

22 November 2019

Mr. Panjini Balaraju Washington State Department of Ecology PO Box 47775 Olympia, Washington 98504-7775

Subject: 2019 Long-Term Groundwater Monitoring Report Former Strebor Property, Cleanup Site ID 2615, Facility/Site ID 34822454 Tetra Pak Vancouver Vancouver, Washington Ecology VCP File No. SW0377 KJ 1996007*00

Dear Mr. Balaraju:

This letter report summarizes the results of the 2019 long-term groundwater monitoring event conducted on 17 July 2019 at the former Strebor property (Site). The Site is located at 3125 Thompson Avenue in Vancouver, Washington (see Figure 1).

Investigation and cleanup activities have been conducted at the Site under the Voluntary Cleanup Program (VCP) (VCP No. SW0377) through the Washington State Department of Ecology (Ecology). The purpose of long-term groundwater monitoring at the Site is to confirm the effectiveness of the implemented remedy (impacted soil removal and engineered asphalt cap and cover) and to assess that the remedy remains protective of groundwater. Long-term groundwater monitoring was implemented in first quarter 2009 and is conducted once every 18 months.

In December 2012, Ecology determined that no further remedial action is necessary at the Site (Ecology 2012). Ecology's no further remedial action determination was based on characterization of the Site, establishment of cleanup standards, selection and implementation of the cleanup action, post cleanup institutional and engineering controls, and long-term groundwater monitoring.

Activities Conducted During Groundwater Monitoring

Activities completed during the 2019 groundwater monitoring event were conducted in accordance with the *Long Term Groundwater Monitoring Plan* (Kennedy/Jenks Consultants, Inc. 2009) and the *Opinion under WAC 173-340-515(5) on Remedial Action(s) for the Tetra Pak Hazardous Waste Site* (Ecology 2007). These activities consisted of:

 Measuring depths to groundwater on 17 July 2019 in monitoring wells MW-1, MW-2, MW-3, MW-5, MW-6, MW-7, and MW-8. Depth to groundwater measured at monitoring well MW-3 could not be converted to groundwater elevation as the casing had been modified and the current top of casing elevation was not available.

Mr. Panjini Balaraju Washington State Department of Ecology 22 November 2019 Page 2

- Collecting groundwater samples from monitoring wells MW-2, MW-5, MW-6, MW-7, and MW-8 on 17 July 2019. Insufficient water was available in monitoring well MW-1 for sampling. Monitoring well MW-3 was inaccessible at the time of the sampling due to a damaged casing and no sample was collected. The groundwater samples were collected following purging the wells and stabilization of temperature, pH, conductivity, and dissolved oxygen in the purge water.
- Submitting groundwater samples to Apex Laboratories (Apex) in Tigard, Oregon, for analysis of pentachlorophenol and all isomers of tetrachlorophenol and trichlorophenol using U.S. Environmental Protection Agency (EPA) Method 8270D.
- Submitting the groundwater sample collected from MW-7 to Apex in Tigard, Oregon, for analysis of dioxins and furans by EPA Method 1613B (analysis performed by Cape Fear Analytical LLC). Analysis of dioxins/furans in samples collected from monitoring well MW-7 is performed once every 5 years.

Results

The results of groundwater level measurements are summarized in Table 1. Figure 2 is a site map with groundwater elevations for each monitoring well.

Groundwater Elevation Monitoring

Groundwater was measured at depths between 5.23 (monitoring well MW-2) and 5.38 feet (monitoring well MW-3) above mean sea level (MSL). The groundwater elevations in the monitoring wells were within 0.15 foot of each other, indicating the gradient is flat, consistent with historical groundwater gradients. For this reason, groundwater elevation contours are not plotted on Figure 2.

Groundwater Sampling Results

The groundwater analytical results from the July 2019 and previous sampling events are summarized in Table 2. A copy of the laboratory analytical report is included in Attachment A. Copies of field forms are included in Attachment B.

Based on the analytical results for the July 2019 sampling event, pentachlorophenol, tetrachlorophenol, or trichlorophenol compounds were not detected above the method detection limits in the samples collected. These compounds were also not detected in samples collected during the previous three sampling events (although monitoring well MW-1 has been dry and not sampled during these events).

The dioxin/furan Toxicity Equivalent Quotient (TEQ) in the sample collected from monitoring well MW-7 was 1.43 picograms per liter (pg/L), calculated using 2005 World Health Organization

Mr. Panjini Balaraju Washington State Department of Ecology 22 November 2019 Page 3

Toxic Equivalency Factors and assuming a concentration of 0 for individual dioxins/furans not reported above the laboratory reporting limit in accordance with guidance provided in Ecology's Implementation Memo No. 13 (Ecology 2016). This TEQ is consistent with the TEQ value of 2.73 pg/L calculated for the groundwater sample collected from MW-7 in March 2012, the last monitoring event during which dioxin analysis was performed.

Data Quality

A duplicate groundwater sample (D-20190717) was collected from monitoring well MW-7 for analysis of pentachlorophenol, tetrachlorophenol, and trichlorophenol. These constituents were not detected in the primary or duplicate sample.

Kennedy/Jenks Consultants, Inc. reviewed the laboratory quality control data included with the laboratory report and found no laboratory data quality issues associated with the 17 July 2019 sampling event.

Monitoring Well MW-3 Status

Monitoring well MW-3 was originally installed as a stickup well located in a parking and truck loading area of the parking lot (Figure 2). In the past, a vehicle collided with MW-3, bending the well casing. In 2018, Tetra Pak converted MW-3 to a flush-mount well to reduce the risk of future vehicle collisions. MW-3 appears to have become damaged during the conversion, and standard groundwater sampling equipment could not access the well. Therefore, a groundwater sample was not collected from MW-3. Tetra-Pak proposes that sampling of MW-3 be discontinued due to the damaged casing. Neither pentachlorophenol nor isomers of tetrachlorophenol and trichlorophenol have been reported above laboratory reporting limits since December 2006.

Conclusion

The monitoring results indicate that the remedial actions at the Site continue to be effective at protecting groundwater quality at the Site. Ecology's 5-year review was conducted in late 2017 for the Site and concluded that "remedial actions conducted at the Site continue to be protective of the human health and the environment" (Ecology 2018). Tetra Pak requests that Ecology evaluate a reduction in sampling frequency to once every 5 years during the next 5-year review, expected to occur in 2022.

Future Sampling Activities

The next long-term groundwater monitoring event is scheduled for first quarter 2021. This event will consist of sampling monitoring wells MW-1, MW-2, MW-5, MW-6, and MW-8 for analysis of pentachlorophenol, tetrachlorophenol, and trichlorophenol by EPA Method 8270D. Sampling will not occur at monitoring well MW-3.

Mr. Panjini Balaraju Washington State Department of Ecology 22 November 2019 Page 4

Please feel free to call Alice Robinson at (503) 423-4018 with any questions regarding this report.

Sulia Schwarz, L.G.,

Project Geologist

Very truly yours, Kennedy/Jenks Consultants, Inc.

alia Rolinan

Alice Robinson Project Manager

Attachments:

 Table 1
 Summary of Groundwater Elevation Data

 Table 2
 Summary of Water Quality and Geochemical Parameters

Figure 1 Site Vicinity Map

Figure 2 Groundwater Elevation Map July 2019

Attachment A Laboratory Analytical Report Attachment B Groundwater Sampling and Purge Forms

cc: Larry Price, Tetra Pak Robert B. Lowry, Kell Alterman & Runstein, LLP

References

- Kennedy/Jenks Consultants, Inc. 2009. Long Term Groundwater Monitoring Plan, Former Strebor Site. 9 January 2009.
- Washington State Department of Ecology. 2007. Opinion under WAC 173-340-515(5) on Remedial Action(s) for the Tetra Pak Hazardous Waste Site. Washington State Department of Ecology. 5 April 2007.
- Washington State Department of Ecology. 2012. No Further Action at the Following Site: Site Name: Tetra Pak; Site Address: 3125 Thompson Avenue, Vancouver; Facility/Site No.; 34822454; Cleanup Site ID No.: 2615; VCP Project No.: SW0377. Washington State Department of Ecology. 27 December 2012.
- Washington State Department of Ecology. 2016. Implementation Memorandum No. 13: Dioxins, Furans, and Dioxin-like PCB Congeners: Ecological Risk Calculation Methodology for Upland Soil. Washington State Department of Ecology. 12 July 2016.
- Washington State Department of Ecology. 2018. Periodic Review Report Draft: Tetra Pak, Facility Site ID# 34822454, Cleanup Site ID#: 2615. Washington State Department of Ecology. July 2018.

Tables

		тос	Depth to	Water
		Elevation	Water	Elevation
Well	Date	(ft msl) ^(a)	(ft) ^(b)	(ft msl) ^(c)
MW-1	02/19/02	54.40	48.62	5.78
10100-1	02/19/02	54.40	40.02	6.67
	03/25/02		48.78	5.62
	04/18/02		43.55	10.85
	05/28/02		45.70	8.70
	08/19/02		49.45	4.95
	11/18/02		49.45	4.95
	02/25/03		49.04	6.17
	06/15/06		40.23	12.02
	07/06/06		42.30	6.13
	12/28/06		45.36	9.04
	09/23/08			
			DRY	DRY
	01/06/09		45.04	9.36
	04/28/09		45.01	9.39
	02/16/10 07/13/10		48.60	5.80
			47.46	6.94
	03/19/12		44.01	10.39
	09/30/13		49.50	4.90
	07/28/15		DRY	DRY
	01/31/17		47.72	6.68
	07/17/19	F 4 4 4	49.09	5.31
MW-2	10/08/01	51.44	48.10	3.34
	02/19/02		45.73	5.71
	02/27/02		44.72	6.72
	03/25/02		45.80	5.64
	04/18/02		40.55	10.89
	05/28/02		42.78	8.66
	08/19/02		46.55	4.89
	11/18/02		46.73	4.71
	02/25/03		45.32	6.12
	06/15/06		39.47	11.97
	07/06/06		45.35	6.09
	12/28/06		42.37	9.07
	09/23/08		48.04	3.40
	01/06/09		42.09	9.35
	04/28/09		42.07	9.37
	02/16/10		45.71	5.73
	07/13/10		44.56	6.88
	03/19/12		41.07	10.37
	09/30/13		46.55	4.89
	07/28/15		47.22	4.22
	01/31/17		44.82	6.62
	07/17/19	50.00	46.21	5.23
MW-3	10/08/01	53.38	50.28	3.10
	02/19/02		47.53	5.85
	02/27/02		46.70	6.68
	03/25/02		47.79	5.59
	04/18/02		42.78	10.60
	05/28/02		44.68	8.70
	08/19/02		48.43	4.95
	11/18/02		48.63	4.75

Table 1: Water Level Measurements

		тос	Depth to	Water
		Elevation	Water	Elevation
Well	Date	(ft msl) ^(a)	(ft) ^(b)	(ft msl) ^(c)
MW-3 (cont)	02/24/03	· · · · · ·	47.23	6.15
()	06/15/06		41.32	12.06
	07/06/06		47.28	6.10
	12/28/06		44.37	9.01
	09/23/08		49.97	3.41
	01/06/09		44.01	9.37
	04/28/09		43.99	9.39
	02/16/10		47.61	5.77
	07/13/10		46.45	6.93
	03/19/12		43.00	10.38
	09/30/13		48.49	4.89
	07/28/15		49.10	4.28
	01/31/17		46.43	6.95
	07/17/19		NM	NM
MW-5	10/08/01	51.17	48.05	3.12
	02/19/02		45.52	5.65
	02/27/02		44.42	6.75
	03/25/02		45.50	5.67
	04/18/02		40.24	10.93
	05/28/02		42.46	8.71
	08/19/02		46.25	4.92
	11/18/02		46.42	4.75
	02/25/03		45.02	6.15
	06/15/06		39.19	11.98
	07/06/06		45.02	6.15
	12/28/06		42.07	9.10
	09/23/08		47.75	3.42
	01/06/09		41.76	9.41
	04/28/09		41.74	9.43
	02/16/10		45.39	5.78
	07/13/10		44.26	6.91
	03/19/12		40.77	10.40
	09/30/13		46.28	4.89
	07/28/15		46.80	4.37
	01/31/17		44.52	6.65
	07/17/19		45.90	5.27
MW-6	04/18/02	49.94	38.92	11.02
	05/28/02		41.45	8.49
	08/19/02		44.92	5.02
	11/18/02		45.10	4.84
	02/24/03		43.73	6.21
	06/15/06		37.78	12.16
	07/06/06		43.75	6.19
	12/28/06		40.81	9.13
	09/23/08		46.44	3.50
	01/06/09		40.50	9.44
	04/28/09		40.44	9.50
	02/16/10		45.05	4.89
	07/13/10		42.91	7.03
	03/19/12		39.55	10.39
	09/30/13		44.96	4.98
	07/28/15		45.60	4.34
	01/31/17		43.17	6.77
	07/17/19		44.57	5.37

Table 1: Water Level Measurements

	5.4	TOC Elevation (ft msl) ^(a)	Depth to Water (ft) ^(b)	Water Elevation (ft msl) ^(c)
Well	Date		()	
MW-7	08/07/02	49.76	44.39	5.37
	08/19/02		44.80	4.96
	11/18/02		44.97	4.79
	02/25/03		43.55	6.21
	09/23/08		46.31	3.45
	01/06/09		40.31	9.45
	04/28/09		40.28	9.48
	02/16/10		43.95	5.81
	07/13/10		42.77	6.99
	03/19/12		39.29	10.47
	09/30/13		44.84	4.92
	07/28/15		NM ^(d)	NM
	01/31/17		NM	NM
	07/17/19		44.41	5.35
MW-8	02/25/03	48.42	42.18	6.24
	06/15/06		36.35	12.07
	07/06/06		42.22	6.20
	12/28/06		39.32	9.10
	09/23/08		44.95	3.47
	01/06/09		38.98	9.44
	04/28/09		38.96	9.46
	02/16/10		42.64	5.78
	07/13/10		41.40	7.02
	03/19/12		37.96	10.46
	09/30/13		43.45	4.97
	07/28/15		44.10	4.32
	01/31/17		41.68	6.74
	07/17/19		43.04	5.38

Table 1: Water Level Measurements

Notes:

(a) Top of casing (TOC) elevations reported in feet (ft) above mean sea level (msl).

