

6034 N. Star Rd., Ferndale, Washington 98248 Telephone (cell) – (206) 498-6616

MEMORANDUM

TO: Roger Nye – Department of Ecology

FROM: Matt Dalton

DATE: September 24, 2019

SUBJECT: Results of Additional Testing

Triumph Structures Aerostructures 1415 75th Street, Everett, Washington

VCP No. NW3183

REF. NO: SAB-006-00

CC: Mikel Hansen – Sabey Corp.

Dave Cooper - DOF

On behalf of Everett Technical Park II (ETPII), we are submitting this memorandum to provide supplemental data to support a request for a No Further Action (NFA) designation for the referenced site. Triumph Structures Aerostructures was a former tenant of ETPII who released cutting oil to soil beneath the building floor slab. Extensive cleanup has been completed at the site. The results of the cleanup were submitted to the Washington State Department of Ecology (Ecology) under the Voluntary Cleanup Program (VCP) in December 2017 (DOF 2017).

ECOLOGY OPINION LETTER AND REMAINING ISSUES

An opinion letter was received from Ecology dated March 25, 2019 (Ecology 2019). The letter indicated Ecology concurred that diesel-range hydrocarbons (TPHd) and oil range hydrocarbons (TPHo) were the contaminants of concern for the site (components of cutting oil). The letter indicated that Ecology could not issue an NFA designation for the site based on the following:

- The presence (or not) of a shallow continuous zone of groundwater saturation beneath the site should be established, and if so, whether or not it [groundwater] has been impacted. A DOF memorandum presenting an analysis of shallow groundwater conditions beneath the site was submitted on April 3, 2019 (DOF 2019a). A follow-up memorandum was submitted in June 2019 (DOF 2019b) that presented the results of the drilling of two soil boring. These memoranda are included in Attachment A.
- Areas of contaminated soil remain in three of the remedial excavations because of building structural constraints. Ecology indicated that to receive an NFA either soil needed to meet cleanup levels or institutional controls be implemented and recorded.

• Applicable data needed to be uploaded to Ecology's Environmental Information System (EIM).

SUPPLEMENTAL TESTING AND ANALYSIS

Based on the March 2019 Ecology opinion letter and subsequent discussions, additional sampling, testing and data analysis were completed. This work included the following:

- Two borings were drilled on the northeast side of the building to explore for a shallow groundwater zone. The results of this testing were submitted to Ecology in a DOF memorandum (DOF 2019b). The memorandum is presented in Attachment A. <u>Based on the borings and observations made during the site cleanup (DOF 2019a), DOF concluded that a shallow groundwater zone does not exist beneath the site.</u>
- Two soil samples were obtained from areas where the Method A cleanup level (CUL) of 2,000 mg/kg was exceeded. The samples were submitted to Analytical Resources Inc. (ARI) for analysis of extractable petroleum hydrocarbons (EPH) using Ecology Method WA EPH to allow calculation of a site specific Method B CUL and to assess possible impacts to groundwater. Analysis of polycyclic aromatic hydrocarbons (PAHs) were also analyzed using EPA Method SW8270D-SIM. The ARI data sheets are included as Attachment B. The sampling and results are discussed below.

EPH Sampling Locations and Collection. As discussed in DOF 2017, soil containing cutting oil residues with diesel+ heavy oil range organic (D+O) concentrations above the Method A CUL (2,000 mg/kg) could not be removed because of building structural support issues. The locations, estimated soil volumes, and residual concentrations are summarized in Table 1 below and the locations are shown on Figure 1. In total, it is estimated that approximately five to ten cubic yards of soil containing residual concentrations above 2,000 mg/kg remain at the site.

TABLE 1 – Remaining Locations w/ Soil Greater than 2,000 mg/kg (D+O)

Location	Estimated Soil Volume Remaining (CY)	Residual Concentration (mg/kg)	Comment
ERM Excavation	2	37,000	Structural support
Area 2			column
ERM Excavation	2.5	8,400	Structural support
Area 6			column
DOF Area 5	2.5	19,000	West sidewall
CT. C.1. T. 1			below footing

CY – Cubic Yard

On August 23, 2019 Dave Cooper Principal Geologist with DOF collected soil samples from Excavation Areas 2 and 6 (Figure 1). At each location, a concrete core was removed to provide access to underlying soil. Samples were obtained using clean stainless steel spoons. Collected samples were placed in clean glass jars provided by ARI and transported to the laboratory in chilled coolers. Sample handling was documented using standard chain-of-custody procedures.

EPH Analytical Results. The D+O Method A CUL (2,000 mg/kg) was set to be protective of a wide range of petroleum products (one size fits all) which vary widely. The EPH analysis allows

Results of EPH Analyses – Former Triumph Site, Everett, WA Page 3 September 24, 2019

calculation of two site specific values that account for the specific nature of the released material (in this case cutting oil). The site specific values include:

- Method B CUL based on direct soil contact, and
- Predicted groundwater concentration (assuming groundwater leaching from contaminated soil).

Data is analyzed using Excel worksheets available on Ecology's web site. The completed worksheets and results are presented in Attachment C for the two soil samples. The calculated Method B soil CUL for each sample is summarized in Table 2 below. The average of the two calculated Method B values is approximately 20,230 mg/kg.

Table 2 - Calculated Method B CULs

Table 2 Calculated Michig	u D CCL3	
Location	Sample Residual Concentration (mg/kg)	Method B CUL (Protective Condition) (mg/kg)
ERM Excavation Area 2	8473	19,526
ERM Excavation Area 6	13,456	20,938
Average		20,232

The Method A CUL for diesel range organics and heavy oils dissolved in groundwater is 500 ug/l (Table 720-1 in WAC 173-340-900). Using the results of the EPH analyses, the predicted groundwater concentrations were less than 1 ug/l as summarized in Table 3 below. The calculations assumed contact with groundwater and the default assumptions included with the Ecology worksheet. The predicted groundwater concentrations are hundreds of times lower than the CUL.

Table 3 – Predicted Groundwater Concentrations

Location	Predicted Groundwater Conc. – Porewater (ug/l)	Predicted Groundwater Conc. – At Well (ug/l)
ERM Excavation Area 2	0.967	0.0017
ERM Excavation Area 6	0.721	0.0014
Average	0.844	0.0016

PAH Analytical Results. As summarized in Appendix B, only three individual PAHs were detected in the soil samples at a reporting limit of 15.8 ug/kg as summarized below in Table 4. The sample concentrations are well below direct contact Method B CULs based on unrestricted site use.

Table 4 – Detected PAHs

PAH Constituent	Area2_SW-06(R)	Area6_SW-15(R)	Method B CUL
2-Methylnaphthalene	Nd (<15.6 ug/kg)	11.4 J ug/kg	320,000
1-Methylnaphthalene	4.2 J ug/kg	8.95 J ug/kg	34,500
Benzo(g,h,i)perylene	Nd (<15.6 ug/kg)	28.8 ug/kg	Not available

COMPARISON TO CLEANUP LEVELS

Soil Contact. Soil CULs are applied using the criteria in WAC 173-340-740(7). The three criteria pertinent to the site are as follows:

- The upper95% confidence limit (UCL95%) on the true mean concentration shall be less than the CUL,
- No single sample can exceed two times the CUL, and
- Less than 10% of the samples can exceed the CUL.

To assess whether soil beneath the site meets the Method B CUL of 20,230 mg/kg, available post-remedy soil data was compiled from Table 4 in DOF 2017 and ERM Table 6 (in Attachment A to DOF 2017). The data compilation is presented as attached Table 5 and consists of the results of 131 samples. Petroleum hydrocarbons were not detected in most (approximately 59%) of the samples. Using the data in Table 5, the cleanup criteria were applied to the site using the calculated Method B CUL. The results are summarized below in Table 6 and indicate that the site meets the Method B CUL as discussed below.

Table 6 – Results of Cleanup Compliance Analysis

Tuble of Results of Cleanup Comphanics (Marysis					
Criteria	Result	Comment			
UCL95%	2090 mg/kg	Calculated using detected D+O			
UCL9370	2090 mg/kg	concentrations			
Number of Samples	None	No sample exceeded 40,460 mg/kg			
> 2x CUL	None	No sample exceeded 40,460 mg/kg			
Percent of Samples	<1%	Only one sample (37,000 mg/kg) >CUL			
>CUL	~1 70	Only one sample (57,000 mg/kg) >COL			

- The UCL95% concentration was estimated using the Ecology statistical program MTCA-Stat. The entire data set (131 samples) is neither normally nor log-normally distributed, likely as a result of the large number of non-detects. Petroleum hydrocarbons were detected in 54 of the 131 samples. An analysis was completed that assumed that the 54 samples represent the entire site. Such an approach overestimates the UCL95% concentration as the large number of non-detects are not factored into the analysis. The 54 sample data set is log-normally distributed and a UCL95% concentration of 2,090 mg/kg was calculated (see Attachment D).
- Two times the Method B CUL is approximately 40,460 mg/kg. The highest remaining concentration is 37,000 mg/kg, so this criteria is satisfied.
- Only one of the 131 soil samples exceeds the Method B CUL or less than 1% of the samples, therefore the "10%" criteria is satisfied.

Protection of Groundwater. As noted above and in Attachment A, available data indicate a continuous shallow groundwater zone is not present beneath the site. The EPH analyses indicate that even if such a zone existed and was in contact with soil containing residual cutting oil, the

Results of EPH Analyses – Former Triumph Site, Everett, WA Page 5 September 24, 2019

D+O Method A CUL of 500 ug/l would not be exceeded, as predicted concentrations are less than 1 ug/l.

SUMMARY

Based on the EPH and PAH soil analyses and application of the cleanup criteria in the Model Toxics Control Act, the site meets Method B CULs based on unrestricted site uses. Observations made during the soil cleanup and in two soil borings indicate that a shallow continuous groundwater zone is not present beneath the site. Furthermore, the EPH analyses indicate that even if a shallow groundwater zone existed in contact with the cutting oil residues, the groundwater CUL would not be exceeded.

Post-remedy data is being formatted for upload to Ecology's EIM. Once the site technical issues are resolved, the data will be uploaded.

CLOSING

The services described in this memorandum were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this document.

REFERENCES

- DOF (Dalton Olmsted & Fuglevand, Inc.), 2017, Cleanup Reports, Former Triumph-Structures Facility, Everett Technical Park II, 1415 75th Street SW, Everett, Washington; prepared for ETPII, December 2017.
- DOF, 2019a, DOF Memorandum to Ecology; Subject Ecology Opinion Letter Dated March 25, 2019, [former] Triumph Structures Aerostructures, 1415 75th Street SW, Everett, Washington, VCP No. NW3183; April 4, 2019.
- DOF, 2019b, Results of Additional Subsurface Drilling, Triumph Structures
 Aerostructures, 1415 75th Street SW, Everett, Washington, VCP No. NW3183; June 3,
 2019.
- Ecology (Washington State Department of Ecology), 2019, Opinion pursuant to WAC 173-340-515(5) on Remedial Actions for the Following Hazardous Waste Site: Triumph Structures Aerostructures, 1415 75th Street SW, Everett, WA 98203, Facility/Site No.: 9273878; VCP No. NW3183; Cleanup Site ID No.: 14462; March 25, 2019.

