420,9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

Reported:

11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

Project Number: 440-2

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J16004:	Prepared 10/17/04	Using El	PA 5030B	(MeOH)							
LCS Dup (4J16004	-BSD1)										
Gasoline Range Hydro	carbons	28.1	5.00	mg/kg	25.1		112	75-125	1.07	25	
Benzene		0.310	0.0300	"	0.310		100	75-125	5.95	25	
Toluene		1.64	0.0500	"	1.75		93.7	75-125	6.49	25	
Ethylbenzene		0.411	0.0500	"	0.419		98.1	75-125	7.04	25	
Xylenes (total)		1.99	0.100	"	2.03		98.0	75-125	6.80	25	
Surrogate: 4-BFB (FII	D)	2.66		"	2.40		111	50-150			
Surrogate: 4-BFB (PII	D)	2.19		"	2.40		91.2	53-142			
Matrix Spike (4J16	5004-MS1)					Source: E	B4J0546-0)1			
Gasoline Range Hydro	carbons	19.7	2.61	mg/kg dry	18.0	1.30	102	42-125			
Benzene		0.225	0.0156	"	0.223	ND	101	45-125			
Toluene		1.19	0.0261	"	1.25	0.0111	94.3	55-125			
Ethylbenzene		0.302	0.0261	"	0.300	0.00761	98.1	53-132			
Xylenes (total)		1.46	0.0522	"	1.46	0.0329	97.7	59-125			
Surrogate: 4-BFB (FII))	1.92		"	1.72		112	50-150			
Surrogate: 4-BFB (PII	D)	1.62		"	1.72		94.2	53-142			
Matrix Spike Dup	(4J16004-MSD1)					Source: E	B4J0546-0)1			
Gasoline Range Hydro	carbons	19.8	2.61	mg/kg dry	18.0	1.30	103	42-125	0.506	40	
Benzene		0.251	0.0156	"	0.223	ND	113	45-125	10.9	40	
Toluene		1.36	0.0261	"	1.25	0.0111	108	55-125	13.3	40	
Ethylbenzene		0.339	0.0261	"	0.300	0.00761	110	53-132	11.5	40	
Xylenes (total)		1.64	0.0522	"	1.46	0.0329	110	59-125	11.6	40	
Surrogate: 4-BFB (FII	D)	1.93		"	1.72		112	50-150			
Surrogate: 4-BFB (PII))	1.78		"	1.72		103	53-142			

Batch 4J19004: Prepared 10/19/04 Using EPA 5030B (MeOH)

Blank (4J19004-BLK1)							
Gasoline Range Hydrocarbons	ND	5.00	mg/kg				
Benzene	ND	0.0300	"				
Toluene	ND	0.0500	"				
Ethylbenzene	ND	0.0500	"				
Xylenes (total)	ND	0.100	"				
Surrogate: 4-BFB (FID)	2.98		"	4.00	74.5	50-150	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 15 of 35

Seattle, WA/USA 98134-2020

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

North Creek Analytical - Bothell

			D	v				A/DEC		DDD	
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Prepared 10/19/04		PA 5030B							-	
Blank (4J19004-BLI	•	esing L									
Surrogate: 4-BFB (PID)		4.17		mg/kg	4.00		104	53-142			
LCS (4J19004-BS1)											
Gasoline Range Hydroc	arbons	26.6	5.00	mg/kg	27.5		96.7	75-125			
Benzene		0.327	0.0300	"	0.340		96.2	75-125			
Toluene		1.78	0.0500	"	1.92		92.7	75-125			
Ethylbenzene		0.477	0.0500	"	0.460		104	75-125			
Xylenes (total)		2.26	0.100	"	2.22		102	75-125			
Surrogate: 4-BFB (FID)	1	3.79		"	4.00		94.8	50-150			
Surrogate: 4-BFB (PID)	1	3.96		"	4.00		99.0	53-142			
LCS Dup (4J19004-]	BSD1)										
Gasoline Range Hydroc	arbons	26.4	5.00	mg/kg	27.5		96.0	75-125	0.755	25	
Benzene		0.346	0.0300	"	0.340		102	75-125	5.65	25	
Toluene		1.85	0.0500	"	1.92		96.4	75-125	3.86	25	
Ethylbenzene		0.487	0.0500	"	0.460		106	75-125	2.07	25	
Xylenes (total)		2.35	0.100	"	2.22		106	75-125	3.90	25	
Surrogate: 4-BFB (FID))	3.58		"	4.00		89.5	50-150			
Surrogate: 4-BFB (PID)	•	3.95		"	4.00		98.8	53-142			
Matrix Spike (4J190	004-MS1)					Source: E	84J0545- 0	1			
Gasoline Range Hydroc	arbons	20.3	5.00	mg/kg dry	28.6	2.19	63.3	42-125			
Benzene		0.320	0.0300	"	0.354	ND	90.4	45-125			
Toluene		1.77	0.0500	"	1.99	0.0129	88.3	55-125			
Ethylbenzene		0.476	0.0500	"	0.479	ND	99.4	53-132			
Xylenes (total)		2.28	0.100	"	2.32	ND	98.3	59-125			
Surrogate: 4-BFB (FID)	1	2.94		"	4.16		70.7	50-150			
Surrogate: 4-BFB (PID)	1	4.05		"	4.16		97.4	53-142			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/22/04 10:31

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J19004:	Prepared 10/19/04	Using EF	PA 5030B	(MeOH)							
Matrix Spike Dup	(4J19004-MSD1)					Source: E	84J0545-0	1			
Gasoline Range Hydro	ocarbons	24.2	5.00	mg/kg dry	28.6	2.19	77.0	42-125	17.5	40	
Benzene		0.307	0.0300	"	0.354	ND	86.7	45-125	4.15	40	
Toluene		1.73	0.0500	"	1.99	0.0129	86.3	55-125	2.29	40	
Ethylbenzene		0.466	0.0500	"	0.479	ND	97.3	53-132	2.12	40	
Xylenes (total)		2.24	0.100	"	2.32	ND	96.6	59-125	1.77	40	
Surrogate: 4-BFB (FII	D)	3.41		"	4.16		82.0	50-150			
Surrogate: 4-BFB (PII	D)	3.91		"	4.16		94.0	53-142			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