(b) Depth to water measured in feet below TOC.

(c) Water elevation calculated as the difference between the TOC elevation and the depth to water.

(d) NM = Not measured

Monitoring	Date		Semivo	latile Organic Compounds (µg/I) ^(«,»)		-				
Wontoning	Date										
Well Number	Sampled	Pentachlorophenol μg/l	μg/l	2,3,5,6 Tetrachlorophenol µg/l	2,4,5 Trichlorophenol µg/l	2,4,6 Trichlorophenol µg/l	1,2,3,4,6,7,8-HpCDD pg/L	1,2,3,4,6,7,8,9- OCDD pg/L	1,2,3,4,6,7,8-HpCDF pg/L	1,2,3,4,7,8,9-HpCDF pg/L	1,2,3,4,7,8-HxCDD pg/L
MW-1	04/19/02	<0.8 ^(c)	NA ^(d)	NA	NA	NA	-	-	-	-	-
	08/21/02	1.48	NA	NA	<0.8	<0.8	-	-	-	-	-
	11/19/02	1.67	NA	NA	<1.6	<1.6	-	-	-	-	-
	02/25/03	<0.19	NA	NA	<0.19	<0.19	-	-	-	-	-
	07/06/06	1.2	<0.10	0.078 J ^(e)	<0.051	<0.083	-	-	-	-	-
	12/28/06	0.68	0.033 J	0.044 J	<0.0083	<0.0097	-	-	-	-	-
	01/06/09	<0.33	<0.33	<0.19	<0.19	<0.29	-	-	-	-	-
	04/28/09	<0.36	<0.36	<0.20	<0.20	<0.30	-	-	-	-	-
	07/13/10	0.78 B / 1.3 B ^(f, g)	0.046 J / 0.071 J	0.019 J / 0.034 J	<0.0094 / <0.010	<0.013 / <0.014	-	-	-	-	-
	03/19/12	<0.943	<0.377	<0.377	<0.472	<0.472	-	-	-	-	-
	09/30/13	NS ^(h)	NS	NS	NS	NS	-	-	-	-	-
	07/28/15	NS	NS	NS	NS	NS	-	-	-	-	-
	01/31/17 07/17/19	NS NS	NS NS	NS NS	NS NS	NS NS	-	-	-	-	-
							-	-	-	-	-
MW-2	04/18/02 08/21/02	<0.8 <0.8	NA	NA NA	NA <0.8	NA <0.8	-	-	-	-	-
	11/19/02	<0.8	NA NA	NA	<0.8	<0.8	-	-	-	-	-
	02/25/03	<0.19	NA	NA	<0.19	<0.0	_	-			_
	07/06/06	<0.13	<0.11	<0.056	<0.055	<0.13	_	-			_
	12/28/06	0.15 J	<0.0089	<0.019	<0.0091	<0.011	_	_	_	_	-
	01/06/09	< 0.33	<0.33	<0.19	<0.19	<0.29	_	-	_	-	-
	07/13/10	0.055 J B	<0.0083	<0.012	<0.0096	<0.014	_	-	-	-	-
	03/19/12	< 0.935	<0.374	<0.374	<0.467	<0.467	-	-	-	-	-
	09/30/13	<0.472	<0.189	<0.189	<0.189	<0.189	-	-	-	-	-
	07/28/15	<0.476	<0.190	<0.190	<0.190	<0.190	-	-	-	-	-
	01/31/17	<0.200	<0.100	<0.100	<0.100	<0.100	-	-	-	-	-
	07/17/19	<0.0943	<0.0472	<0.0472	<0.0472	<0.0472	-	-	-	-	-
MW-3	04/18/02	<0.8	NA	NA	NA	NA	-	-	-	-	-
	08/20/02	<0.8	NA	NA	<0.8	<0.8	-	-	-	-	-
	11/18/02	< 0.8	NA	NA NA	<1.6	<1.6	-	-	-	-	-
	02/24/03 07/06/06	0.254 <0.11	NA <0.11	<0.055	<0.189 <0.054	<0.189 <0.087	-	-	-	-	-
	12/28/06	0.13 J	<0.0081	<0.055	<0.004	<0.007	-	-	-	-	-
	01/06/09	<0.34	<0.34	<0.19	<0.19	<0.29		-			
	07/13/10	<0.011	<0.0083	<0.012	<0.0096	<0.23	_	_	_	-	_
	03/19/12	<0.943	<0.377	<0.377	<0.472	<0.472	_	-	-	-	-
	09/30/13	<0.472/<0.476 ^(f)	<0.189/<0.190	<0.189/<0.190	<0.189/<0.190	<0.189/<0.190	_	_	_	_	-
	07/28/15	< 0.476	<0.190	<0.190	<0.190	<0.190	_	-	_	-	-
	01/31/17	<0.190	<0.0952	<0.0952	<0.0952	<0.0952	-	-	-	-	-
	07/17/19	NS	NS	NS	NS	NS	-	-	-	-	-
MW-5	04/19/02	<0.8	NA	NA	NA	NA	-	-	-	-	-
	08/21/02	<0.8	NA	NA	<0.8	<0.8	-	-	-	-	-
	11/19/02	<0.8	NA	NA	<1.6	<1.6	-	-	-	-	-
	02/25/03	<0.189	NA	NA	<0.189	<0.189	-	-	-	-	-
	07/06/06	<0.11	<0.11	<0.053	<0.052	<0.083	-	-	-	-	-
	12/28/06	<0.013	<0.0081	<0.018	<0.0083	<0.0098	-	-	-	-	-
	01/06/09	< 0.33	< 0.33	<0.19	< 0.19	<0.29	-	-	-	-	-
	07/13/10	<0.011	<0.0082	<0.012	<0.0094	<0.013	-	-	-	-	-
	03/19/12	<0.935/<0.935 ^(f)	<0.374/<0.374	<0.374/<0.374	<0.467/<0.467	<0.467/<0.467	-	-	-	-	-
	09/30/13	< 0.472	<0.189	<0.189	<0.189	<0.189	-	-	-	-	-
	07/28/15	< 0.476	<0.190	<0.190	<0.190	<0.190	-	-	-	-	-
	01/31/17	<0.204/<0.202(f)	<0.102/<0.101	<0.102/<0.101	<0.102/<0.101	<0.102/<0.101	-	-	-	-	-
	07/17/19	<0.115	<0.0575	<0.0575	<0.0575	<0.0575	-	-	-	-	-

Semivolatile Organic Compounds (µg/I)^(a,b)

Monitoring	Date		Semivo	latile Organic Compounds (ug/l) ^(a,b)		-				
Well Number	Sampled	Pentachlorophenol μg/l	2,3,4,6 Tetrachlorophenol µg/l	2,3,5,6 Tetrachlorophenol µg/l	2,4,5 Trichlorophenol µg/l	2,4,6 Trichlorophenol μg/l	1,2,3,4,6,7,8-HpCDD pg/L	1,2,3,4,6,7,8,9- OCDD pg/L	1,2,3,4,6,7,8-HpCDF pg/L	1,2,3,4,7,8,9-НрСDF pg/L	1,2,3,4,7,8-HxCDD pg/L
MW-6	04/18/02	<0.8	NA	NA	NA	NA	-	-	-	-	-
	08/20/02	<0.813	NA	NA	<0.813	<0.813	-	-	-	-	-
	11/18/02	<0.8	NA	NA	<1.6	<1.6	-	-	-	-	-
	02/24/03	<0.19	NA	NA	<0.19	<0.19	-	-	-	-	-
	07/06/06	0.16 J	<0.12	<0.059	<0.058	<0.092	-	-	-	-	-
	12/28/06	0.21 J	<0.0083	<0.018	<0.0085	<0.01	-	-	-	-	-
	01/06/09	<0.33	<0.33	<0.19	<0.19	<0.29	-	-	-	-	-
	07/13/10	0.074 J B	<0.0082	<0.012	<0.0094	<0.013	-	-	-	-	-
	03/19/12	< 0.935	<0.374	<0.374	<0.472	<0.472	-	-	-	-	-
	09/30/13	<0.472	<0.189	<0.189	<0.189	<0.189	-	-	-	-	-
	07/28/15	<0.476	<0.190	<0.190	<0.190	<0.190	-	-	-	-	-
	01/31/17	<0.200	<0.100	<0.100	<0.100	<0.100	-	-	-	-	-
	07/17/19	<0.128	<0.0641	<0.0641	<0.0641	<0.0641	-	-	-	-	-
MW-7	08/07/02	0.412 J	NA	NA	<0.8	<0.8	-	-	-	-	-
	08/20/02	0.347 J	NA	NA	<0.8	<0.8	-	-	-	-	-
	11/19/02	7.58	NA	NA	<1.6	<1.6	-	-	-	-	-
	02/25/03	<0.191	NA	NA	<0.191	<0.191	-	-	-	-	-
	01/06/09	<0.34	<0.34	<0.19	<0.19	<0.29	-	-	-	-	-
	09/30/13	<0.481	<0.192	<0.192	<0.192	<0.192	185	2830	<47.9	<47.9	<47.9
	07/17/19	<0.103/<0.105	<0.0515/<0.0526	<0.0515/<0.0526	<0.0515/<0.0526	<0.0515/<0.0526	72.1	1440	12.0 JK	<2.07	<1.29
MW-8	02/25/03	<0.189	NA	NA	<0.189	<0.189	-	-	-	-	-
	07/06/06	<0.11	<0.11	<0.055	<0.054	<0.087	-	-	-	-	-
	12/28/06	0.16 J	<0.0081	<0.018	<0.0083	<0.0098	-	-	-	-	-
	01/06/09	<0.34	<0.34	<0.19	<0.19	<0.29	-	-	-	-	-
	07/13/10	<0.011	<0.0083	<0.012	<0.0096	<0.014	-	-	-	-	-
	03/19/12	< 0.935	<0.374	<0.374	<0.472	<0.472	-	-	-	-	-
	09/30/13	<0.476	<0.190	<0.190	<0.190	<0.190	-	-	-	-	-
	07/28/15	<0.476/<0.476 ^(f)	<0.190/<0.190	<0.190/<0.190	<0.190/<0.190	<0.190/<0.190	-	-	-	-	-
	01/31/17	<0.227	<0.114	<0.114	<0.114	<0.114	-	-	-	-	-
	07/17/19	<0.0943	<0.0472	<0.0472	<0.0472	<0.0472	-	-	-	-	-
MTCA Method B	Cleanup Level ⁽ⁱ⁾	0.22	NL ^(j)	NL	NL	4	NL	NL	NL	NL	NL

Semivolatile Organic Compounds (µg/l)^(a,b)