Results of EPH Analyses – Former Triumph Site, Everett, WA Page 6 September 24, 2019

Attachments

Table 5 – Post-Remedy Soil Analytical Data Figure 1 – EPH Sample Locations

Attachment A – DOF Memoranda, April 4 and June 3, 2019. Attachment B – EPH Laboratory Data Sheets – August 2019

Attachment C – EPH Worksheets

Attachment D – MTCAStat Data Output

TABLE 5 - POST-REMEDY SOIL ANALTYICAL DATA

Area	Sample ID	Depth (feet)	Date Collected	NWTPH-DX Diesel Range		Diesel + Oil Range
			- / / /-	(mg/kg)	(mg/kg)	(mg/kg)
	CC-1	0.5-1.0	8/28/17	<5.16	<10.3	<10.3
	CC-2	0.5-1.0	8/28/17	<5.35	<10.7	<10.7
Sub Slab	CC-3	0.5-1.0	8/28/17	5.5	<10.3	5.5
Cores	CC-4	0.5-1.0	8/28/17	40.6	41.2	81.8
	CC-5	0.5-1.0	8/28/17	1,390	676	2066
	CC10	0.5-1.0	8/28/17	21.5	<10.9	21.5
	CC-5-ES	1.0-1.5	10/11/17	<25	<50	<50
	CC-5-S	1.0-1.5	10/11/17	<25	69	69
	CC-5-WS-(R)	-	10/13/17	<1000	19,000**	19000
	CC-5-B	2.0	10/11/17	<25	78	78
	CC-5-ES+20	0.5-1.0	10/11/17	<25	<50	<50
	CC-5-B+20	2.0	10/11/17	<25	330	330
Excavation	CC-5-WS+20	0.5-1.0	10/11/17	<25	110	110
CC-5	CC-5-ES+45	1.0-1.5	10/11/17	<25	<50	<50
	CC-5-B+45	2.0	10/11/17	<25	<50	<50
	CC-5-WS+45	1.0-1.5	10/11/17	<25	<50	<50
	CC-5-N	1.5-2.0	10/11/17	<25	<50	<50
	CC-5-ES+60	1.0-1.5	10/11/17	<25	<50	<50
	CC-5-WS+60	1.0-1.5	10/11/17	<25	<50	<50
	CC-5-B+60	2.0	10/11/17	<25	<50	<50
	CC-7-NB	1.5-2.0	10/10/17	<25	<50	<50
	CC-7-WS	1.5-2.0	10/10/17	<25	<50	<50
Excavation CC-7	CC-7-S	1.5-2.0	10/10/17	<25	<50	<50
	CC-7-ES	1.5-2.0	10/10/17	<25	<50	<50
	CC-7-B	2.0	10/10/17	41	<50	41

TABLE 5 - POST-REMEDY SOIL ANALTYICAL DATA

Area	Sample ID	Depth (feet)	Date Collected	NWTPH-DX Diesel Range	NWTPH-DX Oil Range	NWTPH-DX Diesel + Oil Range
				(mg/kg)	(mg/kg)	(mg/kg)
	CC-8-N	1.0-1.5	10/11/17	<25	<50	<50
	CC-8-ES	1.5-2.0	10/11/17	<25	<50	<50
Excavation CC-8	CC-8-S-(R)	1	10/13/17	<120	1,000	1000
	CC-8-WS	1.0-1.5	10/11/17	<25	59	59
	CC-8-B	2.0	10/11/17	<25	470	470
	CC-9-1N	1.5-2.0	10/10/17	<25	<50	<50
	CC-9-1ES	1.5-2.0	10/10/17	110	<50	110
	CC-9-1B	2.0	10/10/17	98	<50	98
	CC-9-1WS	1.5-2.0	10/10/17	1,700	<250	1700
	CC-9-1S	1.5-2.0	10/10/17	<25	<50	<50
	CC-9-2N	1.5-2.0	10/10/17	1,500	<50	1500
	CC-9-2WS	1.5-2.0	10/10/17	490	<50	490
Excavation CC-9	CC-9-2ES-(R)	-	10/11/17	<25 84		84
CC-9	CC-9-2NB	2.0	10/10/17	1,900	<250	1900
	CC-9-2SB	2.0	10/10/17	470	<50	<50
	CC-9-2S	1.0-1.5	10/10/17	<25	<50	<50
	CC-9-3N	1.0-1.5	10/10/17	<25	<50	<50
	CC-9-3ES	1.0-1.5	10/10/17	<25	<50	<50
	CC-9-3S-(R)	-	10/11/17	<25	710	710
	CC-9-3B-(R)	3.5	10/11/17	<25	140	140
	ET-NES-1.5	1.5	10/13/17	<120	2,600	2600
East Gantry	ET-B+15-1.5	1.5	10/13/17	<25	68	68
Trench	ET-ES+45-1.5	1.5	10/13/17	<25	110	110
	ET-ES+60-1.5	1.5	10/13/17	13/17 <25		280
Spot Exc.	CC-0-N	2.0	10/11/17	<25	<50	<50
Spls.	CC-0-S	2.0	10/11/17	<25	57	57
	CT-N	1.5	10/13/17	<25	50	50

TABLE 5 - POST-REMEDY SOIL ANALTYICAL DATA

				NWTPH-DX	NWTPH-DX		
Area	Sample ID	Depth	Date	Diesel Range	Oil Range	Diesel + Oil Range	
700		(feet)	Collected	(ma m (le m)	(maga/legs)	/ma : /l : \	
				(mg/kg)	(mg/kg)	(mg/kg)	
Center Gantry	CT-B+45	0.5	10/13/17	<25	50	50	
Trench	CT-B+20	0.5	10/16/17	<25	84	84	
	CT-B+20-1.5	1.5	10/16/17	<25	<50	<50	
	WT-B+15-1.5 (R)	2.5	10/18/17	<25	<50	<50	
West Gantry	WT-B+65-1.5	1.5	10/16/17	<25	170	170	
Trench	WT-B+90-1.5	1.5	10/18/17	<25	<50	<50	
	WT-B+150-1.5	1.5	10/18/17	<25	<50	<50	
	WT-N-1.5	1.5	10/18/17	<25	<50	<50	
	EX1-FL-01	9.5	7/21/2017	<120	1700	1700	
	EX1-FL-02	10	7/21/2017	72	240	312	
	EX1-SW-02	3.5	7/21/2017	<25	<50	<50	
	EX1-SW-05	3.5	7/21/2017	<25	120	120	
	EX1-SW-6	3.5	7/21/2017	<25	<50	<50	
	EX1-SW-7	5	7/24/2017	<25	<50	<50	
	EX1-SW-8	7	7/24/2017	<25	<50	<50	
Excavation	EX1-SW-9	5	7/24/2017	<25	710	710	
Area 1	EX1-SW-10	7	7/24/2017	<25	<50	<50	
Alea I	EX1-SW-11	5	7/24/2017	<25	340	340	
	EX1-SW-12	7	7/24/2017	<50	930	930	
	EX1-FL-03	5	7/26/2017	<25	<50	<50	
	EX1-FL-04	5	7/26/2017	<25	110	110	
	EX1-FL-05	5	7/26/2017	<25	<50	<50	
	EX1-SW-13	3.5	7/26/2017	<25	65	65	
	EX1-SW-14	3.5	7/26/2017	<50	1800	1800	
	EX1-SW-15	3.5	7/26/2017	<25	<50	<50	
	EX2-FL-01	5	7/21/2017	<25	<50	<50	
	EX2-SW-01	2.5	7/21/2017	<25	<50	<50	
Excavation	EX2-SW-02	2.5	7/21/2017	<25	<50	<50	
Area 2	EX2-SW-03	2.5	7/21/2017	<25	<50	<50	
	EX2-SW-04	0.75	7/21/2017	<25	<50	<50	
	EX2-SW-06	0.75	7/21/2017	<50	37000	37000	
	EX3-FL-01	5	7/20/2017	<25	<50	<50	
	EX3-SW-01	2	7/20/2017	<25	<50	<50	
Everystics	EX3-SW-02	2	7/20/2017	<25	<50	<50	
Excavation	EX3-SW-03	2	7/20/2017	<25	<50	<50	
Area 3	EX3-SW-04	2	7/20/2017	<25	<50	<50	
	EX3-SW-05	2	7/20/2017	<25	<50	<50	
	EX3-SW-06	2	7/20/2017	53	230	283	

TABLE 5 - POST-REMEDY SOIL ANALTYICAL DATA

				NWTPH-DX	NWTPH-DX	NWTPH-DX
Aros	Sample ID	Depth	Date	Diesel Range	Oil Range	Diesel + Oil Range
Area	Sample ID	(feet)	Collected			
				(mg/kg)	(mg/kg)	(mg/kg)
	EX4-FL-02	3	8/21/2017	<25	910	910
	EX4-FL-03	3	8/21/2017	<25	<50	<50
	EX4-SW-01	1.3	8/17/2017	<25	<50	<50
	EX4-SW-02	1.5	8/17/2017	<25	<50	<50
	EX4-SW-03	1.3	8/17/2017	<25	<50	<50
Excavation	EX4-SW-04	1.3	8/17/2017	<25	<50	<50
Area 4	EX4-SW-05	2.5	8/17/2017	59	72	131
	EX4-SW-06	1.8	8/21/2017	<25	<50	<50
	EX4-SW-07	1.8	8/21/2017	<25	<50	<50
	EX4-SW-08	2.1	8/21/2017	<25	380	380
	EX4-SW-09	1.8	8/21/2017	290	210	500
[EX4-SW-10	1.8	8/21/2017	25	<50	<50
	EX5-FL-01	2	8/16/2017	<25	<50	<50
Evenyation	EX5-SW-01	1.3	8/16/2017	<25	<50	<50
Excavation Area 5	EX5-SW-02	1.3	8/16/2017	<25	99	99
Alea 5	EX5-SW-03	1.3	8/16/2017	<25	<50	<50
	EX5-SW-04	2	8/17/2017	<25	110	110
	EX6-FL-01	2	8/16/2017	<25	<50	<50
	EX6-FL-02	2	8/17/2017	<25	110	110
	EX6-FL-03	2.2	8/18/2017	<25	<50	<50
	EX6-SW-02	1.2	8/16/2017	<25	140	140
	EX6-SW-04	1.2	8/16/2017	<25	72	72
	EX6-SW-05	1.8	8/17/2017	<25	<50	<50
	EX6-SW-06	1.5	8/17/2017	<25	<50	<50
Excavation -	EX6-SW-08	1.3	8/17/2017	<25	<50	<50
Area 6	EX6-SW-09	1.3	8/17/2017	<25	<50	<50
	EX6-SW-10	1.4	8/18/2017	96	62	158
	EX6-SW11	1.2	8/18/2017	<25	<50	<50
	EX6-SW-12	1.4	8/18/2017	<25	<50	<50
	EX6-SW-13	1.4	8/18/2017	<25	<50	<50
	EX6-SW-14	1.4	8/18/2017	<25	<50	<50
	EX6-SW-15	2.3	8/22/2017	4400	4000	8400
	EX-7-FL-01	1.7	8/18/2017	<25	<50	<50
Excavation	EX-7-SW-02	1.2	8/18/2017	<25	<50	<50
Area 7	EX-7-SW-03	1.2	8/18/2017	<25	<50	<50
ļ	EX-7-SW-04	1.2	8/18/2017		<50	<50
	EX-8-FL-01	1.7	8/18/2017		<50	<50
Fuee	EX-8-SW-01	1.2	8/18/2017		<50	<50
Excavation	EX-8-SW-02	1.3	8/18/2017		<50	<50
Area 8	EX-8-SW-03	1.2	8/18/2017		<50	<50
	EX-8-SW-04	1.3	8/18/2017		79	169

ATTACHMENT A DOF MEMORANDA APRIL 4 AND JUNE 3, 2019

FORMER TRIUMPH STRUCTURES AEROSTRUCTURES EVERETT, WASHINGTON

6034 N. Star Rd., Ferndale, Washington 98248 Telephone (cell) – (206) 498-6616

MEMORANDUM

TO: Roger Nye – Department of Ecology

FROM: Matt Dalton

DATE: April 4, 2019

SUBJECT: Ecology Opinion Letter Dated March 25, 2019

Triumph Structures Aerostructures

1415 75th Street SW, Everett, Washington

VCP No. NW3183

REF. NO: SAB-006-00

CC: Mikel Hansen – Sabey Corp.

Dave Cooper - DOF

The purpose of this memorandum is to provide our opinion whether a shallow continuous zone of ground water saturation exists beneath the referenced site. The referenced Ecology opinion letter (Item 2. on page 3) states the following:

"The presence (or not) of a shallow continuous zone of ground water saturation beneath the Site should be established, and if so, whether or not it has been impacted. This evaluation would be most appropriate in Remedial Excavation area #1, where the depth of excavation was greatest (10 feet), and also where water was encountered in an exploratory boring at a depth of 12.5 feet."

It is our opinion that such a zone <u>does not exist</u> beneath the site and that sufficient data is available to make this determination. Our opinion is based on the following lines of evidence. Boring locations referenced below are shown on Figure 1.

• **ERM Observations**. Section 2.3.2 (page 6) of the ERM (2017) report that was submitted as Attachment A to DOF's "*Remedial Excavation and Cleanup*" Report (December 12, 2017) with Sabey's VCP application states the following:

"Moist soil was encountered in two of the 15 soil borings advanced at the Subject Property during the 2017 subsurface investigation. The depth to moist soils encountered during the investigation was 3.5 feet bgs at SB-12 and approximately 11 feet bgs at SB-07 (Figure 3). The moist soils encountered at SB-12 and SB-07 are likely the result of perched water, as moist soil and groundwater were not encountered in other soil borings completed at similar shallow depths at the site".

A review of the log of SB-12 noted a "wet" (not moist) zone at the top of a "dark brown, fine SANDY SILT" layer at approximately 3 to 3.5 feet. At seven feet a <u>dry</u>, "brown fine

SANDY SILT" was encountered. The boring/sampling depth was approximately 10.5 feet. SB-12 was located within Remedial Excavation area #1 which was excavated to a depth of 10 feet. DOF (Dave Cooper, Sr. Principal Geologist) observed no water flowing into the excavation during cleanup, so no shallow saturated ground water conditions existed at this location. The dry conditions are illustrated by the photographs shown on Figure 2.

At SB-7, ERM observed ground water at a depth of 5 feet. The log indicates a dry to moist, fine to medium SAND was present at a depth of 11 feet. No remedial excavation was required at this location, but the log indicates no groundwater saturation was present at 11 feet. It appears the shallower water at 5-5.5 feet was perched above several thin silt/clay layers. Water saturated conditions were not encountered in borings located north, east and south of SB-7 as discussed below.