11/22/04 10:31

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

Project Manager: Bill Rodgers

	111		chi i intal	, ticui 1	Jourien					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J14064: Prepared 10/14/04	Using EP	A 3520C								
Blank (4J14064-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	"							
Surrogate: 2-FBP	0.196		"	0.210		93.3	70-130			
Surrogate: Octacosane	0.213		"	0.200		106	70-130			
LCS (4J14064-BS1)										
Diesel Range Hydrocarbons	1.96	0.250	mg/l	1.87		105	65-135			
Surrogate: 2-FBP	0.181		"	0.210		86.2	70-130			
LCS Dup (4J14064-BSD1)										
Diesel Range Hydrocarbons	1.77	0.250	mg/l	1.87		94.7	65-135	10.2	30	
Surrogate: 2-FBP	0.176		"	0.210		83.8	70-130			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Evere Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		-			,	000000					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13009:	Prepared 10/13/04	Using E	PA 3020A								
Blank (4J13009-Bl	LK1)										
Lead		ND	0.00100	mg/l							
LCS (4J13009-BS1	l)										
Lead		0.0717	0.00100	mg/l	0.0800		89.6	80-120			
LCS Dup (4J13009	D-BSD1)										
Lead		0.0752	0.00100	mg/l	0.0800		94.0	80-120	4.77	20	
Duplicate (4J1300	9-DUP1)					Source: E	B4J0324- ()1			
Lead		ND	0.00100	mg/l		ND			NA	20	
Matrix Spike (4J1.	3009-MS1)					Source: E	B4J0324- ()1			
Lead		0.0744	0.00100	mg/l	0.0800	ND	93.0	78-125			
Matrix Spike Dup	(4J13009-MSD1)					Source: E	B4J0324- ()1			
Lead		0.0731	0.00100	mg/l	0.0800	ND	91.4	78-125	1.76	20	
Post Spike (4J1300	9-PS1)					Source: E	B4J0324- ()1			
Lead		0.0926		ug/ml	0.0995	ND	93.1	75-125			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Analyte Result Limit Units Level Result %AREC Limit Notes Batch 4J13028: Prepared 10/13/04 Using EPA 5030B <								a (- -			
Batch 4.13028: Prepared 10/13/04 Using EPA 5030B Blank (4.13028-BLK1)	Analyte		Reporting	Unite	Spike	Source	%PEC	%REC	רוק	RPD Limit	Notes
Bahk (413028-BLK!) Acetore ND 2.0 ug/ Benzene ND 1.00 " Bromobenzenk ND 1.00 " Bromobelnormethane ND 1.00 " Bromobelnormethane ND 1.00 " Bromoberne ND 1.00 " Bromoberne ND 2.00 " Bromoberne ND 2.00 " Bromoberne ND 1.00 " Bromoberne ND 1.00 " SecButylbenzene ND 1.00 " Gerbon distifié ND 1.00 " Carbon distifié ND 1.00 " Chlorothane ND 1.00 " Chlorothane ND 1.00 " Chlorothane ND 1.00 " Chlorothane ND 1.00 " 1.2-Dibromochane ND 1.00 " <tr< th=""><th>Anaryte</th><th>Kesult</th><th>LIIIII</th><th>Units</th><th>Level</th><th>Kesun</th><th>70KEC</th><th>Lillins</th><th>KPD</th><th>LIIIII</th><th>Inotes</th></tr<>	Anaryte	Kesult	LIIIII	Units	Level	Kesun	70KEC	Lillins	KPD	LIIIII	Inotes
Acetone ND 20.0 ug/t Brazens ND 1.00 " Bromochloromethane ND 1.00 " Patutanone ND 1.00 " sce-Butylbenzene ND 1.00 " carbon tetrachloride ND 1.00 " Carbon tetrachloride ND 1.00 " Chlorochnane ND 1.00 " 1.2-Dibromochane ND 1.00 " 1.2-Dibromochane ND 1.00 "	Batch 4J13028: Prepared 10/13/04	Using EP	A 5030B								
BenzeneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND2.00"BromochioromethaneND2.00"PublichoremethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"BromochioromethaneND1.00"Carbon chastifickND1.00"Carbon chastifickND1.00"ChorochaneND1.00"ChorochaneND1.00"ChorochaneND1.00"ChorochaneND1.00"DibomochoromethaneND1.00"1.2.DibomochaneND1.00"1.2.DibomochaneND1.00"1.2.DibomochaneND1.00"1.2.DibomochaneND1.00"1.3.DibomochaneND1.00"1.4.DibolochoreneND1.00"1.4.DibolochoreneND1.00"1.4.DibolochoreneND1.00"1.4.DibolochoreneND1.00"1.4.DibolochoreneND1.00"1.4.DibolochoreneND1.00"<	Blank (4J13028-BLK1)										
BromobenzeneND1.00"BromochicomethaneND1.00"BromodichloromethaneND1.00"BromoorhaneND2.00"BromoorhaneND1.00"BromoorhaneND1.00"BromoorhaneND1.00"see-ButylbenzeneND1.00"Carbon disulfideND1.00"Carbon disulfideND1.00"Choron terracholoticeND1.00"Choron terracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"ChoronteracholoticeND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'AbromochaneND1.00"L'Abr	Acetone	ND	20.0	ug/l							
Jachmedicionationation ND 1.00 Bromodichloromethane ND 1.00 " Bromodichloromethane ND 1.00 " Bromodichloromethane ND 2.00 " 2-Butanone ND 1.00 " n-Butylbenzene ND 1.00 " Seventrylbenzene ND 1.00 " Carbon disalfide ND 1.00 " Carbon disalfide ND 1.00 " Chorobezene ND 1.00 " Chorobezene ND 1.00 " Chorobethane ND 1.00 " Chorobezene ND 1.00 " Chorobethane ND 1.00 " Chorobethane ND 1.00 " L2-Dibromod-Schoropropane ND 1.00 " L2-Dibromod-Schoropropane ND 1.00 " L3-Dibromod-Inane ND 1.00 "	Benzene	ND	1.00	"							
Definition function ND L00 Bromode/Toronethane ND L00 " Bromode/Toronethane ND 200 " Bromode/Toronethane ND L00 " Bromode/Toronethane ND L00 " Bromode/Toronethane ND L00 " Bromode/Toronethane ND L00 " See-Butylbenzene ND L00 " Carbon distlifde ND L00 " Carbon distlifde ND L00 " Chlorobenzene ND L00 " Chlorobanethane ND L00 " Chlorobanethane ND L00 " Chlorobanethane ND L00 " Chlorobanethane ND L00 " Dibromode/Horopanethane ND L00 " L2-Dibromod-schloropropane ND L00 " L2-Dibromodefanethane ND L00 "	Bromobenzene	ND	1.00	"							
BromoformND1.00"BromonchaneND2.00"2-ButanoneND1.00"-ButylbenzeneND1.00"see-ButylbenzeneND1.00"Carbon disulfideND1.00"Carbon disulfideND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"2.01corobinemND1.00"2.01corobineneND1.00"1.2-DichorobineneND1.00"1.2-DichorobineneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-DichorobenzeneND1.00"1.2-Dichorobenze	Bromochloromethane	ND	1.00	"							
BromomethaneND2.00"2-ButononeND1.00"n-ButylbenzeneND1.00"carbon disulfdeND1.00"Carbon disulfdeND1.00"Carbon disulfdeND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"ChlorobenzeneND1.00"2-ChlorobuneND1.00"2-ChlorobuneND1.00"1.2-DibromethaneND1.00"1.2-DibromothaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND1.00"1.2-DibromethaneND <td>Bromodichloromethane</td> <td>ND</td> <td>1.00</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bromodichloromethane	ND	1.00	"							
2-ButanoneND1.00"n-ButylbenzeneND1.00"see-ButylbenzeneND1.00"Carbon disulfideND1.00"Carbon disulfideND1.00"Carbon disulfideND1.00"ChorobenzeneND1.00"ChorobenzeneND1.00"ChoroformND1.00"ChoroformND1.00"ChoroformND1.00"ChoroformND1.00"ChoroformND1.00"ChoroformND1.00"ChoroformND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"1.2-DibronochaneND1.00"	Bromoform	ND	1.00	"							
Public ND 100 neButylbenzene ND 1.00 " see-Butylbenzene ND 1.00 " Carbon disulfide ND 1.00 " Carbon disulfide ND 1.00 " Chlorobenzene ND 1.00 " 4-Chlorobluene ND 1.00 " 1,2-Dibromo-3-chloropropane ND 5.00 " 1,2-Dibromo-thane ND 1.00 " 1,2-Dibromo-thane ND 1.00 " 1,2-Dibrlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,1-Dic	Bromomethane	ND	2.00	"							
see-BuylenzeneND1.00"Carbon disulfideND1.00"Carbon disulfideND1.00"ChlorocharcenND1.00"ChlorochaneND1.00"ChlorochaneND1.00"ChlorochaneND1.00"ChlorochaneND1.00"ChlorochaneND1.00"ChlorochaneND1.00"ChlorochaneND5.00"4.ChoroblueneND1.00"1.2-Dibromo-3-chloropropaneND5.00"1.2-Dibromo-3-chloropropaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00"1.2-Dibromo-dhaneND1.00" <tr< td=""><td>2-Butanone</td><td>ND</td><td>10.0</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	2-Butanone	ND	10.0	"							
tert-Buylbenzene ND 1.00 " Carbon disulfide ND 1.00 " Carbon tetrachloride ND 1.00 " Chlorobenzene ND 1.00 " 2-Chlorobenzene ND 1.00 " 12-Diorom-3-chloropropane ND 1.00 " 12-Dibromoshane ND 1.00 " <tr< td=""><td>n-Butylbenzene</td><td>ND</td><td>1.00</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	n-Butylbenzene	ND	1.00	"							
Carbon disulfide ND 1.00 " Carbon tetrachloride ND 1.00 " Chlorobenzene ND 1.00 " Chlorobetnane ND 1.00 " Chlorobetnane ND 1.00 " Chlorobetnane ND 5.00 " 2-Chlorotoluene ND 1.00 " 4-Chlorotoluene ND 1.00 " 1.2-Dibrono-3-chloropropane ND 1.00 " 1.2-Dibrono-thane ND 1.00 <td< td=""><td>sec-Butylbenzene</td><td>ND</td><td>1.00</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	sec-Butylbenzene	ND	1.00	"							
Carbon tetrachlorideND1.00"ChlorobenzeneND1.00"ChlorothaneND1.00"ChlorothaneND1.00"ChlorothaneND5.00"2-ChlorotolueneND1.00"2-ChlorotolueneND1.00"2-ChlorotolueneND1.00"1,2-Dibromo-3-chloropropaneND1.00"1,2-DibromothaneND1.00"1,2-DibromothaneND1.00"1,2-DibromothaneND1.00"1,2-DibromothaneND1.00"1,3-DichlorobenzeneND1.00"1,4-DibrobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00 <td>tert-Butylbenzene</td> <td>ND</td> <td>1.00</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	tert-Butylbenzene	ND	1.00	"							
ChlorobenzeneND1.00"ChlorothaneND1.00"ChlorothaneND5.00"2-ChlorotolueneND1.00"4-ChlorotolueneND1.00"10bromo-shchoropopaneND1.00"1,2-Dibromo-shchoropopaneND1.00"1,2-DichorobenzeneND1.00"1,2-DichorobenzeneND1.00"1,2-DichorobenzeneND1.00"1,2-DichorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,2-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"1,1-DichlorobenzeneND1.00"<	Carbon disulfide	ND	1.00	"							
Chlorodrizhe ND 1.00 Chlorofm ND 1.00 Chlorofm ND 1.00 Chloroform ND 5.00 2-Chlorotoluene ND 1.00 2-Chlorotoluene ND 1.00 4-Chlorotoluene ND 1.00 12-Dibromo-3-chloropropane ND 5.00 12-Dibromo-3-chloropropane ND 1.00 12-Dibromo-shenae ND 1.00 12-Dibromoethane ND 1.00 12-Dibromoethane ND 1.00 12-Dibromoethane ND 1.00 1.2-Dichlorobenzene ND 1.00 1.3-Dichlorobenzene ND 1.00 1.4-Dichlorobenzene ND 1.00 1.1-Dichloroethane ND 1.00 1.2-Dichloroethane ND 1.00 1.1-Dichloroethane ND 1.00 1.2-Dichloroethane ND 1.00 1.1-Dichloroethene ND 1.00 isis-1.2-Dichloro	Carbon tetrachloride	ND	1.00	"							
ChloroformND1.00"ChloromethaneND5.00"2-ChlorotolueneND1.00"4-ChlorotolueneND1.00"DibromochloromethaneND1.00"1,2-Dibromo-3-chloropropaneND5.00"1,2-DibromoethaneND1.00"1,2-DibromoethaneND1.00"1,2-DibromoethaneND1.00"1,2-DibromoethaneND1.00"1,2-DichlorobenzeneND1.00"1,3-DichlorobenzeneND1.00"1,4-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-Dic	Chlorobenzene	ND	1.00	"							
Chloromethane ND 5.00 2-Chlorotoluene ND 1.00 4-Chlorotoluene ND 1.00 Dibromochloromethane ND 1.00 1,2-Dibromo-3-chloropropane ND 5.00 1,2-Dibromoethane ND 1.00 1,2-Dibromoethane ND 1.00 1,2-Dibromoethane ND 1.00 1,2-Dibromoethane ND 1.00 1,2-Dichlorobenzene ND 1.00 1,3-Dichlorobenzene ND 1.00 1,4-Dichlorobenzene ND 1.00 Dichlorodifluoromethane ND 1.00 1,4-Dichlorobenzene ND 1.00 1,2-Dichloroethane ND 1.00 1,2-Dichloroethane ND 1.00 1,2-Dichloroethene ND 1.00 cis-1,2-Dichloroethene ND 1.00 trans-1,2-Dichloroethene ND 1.00 1,2-Dichloroethene ND 1.00 1,2-Dichloropropane ND 1.00	Chloroethane	ND	1.00	"							
2-ChlorotolueneND1.00"4-ChlorotolueneND1.00"DibromochloromethaneND1.00"1,2-Dibromo-3-chloropropaneND5.00"1,2-DibromoethaneND1.00"DibromomethaneND1.00"1,2-DichlorobenzeneND1.00"1,3-DichlorobenzeneND1.00"1,4-DichlorobenzeneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"1,3-DichloropropaneND1.00"	Chloroform	ND	1.00	"							
4-ChlorotolueneND1.00"DibromochloromethaneND1.00"1,2-Dibromo-3-chloropropaneND5.00"1,2-DibromoethaneND1.00"DibromomethaneND1.00"1,2-DichlorobenzeneND1.00"1,3-DichlorobenzeneND1.00"1,4-DichlorobenzeneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,3-DichloropropaneND1.00"	Chloromethane	ND	5.00	"							
DibromochloromethaneND1.00"1,2-Dibromo-3-chloropropaneND5.00"1,2-DibromoethaneND1.00"DibromomethaneND1.00"1,2-DichlorobenzeneND1.00"1,3-DichlorobenzeneND1.00"1,4-DichlorobenzeneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,1-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,2-DichlorothaneND1.00"1,3-DichloropropaneND1.00"	2-Chlorotoluene	ND	1.00	"							
Diblomoted information ND 1.00 1,2-Dibromoe-3-chloropropane ND 1.00 1,2-Dibromoethane ND 1.00 Dibromomethane ND 1.00 1,2-Dichlorobenzene ND 1.00 1,3-Dichlorobenzene ND 1.00 1,4-Dichlorobenzene ND 1.00 1,1-Dichlorothane ND 1.00 1,1-Dichlorothane ND 1.00 1,1-Dichlorothane ND 1.00 1,1-Dichlorothene ND 1.00 1,2-Dichlorothene ND 1.00 1,3-Dichloropropane ND 1.00	4-Chlorotoluene	ND	1.00	"							
ND 1.00 " Dibromoethane ND 1.00 " 1,2-Dichlorobenzene ND 1.00 " 1,3-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,1-Dichlorobenzene ND 1.00 " 1,1-Dichlorobenzene ND 1.00 " 1,1-Dichlorobethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,1-Dichloroethene ND 1.00 " 1,1-Dichloroethene ND 1.00 " trans-1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroptopane ND 1.00 "	Dibromochloromethane	ND	1.00	"							
Dibromomethane ND 1.00 " 1,2-Dichlorobenzene ND 1.00 " 1,3-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " Dichlorodifluoromethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,2-Dichloroethane ND 1.00 " 1,1-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " trans-1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,3-Dichloropropane ND 1.00 "	1,2-Dibromo-3-chloropropane	ND	5.00	"							
1,2-DichlorobenzeneND1.00"1,3-DichlorobenzeneND1.00"1,4-DichlorobenzeneND1.00"DichlorodifluoromethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroptopaneND1.00"	1,2-Dibromoethane	ND	1.00	"							
1,3-Dichlorobenzene ND 1.00 " 1,4-Dichlorobenzene ND 1.00 " Dichlorodifluoromethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,2-Dichloroethane ND 1.00 " 1,2-Dichloroethane ND 1.00 " 1,1-Dichloroethene ND 1.00 " 1,1-Dichloroethene ND 1.00 " 1,1-Dichloroethene ND 1.00 " trans-1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloropropane ND 1.00 "	Dibromomethane	ND	1.00	"							
1,4-DichlorobenzeneND1.00"DichlorodifluoromethaneND1.00"1,1-DichloroethaneND1.00"1,2-DichloroethaneND1.00"1,1-DichloroethaneND1.00"1,1-DichloroetheneND1.00"trans-1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,2-DichloroetheneND1.00"1,3-DichloropropaneND1.00"	1,2-Dichlorobenzene	ND	1.00	"							
Dichlorodifluoromethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,2-Dichloroethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,1-Dichloroethane ND 1.00 " 1,1-Dichloroethene ND 1.00 " cis-1,2-Dichloroethene ND 1.00 " trans-1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloropropane ND 1.00 "	1,3-Dichlorobenzene	ND	1.00	"							
1,1-Dichloroethane ND 1.00 " 1,2-Dichloroethane ND 1.00 " 1,1-Dichloroethene ND 1.00 " cis-1,2-Dichloroethene ND 1.00 " trans-1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloroethene ND 1.00 " 1,2-Dichloropropane ND 1.00 "	1,4-Dichlorobenzene	ND	1.00	"							
1,1-DichloroethaneND1.001,2-DichloroethaneND1.001,1-DichloroethaneND1.00cis-1,2-DichloroethaneND1.00trans-1,2-DichloroethaneND1.001,2-DichloropropaneND1.001,3-DichloropropaneND1.00	Dichlorodifluoromethane	ND	1.00	"							
1,1-DichloroetheneND1.00"cis-1,2-DichloroetheneND1.00"trans-1,2-DichloroetheneND1.00"1,2-DichloropropaneND1.00"1,3-DichloropropaneND1.00"	1,1-Dichloroethane	ND	1.00	"							
xis-1,2-DichloroetheneND1.00"trans-1,2-DichloroetheneND1.00"1,2-DichloropropaneND1.00"1,3-DichloropropaneND1.00"	1,2-Dichloroethane	ND	1.00	"							
Indext ConstructionIndext Constructiontrans-1,2-DichloroptopaneND1.001,2-DichloroptopaneND1.001,3-DichloroptopaneND1.00	1,1-Dichloroethene	ND	1.00	"							
trans-1,2-DichloroetheneND1.00"1,2-DichloropropaneND1.00"1,3-DichloropropaneND1.00"	cis-1,2-Dichloroethene	ND	1.00	"							
1,2-DichloropropaneND1.00"1,3-DichloropropaneND1.00"	trans-1,2-Dichloroethene			"							
1,3-Dichloropropane ND 1.00 "	1,2-Dichloropropane			"							
	1,3-Dichloropropane	ND		"							
	2,2-Dichloropropane			"							