Monitoring Date

Monitoring	Date													
		1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-	1.2.3.7.8.9-HxCDF	1.2.3.7.8-PeCDD	1.2.3.7.8-PeCDF	2,3,4,6,7,8-HxCDF	2.3.4.7.8-PeCDF	2.3.7.8-TCDD	2.3.7.8-TCDF	1,2,3,4,6,7,8,9-	
Well Number	Sampled	pg/L	pg/L	pg/L	HxCDD pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	OCDF pg/L	TEQ
MW-1	04/19/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	08/21/02	-	-	-	-	-	-	_	-	-	_	_	-	-
	11/19/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	02/25/03	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/06/06	-	-	-	-	-	-	-	_	-	-	-	-	_
	12/28/06	_	-	-	_	-	-	-	_	-	-	-	-	_
	01/06/09	_	-	-	-	-	-	_	_	-	_	_	-	_
	04/28/09	-	-	-	-	-	-	-	_	-	-	-	-	_
	07/13/10	_	_	_	_	-	_	_	_	_	_	_	_	-
	03/19/12	_	_	_	_	-	_	_	_	_	_	_	_	-
	09/30/13													
	07/28/15	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/31/17	-	-	-	_	-	-	-	-	-	-	-	-	_
	07/17/19	-	-	-	_	-	-	-	_	_	-	-	-	-
MW-2	04/18/02	-		-		-		-	-					-
IVI V V - Z	08/21/02	-	-	-	-	-	-	-		-	-	-	-	
	11/19/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	02/25/03		-	-	-	-	-	-	-	-	-	-	-	-
	07/06/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/28/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/06/09	-	-	-	-	-	-	-	_		-	-	-	_
	07/13/10	-	-	-	-	-	-	-	-	-	-	-	-	_
	03/19/12	-	-	-	-	-	-	-	_		-	-	-	_
	09/30/13	-	-	-	-	-	-	-	_		-	-	-	_
	07/28/15						_					_	_	_
	01/31/17				_		-		_		-	_	-	_
	07/17/19	_	_	_	_	-	-	-	_	-	_	_	_	_
MW-3	04/18/02	_	-	-	_	-	-	-	-	-	-	-	_	-
	08/20/02	_	_	_	_	_	_	_	_	_	_	_	_	_
	11/18/02	_	_	_	_	-	_	_	_	_	_	_	-	_
	02/24/03	-	-	-	-	-	-	-	_	-	-	-	-	-
	07/06/06	-	-	-	-	-	-	-	_	-	-	-	-	_
	12/28/06	_	-	-	-	-	-	_	_	-	_	_	-	_
	01/06/09	_	-	-	-	-	-	_	_	-	_	_	-	_
	07/13/10	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/19/12	-	-	-	-	-	-	-	-	-	-	-	-	-
	09/30/13	_	_	-	-	_	-	-	-	-	-	-	-	_
	07/28/15	-	-	-	-	_	-	-	-	-	-	-	-	-
	01/31/17	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/17/19	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-5	04/19/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	08/21/02	_	_	-	-	_	-	-	-	-	-	-	-	_
	11/19/02	-	-	-	-	_	-	-	-	-	-	-	_	-
	02/25/03	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/06/06	_	-	-	-	_	-	-	-	-	-	-	_	-
	12/28/06	-	-	-	-		-	-	-	-	-	-	-	-
	01/06/09	-	-	-	-		-	-	-	-	-	-	-	-
	07/13/10	-	-	-	-		-	-	-	-	-	-	-	-
	03/19/12	_	-	-	_		-	-	-	-	-	-	-	_
	09/30/13	_	_	-	_		-	_	_	_	_	_	_	_
	07/28/15	_	_	-	_		_	_	_	_	-	_	-	_
	01/31/17	_	_	-	_		-	_	_	_	_	_	_	_
	07/17/19		_	-	_		-				-	-	-	-
I	01/11/10		_											L

Monitoring Date

				4.0.0.0.7.0.11-0.005	400700	4 0 0 7 0 0 10 005	4.0.0.7.0.0.000						4 0 0 4 0 7 0 0	
Well Number	Sampled	1,2,3,4,7,8-HxCDF pg/L	1,2,3,6,7,8-HxCDD pg/L	1,2,3,6,7,8-HxCDF pg/L	1,2,3,7,8,9- HxCDD pg/L	1,2,3,7,8,9-HXCDF pg/L	1,2,3,7,8-PeCDD pg/L	1,2,3,7,8-PeCDF pg/L	2,3,4,6,7,8-HxCDF pg/L	2,3,4,7,8-PeCDF pg/L	2,3,7,8-1CDD pg/L	2,3,7,8-1CDF pg/L	1,2,3,4,6,7,8,9- OCDF pg/L	TEQ
MW-6	04/18/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	08/20/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	11/18/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	02/24/03	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/06/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/28/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/06/09	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/13/10	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/19/12	-	-	-	-	-	-	-	-	-	-	-	-	-
	09/30/13	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/28/15	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/31/17	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/17/19	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-7	08/07/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	08/20/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	11/19/02	-	-	-	-	-	-	-	-	-	-	-	-	-
	02/25/03	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/06/09	-	-	-	-	-	-	-	-	-	-	-	-	-
	09/30/13	<47.9	<47.9	<47.9	<47.9	<47.9	<47.9	<47.9	<47.9	<47.9	<9.57	<9.57	101	2.73
	07/17/19	<1.39	1.40 JK	<1.34	<1.24	<1.85	<0.996	<0.879	<1.39	<0.797	<1.09	<1.53	48.3 J	1.43
MW-8	02/25/03	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/06/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/28/06	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/06/09	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/13/10 03/19/12	-	-	-	-	-	-	-	-	-	-	-	-	-
	03/19/12 09/30/13	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-
	07/28/15	-	-	-	-	-	-	-	-	-	-	-	-	-
	01/31/17 07/17/19	-	-	-	-	-	-	-	-	-	-	-	-	-
	Cleanup Level ⁽ⁱ⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL

Notes:

(a) Results are reported in micrograms per liter (µg/l).

(b) Samples were analyzed for selected semivolatile organic compounds by US Environmental Protection Agency (EPA) Method 8270D.

(c) "<" denotes analyte was not detected above the indicated detection limit.

(d) NA = not analyzed

(e) J denotes positively identified, but numerical value is an estimated quantity.

(f) Second value is result from a field duplicate sample.

(g) B = pentachlorophenol identified in the laboratory blank sample at an estimated concentration of 0.0735 µg/l.

(h) NS = Not sampled, insufficient water available for sampling

(i) Model Toxics Control Act (MTCA) Method B Groundwater CLARC (dated July 2015), the pentachlorophenal Method B cleanup level prior to 2011 was 0.729 µg/l.

(j) NL = Not listed in the CLARC Information System

(k) K denotes estimated maximum possible concentration

(I) J denotes estimated value below laboratory reporting limit.

(m) Dioxin concentrations are reported in picograms per liter (pg/L)

Bold values indicate analyte was detected above the indicated laboratory detection limit.

Highlighted values indicate detection above MTCA Method B screening value.

Figures

Legend Property Boundary

Kennedy/Jenks Consultants

Tetra Pak Materials LP Vancouver, Washington 1996007*00

Figure 1 Site Vicinity Map

October 2019

Legend MW-5 - Monitoring Well ID 5.27 - Groundwater Elevation (ft msl)

NM -Not Measured

Notes 1. All locations are approximate 25 Scale: Feet

Kennedy/Jenks Consultants

Tetra Pak Materials LP Vancouver, Washington 1996007*00

Figure 2 Groundwater Elevations July 17, 2019

October 2019

Attachment A

Laboratory Analytical Report

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Tuesday, August 13, 2019 Alice Robinson Kennedy Jenks 421 SW 6th Avenue Suite 1000 Portland, OR 97204

RE: A9G0598 - Tetra Pak - Tetra Pak

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9G0598, which was received by the laboratory on 7/18/2019 at 11:02:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>ldomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

	Cooler Receip	ot Information					
(See Cooler Receipt Form for details)							
Cooler #1	1.4 degC	Cooler #2	0.7 degC				

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Ausa A Jomenichini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION						
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
MW-6-20190717	A9G0598-01	Water	07/17/19 12:25	07/18/19 11:02		
MW-8-20190717	A9G0598-02	Water	07/17/19 13:45	07/18/19 11:02		
MW-7-20190717	A9G0598-03	Water	07/17/19 14:20	07/18/19 11:02		
MW-2-20190717	A9G0598-04	Water	07/17/19 15:16	07/18/19 11:02		
MW-5-20190717	A9G0598-05	Water	07/17/19 16:00	07/18/19 11:02		
D-20190717	A9G0598-06	Water	07/17/19 14:20	07/18/19 11:02		

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Kennedy Jenks	Project: <u>Tetra Pak</u>
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak
Portland, OR 97204	Project Manager: Alice Robinson

<u>Report ID:</u> A9G0598 - 08 13 19 1430

ANALYTICAL CASE NARRATIVE

Work Order: A9G0598

Subcontract

This report is not complete without the attached subcontract laboratory report for Dioxins from Cape Fear.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

ANALYTICAL SAMPLE RESULTS

L	Sen	involatile Organ	ic comp	ounds by EPA 8				
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-6-20190717 (A9G0598-01RE1)				Matrix: Wate	r	Batch:	9071219	
Pentachlorophenol (PCP)	ND	0.128	0.256	ug/L	1	07/24/19 16:35	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0641	0.128	ug/L	1	07/24/19 16:35	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0641	0.128	ug/L	1	07/24/19 16:35	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0641	0.128	ug/L	1	07/24/19 16:35	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0641	0.128	ug/L	1	07/24/19 16:35	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 54%	Limits: 44-120 %	1	07/24/19 16:35	EPA 8270D	
2-Fluorobiphenyl (Surr)			55 %	44-120 %	1	07/24/19 16:35	EPA 8270D	
Phenol-d6 (Surr)			18 %	10-120 %	1	07/24/19 16:35	EPA 8270D	
p-Terphenyl-d14 (Surr)			70 %	50-133 %	1	07/24/19 16:35	EPA 8270D	
2-Fluorophenol (Surr)			30 %	19-120 %	1	07/24/19 16:35	EPA 8270D	
2,4,6-Tribromophenol (Surr)			86 %	43-140 %	1	07/24/19 16:35	EPA 8270D	
 MW-8-20190717 (A9G0598-02)				Matrix: Wate	r	Batch:	9071163	
Pentachlorophenol (PCP)	ND	0.0943	0.189	ug/L	1	07/23/19 15:58	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 15:58	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 15:58	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 15:58	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 15:58	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 50 %	Limits: 44-120 %	1	07/23/19 15:58	EPA 8270D	
2-Fluorobiphenyl (Surr)			52 %	44-120 %	1	07/23/19 15:58	EPA 8270D	
Phenol-d6 (Surr)			16 %	10-120 %	1	07/23/19 15:58	EPA 8270D	
p-Terphenyl-d14 (Surr)			75 %	50-133 %	1	07/23/19 15:58	EPA 8270D	
2-Fluorophenol (Surr)			25 %	19-120 %	1	07/23/19 15:58	EPA 8270D	
2,4,6-Tribromophenol (Surr)			90 %	43-140 %	1	07/23/19 15:58	EPA 8270D	
				Matrix: Wate	r	Batch:	9071163	
Pentachlorophenol (PCP)	ND	0.103	0.206	ug/L	1	07/23/19 18:23	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0515	0.103	ug/L	1	07/23/19 18:23	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0515	0.103	ug/L	1	07/23/19 18:23	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0515	0.103	ug/L	1	07/23/19 18:23	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0515	0.103	ug/L	1	07/23/19 18:23	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 79 %	Limits: 44-120 %	1	07/23/19 18:23	EPA 8270D	
2-Fluorobiphenyl (Surr)			71 %	44-120 %	1	07/23/19 18:23	EPA 8270D	
Phenol-d6 (Surr)			21 %	10-120 %	1	07/23/19 18:23	EPA 8270D	
p-Terphenyl-d14 (Surr)			68 %	50-133 %	1	07/23/19 18:23	EPA 8270D	
2-Fluorophenol (Surr)			35 %	19-120 %	1	07/23/19 18:23	EPA 8270D	
2,4,6-Tribromophenol (Surr)			90 %	43-140 %	1	07/23/19 18:23	EPA 8270D	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

ANALYTICAL SAMPLE RESULTS							
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430					
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>					
Kennedy Jenks	Project: <u>Tetra Pak</u>						