- Review of Other Boring Logs. Attached Table 1 lists the boring depths and groundwater observations for the 35 borings drilled on the site. Eight (8) of these borings were drilled to depths greater than approximately 9 feet and 11 of these borings were drilled to depths of approximately 5 to 7 feet. The boring data are supplemented with observations made during the excavation of Areas 1, 2 and 3. Boring locations, excavation areas and the distribution of boring depths are illustrated on attached Figure 1. Attachment A presents the logs of selected borings discussed below. Pertinent observations are listed below.
 - Evidence of groundwater was only observed in boring SB-7. The log indicates that groundwater was present at a depth of approximately 5 to 5.5 feet based on the presence of "wet" soil. As noted above, the log indicates a dry to moist, fine to medium SAND was present at a depth of 11 feet. This upper zone is interpreted to be a localized perched saturated zone which is common in glacial till deposits which underlie the site. The localized nature of the zone is based on the following observations.
 - No evidence of groundwater was observed in boring SB-06 drilled to a depth of 9.3 feet and located approximately 40 feet southeast of SB-7. Soils were logged as "dry".
 - No evidence of groundwater was observed in boring P-7 drilled to a depth of 10 feet and located approximately 50 feet northeast of SB-7. Soils were logged as moist (not wet).
 - o No evidence of groundwater was observed in the deepest boring (SB-1) drilled/sampled to a depth of 12.5 feet. SB-1 is located within the central portion of the site approximately 95 feet to the southeast of boring SB-7. While soil recovery was poor between depths of approximately 4.6 and 11.1 feet, soils between approximately 11.1 and 12.5 feet were logged as "dry".
 - No evidence of groundwater was observed in boring SB-15 drilled/sampled to a depth of approximately 12 feet. SB-15 is located along the west wall of the building approximately 85 feet north of SB-7. Soils were logged as "dry" and it was noted that groundwater was not encountered.

- No evidence of groundwater was observed in boring P-4 drilled to a depth of 10 feet and located approximately 190 feet south of SB-7. Soils were logged as moist (not wet).
- No evidence of groundwater was observed in boring SB-12 drilled to a depth of 10 feet or during the excavation of Remedial Area 1 to a depth of 10 feet.
- SUMMARY The shallow (approximately 5 feet below ground surface) perched saturated zone at SB-7 is clearly localized to the immediate area of the boring based on surrounding borings SB-01, SB-06, SB-15, P4 and P7. The surrounding borings are all of sufficient depth to have encountered the SB-7 saturated zone, if present. The discontinuous nature of the SB-7 zone is further supported by observations made during the excavation to a depth of 10 feet of Remedial Excavation Area 1, where no groundwater was encountered. Based on these data and observations, there is no shallow, continuous satrurated zone beneath the site.

Attachments

Table 1 – Boring Depths and Groundwater Observations

Figure 1 – Boring Locations

Figure 2 – Selected Views Remedial Excavation Area 1 – July 2017

Attachment A – Selected Boring Logs

TABLE 1 - Boring Depths and Groundwater Observations

Boring No.	Observed By:	Boring Depth (ft)	Comment
SB-1	ERM	12.5	GW not encountered - dry at 12.3 feet
SB-2	ERM	2	GW not encountered
SB-3	ERM	5	GW not encountered
SB-4	ERM	7	GW not encountered
SB-6	ERM	9.3	GW not encountered
SB-7	ERM	12	GW at 5-5.5 feet; dry at 11 feet
SB-8	ERM	5	GW not encountered
SB-9	ERM	3	GW not encountered
SB-10	ERM	2.7	GW not encountered
SB-11	ERM	3.5	GW not encountered
SB-12	ERM	10	GW not encountered
SB-13	ERM	2	GW not encountered
SB-14	ERM	1.5	GW not encountered
SB-15	ERM	12	GW not encountered
SB-16	ERM	3.5	GW not encountered
SB-17	ERM	1.5	GW not encountered
SB-18	ERM	1.5	GW not encountered
SB-19	ERM	1.3	GW not encountered
SB-20	ERM	1.5	GW not encountered
SB-21	ERM	1.9	GW not encountered
SB-22	ERM	2	GW not encountered
SB-23	ERM	2.5	GW not encountered
SB-24	ERM	1.9	GW not encountered
SB-25	ERM	2	GW not encountered
P-1	DOF	5	GW not encountered
P-2	DOF	5	GW not encountered
P-3	DOF	5	GW not encountered
P-4	DOF	10	GW not encountered
P-5	DOF	5	GW not encountered
P-6	DOF	5	GW not encountered
P-7	DOF	10	GW not encountered
P-8	DOF	5	GW not encountered
P-9	DOF	5	GW not encountered
P-10	DOF	5	GW not encountered
P-11	DOF	10	GW not encountered
Remedial Area	s		
Area 1	ERM/DOF	10	GW not encountered
Area 2	ERM/DOF	5	GW not encountered
Area 3	ERM/DOF	5	GW not encountered
Area 4	ERM/DOF	3	GW not encountered
Area 5	ERM/DOF	2	GW not encountered
Area 6	ERM/DOF	2	GW not encountered
Area 7	ERM/DOF	1.5	GW not encountered
Area 8	ERM/DOF	1.5	GW not encountered

DOF - Boring Locations Figure 1 April 2019

Fig. 2a - Remedial Excavation Area 1 View to Northwest

Fig. 2b - Remedial Excavation Area 1 View to Southwest

Former Everett, Washington

Selected Views Remedial Excavation Area 1 July 2017

SAB-006-01 **FIGURE 2** April 2019 Dalton, Olmsted & Fuglevand, Inc.

1	6) 1		rd Ave, , WA 98	Suite 1412 PAG	SB-01 E 1 OF 1
ER				5-462-8591	
LIEN	T Trium	ph Gr	oup, Inc	PROJECT NAME Everett Phase II ESA	····
ROJE	ECT NUM	BER	04095	PROJECT LOCATION 1415 75th St. SW, Everett, WA	
DATE:	STARTE	D <u>6/2</u>	2/17	COMPLETED 6/5/17 GROUND ELEVATION HOLE SIZE 2.25"	<u> </u>
RILLI	ING CON	TRAC	TOR _	Steadfast Services GROUND WATER LEVELS:	1
				Auger/Air Knife/Angle Direct Push AT TIME OF DRILLING — Not encountered	i i i i i i i i i i i i i i i i i i i
				CHECKED BY AT END OF DRILLING	<u> </u>
OTES	<u>Drilled</u>	at ~2	22 deg f	om vertical, depths listed are actual depth bgs AFTER DRILLING	1
0 UEP I H	SAMPLE TYPE NUMBER	u.s.c.s.	GRAPHIC LOG	MATERIAL DESCRIPTION	Environmental Data
			* 4 A 0	Concrete slab	į
1				Dark brown, fine to medium grained SAND, trace coarse sand, dry, no sheen, no odor	
4		SP			PID = 2.2
-	AU		, U	Brown, fine to medium grained SAND, trace coarse sand, dry, no sheen, no odor, trace fine gravel,	PID = 2,4
ļ	SB - 01 -	SP	ه ۵	subangular to subrounded	PID = 3
, []	1.5		ø		PID = 1.9
2.5			0	Hand auger/air knife refusal at 2.3' bgs (2.5' apparent depth)	1000
4			٥ /\		: 12
		SP) Ø		PID = 1.8
1		O.	, o		
-			a. (\		-
-			2	.6	PID = 2
5.0				No recovery, sample stuck in liner, Issues with till being dense and jamming up tooling in hole and sample in liner	
1					1
-					
_					1
					1.
_				,	Annual Marie Control
.5					
_					3
					i
-				.3	
				Minimal recovery, liner stuck in tooling, banged some soil out of the top of the tooling for PID reading	-
0.0					PID ≈ 0.
ا					
_		1		1.1	PID = 0.
			1.83	No recovery except material in toe of Geoprobe tooling; all other material stuck in tooling	
-	√ ss	SP		Grey, fine to medium grained SAND, some coarse sand, trace fine gravel, subangular to subrounded, dry, no sheen, no odor, very dense	PID = 0.
_	∑ SB -	-05	T-00-00-0	2.1	· · · · · ·
	01 - 12.5	SP		Grey-brown, fine to medium grained SAND, trace coarse sand, trace fine to medium gravel, subangular to subrounded, dry, no sheen, no odor	\bigwedge PID = 0.1
	1	•		Bottom of borehole at 12.3 feet.	1110

ERM 1218 3rd Ave, Suite 1412 PAGE 1 OF 1 Seattle, WA 98101 Telephone: 425-462-8591 CLIENT Triumph Group, Inc. PROJECT NAME Everett Phase II ESA PROJECT NUMBER 0409523 PROJECT LOCATION 1415 75th St. SW, Everett, WA DATE STARTED 6/2/17 COMPLETED 6/2/17 GROUND ELEVATION HOLE SIZE 2.25" DRILLING CONTRACTOR Steadfast Services GROUND WATER LEVELS: DRILLING METHOD Hand Auger/Air Knife/Direct Push □ AT TIME OF DRILLING 5.00 ft LOGGED BY R Holt CHECKED BY AT END OF DRILLING _-__ NOTES AFTER DRILLING _-_ SAMPLE TYPE NUMBER Environmental Óata GRAPHIC LOG U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION Concrete slab Grey-brown fine to coarse grained SAND, trace silt, soft to medium dense, wet (possibly from drilling), PID = 2.2SPno sheen, no odor, trace fine to coarse gravel, subangular to subrounded SM dry to moist and very dense PID = 1.2 2.5 PID = 1.7SP-SM PID = 2.3SS PID = 2 SB 07 -SP-Grey to brown, medium grained SAND, trace coarse sand, trace fine sand, wet, loose to medium dense PID = 3.5 4.5 SM Brown, fine to medium grained SAND, very dense, moist to wet, trace coarse sand, trace fine to coarse gravel, subangular to subrounded, mottled though some silt and clay, very stiff PID = 4SP-SM SB 07 -PID = 4.56.5 7.5 No recovery, liner stuck in tooling 10.0 Brown, fine to medium grained SAND, very dense, dry to moist, trace coarse sand, trace fine to coarse gravel, subangular to subrounded, trace clay and silt, no mottling SB -SP-07 -SM PID = 1.9

Bottom of borehole at 12.0 feet.

GENERAL BH / TP / WELL - GINT STD US.GDT - 6/23/17 12:09 - 0:\GENERAL\ADMIN\GINT\PROJECTS\SEATTLE

CLIEN	T Trium	ıph Gı	roup, I	nc.		PROJECT NAME _Everett Phase II ESA	
						PROJECT LOCATION 1415 75th St. SW, Everett, W	'A
DATE	STARTE	D _5/3	31/17		COMPLETED 5/31/17	GROUND ELEVATION HOLE SIZE	2.25"
DRILL	ING CON	ITRAC	CTOR	Stead	fast Services	GROUND WATER LEVELS:	·
	ORILLING METHOD Direct Push						1
					CHECKED BY	AT END OF DRILLING	
NOTE	S			,	· · · · · · · · · · · · · · · · · · ·	AFTER DRILLING	t wijit
O DEPTH	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	Environmental
			4 4 4 A	0.5	Concrete slab		
				0.5	Brown fine to medium grained SAND,	, trace silt and fine angular gravel, hydrocarbon odor	
							PID:
- 4							4
_		SP					
2.5							PID =
				3.0		1	PID =
• •	AU SB -			33.0	Dark brown fine SANDY SILT, wet, h	ydrocarbon odor, trace fine angular gravel (likely sluff)	PID =
	12 - 3						PID =
		ML					
							:
5.0							
					Refusal with hand auger at 5' bgs Begin using Geoprobe		PID =
					Degit using Geoptobe		
		ЙL					
				7.0			
7 . 5					Brown, fine SANDY SILT, dry, very st	tiff, no odor, with fine subrounded gravel	PID =
		ML					
						·	
	4						
10.0	SS SB -			10,0			PID:
	12- 10				E	Bottom of borehole at 10.0 feet.	
	1	•					
					•		

Sheet PROJECT: Triumph Structures Everett COORDINATES: 227' south of north wall, 24' east of west wall														
	LOCATION: Everett, WA SURFACE ELEVATION													
DRILLIN							idoor - Production area							
						ATE: 7/24/17	C. 40.	n!						
						TAL DEPTH OF BORING	G: 10.0°							
DRILLIN						GGED BY: D. Cooper								
		(F)H	ου: ₂	z" dia	Cooper REG. NO.: 1600									
NOTES:	.	C A A A	DLES											
DEPTH (feet)	Lab Sample	Sample Recovery	Blows/Foot	PID (ppm)	VISUAL SOIL DESCRIPTION <u>Soil Group Name (USCS):</u> color, moisture, density/consist discriptors	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS								
_	202223	\			7-inch concrete slab		_							
1 -		\		0.0	POORLY GRADED SAND (SP):			_						
		1			dark gray (7.5YR-4/1), moist, 20% gravel	l, 80% sand				Thin Plastic Vapor				
		$ \cdot $			the state of the s			1 1		Barrier				
2 _							-			İ				
-		11		0.0										
3 -					POORLY GRADED SAND WITH SILT AND GRA	A\/E1 (SD_SRA\-	_		-					
-		- 11					-							
4 —		- \l			brown (7.5YR-5/3), moist, 20% gravel, 50%	sand, 30% slit								
-		V			•		-	1 1		ĺ				
5				0.0			_							
-		\												
6		\					_							
" _		1												
		1		0.0			~							
/ -	3042388	$ \cdot $												
-		11				-								
8 -		. \ I						1 1						
-							-		ŀ					
9 —		\					-							
-	200 M	l V					_							
10 -				0,0										
-					Bottom of Boring 10.0 feet		_			-				
11 -					Backfilled with bentonite chip.			11	-					
_					Concrete patched slab				1					
l., _] :													
12 -														
l							-							
13 —														
_							-							
14 -														
							-							
15 —									1					
-							_							
16 -	.]													
_														
17 -														
17 —														
I	1			İ			-							
18 -	1													
-	1													
19 -	1								-	,				
-	1													
20 -	1						_							
-				1			_							
L	<u></u>		<u> </u>						İ					
							•							