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

		111		in i mai	ytical L	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13028:	Prepared 10/13/04	Using EP	A 5030B								
Blank (4J13028-BL	K1)										
1,1-Dichloropropene	,	ND	1.00	ug/l							
cis-1,3-Dichloropropen	e	ND	1.00	"							
trans-1,3-Dichloroprop	ene	ND	1.00	"							
Ethylbenzene		ND	1.00	"							
Hexachlorobutadiene		ND	1.00	"							
Methyl tert-butyl ether		ND	2.00	"							
2-Hexanone		ND	10.0	"							
Isopropylbenzene		ND	1.00	"							
p-Isopropyltoluene		ND	1.00	"							
4-Methyl-2-pentanone		ND	10.0	"							
Methylene chloride		ND	5.00	"							
Naphthalene		ND	1.00	"							
n-Propylbenzene		ND	1.00	"							
Styrene		ND	1.00	"							
1,2,3-Trichlorobenzene		ND	1.00	"							
1,2,4-Trichlorobenzene		ND	1.00	"							
1,1,1,2-Tetrachloroetha	ne	ND	1.00	"							
1,1,2,2-Tetrachloroetha	ne	ND	1.00	"							
Tetrachloroethene		ND	1.00	"							
Toluene		ND	1.00	"							
1,1,1-Trichloroethane		ND	1.00	"							
1,1,2-Trichloroethane		ND	1.00	"							
Trichloroethene		ND	1.00	"							
Trichlorofluoromethan		ND	1.00	"							
1,2,3-Trichloropropane		ND	1.00	"							
1,2,4-Trimethylbenzene	2	ND	1.00	"							
1,3,5-Trimethylbenzene	2	ND	1.00	"							
Vinyl chloride		ND	1.00	"							
o-Xylene		ND	1.00	"							
m,p-Xylene		ND	2.00	"							
Surrogate: 1,2-DCA-d4	!	21.3		"	20.0		106	70-130			
Surrogate: Toluene-d8		19.1		"	20.0		95.5	70-130			
Surrogate: 4-BFB		19.6		"	20.0		98.0	70-130			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 21 of 35

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13028:	Prepared 10/13/04	Using EP	A 5030B								
LCS (4J13028-BS1)											
Benzene		10.7	1.00	ug/l	10.0		107	80-120			
Chlorobenzene		10.4	1.00	"	10.0		104	77-120			
1,1-Dichloroethene		10.1	1.00	"	10.0		101	80-120			
Methyl tert-butyl ether		9.32	2.00	"	10.0		93.2	80-120			
Toluene		10.3	1.00	"	10.0		103	80-120			
Trichloroethene		10.6	1.00	"	10.0		106	80-120			
Surrogate: 1,2-DCA-d4		19.3		"	20.0		96.5	70-130			
Surrogate: Toluene-d8		19.5		"	20.0		97.5	70-130			
Surrogate: 4-BFB		18.6		"	20.0		93.0	70-130			
LCS Dup (4J13028-	BSD1)										
Benzene		9.99	1.00	ug/l	10.0		99.9	80-120	6.86	20	
Chlorobenzene		9.92	1.00	"	10.0		99.2	77-120	4.72	20	
1,1-Dichloroethene		9.45	1.00	"	10.0		94.5	80-120	6.65	20	
Methyl tert-butyl ether		8.83	2.00	"	10.0		88.3	80-120	5.40	20	
Toluene		10.1	1.00	"	10.0		101	80-120	1.96	20	
Trichloroethene		9.13	1.00	"	10.0		91.3	80-120	14.9	20	
Surrogate: 1,2-DCA-d4		18.9		"	20.0		94.5	70-130			
Surrogate: Toluene-d8		20.1		"	20.0		100	70-130			
Surrogate: 4-BFB		19.4		"	20.0		97.0	70-130			
Matrix Spike (4J130	028-MS1)					Source: I	34J0150-0	2			
Benzene		11.2	1.00	ug/l	10.0	ND	112	63-148			
Chlorobenzene		10.8	1.00	"	10.0	ND	108	80-128			
1,1-Dichloroethene		11.0	1.00	"	10.0	ND	110	59-158			
Methyl tert-butyl ether		9.97	2.00	"	10.0	ND	99.7	60-140			
Toluene		11.4	1.00	"	10.0	ND	114	72-127			
Trichloroethene		10.8	1.00	"	10.0	0.430	104	80-126			
Surrogate: 1,2-DCA-d4		20.2		"	20.0		101	70-130			
Surrogate: Toluene-d8		20.5		"	20.0		102	70-130			
Surrogate: 4-BFB		19.6		"	20.0		98.0	70-130			