	Sem	vivolatile Org	anic Compo	ounds by EPA 8	270D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-2-20190717 (A9G0598-04)				Matrix: Wate	r	Batch:	9071163	
Pentachlorophenol (PCP)	ND	0.0943	0.189	ug/L	1	07/23/19 16:35	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 16:35	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 16:35	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 16:35	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	07/23/19 16:35	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 57 %	Limits: 44-120 %	1	07/23/19 16:35	EPA 8270D	
2-Fluorobiphenyl (Surr)			55 %	44-120 %	1	07/23/19 16:35	EPA 8270D	
Phenol-d6 (Surr)			18 %	10-120 %	1	07/23/19 16:35	EPA 8270D	
p-Terphenyl-d14 (Surr)			70 %	50-133 %		07/23/19 16:35	EPA 8270D	
2-Fluorophenol (Surr)			30 %	19-120 %		07/23/19 16:35	EPA 8270D	
2,4,6-Tribromophenol (Surr)			91 %	43-140 %		07/23/19 16:35	EPA 8270D	
MW-5-20190717 (A9G0598-05)				Matrix: Wate	r	Batch:	9071163	
Pentachlorophenol (PCP)	ND	0.115	0.230	ug/L	1	07/23/19 17:11	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0575	0.115	ug/L	1	07/23/19 17:11	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0575	0.115	ug/L	1	07/23/19 17:11	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0575	0.115	ug/L	1	07/23/19 17:11	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0575	0.115	ug/L	1	07/23/19 17:11	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Recon	very: 64 %	Limits: 44-120 %	1	07/23/19 17:11	EPA 8270D	
2-Fluorobiphenyl (Surr)			62 %	44-120 %	1	07/23/19 17:11	EPA 8270D	
Phenol-d6 (Surr)			23 %	10-120 %	1	07/23/19 17:11	EPA 8270D	
p-Terphenyl-d14 (Surr)			75 %	50-133 %	1	07/23/19 17:11	EPA 8270D	
2-Fluorophenol (Surr)			36 %	19-120 %	1	07/23/19 17:11	EPA 8270D	
2,4,6-Tribromophenol (Surr)			96 %	43-140 %	1	07/23/19 17:11	EPA 8270D	
D-20190717 (A9G0598-06)				Matrix: Wate	r	Batch:	9071163	
Pentachlorophenol (PCP)	ND	0.105	0.211	ug/L	1	07/23/19 17:47	EPA 8270D	
2,3,4,6-Tetrachlorophenol	ND	0.0526	0.105	ug/L	1	07/23/19 17:47	EPA 8270D	
2,3,5,6-Tetrachlorophenol	ND	0.0526	0.105	ug/L	1	07/23/19 17:47	EPA 8270D	
2,4,5-Trichlorophenol	ND	0.0526	0.105	ug/L	1	07/23/19 17:47	EPA 8270D	
2,4,6-Trichlorophenol	ND	0.0526	0.105	ug/L	1	07/23/19 17:47	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 56 %	Limits: 44-120 %	1	07/23/19 17:47	EPA 8270D	
2-Fluorobiphenyl (Surr)			57 %	44-120 %	1	07/23/19 17:47	EPA 8270D	
Phenol-d6 (Surr)			17 %	10-120 %	1	07/23/19 17:47	EPA 8270D	
p-Terphenyl-d14 (Surr)			76 %	50-133 %	1	07/23/19 17:47	EPA 8270D	
2-Fluorophenol (Surr)			28 %	19-120 %	1	07/23/19 17:47	EPA 8270D	
2,4,6-Tribromophenol (Surr)			93 %	43-140 %	1	07/23/19 17:47	EPA 8270D	

Apex Laboratories

Ausa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 16

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EP	A 8270D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9071163 - EPA 3510C (A	cid Extra	ction)					Wat	er				
Blank (9071163-BLK2)		Prepared:	07/23/19 06:	57 Analyz	ed: 07/23/1	9 12:55						
EPA 8270D												
Pentachlorophenol (PCP)	ND	0.0909	0.182	ug/L	1							
2,3,4,6-Tetrachlorophenol	ND	0.0455	0.0909	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0455	0.0909	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0455	0.0909	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0455	0.0909	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	wery: 91%	Limits: 44	4-120 %	Dil	ution: 1x					
2-Fluorobiphenyl (Surr)			83 %	44	-120 %		"					
Phenol-d6 (Surr)			33 %	10	-120 %		"					
p-Terphenyl-d14 (Surr)			94 %	50	-133 %		"					
2-Fluorophenol (Surr)			52 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			101 %	43	-140 %		"					
LCS (9071163-BS2)		Prepared:	07/23/19 06:	57 Analyz	ed: 07/23/1	9 13:31						
EPA 8270D												
Pentachlorophenol (PCP)	3.62	0.400	0.800	ug/L	4	4.00		90	35 - 138%			
2,3,4,6-Tetrachlorophenol	3.55	0.200	0.400	ug/L	4	4.00		89	50 - 128%			
2,3,5,6-Tetrachlorophenol	3.45	0.200	0.400	ug/L	4	4.00		86	50 - 121%			
2,4,5-Trichlorophenol	3.55	0.200	0.400	ug/L	4	4.00		89	53 - 123%			
2,4,6-Trichlorophenol	3.36	0.200	0.400	ug/L	4	4.00		84	50 - 125%			
Surr: Nitrobenzene-d5 (Surr)		Reco	wery: 69 %	Limits: 44	4-120 %	Dil	ution: 4x					
2-Fluorobiphenyl (Surr)			77 %	44	-120 %		"					
Phenol-d6 (Surr)			26 %	10	-120 %		"					
p-Terphenyl-d14 (Surr)			91 %	50	-133 %		"					
2-Fluorophenol (Surr)			43 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			93 %	43	-140 %		"					
LCS Dup (9071163-BSD2)		Prepared:	07/23/19 06:	57 Analyz	ed: 07/23/1	9 14:08						Q-
EPA 8270D				<u>,</u>								
Pentachlorophenol (PCP)	3.62	0.400	0.800	ug/L	4	4.00		90	35 - 138%	0.04	30%	
2,3,4,6-Tetrachlorophenol	3.45	0.200	0.400	ug/L	4	4.00		86	50 - 128%	3	30%	
2,3,5,6-Tetrachlorophenol	3.36	0.200	0.400	ug/L	4	4.00		84	50 - 121%	2	30%	
2,4,5-Trichlorophenol	3.39	0.200	0.400	ug/L	4	4.00		85	53 - 123%	5	30%	
2,4,6-Trichlorophenol	3.34	0.200	0.400	ug/L	4	4.00			50 - 125%	0.5	30%	

Apex Laboratories

Ausa A Zomenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 6 of 16

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9071163 - EPA 3510C (A	cid Extra	ction)					Wat	er				
LCS Dup (9071163-BSD2)		Prepared	: 07/23/19 06:	57 Analy	yzed: 07/23/1	9 14:08						Q-1
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 70 %	Limits:	44-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			77 %	4	44-120 %		"					
Phenol-d6 (Surr)			25 %		10-120 %		"					
p-Terphenyl-d14 (Surr)			87 %	-	50-133 %		"					
2-Fluorophenol (Surr)			41 %		19-120 %		"					
2,4,6-Tribromophenol (Surr)			89 %	4	43-140 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	ids by EP	A 8270D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9071219 - EPA 3510C (A	Acid Extra	ction)					Wat	er				
Blank (9071219-BLK1)		Prepared:	07/24/19 10:	10 Analyz	ed: 07/24/1	9 14:46						
EPA 8270D												
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1							
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 55 %	Limits: 44	4-120 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			56 %	44	-120 %		"					
Phenol-d6 (Surr)			21 %	10	-120 %		"					
p-Terphenyl-d14 (Surr)			78 %	50	-133 %		"					
2-Fluorophenol (Surr)			35 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			74 %	43	-140 %		"					
LCS (9071219-BS1)		Prepared:	07/24/19 10:	10 Analyz	ed: 07/24/1	9 15:22						
EPA 8270D												
Pentachlorophenol (PCP)	3.42	0.400	0.800	ug/L	4	4.00		86	35 - 138%			
2,3,4,6-Tetrachlorophenol	3.47	0.200	0.400	ug/L	4	4.00		87	50 - 128%			
2,3,5,6-Tetrachlorophenol	3.41	0.200	0.400	ug/L	4	4.00		85	50 - 121%			
2,4,5-Trichlorophenol	3.69	0.200	0.400	ug/L	4	4.00		92	53 - 123%			
2,4,6-Trichlorophenol	3.51	0.200	0.400	ug/L	4	4.00		88	50 - 125%			
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 72 %	Limits: 44	4-120 %	Dili	ution: 4x					
2-Fluorobiphenyl (Surr)			82 %	44	-120 %		"					
Phenol-d6 (Surr)			26 %	10	-120 %		"					
p-Terphenyl-d14 (Surr)			88 %	50	-133 %		"					
2-Fluorophenol (Surr)			43 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			93 %	43	-140 %		"					
LCS Dup (9071219-BSD1)		Prepared:	07/24/19 10:	10 Analyz	ed: 07/24/1	9 15:58						Q-1
EPA 8270D		1		5								· · ·
Pentachlorophenol (PCP)	3.42	0.400	0.800	ug/L	4	4.00		86	35 - 138%	0.06	30%	
2,3,4,6-Tetrachlorophenol	3.43	0.200	0.400	ug/L	4	4.00		86	50 - 128%	1	30%	
2,3,5,6-Tetrachlorophenol	3.44	0.200	0.400	ug/L	4	4.00			50 - 121%	0.8	30%	
2,4,5-Trichlorophenol	3.56	0.200	0.400	ug/L	4	4.00			53 - 123%	3	30%	
2,4,6-Trichlorophenol	3.41	0.200	0.400	ug/L	4	4.00			50 - 125%	3	30%	

Apex Laboratories

Ausa A Zomenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robinson	A9G0598 - 08 13 19 1430

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 9071219 - EPA 3510C (A	cid Extra	ction)					Wat	er				
LCS Dup (9071219-BSD1)		Prepared	: 07/24/19 10:	10 Analy	zed: 07/24/1	9 15:58						Q-1
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 67 %	Limits:	44-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			76 %	4	44-120 %		"					
Phenol-d6 (Surr)			25 %		10-120 %		"					
p-Terphenyl-d14 (Surr)			85 %	-	50-133 %		"					
2-Fluorophenol (Surr)			41 %		9-120 %		"					
2,4,6-Tribromophenol (Surr)			86 %	4	43-140 %		"					

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks	Project: <u>Tetra Pak</u>	
421 SW 6th Avenue Suite 1000	Project Number: Tetra Pak	<u>Report ID:</u>
Portland, OR 97204	Project Manager: Alice Robins	on A9G0598 - 08 13 19 1430

SAMPLE PREPARATION INFORMATION

Semivolatile Organic Compounds by EPA 8270D							
Prep: EPA 3510C (Acid Extraction)					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9071163							
A9G0598-02	Water	EPA 8270D	07/17/19 13:45	07/23/19 10:01	1060mL/1mL	1000mL/1mL	0.94
A9G0598-03RE1	Water	EPA 8270D	07/17/19 14:20	07/23/19 10:01	970mL/1mL	1000mL/1mL	1.03
A9G0598-04	Water	EPA 8270D	07/17/19 15:16	07/23/19 10:01	1060mL/1mL	1000mL/1mL	0.94
A9G0598-05	Water	EPA 8270D	07/17/19 16:00	07/23/19 10:01	870mL/1mL	1000mL/1mL	1.15
A9G0598-06	Water	EPA 8270D	07/17/19 14:20	07/23/19 10:01	950mL/1mL	1000mL/1mL	1.05
Batch: 9071219							
A9G0598-01RE1	Water	EPA 8270D	07/17/19 12:25	07/24/19 10:10	780mL/1mL	1000mL/1mL	1.28

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Kennedy Jenks				
421 SW 6th Avenue Suite 1000				
Portland, OR 97204				

Project: <u>Tetra Pak</u>

Project Number: Tetra Pak Project Manager: Alice Robinson <u>Report ID:</u> A9G0598 - 08 13 19 1430

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

	Kennedy Jenks	Project:	<u>Tetra Pak</u>
	421 SW 6th Avenue Suite 1000	Project Number:	Tetra Pak
I	Portland, OR 97204	Project Manager:	Alice Robinson

<u>Report ID:</u> A9G0598 - 08 13 19 1430

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Kennedy Jenks</u> 421 SW 6th Avenue Suite 1000 Portland, OR 97204

Project: <u>Tetra Pak</u>

Project Number: Tetra Pak Project Manager: Alice Robinson <u>Report ID:</u> A9G0598 - 08 13 19 1430

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Kennedy Jenks		Project:	<u>Tetra Pak</u>				
421 SW 6th Avenue	Suite 1000	Project Number:	Tetra Pak		Report ID:		
Portland, OR 97204	4	Project Manager:	Alice Robinson	A9G05	A9G0598 - 08 13 19 1430		
		LABORATORY ACCRED	TATION INFOR	RMATION			
	TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039						
All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:							
Apex Labora	<u>atories</u>						
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation		
	All reported analytes are included in Apex Laboratories' current ORELAP scope.						