	FUGLEVAND Sheet 1 o											
					es Everett CC	ORD!NATES: 8' south	n of n	of north wall, 75' east of west wall				
LOCATI						RFACE ELEVATION: In	door	- Produ	ction ar	ea		
DRILLIN						TE: 7/24/17						
						TAL DEPTH OF BORIN	G: 10).0'				
DRILLIN						GGED BY: D. Cooper						
		1ETH	OD: 2	!" dia	. X 5' Macro w/acrylic liner RE	SPONSIBLE PROF.: D.	Соор	Cooper REG. NO.: 1600				
NOTES:												
	·····	SAM	PLES		VISUAL SOIL DESCRIPTION		WELL CONSTRUCTION DETAILS					
		ery						ILLING REMARKS				
DEPTH (feet)		Sample Recovery	اق		Soil Group Name (USCS): color, moisture, density/consi							
[편 #	Lab Sample	- Re	Blows/Foot	PID (ppm)	discriptors							
	Sar	ed	vs/	ġ.								
	ap	Sarr	횙	윤			ŀ					
		1			5-inch concrete slab		ГТ					
		\		0.2								
1 -	272.22.6	1 [
		1										
2		1	: l		·							
] , _				0.0								
3 —		\	}		POORLY GRADED SAND WITH SILT AND GR	AVEL (SP-SM):						
<u>, </u>					brown (7.5YR-5/3), moist, 20% gravel, 50%							
4 _		\										
F		V		0.1								
5												
ا		\										
6		1.							i l			
l , _		$ \setminus $		0.0								
′ _							_					
8 —		\										
° _		$\cdot \mid \cdot \mid$					l _l					
9 —		l \l		i			_					
10 —				0.0								
-					Bottom of Boring 10.0 feet							
11 -					Backfilled with bentonite chip.		_					
					Concrete patched slab		_					
12 -							_					
							l -l					
13							_					
-												
14 —												
-							_					
15												
-												
16							-					
-					,							
17 -	ŀ						-					
-	1											
18 -	-			}								
-							-					
19 -	-						-					
-	1						-					
20 —	1		1	Ì			-					
-	-						-	1				
L	<u> </u>						\perp		<u>ا</u>			

6034 N. Star Rd., Ferndale, Washington 98248 Telephone (cell) – (206) 498-6616

MEMORANDUM

TO: Roger Nye – Department of Ecology

FROM: Matt Dalton

DATE: June 3, 2019

SUBJECT: Results of Additional Subsurface Drilling

Triumph Structures Aerostructures

1415 75th Street SW, Everett, Washington

VCP No. NW3183

REF. NO: SAB-006-00

CC: Mikel Hansen – Sabey Corp.

Dave Cooper - DOF

This memorandum supplements our opinion memorandum dated April 3, 2019 concerning the presence of a "shallow continuous zone of groundwater saturation" beneath the Triumph site referenced in Ecology's opinion letter dated March 25, 2019. The April DOF memorandum states "there is no shallow, continuous saturated zone beneath the site" based on the available data. Our earlier opinion was based on site geology (surface deposits of glacial till) and explorations/remedial excavations completed to depths of up to 10 feet. Based on our discussions with Ecology concerning shallow groundwater, two additional borings were drilled to provide further support for our opinion.

Locations of Push-Probe Borings. Two push-probes were drilled at the locations shown on attached Figure 1. The locations were chosen because they are in the assumed down-gradient groundwater flow direction from the deepest remedial excavation area (Excavation Area 1). Note the property is situated at the top of a steep slope at an elevation of approximately 586 feet. The land surface drops to an elevation less than 450 feet. Based on topography, groundwater most likely flows in a northeasterly direction beneath the site. The probes are located east (GP-1) and northeast (GP-2) of the referenced excavation area.

Drilling Observations. The push-probes were logged by Dave Cooper, Principal Geologist and a Washington State licensed geologist with DOF. During drilling, observations were made for: 1) geology, 2) evidence of oily contamination (sheens, odors, and PIDⁱ measurements), and 3) water saturated conditions. The logs of the push-probes are presented as attached Figures 2 and 3. The push-probes were advanced to refusal in dense glacial till which occurred at depths of 19 and 24 feet below existing grade. Pertinent observations are summarized below.

ⁱ PID – Photoionization Detector.

- **Geology** The probes encountered silty Sand with gravel consisting of Till fill, weathered Till and unweathered Till as follows:
 - o 0-7.5 feet Till fill
 - o 7.5 to 12/14 feet Weathered Till
 - o 12/14 to 19/24 feet (dense) unweathered Till
- Evidence of Contamination No evidence of contamination of any kind was detected based on visual logging, odors, and PID measurements.
- Evidence of Free Water No free water or water saturated interbeds were observed in the Till deposits. A thin (4 to 6 inches thick) wet zone was encountered at the contact between the Till fill and weathered Till. No free water was observed in the sample, such as water drippage during sample recovery. The zone was wetter in relation to the moist soils logged above and below this thin zone.

Based on the observations made during drilling and soil sample recovery, a continuous water table does not exist beneath the site to a depth of at least 24 feet. It is likely the regional water table lies below the Till at a depth greater than 50 feet based on area topography and geology. Furthermore, there is no evidence that the oily material has migrated downward below the depth of the Excavation Area 1.

Attachments

Figure 1 – Push-Probe Locations Figure 2 – Log of GP-1

Figure 3 – Log of GP-2

Source: Google Earth

E=Approximate Ground Surface Elevation (feet) (From Google Earth)

Ref: Air Photo May 2017 Closeup A.cdr

1415 75th St. SW, Everett, WA

Push-Probe Locations

SAB-006-00

June 2019

Dalton, Olmsted & Fuglevand, Inc.

FIGURE 1

Sheet 1 of 1

DPOJEC	T: SAB-006-00				la la	OORDINATES: N2/2116	Q E1202	2280 5 /N	Sheet 1 of 1				
	ON: ETP II				1	COORDINATES: N343116.8 E1292380.5 (NAD83) SURFACE ELEVATION: Approx. 586 (NAVD88)							
	IG CONTRACTOR:	Casc	ade D	rilling		DATE: 5/15/2019							
DRILLIN	IG EQUIPMENT: 0	Geopr	robe 7	822D		TOTAL DEPTH OF BORING: 24 ft.							
DRILLIN	IG METHOD: Direc	ct Pus	sh		LC	LOGGED BY: D. Cooper							
SAMPLI	NG METHOD: 1.5	" x 5'	' macr	o cor	e with acrylic liner RE	ESPONSIBLE PROF.: D. C	ooper		REG. NO.: 1600				
NOTES:													
DEPTH (feet)	Vab Sample	Sample Recovery	PID (ppm)		VISUAL SOIL DESCRIPTION <u>Soil Group Name (USCS):</u> color, moisture, density/cons descriptors		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS						
-		. /			0.5' Concrete Slab		-		concrete patch				
1 — 2 — 3 — 4 —	/	0.2			SILTY SAND WITH GRAVEL (SN moist, mottled brown, 25% silt, 60% sand Till Fill		 		Bentonite Chip				
5 — 6 —			0.1	0.1	0.1	0.1	0.1		becomes wet, but no free wat	ter	 _ _		
7 —		$/ \setminus$								-	•	wet, dark brown, trace wood	d
8 — 9 — 10 — 11 — 12 — 13 — 14 —			0.1		SILTY SAND WITH GRAVEL (SN moist, brown, 25% silt, 60% sand, 15 Weathered Glacial Till No water-bearing interbeds	5% gravel	 						
15 — 16 — 17 — 18 — 19 — 20 — 21 — 22 — 23 — 24 —			0.1		-Very Hard Drilling SILTY SAND WITH GRAVEL (SN moist, brown to gray, 25% silt, 60% sand uniform Unweathered Glacial Till No water-bearing interbeds Refusal at 24.0 feet Bottom of Boring 24 feet	d, 15% gravel	- - - - - - - - - - - - - - - - - - -						
-					Bottom of Boring 24 feet Backfilled with bentonite chips								
25 —					on camples drill action and internolation. Variations between								

Note: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

Sheet 1 of 1

DDOJEC	T CAR 000 00					COORDINATES NO 424 AS) F F42	102200 F /I	Sheet 1 of 1	
	T: SAB-006-00 ON: ETP II					COORDINATES: N343143.5 E1292380.5 (NAD83) SURFACE ELEVATION: Approx. 586 (NAVD88)				
	IG CONTRACTOR	: Cas	cade D	rilling		DATE: 5/15/2019				
	IG EQUIPMENT:				i i	TOTAL DEPTH OF BORING	G: 19 f	t.		
DRILLIN	IG METHOD: Dire	ct Pu	sh			LOGGED BY: D. Cooper				
		5" x 5	5' macr	o cor	e with acrylic liner	RESPONSIBLE PROF.: D. C	Cooper		REG. NO.: 1600	
NOTES:										
DEPTH (feet)	Lab Sample	Sample Recovery	PID (ppm)		VISUAL SOIL DESCRIPTION Soil Group Name (USCS): color, moisture, density/co descriptors					
-		\ /			0.5' Concrete Slab		-		concrete patch	
1 — 2 — 3 — 4 —			0.1		SILTY SAND WITH GRAVEL (S moist, mottled brown, 25% silt, 60% sai Till Fill		- - - - -		Bentonite Chip	
5 — 6 — -			0.2	-	dark brown, trace organic	cs	 			
7 —		$ \wedge $]-	becomes wet, but no free w	ater	_			
8 — - 9 —		/ \			SILTY SAND WITH GRAVEL (S moist, brown, 25% silt, 60% sand, 1					
10 —		\ /			Weathered Glacial Till No water-bearing interbed	ds	_			
11 —		$\setminus /$					 			
12 —		$ $	0.1		-Very Hard Drilling					
13 —		$/\setminus$			SILTY SAND WITH GRAVEL (SM)	_			
14 —					moist, brown to gray, 25% silt, 60% sar uniform	nd, 15% gravel	_			
15 —		\setminus /			Unweathered Glacial Till No water-bearing interbe		_			
16 —		$ \setminus $			The fraction bearing interper		_			
17 —		$ \ \ \ $	0.1				_			
18 —		$/\setminus$					_			
19 —		/ \			Refusal at 19.0 feet		_			
20 —					Bottom of Boring 19 feet Backfilled with bentonite chips		_			
21 —							_			
23 —							_			
- 24 —							-			
25 -										
Note: The			<u> </u>		on samples, drill action, and interpolation. Variations betwe					

Note: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

ATTACHMENT B LABORATORY DATA SHEETS EPH ANALYSES – AUGUST 2019

FORMER TRIUMPH STRUCTURES AEROSTRUCTURES EVERETT, WASHINGTON

10 September 2019

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue, WA 98007

RE: Sabey ETP II

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

19H0389

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amanda Volgardsen, Project Manager

PJLA Testing

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request Analytical Resources, Incorporated ARI Assigned Number: Turn-around Requested: Page: of Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 ARI Client Company Phone: Ice Present? Date: Tukwila, WA 98168 206-695-6200 206-695-6201 (fax) Client Contact: No. of Cooler www.arilabs.com MAR COOPER Coolers: Temps: Client Project Name: Analysis Requested Notes/Comments My -Samplers: Client Project #: COOPE Sample ID Date Time Matrix No. Containers Z JOIL 000 1100 Relinquished by: Comments/Special Instructions Received by Relinquished by: Received by:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

0920

(Signature)

Company:

Date & Time:

Printed Name:

(Signature)

Printed Name

(Signature)

Company:

Date & Time:

Printed Name

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

(Signature)

Company:

Date & Time:

Printed Name:

Analytical Report

Dalton, Olmsted & Fuglevand, Inc Project: Sabey ETP II

1420 - 156th Ave., NE STE C1 Project Number: [none]

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
AREA6_SW-15(R)	19Н0389-01	Solid	23-Aug-2019 10:00	26-Aug-2019 09:20
AREA2_SW-06(R)	19H0389-02	Solid	23-Aug-2019 11:00	26-Aug-2019 09:20

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue WA, 98007 Project Number: [none]
Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

Case Narrative

Sample receipt

Samples as listed on the preceding page were received August 26, 2019 under ARI work order 19H0389. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Polynuclear Aromatic Hydrocarbons (PAH) - EPA Method SW8270D-SIM

The samples were extracted and analyzed within the recommended holding times.