North Creek Analytical - Bothell

R

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

]	Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13028:	Prepared 10/13/04	Using EP.	A 5030B								
Matrix Spike Dup (4	J13028-MSD1)					Source: H	34J0150- 0	2			
Benzene		10.6	1.00	ug/l	10.0	ND	106	63-148	5.50	20	
Chlorobenzene		10.6	1.00	"	10.0	ND	106	80-128	1.87	20	
1,1-Dichloroethene		10.2	1.00	"	10.0	ND	102	59-158	7.55	30	
Methyl tert-butyl ether		10.8	2.00	"	10.0	ND	108	60-140	7.99	30	
Toluene		10.8	1.00	"	10.0	ND	108	72-127	5.41	20	
Trichloroethene		11.0	1.00	"	10.0	0.430	106	80-126	1.83	20	
Surrogate: 1,2-DCA-d4		20.0		"	20.0		100	70-130			
Surrogate: Toluene-d8		20.2		"	20.0		101	70-130			
Surrogate: 4-BFB		19.4		"	20.0		97.0	70-130			

Batch 4J13040: Prepared 10/13/04 Using EPA 5030B

Blank (4J13040-BLK1)			
Acetone	ND	10.0	ug/l
Benzene	ND	0.200	"
Bromobenzene	ND	0.500	"
Bromochloromethane	ND	0.200	"
Bromodichloromethane	ND	0.200	"
Bromoform	ND	0.200	"
Bromomethane	ND	2.00	"
2-Butanone	ND	2.00	"
n-Butylbenzene	ND	0.200	"
sec-Butylbenzene	ND	0.200	"
tert-Butylbenzene	ND	0.500	"
Carbon disulfide	ND	0.500	"
Carbon tetrachloride	ND	0.200	"
Chlorobenzene	ND	0.200	"
Chloroethane	ND	1.00	"
Chloroform	ND	0.200	"
Chloromethane	ND	1.00	"
2-Chlorotoluene	ND	0.500	"
4-Chlorotoluene	ND	0.500	"
Dibromochloromethane	ND	0.200	"
1,2-Dibromo-3-chloropropane	ND	0.500	"
1,2-Dibromoethane	ND	0.200	"
Dibromomethane	ND	0.200	"

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

					·			0/077		DF ~	
Analyta		Result	Reporting Limit	Unita	Spike Level	Source	%REC	%REC	רותת	RPD Limit	Natas
Analyte		Kesuit	Linin	Units	Level	Result	70KEC	Limits	RPD	Liiiit	Notes
Batch 4J13040:	Prepared 10/13/04	Using EP	A 5030B								
Blank (4J13040-BL	_K1)										
1,2-Dichlorobenzene		ND	0.200	ug/l							
1,3-Dichlorobenzene		ND	0.200	"							
1,4-Dichlorobenzene		ND	0.200	"							
Dichlorodifluorometha	ine	ND	0.500	"							
1,1-Dichloroethane		ND	0.200	"							
1,2-Dichloroethane		ND	0.200	"							
1,1-Dichloroethene		ND	0.200	"							
cis-1,2-Dichloroethene	;	ND	0.200	"							
trans-1,2-Dichloroethe	ne	ND	0.200	"							
1,2-Dichloropropane		ND	0.200	"							
1,3-Dichloropropane		ND	0.200	"							
2,2-Dichloropropane		ND	0.500	"							
1,1-Dichloropropene		ND	0.200	"							
cis-1,3-Dichloroproper	ne	ND	0.200	"							
trans-1,3-Dichloroprop	oene	ND	0.200	"							
Ethylbenzene		ND	0.200	"							
Hexachlorobutadiene		ND	0.500	"							
Methyl tert-butyl ether		ND	1.00	"							
2-Hexanone		ND	2.00	"							
Isopropylbenzene		ND	0.500	"							
p-Isopropyltoluene		ND	0.200	"							
4-Methyl-2-pentanone		ND	2.00	"							
Methylene chloride		ND	5.00	"							
Naphthalene		ND	0.500	"							
n-Propylbenzene		ND	0.500	"							
Styrene		ND	0.500	"							
1,2,3-Trichlorobenzene	e	ND	0.200	"							
1,2,4-Trichlorobenzene	e	ND	0.200	"							
1,1,1,2-Tetrachloroetha	ane	ND	0.200	"							
1,1,2,2-Tetrachloroetha	ane	ND	0.500	"							
Tetrachloroethene		ND	0.200	"							
Toluene		ND	0.200	"							
1,1,1-Trichloroethane		ND	0.200	"							
1,1,2-Trichloroethane		ND	0.200	"							
Trichloroethene		ND	0.200	"							

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

)	ouncii					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13040:	Prepared 10/13/04	Using EP	PA 5030B								
Blank (4J13040-BI	LK1)										
Trichlorofluoromethan	e	ND	0.500	ug/l							
1,2,3-Trichloropropan	e	ND	0.500	"							
1,2,4-Trimethylbenzen	e	ND	0.200	"							
1,3,5-Trimethylbenzen	e	ND	0.500	"							
Vinyl chloride		ND	0.200	"							
o-Xylene		ND	0.250	"							
m,p-Xylene		ND	0.500	"							
Surrogate: 1,2-DCA-d	4	3.87		"	4.00		96.8	70-130			
Surrogate: Toluene-d8	}	3.86		"	4.00		96.5	70-130			
Surrogate: 4-BFB		4.04		"	4.00		101	70-130			
LCS (4J13040-BS1)										
Acetone		38.0	10.0	ug/l	40.0		95.0	80-120			
Benzene		3.78	0.200	"	4.00		94.5	80-120			
Bromobenzene		3.76	0.500	"	4.00		94.0	80-120			
Bromochloromethane		3.92	0.200	"	4.00		98.0	80-120			
Bromodichloromethan	e	3.97	0.200	"	4.00		99.2	80-120			
Bromoform		3.71	0.200	"	4.00		92.8	80-120			
Bromomethane		3.93	2.00	"	4.00		98.2	80-120			
2-Butanone		37.7	2.00	"	40.0		94.2	80-120			
n-Butylbenzene		4.17	0.200	"	4.00		104	80-120			
sec-Butylbenzene		4.01	0.200	"	4.00		100	80-120			
tert-Butylbenzene		4.06	0.500	"	4.00		102	80-120			
Carbon disulfide		4.02	0.500	"	4.00		100	80-120			
Carbon tetrachloride		3.95	0.200	"	4.00		98.8	80-120			
Chlorobenzene		3.88	0.200	"	4.00		97.0	80-120			
Chloroethane		4.12	1.00	"	4.00		103	80-120			
Chloroform		3.90	0.200	"	4.00		97.5	80-120			
Chloromethane		3.81	1.00	"	4.00		95.2	80-120			
2-Chlorotoluene		3.70	0.500	"	4.00		92.5	80-120			
4-Chlorotoluene		4.24	0.500	"	4.00		106	80-120			
Dibromochloromethan	e	3.80	0.200	"	4.00		95.0	80-120			
1,2-Dibromo-3-chlorop	propane	3.76	0.500	"	4.00		94.0	80-120			
1,2-Dibromoethane		3.80	0.200	"	4.00		95.0	80-120			
Dibromomethane		3.74	0.200	"	4.00		93.5	80-120			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

			Dementing	•		C		0/DEC		מממ	
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
5				onits	Lever	Result	/utille	Linits	Iu D	Liiiit	10005
Batch 4J13040:	Prepared 10/13/04	Using EP	A 5030B								
LCS (4J13040-BS1)										
1,2-Dichlorobenzene		3.82	0.200	ug/l	4.00		95.5	80-120			
1,3-Dichlorobenzene		3.83	0.200	"	4.00		95.8	80-120			
1,4-Dichlorobenzene		3.83	0.200	"	4.00		95.8	80-120			
Dichlorodifluorometha	ane	3.97	0.500	"	4.00		99.2	80-120			
1,1-Dichloroethane		3.83	0.200	"	4.00		95.8	80-120			
1,2-Dichloroethane		3.65	0.200	"	4.00		91.2	80-120			
1,1-Dichloroethene		4.05	0.200	"	4.00		101	80-120			
cis-1,2-Dichloroethene		3.95	0.200	"	4.00		98.8	80-120			
trans-1,2-Dichloroethe	ene	3.94	0.200	"	4.00		98.5	80-120			
1,2-Dichloropropane		3.72	0.200	"	4.00		93.0	80-120			
1,3-Dichloropropane		3.71	0.200	"	4.00		92.8	80-120			
2,2-Dichloropropane		4.54	0.500	"	4.00		114	65-138			
1,1-Dichloropropene		4.06	0.200	"	4.00		102	80-120			
cis-1,3-Dichloroproper	ne	3.96	0.200	"	4.00		99.0	80-120			
trans-1,3-Dichloroprop	bene	3.91	0.200	"	4.00		97.8	80-120			
Ethylbenzene		3.91	0.200	"	4.00		97.8	80-120			
Hexachlorobutadiene		4.08	0.500	"	4.00		102	80-120			
Methyl tert-butyl ether		3.78	1.00	"	4.00		94.5	80-120			
2-Hexanone		37.2	2.00	"	40.0		93.0	80-120			
Isopropylbenzene		3.96	0.500	"	4.00		99.0	80-120			
p-Isopropyltoluene		4.05	0.200	"	4.00		101	80-120			
4-Methyl-2-pentanone		36.5	2.00	"	40.0		91.2	80-120			
Methylene chloride		3.72	5.00	"	4.00		93.0	80-120			
Naphthalene		3.84	0.500	"	4.00		96.0	80-120			
n-Propylbenzene		4.01	0.500	"	4.00		100	80-120			
Styrene		3.94	0.500	"	4.00		98.5	80-120			
1,2,3-Trichlorobenzen	e	3.90	0.200	"	4.00		97.5	80-120			
1,2,4-Trichlorobenzen	e	3.98	0.200	"	4.00		99.5	80-120			
1,1,1,2-Tetrachloroeth	ane	3.79	0.200	"	4.00		94.8	80-120			
1,1,2,2-Tetrachloroeth	ane	3.84	0.500	"	4.00		96.0	80-120			
Tetrachloroethene		3.92	0.200	"	4.00		98.0	80-120			
Toluene		3.79	0.200	"	4.00		94.8	80-120			
1,1,1-Trichloroethane		3.97	0.200	"	4.00		99.2	80-120			
1,1,2-Trichloroethane		3.81	0.200	"	4.00		95.2	80-120			
Trichloroethene		3.92	0.200	"	4.00		98.0	80-120			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Project Manager: Bill Rodgers