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Apex Laboratories

Assa A Zomenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

<u>Kennedy Jenks</u> 421 SW 6th Avenue Suite 1000 Portland, OR 97204	Project: <u>Tetra Pal</u> Project Number: Tetra Pal Project Manager: Alice Rol	- K	<u>Report ID:</u> A9G0598 - 08 13 19 1430
Portland, OR 97204	Project Manager: Alice Rot EX LABS COOLER REC $\square D \square By: \square M \square$ SS_FedEx_UPS ected: $7 - 8 \square @ 1 \square W$ No No No No No Cooler #2 Cooler #3 Cu $\square D \square$ No No $\square D \square$ No $\square D \square$ No $\square D \square$ $\square D \square$ No $\square D \square$ $\square D$	Dinson EIPT FORM Element WO#: A9G059 SwiftSenvoySDSOther SwiftSenvoySDSOther SwiftSenvoySDSOther SwiftSenvoySDSOther SwiftSenvoySDSOther SwiftSenvoySDSOther Support Support	A9G0598 - 08 13 19 1430
COC/container discrepancies form initi Containers/volumes received appropria Do VOA vials have visible headspace? Comments Water samples: pH checked: YesNo Comments: Additional information: Labeled by: Witness: W	te for analysis? Yes N Yes No NA bNA pH appropriate? Cooler Inspected by:	o Comments:	

Apex Laboratories

Assa A Zomenighini

an affiliate of The GEL Group INC

www.capefearanalytical.com

August 13, 2019

Ms. Lisa Domenighini Apex Laboratories 6700 SW Sandburg Street Portland, Oregon 97223

Re: 2018 DXN & PCB IDIQ Work Order: 15272 SDG: A9G0598

Dear Ms. Domenighini:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 23, 2019. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Cynde Larking

Cynde Larkins Project Manager

Enclosures

SUBCONTRACT ORDER

Apex Laboratories

A9G0598

rahe

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 718-0333 Project Manager: Lisa Domenighini

RECEIVING LABORATORY:

Cape Fear Analytical, LLC 3306 Kitty Hawk Rd Suite 120 Wilmington, NC 28405 Phone :(910) 795-0421 Fax: - APR #122

CFA WOH15272

Sample Name: MW-7-20190717		Water Samp	oled: 07/17/19 14:20	(A9G0598-03)
Analysis	Due	Expires	Comments	
1613 Dioxin (Sub)	07/31/19 17:00	07/24/19 14:20	Cape Fear	
Containers Supplied:				
(C)1 L Amber Glass - Non Preserved				
(D)1 L Amber Glass - Non Preserved				

Standard TAT

temp. = 5,1°C 7/22/19 1400 Fed Ex (Shipper) Released By Date Received By Date Fed Ex (Shipper) inde 23JULI9 @ 0950 23 JUL 19 kins Released By Date Date

Page 18 of 38

Page 1 of 1

SAMPLE RECEIPT CHECKLIST Cape Fear Analytical

Client: APEX Work Order: 15272					
Ship	Shipping Company: FedEx				Date/Time Received: Z3JULL9 0950
Suspected Hazard InformationYesNANoShipped as DOT Hazardous?Samples identified as Foreign Soil?		No V	DOE Site Sample Packages Yes NA No* Screened <0.5 mR/hr?		
	Sample Receipt Specifics sample in shipment?	Yes	NA	No	* Notify RSO of any responses in this column immediately. Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items) Gircle Applicable:
1	Shipping containers received intact and sealed?	\checkmark			seals broken damaged container leaking container other(describe)
2	Custody seal/s present on cooler?			\checkmark	Seal intact? Yes No
3	Chain of Custody documents included with shipment?	\checkmark			
4	Samples requiring cold preservation within 0-6°C?	\checkmark	ŕ	(Preservation Method: Temperature Blank present: (Yes) No Temperature Blank present: (Yes) No $4c^{3}c^{2} + 0, 3 = 5, 1^{\circ}C$
5	Aqueous samples found to have visible solids?	V			Sample IDS, containers affected: (<1%) Visible Aolids
5	Samples requiring chemical preservation at proper pH?		V	/	Sample IDs, containers affected and pH observed: P H = T DM D D H If preservative added, Lot#:
7	Samples requiring preservation have no residual chlorine?	\sim	/		Sample IDs, containers affected: If preservative added, Lot#:
8	Samples received within holding time?	\checkmark			Sample IDs, tests affected:
9	Sample IDs on COC match IDs on containers?	/			Sample IDs, containers affected:
10	Date & time of COC match date & time on containers?	~			Sample IDs, containers affected:
11	Number of containers received match number indicated on COC?	~			List type and number of containers / Sample IDs, containers affected: 2 - ILNMAG
12	COC form is properly signed in relinquished/received sections?	\checkmark	/		
Con	iments:				
	Checklist performed l	by: Ir	nitials		CZ Date: 23 JULI 9 CF-UD-F-7

Page 3 of 22 Work Order: 15272
High Resolution Dioxins and Furans Analysis

HDOX Case Narrative Apex Laboratories (APEX) SDG A9G0598 Work Order 15272

Method/Analysis Information

Product:Dioxins/Furans by EPA Method 1613B in LiquidsAnalytical Method:EPA Method 1613BExtraction Method:SW846 3520CAnalytical Batch Number:41272Clean Up Batch Number:41267Extraction Batch Number:41268

Sample Analysis

Sample 15272001 was received at 5.1°C. The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
12024362	Method Blank (MB)
12024363	Laboratory Control Sample (LCS)
12024364	Laboratory Control Sample Duplicate (LCSD)
15272001	MW-7-20190717

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 15.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
HRP763_1	Primary Dioxin Analysis	Dioxin Analysis	DB-5MS	60m x 0.25mm, 0.25um

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Qualifier Definition Report for

APEX001 Apex Laboratories

Client SDG: A9G0598 CFA Work Order: 15272

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- J Value is estimated
- K Estimated Maximum Possible Concentration
- U Analyte was analyzed for, but not detected above the specified detection limit.
- DL Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Jeath attison

Name: Heather Patterson

Title: Group Leader

Date: 13 AUG 2019

						Report Date.	August 15, 201
		Certific	Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary				of 2
SDG Numbe Lab Sample Client Samp	ID: 15272001	Client: Date Collected: Date Received:	APEX001 07/17/2019 14:20 07/23/2019 09:50		Project: Matrix:	APEX00217 WATER	
Client ID: Batch ID: Run Date:	MW-7-20190717 41272 07/31/2019 08:15	Method: Analyst:	EPA Method 1613B MLS		Prep Basis: Instrument: Dilution:	As Received HRP763 1	
Data File: Prep Batch: Prep Date:	b30jul19b_2-9 41266 25-JUL-19	Prep Method: Prep Aliquot:	SW846 3520C 928 mL		Dilution.	1	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD	U	1.09	pg/L	1.09	10.8	
40321-76-4	1,2,3,7,8-PeCDD	U	0.996	pg/L	0.996	53.9	
39227-28-6	1,2,3,4,7,8-HxCDD	U	1.29	pg/L	1.29	53.9	
57653-85-7	1,2,3,6,7,8-HxCDD	JK	1.40	pg/L	1.17	53.9	
19408-74-3	1,2,3,7,8,9-HxCDD	U	1.24	pg/L	1.24	53.9	
35822-46-9	1,2,3,4,6,7,8-HpCDD		72.1	pg/L	2.67	53.9	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		1440	pg/L	5.80	108	
51207-31-9	2,3,7,8-TCDF	U	1.53	pg/L	1.53	10.8	
57117-41-6	1,2,3,7,8-PeCDF	U	0.879	pg/L	0.879	53.9	
57117-31-4	2,3,4,7,8-PeCDF	U	0.797	pg/L	0.797	53.9	
70648-26-9	1,2,3,4,7,8-HxCDF	U	1.39	pg/L	1.39	53.9	
57117-44-9	1,2,3,6,7,8-HxCDF	U	1.34	pg/L	1.34	53.9	
50851-34-5	2,3,4,6,7,8-HxCDF	U	1.39	pg/L	1.39	53.9	
72918-21-9	1,2,3,7,8,9-HxCDF	U	1.85	pg/L	1.85	53.9	
57562-39-4	1,2,3,4,6,7,8-HpCDF	JK	12.0	pg/L	1.36	53.9	
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	2.07	pg/L	2.07	53.9	
9001-02-0	1,2,3,4,6,7,8,9-OCDF	J	48.3	pg/L	3.92	108	
1903-57-5	Total TeCDD	U	1.09	pg/L	1.09	10.8	
86088-22-9	Total PeCDD	U	0.996	pg/L	0.996	53.9	
34465-46-8	Total HxCDD	JK	7.97	pg/L	1.17	53.9	
37871-00-4	Total HpCDD	J	118	pg/L	2.67	53.9	
80402-14-3	Total TeCDF	U	1.53	pg/L	1.53	10.8	
30402-15-4	Total PeCDF	BJK	4.07	pg/L	0.642	53.9	
55684-94-1	Total HxCDF	BJ	10.3	pg/L	1.34	53.9	
38998-75-3	Total HpCDF	JK	38.5	pg/L	1.36	53.9	
3333-30-2	TEQ WHO2005 ND=0 with EMPCs		1.43	pg/L			
3333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		3.11	pg/L			

Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
	1970	2160	pg/L	91.5	(25%-164%)
	1870	2160	pg/L	87.0	(25%-181%)
	1930	2160	pg/L	89.6	(32%-141%)
	1780	2160	pg/L	82.4	(28%-130%)
	1930	2160	pg/L	89.3	(23%-140%)
	3120	4310	pg/L	72.3	(17%-157%)
	2010	2160	pg/L	93.1	(24%-169%)
	2070	2160	pg/L	96.1	(24%-185%)
	2030	2160	pg/L	94.0	(21%-178%)
	1800	2160	pg/L	83.7	(26%-152%)
	1780	2160	pg/L	82.6	(26%-123%)
	1830	2160	pg/L	84.8	(28%-136%)
	2020	2160	pg/L	93.6	(29%-147%)
	Qual	1970 1870 1930 1780 1930 3120 2010 2070 2030 1800 1780 1830	1970 2160 1870 2160 1930 2160 1930 2160 1930 2160 1930 2160 3120 4310 2010 2160 2030 2160 1800 2160 1800 2160 1830 2160	1970 2160 pg/L 1870 2160 pg/L 1930 2160 pg/L 2010 2160 pg/L 2010 2160 pg/L 2030 2160 pg/L 1800 2160 pg/L 1780 2160 pg/L 1830 2160 pg/L	1970 2160 pg/L 91.5 1870 2160 pg/L 87.0 1930 2160 pg/L 89.6 1780 2160 pg/L 89.6 1780 2160 pg/L 89.3 3120 4310 pg/L 72.3 2010 2160 pg/L 93.1 2070 2160 pg/L 94.0 1800 2160 pg/L 83.7 1780 2160 pg/L 83.7 1780 2160 pg/L 83.7 1780 2160 pg/L 82.6 1830 2160 pg/L 84.8

			Certific	Dioxins/Fu ate of Ana ble Summa	alysis			Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	A9G0598 15272001 1613B Water		nt: e Collected: e Received:	APEX001 07/17/2019 07/23/2019	9 14:20		oject: atrix:	APEX00217 WATER	
Client ID: Batch ID: Run Date: Data File:	MW-7-20190717 41272 07/31/2019 08:15 b30jul19b 2-9	Met Ana		EPA Meth MLS	1613B	In	rep Basis: strument: ilution:	As Received HRP763 1	
Prep Batch: Prep Date:	41266 25-JUL-19	-) Method:) Aliquot:	SW846 35 928 mL	520C	D	inition.		
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	Acceptab	le Limits	
13C-1,2,3,4,6,7,8-HI	oCDF		1770	2160	pg/L	82.0	(28%-1	143%)	
13C-1,2,3,4,7,8,9-HI	bCDF		1860	2160	pg/L	86.1	(26%-1	138%)	
37Cl-2,3,7,8-TCDD			209	216	pg/L	97.1	(35%-1	197%)	

Comments:

B The target analyte was detected in the associated blank.