The samples were reanalyzed due to saturated chromatography as well internal standards within area limits, but with high bias. Both sets of data reported.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

Extractable Organic Hydrocarbons - WA-Ecology

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements, with the exception of SHI0106-CCV4/CCV7 which are outside of control limits high for the Aliphatic range C21-C34 and SHI0106-CCV5/CCV6 which are outside of control limits high for the Aromatic Range C21-C34. This may be due to possible carry over caused by matrix interference. The samples were reanalyzed for verification, with the CCV's within limits. Both analyses were reported to attain reporting limits and passing QC. No further corrective action was taken.

The Aliphatic surrogate 1-Chloro-octadecane was not reported due to chromatographic interference on the initial analyses. The surrogate was flagged with "NRS" qualifiers. The samples were reanalyzed with surrogate recoveries within control limits. All other surrogate percent recoveries were within control limits. No further corrective action was taken.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cooler Receipt Form

~					
ARI Client:		Project Name: Sabe	4 ETP		
COC No(s):	(NA)	Delivered by: Fed-Ex UPS Cou	rier Hand Delivere	d Other	
Assigned ARI Job No: 19 F	10389	Tracking No:			
Preliminary Examination Phase:	10337	Tracking No.			(NA)
Were intact, properly signed and	dated custody seals attached to	the outside of the cooler?	YE	:s (NO
Were custody papers included wi			(VE	5	NO
Were custody papers properly fille					
Temperature of Cooler(s) (°C) (re			(C	ح ر	NO
Time 0920		0.9			
If cooler temperature is out of con	npliance fill out form 00070F	1 	Temp Gun ID#:	D00520	16
Cooler Accepted by:		Date: 8/26/19 Time	0970		
	Complete custody forms a	and attach all shipping documents			
Log-In Phase:					
Was a tananant na blad tal tal	1: 1 0			F3F92_720	A
What kind of packing material		rap Wet Ice Gel Packs Baggies Foam	Di- i D Oil	YES	NO
Was sufficient ice used (if appro			AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE	r:	
How were bottles sealed in plas	1 (5)		NA Individually		NO
11 CEST AND THE CONTRACT OF TH			mulvidually	Grouped	NO NO
Week Kill					NO
		ber of containers received?		YES	NO
		isor or containers received;		YES	NO
				YES	NO
		reservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bu			(NA	YES	NO
				YES	NO
52			NA	C.S.	110
Were the sample(s) split by ARI?	YES Date/Time:	Equipment:		Split by:	
7,	2 526	1/2 1121		-	
Samples Logged by:		6/19 Time: 1124 La	ibels checked by: _	0 45	n
	** Notify Project Manager	r of discrepancies or concerns **			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
Additional Notes, Discrepanci	es. & Resolutions:				
399					
Bv: D:	ate:				

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Dalton, Olmsted & Fuglevand, Inc
Project: Sabey ETP II

1420 - 156th Ave., NE STE C1
Project Number: [none]

Bellevue WA, 98007
Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA6_SW-15(R) 19H0389-01 (Solid)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 08/23/2019 10:00

 Instrument: NT8
 Analyzed: 05-Sep-2019 18:45

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHI0018 Sample Size: 10.01 g (wet) Dry Weight: 9.47 g
Prepared: 03-Sep-2019 Final Volume: 0.5 mL % Solids: 94.64

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0025 Initial Volume: 0.5 mL Cleaned: 05-Sep-2019 Final Volume: 0.5 mL

Sample Cleanup: Cleanup Method: GPC

Cleanup Batch: CHI0024 Initial Volume: 0.5 mL Cleaned: 04-Sep-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	3	4.04	15.8	ND	ug/kg	U
2-Methylnaphthalene	91-57-6	3	3.50	15.8	8.95	ug/kg	J, D
1-Methylnaphthalene	90-12-0	3	1.27	15.8	11.4	ug/kg	J, D
Acenaphthylene	208-96-8	3	3.43	15.8	ND	ug/kg	U
Acenaphthene	83-32-9	3	1.81	15.8	ND	ug/kg	U
Dibenzofuran	132-64-9	3	4.37	15.8	ND	ug/kg	U
Fluorene	86-73-7	3	2.00	15.8	ND	ug/kg	U
Phenanthrene	85-01-8	3	2.27	15.8	ND	ug/kg	U
Anthracene	120-12-7	3	2.76	15.8	ND	ug/kg	U
Fluoranthene	206-44-0	3	1.49	15.8	ND	ug/kg	U
Pyrene	129-00-0	3	1.98	15.8	ND	ug/kg	U
Benzo(a)anthracene	56-55-3	3	2.61	15.8	ND	ug/kg	U
Chrysene	218-01-9	3	3.33	15.8	ND	ug/kg	U
Benzo(b)fluoranthene	205-99-2	3	4.34	15.8	ND	ug/kg	U
Benzo(k)fluoranthene	207-08-9	3	2.41	15.8	ND	ug/kg	U
Benzo(j)fluoranthene	205-82-3	3	2.15	15.8	ND	ug/kg	U
Benzofluoranthenes, Total		3	9.53	31.7	ND	ug/kg	U
Benzo(a)pyrene	50-32-8	3	1.94	15.8	ND	ug/kg	U
Indeno(1,2,3-cd)pyrene	193-39-5	3	3.33	15.8	ND	ug/kg	U
Dibenzo(a,h)anthracene	53-70-3	3	2.82	15.8	ND	ug/kg	U
Benzo(g,h,i)perylene	191-24-2	3	3.37	15.8	28.8	ug/kg	D
Surrogate: 2-Methylnaphthalene-d10			3	32-120 %	83.9	%	
Surrogate: Dibenzo[a,h]anthracene-d14			2	21-133 %	101	%	
Surrogate: Fluoranthene-d10			Ĵ	36-134 %	65.0	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue WA, 98007

Project Number: [none]
Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA6_SW-15(R) 19H0389-01 (Solid)

Washington Department of Ecology Methods

 Method: WA EPH
 Sampled: 08/23/2019 10:00

 Instrument: FID8
 Analyzed: 07-Sep-2019 14:19

Sample Preparation: Preparation Method: EPA 3546 (Microwave)

Preparation Batch: BHH0812 Sample Size: 10.03 g (wet) Dry Weight: 9.49 g
Prepared: 30-Aug-2019 Final Volume: 1 mL % Solids: 94.64

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0006 Initial Volume: 1 mL Cleaned: 03-Sep-2019 Final Volume: 1 mL

		Reporting			
Analyte	CAS Number Dilution	Limit	Result	Units	Notes
C8-C10 Aliphatics	1	2110	ND	ug/kg	U
C10-C12 Aliphatics	1	2110	ND	ug/kg	U
C12-C16 Aliphatics	1	2110	189000	ug/kg	
C16-C21 Aliphatics	1	2110	1980000	ug/kg	
C21-C34 Aliphatics	1	2110	10400000	ug/kg	
Surrogate: 1-Chloro-octadecane		30-160 %		NRS	NRS

			Reporting			
Analyte	CAS Number D	ilution	Limit	Result	Units	Notes
C8-C10 Aromatics		1	2110	ND	ug/kg	U
C10-C12 Aromatics		1	2110	ND	ug/kg	U
C12-C16 Aromatics		1	2110	4690	ug/kg	
C16-C21 Aromatics		1	2110	128000	ug/kg	
C21-C34 Aromatics		1	2110	754000	ug/kg	
Surrogate: o-Terphenyl			30-160 %	52.2	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc

1420 - 156th Ave., NE STE C1

Bellevue WA, 98007

Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA6_SW-15(R) 19H0389-01RE1 (Solid)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 08/23/2019 10:00

 Instrument: NT8
 Analyzed: 05-Sep-2019 17:41

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHI0018 Sample Size: 10.01 g (wet) Dry Weight: 9.47 g
Prepared: 03-Sep-2019 Final Volume: 0.5 mL % Solids: 94.64

Sample Cleanup: Cleanup Method: Silica Gel
Cleanup Batch: CHI0025 Initial Volume: 0.5 mL

Cleaned: 05-Sep-2019 Final Volume: 0.5 mL

Sample Cleanup: Cleanup Method: GPC
Cleanup Batch: CHI0024 Initial Volume: 0.5 mL
Cleaned: 04-Sep-2019 Final Volume: 0.5 mL

[Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	10	13.5	52.8	ND	ug/kg	U
2-Methylnaphthalene	91-57-6	10	11.7	52.8	ND	ug/kg	U
1-Methylnaphthalene	90-12-0	10	4.23	52.8	9.83	ug/kg	J, D
Acenaphthylene	208-96-8	10	11.4	52.8	ND	ug/kg	U
Acenaphthene	83-32-9	10	6.03	52.8	ND	ug/kg	U
Dibenzofuran	132-64-9	10	14.6	52.8	ND	ug/kg	U
Fluorene	86-73-7	10	6.66	52.8	ND	ug/kg	U
Phenanthrene	85-01-8	10	7.58	52.8	ND	ug/kg	U
Anthracene	120-12-7	10	9.19	52.8	ND	ug/kg	U
Fluoranthene	206-44-0	10	4.96	52.8	ND	ug/kg	U
Pyrene	129-00-0	10	6.61	52.8	ND	ug/kg	U
Benzo(a)anthracene	56-55-3	10	8.70	52.8	ND	ug/kg	U
Chrysene	218-01-9	10	11.1	52.8	ND	ug/kg	U
Benzo(b)fluoranthene	205-99-2	10	14.5	52.8	ND	ug/kg	U
Benzo(k)fluoranthene	207-08-9	10	8.02	52.8	ND	ug/kg	U
Benzo(j)fluoranthene	205-82-3	10	7.18	52.8	ND	ug/kg	U
Benzofluoranthenes, Total		10	31.8	106	ND	ug/kg	U
Benzo(a)pyrene	50-32-8	10	6.48	52.8	ND	ug/kg	U
Indeno(1,2,3-cd)pyrene	193-39-5	10	11.1	52.8	ND	ug/kg	U
Dibenzo(a,h)anthracene	53-70-3	10	9.41	52.8	ND	ug/kg	U
Benzo(g,h,i)perylene	191-24-2	10	11.2	52.8	31.7	ug/kg	J, D
Surrogate: 2-Methylnaphthalene-d10				32-120 %	87.9	%	
Surrogate: Dibenzo[a,h]anthracene-d14				21-133 %	76.5	%	
Surrogate: Fluoranthene-d10				36-134 %	79.8	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc
1420 - 156th Ave., NE STE C1
Project Number: [none]
Bellevue WA, 98007
Project Manager: Dave Cooper

Project Number:[none]Reported:Project Manager:Dave Cooper10-Sep-2019 15:54

AREA6_SW-15(R) 19H0389-01RE1 (Solid)

Washington Department of Ecology Methods

 Method: WA EPH
 Sampled: 08/23/2019 10:00

 Instrument: FID8
 Analyzed: 09-Sep-2019 15:49

Sample Preparation: Preparation Method: EPA 3546 (Microwave)

Preparation Batch: BHH0812 Sample Size: 10.03 g (wet) Dry Weight: 9.49 g
Prepared: 30-Aug-2019 Final Volume: 1 mL % Solids: 94.64

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0006 Initial Volume: 1 mL Cleaned: 03-Sep-2019 Final Volume: 1 mL

		Reporting			
Analyte	CAS Number Dilution	n Limit	Result	Units	Notes
C8-C10 Aliphatics	5	10500	ND	ug/kg	U
C10-C12 Aliphatics	5	10500	ND	ug/kg	U
C12-C16 Aliphatics	5	10500	196000	ug/kg	D
C16-C21 Aliphatics	5	10500	2060000	ug/kg	D
C21-C34 Aliphatics	5	10500	11900000	ug/kg	D
Surrogate: 1-Chloro-octadecane		30-160 %	49.0	%	

		Reporting			
Analyte	CAS Number Dilution	Limit	Result	Units	Notes
C8-C10 Aromatics	5	10500	ND	ug/kg	U
C10-C12 Aromatics	5	10500	ND	ug/kg	U
C12-C16 Aromatics	5	10500	ND	ug/kg	U
C16-C21 Aromatics	5	10500	134000	ug/kg	D
C21-C34 Aromatics	5	10500	753000	ug/kg	D
Surrogate: o-Terphenyl		30-160 %	59.0	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc

1420 - 156th Ave., NE STE C1

Bellevue WA, 98007

Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA2_SW-06(R) 19H0389-02 (Solid)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 08/23/2019 11:00

 Instrument: NT8
 Analyzed: 05-Sep-2019 19:11

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHI0018 Sample Size: 10.01 g (wet) Dry Weight: 9.63 g
Prepared: 03-Sep-2019 Final Volume: 0.5 mL % Solids: 96.22

Sample Cleanup: Cleanup Method: Silica Gel
Cleanup Batch: CHI0025 Initial Volume: 0.5 mL

Cleaned: 05-Sep-2019 Final Volume: 0.5 mL
Sample Cleanup: Cleanup Method: GPC

Cleanup Batch: CHI0024 Initial Volume: 0.5 mL
Cleaned: 04-Sep-2019 Final Volume: 0.5 mL