_		10		cit i tiitui,	y ticui E	ouncin					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13040:	Prepared 10/13/04	Using EP	A 5030B								
LCS (4J13040-BS1))										
Trichlorofluoromethan	e	4.01	0.500	ug/l	4.00		100	80-120			
1,2,3-Trichloropropane	;	3.64	0.500	"	4.00		91.0	80-120			
1,2,4-Trimethylbenzen	e	3.92	0.200	"	4.00		98.0	80-120			
1,3,5-Trimethylbenzen	e	3.92	0.500	"	4.00		98.0	80-120			
Vinyl chloride		4.05	0.200	"	4.00		101	80-120			
o-Xylene		3.94	0.250	"	4.00		98.5	80-120			
m,p-Xylene		7.99	0.500	"	8.00		99.9	80-120			
Surrogate: 1,2-DCA-d-	4	3.93		"	4.00		98.2	70-130			
Surrogate: Toluene-d8		3.92		"	4.00		98.0	70-130			
Surrogate: 4-BFB		3.96		"	4.00		99.0	70-130			
LCS Dup (4J13040	-BSD1)										
Acetone		47.0	10.0	ug/l	40.0		118	80-120	21.2	30	
Benzene		4.29	0.200	"	4.00		107	80-120	12.6	30	
Bromobenzene		4.17	0.500	"	4.00		104	80-120	10.3	30	
Bromochloromethane		4.32	0.200	"	4.00		108	80-120	9.71	30	
Bromodichloromethane	2	4.22	0.200	"	4.00		106	80-120	6.10	30	
Bromoform		4.23	0.200	"	4.00		106	80-120	13.1	30	
Bromomethane		4.37	2.00	"	4.00		109	80-120	10.6	30	
2-Butanone		43.7	2.00	"	40.0		109	80-120	14.7	30	
n-Butylbenzene		4.66	0.200	"	4.00		116	80-120	11.1	30	
sec-Butylbenzene		4.42	0.200	"	4.00		110	80-120	9.73	30	
tert-Butylbenzene		4.28	0.500	"	4.00		107	80-120	5.28	30	
Carbon disulfide		4.46	0.500	"	4.00		112	80-120	10.4	30	
Carbon tetrachloride		4.30	0.200	"	4.00		108	80-120	8.48	30	
Chlorobenzene		4.30	0.200	"	4.00		108	80-120	10.3	30	
Chloroethane		4.48	1.00	"	4.00		112	80-120	8.37	30	
Chloroform		4.21	0.200	"	4.00		105	80-120	7.64	30	
Chloromethane		4.05	1.00	"	4.00		101	80-120	6.11	30	
2-Chlorotoluene		4.09	0.500	"	4.00		102	80-120	10.0	30	
4-Chlorotoluene		4.64	0.500	"	4.00		116	80-120	9.01	30	
Dibromochloromethan	e	4.29	0.200	"	4.00		107	80-120	12.1	30	
1,2-Dibromo-3-chlorop	propane	4.01	0.500	"	4.00		100	80-120	6.44	30	
1,2-Dibromoethane		4.23	0.200	"	4.00		106	80-120	10.7	30	
Dibromomethane		4.16	0.200	"	4.00		104	80-120	10.6	30	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 27 of 35

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

					0		A/DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Thuryte	Result	Linit	Onits	Level	Result	/orcle	Linits	NI D	Linin	1 totes
Batch 4J13040: Prepared 10/13/04	Using EP	A 5030B								
LCS Dup (4J13040-BSD1)										
1,2-Dichlorobenzene	4.33	0.200	ug/l	4.00		108	80-120	12.5	30	
1,3-Dichlorobenzene	4.30	0.200	"	4.00		108	80-120	11.6	30	
1,4-Dichlorobenzene	4.25	0.200	"	4.00		106	80-120	10.4	30	
Dichlorodifluoromethane	4.33	0.500	"	4.00		108	80-120	8.67	30	
1,1-Dichloroethane	4.29	0.200	"	4.00		107	80-120	11.3	30	
1,2-Dichloroethane	4.18	0.200	"	4.00		104	80-120	13.5	30	
1,1-Dichloroethene	4.38	0.200	"	4.00		110	80-120	7.83	30	
cis-1,2-Dichloroethene	4.35	0.200	"	4.00		109	80-120	9.64	30	
trans-1,2-Dichloroethene	4.36	0.200	"	4.00		109	80-120	10.1	30	
1,2-Dichloropropane	4.14	0.200	"	4.00		104	80-120	10.7	30	
1,3-Dichloropropane	4.19	0.200	"	4.00		105	80-120	12.2	30	
2,2-Dichloropropane	5.00	0.500	"	4.00		125	65-138	9.64	30	
1,1-Dichloropropene	4.49	0.200	"	4.00		112	80-120	10.1	30	
cis-1,3-Dichloropropene	4.31	0.200	"	4.00		108	80-120	8.46	30	
trans-1,3-Dichloropropene	4.45	0.200	"	4.00		111	80-120	12.9	30	
Ethylbenzene	4.40	0.200	"	4.00		110	80-120	11.8	30	
Hexachlorobutadiene	4.55	0.500	"	4.00		114	80-120	10.9	30	
Methyl tert-butyl ether	4.18	1.00	"	4.00		104	80-120	10.1	30	
2-Hexanone	46.3	2.00	"	40.0		116	80-120	21.8	30	
Isopropylbenzene	4.41	0.500	"	4.00		110	80-120	10.8	30	
p-Isopropyltoluene	4.59	0.200	"	4.00		115	80-120	12.5	30	
4-Methyl-2-pentanone	44.0	2.00	"	40.0		110	80-120	18.6	30	
Methylene chloride	4.16	5.00	"	4.00		104	80-120	11.2	30	
Naphthalene	4.16	0.500	"	4.00		104	80-120	8.00	30	
n-Propylbenzene	4.38	0.500	"	4.00		110	80-120	8.82	30	
Styrene	4.46	0.500	"	4.00		112	80-120	12.4	30	
1,2,3-Trichlorobenzene	4.41	0.200	"	4.00		110	80-120	12.3	30	
1,2,4-Trichlorobenzene	4.49	0.200	"	4.00		112	80-120	12.0	30	
1,1,1,2-Tetrachloroethane	4.31	0.200	"	4.00		108	80-120	12.8	30	
1,1,2,2-Tetrachloroethane	4.14	0.500	"	4.00		104	80-120	7.52	30	
Tetrachloroethene	4.36	0.200	"	4.00		109	80-120	10.6	30	
Toluene	4.24	0.200	"	4.00		106	80-120	11.2	30	
1,1,1-Trichloroethane	4.28	0.200	"	4.00		107	80-120	7.52	30	
1,1,2-Trichloroethane	4.22	0.200	"	4.00		106	80-120	10.2	30	
Trichloroethene	4.25	0.200	"	4.00		106	80-120	8.08	30	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13040: Prepared 10/13/04	Using EP	A 5030B								
LCS Dup (4J13040-BSD1)										
Trichlorofluoromethane	4.34	0.500	ug/l	4.00		108	80-120	7.90	30	
1,2,3-Trichloropropane	4.24	0.500	"	4.00		106	80-120	15.2	30	
1,2,4-Trimethylbenzene	4.37	0.200	"	4.00		109	80-120	10.9	30	
1,3,5-Trimethylbenzene	4.35	0.500	"	4.00		109	80-120	10.4	30	
Vinyl chloride	4.20	0.200	"	4.00		105	80-120	3.64	30	
o-Xylene	4.41	0.250	"	4.00		110	80-120	11.3	30	
m,p-Xylene	8.81	0.500	"	8.00		110	80-120	9.76	30	
Surrogate: 1,2-DCA-d4	3.94		"	4.00		98.5	70-130			
Surrogate: Toluene-d8	4.05		"	4.00		101	70-130			
Surrogate: 4-BFB	4.02		"	4.00		100	70-130			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

		orth Cree	ек Апаг	yucai - L	Dothen					
	D L	Reporting	T T •-	Spike	Source	0/850	%REC	DES	RPD	NT -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13066: Prepared 10/13	/04 Using EH	PA 3510C								
Blank (4J13066-BLK1)										
Acenaphthene	ND	5.00	ug/l							
Acenaphthylene	ND	5.00	"							
Aniline	ND	5.00	"							
Anthracene	ND	5.00	"							
Benzo (a) anthracene	ND	5.00	"							
Benzo (a) pyrene	ND	5.00	"							
Benzo (b) fluoranthene	ND	5.00	"							
Benzo (k) fluoranthene	ND	5.00	"							
Benzo (ghi) perylene	ND	5.00	"							
Benzoic Acid	ND	10.0	"							
Benzyl alcohol	ND	5.00	"							
Bis(2-chloroethoxy)methane	ND	5.00	"							
Bis(2-chloroethyl)ether	ND	5.00	"							
Bis(2-chloroisopropyl)ether	ND	5.00	"							
Bis(2-ethylhexyl)phthalate	ND	25.0	"							
4-Bromophenyl phenyl ether	ND	5.00	"							
Butyl benzyl phthalate	ND	5.00	"							
Carbazole	ND	5.00	"							
4-Chloroaniline	ND	5.00	"							
4-Chloro-3-methylphenol	ND	5.00	"							
2-Chloronaphthalene	ND	5.00	"							
2-Chlorophenol	ND	5.00	"							
4-Chlorophenyl phenyl ether	ND	5.00	"							
Chrysene	ND	5.00	"							
Di-n-butyl phthalate	ND	5.00	"							
Dibenz (a,h) anthracene	ND	5.00	"							
Dibenzofuran	ND	5.00	"							
1,2-Dichlorobenzene	ND	5.00	"							
1,3-Dichlorobenzene	ND	5.00	"							
1,4-Dichlorobenzene	ND	5.00	"							
3,3'-Dichlorobenzidine	ND	5.00	"							
2,4-Dichlorophenol	ND	5.00	"							
Diethyl phthalate		5.00	"							
	ND	5.00								
2,4-Dimethylphenol	ND ND	5.00 5.00	"							