J Value is estimated

K Estimated Maximum Possible Concentration

Hi-Res Dioxins/Furans Surrogate Recovery Report

Page 1 of 2

SDG Number: A9G0598

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2024362	MB for batch 41266	13C-2,3,7,8-TCDD		85.9	(25%-164%)
		13C-1,2,3,7,8-PeCDD		78.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		83.3	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		81.3	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		80.9	(23%-140%)
		13C-OCDD		66.5	(17%-157%)
		13C-2,3,7,8-TCDF		85.7	(24%-169%)
		13C-1,2,3,7,8-PeCDF		91.9	(24%-185%)
		13C-2,3,4,7,8-PeCDF		84.8	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		84.1	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		77.7	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		85.9	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		86.3	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		78.9	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		80.5	(26%-138%)
		37Cl-2,3,7,8-TCDD		102	(35%-197%)
272001	MW-7-20190717	13C-2,3,7,8-TCDD		91.5	(25%-164%)
		13C-1,2,3,7,8-PeCDD		87.0	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		89.6	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		82.4	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		89.3	(23%-140%)
		13C-OCDD		72.3	(17%-157%)
		13C-2,3,7,8-TCDF		93.1	(24%-169%)
		13C-1,2,3,7,8-PeCDF		96.1	(24%-185%)
		13C-2,3,4,7,8-PeCDF		94.0	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		83.7	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		82.6	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		84.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		93.6	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		82.0	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		86.1	(26%-138%)
		37Cl-2,3,7,8-TCDD		97.1	(35%-197%)
024363	LCS for batch 41266	13C-2,3,7,8-TCDD		86.7	(20%-175%)
		13C-1,2,3,7,8-PeCDD		88.5	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		90.9	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		82.0	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		89.0	(22%-166%)
		13C-OCDD		72.5	(13%-199%)
		13C-2,3,7,8-TCDF		89.3	(22%-152%)
		13C-1,2,3,7,8-PeCDF		95.5	(21%-192%)
		13C-2,3,4,7,8-PeCDF		95.0	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		86.2	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		81.9	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		85.4	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		89.3	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		82.1	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		88.2	(20%-186%)
		37Cl-2,3,7,8-TCDD		97.9	(31%-191%)
024364	LCSD for batch 41266	13C-2,3,7,8-TCDD		74.1	(20%-175%)

Page 2 of 2

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A9G0598

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
12024364	LCSD for batch 41266	13C-1,2,3,7,8-PeCDD		79.0	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		81.5	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		74.5	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		86.7	(22%-166%)
		13C-OCDD		74.4	(13%-199%)
		13C-2,3,7,8-TCDF		76.8	(22%-152%)
		13C-1,2,3,7,8-PeCDF		85.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF		85.1	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		75.7	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		73.5	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		78.3	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		82.0	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		76.7	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		82.4	(20%-186%)
		37Cl-2,3,7,8-TCDD		97.5	(31%-191%)

* Recovery outside Acceptance Limits

Column to be used to flag recovery values

D Sample Diluted

Page 1 of 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

SDG Number:	A9G0598
Client ID:	LCS for batch 41266
Lab Sample ID:	12024363
Instrument:	HRP763
Analyst:	MLS

Sample Type:Laboratory Control SampleMatrix:WATER

Analysis Date: 07/31/2019 13:14 Dilu Prep Batch ID:41266 Batch ID: 41272

Dilution: 1

			Datci	11D. 412	14	
CAS No.		Parmname	Amount Added pg/L	Spike Conc. pg/L	Recovery %	Acceptance Limits
1746-01-6	LCS	2,3,7,8-TCDD	200	198	99.1	67-158
40321-76-4	LCS	1,2,3,7,8-PeCDD	1000	1170	117	70-142
39227-28-6	LCS	1,2,3,4,7,8-HxCDD	1000	1110	111	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	1000	1110	111	74-134
19408-74-3	LCS	1,2,3,7,8,9-HxCDD	1000	1160	116	64-162
35822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	1000	1100	110	70-140
3268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	2000	2270	113	78-144
51207-31-9	LCS	2,3,7,8-TCDF	200	211	106	75-158
57117-41-6	LCS	1,2,3,7,8-PeCDF	1000	1170	117	80-134
57117-31-4	LCS	2,3,4,7,8-PeCDF	1000	1130	113	68-160
70648-26-9	LCS	1,2,3,4,7,8-HxCDF	1000	1130	113	72-134
57117-44-9	LCS	1,2,3,6,7,8-HxCDF	1000	1120	112	84-130
60851-34-5	LCS	2,3,4,6,7,8-HxCDF	1000	1150	115	70-156
72918-21-9	LCS	1,2,3,7,8,9-HxCDF	1000	1150	115	78-130
67562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	1000	1130	113	82-122
55673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	1000	1150	115	78-138
39001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	2000	2420	121	63-170

Page 2 of 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

A9G0598
LCSD for batch 41266
12024364
HRP763
MLS

Sample Type:Laboratory Control Sample DuplicateMatrix:WATER

Analysis Date: 07/31/2019 14:02Dilution: 1Prep Batch ID:41266Batch ID: 41272

			Amount Added	Spike Conc.	Recovery	Acceptance	RPD	Acceptance
CAS No.		Parmname	pg/L	pg/L	%	Limits	%	Limits
1746-01-6	LCSD	2,3,7,8-TCDD	200	195	97.3	67-158	1.81	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	1000	1150	115	70-142	1.92	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	1000	1080	108	70-164	2.92	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	1000	1070	107	74-134	3.23	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	1000	1130	113	64-162	3.18	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	1000	1060	106	70-140	3.39	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	2000	2180	109	78-144	3.75	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	200	210	105	75-158	0.704	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	1000	1100	110	80-134	6.39	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	1000	1120	112	68-160	1.61	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	1000	1100	110	72-134	2.78	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	1000	1090	109	84-130	2.50	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	1000	1110	111	70-156	2.78	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	1000	1070	107	78-130	7.06	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	1000	1140	114	82-122	0.422	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	1000	1140	114	78-138	1.01	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	2000	2340	117	63-170	3.28	0-20

of 1

Method Blank Summary

SDG Number:	A9G0598	Client:	APEX001	Matrix:	WATER
Client ID:	MB for batch 41266	Instrument ID:	HRP763	Data File:	b30jul19b_2-3
Lab Sample ID:	12024362	Prep Date:	25-JUL-19	Analyzed:	07/31/19 03:24
Column:		_			

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed
01 MW-7-20190717	15272001	b30jul19b_2-9	07/31/19	0815
02 LCS for batch 41266	12024363	b30jul19b_3-1	07/31/19	1314
03 LCSD for batch 41266	12024364	b30jul19b_3-2	07/31/19	1402

55673-89-7

39001-02-0

41903-57-5

36088-22-9

34465-46-8

37871-00-4

30402-14-3

30402-15-4

55684-94-1

38998-75-3

3333-30-2

3333-30-3

1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8,9-OCDF

Total TeCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TeCDF

Total PeCDF

Total HxCDF

Total HpCDF

TEQ WHO2005 ND=0 with EMPCs

TEQ WHO2005 ND=0.5 with EMPCs

Cape Fear	Analytical LLC					Report Date:	August 13, 2019
		Certifie	Dioxins/Furans cate of Analysis ple Summary	Page 1	of 2		
SDG Number Lab Sample I Client Sampl	ID: 12024362	Client:	APEX001		Project: Matrix:	APEX00217 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 41266 41272 07/31/2019 03:24 b30jul19b_2-3	Method: Analyst:	EPA Method 1613B MLS		Prep Basis: Instrument: Dilution:	As Received HRP763 1	
Prep Batch: Prep Date:	41266 25-JUL-19	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD	U	0.54	pg/L	0.540	10.0	
40321-76-4	1,2,3,7,8-PeCDD	U	0.372	pg/L	0.372	50.0	
39227-28-6	1,2,3,4,7,8-HxCDD	U	0.91	pg/L	0.910	50.0	
57653-85-7	1,2,3,6,7,8-HxCDD	U	0.896	pg/L	0.896	50.0	
19408-74-3	1,2,3,7,8,9-HxCDD	U	0.912	pg/L	0.912	50.0	
35822-46-9	1,2,3,4,6,7,8-HpCDD	JK	2.10	pg/L	1.55	50.0	
3268-87-9	1,2,3,4,6,7,8,9-OCDD	J	8.48	pg/L	3.24	100	
51207-31-9	2,3,7,8-TCDF	U	0.74	pg/L	0.740	10.0	
57117-41-6	1,2,3,7,8-PeCDF	JK	0.600	pg/L	0.598	50.0	
57117-31-4	2,3,4,7,8-PeCDF	U	0.568	pg/L	0.568	50.0	
70648-26-9	1,2,3,4,7,8-HxCDF	U	0.632	pg/L	0.632	50.0	
57117-44-9	1,2,3,6,7,8-HxCDF	U	0.672	pg/L	0.672	50.0	
60851-34-5	2,3,4,6,7,8-HxCDF	U	0.662	pg/L	0.662	50.0	
72918-21-9	1,2,3,7,8,9-HxCDF	JK	1.48	pg/L	0.926	50.0	
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	0.412	pg/L	0.412	50.0	

U

U

U

U

U

JK

U

JK

JK

U

1.32

2.2

0.54

0.372

0.896

2.10

0.74

0.600

1.48

0.412

0.190

1.01

1.32

2.20

0.540

0.372

0.896

1.55

0.740

0.568

0.632

0.412

pg/L pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

50.0

100

10.0

50.0

50.0

50.0

10.0

50.0

50.0

50.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		1720	2000	pg/L	85.9	(25%-164%)
3C-1,2,3,7,8-PeCDD		1580	2000	pg/L	78.9	(25%-181%)
3C-1,2,3,4,7,8-HxCDD		1670	2000	pg/L	83.3	(32%-141%)
3C-1,2,3,6,7,8-HxCDD		1630	2000	pg/L	81.3	(28%-130%)
3C-1,2,3,4,6,7,8-HpCDD		1620	2000	pg/L	80.9	(23%-140%)
C-OCDD		2660	4000	pg/L	66.5	(17%-157%)
C-2,3,7,8-TCDF		1710	2000	pg/L	85.7	(24%-169%)
C-1,2,3,7,8-PeCDF		1840	2000	pg/L	91.9	(24%-185%)
C-2,3,4,7,8-PeCDF		1700	2000	pg/L	84.8	(21%-178%)
C-1,2,3,4,7,8-HxCDF		1680	2000	pg/L	84.1	(26%-152%)
C-1,2,3,6,7,8-HxCDF		1550	2000	pg/L	77.7	(26%-123%)
C-2,3,4,6,7,8-HxCDF		1720	2000	pg/L	85.9	(28%-136%)
-1,2,3,7,8,9-HxCDF		1730	2000	pg/L	86.3	(29%-147%)

			Certifie	Dioxins/Fu cate of An ple Summ	alysis			Page 2 of 2	
SDG Number: Lab Sample ID: Client Sample:	A9G0598 12024362 QC for batch 41266	Clie	nt:	APEX001			roject: latrix:	APEX00217 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 41266 41272 07/31/2019 03:24 b30jul19b_2-3		Method: Analyst:		nod 1613B	In	rep Basis: strument: ilution:	As Received HRP763 1	
Prep Batch: Prep Date:	41266 25-JUL-19	-	o Method: o Aliquot:	SW846 3 1000 mL	520C				
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Tracer	r recovery	Qual	Result	Nominal	Units	Recovery%	Acceptab	le Limits	
13C-1,2,3,4,6,7,8-Hp	pCDF		1580	2000	pg/L	78.9	(28%-1	143%)	
13C-1,2,3,4,7,8,9-Hp	pCDF		1610	2000	pg/L	80.5	(26%-1	138%)	
37Cl-2,3,7,8-TCDD			204	200	pg/L	102	(35%-1	197%)	

Comments:

J Value is estimated

K Estimated Maximum Possible Concentration

SDG Number: Lab Sample ID	A9G0598 : 12024363		cate of Analysis ple Summary APEX001		Project: Matrix:	APEX00217 WATER
Client Sample:QC for batch 41266Client ID:LCS for batch 41266Batch ID:41272Run Date:07/31/2019 13:14Data File:b30jul19b_3-1Prep Batch:41266Prep Date:25-JUL-19		Method:	EPA Method 1613B MLS		Matrix: Prep Basis: Instrument:	WATER As Received HRP763
		Analyst: Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution:	1 1
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6 2,	3,7,8-TCDD		198	pg/L	1.19	10.0
40321-76-4 1,	2,3,7,8-PeCDD		1170	pg/L	1.42	50.0
39227-28-6 1,	2,3,4,7,8-HxCDD		1110	pg/L	2.90	50.0
57653-85-7 1,	2,3,6,7,8-HxCDD		1110	pg/L	2.70	50.0
9408-74-3 1,	2,3,7,8,9-HxCDD		1160	pg/L	2.82	50.0
35822-46-9 1,	2,3,4,6,7,8-HpCDD		1100	pg/L	3.34	50.0
3268-87-9 1,	2,3,4,6,7,8,9-OCDD		2270	pg/L	5.52	100
51207-31-9 2,	3,7,8-TCDF		211	pg/L	1.55	10.0
57117-41-6 1,	2,3,7,8-PeCDF		1170	pg/L	1.48	50.0
57117-31-4 2,	3,4,7,8-PeCDF		1130	pg/L	1.34	50.0
70648-26-9 1,	2,3,4,7,8-HxCDF		1130	pg/L	2.50	50.0
57117-44-9 1,	2,3,6,7,8-HxCDF		1120	pg/L	2.34	50.0
0851-34-5 2,	3,4,6,7,8-HxCDF		1150	pg/L	2.56	50.0
2918-21-9 1,	2,3,7,8,9-HxCDF		1150	pg/L	3.26	50.0
57562-39-4 1,	2,3,4,6,7,8-HpCDF		1130	pg/L	3.16	50.0
55673-89-7 1,	2,3,4,7,8,9-HpCDF		1150	pg/L	4.72	50.0
39001-02-0 1,	2,3,4,6,7,8,9-OCDF		2420	pg/L	7.20	100