Cleaned: 04 Sep 2017	I mai voidine.	7.5 IIID					
				Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	3	3.97	15.6	ND	ug/kg	U
2-Methylnaphthalene	91-57-6	3	3.44	15.6	ND	ug/kg	U
1-Methylnaphthalene	90-12-0	3	1.25	15.6	4.21	ug/kg	J, D
Acenaphthylene	208-96-8	3	3.38	15.6	ND	ug/kg	U
Acenaphthene	83-32-9	3	1.78	15.6	ND	ug/kg	U
Dibenzofuran	132-64-9	3	4.30	15.6	ND	ug/kg	U
Fluorene	86-73-7	3	1.97	15.6	ND	ug/kg	U
Phenanthrene	85-01-8	3	2.24	15.6	ND	ug/kg	U
Anthracene	120-12-7	3	2.71	15.6	ND	ug/kg	U
Fluoranthene	206-44-0	3	1.46	15.6	ND	ug/kg	U
Pyrene	129-00-0	3	1.95	15.6	ND	ug/kg	U
Benzo(a)anthracene	56-55-3	3	2.57	15.6	ND	ug/kg	U
Chrysene	218-01-9	3	3.28	15.6	ND	ug/kg	U
Benzo(b)fluoranthene	205-99-2	3	4.27	15.6	ND	ug/kg	U
Benzo(k)fluoranthene	207-08-9	3	2.37	15.6	ND	ug/kg	U
Benzo(j)fluoranthene	205-82-3	3	2.12	15.6	ND	ug/kg	U
Benzofluoranthenes, Total		3	9.37	31.1	ND	ug/kg	U
Benzo(a)pyrene	50-32-8	3	1.91	15.6	ND	ug/kg	U
Indeno(1,2,3-cd)pyrene	193-39-5	3	3.27	15.6	ND	ug/kg	U
Dibenzo(a,h)anthracene	53-70-3	3	2.78	15.6	ND	ug/kg	U
Benzo(g,h,i)perylene	191-24-2	3	3.32	15.6	ND	ug/kg	U
Surrogate: 2-Methylnaphthalene-d10				32-120 %	72.7	%	
Surrogate: Dibenzo[a,h]anthracene-d14			2	21-133 %	81.9	%	
Surrogate: Fluoranthene-d10				36-134 %	54.6	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue WA, 98007 Project Number: [none]
Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA2_SW-06(R) 19H0389-02 (Solid)

Washington Department of Ecology Methods

 Method: WA EPH
 Sampled: 08/23/2019 11:00

 Instrument: FID8
 Analyzed: 07-Sep-2019 15:01

Sample Preparation: Preparation Method: EPA 3546 (Microwave)

Preparation Batch: BHH0812 Sample Size: 10.03 g (wet) Dry Weight: 9.65 g
Prepared: 30-Aug-2019 Final Volume: 1 mL % Solids: 96.22

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0006 Initial Volume: 1 mL Cleaned: 03-Sep-2019 Final Volume: 1 mL

		Reporting					
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes	
C8-C10 Aliphatics		1	2070	ND	ug/kg	U	
C10-C12 Aliphatics		1	2070	ND	ug/kg	U	
C12-C16 Aliphatics		1	2070	118000	ug/kg		
C16-C21 Aliphatics		1	2070	1450000	ug/kg		
C21-C34 Aliphatics		1	2070	6290000	ug/kg		
Surrogate: 1-Chloro-octadecane			30-160 %		NRS	NRS	

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
C8-C10 Aromatics		1	2070	ND	ug/kg	U
C10-C12 Aromatics		1	2070	ND	ug/kg	U
C12-C16 Aromatics		1	2070	3920	ug/kg	
C16-C21 Aromatics		1	2070	114000	ug/kg	
C21-C34 Aromatics		1	2070	497000	ug/kg	
Surrogate: o-Terphenyl			30-160 %	52.1	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc

1420 - 156th Ave., NE STE C1

Bellevue WA, 98007

Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA2_SW-06(R) 19H0389-02RE1 (Solid)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 08/23/2019 11:00

 Instrument: NT8
 Analyzed: 05-Sep-2019 18:07

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BHI0018 Sample Size: 10.01 g (wet) Dry Weight: 9.63 g
Prepared: 03-Sep-2019 Final Volume: 0.5 mL % Solids: 96.22

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0025 Initial Volume: 0.5 mL Cleaned: 05-Sep-2019 Final Volume: 0.5 mL

Sample Cleanup: Cleanup Method: GPC

Cleanup Batch: CHI0024 Initial Volume: 0.5 mL Cleaned: 04-Sep-2019 Final Volume: 0.5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Naphthalene	91-20-3	10	13.2	51.9	ND	ug/kg	U
2-Methylnaphthalene	91-57-6	10	11.5	51.9	ND	ug/kg	U
1-Methylnaphthalene	90-12-0	10	4.16	51.9	ND	ug/kg	U
Acenaphthylene	208-96-8	10	11.3	51.9	ND	ug/kg	U
Acenaphthene	83-32-9	10	5.93	51.9	ND	ug/kg	U
Dibenzofuran	132-64-9	10	14.3	51.9	ND	ug/kg	U
Fluorene	86-73-7	10	6.55	51.9	ND	ug/kg	U
Phenanthrene	85-01-8	10	7.45	51.9	ND	ug/kg	U
Anthracene	120-12-7	10	9.04	51.9	ND	ug/kg	U
Fluoranthene	206-44-0	10	4.88	51.9	ND	ug/kg	U
Pyrene	129-00-0	10	6.50	51.9	ND	ug/kg	U
Benzo(a)anthracene	56-55-3	10	8.56	51.9	ND	ug/kg	U
Chrysene	218-01-9	10	10.9	51.9	ND	ug/kg	U
Benzo(b)fluoranthene	205-99-2	10	14.2	51.9	ND	ug/kg	U
Benzo(k)fluoranthene	207-08-9	10	7.89	51.9	ND	ug/kg	U
Benzo(j) fluoran thene	205-82-3	10	7.06	51.9	ND	ug/kg	U
Benzofluoranthenes, Total		10	31.2	104	ND	ug/kg	U
Benzo(a)pyrene	50-32-8	10	6.37	51.9	ND	ug/kg	U
Indeno(1,2,3-cd)pyrene	193-39-5	10	10.9	51.9	ND	ug/kg	U
Dibenzo(a,h)anthracene	53-70-3	10	9.25	51.9	ND	ug/kg	U
Benzo(g,h,i)perylene	191-24-2	10	11.1	51.9	ND	ug/kg	U
Surrogate: 2-Methylnaphthalene-d10			3	2-120 %	73.3	%	
Surrogate: Dibenzo[a,h]anthracene-d14			2	1-133 %	80.4	%	
Surrogate: Fluoranthene-d10			3	6-134 %	101	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Sabey ETP II 1420 - 156th Ave., NE STE C1 Bellevue WA, 98007

Project Number: [none] Project Manager: Dave Cooper

Reported: 10-Sep-2019 15:54

AREA2_SW-06(R) 19H0389-02RE1 (Solid)

Washington Department of Ecology Methods

Sampled: 08/23/2019 11:00 Method: WA EPH Instrument: FID8 Analyzed: 09-Sep-2019 16:33

Preparation Method: EPA 3546 (Microwave) Sample Preparation:

Preparation Batch: BHH0812 Sample Size: 10.03 g (wet) Dry Weight:9.65 g Prepared: 30-Aug-2019 Final Volume: 1 mL % Solids: 96.22

Sample Cleanup: Cleanup Method: Silica Gel

Cleanup Batch: CHI0006 Initial Volume: 1 mL Cleaned: 03-Sep-2019 Final Volume: 1 mL

		Reporting			
Analyte	CAS Number Dilution	Limit	Result	Units	Notes
C8-C10 Aliphatics	5	10400	ND	ug/kg	U
C10-C12 Aliphatics	5	10400	ND	ug/kg	U
C12-C16 Aliphatics	5	10400	124000	ug/kg	D
C16-C21 Aliphatics	5	10400	1510000	ug/kg	D
C21-C34 Aliphatics	5	10400	6530000	ug/kg	D
Surrogate: 1-Chloro-octadecane		30-160 %	34.3	%	

		Reporting			
Analyte	CAS Number Dilut	ion Limit	Result	Units	Notes
C8-C10 Aromatics	5	10400	ND	ug/kg	U
C10-C12 Aromatics	5	10400	ND	ug/kg	U
C12-C16 Aromatics	5	10400	ND	ug/kg	U
C16-C21 Aromatics	5	10400	110000	ug/kg	D
C21-C34 Aromatics	5	10400	472000	ug/kg	D
Surrogate: o-Terphenyl		30-160 %	54.3	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHI0018 - EPA 3546 (Microwave)

Instrument: NT8

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHI0018-BLK1)				Prepa	red: 03-Sep	-2019 Ana	ılyzed: 05-S	Sep-2019 16	:43		
Naphthalene	ND	1.28	5.00	ug/kg							U
2-Methylnaphthalene	ND	1.10	5.00	ug/kg							U
1-Methylnaphthalene	ND	0.40	5.00	ug/kg							U
Acenaphthylene	ND	1.08	5.00	ug/kg							U
Acenaphthene	ND	0.57	5.00	ug/kg							U
Dibenzofuran	ND	1.38	5.00	ug/kg							U
Fluorene	ND	0.63	5.00	ug/kg							U
Phenanthrene	ND	0.72	5.00	ug/kg							U
Anthracene	ND	0.87	5.00	ug/kg							U
Fluoranthene	ND	0.47	5.00	ug/kg							U
Pyrene	ND	0.63	5.00	ug/kg							U
Benzo(a)anthracene	ND	0.82	5.00	ug/kg							U
Chrysene	ND	1.05	5.00	ug/kg							U
Benzo(b)fluoranthene	ND	1.37	5.00	ug/kg							U
Benzo(k)fluoranthene	ND	0.76	5.00	ug/kg							U
Benzo(j)fluoranthene	ND	0.68	5.00	ug/kg							U
Benzofluoranthenes, Total	ND	3.01	10.0	ug/kg							U
Benzo(a)pyrene	ND	0.61	5.00	ug/kg							U
Indeno(1,2,3-cd)pyrene	ND	1.05	5.00	ug/kg							U
Dibenzo(a,h)anthracene	ND	0.89	5.00	ug/kg							U
Benzo(g,h,i)perylene	ND	1.07	5.00	ug/kg							U
Surrogate: 2-Methylnaphthalene-d10	85.2			ug/kg	150		56.8	32-120			
Surrogate: Dibenzo[a,h]anthracene-d14	117			ug/kg	150		77.9	21-133			
Surrogate: Fluoranthene-d10	127			ug/kg	150		84.7	36-134			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Semivolatile Organic Compounds - SIM - Quality Control

Batch BHI0018 - EPA 3546 (Microwave)

Instrument: NT8

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BHI0018-BS1)				Prepa	red: 03-Sep	-2019 Ana	lyzed: 05-S	Sep-2019 17	:09		
Naphthalene	142	1.28	5.00	ug/kg	300		47.2	36-120			
2-Methylnaphthalene	143	1.10	5.00	ug/kg	300		47.7	35-120			
1-Methylnaphthalene	146	0.40	5.00	ug/kg	300		48.7	39-120			
Acenaphthylene	156	1.08	5.00	ug/kg	300		52.2	35-120			
Acenaphthene	152	0.57	5.00	ug/kg	300		50.8	39-120			
Dibenzofuran	152	1.38	5.00	ug/kg	300		50.7	38-120			
Fluorene	169	0.63	5.00	ug/kg	300		56.5	41-120			
Phenanthrene	193	0.72	5.00	ug/kg	300		64.3	46-120			
Anthracene	206	0.87	5.00	ug/kg	300		68.6	36-120			
Fluoranthene	229	0.47	5.00	ug/kg	300		76.2	46-120			
Pyrene	244	0.63	5.00	ug/kg	300		81.4	49-120			
Benzo(a)anthracene	228	0.82	5.00	ug/kg	300		75.9	42-120			
Chrysene	242	1.05	5.00	ug/kg	300		80.7	48-120			
Benzo(b)fluoranthene	273	1.37	5.00	ug/kg	300		91.0	35-127			
Benzo(k)fluoranthene	260	0.76	5.00	ug/kg	300		86.8	37-129			
Benzo(j)fluoranthene	256	0.68	5.00	ug/kg	300		85.3	40-120			
Benzofluoranthenes, Total	792	3.01	10.0	ug/kg	900		88.0	46-120			
Benzo(a)pyrene	218	0.61	5.00	ug/kg	300		72.6	36-120			
Indeno(1,2,3-cd)pyrene	218	1.05	5.00	ug/kg	300		72.6	40-120			
Dibenzo(a,h)anthracene	211	0.89	5.00	ug/kg	300		70.3	38-120			
Benzo(g,h,i)perylene	226	1.07	5.00	ug/kg	300		75.3	38-120			
Surrogate: 2-Methylnaphthalene-d10	126			ug/kg	150		83.9	32-120			
Surrogate: Dibenzo[a,h]anthracene-d14	193			ug/kg	150		128	21-133			
Surrogate: Fluoranthene-d10	201			ug/kg	150		134	36-134			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Washington Department of Ecology Methods - Quality Control