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Evere Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

		1	orth Cree		yticai – L	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13066: Prepar	ed 10/13/04	Using EF	PA 3510C								
Blank (4J13066-BLK1)											
4,6-Dinitro-2-methylphenol		ND	5.00	ug/l							
2,4-Dinitrophenol		ND	10.0	"							
2,4-Dinitrotoluene		ND	5.00	"							
2,6-Dinitrotoluene		ND	5.00	"							
Fluoranthene		ND	5.00	"							
Fluorene		ND	5.00	"							
Hexachlorobenzene		ND	5.00	"							
Hexachlorobutadiene		ND	5.00	"							
Hexachlorocyclopentadiene		ND	5.00	"							
Hexachloroethane		ND	5.00	"							
Indeno (1,2,3-cd) pyrene		ND	5.00	"							
Isophorone		ND	5.00	"							
2-Methylnaphthalene		ND	5.00	"							
2-Methylphenol		ND	5.00	"							
3 & 4-Methylphenol		ND	5.00	"							
Naphthalene		ND	5.00	"							
2-Nitroaniline		ND	5.00	"							
3-Nitroaniline		ND	5.00	"							
4-Nitroaniline		ND	5.00	"							
Nitrobenzene		ND	5.00	"							
2-Nitrophenol		ND	5.00	"							
4-Nitrophenol		ND	5.00	"							
N-Nitrosodi-n-propylamine		ND	5.00	"							
N-Nitrosodiphenylamine		ND	5.00	"							
Di-n-octyl phthalate		ND	5.00	"							
Pentachlorophenol		ND	5.00	"							
Phenanthrene		ND	5.00	"							
Phenol		ND	5.00	"							
Pyrene		ND	5.00	"							
1,2,4-Trichlorobenzene		ND	5.00	"							
2,4,5-Trichlorophenol		ND	5.00	"							
2,4,6-Trichlorophenol		ND	5.00	"							
Surrogate: 2-FBP		8.68		"	25.0		34.7	41-129			
Surrogate: 2-FP		0.0400		"	25.0		0.160	18-124			
Surrogate: Nitrobenzene-d5		9.18		"	25.0		36.7	44-124			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Project Manager: Bill Rodgers

			•							
	D It	Reporting	T. 1.	Spike	Source		%REC	DDD	RPD	Nutri
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13066: Prepared 10/13/04	Using EP	A 3510C								
Blank (4J13066-BLK1)										
Surrogate: Phenol-d6	0.310		ug/l	25.0		1.24	25-122			
Surrogate: p-Terphenyl-d14	19.5		"	25.0		78.0	10-132			
Surrogate: 2,4,6-TBP	0.470		"	25.0		1.88	19-132			
LCS (4J13066-BS1)										
Acenaphthene	34.2	5.00	ug/l	50.0		68.4	66-119			
4-Chloro-3-methylphenol	9.48	5.00	"	50.0		19.0	48-132			
2-Chlorophenol	0.950	5.00	"	50.0		1.90	23-134			
1,4-Dichlorobenzene	30.9	5.00	"	50.0		61.8	43-122			
2,4-Dinitrotoluene	45.4	5.00	"	50.0		90.8	67-129			
4-Nitrophenol	15.2	5.00	"	50.0		30.4	12-153			
N-Nitrosodi-n-propylamine	34.4	5.00	"	50.0		68.8	41-141			
Pentachlorophenol	12.8	5.00	"	50.0		25.6	34-130			
Phenol	2.03	5.00	"	50.0		4.06	20-124			
Pyrene	37.6	5.00	"	50.0		75.2	59-134			
1,2,4-Trichlorobenzene	33.6	5.00	"	50.0		67.2	52-120			
Surrogate: 2-FBP	16.5		"	25.0		66.0	41-129			
Surrogate: 2-FP	ND		"	25.0		ND	18-124			
Surrogate: Nitrobenzene-d5	16.5		"	25.0		66.0	44-124			
Surrogate: Phenol-d6	0.810		"	25.0		3.24	25-122			
Surrogate: p-Terphenyl-d14	21.8		"	25.0		87.2	10-132			
Surrogate: 2,4,6-TBP	1.51		"	25.0		6.04	19-132			
LCS Dup (4J13066-BSD1)										
Acenaphthene	27.6	5.00	ug/l	50.0		55.2	66-119	21.4	49	
4-Chloro-3-methylphenol	8.61	5.00	"	50.0		17.2	48-132	9.62	49	
2-Chlorophenol	1.10	5.00	"	50.0		2.20	23-134	14.6	61	
1,4-Dichlorobenzene	23.2	5.00	"	50.0		46.4	43-122	28.5	26	
2,4-Dinitrotoluene	40.2	5.00	"	50.0		80.4	67-129	12.1	29	
4-Nitrophenol	17.3	5.00	"	50.0		34.6	12-153	12.9	37	
N-Nitrosodi-n-propylamine	25.7	5.00	"	50.0		51.4	41-141	29.0	36	
Pentachlorophenol	21.5	5.00	"	50.0		43.0	34-130	50.7	32	
Phenol	2.06	5.00	"	50.0		4.12	20-124	1.47	53	
Pyrene	42.4	5.00	"	50.0		84.8	59-134	12.0	50	
1,2,4-Trichlorobenzene	23.6	5.00	"	50.0		47.2	52-120	35.0	25	
, ,							. = - = 2			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

11/22/04 10:31

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control North Creek Analytical - Bothell

Project Manager: Bill Rodgers

				•	<i>v</i>						
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J13066:	Prepared 10/13/04	Using EP	PA 3510C								
LCS Dup (4J13066	5-BSD1)										Х
Surrogate: 2-FP		ND		ug/l	25.0		ND	18-124			
Surrogate: Nitrobenze	ene-d5	11.9		"	25.0		47.6	44-124			
Surrogate: Phenol-d6		0.880		"	25.0		3.52	25-122			
Surrogate: p-Terpheny	vl-d14	20.2		"	25.0		80.8	10-132			
Surrogate: 2,4,6-TBP		3.24		"	25.0		13.0	19-132			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/22/04 10:31

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

_				·							
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J19032:	Prepared 10/19/04	Using Ge	neral Prep	oaration							
Blank (4J19032-BI	LK1)										
Dry Weight		100	1.00	%							

Dry Weight

1.00%

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
эрокане	
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
Anene.age	907.563.9200 fax 907.563.9210
	Son Son Secondary Son Son Second
Time Oil E	verett
	verett
440-2	Reported:
	itepoi teu.

11/22/04 10:31

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

Notes and Definitions

Project:

A-01	Sample had headspace due to lab use.
Е	Estimated value. The reported value exceeds the calibration range of the analysis.
E-01	Estimated value. The reported value exceeds the capacity of the detector and therefore is unreliable.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
Х	See case narrative.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

17 November 2004

Bill Rodgers Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

RE: Time Oil Everett

Enclosed are the results of analyses for samples received by the laboratory on 10/07/04 15:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amar Gill Project Manager

CASE NARRATIVE for B4J0407

Client: Sound Environmental Strategies Project Manager: Bill Rodgers Project Name: Time Oil Everett Project Number: 440-2

1.0 DESCRIPTION OF CASE

Thirteen (13) soil samples were submitted for the analysis of Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B.

2.0 COMMENTS ON SAMPLE RECEIPT

The sample was received 7th October 2004 at a temperature of 7.6°C and logged in 12th October 2004. The samples were received outside the recommended temperature range of 2 to 6 Degrees Celsius. Each sample was received in two 40mL Methanol preserved voa vials. A dry weight correction cannot be conducted on a methanol preserved sample. All reported results are provided on an as received basis.

3.0 PREPARATION AND ANALYSIS

Gasoline Hydrocarbons and BTEX by NWTPH-G and 8021B

No additional anomalies or discrepancies were associated with this analysis other than those already qualified in the data.

Amar Gill Project Manager North Creek Analytical

		OTTONY	B470407			
Send Report To 3.//	Kodget	SAMPLERS (signation)				
	Environmental Strategies	PROJECT NAME AND	Fage # of TURNAROUND TIME			
Address 2400 Airpa	at Wars # 200	- 440-2 PO#	Standard (2 Weeks)			
City, State, ZIP <u>Seattle</u>	*	REMARKS	Rush charges authorized by:			
Phone # <u>(206) 306-1900</u>		· ·	SAMPLE DISPOSAL			
<u></u>	Fax #_ <u>(206) 306-1907</u>	Time oil Everett	Dispose after 30 days Distance and the second secon			
	Revised Chain	ANALYSES REQUEST	□ Will call with instructions			
· .	Reviseu					
Sample ID	Lab ID Date Time S	amble Lybe to the solution of				
		ample Type # 01 石 電 A A A S containers H C A A A S	Notes			
21.126	(974)					
BI-17' / DI-18' /	10-6-04 12:00	5 2 X				
			Analogo ho- Gasether BTCh			
B3-7' V	13:59					
B3-8' V	13:58					
BY-5 V						
B4-6	12:00	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	η.			
B4.7						
	+					
b5-4 d5-5						
	. 14:45					
B5-7- V	12500					
·. [SIGNAŢURE					
	Relinquished by:	PRINT NAME COMPAN	Y DATE TIME			
	Received by: Wermen Roling	William H Kodger SET	10-7-91			
NUN	Relinquished by: Relinquished by: Received by: Received by:	SHEEMAN ROLAND NCA	10-7-04 11:00			
	Received by:	SHERMAN Roland NCA	10-7-04 15:40			
τ. τ		> PRAMY TONTY NOA	10/7/04 1500			