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		1730	2000	pg/L	86.7	(20%-175%)
13C-1,2,3,7,8-PeCDD		1770	2000	pg/L	88.5	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		1820	2000	pg/L	90.9	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		1640	2000	pg/L	82.0	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		1780	2000	pg/L	89.0	(22%-166%)
13C-OCDD		2900	4000	pg/L	72.5	(13%-199%)
13C-2,3,7,8-TCDF		1790	2000	pg/L	89.3	(22%-152%)
13C-1,2,3,7,8-PeCDF		1910	2000	pg/L	95.5	(21%-192%)
13C-2,3,4,7,8-PeCDF		1900	2000	pg/L	95.0	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		1720	2000	pg/L	86.2	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		1640	2000	pg/L	81.9	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		1710	2000	pg/L	85.4	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		1790	2000	pg/L	89.3	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		1640	2000	pg/L	82.1	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		1760	2000	pg/L	88.2	(20%-186%)
37Cl-2,3,7,8-TCDD		196	200	pg/L	97.9	(31%-191%)

Comments:

•						
	Hi-Res	Page 1	of 1			
	Certifie					
	Samj	ple Summary				
D: 12024364	Client:	Project: Matrix:	APEX00217 WATER			
LCSD for batch 41266 41272	Method:	Prep Basis:	As Received			
un Date: 07/31/2019 14:02 ata File: b30jul19b_3-2 rep Batch: 41266 rep Date: 25-JUL-19		SW846 3520C 1000 mL		Dilution:	1 1	
Parmname	Qual	Result	Units	EDL	PQL	
2,3,7,8-TCDD		195	pg/L	1.48	10.0	
1,2,3,7,8-PeCDD		1150	pg/L	1.54	50.0	
1,2,3,4,7,8-HxCDD		1080	pg/L	2.32	50.0	
1,2,3,6,7,8-HxCDD		1070	pg/L	2.20	50.0	
1,2,3,7,8,9-HxCDD		1130	pg/L	2.28	50.0	
1,2,3,4,6,7,8-HpCDD		1060	pg/L	3.38	50.0	
1,2,3,4,6,7,8,9-OCDD		2180	pg/L	6.14	100	
2,3,7,8-TCDF		210	pg/L	2.12	10.0	
1,2,3,7,8-PeCDF		1100	pg/L	1.77	50.0	
2,3,4,7,8-PeCDF		1120	pg/L	1.53	50.0	
1,2,3,4,7,8-HxCDF		1100	pg/L	3.22	50.0	
1,2,3,6,7,8-HxCDF		1090	pg/L	3.12	50.0	
2,3,4,6,7,8-HxCDF		1110	pg/L	3.16	50.0	
1,2,3,7,8,9-HxCDF		1070	pg/L	4.18	50.0	
1,2,3,4,6,7,8-HpCDF		1140	pg/L	4.08	50.0	
		11.40	σ	F F C	50.0	
1,2,3,4,7,8,9-HpCDF		1140	pg/L	5.76	50.0	
	D: 12024364 e: QC for batch 41266 LCSD for batch 41266 41272 07/31/2019 14:02 b30jul19b_3-2 41266 25-JUL-19 Parmname 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PaCDF 1,2,3,4,7,8-PaCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	Client: D: 12024364 E: QC for batch 41266 LCSD for batch 41266 Method: 07/31/2019 14:02 Analyst: b30jul19b_3-2 41266 41272 Method: 07/31/2019 14:02 Analyst: b30jul19b_3-2 41266 25-JUL-19 Prep Method: Prep Aliquot: Prep Aliquot: 2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-PeCDF 1,2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,8,-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,8,-HxCDF 2,3,4,6,7,8-HxCDF	D: 12024364 e: QC for batch 41266 LCSD for batch 41266 H1272 41272 Method: EPA Method 1613B 07/31/2019 14:02 Analyst: MLS b30jul19b_3-2 41266 Prep Method: SW846 3520C 25-JUL-19 Prep Method: 1000 mL 2,3,7,8-TCDD 195 1000 mL 2,3,7,8-TCDD 1150 123,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1080 123,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1070 123,4,6,7,8-HyCDD 1,2,3,7,8-PCDF 210 123,4,6,7,8-HyCDF 2,3,7,8-PCDF 1100 123,4,7,8-HxCDF 1,2,3,7,8-PCDF 1100 123,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1000 12,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 100 12,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 100 12,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 100 12,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 100 110 1,2,3,4,7,8-HxCDF 100 110 1,2,3,4,7,8-HxCDF 1000 110 1,2,3,4,7,8-HxCDF <td>Certificate of Analysis SamJerstanding a AGG0598 Client: APEX001 D: 12024364 APEX01 e: QC for batch 41266 EPA Method 1613B 41272 Method: EPA Method 1613B 07/31/2019 14:02 Analyst: MLS b30jul19b_3-2 41266 Prep Method: SW846 3520C 25-JUL-19 Prep Method: 1000 mL Prep Aliquot: 1000 mL 2.3,7,8-TCDD 195 pg/L 1,2,3,7,8-PCDD 1150 pg/L 1,2,3,7,8-PCDD 1080 pg/L 1,2,3,7,8-PCDD 1080 pg/L 1,2,3,7,8-PCDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDF 210 pg/L 1,2,3,7,8-PCDF 1100 pg/L 1,2,3,7,8-PCDF 1100 pg/L 1,2,3,4,7,8-HxCDF 1090 pg/L 1,2,3,4,7,8-HxCDF 1090 pg/L 1,2,3,4,7,8-HxCDF <t< td=""><td>Certification of Analysis Samu-Fundamental of Analysis analysis Client: APEX001 Project: Matrix: i 2024364 </td><td>Certificate of Analysis Samuers apgo598 Client: APEX001 Project: APEX00217 Matrix: PAPEX00217 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX001 PAPEX000 PA</td></t<></td>	Certificate of Analysis SamJerstanding a AGG0598 Client: APEX001 D: 12024364 APEX01 e: QC for batch 41266 EPA Method 1613B 41272 Method: EPA Method 1613B 07/31/2019 14:02 Analyst: MLS b30jul19b_3-2 41266 Prep Method: SW846 3520C 25-JUL-19 Prep Method: 1000 mL Prep Aliquot: 1000 mL 2.3,7,8-TCDD 195 pg/L 1,2,3,7,8-PCDD 1150 pg/L 1,2,3,7,8-PCDD 1080 pg/L 1,2,3,7,8-PCDD 1080 pg/L 1,2,3,7,8-PCDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDD 1060 pg/L 1,2,3,7,8-PACDF 210 pg/L 1,2,3,7,8-PCDF 1100 pg/L 1,2,3,7,8-PCDF 1100 pg/L 1,2,3,4,7,8-HxCDF 1090 pg/L 1,2,3,4,7,8-HxCDF 1090 pg/L 1,2,3,4,7,8-HxCDF <t< td=""><td>Certification of Analysis Samu-Fundamental of Analysis analysis Client: APEX001 Project: Matrix: i 2024364 </td><td>Certificate of Analysis Samuers apgo598 Client: APEX001 Project: APEX00217 Matrix: PAPEX00217 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX001 PAPEX000 PA</td></t<>	Certification of Analysis Samu-Fundamental of Analysis analysis Client: APEX001 Project: Matrix: i 2024364	Certificate of Analysis Samuers apgo598 Client: APEX001 Project: APEX00217 Matrix: PAPEX00217 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX0017 Matrix: PAPEX001 PAPEX000 PA

Surrogate/Tracer recovery Qual Result Nomin	nal Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD 1480 2000) pg/L	74.1	(20%-175%)
13C-1,2,3,7,8-PeCDD 1580 2000) pg/L	79.0	(21%-227%)
13C-1,2,3,4,7,8-HxCDD 1630 2000) pg/L	81.5	(21%-193%)
13C-1,2,3,6,7,8-HxCDD 1490 2000) pg/L	74.5	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD 1730 2000) pg/L	86.7	(22%-166%)
13C-OCDD 2970 4000) pg/L	74.4	(13%-199%)
13C-2,3,7,8-TCDF 1540 2000) pg/L	76.8	(22%-152%)
13C-1,2,3,7,8-PeCDF 1710 2000) pg/L	85.6	(21%-192%)
13C-2,3,4,7,8-PeCDF 1700 2000) pg/L	85.1	(13%-328%)
13C-1,2,3,4,7,8-HxCDF 1510 2000) pg/L	75.7	(19%-202%)
13C-1,2,3,6,7,8-HxCDF 1470 2000) pg/L	73.5	(21%-159%)
13C-2,3,4,6,7,8-HxCDF 1570 2000) pg/L	78.3	(22%-176%)
13C-1,2,3,7,8,9-HxCDF 1640 2000) pg/L	82.0	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF 1530 2000) pg/L	76.7	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF 1650 2000) pg/L	82.4	(20%-186%)
37Cl-2,3,7,8-TCDD 195 200	pg/L	97.5	(31%-191%)

Comments:

	Tetra Pak GWM										
Laboratory Reports included in Data Validation	Dates	Sample IDs									
Laboratory: APEX Laboratories, Cape Fear Analytical, LLC	Report Date: 8/13/2019	Aqueous Samples: MW-6-20190717, MW-8-20190717, MW-7-20190717, MW-2-20190717, MW-5-20190717									
SDG: A9G0598	Sample	Field Duplicate: D-20190717 (duplicate of MW-7-20190717)									
Analyses: 8270D, Dioxins	Dates:	Equipment Blank: Not Collected									
	7/17/2019- 7/17/2019	Trip Blank: Not Collected									
	Validation Date:										
	10/31/2019										

DATA VALIDATION SUMMARY Tetra Pak GWM

Criteria	(Yes or No)	Comment
Chain-of-Custody (COC) – Chain-of-custody protocol followed?	Yes	
Temperature Blank – Sample temperature criteria met?	Yes	
Holding times – Samples analyzed within specified holding time?	Yes	
Laboratory method blank samples – Analytes present in method blank samples?	Yes	See Note
Field/Equipment blank samples – Analytes present in field/equipment blank samples?	No	See Note
Trip blank samples – Analytes present in trip blank samples?	No	See Note
Matrix Spikes (MS)/Matrix Spike Duplicate (MSD) samples – Control limits met?	Yes	See Note
Surrogate percent recoveries – Control limits met?	Yes	
Laboratory Control Sample (LCS) – Control limits met?	Yes	
Laboratory duplicate samples (if applicable) – Control limits met?	Yes	
Field duplicate samples (if submitted) – Relative percent differences within control limits?	Yes	See Note
Other Issues?	Yes	See Note

Method Blank Note: 1,2,3,4,6,7,8-HpCDD detected in the method blank at 2.10J pg/L for batch 41272, no action taken as the sample result was much higher than that detected in the method blank.

1,2,3,4,6,7,8,9-OCDD detected in the method blank at 8.48J pg/L for batch 41272, no action taken as the sample result was much higher than that detected in the method blank.

1,2,3,7,8-PeCDF detected in the method blank at 0.600J pg/L for batch 41272, the associated sample result was not detected, no action taken.

1,2,3,7,8,9-HxCDF detected in the method blank at 1.48J pg/L for batch 41272, the associated sample result was not detected, no action taken.

Total HpCDD detected in the method blank at 2.10J pg/L for batch 41272, no action taken as the sample result was much higher than that detected in the method blank.

Total PeCDF detected in the method blank at 0.600J pg/L for batch 41272. The result for the associated sample was qualified as non-detect, U, at the reporting limit.

Total HxCDF detected in the method blank at 1.48J pg/L for batch 41272. The result for the associated sample was qualified as non-detect, U, at the reporting limit.