Batch BHH0812 - EPA 3546 (Microwave)

Instrument: FID8

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHH0812-BLK1)			Prepa	ared: 30-Aug	g-2019 Ana	alyzed: 09-5	Sep-2019 1:	5:06		
C8-C10 Aliphatics	ND	2000	ug/kg							U
C10-C12 Aliphatics	ND	2000	ug/kg							U
C12-C16 Aliphatics	ND	2000	ug/kg							U
C16-C21 Aliphatics	ND	2000	ug/kg							U
C21-C34 Aliphatics	ND	2000	ug/kg							U
Surrogate: 1-Chloro-octadecane	7770		ug/kg	15000		51.8	30-160			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Washington Department of Ecology Methods - Quality Control

Batch BHH0812 - EPA 3546 (Microwave)

Instrument: FID8

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BHH0812-BLK2)			Prepa	ared: 30-Aug	g-2019 Ana	alyzed: 07-8	Sep-2019 11	1:28		
C8-C10 Aromatics	ND	2000	ug/kg							U
C10-C12 Aromatics	ND	2000	ug/kg							U
C12-C16 Aromatics	ND	2000	ug/kg							U
C16-C21 Aromatics	ND	2000	ug/kg							U
C21-C34 Aromatics	ND	2000	ug/kg							U
Surrogate: o-Terphenyl	8160		ug/kg	15000		54.4	30-160			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Washington Department of Ecology Methods - Quality Control

Batch BHH0812 - EPA 3546 (Microwave)

Instrument: FID8

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BHH0812-BS1)			Prep	ared: 30-Aug	-2019 Ana	alyzed: 09-5	Sep-2019 15	5:28		
C8-C10 Aliphatics	5860	2000	ug/kg	15000		39.1	30-160			
C10-C12 Aliphatics	6950	2000	ug/kg	15000		46.3	30-160			
C12-C16 Aliphatics	8200	2000	ug/kg	15000		54.7	30-160			
C16-C21 Aliphatics	10300	2000	ug/kg	15000		68.3	30-160			
C21-C34 Aliphatics	11100	2000	ug/kg	15000		73.9	30-160			
Surrogate: 1-Chloro-octadecane	8890		ug/kg	15000		59.3	30-160			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Washington Department of Ecology Methods - Quality Control

Batch BHH0812 - EPA 3546 (Microwave)

Instrument: FID8

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BHH0812-BS2)			Prepa	ared: 30-Aug	-2019 Ana	alyzed: 07-	Sep-2019 11	1:49		
C10-C12 Aromatics	5620	2000	ug/kg	15000		37.5	30-160			
C12-C16 Aromatics	7320	2000	ug/kg	15000		48.8	30-160			
C16-C21 Aromatics	19400	2000	ug/kg	30000		64.6	30-160			
C21-C34 Aromatics	7580	2000	ug/kg	15000		50.5	30-160			
Surrogate: o-Terphenyl	9560		ug/kg	15000		63.7	30-160			

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Certified Analyses included in this Report

Analyte	Certifications

EPA 827	70D-SIM	in Solid
---------	---------	----------

Naphthalene ADEC,DoD-ELAP,NELAP,WADOE

2-Methylnaphthalene ADEC,DoD-ELAP,NELAP

1-Methylnaphthalene ADEC,DoD-ELAP,NELAP,WADOE

Biphenyl ADEC, DoD-ELAP, NELAP

2,6-Dimethylnaphthalene ADEC,WADOE

Acenaphthylene ADEC,DoD-ELAP,NELAP,WADOE Acenaphthene ADEC,DoD-ELAP,NELAP,WADOE

Dibenzofuran ADEC, DoD-ELAP, NELAP

Fluorene ADEC,DoD-ELAP,NELAP,WADOE Phenanthrene ADEC,DoD-ELAP,NELAP,WADOE Anthracene ADEC,DoD-ELAP,NELAP,WADOE

Carbazole ADEC, DoD-ELAP, NELAP

1-Methylphenanthrene ADEC

Fluoranthene ADEC,DoD-ELAP,NELAP,WADOE Pyrene ADEC,DoD-ELAP,NELAP,WADOE Benzo(a)anthracene ADEC,DoD-ELAP,NELAP,WADOE Chrysene ADEC,DoD-ELAP,NELAP,WADOE Benzo(b)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE Benzo(k)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE Benzo(j)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE Benzo(j)fluoranthene ADEC,DoD-ELAP,NELAP,WADOE

Benzo(e)pyrene ADEC,NELAP

Benzo(a)pyrene ADEC,DoD-ELAP,NELAP,WADOE

Perylene ADEC,NELAP

Indeno(1,2,3-cd)pyrene ADEC,DoD-ELAP,NELAP,WADOE

Dibenzo(a,h)anthracene ADEC,DoD-ELAP

Benzo(g,h,i)perylene ADEC,DoD-ELAP,NELAP,WADOE

WA EPH in Solid

C8-C10 Aliphatics WADOE, DoD-ELAP, NELAP
C10-C12 Aliphatics WADOE, DoD-ELAP, NELAP
C12-C16 Aliphatics WADOE, DoD-ELAP, NELAP
C16-C21 Aliphatics WADOE, DoD-ELAP, NELAP
C21-C34 Aliphatics WADOE, DoD-ELAP, NELAP
C8-C10 Aromatics DoD-ELAP, NELAP, WADOE
C10-C12 Aromatics DoD-ELAP, NELAP, WADOE

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, IncProject: Sabey ETP II1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

C12-C16 Aromatics DoD-ELAP,NELAP,WADOE C16-C21 Aromatics DoD-ELAP,NELAP,WADOE C21-C34 Aromatics DoD-ELAP,NELAP,WADOE

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	01/31/2021
CALAP	California Department of Public Health CAELAP	2748	06/30/2019
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	01/01/2021
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2020
WADOE	WA Dept of Ecology	C558	06/30/2019
WA-DW	Ecology - Drinking Water	C558	06/30/2019

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, IncProject: Sabey ETP II1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Dave Cooper10-Sep-2019 15:54

Notes and Definitions

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

NRS This surrogate not reported due to chromatographic interference

J Estimated concentration value detected below the reporting limit.

D The reported value is from a dilution

* Flagged value is not within established control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

ATTACHMENT C EPH WORKSHEETS SAMPLES AREA 2-SW06(R) AND AREA 6-SW15(R)

FORMER TRIUMPH STRUCTURES AEROSTRUCTURES EVERETT, WASHINGTON

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 9/19/2019

Site Name: Everett Tech Park II Sample Name: Area 2-SW06('R)

201

	3	Current Condition	ondition			Adjusted Condition	dition		TEST CURRENT CONDITION
Chemical of Concern or EC	Measured Soil								Measured TPH Soil Conc, mg/kg= 8472.920
dnox	Conc	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	H=4.339E.01
	@dry basis								RISK= 0.000E+00
	mg/kg	unitless	unitless		mg/kg	unifless	unitless		Pass or Fail? Pass
Petroleum EC Fraction									Check Residual Saturation (WAC340-747(10))
AL_EC>5-6	0				0.00E+00		•		
AL_EC >6-8	0				0.00E+00				CALCULATE PROTECTIVE CONDITION
AL_EC >8-10	0				0.00E+00				This tool allows the user to calculate
AL_EC>10-12	0				0.00E+00				·.
AL_EC>12-16	118	7.08E-02			2.72E+02	1.63E-01			Ü
AL_EC >16-21	1450	1.31E-02			3.34E+03	3.01E-02	•		uses the same composition as for the transfer concerns measured data
AL_EC>21-34	6290	5.66E-02			1,45E+04	1,30E-01			· · · · · · · · · · · · · · · · · · ·
AR_EC >8-10	0		,		0.00E+00				
AR_EC>10-12	0				0.00E+00				Selected Criterion: @HI=1
AR_EC>12-16	3.92	1.41E-03			9.03E+00	3.25E-03			Most Stringent? YES
AR_EC>16-21	114	6.84E-02			2.63E+02	1.58E-01			Protetive TPH Soil Cone, $mg/kg = 19526.40$
AR_EC>21-34	497	2.24E-01			1.15E+03	5.15E-01			HI = 1.00E + 00
Benzene	0		0.00E+00		0.00E+00		0.00E+00		RISK = $0.00E+00$
Toluene	0		٠	***	0.00E+00				
Ethylbenzene	0				0.00E+00				
Total Xylenes	0				0.00E+00				TEST ADJUSTED CONDITION
Naphthalene	0				0.00E+00	0.00E+00			This tool allows the user to test whether a
I-Methyl Naphthalene	0				0.00E+00	0.00E+00			
2-Methyl Naphthalene	0		-		0.00E+00	0.00E+00		•	protective of numeral freatin. The workbook Lest Adjusted less that the TPH Soil Conc.
n-Hexane	0				0.00E+00	0.00E+00			
MTBE	0				0.00E+00				And the state of t
Ethylene Dibromide (EDB)	0		0.00E+00	******	0.00E+00	0.00E+00	0.00E+00		
1,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00		Tested TPH Soil Conc, mg/kg =
Benzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For	=⊞
Benzo(b)fluoranthene	0		0.00E+00	ali	0.00E+00		0.00E+00	all	RISK =
Benzo(k)fluoranthene	0		0.00E+00	сРАНѕ	0.00E+00		0.00E+00	cPAHs	Pass or Fail?
Benzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00		
Chrysene	0		0.00E+00		0.00E+00		0.00E+00		
Dibenz(a,h)anthracene	0		0.00E+00	2 Risk=	0.00E+00		0.00E+00	Σ Risk=	
Indeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	
Sum	8472.92	4.34E-01	0.00E+00		1.95E+04	1,00E+00	0.00E+00		

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

Soil

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 9/19/2019

Site Name: Everett Tech Park II

Sample Name: Area 6-SW15('R)

TEST CURRENT CONDITION	Measured TPH Soil Conc, mg/kg= 13455.710 HI= 6.426E-01	RISK = 0.000E + 00	Pass or Fail? Pass	Check Residual Saturation (WAC340-747(10))		CALCULATE PROTECTIVE CONDITION	This tool allows the user to calculate	_	Ü	uses the same composition ratio as for the TPH Soil Conc. The measured data.	. Communication (Communication (Communication Communication))		Selected Criterion: @HI=1	Most Stringent? YES	Protective TPH Soil Conc, mg/kg = 20938.18	HI = 1.00E + 00	RISK = 0.00E + 00			TEST ADJUSTED CONDITION	This tool allows the user to test whether a		protective of numan nearth. The Workbook Lest Adjusted lises the same composition ratio as for the TDU Soil Con-				Tested TPH Soil Cone, mg/kg =	=III	RISK =	Pass or Fail?					
	Pass or Fail?																											For	all	cPAHs			∑ Risk=	0.00E+00	
ıdition	RISK		unitless														0.00E+00									0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Adjusted Condition	ÒН		unitless						1.76E-01	2.77E-02	1.46E-01			2.63E-03	1.20E-01	5.28E-01					0.00E+00	4.56E-06	4.47E-05	0.00E+00		0.00E+00	0.00E+00								1.00E+00
	Soil Conc being tested		mg/kg		0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.94E+02	3.08E+03	1.62E+04	0.00E+00	0.00E+00	7.30E+00	1.99E+02	1.17E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.77E-02	1.39E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.09E+04
	Pass or Fail?									•															•			For	all	cPAHs			Σ Risk=	0.00E+00	
ondition	RISK		unitless														0.00E+00	-								0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Current Condition	НО		unitless						1.13E-01	1.78E-02	9.36E-02			1.69E-03	7.68E-02	3.39E-01		• • •				2.93E-06	2.87E-05												6.43E-01
	Measured Soil Conc	@dry basis	mg/kg		0	0	0	0	189	1980	10400	0	0	4.69	128	754	0	0	0	0	0	0.0114	0.00895	0	0	0	0	0	0	0 .	0	0	0	0	13455.71035
	Chemical of Concern or EC group			Petroleum EC Fraction	AL_EC>5-6	AL_EC>6-8	AL_EC>8-10	AL_EC>10-12	AL_EC >12-16	AL_EC>16-21	AL_EC>21-34	AR_EC>8-10	AR_EC>10-12	AR_EC>12-16	AR_EC>16-21	AR_EC>21-34	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	1-Methyl Naphthalene	2-Methyl Naphthalene	n-Hexane	MTBE	Ethylene Dibromide (EDB)	1,2 Dichloroethane (EDC)	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Sum

A2. 2 Worksheet for Calculating Soils Channpelter et fought extention of Gircum distributed at the Grant Water