City, State, ZIP <u>Seattle.</u> Phone # <u>(206) 306-1900</u>	<u>WA .</u>	c #_(206) 3(8 4 16-1907		TIME	0,	:1	Ē.	era	e H	L			ĕDis _l D Retu	SAMF pose a	es authorized PLE DISPOSA fter 30 days mples
	+		bod	chain of CL	stody				AN	ALY	SES RE	QUES	L TED		I call w	vith instructio
Sample ID	Lab ID	R Date	Time	Sample Type		TPH-Diesel	TPH-Gasoline	BTEX by 8021B	SVO.Ca by 8270							Notes
36 - 4	 -	10-16-04	Laco				$\overline{\mathbf{v}}$									Analyse to
136-4 16-11.5		10 7004	12:00	Soil	2		4		1	ŀ						
No - 14		Ŀ.		k.	L		X					· 			-	
							<u> </u>		$\left - \right $			-				
•																
	_						<u>-</u>				·					
Re	elinquish	SIGNA	TURE		PRI	INT I	NAM	E			C		NY			TE TIN

	I DI					CHAIN			ODY	r								
Send Report To <u>Sill</u> Company <u>Sound I</u> Address X YM A 'M	Environme	<u>ntal Stra</u>	tegies		PROJE	ERS (sign A) CT NAME	NO.]	PO #			7	FURN	AROUN (2 Week	DT
Address 2460 Airpa City, State, ZIP <u>Seattle</u>	<u>, WA</u>	<u>98/</u> 3	4	- 	REMAR	IKS					•				Rush (charge	es author	rize
Phone # <u>(206) 306-1900</u>	Fax #	(206) 30	6-1907	[n'me	011				H (SES)	REOI	IRST		D Retu D Will	irn sai call w	fter 30 d mples vith instr	ruct
Sample II)	Lab ID	Date	Time	Samp	le Type	# of containers	TPH-Diesel	BTEX by 8021B		SVOCs by 8270 HFS							1 134J	Note D4
BI-17' DI-18'		8-6-04			5	2	X										Analzy Gasol	
B3-7' B3-8'			•	•			X									·	· ·	$\left \right $
B4-5							X											†
B4.7							X											
35-4 35-5							X											
B5-7-				J.														7
	Relinquished Received by:	WX	R		W	illiam	INT NA	Rio	- Lar		· · · · · · · · · · · · · · · · · · ·	C0) SE	MPA T	NY			ATE ATE	Ţ
	Relinquished Theman Received by:	inquished by: Rolinal			XH2	Reman	Rola	nd	10	/	л Ň	ن ر ح	>_ A	7		1	7-04	11. 15
. (m	404	3		RANY	700				Ner	<u>4</u>		7.0		18/7, JD	14	5

			THE OTICALLY		DY				
Send Report To 3./	1 Rodgen	S	AMPLERS (sigh	njure)				Fage #	of
Company <u>Sound</u> Address 2460 Airpo	Environmental Strateg		којест namk 440-2	NO. •		PO #		TURNAROUN Itandard (2 Wee LUSH	ND TIM ks)
City, State, ZIP <u>Seattle</u> Phone # <u>(206) 306-1900</u>	e. WA. 98/34	RI	EMARKS TTME		Rush charges authorized by: SAMPLE DISPOSAL CDispose after 30 days Return samples				
						YSES REQ		/ill call with ins	truction
Sample II)	Lab ID Date	Time Sample	Type # of containers	TPH-Diesel TPH-Gasoline BTEX by 8021B	8260 8270				Notes
76 136 - Y	10-16-04	- So:	/ 2	X				A naty Gessel	ise to- n/ 15t
736 - 4 76 - 11.5 76 - 14				X					
		<u>.</u>							
	SIGNATU Relinquished by			INT NAME		CO	MPANY	DATE	TIN
NLA	Received by: Merman Roll Relinguished by: Sterman Roll	und	SHERMA	Rolas	n Id	SES		10-7-04	11.0
	Received by:	and onto	SHERMAN PRANK T	Rolan W Ty	d	NCA NCA	A	10-7-04 10/7/04	15:4 1514
			· · · · •	U			7.6.0		1.74

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

Sound Environmental Strategies 2400 Airport Way South, Suite 200 Seattle, WA/USA 98134-2020

Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B1-17'	B4J0407-01	Soil	10/06/04 12:00	10/07/04 15:40
B1-18'	B4J0407-02	Soil	10/06/04 12:00	10/07/04 15:40
B3-7'	B4J0407-03	Soil	10/06/04 13:59	10/07/04 15:40
B3-8'	B4J0407-04	Soil	10/06/04 13:58	10/07/04 15:40
B4-5'	B4J0407-05	Soil	10/06/04 12:00	10/07/04 15:40
B4-6'	B4J0407-06	Soil	10/06/04 12:00	10/07/04 15:40
B4-7'	B4J0407-07	Soil	10/06/04 12:00	10/07/04 15:40
B5-4'	B4J0407-08	Soil	10/06/04 12:00	10/07/04 15:40
B5-5'	B4J0407-09	Soil	10/06/04 14:45	10/07/04 15:40
B5-7'	B4J0407-10	Soil	10/06/04 12:00	10/07/04 15:40
B6-4'	B4J0407-11	Soil	10/06/04 12:00	10/07/04 15:40
B6-11.5'	B4J0407-12	Soil	10/06/04 12:00	10/07/04 15:40
B6-14'	B4J0407-13	Soil	10/06/04 12:00	10/07/04 15:40

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-17' (B4J0407-01RE1) Soil	Sampled: 10/06/04 12	2:00 Receiv	ved: 10/07/04	15:40					
Gasoline Range Hydrocarbons	32.7	7.28	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.0437		"	"	"	"	"	
Toluene	ND	0.0728		"	"	"	"	"	
Ethylbenzene	ND	0.0728		"	"	"	"	"	
Xylenes (total)	0.419	0.146	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	108 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	95.4 %	53-142			"	"	"	"	
B1-18' (B4J0407-02) Soil Sam	pled: 10/06/04 12:00	Received:	10/07/04 15:	40					
Gasoline Range Hydrocarbons	ND	8.08	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	ND	0.0485	"	"	"	"	"	"	
Toluene	ND	0.0808	"	"	"	"	"	"	
Ethylbenzene	ND	0.0808		"	"	"	"	"	
Xylenes (total)	ND	0.162	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	94.1 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	91.0 %	53-142			"	"	"	"	
B3-7' (B4J0407-03) Soil Sampl	led: 10/06/04 13:59	Received: 1	0/07/04 15:4	0					
Gasoline Range Hydrocarbons	64.3	6.49	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	
Benzene	0.628	0.0389	"	"	"	"	"	"	
Toluene	0.0826	0.0649	"	"	"	"	"	"	
Ethylbenzene	1.44	0.0649	"	"	"	"	"	"	
Xylenes (total)	6.47	0.130	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	119 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	98.1 %	53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting Limit							
Analyte	Analyte Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-8' (B4J0407-04) Soil	Sampled: 10/06/04 13:58	Received: 1	0/07/04 15:40)					
Gasoline Range Hydroca	arbons 62.5	10.2	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	G-01
Benzene	enzene 0.692		"	"	"	"	"	"	
Toluene	ND	0.102	"	"	"	"	"	"	
Ethylbenzene	ND	0.102	"	"	"	"	"	"	
Xylenes (total)	0.286	0.204	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	96.9 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	93.7 %	53-142			"	"	"	"	
B4-5' (B4J0407-05) Soil	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:40						
Gasoline Range Hydrocar	bons ND	5.00	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	
Benzene	0.0530	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	ND	0.0500	"	"	"	"	"	"	
Xylenes (total)	ND	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	95.8 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	91.5 %	53-142			"	"	"	"	
B4-6' (B4J0407-06) Soil	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:40)					
Gasoline Range Hydrocar	bons ND	6.34	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	
Benzene	0.215	0.0380	"	"	"	"	"	"	
Toluene	ND	0.0634	"	"	"	"	"	"	
Ethylbenzene	ND	0.0634	"	"	"	"	"	"	
Xylenes (total)	0.384	0.127	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	95.1 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID) 92.8 %		53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B4-7' (B4J0407-07) Soil	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:40)					
Gasoline Range Hydrocar	bons ND	5.99	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	
Benzene	0.124	0.0359	"	"	"	"	"	"	
Toluene	ND	0.0599	"	"	"	"	"	"	
Ethylbenzene	ND	0.0599	"	"	"	"	"	"	
Xylenes (total)	0.305	0.120	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	88.9 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	91.3 %	53-142			"	"	"	"	
B5-4' (B4J0407-08) Soil	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:40)					
Gasoline Range Hydrocar	bons ND	6.21	mg/kg wet	1	4J18022	10/18/04	10/19/04	NWTPH-Gx/8021B	
Benzene	0.0597	0.0373	"	"	"	"	"	"	
Toluene	ND	0.0621	"	"	"	"	"	"	
Ethylbenzene	ND	0.0621	"	"	"	"	"	"	
Xylenes (total)	ND	0.124	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	97.0 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	91.9 %	53-142			"	"	"	"	
B5-5' (B4J0407-09) Soil	Sampled: 10/06/04 14:45	Received: 1	0/07/04 15:40)					
Gasoline Range Hydrocar	bons ND	6.66	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.101	0.0399	"	"	"	"	"	"	
Toluene	ND	0.0666	"	"	"	"		"	
Ethylbenzene	0.0719	0.0666	"	"	"	"	"	"	
Xylenes (total)	0.294	0.133	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	90.9 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	89.7 %	53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project: Time Oil Everett Project Number: 440-2

Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>B5-7' (B4J0407-10) Soil</u>	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:4	0					
Gasoline Range Hydroca	arbons 10.2	6.08	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.196	0.0365		"	"	"	"	"	
Toluene	ND	0.0608		"	"	"	"	"	
Ethylbenzene	0.385	0.0608		"	"	"	"	"	
Xylenes (total)	1.72	0.122	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	97.3 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	93.2 %	53-142			"	"	"	"	
B6-4' (B4J0407-11) Soil	Sampled: 10/06/04 12:00	Received: 1	0/07/04 15:4	0					
Gasoline Range Hydroca	arbons 18.4	6.11	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.256	0.0366		"	"	"	"	"	
Toluene	ND	0.0611		"	"	"	"	"	
Ethylbenzene	0.314	0.0611		"	"	"	"	"	
Xylenes (total)	2.01	0.122	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	110 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	95.2 %	53-142			"	"	"	"	
<u>B6-11.5' (B4J0407-12) So</u>	bil Sampled: 10/06/04 12:	00 Received	d: 10/07/04 1	5:40					
Gasoline Range Hydroca	arbons 338	6.82	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.187	0.0409	"	"		"	"	"	
Toluene	0.0780	0.0682	"	"		"	"	"	
Ethylbenzene	1.36	0.0682	"	"		"	"	"	
Xylenes (total)	6.76	0.136	"	"		"	"	"	
Surrogate: 4-BFB (FID)	163 %	50-150			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	106 %	53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Project Number: 440-2 Project Manager: Bill Rodgers

Reported: 11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B North Creek Analytical - Bothell

Analyte Res		Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>B6-14' (B4J0407-13) Soil</u>	Sampled: 10/06/04 12:00	Received:	10/07/04 15:	40					
Gasoline Range Hydrocarbons 101		5.00	mg/kg wet	1	4J20004	10/20/04	10/20/04	NWTPH-Gx/8021B	
Benzene	0.388	0.0300	"	"	"	"	"	"	
Toluene	ND	0.0500	"	"	"	"	"	"	
Ethylbenzene	0.495	0.0500	"	"	"	"	"	"	
Xylenes (total)	1.99	0.100	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	182 %	50-150			"	"	"	"	S-04
Surrogate: 4-BFB (PID)	108 %	53-142			"	"	"	"	

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

North Creek Analytical - Bothell												
		ľ	North Cr	eek Analy								
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
					Lever	Result	/utele	Linits	Iu D	Linit	110105	
Batch 4J18022:	Prepared 10/18/04	Using F	EPA 5030B	(MeOH)								
Blank (4J18022-BL)	K1)											
Gasoline Range Hydroc	arbons	ND	5.00	mg/kg								
Benzene		ND	0.0300	"								
Toluene		ND	0.0500	"								
Ethylbenzene		ND	0.0500	"								
Xylenes (total)		ND	0.100	"								
Surrogate: 4-BFB (FID))	2.14		"	2.40		89.2	50-150				
Surrogate: 4-BFB (PID))	2.09		"	2.40		87.1	53-142				
LCS (4J18022-BS1)												
Gasoline Range Hydroc	arbons	26.3	5.00	mg/kg	25.1		105	75-125				
Benzene		0.289	0.0300	"	0.310		93.2	75-125				
Toluene		1.67	0.0500	"	1.75		95.4	75-125				
Ethylbenzene		0.409	0.0500	"	0.419		97.6	75-125				
Xylenes (total)		2.01	0.100	"	2.03		99.0	75-125				
Surrogate: 4-BFB (FID))	2.48		"	2.40		103	50-150				
Surrogate: 4-BFB (PID))	2.14		"	2.40		89.2	53-142				
LCS Dup (4J18022-	BSD1)											
Gasoline Range Hydroc	arbons	27.6	5.00	mg/kg	25.1		110	75-125	4.82	25		
Benzene		0.304	0.0300	"	0.310		98.1	75-125	5.06	25		
Toluene		1.74	0.0500	"	1.75		99.4	75-125	4.11	25		
Ethylbenzene		0.425	0.0500	"	0.419		101	75-125	3.84	25		
Xylenes (total)		2.11	0.100	"	2.03		104	75-125	4.85	25		
Surrogate: 4-BFB (FID))	2.49		"	2.40		104	50-150				
Surrogate: 4-BFB (PID))	2.13		"	2.40		88.8	53-142				
Matrix Spike (4J180)22-MS1)					Source: H	B4J0407- 0)1				
Gasoline Range Hydroc	arbons	61.2	6.15	mg/kg wet	30.9	35.2	84.1	42-125				
Benzene		0.363	0.0369	"	0.382	0.0190	90.1	45-125				
Toluene		2.00	0.0615	"	2.15	0.0171	92.2	55-125				
Ethylbenzene		0.588	0.0615	"	0.515	0.131	88.7	53-132				
Xylenes (total)		2.71	0.123	"	2.50	0.338	94.9	59-125				
Surrogate: 4-BFB (FID))	3.69		"	2.95		125	50-150				
Surrogate: 4-BFB (PID))	2.70		"	2.95		91.5	53-142				

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420,9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9209

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

Reported:

11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

Project Number: 440-2

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J18022:	Prepared 10/18/04	Using El	PA 5030B	(MeOH)							
Matrix Spike Dup	(4J18022-MSD1)					Source: E	84J0407- 0)1			
Gasoline Range Hydro	ocarbons	62.9	6.15	mg/kg wet	30.9	35.2	89.6	42-125	2.74	40	
Benzene		0.371	0.0369	"	0.382	0.0190	92.1	45-125	2.18	40	
Toluene		2.07	0.0615	"	2.15	0.0171	95.5	55-125	3.44	40	
Ethylbenzene		0.611	0.0615	"	0.515	0.131	93.2	53-132	3.84	40	
Xylenes (total)		2.82	0.123	"	2.50	0.338	99.3	59-125	3.98	40	
Surrogate: 4-BFB (FII	D)	3.72		"	2.95		126	50-150			
Surrogate: 4-BFB (PII	D)	2.69		"	2.95		91.2	53-142			
Batch 4J20004:	Prepared 10/20/04	Using El	PA 5030B	(MeOH)							
Blank (4J20004-BI	LK1)										
Gasoline Range Hydro	ocarbons	ND	5.00	mg/kg							
Benzene		ND	0.0300	"							
Toluene		ND	0.0500	"							
Ethylbenzene		ND	0.0500	"							
Xylenes (total)		ND	0.100	"							
Surrogate: 4-BFB (FII	D)	2.21		"	2.40		92.1	50-150			
Surrogate: 4-BFB (PII	D)	2.09		"	2.40		87.1	53-142			
LCS (4J20004-BS1)										
Gasoline Range Hydro	ocarbons	24.8	5.00	mg/kg	25.1		98.8	75-125			
Benzene		0.287	0.0300	"	0.310		92.6	75-125			
Toluene		1.65	0.0500	"	1.75		94.3	75-125			
Ethylbenzene		0.400	0.0500	"	0.419		95.5	75-125			
Xylenes (total)		1.99	0.100	"	2.03		98.0	75-125			
Surrogate: 4-BFB (FII	D)	2.53		"	2.40		105	50-150			
Surrogate: 4-BFB (PII	D)	2.12		"	2.40		<i>88.3</i>	53-142			

North Creek Analytical - Bothell

Amar Gill, Project Manager

Seattle, WA/USA 98134-2020

2400 Airport Way South, Suite 200

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

 Project Number:
 440-2
 Reported:

11/17/04 08:22

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Quality Control

Project Manager: Bill Rodgers

North Creek Analytical - Bothell

					Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4J20004:	Prepared 10/20/04	Using El	PA 5030B	(MeOH)							
LCS Dup (4J20004	-BSD1)										
Gasoline Range Hydro	carbons	25.9	5.00	mg/kg	25.1		103	75-125	4.34	25	
Benzene		0.279	0.0300	"	0.310		90.0	75-125	2.83	25	
Toluene		1.61	0.0500	"	1.75		92.0	75-125	2.45	25	
Ethylbenzene		0.391	0.0500	"	0.419		93.3	75-125	2.28	25	
Xylenes (total)		1.94	0.100	"	2.03		95.6	75-125	2.54	25	
Surrogate: 4-BFB (FIL))	2.52		"	2.40		105	50-150			
Surrogate: 4-BFB (PIL))	2.14		"	2.40		89.2	53-142			
Matrix Spike (4J20004-MS1)					Source: B4J0482-01						
Gasoline Range Hydro	carbons	276	13.3	mg/kg dry	18.6	192	452	42-125			
Benzene		0.975	0.0800	"	0.230	0.176	347	45-125			
Toluene		4.66	0.133	"	1.30	0.0281	356	55-125			
Ethylbenzene		5.23	0.133	"	0.311	4.28	305	53-132			
Xylenes (total)		23.7	0.267	"	1.51	17.5	411	59-125			
Surrogate: 4-BFB (FIL))	2.61		"	1.78		147	50-150			
Surrogate: 4-BFB (PIL))	1.73		"	1.78		97.2	53-142			
Matrix Spike Dup ((4J20004-MSD1)					Source: I	34J0482-()1			Q-02
Gasoline Range Hydro	carbons	279	13.3	mg/kg dry	18.6	192	468	42-125	1.08	40	
Benzene		1.02	0.0800	"	0.230	0.176	367	45-125	4.51	40	
Toluene		5.04	0.133	"	1.30	0.0281	386	55-125	7.84	40	
Ethylbenzene		5.33	0.133	"	0.311	4.28	338	53-132	1.89	40	
Xylenes (total)		24.2	0.267	"	1.51	17.5	444	59-125	2.09	40	
Surrogate: 4-BFB (FIL))	2.65		"	1.78		149	50-150			
Surrogate: 4-BFB (PIL))	1.75		"	1.78		<i>98.3</i>	53-142			

North Creek Analytical - Bothell

Amar Gill, Project Manager

 Bend
 Bend

 www.ncalabs.com
 Anchorage

 Sound Environmental Strategies
 Project:

 2400 Airport Way South, Suite 200
 Project Number:

 Seattle, WA/USA 98134-2020
 Project Manager:

 Bill Rodgers

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420,9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9209

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Time Oil Everett

Reported:

11/17/04 08:22

Notes and Definitions

- G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.
- Q-02 The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

Amar Gill, Project Manager

J18039.D BTXI1204.M

J18042.D BTXI1204.M

204.M I

Tue Oct 19 06:48:34 2004

J20006.D BTXI1204.M

3-44

10

Wed Oct 20 17:25:57 2004

J20007.D BTX:

BTXI1204.M

Wed Oct 20 17:55:44 2004

Thu Oct 21 14:24:55 2004