Field Blank Note: Not collected

Trip Blank Note: Not collected

MS/MSD Note: Not applicable

Field Duplicate Note: D-20190717 Parent Sample ID: MW-7-20190717

Other Note: Custody seals not present on coolers. No action taken.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

Attachment B

Groundwater Sampling and Purge Forms

	le Form (M	linimal D	Drawdown)			Kennedy/	Jenks Co	onsultant
Date: 7-17-19			Well Nu	mber:	Muz-	.1		
Project Name:	Tetra Pak			ent Type: meter (in):	Stickup:		(ft PVC)	-lush:
Sampling Personnel: Robin	cn/Ga	nalez	Well Co	Well Condition:				
Water Level Meter: Purging Equipment:	1755		Total Ca	Total Casing Depth (ft):				
Sampling Equipment:			Purge D	•		1541		тос
Sampling Time:)A		Depth to	Groundwa	ter (ft):	9.09		тос
Total Discharge (gal):			Depth to	LNAPL (ft)	:			
Water Disposal: On	-site Contair	ner	Water C	olumn (ft):				
Weather:								
Water Quality Meter(s)	Mode		Calibration Date/	Time		QA/QC Sam	ples	
Temp/pH/SC/ORP/DO:	YSI 55				Туре	Sampl	e ID	Time
Turbidity:	Micro TF	PW						
Other:								
Sample	Sample Co			Field Filtered	Analysis F	Analysis Requested Com		ISD &
ID No. None collected	Туре	Pres	. Vol.	Filtered				
			-					
Time	1 Tours							
Time Parameter (every 5 min)	min	13:05	min min	min	min	min	min	mi
Parameter (every 5 min)	1000			mìn	min	min	min	mi
	min			mîn	min	min	mîn	mi
Parameter (every 5 min) Flow Rate (L/min)	1000			min	min	min	min	mi
Parameter (every 5 min) Flow Rate (L/min) Volume Purged (Liters)	min v, 5	7	mìn mìn	min	min	min	mīn	mi
Parameter (every 5 min) Flow Rate (L/min) Volume Purged (Liters) Water Depth (ft)	<u>min</u> د, 5 ايرټو		mìn mìn	min	min	min	min	mi
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)pH, (± 0.1)	min v, 5 15,39 6.22 129	7 13,93 5.68 240	min min	min	min	min	min	mi
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)pH, (± 0.1)Sp. Conductance (uS/cm),(± 3%)	min v, 5 15,39 6.22	7 15.93 5.68 240	min min	min	min	min	min	m
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)	min v, 5 15,39 6.22 129 mike east	7 13,93 5.68 240		min			min	mi
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)pH, (± 0.1)Sp. Conductance (uS/cm),(± 3%)DO (mg/L), (± 10% or 10% of 0.2mg/l)	min v, 5 15,39 6.22 129 make act submos 157.0	7 13.93 5.68 240 ed 6.9		min		min	min	mi
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)pH, (± 0.1)Sp. Conductance (uS/cm),(± 3%)DO (mg/L), (± 10% or 10% of 0.2mg/l)ORP (mV), (± 10%)	min v, 5 15,39 6.22 129 mag act outong 157.0	7 13.93 5.68 240 1.96.9		min			min	
Parameter (every 5 min)Flow Rate (L/min)Volume Purged (Liters)Water Depth (ft)Temperature (°C), (± 0.2)pH, (± 0.1)Sp. Conductance (uS/cm),(± 3%)DO (mg/L), (± 10% or 10% of 0.2mg/l)ORP (mV), (± 10%)Turbidity (NTU), (± 10% or 3 <10 NTUs)	min v, 5 15.79 6.22 129 mag act outors 157.0 18.22	7 13.93 5.68 240 01 6.9 186.4 34.34	min min	min			min	n

https://kjcnet-my.sharepoint.com/personal/alicerobinson_kennedyjenks_com/Documents/Documents/ES_Purge Form (Blank).xlsx

Date: 0	l: On-		1		Well Di Well Co Total C	umber: nent Type: ameter (in); ondition: asing Depth ed Interval (1-8 good	(ft PVC)	Flush:
Water Level Meter: Purging Equipment: Sampling Equipment: Sampling Time: Total Discharge (gal): Water Disposal: Weather:	l: On-	30	4 1 50		Total C Screen	asing Depth	(11).	good		
Total Discharge (gal): Water Disposal: Weather:	On-		1:30							Reference
Total Discharge (gal): Water Disposal: Weather: /o	On-						ater (ft): 43.04 Pf			тос
Water Disposal: Weather:	12	-site Container				o LNAPL (ft)				
Weather:	12	site Contai	ner			Column (ft):		none		
	1101				Water c					
	VI VI V	Mode		Calibrati	ion Date	/Time		QA/QC Sam	ples	
Temp/pH/SC/ORP/DO:		YSI 55	56				Туре	Samp	·	Time
Turbidity:		Micro TI	PW							
Other:										
Sample ID N	lo.	Sample C Type	ontainer Pres		Vol.	Field Filtered	Analysis F	Requested	MS/M	
MW-8 2019 0717 MW-8 20190917	10.	Туре	Fies		11 11	no			Comn	
	Time	1:300	1:35	آبار ک	Ц0р	1:452				
Parameter (every 5 min)		min		min	min	min	min	mîn	min	m
Flow Rate (L/min)										
Volume Purged (Liters)										
Water Depth (ft)		् स								
Temperature (°C), (± 0.2)		14.44	14.3	1 14	0.0	13.86		1		
oH, (± 0.1)			A real transformer and the second sec			5.33				
Sp. Conductance (uS/cm),(± 3%)		226	225	-	23	223				
DO (mg/L), (± 10% or 10% of 0.2	mg/l)	1.75	7.6		12	7.94				
ORP (mV), (± 10%)		155.8		-	7.0	203.1				
furbidity (NTU), (± 10% or 3 <10	NTUs)		4.20			9.15				
Color			non			none				
Ddor/Evidence of LNAPL		nerti	Marger	Nº.	one	none				
Notes: (i.e. actions taken if well d	ewaters	difficulties in	n samplin					loompling at-	<u></u>	
1 US Gallon = 3.8 Liters				5 sag		-, p. solotio u	ang parging	oumping, etc.	/	

Date: 7 Project Name: Project Number:	1)		Kenned	y/Jenks (;onsult	
,	7-17-19 Tetra Pak			Мо	ll Number: nument Type:	Stick	MW-6 kup:(ft PVC) Flush:			
Sampling Personnel: Water Level Meter: Purging Equipment:	Robinson/Gonzalez				Well Diameter (1)					
Sampling Equipment:					ened Interva e Depth (ft):		Refere			
Sampling Time:					th to Groundy	vater (ft):	-501 44.5	7	тос	
Total Discharge (gal):					h to LNAPL (1	i.	
Water Disposal:	<u> </u>	n-site Con	tainer	Wate	er Column (ft)				L	
Water Quality Meter(s)		Mo	odel	Calibration D	ate/Time					
Temp/pH/SC/ORP/DO:		YSI	556			Туре	QA/QC Sam			
Turbidity: Other:		Micro	TPW			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sampl	e ID	Time	
Sample	3.5	Sample	Containe	rs	Field					
ID			Pre	and the second sec	Filtered	Analysis Requested		MS/MSD & Comments		
MW-6 2019 0117 MW-6 2019 0117								Comm	ents	
			R.							
		12.106	14							
No. 1 A	Time	12:10	12:2	0 12:25	12:30				-	
w Rate (L/min)		mi		nin mii		min	min	min		
								The second	mi	
lume Purged (Liters) ater Depth (ft)										
mperature (°C), (± 0.2)										
(± 0.1)	[!	4.85	14.9	2 15.10	3.2				<u>.</u>	
Conductance (uS/cm),(± 3		0.50	4.97	5.20						
(mg/L), (± 10% or 10% of (V	.248	236	238						
^o (mV), (± 10%)		1.26.	7.17	7.10			2			
vidity (NTU), (± 10%)		01.5	219.3	204.7			9	22		
	0	3.69	20.70	0 18.27						
	n	one	none	none						
r										
	- Inc	one.	none	none						

1/18

Groundwater Purge	e and Samp	ole Form (N	/linimal Dra	awdown)			Kennedy/	Jenks Co	onsultants	
Date: Project Name: Project Number:	וורוור			umber: nent Type: iameter (in):	Stickup:	₩-7_(ft PVC)	-lush: X		
Sampling Personnel: Water Level Meter: Purging Equipment: Sampling Equipment:	AR 6PE				ondition: asing Depth ed Interval (good. Refer			
Sampling Time:	20	m = 2:	:20 pm		Purge Depth (ft):					
Total Discharge (gal):	9			Depth t	o LNAPL (ft)):				
Water Disposal:	Or	n-site Contai	ner	Water (Column (ft):	<u> </u>				
Weather:	budy		<u> </u>							
Water Quality Meter(s)		Mode		ibration Date	e/Time		QA/QC Sam	ples		
Temp/pH/SC/ORP/DO:		YSI 556					Type Samp		le ID Time	
Turbidity: Other:	•	Micro T	PW							
P							AL.			
Sample ID	No.	Sample Containers			Field Filtered	Analysis Requested		MS/MSD & Comments		
	Time	4:05		14:15	14:20					
Parameter (every 5 mi		min		the second s		min	mīn	mîn	min	
Flow Rate (L/min)	9									
Volume Purged (Liters)										
Water Depth (ft)										
Temperature (°C), (± 0.2)		1445	1437	14.22	14.02					
pH, (± 0.1)			5.65							
Sp. Conductance (uS/cm)	,(± 3%)	258	240	259	258					
DO (mg/L), (± 10% or 10%	6 of 0.2mg/l)	7.53	6.67		7.16					
ORP (mV), (± 10%)		162.2	200.4	203.2"	199.0					
Turbidity (NTU), (± 10% o	r 3 <10 NTUs)	94.00	2448		221.9			ų.		
Color		lorown	CLOUDY .							
Odor/Evidence of LNAPL		no no.	none	none.	hane					
Notes: (i.e. actions taken	if well dewater					uring purging	/sampling, etc.)		
1 US Gallon = 3.8 Liters									2.6	

15

Groundwater Purge	and Samp	ole Form (N	/linimal	Drawo	lown)			Kennedy	//Jenks Co	onsultants	
Date: Project Name: Project Number:	ect Name:			19 Tetra Pak			Well Number: <u>M</u> W – 2 Monument Type: Stickup: (ft PVC) H Well Diameter (in):				
Sampling Personnel: Water Level Meter: Purging Equipment: Sampling Equipment:		161R61			Well Co Total C Screen	ondition: asing Depth ed Interval (Depth (ft):	(ft):	ood		Reference:	
Sampling Time:		15:16			Depth to Groundwater (ft): 46.21 Ft					тос	
Total Discharge (gal):):				
Water Disposal:		n-site Contai			Water (Column (ft):					
Weather:											
Water Quality Meter(s)		Mode	el l	Calibra	tion Date	/Time		QA/QC San	nples		
Temp/pH/SC/ORP/DO:		YSI 55	56				Туре	Sam	ole ID	Time	
Turbidity:		Micro T	PW								
Other:				_							
Sample ID	No.	Sample Containers			Field Vol. Filtere		Analysis I	Requested	uested MS/M Comr		
MW-2 20190717 MW-2 20190717											
	Time	14:59	15:0	ЧК	5:09	15:14				N	
Parameter (every 5 min		min	-	min	min		min	mīn	min	min	
Flow Rate (L/min)										1	
Volume Purged (Liters)											
Water Depth (ft)											
Temperature (°C), (± 0.2)		14.43	13.9	8 1	1.05	14.26					
pH, (± 0.1)		6.30	5.5	1000	551	5.59					
Sp. Conductance (uS/cm),	(± 3%)	272	266		259	1257					
DO (mg/L), (± 10% or 10%	of 0.2mg/l)	8.40	1.40		1.31	6.83					
ORP (mV), (± 10%)		170.9	200			197.7					
Turbidity (NTU), (± 10% or	3 <10 NTUs)					50.63					
Color		none	milk		oudy	none					
Odor/Evidence of LNAPL		none.	nor		vone.	none					
		HALL .		-							
Notes: (i.e. actions taken if	f well dewater	rs, difficulties	in samplii	ng thro	ugh LNAP	L, problems o	during purging	g/sampling, et	c.)		

Groundwater Purge	and Samp	le Form (N	/linimal C	rawdown)			Kennedy	/Jenks C	onsultant		
Date: 7-17-19 Project Name: Tetra Pak					umber: nent Type:	MW-	\checkmark	(ft PVC)	Flush:		
Project Number: Sampling Personnel: Water Level Meter: Purging Equipment:	6.6 G		Well Co	ameter (in): ondition: asing Depth ed Interval (i	(ft):	v. geod	Reference:				
Sampling Equipment:		*		Purge [Depth (ft):		- 51	тос			
Sampling Time:	16:00				Depth to Groundwater (ft): 45.90						
Total Discharge (gal): Water Disposal:					Depth to LNAPL (ft):						
Weather:											
Water Quality Meter(s)		Mode	el C	alibration Date	e/Time	_	QA/QC Sam	nples			
Temp/pH/SC/ORP/DO:		YSI 55				Туре	Samp	ole ID Time			
Turbidity:		Micro TI	PW								
Other:											
Sample ID	Sample Contai				Field Filtered	Analysis Requested		MS/MSD & Comments			
20 ji											
		:		*							
	Time	15:43	15:48	15:53	15:58						
Parameter (every 5 min)		min		nin min		min	min	min	min		
Flow Rate (L/min)					1						
Volume Purged (Liters)	14.5	~.5	-1	15	-2						
Water Depth (ft)											
Temperature (°C), (± 0.2)	*	14.65	14.55	14.20	14,19						
pH, (± 0.1)		6.23	5.71	5.55	9.61						
Sp. Conductance (uS/cm),(:	± 3%)	183	183	193	182						
DO (mg/L), (± 10% or 10% o	of 0 2mg/l)	7.84	7.66	8.03	8.09				D.		
ORP (mV), (± 10%)		171.3	196.9	1	195.8						
Turbidity (NTU), (± 10% or 3	3 <10 NTUs)	· · · · · ·	44.95		15.78						
Color	1 0	dr	Light My col	10.00	cln						
Odor/Evidence of LNAPL		rone	nine	rare	nove		1				
Notes: (i.e. actions taken if											