Groundwater

WAC 173-340-740 and 747
Date: 9/19/2019

operties previously entered:	Symbol Value Units	n 0.43 unitless	Θ_{ν} 0.3 unitless	Θ_a 0.13 unitless	ρ_b 1.5 kg/L	f_{oc} 0.001 unitless	DF 20 unitless		adinetal proxitation if anxio	aujusteu previousiy n auy:	500		ION		1601	=1		nc, $mg/kg = 100\%$ NAPL	onc, $ug/L = 9.67E-01$	RISK @ Well = $0.00E+00$	HI @Well = $1.74E-03$		L RESULTS	4-Phase Model		347.5	347.6	0.810	1.3E-01	30.23%	70211.0		in Solid: 0.00%	in NAPL: 100.00%		to Table 747-5!		
Site-Specific Hydrogeological Properties previously entered:	ltem	Total soil porosity:	Volumetric water content:	Volumetric air content:	Soil bulk density measured:	Fraction Organic Carbon;	Dilution Factor:		Towast Cround Water TDH sone adjusted provisously if anys	AAISCI OLOUMU WAKEI II II COIL	Target Ground Water TPH Conc, $ug/L \Rightarrow$		CALCULATE PROTECTIVE CONDITION	OR TEST ADJUSTED CONDITION		1=1H @	Pass or Fail? YES	Tested TPH Soil Conc, mg/kg =	Predicted TPH GW Conc, ug/L =	RIS			DEDAILED MODEL RESULTS	Type of model used for computation: 4-Phas	Computation completed? Yes!	Initial Weighted Average MW of NAPL, g/mol:	Equilibrated Weighted Average MW of NAPL, g/mol:	Initial Weighted Average Density of NAPL, kg/L:	Volumetric NAPL Content, Θ_{NAPL} :	NAPL Saturation (%), Θ_{MAPL}/n :	100% NAPL, mg/kg	Mass Distribution Pattern @ 4-phase in soil pore system:	Total Mass distributed in Water Phase: 0.00%	Total Mass distributed in Air Phase: 0.00%		Please Check Soil Residual Saturation TPH Levels: Refer to Table 747-51		
				Pass or Fail?				•													·										for	all	cPAHs			Σ Risk=	0.00E+00	Pass
			ı	RISK @ Well		unitless														0.00E+00									0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			usted Condition	HO @ Well) Y	unitless		0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.92E-06	4,47E-10	1.51E-14	0.00E+00	0.00E+00	3.88E-04	1.31E-03	4.38E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								1.74E-03
			Adjus	Predicted Conc	@Weii	ng/L		0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.20E-04	1.43E-05	4.84E-10	0.00E+00	0.00E+00	3.11E-01	6.28E-01	2.80E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.67E-01
				Soil Conc being	tested	mg/kg		0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.78E+02	1.20E+04	5.21E+04	0.00E+00	0.00E+00	3.25E+01	9.45E+02	4.12E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.02E+04
ırk II	R)			GW Cleanup Level		ng/L					•									5	1000	700	1000	160				70	0.01	5	for	all	cPAHs	Risk=	1E-05	·		
Site Name: Everett Tech Park II	Sample Name: Area 2-SW06('R)		Measured Soil	Conc	@dry basis	mg/kg		0	0	0	0	118	1450	6290	0	0	3.92	114	497	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8472.92
Site Name:	Sample Name:			Chemical of Concern or EC	Group		Petroleum EC Fraction	AL_EC>5-6	AL_EC >6-8	AL_EC>8-10	AL_EC >10-12	AL_EC>12-16	AL_EC>16-21	AL_EC>21-34	AR_EC>8-10	AR_EC>10-12	AR_EC>12-16	AR_EC >16-21	AR_EC>21-34	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	1-Methyl Naphthalene	2-Methyl Naphthalene	п-Нехапе	MTBE	Ethylene Dibromide (EDB)	1,2 Dichloroethane (EDC)	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Sum

A2. 2 Worksheet for Calculating Soile Chammpelier et fagythe Reciention of Sincande Water (duality flearthing illashrage) Ground Water

WAC 173-340-740 and 747

Date: 9/19/2019 Site Name: Everett Tech Park II

Sample Name: Area 6-SW15('R)

or EC Conc		Adjus	Adjusted Condition			17.
Conc Conc						Volumetric water coment.
mg/kg ug/L 5-6 0 6-8 0 6-8 0 6-8 0 6-8 0 8-10 0 -10-12 0 -10-12 1980 -1-34 10400 8-10 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-12 0 -10-13 189 -10-14 10400 -10-15 0 -10-15 0 -10-15 0 -10-16 1000 -10-17 0 -10-18 0 -10-19 0 -10-10 0 -10-10 0 -10-10 0 -10-10 0	nup Soil Conc being tested	Predicted Conc @Well	HQ @ Well	RISK @ Well	Pass or Fail?	Volumetric air content: Soil bulk density measured:
P.E.C. Fraction -5-6 6-8 6-8 10-8 10-12 0 10-12 0 10-12 0 10-12 0 10-12 1-14 11-16 11-16 1-10-12 0 1-10-12 0 1-10-12 0 1-10-12 0 1-10-13 1-10-12 0	mg/kg	ng/L	unitless	unitless		Fraction Organic Carbon:
5-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Dilution Factor:
6-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00E+00	0.00E+00	0.00E+00			
8-10 0 0 10-12 0 0 12-16 189 15-21 1980 16-21 1980 10-12 0 0 10-12 0 0 10-12 0 0 10-12 0 0 10-12 0 0 10-13 4 754 10-13 4 754 10-13 0 1000 ceres 0 1000 ceres 0 1000 ceres 0 0 1000 corected 0.0114 Naphthalene 0.00895 Naphthalene 0.00895 Santiracene (EDB) 0 0.01 for orocethane (EDC) 0 5 antiracene 0 6001 Syrene 0 Riske	0.00E+00	0.00E+00	0.00E+00			T. C. C. C. C. C. C. C. C. C. C. C. C. C.
10-12 0 189 189 1-10-12 1980 1-10-13 1980 1-10-13 1980 1-13-34 10400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00E+00	0.00E+00	0.00E+00		-	Target Ground Water LF
12-16 189 16-21 1980 21-34 10400 8-10 10-12 0 10-12 0 10-12-16 4.69 16-21 128 12-14 754 0 5 0 1000 cene 0 700 cenes 0 1000 cenes 0 0 1000 cones 0.00E+00	0.00E+00	0.00E+00			Target Ground Water TPH Cone, ug/L ⇒	
16-21 1980 21-34 10400 8-10 8-10 8-10 10-12 0 10-12 0 10-12 11-16 11-16 11-16 11-18 11-16 11-18 11-16 11-18 11-18 11-18 11-18 11-19	9.84E+02	9.42E-04	1.96E-06			
21-34 10400 8-10 0 0 10-12 0 0 10-12 0 0 10-12 1 28 21-34 754 21-34 754 21-34 754 21-34 754 21-34 1000 cenes 0 1000 cenes 0 1000 cenes 0 1000 concernance (EDB) 0 0.011 concernance (EDB) 0 0.01 fluoranthene 0 cPAHs concernanthene 0 Riske concernanthene 0 Riske concernanthene 0 Riske concernanthene 0 Riske concernanthene 0 Riske concernanthene 0 Riske	1.03E+04	1.25E-05	3.91E-10			CALCULATE PROTECTIVE CO
8-10 10-12 0 10-12 10-12 0 112-16 4,69 1-16-21 128 21-34 754 754 754 754 754 754 760 0 1000 cence 0 1000 cences 0	5.42E+04	5.12E-10	1.60E-14			OR TEST ADJUSTED CONE
10-12 0 4.69 12-16 4.69 16-21 128 21-34 75-4 care 0 0 ca	0.00E+00	0.00E+00	0.00E+00			
12-16 4.69 16-21 128 21-34 754 21-34 754 0 cenes 0 cenes 0 cone 0 Naphthalene 0.0114 Naphthalene 0.00895 crocathane (EDE) 0 nultracene 0 fluoranthene 0 pyrene 0 cone of the c	0.00E+00	0.00E+00	0.00E+00			
116-21 128 21-34 754 21-34 754 00 cenes 0 cenes 0 cenes 0 Naphthalene 0.0114 Naphthalene 0.00895 Dibromide (EDB) 0 oroethane (EDC) 0 anthracene 0 fluoranthene 0 pyrene 0 oroethane (EDC) 0	2.44E+01	2.38E-01	2.97E-04			Pass or Fail?
2134 754 2134 754 cene 0 cene 0 cene 0 cene 0 Naphthalene 0.00114 Naphthalene 0.00895 Corocthane (EDC) 0 antiracene 0 fluoranthene 0 Syrene 0 O	6.67E+02	4.51E-01	9.39E-04			Tested TPH
cenes 0 cenes 0 cenes 0 Naphthalene 0.0114 Naphthalene 0.00895 Corocathane (EDC) 0 nultracene 0 fluoranthene 0 pyrene 0	3.93E+03	2.72E-02	4.25E-05			Predicted TPF
cene 0 enes 0 ene 0 Naphthalene 0.0114 Naphthalene 0.00895 Coroethane (EDB) 0 multracene 0 fluoranthene 0 pyrene 0	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
0 0 0 0.0114 0.00895 0 0 0 0 0 0 0 0 0 0	0.00E+00	0.00E+00	0.00E+00			
0 0.0114 0.00895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00E+00	0.00E+00	0.00E+00			
0 0.0114 0.00895 0 0 0 0C) 0 0 0	0.00E+00	0.00E+00	0.00E+00			DEDAILED
0.0114 0.00895 0 0 0 0 C; 0 0 0 0	0.00E+00	0.00E+00	0.00E+00			Type of model used for computation:
0.00895 DB) 0	5.94E-02	2.62E-03	6.55E-06			Computation compléted?
OC) 0	4.66E-02	2.03E-03	6.33E-05			Initial Weighted Average MW of NAPL, g/mol:
ODB) . (C)	0.00E+00	0.00E+00	0.00E+00			Equilibrated Weighted Average MW of NAPL, g
DB) . 0 (C) 0 0 0	0.00E+00	0.00E+00	0.00E+00		·	Initial Weighted Average Density of NAPL, kg/I
0 0 0 0	0.00E+00	0.00E+00	0.00E+00	0.00E+00		Volumetric NAPL Content, Θ_{NAPL} :
00000	0.00E+00	0.00E+00	0.00E+00	0.00E+00		NAPL Saturation (%), Θ_{NAPL}/n :
0000	0.00E+00	0.00E+00		0.00E+00	for	100% NAPL, mg/kg
0000	0.00E+00	0.00E+00		0.00E+00	all	Mass Distribution Pattern @ 4-phase in soil pore
000	0.00E+00	0.00E+00		0.00E+00	cPAHs	Total Mass distributed in Water Phase
0 "	0.00E+00	0.00E+00		0.00E+00		Total Mass distributed in Air Phass
	0.00E+00	0.00E+00		0.00E+00		
Lybenz(a,n)aninfacene	0.00E+00	0.00E+00		0.00E+00	Σ Risk=	Picase Check Soil Residual Saturation TPH Leve
Indeno(1,2,3-cd)pyrene 0	0.00E+00	0.00E+00		0.00E+00	0.00E+00	
Sum 13455.71035	7.01E+04	7.21E-01	1.35E-03	0.00E+00	Pass	

	Groudwolfer	dwal	ر <i>ک</i> ر
Site-Specific Hydrogeological Properties previously entered:	Properties pre	vionsly entere	÷
Item	Symbol	Value	Units
Total soil porosity:	и	0.43	unitless
Volumetric water content:	. M	0.3	unitless
Volumetric air content:	69	0.13	unitless
Soil bulk density measured:	ρ_b	1.5	kg/L
Fraction Organic Carbon:	f_{oc}	0.001	unitless
Dilution Factor:	DF	20	unitless

d previously if any:	500
Target Ground Water TPH conc adjusted previously if any:	Iarget Ground Water TPH Conc, ug/L ⇒

CALCULATE PROTECTIVE CONDITION OR TEST ADJUSTED CONDITION	Calculate or Test
@ HI=1	1
Pass or Fail? YES	
Tested TPH Soil Conc, mg/kg = 100% NAPL	NAPL
Predicted TPH GW Conc, ug/L = 7.21E-01	-01
RISK @ WeII = $0.00E+00$	00+
HI @Well = 1.35E-03	-03

DEDAILED MODEL RESULTS	CTS
Type of model used for computation: 4-Phase Model	
Computation completed? Yes!	
Initial Weighted Average MW of NAPI, g/mol:	352.9
Equilibrated Weighted Average MW of NAPL, g/mol:	353.0
Initial Weighted Average Density of NAPL, kg/L:	0.808
Volumetric NAPL Content, Θ_{NAPL} :	1.3E-01
NAPL Saturation (%), Θ_{NAPL}/n :	30.23%
100% NAPL, mg/kg	70067.0
Mass Distribution Pattern @ 4-phase in soil pore system:	
Total Mass distributed in Water Phase: 0.00%	in Solid: 0.00%
Total Mass distributed in Air Phase: 0.00%	in NAPL: 100,00%
Please Check Soil Residual Saturation TPH Levels: Refer to Table 747-5!	17-5!

ATTACHMENT D MTCAStat DATA OUTPUT (UCL95% Calculation)

FORMER TRIUMPH STRUCTURES AEROSTRUCTURES EVERETT, WASHINGTON

Everett Technical Park II UCL95% TPH D+O (Detects Only)

